The complete quide
to Mac 0S X administration

Enterprise Mac
Administrator’s Guide

CharlesS. Edge Jr | Beau Hunter | Zack Smith

Apress

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

Enterprise Mac
Administrator’s Guide

Charles S. Edge Jr.,
Beau Hunter,
Zach Smith

Apress’

[vww allitebooks.cond

http://www.allitebooks.org

Enterprise Mac Administrator’s Guide
Copyright © 2009 by Charles S. Edge Jr., Beau Hunter, and Zach Smith

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2443-3
ISBN-13 (electronic): 978-1-4302-2444-0
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

Lead Editor: Michelle Lowman

Technical Reviewers: Joe Kissell, Dee-Ann LeBlanc, and Brad Lees

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary
Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank
Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Debra Kelly

Copy Editors: Katie Stence and Sharon Terdeman

Composition: ContentWorks, Inc.

Indexer: Ann Rogers/Ron Strauss

Artist: April Milne

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

[vww allitebooks.cond

http://www.allitebooks.org

To Lisa & Emerald, with love
—Charles S. Edge Jr.

Dedicated to my wife, Monica, who, despite completely losing me to the world of bits and bytes for the last
six months, has been a source of constant support.
—Beau Hunter

vww allitebooks.conl

http://www.allitebooks.org

Contents at a Glance

About the AUhOrScccccsismmisesmsssn s ——————— Xiv
About the Technical EAItOrscousmmsmmismimmssmmssmmsmismisms s s s ssssssssssssssnsns Xv
AcCKNOWIEdgMENTES.....ccuumiiiriiiisssnnnnnnnnnrasssssssssnnnnneessssssssssssnnnneessssssssnnnnnnnssssssssssnnnnnnnenssssssnnnnn XVi
INtrodUCHION......civr i ————————————_ xvii
Chapter 1: Directory ServiCesccuuuseemmmmmmmmmmsssssssssssnnmmmsssssssssssssssssssssssssssssnsssssssssssnsnnnnnnsness 1
Chapter 2: Directory Services Clientsccccuunemmmmmsssnsmmmmsssssnmmssssssnmsssssssnmsssssssnsessssnsnsessans 39
Chapter 3: Active DIreClOrycccccuiissemmmmnsssssnnmnmssssnnmsssssssnmsssssssnssssssssnnsssssnnnssssssnnnsesssnnnnsessnns 91
Chapter 4: STOrageccccrrmiseemmmmmsssnnnmmssssssmmssssssnmessssssnsessssssssessssnnseessssnnnsessssnnnessssnnnnsessnnn 141
Chapter 5: Messaging and GrOUPWAIEccceeerrssssssssssssssnssssssssnnsessssnsnssssssnsnssssssnsnssssssnnnssssns 219
Chapter 6: Mass Deploymentccccuunnsemnmmmmssnnnmmmssssmmmsssssnessssssnessssssessssssssesssnnseenss 287
Chapter 7: Client Management..........ccccuisemnmmmmsssssnmmssssssnmssssssssesssssssnssssssnssssssssnnssssssnnnnssss 355
Chapter 8: Automating Administrative Taskscccccussmemmmmsssnsnmmmssssssmmssssssnsssssssssssssssssssnssss 423
Chapter 9: Virtualizationccccunsemmmmmnsssnmmmsssnmmmssssnmmsssssmmsssssmmsssssnssssssa s 493
Chapter 10: iPRONE.......ccccmiiiinmnnminssnnnnissssssnnessssssssesssssnnnesssssnnsessssnnnnessssnnnnsssssnnnnesssnnnnnnssns 535
INEX weeviseriimines i ——————————————————_——_————_————" 577
iv

[vww allitebooks.cond

http://www.allitebooks.org

Contents

About the AUTNOLScouremmiiiremnesrirrnsssssrrensssssrsnnssssnsnnssssssnnnsssssnnnnsssnnnnnnssnsnnnnssnnnnnnsssnnnnnnsenes KIV
About the Technical EQItOrSccuurmeessmmeemsssmmmmsssssmssssssssssssssssssssssssssssssssssssssnsssssssnsssnsnssnssnss XU
Acknowledgments.......ccccuneemmmmmssnnnmmssssssnmmssssssmnsssssssnssssssnnssssssssssssssnsnesssssnssesssssnnsesssssnnnens XVi

Introduction.........cccciciiiinseesennn s sssssansnneesssssnnnnnnnnes XV
Chapter 1: Directory ServicCescccumsseemsmmmmmmmssssssssssssssmssssssssssssssssssssssssssssssnsssssssssssssnnnnnnnness |
Local Accounts 2
Creating Accounts 3
Granting Administrative Privileges 4
The Root Account 6
How the Local Directory Service Works 8
dscl 1
Changing Accounts En Masse 14
Account Creation Scripts 15
Parachuting Accounts into Clients 15
Hiding Administrative Accounts 16

Raw Mode 17

Set Search Paths 18
Create Additional Local Directory Nodes 18
External Accounts 19
Open Directory 20
LDAP 20
Kerberos 21
Setting up Open Directory Using Server Admin 24
Setting up Open Directory from the Command Line 28
Demoting an Open Directory Master 29

Set up an Open Directory Replica 29
Removing a Replica 30
Using Workgroup Manager to Create New Users 30

v

[vww allitebooks.cond

http://www.allitebooks.org

Vi

Backing up Open Directory 33
Troubleshooting Directory Services 35
Directory Services Debug Logs 35
Cache 35
Verifying Authentication 36
Summary 37
Chapter 2: Directory Services Clientsccccmnmmmemmmsnmmmmmmmmmssssssnnnssssssssssssss 39
The Lay of the Land 40
Basic Binding 46
Plug-ins 47
Unauthenticated Dynamic Binding 49
Unauthenticated Static Binding 51
Trusted Static Binding 55
Pushing Out SSL Certificates 57
Custom LDAP Settings 61
Managing the Search Policy 67
Binding with the Command Line 70
Scripting Binding 72

NIS 72
Kerberos 75
Kerberising Services 81
Troubleshooting Kerberised Services 84
Directory Services Preferences 89
Summary 90
Chapter 3: Active Directoryccccunmemmmmmmsemnmmmssssnmmsssssssmmssssssnsssssssssssssssssnssssssssnsssssnnnnsesssnns 9 1
Binding to Active Directory 93
Directory Utility 93
Testing Your Gonnection 98
Testing Authentication 102
Testing Authentication at the Login Window 103
Home Directories and the Apple Active Directory Plug-in 104
DNS Concerns 105

Bind to AD 106
Naming Conventions and Scripting Automated Binding 108
Map UID and GID 111
Namespace Support Using dsconfigad 112
Active Directory Packet Encryption Options 112
Dual Directory 113
Nesting 115
MCX via Dual Directory 116
MCX via Active Directory 119
Configuring AD Admin Groups 122
Nesting Administrators in the Local Admin Group 123
Third-Party Solutions 124

[vww allitebooks.cond

http://www.allitebooks.org

Centrify’s DirectControl
DirectControl Installation

Configuring DirectControl
Using DirectControl

Likewise

Likewise Enterprise

Thursby ADmitMac

Quest

Summary

124
124
127
131
133
134
134
135
138

(R 1T T0) G g HIE (1] g A [§

Client Storage

AFP

SMB

NFS

Automounts

Home-Directory Storage Provisioning
SAN Storage

Xsan

Cabling and Transceivers

Storage

Virtualized Storage
Initiators

Switches

Zones

Configuring Storage

Promise Virak

Xserve RAID

Configuring Ethernet
Setting up the Xsan

Installation

Creating a Volume

Adding a Computer

Resharing the Volume

Xsan Block Sizes

AFP Tuning
Tickle Times

Using Third-Party Clients

Installing Linux Clients

Windows Clients

Xsan Management
Reinstalling the Software

Upgrades to your Xsan
Operating System Upgrades

Upgrading the Volume

[vww allitebooks.cond

141
142
144
145
146
149
149
150
150
151
152
152
153
155
156
157
158
163
164
164
169
177
177
178
178
179
180
180
181
183
183
183
184
184

Vii

http://www.allitebooks.org

iSCSI
ExtremeZ-IP

Managing Filesystem Permissions in 0S X

.DS_Store Files
Summary

Chapter 5: Messaging and GroUPWareccccuuusssssssssssssmssssssssssssssssssssssssssssssnssssssssssssnnsnnnns @ 1 9
Exchange Integration

viii

Changing IP Addresses

Common Xsan Repair and Troubleshooting Procedures

Resetting Xsan Client settings
Rebuilding an Array on an Xserve RAID

Rebuilding an Array on a Promise RAID

Latency

Schedules

Fragmentation
Backup

The Xsan Command Line

Fibreconfig

Labeling LUNs

cvadmin

Repairing Volumes

Other Commands

Setting up AFP in ExtremeZ-IP

Configuring ExtremeZ-IP

Setting up DFS in ExtremeZ-IP

POSIX-Based Permissions

Access Control Lists

Administration

Read Permissions

Write Permissions

Inheritance

Using chown and chmod to manage permissions

Entourage

Paths

Troubleshooting Exchange 2007 Virtual Directories
Entourage Setup

Automatic Client Configuration

Deploying the Package

Account Setup

Postflight Tasks
AutoUpdate

Disable Sync Services
Archiving Mail

Native Groupware Support

[vww allitebooks.cond

186
187
187
187
187
188
189
189
190
190
191
192
193
195
195
196
202
202
204
207
207
207
210
212
212
212
213
214
215
216

220
220
221
222
223
230
231
233
233
234
235
235
236

http://www.allitebooks.org

Manual Setup
GroupWise and Lotus Notes

iCal Server

Setting up iCal Server

Managing Calendars

Delegating Access

Backing up Calendars

Clustering CalDAV
Wiki Integration

Troubleshooting

Address Book Server

Setting up Address Book Server

Connecting to the Address Book Server

Backing up Address Books

Instant Messaging
Solutions

Microsoft Messenger

iChat Server

Transcripts

Archiving Transcripts via iChat

Autobuddy

Mac 0S X Mail Server

Setting up a Mail Server

Configuring Mail with ServerAdmin

Protecting the Mail Servers

Mailing Lists

Logging

The Command Line

Choosing Mailbox Locations
The Dovecot Mailstore

Setting up Public folders

Backing up Mail

Clustering Mail Services

Leveraging Push Notification

Summary

Further Reading

236
pLy|
241
24
246
250
251
251
252
252
254
254
258
261
261
261
261
262
263
265
266
267
267
268
2n
276
276
277
278
279
281
281
282
285
286
286

Chapter 6: Mass Deploymentccccinnnemmmmnnnsmnnmmssssmmmssssnmssssssmsssssnsssssssssssssssseessss 28 1

Planning Your Mass Deployment

Monolithic vs. Package-Based Imaging

Automation

Image Delivery

Creating an Image
Creating an Image from the Command Line

Operating System Packaging with Composer

288
290
293
294
294
297
301

Bare-Metal Images
Deploying Images

Restoring with Disk Utility
Using Apple Software Restore

Netinstall

Boot Modifier Keys

Bless

Apple’s NetRestore
DeployStudio

Other Third-Party Solutions
Casper Suite

Automation

Types of Automations

User Templates

Migrating from Monolithic Images
Custom Packages with Composer

InstallEase and Iceberg

FileWave

PackageMaker

Negative Packages

Installing a Package

Package Scripts.
Customizing Prebuilt Packages

Customizing 0S X Preferences

Defaults

When Not to Use Defaults

PlistBuddy

When Not to Use PlistBuddy

Image Regression Testing
Summary

302
302
303
305
307
3N
312
314
317
329
330
330
330
332
332
333
337
337
338
342
344
344
345
346
347
349
350
352
352
353

Chapter 7: Client Management.............cccisnsmmmmssmmmmssmsmmssssmmssssmss 99

Managed Preferences

Preference Interactions

Utilizing Tiered Management

Managed Preferences in Action

Preference Manifests and Custom Preferences
Setting MCX from the Command Line

Automated Client Setup

iCal

Address Book

Application Preferences

Deploying Proxy Settings via a PAC File

Network Printing

356
358
360
361
361
363
364
364
366
367
368
3n
372

Restricting Applications 375
Computer Access Filters 378
Common Tasks 380
Troubleshooting and Testing 383
User Home Folders 385
Local Home Folders 385
Local Home Folder Configuration 388
Network Home Folders 391
Redirection 393
Network Home Folder Configuration 398
Home Directory Syncing 401
Troubleshooting Syncing Issues 406
Password Policies 407
Password Changes at Loginwindow 409
Managing Keychains 410
Apple Remote Desktop 411
Scanning Networks with ARD 412
Controlling machines 412
Sending Commands, Packages, and Scripts 413
Enabling Directory Service groups 415
Enabling Directory-Based Administrator Groups 416
Quota Management M7
Login Hooks 418
Software Update Server 420
Further Reading 422
Chapter 8: Automating Administrative Taskscccuneemmmmmsmnmmmmsssnmmmmssssmmmssssssssssssnenns 423
The Basics 424
Scripting the Bash Shell 428
Declaring Variables 429
Variable Mangling 431
Standard Streams and Pipelines 433

If and Case Statements 434
For, While, and Until Statements 438
Arrays 440
Exit Codes 441
Constructing a Shell Script 442
Passing Arguments to Shell Scripts 446
Scheduling Automations 447
launchd 447

cron 449
Daily, Weekly & Monthly Scripts 450
Triggered Automations 451
Self-Destructing Scripts 452
Automating User Creation from a Third-Party Database 453

Xi

Logging 458

Working with Date and Time 459
Automating System Tasks 460
Configuring Local Administrative Permissions 460
Allow Local Users to Manage Printers 464
Home Folder Permission Maintenance 465
Enabling the Software Firewall 472
Managing Items in ARD 475
Disk Utilization 475
Network Setup 476
Power Management 481
ServerAdmin Backups and Change Monitoring 483
Xserve Lights-Out Management 487
Troubleshooting 488
Further Reading 490
Chapter 9: Virtualizationcccccunemmmmmnnssmnmmmsssmnmmssssmmmmsssssmsssssssssssssssssssssssssssnensss 493
Boot Camp 494
Thin Clients 495
VMware 495
VMware Fusion in Monolithic Imaging 496
VMware Fusion with a Package-Based Deployment 501
Virtual Machines 503
Preparing the Virtual Machine for Mass Deployment 505
Virtual Machine Deployment 506
Populating the Virtual Machine List 510
Parallels 511
Parallels on a Monolithic Image 512
Virtual Machine Deployment 514
Automating the Parallels Installation 519
Automated Virtual Machine Deployment 520
Managing Windows 521
Sysprep 521
Configuration Management 525
Policies and Open Directory 527
Computer Configurations 528

User Configurations 529
Other Virtualization Solutions 529

Wine 529
Managing VMs and Boot camp Through GPOs 530
AntiVirus 532
Further Resources 532
(LT 0 G gl T £ U | X 11
The iPhone Simulator 536
Email 537

Xii

IMAP, POP, and SMTP 538

Setting Up the Exchange Client 540
Installing Certificates 542
Network Connections 544
Leveraging the Web Browser 546
Citrix 547
iPhone Configuration Utility 548

Building Configurations 548

Deploying Configurations 564

Importing and Exporting Profiles 567
The App Store 569
KACE 570
Managing iTunes 571
Troubleshooting 572

Updates 573

Leveraging the Logs 574

Backup and Restoration 574

Bypassing the Passcode 576
Further Reading 576

1T N | ¥ |

Xiii

About the Authors

Charles S. Edge Jr. is the Director of Technology at 318, which is based in Santa Monica, California, and is the
largest Mac consultancy in the United States. At 318, Charles leads a team of more than 40 engineers and has
worked with network architecture, security, and storage for various vertical and horizontal markets. Charles
maintains the 318 corporate blog at 318.com/techjournal as well as a personal site at krypted.com.

Charles is the author of a number of titles on Mac OS X Server and systems administration topics, including three
titles from Apress for Mac OS X 10.6. He has spoken at a variety of conferences including DefCon, Black Hat,
LinuxWorld, Macworld, MacSysAdmin, and the Apple WorldWide Developers Conference. Charles is the developer
of the SANS course on Mac OS X Security and coauthor of its best practices guide to securing Mac OS X as well.
Charles now lives in Minneapolis, Minnesota, with his wife, Lisa, and sweet little daughter, Emerald.

Beau Hunter has worked professionally with Apple technologies since 1999 and has supported businesses
running the Mac OS for more than 10 years. Throughout this time, he has developed a strong skill set supporting
and securing Apple OS X Server in multiple capacities: clustered web and database solutions, cross-platform
integration, high-performance SANs, high-capacity backup systems, automation, and cross-platform mass
deployment and integration.

Beau has spoken at numerous events, including Macworld 2009, and has been confirmed to speak at Macworld
2010. In his free time he can be found writing Python and PHP, playing PC games, and rooting for the Seattle
Seahawks. In November 2009, Beau and his wife, Monica, will be returning to their true home — Seattle,
Washington.

Zack Smith has worked as an IT consultant his entire adult life. He has consulted for insurance companies,
entertainment companies, medical organizations, and governmental agencies. Zack is an Apple Certified Trainer and
as such has taught Apple's Security Best Practices and many other Apple Certified System Administrator-level
classes, such Mac OS X Deployment and Mac OS X Directory Services, at Apple and various market centers in
Boston, Virginia, Los Angeles, and Cupertino. . Zack has spoken at Macworld San Francisco and at smaller venues
as well, such as IT user groups. Zack is the author of a set of open source IT administration software and scripts
and has long-term plans to be a full-time Objective-C developer. When not attending IT and security conferences or
traveling for work at 318, Zack can be found in Portland, Oregon, with his partner in crime, Anna, and dog, Watson.

Xiv

About the Technical Reviewers

Joe Kissell is Senior Editor of TidBITS, a Web site and e-mail newsletter about the Mac and
the Internet, and the author of numerous print and electronic books about Mac software,
including Take Control of Mac OS X Backups and Take Control of Upgrading to Snow Leopard.
He is also a Senior Contributor to Macworld and was the winner of a 2009 Neal award for Best
How-To Article.

Joe has worked in the Mac software industry since the early 1990s and previously managed
software development for Nisus Software and Kensington Technology Group. He was named
one of MacTech's 25 most influential people in the Mac community for 2007. When not writing
about Macs, Joe likes to cook, travel, watch movies, and practice tai chi. He also runs a

number of Web sites, including JoeKissell.com and the popular Interesting Thing of the Day (itotd.com). Joe lives in
Paris with his wife, Morgen Jahnke, and their cat, Zora.

their four children.

Dee-Ann LeBlanc has been into computers since she first got her hands on one and shortly
after had her first Apple computer. Since then she's done help desk work, technical consulting,
computer books and articles, and technology journalism covering a variety of platforms. Her
specialties include Linux, open source, OS X, and content management systems.

Brad Lees has more than 12 years of experience in application development and server
management. He has specialized in creating and initiating software programs in real estate
development systems and financial institutions.

His professional career has been highlighted by his positions as Information Systems Manager
at The Lyle Anderson Company of Scottsdale, Arizona; Product Development Manager for
Smarsh; Vice President of Product Development for iNation; and Information Technology
Manager at The Orcutt/Winslow Partnership, the largest architectural firm in Arizona, based in
Phoenix.

A graduate of Arizona State University, Tempe, Brad and his wife, Natalie, reside in Phoenix with

Xv

Acknowledgments

I'd like to first and foremost thank the Mac OS X community. This includes everyone from the people that design the
black box to the people that dissect it and finally the people that help others learn to dissect it. We truly stand on the
shoulders of giants. Of those at Apple that need to be thanked specifically: Schoun Regan, Joel Rennich, Greg
Smith, JD Mankovsky, David Winter, Stale Bjorndal, Cawan Starks, Eric Senf, Jennifer Jones, and of course the one
and only Josh Wisenbaker. A special thanks to Randy Saeks for his contribution to the title and to Michael Bartosh
without whom any of the directory services content in this title likely would not have been possible. Also, thanks to
the crew at 318 for their hard work. Without you guys | would never have been able to take the time to complete this
book!
Finally, a special thanks to the fine staff at Apress for tuning this book to be a well-oiled machine of prose and code.
This especially includes Clay Andres for getting the book kick-started and, of course, Debra Kelly, the best whip
cracker | have had the joy of working with to date. Thanks also to my coauthors, Beau and Zack, for tirelessly
working with me to meet our deadlines — it was a fun ride!

Charles S. Edge Jr.

XVi

Introduction

In the beginning was the command line. You can automate anything and everything in Mac OS X, but
knowledge of the command line will be required to fully automate your deployment and integrate Mac OS X in the
enterprise while maintaining a low total cost of ownership. This isn't to say you can’t integrate Mac OS X into a large
organization en masse without using the command line — you can.However, from automation to troubleshooting,
opening up a terminal window will be key to keeping your sanity, if only from time to time. But don’t fear the
terminal, and know that the fundamental tasks required and the fundamental methodologies with Windows
deployments are the same as with Mac OS X.

If you are reading this book, then you are likely charged with integrating Macs into your environment,
whether kicking and screaming (which we hope this book will change) or as the sponsor. The message that you take
away from this book is hopefully that you can do anything you want to with Mac OS X, from deploying 10,000
machines overnight to building a petabyte worth of storage to house all sorts of data for your Macs, provided you
are not averse to learning a little bit of command line to achieve your goals. The power and flexibility of Mac OS X
along with the best of the open source community is right at your fingertips to help along the way.

The first question many in IT ask when told about the need to use the command line is, "But isn’t Mac OS X
supposed to be easy to use." It is. But we're not talking about just using the Mac. We're talking about building and
managing a complicated IT infrastructure, which at some point requires staff that is tooled with the mastery of the
internals of each platform for which they are tasked as the steward. As such, the more you learn about internals, the
more you learn about the basics, the more you can automate, the more you learn about what goes on under the
hood, the more you can master management en masse, and, ultimately, the more appropriately you will be able to
address issues and concerns on an enterprise-wide scale as they arise. To take this a step further, the more you
learn about managing a second platform (no matter what the platform is), the better you will be at managing others.
But drastic reduction in Total Cost of Ownership is possible with OS X compared to other platforms for a variety of
reasons. And since users are typically happier on a Mac, who wouldn’t want a happier user base combined with
lower recurring costs.

Paradigm Shifts

Just as when enterprise computing was young, you will need to rethink some of your strategies to
accommodate for a wider variety of platforms, resulting in a paradigm shift of sorts. But luckily you are not alone,
and the jump is not as bad as many seem to think. There are a number of resources to help you through the
process. From web sites

Xvii

to books, from Apple engineers to third-party providers/channel partners, from e-mail lists to user groups,
you are not on an island. And while it is not fully open source, the Mac platform is a largely community-driven affair.
One of our contributions to that community is this book, where we take on the lofty task of bridging the gap
between your enterprise and your Mac.

The fundamentals of designing a Mac-based enterprise are the same as with any other platform — the
specifics are not. In any enterprise organization you will need to perform a mass deployment, whether all at once or
a refresh cycle performed on an ongoing basis. Every enterprise will also need centralized servers that provide a
number of services to hosts on the network, including directory services, shared storage, groupware, and
application servers. But the software that provides the needs of an enterprise is often different with the Mac than
with other platforms. This isn't to say that the functionality of solutions already in use in many organizations cannot
be extended to cover Mac OS X. But in some cases it is going to garner a higher return on investment to prop up an
entire infrastructure to support the Mac while in others you are best to leave your existing solutions in place and
extend them to the Mac.

Mac OS X is a standards-compliant operating system — to a point. Given the support of a number of
standards, Mac OS X can be integrated into a primarily Microsoft environment. This includes support for Active
Directory, Exchange support (either through Entourage or natively with ActiveSync), DFS, SMB/CIFS, and NFS.
Many Microsoft-centric solutions will work out of the box. But when compared to the features available to Windows-
based users, you may find yourself frustrated with integrating systems on a large scale. Users may also be
frustrated with certain features that are missing when moving from Mac to Windows. Ultimately some of these
features can even result in needing to purchase a third-party solution, deploying a thin client-based solution, or
using virtualization solutions to ease the pain of integration, be it temporarily or permanently.

None of these obstacles are insurmountable. Through each release of Mac OS X, the system has become
more and more enterprise friendly. And with each subsequent release you can expect that trend to continue. But
don't expect to be able to do business as usual; expect to slightly alter your way of thinking to a more open model
of computing. That shift toward openness, once you get right down to it, will make the process far easier and far
more rewarding and in the end will lead you to a new paradigm in how you deal with enterprise computing.

Measure Twice, Cut Once

This likely goes without saying, but here goes: Before you deploy and integrate on a large scale, test.
Before you test, plan. The more you plan, the less work you will ultimately have to do. What do you need to plan for?
In our experience, it all starts with directory services. This is why the very first chapter of the book jumps into
directory services, and from there we cover further integration in the same order that most organizations build out
that infrastructure. It varies between environments, but if you go through each chapter and take into account the
technologies introduced, then you will be able to plan more holistically.

Mac OS X is a great platform and suitable for a bevy of uses, but not the right fit for providing a number of
network services. Therefore, throughout the book you will find information for integrating with existing infrastructure
that may or may not be more suitable given your shift in platforms (however extensive that shift may be). Aside from
infrastructure, the Mac systems you are planning to deploy and support require users to be productive on them,
something they may not be able to do within the confines of Mac OS X. The book ends with virtualization and thin
client solutions that can be leveraged to provide services that otherwise would not be available to the Mac platform.

Application Availability

While the book covers virtualization, the best deployments are going to be those that don’t require any
applications to be virtualized. If your organization has invested in leveraging a consumer model — a mixture of using
cloud services and migrating client-based software into intranets — then the Mac is more likely going to be able to
take on your software with ease. But if you are using a number of proprietary products that do not come with a Mac
OS X client, then you may need to use some form of virtualization to bridge the gap.

Long term, though, you need a plan to migrate to applications that are cross platform in order to keep the
costs for your Mac OS X clients at a minimum. There are a number of sites available to help you find software for the
Mac, most notably versiontracker.com. But there will be times when the Mac software is not as advanced or well

Xviii

kept as the Windows versions. This can lead to frustration from end users who possibly once championed the
platform. In this case you may have to virtualize the software or an entire operating system in order to achieve parity.
But this is where testing on a per-group basis will become key to planning your deployment.

When testing, make sure each user in your pilot thoroughly tests each piece of software. Find the biggest
power users in a group and ask them to be your testers. Their voices will often be heard the loudest when things
don’t go well. But if you can keep them involved in the process and communicate with them along the way, once
you achieve success you will often have the best proponent you could ask for.

How This Book Is Organized

Sandwiched between chapters on directory services and virtualization there are a variety of other topics
that have been near and dear to organizations big and small as they grapple with integrating Mac OS X. These
topics have been broken down into a number of chapters, each playing a critical role and requiring specialized
planning. A summary of the chapters, aimed at guiding your planning and deployment:

Chapter 1 - Directory Services is a critical aspect of Mac OS X integration. In this chapter we cover how
to set up a directory services environment using Open Directory, Apple's own directory service solution. Whether
you are an Active Directory environment, eDirectory, or some other variant of a supported directory service, you will
need to become acquainted with the fundamentals of implementing Open Directory. Additionally, Open Directory
can be leveraged to work with Active Directory, providing a compelling framework for policy management.

Chapter 2 - Directory Services Clients are as critical as directory services themselves. In this chapter, the
focus is on how to configure the directory services client from the command line, allowing you to deploy complex
and automated binding scripts. The script examples provided with Chapter 2 will, at a minimum, help to get any
mass deployment of Mac OS X in motion, saving a considerable amount of time and giving a glance into best
practices that can be applied to further automation topics that will arise throughout the book.

Chapter 3 - Active Directory deserves a dedicated chapter. Why? The binding process, while part of the
directory services framework, is considerably different than that of the other directory services modules. The third-
party solutions, requirements, roadblocks to a successful integration, and the methodology are just that different
from the other directory services modules. These differences should show the considerable amount of development
taken on by Apple in order to provide such a feature-rich Active Directory solution.

Chapter 4 - Storage is a requirement for any business. Sure, some pundits say that eventually storage
will all be in the cloud, but it's not yet. And you need to automatically mount, log into, and configure storage in
such a way that your Mac clients can connect to it, use it for home directories, synchronize it, and even share it
out themselves if need be.

Chapter 5 - Messaging and Groupware mean productivity. In this chapter we look at the options for
typing your Mac OS X clients into shared groupware services hosted on Microsoft Exchange and Mac OS X Server.
We also look into implementing groupware-oriented policies in the environment and automatically configuring
groupware applications as part of your deployment process.

Chapter 6 - Mass Deployment. Whether it's imaging, deploying the image, or automating the tasks that
enable you to be closer and closer to the one-touch image, this chapter is all about providing a step-by-step
process to accomplishing these tasks. However, over the past few years a number of solutions have emerged to
make mass deployment infinitely easier for administrators. Therefore, of the tasks we follow through the steps, we
will use a different solution for each, allowing you to see a spectrum of options.

Chapter 7 - Mac OS X has a rich Client Management framework. In this chapter we look at local and
directory services-based deployments of policies and explore the options for extending existing solutions to cover
client management.

Chapter 8 - By Automating Administrative Tasks, you as an IT professional (or the manager of an IT
professional) will be freed up to take on enhancing how your business interacts with technology (or you'll learn to
fish, sleep nights, etc.). In this chapter we take a deep look into scripting and other forms of automation. This is
where mastery of the command can become absolutely critical.

Chapter 9 - iPhones are cool. They're popular and gaining a considerable footprint in the enterprise space,
given the penchant for synchronizing with Microsoft Exchange and the robust Objective-C development platform.
But how do you deploy and manage thousands of the things? And while you're doing that, how do you use the

XiX

features for connecting to standard enterprise application sets? In this chapter we help you get there and introduce
you to some tools and techniques to ease the burden.

Chapter 10 - Virtualization. You just can't do everything on the Mac that you can do in Windows XP,
Windows 7, Linux, or any other operating systems you can think of. Therefore, we give you a whole chapter of
virtualization and thin client best practices and deployment techniques to ease the burden of your now doubled
operating system footprint if you embark on this convoluted journey.

Chaos Theory

There is no magic bullet for your deployment. Most environments are going to be different in some way,
shape, or form from every other environment out there. But provided there is industry-standard infrastructure (and
most vendors have long since moved into providing industry standards) then rest assured that there is some way to
make your Mac clients integrate fairly seamlessly into the enterprise. Therefore, while we don't have a magic bullet
to offer, we do have a plethora of options for a given situation, options you can use to cut costs, reduce required
human capital, and free up IT staff for creating value to businesses rather than living in the IT cost center.

XX

Chapter

Directory Services

A directory service is the software that stores, organizes, and provides access to
information in a directory. In the context that we will use the term throughout this
book, we mean a database of users, groups, computers, and network devices such
as printers. The directory service supplies that database to client computers. In

most enterprise, educational, and larger institutions, common directory service
implementations range from Microsoft’s Active Directory (AD) to Novell’s eDirectory,
as well as the open source Open LDAP. Most modern directory services are based on
standards developed in the public forum.

The most common standard architectural guidelines are defined in the X.500 model
“The Directory: Overview of concepts, models and services.” While the concepts and
roots of most directories are complex, by their very nature they share the simple goal of
unified user management, authentication, and authorization. Directory servers with
different origins thus find many commonalities in their structure and accessibility. The
Lightweight Directory Access Protocol (LDAP), which is utilized by nearly every major
directory service system, is a testament to this need for accessibility, as we will discuss
later in this chapter. Put simply, any system engineered for large-scale centralized
authentication must inherently allow disparate clients to participate, otherwise it is
doomed to a finite growth potential.

In Mac OS X, there are a number of plug-ins that allow you to leverage a variety of
different directory services. Each computer must at least contain a local directory
service database to establish a baseline of system-critical data, such as users, groups,
and even some configuration data. If every Mac OS X computer sold required an
enterprise directory service just to login, Apple stores would not be popping up like
Starbucks in cities around the United States. Local authentication is a cornerstone of all
modern operating systems, and often the gateway for small and medium businesses to
grow into larger directory systems over time. A common misconception is that Apple’s
Open Directory terminology is applied only to its enterprise-class authentication
services. In reality, the same term refers to those local or client standards implemented
in local accounts. In fact, in previous operating systems, Apple even had the same
technology running on Open Directory masters, such as 10.2 netinfod and 10.3
Password Server. This concept of architecting what amounts to miniature directory
servers into the base operating system allows for later migration to larger directory

service systems without much reeducation of entry-level system administrators. The
best example of this is Apple’s parental controls system that, at its base, leverages the
same technology used to manage thousands of Mac OS X in enterprise environments
every day. Due to such forethought, clients can also be configured out of the box to
utilize a variety of other external directory services; support for several network-based
directory service systems is provided without the installation of any additional software.

This chapter starts with an explanation of how the local directory service works. Once
we have explained how local users can be managed, we will move on to discuss LDAP,
the industry-standard directory database used to supply directory services. Next, we will
cover various types of binding to directory servers from Mac OS X that let end users log
into their computers using a centralized username and password. Finally, we will look at
building external accounts and show how to build a directory service based on Apple’s
Open Directory.

Local Accounts

In Mac OS X, System Preferences are similar to Control Panel in Windows, and they
allow you to configure a wide range of settings. The information you set in these panes
is stored in files throughout the operating system. Local directory service configuration
is accessed through the Accounts preference pane, which provides the ability to add
local user and group accounts. Accounts can also be added to groups, assigned a type,
and a few other options can be set.

To access a System Preferences pane, click on the Apple in the top left corner of the
screen and then on System Preferences, or launch the application directly from the
/Applications folder. You will then be shown all of the System Preferences available.
Next, click on Accounts and you’ll see the list of Accounts on the left side of the screen.
As you click through each one, you will see the options for that account on the right side
of the screen. To make changes in this area, you must first authenticate to System
Preferences by clicking on the lock in the lower left corner of the Preferences window.
For the authentication to succeed, the user must be a member of the local directory
service’s admin group.

TIP: The /etc/authorization file is used to determine which users are able to attain
elevated privileges for a variety of operations. In a standard OS X environment, the admin
group will be able to obtain escalation for all authorization rights. However, this file can be
modified to provide very granular administrative access to users. For instance, to manage
users via the System Preference pane, a non-admin group could be specified under
system.preferences.accounts, which would then give its members administrative access
solely to the Accounts pane of System Preferences.

Creating Accounts

To add an account, first click on the lock icon in the Accounts System Preferences
pane, then click on the plus sign to create an account. In the Account: field you’ll see the
five options shown in Figure 1-1, which indicate the basic account types for Mac OS X.
These include:

B Administrator: Administrative accounts, accounts with elevated
privileges; can open System Preference panes and perform most
tasks.

B Standard: Standard User accounts; cannot open System Preference
panes and cannot perform administrative tasks.

B Managed With Parental Controls: Standard User accounts with
policies applied to them.

B Sharing Only: Accounts that cannot log onto the local system but can
access resources via file sharing protocols.

B Group: A group of user accounts.

Administrator

v Standard
Managed with Parental Controls
Sharing Only

Croup

Figure 1-1. Confextual menu for account types

Once you have selected an account type, enter a full name in the Name: field and a
short name in the Short Name: field. For example, the full name might be John Doe and
the short name jdoe. By default, the short name is generated from the full name in lower
case with spaces removed. The full name is primarily used for display purposes and can
be changed at will. The short name has additional system-level functions. Notably, it is
used to name a user’s home directory when first created, though that directory can be
changed to a different location that does not correspond to the short name (such as a
“mystuff” folder on a external drive).

The short name is used for other purposes as well, such as establishing a primary email
mailbox for the user or for linking scheduled items through cron. Because of this, setting
the initial short name demands some consideration. It’s also worth noting that the short
name cannot easily be edited in the prominent user interface, and though right-clicking
on a user account and choosing Advanced Options allows you to edit this name (as
seen in Figure 1-3), doing so has other repercussions, such as loss of group
membership (such as admin); possible loss of preference data if an application stores
configuration data based on the short name; or disassociation of the user’s home folder.
In most cases when you plan to modify a user’s short name, you will also want to
rename his home directory to coincide. This is merely for cosmetic reasons and is not a
necessity. You can change short name jdoe to psherman and still utilize the original
home directory stored at /Users/jdoe. If you do change the home directory to
/Users/psherman, you should make sure you rename the user’s home folder on the file
system to match the new path specified (in this case, from the original home directory
value /Users/jdoe to /Users/psherman).

Next, enter the password the user will use in the Password: field and then enter it again
into the Verify: field. The small key icon in this dialog box will reveal the Password
Assistant, an interface that assists users with choosing strong passwords by supplying
them with visual feedback. This functionality is available as a stand-alone program using
third party applications available on the Internet, and can also be accessed via the
Keychain Access application when you create a new password item. Optionally, you can
enter a hint as to what the password is in the Password Hint: field. If a password hint is
set for a user, it will be displayed when the user fails to authenticate when logging in.
Here you can also check the box to enable FileVault, which encrypts the contents of the
user’s profile or home folder.

When you are satisfied with your settings, click on the Create Account button. You have
now created your first Mac OS X user. If you are done making changes, you should
close the lock options available in the Security system preference pane, which will cause
the System Preference to forget your previous authentication each time the application
is reopened during your timed session. Alternatively, if you forget to close the lock, the
elevated privileges will time out.

Granting Administrative Privileges

As noted earlier, you can choose to make a user an administrator of the local computer
when you create an account. To elevate an existing account to an administrative
account, you can simply check the Allow user to administer this computer checkbox, as
shown in Figure 1-2. To set up basic policies for an account, you can click on the Open
Parental Controls button for any non-administrator account and enable them. (We will
cover more in-depth policies on local and network directory services accounts further in
Chapter 7, Client Management.)

800
< | » || ShowAll

My Account

= Charles Edge

£ Admin
¥ Other Accounts

Guest Account
Sharing only

testadmin
Admin

¥ Groups

22 dsadmin
28 dsass
22 dsruntime
28 zenoss

‘m’ Login Options
[+1-]

Figure 1-2. Making a user an administrator

Accounts

~ (Reset Password...)

User Name: testadmin

MobileMe User Name:

S Allow user to administer this computer

"1 Enable Parental Controls (Open Parental Controls...)

U
I_J Click the lock to prevent further changes. ®

As mentioned previously, you can also edit some slightly more advanced settings from
within the Accounts System Preference pane. These settings are accessible by control-
clicking on the account name and then clicking on Advanced Options, which brings up a
screen similar to the one in Figure 1-3. This screen lets you change the values for
various attributes of the accounts, including Short Name, User ID, default group, path to
the home folder, default shell and the generated ID for the account. You can also add
aliases using the plus sign; this allows the same account to authenticate using multiple
names in the authentication dialogs throughout the operating system. We will discuss
these attributes later in the chapter.

Advanced Options

User: “testadmin”

WARNING: Changing these settings might damage this account so that you cannot log in
using this account. You must restart your computer to use changes to these
settings.

User ID: | 502

Group ID: 20

Short Name: | testadmin

Login Shell: | /bin/bash 3
Home Directory: [Users/testadmin (Choose... \
UUID: E1EE0096-66B9-41B8-BB09-ACB89DSFOES9 (Create New \'
Aliases:
+

(_Cancel_\(OK \

Figure 1-3. Advanced account options

The Root Account

In a Unix, BSD, or other *nix environments, the root account can do things that even
standard administrators typically can’t do. A root account can be a security risk, which
is why Apple has disabled root by default, but it is an account you may find you need to
enable from time to time. If you are new to administering Mac OS X from the command
line, you may wish to enable the root account for certain GUI operations that would
otherwise use the command line, such as renaming a home folder or editing a
configuration file owned by root.

To enable the root account, open the Directory Utility application found on the Accounts
pane of System Preferences (version 10.6), or in the /Applications/Ustilities folder (version
10.5). As with most secure operations in Mac OS X, you will need to authenticate to
perform this action using the lock in the corner of this window. Then click on the Edit
menu and select Enable Root User, which will display the screen shown in Figure 1-4.
Next, enter the password that will be assigned to the root user and click on OK.

CHAPTER 1: Directory Services 7

Undo Typing ®Z
Redo 8z
Cut X
T e Copy 3C
g Verify: [eesessase o] Paste ®’v
-) Clear
Select All #A
Change Root Password...
" ke oo s e ® Disable Root User

Search For Mac OS X Servers
Special Characters... T

Figure 1-4. £nabling Root in Directory Utility

You can also enable the root account using the command line. The dsenableroot
command can be used to enable the root user and assign it a password. To enable
root, enter:

dsenableroot

First you will be prompted for the current user password; this user must be an
administrative account. You will then be prompted twice, first for a password to assign
the root account and then to verify the password. On success you’ll see the following
success code:

dsenableroot:: ***Successfully enabled root user.

To disable the root account, enter:

dsenableroot -d

How the Local Directory Service Works

The local directory data resides primarily in the folder found at /private/var/db/dslocal.
This folder, which will require elevated privileges to access, contains numerous files
pertaining to the computer’s directory service configuration. For instance, accounts for
Users and Groups are stored in flat property list (.plist) files nested in the /private/
var/db/dslocal/nodes/Default directory. Users are stored in /private/var/db/dslocal/
nodes/Default/users while groups are stored in /private/var/db/dslocal/nodes/Default/
groups. Every local user and group account has a corresponding .plist file found in these
directories, as seen in Figure 1-5, which shows the contents of /private/var/db/dslocal/
nodes/Default/.

amno [] Default —
66 items, 17.77 GB available
Name 4| Date Modified Size Kind
] afpuser_aliases Yesterday, 10:53 AM - Folder
|] aliases Jul 2, 2009 5:48 PM - Folder
|| computers Sep 7, 2009 6:55 PM - Folder
1] config Aug 31, 2009 9:06 PM - Folder
|| groups Sep 7, 2009 11:21 PM -- Folder
] netwarks Jul 2, 2009 5:48 PM - Folder
] users Aug 31, 2009 9:49 PM - Folder
| _amavisd.plist Jul 2, 2009 5:48 PM 776 bytes XML P...rty List
_appowner.plist Jul 2, 2009 5:48 PM 777 bytes XML P...rty List
| _appserver.plist Jul 2, 2009 5:48 PM 846 bytes XML P...rty List
_ard.plist Jul 2, 2009 5:48 PM 747 bytes XML P...rty List
| _atsserver.plist Jul 2, 2009 5:48 PM 772 bytes XML P...rty List
_calendar.plist Jul 2, 2009 5:48 PM 768 bytes XML P...rty List
| _carddav.plist Jul 2, 2009 5:48 PM 748 bytes XML P...rty List
_clamav.plist Jul 2, 2009 5:48 PM 774 bytes XML P...rty List
| _coreaudiod.plist Jul 2, 2009 5:48 PM 744 bytes XML P...rty List
_cvmsroot.plist Jul 2, 2009 5:48 PM 734 bytes XML P...rty List)Y
1 _cvs.plist Jul 2, 2009 5:48 PM 737 bytes XML P...rty List 3
B hely= » [private » [Jvar » []db+ [dslocal v [nodes » [] Default y

Figure 1-5. Contents of a dslocal node

The above output is trimmed, but each folder will contain a plist file for each respective
user, computer, or group in the local directory. Accounts that begin with an underscore
(L) are hidden service users and groups. For example, the web server uses the_www
account, which obtains user settings from the _www.plist file. The _www user can’t log
in because the account has no shell or password. If you created a new user in the above
section, look in the /private/var/db/dslocal/nodes/Default/users directory and you should
see a .plist file with a name that corresponds to the new user’s short name.

[vww allitebooks.cond

http://www.allitebooks.org

Inside a .plist file there are a number of attributes containing data about a given user or
group. Looking at local users and groups from a Microsoft Windows perspective, files in
the local directory node resemble registry keys for local accounts. Examine the .plist file
for the user created earlier and look for the key called authentication_authority.

<key>authentication_authority</key>
<array>

<string>;ShadowHash;</string>
</array>

This key specifies the service that will be utilized to authenticate the user. Notice that it
says ShadowHash, which indicates that the system will use a local file called a hash file
to authenticate the user. Mac OS X password hash files contain copies of a user’s
password in multiple formats; this Rosetta Stone allows for different services to
authenticate a user with their own native password encryption type. If this were not the
case, the password would need to be stored in a much less secure reversible hash in
order to support the various authentication schemes out there. It also should be noted
that for ShadowHash users, any network service that does not support SHA-1 (Secure
Hash Algorithm 1) or NTLM (NT LAN Manager) authentication will require cleartext
authentication; SSL is highly recommended in these scenarios.

In the user’s plist file, you will also see a generateduid key, which is used to track the
user account even if the short name is changed. GeneratedUIDs are based on a
standard called the Universally Unique IDentifier (UUID), which is a complex,
programmatically generated string of characters that will never be duplicated in our
lifetime. A UUID is unique across time and space for every user.

If you look in the /private/var/db/shadow/hash directory, you will find a file that is named
using the value of this key. This means that even if a user account’s username is changed,
the password will still be tied to that account. Moreover, it prevents stale password files
from collecting, which would happen if passwords were based on the short name. In 10.4
and later, the password hash file will contain at least a SHA-1 salted hash for the user,
which is a secure, unrecoverable password type. If Windows file-sharing services are
enabled for the user, it will also contain the respective NTLM hash for that user, which is
used by our Windows file-sharing components. Apple has struggled to implement the best
balance of security and functionality in regard to password hashes. While hashes for
Windows file sharing require NTLM, the NTLM hash type is more susceptible to common
password attacks, which makes its recoverability more feasible. Apple only enables

the NTLM hash when Windows file-sharing users are specifically configured for
SMB/Windows sharing access in the System Preferences Sharing pane. Storing
passwords in a hash file allows for a consistent password file location, with flexible
extensibility for other password hashes such as NTLM. In the above example, the
authentication_authority record, which has a value of ;ShadowHash;, tells the local directory
service to consult the user’s local hash file when the user attempts to authenticate.

The data from the account property lists can be managed by modifying the text files
directly. For example, if you want to change a user’s picture, you could alter the picture
key. However, editing property lists directly can be pretty cumbersome, so Apple has

provided a host of commands that can be used to manage and query data from the
local directory node and other directory services plug-ins without having to read raw
XML-style property list data. Some commands have GUI equivalents while others do
not. Here are some of the commands:

B dirt: used to test authentication in 10.4 and 10.5, tests authentication,
for example dirt -u zsmith -p 'dogc4t'. The only GUI equivalent
would be the login window or an authentication screen. As of 10.6, the
dirt utility is no more; the dscl utility now performs this role.

B dscacheutil: looks up information stored in the Directory Services
cache and flush various caches

B dscl: used to edit and browse directory services settings, such as user
accounts, group accounts, and search policies (the order in which Mac
OS X looks up account information in each directory service). The
closest GUI equivalents would be the Accounts System Preference
pane and the Directory Utility. This command is covered in more depth
in the next section.

B dseditgroup: used to edit, create, and delete groups or to add or
remove group members.

B dsenableroot: manages the root user account (enable, disable, and
reset the root password). The GUI equivalents are the Change Root
Password and Enable Root User or Disable Root User options in the
Edit menu of Directory Utility.

B dserr: prints a description of Directory Services-related errors, example
dserr 14090. Once you have the error code, you can use the man
page for DirectoryService to look up the meaning of each error (or
Google for more information on the specific errors, but quote errors if
there is a — in front of the number).

B dsexport: exports directory services data. Similar functionality is
available using the Export feature of Workgroup Manager, a tool
distributed as part of Mac OS X Server.

B dsimport: imports directory services data. Similar functionality is
available using the Import feature of Workgroup Manager.

B dsmemberutil: looks up UUIDs and group information and flush group
cache, for example dsmemberutil flushcache.

B dsperfmonitor: run performance monitors of the directory services plugin,
useful with debugging operations, for example dsperfmonitor -dump.

B id: look up a user identity, including group memberships, for example
id zsmith.

You can learn more about these commands by viewing their manual pages using the
“man” command line program. For instance, the following command looks up the
manual page for the dscl tool:

man dscl

For more information about the command line, use their manual pages—that is, man
“command”.

In many enterprises, one of the first differences that cross-platform administrators notice is
that by default, domain administrators from a directory service are not administrators of
local Mac OS X client computers (although, as we illustrate in Chapter 3, Active Directory,
you can make Enterprise Admins or any other group administrators of Mac OS X clients).
To mimic this functionality, it is possible to nest a network directory service group inside of
the local administrators group, thereby granting local administrator rights to all network
members of that group. This is very handy in large environments where administrator
access may heed to be limited to subsets of administrators. This technique is covered in
more detail in Chapter 7, Client Management.

While we recommend having all of your admins use their own unique network
credentials for administrative tasks, it is always recommended to maintain at least a
single dedicated local administrative account on Mac OS X systems to ensure that you
always have administrative access to your client nodes. To create these local
administrative accounts, you can use the Setup Assistant or the Accounts System
Preference pane. This is common in monolithic imaging environments (imaging is
covered further in Chapter 6, Mass Deployment), but it’s not entirely scalable in most
cases. You can also use dscl in a scripted fashion.

dscl

For a number of tasks, dscl is the gateway to directory services. This can include viewing
existing information from local or network directory services, augmenting settings for the
local directory service node, or altering how the directory services daemon functions,
including the priority that is given to each directory domain, or entry in a plug-in.

From an enterprise management perspective, perhaps the most useful aspect of dscl is
that it can be used to automate account creation and editing. To create a local account
using the command line (and thus be able to script the process), dscl is the preferred
command. Dscl is an interactive tool that can, in its simplest form, be used by simply
typing dscl at a command-line prompt. To see all of the directory services plug-ins that
are enabled on the system, type 1s at the prompt:

> 1s

Active Directory
BSD

Local

Search

Contact

You can use dscl as any given user if you’re only interested in reading account
information. However, in order to alter the contents of a database, you will need
elevated privileges. To invoke dscl with elevated privileges, prepend the command with
sudo as follows:

sudo dscl

The sudo command can be prepended to any command to force it to run with root
privileges. When using sudo, you will be prompted for the currently logged-in user’s
password, and that user must be an administrator. The sudo command will cache
credentials for 5 minutes after successful authentication, so if you have recently used it,
you will not need to retype your password.

At this point, you should be in an interactive command-line environment and see a > on
the screen, so we’ll prepend each command with a > so that our screen matches yours.
The first step in the process of creating a new account is to add a user to the database,
which will create a new .plist file for the account. This can be done with the -create
dscl command followed by the path to the record being created. In the following
example, we will create an empty account called corpadmin.

> -create /Local/Default/Users/corpadmin

A property list is made up of keys. In the above example, we did not specify any keys.
The dscl command created the record and, therefore, a file in the form of the
corpadmin.plist file has manifested in /var/db/dslocal/nodes/Default/users. In order for
the corpadmin account to be viable, we now need to create a number of keys that tell
the directory services daemon about this user. These keys make up the attributes for the
account. A list of commonly used user attributes can be seen in Table 1-1.

Table 1-1. Basic User Attributes

Attribute Purpose

UniqueID An integer id unique to this user.
PrimaryGroupID Denotes the primary group of the user.
GeneratedUID A universally unique identifier for the user.
NFSHomeDirectory Absolute path to the user’s home directory.
RealName The user’s full name.

RecordName The user’s short name.

UserShell The user’s default shell.

To create our own user by hand, we will need to assemble the required attributes, let’s
enter what in the Account add screen from the Accounts System Preference pane would
be the Name: field: Rea/Name. We will use the -create the key to do this. Because there
is a space in our name, let’s put what will go into the record in quotes:

> -create /Local/Default/Users/corpadmin RealName "Corporate Administrator"

Next, we'll give our user a User ID using the UniquelD key. This ID should be unique (as
the name implies), and so no other accounts should have the same ID. We will again use
the -create command:

> -create /Local/Default/Users/corpadmin UniqueID 1500

Now we’ll set up a Default Group ID (GID), which has an attribute of PrimaryGroupID.
We’re going to set the PrimaryGrouplD to the Staff group, which has a group number
of 20:

> -create /Local/Default/Users/corpadmin PrimaryGroupID 20

CAUTION: As with most things that happen at the command line, dscl is unforgiving with
regard to typos, including spaces, and so on. But it does support tabbed auto-completion,
which is awesome.

We also need to give the account a default shell to use if it is going to do anything
meaningful. The default shell is the shell used when a Terminal.app window is first
opened. The attribute for a default shell is UserShell. The contents of this key should be
any shell on the system, including /bin/zsh, /bin/tcsh, or the default with Mac OS X,
/bin/bash. To prevent users from utilizing a shell account, assign /usr/bin/false as their
shell, which will immediately terminate any attempts at a shell session, as well as disable
access to the terminal application. This also prevents an account from logging in via
loginwindow, in which case /usr/bin/true is a completely acceptable substitute. To set
the shell attribute, create the UserShell key using the following command:

> -create /Local/Default/Users/corpadmin UserShell /bin/bash

Every user needs a home directory. Even the root account has one (/var/root by
default). The home directory doesn’t need to reference a path that currently exists as
the first time the user logs into a system the home directory will be created and
assigned appropriate permissions. The attribute for the home directory is
NFSHomeDirectory:

> -create /Local/Default/Users/corpadmin NFSHomeDirectory /Users/corpadmin

Because we’re creating an administrative user, we also need to add the account to the
admin group. Here, we’ll use the -append dscl command rather than -create because
we’re augmenting an existing key rather than creating one. We'll follow it with the
relative path of the admin group and then the attribute that we’ll be editing and finally

the payload of the actual edit. To add the corpadmin user to the administrative
users group:

> -append /Local/Default/Groups/admin GroupMembership corpadmin

TIP: If you know the value of an attribute, it is best to use the -merge option here; if you don’t,
you can use -append.

Next you’ll give your new user a password using the passwd option, typing a password
once the following command is run:

> -passwd /Local/Default/Users/corpadmin

By now, the account should be listed in the local directory service. To make sure, we’ll
use the -1ist option:

> -list /Local/Default/Users

Once the account has been recognized by the local directory services node, you can
look at information that was not in the original property list, such as the GeneratedUID,
using dscl:

> -read /Local/Default/Users/corpadmin GeneratedUID
The dscl command is also very useful in troubleshooting. In the above command we

were looking for a specific attribute, but if we wanted to see all of the attributes for our
new corpadmin account we could simply run the following:

> -read /Local/Default/Users/corpadmin

Changing Accounts En Masse

If you have ssh or Apple Remote Desktop (ARD) access, you can push out a variety of
changes to an account. Once an account has been created, any of the attributes can be
changed en masse, using dscl. For example, if you wanted to reset the corpadmin
password to MYSECRETPASSWORD, the following command could be sent to each
machine in your enterprise:

sudo dscl . -passwd /Users/corpadmin MYSECRETPASSWORD

NOTE: If you change the password as a non-administrative user, you need to enter the actual
user’s password to do so.

Or if you wanted to move the user’s home folder into the /var directory (so it can live
with and be friends with root), you could use the following (assuming you put the original
home folder into /Users/corpadmin):

sudo dscl . -change /Users/corpadmin NFSHomeDirectory /Users/corpadmin /var/corpadmin

Notice that in the above command we used the -change dscl command rather

than -edit. Also notice that in both of these examples, we used dscl along with the
. operator rather than using dscl interactively. By using the . operator, we ended up
with a different relative path to the user record; it is a shortcut to the Local/Default
node. The attribute then appears as:

NFSHomeDirectory: /var/corpadmin

Account Creation Scripts

New accounts can also be created using scripts. These scripts will also leverage dscl,
along with the . operator (no point in complicating things by trying to script against an
interactive command-line environment). To get started, let’s create a script called
adduser.sh on our desktop, and then take the commands we used in the above section
to create our user attributes and put them into a script, replacing the > with dscl . and
removing /Local/Default:

#!/bin/bash

user="corpadmin"

dscl . -create /Users/$user

dscl . -create /Users/$user RealName "Corporate Administrator"
dscl . -create /Users/$user UniqueID 1100

dscl . -create /Users/$user PrimaryGroupID 20

dscl . -create /Users/$user NFSHomeDirectory /Users/corpadmin
dscl . -create /Users/$user UserShell /bin/bash

dscl . -passwd /Users/$user 'MYSECRETPASSWORD'

There is a serious problem with the above script: it has the administrative password in it.
To get around this, you can also create an account by copying the authentication files,
which contain the hashed password, directly to the client system.

Parachuting Accounts into Clients

Next, we’re going to look at what we call performing a file drop to create a user
account. File drops are when we simply copy files into appropriate directories to
achieve a task. In this example, we’re going to take an administrative account we
created on our own system, using either the command line or the Accounts System
Preferences pane. We’re going to grab the .plist file that makes up the account and
the password file from /var/db/dslocal/nodes/Default, and then take the corresponding
password hash for the account from /var/db/shadow/hash; (The name of that hash,
remember, is based on the generated UID.) We’ll simply copy all of these to the same
destinations folders on the client that they were in at the source (the .plist file goes into

the /var/db/dslocal/nodes/Default/users directory and the password hash file goes
into the /var/db/shadow/hash directory of the target hosts).

Since we’ve been using dscl, the directory services daemon has been keeping track of
our actions. However, if we aren’t using dscl and we’re file-dropping an account, we
either need to wait for the next restart on the system or restart the directory services
daemon. To restart the daemon, use the killall command with the pattern of
DirectoryService:

sudo killall DirectoryService

Hiding Administrative Accounts

Hiding an administrative account can help keep users in organizations from tampering
with or disabling user accounts, and help maintain a secure channel for administrators
to remotely administer the system. There are a variety of ways to obscure the presence
of an administrative account in Mac OS X. For example if the only admin account on a
Mac OS X client is Administrator with Admin as the short name (case sensitive), then the
admin account won’t show up at the login window. However, it will not be hidden in the
Accounts System Preference pane. If you have multiple admin accounts, you can
suppress them from the login window by adding them to the HiddenUsersList array in
com.apple.loginwindow.plist, using the following command:

defaults write /Library/Preferences/com.apple.loginwindow HiddenUserslList -array-add <
mysecretadmin

You can also simply file-drop a new com.apple.loginwindow.plist file into
/Library/Preferences/com.apple.loginwindow.plist.

But these methods simply suppress the admin account from a list of users at login, and
don’t truly hide the account. Here’s another way to hide the accounts. You can set the
any user’s account (either existing or new) with a Unique ID of any integer below 500. To
create a new admin user, you can copy an existing user from /var/db/dslocal/nodes/
Default/users and alter the NFSHomeDirectory, RealName, and UniquelD keys to be
unique (not that a home directory has to be unique, but it should be. And, as noted,

the new UniquelD should be an integer below 500 in order to be hidden). You could

also create a new account called secrethiddenuser with a password of
secrethiddenuserspassword using dscl, with the following script:

#!/bin/bash

dscl . -create /Users/secrethiddenuser

dscl . -create /Users/secrethiddenuser RealName "Hidden Admin"

dscl . -create /Users/secrethiddenuser NFSHomeDirectory /Users/hidden
dscl . -create /Users/secrethiddenuser UserShell /bin/bash

dscl . -create /Users/secrethiddenuser UniqueID 150

dscl . -create /Users/secrethiddenuser PrimaryGroupID 20

dscl . -passwd /Users/secrethiddenuser 'secrethiddenuserspassword’

Although this will create a new, hidden user account, it is fairly straightforward to view
the contents of the /var/db/dslocal/nodes/Default/users directory and look for files that
are neither listed in the accounts System Preference pane nor included with a default
install of Mac OS (including _amavisd, _amavisd, _appowner, _appserver, _ard,
_atsserver, _calendar, _clamav, _cvs, _cyrus, _devdocs, _eppc, _installer, _jabber, _Ip,
_mailman, _mcxalr, _mdnsresponder, _mysql, _pcastagent, _pcastserver, _postfix,
_qtss, _sandbox, _securityagent, _serialnumberd, _spotlight, _sshd, _svn,
_teamsserver, _tokend, _unknown, _update_sharing, _usbmuxd, _uucp,
_windowserver, _www, _xgridagent, _xgridcontroller, daemon, nobody, root

and the default user applications).

Some will choose to create a hidden user account in an entirely separate directory
services node. This can be done by copying the current directory services node
(/var/db/dslocal/nodes/Default) into a new folder located in /var/db/dslocal/nodes,
and then restarting the DirectoryService daemon (killall DirectoryService). After
restarting DirectoryService, use Directory Utility to specify a custom search path,
and then add the new node. This can also be done using dscl to alter the /Search
node). The downside of creating a new directory services node is that it is fairly
straightforward to find the node’s information using Directory Utility, and if you are
attempting to be a stealthy admin, you have just increased the surface space of your
hidden account.

Raw Mode

If you edit the directory services daemon while it is not running (for example, if you’re
scripting against a bare-metal system for future imaging), you will need to do so in raw
mode, specified by the flag -f. Raw mode allows you to specify the location of the
directory services domain that you will be working against, useful when working
against any non-running systems programmatically. Thus the commands would
become the following:

VOL=/Volumes/newimagehd

dscl -f "$vVOL/var/db/dslocal/Nodes/Default" -raw . -create /Users/corpadmin

dscl -f "$vOL/var/db/dslocal/Nodes/Default" -raw . -create RealName "Corporate Admin"
dscl -f "$vOL/var/db/dslocal/Nodes/Default" -raw . -create NFSHomeDirectory
/Users/corpadmin

dscl -f "$vOL/var/db/dslocal/Nodes/Default" -raw . -create UserShell /bin/bash

dscl -f "$VOL/var/db/dslocal/Nodes/Default" -raw . -create UniqueID 1500

dscl -f "$vOL/var/db/dslocal/Nodes/Default" -raw . -create PrimaryGroupID 1500

dscl -f "$vVOL/var/db/dslocal/Nodes/Default" -raw . -passwd corpadmin
MYUBERSECRETPASSWORD

Set Search Paths

The Search Path in Mac OS X client can be used to define where your system can
search for directory services information, whether local or shared. The search policy
defines which directory services nodes will be searched and in what order. To set the
search path, you need to switch from LSPSearchPath to CSPSearchPath for your
SearchPolicy. To do so, use the following command:

sudo dscl /Search -change / SearchPolicy dsAttrTypeStandard:LSPSearchPath «
dsAttrTypeStandard:CSPSearchPath

To switch back to using only a local policy, just run the following command:

sudo dscl /Search -change / SearchPolicy dsAttrTypeStandard:CSPSearchPath «
dsAttrTypeStandard:LSPSearchPath

Create Additional Local Directory Nodes

The local directory service is not limited to one directory tree to store property lists.
You can have a number of different directory trees, much like you can bind to a
number of different directory services. This opens up the ability to not only hide an
administrative user from the GUI but also to hide that user from those who might not
realize how to traverse multiple local directory nodes. Moreover, it allows you to store
a directory node on a shared volume or external disk (which would, of course, error
when those are not reachable and would not have the flexibility of an actual network-
based directory service).

First, we’ll make a copy of the local directory services information store we’ve been
working on throughout this chapter. For the following example, we’ll copy it into the
same nodes folder that Mac OS X uses by default, but rather than call our node Default,
we’ll call it NEW:

sudo cp -prnv /var/db/dslocal/nodes/Default /var/db/dslocal/nodes/NEW

The DirectoryService daemon will look in the nodes directory for any newly created
nodes when it is started up. So let’s go ahead and restart the daemon with the
following:

sudo killall DirectoryService

Now open up Directory Utility.app and click on the Search Policy tab, authenticate using
the lock in the lower left hand corner of the screen, and then change the Search: field to
Custom path, as shown in Figure 1-6.

afr Directory Utility

; B
=1 -
Services | Search Polioy

[Authentication Contacts

Choose where 1o search for user authentication information.

Search: | Custom path 24
Directory Domains
/LDAPv3 /hax.lbc
+| = Drag directory domains into your preferred order for searching.
'J_ le Click the lock to prevent further changes. ﬁ'\ Apply

Figure 1-6. Changing the Search Path

Next, click on the add icon (indicated by a +) and then add NEW from the list of available
directories. The Default node will always be first in the search path and can’t be
removed. If accounts happen to be in multiple nodes, the one that appears higher in the
Search Policy will be authenticated first. Therefore, keep in mind that if you have an
account called corpadmin in your Default local directory service node, one in Active
Directory (which we will cover in Chapter 3), and one in your secondary local directory
service node, the one in the Default directory service node will always be utilized for
lookups and authentication; the other nodes will never be consulted.

External Accounts

External Accounts are similar to Mobile Accounts (which we will cover in Chapter 7).
Beyond the fact that the home directory resides on external media, the account
operates like a standard account, with the addition of an .account file.

Creating an external account is facilitated by the createmobileaccount command.

So rather than letting the operating system decide whether it wants to invoke the
createmobileaccount dialog at the loginwindow, we’re going to force the issue by
manually running the command, which is located in /System/Library/Coreservices/
ManagedClient.app/Contents/Resources directory. Note that this is not in your default
PATH, meaning you must always type the full path to the command or modify your shell
preferences. The -n, -p and -h flags define the username, password and home directory
of the account. So assuming your USB drive is called JUMPDRIVE, the following would
create an external account on the USB drive:

./createmobileaccount -n mobileadmin -p 'MYSECRETPASSWORD' -h «
/Volumes/JUMPDRIVE/Users/mobileadmin

At this point we’re pretty much done. We could also have enabled FileVault by using the
-e flag and/or run the command verbosely (great for troubleshooting issues during
account creation) by using the -v flag. Now, use 1s -al to verify that your new external
account can write to the volume.

Open Directory

Open Directory is the network directory services implementation that is native to Mac
OS X. Mac OS X Server leverages a number of open source products with a little bit of
Apple’s special sauce to form Open Directory. Open Directory provides client systems
with a centralized location for accounts, passwords, mount points, and the like.

Like the FSMO (Flexible Single Master of Operation) roles in Active Directory, Open
Directory is made up of a number of parts. Open Directory utilizes LDAPV3 to store
data, Kerberos to provide single sign-on, Apple Password Server to securely store
passwords, and SASL (Simple Authentication and Security Layer) to provide
authentication integration with other services.. Each of these components is
accessible using standard protocols, and each can therefore be integrated with
other standard directory services such as Active Directory and Novell’s eDirectory,
typically using what is commonly referred to as a triangle topology. In the most
common triangle configuration, the three points of the triangle are represented by
the client system, Apple’s Open Directory, and Active Directory. In such a setup,
Active Directory is used for authentication, while Open Directory provides
management capabilities. As an alternative to a triangle setup, augmented records
can be used to virtually extend a single service’s capabilities. A triangle is most
useful when not all of the attributes needed by Mac OS X for policy management are
available by the primary directory service (the NFSHomeDirectory attribute, for
example).

LDAP

A directory is a logically grouped collection of objects with attributes organized in a
hierarchical fashion. LDAP directories can track anything from users and groups to

computers, printers, and mount points on servers. The LDAP implementation for Mac
OS X Server is slapd. The slapd process uses a number of schema files, located in the
directory /etc/openldap/schema, to define the structure of the directory services
database. These schema files include the object classes and attributes that the LDAP
server presents to LDAP clients. Attributes are the same as those located in property list
files, as noted earlier in this chapter. An ObjectClass is a set of attributes.

New schema files can be added, thus extending the functionality of LDAP and therefore
Open Directory. Schema files can also be augmented to include new attributes. When
you enhance the metadata stored for objects in LDAP, it is therefore typically referred to
as extending the schema.

Kerberos

Kerberos is the gold standard with regard to single sign-on. Active Directory, Open
Directory, and a variety of other solutions use Kerberos. Mac OS X clients also run a
Kerberos server to secure peer-to-peer networks. With Kerberos, users and servers
verify one another’s identity, which helps to prevent a number of sophisticated (and
some not so sophisticated) exploits when users are attempting to authenticate to
services.

Kerberos makes use of a Key Distribution Center (KDC) that consists of two parts, an
Authentication Server (AS) and a Ticket Granting Server (TGS). Kerberos works
through the use of tickets and principals. A ticket is a session-based key that is used
to obtain various service principals to provide access to a respective service. The KDC
maintains a database of three types of principals: user; host; and service. These
principals are sensitive, shared only between the KDC and the device, service, or user
that corresponds to the principal. Upon requesting access to a particular Server
Service (SS), say file services over AFP (Apple Filing Protocol), the user must first
obtain what is referred to as a Ticket Granting Ticket (TGT). The TGT is obtained by
properly authenticating with the Authentication Server. Once a user has a TGT, it can
be presented to the TGS to obtain service tickets; in this case a user would request
the afpserver service ticket. Once the user is granted this ticket from the TGS, the
ticket is presented to the afpserver, which validates the ticket and the session.
Assuming no problems are found, the server then grants the user access to the
service. The ability to provide the TGT proves an entity’s identity. By default, the TGT
has a lifetime of 10 hours, which can be renewed without re-authenticating. Once the
ticket has expired, the user must re-authenticate to obtain a new TGT and active
service principals.

Apple’s implementation of the MIT Kerberos Key Distribution Center (KDC) is krb5kdc.
Apple has modified Kerberos to handle communication with the Apple Password
Server, which is responsible for building and replicating the Kerberos Database.
Clients who are using Open Directory for authentication (known as binding) will be
automatically configured to use Kerberos using special entries provided and updated

CHAPTER 1: Directory Services

by the LDAP server. You can manually initiate this auto-configuration by using the
kerberosautoconfig command. The Apple Active Directory service plug-in was
developed to provide interconnectivity with Microsoft’s Active Directory and also
supports Kerberos auto-configuration for bound client using DNS entries known as
Service (SRV) records. This automatically generated configuration file is stored at
/Library/Preferences/edu.mit.Kerberos and /etc/krb5.conf. This file can be manually
edited by removing auto-generation comments from the top of the file. More on
Kerberos clients in Chapter 2.

Users can specify multiple Kerberos realms by editing this file, or in 10.5 by using /System/
Library/CoreServices/Kerberos.app and choosing Edit » Edit Realms as in Figure 1-7.

No Tickets Available 4

Ticket Cache Time Remaining

Time Remaining

Figure 1-7. Editing realms in Kerberos.app

TIP: The Kerberos.app utility was removed in 10.6 and replaced with a new utility, Ticket
Viewer.app. Unfortunately, Ticket Viewer has limited functionality compared to Kerberos.app,
and it does not have the ability to edit REALMS. However, The Kerberos.app can be copied to a
10.6 machine and continue to function.

One of the most critical aspects of Kerberos configuration is time. If a client is more than
5 minutes apart from its KDC server, authentication will fail. The time value is normally
best synchronized using the Network Time Protocol (NTP). To enable the NTP service on
the Mac OS X server configured as your Open Directory master, mark the NTP check
box in the General settings section of the Server Admin Application. This setting can
then be pushed out using scripts or applications such as Apple Remote Desktop (an
example of changing this setting is available in the Send Unix Command Templates
section of the Apple Remote Desktop Admin software).

The systemsetup command can be used to set the NTP server:

systemsetup -setnetworktimeserver time.apple.com

This client setting can be configured manually in the Date & Time pane of the System
Preferences; note that multiple time servers are supported when separated by a space.
You can manually initiate time synchronization by using:

sudo ntpdate -u

In addition to authenticating the identity of a host in a Kerberos environment,
safeguards are also put into place to protect the authenticity of each service running
on a system in the form of a Service Principal. In order for a client to obtain tickets
and authenticate with a daemon, the client will request a ticket using a TGT and a
name constructed from the daemon/hostname:port. This information, in the form of
Service Principals, can be viewed in Mac OS X by using the klist command from a
Mac OS X host.

klist
Kerberos 5 ticket cache: 'API:Initial default cache'
Default principal: acid@WALLCITY.ORG

Valid Starting Expires Service Principal
07/06/09 13:12:40 07/06/09 23:12:40 krbtgt/WALLCITY.ORG@WALLCITY.ORG
renew until 07/07/09 13:12:40

To access information regarding Kerberos tickets using a graphical interface, open
Keychain Access from /Applications/Utilities, click on the Keychain Access menu item
and then on Kerberos Ticket Viewer.

Setting up Open Directory Using Server Admin

Open Directory begins with the Open Directory Master. The Open Directory Master
houses the Password Server and Kerberos KDC roles. It also provides a centralized
repository for Open Directory Replicas to use for synchronizing the contents of the
LDAP and password server databases. Much like with Active Directory (although oddly
enough, less so), Open Directory needs DNS.

CAUTION: It is highly recommended that you not use a “.local” domain name for Open
Directory. The .local domain space is already being utilized by Bonjour for zero-configuration
networking. Kerberos must be manually configured in domains utilizing .local name spaces.

Before you upgrade a server to an Open Directory Master, first check that the IP
address that Open Directory will be running on matches the information contained in
your network’s DNS zones for the server and vice-versa. Start out with the changeip
command located at /usr/sbin. This command utilizes a number of support scripts
found in the /usr/libexec/changeip directory. In its most basic form, changeip can be
called with the -checkhostname flag and can be run as follows:

/usr/sbin/changeip -checkhostname

With any luck, the script will return a success. But if it doesn’t, stop and fix your DNS.
changeip will fail if either forward or reverse DNS resolution fails to properly map out to
the same respective values. Do not promote an Open Directory Master that does not
have perfect DNS as reported by the changeip command.

First you need to display the Open Directory service on the server. To do so, open
Server Admin from the /Applications/Server/ directory and click on the name of the
server in the SERVERS list on the left side of the screen (adding it if it’s not there). Then
click on Settings from the toolbar and navigate to the Services tab, checking the box for
Open Directory. Click on Save and then Open Directory will appear in the SERVERS list
for your server (see Figure 1-8).

.00 Server Admin: snowcat.lbc: Server

SERVERS P s
&8 Available Servers (0) 6) Jl_!l Y f-*) L= n i':‘;‘g
M Overview Logs Graphs File Sharing Server Updates Centificates Access Settings
@ AP [General Network Date & Time Alerts Services |
Open Directory
(N ale) Server Admin: snowcat.lbc: Open Directory

Select the services to €@ . <ppyers proe
T DNS | @ Available Servers (@) 0 I =] [ee
O Firewall % Overview Logs Archive | Settings
g fwe 8 A ("General | LDAP _ Policies |
Looical O — -
] iChat o
0 Mail Role: Standalone directory Change...
g Mobile Access
O MySQL The server stores and accesses authentication and centact information
O T locally. It does not provide this information to other computers.
= NetBoot
) NFs
™ Open Directory
J Podcast Produce
=] Print

Push Notificatiol
=) QuickTime Strea
= RADIUS
) swms
(B Software Update
Tl weN
O web
=] Xgrid

3
(=] p

Figure 1-8. £nable the Open Directory Service in Server Admin

Next, we’re going to promote the server to an Open Directory master. To do so, click on
Open Directory and fire up the Service Configuration Assistant by clicking on the
Change button. The first option will be the role that the server will be fulfilling. Here,
select Open Directory Master and click on the Continue button.

You will then be prompted to specify the required information for the Open Directory
administrator account. This account will be used to administer the shared domain,
although it will not be granted local administrative rights to computers bound to the
domain. By default, the Directory Administrator account has a name of Directory
Administrator, a Short Name of diradmin, and a User ID of 1000. This information is
editable, and the administrator name probably should be obscured for increased
security by changing to a value specific to your environment, such as corpdiradmin.
Since Open Directory policies can be bypassed by administrative accounts, choosing a
common administrator short name represents a significant chink in the armor. Once you
have entered information about the desired account into the required fields, type the
password first in the Password field and again in the Verify field. While setting up a new
Open Directory Master, you will also be prompted to specify the LDAP search base and

the Kerberos REALM, as seen in Figure 1-9. By default, OS X Server will enter a
machine-specific entry for both. That is, when promoting server myhost.myco.com, the
default search base is dc=myhost,dc=myco,dc=com, and the Kerberos realm would be
MYHOST.MYCO.COM. In many cases, it may be undesirable to include the host name
in a company-specific domain. If myhost is ever retired, its hostname will still be forever
etched into your directory system. To avoid this, remove the hostname specific values
from both the search base and the realm. Thus, in the previous example, the desired
search base would be dc=myco, dc=com, and the realm would by MYCO.COM. After
specifying these values, proceed with the setup by clicking on the Continue button.

M Open Directory Assistant

Domain

Enter the Kerberos realm and the LDAP search base for the master domain.

Kerberos Realm: MYCO.COM

LDAP Search Basa: de=myco,dc=com

(" GoBack) [Continue)

Figure 1-9. Specify Kerberos REALM and LDAP Search Base

Next you’ll see the Confirm screen. Review the contents, which should mirror what was
entered in the preceding screens. When you are satisfied with the settings, click Finish
and Mac OS X Server will finish configuring Open Directory for you (see Figure 1-10).

A Open Directary Assistant

Confirm Settings

This server will become an Open Directory master with these settings:

Administrator Full Name: MyCo Directory Administrator
Administrator Short Name: mycodiradmin
Administrator User ID: 1000
Administrator Password: ssssssssssss
LDAP Search Base: dc=myco,dc=com

Kerberos Realm: MYCO.COM

(Co Back) (Continue)

Figure 1-10. Confirm final settings

Now you can verify that all components of Open Directory are properly functional with
your Open Directory setup by going into Server Admin, clicking on the Open Directory
service listed in the SERVERS list, and then clicking on the Overview button in the
Server Admin toolbar. In a standard Open Directory setup, LDAP, Password Server, and
Kerberos should all be running. In a triangle environment with Active Directory, typically
the AD Kerberos system is utilized. In such setups, it is nhormal for Kerberos not to be
running. Should any of the services fail to start, consult the Open Directory logs found in
Server Admin under the logs tab of the Open Directory service (as shown in Figure 1-11).
Look for any errors and make corrections as needed.

OO Server Admin: snowcat.|bc: Open Directory

SERVERS o A
- o -
& Available Servers (0) e | — é‘hﬁ} Q

Overview = Logs Archive Settings

£3 snowcat.lbc

O AFP Library ~ Logs » DirectoryService » DirectoryService.server.log
= —— -- Start: Server rolled log on: Sep & 2089 23:44:29 —
e e S B 2669-69-08 73:44:29 PDT — T[0x0GEOPOOLEBEA4EAA] — Network tronsition occurred.

28@89-89-85 23
2AR9-89-63 23:
2899-89-85 23:
2689-89-05 23:
2889-83-85 23:
2689-89-89 A1:
2699-89-89 A1:
2889-89-89 a1:
28689-89-89 81
2609-89-89 A1:

129 FDT - T[0xDEPBADR16P604008] — MNetwork transition occurred.
:31 PDT - T[0xB0POABA10P6A4880] — Network transition occurred.
:33 PDT - T[0xB0POBEA16P6A4000] - MNetwork transition occurred.
:33 PDT - T[0x0000060100604000] - MNetwork transition occurred.
:33 PDT - T[0xD80000P168684008] - Network transition occurred.
:57 PDT - T[0xBBBATFFF7OFEDBEA] - Sleep Notification occurred.
:86 PDT - T[0xBAEATFFF?EFEDBEA] - Will Power On (Wake) Notification occurred.
:13 PDT - T[ExBEPBOER1606A4008] - Network transition occurred.
13 FDT - T[BxBE00PO8160684608] — Network transition occurred.
13 PDT - T[BxBEO0EBEE1606846008] - MNetwork transition occurred.
2699-89-89 @1:01:13 PDT - T[0x0POARBA1OA6A4A86] - Network transition occurred.
2099-89-29 A1:01:15 FDT - T[0x0POAREA1AA6A4P88] - Metwork transition occurred.
2889-89-89 @1:91:15 FDT - T[Ox00000E0100684008] - Network transition occurred.
2889-89-89 @1:01:15 PDT - T[Ox00000E0100604008] - Network transition occurred.

¥ Directory Services Server Log

Directory Services Error Log

Configuration Log

Kerberos Administration Log
Kerberos Server Log

LDAP Log

Password Service Server Log
Password Service Error Log
Password Service Replication Log

View: | Directory Services Server Log ?

Figure 1-11. Open Directory logs

Setting up Open Directory from the Command Line

Setting up LDAP, Kerberos, the Password Server, SASL, and creating a directory
services administrative account could seem daunting if you were to do it manually. But
as with many tasks, Apple has made setup easier if you choose to go the command-line
route. This functionality is provided by using the slapconfig command binary, the same
tool utilized by the Server Admin application.

NOTE: For the Active Directory guru readers, slapconfig can be thought of as being similar to
dcpromo, but with many, many more options, and therefore similar to dcpromo only from the
perspective of promoting and destroying a directory server! In addition to promotion, slapconfig
can also be used to configure various Open Directory settings, replication, and global password
policies.

[vww allitebooks.cond

http://www.allitebooks.org

To create an Open Directory master using the command line, you could simply run the
following command:

slapconfig -createldapmasterandadmin

In the above example, the default values presented in all of the Server Admin screens
from the previous section were used. The Name of the account was set to Directory
Administrator and the Short Name was set to diradmin. The password was set to the
same value as the password for the administrative account that ran the command, and
the Unique ID was set to 7000.

You can also use slapconfig to define custom settings. In the command below,we will
define a new administrative account with a short name of corpodadmin, a full name of
Corporate OD Administrator, and a UID of 1100:

slapconfig -createldapmasterandadmin corpodadmin "Corporate OD Administrator" 1100

There are still a couple of default settings that slapconfig is using during the Open
Directory Master promotion process. These include the search base suffix and the
Kerberos realm. According to Microsoft, “A search base (the distinguished name of the
search base object) defines the location in the directory from which the LDAP search
begins.” The search base suffix is, by default, derived using the DNS name of the server.
To obtain the search base suffix for a given Open Directory Master, you can run the
slapconfig command with the -defaultsuffix query.

The realm is the name of the Kerberos realm that will be used. This, too, is generated
based on an enumeration of the server’s host name (are you starting to put together why
DNS is so important?). However, it can be customized during the -createmasterandadmin
process.

Demoting an Open Directory Master

Demoting an Open Directory Master can be done using either the command line or
Server Admin.

If demotion is done at the command line, the following command would get the
job done:

slapconfig -destroyldapserver

Set up an Open Directory Replica

An Open Directory Replica can be set up using Server Admin. Once you have opened
the application, connect to the server that is destined to perform the Replica role. Under
the Open Directory service, select the Settings tab. This tab will specify the current role
of the server. To promote the server to a Replica, simply click the Change button, and

specify the role Open Directory Replica. The interface will then query you for information
about the Open Directory system to connect to. Specifically, you will need to specify the
Open Directory Master’s IP/DNS name, the root user’s password, and the Open
Directory admin’s short name and password. After specifying this information and
continuing, the server will contact the Open Directory master and begin replicating all of
the relevant databases. This process does involve taking the Open Directory Master’s
LDAP database offline during initial setup, so plan accordingly. In a typical scenario, it
will be offline for roughly a minute. That being said, it is always a good idea to perform
this operation during non-peak times.

If the server that you’re promoting to replica status is not already in the role of a stand-
alone server, it’s a good idea to demote it to stand alone before it is configured as a
replica. However, it’s an even better idea to start off with a nice clean server as your
replica, so this situation should be completely avoidable.

Replicas can also be created using the slapconfig binary. From the replica, run the
command with the syntax:

slapconfig -createreplica myodmaster.myco.com myodadmin

Removing a Replica

Removing a Replica from an Open Directory environment should be done any time you
are decommissioning a server running as an Open Directory replica. You should first
attempt to do this using the Server Admin tool. Simply open Server Admin and connect
to the OD Replica. Under the Open Directory service, click on the Settings tab, where
you’ll see the Server’s role, listed as Open Directory Replica. Click on the Change
button, and select Stand Alone Server. This will require you to enter various credentials
that will facilitate the proper demotion between the OD master and the replica in
question. When that’s done, the replica will be removed from the system.

For a variety of reasons, you may not be able to remove a replica from Open Directory
using Server Admin. When that happens, try doing so using slapconfig. For example, if
the replica has an IP address of 192.168.53.249, the command would be:

slapconfig -removereplica 192.168.53.249

Using Workgroup Manager to Create New Users

Using Workgroup Manager, you can create Open Directory users and alter attributes for
their user accounts. You can also add computers, configure automounts, and perform
other tasks. In this module we will create a user. As a prerequisite, you will want to have
a functional Open Directory Master.

To create a new Open Directory user, open Workgroup Manager. As you can see in
Figure 1-12, you will see the “domain” that you are connected to listed in the

directory bar (below the toolbar). If the credentials that you provided in Workgroup
Manager do not have Directory admin rights, you will not be authenticated to the
domain and you’ll need to authenticate. To do so, click on the lock icon on the
directory bar. You will be asked for a username and a password. The default
username is diradmin, although this might have been customized (and should be!)
when the Open Directory Master was created. Type the username and password in
the Authenticate to directory: dialog box and then click on the Authenticate button. If
the authentication is successful, you’ll notice that the directory bar will appear, also
shown in Figure 1-12 (and with an open lock on the right-hand side). As per standard
OS X behavior, you will not be able to make any changes to the selected directory if
the lock is not open.

o000 Workgroup Manager: snowcat.lbc

S| Q@ O U N
< Braf. New lser Delete Refresh New Window Search

Server Admin .
(-g ~ Authenticated as mycodiradmin to directory: ."LDAPvln’lZ?.D.CD (@)

0

{ 2 & O @ 1 | Basic | Privileges Advanced Groups Home Mail Print Info Windows Inspe
Q- Name contains Ve
User Name 4 UID

User ID:
L. MyCo Directory Ad... 1000

Short Names:

Password: Verify:

User can administer this server
access account

Account Summary

Location:
Home:

Primary Group:
Mail:

Print Quota:
Password:

Presets: | MNone Revert Save

ar

0 of 1 user selected

Figure 1-12. Ensure proper directory is selected and you are authenticated fo create a user

Once you are authenticated to Open Directory, you can create a user account. To do so,
click on the New User button in the toolbar, or select New User from the Server menu.

Next, fill in the general user information using the Basic

tab of the New User window.

You can customize the Short Name at this point (but not in the future without a
complicated process), apply a Name (the user’s full name in most cases) and enter a

password. While you can change the User ID, it is wise
is automatically applied in this field.

to simply stick with the one that

Next, click on the Groups tab. Here you will add any groups that the user should be a
member of. To do so, click on the plus sign (+) and then drag the group into the Other
Groups: field from the resultant floating menu of users and groups (see Figure 1-13).

o606 Workgroup Manager: snowcat.lbc
R — ot
S A B o9 i |
Server Admin Accounts ' Preferences New User Delete Refresh New Window Search

0

@~ Directory: /LDAPV3/127.0.0.1

@~ Authenticated as mycodiradmin to directory: /LDAPv3/127.0.0.1

)
2) | ‘- Building8

I Basic Privileges Advanced Groups Home

Mail Print Info Windows Inspe |lName A GID

(A 8 03 @

Q- Name contains

Primary Group ID: 20

User Name 4 UD

Short Name: staff

Building8 Staff

1026

1000
1026

L. MyCo Directory Ad...
A Untitled 1

Name: Open Directory Users

Other Groups: | Name

A CID

S

Inherited group memberships are shown in italics.

(" Show Inherited Groups)

Presets: | None :

1 of 2 users selected

(Cancel) [Save

Figure 1-13. Assign users to the appropriate groups

Next, click on the Info tab and fill in any other pertinent
track, including the user’s physical address, phone info
on. In addition to the information that is easily accessib

information you would like to
rmation, email address, and so
le about a user, you can also

access data that at first glance seems hidden by enabling the Inspector, which allows
you to view raw directory information. To enable the Inspector, open Workgroup
Manager and click on the Workgroup Manager menu (immediately to the right of the
Apple menu). Then check the box for Show “All Records” tab andinspector and click

OK to save the changes (see Figure 1-14).

Workgroup Manager Preferences

Eﬂesolve DNS names when possible
E‘Show "All Records™ tab and inspector

"1 Limit search results to requestad records (use * to show all)

[IList a maximum of records

i " R) hY
[Reset "Don't show again" messages

(" Cancel \ (oK)

Figure 1-14. £nable the All Records tab and Inspector in Workgroup Manager

You will now be able to view a far more detailed account of what is hosted in your
directory service. When you are viewing information using the Inspector, you will be able
to change information that should not be changed unless you know exactly what you are
doing, so be very careful. However, it is worth noting that with the Inspector you can
view a far more detailed account of the data stored in each record of the LDAP
database. Once you have enabled the Inspector, you will see the Inspector tab in your
new test account. Click it to see the information now available.

Backing up Open Directory

While much attention is placed on files and folders on a many servers, an integral part of
rebuilding a server from scratch is not just having a back up of data, it’s also having a
back up of the accounts and permissions references that go along with that data.
Manually backing up Open Directory is a straightforward process. Simply click on the
Archive tab of the Open Directory service in Server Admin. From there, you can choose
a directory to save the OD archive to. After you’ve chosen a destination path, the
Archive button will become enabled. Click on this button to specify a name and a
password for the OD archive. Be sure not to place any whacks (/) in the name of the
Archive, or the process will silently fail, leaving you with a false sense of security. As
always with any backup routine, an occasional spot-check is nhecessary to be absolutely
certain that you have clean data. In this case, you can simply mount the produced disk-
image file by double-clicking on it, and verify that data has been written to it. The OD
Archive process is decently broad. It archives both Network and Local directory services
databases, launchd.plist files for relevant services, as well as numerous configuration
files and preferences.

One limitation of the Server Admin archive process is that it is a manual process, which
can often be a detriment to the consistency of an important function. To back up Open

Directory with a script can be easier and more reliable. You can do this from the
command line by scheduling the following script with cron or launchd:

#!/usxr/bin/perl -w
use strict;

my $archive password = 'MYPASSWORD';
my $archive path = '/Volumes/Data/backups/opendirectory/';

my $max_keep_time = 1; # MONTHS TO KEEP ARCHIVES AROUND

my @date = localtime();

my $year = $date[5] + 1900;

my $month = sprintf("%.2d",$date[4] + 1);
my $day = sprintf("%.2d",$date[3]);

my $filename = $year.$month.$day;
my $archive file = $archive_path.$filename;

print "Archiving to $archive file...\n";

if (open(CMD,"|/usr/sbin/serveradmin command")) {
print CMD "dirserv:backupArchiveParams:archivePassword = $archive_password\n" ;
print CMD "dirserv:backupArchiveParams:archivePath = $archive file\n";
print CMD "dirserv:command = backupArchive\n";

close(CMD);

print "Archive successful.\n";
} else {

print "Error: $!\n";

exit;
}

$month -= $max_keep time;
if ($month < 1) {

$month = 12;

$year--;

}
my $expire date = sprintf("%.4d%.2d%.2d",$year,$month,$day);
print "Cleaning up old archives...\n";

if (opendir(DIR,$archive path)) {
while (my $file = readdir(DIR)) {
chomp($file);
next unless ($file =~ /*\d{8}\.sparseimage$/i);
my $file date = $file;
$file date =~ s/[%0-9]//g;
if ($file_date < $expire_date) {
print "Removing ".$archive path.$file."\n";
unlink($archive path.$file);
}
}

print "Cleanup successful.\n";
} else {
print "Error: $!\n";

Troubleshooting Directory Services

Directory Services Debug Logs

When you’re trying to troubleshoot issues with Directory Services on Mac OS X sometimes
the best thing you can do is put the directoryservices daemon into debug mode. To do so,
we must send a USR1 signal to the daemon using the following command:

killall -USR1 DirectoryService
By default errors get trapped into this file:

/Library/Logs/DirectoryService/DirectoryService.error.log

But when in debug mode using -USR1, you can see more specific errors here:

/Library/Logs/DirectoryService/DirectoryService.debug.log

You can then use commands such as tail and more in conjunction with grep to isolate
issues to specific strings such as ADPlugin. Alternatively, you can enable API logging if
you choose to send the -USR2 signal. For debugging then, the logs will get written into
the /var/log/system.log file.

To disable verbose logging, you can just restart the Directory Services daemon if you
originally sent a -USR1 signal to DirectoryService. If you used -USR2, debugging
information will automatically stop writing to the log after 5 minutes.

Cache

In some cases, you may find that certain lookup tools, such as id, return data which
differs from what is stored in the directory. This is typically caused by stale data stored
in the local machine’s cache. While this cache will eventually expire and update, it may
be desirable to manually flush the cache. In version 10.4, this was accomplished using
lookupd:

lookupd -flushcache

Unfortunately, lookupd has gone to tech heaven, abandoned after 10.4. Introduced with
10.5, the tool dscacheutil allows for more cache-specific functionality than lookupd. For
example, using -cachedump allows you to dump an overview of the cache contents. The
-cachedump command has a slew of flags to get pretty granular with the output, such

as -entries and -buckets. The -configuration command allows you to access detailed
information about your search policy, and -statistics allows you to view detailed
information on the statistics of calls.

Here are some examples of using these commands:
dscacheutil -flushcache to empty the DNS Cache Resolver;
dscacheutil -cachedump -entries user to dump cache with user entries;
dscacheutil -q user to look up all users on a system;
dscacheutil -q user -a name jdoe to look up data for user jdoe.

The dscacheutil tool is also one of two command-line utilities that allow you to query a
group for direct membership (querying raw membership attributes with dscl is the
other). However, this functionality is somewhat limited as dscacheutil does not
consistently recurse through nested group membership. It does, however, work with
basic membership. For instance, to list members of the group admin, you could use:

dscacheutil -q group -a name admin

Verifying Authentication

There are a number of ways that you can test authentication in OS X, and the exact
process will vary based upon the version of the OS that you are running. Naturally, you
can verify authentication for a user by attempting to login to a bound Mac OS client. The
main problem with this type of testing is that it is fairly inefficient; if you don’t have a
spare client to test with, a trip to the login window likely requires you to logout. On top of
this, home directory problems can prevent a successful login, so it is not always an
accurate test.

If the target user has a default shell assigned, you can test authentication using the su
command in any version of OS X. Simply open up a new shell and type su testuser.
You will be prompted to enter the user’s password. Provided that you entered in
accurate credentials, you will be granted a shell under the new user. You can use the id
tool to verify.

bash-3.2$ su testuser
Password:

bash-3.2$ id
uid=1078(testuser)

This is not the only means to do this, however. In 10.5 a new utility, dirt, was introduced
solely for the purpose of testing authentication. The dirt utility is unique to Leopard and
can be used to test Directory Service user resolution and authentication. You can use
dirt to test authentication for users residing in local, LDAP, or Active Directory nodes.
The -u flag uses the username from the node you are testing against. The dirt
command tests whether an account exists in any node and can be used with the
following structure:

dirt -u corpadmin -n '/Active Directory/domainname’

This would result in the following output if the account is located in Active Directory:

User username was found in:
/Active Directory/domainname

NOTE: The -p flag can also be used to test passwords. You can also specify the node in
Directory Services you would like to test.

In addition to lookups, the dirt tool can be used to test authentication. For instance, to
test authentication for user jdoe, use the following command:

dirt -u jdoe

After running this command, you will be prompted for the password, which can also be
specified when invoking the command using the -p flag. Once you provide a password,
the tool will output whether or not authentication succeeded, as well as some user data.

NOTE: Unfortunately, when using dirt the password is always (unnecessarily!) echo’d out in
clear text, so make sure you only use this tool when there are no prying eyes around.

Unfortunately, the dirt utility is not included with 10.6. Not all is lost, though: this
functionality was rolled into Apple’s other directory services tool, dscl. To test
authentication using dscl, 10.6 introduces the -authonly flag, which must be called with
at least a username. The password can be supplied optionally after the username:

$ dscl /Search -authonly testuser “MySuperSecretPassword”
Password:

$

As this shows, if you provide the correct password, the dscl utility will exit with a 0
status and will return you directly to your shell prompt with no feedback. This indicates a
successful authentication. If authentication is not successful, you will be greeted with an
eDSAuthFailed error:

$ dscl /Search -authonly testuser “MySuperPass”

Authentication for node /Search failed. (-14090, eDSAuthFailed)
<dscl _cmd> DS Error: -14090 (eDSAuthFailed)

Notice also in the previous example that we are calling dscl specifically with the /Search
search path. We could specify an explicit node to authenticate against:

$ dscl /LDAPv3/odm.myco.com —authonly testuser “MySuperSecretPassword”

Summary

In this chapter, we discussed the role Directory Services plays in a networked
computing environment. That is, the Directory Services act as the unifying glue, allowing
user and group membership to be utilized across an unlimited number of clients.
Directory services are the core of any enterprise organization; without the ability to
centrally manage users, support requirements would balloon. Directory services enable

a group of otherwise ad -hoc computers to operate with similar parameters. They enable
centralized authentication, allowing users from multiple computers and multiple
platforms to authenticate against a single database, creating a more user-friendly and
ultimately more secure system.

In the next chapter, we will further explore directory services, with a specific focus on
integrating OS X client desktops with Apple’s Open Directory platform. Later, in
Chapter 3, we will discuss integrating OS X client desktops with Microsoft’s Active
Directory system.

Chapter

Directory Services Clients

In Chapter 1, we discussed Directory Services and the various types of information

that a Directory Service can provide. In contrast, this chapter focuses on utilizing a
centralized Directory Service for user and group resolution and authentication. Utilizing a
centralized Directory Service is absolutely essential to the efficient management of your
fleet of computers and eliminates the need to synchronize user and group databases
across all of your computers.

Lightweight Directory Access Protocol (LDAP) is the building block for most modern
directory services solutions. Whether you are using Microsoft’s Active Directory or
Apple’s Open Directory, to a large degree the basis for their implementation lies in the
LDAPv3 specification. As such, LDAP in this context consists of a communication
protocol, a data scheme that is used to store directory information, and the replication
infrastructure to distribute that data across multiple remote data stores. Because Mac
OS X is built from the ground up to accommodate for LDAP, there are myriad of options
in terms of automation and management functionality that can be provided to Mac OS X
clients. This isn’t to say that you can’t leverage the same LDAP structures built in
Chapter 1 in order to provide directory services to Microsoft Windows, but the context
for this chapter will focus primarily on Mac OS X directory service clients. In Chapter 9,
we will look at providing some aspects of directory services to Windows clients.

When a client is added to a directory services environment this is often referred to as
binding. There are two general types of binding that can be performed by an OS X client.
The first kind is referred to as a trusted, or authenticated, bind. With a trusted bind the
client computer creates a representative computer object in the LDAP store, which
contains the same AuthenticationAuthority record familiar to an OS X user account.
From here on, the computer itself must use a locally stored key to authenticate to the
directory in order to receive directory data. By authenticating, the computer proves that
it is a member of the network, and thereby has certain elevated access, based on the
trust relationship created at bind time. Trusted binding requires a password to establish
this trust. The second type of binding is not necessarily binding at all; it simply involves
configuring the client so that it should query a certain directory server for certain data,
such as user names, passwords, and even policies. This type of bind is sometimes
referred to as an anonymous bind. In these configurations, a client computer need not
have an associated computer object in LDAP.

39

In Chapter 1, | covered setting up and using localized directory services. In Chapter 2,
I’'m going to dive into leveraging the Mac OS X Open Directory environment and other
non-Microsoft based directory services solutions that leverage LDAP in order to provide
a centralized directory service to client computers. | will begin by looking at binding to
LDAP and then delve into the topics that will allow you to automate LDAP, mass deploy
LDAP settings, and realize the full potential of your directory services solution. This
chapter will end with a cursory glance at leveraging both NIS and BSD flat files for those
environments still committed to 1990s style networking (although | refuse to cover
Banyan Vines for posterities sake).

The Lay of the Land

Directory Utility is the application used to bind to Open Directory and other directory
servers. When you first open Directory Utility, you will notice the Directory Utility

shows a status indicator that it is looking for Mac OS X Servers. If you have an LDAP
environment broadcasting via Bonjour, then in many cases it will discover the server and
allow you to easily perform an unauthenticated bind. This is common, for example, with
environments based on Mac OS X Server 10.5 Standard, where Apple was trying to
make the setup of these fairly complicated environments as zero-configuration as
possible.

If you completed the default Open Directory setup as described in Chapter 1, after a
few moments the Looking for Mac OS X Servers indicator will disappear once the
query fails. To disable the automatic search feature, click on the Preferences menu of
Directory Utility and then uncheck the box for Look for Mac OS X Servers at Launch.
You can also set the preference from the command line (for example, if you were
pushing it out via Apple Remote Desktop) using the defaults command, by pushing a
new ~/Library/Preferences/com.apple.DirectoryUtility.plist file to clients, or by using
com.apple.DirectoryUtility.plist as part of your managed preferences environment.
The following command uses the defaults command to edit the boolean “No SBS
Assistant” key of the com.apple.DirectoryUtility.plist file to be a 0, which disables the
feature:

defaults write com.apple.DirectoryUtility "No SBS Assistant" 0

While the Looking for Mac OS X Servers process may fail, this isn’t to say that you can’t
leverage Bonjour to help locate directory servers. Bonjour Browser is a tool from
TildeSoft (http://www.tildesoft.com) that can be used to find a variety of services. To use
Bonjour Browser, download it and drag the application bundle to your /Applications
directory then open it and wait for the list of hosts and services to populate. Once
populated, you will see a screen similar to the one in Figure 2-1. Here you can find the
_ldap.tcp. entry and then browse other information on this host. It will show the port that
LDAP is running on along with the IP address that is running it.

CHAPTER 2: Directory Services Clients a1

¥ local - 28
» _adisk._tcp. - 2
» _appletv._tep. - 1
p _filewave-xclient._tcp. - 1
¥ _Idap._tecp. - 1
¥ www.krypted.com
192.168.210.249:389
[fe80::216:cbff-feaa:dc58):389
[feB0D::217:f2ff:-fefd-0eb]:389
192.168.210.189:389
p _od-master._tcp. - 1
p _tivo-music._tcp. - 1
p _tivo-videos._tcp. - 1
p _tivo_videos._tcp. - 1
p _touch-able._tep. - 1
p _xsan2unconfig._tcp. - 1
b Airport Base Station (_airport._tcp.) - 2
¥ AirTunes (_racp._tcp.) - 1
b 0017F2F9C4ADC@ALiving Room
» Apple File Sharing (_afpovertcp._tcp.) - 3
v Apple Password Server (_apple-sasl._tcp.) - L
> 16BEABEBOA4594B42A7FADDAS232CCTF+
b Apple Remote Desktop (_net-assistant._udp.) - 1
» DO over NSSocketPort (_nssocketport._tcp.) - 1
pFTP (_ftp._tcp) - 1
p HTTP (_http._tcp.) - 2
b Internet Printing Protocol (_ipp._tcp.) - 1
b iTunes Digital Audio Control Protocol {_dacp._tcp.) - 1
» Mac OS X Server Admin (_servermgr._tcp.) - 2
b Print Spooler {_printer._tcp.) - 1
b Printer PDL Data Stream (_pd|-datastream._tcp.} - 1
» Remote Frame Buffer (_rfb._tcp) - 1
b Samba (_smb._tcp.) - 1

Reload Services

Figure 2-1. Bonjour Browser

Once you have found your LDAP servers, it is important to make sure you can
communicate with the hosts. LDAP runs on port 389 (636 with SSL). There are two fairly
straightforward ways that you can check that you can communicate with LDAP. The first
is to scan the port. To do so, open Network Utility and click on the Port Scan tab. Enter
the host name or IP address in the Please enter an Internet or IP address to scan for
open ports field, check the box for Only test ports between 389 and 389, then click on
Scan (see Figure 2-2).

e00 Network Utility

f

Info Netstat AppleTalk Ping Lookup Traceroute Whois Finger | Port Scan]

Please enter an internet or IP address to scan for open ports

192.168.210.249 (ex. www.example.com or 10.0.2.1)

E‘ Only test ports between 389 and [389]

Port Scan has started ...

Port Scanning host: 192.168.210.249

Open TCP Port: 389 ldap
Port Scan has completed ...

Figure 2-2. Network Utility

As a sanity check, many organizations will choose to verify that the Open Directory
Master is accessible by a client prior to attempting to bind. You can also script against
the same tool that Network Utility uses to perform port scans, called stroke. To use
stroke, you will need to cd into the Network Utility application bundle using the
command:

cd /Applications/Utilities/Network\ Utility.app/Contents/Resources/

Once you are in this directory, you will need to provide stroke with an IP address (or
name), followed by a port range—specifying the lowest port first, a space, and then

the last. Use the same number twice if your range is only a single port. For example, if
you want to port scan port 389 on your own system you could use the following
(assuming a working directory of /Applications/Utilities/Network
Utility.app/Contents/Resources):

./stroke 127.0.0.1 389 389

If your Open Directory Master were named seldon.company.com, then you could use
the following code to check availability, by DNS name of the LDAP service on the server:

./stroke seldon.company.com 389 389

Because the name seldom.company.com has to resolve, you’re actually able to check
whether a DNS error occurs and whether you can communicate over port 389 to the
host in one command. If you plan to use stroke a lot, you may want to create a symlink
to the binary in a directory that is specified in your environment’s PATH, you can then use
it without needing to change your working directory:

1n -s /Applications/Utilities/Network\ Utility.app/Contents/Resources/stroke
/usr/bin/stroke

NOTE: If you can scan port 389 (or port 636, if you are using SSL) from the server using
localhost (127.0.0.1) then it typically stands to reason that if you cannot access port 389 on the
server from a client via IP or DNS that you likely have a network problem that is preventing
connectivity—even if the server requires authentication to enumerate the directory tree it
should still listen over the LDAP port for said authentication.

The second way to check that LDAP is available to your client systems is to telnet into
port 389 of the host running the LDAP service. There are a number of services that can
be tested in this manner, including most web servers and SMTP. For each service you
would simply follow telnet by the name (or IP address) of the host you are testing and
then the port, as follows:

telnet seldom.company.com 389

At this point, you should receive a response similar to the following, which by virtue of
the Connected line shows that you were indeed able to communicate with port 389:

Trying 192.168.210.249...
Connected to 192.168.210.249.

Escape character is '~]'.

You can also go a step further and use a third party tool to query an LDAP server,
without performing any custom configurations of Mac OS X. LDapper is an application
that will allow you to authenticate to and display information accessible through LDAP.
LDapper has a number of options that mirror various settings within LDAP, and so
becomes a good tool for figuring out what LDAP settings to use when configuring the

Directory Utility for binding. The ability to enter different settings and quickly obtain
results makes LDapper a great tool for enumerating an LDAP environment and is very

helpul for troubleshooting connectivity problems.

To use LDapper, first download it from http://carl-bell-2.baylor.edu/~Carl Bell/
stuff.html. Once the dmg file has been downloaded, drag the LDapper application
bundle into your /Applications directory. From here, open LDapper by double-
clicking on it and then select Preferences from the LDapper menu, as shown in

Figure 2-3.

LDapper Preferences

Directories

Directory:

LDAP Server:

Search Base:

Default Search Options

E Clear list before new search
E Discard responses without email

E Search for people only
—

Show friendly attributes

Fetch: | Minimal Attributes 4|

Max # hits: 100

Time limit: | 30 SECONds

Copying Addresses

Separate with: | Commas T]
E Include personal names

Format: '_ Mame <Addresss T]

Default Document Type

@] Search document

() Browse document

'r_Cancei_x‘ Ir Ok W'I

Figure 2-3. LDapper Preferences

Next, click on the Plus sign and then enter a friendly name (to remember the specific
server by) into the Directory Name: field and then enter a server’s hostname or IP

address into the LDAP Server: field. Finally, type the Search Base. If you are using Open
Directory, you can find the Search Base by opening Server Admin and then clicking on
the Open Directory listing in the SERVERS list for the Open Directory Master (see

Figure 2-4).

Server Artributes Authentication

Directory Name: Mew Lirectory

LOAP Server:

Search Base:

[LDAPY2 Encoding:

"fCanceF?‘ r OK WI

Figure 2-4. LDapper add server dialog

TIP: With many LDAP implemenatations you can determine the search base by querying it
with the 1dapseaxch utility, using the syntax: 1dapsearch -h ldap.myco.com -x -a
never -s base namingContexts.

There are a few more options to LDapper as well. In order to use Authentication, click on
the Authentication tab and enter a username that can read information from the
directory service in the Identification: field and a password in the Password: file.
Additionally, if you are using custom mapped attributes, click on the Attributes tab to
enter the pertinent information. Once you are satisfied with all of your options, click on
the OK button and you should be able to browse records for your LDAP environment, as
shown in Figure 2-5.

e i, Untitlec

Directory: r SEFVEF.MYCo

¥ server.myco
P cn=accesscontrols E
P en=augments
F en=automountMap
P cn=autoserversetup
F en=rertificateauthorities

Fen—Server

F cn=com.apple.opendirectory.master

Fen=Ilocal

F cn=mobile

dn: cn=computer groups,de=lbe
CN: computer_groups
objectClass: containar

Figure 2-5. Browsing an LDAP server with LDaper

From the command line, you can do much of the same tasks, using the |dapsearch tool.
Using Idapsearch you have many more options, likeSASL, output to Idif, and LDAP
version.

Basic Binding

As mentioned earlier, there are two types of binding that can be performed. The first is
trusted binding, where the computer and the directory service share a key, which allows
each to trust the other. When a host performs a trusted bind, it creates a computer
record in the directory database. Based on the record in the database and the key, the
computer is then granted certain access to directory services information that it might
not have otherwise been provided. For example, in a number of environments the
directory service is configured to only allow a system to perform LDAP queries if it has
successfully authenticated. This is a good way to lock down a system.

In an anonymous or non-trusted bind, the directory server does not necessarily have
representative data for the anonymous computer. Thus, in order for an anonymous/
untrusted bind to function, the LDAP server must provide anonymous access to its
store. However, the ability remains to perform an untrusted bind but authenticate using
an LDAP user. For such a setup, the user credentials used to authenticate to the LDAP
server are cached locally. This technically qualifies as an authenticated bind. However, it
differs in that a trusted bind utilizes a pre-shared key stored in the computer object on
the LDAP server. While certainly authentication, supplying user credentials does not
qualify as computer-level authentication.

When a client is bound to a directory service, the directory service must trust the client
in such a way that the client will be able to access (and in some cases update) certain
records in the LDAP database. This may simply be the computer’s own entry in Open
Directory or it may be an entire computer list.

In OS X, the Directory Utility application (found in /Applications/Utilities/) is the primary
graphical interface to manage directory service bindings. However, the tool does not
provide a facility to actually query directory data.

Unfortunately, there is no graphical utility for browsing directory data in OS X. However,
as mentioned in Chapter 1, dscl is a very handy command-line tool for querying and
modifying the contents of bound directory services. dscl will also play a substantial part
in preparing a system for binding and automation with regard to the actual bind process.
However, another common command that you’ll leverage throughout this chapter will be
dsconfigldap, the tool used to perform LDAP binding operations and configure LDAP
options.

Plug-ins

Directory Utility uses a number of plug-ins to provide functionality for various directory
services solutions. Most notable are the defacto plug-in for Active Directory or the
LDAPV3 plug-in used for Open Directory. As you work through this chapter, you will be
using the LDAPvV3 plug-in, but you could easily be using the Quest, Likewise, or Centrify
plug-ins, according to your required task.

Plug-ins are developed in the form of .dsplug files. The default plug-ins that Apple
includes are located in the /System/Library/Frameworks/DirectoryService.framework/
Versions/A/Resources/Plugins directory, which is where Likewise (discussed further in
Chapter 3) stores its plug-in as well. Third party plug-ins are typically installed in the
/Library/DirectoryServices/Pluglns directory of a computer, which is where you will find
plug-ins for Quest and products from Thursby.

To enable a plug-in in the Directory Utility, you will open Directory Utility from
/Applications/Utilities and then click on services, as shown in Figure 2-6.

® 00 Directory Utility

D A <
\ J iy =%
Directory Servers Mournts Services Search Policy

Select a service and click the pencil icon to edit settings.

Enable Mame Version
[Active Directory 1.6.4
[Active Directory (Quest VAS) 31.5.0
M ADmitMac 4.1.2
BSD Flat File and NIS 2.0
M LDAPV3 3.0
M Likewise - Active Directory 5.0.0
Local 1.0
i lﬂ:l Click the lock to prevent further changes. "'?‘ pply

Figure 2-6. Directory Utility Services

You can also enable and disable plug-ins from the command line. To do so, you will
augment the DirectoryService.plist in the/Library/Preferences/DirectoryService/ folder,
likely using the defaults write command. In order to read or write to the property list
file, you will need to run the command with root privileges. To start, you can simply read
the file with defaults and see what keys already exist that you can work with:

$sudo defaults read /Library/Preferences/DirectoryService/DirectoryService
{

"Active Directory" = Inactive;

AppleTalk = Active;

BSD = Active;

Version = "1.1";

To enable a particular plug-in (LDAPv3 is enabled by default), you can simply set the
value to Active and then restart your DirectoryService daemon:

$sudo defaults write /Library/Preferences/DirectoryService/DirectoryService "LDAPv3"«
"Inactive"
$sudo killall DirectoryService

Or, if you’re feeling constructive, maybe you want to enable a plug-in, following the
same modus operandi:

$sudo defaults write /Library/Preferences/DirectoryService/DirectoryService «
"Active Directory” "Active"
$sudo killall DirectoryService

NOTE: You can also work with third party plug-ins in the same fashion. The list here should
always mirror the list that you see in Directory Utility.

In earlier versions of OS X, enabling or disabling plug-ins through this method could be a
little inconsistent. A reboot will typically ensure the setting is properly applied.

Unauthenticated Dynamic Binding

Each Mac OS X client with an automatic search policy can connect to a shared
LDAP directory that is provided dynamically using the DHCP protocol, which | will
call unauthenticated dynamic binding. This can be useful in controlling settings for
properly configured client computers while they are guests on your network. For
example, if you just want to point them at a Software Update Server, manage proxy
settings, or deploy application restrictions, you can also utilize this setup to provide
your client systems that support DHCP-supplied LDAP (also known as Option 95)
with LDAP settings en masse if you do not have a framework in place for
management. For this reason, in certain instances unauthenticated dynamic binding
can be attractive as a means to an end to install mass deployment tools and
configure LDAP settings in environments where security of the directory service itself
is not a major concern. In environments where security of the directory service is a
concern, unauthenticated dynamic binding can be leveraged with a strategy to
automate the move into a more secure environment, allowing for more zero touch
integration on actual client systems.

When the computer starts, it can get the address of an LDAP directory server from
DHCP service. The DHCP service of your Mac OS X Server can supply an LDAP server
address in the same way it supplies the addresses of DNS servers and a router/default
gateway. If you are hosting your DHCP for your Mac clients using Mac OS X Server,
then you would configure the LDAP servers by clicking on the DHCP listing for the
server that runs your DHCP service in the SERVERS list of Server Admin. Next, click on
Subnets in the DHCP toolbar (as shown in Figure 2-7). From here, if you double-click on
your DHCP scope entry for the scope you would like to use DHCP for, you will notice an

LDAP tab on the bottom portion of the screen. Here, enter the server’s DNS name or IP
address and the Search Base as its listed in the Open Directory service.

If the port is not 389, go ahead and enter the port into the Port: field as well. Finally,
if you are using SSL and the certificate has been accepted, you can click on the
LDAP over SSL checkbox as well. If you are using SSL and the certificate has not
been accepted, it will need to be before the client system will be able to access
LDAP. Once you are satisfied with all of your settings, click on Save and then Start
DHCP to start the service.

If the server is not a Mac, you can still supply LDAP DCHP information. For Linux, you
would add the following lines to your dhcpd.conf-Server:

option ldap-server code 95 = text;
option ldap-server "ldap://seldon.company.com:389/dc=seldon,dc=company,dc=com";

NOTE: For more information on Option 95 (and other unused Options), see RFC 3679.

AnNn Server Admin:192.168.210.243:DHCP
SERVERS. o — ‘é ﬁ; =
&8 Available Servers i . Lo Q
(A 157 168,210 248 Owverdiew Log Clients | Subnets Statec Maps Semings
- - — Starting Addr Ending Addn
A 192 168.210.240 Enable Name Interface Starting Adidress Ending Address

8 AFP 192.168.210 Ethernet enl 192.168.210.2 192.168.210.253

iCal
iChat
Mail
MySOL

£ Open Directory
Podcast Producer
Print
QuickTirme Streaming
RADIUS
SME

) Software Update
VPN

General DNS | LDAP WIS

Server Name: seldon.company.com
Wb

WebObjects Search Base: dc=seldon,dc=company,dc=com
Xgrid
Port: 389 Leave blank to use the default pon
LDAP over 551
URL: kdap://seldon.company.com:389/dc=seldon,dc=company,dc=com

| +.)[®.]| || Start DHCP |

Figure 2-7. Providing LDAP information via DHCP

If you wish to obtain LDAP information from a client computer using DHCP, you will first
need to enable DHCP-supplied LDAP. To do so, open Directory Utility and click on the
Show Advanced Settings button. Then click on the Services icon in the application
toolbar. Here, you will see the LDAPV3 entry. Click on the lock icon and enter the
username and password for an administrative account on the system. From here,
double-click on the LDAPvV3 entry, check the box for Add DHCP-supplied LDAP servers
to automatic search policies, and then click on the OK button.

Next, test logging in using an account stored only in the directory services to verify that
providing LDAP settings over DHCP is functioning as intended. If you cannot
authenticate, open dscl and test whether you can read accounts from the directory
server. If you cannot, then verify that the directory server that was supplied by DHCP is
listed in the LDAPV3 tree of dscl. If it is not, then troubleshoot the DHCP environment.
Start by verifying that you are receiving an IP address. If so, look for multiple scopes or a
different DHCP server that may be supplying an address to your system.

If you wish to script the enablement of receiving LDAP information over DHCP, you can
use the dscl command to edit the /Search/dsattrTypeStandard:DCHPLDAPDefault key
as follows:

dscl -q localhost -create /Search dsAttrTypeStandard:DHCPLDAPDefault on

NOTE: Clients that are using a trusted bind cannot also use a DHCP-supplied LDAP directory setup.

Enabling unauthenticated dynamic binding on client machines has some pretty serious
repercussions. By enabling this setting, you are essentially telling client computers to
trust any LDAP server provided by DHCP. If the DHCP packet comes from an untrusted
source, then the client machine can easily be compromised. In environments where
security is a concern, or where a client machine will potentially connect to public
networks, this setup should be avoided.

Unauthenticated Static Binding

While you can set up LDAP clients through DHCP, most organizations don’t choose this
as their standard. Option 95 is the standardized configuration option for supplying LDAP
information over DHCP. Use of Option 95 is fairly rare and most client systems are setup
statically. As previously mentioned, setting up LDAP clients will be done by using either
the Directory Utility application or the dsconfigldap command, if you wish to do so
programmatically. To set up a client for unauthenticated static binding using Directory
Utility, open the tool from /Applications/Utilities (/System/Library/CoreServices in 10.6),
then click on the Show Advanced Settings button in the lower right-hand corner of the
screen. Next, use the lock icon in the lower-left corner of the screen to authenticate in
order to make changes to the Directory Utility. Once authenticated, click on Services
and then double-click on LDAPV3 to see the LDAP Configuration screen, as shown in
Figure 2-8.

52

CHAPTER 2: Directory Services Clients

Location: | tester e

) Add DHCP-supplied LDAP servers to automatic search policies

v Hide Options

Enable Configuration Name Server Name or IP Address | LDAP Mappings ssL

(Duplicate) (Delete) (Edit...) (New..) (m) ﬁ

Figure 2-8. LDAP configuration screen

Next, click on the New... button and then click on Manual, as shown in Figure 2-9. If you
were to enter the Server Name or IP address in the appropriately named field, you would
be performing a trusted bind.

Server Name or IP Address: [

"] Encrypt using SSL
W Use for authentication
M Use for contacts

(Cancel) (Continue)

Figure 2-9. New LDAP Connection dialog box

Now enter a name for the configuration in the Configuration Name field, as shown in
Figure 2-10. This name has nothing to do with the LDAP configuration other than a
friendly name to help you remember which configuration does what task in
environments with multiple configurations. The only consideration for this value is that it
helps to keep it consistent across all of your clients. Click on the Server Name or IP
Address field and type the name or DNS host name of the Open Directory Master. Then,
click on LDAP Mappings and select the appropriate item from the drop down list. If the
server is an Open Directory Master, you would select Open Directory Server, although
you can also simply leave the field set to From Server. Also, highlight the SSL checkbox
if an SSL certificate was enabled for the Open Directory server (assuming you have
chosen to accept the certificate).

Location: | tester A

W Add DHCP-supplied LDAP servers to automatic search policies

v Hide Options

Enable Configuration Name Server Name or IP Address | LDAP Mappings SSL
M kryptedserver 192.168.210.249 From Server >
Juplicate Jelete Edit New... / Cancel \ (oK)

Figure 2-10. Populated configurations for LDAP

Once you are satisfied with your settings, click on OK. Next, you will need to add the
new directory service configuration to your search path by setting the Search: field to
Custom Path. To do this, you will specify a custom search path and then add the new
service to the list of Search Domains. To do so, click on the Search Policy icon in the
Directory Utility toolbar. From the Authentication tab, click on the plus sign (+) below the

list of Domains, as shown in Figure 2-11. Next, select the newly added listing and then
click on the Add button.

Please select additions to the custom search policy from the
list of available directory domains below.

Available Directory Domains

LDAPv3 fwww.krypted.com

/Local/Secondary

(Cancel) (Add)

Figure 2-11. Select a Directory Domain to add.

Now, click on the Apply button. You should see your new domain listed in the search
policy (see Figure 2-12). You should now be able to use dscl to test whether the client
can read information from the LDAP database. When you open dscl, you will be able to
navigate to the LDAPv3 container and then to the text entered in the preceding
Configuration Name field. Alternatively, you can do a simple one line non-interactive
query with the tool to test our new directory service’s functionality:

$dscl /LDAPv3/www.krypted.com list /Groups
Provided the previous command returns valid data, you have verified that you can

browse the new directory services domain, and that you have completed an
unauthenticated static bind.

®O0 Directory Utility

D M=
-y — = | -
Directory Servers Mounts Services | Search Policy

(Authentication Contacts

Choose where to search for user authentication information,

Search: | Custom path [

Directory Domains

[LDAPV3 fwww.krypted.com

4+ Drag directory domains into your preferred order for searching.

i Py

I71 Click the lock to prevent further changes. (Apply)

Figure 2-12. 7he Authentication search path

NOTE: Provided you are using a monolithic imaging solution, you can push out the image with
an unauthenticated static binding en masse.

Trusted Static Binding

We saved the most common method of binding for last. This isn’t because it is the least
important, but because it is (or at least can be) the most complicated in terms of
integration. If you built an Open Directory environment using the default settings for
Open Directory, then by default you can use unauthenticated static binding or trusted
static binding for client access. Of the two, trusted static binding is the most secure. If
you are going to touch each client system (either manually or using a script), you might
as well go ahead and make for as secure a solution as possible, given that it is not much
more work (if any) to deploy a trusted bind-based solution.

Trusted static binding to LDAP can be achieved using a few different ways. The first is to
use Directory Utility. Simply open the Directory Utility from /Applications/Utilities and

56 CHAPTER 2: Directory Services Clients

then click on the lock icon, authenticating as an administrative user on the local
computer you are using to bind. The resulting window is shown in Figure 2-13.

No Directory Servers Configured

+| -

ﬁ Click the lock to make changes. @ (Show Advanced Settings)

Figure 2-13. Directory Utility

Next, click on the plus sign (+). The dialog box will default with the Add a new directory
of type: field set to Open Directory; enter the IP address or host name of the Open
Directory Master (or a Replica) and optionally choose to enable SSL. Once you are
satisfied with your entries, click on the OK button as shown in Figure 2-14.

Add a new directory of type | Open Directory -+

Server Name or IP Address: | www.krypted.com H
™ Encrypt using SSL

(Cancel) 0K

Figure 2-14. Directory Utility Add Server dialog box

If the directory services configuration is successful, you have successfully bound. When
using an unauthenticated static bind, you needed to set the Search Policy to custom.
However, with a trusted static bind, the Search Policy is set as part of the bind
operation. Although it’s never a bad idea to check the search domains list and verify
operation, this step will not need to be done.

NOTE: If you are using a monolithic imaging solution you cannot push out the image with a
trusted static binding en masse. You will need to script the trusted static bind into the post-
installation automation tasks that you will use as part of your deployment.

Pushing Out SSL Certificates

As mentioned, using SSL as part of your directory services integration helps to make it
as secure as possible. If that’s the case, why doesn’t everyone do it? It's an extra few
steps that aren’t absolutely necessary. If you would like to use SSL on your clients, for
Open Directory or any other service, then on a per-host basis you typically need to trust
a certificate, unless it was granted from a certificate authority. In order to get a
certificate from a certificate authority you have to pay money. Additionally, the added
complexity is not something many administrators will deal with, if not required. As of
10.5, Open Directory is additionally onerous when utilizing SSL with directory services.
By default, the LDAP client utilized by the directory services daemon has no RootCA
trusts. That is, even certs signed from a valid certificate authority will be rejected with
the default configuration.

Overall, it isn’t that hard to use SSL. Since Chapter 1 covered doing so on the server
side, we’re going to move into managing SSL on the client side. As you probably
guessed, you can manage SSL from the GUI or from the command line, which makes
for better automation. However, setting up our CA trust requires command-line
interaction.

In order to configure our client to use SSL for directory services, you must first copy
your rootCA pem file to your client. This certificate can be exported from the Keychain if
it has been accepted or obtained from an administrator of the Certificate Authority (CA).
This file must contain the certificate for each CA in the cert chain, and is often referred to
as a cert bundle. If your Open Directory’s SSL cert was signed by an intermediate CA,
then your rootCA file must contain the certificate of that intermediate CA as well as the
root CA certificate. Apple commonly installs certificates in the directory /etc/certificates,
so this is a common place to store this file. It is best to avoid spaces in the path to this
file, including the filename.

If your Open Directory implementation utilizes a certificate signed by a recognized
Certificate Authority then you can utilize a certificate bundle preinstalled on all OS X
machines. If your host recognizes the certificate authority, it will not require
acceptance—specifically, the certificate-bundle file utilized by curl and located at:
/usr/share/curl-ca-bundle.crt.

Once this file has been installed on the client, you can verify proper validation of the
chain against your Open Directory server by utilizing the openssl command-line utility:

$openssl s _client -connect www.myhost.com:636 -CAfile /etc/certificates/rootCA.crt |«
grep "Verify"

You are looking for the value specified by the string Verify Return Code:. If the command
succeeded, you will see the output:

Verify return code: 0 (ok).

If a non-zero value is returned, then there is a problem with your bundle file. You will need
to rerun the command without the grep filter and decipher the problem from its output.

Once you have the pem file installed and tested, the next step is to configure your
DirectoryService LDAP client to utilize this CA file. To do so, you need to edit the file
located at /etc/openldap/ldap.conf. When viewing this file, take note of the key
TLS_REQCERT. This key represents the primary change between Leopard and Tiger.

In Leopard, the value of this key was changed from never to demand. With no
associated TLS_CACERT or TLS_CACERTDIR values configured, you will fail to trust any
certs presented.

To establish a trust, add a TLS_CACERT entry, pointing toward the cert bundle that you
just installed as shown in the following code (run with root privileges):

echo "TLS_CACERT /etc/certificates/ldapCA.crt" >> /etc/openldap/ldap.conf

Once done, restart the Directory Services daemon:

killall DirectoryService

After modifying your file, restart Directory Services to read in the new values. At this
point, you are ready to perform an SSL-enabled OpenDirectory connection.

If you are utilizing your own internal Certificate Authority, you will also want to import
the CA file into the Keychain framework for utilization by Cocoa applications. To

do this from the GUI then you will do so using Keychain Access, located in
/Applications/Utilities, as shown in Figure 2-15. SSL certificates can be installed for a
given users account or system-wide. Mac OS X uses a number of keychains to store
all of the SSL certificates that have been installed on the system or a users account in
an encrypted format. This separation between userlandspace and system-wide space
is important. Local user accounts store keychains in ~/Library/Keychains, with the
default keychain for a user called login.keychain. The system keychain is stored in
/Library/Keychains and by default called System.keychain. There is one more directory
worth noting, /System/Library/Keychains, which for the purpose of this chapter should
not be altered.

To install an SSL certificate using either the login.keychain (for the user) or the
System.keychain (global for all users on the host), simply drag the .cer or .crt file to the
entry under Keychains and when prompted authenticate. If you do not yet have a .cer or
.crtfile, learning how to export one will help you to have one to deploy, assuming, of

course, you have at least one machine that has the public key installed. To export an
SSL certificates public key, click on the certificate you wish to export and then drag it to
the location where you would like to store it.

Keychain Access

i | Click to unlock the System keychain. Q

Category
1 All ltems
.. Passwords
Secure Notes
EJ My Certificates

U Name n OO (SSLCAfile = ==
. Certificates -] Dashboard Advisory ten
o 1 of 1 selected, 16.44 GB available e je—
Certificate Authority.crt
= ™y i Copy litem

Figure 2-15. Add root Certificate fo Keychain Access

As mentioned previously, you can also import keys programmatically. To do so for Tiger,
you would copy the crt or cerfile to the local system. For example, if you have a number
of scripts that use a temporary folder called .tmp then you could use the following script,
assuming you have the files stored in that directory. (To get them there, you can use curl
to pull them off a web page or cp to pull them off a share point.) Next, copy the
/System/Library/Keychains/X509Anchors into the users home folder, update it to include
the certificate, and then push it back up to the correct location (replacing
mycertname.crt with the actual name and path of your certificate):

cp /System/Library/Keychains/X509Anchors ~/Library/Keychains
certtool i "mycertname.crt" k=X509Anchors
cp ~/Library/Keychains /System/Library/Keychains/X509Anchors

To programmatically install certificates in 10.5, you must utilize the security framework
(run as root).

security add-trusted-cert -d "/etc/certificates/rootCA.crt"

This command will add the specified certificate to the admin domain, effective for all
users. Once added to this Keychain, GUI applications, such as Safari and Mail, will
properly trust certificates signed by our CA. Oddly enough, the LDAP client in Address
Book actually uses the same LDAP facility as DirectoryService. Thus, to set up SSL
lookups in Address Book, previous methodology for configuring the previous
/etc/openldap/ldap.conf file applies.

This is a rather exhaustive procedure between importing the certificate(s) into our local
file system for use by LDAP, importing the certificate(s) into the Keychain, and then
configuring LDAP settings to establish the trust.

Luckily, there is a script to facilitate this process. This script will take a specified pem file,
so copy it into a specified directory, import into keychain, and update the Idap.conf file:

PATH=/bin:/usr/bin:/usx/sbin

Setup our vars.:
myName: NameUsed for logging (default SSLPackageInstaller)

myName="SSLPackageInstaller"

resourceDir: pathToDirectory containing our cert to be installed
(default same folder as script)

resourceDir="${dirname "${0}"}”

Cafile: filename of our cert-bundle to be installed (as well as final destination
name)

CAfile="1ldcintChainCABundle.pem"

certStore: Path to the local cert directory (/etc/certificates)
certStore="/etc/certificates"”

certPath="¢{certStore:?}"/"${CAfile}"

importForCurl=1

logger -s "${myName}: started. Build: $build"

Check system version (script currently only supports 10.5+)

isSnowLeopard=$(sw_vers | grep -c 10.6)

isLeopard=$(sw_vers | grep -c 10.5)

isTiger=$(sw_vers | grep -c 10.4)

if ([${isLeopard} -eq 0] 8& [${isSnowLeopard} -eq0]); then
logger -s "${myName}: Script currently only supports 10.5, or 10.6!!!"
exit 1

fi

Verify we were given a valid cert file, if not we bail.
See CERTIFICATE EXTENSIONS section of x509 manpage
if [-f "${resourceDir}"/"${CAfile:?}"]; then
goodCert=$(openssl verify -purpose any "${resourceDir}"/"${CAfile}" | egrep -c +
"AOK\$")
fi
if ["$goodCert" -eq 0]; then
logger -s "${myName}: Certificate failed validation!!"
exit 2
fi

Make sure our local certStore directory exists, make it if it doesn’t
test -d "${certStore:?}" || mkdir -p "${certStore}"

test for a pre-existing cert with the same name, if it's there move on,
otherwise install ours.
test -f "${certPath:?}" || cp "${resourceDir}"/"${CAfile:?}" "${certPath:?}"
if [$? 1= 0]; then
logger -s "${myName}: Certificate transfer failed!! Copying $resourceDir/$CAfile «
to $certPath"
exit 3
fi

Import the cert into keychain using the security framework
security add-trusted-cert -d "${certPath}"
Modify the TLS_CACERT attribute of the local ldap.conf file to consult our
newly installed cert bundle
if ([${isLeopard} -eq 0] 8& [${isSnowLeopard} -eqo]); then
if [“egrep -c "~TLS_CACERT" /etc/openldap/ldap.conf™ != 0]; then
escapedPath="echo "${certPath}" | perl -p -e 's/\//\\\\\//g""
perlCommand="perl -p -i -e 's/("TLS_CACERT\s)(.*)/\1{escapedPath}/g""
eval ${perlCommand:?} /etc/openldap/ldap.conf
else
printf "TLS CACERT %s\n" ${certPath} >> /etc/openldap/ldap.conf
fi
fi

exit 0

Custom LDAP Settings

Now that you can bind using the default method in Directory Utility, let’s look at a way to
set a little bit more information. The alternative method to performing a trusted static
bind to Open Directory, or another LDAP server without using the command line, is to
open Directory Utility and click on the lock to allow changes. Next, click on the Services
icon in the Directory Utility application and then double-click on LDAPv3. From here,
click on the New... button, but unlike the section on unauthenticated static binding go
ahead and enter a hostname or IP address to bind to in the Server Name or IP Address
field, as shown in Figure 2-16.

These options are as follows:

B Use for Authentication, which allows users to authenticate into local
resources using the bound directory service.

B Define whether or not you want to supply Contacts to client systems
using the Contacts tab of Search Policy in much the same way that
you used the Authentication tab.

B Encrypt using SSL, one of the best ways to securely configure Open
Directory (assuming, of course, that you have an SSL certificate and
have followed the procedures previously outlined).

Next, click on the Continue button. Once you have updated the Search Policy, you should
be able to test authentication using the aforementioned dirt (10.5) or dscl (10.6) utilities.

New LDAP Connection

Server Name or IP Address: |

Encrypt using SSL
™ Use for authentication
™ Use for contacts

—_———— r———
(Manual) Cancel)

Figure 2-16. New LDAP connection

Now that you are bound, open Directory Access from /Applications/Utilities and click on
the Services icon in the Directory Utility toolbar again. From here, click on the name of
the server you recently bound to and then click on the Edit... button toward the bottom
of the screen. Here, you can set a variety of options about how the LDAPv3 Plug-in
functions, outlined in Figure 2-17. These include the following:

B Configuration name:the friendly name entered earlier in this chapter. If
the wizard was used this will be the same as the Server Name or IP
Address: field.

B Server name or IP address: the location of the LDAP server.

Openv/close times out in. number of seconds that the server will cancel
an open or close event for the LDAP connection.

B Query times out in. number of seconds that a Query for a record will
time out if the record has not yet been found.

B Re-bind aftempted in: number of seconds to wait before reconnecting
to the LDAP server if there is no response.

B Connection idles out in.: number of minutes before an idle connection
disconnects from the LDAP server.

B Encrypt using SSL: whether the connection will use SSL (likely set at
bind time).

B Use custom port. uses a custom TCP port (other than 389 or 636).

B /gnore server referrals. server referrals aid the LDAP plug-in in finding
information, but can cause latency in lookups and long wait times for

logins.

B Use LDAPvZ. uses the LDAPv2protocol rather than the LDAPv3

protocol, for backward compatibility.

O www.krypted.com

! Connection Search & Mappings Security _'

Configuration Name: www.krypted.com

Server Name or P Address: www.krypted.com

Open/close times out in 15 seconds

Query times out in 120 seconds
Re-bind attempted in 120 seconds

Connection idles out in 2 minutes

[Encrypt using SSL
"1 Use custom port
| _'lgnore server referrals

1 Use LDAPv2 (read only)

Bind...) [Cancel

ok)

Figure 2-17. Advanced LDAP settings

NOTE: Apple has chosen the most appropriate values for the time out settings. However, if you
have fairly latent connections then you may choose to increase the values, or if your directory
servers are saturated then you may choose to lower them. Additionally, laptop users who are
frequently out of the office may have a better user experience with lower values configured to
reduce timeouts. Use caution when changing them though, as they are optimized for a

standard Open Directory environment.

Now, click on the Search & Mappings tab. Through the interface found under this tab,
you can configure the maps between standard Mac OS X attributes and those
available via other LDAPvV3 servers. (This can be seen through the Inspector in
Workgroup Manager or using a standard read on a record in dscl, as explained in
Chapter 1.) In some cases, this is only the difference between, for example,
CreationTimestamp in OS X and createTimestamp in an LDAP object. As shown in
Figure 2-18, you’ll look to map fields that you see fit to those that exist in your current
LDAP environment. Using the Access this LDAPv3 Server drop-down menu, you can
select one of the pre-built Apple maps, which cover the commonly used Open
Directory Server, Active Directory, and RFC2307 settings.

O www. krypted.com

Connection Search & Mappings Security .I

Access this LDAPv3 server using | Open Directory Server ﬂ

Record Types and Attributes Map to . items in list

" EIEVIZRET SEIVETS ———————
» Resources '
> Places

» Maps O
» OLCBDRBConfig

» OLCFrontEndConfig

[T 'l PN NN oY =3P

Delete) (Add..) (Add..)

" Save Template...) " Write to Server...)

Bind..) (Cancel) (oK)

Figure 2-18. Mapping LDAP Afttributes

RFC 2307 is a set of standards laid out for Unix-style operating systems to leverage
LDAP as a centralized directory services solution. In fact, many of the attributes from
Open Directory are taken directly from the standards laid out in RFC 2307. There is no

manual mapping of fields for most aspects of LDAP if you are using an RFC 2307
compliant schema for LDAP, as those mappings are integrated for you out of the box.

http://www.faqgs.org/rfcs/rfc2307.html

You can leverage otherwise unused fields with other Directory Services in order to
provide required fields for Mac OS X, even if those fields do not exist in the foreign
directory service. Once you are satisfied with your mappings, you can then save them as
a template using the Save Template... button or write them back to the server, so other
clients can use the mappings you may have painstakingly built. By leveraging the ability
to write back into the cn=config container, you will save yourself from having to set
mappings on each client, but instead set each client to From Server option using the
Access this LDAPV3 server using the drop-down list shown in Figure 2-19.

NOTE: In order to use the Write to Server... button, you will need elevated (e.g., diradmin)
privileges to the LDAP server.

Location: | Automatic =]

Hide Options

e ¢ FromSever SRS

Enable Configuration Name Server Name or IP Address SSL

o MyCo Idap.myco.com Active Directory n
Open Directory Server

RFC 2307 (Unix)

Custom

Search Base

Search Base [cn:conﬁg, dc=myco,dc=com|]

- - N\ —1 Text entered here is used to find mappings for unique server mapping
[Duplicate | [Delete configurations. If you leave this field blank the root domain will be

searched.

(Cancel) € OK)

Figure 2-19. Select From Server fo read attribute mappings from the LDAP servers cn=config container

Once you are finished editing mappings, click on the Security tab. Here, you can set
user name (in the form of a Distinguished Name) and password as well as a few
basic security policies to control access to the directory server and bound. Before
you set these features, verify that your Open Directory servers also have them
enabled and/or supported. The settings shown in Figure 2-20 are as follows:

B Use authentication when connecting: for unauthenticated static
bind environments, forces client computers to use a username and
password when connecting. This is where you can specify a
distinguished name to utilize for directory authentication, allowing
non-trusted binds to function when anonymous LDAP access is
turned off.

B Distinguished Name: username of an account located in the
LDAPv3 domain specified.

Password: password for the Distinguished Name.

Disable clear text passwords: sets the client to not establish a
connection in the event that an authentication protocol cannot be
found and password submission would otherwise revert to
cleartext.

B Digitally sign all packets (requires Kerberos): utilizes Kerberos for
signing packets.

B Encrypt all packets (requires SSL or Kerberos): encrypts all data,
not just password, and requires SSL to function appropriately.

B Block man-in-the-middle attacks (requires Kerberos): typically used
in conjunction with Digitally sign all packets option.

Once you are satisfied with your settings, click on the OK button, or in order to go
from an unauthenticated to a trusted static bind click on the Bind... button. If you do
not see a Bind... button, then you are already using trusted binding. Finally, check
the Search Policy and verify that the directory service is included, as described in
the next section.

2 www.krypted.com

Connection Search & Mappings = Security |

Access to Directory

" Use authentication when connecting

Security Policy

Server capabilities and reguirements determine the availability of options.

Bind... Cancel) (oK)

Figure 2-20. LDAP bind security options

Managing the Search Policy

You can bind to multiple directory services, and more specifically to multiple LDAP
servers, by using the Search Policy settings to determine which takes priority over the
others in the event that the username or computer name in one is duplicitous to another.
By specifying the order of the various Directory Services, we can control the order in
which they are queried for data. On all OS X machines, the local directory services
database will always have precedence. That is, if my local database has a user ‘jdoe’,
and the Open Directory System that | have bound to also has this user, when | login | will
be authenticating against the computer’s local user and will receive his information. This
is very important to know about OS X. Thus, arranging the order in which Directories are
listed is primarily useful for managing environments with multiple disparate Directory

Services. As | get into explaining Active Directory in more detail in Chapter 3, this will
become a more fundamentally important concept to grasp as we move into taking a
look at Mac OS X’s Active Directory plug-in and leveraging dual directories.

The focus so far has been on using LDAPV3 as a means to establish centralized
authentications services. However, the search policy also sets priority when using
centralized Contacts. In order to manage the Directory Service search path, you will
need to use the Directory Utility application. Once the utility is running, click the the lock
and authenticate. Once authenticated, click on the Search Policy icon in the Directory
Utility toolbar. Here, you will see a listing of all servers (called Directory Domains) that
are currently in your local computers search policy for authentication purposes under
the Authentication tab and for contact lookups via Address Book, using the Contacts
tab. Each will typically have the Search pulldown menu set to “Local Directory” by
default. This means that the server will only query the local Directory Service in order to
process authentication and/or contacts. Change this setting to Custom Path in order to
add network services to the search path. Once you are using a custom path, changing
the priorities that a server is given is as easy as dragging each above the other in the list,
as shown in Figure 2-21.

®O0 Directory Utility
€1 o B
a» E - =S

Directory Servers Mbunts Services | Search Policy

(Authentication Contacts

Choose where to search for user authentication information,

Search: | Custom path [

Directory Domains

/LDAPvV3 fad.krypted.com
JLDAPV3 fwww.krypted.com

4+ Drag directory domains into your preferred order for searching.

Py

I™1 Click the lock to prevent further changes. (Apply)

Figure 2-21. The Directory Service search path

According to how you bound to an environment, you may not see a directory server that
you are bound to in the list of Directory Domains. If you do not see a server listed here,
click on the plus sign (+) and you should see it in the list of Available Directory Domains.
Click on the one you wish to add to your Search Policy, and then click on the Add
button so it will be added to the list of Directory Domains and can be reordered as you
see fit (see Figure 2-22).

Please select additions to the custom search policy from the
list of available directory domains below.

' Available Directory Domains

LDAPv3 fwww.krypted.com

{Local/Secondary

(Cancel) € Add)

Figure 2-22. Add a Directory Domain

As mentioned, you can perform all of the steps here from the command line. You will be
using dscl not dsconfigldap, which you used for most other tasks in this chapter. This is
because dsconfigldap is a command to specifically perform binding and manage certain
aspects of the LDAPV3 plug-in itself, whereas the search policy is global across all
directory services plug-ins.

You can also query and set search policy information from the command line. To see the
current setting for the search path run the following command:

dscl -q localhost -read /Search

To change the search policy from a local search policy to a custom search policy, you
would change the /Search dsAttrTypeStandard from LSPSearchPath (Local Search
Policy) to CSPSearchPath(Custom Search Policy). To do so use dscl in conjunction with
the -change option as follows:

sudo dscl /Search -change / SearchPolicy dsAttrTypeStandard:LSPSearchPath «
dsAttrTypeStandard:CSPSearchPath

To add a new item (such as the one just added in dsconfigldap) to the search policy you
would use dscl with the -append option, adding the path:

dscl /Search -append / CSPSearchPath /LDAPv3/seldon.foundation.com

NOTE: A final aspect of search policies is that they can be used to control which directory
server you query, the replica or the primary. Basically, you can bind to each and then use the
Search Policy to switch between the two, controlling saturation points in the process.

Binding with the Command Line

Most command-line operations with regard to LDAPv3 binding are handled via
dsconfigldap. The dsconfigidapcommand can bind, set security policies, and
configure basic settings. When using dsconfigldap it is worth noting that there are
several parameters and options. Parameters will be applied to the specific task you
are looking to perform and identify which server configuration to update.

To perform an unauthenticated static bind without a prompt for a username and
password (and therefore able to be added into a script) you are going to use three
parameters with dsconfigldap: -a to specify a server (in this context often referred to
as a configuration), -l to specify a local administrative account with permissions to
perform such a task, and -q which supplies the password for said account. In the
following example, these are set to seldon.foundation.com, admin, and daneel,
respectively:

dsconfigldap -a seldon.foundation.com -1 admin -q daneel

Alternatively, if you want to avoid passing passwords via stdin, and you are running from
an admin account, you can perform an unauthenticated static bind without passing local
credentials simply by running the tool as root:

sudo dsconfigldap -a seldon.foundation.com

While you previously used -a, -1 and -q, the following parameters are also available and
more common in trusted static bind environments:

B -n <configname>: configuration name for the server being added

B -c <computerid>. computer name to supply to the directory service
B -y <username>:. LDAP administrative account for the server specified
B -p <password>: password for account previously specified

B -r<servername>: remove a server configuration

The following options are available regardless of the type of bind operation you are
performing. These mostly include options for security and bind-time operations:

B -x only allow communication if SSL is used
-s: disable clear text passwords during authentication
-g. force packet signing using Kerberos

-rmr. block man-in-the-middle attacks using Kerberos.

-e: if a server is capable of a security mechanism, then enforce it at the
client as well and do so always

B -f force the addition or removal of a configuration
B -v process the command verbosely
B -/ run the command interactively, using passwords where needed

The following is an example of a command to perform a trusted static bind, using the
additional parameters and commands that you’ve learned so far:

dsconfigldap -x -m -g -s -a seldon.foundation.com -n "Inner Rim" -u diradmin -p «
hindsightis4sight diradminpass -1 admin -q daneel -c RD02100

You can also use dsconfigldap to unbind systems. Simply issue the dsconfigldap
command followed by a -r and then the server name. In the following, we’ll list the
LDAPV3 servers and then loop through the list removing them one-by-one:

for dsrm in $(dscl localhost -list /LDAPv3)
do

echo dsconfigldap -f -r "${dsxm}"
done

The preceding can be helpful if you are, for example, binding in an environment of pre-
existing machines.

Scripting Binding

Throughout this chapter, you have provided a number of commands to
programmatically bind to an Open Directory and/or LDAP environment. Now, we’re
going to put these into order to form a script that is capable of removing existing
LDAPV3 servers and then perform a custom bind operation against the LDAPv3
environment, setting a computer name and then editing the search policy to include
the newly bound directory service. You will be using the same domain name,
username and password that you’ve been using throughout this chapter, as shown in
the following:

#!/bin/bash
for dsrm in $(dscl localhost -list /LDAPv3)
do
dsconfigldap -f -r "${dsrm}"
done
dsconfigldap -x -m -g -s -a seldon.krypted.com -n "Inner Rim" -u diradmin -p «
hindsightis4sight -1 admin -q daneel -c RD02100
dscl /Search -change / SearchPolicy dsAttrTypeStandard:LSPSearchPath «
dsAttrTypeStandard:CSPSearchPath
dscl /Search -append / CSPSearchPath /LDAPv3/seldon.krypted.com

Most scripts that you use will be similar to what you are using in the preceding code.

NIS

Network Information Service (NIS) was one of Sun’s earlier attempts at providing
directory services to clients. This isn’t to say that all features of NIS are still supported,
but basic support is there. Because Mac OS X maintains support for NIS and has a
directory services plug-in dedicated to it, you can use Directory Utility to configure Mac
OS X as a NIS client. If you need NIS, you know what it is. If you don’t, then you will
likely want to forget you mentioned it. If you need to set it up though, let’s take a look at
how to do it.

To set up your NIS client, open Directory Utility and click on the lock to authenticate (so
you can make changes). Then click on the Services icon in the Directory Utility toolbar
and check the box for BSD Flat File and NIS (checked by default in 10.6), as shown in
Figure 2-23.

aa0 Directory Utility

a4
Search Policy
Select a service and click the pencil icon to edit settings.

Enable Name Version

@ Active Directory 6.0

E4 BSD Flat File and NIS 6.0

™ LDAPY3 6.0

v Local 6.0
rd
n
| Click the lock to prevent further changes. @ Apply

Figure 2-23. Enabling NIS in Directory Utility

Next, double-click BSD Flat File and NIS row. At the resulting screen shown in

Figure 2-24, check the box for Use User and Group records in BSD local node to
activate the plug-in. Next, enter the domain name of your NIS environment in the
Domain name: field and the IP address or hostname for your NIS servers in the Servers:
field. Because of the differences between NIS and LDAPvV3, you will need to check the
Use NIS domain for authentication checkbox in order to populate the information for
your NIS environment into the search policy of your node. When you are satisfied with
your results, click on OK and then use dscl to test NIS functionality.

@ Use User and Croup records in BSD local node

Enabling use of user and group records in the BSD local node will allow
the authentication search policy access to those records.

NIS Server Configuration

Domain name: NIS.krypted.com

Servers: 192.168.210.201

Add NIS server name(s) or IP address(es) for
better security. You must use IP address(es) if
DNS is not available on your network.

W Use NIS domain for authentication

Enabling use for authentication will add the directory demain
“/BSD/<domain name>" to the authentication search policy.

f_ Cancel ﬁ‘ (oK

Figure 2-24. Adding an NIS Server Configuration

As you can imagine, there are commands you can use to manage NIS as well. These
can be found in the /usr/sbin directory of your server and include the following:

B ypbind: perform binding operations

ypxfr: obtains the map for a client from a directory server
yppoll: query data from a directory server’s map

ypset: sets which directory server to use

ypwhich: show hostname of yp server

ypcat: show all of the available values in a NIS database

ypmatch: show the value of a specified key in the NIS database

NIS was originally named Yellow Pages, which is why each command is prepended with the yp

character set.

Mac OS X can act as a NIS server, although given the age you assume that you are
either using NIS already or will not be implementing it. If you use NIS, you will want to
manage the ypserv daemon, found in /usr/libexec. For more information on NIS, see the
yp man page using the following command:

man yp

Kerberos

Kerberos is the preferred method for pretty much every directory service on the market
to supplement LDAPV3, supplying enhanced password features, single sign-on, or both.
Mac OS X is no different and the Kerberos client plays well either in its own Open
Directory environments or in environments managed by other solutions. Mac OS X
actually has a Kerberos Key Distribution Center (KDC) built into every single computer,
used for securing peer-to-peer communications.

Managing Kerberos on a Mac OS X computer is mostly handled for you. There is very
little to do in most environments. When you log into the first Kerberised service, be it an
initial authentication into a Mac OS X client or via AFP to a SharePoint, at that initial
authentication screen you will be authenticating into a Kerberos realm and will then not
have to enter a password to access other services that are trusted by the realm. Beyond
the basic realm configuration, most of the tools for Kerberos are often used for mass
deployment of settings, manual configuration when those settings don’t work correctly,
and post deployment troubleshooting.

To control Kerberos using the GUI, you will use the Kerberos.app utility, which
shipped with 10.5. Unfortunately, the Kerberos Ticket Viewer application was
replaced in Snow Leopard with the “Ticket Viewer” Application, which is far more
limited. The two can be seen side by side in Figure 2-25. Each respective utility is
accessed through the Keychain Access menu of Keychain Access (which is located
at /Applications/Utilities). You can also access each directly in the /System/
Library/CoreServices/ directory. The 10.6 Ticket Viewer Application does not have
any functionality to modify REALM configuration, and all edits must be made by
hand, as discussed later in this section. Alternatively, you can copy the utility from a
10.5 install, and it will run in 10.6.

Once Kerberos.app has been opened, you can use it to browse the tickets (remember
from Chapter 1 that a ticket is provided by the KDC based on the Ticket Granting
Ticket). Using the toolbar, you can establish a connection to a new realm, renew tickets,
Destroy tickets, get more information on tickets, and change the password associated
with a ticket. In regard to per-user Kerberos ticket management, the Kerberos Ticket
Viewer offers a one-stop shop.

76 CHAPTER 2: Directory Services Clients

hunterbj@LBC

erbj@!
IEIKS QLG ¢ Ticket expires on 09/14/09 06:38 AM

Tickats Time

krbtgt/LBC@LBC 09:43
krb5_ccache_conf data/apple-sso@X-CACHECONF: Expired
host/hax.Ibc@LBC 09:43

Figure 2-25. 70.5°s Kerberos.app (left), 10.6’s Ticket Viewer.app (right)

In order to join a realm, click on the New button in the toolbar. As you can see in

Figure 2-26, you’ll now be prompted for an account name, a realm name, and a
password. If the realm information is cached or has been supplied via DNS, then you will
be able to select the realm from the Realm: drop-down menu.

Please type your Kerberos password

Name: [cedge ‘

Realm: KRYPTED.COM !

Passml'd: dEddEadsddBaddadsdaana

' Remember this password in my keychain

| B~ | (cancel) € oK)

Figure 2-26. Authenticate to receive a Kerberos Ticket

Kerberos.app and Ticket Viewer are fairly limited in what they can do. There is no
interface for managing service principles and each option has very few parameters,
whereas with the command line there are a plethora of options and parameters. For
example, to list the tickets the current user has cached, you can use the klist
command:

[helyx:~] hunterbj% klist

Kerberos 5 ticket cache: 'API:Initial default ccache'
Default principal: hunterbj@LBC

ValidStarting Expires Service Principal
08/19/09 20:27:51 08/20/09 06:27:51 krbtgt/LBCALBC

renew until 08/26/09 20:27:51
08/19/09 20:27:54 08/20/09 06:27:51 host/hax.1lbc@LBC

renew until 08/26/09 20:27:51
08/19/09 20:28:23 08/20/09 06:27:51 vnc/mira.lbc@LBC

renew until 08/26/09 20:27:51
As seen, the klist output is pretty basic and easy to read. You can see what | have
by Ticket Granting ticket through the presence of the krbtgt/LBC@LBC service
principal. You can also see that | have a host principal (used for ssh) and a vnc
principal (used by OS X Screen Sharing).The klist command also has a variety of

options as follows:

B -5:only display Kerberos 5-based tickets
-4: only display Kerberos 4-based tickets
-a: show a list of addresses
-A: list all of the available tickets
-c: show cached tickets

-e: also display the encryption type of the session key

-f: also list any flags for tickets, like -F for forwardable, -f for
forwarded, -1 for invalid, etc.)

-k: list keys in the keytab file
-K: show encryption keys from the keytab file
-t: include timestamps in the output

-n: show IP addresses

-s: run silently, useful for a sanity check in a script to verify that the
ticket cache is actually present

The kinit command can be used to initiate authentication into a realm, thereby
generating and caching a ticket-granting ticket. In its most basic form, kinit can be
called with no arguments, and will by default try to obtain a TGT for your current user

in the machines default realm, as configured in the client’s edu.mit.kerberos file.
Alternatively, you can specify a specific username and realm to authenticate as:

[helyx:~] hunterbj% kinit -V hunterbj
Please enter the password for hunterbj@LBC:
Authenticated via Kerberos v5. Placing tickets in cache 'API:Initial default ccache'
[helyx:~] hunterbj% klist
Kerberos 5 ticket cache: 'API:Initial default ccache'
Default principal: hunterbj@LBC

Valid Starting Expires Service Principal
08/19/09 22:01:29 08/20/09 08:01:29 krbtgt/LBCALBC
renew until 08/26/09 22:01:28

Additional options for the kinit command include the following:
B -V:verbose output

-I: define the lifetime of the ticket when obtaining it

-r: define how long a ticket is renewable

-s: include a start time (and therefore caches a postdated ticket)

-f : use forwardable tickets

-F: do not use forwardable tickets

-p: use proxiable tickets

-P: do not use proxiable tickets

-a: request a ticket with the host’s address

-A: request ticket without a defined address

-v: validate a ticket in the keytab against the KDC

-R: renew a ticket

-k: obtain a key from a key in the local keytab file (cache) rather than
from a live server

B -S:include the service name to use when obtaining ticket-granting tickets

The kdestroy command is fairly straightforward, with far fewer options than kinit—but
then it has a specific task to delete tickets. The options are primarily in regard to defining
which tickets to delete:

B -aor -A: destroy all tickets

B -c: name of cache to delete

B -p: name of principal to delete
[

-g: run quietly (without feedback to the command line)

[vww allitebooks.cond

http://www.allitebooks.org

There are two other commands worth noting: kpasswd and kswitch. The kpasswd
command can be used to change a principal’s password. The kpasswd command prompts
you for both your old and your new password. This can be useful, for example, if you are
using an Active Directory environment or troubleshooting why users are unable to reset
their own passwords. The kswitch command sets the cache for the default system.

There are also a number of files used to track various Kerberos statuses, caches, and
settings. For example, the /Library/Preferences/DirectoryService/
DSLDAPv3PIugIinConfig.plist property list file maintains a list of all of the service
principles created when a user of the host authenticates into a realm.

The keytab file is perhaps the most critical file on an operating system to secure.
Kerberos uses a keytab file to store pairs of Kerberos principals and their corresponding
DES keys. In Mac OS X, the keytabfile is called krb5.keytab and is stored in the /etc
directory. Much of the information in the keytab is barely readable to human eyes, much
less editable. Therefore, much of the heavy lifting for the keytab will be handled using
the kadmin and kadmin.local commands, and in some cases the ktutil command. The
former two commands have the same options and features, with the one exception
being that kadmin.local is meant to manage Kerberos on a KDC while kadmin is meant
to manage Kerberos on all other hosts. The kadmin command supports in regard to
utilized ciphers, password restrictions, ticket life, etc. For some example usage of the
tool, see the “Troubleshooting Kerberised Services” section.

Earlier, it was mentioned that Mac OS X client acts as a KDC (it’s actually an LKDC, to
be more specific). The /etc/krb5.conf file can be used to show available realms. For the
available realms, the krb5.conf file will show the supported encryption types of each
realm along with the configuration options, mappings, rules, and location. An example of
the krb5.conf file is shown in the following code:

[1ibdefaults]
default_realm = KRYPTED.COM
default_tgs_enctypes = RC4-HMAC DES-CBC-MD5 DES-CBC-CRC
default_tkt_enctypes = RC4-HMAC DES-CBC-MD5 DES-CBC-CRC
preferred_enctypes = RC4-HMAC DES-CBC-MD5 DES-CBC-CRC
dns_lookup _kdc = true

[realms]
KRYPTED.COM = {
auth_to_local
auth_to_local

RULE:[1:$0\$1] (~KRYPTED\.COM\\.*)s/~KRYPTED\.COM/KRYPTED/
DEFAULT

}
[appdefaults]
pam = {
mappings = KRYPTED\\(.*) $1@KRYPTED.COM
forwardable = true
validate = true

}

httpd = {

mappings = KRYPTED\\(.*) $1@KRYPTED.COM
reverse_mappings = (.*)@KRYPTED\.COM KRYPTED\$1

The preceding file is split into three sections: [libdefaults], [realms], and [appdefaults],
which respectively controls Kerberos behavior, information for a given realm, and
settings per service. It is more than likely that you will not need to edit the kerb5.conf file
with the exception of potentially disabling DNS utilization with Kerberos, which can help
to reduce login times for domains using the .local namespace. This can be done by
adding the following line into the [libdefaults] section of the configuration file:

dns_fallback = no

An OS X client utilizes a krb5.conf file, but stores it at the location: /Library/Preferences/
edu.mit.Kerberos. In this file, you will also find the [realms] and [libdefaults] sections, but
you will also find the [domain_realm] section, which deals with normalization and
definitions of realms. The contents of a typical file are listed here:

[domain_realm]
krypted.com = KRYPTED.COM

[libdefaults]
default_keytab_name = /etc/opt/quest/vas/host.keytab
default_realm = KRYPTED.COM
default_tkt_enctypes = arcfour-hmac-md5 des-cbc-md5
dns_fallback = yes
dns_lookup_kdc = yes
forwardable = true

[realms]
KRYPTED.COM = {
admin_server = seldon.krypted.com
kdc = server.seldon.com:88
kpasswd_server = seldon.krypted.com:464

}

In the preceding, you will see another dns_fallback. If you first initiated a connection
to the default_realm following setting the dns_fallback in krb5.conf, which |
mentioned when discussing the krb5.conf file, this setting will be set to no;
otherwise it will be set to yes, and will need to be changed if you want to disable
reverse dnsenumeration. Again, only be concerned about the dns_fallback if you are
seeing connectivity errors and think they are related to DNS issues (you cannot
perform both a forward and reverse lookup on a realm’s KDC or you are using a
.local domain namespace).

You should also notice the kpasswd_server entry in the edu.mit.kerberos file, which
defines what password to perform a reset against in the event of a failure. In large
environments with services distributed across a number of hosts, you may find stale
information here, which can also cause password change events to fail. If you do find
yourself heeding to make changes to this file, and the file was generated by a directory

binding, know that your changes will be overridden. To prevent this, you will need to
delete the lines containing the text:

autogenerated from : /LDAPv3/myserver.com
generation_id : 419733404

Any time you change information in your Kerberos files, you’ll need to restart the
Kerberos services. The Kerberos services that run on a Mac OS X client include
[] edu.mit.Kerberos.KerberosApp, edu.mit.Kerberos.KerberosAgent,
edu.mit.Kerberos.CCacheServer, and com.apple.KerberosHelper.LKDCHelper.

Each of the preceding services can be controlled using launchctl. For example, if you
run the launchctl command followed by the list option, you should see the following line
included somewhere in the output:

- 0 edu.mit.Kerberos.CCacheServer

In order to then stop the CCache Server, you could use the launchctl command with
the stop option, followed by the name of the launchd item you would like to stop. In the
case of CCache Server, it would be the following:

Launchctl -stop edu.mit.Kerberos.CCacheServer

Kerberising Services

After binding a client or server to a domain and joining it to a Kerberos Realm, it may
be desirable to Kerberise the services that the node provides. That is to say you will
configure the service in such a way that your OS X boxes will provide single-sign-on
access to users with valid Ticket Granting Tickets (TGTs). The process to integrate your
OS X server with your current SSO environment will vary based upon the Kerberos
implementation that your company provides. For instance, in Open Directory
environments, Apple provides several nifty tools which do much of the legwork for you:
sso_util and krbservicesetup. For Active Directory, the dsconfigad tool can do all of
the legwork as well. For other implementations, it may very well be possible to utilize
some of Apple’s tools. However, it might also be necessary to roll your own. In any
scenario, it is necessary to have a proper edu.mit.kerberos file, as discussed in the
previous section. During the Active Directory and Open Directory binding process, the
Kerberos information in this file will be automatically generated for you. Until you can
verify that you can obtain a ticket using kinit, or the Kerberos Ticket Viewer app, you
don’t want to mess around with Kerberising your services.

The easiest Directory Service SSO implementations to integrate are Apple’s Open
Directory and Microsoft’s Active Directory. Neither are terribly difficult to pull off, but
from the command line, the Active Directory tool is the most simplistic. You can use the

Server Admin utility to Kerberise services for a server by selecting the Open Directory
Service and selecting the General tab. If the server is bound to a Directory and detects
Kerberos, you will be presented with the ability to join a server to a Kerberos REALM, as
seen in Figure 2-27. Click on the Join Kerberos button to generate service principals for
all supported services, and then modify their configurations to utilize the new principals
for authentication.

i W s Wi Server Admin: snowcat.local: Open Directory

SERVERS S,
o 3 |ig#
58 Available Servers (0) —

A choweat.local Owzrview Llogs Archive | Settings
) AFF

[General | LDAP Policies |

3 hax.lbc
N ‘ N . S TE—
Role: Connected to znother directory [Change...)

The server gets its asthentication and contact databases from a directory
system hosted on another server or servers. Sett ngs affecting directory
usage are configured with the Directory Utility application.

[Open Directory Utility...

Your server is a cliert of a directory system that nosts Kerberos service, but
YOUF SEFVEr IS Not currently using Kerberos. If the Keroeros administrator has
dzlegzted Kerberos join authority to you or another user on your server, you
can jon the Kerberos server as a cient.

Join Kerberos...

(=] [¢]

Figure 2-27. Kerberising services using Server Admin

To integrate with AD from the command line, once your OS X server has been bound
you simply call dsconfigad with a single flag, -enableSSO:

sudo dsconfigad -enableSSO

For more information on Active Directory, see Chapter 3.

To integrate an OS X box with Open Directory from the command line, you can utilize
the sso_util binary. This utility has a wide variety of uses, but first and foremost, it can
be used to generate the appropriate service principals from the Kerberos Realm’s KDC,
place them in the node’s local keytab, and even configure the node’s services to use
them. The syntax is rather basic as well and is as follows:

sudo sso_util configure -r REALM -a admin_name [-p password] service

We just feed it our REALM, a kerberos administrator’s credentials, and we specify a
service which will be generated. You can specify one or more of the following services
afp, ftp, http, imap, pop, smtp, ssh, fcsvr, vnc, cifs, or all. When ran, the command will
pretty much take care of everything for us. For example, to fully kerberise an OS X
laptop to the Open Directory domain myco.com, the following syntax would be used:

sudo sso_util configure -r MYCO.COM -a diradmin all

With this syntax, you will be prompted to provide your password via secure text entry,
which is preferable to potentially leaving your password in your shells history, or expose
your password via ps. Alternatively, you can pass the password via the environmental
variable $SS0_PASSWD_PATH.

NOTE: To clear your shell’s history in either the bash or tcsh shells, use the command
history -c.

The sso_util binary has some other uses for larger OD environments as well. For
example, it has the ability for a KDC administrator to generate Kerberose principals for a
specific host, at which point a lesser privileged administrator can Kerberise the services
on the host side. The process starts with the KDC admin first generating the record. In
this case, we will be generating a record for host mail.myco.com in our OD domain
myco.com:

sudo sso_util generateconfig -r MYCO.COM -R mail.myco.com -f /LDAPv3/odserver.myco.com
-U thatotheradmin -a diradmin all

The previous command will attach a secure record configuration to the computer LDAP
object mail.myco.com found in the LDAP database at server odsrever.myco.com. This
computer object will be found at the path /Computers/mail.myco.com. The LDAP dn for this
in an OD environment is cn=mail.myco.com,cn=computers,dc=myco,dc=com. The secure
record configuration is an encrypted data object stored in the computer’s configData
LDAP attribute. The data stored in this attribute is an encrypted string which contains

the Kerberos host and service principals for the desired host. Because the service
principals are very sensitive, it is recommended that you delete this entry after you have
successfully kerberized a host using either Server Admin or the command that follows.

In the previous sso_util command, we specify the user that otheradmin as a delegate
admin. That user can now run the sso_util command from the new server, and
complete the Kerberisation process:

sudo sso_util useconfig -R mail.myco.com -f /LDAPv3/odserver.myco.com -a thatotheradmin

While the main pages of sso_util specify that the tool is specifically for Open Directory,
it’s most basic functions provided by the configure option will likely work with most
vanilla Kerberos5 implementations. Even if you don’t have Open Directory, this tool may
still be able to automate pretty much all of the principal generation for you.

If the sso_util command doesn’t work in your environment, Apple provides a lower level
tool, krbservicesetup, which might work for your needs. The krbservicesetup command
is actually called by sso_util and has a few downsides, but it is worth mentioning. The
krbservicesetup tool can be used to configure a single service at a time, and handles
Kerberos principal generation via kadmin and local service configuration. Secondly, you
must specify the password as part of the command. For example, to generate a service
principal for the imap service on mail.myco.com, | would use the following command:

sudo krbservicesetup -r MYCO.COM -a diradmin -p password imap
imap/mail.myco.com@MYCO.COM

Troubleshooting Kerberised Services

If you’ve gone through the previous section about setting up Kerberised services, and
for whatever reason the previous tools do not accomplish the task, then you are not
completely out of luck. However you may need to go through the grueling process of
principal creation and service configuration. On top of this, each service has a different
method for configuration, so it becomes a bit of a black art.

The first step in troubleshooting any kerberos error is to verify that your client and
server’s clocks are in sync. Kerberos is notorious for this, and it only allows for a skew of
five minutes. Anything beyond this and the whole system breaks down. Next, ensure
that the problem is truly server oriented and verify from multiple clients that Kerberised
services are not being provided.

With that out of the way, it’s time to troubleshoot the server. Consider for a moment that
I am configuring my imap service to provide single sign-on. From your server, first
ensure that the service has a respective service principal in the server’s local keytab. To
do this, use the klist command with the flags -kt, ran with root privileges via sudo:

%sudo klist -kte

Keytab name: FILE:/etc/krb5.keytab

KVNO Timestamp Principal

9 08/19/09 21:15:56 imap/mail.myco.com@MYCO.COM (Triple DES cbc mode with HMAC/sha1)
9 08/19/09 21:15:56 imap/mail.myco.com@MYCO.COM (ArcFour with HMAC/md5) 3 08/19/09
9 08/19/09 21:15:56 imap/mail.myco.com@MYCO.COM (DES cbc mode with CRC-32)

9 08/19/09 21:15:56 vnc/mail.myco.com@MYCO.COM (Triple DES cbc mode with HMAC/shail)

9 08/19/09 21:15:56 vnc/mail.myco.com@MYCO.COM (ArcFour with HMAC/md5) 3 08/19/09

9 08/19/09 21:15:56 vnc/mail.myco.com@MYCO.COM (DES cbc mode with CRC-32)

(output clipped)

Looking at this output, | can see that my local keytab (/etc/krb5.keytab) does indeed
contain the imap service principal, three in fact. This illustrates the default nature of
Open Directory’s KDC behavior, it generates three principles for each service, encrypted

via des, 3des, and md>, respectively. By supporting all three encryption algorithms, the
service can provide maximum compatibility.

If the necessary Kerberos principals for your service don’t exist, and sso_util isn’t doing
its job and creating them for you, then you can create your own principles. Principal
generation is done via the kadmin or kadmin.local utility. The exact procedure may vary
based upon your Kerberos toolset, but the following should work with most MIT based
KDC’s. First, we connect to our KDC via kadmin, preferably from our new mail server:

$ sudo kadmin -r MYCO.COM -p diradmin
Authenticating as principal diradmin with password.
Password for diradmin@MYCO.COM:

kadmin:

Next, we can run the listprincs command to see if our service principal already exists
in the kdc:

>kadmin: listprincs

(output cut)

host/mail.myco.com@MYCO.COM

ldap/mail.myco.com@MYCO.COM

vnc/mail.myco.com@YCO.COM
(output cut)

We've cut the output of this command for brevity, but in large environments that
command can return a long list of data. Alternatively, we can use the getprinc command
to specifically query the principal we are interested in:

>kadmin: getprinc imap/mail.myco.com@MYCO.COM
Principal: imap/mail.myco.com@MYCO.COM

Expiration date: [never]

Last password change: Wed Aug 19 21:15:56 PDT 2009
Password expiration date: [none]

Maximum ticket life: 0 days 10:00:00

Maximum renewable life: 7 days 00:00:00

Last modified: Wed Aug 19 21:15:56 PDT 2009 (diradmin@MYCO.COM)
Last successful authentication: [never]

Last failed authentication: [never]

Failed password attempts: 0

Number of keys: 3

Key: vno 9, Triple DES cbc mode with HMAC/shai, no salt
Key: vno 9, ArcFour with HMAC/md5, no salt

Key: vno 9, DES cbc mode with CRC-32, no salt

Here we can see the principal does exist, and at the bottom, we can even see the three
different encryption keys used by that principal. If this principal didn’t yet exist, we could
create it using kadmin’s addprinc command. We specify the —randkey option to
generate a random password for the principal:

>kadmin: addprinc -randkey imap/mail.myco.com
Principal "imap/mail.myco.com@MYCO.COM" created.

With the service principal created on the KDC, we now need to copy it to our local
machines keytab file. If we ran kadmin from the local machine, this is very easy to do by
using the ktadd and specifying our local keytab file at /etc/krbs.keytab:

>kadmin: ktadd -k /etc/krb5.keytab imap/mail.myco.com

Entry for principal imap/mail.myco.com with kvno 3, encryption type Triple DES cbc mode
with HMAC/shal added to keytab WRFILE:/etc/krb5.keytab.

Entry for principal imap/mail.myco.com with kvno 3, encryption type ArcFour with
HMAC/md5 added to keytab WRFILE:/etc/krbs5.keytab.

Entry for principal imap/mail.myco.com with kvno 3, encryption type DES cbc mode with
CRC-32 added to keytab WRFILE:/etc/krbs5.keytab.

We can now run klist -kt as root on our machine and we should see the new
principals listed in our local keytab file. If we ran kadmin from a different machine, we will
need to write the principals to an arbitrary file, and transfer it to the server. Be careful
with this methodology though, as if the keytab file is compromised, it can be used to
hack into your server. If you find yourself needing to do this, run the ktadd command,
but specify a different file to export to, say /Users/admin/mail.myco.com.keytab. From
here, you will need to copy the file to the server, for simplicities sake we’ll say you
placed the file in the same path. From the new server, we will use the ktutil command
to add this keytab to our existing krb5.keytab file. ktutil is not the friendliest of
commands, but the basic operations are easy enough. First, fire up the utility, and read
in our new keytab file with the rkt option:

$sudo ktutil
ktutil: rkt /Users/admin/mail.myco.com.keytab

Next, we’ll read in our existing keytab file at /etc/krb5.keytab:
ktutil: rkt /etc/krb5.keytab

We now have loaded both our existing principals and our new principals into memory. The
next step is to write out all of the loaded principals to our local file via the wkt option:

ktutil: wkt /etc/krbs.keytab2
ktutil: quit
We have now written our keytabs to a new file /etc/krb5.keytab2. At this point we need

to make it our active keytab file:
mv /etc/krb5.keytab2 /etc/krbs.keytab

We have now merged the two keytab’s entries, and you can now delete the transfer
mail.mycoc.com.keytab file.

Once the service principals exist both on the KDC and in the server/client’s local

keytab file, the pieces are in place for a successful SSO setup, and all that is left is the
configuration of individual service(s). The unfortunate reality of the situation is that each
service is a little bit different in this respect. Some services, such as vnc and ssh, simply
search for the principal appropriate for the connection hostname. For instance,

from my client if | connect via ssh to mail.myco.com, it will search for the principal
host/mail.myco.com@MYCO.COM. However, if | ssh to the same box via its bonjour
address, mail.local, it will search for the principal host/mail.local@MYCO.COM, which will
typically not exist. VNC works in a similar manner.

The AFP service utilizes a specific principle specified via its preference file found at
/Library/Preferences/com.apple.AppleFileServer.plist. There are two specific keys that
the AFP server uses for SSO: kerberosPrincipal and authenticationMode. The first
attribute is simply the string text of the principal, afpserver/mail.myco.com@YCO.COM.
The second attribute defines the types of authentication. This attribute will contain one
of three values: standard_and_kerberos, standard, or kerberos. The three values are
fairly self explanatory. We recommend the first of the three, standard and_kerberos. In
this configuration, the AFP server will default to Kerberos, and if that fails for whatever
reason, will revert to its standard authentication method: Diffie-Hellman Exchange (DHX).

The latter option can be configured for the AFP Service by using the Server Admin utility,
as shown in Figure 2-28. Noticably absent from that picture is a field to define the
Kerberose principle. To set that, you can use the defaults command to modify the
service’s plist, and then restart the service to read in the new setting (active transfers will
be interrupted):

sudo defaults write /Library/Preferences/com.apple.AppleFileServer kerberosPrincipal
"afpserver/mail.myco.com@MYCO.COM'
sudo killall AppleFileServer

00O Server Admin: snowcat.local: AFP

SERVERS R $= 1
O 4 © @@
&5 Available Servers (0) | O [

gsnowcat.local Overview Logs Craphs Connections Share Points | Settings

e ———— | General = Access Logging Idle Users |
S osbe — I
an "J:" e Standard
& 1ax.Ibc
Authentication: Kerberos
v Any Method

[Enable Guest access e
lz Enable administrator to masquerade as any registered user
Maximum Connections:

Client Connections: (®) Unlimited () 1000
(Including Guests)

Guest Connections: Unlimited 1000

Ej @ @ Stop AFP Revert Save P

R

Figure 2-28. Setting AFP Authentication methods in Server Admin

Numerous other services have similar authentication selections to that shown in
Figure 2-28: FTP, iCal, iChat, Web, and Xgrid. For each of these services, Kerberos
authentication is enabled by default.

The mail service, like the ssh service, utilizes gssapi based authentication, which
provides a more standardized interface over the Kerberos API for authentication
services, but commonly utilizes Kerberos as it’s actual authentication mechanism.

The easiest way to enable Kerberos for mail services is via the Server Admin application.
As shown in Figure 2-29, Kerberos authentication can be enabled individually for each
protocol, SMTP, IMAP, and POP. Once again, it is recommended that you enable a non-
Kerberos fallback authentication, unless security policies require it.

eleNé) Server Admin: snowcat.local: Mail
SERVERS T S
_ w @ U g
&8 Available Servers (0) «
g e eaniieenl Overview Logs Connections Maintenance | Settings
& AFP [= 1= z = |
General Relay Filters Quotas Mailing Lists = Logging | Advanced

1 Open Directory

{ Security Hosting Data Store Clustering

g hax.|bc
Authentication
SMTP: IMAP [POP:
El Kerberos El Kerberos
| CRAM-MD5 | CRAM-MD5
[APOP (POP only)
I Login [l Login
_IPLAIN _IPLAIN
Clear
Secure Sockets Layer (S51)
SMTP SSL: | Use o] [£] snowcat.lbc :]
IMAP and POP SSL: | Use] | £ snowcat.lbc H

Figure 2-29. Setting Mail Authentication methods in Server Admin

After ensuring that your service is properly setup to use Kerberos, and the principals
exist in the KDC and the local keytab, you should have a functional SSO-friendly
service. If this still is not the case, then you’ll have to resort to the logging facilities
provided by each service. Keep in mind that the number one killer of Kerberos is its
heavy reliance on synchronized clocks, so always check that your client and server’s
clocks are in sync.

Directory Services Preferences

Throughout this chapter we have focused on binding to LDAPv3 and therefore to some
degree, LDAP. However, there are a number of settings for the directory services
environment that we have not covered. As you can imagine, there are a number of
preferences available for the directory services client framework, all of which can be
assigned through the command line (and therefore from a script). You can also set a
system as you would like the directory services preferences to be, and then deploy the
actual plistfiles that make up many of these preferences.

In the /Library/Preferences/DirectoryService directory, you will find the following files:

B ActiveDirectory.plist. contains Active Directory Binding data including
mappings, security levels, and computer credentials (discussed further
in Chapter 3).

B ActiveDirectoryDomainCache.plist. Cache data related to bound
Active Directory domains (discussed further in Chapter 3).

B ActiveDirectoryDomainPolicies.plist. Contains password policy data
pertinent to bound Active Directory domains (discussed further in
Chapter 3).

B ActiveDirectoryDynamicData.plist. Contains Active Directory Domain
information, including available Domain Controllers (discussed further
in Chapter 3).

B ContactsNodeConfig.plist. can be used do add Directory Domains to
the contacts search policy (using Search Node Custom Path Array),
show/reset DHCP LDAP information (DHCP LDAP), and configure the
search policy by setting the Search Policy key to 1, 2, or 3 for
Automatic, Local, or Custom respectively.

B ContactsNodeConfigBackup.plist. backup of the
ContactsNodeConfig.plist.

B DirectoryService.plist. described in the preceding “Plug-ins” section,
and can be used to enable and disable directory services plug-ins.

B DirectoryServiceDebug.plist. allows you to enable directory services
debugging using the “Debug Logging” key, set the levels of verbosity
for the debug log using the “Debug Logging Priority Level” key, and
enable NetInfo (although Netinfo might not be too useful without nicl).

B DSLDAPV3PIluginConfig.plist. can be used to read, edit, and add
server configurations and the timeout settings applied in the Custom
LDAP Settings section of this chapter. Also maintains a key for
“Service Principals to Create,” defining which Kerberos service
principles to create at bind time.

B DSRecordTypeRestrictions.plist. shows versioning information (not
otherwise useful).

B PasswordServerPluginPrefs.plist. can be used to set or change the
priority of encryption mechanisms.

B SearchNodeConfig.plist. can be used do add Directory Domains to
the authentication search policy (using “Search Node Custom Path
Array”), show/reset “DHCP LDAP” information (DHCP LDAP), and
configure the search policy by setting the Search Policy key to 1, 2, or
3 for Automatic, Local, or Custom, respectively.

B SearchNodeConfigBackup.plist. backup of the
SearchNodeConfig.plist.

Each of the keys in the previous files can be changed using the defaults command.
While we’ve so far covered making settings change to actual files dedicated to the
directory services property lists, there are also hooks into other services, such as the
login window of Mac OS X. For example, the following command will edit the
com.apple.loginwindow.plist file, setting the login window to display the status of the
directory services daemon:

defaults write /Library/Preferences/com.apple.loginwindow AdminHostInfo DSStatus

Summary

In this chapter, we provide both a high- and low-level integration of OS X into several
Directory Service systems such as Open Directory, NIS, and third-party LDAP
implementations. We also covered integrating client and servers with Kerberos systems
to function in an existing single sign-on environment.

In the next chapter, we will further explore directory services integration, with a specific
focus on integrating OS X systems with Microsoft’s Active Directory system.

Chapter

Active Directory

Active Directory is a Directory Services solution developed by Microsoft. It is built using
certain proprietary technologies, which only (currently) runs on the Microsoft Windows
Server platform. Samba may soon turn out to be worthy of running in production as a
Windows Active Directory replacement. While many of the back end components of
Active Directory are designed for the windows client platform, Microsoft based much of
the structure of Active Directory on open standards, such as the LDAP format known as
RFC 2307 and the Kerberos v5 protocol defined in RFC 1510. Active Directory can be
used to seamlessly integrate Windows systems en masse, but the real advantage of
blending these technologies and open standards is that foreign operating systems can
then be integrated with Active Directory as well.

Integrating Mac OS X and Mac OS X Server with Active Directory is very similar to
integrating with the native directory services that a Mac OS X Server’s Open Directory
service can provide. The reason for this is Active Directory supports gaining access to
information within its Jet Database by using the Light Weight Directory Access Protocol
(LDAP). When thinking about directory services, it is sometimes best thought of as a
large delimited document, such as something you would create in a spreadsheet
program like Microsoft Excel. When a client attempts to use a directory for
authentication and authorization it looks up an object such as a user account via the
LDAP protocol much like searching for a field in a spreadsheet. This lookup entails
finding the field in the directory that matches the requested information. For example,
when a user types his or her username this information is stored as a key value pair in
Active Directory.

If user zsmith logs in, then an LDAP query is started that attempts to find a user in

the directory with that value. Once the user is found, the resultant set of keys that

make up their user account can be accessed. For example, zsmith may have a home
directory that is stored on a network server. This path name will be stored as a key
(homeDirectory) in the Active Directory database. Apple has two default plug-ins for
communicating with LDAP servers, the LDAPv3 plug-in and the Active Directory plug-in.
These two plug-ins are very similar in terms of the back end communication they use.
However, Apple developed the Active Directory plug-in to supplement missing LDAP
attributes that are not normally available in a standard Active Directory Schema. The best
example of this is the uidNumber attribute. This attribute is normally used to contain the

91

numerical value associated with an account. On a native Open Directory Server, this value
is mapped from the server’s uidNumber attribute to the local clients UniquelD attribute.
Without a UniquelD, users are not able to login, this is because of Mac OS X’s UNUI
underpinnings which require a UniquelD to track ownership on the file system.

If you use the LDAPvV3 plug-in to authenticate to Active Directory (which is possible to
do, though rarely implemented), the default RFC 2307 mappings would map a server
attribute called uidNumber to a local plug-in mapping called UniquelD. When a user
attempted to login they would then query the server attribute uidNumber, and because it
was unavailable but required for login, they would be unable to authenticate to the login
window. Apple saw this scenario and mitigated it in the design of the Active Directory
plug-in. When a user logs into a workstation that is bound to Active Directory, the plug-
in itself generates a numerical value based on other information in the native directory
and maps it to the UniquelD attribute. You can think of this as a mask in front of the
Active Directory server to make it seem more like a native Open Directory server.

Additionally, the Apple Active Directory plug-in will not only mask missing attributes but
will also convert attributes that are in the wrong format for Mac OS X to being in the
correct format. Go back to our example of a home directory that was hosted on a
network volume. In Active Directory this network path is stored using Universal Naming
Convention (UNC) or \\server\share. Despite its “universal” name, this format is not
supported for connecting to URIs in Mac OS X. If you wanted to connect to
\\server\share using the built in file-sharing clients, you would format the URI as
smb://server/share. This simple format difference would mean the difference of being
able to login or not using the LDAPv3 plug-in. In this instance, Apple again configures
the Active Directory plug-in to read in the server homeDirectory attribute and then
reformats and maps it to the local HomeDirectory attribute.

With all the supplements that are provided by Apple through the native Active Directory
plug-in, it serves as an adequate tool for integration in many different environments. In the
beginning of this chapter, we will cover the Apple-provided and supported tools that can
be used to bind to Active Directory environments. However, depending on the needs of
your environment you may need to take advantage of some Active Directory features
which cannot be facilitated using just the Active Directory plug-in. The most common
needs in an enterprise environment move beyond mere authentication and into the realm
of ongoing client management. For this, Apple has a very robust set of management
options known as “Managed Preferences” or MCX (covered extensively in Chapter 7).
Though not natively supported by Active Directory, MCX can still be implemented
alongside Active Directory via a few different methods. After reading this chapter, you will
be familiar with the various options available, as well as the pros and cons of each.

On a native Open Directory server these management options are stored as keys within a
given object. For instance, user zsmith (or more commonly a “workgroup” that he is a
member of) may have a managed preference that configures his Dock to appear on the
left-hand side. These management attributes cannot be natively stored in Active Directory
without modifying the Active Directory schema, a modification that is global for all
objects in an organization’s directory. As such, from a political aspect, extending the
schema can be difficult to push through in environments with a proportionally small
number of Mac OS X workstations. For this reason, other options such as maintaining a

separate supplemental Open Directory server or using a third-party active directory plug-
in may best suit your needs. These options are covered in the following sections. Because
the needs and business requirements of each environment are different, after explaining
how to use the built-in Active Directory plug-in, the remainder of the chapter is dedicated
to customizing the Active Directory plug-in and the common third party add-ons.

NOTE: Apple has provided a video and a white paper on extending the Active Directory schema
at http://seminars.apple.com/seminarsonline/modifying/apple/index.html?s=301

Binding to Active Directory

When binding to an Active Directory server, keep in mind that it is an individualized
process; each workstation will need a computer account named for the machine created
in the directory. While it is possible to pre-populate these accounts, the Apple Active
Directory plug-in will create a computer account in Active Directory at the time of
binding with the correct credentials if one does not already exist. As with Windows client
account, each OS X computer account contains a unique pre-shared key used to
authenticate that individual machine to the directory. This individualistic nature is an
important aspect to consider when looking at automating the process. The process of
binding a machine to Active Directory can be accomplished either through the use of a
GUI interface or through a decently robust set of command-line tools. We will discuss
the command-line components of this process (dscl and dsconfigad) later in this
chapter. First, we will look at the manual GUI tools used to bind a Mac OS X machine
into Active Directory.

Directory Utility

The Apple DirectoryService framework is a set of code allowing for modularized access
to the different directory service plug-ins available (including third-party plug-ins). The
graphical application for configuring the plug-ins is Directory Utility (Called Directory
Access in 10.4). This application is bundled with all versions of Mac OS X, and in older
versions can be found in /Applications/Utilities. With 10.6, Apple has migrated access
functionality to the Login Options of the Accounts System Preference. The Directory
Utility Application is not gone in 10.6; though, it has simply been relocated to
/System/Library/CoreServices, a directory used by OS X to house internal support
Applications. Once opened, you will need to authenticate as a local administrator to
make changes to the directory services plug-in. If you are not automating this step, you
will need to supply your on-site technicians with both local and directory administrator
credentials to manually complete this process. You can customize the policies in your
environment to supply desktop technicians with Active Directory accounts that only
have access to bind computers into the domain; likewise, you can provide non-
administrators with access to edit local configurations by modifying the file
/etc/authorization. Specifically, directory service changes are defined by the

authorization right ‘system.services.directory.configure’. Through the modification of this
right, you can grant access to change directory settings to your non-admin users.

To start the binding process, open the Accounts System Preference pane by clicking on
the Apple menu in the top-left corner of your screen, selecting System Preferences and
then clicking on Accounts. Next, click on the Login Options, as shown in Figure 3-1.

enr Accounts
| 4| » || ShowAll Q

[l administrator
i Admin

Y

Automatic login: | Off ¥

Display login wind - (O List of
Cuest Account play login window as: (_) List of users
L } g only @ Name and password

[Z‘ Show the Restart, Sleep, and Shut Down buttons
[Show input menu in login window
[Z‘ Show password hints

[l Use VoiceOver in the login window

[] Show fast user switching menu as: Name

Network Account Server: Join...)
Me—

ﬁ Login Options

-+

U
i l‘ Click the lock to prevent further changes. m

Figure 3-1. Login options screen of accounts system preference pane

To authorize your session to edit the System Preference, click on the lock in the lower-
left corner of the screen. Then click on the button to Join... in the field for Network
Account Server. This will bring up a pop-up screen that simply has a field for a server
name or domain name. Type the name of your domain. After a time, the screen will
expand so that you can enter the ID that the computer you are binding will have once it
joins Active Directory, the user name of an account in your Active Directory that has
credentials to bind to Active Directory, and the password for that account. Supply this
information as seen in Figure 3-2 and then click on the OK button.

Server: |three18kom L]

You can enter the address of an Open Directory Server, Active Directory
Domain, or Mac OS5 X Server.

Active Directory Settings: (required)

Client Computer ID: client001

AD Admin User: cedge

AD Admin Password: sessssss

{ Open Directory Utility._.) { cancel) (0K)

Figure 3-2. Binding to Active Directory

In an effort to simplify the binding process, Apple allows you to bind to both Open and
Active Directory servers from this initial screen. Keep in mind that using this screen will
only allow you to bind and not configure granular settings within either of the plug-ins,
though this can be done at a later time, if necessary. To bind using a screen that allows
you to configure more granular settings, click on Open Directory Utility... and then click
on Services in the upper-left hand corner of the screen, as you can see in Figure 3-3.

L. Nel® Directory Utility
i "‘:'J
~ =%
Services | Search Policy

Selert a service and click the pencil icon to edit settings

| Enable | Name Version
[l Active Directory 6.0
BSD Flat File and NIS 6.0
W LDAPV3 6.0
/ Local 6.0
A
I Click the lock to prevent further changes. @ Apply

Figure 3-3. Services in Directory Utility

Use the lock in the lower-left corner of the screen to authenticate again and then from
Services in the Directory Utility toolbar double-click on the entry for Active Directory. You
will then be prompted with three fields by default, which are also shown in Figure 3-4:

B Active Directory Forest. If there is only one Forest then the Forest will
invariably be the same name as the domain name, but check with an
Active Directory administrator to confirm this is the case if you
encounter binding issues.

B Active Directory Domain: Note that you are not connecting to a
specific host, but rather a domain. The active directory plug-in will use
this domain to look up special records in DNS called service records
(SRV) to find the Domain Controller you need to connect to. This
process is unique to the Active Directory plug-in and heavily relies on
the client’s configured DNS servers to be correctly pointing at servers
that host these records or can facilitate communication to these
servers; properly configured DNS is absolutely paramount for this
process to succeed.

B Computer ID: This is the name of the computer account record as it will
appear in the Active Directory domain. Note that this name also typically
becomes a DNS name on the network, so if you are configuring a client
named “wintermute” the Apple AD plug-in will dynamically request a
DNS record be created for “wintermute.wallcity.org” if the Active
Directory domain is wallcity.org and points to all the configured IP
addresses (including virtual) for that client; the specified value should
generally conform to DNS standards regarding A records, as defined in
RFC 1035 accessible at http://www.ietf.org/rfc/rfc1035.txt. For best
results, the length of this value should be a maximum 15 characters,
and should generally follow the Letter Digit Hyphen (LDH) Rule.

NOTE: For more information on Resource Records, see the following TechNet article:
http://technet.microsoft.com/en-us/library/cc783389(WS.10).aspx.

Active Directory Forest: Automat

Active Directory Domain: ' 318.com

Computer ID: administrators-

(Bind...)
Show Advanced Options
" Cancel) (OK

Figure 3-4. Binding to Active Directory Using Directory Utility

TIP: When naming OS X computers, you will generally want to follow what is referred to as
the LDH rule. As defined, the LDH rule calls for the use of only ASCII alphabetic and numeric
characters in addition the hyphen (-), no other punctuation or characters are allowed. Avoid
all numeric names, and with any *nix system, avoid starting a hostname with a numeric
character.

Next click on the Bind button and you will be asked to authenticate into the Active
Directory domain using the following fields, as you can see in Figure 3-5:

B Username: Contains any valid user account that is capable of joining
computers to the domain. Additionally, this user must have rights to
create new objects in the container or organizational unit you are saving
the computer into, access that can be delegated by the Active Directory
administrator. If your Active Directory environment is strictly controlled,
you may have to request a computer record be pre-populated rather
than attempt to use the supplied credentials to create one.

B Password: The password for the above account.

B Computer OU: The search base for the Organizational Unit that clients
will be added to. For example, if you create an Organizational Unit
called Macs in a domain called pretendco.com then you would use
CN=Macs,DC=pretendco,DC=com in this field.

B Use for authentication: Allows for authenticating into the client
computer using a valid Active Directory username and password.

B Use for contacts: Allows for searching for contacts using Address
Book.

Network Administrator Required

Username: cedge

Password: sssssss -|

Computer OU: CN=Computers,DC=318,DC=com

E‘ Use for authentication
E‘ Use for contacts

/ Cancel\, € ax 3

Figure 3-5. Binding to Active Directory Using Directory Utility

The most common binding problem with Active Directory environments is with the
Active Directory domain’s DNS having an incomplete set of service records. If we had
a nickel for every time a Windows admin swore up and down there were no problems
on their servers, only to have all problems resolved by a quick and dirty fix—an
ipconfig /rebuilddns command runs from a domain controller hosting the Active
Directory integrated DNS by rebuilding the required service records. Beyond DNS, a
number of binding issues are caused between incompatible policies between Mac OS
X and Active Directory. For example, LDAP signing as a requirement was not
supported in 10.4.

NOTE: As described in Chapter 1,you can use the directory services debug log and potentially
tcpdump (which can be used to monitor port 389 to review traffic to and from your Active
Directory Domain Controllers) to more granularly isolate binding issues.

Using the bind screen from the Accounts System Preference pane, you were not
prompted for the organizational unit to place the computer record in whether you
wanted to allow login or contact lookups. The computer record is automatically
generated based on the host name of the computer you are using to bind and the
authentication and contact lookups are assumed to be used. If you have not pre-
populated the computer record, your computer account will be placed in the default
container, computers. To continue with the previous pretendco.com example,
Organizational Units are these containers, which are accessed using a convention
whereas the container is a CN followed by a DC for each part of a fully qualified domain
name. Therefore, if you were to enter the Computers container of mydomain.com
instead of pretendco.com from our previous example, you would use
cn=Computers,dc=domain,dc=com.

Testing Your Connection

Once you have successfully bound your computer to Active Directory, you should test
the connection. First, verify that the light is green beside the Active Directory service as
is listed in the Directory Utility application. A green light here is typically a pretty good
indicator that everything is fine, but it's never a bad idea to test further. The most
straightforward test would simply be to attempt login as a directory user, but logging out
and then back is not efficient, especially if there are problems resulting in login window
delays. More efficiently, you can verify binding from the command line (and should test it
either way). As previously referenced, an integral part of logging in on Mac OS X is a
user account’s UniquelD attribute. You can verify that user resolution is happening and
view the UniquelD using the id command. To do so from a command-line environment,
enter the id command followed by the username of a directory account:

id zsmith
uid=1763670396(zsmith) gid=703907591(WALLCITY\domain users) groups=703907591+
(WALLCITY\domain users),1842785604(WALLCITY\administrators)

The id command can indirectly display a local conflict. The Active Directory plug-in
generates UniquelDs, and with AD typically these numbers have 10 digits. In contrast, a

standard local account, such as one that was configured using the Account System
Preference pane and the setup assistant at first boot, has an id starting at 501,
incrementing upwards. Open Directory users start at 1025. This makes it possible at first
glance to determine the approximate origin of an account. For example, if you saw a
unique id in the range of 600 to 1,000 then the account was likely initially created using
the accounts system preference pane.

If the id command fails with id: jdoe: no such user check the account you are using for
testing to see whether it exists and check that your computer is set to correctly try to
“Search” for users in Active Directory. Typically this “Search Path” is filled in
automatically for you by the Directory Utility application at the time of binding. However,
if you are manually configuring or attempting to troubleshoot an automated binding you
can verify this configuration in Directory Utility. Open the Directory Utility, choose Show
Advanced Settings from the windows tool bar, select Search Policy, and verify the
/Active Directory/... line item is displayed. Contrary to popular belief, the order listed is
not typically relevant for user and group resolution, as you will see the local directory is
always accessed first, then typically it should be the next network directory that contains
users. If you are having problems that are resolved by moving /Active Directory up in the
search order, you may have a configuration problem in your other directory servers or a
conflict in the namespace that users occupy.

While id is probably the easiest, the best utility for testing your directory services is dscl.
The utility provides an interface for programmatically interacting with the
DirectoryServices Application Programming Interfaces (APIs). This program can be run
via an interactive shell or from within scripts. After first binding to Active Directory, use
dscl to test that the directory is available and that user resolution (the ability to resolve
user accounts) is working. While you could just logout and log back in depending on any
problems encountered, you can more easily see that binding is working from the
command line. From a shell prompt, use the dscl command followed by the computer
or path to connect to. In order to establish a connection to the currently running
DirectoryService daemon, we’ll use localhost:

dscl localhost

The syntax for moving through the configured directory services is much like
navigating a filesystem or ftp server from the command line. Once you have initiated
your session it will show an interactive prompt (>). Use the 1s command to list the
DirectoryService Plug-ins. If you do not see Active Directory listed, the plug-in itself is
not enabled. Even if you are bound to an Active Directory domain, you will not be able
to navigate to the directory node until this plug-in is enabled (by default only the
LDAPv3 and local plug-ins are enabled), although when you use the Directory Utility to
bind systems the Active Directory plug-in is enabled by default. Review the“Binding to
Active Directory with a Script” section to see an example of how to enable this plug-in
from the command line.

The 1s command will show you the currently enabled plug-ins (including third party) in
the list. In addition, you will be able to navigate into the Contacts and Search paths,
which will show you the hierarchy of all configured and enabled plug-ins. You can then
type cd followed by the name of any item in the list of current plug-ins.

Active Directory
BSD

Local

Search

Contact

In this case, type cd 'Active Directory'.

NOTE: Standard command-line conventions apply here in regard to space. Be sure to use
quotes around the path when using dscl as Active Directory is one of the few plug-ins that has
a space in the name. Alternatively, you can use the built in tab auto-completion to
automatically quote this path for you.

Once you have changed directories into the Active Directory plug-in, you will see the
Active Directory domains and forests that were previously configured at bind time in
the appropriate nesting order. The Apple Active Directory plug-in only allows you to
configure one Active Directory forest at a time, the default behavior is to allow
authentication from all domains within a forest on the local machine. This is an
important note, as it means that depending on your organization’s directory topology
you may not be able to see the users if you are in a separate forest. If you would like
to restrict access to this computer (or server) to only one domain, you will need to
uncheck the Allow authentication from any domain in the forest button in the Directory
Utility or run the command dsconfigad —all domains disable, depending on your
configuration. You will see either All Domains or your domain name, wallcity.org when
listing this value in dscl.

/Active Directory > 1s
A1l Domains

To test that your binding worked correctly you can change directory into the respective
value and do an Is. If you receive an error when changing directory, your Active Directory
binding has most likely either failed or the current DirectoryService daemon has lost
contact with your sites Domain Controller.

/Active Directory > cd 'All Domains’
/Active Directory/All Domains > 1s
CertificateAuthorities

Computers

FileMakerServers

Groups

Mounts

People

Printers

Users

A common procedure used to verify connectivity is to use the dscl command along with
the read verb to view the attributes associated with a given account. This will allow you
to verify that user lookup is working within the Active Directory plug-in itself and look for
any potential issues, such as a missing attribute. While you could Is Users, depending
on the size of your organization you may not receive all of the information that you are

looking for. By default, the LDAP server in Active Directory will return a maximum of
1,000 results. Although many more can be enumerated, this is just a limitation for how
many are shown at once. Therefore, we will simply cd into the appropriate directory and
then use read to view the attributes for a known good user account:

/Active Directory/All Domains > cd Users
/Active Directory/All Domains/Users > read zsmith

dsAttrTypeNative:accountExpires: 456878888655687
dsAttrTypeNative:ADDomain: wallcity.org
dsAttrTypeNative:badPasswordTime: 0
dsAttrTypeNative:badPwdCount: 0
dsAttrTypeNative:cn:

Charles Edge

dsAttrTypeNative:codePage: 0
dsAttrTypeNative:countryCode: 0
dsAttrTypeNative:displayName:

Zack Smith
dsAttrTypeNative:distinguishedName:
CN=Zack Smith,CN=Users,DC=wallcity,DC=org
continued...

CAUTION: The LDAP server in Active Directory by default will return a maximum of 1,000
results. This limitation affects user, group, computer, and computer group listings in both dscl
and Workgroup Manager, and therefore may negatively affect any scripting automations
derived from this information. This is a hard limit in Windows 2000, but can be adjusted in later
versions, as instructed in the Microsoft Knowledge base article found at;
http://support.microsoft.com/kb/315071

One thing to keep in mind is that while viewing data from the Active Directory plug-in
directly (by changing directories into it), you can verify that you have a connection to
your organization’s directory services. However, simply being able to view the raw
directory service data does not in fact mean that you can authenticate against it. As with
dsconfigldap in Chapter 2, the final step is to use the information gathered about your
test user and verify that you user matches in the /Search path as well.

/Active Directory/All Domains/Users > read /Search/Usexrs/zsmith

dsAttrTypeNative:accountExpires: 456878097655687
dsAttrTypeNative:ADDomain: wallcity.org
dsAttrTypeNative:badPasswordTime: 0
dsAttrTypeNative:badPwdCount: 0
dsAttrTypeNative:cn:

Charles Edge

dsAttrTypeNative:codePage: 0
dsAttrTypeNative:countryCode: 0
dsAttrTypeNative:displayName:

Zack Smith
dsAttrTypeNative:distinguishedName:
CN=Zack Smith,CN=Users,DC=wallcity,DC=org
continued...

If the two read commands return different results you have namespace collision, which
could possibly be resolved by altering your Search path (this was covered in much more
detail in Chapter 2). In some cases, it may be necessary to simply delete the conflicting
user account. You can view the current search path with dscl along with a read verb, the
path, and the attribute to display (in this case, /Search SearchPath).

/Active Directory > read /Search SearchPath
SearchPath:

/Local/Default

/BSD/local

/Active Directory/All Domains

/Active Directory >

Once you have verified that user result ion is functional from the DirectoryService
daemon, you can verify that Authentication is correctly happening (so far we have only
verified that user resolution is possible). Type exit to end your interactive dscl session for
the localhost.

/Active Directory/All Domains/Users > exit
Goodbye

Testing Authentication

Being able to look up user accounts in Active Directory allows you to apply them to
local facilities, such as file system permissions, and to nest them in groups on other
configured directory systems. Authentication is a corner stone of any modern
Directory Service. Apple provides a command-line tool called dirt in Mac OS X 10.5
that you can leverage to access the DirectoryServices Application Programming
Interface and perform authentication queries.

dirt -u zsmith -p 'bw4r3c3ninj4gs’
Call to dsGetRecordlList returned count = 1 with Status : eDSNoErr : (0)

Call to checkpw(): Bad Password

path: /Local/Default

Username: zsmith

Password: bw4r3c3ninj4s

Error : eDSAuthFailed : (-14090)

NOTE: You can also run dirt interactively without supplying the -p flag. This is typically beneficial
as passwords will be stored in the current users shell history when providing this parameter from
the command line. If you use dirt with a password specified from the command line be sure to
clear your history, history -c, and you may want to securely remove your history files as well,
stm $HISTORY. Dirt is more thoroughly covered in Chapter 2.

As you can see from the example, the password specified was not correct, and the
Directory Service request had an error with the numerical value of -14090. These error

codes are documented as part of the DirectoryService APl and can also be checked
using the DirectoryServices main page.

NOTE: While dirt was used to test authentication in Mac 0OS X 10.5, dscl is used to test
authentication in Mac 0S X 10.6.

Testing Authentication at the Login Window

Once you have tested user resolution with dscl and authentication with dirt, you are
ready to begin a graphical login test. While you could have skipped to this step, it's
normally best to test that “raw” authentication is working before trying to troubleshoot
and isolate any issues encountered at a graphical prompt such as the login window, as
seen in Figure 3-6.

Mac OS X
—
&:" Sidney Bailey
Password:

Back Log In

Figure 3-6. Login window

Logout from the Apple menu and login as your test Active Directory user account,
keeping in mind that many other factors will affect this type of login compared to the
command-line tests you have previously performed. If all steps taken previously with id,
dscl, and dirt succeed without issue, but you still cannot login then you likely have a
home-directory specific problem. When you are logging in, you can use the text
immediately below Mac OS X to click through various informational items about the
system. One of these will indicate that Network Accounts Available, a useful
troubleshooting step to verifying that you can authenticate.

Home Directories and the Apple Active Directory Plug-in

Home Directories can be one of the more complicated aspects of integrating Mac OS X
with Active Directory. But it doesn’t have to be. The Active Directory plug-in supplied by
Apple by default creates a local home directory in the /Users/ directory. If you do not
want to synchronize data to another location using Mobile homes or leverage network-
based home directories then your work is made easier and you are basically done.
However, depending on your required configuration you might have many tasks
remaining. For example, a very common procedure on Microsoft Windows is to redirect
folders to network share points. The most common folder to be redirected is My
Documents. Redirection of My Documents via Group Policy object is not applicable to
Mac OS X, and so the fun begins.

To configure the location of a home directory use Directory Utility from
/Applications/Utilities folder (10.5) or /System/Library/CoreServices(10.6). Next, click on
Services in the Directory Utility Toolbar and then check the box to enable Active
Directory. If you are not already operating with elevated privileges, then you will be
prompted for the credentials of an account with access to add data into Active
Directory. Go ahead and type that in and then click on the Show Advanced Options
disclosure triangle, as shown in Figure 3-7. Here, you will see a number of options to
control the User Experience, Mappings, and Administrative options. The home directory
options are in the beginning stored in the User Experience tab.

Active Directory Forest: - Automatic

Active Directory Domain: ' threel8.com

Computer ID: cedge_test

(Bind... 7,

v Hide Advanced Options

sterExperience Mappings Administrative |

["1 Create mobile account at login
v Require confirmation before creating a mobile account
E! Force local home directory on startup disk

E‘ Use UNC path from Active Directory to derive network home location

Network protocol to be used: | smb: 4]

E‘ Default user shell: /bin/bash

(Cancel \(oK \

Figure 3-7. User environment with Active Directory

The very first option is to Create mobile account at login. By checking this box, you will
cache an account locally, allowing login from the login window even when a system is
not on your network. When a user logs in using an Active Directory account, they will
now be prompted for whether the account will be a mobile account. Unchecking the box
for Require confirmation before creating a mobile account will then suppress the dialog
box and simply create the account automatically.

Next, choose whether to Use UNC path from Active Directory to derive network home
location (which is a check-box to enable home folders that reside on a network path).
Combined with mobile accounts and OS X’s home folder syncing, this option allows
data in the home folder to be available even when systems are not on the local network.
This option is also preferable in order to keep the load minimized on your file servers
that house home directories throughout the day.

TIP: If you enable the Force Local Home on Startup Disk option, OS X will not attempt to
resolve network home directories based on UNC paths. If this option is enabled, network home
syncing will not properly function. The option Create Mobile Account at Login will have a similar
affect of forcing a local home directory, but will also maintain UNC lookups, stored in the
attribute OriginalHomeDirectory, which is necessary for home syncing.

If you have decided to leverage the Use UNC path from Active Directory option, then
network home directories will be used. You will then have an option to specify the Network
Protocol that will be used for home directories. Both AFP and SMB are supported. In
Active Directory Users and Groups, when you set a users profile setting for the home
folder location, the setting is provided via a UNC path; \\server\share\folder. The Active
Directory plug-in converts the UNC path to a standard URL. So \\server\share\folder
becomes afp://server/share/folder or smb://server/share/folder according to which
protocol you have selected.

Once you have configured all of the options for home folders that are appropriate for
your account, you can test your settings by logging in as an Active Directory username
and password that has a profile location which has been configured. Then verify that
login occurs as intended and the appropriate home directory is utilized given the paths
and folders entered both into Active Directory and the plug-in. If you have any issues,
attempt to mount paths manually and check the permissions on the destination
directory structure.

DNS Concerns

Active Directory uses Sites to assign domain controllers to specific subnets on your
network. The Apple Active Directory plug-in uses DNS to lookup a Global Catalog server
for your domain and subsequently queries it to find the correct Domain controller to bind
to. You can manually view these DNS records which use the SRV or “service” type to
hold their information within an Active Directory integrated DNS network.

Open Terminal in /Applications/Utility, and enter in the following command to do a
lookup on the service record to locate the global catalog:

dig -t SRV _gc. tcp.wallcity.org

; <<>> DiG 9.4.2-P2 <<>> -t SRV _gc. tcp.wallcity.org

;5 global options: printcmd

;> Got answer:

55 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 50668

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;3 QUESTION SECTION:
;_gc._tcp.wallcity.org. IN SRV

5> ANSWER SECTION:
_gc._tcp.wallcity.org. 600 IN SRV 0 100 3268 grodd.wallcity.org.

5> ADDITIONAL SECTION:
grodd.wallcity.org. 3600 IN A 192.168.53.249

55 Query time: 59 msec

55 SERVER: 192.168.53.249#53(192.168.53.249)
55 WHEN: Sun Jun 7 21:52:50 2009

53 MSG SIZE rcvd: 93

The answer to the question that you are posing to dig is in the Answer Section. Here, it
is shown as grodd.wallcity.org. If you do not receive the name of a domain controller,
you will want to check that you are using the correct DNS servers for your site. A
common error is related to using an external DNS server that has been manually
configured at some previous time (e.g., 4.2.2.1). This forces your lookup to use your
organization’s external DNS provider, which may not match your internal DNS server,
especially if you use an internal domain like .local.

Bind to AD

You will need two administrative usernames to bind to Active Directory, a local
administrator and a domain administrator. The local administrator is used to write the
configuration files to protected directories like /Library/Preferences/DirectoryService.
This administrator can be replaced with the root user when running scripts to bind to
Active Directory (e.g., a Package Installer that runs a post-flight script as root to bind to
Active Directory). It’s worth noting that the dsconfigad command does not need to run
as root as it will use the directory service APIs to determine your admin membership
based around rules stored in /etc/authorization. You could create a different group for
administration in addition to the default “admin” group that would allow local
administration of many components, such as binding. However, giving out admin
access for the “right” that Active Directory uses would give them access to quite a bit of
the systems authorization dialogs and so would effectively be overkill for just trying to
delegate a non-standard admin to bind.

NOTE: Instead, you could leverage system.services.directory.configure in /etc/authorization to
achieve this goal for mass deployment scenarios where unprivileged accounts may be
troubleshooting minimal network connectivity issues.

In addition to the local administrative credentials, you will need a domain administrator.
This delegate administrator needs to have access to join computers to the domain and
also write access to the organizational unit that you specify if you are using the
“Services” binding section of Directory utility or the -ou option of dsconfigad. This
domain administrator should be created with a very small amount of privileges other
than domain addition, as you may need to give this username and password out to your
onsite IT liaisons and embed it in scripts.

The following is an example of using the dsconfigad command. As you can see, we are
specifying the domain administrator’s password right on the line, and this would result in
the password potentially being available in the shells history depending on how we run
the command. We do not need to run sudo when running dsconfigad, as it will
effectively do the privilege request on its own, and prompt for the password of the
current user to escalate the privileges for the operation. Later, we will discuss using this
command in a script.

dsconfigad -f -a mycomputername -u domainadmin -p domainadminspassword -domain
mydomain.com

Additionally, you can set the Active Directory plug-in settings one at a time using
dsconfigad, while these options can also be set on the joining command. Keep in mind
this ability to granularly set all plug-in options on the fly as you will be able to push out a
change whether to create a mobile account on login using any tool capable of sending
Unix style commands or scripts (such as Apple Remote Desktop). Like the previous
command, sudo is never required as the dsconfigad command will determine admin
rights on its own, though when calling the utility from a non-interactive tool, such as
ARD, you will want to execute the commands with root privileges.

dsconfigad -mobile enable

One aspect common to many Active Directory deployments in imaging environments is
the automation of binding. This is done because a bound system cannot be directly built
into a “Gold Master” image, as the Computer ID of each imaged host will be different. For
instance if one were to bind to Active Directory within a system that was to be cloned, the
Active Directory preferences would be pushed out to all machines cloned from that

image. These preferences contain the machine account name and password used for
authenticating the joined computer to the Active Directory domain. While this configuration
initially would allow authentication in most environments, once the computer password
was cycled or once the machines were unbound, then all cloned systems would stop
being able to authenticate. For this reason, joining or “binding” to the directory is then
performed as a post flight operation on the cloned systems after first reboot. Imaging tools
like Deploy Studio and the Casper suite include built-in scripts with graphical wrappers for
accomplishing this purpose.

Naming Conventions and Scripting Automated Binding

One of the single most important decisions that will you make when determining the
feasibility of a binding script will be your naming convention. This is because depending
on your asset tag vendor you may have to work within a specified convention that does
not correspond to anything that can be queried automatically on a fresh machine. If your
asset tags were consecutive numerical values or a sequence of alphanumeric values set
by the manufacturer, then you will have to match that value to a specified piece of
hardware manually. Getting user input for specifics, such as asset tags, will mean that at
least for your first boot, a live human being will have to be present at the time of binding
to enter in this value. Most third-party imaging tools have the ability to show a dialog
box that allows the imager to enter this information and have it pass to the script as a
parameter. Two examples of this follow, one is Deploy Studios workflow step and the
other is the Casper suites positional parameter configuration option. If you are using
either one of these tools, it is suggested you consider using this functionality. However,
if you are using another deployment methodology you may need to either have your
script prompt the user for information, or provide this information via a pre-populated
datastore, such as a csv file.

If you are ordering a large quantity of Mac OS X workstations from Apple directly, you
consider asking your rep to provide you with a delimited list of Machine Access Control
(MAC) addresses. Using this list, you can pre-assign hardware addresses to your
organization’s asset tag system or database. However, if you are dealing with existing
inventory, you may still be required to prompt your imaging team for this information or
at least collate it beforehand. If you are relegated to prompting your imaging team for
this information a good technique is to store this custom name within a machine’s
firmware. Mac OS X provides a way of manipulating firmware variables using the
/usr/sbin/nvram command. However, nvram cannot be assumed to be persistent, so it is
best to maintain this data in a spreadsheet or database.

Binding to Active Directory can be autonomously accomplished using two main tools,
dscl and dsconfigad. However, the Active Directory plug-in is not enabled by default and
when looking at a binding script one major consideration is to enable this plug-in so that
any bound forest will be available for use in the authentication search path for the
system. You can do this by pre-populating this setting which is stored in the
DirectoryServices.plist file /Library/Preferences/DirectoryService/DirectoryService.plist
using the following command:

defaults write /Library/Preferences/DirectoryService/DirectoryService «
"Active Directory" Active

We often recommend to actually add this “enabled” copy of this file in your image prior
to deployment. As if you programmatically have to enable the plug-in, you must restart
the DirectoryService deamon to have it pick up on the changes. This process while only
slightly intrusive can increase the time it takes a system to become usable when binding
at startup or first boot automatically.

As shown earlier, using the Terminal application (found at /Applications/Utilities) can be
leveraged to create a simple binding script using dsconfigad. However, this only allows
you to bind to Active Directory and does not add the directory to the currently

configured /Search or /Contact paths. This is an important difference when using the
command line as it is an integrated step when using the graphical tools to add newly
configured domains to the computers authentication search policies.

dsconfigad -f -a mycomputername -u domainadmin -p domainadminspassword -domain
mydomain.com

Once you have bound through the command line, the Active Directory domain will need
to be added to your search path. To do so, you will use dsclfor testing binding. In this
case, we will use it to change information in the /Search (where information regarding
your search policy is stored). Therefore, first change the SearchPolicy attribute to
custom by using the following command:

dscl /Search -change / SearchPolicy dsAttrTypeStandard:LSPSearchPath «
dsAttrTypeStandard:CSPSearchPath

dscl /Search -append / dsAttrTypeStandard:CSPSearchPath "/Active Directory/All Domains/"

As the previous code shows, you can also enable options in the active directory plug-in
granularly. When specifying multiple advanced options, you can specify each with their
own invocation of dsconfigad, or you can supply them all together via a single
command. When specifying multiple options, the command can become a bit unruly,
but the same result is achieved. Each option from the GUI translates to an option (or
flag, if you will) at the command-line interface. There are a number of other options that
are available, but each is likely not to be required for all cases.

Basic Options—Commonly Used:

B -3 computerid: name of the computer to add to the domain (if none is
specified then the default with be the hostname)

B -f: force the process (i.e., remove the existing entry from the Active
Directory plug-in)

B -r: remove computer from domain (unbind)
-luusername: username of an administrative local account

-1ppassword: password of the administrative local account defined
with -lu

B -uusername: username of an Active Directory administrator

-ppassword: password of the Active Directory administrator specified
with -u

B -ou dn: fully qualified LDAP DN of container for the computer (defaults
to CN=Computers)

B -domain fqdn: fully qualified DNS name of Active Directory Domain

-show: show current configuration for Active Directory (this option
doesn’t make any modifications to the directory or the Active Directory

plug-in)

Advanced Options—User Experience:

B -mobile: enable or disable mobile user accounts for offline use

B -mobileconfirm: enable or disable warning for mobile account creation
B -localhome: enable or disable force home directory to local drive

B -useuncpath: enable or disable use Windows UNC for network home
B -protocol: afp or smb change protocol used when mounting home

B -shell: none for no shell or specify a default shell /bin/bash
Advanced Options—Mappings:

B -uidattribute: name of attribute to be used for UNIX uid field

B -nouid: generate the UID from the Active Directory GUID

B -gidattribute: name of attribute to be used for UNIX gid field

B -nogid: generate the GID from the Active Directory information

B -ggidattribute: name of attribute to be used for UNIX group gid field
B -noggid: generate the group GID from the Active Directory GUID
Advanced Options —Administrative:

B -preferredserver: fully qualified domain name of the preferred Domain
Controller

B -nopreferred: do not use a preferred server for queries

-groups “1,2,...”: list of groups that are granted Admin privileges on
local workstation

B -nogroups: disable the use of groups that were specified in the —
groups for granting Admin privileges

B -alldomains: enable or disable allows authentication from any domain
in the forest

-packetsign: disable, allow, or require to enable packet signing
-packetencrypt: disable, allow, or require to enable packet encryption

-namespace: forest or domain, where forest qualifies all usernames

-passinterval: how often to change computer trust account
password in days

If your environment requires customization of the Active Directory binding screens, the
previous options can be used to granularly configure the options you would otherwise use in
the screens in Directory Utility. You can also access a few that have not yet been added.

Map UID and GID

As previously mentioned, Mac OS X requires certain attributes to be able to login, such as
primary group ID and Unique ID. As Active Directory does not contain the Unique ID by
default, this value must be generated on the fly using some other kind of unique information.
One important attribute of this generation is that it cannot be completely random; it is
important that every system bound to Active Directory resolves the same UniquelD for any
respective user. To accomplish this, Apple uses the first 32 bytes of the user’s GUID to
generate a numerical value used as a statically mapped value for the Mac OS X Unique ID.

NOTE: Augmented Records can also be used to map information. In an augmented record
environment, one would bind a Mac OS X Server as a member server to Active Directory and as
an Open Directory master and then use Server Preferences to supplement missing records.
While this is similar to a triangle (described later in this chapter), it is not widely adopted on a
large scale and so not explored in detail in this chapter.

As the plug-in can run the same mathematical operation on the GUID on two different
machines and received the same value, it acts as a practical substitute for manually
configuring these values in your environment. Windows Server 2003 R2 and higher have a
schema attribute called unixid, which could be used to store custom values in the
directory. If your organization is already using unix clients that authenticate to Active
Directory, then you may already have this information populated in the Directory. Mapping
this information on the Mac OS X side is often only beneficial for consistency. However, it
can play a vital authorization rule when using the NFS file sharing protocol, which uses the
local systems UID to map privileges on remote server shares mounted on the clients
system. If your organization does have these fields populated, it is incredibly important to
make sure that these fields are populated automatically when you ingest new users.
WindowsServer 2008 can do this using ADSI or Power Shell Active Directory command
lets. Quest Software has some examples for manipulating large numbers of Active
Directory fields in a programmatic fashion using this “new” language.

By default, UID and GID attributes are not mapped, but rather generated when you are
using dsconfigad to bind a computer to Active Directory. To map the default fields
referenced previously, open Directory Utility from /Applications/Utilities and then click on
Services in the Directory Utility toolbar. From here, fill in the basic Active Directory
binding information from earlier. Once you have done so, click on the disclosure triangle
for Show Advanced Options and from the resultant screen, click on the Mappings tab.

From the Mappings tab, enter the information for the Active Directory attribute to map
UID and GID information to. Alternatively, dsconfigad can be leveraged to map fields not
included in the GUI. To do so you will use the -staticmap flag followed by the attribute
type and then the value for the specified attribute.

Namespace Support Using dsconfigad

By default, dsconfigad assumes that your forest name is the same as your domain
name, or authentication will only succeed to the domain that was specified when the
system was bound. Some environments have multiple domains. Active Directory allows
two accounts with the same username (although not the same GUID) to exist with a
given forest, provided they are in separate domains. The Directory Utility allows you to
specify either the forest or a specific domain, allowing you to control the scope in which
a client system will authenticate against at bind time. When bound to a forest, the AD
plug-in allows you to go a step further, providing the ability to authenticate to separate
domains within a forest by adding the domain name to your login credentials.

But you don’t want to have to unbind and rebind every time you’ll log into a different
domain, if you will be switching between domains often. To provide you with the option
to login using multiple domains within one forest, you can use the -namespace flag
followed by domain. The -namespace flag then prefixes the domain name to all accounts
that are located in the forest. If you have conflicting accounts in separate domains then
the computer should be bound into the domain with which your account resides. To
enable namespace support you would use the following command:

dsconfigad -namespace forest

Once run, you will authenticate against the forest and will need to specify the domain
name in front of the username every time a user authenticates to the system. If you
would like to switch back to using domain namespace at a later date, you can specify
the -namespace flag with domain as the setting and you will no longer have to enter this.

NOTE: When run, the -namespace changes the primary ID for all accounts. Therefore, any
user profiles for accounts from the Active Directory domain will need to be copied/moved into
the new profile that is created, which will have a different naming convention.

Active Directory Packet Encryption Options

The Active Directory plug-in can be configured to enable the encryption options Apple
has developed for communications between the Active Directory plug-in and Active
Directory Domain Controllers. These include packet encryption, packet signing, and a
timeout value for setting the computer account password rotation interval with your
Active Directory domain controllers. These options are configured either post or during
bind time using the dsconfigad command.

A number of Active Directory environments require packet signing in order to block man
in the middle attacks and therefore to verify the authenticity of data being exchanged
between the Active Directory plug-in and Active Directory, thus protecting both the
domain and the client. From the Active Directory perspective, configuring packet signing
requirements is a policy configured from an Active Directory domain controller. Active
Directory password policies let you to allow or even require packet signing from the
client for LDAP traffic, the protocol that data will be exchanged in this scenario. By

default, packet signing is an allowed option for clients in Windows Server 2003 and
Windows Server 2008, but is not required for client systems.

While not the default setting, it is a good practice. Therefore, many environments require
packet signing for Active Directory clients. In Mac OS X if you want to require packet
signing for the client to communicate the server then this would further validate that
communication is signed (and therefore authentic), so you can set the packet signing
setting to require as well for a more highly secure solution. If you require packet signing
from either the server side or the client side, then you should verify signing is an allowed
option, if not required on the other or you may run into incompatibility issues. To change
packet signing options in Mac OS X, you would use the -packetsign flag with dsconfigad.
Settings available with the -packetsignflag include: allow, disable, and require. Therefore,
to configure dsconfigad to require packet signing use the following command:

dsconfigad -packetsign require

If the change is successful, then you will see the following output:
Settings changed successfully

Packet encryption is another option in Mac OS X and Active Directory. Packet
encryption keeps the contents as secure as they are authentic by forcing data to be
encrypted. To enable packet encryption, use the -packetencryption flag with the same
settings available with the -packetsignflag (allow, disable, and require). As with packet
signing, verify that both the server and client support encryption before setting the
option to required, although for high security environments (or most environments these
days) it is a good idea to set the client and the server to require both authentication and
signing. To set encryption requirements for the client, use the following command:

dsconfigad -packetencrypt require

If the change is successful, then you will see the following output:
Settings changed successfully

Every computer that is bound to Active Directory has a computer account, and that
computer account in turn has a password. Active Directory rotates these passwords
routinely. The Active Directory plug-in supports the rotation by using the -passinterval
flag with dsconfigad. The passinterval can be set and when set, defines how often, in
terms of days between the password rotation intervals.

dsconfigad -passinterval 7

All of the settings in this section can be set or changed during bind time or following
bind time, and can be independent of any other settings.

Dual Directory

As we’ve mentioned, you can use Active Directory and Open Directory together. To
some, this is called a magic triangle, to others a golden triangle. We’re going to use a
term that has gained a bit more attention as of late, Dual Directory, to describe the
setup. Most descriptions and walkthroughs are made more complicated than they need

to be. Basically, you start out with a functional Active Directory environment and a
functional Open Directory environment then bind your client machines to both
directories, ensuring that both appear in the clients search path. From then on, the client
will query each directory sequentially in the order defined by the search path until it
receives a successful return.

You may be thinking that it probably isn’t as easy as that, and certainly there are
additional considerations, but at its heart that is the foundation of a triangle or dual
directory configuration. The first such consideration is Single Sign On—both Active
Directory and Open Directory utilize Kerberos for this functionality. In a dual directory
setup, having two separate Kerberos realms can complicate matters, so it is often
desirable to only utilize one Kerberos Realm. To integrate your Mac clients into an Active
Directory environment, you will want to utilize the Active Directory Kerberos services,
thus it will be desirable to tear down the Open Directory KDC.

TIP: If an OS X server is bound to Active Directory prior to promotion to an Open Directory
master, Active Directory Kerberos services will be utilized and Open Directory-based Kerberos
services will not be set up.

For the purposes of this demonstration, we will use diradmin as the Open Directory
administrative username and p@ssword as the password. If you have chosen to use an
Open Directory administrative username other than diradmin then simply transpose as
needed. Since your password is likely not p@ssword then please transpose that as well.

To destroy the shared Kerberos KDC on the Open Directory Master, you will use the
sso_util command. As of Mac OS X 10.5, this is typically not required, so feel free to
skip this step. The sso_util option we will use is the remove option, which will remove
the KDC from the host on which it is run:

sudo sso_util remove -k a diradmin -p p@ssword
Next, we're going to use dscl to remove the Config options for the KDC (since this step
is often not required it may fail):

dscl -u diradmin /LDAPv3/127.0.0.1 -delete /Config/KerberoskDC
dscl -u diradmin /LDAPv3/127.0.0.1 -delete /Config/KerberosClient

NOTE: You can choose to leave the KDC intact. If you do and run into errors later on in this
section, then you may want to return to this step and run these commands. They could resolve
any potential issues.

Next, you will bind the Open Directory Master to Active Directory as you have been
binding clients throughout this chapter. Because the directory services plug-ins can
coexist with one another (for the most part, some third-party plug-ins cannot coexist
with the Active Directory plug-in) you can do so without risking damage to other
resources within your LDAP service on the Open Directory master.

Once you have bound your server to Active Directory, will want to enable the single sign
on for all supported services by using the following command, which will create service
principals for each respective shared service:

dsconfigad -enableSSO

Next, you’re going to open Workgroup Manager and verify that you can view and
authenticate to both your Active Directory and Open Directory domains. You can
alternate between directories that you are bound to (or hosting) by clicking on the globe
icon and then selecting other directories (including the local directory). Once you have
switched between domains, if the settings are grayed out and will not allow you to alter
them, then you can click on the icon of the lock to authenticate to each as an
administrative acc