
Books for professionals by professionals®

In Enterprise Mac Administrator’s Guide, we teach you what you need to make
sure your users—and your organization—get the most out of their Macs.

We’ve compiled the best practices for you as a Mac administrator, introducing
you to the common issues you’ll face, and helping you build the best possible
environment for a large-scale Mac OS X implementation.

But wait—in today’s design-centric universe, your users want more. With the
Mac’s strong presence in enterprises everywhere, your users expect a richer
end-user experience and to be treated as first-class citizens on the network. In
this book we show you how you can deliver that ideal environment using Mac
OS X, one your users will certainly appreciate.

In the diverse world of today’s enterprise, some of those users may need to
run Windows or Linux applications, so we also show you how to deploy and
integrate Windows virtual machines on top of the Mac OS. At the end of the
day, it comes down to making sure your users have the right tools at their
disposal so they can get their jobs done.

Whether you’re an ITIL-practicing institution or simply looking for help in
managing your Mac OS X fleet, seamless integration is the goal—and we give
you the know-how to achieve it. Many of the best practices we share with you
are a combination of the norms that have emerged in the community and the
fundamentals of enterprise computing. By merging these two worlds, we give
you the tools to not only facilitate integration but also make sure your deploy-
ments go smoothly and result in happy users.

In this book, we help you go a step further and innovate the way you do busi-
ness. Whether you’re talking about how to package up a piece of software for
deployment or how to manage a preference, we’ll help you bridge the gap
between the existing enterprise and the enterprise of the future. Just imagine
an environment where users can choose whatever platform they want to sit
on their desks—and even seamlessly transition between them. We’ll take that
journey with you from initial imaging, to directory services integration, to the
long-term management issues you’ll encounter. With this book as your guide,
you’ll build and support that ideal enterprise environment!

	 Companion eBook	 See last page for details on $10 eBook version

US $49.99

Shelve in
System administration

User level:
Intermediate–Advancedwww.apress.com

Re
la

te
d

 T
it

le
s

this print for content only—size & color not accurate

  CYAN
  MAGENTA

 YELLO W
  BLACK
 PAN TONE 123 C

 	See last page for details on $10 eBook versionCompanion eBook
Edge Jr
Hunter
Sm

ith
Enterprise M

ac Adm
inistrator’s Guide

Companion
eBook
Available

The complete guide
to Mac OS X administration

Enterprise Mac
Administrator’s Guide

Charles S. Edge Jr  |  Beau Hunter  |  Zack Smith

Spine: 7.5 x 9.25 spine = 1.15625 616 page count

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

i

Enterprise Mac
Administrator’s Guide

■ ■ ■

Charles S. Edge Jr.,
Beau Hunter,
Zach Smith

www.allitebooks.com

http://www.allitebooks.org

ii

Enterprise Mac Administrator’s Guide

Copyright © 2009 by Charles S. Edge Jr., Beau Hunter, and Zach Smith

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2443-3

ISBN-13 (electronic): 978-1-4302-2444-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

Lead Editor: Michelle Lowman
Technical Reviewers: Joe Kissell, Dee-Ann LeBlanc, and Brad Lees
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary

Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank
Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Debra Kelly
Copy Editors: Katie Stence and Sharon Terdeman
Composition: ContentWorks, Inc.
Indexer: Ann Rogers/Ron Strauss
Artist: April Milne

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

www.allitebooks.com

http://www.allitebooks.org

iii

To Lisa & Emerald, with love
 —Charles S. Edge Jr.

Dedicated to my wife, Monica, who, despite completely losing me to the world of bits and bytes for the last

six months, has been a source of constant support.
—Beau Hunter

www.allitebooks.com

http://www.allitebooks.org

iv

Contents at a Glance

■ About the Authors ...xiv

■ About the Technical Editors ...xv

■ Acknowledgments...xvi

■ Introduction..xvii

■ Chapter 1: Directory Services ..1

■ Chapter 2: Directory Services Clients ..39

■ Chapter 3: Active Directory ..91

■ Chapter 4: Storage ...141

■ Chapter 5: Messaging and Groupware ...219

■ Chapter 6: Mass Deployment ...287

■ Chapter 7: Client Management...355

■ Chapter 8: Automating Administrative Tasks ..423

■ Chapter 9: Virtualization ..493

■ Chapter 10: iPhone...535

■ Index ..577

www.allitebooks.com

http://www.allitebooks.org

v

Contents

■ About the Authors ...xiv
■ About the Technical Editors ...xv
■ Acknowledgments...xvi
■ Introduction..xvii
■ Chapter 1: Directory Services ..1

Local Accounts.. 2
Creating Accounts .. 3
Granting Administrative Privileges .. 4
The Root Account.. 6
How the Local Directory Service Works ... 8

dscl .. 11
Changing Accounts En Masse.. 14
Account Creation Scripts ... 15
Parachuting Accounts into Clients... 15
Hiding Administrative Accounts .. 16
Raw Mode .. 17

Set Search Paths .. 18
Create Additional Local Directory Nodes.. 18

External Accounts ... 19
Open Directory .. 20

LDAP ... 20
Kerberos ... 21
Setting up Open Directory Using Server Admin.. 24
Setting up Open Directory from the Command Line ... 28

Demoting an Open Directory Master.. 29
Set up an Open Directory Replica... 29

Removing a Replica ... 30
Using Workgroup Manager to Create New Users ... 30

www.allitebooks.com

http://www.allitebooks.org

vi

Backing up Open Directory... 33
Troubleshooting Directory Services.. 35

Directory Services Debug Logs... 35
Cache.. 35
Verifying Authentication... 36

Summary... 37
■ Chapter 2: Directory Services Clients ..39

The Lay of the Land .. 40
Basic Binding .. 46

Plug-ins .. 47
Unauthenticated Dynamic Binding ... 49
Unauthenticated Static Binding.. 51
Trusted Static Binding .. 55
Pushing Out SSL Certificates .. 57
Custom LDAP Settings .. 61

Managing the Search Policy .. 67
Binding with the Command Line .. 70
Scripting Binding ... 72

NIS... 72
Kerberos.. 75

Kerberising Services .. 81
Troubleshooting Kerberised Services... 84

Directory Services Preferences... 89
Summary... 90

■ Chapter 3: Active Directory ..91
Binding to Active Directory ... 93

Directory Utility .. 93
Testing Your Connection .. 98
Testing Authentication... 102
Testing Authentication at the Login Window ... 103

Home Directories and the Apple Active Directory Plug-in.. 104
DNS Concerns .. 105

Bind to AD ... 106
Naming Conventions and Scripting Automated Binding... 108
Map UID and GID... 111
Namespace Support Using dsconfigad... 112
Active Directory Packet Encryption Options... 112

Dual Directory ... 113
Nesting ... 115
MCX via Dual Directory... 116
MCX via Active Directory.. 119
Configuring AD Admin Groups .. 122
Nesting Administrators in the Local Admin Group ... 123

Third-Party Solutions .. 124

www.allitebooks.com

http://www.allitebooks.org

vii

Centrify’s DirectControl .. 124
DirectControl Installation... 124
Configuring DirectControl .. 127
Using DirectControl .. 131

Likewise ... 133
Likewise Enterprise .. 134
Thursby ADmitMac ... 134
Quest .. 135

Summary... 138
■ Chapter 4: Storage ...141

Client Storage.. 141
AFP ... 142
SMB .. 144
NFS ... 145
Automounts .. 146
Home-Directory Storage Provisioning.. 149

SAN Storage .. 149
Xsan.. 150

Cabling and Transceivers .. 150
Storage... 151
Virtualized Storage .. 152
Initiators .. 152
Switches .. 153
Zones ... 155

Configuring Storage.. 156
Promise Vtrak .. 157
Xserve RAID ... 158

Configuring Ethernet... 163
Setting up the Xsan .. 164
Installation ... 164
Creating a Volume .. 169

Adding a Computer .. 177
Resharing the Volume .. 177

Xsan Block Sizes.. 178
AFP Tuning... 178
Tickle Times... 179

Using Third-Party Clients ... 180
Installing Linux Clients .. 180
Windows Clients .. 181

Xsan Management.. 183
Reinstalling the Software .. 183

Upgrades to your Xsan ... 183
Operating System Upgrades .. 184

Upgrading the Volume .. 184

www.allitebooks.com

http://www.allitebooks.org

viii

Changing IP Addresses .. 186
Common Xsan Repair and Troubleshooting Procedures .. 187

Resetting Xsan Client settings ... 187
Rebuilding an Array on an Xserve RAID... 187
Rebuilding an Array on a Promise RAID .. 187
Latency .. 188
Schedules... 189

Fragmentation .. 189
Backup.. 190
The Xsan Command Line .. 190

Fibreconfig... 191
Labeling LUNs .. 192
cvadmin ... 193
Repairing Volumes... 195
Other Commands ... 195

iSCSI.. 196
ExtremeZ-IP .. 202

Setting up AFP in ExtremeZ-IP ... 202
Configuring ExtremeZ-IP .. 204
Setting up DFS in ExtremeZ-IP ... 207

Managing Filesystem Permissions in OS X... 207
POSIX-Based Permissions .. 207
Access Control Lists ... 210

Administration ... 212
Read Permissions .. 212
Write Permissions.. 212
Inheritance... 213

Using chown and chmod to manage permissions.. 214
.DS_Store Files .. 215
Summary... 216

■ Chapter 5: Messaging and Groupware ...219
Exchange Integration .. 220

Entourage ... 220
Paths.. 221
Troubleshooting Exchange 2007 Virtual Directories ... 222
Entourage Setup... 223
Automatic Client Configuration.. 230
Deploying the Package .. 231
Account Setup.. 233
Postflight Tasks ... 233
AutoUpdate .. 234
Disable Sync Services.. 235
Archiving Mail.. 235

Native Groupware Support ... 236

www.allitebooks.com

http://www.allitebooks.org

ix

Manual Setup... 236
GroupWise and Lotus Notes .. 241
iCal Server... 241

Setting up iCal Server... 241
Managing Calendars... 246
Delegating Access .. 250
Backing up Calendars... 251
Clustering CalDAV... 251
Wiki Integration.. 252
Troubleshooting.. 252

Address Book Server... 254
Setting up Address Book Server... 254
Connecting to the Address Book Server ... 258
Backing up Address Books... 261

Instant Messaging... 261
Solutions... 261
Microsoft Messenger.. 261
iChat Server.. 262

Transcripts... 263
Archiving Transcripts via iChat ... 265
Autobuddy.. 266

Mac OS X Mail Server.. 267
Setting up a Mail Server ... 267
Configuring Mail with ServerAdmin ... 268
Protecting the Mail Servers.. 271

Mailing Lists .. 276
Logging .. 276
The Command Line... 277

Choosing Mailbox Locations... 278
The Dovecot Mailstore .. 279
Setting up Public folders .. 281
Backing up Mail.. 281
Clustering Mail Services... 282

Leveraging Push Notification .. 285
Summary... 286
Further Reading .. 286

■ Chapter 6: Mass Deployment ...287
Planning Your Mass Deployment .. 288

Monolithic vs. Package-Based Imaging ... 290
Automation ... 293

Image Delivery .. 294
Creating an Image .. 294
Creating an Image from the Command Line ... 297
Operating System Packaging with Composer .. 301

x

Bare-Metal Images ... 302
Deploying Images.. 302

Restoring with Disk Utility.. 303
Using Apple Software Restore .. 305
NetInstall .. 307

Boot Modifier Keys... 311
Bless .. 312

Apple’s NetRestore ... 314
DeployStudio .. 317
Other Third-Party Solutions.. 329
Casper Suite ... 330

Automation.. 330
Types of Automations... 330
User Templates... 332
Migrating from Monolithic Images... 332
Custom Packages with Composer .. 333
InstallEase and Iceberg .. 337
FileWave ... 337
PackageMaker.. 338
Negative Packages ... 342
Installing a Package... 344
Package Scripts.. 344
Customizing Prebuilt Packages.. 345
Customizing OS X Preferences ... 346
Defaults .. 347

When Not to Use Defaults... 349
PlistBuddy .. 350

When Not to Use PlistBuddy... 352
Image Regression Testing... 352
Summary... 353

■ Chapter 7: Client Management...355
Managed Preferences ... 356

Preference Interactions.. 358
Utilizing Tiered Management.. 360

Managed Preferences in Action .. 361
Preference Manifests and Custom Preferences ... 361
Setting MCX from the Command Line... 363
Automated Client Setup.. 364

Mail .. 364
iCal ... 366
Address Book... 367
Application Preferences... 368
Deploying Proxy Settings via a PAC File .. 371
Network Printing.. 372

xi

Restricting Applications .. 375
Computer Access Filters .. 378
Common Tasks... 380

Troubleshooting and Testing .. 383
User Home Folders .. 385

Local Home Folders .. 385
Local Home Folder Configuration... 388

Network Home Folders ... 391
Redirection... 393
Network Home Folder Configuration.. 398

Home Directory Syncing ... 401
Troubleshooting Syncing Issues .. 406

Password Policies... 407
Password Changes at Loginwindow... 409
Managing Keychains .. 410

Apple Remote Desktop .. 411
Scanning Networks with ARD... 412
Controlling machines.. 412
Sending Commands, Packages, and Scripts .. 413
Enabling Directory Service groups... 415
Enabling Directory-Based Administrator Groups ... 416

Quota Management ... 417
Login Hooks... 418
Software Update Server .. 420
Further Reading .. 422

■ Chapter 8: Automating Administrative Tasks ..423
The Basics... 424
Scripting the Bash Shell.. 428

Declaring Variables .. 429
Variable Mangling .. 431
Standard Streams and Pipelines .. 433
If and Case Statements... 434
For, While, and Until Statements .. 438
Arrays... 440
Exit Codes... 441
Constructing a Shell Script... 442

Passing Arguments to Shell Scripts .. 446
Scheduling Automations... 447

launchd .. 447
cron.. 449
Daily, Weekly & Monthly Scripts.. 450

Triggered Automations... 451
Self-Destructing Scripts ... 452

Automating User Creation from a Third-Party Database... 453

xii

Logging ... 458
Working with Date and Time .. 459

Automating System Tasks .. 460
Configuring Local Administrative Permissions .. 460
Allow Local Users to Manage Printers ... 464

Home Folder Permission Maintenance .. 465
Enabling the Software Firewall.. 472

Managing Items in ARD .. 475
Disk Utilization ... 475
Network Setup.. 476
Power Management.. 481
ServerAdmin Backups and Change Monitoring.. 483
Xserve Lights-Out Management ... 487

Troubleshooting .. 488
Further Reading .. 490

■ Chapter 9: Virtualization ..493
Boot Camp... 494
Thin Clients ... 495
VMware ... 495

VMware Fusion in Monolithic Imaging... 496
VMware Fusion with a Package-Based Deployment .. 501

Virtual Machines ... 503
Preparing the Virtual Machine for Mass Deployment... 505
Virtual Machine Deployment .. 506

Populating the Virtual Machine List... 510
Parallels .. 511

Parallels on a Monolithic Image... 512
Virtual Machine Deployment .. 514
Automating the Parallels Installation... 519
Automated Virtual Machine Deployment .. 520

Managing Windows... 521
Sysprep... 521
Configuration Management .. 525
Policies and Open Directory ... 527

Computer Configurations ... 528
User Configurations ... 529
Other Virtualization Solutions.. 529

Wine .. 529
Managing VMs and Boot camp Through GPOs .. 530
AntiVirus ... 532
Further Resources... 532

■ Chapter 10: iPhone...535
The iPhone Simulator .. 536
Email ... 537

xiii

IMAP, POP, and SMTP... 538
Setting Up the Exchange Client .. 540

Installing Certificates.. 542
Network Connections .. 544
Leveraging the Web Browser .. 546
Citrix.. 547
iPhone Configuration Utility .. 548

Building Configurations .. 548
Deploying Configurations ... 564

Importing and Exporting Profiles... 567
The App Store.. 569
KACE.. 570
Managing iTunes... 571
Troubleshooting .. 572

Updates... 573
Leveraging the Logs ... 574
Backup and Restoration ... 574
Bypassing the Passcode... 576

Further Reading .. 576
■ Index ..577

xiv

About the Authors

■Charles S. Edge Jr. is the Director of Technology at 318, which is based in Santa Monica, California, and is the
largest Mac consultancy in the United States. At 318, Charles leads a team of more than 40 engineers and has
worked with network architecture, security, and storage for various vertical and horizontal markets. Charles
maintains the 318 corporate blog at 318.com/techjournal as well as a personal site at krypted.com.
Charles is the author of a number of titles on Mac OS X Server and systems administration topics, including three
titles from Apress for Mac OS X 10.6. He has spoken at a variety of conferences including DefCon, Black Hat,
LinuxWorld, Macworld, MacSysAdmin, and the Apple WorldWide Developers Conference. Charles is the developer
of the SANS course on Mac OS X Security and coauthor of its best practices guide to securing Mac OS X as well.
Charles now lives in Minneapolis, Minnesota, with his wife, Lisa, and sweet little daughter, Emerald.

■Beau Hunter has worked professionally with Apple technologies since 1999 and has supported businesses
running the Mac OS for more than 10 years. Throughout this time, he has developed a strong skill set supporting
and securing Apple OS X Server in multiple capacities: clustered web and database solutions, cross-platform
integration, high-performance SANs, high-capacity backup systems, automation, and cross-platform mass
deployment and integration.
Beau has spoken at numerous events, including Macworld 2009, and has been confirmed to speak at Macworld
2010. In his free time he can be found writing Python and PHP, playing PC games, and rooting for the Seattle
Seahawks. In November 2009, Beau and his wife, Monica, will be returning to their true home— Seattle,
Washington.

■Zack Smith has worked as an IT consultant his entire adult life. He has consulted for insurance companies,
entertainment companies, medical organizations, and governmental agencies. Zack is an Apple Certified Trainer and
as such has taught Apple's Security Best Practices and many other Apple Certified System Administrator–level
classes, such Mac OS X Deployment and Mac OS X Directory Services, at Apple and various market centers in
Boston, Virginia, Los Angeles, and Cupertino. . Zack has spoken at Macworld San Francisco and at smaller venues
as well, such as IT user groups. Zack is the author of a set of open source IT administration software and scripts
and has long-term plans to be a full-time Objective-C developer. When not attending IT and security conferences or
traveling for work at 318, Zack can be found in Portland, Oregon, with his partner in crime, Anna, and dog, Watson.

xv

About the Technical Reviewers

■Joe Kissell is Senior Editor of TidBITS, a Web site and e-mail newsletter about the Mac and
the Internet, and the author of numerous print and electronic books about Mac software,
including Take Control of Mac OS X Backups and Take Control of Upgrading to Snow Leopard.
He is also a Senior Contributor to Macworld and was the winner of a 2009 Neal award for Best
How-To Article.
Joe has worked in the Mac software industry since the early 1990s and previously managed
software development for Nisus Software and Kensington Technology Group. He was named
one of MacTech's 25 most influential people in the Mac community for 2007. When not writing
about Macs, Joe likes to cook, travel, watch movies, and practice tai chi. He also runs a

number of Web sites, including JoeKissell.com and the popular Interesting Thing of the Day (itotd.com). Joe lives in
Paris with his wife, Morgen Jahnke, and their cat, Zora.

■Dee-Ann LeBlanc has been into computers since she first got her hands on one and shortly
after had her first Apple computer. Since then she's done help desk work, technical consulting,
computer books and articles, and technology journalism covering a variety of platforms. Her
specialties include Linux, open source, OS X, and content management systems.

■Brad Lees has more than 12 years of experience in application development and server
management. He has specialized in creating and initiating software programs in real estate
development systems and financial institutions.
His professional career has been highlighted by his positions as Information Systems Manager
at The Lyle Anderson Company of Scottsdale, Arizona; Product Development Manager for
Smarsh; Vice President of Product Development for iNation; and Information Technology
Manager at The Orcutt/Winslow Partnership, the largest architectural firm in Arizona, based in
Phoenix.
A graduate of Arizona State University, Tempe, Brad and his wife, Natalie, reside in Phoenix with

their four children.

xvi

Acknowledgments

I'd like to first and foremost thank the Mac OS X community. This includes everyone from the people that design the
black box to the people that dissect it and finally the people that help others learn to dissect it. We truly stand on the
shoulders of giants. Of those at Apple that need to be thanked specifically: Schoun Regan, Joel Rennich, Greg
Smith, JD Mankovsky, David Winter, Stale Bjorndal, Cawan Starks, Eric Senf, Jennifer Jones, and of course the one
and only Josh Wisenbaker. A special thanks to Randy Saeks for his contribution to the title and to Michael Bartosh
without whom any of the directory services content in this title likely would not have been possible. Also, thanks to
the crew at 318 for their hard work. Without you guys I would never have been able to take the time to complete this
book!
Finally, a special thanks to the fine staff at Apress for tuning this book to be a well-oiled machine of prose and code.
This especially includes Clay Andres for getting the book kick-started and, of course, Debra Kelly, the best whip
cracker I have had the joy of working with to date. Thanks also to my coauthors, Beau and Zack, for tirelessly
working with me to meet our deadlines — it was a fun ride!

Charles S. Edge Jr.

xvii

Introduction

In the beginning was the command line. You can automate anything and everything in Mac OS X, but
knowledge of the command line will be required to fully automate your deployment and integrate Mac OS X in the
enterprise while maintaining a low total cost of ownership. This isn't to say you can’t integrate Mac OS X into a large
organization en masse without using the command line — you can.However, from automation to troubleshooting,
opening up a terminal window will be key to keeping your sanity, if only from time to time. But don’t fear the
terminal, and know that the fundamental tasks required and the fundamental methodologies with Windows
deployments are the same as with Mac OS X.

If you are reading this book, then you are likely charged with integrating Macs into your environment,
whether kicking and screaming (which we hope this book will change) or as the sponsor. The message that you take
away from this book is hopefully that you can do anything you want to with Mac OS X, from deploying 10,000
machines overnight to building a petabyte worth of storage to house all sorts of data for your Macs, provided you
are not averse to learning a little bit of command line to achieve your goals. The power and flexibility of Mac OS X
along with the best of the open source community is right at your fingertips to help along the way.

The first question many in IT ask when told about the need to use the command line is, "But isn’t Mac OS X
supposed to be easy to use." It is. But we're not talking about just using the Mac. We're talking about building and
managing a complicated IT infrastructure, which at some point requires staff that is tooled with the mastery of the
internals of each platform for which they are tasked as the steward. As such, the more you learn about internals, the
more you learn about the basics, the more you can automate, the more you learn about what goes on under the
hood, the more you can master management en masse, and, ultimately, the more appropriately you will be able to
address issues and concerns on an enterprise-wide scale as they arise. To take this a step further, the more you
learn about managing a second platform (no matter what the platform is), the better you will be at managing others.
But drastic reduction in Total Cost of Ownership is possible with OS X compared to other platforms for a variety of
reasons. And since users are typically happier on a Mac, who wouldn’t want a happier user base combined with
lower recurring costs.

Paradigm Shifts
Just as when enterprise computing was young, you will need to rethink some of your strategies to

accommodate for a wider variety of platforms, resulting in a paradigm shift of sorts. But luckily you are not alone,
and the jump is not as bad as many seem to think. There are a number of resources to help you through the
process. From web sites

xviii

to books, from Apple engineers to third-party providers/channel partners, from e-mail lists to user groups,
you are not on an island. And while it is not fully open source, the Mac platform is a largely community-driven affair.
One of our contributions to that community is this book, where we take on the lofty task of bridging the gap
between your enterprise and your Mac.

The fundamentals of designing a Mac-based enterprise are the same as with any other platform — the
specifics are not. In any enterprise organization you will need to perform a mass deployment, whether all at once or
a refresh cycle performed on an ongoing basis. Every enterprise will also need centralized servers that provide a
number of services to hosts on the network, including directory services, shared storage, groupware, and
application servers. But the software that provides the needs of an enterprise is often different with the Mac than
with other platforms. This isn't to say that the functionality of solutions already in use in many organizations cannot
be extended to cover Mac OS X. But in some cases it is going to garner a higher return on investment to prop up an
entire infrastructure to support the Mac while in others you are best to leave your existing solutions in place and
extend them to the Mac.

Mac OS X is a standards-compliant operating system — to a point. Given the support of a number of
standards, Mac OS X can be integrated into a primarily Microsoft environment. This includes support for Active
Directory, Exchange support (either through Entourage or natively with ActiveSync), DFS, SMB/CIFS, and NFS.
Many Microsoft-centric solutions will work out of the box. But when compared to the features available to Windows-
based users, you may find yourself frustrated with integrating systems on a large scale. Users may also be
frustrated with certain features that are missing when moving from Mac to Windows. Ultimately some of these
features can even result in needing to purchase a third-party solution, deploying a thin client-based solution, or
using virtualization solutions to ease the pain of integration, be it temporarily or permanently.

None of these obstacles are insurmountable. Through each release of Mac OS X, the system has become
more and more enterprise friendly. And with each subsequent release you can expect that trend to continue. But
don't expect to be able to do business as usual; expect to slightly alter your way of thinking to a more open model
of computing. That shift toward openness, once you get right down to it, will make the process far easier and far
more rewarding and in the end will lead you to a new paradigm in how you deal with enterprise computing.

Measure Twice, Cut Once
This likely goes without saying, but here goes: Before you deploy and integrate on a large scale, test.

Before you test, plan. The more you plan, the less work you will ultimately have to do. What do you need to plan for?
In our experience, it all starts with directory services. This is why the very first chapter of the book jumps into
directory services, and from there we cover further integration in the same order that most organizations build out
that infrastructure. It varies between environments, but if you go through each chapter and take into account the
technologies introduced, then you will be able to plan more holistically.

Mac OS X is a great platform and suitable for a bevy of uses, but not the right fit for providing a number of
network services. Therefore, throughout the book you will find information for integrating with existing infrastructure
that may or may not be more suitable given your shift in platforms (however extensive that shift may be). Aside from
infrastructure, the Mac systems you are planning to deploy and support require users to be productive on them,
something they may not be able to do within the confines of Mac OS X. The book ends with virtualization and thin
client solutions that can be leveraged to provide services that otherwise would not be available to the Mac platform.

Application Availability
While the book covers virtualization, the best deployments are going to be those that don’t require any

applications to be virtualized. If your organization has invested in leveraging a consumer model — a mixture of using
cloud services and migrating client-based software into intranets — then the Mac is more likely going to be able to
take on your software with ease. But if you are using a number of proprietary products that do not come with a Mac
OS X client, then you may need to use some form of virtualization to bridge the gap.

Long term, though, you need a plan to migrate to applications that are cross platform in order to keep the
costs for your Mac OS X clients at a minimum. There are a number of sites available to help you find software for the
Mac, most notably versiontracker.com. But there will be times when the Mac software is not as advanced or well

xix

kept as the Windows versions. This can lead to frustration from end users who possibly once championed the
platform. In this case you may have to virtualize the software or an entire operating system in order to achieve parity.
But this is where testing on a per-group basis will become key to planning your deployment.

When testing, make sure each user in your pilot thoroughly tests each piece of software. Find the biggest
power users in a group and ask them to be your testers. Their voices will often be heard the loudest when things
don’t go well. But if you can keep them involved in the process and communicate with them along the way, once
you achieve success you will often have the best proponent you could ask for.

How This Book Is Organized
Sandwiched between chapters on directory services and virtualization there are a variety of other topics

that have been near and dear to organizations big and small as they grapple with integrating Mac OS X. These
topics have been broken down into a number of chapters, each playing a critical role and requiring specialized
planning. A summary of the chapters, aimed at guiding your planning and deployment:

Chapter 1 - Directory Services is a critical aspect of Mac OS X integration. In this chapter we cover how
to set up a directory services environment using Open Directory, Apple's own directory service solution. Whether
you are an Active Directory environment, eDirectory, or some other variant of a supported directory service, you will
need to become acquainted with the fundamentals of implementing Open Directory. Additionally, Open Directory
can be leveraged to work with Active Directory, providing a compelling framework for policy management.

Chapter 2 - Directory Services Clients are as critical as directory services themselves. In this chapter, the
focus is on how to configure the directory services client from the command line, allowing you to deploy complex
and automated binding scripts. The script examples provided with Chapter 2 will, at a minimum, help to get any
mass deployment of Mac OS X in motion, saving a considerable amount of time and giving a glance into best
practices that can be applied to further automation topics that will arise throughout the book.

Chapter 3 - Active Directory deserves a dedicated chapter. Why? The binding process, while part of the
directory services framework, is considerably different than that of the other directory services modules. The third-
party solutions, requirements, roadblocks to a successful integration, and the methodology are just that different
from the other directory services modules. These differences should show the considerable amount of development
taken on by Apple in order to provide such a feature-rich Active Directory solution.

Chapter 4 - Storage is a requirement for any business. Sure, some pundits say that eventually storage
will all be in the cloud, but it's not yet. And you need to automatically mount, log into, and configure storage in
such a way that your Mac clients can connect to it, use it for home directories, synchronize it, and even share it
out themselves if need be.

Chapter 5 - Messaging and Groupware mean productivity. In this chapter we look at the options for
typing your Mac OS X clients into shared groupware services hosted on Microsoft Exchange and Mac OS X Server.
We also look into implementing groupware-oriented policies in the environment and automatically configuring
groupware applications as part of your deployment process.

Chapter 6 - Mass Deployment. Whether it's imaging, deploying the image, or automating the tasks that
enable you to be closer and closer to the one-touch image, this chapter is all about providing a step-by-step
process to accomplishing these tasks. However, over the past few years a number of solutions have emerged to
make mass deployment infinitely easier for administrators. Therefore, of the tasks we follow through the steps, we
will use a different solution for each, allowing you to see a spectrum of options.

Chapter 7 - Mac OS X has a rich Client Management framework. In this chapter we look at local and
directory services–based deployments of policies and explore the options for extending existing solutions to cover
client management.

Chapter 8 - By Automating Administrative Tasks, you as an IT professional (or the manager of an IT
professional) will be freed up to take on enhancing how your business interacts with technology (or you'll learn to
fish, sleep nights, etc.). In this chapter we take a deep look into scripting and other forms of automation. This is
where mastery of the command can become absolutely critical.

Chapter 9 - iPhones are cool. They're popular and gaining a considerable footprint in the enterprise space,
given the penchant for synchronizing with Microsoft Exchange and the robust Objective-C development platform.
But how do you deploy and manage thousands of the things? And while you're doing that, how do you use the

xx

features for connecting to standard enterprise application sets? In this chapter we help you get there and introduce
you to some tools and techniques to ease the burden.

Chapter 10 - Virtualization. You just can't do everything on the Mac that you can do in Windows XP,
Windows 7, Linux, or any other operating systems you can think of. Therefore, we give you a whole chapter of
virtualization and thin client best practices and deployment techniques to ease the burden of your now doubled
operating system footprint if you embark on this convoluted journey.

Chaos Theory
There is no magic bullet for your deployment. Most environments are going to be different in some way,

shape, or form from every other environment out there. But provided there is industry-standard infrastructure (and
most vendors have long since moved into providing industry standards) then rest assured that there is some way to
make your Mac clients integrate fairly seamlessly into the enterprise. Therefore, while we don't have a magic bullet
to offer, we do have a plethora of options for a given situation, options you can use to cut costs, reduce required
human capital, and free up IT staff for creating value to businesses rather than living in the IT cost center.

1Chapter

Directory Services
A directory service is the software that stores, organizes, and provides access to
information in a directory. In the context that we will use the term throughout this
book, we mean a database of users, groups, computers, and network devices such
as printers. The directory service supplies that database to client computers. In
most enterprise, educational, and larger institutions, common directory service
implementations range from Microsoft’s Active Directory (AD) to Novell’s eDirectory,
as well as the open source Open LDAP. Most modern directory services are based on
standards developed in the public forum.

The most common standard architectural guidelines are defined in the X.500 model
‘‘The Directory: Overview of concepts, models and services.’’ While the concepts and
roots of most directories are complex, by their very nature they share the simple goal of
unified user management, authentication, and authorization. Directory servers with
different origins thus find many commonalities in their structure and accessibility. The
Lightweight Directory Access Protocol (LDAP), which is utilized by nearly every major
directory service system, is a testament to this need for accessibility, as we will discuss
later in this chapter. Put simply, any system engineered for large-scale centralized
authentication must inherently allow disparate clients to participate, otherwise it is
doomed to a finite growth potential.

In Mac OS X, there are a number of plug-ins that allow you to leverage a variety of
different directory services. Each computer must at least contain a local directory
service database to establish a baseline of system-critical data, such as users, groups,
and even some configuration data. If every Mac OS X computer sold required an
enterprise directory service just to login, Apple stores would not be popping up like
Starbucks in cities around the United States. Local authentication is a cornerstone of all
modern operating systems, and often the gateway for small and medium businesses to
grow into larger directory systems over time. A common misconception is that Apple’s
Open Directory terminology is applied only to its enterprise-class authentication
services. In reality, the same term refers to those local or client standards implemented
in local accounts. In fact, in previous operating systems, Apple even had the same
technology running on Open Directory masters, such as 10.2 netinfod and 10.3
Password Server. This concept of architecting what amounts to miniature directory
servers into the base operating system allows for later migration to larger directory

1

CHAPTER 1: Directory Services 2

service systems without much reeducation of entry-level system administrators. The
best example of this is Apple’s parental controls system that, at its base, leverages the
same technology used to manage thousands of Mac OS X in enterprise environments
every day. Due to such forethought, clients can also be configured out of the box to
utilize a variety of other external directory services; support for several network-based
directory service systems is provided without the installation of any additional software.

This chapter starts with an explanation of how the local directory service works. Once
we have explained how local users can be managed, we will move on to discuss LDAP,
the industry-standard directory database used to supply directory services. Next, we will
cover various types of binding to directory servers from Mac OS X that let end users log
into their computers using a centralized username and password. Finally, we will look at
building external accounts and show how to build a directory service based on Apple’s
Open Directory.

Local Accounts
In Mac OS X, System Preferences are similar to Control Panel in Windows, and they
allow you to configure a wide range of settings. The information you set in these panes
is stored in files throughout the operating system. Local directory service configuration
is accessed through the Accounts preference pane, which provides the ability to add
local user and group accounts. Accounts can also be added to groups, assigned a type,
and a few other options can be set.

To access a System Preferences pane, click on the Apple in the top left corner of the
screen and then on System Preferences, or launch the application directly from the
/Applications folder. You will then be shown all of the System Preferences available.
Next, click on Accounts and you’ll see the list of Accounts on the left side of the screen.
As you click through each one, you will see the options for that account on the right side
of the screen. To make changes in this area, you must first authenticate to System
Preferences by clicking on the lock in the lower left corner of the Preferences window.
For the authentication to succeed, the user must be a member of the local directory
service’s admin group.

TIP: The /etc/authorization file is used to determine which users are able to attain
elevated privileges for a variety of operations. In a standard OS X environment, the admin
group will be able to obtain escalation for all authorization rights. However, this file can be
modified to provide very granular administrative access to users. For instance, to manage
users via the System Preference pane, a non-admin group could be specified under
system.preferences.accounts, which would then give its members administrative access
solely to the Accounts pane of System Preferences.

CHAPTER 1: Directory Services 3

Creating Accounts
To add an account, first click on the lock icon in the Accounts System Preferences
pane, then click on the plus sign to create an account. In the Account: field you’ll see the
five options shown in Figure 1-1, which indicate the basic account types for Mac OS X.
These include:

 Administrator: Administrative accounts, accounts with elevated
privileges; can open System Preference panes and perform most
tasks.

 Standard: Standard User accounts; cannot open System Preference
panes and cannot perform administrative tasks.

 Managed With Parental Controls: Standard User accounts with
policies applied to them.

 Sharing Only: Accounts that cannot log onto the local system but can
access resources via file sharing protocols.

 Group: A group of user accounts.

Figure 1-1. Contextual menu for account types

Once you have selected an account type, enter a full name in the Name: field and a
short name in the Short Name: field. For example, the full name might be John Doe and
the short name jdoe. By default, the short name is generated from the full name in lower
case with spaces removed. The full name is primarily used for display purposes and can
be changed at will. The short name has additional system-level functions. Notably, it is
used to name a user’s home directory when first created, though that directory can be
changed to a different location that does not correspond to the short name (such as a
‘‘mystuff’’ folder on a external drive).

CHAPTER 1: Directory Services 4

The short name is used for other purposes as well, such as establishing a primary email
mailbox for the user or for linking scheduled items through cron. Because of this, setting
the initial short name demands some consideration. It’s also worth noting that the short
name cannot easily be edited in the prominent user interface, and though right-clicking
on a user account and choosing Advanced Options allows you to edit this name (as
seen in Figure 1-3), doing so has other repercussions, such as loss of group
membership (such as admin); possible loss of preference data if an application stores
configuration data based on the short name; or disassociation of the user’s home folder.
In most cases when you plan to modify a user’s short name, you will also want to
rename his home directory to coincide. This is merely for cosmetic reasons and is not a
necessity. You can change short name jdoe to psherman and still utilize the original
home directory stored at /Users/jdoe. If you do change the home directory to
/Users/psherman, you should make sure you rename the user’s home folder on the file
system to match the new path specified (in this case, from the original home directory
value /Users/jdoe to /Users/psherman).

Next, enter the password the user will use in the Password: field and then enter it again
into the Verify: field. The small key icon in this dialog box will reveal the Password
Assistant, an interface that assists users with choosing strong passwords by supplying
them with visual feedback. This functionality is available as a stand-alone program using
third party applications available on the Internet, and can also be accessed via the
Keychain Access application when you create a new password item. Optionally, you can
enter a hint as to what the password is in the Password Hint: field. If a password hint is
set for a user, it will be displayed when the user fails to authenticate when logging in.
Here you can also check the box to enable FileVault, which encrypts the contents of the
user’s profile or home folder.

When you are satisfied with your settings, click on the Create Account button. You have
now created your first Mac OS X user. If you are done making changes, you should
close the lock options available in the Security system preference pane, which will cause
the System Preference to forget your previous authentication each time the application
is reopened during your timed session. Alternatively, if you forget to close the lock, the
elevated privileges will time out.

Granting Administrative Privileges
As noted earlier, you can choose to make a user an administrator of the local computer
when you create an account. To elevate an existing account to an administrative
account, you can simply check the Allow user to administer this computer checkbox, as
shown in Figure 1-2. To set up basic policies for an account, you can click on the Open
Parental Controls button for any non-administrator account and enable them. (We will
cover more in-depth policies on local and network directory services accounts further in
Chapter 7, Client Management.)

CHAPTER 1: Directory Services 5

Figure 1-2. Making a user an administrator

As mentioned previously, you can also edit some slightly more advanced settings from
within the Accounts System Preference pane. These settings are accessible by control-
clicking on the account name and then clicking on Advanced Options, which brings up a
screen similar to the one in Figure 1-3. This screen lets you change the values for
various attributes of the accounts, including Short Name, User ID, default group, path to
the home folder, default shell and the generated ID for the account. You can also add
aliases using the plus sign; this allows the same account to authenticate using multiple
names in the authentication dialogs throughout the operating system. We will discuss
these attributes later in the chapter.

CHAPTER 1: Directory Services 6

Figure 1-3. Advanced account options

The Root Account
In a Unix, BSD, or other *nix environments, the root account can do things that even
standard administrators typically can’t do. A root account can be a security risk, which
is why Apple has disabled root by default, but it is an account you may find you need to
enable from time to time. If you are new to administering Mac OS X from the command
line, you may wish to enable the root account for certain GUI operations that would
otherwise use the command line, such as renaming a home folder or editing a
configuration file owned by root.

To enable the root account, open the Directory Utility application found on the Accounts
pane of System Preferences (version 10.6), or in the /Applications/Utilities folder (version
10.5). As with most secure operations in Mac OS X, you will need to authenticate to
perform this action using the lock in the corner of this window. Then click on the Edit
menu and select Enable Root User, which will display the screen shown in Figure 1-4.
Next, enter the password that will be assigned to the root user and click on OK.

CHAPTER 1: Directory Services 7

Figure 1-4. Enabling Root in Directory Utility

You can also enable the root account using the command line. The dsenableroot
command can be used to enable the root user and assign it a password. To enable
root, enter:

dsenableroot

First you will be prompted for the current user password; this user must be an
administrative account. You will then be prompted twice, first for a password to assign
the root account and then to verify the password. On success you’ll see the following
success code:

dsenableroot:: ***Successfully enabled root user.

To disable the root account, enter:

dsenableroot –d

TIP: It is best to leave the root account disabled when you do not need it. If you do enable it, do
so only temporarily.

CHAPTER 1: Directory Services 8

How the Local Directory Service Works
The local directory data resides primarily in the folder found at /private/var/db/dslocal.
This folder, which will require elevated privileges to access, contains numerous files
pertaining to the computer’s directory service configuration. For instance, accounts for
Users and Groups are stored in flat property list (.plist) files nested in the /private/
var/db/dslocal/nodes/Default directory. Users are stored in /private/var/db/dslocal/
nodes/Default/users while groups are stored in /private/var/db/dslocal/nodes/Default/
groups. Every local user and group account has a corresponding .plist file found in these
directories, as seen in Figure 1-5, which shows the contents of /private/var/db/dslocal/
nodes/Default/.

Figure 1-5. Contents of a dslocal node

The above output is trimmed, but each folder will contain a plist file for each respective
user, computer, or group in the local directory. Accounts that begin with an underscore
(_) are hidden service users and groups. For example, the web server uses the_www
account, which obtains user settings from the _www.plist file. The _www user can’t log
in because the account has no shell or password. If you created a new user in the above
section, look in the /private/var/db/dslocal/nodes/Default/users directory and you should
see a .plist file with a name that corresponds to the new user’s short name.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Directory Services 9

Inside a .plist file there are a number of attributes containing data about a given user or
group. Looking at local users and groups from a Microsoft Windows perspective, files in
the local directory node resemble registry keys for local accounts. Examine the .plist file
for the user created earlier and look for the key called authentication_authority.

 <key>authentication_authority</key>
 <array>
 <string>;ShadowHash;</string>
 </array>

This key specifies the service that will be utilized to authenticate the user. Notice that it
says ShadowHash, which indicates that the system will use a local file called a hash file
to authenticate the user. Mac OS X password hash files contain copies of a user’s
password in multiple formats; this Rosetta Stone allows for different services to
authenticate a user with their own native password encryption type. If this were not the
case, the password would need to be stored in a much less secure reversible hash in
order to support the various authentication schemes out there. It also should be noted
that for ShadowHash users, any network service that does not support SHA-1 (Secure
Hash Algorithm 1) or NTLM (NT LAN Manager) authentication will require cleartext
authentication; SSL is highly recommended in these scenarios.

In the user’s plist file, you will also see a generateduid key, which is used to track the
user account even if the short name is changed. GeneratedUIDs are based on a
standard called the Universally Unique IDentifier (UUID), which is a complex,
programmatically generated string of characters that will never be duplicated in our
lifetime. A UUID is unique across time and space for every user.

If you look in the /private/var/db/shadow/hash directory, you will find a file that is named
using the value of this key. This means that even if a user account’s username is changed,
the password will still be tied to that account. Moreover, it prevents stale password files
from collecting, which would happen if passwords were based on the short name. In 10.4
and later, the password hash file will contain at least a SHA-1 salted hash for the user,
which is a secure, unrecoverable password type. If Windows file-sharing services are
enabled for the user, it will also contain the respective NTLM hash for that user, which is
used by our Windows file-sharing components. Apple has struggled to implement the best
balance of security and functionality in regard to password hashes. While hashes for
Windows file sharing require NTLM, the NTLM hash type is more susceptible to common
password attacks, which makes its recoverability more feasible. Apple only enables
the NTLM hash when Windows file-sharing users are specifically configured for
SMB/Windows sharing access in the System Preferences Sharing pane. Storing
passwords in a hash file allows for a consistent password file location, with flexible
extensibility for other password hashes such as NTLM. In the above example, the
authentication_authority record, which has a value of ;ShadowHash;, tells the local directory
service to consult the user’s local hash file when the user attempts to authenticate.

The data from the account property lists can be managed by modifying the text files
directly. For example, if you want to change a user’s picture, you could alter the picture
key. However, editing property lists directly can be pretty cumbersome, so Apple has

CHAPTER 1: Directory Services 10

provided a host of commands that can be used to manage and query data from the
local directory node and other directory services plug-ins without having to read raw
XML-style property list data. Some commands have GUI equivalents while others do
not. Here are some of the commands:

 dirt: used to test authentication in 10.4 and 10.5, tests authentication,
for example dirt –u zsmith –p 'd0gc4t'. The only GUI equivalent
would be the login window or an authentication screen. As of 10.6, the
dirt utility is no more; the dscl utility now performs this role.

 dscacheutil: looks up information stored in the Directory Services
cache and flush various caches

 dscl: used to edit and browse directory services settings, such as user
accounts, group accounts, and search policies (the order in which Mac
OS X looks up account information in each directory service). The
closest GUI equivalents would be the Accounts System Preference
pane and the Directory Utility. This command is covered in more depth
in the next section.

 dseditgroup: used to edit, create, and delete groups or to add or
remove group members.

 dsenableroot: manages the root user account (enable, disable, and
reset the root password). The GUI equivalents are the Change Root
Password and Enable Root User or Disable Root User options in the
Edit menu of Directory Utility.

 dserr: prints a description of Directory Services-related errors, example
dserr 14090. Once you have the error code, you can use the man
page for DirectoryService to look up the meaning of each error (or
Google for more information on the specific errors, but quote errors if
there is a --- in front of the number).

 dsexport: exports directory services data. Similar functionality is
available using the Export feature of Workgroup Manager, a tool
distributed as part of Mac OS X Server.

 dsimport: imports directory services data. Similar functionality is
available using the Import feature of Workgroup Manager.

 dsmemberutil: looks up UUIDs and group information and flush group
cache, for example dsmemberutil flushcache.

 dsperfmonitor: run performance monitors of the directory services plugin,
useful with debugging operations, for example dsperfmonitor –dump.

 id: look up a user identity, including group memberships, for example
id zsmith.

CHAPTER 1: Directory Services 11

You can learn more about these commands by viewing their manual pages using the
‘‘man’’ command line program. For instance, the following command looks up the
manual page for the dscl tool:

man dscl

For more information about the command line, use their manual pages—that is, man
“command”.

In many enterprises, one of the first differences that cross-platform administrators notice is
that by default, domain administrators from a directory service are not administrators of
local Mac OS X client computers (although, as we illustrate in Chapter 3, Active Directory,
you can make Enterprise Admins or any other group administrators of Mac OS X clients).
To mimic this functionality, it is possible to nest a network directory service group inside of
the local administrators group, thereby granting local administrator rights to all network
members of that group. This is very handy in large environments where administrator
access may need to be limited to subsets of administrators. This technique is covered in
more detail in Chapter 7, Client Management.

While we recommend having all of your admins use their own unique network
credentials for administrative tasks, it is always recommended to maintain at least a
single dedicated local administrative account on Mac OS X systems to ensure that you
always have administrative access to your client nodes. To create these local
administrative accounts, you can use the Setup Assistant or the Accounts System
Preference pane. This is common in monolithic imaging environments (imaging is
covered further in Chapter 6, Mass Deployment), but it’s not entirely scalable in most
cases. You can also use dscl in a scripted fashion.

dscl
For a number of tasks, dscl is the gateway to directory services. This can include viewing
existing information from local or network directory services, augmenting settings for the
local directory service node, or altering how the directory services daemon functions,
including the priority that is given to each directory domain, or entry in a plug-in.

From an enterprise management perspective, perhaps the most useful aspect of dscl is
that it can be used to automate account creation and editing. To create a local account
using the command line (and thus be able to script the process), dscl is the preferred
command. Dscl is an interactive tool that can, in its simplest form, be used by simply
typing dscl at a command-line prompt. To see all of the directory services plug-ins that
are enabled on the system, type ls at the prompt:

> ls
Active Directory
BSD
Local
Search
Contact

CHAPTER 1: Directory Services 12

You can use dscl as any given user if you’re only interested in reading account
information. However, in order to alter the contents of a database, you will need
elevated privileges. To invoke dscl with elevated privileges, prepend the command with
sudo as follows:

sudo dscl

The sudo command can be prepended to any command to force it to run with root
privileges. When using sudo, you will be prompted for the currently logged-in user’s
password, and that user must be an administrator. The sudo command will cache
credentials for 5 minutes after successful authentication, so if you have recently used it,
you will not need to retype your password.

At this point, you should be in an interactive command-line environment and see a > on
the screen, so we’ll prepend each command with a > so that our screen matches yours.
The first step in the process of creating a new account is to add a user to the database,
which will create a new .plist file for the account. This can be done with the –create
dscl command followed by the path to the record being created. In the following
example, we will create an empty account called corpadmin:

> -create /Local/Default/Users/corpadmin

A property list is made up of keys. In the above example, we did not specify any keys.
The dscl command created the record and, therefore, a file in the form of the
corpadmin.plist file has manifested in /var/db/dslocal/nodes/Default/users. In order for
the corpadmin account to be viable, we now need to create a number of keys that tell
the directory services daemon about this user. These keys make up the attributes for the
account. A list of commonly used user attributes can be seen in Table 1-1.

Table 1-1. Basic User Attributes

Attribute Purpose

UniqueID An integer id unique to this user.

PrimaryGroupID Denotes the primary group of the user.

GeneratedUID A universally unique identifier for the user.

NFSHomeDirectory Absolute path to the user’s home directory.

RealName The user’s full name.

RecordName The user’s short name.

UserShell The user’s default shell.

CHAPTER 1: Directory Services 13

To create our own user by hand, we will need to assemble the required attributes, let’s
enter what in the Account add screen from the Accounts System Preference pane would
be the Name: field: RealName. We will use the –create the key to do this. Because there
is a space in our name, let’s put what will go into the record in quotes:

> -create /Local/Default/Users/corpadmin RealName "Corporate Administrator"

Next, we’ll give our user a User ID using the UniqueID key. This ID should be unique (as
the name implies), and so no other accounts should have the same ID. We will again use
the –create command:

> -create /Local/Default/Users/corpadmin UniqueID 1500

Now we’ll set up a Default Group ID (GID), which has an attribute of PrimaryGroupID.
We’re going to set the PrimaryGroupID to the Staff group, which has a group number
of 20:

> -create /Local/Default/Users/corpadmin PrimaryGroupID 20

CAUTION: As with most things that happen at the command line, dscl is unforgiving with
regard to typos, including spaces, and so on. But it does support tabbed auto-completion,
which is awesome.

We also need to give the account a default shell to use if it is going to do anything
meaningful. The default shell is the shell used when a Terminal.app window is first
opened. The attribute for a default shell is UserShell. The contents of this key should be
any shell on the system, including /bin/zsh, /bin/tcsh, or the default with Mac OS X,
/bin/bash. To prevent users from utilizing a shell account, assign /usr/bin/false as their
shell, which will immediately terminate any attempts at a shell session, as well as disable
access to the terminal application. This also prevents an account from logging in via
loginwindow, in which case /usr/bin/true is a completely acceptable substitute. To set
the shell attribute, create the UserShell key using the following command:

> -create /Local/Default/Users/corpadmin UserShell /bin/bash

Every user needs a home directory. Even the root account has one (/var/root by
default). The home directory doesn’t need to reference a path that currently exists as
the first time the user logs into a system the home directory will be created and
assigned appropriate permissions. The attribute for the home directory is
NFSHomeDirectory:

> -create /Local/Default/Users/corpadmin NFSHomeDirectory /Users/corpadmin

Because we’re creating an administrative user, we also need to add the account to the
admin group. Here, we’ll use the –append dscl command rather than –create because
we’re augmenting an existing key rather than creating one. We’ll follow it with the
relative path of the admin group and then the attribute that we’ll be editing and finally

CHAPTER 1: Directory Services 14

the payload of the actual edit. To add the corpadmin user to the administrative
users group:

> -append /Local/Default/Groups/admin GroupMembership corpadmin

TIP: If you know the value of an attribute, it is best to use the --merge option here; if you don’t,
you can use --append.

Next you’ll give your new user a password using the passwd option, typing a password
once the following command is run:

> -passwd /Local/Default/Users/corpadmin

By now, the account should be listed in the local directory service. To make sure, we’ll
use the -list option:

> -list /Local/Default/Users

Once the account has been recognized by the local directory services node, you can
look at information that was not in the original property list, such as the GeneratedUID,
using dscl:

> -read /Local/Default/Users/corpadmin GeneratedUID

The dscl command is also very useful in troubleshooting. In the above command we
were looking for a specific attribute, but if we wanted to see all of the attributes for our
new corpadmin account we could simply run the following:

> -read /Local/Default/Users/corpadmin

Changing Accounts En Masse
If you have ssh or Apple Remote Desktop (ARD) access, you can push out a variety of
changes to an account. Once an account has been created, any of the attributes can be
changed en masse, using dscl. For example, if you wanted to reset the corpadmin
password to MYSECRETPASSWORD, the following command could be sent to each
machine in your enterprise:

sudo dscl . -passwd /Users/corpadmin MYSECRETPASSWORD

NOTE: If you change the password as a non-administrative user, you need to enter the actual
user’s password to do so.

CHAPTER 1: Directory Services 15

Or if you wanted to move the user’s home folder into the /var directory (so it can live
with and be friends with root), you could use the following (assuming you put the original
home folder into /Users/corpadmin):

sudo dscl . -change /Users/corpadmin NFSHomeDirectory /Users/corpadmin /var/corpadmin

Notice that in the above command we used the –change dscl command rather
than –edit. Also notice that in both of these examples, we used dscl along with the
. operator rather than using dscl interactively. By using the . operator, we ended up
with a different relative path to the user record; it is a shortcut to the Local/Default
node. The attribute then appears as:

NFSHomeDirectory: /var/corpadmin

Account Creation Scripts
New accounts can also be created using scripts. These scripts will also leverage dscl,
along with the . operator (no point in complicating things by trying to script against an
interactive command-line environment). To get started, let’s create a script called
adduser.sh on our desktop, and then take the commands we used in the above section
to create our user attributes and put them into a script, replacing the > with dscl . and
removing /Local/Default:

#!/bin/bash
user="corpadmin"
dscl . -create /Users/$user
dscl . -create /Users/$user RealName "Corporate Administrator"
dscl . -create /Users/$user UniqueID 1100
dscl . -create /Users/$user PrimaryGroupID 20
dscl . -create /Users/$user NFSHomeDirectory /Users/corpadmin
dscl . -create /Users/$user UserShell /bin/bash
dscl . -passwd /Users/$user 'MYSECRETPASSWORD'

There is a serious problem with the above script: it has the administrative password in it.
To get around this, you can also create an account by copying the authentication files,
which contain the hashed password, directly to the client system.

Parachuting Accounts into Clients
Next, we’re going to look at what we call performing a file drop to create a user
account. File drops are when we simply copy files into appropriate directories to
achieve a task. In this example, we’re going to take an administrative account we
created on our own system, using either the command line or the Accounts System
Preferences pane. We’re going to grab the .plist file that makes up the account and
the password file from /var/db/dslocal/nodes/Default, and then take the corresponding
password hash for the account from /var/db/shadow/hash; (The name of that hash,
remember, is based on the generated UID.) We’ll simply copy all of these to the same
destinations folders on the client that they were in at the source (the .plist file goes into

CHAPTER 1: Directory Services 16

the /var/db/dslocal/nodes/Default/users directory and the password hash file goes
into the /var/db/shadow/hash directory of the target hosts).

Since we’ve been using dscl, the directory services daemon has been keeping track of
our actions. However, if we aren’t using dscl and we’re file-dropping an account, we
either need to wait for the next restart on the system or restart the directory services
daemon. To restart the daemon, use the killall command with the pattern of
DirectoryService:

sudo killall DirectoryService

Hiding Administrative Accounts
Hiding an administrative account can help keep users in organizations from tampering
with or disabling user accounts, and help maintain a secure channel for administrators
to remotely administer the system. There are a variety of ways to obscure the presence
of an administrative account in Mac OS X. For example if the only admin account on a
Mac OS X client is Administrator with Admin as the short name (case sensitive), then the
admin account won’t show up at the login window. However, it will not be hidden in the
Accounts System Preference pane. If you have multiple admin accounts, you can
suppress them from the login window by adding them to the HiddenUsersList array in
com.apple.loginwindow.plist, using the following command:

defaults write /Library/Preferences/com.apple.loginwindow HiddenUsersList -array-add
mysecretadmin

You can also simply file-drop a new com.apple.loginwindow.plist file into
/Library/Preferences/com.apple.loginwindow.plist.

But these methods simply suppress the admin account from a list of users at login, and
don’t truly hide the account. Here’s another way to hide the accounts. You can set the
any user’s account (either existing or new) with a Unique ID of any integer below 500. To
create a new admin user, you can copy an existing user from /var/db/dslocal/nodes/
Default/users and alter the NFSHomeDirectory, RealName, and UniqueID keys to be
unique (not that a home directory has to be unique, but it should be. And, as noted,
the new UniqueID should be an integer below 500 in order to be hidden). You could
also create a new account called secrethiddenuser with a password of
secrethiddenuserspassword using dscl, with the following script:

#!/bin/bash

dscl . -create /Users/secrethiddenuser

dscl . -create /Users/secrethiddenuser RealName "Hidden Admin"

dscl . -create /Users/secrethiddenuser NFSHomeDirectory /Users/hidden

dscl . -create /Users/secrethiddenuser UserShell /bin/bash

dscl . -create /Users/secrethiddenuser UniqueID 150

CHAPTER 1: Directory Services 17

dscl . -create /Users/secrethiddenuser PrimaryGroupID 20

dscl . -passwd /Users/secrethiddenuser 'secrethiddenuserspassword'

Although this will create a new, hidden user account, it is fairly straightforward to view
the contents of the /var/db/dslocal/nodes/Default/users directory and look for files that
are neither listed in the accounts System Preference pane nor included with a default
install of Mac OS (including _amavisd, _amavisd, _appowner, _appserver, _ard,
_atsserver, _calendar, _clamav, _cvs, _cyrus, _devdocs, _eppc, _installer, _jabber, _lp,
_mailman, _mcxalr, _mdnsresponder, _mysql, _pcastagent, _pcastserver, _postfix,
_qtss, _sandbox, _securityagent, _serialnumberd, _spotlight, _sshd, _svn,
_teamsserver, _tokend, _unknown, _update_sharing, _usbmuxd, _uucp,
_windowserver, _www, _xgridagent, _xgridcontroller, daemon, nobody, root
and the default user applications).

Some will choose to create a hidden user account in an entirely separate directory
services node. This can be done by copying the current directory services node
(/var/db/dslocal/nodes/Default) into a new folder located in /var/db/dslocal/nodes,
and then restarting the DirectoryService daemon (killall DirectoryService). After
restarting DirectoryService, use Directory Utility to specify a custom search path,
and then add the new node. This can also be done using dscl to alter the /Search
node). The downside of creating a new directory services node is that it is fairly
straightforward to find the node’s information using Directory Utility, and if you are
attempting to be a stealthy admin, you have just increased the surface space of your
hidden account.

Raw Mode
If you edit the directory services daemon while it is not running (for example, if you’re
scripting against a bare-metal system for future imaging), you will need to do so in raw
mode, specified by the flag –f. Raw mode allows you to specify the location of the
directory services domain that you will be working against, useful when working
against any non-running systems programmatically. Thus the commands would
become the following:

VOL=/Volumes/newimagehd
dscl -f "$VOL/var/db/dslocal/Nodes/Default" -raw . -create /Users/corpadmin
dscl -f "$VOL/var/db/dslocal/Nodes/Default" -raw . –create RealName "Corporate Admin"
dscl -f "$VOL/var/db/dslocal/Nodes/Default" -raw . –create NFSHomeDirectory
/Users/corpadmin
dscl -f "$VOL/var/db/dslocal/Nodes/Default" -raw . –create UserShell /bin/bash
dscl -f "$VOL/var/db/dslocal/Nodes/Default" -raw . –create UniqueID 1500
dscl -f "$VOL/var/db/dslocal/Nodes/Default" -raw . –create PrimaryGroupID 1500
dscl -f "$VOL/var/db/dslocal/Nodes/Default" -raw . -passwd corpadmin
MYUBERSECRETPASSWORD

CHAPTER 1: Directory Services 18

Set Search Paths
The Search Path in Mac OS X client can be used to define where your system can
search for directory services information, whether local or shared. The search policy
defines which directory services nodes will be searched and in what order. To set the
search path, you need to switch from LSPSearchPath to CSPSearchPath for your
SearchPolicy. To do so, use the following command:

sudo dscl /Search -change / SearchPolicy dsAttrTypeStandard:LSPSearchPath
dsAttrTypeStandard:CSPSearchPath

To switch back to using only a local policy, just run the following command:

sudo dscl /Search -change / SearchPolicy dsAttrTypeStandard:CSPSearchPath
dsAttrTypeStandard:LSPSearchPath

Create Additional Local Directory Nodes
The local directory service is not limited to one directory tree to store property lists.
You can have a number of different directory trees, much like you can bind to a
number of different directory services. This opens up the ability to not only hide an
administrative user from the GUI but also to hide that user from those who might not
realize how to traverse multiple local directory nodes. Moreover, it allows you to store
a directory node on a shared volume or external disk (which would, of course, error
when those are not reachable and would not have the flexibility of an actual network-
based directory service).

First, we’ll make a copy of the local directory services information store we’ve been
working on throughout this chapter. For the following example, we’ll copy it into the
same nodes folder that Mac OS X uses by default, but rather than call our node Default,
we’ll call it NEW:

sudo cp -prnv /var/db/dslocal/nodes/Default /var/db/dslocal/nodes/NEW

The DirectoryService daemon will look in the nodes directory for any newly created
nodes when it is started up. So let’s go ahead and restart the daemon with the
following:

sudo killall DirectoryService

Now open up Directory Utility.app and click on the Search Policy tab, authenticate using
the lock in the lower left hand corner of the screen, and then change the Search: field to
Custom path, as shown in Figure 1-6.

CHAPTER 1: Directory Services 19

Figure 1-6. Changing the Search Path

Next, click on the add icon (indicated by a +) and then add NEW from the list of available
directories. The Default node will always be first in the search path and can’t be
removed. If accounts happen to be in multiple nodes, the one that appears higher in the
Search Policy will be authenticated first. Therefore, keep in mind that if you have an
account called corpadmin in your Default local directory service node, one in Active
Directory (which we will cover in Chapter 3), and one in your secondary local directory
service node, the one in the Default directory service node will always be utilized for
lookups and authentication; the other nodes will never be consulted.

External Accounts
External Accounts are similar to Mobile Accounts (which we will cover in Chapter 7).
Beyond the fact that the home directory resides on external media, the account
operates like a standard account, with the addition of an .account file.

CHAPTER 1: Directory Services 20

Creating an external account is facilitated by the createmobileaccount command.
So rather than letting the operating system decide whether it wants to invoke the
createmobileaccount dialog at the loginwindow, we’re going to force the issue by
manually running the command, which is located in /System/Library/Coreservices/
ManagedClient.app/Contents/Resources directory. Note that this is not in your default
PATH, meaning you must always type the full path to the command or modify your shell
preferences. The -n, -p and –h flags define the username, password and home directory
of the account. So assuming your USB drive is called JUMPDRIVE, the following would
create an external account on the USB drive:

 ./createmobileaccount -n mobileadmin -p 'MYSECRETPASSWORD' -h
/Volumes/JUMPDRIVE/Users/mobileadmin

At this point we’re pretty much done. We could also have enabled FileVault by using the
-e flag and/or run the command verbosely (great for troubleshooting issues during
account creation) by using the –v flag. Now, use ls –al to verify that your new external
account can write to the volume.

Open Directory
Open Directory is the network directory services implementation that is native to Mac
OS X. Mac OS X Server leverages a number of open source products with a little bit of
Apple’s special sauce to form Open Directory. Open Directory provides client systems
with a centralized location for accounts, passwords, mount points, and the like.

Like the FSMO (Flexible Single Master of Operation) roles in Active Directory, Open
Directory is made up of a number of parts. Open Directory utilizes LDAPv3 to store
data, Kerberos to provide single sign-on, Apple Password Server to securely store
passwords, and SASL (Simple Authentication and Security Layer) to provide
authentication integration with other services.. Each of these components is
accessible using standard protocols, and each can therefore be integrated with
other standard directory services such as Active Directory and Novell’s eDirectory,
typically using what is commonly referred to as a triangle topology. In the most
common triangle configuration, the three points of the triangle are represented by
the client system, Apple’s Open Directory, and Active Directory. In such a setup,
Active Directory is used for authentication, while Open Directory provides
management capabilities. As an alternative to a triangle setup, augmented records
can be used to virtually extend a single service’s capabilities. A triangle is most
useful when not all of the attributes needed by Mac OS X for policy management are
available by the primary directory service (the NFSHomeDirectory attribute, for
example).

LDAP
A directory is a logically grouped collection of objects with attributes organized in a
hierarchical fashion. LDAP directories can track anything from users and groups to

CHAPTER 1: Directory Services 21

computers, printers, and mount points on servers. The LDAP implementation for Mac
OS X Server is slapd. The slapd process uses a number of schema files, located in the
directory /etc/openldap/schema, to define the structure of the directory services
database. These schema files include the object classes and attributes that the LDAP
server presents to LDAP clients. Attributes are the same as those located in property list
files, as noted earlier in this chapter. An ObjectClass is a set of attributes.

New schema files can be added, thus extending the functionality of LDAP and therefore
Open Directory. Schema files can also be augmented to include new attributes. When
you enhance the metadata stored for objects in LDAP, it is therefore typically referred to
as extending the schema.

Kerberos
Kerberos is the gold standard with regard to single sign-on. Active Directory, Open
Directory, and a variety of other solutions use Kerberos. Mac OS X clients also run a
Kerberos server to secure peer-to-peer networks. With Kerberos, users and servers
verify one another’s identity, which helps to prevent a number of sophisticated (and
some not so sophisticated) exploits when users are attempting to authenticate to
services.

Kerberos makes use of a Key Distribution Center (KDC) that consists of two parts, an
Authentication Server (AS) and a Ticket Granting Server (TGS). Kerberos works
through the use of tickets and principals. A ticket is a session-based key that is used
to obtain various service principals to provide access to a respective service. The KDC
maintains a database of three types of principals: user; host; and service. These
principals are sensitive, shared only between the KDC and the device, service, or user
that corresponds to the principal. Upon requesting access to a particular Server
Service (SS), say file services over AFP (Apple Filing Protocol), the user must first
obtain what is referred to as a Ticket Granting Ticket (TGT). The TGT is obtained by
properly authenticating with the Authentication Server. Once a user has a TGT, it can
be presented to the TGS to obtain service tickets; in this case a user would request
the afpserver service ticket. Once the user is granted this ticket from the TGS, the
ticket is presented to the afpserver, which validates the ticket and the session.
Assuming no problems are found, the server then grants the user access to the
service. The ability to provide the TGT proves an entity’s identity. By default, the TGT
has a lifetime of 10 hours, which can be renewed without re-authenticating. Once the
ticket has expired, the user must re-authenticate to obtain a new TGT and active
service principals.

Apple’s implementation of the MIT Kerberos Key Distribution Center (KDC) is krb5kdc.
Apple has modified Kerberos to handle communication with the Apple Password
Server, which is responsible for building and replicating the Kerberos Database.
Clients who are using Open Directory for authentication (known as binding) will be
automatically configured to use Kerberos using special entries provided and updated

CHAPTER 1: Directory Services 22

by the LDAP server. You can manually initiate this auto-configuration by using the
kerberosautoconfig command. The Apple Active Directory service plug-in was
developed to provide interconnectivity with Microsoft’s Active Directory and also
supports Kerberos auto-configuration for bound client using DNS entries known as
Service (SRV) records. This automatically generated configuration file is stored at
/Library/Preferences/edu.mit.Kerberos and /etc/krb5.conf. This file can be manually
edited by removing auto-generation comments from the top of the file. More on
Kerberos clients in Chapter 2.

Users can specify multiple Kerberos realms by editing this file, or in 10.5 by using /System/
Library/CoreServices/Kerberos.app and choosing Edit Edit Realms as in Figure 1-7.

Figure 1-7. Editing realms in Kerberos.app

CHAPTER 1: Directory Services 23

TIP: The Kerberos.app utility was removed in 10.6 and replaced with a new utility, Ticket
Viewer.app. Unfortunately, Ticket Viewer has limited functionality compared to Kerberos.app,
and it does not have the ability to edit REALMS. However, The Kerberos.app can be copied to a
10.6 machine and continue to function.

One of the most critical aspects of Kerberos configuration is time. If a client is more than
5 minutes apart from its KDC server, authentication will fail. The time value is normally
best synchronized using the Network Time Protocol (NTP). To enable the NTP service on
the Mac OS X server configured as your Open Directory master, mark the NTP check
box in the General settings section of the Server Admin Application. This setting can
then be pushed out using scripts or applications such as Apple Remote Desktop (an
example of changing this setting is available in the Send Unix Command Templates
section of the Apple Remote Desktop Admin software).

The systemsetup command can be used to set the NTP server:

systemsetup -setnetworktimeserver time.apple.com

This client setting can be configured manually in the Date & Time pane of the System
Preferences; note that multiple time servers are supported when separated by a space.
You can manually initiate time synchronization by using:

sudo ntpdate –u

In addition to authenticating the identity of a host in a Kerberos environment,
safeguards are also put into place to protect the authenticity of each service running
on a system in the form of a Service Principal. In order for a client to obtain tickets
and authenticate with a daemon, the client will request a ticket using a TGT and a
name constructed from the daemon/hostname:port. This information, in the form of
Service Principals, can be viewed in Mac OS X by using the klist command from a
Mac OS X host.

klist
Kerberos 5 ticket cache: 'API:Initial default cache'
Default principal: acid@WALLCITY.ORG

Valid Starting Expires Service Principal
07/06/09 13:12:40 07/06/09 23:12:40 krbtgt/WALLCITY.ORG@WALLCITY.ORG
 renew until 07/07/09 13:12:40

To access information regarding Kerberos tickets using a graphical interface, open
Keychain Access from /Applications/Utilities, click on the Keychain Access menu item
and then on Kerberos Ticket Viewer.

CHAPTER 1: Directory Services 24

Setting up Open Directory Using Server Admin
Open Directory begins with the Open Directory Master. The Open Directory Master
houses the Password Server and Kerberos KDC roles. It also provides a centralized
repository for Open Directory Replicas to use for synchronizing the contents of the
LDAP and password server databases. Much like with Active Directory (although oddly
enough, less so), Open Directory needs DNS.

CAUTION: It is highly recommended that you not use a ‘‘.local’’ domain name for Open
Directory. The .local domain space is already being utilized by Bonjour for zero-configuration
networking. Kerberos must be manually configured in domains utilizing .local name spaces.

Before you upgrade a server to an Open Directory Master, first check that the IP
address that Open Directory will be running on matches the information contained in
your network’s DNS zones for the server and vice-versa. Start out with the changeip
command located at /usr/sbin. This command utilizes a number of support scripts
found in the /usr/libexec/changeip directory. In its most basic form, changeip can be
called with the –checkhostname flag and can be run as follows:

/usr/sbin/changeip -checkhostname

With any luck, the script will return a success. But if it doesn’t, stop and fix your DNS.
changeip will fail if either forward or reverse DNS resolution fails to properly map out to
the same respective values. Do not promote an Open Directory Master that does not
have perfect DNS as reported by the changeip command.

First you need to display the Open Directory service on the server. To do so, open
Server Admin from the /Applications/Server/ directory and click on the name of the
server in the SERVERS list on the left side of the screen (adding it if it’s not there). Then
click on Settings from the toolbar and navigate to the Services tab, checking the box for
Open Directory. Click on Save and then Open Directory will appear in the SERVERS list
for your server (see Figure 1-8).

CHAPTER 1: Directory Services 25

Figure 1-8. Enable the Open Directory Service in Server Admin

Next, we’re going to promote the server to an Open Directory master. To do so, click on
Open Directory and fire up the Service Configuration Assistant by clicking on the
Change button. The first option will be the role that the server will be fulfilling. Here,
select Open Directory Master and click on the Continue button.

You will then be prompted to specify the required information for the Open Directory
administrator account. This account will be used to administer the shared domain,
although it will not be granted local administrative rights to computers bound to the
domain. By default, the Directory Administrator account has a name of Directory
Administrator, a Short Name of diradmin, and a User ID of 1000. This information is
editable, and the administrator name probably should be obscured for increased
security by changing to a value specific to your environment, such as corpdiradmin.
Since Open Directory policies can be bypassed by administrative accounts, choosing a
common administrator short name represents a significant chink in the armor. Once you
have entered information about the desired account into the required fields, type the
password first in the Password field and again in the Verify field. While setting up a new
Open Directory Master, you will also be prompted to specify the LDAP search base and

CHAPTER 1: Directory Services 26

the Kerberos REALM, as seen in Figure 1-9. By default, OS X Server will enter a
machine-specific entry for both. That is, when promoting server myhost.myco.com, the
default search base is dc=myhost,dc=myco,dc=com, and the Kerberos realm would be
MYHOST.MYCO.COM. In many cases, it may be undesirable to include the host name
in a company-specific domain. If myhost is ever retired, its hostname will still be forever
etched into your directory system. To avoid this, remove the hostname specific values
from both the search base and the realm. Thus, in the previous example, the desired
search base would be dc=myco,dc=com, and the realm would by MYCO.COM. After
specifying these values, proceed with the setup by clicking on the Continue button.

Figure 1-9. Specify Kerberos REALM and LDAP Search Base

Next you’ll see the Confirm screen. Review the contents, which should mirror what was
entered in the preceding screens. When you are satisfied with the settings, click Finish
and Mac OS X Server will finish configuring Open Directory for you (see Figure 1-10).

CHAPTER 1: Directory Services 27

Figure 1-10. Confirm final settings

Now you can verify that all components of Open Directory are properly functional with
your Open Directory setup by going into Server Admin, clicking on the Open Directory
service listed in the SERVERS list, and then clicking on the Overview button in the
Server Admin toolbar. In a standard Open Directory setup, LDAP, Password Server, and
Kerberos should all be running. In a triangle environment with Active Directory, typically
the AD Kerberos system is utilized. In such setups, it is normal for Kerberos not to be
running. Should any of the services fail to start, consult the Open Directory logs found in
Server Admin under the logs tab of the Open Directory service (as shown in Figure 1-11).
Look for any errors and make corrections as needed.

CHAPTER 1: Directory Services 28

Figure 1-11. Open Directory logs

Setting up Open Directory from the Command Line
Setting up LDAP, Kerberos, the Password Server, SASL, and creating a directory
services administrative account could seem daunting if you were to do it manually. But
as with many tasks, Apple has made setup easier if you choose to go the command-line
route. This functionality is provided by using the slapconfig command binary, the same
tool utilized by the Server Admin application.

NOTE: For the Active Directory guru readers, slapconfig can be thought of as being similar to
dcpromo, but with many, many more options, and therefore similar to dcpromo only from the
perspective of promoting and destroying a directory server! In addition to promotion, slapconfig
can also be used to configure various Open Directory settings, replication, and global password
policies.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Directory Services 29

To create an Open Directory master using the command line, you could simply run the
following command:

slapconfig -createldapmasterandadmin

In the above example, the default values presented in all of the Server Admin screens
from the previous section were used. The Name of the account was set to Directory
Administrator and the Short Name was set to diradmin. The password was set to the
same value as the password for the administrative account that ran the command, and
the Unique ID was set to 1000.

You can also use slapconfig to define custom settings. In the command below,we will
define a new administrative account with a short name of corpodadmin, a full name of
Corporate OD Administrator, and a UID of 1100:

slapconfig -createldapmasterandadmin corpodadmin "Corporate OD Administrator" 1100

There are still a couple of default settings that slapconfig is using during the Open
Directory Master promotion process. These include the search base suffix and the
Kerberos realm. According to Microsoft, ‘‘A search base (the distinguished name of the
search base object) defines the location in the directory from which the LDAP search
begins.’’ The search base suffix is, by default, derived using the DNS name of the server.
To obtain the search base suffix for a given Open Directory Master, you can run the
slapconfig command with the –defaultsuffix query.

The realm is the name of the Kerberos realm that will be used. This, too, is generated
based on an enumeration of the server’s host name (are you starting to put together why
DNS is so important?). However, it can be customized during the –createmasterandadmin
process.

Demoting an Open Directory Master
Demoting an Open Directory Master can be done using either the command line or
Server Admin.

If demotion is done at the command line, the following command would get the
job done:

slapconfig -destroyldapserver

Set up an Open Directory Replica
An Open Directory Replica can be set up using Server Admin. Once you have opened
the application, connect to the server that is destined to perform the Replica role. Under
the Open Directory service, select the Settings tab. This tab will specify the current role
of the server. To promote the server to a Replica, simply click the Change button, and

CHAPTER 1: Directory Services 30

specify the role Open Directory Replica. The interface will then query you for information
about the Open Directory system to connect to. Specifically, you will need to specify the
Open Directory Master’s IP/DNS name, the root user’s password, and the Open
Directory admin’s short name and password. After specifying this information and
continuing, the server will contact the Open Directory master and begin replicating all of
the relevant databases. This process does involve taking the Open Directory Master’s
LDAP database offline during initial setup, so plan accordingly. In a typical scenario, it
will be offline for roughly a minute. That being said, it is always a good idea to perform
this operation during non-peak times.

If the server that you’re promoting to replica status is not already in the role of a stand-
alone server, it’s a good idea to demote it to stand alone before it is configured as a
replica. However, it’s an even better idea to start off with a nice clean server as your
replica, so this situation should be completely avoidable.

Replicas can also be created using the slapconfig binary. From the replica, run the
command with the syntax:

slapconfig –createreplica myodmaster.myco.com myodadmin

Removing a Replica
Removing a Replica from an Open Directory environment should be done any time you
are decommissioning a server running as an Open Directory replica. You should first
attempt to do this using the Server Admin tool. Simply open Server Admin and connect
to the OD Replica. Under the Open Directory service, click on the Settings tab, where
you’ll see the Server’s role, listed as Open Directory Replica. Click on the Change
button, and select Stand Alone Server. This will require you to enter various credentials
that will facilitate the proper demotion between the OD master and the replica in
question. When that’s done, the replica will be removed from the system.

For a variety of reasons, you may not be able to remove a replica from Open Directory
using Server Admin. When that happens, try doing so using slapconfig. For example, if
the replica has an IP address of 192.168.53.249, the command would be:

slapconfig -removereplica 192.168.53.249

Using Workgroup Manager to Create New Users
Using Workgroup Manager, you can create Open Directory users and alter attributes for
their user accounts. You can also add computers, configure automounts, and perform
other tasks. In this module we will create a user. As a prerequisite, you will want to have
a functional Open Directory Master.

To create a new Open Directory user, open Workgroup Manager. As you can see in
Figure 1-12, you will see the “domain” that you are connected to listed in the

CHAPTER 1: Directory Services 31

directory bar (below the toolbar). If the credentials that you provided in Workgroup
Manager do not have Directory admin rights, you will not be authenticated to the
domain and you’ll need to authenticate. To do so, click on the lock icon on the
directory bar. You will be asked for a username and a password. The default
username is diradmin, although this might have been customized (and should be!)
when the Open Directory Master was created. Type the username and password in
the Authenticate to directory: dialog box and then click on the Authenticate button. If
the authentication is successful, you’ll notice that the directory bar will appear, also
shown in Figure 1-12 (and with an open lock on the right-hand side). As per standard
OS X behavior, you will not be able to make any changes to the selected directory if
the lock is not open.

Figure 1-12. Ensure proper directory is selected and you are authenticated to create a user

Once you are authenticated to Open Directory, you can create a user account. To do so,
click on the New User button in the toolbar, or select New User from the Server menu.

CHAPTER 1: Directory Services 32

Next, fill in the general user information using the Basic tab of the New User window.
You can customize the Short Name at this point (but not in the future without a
complicated process), apply a Name (the user’s full name in most cases) and enter a
password. While you can change the User ID, it is wise to simply stick with the one that
is automatically applied in this field.

Next, click on the Groups tab. Here you will add any groups that the user should be a
member of. To do so, click on the plus sign (+) and then drag the group into the Other
Groups: field from the resultant floating menu of users and groups (see Figure 1-13).

Figure 1-13. Assign users to the appropriate groups

Next, click on the Info tab and fill in any other pertinent information you would like to
track, including the user’s physical address, phone information, email address, and so
on. In addition to the information that is easily accessible about a user, you can also
access data that at first glance seems hidden by enabling the Inspector, which allows
you to view raw directory information. To enable the Inspector, open Workgroup
Manager and click on the Workgroup Manager menu (immediately to the right of the
Apple menu). Then check the box for Show ‘‘All Records’’ tab and inspector and click
OK to save the changes (see Figure 1-14).

CHAPTER 1: Directory Services 33

Figure 1-14. Enable the All Records tab and Inspector in Workgroup Manager

You will now be able to view a far more detailed account of what is hosted in your
directory service. When you are viewing information using the Inspector, you will be able
to change information that should not be changed unless you know exactly what you are
doing, so be very careful. However, it is worth noting that with the Inspector you can
view a far more detailed account of the data stored in each record of the LDAP
database. Once you have enabled the Inspector, you will see the Inspector tab in your
new test account. Click it to see the information now available.

Backing up Open Directory
While much attention is placed on files and folders on a many servers, an integral part of
rebuilding a server from scratch is not just having a back up of data, it’s also having a
back up of the accounts and permissions references that go along with that data.
Manually backing up Open Directory is a straightforward process. Simply click on the
Archive tab of the Open Directory service in Server Admin. From there, you can choose
a directory to save the OD archive to. After you’ve chosen a destination path, the
Archive button will become enabled. Click on this button to specify a name and a
password for the OD archive. Be sure not to place any whacks (/) in the name of the
Archive, or the process will silently fail, leaving you with a false sense of security. As
always with any backup routine, an occasional spot-check is necessary to be absolutely
certain that you have clean data. In this case, you can simply mount the produced disk-
image file by double-clicking on it, and verify that data has been written to it. The OD
Archive process is decently broad. It archives both Network and Local directory services
databases, launchd.plist files for relevant services, as well as numerous configuration
files and preferences.

One limitation of the Server Admin archive process is that it is a manual process, which
can often be a detriment to the consistency of an important function. To back up Open

CHAPTER 1: Directory Services 34

Directory with a script can be easier and more reliable. You can do this from the
command line by scheduling the following script with cron or launchd:

#!/usr/bin/perl -w

use strict;

my $archive_password = 'MYPASSWORD';
my $archive_path = '/Volumes/Data/backups/opendirectory/';

my $max_keep_time = 1; # MONTHS TO KEEP ARCHIVES AROUND

my @date = localtime();
my $year = $date[5] + 1900;
my $month = sprintf("%.2d",$date[4] + 1);
my $day = sprintf("%.2d",$date[3]);

my $filename = $year.$month.$day;
my $archive_file = $archive_path.$filename;

print "Archiving to $archive_file...\n";

if (open(CMD,"|/usr/sbin/serveradmin command")) {
 print CMD "dirserv:backupArchiveParams:archivePassword = $archive_password\n" ;
 print CMD "dirserv:backupArchiveParams:archivePath = $archive_file\n";
 print CMD "dirserv:command = backupArchive\n";
 close(CMD);
 print "Archive successful.\n";
} else {
 print "Error: $!\n";
 exit;
}

$month -= $max_keep_time;
if ($month < 1) {
 $month = 12;
 $year--;
}

my $expire_date = sprintf("%.4d%.2d%.2d",$year,$month,$day);

print "Cleaning up old archives...\n";

if (opendir(DIR,$archive_path)) {
 while (my $file = readdir(DIR)) {
 chomp($file);
 next unless ($file =~ /^\d{8}\.sparseimage$/i);
 my $file_date = $file;
 $file_date =~ s/[^0-9]//g;
 if ($file_date < $expire_date) {
 print "Removing ".$archive_path.$file."\n";
 unlink($archive_path.$file);
 }
 }

CHAPTER 1: Directory Services 35

 print "Cleanup successful.\n";
} else {
 print "Error: $!\n";
}

Troubleshooting Directory Services

Directory Services Debug Logs
When you’re trying to troubleshoot issues with Directory Services on Mac OS X sometimes
the best thing you can do is put the directoryservices daemon into debug mode. To do so,
we must send a USR1 signal to the daemon using the following command:

killall -USR1 DirectoryService

By default errors get trapped into this file:

/Library/Logs/DirectoryService/DirectoryService.error.log

But when in debug mode using -USR1, you can see more specific errors here:

/Library/Logs/DirectoryService/DirectoryService.debug.log

You can then use commands such as tail and more in conjunction with grep to isolate
issues to specific strings such as ADPlugin. Alternatively, you can enable API logging if
you choose to send the -USR2 signal. For debugging then, the logs will get written into
the /var/log/system.log file.

To disable verbose logging, you can just restart the Directory Services daemon if you
originally sent a -USR1 signal to DirectoryService. If you used -USR2, debugging
information will automatically stop writing to the log after 5 minutes.

Cache
In some cases, you may find that certain lookup tools, such as id, return data which
differs from what is stored in the directory. This is typically caused by stale data stored
in the local machine’s cache. While this cache will eventually expire and update, it may
be desirable to manually flush the cache. In version 10.4, this was accomplished using
lookupd:

lookupd -flushcache

Unfortunately, lookupd has gone to tech heaven, abandoned after 10.4. Introduced with
10.5, the tool dscacheutil allows for more cache-specific functionality than lookupd. For
example, using -cachedump allows you to dump an overview of the cache contents. The
-cachedump command has a slew of flags to get pretty granular with the output, such
as -entries and -buckets. The –configuration command allows you to access detailed
information about your search policy, and -statistics allows you to view detailed
information on the statistics of calls.

CHAPTER 1: Directory Services 36

Here are some examples of using these commands:

dscacheutil –flushcache to empty the DNS Cache Resolver;

dscacheutil -cachedump -entries user to dump cache with user entries;

dscacheutil -q user to look up all users on a system;

dscacheutil –q user –a name jdoe to look up data for user jdoe.

The dscacheutil tool is also one of two command-line utilities that allow you to query a
group for direct membership (querying raw membership attributes with dscl is the
other). However, this functionality is somewhat limited as dscacheutil does not
consistently recurse through nested group membership. It does, however, work with
basic membership. For instance, to list members of the group admin, you could use:

dscacheutil –q group –a name admin

Verifying Authentication
There are a number of ways that you can test authentication in OS X, and the exact
process will vary based upon the version of the OS that you are running. Naturally, you
can verify authentication for a user by attempting to login to a bound Mac OS client. The
main problem with this type of testing is that it is fairly inefficient; if you don’t have a
spare client to test with, a trip to the login window likely requires you to logout. On top of
this, home directory problems can prevent a successful login, so it is not always an
accurate test.

If the target user has a default shell assigned, you can test authentication using the su
command in any version of OS X. Simply open up a new shell and type su testuser.
You will be prompted to enter the user’s password. Provided that you entered in
accurate credentials, you will be granted a shell under the new user. You can use the id
tool to verify.

bash-3.2$ su testuser
Password:
bash-3.2$ id
uid=1078(testuser)

This is not the only means to do this, however. In 10.5 a new utility, dirt, was introduced
solely for the purpose of testing authentication. The dirt utility is unique to Leopard and
can be used to test Directory Service user resolution and authentication. You can use
dirt to test authentication for users residing in local, LDAP, or Active Directory nodes.
The -u flag uses the username from the node you are testing against. The dirt
command tests whether an account exists in any node and can be used with the
following structure:

dirt -u corpadmin –n '/Active Directory/domainname'

This would result in the following output if the account is located in Active Directory:

User username was found in:
/Active Directory/domainname

CHAPTER 1: Directory Services 37

NOTE: The -p flag can also be used to test passwords. You can also specify the node in
Directory Services you would like to test.

In addition to lookups, the dirt tool can be used to test authentication. For instance, to
test authentication for user jdoe, use the following command:

dirt –u jdoe

After running this command, you will be prompted for the password, which can also be
specified when invoking the command using the –p flag. Once you provide a password,
the tool will output whether or not authentication succeeded, as well as some user data.

NOTE: Unfortunately, when using dirt the password is always (unnecessarily!) echo’d out in
clear text, so make sure you only use this tool when there are no prying eyes around.

Unfortunately, the dirt utility is not included with 10.6. Not all is lost, though: this
functionality was rolled into Apple’s other directory services tool, dscl. To test
authentication using dscl, 10.6 introduces the –authonly flag, which must be called with
at least a username. The password can be supplied optionally after the username:

$ dscl /Search -authonly testuser “MySuperSecretPassword”
Password:
$

As this shows, if you provide the correct password, the dscl utility will exit with a 0
status and will return you directly to your shell prompt with no feedback. This indicates a
successful authentication. If authentication is not successful, you will be greeted with an
eDSAuthFailed error:

$ dscl /Search -authonly testuser “MySuperPass”
Authentication for node /Search failed. (-14090, eDSAuthFailed)
<dscl_cmd> DS Error: -14090 (eDSAuthFailed)

Notice also in the previous example that we are calling dscl specifically with the /Search
search path. We could specify an explicit node to authenticate against:

$ dscl /LDAPv3/odm.myco.com ---authonly testuser ‘‘MySuperSecretPassword’’

Summary
In this chapter, we discussed the role Directory Services plays in a networked
computing environment. That is, the Directory Services act as the unifying glue, allowing
user and group membership to be utilized across an unlimited number of clients.
Directory services are the core of any enterprise organization; without the ability to
centrally manage users, support requirements would balloon. Directory services enable

CHAPTER 1: Directory Services 38

a group of otherwise ad -hoc computers to operate with similar parameters. They enable
centralized authentication, allowing users from multiple computers and multiple
platforms to authenticate against a single database, creating a more user-friendly and
ultimately more secure system.

In the next chapter, we will further explore directory services, with a specific focus on
integrating OS X client desktops with Apple’s Open Directory platform. Later, in
Chapter 3, we will discuss integrating OS X client desktops with Microsoft’s Active
Directory system.

2Chapter

Directory Services Clients
In Chapter 1, we discussed Directory Services and the various types of information
that a Directory Service can provide. In contrast, this chapter focuses on utilizing a
centralized Directory Service for user and group resolution and authentication. Utilizing a
centralized Directory Service is absolutely essential to the efficient management of your
fleet of computers and eliminates the need to synchronize user and group databases
across all of your computers.

Lightweight Directory Access Protocol (LDAP) is the building block for most modern
directory services solutions. Whether you are using Microsoft’s Active Directory or
Apple’s Open Directory, to a large degree the basis for their implementation lies in the
LDAPv3 specification. As such, LDAP in this context consists of a communication
protocol, a data scheme that is used to store directory information, and the replication
infrastructure to distribute that data across multiple remote data stores. Because Mac
OS X is built from the ground up to accommodate for LDAP, there are myriad of options
in terms of automation and management functionality that can be provided to Mac OS X
clients. This isn’t to say that you can’t leverage the same LDAP structures built in
Chapter 1 in order to provide directory services to Microsoft Windows, but the context
for this chapter will focus primarily on Mac OS X directory service clients. In Chapter 9,
we will look at providing some aspects of directory services to Windows clients.

When a client is added to a directory services environment this is often referred to as
binding. There are two general types of binding that can be performed by an OS X client.
The first kind is referred to as a trusted, or authenticated, bind. With a trusted bind the
client computer creates a representative computer object in the LDAP store, which
contains the same AuthenticationAuthority record familiar to an OS X user account.
From here on, the computer itself must use a locally stored key to authenticate to the
directory in order to receive directory data. By authenticating, the computer proves that
it is a member of the network, and thereby has certain elevated access, based on the
trust relationship created at bind time. Trusted binding requires a password to establish
this trust. The second type of binding is not necessarily binding at all; it simply involves
configuring the client so that it should query a certain directory server for certain data,
such as user names, passwords, and even policies. This type of bind is sometimes
referred to as an anonymous bind. In these configurations, a client computer need not
have an associated computer object in LDAP.

39

CHAPTER 2: Directory Services Clients

40

In Chapter 1, I covered setting up and using localized directory services. In Chapter 2,
I’m going to dive into leveraging the Mac OS X Open Directory environment and other
non-Microsoft based directory services solutions that leverage LDAP in order to provide
a centralized directory service to client computers. I will begin by looking at binding to
LDAP and then delve into the topics that will allow you to automate LDAP, mass deploy
LDAP settings, and realize the full potential of your directory services solution. This
chapter will end with a cursory glance at leveraging both NIS and BSD flat files for those
environments still committed to 1990s style networking (although I refuse to cover
Banyan Vines for posterities sake).

The Lay of the Land
Directory Utility is the application used to bind to Open Directory and other directory
servers. When you first open Directory Utility, you will notice the Directory Utility
shows a status indicator that it is looking for Mac OS X Servers. If you have an LDAP
environment broadcasting via Bonjour, then in many cases it will discover the server and
allow you to easily perform an unauthenticated bind. This is common, for example, with
environments based on Mac OS X Server 10.5 Standard, where Apple was trying to
make the setup of these fairly complicated environments as zero-configuration as
possible.

If you completed the default Open Directory setup as described in Chapter 1, after a
few moments the Looking for Mac OS X Servers indicator will disappear once the
query fails. To disable the automatic search feature, click on the Preferences menu of
Directory Utility and then uncheck the box for Look for Mac OS X Servers at Launch.
You can also set the preference from the command line (for example, if you were
pushing it out via Apple Remote Desktop) using the defaults command, by pushing a
new ~/Library/Preferences/com.apple.DirectoryUtility.plist file to clients, or by using
com.apple.DirectoryUtility.plist as part of your managed preferences environment.
The following command uses the defaults command to edit the boolean “No SBS
Assistant” key of the com.apple.DirectoryUtility.plist file to be a 0, which disables the
feature:

defaults write com.apple.DirectoryUtility "No SBS Assistant" 0

While the Looking for Mac OS X Servers process may fail, this isn’t to say that you can’t
leverage Bonjour to help locate directory servers. Bonjour Browser is a tool from
TildeSoft (http://www.tildesoft.com) that can be used to find a variety of services. To use
Bonjour Browser, download it and drag the application bundle to your /Applications
directory then open it and wait for the list of hosts and services to populate. Once
populated, you will see a screen similar to the one in Figure 2-1. Here you can find the
_ldap.tcp. entry and then browse other information on this host. It will show the port that
LDAP is running on along with the IP address that is running it.

CHAPTER 2: Directory Services Clients

41

Figure 2-1. Bonjour Browser

NOTE: Instead of enumerating the address you will bind to, you can also simply look at the IP
address or hostname of your LDAP server as well.

CHAPTER 2: Directory Services Clients

42

Once you have found your LDAP servers, it is important to make sure you can
communicate with the hosts. LDAP runs on port 389 (636 with SSL). There are two fairly
straightforward ways that you can check that you can communicate with LDAP. The first
is to scan the port. To do so, open Network Utility and click on the Port Scan tab. Enter
the host name or IP address in the Please enter an Internet or IP address to scan for
open ports field, check the box for Only test ports between 389 and 389, then click on
Scan (see Figure 2-2).

Figure 2-2. Network Utility

As a sanity check, many organizations will choose to verify that the Open Directory
Master is accessible by a client prior to attempting to bind. You can also script against
the same tool that Network Utility uses to perform port scans, called stroke. To use
stroke, you will need to cd into the Network Utility application bundle using the
command:

cd /Applications/Utilities/Network\ Utility.app/Contents/Resources/

Once you are in this directory, you will need to provide stroke with an IP address (or
name), followed by a port range—specifying the lowest port first, a space, and then

CHAPTER 2: Directory Services Clients

43

the last. Use the same number twice if your range is only a single port. For example, if
you want to port scan port 389 on your own system you could use the following
(assuming a working directory of /Applications/Utilities/Network
Utility.app/Contents/Resources):

./stroke 127.0.0.1 389 389

If your Open Directory Master were named seldon.company.com, then you could use
the following code to check availability, by DNS name of the LDAP service on the server:

./stroke seldon.company.com 389 389

Because the name seldom.company.com has to resolve, you’re actually able to check
whether a DNS error occurs and whether you can communicate over port 389 to the
host in one command. If you plan to use stroke a lot, you may want to create a symlink
to the binary in a directory that is specified in your environment’s PATH, you can then use
it without needing to change your working directory:

ln –s /Applications/Utilities/Network\ Utility.app/Contents/Resources/stroke
/usr/bin/stroke

NOTE: If you can scan port 389 (or port 636, if you are using SSL) from the server using
localhost (127.0.0.1) then it typically stands to reason that if you cannot access port 389 on the
server from a client via IP or DNS that you likely have a network problem that is preventing
connectivity----even if the server requires authentication to enumerate the directory tree it
should still listen over the LDAP port for said authentication.

The second way to check that LDAP is available to your client systems is to telnet into
port 389 of the host running the LDAP service. There are a number of services that can
be tested in this manner, including most web servers and SMTP. For each service you
would simply follow telnet by the name (or IP address) of the host you are testing and
then the port, as follows:

telnet seldom.company.com 389

At this point, you should receive a response similar to the following, which by virtue of
the Connected line shows that you were indeed able to communicate with port 389:

Trying 192.168.210.249...
Connected to 192.168.210.249.
Escape character is '^]'.

You can also go a step further and use a third party tool to query an LDAP server,
without performing any custom configurations of Mac OS X. LDapper is an application
that will allow you to authenticate to and display information accessible through LDAP.
LDapper has a number of options that mirror various settings within LDAP, and so
becomes a good tool for figuring out what LDAP settings to use when configuring the

CHAPTER 2: Directory Services Clients

44

Directory Utility for binding. The ability to enter different settings and quickly obtain
results makes LDapper a great tool for enumerating an LDAP environment and is very
helpul for troubleshooting connectivity problems.

To use LDapper, first download it from http://carl-bell-2.baylor.edu/~Carl_Bell/
stuff.html. Once the dmg file has been downloaded, drag the LDapper application
bundle into your /Applications directory. From here, open LDapper by double-
clicking on it and then select Preferences from the LDapper menu, as shown in
Figure 2-3.

Figure 2-3. LDapper Preferences

Next, click on the Plus sign and then enter a friendly name (to remember the specific
server by) into the Directory Name: field and then enter a server’s hostname or IP

CHAPTER 2: Directory Services Clients

45

address into the LDAP Server: field. Finally, type the Search Base. If you are using Open
Directory, you can find the Search Base by opening Server Admin and then clicking on
the Open Directory listing in the SERVERS list for the Open Directory Master (see
Figure 2-4).

Figure 2-4. LDapper add server dialog

TIP: With many LDAP implemenatations you can determine the search base by querying it
with the ldapsearch utility, using the syntax: ldapsearch -h ldap.myco.com -x -a
never -s base namingContexts.

There are a few more options to LDapper as well. In order to use Authentication, click on
the Authentication tab and enter a username that can read information from the
directory service in the Identification: field and a password in the Password: file.
Additionally, if you are using custom mapped attributes, click on the Attributes tab to
enter the pertinent information. Once you are satisfied with all of your options, click on
the OK button and you should be able to browse records for your LDAP environment, as
shown in Figure 2-5.

CHAPTER 2: Directory Services Clients

46

Figure 2-5. Browsing an LDAP server with LDaper

From the command line, you can do much of the same tasks, using the ldapsearch tool.
Using ldapsearch you have many more options, likeSASL, output to ldif, and LDAP
version.

Basic Binding
As mentioned earlier, there are two types of binding that can be performed. The first is
trusted binding, where the computer and the directory service share a key, which allows
each to trust the other. When a host performs a trusted bind, it creates a computer
record in the directory database. Based on the record in the database and the key, the
computer is then granted certain access to directory services information that it might
not have otherwise been provided. For example, in a number of environments the
directory service is configured to only allow a system to perform LDAP queries if it has
successfully authenticated. This is a good way to lock down a system.

CHAPTER 2: Directory Services Clients

47

In an anonymous or non-trusted bind, the directory server does not necessarily have
representative data for the anonymous computer. Thus, in order for an anonymous/
untrusted bind to function, the LDAP server must provide anonymous access to its
store. However, the ability remains to perform an untrusted bind but authenticate using
an LDAP user. For such a setup, the user credentials used to authenticate to the LDAP
server are cached locally. This technically qualifies as an authenticated bind. However, it
differs in that a trusted bind utilizes a pre-shared key stored in the computer object on
the LDAP server. While certainly authentication, supplying user credentials does not
qualify as computer-level authentication.

When a client is bound to a directory service, the directory service must trust the client
in such a way that the client will be able to access (and in some cases update) certain
records in the LDAP database. This may simply be the computer’s own entry in Open
Directory or it may be an entire computer list.

In OS X, the Directory Utility application (found in /Applications/Utilities/) is the primary
graphical interface to manage directory service bindings. However, the tool does not
provide a facility to actually query directory data.

Unfortunately, there is no graphical utility for browsing directory data in OS X. However,
as mentioned in Chapter 1, dscl is a very handy command-line tool for querying and
modifying the contents of bound directory services. dscl will also play a substantial part
in preparing a system for binding and automation with regard to the actual bind process.
However, another common command that you’ll leverage throughout this chapter will be
dsconfigldap, the tool used to perform LDAP binding operations and configure LDAP
options.

Plug-ins
Directory Utility uses a number of plug-ins to provide functionality for various directory
services solutions. Most notable are the defacto plug-in for Active Directory or the
LDAPv3 plug-in used for Open Directory. As you work through this chapter, you will be
using the LDAPv3 plug-in, but you could easily be using the Quest, Likewise, or Centrify
plug-ins, according to your required task.

Plug-ins are developed in the form of .dsplug files. The default plug-ins that Apple
includes are located in the /System/Library/Frameworks/DirectoryService.framework/
Versions/A/Resources/Plugins directory, which is where Likewise (discussed further in
Chapter 3) stores its plug-in as well. Third party plug-ins are typically installed in the
/Library/DirectoryServices/PlugIns directory of a computer, which is where you will find
plug-ins for Quest and products from Thursby.

To enable a plug-in in the Directory Utility, you will open Directory Utility from
/Applications/Utilities and then click on services, as shown in Figure 2-6.

CHAPTER 2: Directory Services Clients

48

Figure 2-6. Directory Utility Services

You can also enable and disable plug-ins from the command line. To do so, you will
augment the DirectoryService.plist in the/Library/Preferences/DirectoryService/ folder,
likely using the defaults write command. In order to read or write to the property list
file, you will need to run the command with root privileges. To start, you can simply read
the file with defaults and see what keys already exist that you can work with:

$sudo defaults read /Library/Preferences/DirectoryService/DirectoryService
{
 "Active Directory" = Inactive;
 AppleTalk = Active;
 BSD = Active;
 Version = "1.1";
}

CHAPTER 2: Directory Services Clients

49

To enable a particular plug-in (LDAPv3 is enabled by default), you can simply set the
value to Active and then restart your DirectoryService daemon:

$sudo defaults write /Library/Preferences/DirectoryService/DirectoryService "LDAPv3"«
 "Inactive"
$sudo killall DirectoryService

Or, if you’re feeling constructive, maybe you want to enable a plug-in, following the
same modus operandi:

$sudo defaults write /Library/Preferences/DirectoryService/DirectoryService «
"Active Directory” "Active"
$sudo killall DirectoryService

NOTE: You can also work with third party plug-ins in the same fashion. The list here should
always mirror the list that you see in Directory Utility.

In earlier versions of OS X, enabling or disabling plug-ins through this method could be a
little inconsistent. A reboot will typically ensure the setting is properly applied.

Unauthenticated Dynamic Binding
Each Mac OS X client with an automatic search policy can connect to a shared
LDAP directory that is provided dynamically using the DHCP protocol, which I will
call unauthenticated dynamic binding. This can be useful in controlling settings for
properly configured client computers while they are guests on your network. For
example, if you just want to point them at a Software Update Server, manage proxy
settings, or deploy application restrictions, you can also utilize this setup to provide
your client systems that support DHCP-supplied LDAP (also known as Option 95)
with LDAP settings en masse if you do not have a framework in place for
management. For this reason, in certain instances unauthenticated dynamic binding
can be attractive as a means to an end to install mass deployment tools and
configure LDAP settings in environments where security of the directory service itself
is not a major concern. In environments where security of the directory service is a
concern, unauthenticated dynamic binding can be leveraged with a strategy to
automate the move into a more secure environment, allowing for more zero touch
integration on actual client systems.

When the computer starts, it can get the address of an LDAP directory server from
DHCP service. The DHCP service of your Mac OS X Server can supply an LDAP server
address in the same way it supplies the addresses of DNS servers and a router/default
gateway. If you are hosting your DHCP for your Mac clients using Mac OS X Server,
then you would configure the LDAP servers by clicking on the DHCP listing for the
server that runs your DHCP service in the SERVERS list of Server Admin. Next, click on
Subnets in the DHCP toolbar (as shown in Figure 2-7). From here, if you double-click on
your DHCP scope entry for the scope you would like to use DHCP for, you will notice an

CHAPTER 2: Directory Services Clients

50

LDAP tab on the bottom portion of the screen. Here, enter the server’s DNS name or IP
address and the Search Base as its listed in the Open Directory service.

If the port is not 389, go ahead and enter the port into the Port: field as well. Finally,
if you are using SSL and the certificate has been accepted, you can click on the
LDAP over SSL checkbox as well. If you are using SSL and the certificate has not
been accepted, it will need to be before the client system will be able to access
LDAP. Once you are satisfied with all of your settings, click on Save and then Start
DHCP to start the service.

If the server is not a Mac, you can still supply LDAP DCHP information. For Linux, you
would add the following lines to your dhcpd.conf-Server:

option ldap-server code 95 = text;
option ldap-server "ldap://seldon.company.com:389/dc=seldon,dc=company,dc=com";

NOTE: For more information on Option 95 (and other unused Options), see RFC 3679.

Figure 2-7. Providing LDAP information via DHCP

CHAPTER 2: Directory Services Clients

51

If you wish to obtain LDAP information from a client computer using DHCP, you will first
need to enable DHCP-supplied LDAP. To do so, open Directory Utility and click on the
Show Advanced Settings button. Then click on the Services icon in the application
toolbar. Here, you will see the LDAPv3 entry. Click on the lock icon and enter the
username and password for an administrative account on the system. From here,
double-click on the LDAPv3 entry, check the box for Add DHCP-supplied LDAP servers
to automatic search policies, and then click on the OK button.

Next, test logging in using an account stored only in the directory services to verify that
providing LDAP settings over DHCP is functioning as intended. If you cannot
authenticate, open dscl and test whether you can read accounts from the directory
server. If you cannot, then verify that the directory server that was supplied by DHCP is
listed in the LDAPv3 tree of dscl. If it is not, then troubleshoot the DHCP environment.
Start by verifying that you are receiving an IP address. If so, look for multiple scopes or a
different DHCP server that may be supplying an address to your system.

If you wish to script the enablement of receiving LDAP information over DHCP, you can
use the dscl command to edit the /Search/dsattrTypeStandard:DCHPLDAPDefault key
as follows:

dscl -q localhost -create /Search dsAttrTypeStandard:DHCPLDAPDefault on

NOTE: Clients that are using a trusted bind cannot also use a DHCP-supplied LDAP directory setup.

Enabling unauthenticated dynamic binding on client machines has some pretty serious
repercussions. By enabling this setting, you are essentially telling client computers to
trust any LDAP server provided by DHCP. If the DHCP packet comes from an untrusted
source, then the client machine can easily be compromised. In environments where
security is a concern, or where a client machine will potentially connect to public
networks, this setup should be avoided.

Unauthenticated Static Binding
While you can set up LDAP clients through DHCP, most organizations don’t choose this
as their standard. Option 95 is the standardized configuration option for supplying LDAP
information over DHCP. Use of Option 95 is fairly rare and most client systems are setup
statically. As previously mentioned, setting up LDAP clients will be done by using either
the Directory Utility application or the dsconfigldap command, if you wish to do so
programmatically. To set up a client for unauthenticated static binding using Directory
Utility, open the tool from /Applications/Utilities (/System/Library/CoreServices in 10.6),
then click on the Show Advanced Settings button in the lower right-hand corner of the
screen. Next, use the lock icon in the lower-left corner of the screen to authenticate in
order to make changes to the Directory Utility. Once authenticated, click on Services
and then double-click on LDAPv3 to see the LDAP Configuration screen, as shown in
Figure 2-8.

CHAPTER 2: Directory Services Clients

52

Figure 2-8. LDAP configuration screen

Next, click on the New… button and then click on Manual, as shown in Figure 2-9. If you
were to enter the Server Name or IP address in the appropriately named field, you would
be performing a trusted bind.

Figure 2-9. New LDAP Connection dialog box

CHAPTER 2: Directory Services Clients

53

Now enter a name for the configuration in the Configuration Name field, as shown in
Figure 2-10. This name has nothing to do with the LDAP configuration other than a
friendly name to help you remember which configuration does what task in
environments with multiple configurations. The only consideration for this value is that it
helps to keep it consistent across all of your clients. Click on the Server Name or IP
Address field and type the name or DNS host name of the Open Directory Master. Then,
click on LDAP Mappings and select the appropriate item from the drop down list. If the
server is an Open Directory Master, you would select Open Directory Server, although
you can also simply leave the field set to From Server. Also, highlight the SSL checkbox
if an SSL certificate was enabled for the Open Directory server (assuming you have
chosen to accept the certificate).

Figure 2-10. Populated configurations for LDAP

Once you are satisfied with your settings, click on OK. Next, you will need to add the
new directory service configuration to your search path by setting the Search: field to
Custom Path. To do this, you will specify a custom search path and then add the new
service to the list of Search Domains. To do so, click on the Search Policy icon in the
Directory Utility toolbar. From the Authentication tab, click on the plus sign (+) below the

CHAPTER 2: Directory Services Clients

54

list of Domains, as shown in Figure 2-11. Next, select the newly added listing and then
click on the Add button.

Figure 2-11. Select a Directory Domain to add.

Now, click on the Apply button. You should see your new domain listed in the search
policy (see Figure 2-12). You should now be able to use dscl to test whether the client
can read information from the LDAP database. When you open dscl, you will be able to
navigate to the LDAPv3 container and then to the text entered in the preceding
Configuration Name field. Alternatively, you can do a simple one line non-interactive
query with the tool to test our new directory service’s functionality:

$dscl /LDAPv3/www.krypted.com list /Groups

Provided the previous command returns valid data, you have verified that you can
browse the new directory services domain, and that you have completed an
unauthenticated static bind.

CHAPTER 2: Directory Services Clients

55

Figure 2-12. The Authentication search path

NOTE: Provided you are using a monolithic imaging solution, you can push out the image with
an unauthenticated static binding en masse.

Trusted Static Binding
We saved the most common method of binding for last. This isn’t because it is the least
important, but because it is (or at least can be) the most complicated in terms of
integration. If you built an Open Directory environment using the default settings for
Open Directory, then by default you can use unauthenticated static binding or trusted
static binding for client access. Of the two, trusted static binding is the most secure. If
you are going to touch each client system (either manually or using a script), you might
as well go ahead and make for as secure a solution as possible, given that it is not much
more work (if any) to deploy a trusted bind-based solution.

Trusted static binding to LDAP can be achieved using a few different ways. The first is to
use Directory Utility. Simply open the Directory Utility from /Applications/Utilities and

CHAPTER 2: Directory Services Clients

56

then click on the lock icon, authenticating as an administrative user on the local
computer you are using to bind. The resulting window is shown in Figure 2-13.

Figure 2-13. Directory Utility

Next, click on the plus sign (+). The dialog box will default with the Add a new directory
of type: field set to Open Directory; enter the IP address or host name of the Open
Directory Master (or a Replica) and optionally choose to enable SSL. Once you are
satisfied with your entries, click on the OK button as shown in Figure 2-14.

Figure 2-14. Directory Utility Add Server dialog box

CHAPTER 2: Directory Services Clients

57

If the directory services configuration is successful, you have successfully bound. When
using an unauthenticated static bind, you needed to set the Search Policy to custom.
However, with a trusted static bind, the Search Policy is set as part of the bind
operation. Although it’s never a bad idea to check the search domains list and verify
operation, this step will not need to be done.

NOTE: If you are using a monolithic imaging solution you cannot push out the image with a
trusted static binding en masse. You will need to script the trusted static bind into the post-
installation automation tasks that you will use as part of your deployment.

Pushing Out SSL Certificates
As mentioned, using SSL as part of your directory services integration helps to make it
as secure as possible. If that’s the case, why doesn’t everyone do it? It’s an extra few
steps that aren’t absolutely necessary. If you would like to use SSL on your clients, for
Open Directory or any other service, then on a per-host basis you typically need to trust
a certificate, unless it was granted from a certificate authority. In order to get a
certificate from a certificate authority you have to pay money. Additionally, the added
complexity is not something many administrators will deal with, if not required. As of
10.5, Open Directory is additionally onerous when utilizing SSL with directory services.
By default, the LDAP client utilized by the directory services daemon has no RootCA
trusts. That is, even certs signed from a valid certificate authority will be rejected with
the default configuration.

Overall, it isn’t that hard to use SSL. Since Chapter 1 covered doing so on the server
side, we’re going to move into managing SSL on the client side. As you probably
guessed, you can manage SSL from the GUI or from the command line, which makes
for better automation. However, setting up our CA trust requires command-line
interaction.

In order to configure our client to use SSL for directory services, you must first copy
your rootCA pem file to your client. This certificate can be exported from the Keychain if
it has been accepted or obtained from an administrator of the Certificate Authority (CA).
This file must contain the certificate for each CA in the cert chain, and is often referred to
as a cert bundle. If your Open Directory’s SSL cert was signed by an intermediate CA,
then your rootCA file must contain the certificate of that intermediate CA as well as the
root CA certificate. Apple commonly installs certificates in the directory /etc/certificates,
so this is a common place to store this file. It is best to avoid spaces in the path to this
file, including the filename.

If your Open Directory implementation utilizes a certificate signed by a recognized
Certificate Authority then you can utilize a certificate bundle preinstalled on all OS X
machines. If your host recognizes the certificate authority, it will not require
acceptance-----specifically, the certificate-bundle file utilized by curl and located at:
/usr/share/curl-ca-bundle.crt.

CHAPTER 2: Directory Services Clients

58

Once this file has been installed on the client, you can verify proper validation of the
chain against your Open Directory server by utilizing the openssl command-line utility:

$openssl s_client -connect www.myhost.com:636 -CAfile /etc/certificates/rootCA.crt |«
 grep "Verify"

You are looking for the value specified by the string Verify Return Code:. If the command
succeeded, you will see the output:

Verify return code: 0 (ok).

If a non-zero value is returned, then there is a problem with your bundle file. You will need
to rerun the command without the grep filter and decipher the problem from its output.

Once you have the pem file installed and tested, the next step is to configure your
DirectoryService LDAP client to utilize this CA file. To do so, you need to edit the file
located at /etc/openldap/ldap.conf. When viewing this file, take note of the key
TLS_REQCERT. This key represents the primary change between Leopard and Tiger.
In Leopard, the value of this key was changed from never to demand. With no
associated TLS_CACERT or TLS_CACERTDIR values configured, you will fail to trust any
certs presented.

To establish a trust, add a TLS_CACERT entry, pointing toward the cert bundle that you
just installed as shown in the following code (run with root privileges):

echo "TLS_CACERT /etc/certificates/ldapCA.crt" >> /etc/openldap/ldap.conf

Once done, restart the Directory Services daemon:

killall DirectoryService

After modifying your file, restart Directory Services to read in the new values. At this
point, you are ready to perform an SSL-enabled OpenDirectory connection.

If you are utilizing your own internal Certificate Authority, you will also want to import
the CA file into the Keychain framework for utilization by Cocoa applications. To
do this from the GUI then you will do so using Keychain Access, located in
/Applications/Utilities, as shown in Figure 2-15. SSL certificates can be installed for a
given users account or system-wide. Mac OS X uses a number of keychains to store
all of the SSL certificates that have been installed on the system or a users account in
an encrypted format. This separation between userlandspace and system-wide space
is important. Local user accounts store keychains in ~/Library/Keychains, with the
default keychain for a user called login.keychain. The system keychain is stored in
/Library/Keychains and by default called System.keychain. There is one more directory
worth noting, /System/Library/Keychains, which for the purpose of this chapter should
not be altered.

To install an SSL certificate using either the login.keychain (for the user) or the
System.keychain (global for all users on the host), simply drag the .cer or .crt file to the
entry under Keychains and when prompted authenticate. If you do not yet have a .cer or
.crtfile, learning how to export one will help you to have one to deploy, assuming, of

CHAPTER 2: Directory Services Clients

59

course, you have at least one machine that has the public key installed. To export an
SSL certificates public key, click on the certificate you wish to export and then drag it to
the location where you would like to store it.

Figure 2-15. Add root Certificate to Keychain Access

As mentioned previously, you can also import keys programmatically. To do so for Tiger,
you would copy the crt or cerfile to the local system. For example, if you have a number
of scripts that use a temporary folder called .tmp then you could use the following script,
assuming you have the files stored in that directory. (To get them there, you can use curl
to pull them off a web page or cp to pull them off a share point.) Next, copy the
/System/Library/Keychains/X509Anchors into the users home folder, update it to include
the certificate, and then push it back up to the correct location (replacing
mycertname.crt with the actual name and path of your certificate):

cp /System/Library/Keychains/X509Anchors ~/Library/Keychains
certtool i "mycertname.crt" k=X509Anchors
cp ~/Library/Keychains /System/Library/Keychains/X509Anchors

To programmatically install certificates in 10.5, you must utilize the security framework
(run as root).

security add-trusted-cert -d "/etc/certificates/rootCA.crt"

CHAPTER 2: Directory Services Clients

60

This command will add the specified certificate to the admin domain, effective for all
users. Once added to this Keychain, GUI applications, such as Safari and Mail, will
properly trust certificates signed by our CA. Oddly enough, the LDAP client in Address
Book actually uses the same LDAP facility as DirectoryService. Thus, to set up SSL
lookups in Address Book, previous methodology for configuring the previous
/etc/openldap/ldap.conf file applies.

This is a rather exhaustive procedure between importing the certificate(s) into our local
file system for use by LDAP, importing the certificate(s) into the Keychain, and then
configuring LDAP settings to establish the trust.

Luckily, there is a script to facilitate this process. This script will take a specified pem file,
so copy it into a specified directory, import into keychain, and update the ldap.conf file:

PATH=/bin:/usr/bin:/usr/sbin

Setup our vars.:
myName: NameUsed for logging (default SSLPackageInstaller)

myName="SSLPackageInstaller"
resourceDir: pathToDirectory containing our cert to be installed
(default same folder as script)
resourceDir=”${dirname "${0}"}”
Cafile: filename of our cert-bundle to be installed (as well as final destination
name)
CAfile="ldcintChainCABundle.pem"
certStore: Path to the local cert directory (/etc/certificates)
certStore="/etc/certificates"
certPath="${certStore:?}"/"${CAfile}"
importForCurl=1

logger -s "${myName}: started. Build: $build"

Check system version (script currently only supports 10.5+)
isSnowLeopard=$(sw_vers | grep –c 10.6)
isLeopard=$(sw_vers | grep -c 10.5)
isTiger=$(sw_vers | grep -c 10.4)
if ([${isLeopard} -eq 0] && [${isSnowLeopard} –eq0]); then
 logger -s "${myName}: Script currently only supports 10.5, or 10.6!!!"
 exit 1
fi

Verify we were given a valid cert file, if not we bail.
See CERTIFICATE EXTENSIONS section of x509 manpage
if [-f "${resourceDir}"/"${CAfile:?}"]; then
 goodCert=$(openssl verify -purpose any "${resourceDir}"/"${CAfile}" | egrep -c «
"^OK\$")
fi
if ["$goodCert" –eq 0]; then
 logger -s "${myName}: Certificate failed validation!!"
 exit 2
fi

Make sure our local certStore directory exists, make it if it doesn’t
test -d "${certStore:?}" || mkdir -p "${certStore}"

CHAPTER 2: Directory Services Clients

61

test for a pre-existing cert with the same name, if it's there move on,
otherwise install ours.
test -f "${certPath:?}" || cp "${resourceDir}"/"${CAfile:?}" "${certPath:?}"
if [$? != 0]; then
 logger -s "${myName}: Certificate transfer failed!! Copying $resourceDir/$CAfile «
 to $certPath"
 exit 3
fi

Import the cert into keychain using the security framework
security add-trusted-cert -d "${certPath}"
Modify the TLS_CACERT attribute of the local ldap.conf file to consult our
newly installed cert bundle
if ([${isLeopard} -eq 0] && [${isSnowLeopard} –eq0]); then
 if [`egrep -c "^TLS_CACERT" /etc/openldap/ldap.conf` != 0]; then
 escapedPath=`echo "${certPath}" | perl -p -e 's/\//\\\\\//g'`
 perlCommand="perl -p -i -e 's/(^TLS_CACERT\s)(.*)/\1{escapedPath}/g'"
 eval ${perlCommand:?} /etc/openldap/ldap.conf
 else
 printf "TLS_CACERT %s\n" ${certPath} >> /etc/openldap/ldap.conf
 fi
fi

exit 0

Custom LDAP Settings
Now that you can bind using the default method in Directory Utility, let’s look at a way to
set a little bit more information. The alternative method to performing a trusted static
bind to Open Directory, or another LDAP server without using the command line, is to
open Directory Utility and click on the lock to allow changes. Next, click on the Services
icon in the Directory Utility application and then double-click on LDAPv3. From here,
click on the New… button, but unlike the section on unauthenticated static binding go
ahead and enter a hostname or IP address to bind to in the Server Name or IP Address
field, as shown in Figure 2-16.

These options are as follows:

 Use for Authentication, which allows users to authenticate into local
resources using the bound directory service.

 Define whether or not you want to supply Contacts to client systems
using the Contacts tab of Search Policy in much the same way that
you used the Authentication tab.

 Encrypt using SSL, one of the best ways to securely configure Open
Directory (assuming, of course, that you have an SSL certificate and
have followed the procedures previously outlined).

CHAPTER 2: Directory Services Clients

62

Next, click on the Continue button. Once you have updated the Search Policy, you should
be able to test authentication using the aforementioned dirt (10.5) or dscl (10.6) utilities.

Figure 2-16. New LDAP connection

Now that you are bound, open Directory Access from /Applications/Utilities and click on
the Services icon in the Directory Utility toolbar again. From here, click on the name of
the server you recently bound to and then click on the Edit… button toward the bottom
of the screen. Here, you can set a variety of options about how the LDAPv3 Plug-in
functions, outlined in Figure 2-17. These include the following:

 Configuration name: the friendly name entered earlier in this chapter. If
the wizard was used this will be the same as the Server Name or IP
Address: field.

 Server name or IP address: the location of the LDAP server.

 Open/close times out in: number of seconds that the server will cancel
an open or close event for the LDAP connection.

 Query times out in: number of seconds that a Query for a record will
time out if the record has not yet been found.

 Re-bind attempted in: number of seconds to wait before reconnecting
to the LDAP server if there is no response.

 Connection idles out in: number of minutes before an idle connection
disconnects from the LDAP server.

 Encrypt using SSL: whether the connection will use SSL (likely set at
bind time).

 Use custom port: uses a custom TCP port (other than 389 or 636).

CHAPTER 2: Directory Services Clients

63

 Ignore server referrals: server referrals aid the LDAP plug-in in finding
information, but can cause latency in lookups and long wait times for
logins.

 Use LDAPv2: uses the LDAPv2protocol rather than the LDAPv3
protocol, for backward compatibility.

Figure 2-17. Advanced LDAP settings

NOTE: Apple has chosen the most appropriate values for the time out settings. However, if you
have fairly latent connections then you may choose to increase the values, or if your directory
servers are saturated then you may choose to lower them. Additionally, laptop users who are
frequently out of the office may have a better user experience with lower values configured to
reduce timeouts. Use caution when changing them though, as they are optimized for a
standard Open Directory environment.

CHAPTER 2: Directory Services Clients

64

Now, click on the Search & Mappings tab. Through the interface found under this tab,
you can configure the maps between standard Mac OS X attributes and those
available via other LDAPv3 servers. (This can be seen through the Inspector in
Workgroup Manager or using a standard read on a record in dscl, as explained in
Chapter 1.) In some cases, this is only the difference between, for example,
CreationTimestamp in OS X and createTimestamp in an LDAP object. As shown in
Figure 2-18, you’ll look to map fields that you see fit to those that exist in your current
LDAP environment. Using the Access this LDAPv3 Server drop-down menu, you can
select one of the pre-built Apple maps, which cover the commonly used Open
Directory Server, Active Directory, and RFC2307 settings.

Figure 2-18. Mapping LDAP Attributes

RFC 2307 is a set of standards laid out for Unix-style operating systems to leverage
LDAP as a centralized directory services solution. In fact, many of the attributes from
Open Directory are taken directly from the standards laid out in RFC 2307. There is no

CHAPTER 2: Directory Services Clients

65

manual mapping of fields for most aspects of LDAP if you are using an RFC 2307
compliant schema for LDAP, as those mappings are integrated for you out of the box.

http://www.faqs.org/rfcs/rfc2307.html

You can leverage otherwise unused fields with other Directory Services in order to
provide required fields for Mac OS X, even if those fields do not exist in the foreign
directory service. Once you are satisfied with your mappings, you can then save them as
a template using the Save Template… button or write them back to the server, so other
clients can use the mappings you may have painstakingly built. By leveraging the ability
to write back into the cn=config container, you will save yourself from having to set
mappings on each client, but instead set each client to From Server option using the
Access this LDAPv3 server using the drop-down list shown in Figure 2-19.

NOTE: In order to use the Write to Server… button, you will need elevated (e.g., diradmin)
privileges to the LDAP server.

Figure 2-19. Select From Server to read attribute mappings from the LDAP servers cn=config container

CHAPTER 2: Directory Services Clients

66

Once you are finished editing mappings, click on the Security tab. Here, you can set
user name (in the form of a Distinguished Name) and password as well as a few
basic security policies to control access to the directory server and bound. Before
you set these features, verify that your Open Directory servers also have them
enabled and/or supported. The settings shown in Figure 2-20 are as follows:

 Use authentication when connecting: for unauthenticated static
bind environments, forces client computers to use a username and
password when connecting. This is where you can specify a
distinguished name to utilize for directory authentication, allowing
non-trusted binds to function when anonymous LDAP access is
turned off.

 Distinguished Name: username of an account located in the
LDAPv3 domain specified.

 Password: password for the Distinguished Name.

 Disable clear text passwords: sets the client to not establish a
connection in the event that an authentication protocol cannot be
found and password submission would otherwise revert to
cleartext.

 Digitally sign all packets (requires Kerberos): utilizes Kerberos for
signing packets.

 Encrypt all packets (requires SSL or Kerberos): encrypts all data,
not just password, and requires SSL to function appropriately.

 Block man-in-the-middle attacks (requires Kerberos): typically used
in conjunction with Digitally sign all packets option.

Once you are satisfied with your settings, click on the OK button, or in order to go
from an unauthenticated to a trusted static bind click on the Bind… button. If you do
not see a Bind… button, then you are already using trusted binding. Finally, check
the Search Policy and verify that the directory service is included, as described in
the next section.

CHAPTER 2: Directory Services Clients

67

Figure 2-20. LDAP bind security options

Managing the Search Policy
You can bind to multiple directory services, and more specifically to multiple LDAP
servers, by using the Search Policy settings to determine which takes priority over the
others in the event that the username or computer name in one is duplicitous to another.
By specifying the order of the various Directory Services, we can control the order in
which they are queried for data. On all OS X machines, the local directory services
database will always have precedence. That is, if my local database has a user ‘jdoe’,
and the Open Directory System that I have bound to also has this user, when I login I will
be authenticating against the computer’s local user and will receive his information. This
is very important to know about OS X. Thus, arranging the order in which Directories are
listed is primarily useful for managing environments with multiple disparate Directory

CHAPTER 2: Directory Services Clients

68

Services. As I get into explaining Active Directory in more detail in Chapter 3, this will
become a more fundamentally important concept to grasp as we move into taking a
look at Mac OS X’s Active Directory plug-in and leveraging dual directories.

The focus so far has been on using LDAPv3 as a means to establish centralized
authentications services. However, the search policy also sets priority when using
centralized Contacts. In order to manage the Directory Service search path, you will
need to use the Directory Utility application. Once the utility is running, click the the lock
and authenticate. Once authenticated, click on the Search Policy icon in the Directory
Utility toolbar. Here, you will see a listing of all servers (called Directory Domains) that
are currently in your local computers search policy for authentication purposes under
the Authentication tab and for contact lookups via Address Book, using the Contacts
tab. Each will typically have the Search pulldown menu set to ‘‘Local Directory’’ by
default. This means that the server will only query the local Directory Service in order to
process authentication and/or contacts. Change this setting to Custom Path in order to
add network services to the search path. Once you are using a custom path, changing
the priorities that a server is given is as easy as dragging each above the other in the list,
as shown in Figure 2-21.

Figure 2-21. The Directory Service search path

CHAPTER 2: Directory Services Clients

69

According to how you bound to an environment, you may not see a directory server that
you are bound to in the list of Directory Domains. If you do not see a server listed here,
click on the plus sign (+) and you should see it in the list of Available Directory Domains.
Click on the one you wish to add to your Search Policy, and then click on the Add
button so it will be added to the list of Directory Domains and can be reordered as you
see fit (see Figure 2-22).

Figure 2-22. Add a Directory Domain

As mentioned, you can perform all of the steps here from the command line. You will be
using dscl not dsconfigldap, which you used for most other tasks in this chapter. This is
because dsconfigldap is a command to specifically perform binding and manage certain
aspects of the LDAPv3 plug-in itself, whereas the search policy is global across all
directory services plug-ins.

CHAPTER 2: Directory Services Clients

70

You can also query and set search policy information from the command line. To see the
current setting for the search path run the following command:

dscl -q localhost -read /Search

To change the search policy from a local search policy to a custom search policy, you
would change the /Search dsAttrTypeStandard from LSPSearchPath (Local Search
Policy) to CSPSearchPath(Custom Search Policy). To do so use dscl in conjunction with
the –change option as follows:

sudo dscl /Search -change / SearchPolicy dsAttrTypeStandard:LSPSearchPath «
dsAttrTypeStandard:CSPSearchPath

To add a new item (such as the one just added in dsconfigldap) to the search policy you
would use dscl with the –append option, adding the path:

dscl /Search -append / CSPSearchPath /LDAPv3/seldon.foundation.com

NOTE: A final aspect of search policies is that they can be used to control which directory
server you query, the replica or the primary. Basically, you can bind to each and then use the
Search Policy to switch between the two, controlling saturation points in the process.

Binding with the Command Line
Most command-line operations with regard to LDAPv3 binding are handled via
dsconfigldap. The dsconfigldapcommand can bind, set security policies, and
configure basic settings. When using dsconfigldap it is worth noting that there are
several parameters and options. Parameters will be applied to the specific task you
are looking to perform and identify which server configuration to update.

To perform an unauthenticated static bind without a prompt for a username and
password (and therefore able to be added into a script) you are going to use three
parameters with dsconfigldap: -a to specify a server (in this context often referred to
as a configuration), -l to specify a local administrative account with permissions to
perform such a task, and -q which supplies the password for said account. In the
following example, these are set to seldon.foundation.com, admin, and daneel,
respectively:

dsconfigldap -a seldon.foundation.com –l admin –q daneel

Alternatively, if you want to avoid passing passwords via stdin, and you are running from
an admin account, you can perform an unauthenticated static bind without passing local
credentials simply by running the tool as root:

sudo dsconfigldap -a seldon.foundation.com

CHAPTER 2: Directory Services Clients

71

While you previously used -a, -l and -q, the following parameters are also available and
more common in trusted static bind environments:

 -n <configname>: configuration name for the server being added

 -c <computerid>: computer name to supply to the directory service

 -u <username>: LDAP administrative account for the server specified

 -p <password>: password for account previously specified

 -r <servername>: remove a server configuration

The following options are available regardless of the type of bind operation you are
performing. These mostly include options for security and bind-time operations:

 -x: only allow communication if SSL is used

 -s: disable clear text passwords during authentication

 -g: force packet signing using Kerberos

 -m: block man-in-the-middle attacks using Kerberos.

 -e: if a server is capable of a security mechanism, then enforce it at the
client as well and do so always

 -f: force the addition or removal of a configuration

 -v: process the command verbosely

 -i: run the command interactively, using passwords where needed

The following is an example of a command to perform a trusted static bind, using the
additional parameters and commands that you’ve learned so far:

dsconfigldap –x –m –g –s –a seldon.foundation.com –n "Inner Rim" –u diradmin –p «
hindsightis4sight diradminpass –l admin –q daneel –c RDO2100

You can also use dsconfigldap to unbind systems. Simply issue the dsconfigldap
command followed by a -r and then the server name. In the following, we’ll list the
LDAPv3 servers and then loop through the list removing them one-by-one:

for dsrm in $(dscl localhost -list /LDAPv3)
do
 echo dsconfigldap -f -r "${dsrm}"
done

The preceding can be helpful if you are, for example, binding in an environment of pre-
existing machines.

CHAPTER 2: Directory Services Clients

72

Scripting Binding
Throughout this chapter, you have provided a number of commands to
programmatically bind to an Open Directory and/or LDAP environment. Now, we’re
going to put these into order to form a script that is capable of removing existing
LDAPv3 servers and then perform a custom bind operation against the LDAPv3
environment, setting a computer name and then editing the search policy to include
the newly bound directory service. You will be using the same domain name,
username and password that you’ve been using throughout this chapter, as shown in
the following:

#!/bin/bash
for dsrm in $(dscl localhost -list /LDAPv3)
do
 dsconfigldap -f -r "${dsrm}"
done
dsconfigldap –x –m –g –s –a seldon.krypted.com –n "Inner Rim" –u diradmin –p «
hindsightis4sight –l admin –q daneel –c RDO2100
dscl /Search -change / SearchPolicy dsAttrTypeStandard:LSPSearchPath «
dsAttrTypeStandard:CSPSearchPath
dscl /Search -append / CSPSearchPath /LDAPv3/seldon.krypted.com

Most scripts that you use will be similar to what you are using in the preceding code.

NIS
Network Information Service (NIS) was one of Sun’s earlier attempts at providing
directory services to clients. This isn’t to say that all features of NIS are still supported,
but basic support is there. Because Mac OS X maintains support for NIS and has a
directory services plug-in dedicated to it, you can use Directory Utility to configure Mac
OS X as a NIS client. If you need NIS, you know what it is. If you don’t, then you will
likely want to forget you mentioned it. If you need to set it up though, let’s take a look at
how to do it.

To set up your NIS client, open Directory Utility and click on the lock to authenticate (so
you can make changes). Then click on the Services icon in the Directory Utility toolbar
and check the box for BSD Flat File and NIS (checked by default in 10.6), as shown in
Figure 2-23.

CHAPTER 2: Directory Services Clients

73

Figure 2-23. Enabling NIS in Directory Utility

Next, double-click BSD Flat File and NIS row. At the resulting screen shown in
Figure 2-24, check the box for Use User and Group records in BSD local node to
activate the plug-in. Next, enter the domain name of your NIS environment in the
Domain name: field and the IP address or hostname for your NIS servers in the Servers:
field. Because of the differences between NIS and LDAPv3, you will need to check the
Use NIS domain for authentication checkbox in order to populate the information for
your NIS environment into the search policy of your node. When you are satisfied with
your results, click on OK and then use dscl to test NIS functionality.

CHAPTER 2: Directory Services Clients

74

Figure 2-24. Adding an NIS Server Configuration

As you can imagine, there are commands you can use to manage NIS as well. These
can be found in the /usr/sbin directory of your server and include the following:

 ypbind: perform binding operations

 ypxfr: obtains the map for a client from a directory server

 yppoll: query data from a directory server’s map

 ypset: sets which directory server to use

 ypwhich: show hostname of yp server

 ypcat: show all of the available values in a NIS database

 ypmatch: show the value of a specified key in the NIS database

NIS was originally named Yellow Pages, which is why each command is prepended with the yp
character set.

CHAPTER 2: Directory Services Clients

75

Mac OS X can act as a NIS server, although given the age you assume that you are
either using NIS already or will not be implementing it. If you use NIS, you will want to
manage the ypserv daemon, found in /usr/libexec. For more information on NIS, see the
yp man page using the following command:

man yp

Kerberos
Kerberos is the preferred method for pretty much every directory service on the market
to supplement LDAPv3, supplying enhanced password features, single sign-on, or both.
Mac OS X is no different and the Kerberos client plays well either in its own Open
Directory environments or in environments managed by other solutions. Mac OS X
actually has a Kerberos Key Distribution Center (KDC) built into every single computer,
used for securing peer-to-peer communications.

Managing Kerberos on a Mac OS X computer is mostly handled for you. There is very
little to do in most environments. When you log into the first Kerberised service, be it an
initial authentication into a Mac OS X client or via AFP to a SharePoint, at that initial
authentication screen you will be authenticating into a Kerberos realm and will then not
have to enter a password to access other services that are trusted by the realm. Beyond
the basic realm configuration, most of the tools for Kerberos are often used for mass
deployment of settings, manual configuration when those settings don’t work correctly,
and post deployment troubleshooting.

To control Kerberos using the GUI, you will use the Kerberos.app utility, which
shipped with 10.5. Unfortunately, the Kerberos Ticket Viewer application was
replaced in Snow Leopard with the “Ticket Viewer” Application, which is far more
limited. The two can be seen side by side in Figure 2-25. Each respective utility is
accessed through the Keychain Access menu of Keychain Access (which is located
at /Applications/Utilities). You can also access each directly in the /System/
Library/CoreServices/ directory. The 10.6 Ticket Viewer Application does not have
any functionality to modify REALM configuration, and all edits must be made by
hand, as discussed later in this section. Alternatively, you can copy the utility from a
10.5 install, and it will run in 10.6.

Once Kerberos.app has been opened, you can use it to browse the tickets (remember
from Chapter 1 that a ticket is provided by the KDC based on the Ticket Granting
Ticket). Using the toolbar, you can establish a connection to a new realm, renew tickets,
Destroy tickets, get more information on tickets, and change the password associated
with a ticket. In regard to per-user Kerberos ticket management, the Kerberos Ticket
Viewer offers a one-stop shop.

CHAPTER 2: Directory Services Clients

76

Figure 2-25. 10.5’s Kerberos.app (left), 10.6’s Ticket Viewer.app (right)

In order to join a realm, click on the New button in the toolbar. As you can see in
Figure 2-26, you’ll now be prompted for an account name, a realm name, and a
password. If the realm information is cached or has been supplied via DNS, then you will
be able to select the realm from the Realm: drop-down menu.

Figure 2-26. Authenticate to receive a Kerberos Ticket

CHAPTER 2: Directory Services Clients

77

Kerberos.app and Ticket Viewer are fairly limited in what they can do. There is no
interface for managing service principles and each option has very few parameters,
whereas with the command line there are a plethora of options and parameters. For
example, to list the tickets the current user has cached, you can use the klist
command:

 [helyx:~] hunterbj% klist
Kerberos 5 ticket cache: 'API:Initial default ccache'
Default principal: hunterbj@LBC

ValidStarting Expires Service Principal
08/19/09 20:27:51 08/20/09 06:27:51 krbtgt/LBC@LBC
 renew until 08/26/09 20:27:51
08/19/09 20:27:54 08/20/09 06:27:51 host/hax.lbc@LBC
 renew until 08/26/09 20:27:51
08/19/09 20:28:23 08/20/09 06:27:51 vnc/mira.lbc@LBC
 renew until 08/26/09 20:27:51

As seen, the klist output is pretty basic and easy to read. You can see what I have
by Ticket Granting ticket through the presence of the krbtgt/LBC@LBC service
principal. You can also see that I have a host principal (used for ssh) and a vnc
principal (used by OS X Screen Sharing).The klist command also has a variety of
options as follows:

 -5: only display Kerberos 5-based tickets

 -4: only display Kerberos 4-based tickets

 -a: show a list of addresses

 -A: list all of the available tickets

 -c: show cached tickets

 -e: also display the encryption type of the session key

 -f: also list any flags for tickets, like -F for forwardable, -f for
forwarded, -I for invalid, etc.)

 -k: list keys in the keytab file

 -K: show encryption keys from the keytab file

 -t: include timestamps in the output

 -n: show IP addresses

 -s: run silently, useful for a sanity check in a script to verify that the
ticket cache is actually present

The kinit command can be used to initiate authentication into a realm, thereby
generating and caching a ticket-granting ticket. In its most basic form, kinit can be
called with no arguments, and will by default try to obtain a TGT for your current user

CHAPTER 2: Directory Services Clients

78

in the machines default realm, as configured in the client’s edu.mit.kerberos file.
Alternatively, you can specify a specific username and realm to authenticate as:

 [helyx:~] hunterbj% kinit -V hunterbj
Please enter the password for hunterbj@LBC:
Authenticated via Kerberos v5. Placing tickets in cache 'API:Initial default ccache'
[helyx:~] hunterbj% klist
Kerberos 5 ticket cache: 'API:Initial default ccache'
Default principal: hunterbj@LBC

Valid Starting Expires Service Principal
08/19/09 22:01:29 08/20/09 08:01:29 krbtgt/LBC@LBC
 renew until 08/26/09 22:01:28

Additional options for the kinit command include the following:

 -V: verbose output

 -l: define the lifetime of the ticket when obtaining it

 -r: define how long a ticket is renewable

 -s: include a start time (and therefore caches a postdated ticket)

 -f : use forwardable tickets

 -F: do not use forwardable tickets

 -p: use proxiable tickets

 -P: do not use proxiable tickets

 -a: request a ticket with the host’s address

 -A: request ticket without a defined address

 -v: validate a ticket in the keytab against the KDC

 -R: renew a ticket

 -k: obtain a key from a key in the local keytab file (cache) rather than
from a live server

 -S: include the service name to use when obtaining ticket-granting tickets

The kdestroy command is fairly straightforward, with far fewer options than kinit-----but
then it has a specific task to delete tickets. The options are primarily in regard to defining
which tickets to delete:

 -a or -A: destroy all tickets

 -c: name of cache to delete

 -p: name of principal to delete

 -q: run quietly (without feedback to the command line)

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2: Directory Services Clients

79

There are two other commands worth noting: kpasswd and kswitch. The kpasswd
command can be used to change a principal’s password. The kpasswd command prompts
you for both your old and your new password. This can be useful, for example, if you are
using an Active Directory environment or troubleshooting why users are unable to reset
their own passwords. The kswitch command sets the cache for the default system.

There are also a number of files used to track various Kerberos statuses, caches, and
settings. For example, the /Library/Preferences/DirectoryService/
DSLDAPv3PlugInConfig.plist property list file maintains a list of all of the service
principles created when a user of the host authenticates into a realm.

The keytab file is perhaps the most critical file on an operating system to secure.
Kerberos uses a keytab file to store pairs of Kerberos principals and their corresponding
DES keys. In Mac OS X, the keytabfile is called krb5.keytab and is stored in the /etc
directory. Much of the information in the keytab is barely readable to human eyes, much
less editable. Therefore, much of the heavy lifting for the keytab will be handled using
the kadmin and kadmin.local commands, and in some cases the ktutil command. The
former two commands have the same options and features, with the one exception
being that kadmin.local is meant to manage Kerberos on a KDC while kadmin is meant
to manage Kerberos on all other hosts. The kadmin command supports in regard to
utilized ciphers, password restrictions, ticket life, etc. For some example usage of the
tool, see the ‘‘Troubleshooting Kerberised Services’’ section.

Earlier, it was mentioned that Mac OS X client acts as a KDC (it’s actually an LKDC, to
be more specific). The /etc/krb5.conf file can be used to show available realms. For the
available realms, the krb5.conf file will show the supported encryption types of each
realm along with the configuration options, mappings, rules, and location. An example of
the krb5.conf file is shown in the following code:

 [libdefaults]
 default_realm = KRYPTED.COM
 default_tgs_enctypes = RC4-HMAC DES-CBC-MD5 DES-CBC-CRC
 default_tkt_enctypes = RC4-HMAC DES-CBC-MD5 DES-CBC-CRC
 preferred_enctypes = RC4-HMAC DES-CBC-MD5 DES-CBC-CRC
 dns_lookup_kdc = true
[realms]
 KRYPTED.COM = {
 auth_to_local = RULE:[1:$0\$1](^KRYPTED\.COM\\.*)s/^KRYPTED\.COM/KRYPTED/
 auth_to_local = DEFAULT
 }
[appdefaults]
 pam = {
 mappings = KRYPTED\\(.*) $1@KRYPTED.COM
 forwardable = true
 validate = true
 }
 httpd = {
 mappings = KRYPTED\\(.*) $1@KRYPTED.COM
 reverse_mappings = (.*)@KRYPTED\.COM KRYPTED\$1
 }

CHAPTER 2: Directory Services Clients

80

The preceding file is split into three sections: [libdefaults], [realms], and [appdefaults],
which respectively controls Kerberos behavior, information for a given realm, and
settings per service. It is more than likely that you will not need to edit the kerb5.conf file
with the exception of potentially disabling DNS utilization with Kerberos, which can help
to reduce login times for domains using the .local namespace. This can be done by
adding the following line into the [libdefaults] section of the configuration file:

dns_fallback = no

An OS X client utilizes a krb5.conf file, but stores it at the location: /Library/Preferences/
edu.mit.Kerberos. In this file, you will also find the [realms] and [libdefaults] sections, but
you will also find the [domain_realm] section, which deals with normalization and
definitions of realms. The contents of a typical file are listed here:

 [domain_realm]
 krypted.com = KRYPTED.COM

[libdefaults]
 default_keytab_name = /etc/opt/quest/vas/host.keytab
 default_realm = KRYPTED.COM
 default_tkt_enctypes = arcfour-hmac-md5 des-cbc-md5
 dns_fallback = yes
 dns_lookup_kdc = yes
 forwardable = true

[realms]
 KRYPTED.COM = {
 admin_server = seldon.krypted.com
 kdc = server.seldon.com:88
 kpasswd_server = seldon.krypted.com:464
 }

In the preceding, you will see another dns_fallback. If you first initiated a connection
to the default_realm following setting the dns_fallback in krb5.conf, which I
mentioned when discussing the krb5.conf file, this setting will be set to no;
otherwise it will be set to yes, and will need to be changed if you want to disable
reverse dnsenumeration. Again, only be concerned about the dns_fallback if you are
seeing connectivity errors and think they are related to DNS issues (you cannot
perform both a forward and reverse lookup on a realm’s KDC or you are using a
.local domain namespace).

You should also notice the kpasswd_server entry in the edu.mit.kerberos file, which
defines what password to perform a reset against in the event of a failure. In large
environments with services distributed across a number of hosts, you may find stale
information here, which can also cause password change events to fail. If you do find
yourself needing to make changes to this file, and the file was generated by a directory

CHAPTER 2: Directory Services Clients

81

binding, know that your changes will be overridden. To prevent this, you will need to
delete the lines containing the text:

autogenerated from : /LDAPv3/myserver.com
generation_id : 419733404

Any time you change information in your Kerberos files, you’ll need to restart the
Kerberos services. The Kerberos services that run on a Mac OS X client include
[] edu.mit.Kerberos.KerberosApp, edu.mit.Kerberos.KerberosAgent,
edu.mit.Kerberos.CCacheServer, and com.apple.KerberosHelper.LKDCHelper.

Each of the preceding services can be controlled using launchctl. For example, if you
run the launchctl command followed by the list option, you should see the following line
included somewhere in the output:

- 0 edu.mit.Kerberos.CCacheServer

In order to then stop the CCache Server, you could use the launchctl command with
the stop option, followed by the name of the launchd item you would like to stop. In the
case of CCache Server, it would be the following:

Launchctl –stop edu.mit.Kerberos.CCacheServer

Kerberising Services
After binding a client or server to a domain and joining it to a Kerberos Realm, it may
be desirable to Kerberise the services that the node provides. That is to say you will
configure the service in such a way that your OS X boxes will provide single-sign-on
access to users with valid Ticket Granting Tickets (TGTs). The process to integrate your
OS X server with your current SSO environment will vary based upon the Kerberos
implementation that your company provides. For instance, in Open Directory
environments, Apple provides several nifty tools which do much of the legwork for you:
sso_util and krbservicesetup. For Active Directory, the dsconfigad tool can do all of
the legwork as well. For other implementations, it may very well be possible to utilize
some of Apple’s tools. However, it might also be necessary to roll your own. In any
scenario, it is necessary to have a proper edu.mit.kerberos file, as discussed in the
previous section. During the Active Directory and Open Directory binding process, the
Kerberos information in this file will be automatically generated for you. Until you can
verify that you can obtain a ticket using kinit, or the Kerberos Ticket Viewer app, you
don’t want to mess around with Kerberising your services.

The easiest Directory Service SSO implementations to integrate are Apple’s Open
Directory and Microsoft’s Active Directory. Neither are terribly difficult to pull off, but
from the command line, the Active Directory tool is the most simplistic. You can use the

CHAPTER 2: Directory Services Clients

82

Server Admin utility to Kerberise services for a server by selecting the Open Directory
Service and selecting the General tab. If the server is bound to a Directory and detects
Kerberos, you will be presented with the ability to join a server to a Kerberos REALM, as
seen in Figure 2-27. Click on the Join Kerberos button to generate service principals for
all supported services, and then modify their configurations to utilize the new principals
for authentication.

Figure 2-27. Kerberising services using Server Admin

To integrate with AD from the command line, once your OS X server has been bound
you simply call dsconfigad with a single flag, -enableSSO:

sudo dsconfigad –enableSSO

For more information on Active Directory, see Chapter 3.

CHAPTER 2: Directory Services Clients

83

To integrate an OS X box with Open Directory from the command line, you can utilize
the sso_util binary. This utility has a wide variety of uses, but first and foremost, it can
be used to generate the appropriate service principals from the Kerberos Realm’s KDC,
place them in the node’s local keytab, and even configure the node’s services to use
them. The syntax is rather basic as well and is as follows:

sudo sso_util configure -r REALM -a admin_name [-p password] service

We just feed it our REALM, a kerberos administrator’s credentials, and we specify a
service which will be generated. You can specify one or more of the following services
afp, ftp, http, imap, pop, smtp, ssh, fcsvr, vnc, cifs, or all. When ran, the command will
pretty much take care of everything for us. For example, to fully kerberise an OS X
laptop to the Open Directory domain myco.com, the following syntax would be used:

sudo sso_util configure –r MYCO.COM –a diradmin all

With this syntax, you will be prompted to provide your password via secure text entry,
which is preferable to potentially leaving your password in your shells history, or expose
your password via ps. Alternatively, you can pass the password via the environmental
variable $SSO_PASSWD_PATH.

NOTE: To clear your shell’s history in either the bash or tcsh shells, use the command
history –c.

The sso_util binary has some other uses for larger OD environments as well. For
example, it has the ability for a KDC administrator to generate Kerberose principals for a
specific host, at which point a lesser privileged administrator can Kerberise the services
on the host side. The process starts with the KDC admin first generating the record. In
this case, we will be generating a record for host mail.myco.com in our OD domain
myco.com:

sudo sso_util generateconfig –r MYCO.COM -R mail.myco.com -f /LDAPv3/odserver.myco.com
-U thatotheradmin –a diradmin all

The previous command will attach a secure record configuration to the computer LDAP
object mail.myco.com found in the LDAP database at server odsrever.myco.com. This
computer object will be found at the path /Computers/mail.myco.com. The LDAP dn for this
in an OD environment is cn=mail.myco.com,cn=computers,dc=myco,dc=com. The secure
record configuration is an encrypted data object stored in the computer’s configData
LDAP attribute. The data stored in this attribute is an encrypted string which contains
the Kerberos host and service principals for the desired host. Because the service
principals are very sensitive, it is recommended that you delete this entry after you have
successfully kerberized a host using either Server Admin or the command that follows.

In the previous sso_util command, we specify the user that otheradmin as a delegate
admin. That user can now run the sso_util command from the new server, and
complete the Kerberisation process:

sudo sso_util useconfig –R mail.myco.com -f /LDAPv3/odserver.myco.com -a thatotheradmin

CHAPTER 2: Directory Services Clients

84

While the main pages of sso_util specify that the tool is specifically for Open Directory,
it’s most basic functions provided by the configure option will likely work with most
vanilla Kerberos5 implementations. Even if you don’t have Open Directory, this tool may
still be able to automate pretty much all of the principal generation for you.

If the sso_util command doesn’t work in your environment, Apple provides a lower level
tool, krbservicesetup, which might work for your needs. The krbservicesetup command
is actually called by sso_util and has a few downsides, but it is worth mentioning. The
krbservicesetup tool can be used to configure a single service at a time, and handles
Kerberos principal generation via kadmin and local service configuration. Secondly, you
must specify the password as part of the command. For example, to generate a service
principal for the imap service on mail.myco.com, I would use the following command:

sudo krbservicesetup -r MYCO.COM -a diradmin -p password imap
imap/mail.myco.com@MYCO.COM

Troubleshooting Kerberised Services
If you’ve gone through the previous section about setting up Kerberised services, and
for whatever reason the previous tools do not accomplish the task, then you are not
completely out of luck. However you may need to go through the grueling process of
principal creation and service configuration. On top of this, each service has a different
method for configuration, so it becomes a bit of a black art.

The first step in troubleshooting any kerberos error is to verify that your client and
server’s clocks are in sync. Kerberos is notorious for this, and it only allows for a skew of
five minutes. Anything beyond this and the whole system breaks down. Next, ensure
that the problem is truly server oriented and verify from multiple clients that Kerberised
services are not being provided.

With that out of the way, it’s time to troubleshoot the server. Consider for a moment that
I am configuring my imap service to provide single sign-on. From your server, first
ensure that the service has a respective service principal in the server’s local keytab. To
do this, use the klist command with the flags –kt, ran with root privileges via sudo:

%sudo klist -kte
Keytab name: FILE:/etc/krb5.keytab
KVNO Timestamp Principal
---- ----------------- --
9 08/19/09 21:15:56 imap/mail.myco.com@MYCO.COM (Triple DES cbc mode with HMAC/sha1)
9 08/19/09 21:15:56 imap/mail.myco.com@MYCO.COM (ArcFour with HMAC/md5) 3 08/19/09
9 08/19/09 21:15:56 imap/mail.myco.com@MYCO.COM (DES cbc mode with CRC-32)
9 08/19/09 21:15:56 vnc/mail.myco.com@MYCO.COM (Triple DES cbc mode with HMAC/sha1)
9 08/19/09 21:15:56 vnc/mail.myco.com@MYCO.COM (ArcFour with HMAC/md5) 3 08/19/09
9 08/19/09 21:15:56 vnc/mail.myco.com@MYCO.COM (DES cbc mode with CRC-32)

(output clipped)

Looking at this output, I can see that my local keytab (/etc/krb5.keytab) does indeed
contain the imap service principal, three in fact. This illustrates the default nature of
Open Directory’s KDC behavior, it generates three principles for each service, encrypted

CHAPTER 2: Directory Services Clients

85

via des, 3des, and md5, respectively. By supporting all three encryption algorithms, the
service can provide maximum compatibility.

If the necessary Kerberos principals for your service don’t exist, and sso_util isn’t doing
its job and creating them for you, then you can create your own principles. Principal
generation is done via the kadmin or kadmin.local utility. The exact procedure may vary
based upon your Kerberos toolset, but the following should work with most MIT based
KDC’s. First, we connect to our KDC via kadmin, preferably from our new mail server:

$ sudo kadmin -r MYCO.COM -p diradmin
Authenticating as principal diradmin with password.
Password for diradmin@MYCO.COM:
kadmin:

Next, we can run the listprincs command to see if our service principal already exists
in the kdc:

>kadmin: listprincs
(output cut)
host/mail.myco.com@MYCO.COM
ldap/mail.myco.com@MYCO.COM
vnc/mail.myco.com@MYCO.COM
 (output cut)

We’ve cut the output of this command for brevity, but in large environments that
command can return a long list of data. Alternatively, we can use the getprinc command
to specifically query the principal we are interested in:

>kadmin: getprinc imap/mail.myco.com@MYCO.COM
Principal: imap/mail.myco.com@MYCO.COM
Expiration date: [never]
Last password change: Wed Aug 19 21:15:56 PDT 2009
Password expiration date: [none]
Maximum ticket life: 0 days 10:00:00
Maximum renewable life: 7 days 00:00:00
Last modified: Wed Aug 19 21:15:56 PDT 2009 (diradmin@MYCO.COM)
Last successful authentication: [never]
Last failed authentication: [never]
Failed password attempts: 0
Number of keys: 3
Key: vno 9, Triple DES cbc mode with HMAC/sha1, no salt
Key: vno 9, ArcFour with HMAC/md5, no salt
Key: vno 9, DES cbc mode with CRC-32, no salt

Here we can see the principal does exist, and at the bottom, we can even see the three
different encryption keys used by that principal. If this principal didn’t yet exist, we could
create it using kadmin’s addprinc command. We specify the ---randkey option to
generate a random password for the principal:

>kadmin: addprinc -randkey imap/mail.myco.com
Principal "imap/mail.myco.com@MYCO.COM" created.

CHAPTER 2: Directory Services Clients

86

With the service principal created on the KDC, we now need to copy it to our local
machines keytab file. If we ran kadmin from the local machine, this is very easy to do by
using the ktadd and specifying our local keytab file at /etc/krb5.keytab:

>kadmin: ktadd -k /etc/krb5.keytab imap/mail.myco.com
Entry for principal imap/mail.myco.com with kvno 3, encryption type Triple DES cbc mode
with HMAC/sha1 added to keytab WRFILE:/etc/krb5.keytab.
Entry for principal imap/mail.myco.com with kvno 3, encryption type ArcFour with
HMAC/md5 added to keytab WRFILE:/etc/krb5.keytab.
Entry for principal imap/mail.myco.com with kvno 3, encryption type DES cbc mode with
CRC-32 added to keytab WRFILE:/etc/krb5.keytab.

We can now run klist –kt as root on our machine and we should see the new
principals listed in our local keytab file. If we ran kadmin from a different machine, we will
need to write the principals to an arbitrary file, and transfer it to the server. Be careful
with this methodology though, as if the keytab file is compromised, it can be used to
hack into your server. If you find yourself needing to do this, run the ktadd command,
but specify a different file to export to, say /Users/admin/mail.myco.com.keytab. From
here, you will need to copy the file to the server, for simplicities sake we’ll say you
placed the file in the same path. From the new server, we will use the ktutil command
to add this keytab to our existing krb5.keytab file. ktutil is not the friendliest of
commands, but the basic operations are easy enough. First, fire up the utility, and read
in our new keytab file with the rkt option:

$sudo ktutil
ktutil: rkt /Users/admin/mail.myco.com.keytab

Next, we’ll read in our existing keytab file at /etc/krb5.keytab:

ktutil: rkt /etc/krb5.keytab

We now have loaded both our existing principals and our new principals into memory. The
next step is to write out all of the loaded principals to our local file via the wkt option:

ktutil: wkt /etc/krb5.keytab2
ktutil: quit
We have now written our keytabs to a new file /etc/krb5.keytab2. At this point we need
to make it our active keytab file:
mv /etc/krb5.keytab2 /etc/krb5.keytab

We have now merged the two keytab’s entries, and you can now delete the transfer
mail.mycoc.com.keytab file.

Once the service principals exist both on the KDC and in the server/client’s local
keytab file, the pieces are in place for a successful SSO setup, and all that is left is the
configuration of individual service(s). The unfortunate reality of the situation is that each
service is a little bit different in this respect. Some services, such as vnc and ssh, simply
search for the principal appropriate for the connection hostname. For instance,
from my client if I connect via ssh to mail.myco.com, it will search for the principal
host/mail.myco.com@MYCO.COM. However, if I ssh to the same box via its bonjour
address, mail.local, it will search for the principal host/mail.local@MYCO.COM, which will
typically not exist. VNC works in a similar manner.

CHAPTER 2: Directory Services Clients

87

The AFP service utilizes a specific principle specified via its preference file found at
/Library/Preferences/com.apple.AppleFileServer.plist. There are two specific keys that
the AFP server uses for SSO: kerberosPrincipal and authenticationMode. The first
attribute is simply the string text of the principal, afpserver/mail.myco.com@MYCO.COM.
The second attribute defines the types of authentication. This attribute will contain one
of three values: standard_and_kerberos, standard, or kerberos. The three values are
fairly self explanatory. We recommend the first of the three, standard_and_kerberos. In
this configuration, the AFP server will default to Kerberos, and if that fails for whatever
reason, will revert to its standard authentication method: Diffie-Hellman Exchange (DHX).

The latter option can be configured for the AFP Service by using the Server Admin utility,
as shown in Figure 2-28. Noticably absent from that picture is a field to define the
Kerberose principle. To set that, you can use the defaults command to modify the
service’s plist, and then restart the service to read in the new setting (active transfers will
be interrupted):

sudo defaults write /Library/Preferences/com.apple.AppleFileServer kerberosPrincipal
'afpserver/mail.myco.com@MYCO.COM'
sudo killall AppleFileServer

Figure 2-28. Setting AFP Authentication methods in Server Admin

CHAPTER 2: Directory Services Clients

88

Numerous other services have similar authentication selections to that shown in
Figure 2-28: FTP, iCal, iChat, Web, and Xgrid. For each of these services, Kerberos
authentication is enabled by default.

The mail service, like the ssh service, utilizes gssapi based authentication, which
provides a more standardized interface over the Kerberos API for authentication
services, but commonly utilizes Kerberos as it’s actual authentication mechanism.
The easiest way to enable Kerberos for mail services is via the Server Admin application.
As shown in Figure 2-29, Kerberos authentication can be enabled individually for each
protocol, SMTP, IMAP, and POP. Once again, it is recommended that you enable a non-
Kerberos fallback authentication, unless security policies require it.

Figure 2-29. Setting Mail Authentication methods in Server Admin

After ensuring that your service is properly setup to use Kerberos, and the principals
exist in the KDC and the local keytab, you should have a functional SSO-friendly
service. If this still is not the case, then you’ll have to resort to the logging facilities
provided by each service. Keep in mind that the number one killer of Kerberos is its
heavy reliance on synchronized clocks, so always check that your client and server’s
clocks are in sync.

CHAPTER 2: Directory Services Clients

89

Directory Services Preferences
Throughout this chapter we have focused on binding to LDAPv3 and therefore to some
degree, LDAP. However, there are a number of settings for the directory services
environment that we have not covered. As you can imagine, there are a number of
preferences available for the directory services client framework, all of which can be
assigned through the command line (and therefore from a script). You can also set a
system as you would like the directory services preferences to be, and then deploy the
actual plistfiles that make up many of these preferences.

In the /Library/Preferences/DirectoryService directory, you will find the following files:

 ActiveDirectory.plist: contains Active Directory Binding data including
mappings, security levels, and computer credentials (discussed further
in Chapter 3).

 ActiveDirectoryDomainCache.plist: Cache data related to bound
Active Directory domains (discussed further in Chapter 3).

 ActiveDirectoryDomainPolicies.plist: Contains password policy data
pertinent to bound Active Directory domains (discussed further in
Chapter 3).

 ActiveDirectoryDynamicData.plist: Contains Active Directory Domain
information, including available Domain Controllers (discussed further
in Chapter 3).

 ContactsNodeConfig.plist: can be used do add Directory Domains to
the contacts search policy (using Search Node Custom Path Array),
show/reset DHCP LDAP information (DHCP LDAP), and configure the
search policy by setting the Search Policy key to 1, 2, or 3 for
Automatic, Local, or Custom respectively.

 ContactsNodeConfigBackup.plist: backup of the
ContactsNodeConfig.plist.

 DirectoryService.plist: described in the preceding ‘‘Plug-ins’’ section,
and can be used to enable and disable directory services plug-ins.

 DirectoryServiceDebug.plist: allows you to enable directory services
debugging using the ‘‘Debug Logging’’ key, set the levels of verbosity
for the debug log using the ‘‘Debug Logging Priority Level’’ key, and
enable NetInfo (although NetInfo might not be too useful without nicl).

 DSLDAPv3PlugInConfig.plist: can be used to read, edit, and add
server configurations and the timeout settings applied in the Custom
LDAP Settings section of this chapter. Also maintains a key for
‘‘Service Principals to Create,’’ defining which Kerberos service
principles to create at bind time.

 DSRecordTypeRestrictions.plist: shows versioning information (not
otherwise useful).

CHAPTER 2: Directory Services Clients

90

 PasswordServerPluginPrefs.plist: can be used to set or change the
priority of encryption mechanisms.

 SearchNodeConfig.plist: can be used do add Directory Domains to
the authentication search policy (using ‘‘Search Node Custom Path
Array’’), show/reset ‘‘DHCP LDAP’’ information (DHCP LDAP), and
configure the search policy by setting the Search Policy key to 1, 2, or
3 for Automatic, Local, or Custom, respectively.

 SearchNodeConfigBackup.plist: backup of the
SearchNodeConfig.plist.

Each of the keys in the previous files can be changed using the defaults command.
While we’ve so far covered making settings change to actual files dedicated to the
directory services property lists, there are also hooks into other services, such as the
login window of Mac OS X. For example, the following command will edit the
com.apple.loginwindow.plist file, setting the login window to display the status of the
directory services daemon:

defaults write /Library/Preferences/com.apple.loginwindow AdminHostInfo DSStatus

Summary
In this chapter, we provide both a high- and low-level integration of OS X into several
Directory Service systems such as Open Directory, NIS, and third-party LDAP
implementations. We also covered integrating client and servers with Kerberos systems
to function in an existing single sign-on environment.

In the next chapter, we will further explore directory services integration, with a specific
focus on integrating OS X systems with Microsoft’s Active Directory system.

3Chapter

Active Directory
Active Directory is a Directory Services solution developed by Microsoft. It is built using
certain proprietary technologies, which only (currently) runs on the Microsoft Windows
Server platform. Samba may soon turn out to be worthy of running in production as a
Windows Active Directory replacement. While many of the back end components of
Active Directory are designed for the windows client platform, Microsoft based much of
the structure of Active Directory on open standards, such as the LDAP format known as
RFC 2307 and the Kerberos v5 protocol defined in RFC 1510. Active Directory can be
used to seamlessly integrate Windows systems en masse, but the real advantage of
blending these technologies and open standards is that foreign operating systems can
then be integrated with Active Directory as well.

Integrating Mac OS X and Mac OS X Server with Active Directory is very similar to
integrating with the native directory services that a Mac OS X Server’s Open Directory
service can provide. The reason for this is Active Directory supports gaining access to
information within its Jet Database by using the Light Weight Directory Access Protocol
(LDAP). When thinking about directory services, it is sometimes best thought of as a
large delimited document, such as something you would create in a spreadsheet
program like Microsoft Excel. When a client attempts to use a directory for
authentication and authorization it looks up an object such as a user account via the
LDAP protocol much like searching for a field in a spreadsheet. This lookup entails
finding the field in the directory that matches the requested information. For example,
when a user types his or her username this information is stored as a key value pair in
Active Directory.

If user zsmith logs in, then an LDAP query is started that attempts to find a user in
the directory with that value. Once the user is found, the resultant set of keys that
make up their user account can be accessed. For example, zsmith may have a home
directory that is stored on a network server. This path name will be stored as a key
(homeDirectory) in the Active Directory database. Apple has two default plug-ins for
communicating with LDAP servers, the LDAPv3 plug-in and the Active Directory plug-in.
These two plug-ins are very similar in terms of the back end communication they use.
However, Apple developed the Active Directory plug-in to supplement missing LDAP
attributes that are not normally available in a standard Active Directory Schema. The best
example of this is the uidNumber attribute. This attribute is normally used to contain the

91

CHAPTER 3: Active Directory

92

numerical value associated with an account. On a native Open Directory Server, this value
is mapped from the server’s uidNumber attribute to the local clients UniqueID attribute.
Without a UniqueID, users are not able to login, this is because of Mac OS X’s UNUI
underpinnings which require a UniqueID to track ownership on the file system.

If you use the LDAPv3 plug-in to authenticate to Active Directory (which is possible to
do, though rarely implemented), the default RFC 2307 mappings would map a server
attribute called uidNumber to a local plug-in mapping called UniqueID. When a user
attempted to login they would then query the server attribute uidNumber, and because it
was unavailable but required for login, they would be unable to authenticate to the login
window. Apple saw this scenario and mitigated it in the design of the Active Directory
plug-in. When a user logs into a workstation that is bound to Active Directory, the plug-
in itself generates a numerical value based on other information in the native directory
and maps it to the UniqueID attribute. You can think of this as a mask in front of the
Active Directory server to make it seem more like a native Open Directory server.

Additionally, the Apple Active Directory plug-in will not only mask missing attributes but
will also convert attributes that are in the wrong format for Mac OS X to being in the
correct format. Go back to our example of a home directory that was hosted on a
network volume. In Active Directory this network path is stored using Universal Naming
Convention (UNC) or \\server\share. Despite its ‘‘universal’’ name, this format is not
supported for connecting to URIs in Mac OS X. If you wanted to connect to
\\server\share using the built in file-sharing clients, you would format the URI as
smb://server/share. This simple format difference would mean the difference of being
able to login or not using the LDAPv3 plug-in. In this instance, Apple again configures
the Active Directory plug-in to read in the server homeDirectory attribute and then
reformats and maps it to the local HomeDirectory attribute.

With all the supplements that are provided by Apple through the native Active Directory
plug-in, it serves as an adequate tool for integration in many different environments. In the
beginning of this chapter, we will cover the Apple-provided and supported tools that can
be used to bind to Active Directory environments. However, depending on the needs of
your environment you may need to take advantage of some Active Directory features
which cannot be facilitated using just the Active Directory plug-in. The most common
needs in an enterprise environment move beyond mere authentication and into the realm
of ongoing client management. For this, Apple has a very robust set of management
options known as “Managed Preferences” or MCX (covered extensively in Chapter 7).
Though not natively supported by Active Directory, MCX can still be implemented
alongside Active Directory via a few different methods. After reading this chapter, you will
be familiar with the various options available, as well as the pros and cons of each.

On a native Open Directory server these management options are stored as keys within a
given object. For instance, user zsmith (or more commonly a “workgroup” that he is a
member of) may have a managed preference that configures his Dock to appear on the
left-hand side. These management attributes cannot be natively stored in Active Directory
without modifying the Active Directory schema, a modification that is global for all
objects in an organization’s directory. As such, from a political aspect, extending the
schema can be difficult to push through in environments with a proportionally small
number of Mac OS X workstations. For this reason, other options such as maintaining a

CHAPTER 3: Active Directory

93

separate supplemental Open Directory server or using a third-party active directory plug-
in may best suit your needs. These options are covered in the following sections. Because
the needs and business requirements of each environment are different, after explaining
how to use the built-in Active Directory plug-in, the remainder of the chapter is dedicated
to customizing the Active Directory plug-in and the common third party add-ons.

NOTE: Apple has provided a video and a white paper on extending the Active Directory schema
at http://seminars.apple.com/seminarsonline/modifying/apple/index.html?s=301

Binding to Active Directory
When binding to an Active Directory server, keep in mind that it is an individualized
process; each workstation will need a computer account named for the machine created
in the directory. While it is possible to pre-populate these accounts, the Apple Active
Directory plug-in will create a computer account in Active Directory at the time of
binding with the correct credentials if one does not already exist. As with Windows client
account, each OS X computer account contains a unique pre-shared key used to
authenticate that individual machine to the directory. This individualistic nature is an
important aspect to consider when looking at automating the process. The process of
binding a machine to Active Directory can be accomplished either through the use of a
GUI interface or through a decently robust set of command-line tools. We will discuss
the command-line components of this process (dscl and dsconfigad) later in this
chapter. First, we will look at the manual GUI tools used to bind a Mac OS X machine
into Active Directory.

Directory Utility
The Apple DirectoryService framework is a set of code allowing for modularized access
to the different directory service plug-ins available (including third-party plug-ins). The
graphical application for configuring the plug-ins is Directory Utility (Called Directory
Access in 10.4). This application is bundled with all versions of Mac OS X, and in older
versions can be found in /Applications/Utilities. With 10.6, Apple has migrated access
functionality to the Login Options of the Accounts System Preference. The Directory
Utility Application is not gone in 10.6; though, it has simply been relocated to
/System/Library/CoreServices, a directory used by OS X to house internal support
Applications. Once opened, you will need to authenticate as a local administrator to
make changes to the directory services plug-in. If you are not automating this step, you
will need to supply your on-site technicians with both local and directory administrator
credentials to manually complete this process. You can customize the policies in your
environment to supply desktop technicians with Active Directory accounts that only
have access to bind computers into the domain; likewise, you can provide non-
administrators with access to edit local configurations by modifying the file
/etc/authorization. Specifically, directory service changes are defined by the

CHAPTER 3: Active Directory

94

authorization right ‘system.services.directory.configure’. Through the modification of this
right, you can grant access to change directory settings to your non-admin users.

To start the binding process, open the Accounts System Preference pane by clicking on
the Apple menu in the top-left corner of your screen, selecting System Preferences and
then clicking on Accounts. Next, click on the Login Options, as shown in Figure 3-1.

Figure 3-1. Login options screen of accounts system preference pane

To authorize your session to edit the System Preference, click on the lock in the lower-
left corner of the screen. Then click on the button to Join… in the field for Network
Account Server. This will bring up a pop-up screen that simply has a field for a server
name or domain name. Type the name of your domain. After a time, the screen will
expand so that you can enter the ID that the computer you are binding will have once it
joins Active Directory, the user name of an account in your Active Directory that has
credentials to bind to Active Directory, and the password for that account. Supply this
information as seen in Figure 3-2 and then click on the OK button.

CHAPTER 3: Active Directory

95

Figure 3-2. Binding to Active Directory

In an effort to simplify the binding process, Apple allows you to bind to both Open and
Active Directory servers from this initial screen. Keep in mind that using this screen will
only allow you to bind and not configure granular settings within either of the plug-ins,
though this can be done at a later time, if necessary. To bind using a screen that allows
you to configure more granular settings, click on Open Directory Utility… and then click
on Services in the upper-left hand corner of the screen, as you can see in Figure 3-3.

Figure 3-3. Services in Directory Utility

CHAPTER 3: Active Directory

96

Use the lock in the lower-left corner of the screen to authenticate again and then from
Services in the Directory Utility toolbar double-click on the entry for Active Directory. You
will then be prompted with three fields by default, which are also shown in Figure 3-4:

 Active Directory Forest: If there is only one Forest then the Forest will
invariably be the same name as the domain name, but check with an
Active Directory administrator to confirm this is the case if you
encounter binding issues.

 Active Directory Domain: Note that you are not connecting to a
specific host, but rather a domain. The active directory plug-in will use
this domain to look up special records in DNS called service records
(SRV) to find the Domain Controller you need to connect to. This
process is unique to the Active Directory plug-in and heavily relies on
the client’s configured DNS servers to be correctly pointing at servers
that host these records or can facilitate communication to these
servers; properly configured DNS is absolutely paramount for this
process to succeed.

 Computer ID: This is the name of the computer account record as it will
appear in the Active Directory domain. Note that this name also typically
becomes a DNS name on the network, so if you are configuring a client
named ‘‘wintermute’’ the Apple AD plug-in will dynamically request a
DNS record be created for ‘‘wintermute.wallcity.org’’ if the Active
Directory domain is wallcity.org and points to all the configured IP
addresses (including virtual) for that client; the specified value should
generally conform to DNS standards regarding A records, as defined in
RFC 1035 accessible at http://www.ietf.org/rfc/rfc1035.txt. For best
results, the length of this value should be a maximum 15 characters,
and should generally follow the Letter Digit Hyphen (LDH) Rule.

NOTE: For more information on Resource Records, see the following TechNet article:
http://technet.microsoft.com/en-us/library/cc783389(WS.10).aspx.

Figure 3-4. Binding to Active Directory Using Directory Utility

CHAPTER 3: Active Directory

97

TIP: When naming OS X computers, you will generally want to follow what is referred to as
the LDH rule. As defined, the LDH rule calls for the use of only ASCII alphabetic and numeric
characters in addition the hyphen (-), no other punctuation or characters are allowed. Avoid
all numeric names, and with any *nix system, avoid starting a hostname with a numeric
character.

Next click on the Bind button and you will be asked to authenticate into the Active
Directory domain using the following fields, as you can see in Figure 3-5:

 Username: Contains any valid user account that is capable of joining
computers to the domain. Additionally, this user must have rights to
create new objects in the container or organizational unit you are saving
the computer into, access that can be delegated by the Active Directory
administrator. If your Active Directory environment is strictly controlled,
you may have to request a computer record be pre-populated rather
than attempt to use the supplied credentials to create one.

 Password: The password for the above account.

 Computer OU: The search base for the Organizational Unit that clients
will be added to. For example, if you create an Organizational Unit
called Macs in a domain called pretendco.com then you would use
CN=Macs,DC=pretendco,DC=com in this field.

 Use for authentication: Allows for authenticating into the client
computer using a valid Active Directory username and password.

 Use for contacts: Allows for searching for contacts using Address
Book.

Figure 3-5. Binding to Active Directory Using Directory Utility

CHAPTER 3: Active Directory

98

The most common binding problem with Active Directory environments is with the
Active Directory domain’s DNS having an incomplete set of service records. If we had
a nickel for every time a Windows admin swore up and down there were no problems
on their servers, only to have all problems resolved by a quick and dirty fix-----an
ipconfig /rebuilddns command runs from a domain controller hosting the Active
Directory integrated DNS by rebuilding the required service records. Beyond DNS, a
number of binding issues are caused between incompatible policies between Mac OS
X and Active Directory. For example, LDAP signing as a requirement was not
supported in 10.4.

NOTE: As described in Chapter 1,you can use the directory services debug log and potentially
tcpdump (which can be used to monitor port 389 to review traffic to and from your Active
Directory Domain Controllers) to more granularly isolate binding issues.

Using the bind screen from the Accounts System Preference pane, you were not
prompted for the organizational unit to place the computer record in whether you
wanted to allow login or contact lookups. The computer record is automatically
generated based on the host name of the computer you are using to bind and the
authentication and contact lookups are assumed to be used. If you have not pre-
populated the computer record, your computer account will be placed in the default
container, computers. To continue with the previous pretendco.com example,
Organizational Units are these containers, which are accessed using a convention
whereas the container is a CN followed by a DC for each part of a fully qualified domain
name. Therefore, if you were to enter the Computers container of mydomain.com
instead of pretendco.com from our previous example, you would use
cn=Computers,dc=domain,dc=com.

Testing Your Connection
Once you have successfully bound your computer to Active Directory, you should test
the connection. First, verify that the light is green beside the Active Directory service as
is listed in the Directory Utility application. A green light here is typically a pretty good
indicator that everything is fine, but it’s never a bad idea to test further. The most
straightforward test would simply be to attempt login as a directory user, but logging out
and then back is not efficient, especially if there are problems resulting in login window
delays. More efficiently, you can verify binding from the command line (and should test it
either way). As previously referenced, an integral part of logging in on Mac OS X is a
user account’s UniqueID attribute. You can verify that user resolution is happening and
view the UniqueID using the id command. To do so from a command-line environment,
enter the id command followed by the username of a directory account:

id zsmith
uid=1763670396(zsmith) gid=703907591(WALLCITY\domain users) groups=703907591«
(WALLCITY\domain users),1842785604(WALLCITY\administrators)

The id command can indirectly display a local conflict. The Active Directory plug-in
generates UniqueIDs, and with AD typically these numbers have 10 digits. In contrast, a

CHAPTER 3: Active Directory

99

standard local account, such as one that was configured using the Account System
Preference pane and the setup assistant at first boot, has an id starting at 501,
incrementing upwards. Open Directory users start at 1025. This makes it possible at first
glance to determine the approximate origin of an account. For example, if you saw a
unique id in the range of 600 to 1,000 then the account was likely initially created using
the accounts system preference pane.

If the id command fails with id: jdoe: no such user check the account you are using for
testing to see whether it exists and check that your computer is set to correctly try to
‘‘Search’’ for users in Active Directory. Typically this ‘‘Search Path’’ is filled in
automatically for you by the Directory Utility application at the time of binding. However,
if you are manually configuring or attempting to troubleshoot an automated binding you
can verify this configuration in Directory Utility. Open the Directory Utility, choose Show
Advanced Settings from the windows tool bar, select Search Policy, and verify the
/Active Directory/… line item is displayed. Contrary to popular belief, the order listed is
not typically relevant for user and group resolution, as you will see the local directory is
always accessed first, then typically it should be the next network directory that contains
users. If you are having problems that are resolved by moving /Active Directory up in the
search order, you may have a configuration problem in your other directory servers or a
conflict in the namespace that users occupy.

While id is probably the easiest, the best utility for testing your directory services is dscl.
The utility provides an interface for programmatically interacting with the
DirectoryServices Application Programming Interfaces (APIs). This program can be run
via an interactive shell or from within scripts. After first binding to Active Directory, use
dscl to test that the directory is available and that user resolution (the ability to resolve
user accounts) is working. While you could just logout and log back in depending on any
problems encountered, you can more easily see that binding is working from the
command line. From a shell prompt, use the dscl command followed by the computer
or path to connect to. In order to establish a connection to the currently running
DirectoryService daemon, we’ll use localhost:

dscl localhost

The syntax for moving through the configured directory services is much like
navigating a filesystem or ftp server from the command line. Once you have initiated
your session it will show an interactive prompt (>). Use the ls command to list the
DirectoryService Plug-ins. If you do not see Active Directory listed, the plug-in itself is
not enabled. Even if you are bound to an Active Directory domain, you will not be able
to navigate to the directory node until this plug-in is enabled (by default only the
LDAPv3 and local plug-ins are enabled), although when you use the Directory Utility to
bind systems the Active Directory plug-in is enabled by default. Review the‘‘Binding to
Active Directory with a Script’’ section to see an example of how to enable this plug-in
from the command line.

The ls command will show you the currently enabled plug-ins (including third party) in
the list. In addition, you will be able to navigate into the Contacts and Search paths,
which will show you the hierarchy of all configured and enabled plug-ins. You can then
type cd followed by the name of any item in the list of current plug-ins.

CHAPTER 3: Active Directory

100

Active Directory
BSD
Local
Search
Contact

In this case, type cd 'Active Directory'.

NOTE: Standard command-line conventions apply here in regard to space. Be sure to use
quotes around the path when using dscl as Active Directory is one of the few plug-ins that has
a space in the name. Alternatively, you can use the built in tab auto-completion to
automatically quote this path for you.

Once you have changed directories into the Active Directory plug-in, you will see the
Active Directory domains and forests that were previously configured at bind time in
the appropriate nesting order. The Apple Active Directory plug-in only allows you to
configure one Active Directory forest at a time, the default behavior is to allow
authentication from all domains within a forest on the local machine. This is an
important note, as it means that depending on your organization’s directory topology
you may not be able to see the users if you are in a separate forest. If you would like
to restrict access to this computer (or server) to only one domain, you will need to
uncheck the Allow authentication from any domain in the forest button in the Directory
Utility or run the command dsconfigad –all domains disable, depending on your
configuration. You will see either All Domains or your domain name, wallcity.org when
listing this value in dscl.

/Active Directory > ls
All Domains

To test that your binding worked correctly you can change directory into the respective
value and do an ls. If you receive an error when changing directory, your Active Directory
binding has most likely either failed or the current DirectoryService daemon has lost
contact with your sites Domain Controller.

/Active Directory > cd 'All Domains'
/Active Directory/All Domains > ls
CertificateAuthorities
Computers
FileMakerServers
Groups
Mounts
People
Printers
Users

A common procedure used to verify connectivity is to use the dscl command along with
the read verb to view the attributes associated with a given account. This will allow you
to verify that user lookup is working within the Active Directory plug-in itself and look for
any potential issues, such as a missing attribute. While you could ls Users, depending
on the size of your organization you may not receive all of the information that you are

CHAPTER 3: Active Directory

101

looking for. By default, the LDAP server in Active Directory will return a maximum of
1,000 results. Although many more can be enumerated, this is just a limitation for how
many are shown at once. Therefore, we will simply cd into the appropriate directory and
then use read to view the attributes for a known good user account:

/Active Directory/All Domains > cd Users
/Active Directory/All Domains/Users > read zsmith

dsAttrTypeNative:accountExpires: 456878888655687
dsAttrTypeNative:ADDomain: wallcity.org
dsAttrTypeNative:badPasswordTime: 0
dsAttrTypeNative:badPwdCount: 0
dsAttrTypeNative:cn:
Charles Edge
dsAttrTypeNative:codePage: 0
dsAttrTypeNative:countryCode: 0
dsAttrTypeNative:displayName:
Zack Smith
dsAttrTypeNative:distinguishedName:
CN=Zack Smith,CN=Users,DC=wallcity,DC=org
continued...

CAUTION: The LDAP server in Active Directory by default will return a maximum of 1,000
results. This limitation affects user, group, computer, and computer group listings in both dscl
and Workgroup Manager, and therefore may negatively affect any scripting automations
derived from this information. This is a hard limit in Windows 2000, but can be adjusted in later
versions, as instructed in the Microsoft Knowledge base article found at:
http://support.microsoft.com/kb/315071.

One thing to keep in mind is that while viewing data from the Active Directory plug-in
directly (by changing directories into it), you can verify that you have a connection to
your organization’s directory services. However, simply being able to view the raw
directory service data does not in fact mean that you can authenticate against it. As with
dsconfigldap in Chapter 2, the final step is to use the information gathered about your
test user and verify that you user matches in the /Search path as well.

/Active Directory/All Domains/Users > read /Search/Users/zsmith

dsAttrTypeNative:accountExpires: 456878097655687
dsAttrTypeNative:ADDomain: wallcity.org
dsAttrTypeNative:badPasswordTime: 0
dsAttrTypeNative:badPwdCount: 0
dsAttrTypeNative:cn:
Charles Edge
dsAttrTypeNative:codePage: 0
dsAttrTypeNative:countryCode: 0
dsAttrTypeNative:displayName:
Zack Smith
dsAttrTypeNative:distinguishedName:
CN=Zack Smith,CN=Users,DC=wallcity,DC=org
continued...

CHAPTER 3: Active Directory

102

If the two read commands return different results you have namespace collision, which
could possibly be resolved by altering your Search path (this was covered in much more
detail in Chapter 2). In some cases, it may be necessary to simply delete the conflicting
user account. You can view the current search path with dscl along with a read verb, the
path, and the attribute to display (in this case, /Search SearchPath).

/Active Directory > read /Search SearchPath
SearchPath:
/Local/Default
/BSD/local
/Active Directory/All Domains
/Active Directory >

Once you have verified that user result ion is functional from the DirectoryService
daemon, you can verify that Authentication is correctly happening (so far we have only
verified that user resolution is possible). Type exit to end your interactive dscl session for
the localhost.

/Active Directory/All Domains/Users > exit
Goodbye

Testing Authentication
Being able to look up user accounts in Active Directory allows you to apply them to
local facilities, such as file system permissions, and to nest them in groups on other
configured directory systems. Authentication is a corner stone of any modern
Directory Service. Apple provides a command-line tool called dirt in Mac OS X 10.5
that you can leverage to access the DirectoryServices Application Programming
Interface and perform authentication queries.

dirt -u zsmith -p 'bw4r3c3n1nj4s'
Call to dsGetRecordList returned count = 1 with Status : eDSNoErr : (0)

Call to checkpw(): Bad Password

path: /Local/Default
Username: zsmith
Password: bw4r3c3n1nj4s
Error : eDSAuthFailed : (-14090)

NOTE: You can also run dirt interactively without supplying the -p flag. This is typically beneficial
as passwords will be stored in the current users shell history when providing this parameter from
the command line. If you use dirt with a password specified from the command line be sure to
clear your history, history -c, and you may want to securely remove your history files as well,
srm $HISTORY. Dirt is more thoroughly covered in Chapter 2.

As you can see from the example, the password specified was not correct, and the
Directory Service request had an error with the numerical value of -14090. These error

CHAPTER 3: Active Directory

103

codes are documented as part of the DirectoryService API and can also be checked
using the DirectoryServices main page.

NOTE: While dirt was used to test authentication in Mac OS X 10.5, dscl is used to test
authentication in Mac OS X 10.6.

Testing Authentication at the Login Window
Once you have tested user resolution with dscl and authentication with dirt, you are
ready to begin a graphical login test. While you could have skipped to this step, it’s
normally best to test that ‘‘raw’’ authentication is working before trying to troubleshoot
and isolate any issues encountered at a graphical prompt such as the login window, as
seen in Figure 3-6.

Figure 3-6. Login window

Logout from the Apple menu and login as your test Active Directory user account,
keeping in mind that many other factors will affect this type of login compared to the
command-line tests you have previously performed. If all steps taken previously with id,
dscl, and dirt succeed without issue, but you still cannot login then you likely have a
home-directory specific problem. When you are logging in, you can use the text
immediately below Mac OS X to click through various informational items about the
system. One of these will indicate that Network Accounts Available, a useful
troubleshooting step to verifying that you can authenticate.

CHAPTER 3: Active Directory

104

Home Directories and the Apple Active Directory Plug-in
Home Directories can be one of the more complicated aspects of integrating Mac OS X
with Active Directory. But it doesn’t have to be. The Active Directory plug-in supplied by
Apple by default creates a local home directory in the /Users/ directory. If you do not
want to synchronize data to another location using Mobile homes or leverage network-
based home directories then your work is made easier and you are basically done.
However, depending on your required configuration you might have many tasks
remaining. For example, a very common procedure on Microsoft Windows is to redirect
folders to network share points. The most common folder to be redirected is My
Documents. Redirection of My Documents via Group Policy object is not applicable to
Mac OS X, and so the fun begins.

To configure the location of a home directory use Directory Utility from
/Applications/Utilities folder (10.5) or /System/Library/CoreServices(10.6). Next, click on
Services in the Directory Utility Toolbar and then check the box to enable Active
Directory. If you are not already operating with elevated privileges, then you will be
prompted for the credentials of an account with access to add data into Active
Directory. Go ahead and type that in and then click on the Show Advanced Options
disclosure triangle, as shown in Figure 3-7. Here, you will see a number of options to
control the User Experience, Mappings, and Administrative options. The home directory
options are in the beginning stored in the User Experience tab.

Figure 3-7. User environment with Active Directory

CHAPTER 3: Active Directory

105

The very first option is to Create mobile account at login. By checking this box, you will
cache an account locally, allowing login from the login window even when a system is
not on your network. When a user logs in using an Active Directory account, they will
now be prompted for whether the account will be a mobile account. Unchecking the box
for Require confirmation before creating a mobile account will then suppress the dialog
box and simply create the account automatically.

Next, choose whether to Use UNC path from Active Directory to derive network home
location (which is a check-box to enable home folders that reside on a network path).
Combined with mobile accounts and OS X’s home folder syncing, this option allows
data in the home folder to be available even when systems are not on the local network.
This option is also preferable in order to keep the load minimized on your file servers
that house home directories throughout the day.

TIP: If you enable the Force Local Home on Startup Disk option, OS X will not attempt to
resolve network home directories based on UNC paths. If this option is enabled, network home
syncing will not properly function. The option Create Mobile Account at Login will have a similar
affect of forcing a local home directory, but will also maintain UNC lookups, stored in the
attribute OriginalHomeDirectory, which is necessary for home syncing.

If you have decided to leverage the Use UNC path from Active Directory option, then
network home directories will be used. You will then have an option to specify the Network
Protocol that will be used for home directories. Both AFP and SMB are supported. In
Active Directory Users and Groups, when you set a users profile setting for the home
folder location, the setting is provided via a UNC path; \\server\share\folder. The Active
Directory plug-in converts the UNC path to a standard URL. So \\server\share\folder
becomes afp://server/share/folder or smb://server/share/folder according to which
protocol you have selected.

Once you have configured all of the options for home folders that are appropriate for
your account, you can test your settings by logging in as an Active Directory username
and password that has a profile location which has been configured. Then verify that
login occurs as intended and the appropriate home directory is utilized given the paths
and folders entered both into Active Directory and the plug-in. If you have any issues,
attempt to mount paths manually and check the permissions on the destination
directory structure.

DNS Concerns
Active Directory uses Sites to assign domain controllers to specific subnets on your
network. The Apple Active Directory plug-in uses DNS to lookup a Global Catalog server
for your domain and subsequently queries it to find the correct Domain controller to bind
to. You can manually view these DNS records which use the SRV or ‘‘service’’ type to
hold their information within an Active Directory integrated DNS network.

CHAPTER 3: Active Directory

106

Open Terminal in /Applications/Utility, and enter in the following command to do a
lookup on the service record to locate the global catalog:

dig -t SRV _gc._tcp.wallcity.org

; <<>> DiG 9.4.2-P2 <<>> -t SRV _gc._tcp.wallcity.org
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 50668
;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1

;; QUESTION SECTION:
;_gc._tcp.wallcity.org. IN SRV

;; ANSWER SECTION:
_gc._tcp.wallcity.org. 600 IN SRV 0 100 3268 grodd.wallcity.org.

;; ADDITIONAL SECTION:
grodd.wallcity.org. 3600 IN A 192.168.53.249

;; Query time: 59 msec
;; SERVER: 192.168.53.249#53(192.168.53.249)
;; WHEN: Sun Jun 7 21:52:50 2009
;; MSG SIZE rcvd: 93

The answer to the question that you are posing to dig is in the Answer Section. Here, it
is shown as grodd.wallcity.org. If you do not receive the name of a domain controller,
you will want to check that you are using the correct DNS servers for your site. A
common error is related to using an external DNS server that has been manually
configured at some previous time (e.g., 4.2.2.1). This forces your lookup to use your
organization’s external DNS provider, which may not match your internal DNS server,
especially if you use an internal domain like .local.

Bind to AD
You will need two administrative usernames to bind to Active Directory, a local
administrator and a domain administrator. The local administrator is used to write the
configuration files to protected directories like /Library/Preferences/DirectoryService.
This administrator can be replaced with the root user when running scripts to bind to
Active Directory (e.g., a Package Installer that runs a post-flight script as root to bind to
Active Directory). It’s worth noting that the dsconfigad command does not need to run
as root as it will use the directory service APIs to determine your admin membership
based around rules stored in /etc/authorization. You could create a different group for
administration in addition to the default ‘‘admin’’ group that would allow local
administration of many components, such as binding. However, giving out admin
access for the ‘‘right’’ that Active Directory uses would give them access to quite a bit of
the systems authorization dialogs and so would effectively be overkill for just trying to
delegate a non-standard admin to bind.

CHAPTER 3: Active Directory

107

NOTE: Instead, you could leverage system.services.directory.configure in /etc/authorization to
achieve this goal for mass deployment scenarios where unprivileged accounts may be
troubleshooting minimal network connectivity issues.

In addition to the local administrative credentials, you will need a domain administrator.
This delegate administrator needs to have access to join computers to the domain and
also write access to the organizational unit that you specify if you are using the
‘‘Services’’ binding section of Directory utility or the -ou option of dsconfigad. This
domain administrator should be created with a very small amount of privileges other
than domain addition, as you may need to give this username and password out to your
onsite IT liaisons and embed it in scripts.

The following is an example of using the dsconfigad command. As you can see, we are
specifying the domain administrator’s password right on the line, and this would result in
the password potentially being available in the shells history depending on how we run
the command. We do not need to run sudo when running dsconfigad, as it will
effectively do the privilege request on its own, and prompt for the password of the
current user to escalate the privileges for the operation. Later, we will discuss using this
command in a script.

dsconfigad -f -a mycomputername -u domainadmin -p domainadminspassword -domain
mydomain.com

Additionally, you can set the Active Directory plug-in settings one at a time using
dsconfigad, while these options can also be set on the joining command. Keep in mind
this ability to granularly set all plug-in options on the fly as you will be able to push out a
change whether to create a mobile account on login using any tool capable of sending
Unix style commands or scripts (such as Apple Remote Desktop). Like the previous
command, sudo is never required as the dsconfigad command will determine admin
rights on its own, though when calling the utility from a non-interactive tool, such as
ARD, you will want to execute the commands with root privileges.

dsconfigad -mobile enable

One aspect common to many Active Directory deployments in imaging environments is
the automation of binding. This is done because a bound system cannot be directly built
into a “Gold Master” image, as the Computer ID of each imaged host will be different. For
instance if one were to bind to Active Directory within a system that was to be cloned, the
Active Directory preferences would be pushed out to all machines cloned from that
image. These preferences contain the machine account name and password used for
authenticating the joined computer to the Active Directory domain. While this configuration
initially would allow authentication in most environments, once the computer password
was cycled or once the machines were unbound, then all cloned systems would stop
being able to authenticate. For this reason, joining or “binding” to the directory is then
performed as a post flight operation on the cloned systems after first reboot. Imaging tools
like Deploy Studio and the Casper suite include built-in scripts with graphical wrappers for
accomplishing this purpose.

CHAPTER 3: Active Directory

108

Naming Conventions and Scripting Automated Binding
One of the single most important decisions that will you make when determining the
feasibility of a binding script will be your naming convention. This is because depending
on your asset tag vendor you may have to work within a specified convention that does
not correspond to anything that can be queried automatically on a fresh machine. If your
asset tags were consecutive numerical values or a sequence of alphanumeric values set
by the manufacturer, then you will have to match that value to a specified piece of
hardware manually. Getting user input for specifics, such as asset tags, will mean that at
least for your first boot, a live human being will have to be present at the time of binding
to enter in this value. Most third-party imaging tools have the ability to show a dialog
box that allows the imager to enter this information and have it pass to the script as a
parameter. Two examples of this follow, one is Deploy Studios workflow step and the
other is the Casper suites positional parameter configuration option. If you are using
either one of these tools, it is suggested you consider using this functionality. However,
if you are using another deployment methodology you may need to either have your
script prompt the user for information, or provide this information via a pre-populated
datastore, such as a csv file.

If you are ordering a large quantity of Mac OS X workstations from Apple directly, you
consider asking your rep to provide you with a delimited list of Machine Access Control
(MAC) addresses. Using this list, you can pre-assign hardware addresses to your
organization’s asset tag system or database. However, if you are dealing with existing
inventory, you may still be required to prompt your imaging team for this information or
at least collate it beforehand. If you are relegated to prompting your imaging team for
this information a good technique is to store this custom name within a machine’s
firmware. Mac OS X provides a way of manipulating firmware variables using the
/usr/sbin/nvram command. However, nvram cannot be assumed to be persistent, so it is
best to maintain this data in a spreadsheet or database.

Binding to Active Directory can be autonomously accomplished using two main tools,
dscl and dsconfigad. However, the Active Directory plug-in is not enabled by default and
when looking at a binding script one major consideration is to enable this plug-in so that
any bound forest will be available for use in the authentication search path for the
system. You can do this by pre-populating this setting which is stored in the
DirectoryServices.plist file /Library/Preferences/DirectoryService/DirectoryService.plist
using the following command:

defaults write /Library/Preferences/DirectoryService/DirectoryService «
"Active Directory" Active

We often recommend to actually add this ‘‘enabled’’ copy of this file in your image prior
to deployment. As if you programmatically have to enable the plug-in, you must restart
the DirectoryService deamon to have it pick up on the changes. This process while only
slightly intrusive can increase the time it takes a system to become usable when binding
at startup or first boot automatically.

As shown earlier, using the Terminal application (found at /Applications/Utilities) can be
leveraged to create a simple binding script using dsconfigad. However, this only allows
you to bind to Active Directory and does not add the directory to the currently

CHAPTER 3: Active Directory

109

configured /Search or /Contact paths. This is an important difference when using the
command line as it is an integrated step when using the graphical tools to add newly
configured domains to the computers authentication search policies.

dsconfigad -f -a mycomputername -u domainadmin -p domainadminspassword -domain
mydomain.com

Once you have bound through the command line, the Active Directory domain will need
to be added to your search path. To do so, you will use dsclfor testing binding. In this
case, we will use it to change information in the /Search (where information regarding
your search policy is stored). Therefore, first change the SearchPolicy attribute to
custom by using the following command:

dscl /Search -change / SearchPolicy dsAttrTypeStandard:LSPSearchPath «
dsAttrTypeStandard:CSPSearchPath

dscl /Search –append / dsAttrTypeStandard:CSPSearchPath "/Active Directory/All Domains/"

As the previous code shows, you can also enable options in the active directory plug-in
granularly. When specifying multiple advanced options, you can specify each with their
own invocation of dsconfigad, or you can supply them all together via a single
command. When specifying multiple options, the command can become a bit unruly,
but the same result is achieved. Each option from the GUI translates to an option (or
flag, if you will) at the command-line interface. There are a number of other options that
are available, but each is likely not to be required for all cases.

Basic Options-----Commonly Used:

 -a computerid: name of the computer to add to the domain (if none is
specified then the default with be the hostname)

 -f: force the process (i.e., remove the existing entry from the Active
Directory plug-in)

 -r: remove computer from domain (unbind)

 -luusername: username of an administrative local account

 -lppassword: password of the administrative local account defined
with -lu

 -uusername: username of an Active Directory administrator

 -ppassword: password of the Active Directory administrator specified
with -u

 -ou dn: fully qualified LDAP DN of container for the computer (defaults
to CN=Computers)

 -domain fqdn: fully qualified DNS name of Active Directory Domain

 -show: show current configuration for Active Directory (this option
doesn’t make any modifications to the directory or the Active Directory
plug-in)

CHAPTER 3: Active Directory

110

Advanced Options-----User Experience:

 -mobile: enable or disable mobile user accounts for offline use

 -mobileconfirm: enable or disable warning for mobile account creation

 -localhome: enable or disable force home directory to local drive

 -useuncpath: enable or disable use Windows UNC for network home

 -protocol: afp or smb change protocol used when mounting home

 -shell: none for no shell or specify a default shell /bin/bash

Advanced Options-----Mappings:

 -uidattribute: name of attribute to be used for UNIX uid field

 -nouid: generate the UID from the Active Directory GUID

 -gidattribute: name of attribute to be used for UNIX gid field

 -nogid: generate the GID from the Active Directory information

 -ggidattribute: name of attribute to be used for UNIX group gid field

 -noggid: generate the group GID from the Active Directory GUID

Advanced Options -----Administrative:

 -preferredserver: fully qualified domain name of the preferred Domain
Controller

 -nopreferred: do not use a preferred server for queries

 -groups ‘‘1,2,...’’: list of groups that are granted Admin privileges on
local workstation

 -nogroups: disable the use of groups that were specified in the ---
groups for granting Admin privileges

 -alldomains: enable or disable allows authentication from any domain
in the forest

 -packetsign: disable, allow, or require to enable packet signing

 -packetencrypt: disable, allow, or require to enable packet encryption

 -namespace: forest or domain, where forest qualifies all usernames

 -passinterval: how often to change computer trust account
password in days

If your environment requires customization of the Active Directory binding screens, the
previous options can be used to granularly configure the options you would otherwise use in
the screens in Directory Utility. You can also access a few that have not yet been added.

CHAPTER 3: Active Directory

111

Map UID and GID
As previously mentioned, Mac OS X requires certain attributes to be able to login, such as
primary group ID and Unique ID. As Active Directory does not contain the Unique ID by
default, this value must be generated on the fly using some other kind of unique information.
One important attribute of this generation is that it cannot be completely random; it is
important that every system bound to Active Directory resolves the same UniqueID for any
respective user. To accomplish this, Apple uses the first 32 bytes of the user’s GUID to
generate a numerical value used as a statically mapped value for the Mac OS X Unique ID.

NOTE: Augmented Records can also be used to map information. In an augmented record
environment, one would bind a Mac OS X Server as a member server to Active Directory and as
an Open Directory master and then use Server Preferences to supplement missing records.
While this is similar to a triangle (described later in this chapter), it is not widely adopted on a
large scale and so not explored in detail in this chapter.

As the plug-in can run the same mathematical operation on the GUID on two different
machines and received the same value, it acts as a practical substitute for manually
configuring these values in your environment. Windows Server 2003 R2 and higher have a
schema attribute called unixid, which could be used to store custom values in the
directory. If your organization is already using unix clients that authenticate to Active
Directory, then you may already have this information populated in the Directory. Mapping
this information on the Mac OS X side is often only beneficial for consistency. However, it
can play a vital authorization rule when using the NFS file sharing protocol, which uses the
local systems UID to map privileges on remote server shares mounted on the clients
system. If your organization does have these fields populated, it is incredibly important to
make sure that these fields are populated automatically when you ingest new users.
WindowsServer 2008 can do this using ADSI or Power Shell Active Directory command
lets. Quest Software has some examples for manipulating large numbers of Active
Directory fields in a programmatic fashion using this “new” language.

By default, UID and GID attributes are not mapped, but rather generated when you are
using dsconfigad to bind a computer to Active Directory. To map the default fields
referenced previously, open Directory Utility from /Applications/Utilities and then click on
Services in the Directory Utility toolbar. From here, fill in the basic Active Directory
binding information from earlier. Once you have done so, click on the disclosure triangle
for Show Advanced Options and from the resultant screen, click on the Mappings tab.

From the Mappings tab, enter the information for the Active Directory attribute to map
UID and GID information to. Alternatively, dsconfigad can be leveraged to map fields not
included in the GUI. To do so you will use the -staticmap flag followed by the attribute
type and then the value for the specified attribute.

CHAPTER 3: Active Directory

112

Namespace Support Using dsconfigad
By default, dsconfigad assumes that your forest name is the same as your domain
name, or authentication will only succeed to the domain that was specified when the
system was bound. Some environments have multiple domains. Active Directory allows
two accounts with the same username (although not the same GUID) to exist with a
given forest, provided they are in separate domains. The Directory Utility allows you to
specify either the forest or a specific domain, allowing you to control the scope in which
a client system will authenticate against at bind time. When bound to a forest, the AD
plug-in allows you to go a step further, providing the ability to authenticate to separate
domains within a forest by adding the domain name to your login credentials.

But you don’t want to have to unbind and rebind every time you’ll log into a different
domain, if you will be switching between domains often. To provide you with the option
to login using multiple domains within one forest, you can use the -namespace flag
followed by domain. The -namespace flag then prefixes the domain name to all accounts
that are located in the forest. If you have conflicting accounts in separate domains then
the computer should be bound into the domain with which your account resides. To
enable namespace support you would use the following command:

dsconfigad -namespace forest

Once run, you will authenticate against the forest and will need to specify the domain
name in front of the username every time a user authenticates to the system. If you
would like to switch back to using domain namespace at a later date, you can specify
the -namespace flag with domain as the setting and you will no longer have to enter this.

NOTE: When run, the -namespace changes the primary ID for all accounts. Therefore, any
user profiles for accounts from the Active Directory domain will need to be copied/moved into
the new profile that is created, which will have a different naming convention.

Active Directory Packet Encryption Options
The Active Directory plug-in can be configured to enable the encryption options Apple
has developed for communications between the Active Directory plug-in and Active
Directory Domain Controllers. These include packet encryption, packet signing, and a
timeout value for setting the computer account password rotation interval with your
Active Directory domain controllers. These options are configured either post or during
bind time using the dsconfigad command.

A number of Active Directory environments require packet signing in order to block man
in the middle attacks and therefore to verify the authenticity of data being exchanged
between the Active Directory plug-in and Active Directory, thus protecting both the
domain and the client. From the Active Directory perspective, configuring packet signing
requirements is a policy configured from an Active Directory domain controller. Active
Directory password policies let you to allow or even require packet signing from the
client for LDAP traffic, the protocol that data will be exchanged in this scenario. By

CHAPTER 3: Active Directory

113

default, packet signing is an allowed option for clients in Windows Server 2003 and
Windows Server 2008, but is not required for client systems.

While not the default setting, it is a good practice. Therefore, many environments require
packet signing for Active Directory clients. In Mac OS X if you want to require packet
signing for the client to communicate the server then this would further validate that
communication is signed (and therefore authentic), so you can set the packet signing
setting to require as well for a more highly secure solution. If you require packet signing
from either the server side or the client side, then you should verify signing is an allowed
option, if not required on the other or you may run into incompatibility issues. To change
packet signing options in Mac OS X, you would use the -packetsign flag with dsconfigad.
Settings available with the -packetsignflag include: allow, disable, and require. Therefore,
to configure dsconfigad to require packet signing use the following command:

dsconfigad -packetsign require

If the change is successful, then you will see the following output:

Settings changed successfully

Packet encryption is another option in Mac OS X and Active Directory. Packet
encryption keeps the contents as secure as they are authentic by forcing data to be
encrypted. To enable packet encryption, use the -packetencryption flag with the same
settings available with the -packetsignflag (allow, disable, and require). As with packet
signing, verify that both the server and client support encryption before setting the
option to required, although for high security environments (or most environments these
days) it is a good idea to set the client and the server to require both authentication and
signing. To set encryption requirements for the client, use the following command:

dsconfigad -packetencrypt require

If the change is successful, then you will see the following output:

Settings changed successfully

Every computer that is bound to Active Directory has a computer account, and that
computer account in turn has a password. Active Directory rotates these passwords
routinely. The Active Directory plug-in supports the rotation by using the -passinterval
flag with dsconfigad. The passinterval can be set and when set, defines how often, in
terms of days between the password rotation intervals.

dsconfigad -passinterval 7

All of the settings in this section can be set or changed during bind time or following
bind time, and can be independent of any other settings.

Dual Directory
As we’ve mentioned, you can use Active Directory and Open Directory together. To
some, this is called a magic triangle, to others a golden triangle. We’re going to use a
term that has gained a bit more attention as of late, Dual Directory, to describe the
setup. Most descriptions and walkthroughs are made more complicated than they need

CHAPTER 3: Active Directory

114

to be. Basically, you start out with a functional Active Directory environment and a
functional Open Directory environment then bind your client machines to both
directories, ensuring that both appear in the clients search path. From then on, the client
will query each directory sequentially in the order defined by the search path until it
receives a successful return.

You may be thinking that it probably isn’t as easy as that, and certainly there are
additional considerations, but at its heart that is the foundation of a triangle or dual
directory configuration. The first such consideration is Single Sign On-----both Active
Directory and Open Directory utilize Kerberos for this functionality. In a dual directory
setup, having two separate Kerberos realms can complicate matters, so it is often
desirable to only utilize one Kerberos Realm. To integrate your Mac clients into an Active
Directory environment, you will want to utilize the Active Directory Kerberos services,
thus it will be desirable to tear down the Open Directory KDC.

TIP: If an OS X server is bound to Active Directory prior to promotion to an Open Directory
master, Active Directory Kerberos services will be utilized and Open Directory-based Kerberos
services will not be set up.

For the purposes of this demonstration, we will use diradmin as the Open Directory
administrative username and p@ssword as the password. If you have chosen to use an
Open Directory administrative username other than diradmin then simply transpose as
needed. Since your password is likely not p@ssword then please transpose that as well.

To destroy the shared Kerberos KDC on the Open Directory Master, you will use the
sso_util command. As of Mac OS X 10.5, this is typically not required, so feel free to
skip this step. The sso_util option we will use is the remove option, which will remove
the KDC from the host on which it is run:

sudo sso_util remove –k a diradmin -p p@ssword
Next, we're going to use dscl to remove the Config options for the KDC (since this step
is often not required it may fail):

dscl –u diradmin /LDAPv3/127.0.0.1 –delete /Config/KerberosKDC
dscl –u diradmin /LDAPv3/127.0.0.1 –delete /Config/KerberosClient

NOTE: You can choose to leave the KDC intact. If you do and run into errors later on in this
section, then you may want to return to this step and run these commands. They could resolve
any potential issues.

Next, you will bind the Open Directory Master to Active Directory as you have been
binding clients throughout this chapter. Because the directory services plug-ins can
coexist with one another (for the most part, some third-party plug-ins cannot coexist
with the Active Directory plug-in) you can do so without risking damage to other
resources within your LDAP service on the Open Directory master.

CHAPTER 3: Active Directory

115

Once you have bound your server to Active Directory, will want to enable the single sign
on for all supported services by using the following command, which will create service
principals for each respective shared service:

dsconfigad –enableSSO

Next, you’re going to open Workgroup Manager and verify that you can view and
authenticate to both your Active Directory and Open Directory domains. You can
alternate between directories that you are bound to (or hosting) by clicking on the globe
icon and then selecting other directories (including the local directory). Once you have
switched between domains, if the settings are grayed out and will not allow you to alter
them, then you can click on the icon of the lock to authenticate to each as an
administrative account of that domain.

Next, bind a client to both Active Directory and Open Directory, using the same process
outlined earlier in this chapter in the section ‘‘Bind to AD’’ and in Chapter 2. Once you
have bound to both Active Directory and Open Directory from a client, click on the
Search Policy tab in Directory Utility to verify that both your Active Directory and Open
Directory DirectoryDomains are listed. Also, make sure that Active Directory is listed
above the LDAPv3 domain for authentication purposes. It might not be likely that the
LDAPv3 domain will contain any users that present a conflict with users in the Active
Directory domain. However, keeping your Directory Domains with Active Directory listed
above Open Directory may save you time in troubleshooting down the line and help to
maintain optimal performance. In most dual-directory environments, Active Directory will
contain the bulk of the data, and therefore should be the first target for lookups.

Next either log out and login to the client computer, or use dirt to verify that you can
authenticate as an Active Directory user. Then, use dscl to browse both the Open
Directory environment and the Active Directory environment to ensure that both
directories are returning data. If you can, your client is now successfully configured for
use in your Dual Directory environment.

Nesting
For many tasks, such as POSIX and ACL-based file system permissioning, you can
directly utilize Active Directory groups, and OS X clients will properly recognize this
resolution. However, other functionality, most notably MCX management, require special
attributes provided by Open Directory and will not function when applied to Active
Directory groups. To take advantage of Open Directory functionality, you will need to
create Open Directory groups and apply the settings to these groups.

At first glance, this creates a bit of a management problem, as now we must maintain
user membership for both Active Directory and Open Directory groups. Luckily, this
problem is largely solved through support of nested groups, or more specifically, cross-
directory network groups. That is, you can actually nest an Active Directory group inside
of an Open Directory group and OS X clients will properly resolve the relation. This
capability becomes pretty invaluable, as once you set up the initial OD group and AD
membership, from then on, membership of the Open Directory group will be determined

CHAPTER 3: Active Directory

116

by that of the AD group. Administrators simply need to adjust user membership in Active
Directory, and those changes will trickle down to the Mac side of the tree.

Nesting groups is a pretty simple endeavor. In this section, we will create a group called
Support Users inside of Open Directory and nest an Active Directory group used for
support users inside of the Support Users group.

To get started, open Workgroup Manager from the /Applications/Server folder on the
Open Directory Master (or use Workgroup Manager on an administrative computer to
connect to the address of the Open Directory Master). Next, click on the globe in the
Directory Services bar and select /LDAPv3/127.0.0.1, which will display the contents of
Open Directory. Click on the groups tab just below the bar and then click on the New
Group icon in the toolbar. Enter the Name for the group. Due to the complexity of
dealing with multiple like-named groups across multiple directories, it is recommended
that you provide a designation for the directory under which the group resides. Thus,
when creating an OD mirror group for the AD group ‘‘Support Users,’’ we may want to
name the correlating Open Directory group ‘‘OD Support Users’’ to easily discern
between the two. As you assign a full name, a Short Name will automatically be
generated, although you can customize this as desired. As with the full name, a directory
specific identifier can prove very helpful. Thus, we’ll name the group od_supportusers.
When you are satisfied with the group name, click on the Save button.

Now click on the Members tab for the group and then click on the plus sign icon just to
the right of the group list. This will bring out a sliding menu with the Open Directory
users of your organization. Click on the globe icon at the top of the menu and select the
Active Directory domain, then click on the Groups tab directly below it. Drag the desired
group from the sliding menu to the list of members. When you are satisfied with your
entry, click on the Save button and you should see a screen similar to the following.

At this point, you will be able to build permissions to files and folders and generate
policies for the Open Directory user groups, which has the same effective membership
as the nested Active Directory group. You can nest multiple Active Directory based
users or groups inside of Open Directory groups in this manner in order to achieve a
variety of results.

MCX via Dual Directory
If you have chosen to deploy a dual-directory environment, chances are you have done
so to provide policy management for your OS X clients, and have chosen for whatever
reason to not extend the primary directory’s schema for such support. The primary
benefit of deploying a dual directory environment is that it allows you to utilize the
schema of one directory to supplement the other, through the use of nested group
resolution, providing capabilities that otherwise would not be possible. Actual
management of these policies is the same in a dual directory environment as it is in an
Open Directory native environment-----the majority of the work to generate policies is
done in Workgroup Manager.

CHAPTER 3: Active Directory

117

Managing the dock is one of the easiest settings to manage. It is also one of the
easiest to demonstrate while being fairly unobtrusive to any users who it is applied
to, in the event that issues arise from the managed preference and troubleshooting
must occur. To manage the dock, go ahead and open Workgroup Manager from
/Applications/Server, connecting to your Open Directory Master. Next, switch to the
appropriate directory service (likely Open Directory) using the disclosure triangle in the
Directory Service domain selection bar, and clicking on /LDAPv3/127.0.0.1 when you
are complete.

To create a group, click on the lock icon to authenticate into the appropriate directory
domain. Once authenticated, click on the group lists icon in the left part of the screen
and then click the icon in the toolbar for New Group. Next enter a name for the group.
The group name will be Dock Test with a shortname of testdock and then click on the
Save button to create the test group for managed docks.

Next add the Active Directory user into an Open Directory group from Workgroup
Manager. Start by clicking on the Members tab for the group in Workgroup Manager and
then click on the plus sign (+), which opens a listing of users. In the list of users, click on
the disclosure triangle for Directory, selecting the Active Directory domain. Then, drag
the user you will be enforcing into the new group whose dock will be managed, saving
settings to appear similar to what is seen in Figure 3-8.

Figure 3-8. Nesting Groups with a dual directory environment

CHAPTER 3: Active Directory

118

Once the users are created, it’s time to set up the managed preference, similar to what
was done in earlier sections. To get started, click on the Preferences button in the
Workgroup Manager toolbar. At Preferences, click on Dock underneath the Overview tab
and then click on the Dock Display tab, using the Always radio button. Click on the Right
radio button and then click on Apply Now to commit those managed preferences. Then
move the dock to the right side of the screen as you can see in Figure 3-9, a setting that
is inherited by objects that are a member of the group.

Figure 3-9. Managing the Dock in dual directory

Finally, log in as the user with managed preferences configured and you should see the
dock displayed on the correct side of the screen, or whichever preference you decided
to set if it wasn’t the Dock locale.

In an AD/OD dual directory environment, there are some notable limitations that you
should be aware of. First and foremost, Mac OS X cannot directly utilize an Active
Directory Computer Record for policy management. In a managed computer
environment, OS X clients associate to a specific computer record via the built-in

CHAPTER 3: Active Directory

119

ethernet interface’s MAC address, designated by OS X as interface en0. As Active
Directory Computer Records do not contain this information, OS X clients will not
properly associate to their respective computer record when it is nested inside of an
Open Directory computer group. In order to apply computer group-based management,
you must create a computer record in Open Directory with the respective Mac address.
This process is most easily accomplished by performing a trusted bind of your OS X
clients to Open Directory, which will create the associated computer record. If you are
already scripting your Directory Service binding, a trusted bind is a fairly trivial
modification. Alternatively, you can pre-populate the Open Directory computer records,
provided that you have documented the MAC address and computer name for your
OS X nodes in the field.

MCX via Active Directory
If you can extend your Active Directory and you need to use managed preferences,
then you should do so. If you can’t then you would use dual directory or a third-party
solution. If you extend your schema then you will be able to use Workgroup Manager
to configure the managed preferences that you require. First, open Workgroup
Manager and connect to an Active Directory. You can run Workgroup Manager from
any Mac OS client that has previously been bound to Active Directory. In this case,
we will connect to 127.0.0.1 initially and then click on /Active Directory/All Domains
entry in the list of available directory services (the section with the globe and the
disclosure triangle), clicking on the lock icon to authenticate as an administrator of
your Active Directory domain when you are prompted to do so.

The Inspector allows you to view raw attribute data no matter the directory service
that you are using. For the purposes of this example, we are going to enable the
Inspector for Workgroup Manager so we can check that the managed preference
has been applied and how the data appears once the record has been updated.
From Workgroup Manager, click on the Workgroup Manager menu and click on
Preferences. From Preferences check the box for Show All Records tab and
inspector, clicking on OK when finished, as we covered in the previous section,
MCX via Dual Directory.

Now highlight a user from Active Directory and click on the Inspector tab. You’ll
then see all of the attributes, as mentioned in Chapter 1. Whether or not your domain
has been extended, you can now click on the Preferences icon in the Workgroup
Manager toolbar. Using the pre-built managed preferences, you can then configure
items in the list shown in Figure 3-10 (assuming your Active Directory schema has
been extended).

CHAPTER 3: Active Directory

120

Figure 3-10. Managed Preferences for Active Directory

To continue on with the Dock managed preferences example, now click Dock and then
click on Always, finally removing a couple of applications from the included list for
testing purposes. Then click the Dock Display tab and set the Always option by
checking the Always box. Finally, highlight the radio button for Right, as shown in
Figure 3-11.

CHAPTER 3: Active Directory

121

Figure 3-11. Managing the Dock for active directory users

When you’re satisfied with your changes, click on the Apply button. If you do not get any
errors, you can then authenticate to a client and the dock should appear with the items
that were defined in the list and to the right of the computer, which indicates that the
managed preferences manifest has been applied as intended. If you get any errors,
review the items included in your schema extension from ADAM (or the ldif file used with
ldifde). MCXFlags and MCXSettings (which is an array) are the most important items to
check to make sure the Mac OS X managed preferences framework is going to be
functioning as intended. Items that are not being configured properly can create errors in
Workgroup Manager. If the MCXFlags and MCXSettings are present on the system, you
can copy their entire contents into a separate document, pasting them into mapped
fields from within Active Directory.

CHAPTER 3: Active Directory

122

NOTE: When using an extended schema, similar limitations apply to Computer-group and
computer-based management. It is necessary that computer records have a populated MAC
address field so that they properly recognize applied management settings.

Configuring AD Admin Groups
The Active Directory plug-in allows for the designation of Active Directory group(s) to act
as local administrators on the bound machine. This capability is very handy for assigning
helpdesk groups to serve as local Mac administrators, giving them access to numerous
administrative-specific resources. This setting provides members of the group to access
rights similar to that of a local admin user. This includes the rights to change System
Preferences, install software, modify system files, and run applications with root (admin)
privileges. This also includes sudo access, which allows for execution of command-line
executables with root access.

As with other Active Directory plug-in settings, administrative groups can be configured via
Directory Utility. To configure administrative groups via Directory Utility, open Directory
Utility. First, enable edits by clicking on the lock, and authenticate with a local administrative
user. Next, using the Services tab, highlight the Active Directory Plug-in and click configure.
If necessary, click on the disclosure triangle to show the advanced options. A list of admin
groups can be found under the Administrative tab, as shown in Figure 3-12.

Figure 3-12. Active directory administrative panel

CHAPTER 3: Active Directory

123

To assign an administrative group, check the box Allow Administration By and specify
the name of the group that contains the desired admin users. In this case, we have
created a special Active Directory group Mac Desktop Admins, which contains a nested
group of our help desk team.

Nesting Administrators in the Local Admin Group
Many organizations provide centralized management in a decentralized environment. If
you do not want to provide your support personnel access to local service accounts,
and you want to specify people in your organization that can administer local systems,
then you can give local administrators elevated privileges by nesting those users into
admin groups. You can also accomplish this directly using the Active Directory plug-in
at bind time.

To do so with nesting, though, use the dseditgroup command to nest a network group
inside the local administrator group, which you can do using Workgroup Manager.
However, we’re going to look at doing so programmatically to ease mass deployment,
especially when you are not using the stock Active Directory plug-in. To do so, use the
dseditgroup command to resolve group membership:

dseditgroup -o read <active directory group name>

The -o option from followed by the read means to do a read operation on the specified
group. If you were to run the following command, then you would read the mac_admins
group.

dseditgroup -o read mac_admins

The output of the preceding read command would then give you the following output:

27 attribute(s) found
...
Attribute[5] is <dsAttrTypeNative:member>
 Value[1] is <CN=Charles Edge,CN=Users,DC=318,DC=com>
 Value[2] is <CN=Zack Smith,CN=Users,DC=318,DC=com>
 Value[2] is <CN=Beau Hunter,CN=Users,DC=318,DC=com>
...

The member section lists the group members. If you do not get any output then you
should verify that there are actually members in the group by checking the domain or
using the id command. Then verify that Mac OS X can resolve group memberships with
id as well. You can also use the id command to see what groups a user is in. For
example, to look up the groups that an account is a member of you could use a
command similar to the following:

id cedge

Group memberships will then be output, along with the uid and gid:

uid=5678903(cedge) gid=45678(318\domain users) groups=45678 (318\domain users)

To nest the Active Directory group you can use dseditgroup with the -o option again,
but this time leveraging the edit verb and add using the -a option to indicate a group

CHAPTER 3: Active Directory

124

manage; use the -t option for the type of the group with the -n option indicating the
location. The following code is an example:

sudo dseditgroup -o edit -a mac_admins -t group -n /Local/Default admin

You can also add a network user to the admin group by using the same command but
changing the type:

sudo dseditgroup -o edit -a <network username> -t user -n /Local/Default admin

If you combine this with mobile (cached) accounts, you can provide administrative rights
to local machines, but then require password policies managed using server side
preferences from Active Directory. To verify the nested user has localized elevated
privileges, test a local process that requires local administrative access.

NOTE: You can also use Workgroup Manager running on a local workstation to nest groups in
this same fashion.

Third-Party Solutions
For the vast majority of environments, the functionality provided through Apple’s native
Active Directory plug-in will provide all that is needed for successful integration.
However, there are numerous scenarios where functionality is needed outside of that
provided through Apple’s solution. Apple considers these edge cases for the most part,
but if you need a feature such as multiple-Forest support (rather than simply multiple-
Domain support, which is part of the Active Directory plug-in), or DFS, Microsoft’s
Distributed File System, then you may need to turn to a third-party solution.

Centrify’s DirectControl
Centrify is a third party directory solution which includes server-side software to
augment Active Directory, and for OS X clients includes a custom Directory Service
plug-in. From an OS X perspective, Centrify is a rather elegant solution, as the software
directly utilizes the Directory Services API. As such, the Centrify client plug-in is a first
class citizen next to Apple’s native LDAP and Active Directory plug-ins. From an Active
Directory perspective, Centrify allows for extended functionality without the need for
schema extensions. This extended functionality is then used to distribute policies to
clients through what Centrify identifies as Zones.

DirectControl Installation
To get started with DirectControl, first download the installation iso file from Centrify,
mounting the iso on a valid Windows Domain Controller, preferably one in a test or lab
environment for your initial installation and testing. For many environments, you may
choose to have Centrify perform an on-site jump-start for your organization. But for the
purposes of this chapter we’re going to have you perform a basic initial installation and

CHAPTER 3: Active Directory

125

testing, assuming that you are doing so in a laboratory environment. Before you get
started though, make sure the server you are installing the Suite on is part of the Active
Directory environment and that it is running IIS.

Let’s go ahead and start the installation. To begin, run the installation msi file that is
included in the iso file on a Domain Controller. You will first see the Suite Type screen,
where you select the Suite of applications that will be installed, based to some degree
on the licensing that you paid for. Since we’re testing, use the Enterprise Administrator
Suite so you have the full complement of applications and then click on Next. Optionally
select the components of the Enterprise Administrator Suite to install. When you are
satisfied with your selections, click on Next, as you can see in Figure 3-13.

NOTE: For most cases, you will need the AD property page extension, the Zone generator, and
the Global Policy Editor. Other packages are optional for the most part.

Figure 3-13. Choosing Centrify components for installation

CHAPTER 3: Active Directory

126

You will now get a chance to check out the settings for the installers and then the actual
installation will begin. At the Confirm Installation Settings screen, review the settings you
will be using and then click on the Next button. If you are installing the Web Console,
.Net will install first, and here you are likely best using the default options. DirectControl
will then install. Click Next to run the installation steps.

Licensing is always fun. Writing about licensing sometimes seems silly, but it’s
better than skipping over it. At the Review License Agreement screen, read the
license agreement and if you accept it, click on the I agree to these terms radio
button. Then, click on the Next button to continue. The User Registration screen
needs a username and an organization name, so type those in and then click Next,
as shown in Figure 3-14.

Figure 3-14. Assigning a username and organization in Centrify

Next, choose a location for DirectControl to be installed. At the Choose Destination
Folder screen, customize the target directory or allow the installation to occur in the
default directory. If you would like for the Centrify folder to be created in C:\Program
Files then click on Next. Otherwise, click on the Browse button, browse to the required
folder, and then click on the Next button.

CHAPTER 3: Active Directory

127

Earlier you selected which applications in the suite to install. Now we’re going to select
the specific parts of DirectControl to install. At the Select Components screen, you will
define which portions of DirectControl to be installed. Earlier we selected the Centrify
applications, but now you are going to configure the components of each to be installed.
Because this is a testing environment we’re going to look to get our full complement of
options except for the Extension for NIS maps, since for most environments there will
not be any NIS clients. Having said this, the NIS option isn’t just for administrators stuck
in the 1990s. It can be practical when DirectControl is being used so that Unix and Mac
clients can authenticate through NIS into Active Directory. Either way, click Next to
continue.

The web console uses .Net, which has the ability to use Publisher Evidence Verification,
useful in high security environments. If installing the web console then you will be
prompted to Disable Publisher evidence verification. Click Next to see the screen that is
used to confirm the components of Centrify DirectControl to be installed. If the Confirm
Installations Settings screen matches the options you wish to have installed then click
on the Next button, or use Back to go back to previous screens and alter the options.
Clicking Next will install the DirectControl components. When it is done, click Finish and
then you can start the setup. Once you are done, reboot the host in order to move on to
configuring DirectControl.

Configuring DirectControl
When the installation is complete you will need to set up DirectControl to connect to the
Active Directory forest that the computer objects will be connecting to. The process
starts with the Connect to Forest dialog. Before you do anything, double-check that your
DNS is set appropriately and that you know the address for a system that is a domain
controller for the forest. Once you have the appropriate information, enter the address of
the appropriate domain controller and the appropriate credentials and click on OK to
begin the Setup Wizard, as shown in Figure 3-15.

Figure 3-15. Authenticating into a domain controller

CHAPTER 3: Active Directory

128

The first few screens of the setup are innocuous. You will see the Welcome screen
where you will click on Next. At the User Credentials screen, enter a valid username and
password for an Administrative account and then click on Next.

Licensing is a necessary evil. At the subsequent Install Licenses screen, select a location
for your License Keys. The default location is likely best, unless you have a good reason
to change this location. At the Install License Keys screen, configure the keys that are
populated into the default location from the Install Licenses screen. Enter the licensing
key provided by Centrify and then click on the Next button.

To Centrify a Zone is similar to an Organizational Unit. A Zone has member objects, but
also allows for delegated access over the objects within the Zone. Next, provide a
location for your Zones within Active Directory. You do not need to customize this
information, so you can go ahead and click on Next unless you need to do so.

In a standard Active Directory environment, when you bind to the directory your system
is stored in cn=Computers. Similarly, all objects have a default Zone membership. At the
Create Default Zone screen you will supply the default Zone, although most will simply
leave the default setting and click on the Next button, as shown in Figure 3-16.

Figure 3-16. Defining a default zone container

While zones are similar to an OU, they are not an OU. In fact, a zone can be linked to an
OU or a container. The Default Zone then will require you to enter a domain controller

CHAPTER 3: Active Directory

129

that has the OU or container accessible. If you did not customize the previous screen
then chances are you will not need to customize this screen either. For more on Zones,
Centrify has provided a write-up at http://www.centrify.com/directcontrol/zones.asp.

When you are importing data into Open Directory one of the fields available is the first
UID to use. This is similar in Centrify. At the next screen you will enter a starting UID
number that will be assigned to objects. User IDs by default start at 10,000, but feel free
to customize this setting. Unique identification isn’t just required for users, groups need
unique IDs as well. Next, provide a starting GID (GroupID) space for groups to occupy
(for the most part, the same rules apply as for users).

TIP: It is generally recommended that you choose a range outside that provided by Apple’s
native solutions to easily differentiate the source of a record.

Next, set the Default home directory that will be used for accounts in your Zone as it
would appear in the local system. The Default home directory is set to /home/${user} as
can be seen in Figure 3-17. For the Mac OS X clients, you’re going to change this to
/Users/${user}, so when a user logs in the local folder /Users/USERNAME will be
created on each computer, where USERNAME is the user logging in. The next screen
(Default Shells) allows you to configure the default shell by using the full path to the
shell. For example, if you wanted the default shell to be bash you would use /bin/bash.
When you are Satisfied with your shell setting, click on Next.

Figure 3-17. Providing default home directories

CHAPTER 3: Active Directory

130

In Mac OS X, each user needs a default group assigned to it. At the Select and Set the
Default Normal Group dialog, you will be setting the Active Directory group that will be
used for a UNIX GID for that group. Here you can use the Browse button to find an
existing group. You can also use the Create... button to create a new group. You will
need to use the UNIX GID: field if you wish to use a unique identifying number for the AD
group provided. While the unique number can be fairly arbitrary, do use your standard
numbering scheme and organizational standards. Click Next to commit your changes,
and if there are any issues with them Centrify will bring up a screen telling you to fix the
issue.

If you are using NIS, then Centrify will act as the NIS server. The Agentless Client
Support screen is where you will configure the NIS Server settings, which is the essence
of what Agentless Client means to Centrify. Next, provide a password hash type and
a NIS domain that NIS clients will use when connecting to the server. Once set, use the
NIS domain listed in this field as the domain in Directory Utility. When you complete
your NIS settings, click on Next.

You will now see the Delegate Permissions screen, where you can set the server to be
able to control settings on the workstation. By checking the field seen in Figure 3-18, to
Grant computer accounts in the Computers container permission to update their own
account information you allow Centrify to alter settings of the local computer once it has
been joined to Active Directory.

Figure 3-18. Allowing computers to update information in Active Directory

CHAPTER 3: Active Directory

131

Next you will configure how informational data is exchanged with Active Directory.
The Register the AD Administrative Notification Handler verifies the Active Directory
information from the Centrify database. It is recommended to check the Register
administrative notification handler for Microsoft Active Directory Users and
Computers snap-in field and then click on the Next button. At the Setup Property
Pages screen, configure whether property pages are used when opening Active
Directory Users and Computers are updated by Centrify. Unless you have other tools
that hook into Active Directory to ease administration, check this box and then click
on the Next button.

When the Setup Wizard is complete you will see the Setup Wizard Summary page,
where you will review the settings and then select Next or Cancel, if the setup
does not match your vision of what is being installed. Finally, at the Centrify
DirectControl Setup Wizard screen, click on the Finish button to complete the
setup wizard.

Using DirectControl
Once installed, it’s time to get comfortable with the DirectControl interface. To do
so, open Active Directory Users and Computers from Administrative Tools and then
open an account. Then click on the newly added Centrify tab. The Domain: field
contains the Active Directory domain that an account belongs to, which should be
populated by default with the domain name that you are using. The field for User has
a UNIX profile in these zones and is where you configure an account’s Zone so that
it will be managed (by default all accounts will be placed in the default Zone that was
specified during installation). The UID:, Login name:, Shell:, Home directory:, and
Primary group: fields all provide settings that are then expanded and applied by the
Centrify Active Directory plug-in. If you click on the Add button and select the
default zone created earlier then you will populate the remainder of the fields based
on the settings previously used.

Next, look at how you can add accounts into zones from within DirectControl. To do
so, open Centrify DirectControl from Start h Programs h Centrify, as shown in
Figure 3-19. When Centrify DirectControl window opens, click on the disclosure
dialog for Centrify, then Zones and Users to bring up a screen showing the account
just added to the default zone. From this screen, you will not typically manage
memberships-----these are usually managed by Active Directory Users and
Computers. Instead, you will more than likely use the DirectControl application itself
to run reports.

CHAPTER 3: Active Directory

132

Figure 3-19. DirectControl

You are now ready to set up policies. To get started, select an Organizational Unit and
open the Group Policy Object Editor (GPOE). Then click on the Action menu, selecting
Add/Remove Templates... You can then right-click on an object and then click on
Add/Remove Templates... At the resulting screen, click on centrify_mac_settings.xml
and then click on the Open button. You will now see Mac OS X Settings for Users and
Computers. You can then browse policies and configure policies for users and
computers, just as you would configure group policy objects for Windows.

Let’s look at setting up a specific policy: the Dock position preference that we’ve been
using throughout this chapter. To do so, browse to the centrify_mac_settings.xml from
within GPOE and click on User Configuration, Centrify Settings, and then Mac OS X
Settings. From here, click on Dock Settings, then double-click on the Adjust the Dock’s
position on the screen Policy to open a dialog box that allows you to set the Dock’s
position. Set it to the right side (or the left if you are in the mood to not follow along) of
the screen and then click on the OK button.

Once you have finished setting up the server, install the client and bind it to the server.
The Centrify client allows you to bind to the server and log in as the user, verifying that
the dock appears at the correct location. You can now configure other policies in the

CHAPTER 3: Active Directory

133

same manner that you configure policies for Windows users. Correlate those that you use
with your organization’s security policy.

Likewise
Likewise has two products to assist with the integration of Mac OS X within Active
Directory. The first is Likewise Open, which is open source software and acts as a
replacement for the Active Directory plug-in. Likewise Open provides support for
multiple forest environments, credential caching and integrates SSH on Mac OS X with
Active Directory. The second is Likewise Enterprise, which is a server-side solution
rather than a client-side solution. Neither product requires changes to the Active
Directory schema.

To integrate Likewise Open on a Mac, first download and open the package installer. At
the Introduction screen, click on the Continue button. At the Read Me screen, read the
information provided and then click on Continue. Next, at the License screen, read the
license information and provided you accept the licensing agreement, click on the
Continue button. When prompted to Agree, click on the Agree button. At the Installation
Type screen, click on the Install button in order to install the files into the default
location.

The installer will complete installing the plug-in, and provided the installer is successful
you will be greeted with the Install Succeeded screen. Here, click Close and you will be
ready to bind to Active Directory using the Likewise plug-in.

To bind to Active Directory using the plug-in, open Directory Utility from
/Applications/Utilities. Next, if you click on the Services icon in the Directory Utility
toolbar, you will notice the new Likewise---Active Directory entry. Click here and then
click on the pencil icon to begin the GUI aspect of the Active Directory binding process.

You will now see the Join Active Directory wizard. Here, the Computer name: field will
automatically be populated with the hostname of your computer. You can customize the
name or enter the name of the Active Directory domain in the Domain to join: field. If you
would like to leave the system in the default Computers Organizational Unit (OU) then
you can now click on the Join button. Otherwise, you can click on the OU Path and
enter the path of the OU you would like the system to join.

You will now be prompted for the username and password of a user with rights to join
the Active Directory domain. Provide the appropriate information as seen here and click
on the OK button. When the wizard is complete you should see a screen as follows
indicating a successful bind to Active Directory.

If you click on Likewise---Active Directory in Directory Utility you will now see a screen
indicating that you have joined the appropriate domain as follows. Finally, you can also
use the command line to join Active Directory by leveraging the /opt/likewise/bin/
domainjoin-clicommand. There are other commands located in the /opt/likewise/bin
directory as well, which can be used to perform other operations as required by Active
Directory, including of course, mass deployment.

CHAPTER 3: Active Directory

134

Likewise Enterprise
To integrate Likewise Enterprise into your heterogeneous environment, Likewise, similar
to Centrify, first requires you to install the Likewise Console on a domain controller.
Once done, you will be able to join Mac OS X computers into your Active Directory
environment and obtain additional options than what is allowed with the standard Active
Directory plug-in, included with Mac OS X and Mac OS X Server.

What’s the difference between the two? There are many, but they are likely to change in
releases that will follow shortly after the publication of this book. Therefore, if you are in
need of a solution to bridge the gaps left by the built-in Active Directory plug-in for Mac
OS X, I recommend that you bring in both vendors and let them explain their value
proposition. Compile a list of requirements beforehand and then test each solution to
see which most closely conforms to the needs and mentality of your organization.

Thursby ADmitMac
ADmitMac provides features that aren’t available with the default Active Directory plug-
in, such as Distributed File System (DFS) support, support for home directories on DFS
based volumes, Active Directory based cross-realm trusts, and more caching options.
There is also an ADmitMac deployment tool, which reduces your reliance on manually
scripting Active Directory binding and offers more options that can be used to protect
your Active Directory administrative password.

NOTE: The AD Commander can be used to authenticate and manage Active Directory objects
from a Mac OS X client.

Before you look at trying to mass deploy ADmitMac, you obviously need to figure out
what it can do for you and which options you will use. Then you will programmatically
figure out how to deploy it. To get started with your testing, you will first want to
download the installer from Thursby and then run the ADmitMac installation package.
Clicking Continue at the Introductions screen, Read Me screen, and after reading the
developer’s notes.

The next step in the installer package is to deal with licensing. At the Software License
Agreement screen, read the agreement and click on Continue. If you accept the
agreement, click on the Agree button at the dialog. At the License Code Entry screen,
enter your username, the organization name, and the license code you were supplied
with by Thursby. Then, click on the Continue button.

At the Installation Type screen, click on Change Install Location to select a different
location to install ADmitMac or click on the Install button to complete the installation
process. When the installation process is complete the ADmitMacSetup Assistant will
automatically start. Here, click on Continue to start the wizard.

CHAPTER 3: Active Directory

135

Next, you will be prompted to setup WINS on the client computer. Most Active Directory
environments no longer rely heavily on WINS support. Additionally, WINS is available
using the Apple Active Directory plug-in. However, if you would like to enable WINS
support you can do so by choosing to do so through DHCP or Manually. When you are
satisfied with your settings, click on the Continue button.

Next, configure the Security Policy Settings, similar to the PacketSign option in
dsconfigad. Here, select whether digital signing is required and select the bullet that
most applies to your environment in terms of hashing and then click on the Continue
button.

You will now be prompted to enter the name of the domain for your Active Directory
environment. Enter the domain in the Domain: field and click on the Continue button as
seen here.

Next enter the name that the computer record should be generated with into the
Computer Name: field and the Organizational Unit (OU) that the computer should reside
in using the Computer OU: field. Also enter the username and password of a user who
has permission to create an object in Active Directory and click on the OK button.

The computer will now bind to Active Directory. When it is finished you will have the
option to use the assistant to move local accounts into Active Directory accounts. This is
only for systems with existing users that need to be migrated to Active Directory users.
However, if you would like to invoke the application later you can do so using the Home
Mover program that is located in /Library/Application Support/ADmitMac.

Now that your client is bound into Active Directory, you can use the Directory Utility
application from /Applications/Utilities to alter any of the settings that have been
previously configured and to configure shared folders on the local client using Active
Directory credentials. The Directory Utility plug-in can also be used in dual directory
environments to specify exactly where to look for managed preferences.

NOTE: At the time of release for this book, ADmitMac does not yet support Snow Leopard.
However, we have been assured that by the time the book is printed that it will be supported.
Therefore, given the historical importance of the ADmitMac solution and the prevalence in the
marketplace we have left this section in place, written based on Leopard rather than Snow
Leopard.

Quest
Quest, as with Centrify and Likewise, is used to leverage an existing Active Directory
infrastructure for providing policies for Mac OS X. Quest is based on the
VintelaAuthentication Services (VAS). Quest will give you a new mmc snap-in for
Windows Server’s Group Policy Object Editor (GPOE) that will allow you to configure

CHAPTER 3: Active Directory

136

preference manifests and custom properly list (.plist) files similar to how you would do
so from with Workgroup Manager. The screens look almost identical to Workgroup
Manager except that policy items are formatted to fit within a GPOE screen.

Quest adheres to the RFC 2307 standards. In Windows Server 2003 R2 and Windows
Server 2008 domains, LDAP attributes are already part of the 2307 standard, so there is
no extension of the Active Directory schema required. However, data from 2307 will
need to be translated so the client is required, which leverages the Microsoft CSE (Client
Side Extensions). More information on CSE can be found using TechNet:
http://technet.microsoft.com/en-us/library/cc736967.aspx.

To configure the VAS plug-in on a Microsoft Windows Domain Controller, set up a client
to connect to Active Directory so that policies configured within the VAS GPOE snap-in
will be applied to the client computer.

To configure VAS for Mac OS X, you will start off by logging into an Active Directory
Domain Controller, unzip the VAS installer by double-clicking on the VAS-3.x.x.x.msi
pack, then clicking Next at the Welcome screen. At the subsequent License Agreement
screen, read the licensing agreement and then click on the I accept the terms in the
license agreement option, assuming the terms are palpable to you. At the Destination
Folder screen, click on the Next button. Alternatively, you could click on the Change
button to install Quest VAS into a folder other than C:\Program Files\Quest
Software\Vintela Authentication Services directory. At the Setup Type screen, click on
Complete. At the Ready to Install the Program screen, click on the Install button. When
the installer has finished its tasks click on the Finish button.

Once the VAS installation is complete open a GPOE screen to create your first domain
policy. To do so open the Windows Start Menu, click Run, enter mmc into the Open:
field, and click on the OK button. At the Console screen click on the File menu and
select Add/Remove Snap-In and then at the Add Standalone Snap-in screen, highlight
Group Policy Object Editor and click on the Add button.

At the Welcome to the Group Policy Wizard screen, click on Browse and then select
Default Domain Policy. Once you see the Finish button then all is complete and you can
move on to the next step: editing policies for Mac OS X. Use Default Domain Policy to
browse to Mac OS X Settings and select Workgroup Manager. If you have built policies
for Open Directory using Workgroup Manager then the items in the resulting list will
seem familiar to you. This is because the developers of VAS have gone through and
copied the policies available in Workgroup Manager.

A common managed preference is to limit removable media options for clients. The
terminology that Quest uses to do so is a Media Access policy object. From the Domain
Policy screen, double-click on any feature (in this case Media Access) to bring up the
Properties screen. Here, you can elect to enforce the policy using Never, Once, and
Always, mirroring the options available in Mac OS X Server’s Workgroup Manager yet
again. The Never option disables the policy, which is the configured preference by
default. The Once option enforces it for the first logon event once it has been enabled,
but then leaves the option to allow the end user to alter a setting. The Always option
enforces the policy at each logon and while a session is active. For the purpose of this

CHAPTER 3: Active Directory

137

example, click on Always to enforce the policy and then uncheck the Allow button,
clicking on the Apply button when you are done.

Once you have saved the option, verify that it has been enforced by navigating to the
GPOE Console again and checking that the policies are set to Yes under the column for
Configured preferences. Custom policies are available in Quest, just as they are an
option in Workgroup Manager on Mac OS X Server. Policies for software that is not
included by default does rely on the software developer (including Apple) to create
preference manifests to make their application’s preference keys available for
management through managed preferences. If a developer has not done so, you can
also use standard property list files (.plist) to configure policies for many applications,
but it is less granular in nature. Quest provides a few common plistfiles into their
Preference Manifests section, including a manifest for Microsoft Office that you can use
with other solutions as well. A common example of a manifest often used but not
included by default is the ManagedClient options for Dashboard and iWork.

Once the policies on the server match your organizations policies, you’ll more than likely
want to install the VAS for Mac OS X client software and start testing the configuration.
To do so, open the installation tools folder, the client folder, and then the osx folder
where you will find the dmgcalled installation. Copy this to a client and open the
VAS.mpkg file to begin the client-side installation, clicking on Continue at the Welcome
screen.

At the following screen read the License Agreement, (we realize these are kinda’ dull, but
they do occasionally contain really good information to know) and click on the Continue
button. Assuming that you accept the licensing agreement, go ahead and click on the
Agree button to continue. The Installation Type screen is next, where you can change
the location that Quest will be installed to by using the Change Install Location... button
or the Customize... button to choose which components to install (as you can probably
guess there is little purpose to doing). Go ahead and click on the Install button to have
the software complete the installation.

You can also simply use the installer command to deploy the package in a more silent
manner (using ARD). Here, you will use the following installer command, specifying the
vasclnt package, to complete the installation:

/usr/sbin/installer -pkg Packages/vasclnt.pkg \ -target /

Next open the Directory Utility to join the client computer to Active Directory. Click on
the Services icon in the toolbar to bring up the available plug-ins. Make sure that there
are no other Active Directory plug-ins enabled for this machine and then double-click on
the Active Directory (Quest VAS) entry.

Next, you will be asked to enter a Domain Name for your Active Directory environment
(see Figure 3-20). Type the pertinent domain name, clicking the Join Domain button (or
the Enter key if you will) when you are complete.

CHAPTER 3: Active Directory

138

Figure 3-20. Binding with Quest

When you are requested to type in a valid username and password with the appropriate
permissions to join the Active Directory domain type in the appropriate information,
clicking on OK when you are satisfied with your entry. You can also click on the
disclosure triangle to enter other pertinent information, such as a preferred domain
controller, like with the Mac OS X Active Directory plug-in. Assuming the binding occurs
successfully the domain binding process is then complete. Your client will now be able
to authenticate against Active Directory using the Quest VAS plug-in and policies
applied to computer and user objects through GPOE will be applied as intended. Make
sure that the Active Directory plug-in supplied by Apple is not also enabled.

Quest also provides a command-line interface for automating binding once you have
deployed the installation package. In order to use the command-line interface, cd into
the /opt/quest/bin directory, where you will find the klist, ldapmodify, preflight, vastool,
vgptool, ktutil, ldapsearch, uptool and vgpmod tools, each custom tools for searching,
checking bindng, and managing settings for the Quest client.

The /opt/quest/libexec/vas/scripts/vasjoin.sh script can be used as follows, (assuming
your working directory to be /opt/quest/libexec/vas/scripts):

./vasjoin.sh -u Administrator join -f mydomain.com

Summary
The default Active Directory plug-in should work to provide centralized authentication
services for most, but not all. In addition to centralized authentication, an enterprise
needs its directory service to provide policies. Extending an Active Directory schema is
an option for most environments looking to provide policies for Mac OS X clients. For
those where extending the schema will not be possible, a Dual Directory environment
should be your first thought, and, provided you fully test the environment, you should
also consider augmented records.

Why? Purely due to total cost of ownership. You will not be able to justify the platform if
you have to bolt too many pay-for features on. The more third-party solutions that are
introduced also dilutes ownership for troubleshooting and lateral support options.

CHAPTER 3: Active Directory

139

Overall, your life will be easier on a lot of different levels if you will be able to minimize
the third-party solutions.

If you do bring in a third-party solution, then it should have its own total cost of
ownership justification. For example, if you estimate that the cost of managing and
maintaining a secondary directory service (including training, equipment, setup) for a
Dual Directory is more than licensing Centrify for 10,000 users, especially considering
that an Active Directory administrator who knows little to nothing about a Mac can
manage it, then you have a clear decision in front of you at the tail end of year one, if not
sooner.

Overall, the most cost effective method of producing managed preferences is going to
be extending your Active Directory schema. But there are still a number of cases where
third-party solutions will need to be leveraged-----try to use these as ways to drive down
the total cost of ownership by leveraging advanced features of each solution to enable
more automation for your environment. Make sure that the business cost here is known
by all, especially those responsible for making these types of budgeting decisions.

CHAPTER 3: Active Directory

140

4Chapter

Storage
Storage can be an extensive topic, but the storage paradigm for the Mac platform is
unique-----there are far fewer options than with other environments, which helps to
constrain the conversation. It’s not that you can’t use most enterprise-class storage
systems, it’s just that you won’t find the proliferation of storage types, file systems, and
storage-access protocols that you will with, say, Windows. Still, OS X supports iSCSI
and Fibre Channel (FC, which we’ll discuss when we get to Xsan SAN systems) as well
as numerous network access protocols-----client and server-----that run over Ethernet:
Apple Filing Protocol (AFP), Network File System (NFS), and Server Message
Block/Common Internet File System (SMB/CIFS).

For the purpose of this chapter, we’re going to divide storage into two types. The first,
client storage, we’ll define as data repositories accessed via the AFP, SMB/CIFS, NFS,
or Dfs (Microsoft’s Distributed file system) network protocols. Though you may be using
others, these are the major players. We’ll assume your organization already has a
solution in place to supply one of the four, and the Mac will simply be fitting into an
existing paradigm. The second type of storage we’ll cover is SAN (Storage Area
Network) systems-----specifically, drive networks accessed through FC or iSCSI
protocols. The benefits of a SAN lie primarily in the centralization of data and storage
resources, true block-level access to storage, and much better performance.

In addition to client storage and SANs, this chapter looks at ExtremeZ-IP, a software
package that allows Windows Server to share existing data to Mac clients using their
native protocol, AFP.

Client Storage
The first and most visible type of client storage holds your users’ shared files and
folders; the second is used to synchronize or store users’ home directories (which are
similar to profiles in Microsoft Windows). For the purpose of this chapter, we’ll call the
former file storage and the latter home-folder or home-directory storage.

Whichever you’re dealing with, for file sharing, AFP is the Mac’s native language and will
perform the best from the client perspective. Though other protocols also enjoy wide
adoption in enterprises, for the most part, if you can provide your Mac clients with

141

CHAPTER 4: Storage

 142

142

storage over AFP, they’ll get the best performance and you’ll have the fewest issues to
troubleshoot on the client side. That said, if you already have a NetApp, EMC, or Isilon
Systems setup providing storage over SMB or NFS, then you can definitely use it. You
can also reshare existing SAN or NFS solutions using Mac OS X Server, ExtremeZ-IP, or
Helios. In the next few sections we’ll cover manually connecting to storage over these
three main protocols (AFP, SMB and NFS).

AFP
As we mentioned, AFP is the native file sharing protocol for Mac OS X. It’s important to
note that AFP is not AppleTalk and is based on the TCP/IP stack. Mac clients can
connect to AFP volumes easily using the Finder or the mount_afp command. If an AFP
server has Bonjour enabled and exists on the same subnet as the client, the node will
automatically discover the running service and appear in the Finder’s sidebar. In this
chapter, though, we’ll assume that your environment is too large to locate services
reliably over Bonjour or that you have a centralized Bonjour service, so we’ll only look at
using AFP to manually mount volumes.

To do so from Mac OS X, click on the Go menu in the Finder, and select Connect to
Server. In the Server Address field of the resulting dialog box, you’d normally enter
<protocol name>:// followed by the address of your server-----for example,
smb://seldom.kryped.com. (Note that the OS defaults to AFP, so although we enter the
protocol name in Figure 4-1, we could have just typed in the server address.) Now click
the Connect button.

Figure 4-1. Connecting to an AFP server

CHAPTER 4: Storage

 143

143

TIP: You can also click the plus sign (+) to save this server to your Favorite Servers list.
Additionally, you can select the clock icon to see recent connection history. Clicking one of the
shares in the resulting list will connect you to it.

If your system has already obtained a single sign-on ticket from Kerberos (discussed in
Chapter 1), you won’t be prompted for a user name or a password, you’ll just see a
dialog box in which you can choose the share points to connect to. In Microsoft
Windows you can do the same by using the run dialog box and entering the address of
a server, but the Mac dialog lets you select multiple servers using the Shift or Command
keys. Once you’re satisfied with what you’ve selected, click OK. You’ll see the
appropriate shares available under the Shared section in the Finder sidebar. You can
also find mounted shares by selecting Computer in the Finder’s Go menu
(Command+Shift+C) as shown in Figure 4-2.

Figure 4-2. Mounted shares. To make multiple selections, hold down the Shift or Command key while choosing.

If you use the mount_afp command to connect to file-sharing volumes, you must provide
the command with a lengthy string that contains a number of items embedded in the
URL. The afp:// URI, like others, allows you to specify authentication credentials
directly in the URL, which you do via standard conventions following the format:

afp://username:password@server/mount

CHAPTER 4: Storage

 144

144

This format extends to numerous protocols including HTTP, FTP, and SMB. For
example, afp://admin:daneel@seldon.krypted.com/outerrim will connect to the share
point outerrim that’s hosted on the server seldon.krypted.com using the user name
admin and the password daneel. You can optionally specify a path on the local system
that the volume will be mounted to, rather than using /Volumes as is the default.
Therefore, the syntax to mount the AFP volume from the command line (assuming you
were to mount it in the standard directory, which is /Volumes) would be:

mkdir /Volumes/outerrim
mount_afp afp://admin:daneel@seldon.krypted.com/outerrim /Volumes/outerrim

Notice that we must first create the destination folder, otherwise mount_afp will fail. In
addition to specifying a password on the command line, you can instruct the mount_afp
command to use an existing single sign-on ticket:

mount_afp "afp://;AUTH=Client%20Krb%20v2@seldon.krypted.com/outerrim" «
/Volumes/outerrim

You may want to specify an alternative user in some cases-----for instance, if you’ll be
logging in using an administrative account. This is handy for certain operations. You can
do so with a statement such as:

mount_afp "afp://username;AUTH=Client%20Krb%20v2@seldon.krypted.com/outerrim" «
/Volumes/outerrim

For this to work, you need a valid, active TGT (Ticket Granting Ticket) (which will be
recognized via klist). This won’t always be available, but it’s possible to use an active
TGT obtained by another local user. To do so, run sudo from root as follows:

sudo –u username mount_afp «
"afp://;AUTH=Client%20Krb%20v2@seldon.krypted.com/outerrim" «
/Volumes/outerrim

In this case, you don’t need to specify the user name in the afp:// URL, because the
sudo command will execute as user name.

You can also perform an automount with guest access, as in this example:

mount_afp “afp://;AUTH=No%20User%20Authent@seldon.krypted.com/outerrim” «
/Volumes/outerrim

In addition to mount_afp, you can use the mnthome command to mount an AFP home
folder from a command-line session. However, this requires the configuration of a home
directory automount, as described in Chapter 7.

SMB
To manually connect to an SMB volume from Mac OS X, select the Go menu from the
Finder, and choose Connect to Server. In the dialog box that appears, enter smb://

CHAPTER 4: Storage

 145

145

followed by the address of your server, then click the Connect button and submit your
user name and password in the resulting prompt dialog. Just as when you follow this
process using AFP, you’ll get a list of share points you can access.

You can also mount SMB shares with the mount_smbfs command, using pretty much the
same syntax as you would with mount_afp. Follow the command itself with the options (if
any-----the example below shows none) and the path. You won’t need to prepend the
protocol name to the URL, though. So, for example, to mount the same volume as
shown in the AFP section, you’d type this:

mount_smbfs //admin:daneel@seldon.krypted.com/outerrim «
/Volumes/outerrim

NOTE: There is also an SMB client, appropriately named smb_client that’s similar to the ftp
client, if you wish to use SMB interactively from the command line.

NFS
As with the previous protocols, you can manually connect to an NFS volume from Mac
OS X by selecting the Go menu in the Finder and picking Connect to Server. In the
resulting dialog box, enter nfs:// followed by the address of your server, a slash, and
then the full path of the export. Click the Connect button.

If you’re unsure about what should follow the slash, you can get the information from the
exports file found in the /etc folder on the NFS server. The sample exports file that
follows was built in the Mac OS X Server Admin tool. To match your environment, yours
may have been created manually, so it may not look exactly the same, but it should be
similar to this:

[Begin Server Admin managed exports. Do Not Edit.
/Volumes/SharedData/Mule –maproot=nobody –sec=sys 192.168.210.201
] End Server Admin managed exports.

In the previous example we’re exporting a share point of the folder Mule to the IP
address 192.168.210.201. Volumes/SharedData/Mule, the full path of the export, is the
information you’re looking for. The Mule directory, in our installation, is hosted on
seldon.krypted.com and we can access the directory (but only from 192.168.210.201)
using nfs://seldon.krypted.com/Volumes/SharedData/Mule. This is what you enter into
the Server Address text box of the Connect to Server dialog, as shown in Figure 4-3.

Provided you’re using the system at this IP address, when you click the Connect button
you’ll instantly connect to the volume. Notice the lack of a password. This is because
NFS relies on IP addresses rather than user-namepassword combinations to determine
who can access data stored on the shares it provides.

CHAPTER 4: Storage

 146

146

NOTE: You can leverage Netgroups through YP/NIS (discussed further in Chapter 2). If you’re
more confident with using local BSD files to manage users and groups, you can also enable the
BSD local node entry in Directory Utility as described in Chapter 2.

Figure 4-3. Mounting an NFS share through the Finder

You can also use mount_nfs to make remote NFS volumes available locally. To do so,
follow the command with the name of the server, the characters :/ (a colon followed by
a slash), and the path to the mount point, as in this example:

mount_nfs seldon.krypted.com:/innerrim /innerrim

The mount_nfs command has a number of options, which you can view using the man
mount_nfs command. You can see all of the mounted NFS volumes for the host with
showmount.

Automounts
To avoid issuing a command every time a client system needs access to remote
storage, you can set up automounts. OS X lets you configure them either globally,
through directory services, or on individual hosts. The latter requires you to use NFS.
Before you create an automount, we recommend using the procedure in the NFS
section just covered to connect to the volume manually and verify that you know the
correct settings.

CHAPTER 4: Storage

 147

147

The process to set up a local automount depends upon the system that you are running.
In 10.4 and 10.5, automounts are configured using Directory Utility (found in
/Applications/Utilities). Once the app is opened, click the lock to authenticate to allow
changes. Next, click on the button ‘‘Show Advanced Settings.’’ From here, click on the
Mounts Tab, and press the plus icon (+) at the bottom-left side of the Remote NFS URL
list to create a new mount, as shown in Figure 4-4.

NOTE: For more information about managing mounts en masse, see Chapter 7.

Figure 4-4. Creating a Remote Mount with Disk Utility

In that dialog, enter the parameters you used to establish a manual connection, then
click Verify. Back at Directory Utility (Figure 4-5), click the Apply button, then test to
insure you can browse to the directory-mount location as configured; in this case, our
NFS mount can be found locally in the /mule directory.

CHAPTER 4: Storage

 148

148

Figure 4-5. Directory Utility NFS Mount List (10.4 and 10.5)

In 10.6, the process is extremely similar; however, the automount GUI is now hidden
inside of the Disk Utility application, found in /Applications/Utilities. Once opened,
access the automount GUI by selecting NFS mounts under the File menu. From here,
the interface is pretty much identical to that found in Directory Utility, as can be seen in
Figure 4-6.

CHAPTER 4: Storage

 149

149

Figure 4-6. Configuring NFS Mounts using Disk Utility in 10.6

Home-Directory Storage Provisioning
Automounts can serve a purpose beyond what the name implies-----they can provide
storage for the home directory given to Mac OS X clients. When located on a server, the
home directory is known as a Network Home Directory. When stored on a client and
synchronized to a server, it’s called a Mobile Home Folder (also referred to as a portable
home directory). We’ll cover home directory implementation more exhaustively in
Chapter 7.

SAN Storage
Centralizing your storage for multiple hosts can have a number of positive effects for many
environments. Many centralized storage environments are SANs. Proper planning will have
long-lasting positive effects on your installation. And in the planning stage, one of the most
critical considerations is what your SAN will be doing. That determines the requirements
for performance, total capacity, concurrent access, uptime—even future expansion
(another area where thinking in advance is imperative). Once you’ve completed planning,
you need to gather the necessary equipment, software, and documentation for the
installation. Whatever form your SAN takes, it’ll be a bit of an investment, but a decent one
if you plan appropriately for your environment. Fail to do that, though, and you may end up
with a large bill and a system that doesn’t work for you.

CHAPTER 4: Storage

 150

150

What constitutes a SAN can be different to different people. Because Apple distributes
and supports Xsan, though, we’ll cover it first. In the course of this, we’ll also look at
setting up standard file-sharing services on the Xsan volume, to provide high availability
beyond what is capable when using a traditional file server that uses direct-attached
storage. We’ll set up multiple server heads in an active/active configuration. Once we’ve
covered Xsan, we’ll look at using iSCSI initiators to interface with common SAN
solutions that your organization may already have in production.

Xsan
Apple has made Xsan one of the easiest, most cost-effective and versatile storage area
networking platforms on the market. This powerful software integrates Mac OS X Server
(as well as other Apple offerings), Fibre Channel (which we’ll discuss shortly), and RAID
architecture. It binds all the components together to provide performance and flexibility
that pushes centralized storage for heterogeneous networks to the next level. To grasp
the power and flexibility of this solution, you must first understand how it organizes and
provides access to data, which we describe throughout this chapter. The combination of
Mac OS X Server and various other Apple offerings provides multiple computers
concurrent access to large amounts of media, organized using pools of storage and
interconnected using Fibre Channel, providing fast and virtualized connectivity to the
target storage.

SAN installations are as diverse as the businesses they serve. And although Xsan was
developed primarily for professional video, admins can leverage it to provide storage for
a wide array of uses including file sharing, mail clustering, and calendar-server
clustering. In an Xsan installation you’ll find a variety of components. These typically
include Apple Xserve RAID or Promise RAID storage, client systems with Fibre Channel
cards, transceivers, Xsan software, fiber cabling, an FC switch, a dedicated Ethernet
network for management, and one or more systems (known as metadata controllers or
MDCs) devoted to running the Xsan. Each node must also run either Xsan for client
connectivity and administration or, on Windows and Linux PCs, Quantum StorNext
(which you can purchase at www.quantum.com).

Fibre Channel is an extension to SCSI that allows connections to a wide variety of
devices and multiple petabytes of data via copper and optical cabling. Client nodes
must be connected via FC to access an Xsan installation. Fibre-attached servers can
reshare data over various file- or Web-sharing protocols, but the exclusive direct access
to storage through Fibre Channel provides security and much better performance. Each
file or Web server added to the SAN will make it faster provided you haven’t saturated
the back-end storage.

Cabling and Transceivers
Apple FC cards that come with two SFP (small form-factor pluggable) ports (most do)
also include two, 2.9-meter copper cables with SFP connections on each end. You
shouldn’t use longer copper cables.

CHAPTER 4: Storage

 151

151

For connecting systems that are further than 2.9 meters from the SAN, Apple advocates
converting from standard copper cables to LC (Lucent Connector) or SC (Subscriber
Connector) optical cabling and highly recommends that it be multimode, which,
throughout this chapter, we’ll assume to be in use. Because most devices added into an
FC network use LC adapters, going that route typically offers the path of least resistance
when installing your SAN. LC multimode cables are typically orange, indicating a
maximum throughput of 4gbps, or light blue (for 10gbps) and contain two optical cables
per sheath, making them easy to identify. To use LC cabling, the SFP connection built
into systems must be adapted from SFP to LC using a transceiver.

Not all LC cabling can support the maximum speeds, so it’s important to ensure you’re
using the proper type. The maximum length of an optical cable is determined by its
diameter. You can run cables that are 9µm in diameter up to 10km. This is typically
referred to as long haul. The only long-haul transceiver supported by Apple for the Xsan
is the Finisar FTRJ-1319-P1BTL. Short-haul cables are 50µm and can run 500 meters;
62.5µm cables can span 300 meters.

If you’ll be using transceivers, Apple recommends sticking with the same manufacturer
and model for all devices connected to your fabric (an interconnection of FC host ports).
It’s also worth noting that the online Apple Store sells Finisar transceivers.

Storage
We refer to a single device chassis containing a number of drives as a shelf of storage.
You can combine the disks on a shelf of storage into a logical RAID that, depending on
its type, offers a variety of features such as redundancy or faster access times. The most
common RAID products used in an Xsan environment are the Apple Xserve RAID in
legacy installations and the Promise Vtrak in newer setups. (You can use other Fibre
Channel RAID devices, including those from EMC and Active Storage, but they will likely
not be supported by Apple.) Each RAID unit, or shelf, will typically have multiple
controllers.

Each RAID can provide a number of LUNs (Logical Unit Numbers). A LUN is a logical
partition of the storage that resides on a given shelf. On an Xserve RAID device, a LUN
is restricted to drives managed by a given controller. With a Promise RAID product, a
controller can provide LUN failover between controllers as long as they’re within the
same shelf or in a connected expansion chassis. Each controller is then plugged into the
Fibre Channel switch.

NOTE: While there are many hardware vendors that supply components you can use in an
Xsan, the devices must all be approved by Apple if you want support from Apple.

CHAPTER 4: Storage

 152

152

Virtualized Storage
As you add more RAID devices to your environment, you aggregate the storage. Xsan
can combine a set of LUNs into a storage pool. A storage pool can span multiple
shelves or be on a single unit but should typically contain at most four LUNs. Because
the storage pool will reduce the capacity of all its LUNs to that of the smallest one, LUNs
you choose to pool should be of similar capacity.

Combining multiple storage pools creates volumes, and with Xsan you can mount and
unmount these on client systems. For most purposes, such a collection will present as any
other local hard drive despite running the Apple clustered file system (ACFS) rather than the
default OS X file system, HFS+. Servers treat Xsan volumes much as they would direct-
attached external storage despite the significantly more-complex back-end infrastructure.

Once configured, Fibre Channel is the network that interconnects all of the clients,
servers, and storage. In FC jargon, the first two are referred to as FC initiators. Storage
devices such as disk-based raids, tape libraries, or other storage media are referred to
as targets. Built on top of this storage and communications infrastructure, the Xsan
software provides the virtualized, logical constructs used to provide maximum speed,
redundancy, and concurrent access.

NOTE: Although not strictly considered a component of an Xsan, a UPS capable of powering
the equipment is absolutely necessary. This one item can save an administrator some painful
headaches. If your entire data center is powered by a UPS, you’re probably covered; if not, you
should certainly invest in one and set up the automated shutdown software to unmount clients,
stop volumes, and gracefully shut down the computers that manage the SAN.

Initiators
Now that we’ve covered the physical components of an Xsan, it’s important to
understand those that reside on Mac OS X. For the purposes of this chapter, Xsan
clients are systems that log into an Xsan and mount volumes. Metadata controllers are
systems that manage those same volumes. The Xsan software installs and runs a
number of services on the computer that manages the actual Xsan.

All of the computers that act as Xsan initiators (non-storage devices, such as clients and
controllers) run the Xsan software and have a host bus adapter (HBA). Apple sells
rebranded LSI Logic HBAs for use with Xsan or for connecting directly to an Xserve
RAID or Promise RAID component. Each FC port on these cards has a factory-assigned
WWPN (WorldWide Port Name) and WWN (WorldWide Name), the equivalent of an
Ethernet adapter’s MAC address. In a standard setup you probably won’t need to
customize any of the card’s settings. If necessary, though, you can do so using the FC
System Preference pane. Configuration choices are: Automatic, Point-to-Point, and
Arbitrated Loop. With Xsan initiators you, use Automatic or Point-to-Point. Each of the
host adapters gets plugged into the Fibre Channel switch.

CHAPTER 4: Storage

 153

153

NOTE: The release tab on the cable is very close to the chassis when the Apple FC PCI card is
installed in the upper PCI slot of the dual PCI riser card. The limited space can make it difficult to
press the tab on the connector to release the cable. In this case, use a flat object such as a
screwdriver or knife to depress the tab before pulling on the cable. Do not force the connectors.

You can use Quantum StorNext to set up non-Apple clients on the Xsan. The software
supports AIX, IRIX, Linux, Solaris, and Windows clients. Many of these non-Apple
machines can connect to the switch with Fibre Channel cards manufactured by ATTO
Technology, LSI, Qlogic, and other suppliers (ATTO and Qlogic both have drivers for
Mac OS X as well).

Switches
For a SAN to be considered a fabric, it must have an FC switch. With Xsan, we strongly
recommended that you use one supported by Apple. Such devices include the Brocade
Silkworm 200E, 4100, and 4900, the Cisco MDS 9000 Series, and the QLogic SANbox
2-64, 1400, 5200, 5600, 9100, and 9200 series. If, for an earlier Xsan release, Apple
certified a switch that you’re using, the company will likely continue its support even if
the device isn’t in the current list of qualified switches (which you’ll find at
www.apple.com/xsan/specs.html).

Whatever the brand of switch, in an Xsan deployment, some parts of the configuration
process are identical. Before anything else, you should upgrade the firmware (which you
should do with most any device). Even after setup, continually updating firmware is
important. (Of course, in many cases, you don’t want to do so at the expense of bringing
a SAN down unless there’s a compelling reason for the upgrade.) Once your switches
are running the latest firmware, you can administer most through a Web-based interface.

You also want to prevent any interruption in communications with your targets. This
includes Registered State Change Notifications (RSCNs), which should be suppressed
on initiator ports for all switches. Typically, a client sends an RSCN when connecting to
a fabric, and that can cause communications interrupts. Because client workstations
tend to reboot often, suppressing RSCN on initiator ports ensures that communication
between initiators and targets remains uninterrupted.

You should also make sure that communications occur at the appropriate speed. If a
switch and a target or a switch and a LUN are both capable of running at 4Gbps, you
should verify that the link appears as 4Gbps on both ends. Switches, targets, and
initiators assign speeds automatically (in much the way most Ethernet cards and
switches auto-sense), so you don’t usually have to statically set a port’s speed. But as
you add new devices to your fabric, verify that they communicate at the proper rate.
When a SAN client displays poor performance or high latency, statically assigning link
type and speed can sometimes address the issue. Also, Promise support advises that
you statically configure controllers with these settings to reduce latency.

CHAPTER 4: Storage

 154

154

When dealing with FC link negotiation, having some basic knowledge about various port
topologies is important. These are broken down according to type and use. The FC spec
calls for several initiator port topologies:

 N_port (node port): Specifies a point-to-point topology.

 NL_port (node-loop port): Refers to a client port that will negotiate as
an arbitrated loop device. Generally, you should avoid this
configuration, but many tape drives support NL_port topologies only.

On the fabric-switch side, you’ll find these topologies include:

 E_port (expansion port): Used to connect two switches together via an
ISL (Inter-Switch Link) connection.

 F_port (fabric port): Negotiates a point-to-point connection with an
N_port device.

 FL_port (fabric loop port): Can operate as an F port but can also
connect via arbitrated loop to NL_port devices.

 G_port (generic port): Can operate either as an N_port or E_port, as
needed.

 GL_port (generic loop port): This is a generic port that can act as a
G_port or an FL_port. This is the topology used by Qlogic switches out
of the box.

When setting up FC switches and storage, also set the NTP (Network Time Protocol)
service, and when possible, centralize logging and set e-mail alerts. Each of these steps
can help down the road if you ever need to troubleshoot your Xsan or have issues that
you need to be alerted about.

NOTE: Xsan environments do not support switching hubs. When added (and sometimes on
rebooting), a device sends out a loop initialization primitive (LIP) to request an address. All
activity on the loop can cease as each device establishes a connection within the newly
enumerated fabric. A hub-based SAN consists of one loop and therefore must be entirely
rebuilt every time any device is added or removed. This wreaks havoc on an Xsan, and can
even cause a LIP storm, which can cause endless streams of initialization requests. FC
switches can also respond poorly to LIP requests, which are sent when a computer with an
improperly set startup disk reboots. The FC port will be queried for a startup disk and a LIP will
occur. Because of this, for all clients that are Xsan initiators (yes, that includes your metadata
controllers) you should go to the Startup Disk System Preference pane and set the startup disk.
We also recommended that you statically set your FC connections to point-to-point (N port)
using the FC System Preference (In 10.4, this is found in /Applications/Servers).

CHAPTER 4: Storage

 155

155

Brocade Switches

You administer Brocade Switches through a Web portal (at the IP address 10.77.77.77)
using admin for the user name and password for the password. The first time you use
the Web Tools you’ll have to enter a license.

Emulex Switches

Some older Emulex SAN switches-----the 12-port 355, the 375, and the 9200-----maintain
legacy support for Xsan. Emulex switches require that you set the host machine ports to
Initiator with Stealth and the storage-device ports are as Target with Stealth. You can
access Emulex switches at the IP address 169.254.10.10. They require no user name
and the default password is password.

QLogic Switches

The latest QLogic firmware supports administration through a Web portal only. With
devices using old versions of the firmware, install the included configuration application
on a workstation attached to the switch and go to the IP address 10.0.0.1. The company
has updated and enhanced the software, which it now calls the Qlogic Fabric Suite. To
authenticate with the switch for the first time, use admin for the user name and
password for the password.

In the past, Apple supported the QLogic SANbox 2-8 and 2-16. As noted previously, the
company currently certifies the newer SANbox 2-64, 5000 series (which offers devices
with 4 10-gigabit stacking ports and 16 2-gigabit device ports), Qlogic 9000 series.
Qlogic switches are a common in Xsan environments.

Cisco Switches

The most recent brand added to the line of supported switches with Xsan is Cisco. The
Cisco MDS 9000 family supports 16- and 32-port modules. The Cisco FC switch is the
most highly configurable and feature-rich of the FC switches supported by Xsan. The
tradeoff of flexibility is that the Cisco switch is the most complicated of the bunch. While
there is a Web-based utility for the system, it is only for monitoring. Initial setup of the
switch is performed through the serial port on the system.

Zones
You can control access to the SAN using either LUN masking or switch zoning. All of the
switches we’ve mentioned so far support FC zoning. Zoning is similar to creating a
VLAN on an Ethernet switch. With LUN masking, you slice the physical storage into
partitions (LUNs), and establish filters based on the LUNs’ World Wide Names to ensure
that only the intended servers have access. When using LUN Masking, you can use the
switch to designate a LUN as accessible to one system only or to put both target and
initiator ports in a larger zone with other devices, then use the software on a target to
restrict access to an initiator.

CHAPTER 4: Storage

 156

156

Admins who decide to use zones can go about it a few different ways. With the first, you
build a zone based on whichever device is in the physical port you include. You can find
this port zoning helpful in environments where administrators simply need a map of
which ports are in which zones but don’t need access to make changes. Note, though,
that if you add new targets, they may appear to be formatted on a number of clients,
and could be formatted accidentally by an unwitting user. The second zoning method
does so by the address of devices. Across brands, you’ll find different terms associated
with these approaches.

Opinions about zone management of clients also differ, as do methods. Some people
create a new zone for every initiator, restricting what targets each can access. Others
leave all their initiators and targets in one big zone and simply let initiators access each
target as needed. Still others choose to create two zones, one for metadata controllers
and one for client initiators. Each approach has merits, but given that these methods will
have similar effects, in most cases your choice boils down to doing whatever filts the
security policy and the logic of your environment.

In general, zoning based on Fibre Channel WWNs provides the most resilient setup,
eliminating port-lock in and providing a generally less-ambiguous management
environment, provided you properly nickname. If your switch supports aliases, grouping
target WWNs into a single alias container can greatly simplify deploying a large number
of targets across multiple zones. If storage is grouped/aliased in logical divisions, adding
new storage is a much more efficient process, as you need only upgrade the group to
have the addition applied across all zones that reference the alias.

TIP: Generally, when using a tape library that’s directly attached to the FC fabric, you’ll need to
zone the tape drive to be accessible by only a single host port (basically, the backup server).
This is often necessary to ensure consistent functionality and to prevent the backup software
from producing odd errors.

Configuring Storage
Whether you’re configuring switches or storage, the basic precept is pretty much the same:
Don’t impede the ability of the initiator to write data to the target. Do everything you can to
maximize the likelihood that data will be efficiently delivered to the appropriate location.

Whichever vendor you choose, when setting up storage you’ll have these options, or
some combination of these options for configuring logical RAID constructs:

RAID 0: Offers no redundancy. Gives the fastest data access speeds and is the
most inexpensive option but can’t guarantee data availability, since it offers no fault
tolerance.

RAID 1: Provides data mirroring. Highest-cost option with regard to data capacity. A
RAID 1 mirror set typically provides significantly better read speeds than a single
member, though write speeds will be roughly equivalent.

CHAPTER 4: Storage

 157

157

RAID 3: Utilizes data striping with one drive dedicated to parity. RAID 3 sets can
suffer a single drive loss without data loss.

RAID 5: Stripes both userland and parity data across all of the drives, yet produces
a relatively small diminishment in capacity (generally the equivalent of a single drive
or less). Provides redundancy at the lowest cost in drive space. RAID 5 sets can
suffer the loss of a single drive without loss of data.

RAID 6: Similar to RAID 5 but with a second parity drive so that if two drives go
down concurrently, the RAID setup isn’t compromised.

Promise Vtrak
Promise ships two types of RAID devices that Apple has certified to work with Xsan: the
E-class, which has RAID controllers and the J-class, which is an expansion chassis that
has a SAS (Serial-Attached SCSI) interconnect and that you can hook up to an E-class
unit. For approved Promise storage, Apple provides a collection of scripts that configure
the Vtrak automatically. They include the following, along with the Web pages where
you’ll find them:

Metadata and Data on one E-class: http://support.apple.com/kb/HT1160

Data Only on one E-class: http://support.apple.com/kb/HT1161

Metadata and Data on an E-class and J-class (with SAS interconnect):
http://support.apple.com/kb/HT1162

Data only on an E-class and J-class (with SAS interconnect):
http://support.apple.com/kb/HT1163

Data only on one J-class: http://support.apple.com/kb/HT1121

The scripts provided by Apple are meant to offer a starting point. You can easily tweak
the settings according to the Xsan-specifc configuration parameters and by following
the instructions published at the http://support.apple.com/kb/HT1200 Web page. If you
use Apple’s scripts to configure Promise RAID systems, make sure that the metadata
LUN has a Read Policy of ReadCache, and a write policy of WriteThru. This ensures that
any pending writes to a metadata LUN get written to disk immediately. Data storage
LUNs, on the other hand, should have a Read Policy of ReadAhead, and a Write Policy
of WriteBack. These settings ensure data that buffering during read operations is more
aggressive, and that write buffers have filled before they’re written to disk.

Promise RAID hardware that has the latest firmware ships with Bonjour enabled. When
you plug the device into your Ethernet network, it pulls an IP from DHCP and becomes
accessible through Safari using Bonjour (from the Safari History, click the Bonjour entry
under COLLECTIONS). Once you’ve connected, you’ll be able to upload the Vtrak
scripts you’ve downloaded from the Apple site. Click the Administrative Tools icon and
select Import. Change the drop-down list for Type: to Configuration Script and then click
the Browse button and choose the script you want to upload, clicking on Submit when
you’re ready. When the RAID system finishes formatting, you can label the LUNs (a
process we’ll get to later in this chapter).

CHAPTER 4: Storage

 158

158

Xserve RAID
To set up the Xserve RAID (a legacy device employed prior to the Apple-Promise
relationship), you use the RAID Admin utility, which lets you configure Multiple LUNs
or RAIDs in each RAID device. Use the program when specifying the drives to put in
each array as well as RAID levels and also when configuring RAID settings and
notifications.

Before you can do anything, you have to add a RAID to administer, so select
Applications, click on Server, open RAID Admin, and you’ll see the dialog box shown
in Figure 4-7. Click the Add System button, and from the list of available Xserve
RAIDS, choose the one you’d like to configure. Enter the password (the default is
public) to view the RAID system’s setting, then click Add and you should see your
choice appear in the utility’s RAID list.

Figure 4-7. The Raid Admin utility

CHAPTER 4: Storage

 159

159

Once you’ve added all of the Xserve RAIDs, you’ll want to make the settings of each
conform to the Apple standards. To do that, click Settings in the Raid Admin utility
toolbar, enter the management password for the Xserve RAID you’re customizing, and
then, under the System tab, make the following adjustments to the settings:

 Enter the Name for the Xserve RAID in the System Name field.

 Select a Time Synchronization Method (hopefully you’ll just be able to
use an NTP server), and if appropriate, enter an NTP server to use for
clock synchronization.

 Use the Change button in the Passwords section to change the
monitoring password, the management password, (or both) for the
Xserve RAID to something other than the default settings. The
monitoring password allows for access to the main window UI to view
stats, configurations, and logs. The management password lets you
access the advanced configuration options presented in the toolbar.

 Check the box for Restart automatically after a power failure to have
the Xserve RAID reboot on its own after a loss of power.

Each controller on the Xserve RAID has its own network controller. By default these
receive DHCP addresses. We suggest that you give each network controller a static IP
address or use Static Mappings in your DHCP pool to give controllers IP addresses. If
the addresses change, controllers become unavailable in RAID Admin, and you must re-
add them, which generally isn’t a good idea. Xserve RAIDs do support Bonjour
discovery in case you forget the configured IP address. You can modify network settings
from the Network Tab.

You’ll find the FC settings under the Fibre Channel tab. This is where you can view the
WWN, create hard loops, set speeds to static, and define the topology. Generally you
can leave the default settings unless you’ll be using arbitrated loops in your FC topology
(see Figure 4-8). These settings will be detected automatically, for the most part, but
sometimes you may need to assign them manually. For example, if you use an FC
switch that doesn’t detect the speed of the FC on the Xserve RAID automatically, you
may need to set this value by hand.

CHAPTER 4: Storage

 160

160

Figure 4-8. Xserve RAID Fibre Channel Configuration

Under the Performance tab you can customize certain features to enhance the
performance of the Xserve RAID (see Figure 4-9) in an Xsan environment. You can:

 Enable Controller Write Cache (recommended for performance only if
a UPS provides power protection to the unit)

 Enable Host Cache Flushing (recommended to have disabled for best
performance)

 Enable or disable the drive write cache (recommended for
performance only if a UPS provides power protection to the unit)

 Set read prefetch to 1, 8 or 128 stripes for each controller

CHAPTER 4: Storage

 161

161

Figure 4-9. Xserve RAID Performance Settings

Now you’ll want to set up the RAID system’s LUNs. The admin utility refers to these
logical portions of an Xserve RAID as arrays. You assign each a RAID level according to
your requirements. The Xserve supports levels 0, 1, 3, 5, and 0+1. With Xsan you should
use level 1 for your metadata LUN and 5 for data LUNs. In the admin utility, select the
Xserve RAID on which you’ll be creating a LUN and click the Create Array button in the
utility’s toolbar. When prompted, enter the management password for the Xserve RAID
and click OK, then select the RAID level, as shown in Figure 4-10.

CHAPTER 4: Storage

 162

162

Figure 4-10. Creating a new LUN

Next, select the drives you want included in the LUN-----simply click in the box that
represents each drive in the Step 2 diagram of Figure 4-10. If you wish to begin writing
data onto the Xsan during the drives’ initialization period, leave the background
initialization option enabled. With drives used in an Xsan environment, we prefer to leave
the Use drive cache option enabled. Check this box and then click the Create Array
button.

TIP: With most Xserve RAIDs, fully formatting the drives takes 36 to 72 hours. If you’ll be
working on the Xsan during its first day and a half of deployment, you might want to consider
using the background initialization option. The performance of the Xsan won’t be optimal
during the initialization process, but that’s the only issue with the feature.

CHAPTER 4: Storage

 163

163

Configuring Ethernet
Yes, we said it, Ethernet. But why do you need to worry about a bunch of category 5e or 6
cables if you have fiber now? Because in an Xsan environment, we use the Fibre Channel
environment only for streaming actual data. We need a dedicated network for command
and control. This means that most Xsan clients will have two Ethernet networks. The first
is the standard corporate LAN, which allows for managing network and storage devices,
directory services data, and network volumes. It also provides general IP connectivity.

The second Ethernet network is dedicated to metadata. An Xsan client uses this network
to communicate with an Xsan metadata controller to request access to an existing asset
or ask for access to write data. The MDC is responsible for informing the Xsan client
about where data will be streamed to a drive. Whenever a SAN client wants to access a
SAN resource, it must first request that resource from the SAN’s active MDC. This
prevents conflicts with other clients on the SAN. The metadata controller is responsible
for ensuring the data integrity of the volume and the filesystem objects on it.

Because a lot of IO requests may be occurring concurrently, it’s critical that the
metadata network be very fast and have minimal latency. Nearly every operation
performed on an Xsan requires filesystem queries, so any latency introduced between
the Xsan clients and MDCs will result in perceivable performance degradation on the
volume. This can become particularly problematic if you use your SAN for basic file-
server storage and it contains mostly smaller files.

This means you need a good switch. Most often you’ll use a managed switch with the
management features disabled (especially spanning-tree PortFast). The switch and
cabling should be Gigabit and there should be very little latency.

You also want very little traffic on the metadata network to help reduce collisions. This
means there should be no DHCP server. Also, you shouldn’t do management of SAN-
connected devices using the metadata network. You need no router/default gateway,
and DNS shouldn’t be running. In addition, make the subnet mask as small as possible,
with class C being about the largest.

The configuration on the client systems will also be stripped down. You need only an IP
address and a subnet mask. List the metadata network second in the Ethernet stack
with your organization’s main network listed first.

Lastly, though not officially required, we recommend you always set up forward and
reverse DNS specifically for the metadata network, and when possible, make that data
available over it. Creating a new top-level domain, such as metadata.xsan, for this
purpose is one common practice. So a primary metadata controller may have a public
hostname mdc.myco.com that resolves to the corporate 10.0.2.10 IP address, and its
secondary Xsan interface has an IP address of 192.168.2.10, which resolves to
mdc.metadata.xsan. As an alternative, you can simply create another subdomain, such
as xsan.myco.com, in your organization. In this case the metadata controller would have
resolution on its secondary interface point to mdc.xsan.myco.com.

CHAPTER 4: Storage

 164

164

If possible, each client’s secondary interface should have DNS entries configured for a DNS
server local to the Xsan subnet, such as a backup metadata controller. Having DNS services
configured on the metadata networks can help prevent DNS-related timeouts should the
primary interface fail. These failures can be particularly detrimental on OS X metadata
controllers, causing extremely laggy performance and possibly complete SAN downtime.
With Xsan 2, this is less of an issue, but Xsan 1 is fairly sensitive to DNS problems.

Setting up the Xsan
When building an Xsan, the installation of the Xsan software is typically one of the last
tasks. It’s important to verify DNS operation, TCP/IP connectivity, and connectivity to FC
LUNs, prior to configuring the software.

To verify DNS functionality, first use changeip, as covered in Chapter 1, to check that the
forward and reverse DNS of the primary interfaces on your future metadata controllers
resolve properly. Next, use dig to test DNS for the metadata network as well. For
example, the following will look up the hostname for the IP address 192.168.210.2:

dig +short -x 192.168.210.2.

To test forward lookups, the syntax is:

dig +short myhost.myco.com

Alternatively, you can use the host command to perform both forward and reverse
lookups. The command requires no additional flags for either type of lookup:

host 192.168.210.2
host myhost.myco.com

You’ll also find other utilities that accomplish the same purpose. Windows users will be
familiar with nslookup utility, which Apple has deprecated as of OS X 10.4. Another
command, changeip_ds (the full command path is /usr/libexec/changeip/changeip_ds)
can perform reverse DNS lookups, when used with the –nameforaddress flag.
Additionally, you can simply ping the hostname, in which case the host will use internal
facilities to resolve and display the appropriate address.

Once you have all of your storage, hosts, and switches in place and have cabled them
and verified connectivity, you’re finally ready for Xsan software installation and
configuration. You’ll want to start with the metadata controllers, the aforementioned
traffic cops of the SAN. Make one final check to ensure that you’re satisfied with the
DNS naming and have a good working installation of Mac OS X on the proposed
metadata controller before proceeding (we recommend redundant storage for the host
OS in the form of a RAID 1 internal volume).

Installation
The first step in setting up Xsan is to install the package file that comes with the
software, keeping the default settings. Next, run the update to ensure that the Xsan
software and admin tools are the latest versions.

CHAPTER 4: Storage

 165

165

Once you’ve completed those steps, you’ll find the Admin tool in the
/Applications/Server directory (which you can remove when doing a custom
installation). The bin, config, debug, examples, man, and ras folders will appear in the
/Library/FileSystems/Xsan folder. The bin folder will contain the Xsan command-line
binary files, which allow you to do everything you can do within Xsan Admin and more.
The config folder, at first, will have only a uuid (Universally Unique Identifier) file, but will
collect more once you set up the SAN.

Now you’re ready to place the Xsan Admin application in your dock and open it. The first
time, you’ll see the SAN Setup dialog, which will show an introduction screen. Click
Continue to go to the Initial SAN Setup dialog, where you can choose from two options.
If this isn’t the first MDC you’re installing (we assume it is), select Connect to Existing
SAN. Otherwise, pick Configure new SAN and click Continue.

At the next screen, name the SAN (see Figure 4-11). What you decide on can be
somewhat arbitrary and isn’t the same as a volume name. In this screen you can also
enter the administrator’s name and e-mail address. (This is purely to provide
administrator contact information to Xsan users.) Click Continue.

Figure 4-11. SAN Settings

CHAPTER 4: Storage

 166

166

You’re now at the Add Computers screen, where you’ll see a list of client systems that
already have Xsan software installed (see Figure 4-12). We can easily add these later, so
click the Select None button to clear all the check boxes for the computers on the
subnet, unselecting them. For now, check only the box for the MDC you’re currently
establishing, then click Continue.

Figure 4-12. Add Computers screen

Next, at the Authenticate SAN Computers screen, type the username and password for
the MDC you’re working on and click Continue. The system will briefly present an
authenticating window and then will ask you to enter your serial numbers into the Serial
Numbers screen, seen in Figure 4-13.

CHAPTER 4: Storage

 167

167

Figure 4-13. Enter Xsan 2 Serial Numbers into a global pool

As of Xsan 2, you no longer need to associate a serial number with a specific client.
Rather, you build a pool of serial numbers which Xsan provisions to clients automatically
as they join the SAN. (Each client needs a unique serial number to be able to mount the
volume). When you purchase Xsan, Apple will often distribute serial numbers via e-mail.
In this case, you can simply lasso them and drag them into the License area of this
screen. Otherwise you can use the Add Serial Number screen to type each one in
manually. In either case, Xsan 2 will then dynamically allocate licenses to clients when
needed.

Hit Continue to go to the SAN metadata network screen. Per best-practice guidelines,
the metadata network should be dedicated-----in other words, solely for Xsan traffic with
no other devices attached. To keep dropped packets and collisions to a minimum, it
should have a good switch (no D-Link, LinkSys, or the like) and shouldn’t be a VLAN
from a bigger switch or have any managed switching services (such as link aggregation
or spanning tree protocol) enabled.

Also per best practices, each client should have two connected network interfaces. One
is for your standard network and must be able to provide directory services, Internet
access, file server access, and so forth. The second, the metadata interface, should be
dedicated to Xsan traffic and need not be routable or running any DHCP services. As a
result, clients on this interface will need static IP addresses. In the SAN metadata

CHAPTER 4: Storage

 168

168

network screen, choose the network your metadata will run on and click on the Continue
button, as seen in Figure 4-14.

Figure 4-14. Xsan Choose Metadata Network

This brings you to the Summary screen. Review the settings carefully, and if they’re
correct, click on the Continue button. You’ll then be brought to the Create Volume
screen, where you can make one or more volumes. First, let’s take a brief detour. For
now, choose to bypass the process (we’ll go through it momentarily), which will send
you to the main Xsan Admin Screen. At this point, if you look in your config folder, you’ll
see these files in the /Library/FileSystems/Xsan/Config directory:

 Config.plist: This XML file contains licenses, the SAN name, controller
settings, and the like.

 Fsnameservers: You’ll find a listing of metadata controllers here.

 Notifications.plist: This file holds XML data used for e-mail
notifications.

Later, as you create volumes, Xsan will add other files (each volume will have its own
CFG file and an accompanying FSM (Finite State Machine) process spawned by Xsan).
Now let’s create a Volume.

CHAPTER 4: Storage

 169

169

Creating a Volume
Once you’ve created your SAN set up, you need to build a volume. This is the logical
entity end users see, and you can configure it to mount for them automatically when
they log into their Xsan clients. Once you understand the different components that
make up a volume, creating one is straightforward.

To begin, open Xsan Admin and click on the Volumes section in your SAN Assets
sidebar. At this point, you should have a blank listing of Volumes. In the bottom right-
hand corner of the screen, click on the plus sign (+) to begin the volume-creation wizard,
which will open to the SAN Setup screen, seen in Figure 4-15.

Figure 4-15. SAN Setup screen

In this screen, type the volume name and choose what type of data will reside on the
volume. Note that you can’t use spaces or special characters in the name, nor can you
change it, so ensure that whatever you specify will last through the ages. Other than the
name, the options you choose during volume creation will directly impact the
performance of the SAN in a variety of ways. To see and adjust the settings that the
wizard applied (based on your selection of data types), click on the Advanced Settings…
button, which pops up the window shown in Figure 4-16.

CHAPTER 4: Storage

 170

170

Figure 4-16. Advanced SAN settings

The most import setting here is the block allocation size. Xsan uses the storage-pool stripe
breadth and volume block-allocation size to decide how to write data to a volume. Writes
typically impact performance more than reads, so it’s important to match these in a
manner that makes sense given the type of data the SAN will be storing. As of the time of
this writing, Apple hasn’t released a tuning guide for Xsan 2.x, but you can find the one for

CHAPTER 4: Storage

 171

171

Xsan 1.x at http://images.apple.com/my/server/docs/20050901_Xsan_Tuning_Guide.pdf.
Per the Apple Xsan Deployment and Tuning Guide:

In general, smaller file system block sizes are best in cases where there are many
small, random reads and writes, as when a volume is used for home directories or
general file sharing. In cases such as these, the default 4KB block size is best. If,
however, the workflow supported by the volume consists mostly of sequential reads
or writes, as is the case for audio or video streaming or capture, you can get better
performance with a larger block size. Try a 64KB block size in such cases.

There are other options for this portion of the volume setup. Here is a bit of information
about them:

 Allocation Strategy: This determines how data is written to the affinity
tags (a collection of storage pools-----we’ll cover them shortly). Round
robin is the default strategy and the recommended one in most cases.
It works by simply iterating through storage pools during writes. For
instance, when writing file1, round robin will go to storage pool1; when
writing file2, it will go to storage pool2. If you want to ensure that your
data gets evenly distributed across pools, you can use another
approach: balance allocation. This configuration uses the pool that
has the most available capacity. Fill allocation, on the other hand,
loads storage pools to capacity in sequence; it won’t use
storagepool2 until storagepool1 runs out of room. The two options,
though, can degrade performance, as it’s possible for a single LUN
to bear a higher percentage of the load over time.

 Spotlight: This option lets you enable and disable the OS X system
search tool (Spotlight) for volumes. Given that it doesn’t currently work
effectively in Xsan 2.x, you should disable it.

 Access Control Lists: You can enable and disable ACLs on the volume
using this setting, but typically you should leave it enabled, as ACLs
provide for extensible permissions management.

 Windows ID Mapping: If Windows machines will participate in the
SAN, leave this option at its default-----enabled.

Allocation Settings: Always check with a technical project manager before
customizing any of the following three settings in this section of the dialog box.

 File Expansion Min: This value determines the minimum number of
blocks written to a SAN file for the first expansion request. Increasing
it speeds up writes for large files; decreasing it speeds them up for a
large number of smaller files.

 File Expansion Increment: To change the number of blocks used for
each expansion request after the first, adjust this number.

 File Expansion Max: The maximum number of blocks used for the file.
Can help to reduce fragmentation on your volume.

CHAPTER 4: Storage

 172

172

Cache Settings: Always check with a technical project manager before customizing
the two settings (listed below) in this section of the dialog box.

 iNode Cache Size: In Unix, data structures called iNodes hold
information about files. A file—which always has an iNode—is uniquely
identified by the file system it’s on and its iNode number on that system.
To track the data that resides on it, Xsan (which is just a file system)—
uses iNodes. This setting specifies that maximum number of these data
structures that a metadata controller can cache on a volume.

 Buffer Cache Size: Altering the size of the buffer cache changes the
amount of memory the metadata controller can use for storing a
volume’s metadata. The cache is useful when you have a system with
high latency-----buffers act to mitigate latency issues.

When you’ve finished with the advanced settings, click OK to return to the listing of
volumes. At this point, if the software detects any unlabeled LUNs, it will give you the
option to label them-----unless a LUN has a unique identifier, you can’t integrate it into an
Xsan volume. We recommend using a labeling practice that indicates the specific shelf
the LUN is in as well as its controller. For example, PROM_03J_C1 would specify the
Promise Jclass expansion unit and controller affinity 1. Having good labels helps to
easily identify storage in the event that troubleshooting is needed.

Once you click Continue, the wizard will take you to the Configure Volume Affinities
pane, where you can start setting up affinity tags (the collection of storage pools
mentioned earlier). The tags, which allow Xsan to share bandwidth, are best used to
group storage pools that have similar characteristics. For instance, you might want to
create a tag called Video that contains LUNs optimized for sustained high throughput.
Alternatively, you might have a Files tag containing LUNs tuned for efficiently handling
random I/O rather than for delivering raw sustained throughput. (If they’ll receive heavy
use, it’s often better to keep items like these in separate volumes).

When building an affinity tag, it’s important that the LUNs which it contains are of similar
capacity-----as mentioned earlier, the storage pool will reduce the capacity of all its LUNs
to that of the smallest. With Xsan 2, building tags is complicated a bit, as the GUI does
configuration by Affinity Tags rather than storage pools. When adding LUNs to a tag,
Xsan 2 automatically groups LUNs into storage pools. It determines the composition of
the pools based on the usage pattern you defined when creating the volume. If you
chose any of the media usage types, then an affinity tag will contain storage pools
consisting of four LUNs each. If you selected the File Server option, pools will consist of
two LUNs.

As such, when building an Xsan primarily for video, the best approach is to add LUNs in
numbers divisible by four. To see why, suppose you add nine LUNs to an affinity tag.
The system will create three storage pools, two composed of four LUNs. But the third,
with just a single LUN, will have performance drastically inferior to that of the other two.
As a result, you’ll have intermittent bandwidth problems on your SAN. If you can’t add
LUNs in groups of four, at least try to avoid adding an odd number to a storage pool. If
you think you’ll be creating an unbalanced setup, please consult a technical project
manager first.

CHAPTER 4: Storage

 173

173

Once configured, you can view the volume’s composition by consulting the XML file
located at /Library/FileSystems/Xsan/config/VolumeName-auxdata.plist (replacing
VolumeName, of course, with the volume’s actual name). The Xsan Admin software uses
this file during volume expansion. Specifically the software employs the values specified
at StoragePoolIdealLUNCount and StoragePoolStripeBreadth, which it applies to any
newly added pools.

The metadata affinity tag is a special beast and has a unique makeup. Optimally, the tag
will sit on its own RAID controller to prevent congestion that could negatively affect
performance across the entire volume.

The affinity tag options are:

 Any data: Selecting this lets the Affinity Tag house metadata or user data.

 Journaling and metadata only: This limits tags exclusively to use for
the information that tracks where the pieces of the user data reside on
the SAN and to use for metadata.

 User data only: Choose this, and writing data to the volume will be the
only use allowed for the tag.

 Only data with affinity: This forces data written to the affinity tag to a
specified folder.

 Stripe Breadth: Use this option to set the size of each data stripe (in
blocks) written to one LUN in a storage pool before moving on to the next.

Setting the proper stripe breadth requires a bit of consideration, and is dependent upon
the volume’s make-up. Specifically, we need to know the volume’s storage-pool block-
allocation size, which we defined earlier.

This setting is applied specifically to the storage pools that make up the affinity tag. Its
purpose is to properly tune the transfer sizes to best coincide with I/O characteristics of
the host OS. OS X transfers data in 1MB chunks, referred to as the transfer size. Apple
explains that the goal is to configure the stripe breadth such that each transaction with a
storage pool is equal to your transfer size.

Thus, in a the default Xsan, the block size of 16KB uses a 4-LUN storage pool. To ensure
a 1MB stripe across all 4 LUNs, Apple recommends a 16-block breadth (consisting of
16KB) to each LUN. For example, if you increase the block size to 64 KB (say, to suit data
streaming), set the stripe breadth to 4 blocks, so that each LUN again receives a 256KB
write. If you choose the File-Server purpose when creating your Xsan volume, the
standard storage pool size is 2 LUNs; as such, you’d use a default setting of 32 blocks.

Apple’s Xsan 2 Admin guide recommends using the formula:

stripe breadth = (transfer size / number of LUNs) / block allocation size
where stripe breadth is expressed in blocks, and transfer size and block-allocation size
in bytes. But this formula differs from our recommendations (and the recommendations
Apple provides in its Xsan 1.4 tuning guide). In our findings, the best approach is to
configure transfer settings such that the OS X transfer size directly correlates to each
transaction with a LUN (rather than a storage pool).

CHAPTER 4: Storage

 174

174

Given that, we suggest setting this value so that the stripe breadth itself is equal to 1MB
(rather than the aggregate across all LUNs). So in our previous example, where the File
System block size is 16KB, we’d use a stripe breadth of 64 blocks, resulting in a 1MB
transfer to each LUN before moving on to the next. In this case, we don’t really care how
many LUNs are in a storage pool. From Apple’s Xsan Deployment and Tuning Guide:

The Mac OS X (or Mac OS X Server) operating system, which handles file data
transfers for Xsan, performs 1 megabyte (MB) data transfers. As a result, Xsan gets
maximum efficiency from the operating system when it transfers blocks of data that
are a multiple of 1 MB.

At the other end of the transfer, the LUN also works well when it receives 1 MB of
data at a time. So, when data is written to a storage pool, you get the best
performance if 1 MB of data is written to each LUN in the storage pool The amount of
data Xsan writes to a LUN is determined by the product of two values you specify
when you set up a volume:

 The volume’s block allocation size (in kilobytes)

 The stripe breadth of the storage pools that make up the volume (in
number of allocation blocks)

transfer size = block size x stripe breadth

It’s worth noting that fundamentally, not much changed between Xsan1 and Xsan2.
Certainly, Apple made great improvements to its GUI admin tools, but the underlying
functionality of LUNs, storage pools, and data allocation did not drastically change. As
such, we feel that many of the tuning principals prescribed by Apple for Xsan 1.4 still
fundamentally apply to Xsan 2.

The Apple tuning guide says little about metadata stripe breadths. The default breadth
on a metadata storage pool is 256 blocks. But according to Quantum, this is too high.
The company recommends a 16- or 64-block stripe breadth for metadata storage pools.
Therefore, if you have a relatively small volume with a small number of files, consider
using 16. If you have a larger environment with big files, think about trying 64, rather
than the default of 16.

The calculation to make the stripe breadth times the storage pool equal 1MB is more
important for your data storage pool than for your metadata pool. As with many things
Xsan, you’ll get the biggest bang for your buck from tuning stripe breadths and block sizes
to match the environment is where you will get the biggest bang for your buck. This is just
a starting place, though. You should plan on tearing down and rebuilding your volume a
few times to maximize speed (after all, doing so usually takes less than five minutes.

After setting up volume affinities, you can configure your volume’s metadata controllers.
The wizard will show you each system that’s set as a metadata controller. Generally two
such controllers should suffice for any given volume or set of volumes. Once configured,
metadata controllers run an instance of the FSM process. You can track performance, in

CHAPTER 4: Storage

 175

175

terms of memory and processing required, as you do with any other service using tools
such as Activity Monitor or the Unix top command.

To start setting up the metadata controllers, when you’re done with the Configure
Volume Affinities pane, click on Continue. In the Volume Failover Priority pane that
appears, you can customize the priority assigned to a controller. Simply drag items
higher or lower in the list to raise or lower priority. The top item, which has the highest
priority, should always be the default MDC. Also, more than three MDCs can cause
unneeded latency on the volume, so feel free to deactivate any that aren’t needed.

When you click Continue, you’ll now see your new Volume, as illustrated in Figure 4-17
be seen below). The Affinity Tags and the percentage of each that is consumed with
data will also appear along with the capacity of each (in the Size column), the available
disk space (under the Available column) and the active MDC (in the Hosted By column).
You can also see the structure of the volume in terms of affinity tags and LUNs.

Figure 4-17. Xsan Volume overview

CHAPTER 4: Storage

 176

176

Click on the volume name and then the gear, as shown in Figure 4-18. Here, you’ll see a
number of available options.

Figure 4-18. Volume options

Use the Edit Notification Settings to configure Xsan to send SAN administrators e-mail
updates (we recommend triggering alerts when the volume reaches 75 percent of
capacity). Use Edit Failover Priority to add or remove MDCs or just change their priority.
Use the Force Failover to test failover between MDCs and use Start and Stop to Start
and Stop the volume.

When you created the volume, Xsan automatically started and mounted it on the
metadata controller. You’ve now completed the volume set up and can move on to
adding computers that can see the volume.

CHAPTER 4: Storage

 177

177

Adding a Computer
Now that you’ve created your volume, it’s time to add clients that can access it. This is
one place where Xsan 2 is very different from Xsan 1.x. To add a computer that has
access to your volume, click on Computers in your SAN Assets list and then on the plus
(+) sign in the lower right-hand corner of the screen.

This invokes a list of computers that have the Xsan software installed and have been
discovered via Bonjour (as seen previously in Figure 4-12). You can add clients running
version 1.4.2 or 2.x to your SAN. You can also add clients using 10.5.0 through 10.5.2,
but you’ll receive an amber warning indicator for system with software that preceded
10.5.3.

If the client you’re trying to add doesn’t appear in the list, you can click on the Remote
Computer button and enter the machine’s DNS name or IP address. If the DNS name
won’t resolve, you’ll receive an error saying that the information is invalid.

If you use the Select All button on this screen to select all the clients, when you click on
Continue and enter the proper authentication credentials, you’ll be able to enter a user
name and password for all clients at once or each individually.

Authenticate into all of your clients and click on Continue. You’ve now added them all
and can click on the Mount icon to mount the volume for each (if it hasn’t mounted
already). If you’ve been following along with this walk-through then you now have an
Xsan with a mounted volume and clients.

NOTE: In order to add a new controller, promote an existing client to a controller, or demote a
controller to a client, all clients on the SAN must be online and reachable via the Xsan Admin
Application.

Resharing the Volume
To view the shared folders on a system, open Server Admin and click on the name of
the system you want in the Servers list. Now click the File Sharing button in the Server
Admin toolbar and you’ll get a list of the logical volumes that your server can see along
with a handy disk space image that shows how full the various volumes are. At this
point, you can select Share Points to see which folders are currently being shared over
SMB, AFP, NFS or FTP. If you click on Volumes and then the Browse button, you’ll be
able to configure new folders that you want others to access as share points. Browse to
the folder you want shared, then click on the Share button in the upper right-hand
corner below the tool bar.

With the Xsan volume selected, three tabs appear along the bottom of the screen: Share
Point, Permissions, and Quotas. Click on Share Point to review and modify these
settings:

 Enable AutoMount: This gives you choices for setting up an Open
Directory automount for the share.

CHAPTER 4: Storage

 178

178

 Enable Spotlight Searching: Selecting this allows the volume to be
searchable using the OS X system search tool.

 Enable as Time Machine Backup Destination: Turn on this setting if
you want to let client computers use the OS X utility for safely storing
copies of their data.

 Protocol Options: This brings up the screen that allows you to
configure SMB, AFP, NFS, and FTP settings (looks very much like the
old screen in Workgroup Manager)

Once you’ve set the options for your share point, click over to the Permissions tab,
where you can determine who has access to shared data. From this point, access to
share points is controlled by file system permissions. You’ll see ACLs listed above
POSIX permissions, and when you drag a user or group into the window, a blue line will
appear, indicating that the object will stay if you drop it on the window.

Finally, if you click on the Quotas tab and enable quotas, you’ll find that you can’t drag
users and groups into the window. Using Server Admin, you can’t configure users that
don’t have a home folder on the volume. You can, however, configure quotas at the
command line.

Xsan Block Sizes
Xsan can act as the back-end storage to provide front-end network file-sharing services
for a Mac OS X environment. This isn’t to say that it’ll work like a charm without some
fine-tuning, though. In tuning any Xsan volume, one of your most important tools is the
block size. As mentioned previously, the stripe breadth multiplied by the block size
should come to about 1MB. You’ll have to customize the stripe breadth on the storage
pools whenever you change the block sizes for the volume.

If you’re using Xsan as a repository for data to be shared over clustered file storage,
then it’s important to maintain a small block size. How small? That depends on your
data. If it’s in large files, you may be able to stick with the default settings for clustered
file storage in the volume setup wizard. If it’s in small files, though, consider going even
lower.

AFP Tuning
When an AFP client gets disconnected from a share point, it attempts to look for a token
in order to reconnect automatically. If the server doesn’t have the token, the client can’t
reconnect because it’s comparing the presented token with its own cache (stored, by
default, in /etc/AFP.conf). However, if you’re using an Xsan, you’ll want your servers to
share a token location.

The token store is the reconnectKeyLocation key in the /Library/Preferences/
com.apple.AppleFileServer.plist property list. You can use the defaults command to
move the tokens to an Xsan volume. Follow the command with the appropriate option
switch (in this case, write to put data into the property list), followed by the name of the

CHAPTER 4: Storage

 179

179

property list and then the key that we’ll be writing into. We want to write text into the
key, with the text string being a path. If the volume name is bighonkinvolume, the
command will be:

defaults write com.apple.AppleFileServer reconnectKeyLocation «
/Volumes/bighonkinvolume/AFP.conf

Additionally, you’ll want to customize file-locking mechanisms in some cases. AFP locks
files at the application layer by default. With Xsan, where multiple file-server heads are
involved, it’s best to use locks at the file-system level. Therefore, you can use the AFP
settings for the daemon to prevent AFP from locking files itself. The command is:

serveradmin settings afp:lock_manager = no

Tickle Times
In Windows, when you’ve connected to a share using, say, a mapped drive letter, that
share shows as active. At some point, if the client can’t communicate to an SMB/CIFS
server with the open session, the drive will appear offline to the Windows client. AFP
does something similar, but the result is what, as perceived from the Finder, appears to
be constant communication with the AFP server. Actually, it’s verified by the server
every 30 seconds. With the AFP client, if no poll is sent from the server, the client will
also attempt to reach out to the server to verify that the connection is available. This
process is known as tickling.

AFP uses the tickle to verify that clients are still connected to a server. This
communication causes a small amount of network congestion, but in some
environments you want to keep even that to a minimum. This is similar to the concept of
disabling protocols in a network stack that aren’t being used. Such protocols aren’t
likely to cause issues on one machine, but when employed by thousands of hosts, they
can effectively cause a denial of service on the server.

Provided that you use AFP, you’re just not going to want to disable the tickle. By default,
it happens every 30 seconds with no user intervention (other than connecting to a share
point and having a session greater than 30 seconds). But while you might not want to
disable it, you can reduce traffic by increasing the number of seconds between updates.
For example, the following command will up the time between tickles to 60 seconds:

serveradmin settings afp:tickleTime = 60

In order to set the tickleTime value back to 30 seconds, you would simply issue the
following command:

serveradmin settings afp:tickleTime = 30

Setting a tickle time isn’t for everyone. In fact, you’ll rarely need to take this kind of step.
But if your Mac servers are causing a lot of collisions on the network, and using packet
analysis you determine the traffic comes from DSI/AFP (Data Service Information/AFP)
packets, that’s a fine time to test out tickleTime as a solution. If it doesn’t resolve your
issue, you can always move it back to 30 seconds. While increasing the tickleTime
variable can cause beach balls to spin for a fair amount of time when you lose a server

CHAPTER 4: Storage

 180

180

connection, doing so can also reduce the amount of traffic slightly, which scales into
larger environments.

Even to a seasoned Windows admin, the concept of a constant communication channel
for file services may be foreign, it’s just a reality of playing in the Apple sandbox.

Using Third-Party Clients
With the Quantum StorNext client, you can connect systems running other OSes to
Xsan. StorNext also provides controllers that Mac Xsan clients can connect to. Not all
versions of Xsan are compatible with all versions of StorNext. Apple provides a
compatibility page at http://support.apple.com/kb/HT1517. When adding third-party
clients to an Xsan, you should still follow the usual best practices for infrastructure, such
as using a dedicated metadata connection with a static IP assignment and, ideally, DNS
forward and resolution.

Installing Linux Clients
Linux running Helios can make for a good alternative to running AFP or SMB shares off
of an Xsan using Mac OS X Server. A Linux system can run Quantum StorNext software
and mount a Mac OS X-based Xsan, then share data out. Currently only RedHat
Enterprise Linux (versions 4 and 5) and SUSE Linux Enterprise Server (version 10)
support the product.

Once you’ve bought and registered Quantum’s software, make sure your StorNext client
can ping the metadata controller over the metadata network by whatever IP address is
used for metadata. With that done, you can get underway.

For starters, go to your metadata controller and backup metadata controller, run the
cvfsid command, copy the text string it produces, go to
http://Prodreg.quantum.treehousei.com/login.aspx, and complete the form there
using the string. Once you get the necessary information back from Quantum, add it to
the /Library/FileSystems/Xsan/config/license.dat file on each metadata controller
and reboot them. Now you’re ready to set up your clients.

To do so you’ll need the auth_secret and fsnameservers files from one of the metadata
controllers (an Xsan’s metadata controllers will have identical auth_secret files) and the
StorNext rpm client installer.

From each client, first verify that you can ping the metadata controllers. Then, extract
the rpm with the command:

tar xf sn_dsm_linuxRedHat40AS_x86_64_client.tar.gz
or use gunzip to extract it. Next, install the rpm by issuing the command:

rpm -ivh sn_dsm_linuxRedHat40AS_x86_64_client.tar

Now copy the auth_secret and fsnameservers files to the /usr/cvfs/config directory
created by the installer, then use the cvlabel -l command to verify that you can see all
of the LUNs that make up the volume. And for good measure, make sure you can ping

CHAPTER 4: Storage

 181

181

each of the metadata controllers by IP address one more time. Finally, add cvfs to the
list of file systems in the PRUNEFS field of the /etc/updatedb.conf file.

With those tasks finished, you’re ready to mount the volume. In the /mnt directory,
create a folder with the same as your volume (for this example we’ll use myXsan). Next,
open /etc/fstab and add this line:

Xsan /mnt/myXsan cvfs verbose=yes 0 0

Now try to mount the volume using the command:

mount -t cvfs Xsan /mnt/myXsan

Provided it works, you can reboot and proceed with setting up Helios.

NOTE: All metadata controllers need to have that license DAT file. If they don’t, your clients
won’t fail over properly. When you’re finished with the integration, we recommend backing up
the entire /Library/FileSystems/Xsan/config directory and running a cvgather to make a tar file
of your Xsan configuration.

Windows Clients
As with Linux, Windows can access Xsan via StorNext. This allows you to install and
configure Microsoft UAM-based volumes, standard SMB/CIFS, shares and even
ExtremeZ-IP using an Xsan volume-----the same back-end storage can serve a number of
different platforms. To install Xsan on a Windows client you’ll actually be installing
StorNext and you’ll need a version of appropriate for your version of Windows.

The first step in setting up StorNext is to register the software with Quantum. To do so,
go to http://prodreg.quantum.treehousei.com/Login.aspx. Now wait to get the
registration information back in an e-mail, which usually takes about an hour but can
take up to 24. While waiting, you need to get some other information before you can get
your actual license: unique identifiers for each Xsan metadata controller. To get them,
you must run cvfsid on each of the metadata controllers (but not on any other systems).
Go to the primary MDC, cd into the /Library/FileSystems/Xsan/bin directory and then
run the ./cvfsid command. The output you get will look something like:

C1A1B97A11 MAC 0 mdc.domain.com

Copy the text string, and repeat the process on your backup MDC for volumes
accessible by StorNext clients, then go to www.quantum.com/swlicense. In the form you
see, enter both the serial number for each host that will run StorNext as well as the
output of the cvfsid commands from earlier.

Quantum usually responds to these requests in about the same time frame as with the
initial request. Once you receive the e-mail response, open the license.dat file from
/Library/FileSystems/Xsan/config and paste the message content that is indicated as
being required into the file using pico or vi. After the files are updated, reboot the
metadata controllers. Each will then create a file called .auth_secret in its

CHAPTER 4: Storage

 182

182

/Library/FileSystems/Xsan/config directory. This file is hidden, so to access it through
finder, you need to cp it to removable storage or copy it to another location that’s not
hidden.

Now you can install your Fiber Channel card into your Windows system. If you’ve
patched the StorNext client into your network environment, you’ll see a prompt to install
the Promise drivers. If you’re installing a Vtrak from Apple on Microsoft Windows, you
can download the Promise drivers from
http://www.promise.com/support/download/download_eng.asp.

You can also use the drivers (or generic ones) if the Promise is serving as a target and
connecting to those LUNs (managed by Xsan) via StorNext. But although you can use
generic drivers because StorNext is managing the LUNs, most Windows administrators
won’t want to (nor should they). To see the LUNs, check Windows Device Manager.

Now install the StorNext software on the client, following the defaults and rebooting
when the installation completes. Then copy the .auth_secret file to the c:\Program
Files\Stornext\config folder and reboot the StorNext computer. When you log back in,
go to Start h All Programs hFile System Services, a new entry added by the base
StorNext installation.

The main application you’ll use here is Client Configuration, which allows you to interact
with an Xsan as a client. In many cases we’ll remove most of the other applications from
the Start menu so that users don’t accidentally do more to the SAN than we’d like,
which, regrettably, is an option otherwise.

From the Client Configuration application, click on the fsnameservers tab, and type the
IP address of each metadata controller. The hostname in .auth_secret tells the StorNext
client which MDC it can talk to and which hosts can communicate with it, based on a
pre-shared shared key. Now click on the Drive Mapping tab. This is where you set the
way in which Microsoft Windows interprets the Volume seen by StorNext. Doing so
allows the Windows client software to be aware of which volumes reside on the server
and can mount them as needed. The Drive Map option simply allows you to specify
which Windows drive letter will be mapped to each volume. When you’ve finished the
mapping, you should be able to browse as needed.

If you create a folder called debug in c:\Program Files\StorNext, after you restart, the
StorNext FSS (File System Service) will create a file called c:\Program
Files\StorNext\debug\nssdebug.out, which contains very verbose logs from the
perspective of the StorNext system. These can be useful, for example, in debugging
connectivity issues with other StorNext systems, Xsan, or both.

StorNext for Windows includes many of the commands available with Xsan on Mac OS
X. The default location for the commands is c:\Program Files\StorNext\bin. You can use
the cv-based commands (explained further later in this chapter) in much the same way
as on a Mac, which can help with troubleshooting.

For example, if you’re having problems getting a volume to mount even though it shows
up when you go to map the drive in Client Configuration, you can use cvlabel -l
(assuming your working directory is the StorNext bin directory) to see the LUNs you host
can access. If you can’t see the LUNs, you also can’t map a drive to them (you can in

CHAPTER 4: Storage

 183

183

the Client Configuration utility, but you won’t be able to see the volumes in Windows
Explorer or from a command prompt). Once you confirm that you can see Xsan LUNs
from StorNext and that you can communicate with the metadata controller, stop and
start the FSS to see if the volume then appears in Windows Explorer.

If you’re using StorNext systems as actual metadata controllers, you’ll find a number of
other commands you can leverage; again, in much the way you would with Xsan. For
example, to start a volume, you can use the cvadmin command followed by start and
then the name of the volume. For example, if your volume is bighonkinvolume you’d use:

cvadmin start bighonkinvolume

Xsan Management
If set up properly, Xsan is typically very stable and healthy when first installed. As with
any system, though, over time various maintenance and troubleshooting tasks will need
attending to. Volumes fill, frames start dropping, response times slow, files corrupt, and
many more problems occur with increasing frequency. The purpose of this section is to
help you figure out what’s going on and how you can nurse your Xsan back to health.

Reinstalling the Software
A number of client-configuration issues seem to call for uninstalling and reinstalling the
Xsan software. But do you actually have to uninstall the software, reinstall it, run
Software Update, reboot, re-add the client to Xsan Admin on the MDC, and then
attempt to mount when, for example, a single client isn’t mounting a volume? No. That’s
a lot of crap when one step will reset a client back to the way it was before it ever joined
its first Xsan. Just delete the contents of the /Library/Filesystems/Xsan/config folder
(but not the folder itself) and then reboot.

On reboot, the Xsan process is waiting to be controlled by a metadata controller, so use
Xsan Admin to add the client-----it should receive the same serial number it had before
and mount the SAN volumes automatically. This will fix a few different client-specific
issues. Don’t, however, try this with a metadata controller unless you know what you’re
doing!

Upgrades to your Xsan
Once your Xsan is installed and working perfectly, chances are you won’t want to do
anything to it. But eventually you’ll have to perform software updates, volume
expansion, the occasional (and regrettable) changing of IP addresses, and other
maintenance. Also, make sure the Metadata Controllers are running the most recent
version of the operating system in use in your environment.

CHAPTER 4: Storage

 184

184

Operating System Upgrades
All MDCs should run the same version of Mac OS X. When upgrading one to a new
version, you should upgrade all the others to the same version. During upgrades, do not
make any modifications to the Xsan using Xsan Admin or the command-line utilities.
Upgrade all MDCs before you make any configuration changes. When performing a
clean installation of Mac OS X, all of the Volume configuration data and SAN contents
could be lost.

If you can take Xsan volumes down during the upgrades, you should-----you’ll greatly
reduce the possibility of problems. But if the volumes must be up, is possible to upgrade
while they’re accessible to client systems. When doing this, run the upgrades on the
metadata controller and restart, then run the upgrades on the backup metadata
controller and restart. If you have no backup metadata controller, promote a client
system to become a backup metadata controller, fail the volume over to it and then
upgrade the metadata controller. By following this procedure, you prevent data loss due
to a single point of failure during an upgrade.

If you choose to upgrade the Xsan without interrupting the availability of the Volumes
and you have 2 Metadata Controllers then it is also a good idea to temporarily upgrade a
client system into the role of a Backup Metadata Controller to mitigate the risk of having
a single point of failure during the upgrade of each metadata Controller.

Upgrading the Volume
The process of adding storage to an Xsan volume, volume expansion, not only provides
the benefit of increased capacity, it also can increase bandwidth. On an Xsan 2.0
volume you can perform two types of volume expansion: Storage Expansion and
Bandwidth Expansion.

With the latter, you add LUNs to an existing storage pool. This is relatively intrusive,
though, and you can only do it on volumes built with the Custom data type. You may
have to do this when a storage pool isn’t configured in a manner consistent with others
on the volume, and performance is paramount.

This type of expansion will result in a misbalance of information across the storage
pool’s LUNS, and you’ll have to defragment to avoid severe performance degradation.
As such, you should always defrag shortly after performing the expansion. Remember,
though, because you’re modifying existing datastores that the volume uses, bandwidth
expansion is inherently risky, and you should avoid it if possible.

With storage expansion, you add new LUNs to a an existing affinity tag, which in turn
creates a new storage-pool member. Because you’re simply introducing elements, this
type of expansion isn’t as intrusive as a bandwidth expansion, and is less prone to
problems.

When performing volume expansion, generally you want to add storage in increments
equivalent to existing storage pools (typically four LUNs per pool). Xsan 2 will do its best
to determine existing pool utilization based on values set in the volume’s auxdata.plist
file, and you can carry out more granular edits of these as needed.

CHAPTER 4: Storage

 185

185

Prior to running the expansion, we recommend you follow a few procedures. First,
ensure that all new LUNs consist of RAID sets that are consistent with the designated
affinity tag’s current LUNs.

TIP: You can determine your volume’s ideal LUN count by consulting its respective
auxdata.plist file, found at /Library/Filesystems.

Next, verify recent backups of the volume by performing a test restore. Now stop the
volume, and perform a repair on it using the command:

cvfsck –wv VolumeName

When that completes, back up the metadata by issuing the command:

snmetadump -d VolumeName

Also, perform a cvgather on the volume (which, among other procedures, backs up the
volume’s configuration files) by entering this at the command line:

cvgather -f volumeName

After these steps, you’re ready to perform the expansion, which you can do using Xsan
Admin by dragging your new, labeled LUN into the desired affinity tag. As mentioned,
it’s best to add LUNs in numbers compatible with existing settings. So if the volume
uses 4 LUN storage pools, the number of LUNs you add during expansion should be
divisible by 4. If you have a custom volume, you’ll need to manually create the storage
pools and assign 4 LUNs to each. After dragging all desired LUNs into the proper affinity
tag or storage pools, click Save. The expansion will proceed, generally taking 20 to 30
minutes.

Following the actual expansion, it’s a good idea to carry out additional maintenance on
the volume to ensure proper health. In particular, to ensure that data is properly re-
striped across the pool, an snfsdefrag is an absolute requirement. Running the
command

snfsdefrag -dr /Volumes/VolumeName
will rebalance the data.

Even after performing a volume expansion, it may be desirable to rebalance the data
onto the newly added storage. By spreading it across the storage more evenly, you not
only help prevent slowdowns, you actually get a net gain in speed. That might not be the
case if you don’t rebalance. In Xsan 1.4, this was usually a straightforward task, because
each storage pool had a different affinity name, so you could balance data using, for
example:

snfsdefrag -r -k newstoragepoolaffinitykey -m 1 /Volumes/VolumeName

This command would relocate any files with more than one extent to the new pool’s
affinity key. Unfortunately, this technique gives you no clean way to completely balance
out data, because it relocates all fragmented data, a process that could easily exceed
the capacity of the pool. So when using this method, it’s important to monitor the
process and ensure that pools don’t over-balance, so to speak.

CHAPTER 4: Storage

 186

186

There’s a better alternative: Change the volume’s allocation strategy to Balance and
then defragment the volume (the options are Fill, Balance, and Round). This relocated
fragmented files to the lowest-capacity pool, an extremely effective method for
balancing data. In Xsan 2.x, you can change a volume’s allocation strategy at the GUI
level, which results in a quick restart of the volume.

In our experience, the quick restart does not result in Xsan client service interruption to
the volume, and active transfers proceed with no disruption. Even so, it’s best to
perform the switch at a time when there’s minimal activity (preferably none) on the
volume and no active transfers in progress.

Xsan 1.4 doesn’t officially support changing allocation strategies on a volume. To do so,
you must completely stop the volume, then change its strategy to Balance in its
configuration file before restarting. Once you’ve converted the volume to the new
strategy, you can proceed with the optimization, which is a fairly straightforward defrag
performed with the command

snfsdefrag -r /Volumes/VolumeName

This will defragment any files with more than one extent, re-provisioning the optimized
files to the next LUN in the allocation strategy. And because we’re now using the
Balance strategy, the next LUN will always be the one with the lowest capacity-----our
new LUNs, in this case. If, however, you had a healthy Xsan volume, this command may
not properly balance data, because fragmented files will be rare. In such an event, run
the command

snfsdefrag -r -m 0 /Volumes/VolumeName

This will defragment files with more than 0 extents, which is every file on the system,
letting you rest assured that the volume will be nicely balanced at the end of the
operation. Given that using the –m 0 flag with snfsdefrag can avert improper balancing,
you may want to use it from the get-to, rather than excluding it.

The main trade off here is that doing so reprovisions all files on the volume, which can
be a very time consuming task. If the volume has standard levels of fragmentation,
running the command without the flag should do a decent job of balancing without
having to operate against non-fragmented files as well. The second problem caused by
using the –m 0 switch is that the operation will flag files it affects for backup. Thus any
following incremental backups will essentially be a full backups. Save yourself the
trouble and set your backup system to perform a new full backup after the migration.

Changing IP Addresses
Because Xsan retrieves the locations of files and the status of information on the SAN
using the metadata network, it’s important to keep this network as free from interference
as possible. File-sharing, backup operations, and other bandwidth-intensive tasks
should occur on your organization’s standard network.

Using DHCP servers on an Xsan metadata network is not a good idea because it can
make clients fail to not respond to the administrative commands sent from the Xsan
Admin utility. In general, DHCP is inappropriate for Xsan metadata Controllers and Xsan

CHAPTER 4: Storage

 187

187

clients. Certain environments sometimes require DHCP-supplied static IP addresses,
though. Provided those addresses don’t change, DHCP is acceptable in an Xsan
installation-----but on the production network only, not on the metadata network.

If you ever need to change the metadata controller’s metadata IP address, the best
option is to first demote the metadata controller to a standard Xsan client, then remove
it from the SAN. After you change the IP address of the former metadatacontroller, re-
add it to the SAN, specifying it as a metadata controller.

Common Xsan Repair and Troubleshooting Procedures
Proactive maintenance is essential, but despite your best efforts, problems will crop up.
Certain types occur more frequently than others, though, so you’ll often find yourself
repeating the same repair procedures. Here are some of the more common ones.

Resetting Xsan Client settings
As mentioned earlier, when remedying Xsan issues, you should rarely have to uninstall
and reinstall the software. Often, simply returning it to its default settings will do the
trick. All you need do is delete the contents of the /Library/Filesystems/Xsan/config
folder (but not the folder itself), and then reboot. If this doesn’t resolve a client-specific
issue, read on for additional measures to try.

Rebuilding an Array on an Xserve RAID
Sometimes a drive fails or a controller for a RAID setup with redundant drives (RAID 5 or
RAID 3, for example) goes down, and you have to rebuild the parity drive. You should do
so as quickly as possible , but it can result in data loss. And if a second drive in the array
fails, you could lose most of the data. Although the failure has caused parity problems,
the data itself may be safe, so you should back it up first, and as soon as you can. With
that precaution in place, you can carry out the parity rebuild.

Start the process by opening RAID Admin from /Applications/Server, then selecting
the RAID containing the damaged array, and clicking on the Advanced button in the
toolbar. Enter the management password for the Xserve RAID device in question, click
on the button to Verify or Rebuild Parity, then on Continue, selecting the array. Select
Rebuild Array and the process will start. In a few hours, when it completes, perform a
Verify Array. Finally, verify the data on the volumes.

If the rebuild doesn’t go well and you lose the array, you’ll likely need to delete and re-
add it. In many cases, this will cause you to lose the data stored on that array and,
therefore, on the volume-----one of the many good reasons to have a backup.

Rebuilding an Array on a Promise RAID
Promise RAID setups, like those of Xserve (or any other) will eventually suffer a drive
failure. But the Promise products contain a few features that differentiate them Xserve’s.

CHAPTER 4: Storage

 188

188

One feature, Media Patrol, is a failure-detection routine that watches for bad blocks. A
feature called Predictive Data Migration (PDM) will preemptively rebuild a RAID set on a
global hot-spare drive. If a drive does fail, this significantly accelerates the parity rebuild.

However, under certain circumstances, these features can be detrimental to
performance. For instance, PDM will kick in if it detects even a minor drive malfunction.
In certain instances, this results in a data parity rebuild, but never activates the global
hot spare as a replacement. And with the default notification settings, none of this
activity will result in an e-mail notification. During the rebuild performance is degraded.

If you experience poor performance with an Xsan that uses Promise hardware, you can
look for clues to the source in a few places. First and foremost, make sure to check the
event logs on all your Promise RAID sets. If you see a lot of Media Patrol or PDM events,
you likely have a failing drive. PDM, as noted earlier, attempts to intelligently detect drive
failures and will begin to build a hot-spare drive into the array. But while this means that
when the drive ultimately fails, the overall rebuild process will take a very short time, in
the meantime the process can seriously degrade performance.

If you continue to experience performance problems on Promise equipment, consider
disabling Forced Read Ahead on your Promise controllers. Apple’s publicly available
configuration scripts turn this option on by default, but it’s truly needed only in high-
throughput environments, such as those that process uncompressed HD. In the majority
of scenarios, you can greatly increase Xsan read performance by disabling Forced Read
Ahead.

Latency
In Xsan, the PIO HiPriWr value in logs (specifically the sysavg value) shows you how
latent the connection to your metadata LUNs is. HiPriWr values are written on an hourly
basis to a volume’s cvlog file found at
/Library/Filesystems/Xsan/data/volume/log/cvlog. Alternatively, you can summon
these values as needed by using the tool cvadmin:

cvadmin
>select MyVolume
(MyVolume)>debug 0x01000000

For a metadata LUN on an Xserver RAID set, the average latency, shown by sysavg, is
usually 500ms or less. Promise RAID’s active/active controllers result in additional
latency, and will result in values between 800ms and 2,000ms.

If the physical fiber connection to a system’s LUNs is too slow (or latent), it can cause
instability and worse, volume-integrity issues. If you run into issues with latency on the
fabric then it probably comes from problems with the fabric . To address the issue, look
into statically assigning FC port configurations on targets and initiators. Specifically,
ensure that connections are of type N_Port, often referred to as PTP (point-to-point). On
its boxes, Promise support recommends always statically configuring Fibre interfaces to
N_Port 4GB static settings to help reduce latency. After ensuring you have static
settings, assign an ALPA ID of 255 to prevent Fibre Channel LIPs from being sent.

CHAPTER 4: Storage

 189

189

In situations where latency is excessive, you can deal with it programmatically by
increasing the buffer cache size. This will allow Xsan to cache more data, helping
mitigate the effect of latent LUNs on the overall performance, health, and viability of the
SAN. Additionally, you should increase the iNode Cache allowing Xsan to write iNodes
more effectively if you have latency on your Metadata LUNs. You define these settings in
the volume setup wizard, but can update them in your SAN volume’s volumename.cfg
file in /Library/Preferences/FileSystems/Xsan/config.

Schedules
3:15 a.m. Most of us may be asleep, but plenty of people are hard at work and need
data access. Unfortunately, those attempting to get it from an Xsan may end up a little
frustrated-----Mac OS X system software runs its weekly or daily scripts at 3:15 a.m. To
reduce user irritation, you can disable the periodic scripts by editing their launchd calls,
which you’ll find in the following files:

 /System/Library/LaunchDaemons/com.apple.periodic-daily.plist

 /System/Library/LaunchDaemons/com.apple.periodic-monthly.plist

 /System/Library/LaunchDaemons/com.apple.periodic-weekly.plist

If you disable these scripts, though, you should still let them run every once in a while.
Chances are that, with a little planning, you’ll be able to run the process at regular
intervals.

Fragmentation
You’ll find the snfsdefrag tool, which is part of Xsan, in the /Library/Filesystems/Xsan/
bin directory. You can use the utility to look up fragmentation statistics as well as to
perform defragmentation operations. If you’re using Xsan as back-end storage, you may
need to perform defragmentation operations routinely.

NOTE: When you’re defragmenting a volume we recommend that you always use the --v switch
to enable verbose mode.

The snfsdefrag utility can defrag individual files or recurse directories or volumes. Before
you initiate the actual operation, though, you should run it with the –c switch to perform
an extent count so you can see how many each fragmented file has. To do so on
bighonkinvolume, type

snfsdefrag -c -r /Volumes/bighonkinvolume

The –r option causes the utility to recursively search through the volume. Additionally,
you can specify a single directory (likely one deeper in the hierarchy). You can also
select files based on their number of extents by using the –m option followed by the

CHAPTER 4: Storage

 190

190

desired maximum number allowed. For instance, to output a summary of all fragmented
files with 2 or more extents, you’d use

snfsdefrag -c -r –m 2 /Volumes/bighonkinvolume

There’s also a –p option, which you can use to free up blocks that were allocated
(according to the way you configured the File Expansion Min value during volume setup)
but not used.

The –k option is one of the most useful for environments in the midst of migrating. You
can use it to specify an affinity to which you’ll move a file following the defragmentation
process. That lets you move data between affinities and allows for the safe (or as safe as
possible) removal of storage pools during migrations.

Backup
An Xsan has a special file system-----it’s case sensitive, accept characters that some
backup tools don’t recognize, and allows data sets of over 100TB at times. All of these
factors make for a fairly complicated backup paradigm. You can’t use just any
application. But there are a number of third-party tools on the market that have been
developed to do the job. Here are some, along with the URLs for their web sites:

Archiware’s PresSTORE: www.archiware.com

Atempo Time Navigator: www.atempo.com

BakBone’s NetVault: Backup: www.bakbone.com

TOLIS Group’s BRU Server Backup & Restore Software: www.tolisgroup.com

Maintaining regular backups of an Xsan volume is an absolute must. A cluster file
system performs a delicate dance with many members, and badness can occur in a
variety of scenarios. The file system itself is completely reliant on the back-end as a
whole. If you run your business on an Xsan, not having protection is a huge mistake.

The Xsan Command Line
A number of command-line utilities let you perform Xsan management. You’ll find these
in the /Library/Filesystems/Xsan/bin folder. We recommend adding this to the search
path of your shell of preference so you can use the commands without having to type in
the full path or to the Xsan bin directory every time.

NOTE: Whether or not you make substantial use of the Xsan command line, having a
fundamental understanding of it will increase the depth of your Xsan knowledge. If you’ll be
putting an Xsan into production, we highly recommend that you read this section.

CHAPTER 4: Storage

 191

191

Fibreconfig
Although not a part of Xsan, you’ll use fibreconfig often because it mirrors the
functionality of the Fibre Channel System Preference pane, but it’s faster, very verbose,
and has more options for configuring Apple-branded FC cards. To get started, use the –
l option to query fibreconfig for all information about your FC environment by in typing
in fibreconfig –l, which will produce this output:

Controllers

 PortWWN 10:00:00:05:1C:B2:90:1A
 Port Status: Link Established
 Speed: Automatic (2 Gigabit)
 Topology: Automatic (N_Port)
 Slot: Slot-2
 Port: 1

 PortWWN 10:00:00: 05:1C:B2:90:1B
Port Status: Link Established
 Speed: Automatic (2 Gigabit)
 Topology: Automatic (N_Port)
 Slot: Slot-2
 Port: 0

Targets

 NodeWWN 20:05:00:B0:A1:19:9B:14
 Status: Connected
 LUNs: 0, 1, 2, 3

 NodeWWN 20:05:00:B0:A1:20:2A:1A
 Status: Connected
 LUNs: 0, 1, 2, 3

 NodeWWN 20:05:00:B0:A1:13:9B:14
 Status: Connected
 LUNs: 0, 1, 2, 3

 NodeWWN 13:05:00:B0:A1:19:2A:1A
 Status: Connected
 LUNs: 0, 1, 2, 3

Notice that the PortWWN of the controller is listed as well as an indication as to whether
the port is connected.

Immediately below that, you’ll see the card’s speed and topology-----the only two controller
settings you can customize. When you alter them, you need to use the –c option followed by
the controller’s PortWNN to identify the card on which you’re making the change. This
means that to change both of the controller’s ports, you have to run the command twice.

Available topologies for the card include nport, nlport, and auto (the default).
Occasionally you’ll have an issue that requires you to set the topology manually. You
can automate the process for a number of hosts by sending them the fibreconfig
command using the –t option followed by the topology to set. For most Xsan

CHAPTER 4: Storage

 192

192

environments, you’ll want to use N Port. To customize the topology you can use the
following two commands (one per controller) as part of a script (or more likely, convert
the address to a variable and use the variable instead):

fibreconfig -c 10:00:00:05:1C:B2:90:1A -t nport
fibreconfig -c 10:00:00:05:1C:B2:90:1B -t nport

You can statically assign speed from the command line as well. To do so, use the –s
option followed by one of four speed choices: 1 Gb, 2 Gb, 4 Gb, or auto. To customize
the speed you can use the following two commands (one per Controller, and again,
using a variable in the place of the address if you’re doing so programmatically):

fibreconfig -c 10:00:00:05:1C:B2:90:1A -s 4gigabit
fibreconfig -c 10:00:00:05:1C:B2:90:1A -s 4gigabit

The other setting you can customize from the command line is the Loop Arbitration
Physical Address (the AL_PA). If you use this setting with an Xsan, however, it can cause
some serious issues, long term, but if you must, to set the AL_PA with fibreconfig, use
the –a option followed by an address.

NOTE: To implement changes you make to any of these settings, you must do a reboot.

The fibreconfig command is very useful for automating reporting with Xsan, especially
when used en masse through Apple Remote Desktop (ARD). You can use it to display
which targets are available to metadata controllers and clients by focusing on the
NodeWWN information. This can be incredibly useful in triangulating zoning and RAID-
controller issues quickly and effectively. For example, you can obtain a listing from
fibreconfig but constrain the output to NodeWWN items with grep as follows:

fibreconfig -l | grep NodeWWN

You can also obtain the unique address information from all of your clients concurrently
without touching each system, again using a combination of fibreconfig and ARD. This can
be a very useful way to get a list of addresses by node name so that you can label your FC
switch ports, allow access if you’re LUN-masking on Promise device, or just documenting
settings. To grab the PortWWN, simply send the following command through ARD:

fibreconfig -l | grep PortWWN

Overall, there aren’t a lot of settings available with the fibreconfig command. Of those
settings, most that are useful in an Xsan environment are also available from the GUI.
But when managing many Xsan clients, fibreconfig can help speed up the process of
narrowing down issues, reporting, setting up RAIDs, and FC switch configuration.

Labeling LUNs
You can label LUNs using the cvlabel command rather than doing so within Xsan
Admin. If you want to list all your available LUNs first, simply type cvlabel -l. The
command cvlabel -c >labels will dump your label information out to a standard text
file called labels.

CHAPTER 4: Storage

 193

193

Next, open the file in your favorite text editor, and change the very first text field to the
name that you want for your LUN within Xsan Admin. Edit any other lines you’d like to be
labeled, and save the file. Now run the command cvlabel labels, which will read the file
you just edited and label the LUN for use with ACFS using the name you just provided,
making it appear in Xsan admin.

TIP: Xsan Admin (2.x) will show you only the LUNs from the Fibre Channel controller, but you
can use cvlabel to label LUNs on local hard drives and even removable media. Though you
should use this for testing only, it does give you the ability to test Xsan commands that you
otherwise might not be able to run in a lab environment.

cvadmin
The cvadmin command allows an administrator to view and change volume and storage-
pool settings. Options include –H, which specifies a host to run against (if you don’t
indicate a host, the command attempts to run on the localhost) and -F, which sets a
volume name to run against. There are also -f and -e, options, which load commands
from a file and from stdin respectively. Or you can run cvadmin interactively by simply
typing sudo cvadmin at the command prompt, which will provide output similar to the
following:

Enter command(s)
For command help, enter "help" or "?".

In the following example, we have one volume and two metadata controllers. When we
first invoke cvadmin, it displays all of the valid file-system services (which in this context
means volumes per metadata controller) and selects our only volume. Notice that, in the
output shown below, MyVolume has two entries. This is completely normal, because
you should see one entry per volume per MDC. In this case, we have one volume and
two metadata controllers, so we have two entries. The asterisk denotes the active FSS
(or active metadata controller), 192.168.56.5.

List FSS

File System Services (* indicates service is in control of FS):
1>*MyVolume[0] located on 192.168.56.5:51520 (pid 512)
2> MyVolume[1] located on 192.168.56.6:51520 (pid 509)

To perform any worthwhile tasks using these tools, you need to select a volume. In this
particular instance, there’s only one volume, so cvadmin selected the active one and
displayed the statistics for it. But when there are multiple volumes, you must select one
before you use cvadmin. For example:

Select FSM "MyVolume"

Created : Tue Jan 13 15:33:57 2009
Active Connections: 1
Fs Block Size : 16K
Msg Buffer Size : 4K

CHAPTER 4: Storage

 194

194

Disk Devices : 2
Stripe Groups : 2
Fs Blocks : 61277616 (935.02 GB)
Fs Blocks Free : 61006893 (930.89 GB) (99%)

So there’s no confusion as to which volume you’re administering, the cvadmin prompt
always displays the active volume-----MyVolume, in our case, as you can see here:

Xsanadmin (MyVolume) >

To get a full list of available commands you can look in the cvadmin man pages type help
in an interactive cvadmin session. Below we’ve listed the most frequently used
commands and what they do.

>fail VolumeName: Entering fail and the volume name starts failover of the volume
by initiating an FSS vote among your metadata controllers. The MDC that provides
services for this volume and has the highest failover priority should win the election.
If no failover is available, the volume will fail back to its original host.

>fsmlist: This command outputs a list of FSM processes on the machine that’s
selected, which is useful when determining which volumes the machine is capable
of hosting as a metadata controller.

>repof: If you need an open file report, repof will generate one, saving it to
/Library/Filesystems/Xsan/data/MyVolume/open_file_report.txt. The output
contains a slew of information, but the actual file name is noticeably absent. Argh!
You do get an inode number for the file in question though, so you can use a
command such as find /Volumes/MyVolume -inum X to determine the actual file
from the published inode number. The repof command can be very useful when
attempting to determine why a client will not unmount a volume.

>start: The start command is equivalent to starting the volume in Xsan. However,
by specifying a hostname/ip, you can start file system services on just that particular
MDC, which can be handy for maintenance purposes.

>stats: Issuing this command produces volume statistics.

>stop: The stop command is equivalent to stopping the volume in Xsan. But by
supplying a hostname/ip, you can stop file system services on just that particular
MDC, which can be handy for maintenance purposes.

>who: You can list all metadata controllers, client, and administration sessions open
relating to this volume using who. Nodes with the volume mounted will be indicated
with a [CLI] entry.

If you need help with more-complex troubleshooting, you can try these commands:

>activate VolumeName xxx.xxx.xxx.xxx: This command activates FSS services for
the specified hostname and IP you put in place of VolumeName xxx.xxx.xxx.xxx.
Alternatively you can leave off the IP and you’ll activate the local server (if
applicable). You can also run activate on an MDC if it’s not showing appropriate
FSS services available. If you see errors to the effect that an MDC is on standby,
activating the volume on the respective server will often address this issue.

CHAPTER 4: Storage

 195

195

>debug 0x01000000: Entering this debug command will immediately generate I/O
latency numbers and save them in
/Library/Filesystems/Xsan/data/MyVolume/log/cvlog immediately (a process that
normally occurs only hourly). The key figure in the output is the sysavg number for
PIO HiPriWr SUMMARY. If your metadata is hosted on an Xserve RAID volume, this
number should be below 500ms. If you’re using storage systems from Promise, the
active/active controller setup introduces additional latency, so the numbers should
be in the 805 to 1,000ms range.

>latency-test: Run latency tests between the FSM and clients. It can be used to
isolate problematic clients on the SAN.

>paths: Output a list of LUNs visible to the node and the corresponding HBA port
used to communicate with that LUN. This option can be helpful when you are
getting those pesky "stripe group not found" errors.

>show: This will output information about the stripe groups/storage pools used by
this volume. It is useful for cross referencing index numbers outputted in system.log
to human readable storage pool names. It also provides various statistics and
configuration, such as stripe group role, corresponding LUNs, affinity tags, multipath
method, and other useful bits of information.

Overall, the cvadmin tool is very useful when troubleshooting metadata controller behavior.
But you don’t use it when you want to perform Xsan setup or client-management
operations. To label LUNs, use cvlabel. To mount and unmount volumes, you’d likely use
the new xsanctl tool or mount -t acfs. To perform defrag operations and volume
maintenance, use the snfsdefrag and cvfsck tools, respectively. And while you can add
serial numbers and create volumes from the command line, you’ll probably find it much
easier to continue performing these operations through the Xsan Admin GUI tool.

Repairing Volumes
When checking for volume-integrity and repair issues on Xsan volumes, don’t use the
standard fsck command; use its replacement, cvfsck. And if you’re going to repair a
volume, check the Apple Knowledge Base article at http://support.apple.com/
kb/HT1081.

Other Commands
You can also leverage other Xsan commands for use in Xsan management. Here are
some, along with descriptions of what they do:

cvcp: To copy files or directories in and out of an acfs volume (one managed by
Xsan) use cvcp. It has Xsan specific options and runs faster than the standard cp
command. During the initial migration of data into the Xsan, we recommend using
this command rather than copying with the finder.

cvmkdir: This command lets you create a new directory on an Xsan volume with an
affinity.

CHAPTER 4: Storage

 196

196

cvmkfile: You can use cvmkfile to make a file on an Xsan volume, a procedure
that’s useful for testing speed.

cvmkfs: If you need to create a new Xsan volume, cvmkfs will do it.

cvupdatefs: You use cvupdatefs during some upgrades of Xsan software (for
example, from 1.x to 2.x)

fsm and fsmpm: These are the Xsan processes that you invoke from launchd instead
of running manually.

Additionally, you’ll find a number of useful files. This list describes some of the types and
where to look for them.

Logs for Volumes: /Library/Filesystems/Xsan/data/volume name/log/cvlog

Configuration Files for volumes: /Library/FileSystems/Xsan/config/VOLUME.cfg
directory.

Configuration files for the Volume auto-start list:
/Library/Filesystems/Xsan/config/fsmlist.

Configuration files for the Controller list:
/Library/FileSystems/Xsan/Config/fsnameservers

Default Volume Configuration File: Located in /Library/Filesystems/Xsan/config,
each volume has a corresponding CFG file.

iSCSI
The iSCSI network storage protocol allows sending and receiving of SCSI commands
over a TCP/IP network. This allows you to leverage the low-cost Ethernet medium to get
SAN performance and network-based storage. While you can use pretty much any
Ethernet switch, we recommend that if you use iSCSI, you either dedicate a switch to it
or use quality switches and build a dedicated VLAN for iSCSI traffic.

NOTE: Small Tree (http://www.small-tree.com) makes a 10-gigabit Ethernet adapter
and software with support for Mac OS X as well as a number of multi-port Ethernet cards that
can supplement the two built into most modern Mac OS X desktop machines.

You can use iSCSI storage with Mac OS X. As with Xsan, to get started with iSCSI you’ll
need an initiator and a target (or in many cases, lots of targets). Studio Network
Solutions (SNS) provides a software-based iSCSI initiator called globalSAN that you can
download from its site and use for free. Alternatively, you can look into the ATTO Xtend
SAN, which runs about $200 for one user, which drops to about $90 per seat for 100
users. ATTO supports Xtend whether or not you use any of their other products.

Software-based initiators will use the CPU of your system and a built-in or third-party
standard Ethernet port, but you can also buy a dedicated card that will off-load the
processing to itself. In some cases, for various performance reasons, you’ll need to do

CHAPTER 4: Storage

 197

197

this. The examples in this section, though, use the Studio Network Solutions (SNS)
globalSAN software. SNS provides its software-based iSCSI initiator free of charge, and
it can be downloaded from the web site: http://www.studionetworksolutions.com.

NOTE: At the time of this writing the globalSAN iSCSI initiator is not compatable with 10.6,
though Studio Network Solutions has commited to publishing a compatible version.

To get started, first download and install the software. GlobalSAN uses a fairly standard
package installer that can be installed with a simple double-click. Once installed, you will
see the globalSAN iSCSI System Preference Pane, as seen in Figure 4-19.

Figure 4-19. System Preferences with globalSAN iSCSI Preference Pane

If you click on the globalSAN System Preference you’ll be able to add your first portal.
Each iSCSI share will have a unique IP and be referenced as a portal. Click on the add
icon (+) to add your first portal, as seen in Figure 4-20.

CHAPTER 4: Storage

 198

198

Figure 4-20. globalSAN portals

Now that you have your portal populated, click on the Targets tab and you should see
the storage listed, shown in Figure 4-21. Click on the target and then click on the Log
On button to initiate your session into the storage. At this point, it will mount on the
Desktop (provided you have already given it a file system), and you will be able to use it
as you would any other storage. You can check the box for Peristent if you would like to
have the volume always mounted on the system.

CHAPTER 4: Storage

 199

199

Figure 4-21. globalSAN Targets

If you click on the Sessions tab, then you will be able to look at various statistics about
your storage including the LUN identifier and disk name, as seen in Figure 4-22.

CHAPTER 4: Storage

 200

200

Figure 4-22. globalSAN Session Statistics sheet

If you don’t yet have a file system on the storage, then you can open Disk Utility (shown
in Figure 4-23) and you will see the storage listed there, click on it, click on the Partition
tab and you will then be able to give it a file system.

CHAPTER 4: Storage

 201

201

Figure 4-23. Formatting iSCSI disks using Disk Utility

Once the disk has been formatted, it will then mount on the system and interact just like
any other local volume. Thus, integrating Mac OS X clients into existing iSCSI
infrastructures is neither difficult nor expensive, thanks to the kind folks at SNS, who
offer the globalSAN iSCSI initiator for free (as in beer).

CHAPTER 4: Storage

 202

202

ExtremeZ-IP
Microsoft has pulled UAM support from the latest Windows Server release. Given that
Microsoft is focused on SMB/CIFS and Dfs, and that the set-up and clustering features
of the File Sharing service on Windows Server are well documented, in this chapter we
won’t cover setting up File Services for Macintosh on Windows Server. Because many
organizations would rather host AFP services on Windows rather than Mac OS X,
ExtremeZ-IP often enters into conversations about enterprise-level integrations.

ExtremeZ-IP lets you provide AFP access to client computers using Windows Server. It
also allows for the integration of print services for clients, integrates seamlessly in Active
Directory, requires no client to be installed, is clusterable, and is far more scalable than
the AFP services integrated into Mac OS X Server. And ExtremeZ-IP Enterprise has
integrated Dfs support

Microsoft’s Distributed file system presents, as a single virtualized location, what may
actually be a number of file servers being used to replicate data among multiple hosts.
Enterprises often use Dfs to host home directories so that the network can replicate the
directories effectively, which results in flexibility, scalability and redundancy. This allows
large environments to move home directory locations among hosts without changing
locations in the users’ Active Directory profiles. Given the prolific stature that DFS has
attained the lack of DFS support in Mac OS X becomes a common pain point for many
environments and leveraging ExtremeZ-IP can help to smooth enterprise-class
integration.

Setting up AFP in ExtremeZ-IP
To get started with ExtremeZ-IP, download the software from
http://www.grouplogic.com, extract the installer from the ZIP file, run the executable,
and select Next at the Welcome screen. Heed the warning to close all open
applications-----including Windows Explorer (explorer.exe)-----and Services, then click on
the OK button. At the licensing screen, indicate whether you’ll be installing a licensed
version or a trial of the software. Select the choice appropriate to the way you obtained
the software, then click on Next, which will produce the license agreement. Read the
agreement, then choose whether to accept.

At the Registration screen enter the name of the person that the software is licensed to in
the Name: field and the company that the software is licensed to in the Company: field.
Finally, enter the license number. (You won’t see this screen if you’re using a trial copy.)

Now you’ll see a Choose Destination Location screen. If you’re installing the software in
the C:\Program Files\Group Logic\ExtremeZ-IP directory, you can simply click on Next;
otherwise, click on the Browse button, select your installation location, and hit the Next
button once again. At the Select Program Folder screen, click on Next if you want the
program name to show up in the Start menu under All Programs, or click on another
subdirectory if you’d like to customize where the item will appear, then click Next when
you’re satisfied.

CHAPTER 4: Storage

 203

203

At the following Choose Destination Location screen, select where to install the
ExtremeZ-IP Print Support files and then click on Next (or simply click Next if you’re OK
with it being installed in the c:\ExtremeZ-IP Print Support) directory. In the ExtremeZ-IP
Installation pop-up screen that appears, choose whether the ExtremeZ-IP services
should start automatically when Windows boots (which will set the services to Automatic
rather than Manual). The installer will then run and you’ll see another pop-up screen
asking if you want to share out your Print Support files. If you’ll be using ExtremeZ-IP as
a print spooler for Mac OS X clients, you’ll likely want to answer affirmatively.

Finally, at the Post-Install Actions screen, leave the Launch ExtremeZ-IP Administrator
box checked so that, on completion of the install, the administrative application (shown
in Figure 4-24.) will open. Click Next to finish the installation. If you uncheck the Launch
Admin box, you can still start the utility by going to Start h All Programs h ExtremeZ-IP
h ExtremeZ-IP Administrator.

Figure 4-24. ExtremeZ-IP Administrator

CHAPTER 4: Storage

 204

204

Configuring ExtremeZ-IP
The ExtremeZ-IP Administrator tool lets you create shares and assign them the
appropriate permissions as well as configure the AFP service. Usually, the first task you
want to undertake is dealing with the AFP global settings, so click the Settings button at
the bottom of the Administrator screen (Figure 4-25), which brings up the Settings dialog
shown in Figure 4-25 with the File Server tab active. In it, you can create a log-in
greeting, similar to the one available in Server Admin for Mac OS X Server, and you can
set the TCP port over which AFP will run (548 by default). You can also choose whether
the server will be able to warehouse home directories, and you can define the log-in
types to (many environments will disable guest access and cleartext log-ons).

Figure 4-25. Settings Dialog of ExtremeZ-IP Administrator Tool, File Servers tab

Once you’ve applied the settings for the AFP functionality, click on the Security tab,
where you’ll be presented with the options, divided into three sections, shown in Figure
4-26 and listed here:

Permissions

 Allow Mac clients to change folder permissions: Mark this check box
so Mac OS X users can alter rights on files and folders, giving those
users some security over their data. Disable the option to use only
inherited permissions already set on the Windows server.

 Reset permissions on move (global): Turn this on if you want target
permissions to match those of the ACLs when data moves into the
directory structure controlled by ExtremeZ-IP. Folder and file
permissions will change to those of their new parent folder.

CHAPTER 4: Storage

 205

205

 Support UNIX permissions and ACLs: Put a check in this box so that
ExtremZ-IP will support ACL in addition to POSIX. Windows manages
security exclusively via ACLs; OS X can also use Unix permissions and
Mac-type folder permissions.

 Support ACLs on all volumes (global): Enabling this will extend ACL
support enabled with the previous option to volumes shared out over
AFP

 Show only accessible volumes: With this option turned on, users that
don’t have access to volumes on the server will not see them (even
grayed out).

Other Options

 Allow remote administration of server: Enable this option if Windows
users with administrator privileges need to use the ExtremeZ-IP
remote-management features to configure the server from offsite.

 Allow workstations to save password (OS 9 only): With this setting
checked, Mac OS 9 workstations can cache passwords to volumes.
Users authenticating from Mac OS 9 clients will see the Remember
Password in Keychain dialog.

 Notify Mac clients of password expiration in xxx days: Select the
check box, and you can fill in the number of days before password
expiration that users will receive warnings. When the feature triggers,
users will receive password-change prompts each time they log in and
select a volume.

 Enable IPv6: If you select this option, which lets AFP use IPv6,you may
have to install the protocol manually on some Windows systems where
it has not yet been utilized before they can serve ExtremeZ-IP.

Directory Services: This section of the security tab is where you configure LDAPv3
and Active Directory integration.

 Use Global Catalog: Removing the mark from this check box will
cause ExtremeZ-IP to search only the domain specified.

 Account: In the text box to the right of this label, enter the
administrative user name for the directory service.

 Password: Type the administrative password for the directory service
into the provided text box.

 Domain: Fill in this field with the domain name for the directory service.

 Additional directory search criteria: Here you can set a custom search
path for the directory service.

 Validate Account: Click this button to verify that the LDAPv3 service is
accessible.

CHAPTER 4: Storage

 206

206

Figure 4-26. Settings Dialog of ExtremeZ-IP Administrator Tool, File Servers tab

When you’ve applied your settings, select the Search tab if you wish to enable Spotlight
support, then choose the Filename Policy tab if you want to customize file names that
ExtremeZ-IP will allow for files and directories on the server. Now click on the Service
Discovery tab. You’ll be looking at the screen shown in Figure 4-27. Here, you can
adjust the settings for Bonjour, AppleTalk (likely not needed unless you have Mac OS 9
clients) and Zidget/HTTP support, which configures the client to access the wide-area
Bonjour implementation on ExtremeZ-IP.

Figure 4-27. Settings Dialog of ExtremeZ-IP Administrator Tool, Service Discovery tab

CHAPTER 4: Storage

 207

207

Setting up DFS in ExtremeZ-IP
GroupLogic has a great explanation of how you get a Mac client to use ExtremeZ-IP.
You’ll find it in a technical whitepaper that documents the installation and configuration
process. To get the paper, go to http://www.grouplogic.com/resource-
center/pdfs/How-Microsoft-DFS-Home-Directories-Work-w-ExtremeZ-IP-60-A-
Technical-White-Paper.pdf.

Managing Filesystem Permissions in OS X
There’s a lot of misinformation and confusion surrounding the proper management of
permissions in OS X. Discussion of the topic have been fairly heated since the migration
from OS 9, which had very loose capabilities for delegating, assigning, and managing
rights. OS X, in contrast was a native multiuser OS, and as such, it had permission-
based restrictions in its heart and soul.

Admins doing migrations “panic’d,” mass chaos ensued, and suddenly all you heard
were complaints about permissions problems. Granted, in the early days, dealing
with rights in OS X was a bit of a nightmare, but the situation is much better now.
There’s no reason why a modern-day environment running 10.5 or 10.6 should
continue to be plagued by permissions problems. Grasping the two main OS X
discretionary access control (DAC) systems is paramount to a proper understanding
of OS X permissions.

POSIX-Based Permissions
OS X inherited its POSIX-compliant permissioning from its Unix progenitors. POSIX is a
long-standing system, in both Unix and Linux, for defining the owner, group, and mode
of a file. The mode, presented through a series of numeric values, represents the
permissions of the file. Using POSIX, you can apply access restrictions at three different
levels: that of the owner, of the group, and of everyone else. Each levels has three
possible access capabilities, represented by three different modes: read, write, and
execute. Each level has a numerical mode value, which determines its respective access
rights.

POSIX uses three-bit flags to represent modes, thus a numerical value denotes each
mode. In most-significant to least-significant bit order, a 1 in each position gives read,
write, and execute permission. Put another way, read’s binary and decimal values are
100 and 4, write’s are 010 and 2, and execute’s are 001 and 1. Thus, a user with full
access has a mode of 111 binary and 7 (4+2+1) decimal. Numbering by sets of 3 bits
(which can represent the 8 decimal digits 0 through 7) is called octal notation.

You don’t really need to know the binary system, but knowing the numeric values of
each mode is important. Each level: user, group, and everyone, has a mode represented
by an integer value based on these three bits.

CHAPTER 4: Storage

 208

208

For example, consider the list of files and directories in the /Users folder that the
command ls –al /Users produces:

helyx:~ hunterbj$ ls -al /Users
total 0
drwxr-xr-x 10 root admin 340 Jul 1 20:22 .
drwxrwxr-t@ 51 root admin 1802 Jul 7 00:58 ..

drwxrwxrwt 13 root wheel 442 Jun 29 23:54 Shared
drwxrwxr-x+ 20 demo admin 680 May 29 18:15 demo
drwxr-xr-x+ 55 hunterbj staff 1870 Jul 8 00:57 hunterbj

In every line of the output, the first field (the one containing combinations of dashes and
the letters d, r, t, w, and x) reports the POSIX permissions, as laid out in a bitmap.
Rather than using 1’s or 0’s though, it displays identifiers (the dashes and some of the
letters) for each permission attribute. Let’s look at the line that contains the word demo
twice:

drwxrwxr-x+ 20 demo admin 680 May 29 18:15 demo

Here, the string ‘‘drwxrwxr-x’’ holds the POSIX permissions. In an ls output, the first
digit, d, specifies the file system type, in this case a directory. The next three digits, rwx
(read, write, and execute), represent the mode for the owner, who in this example is
demo in the admin group. Thus, user demo has read, write, and execute privileges for
this folder. The next three digits represent group privileges, and the final three represent
everyone privileges. For the vast majority of POSIX privilege management, you’ll be
using these three basic access rights: read, write, and execute.

To an extent, these privileges are fairly self explanatory: If you have read permission for
a file, you can open it and view its contents. If you have the permission for a directory,
you can list its contents. The write privilege, when applied to a file, allows for both
modification and deletion. But-----a user without write privileges for both a file and its
parent directory can’t delete the file. Thus, removing the write privilege from a directory
is a handy way of establishing an append-only or drop-box privilege scheme.

The execute bit, when enabled for a file, allows execution of it. This is not the same as
opening a file. The former implies that the file contains executable binary data or
uncompiled code which references an interpreter via a hash-bang (#!) statement (for
which you’ll find more detail in chapter 8). The executable bit also plays a very important
role with directories: It controls whether users are allowed to traverse a directory’s path.

A person who lacks the privileges—via ownership, group membership, or public
permissions—won’t be able to list the contents of the directory. Nor will that individual
be able to access any file-system elements the directory contains. Because of this,
denying execute privileges is a good way to completely block users from accessing
data at the perimeter of a directory structure, thus allowing you to continue to use
owner, group, and everyone management. In contrast, denying users read privileges
on a directory will not prevent them from traversing into its subdirectories, where
they’ll have any access granted at the everyone level (which may include read access
to sensitive data).

CHAPTER 4: Storage

 209

209

For day-to-day management of POSIX permissions, these three modes will be your
primary weapons against those pesky users. But you have a few more options. In the
previous ls output we showed, you may have noticed some special permissions on the
directory /Users/Shared. Here’s the line again:

drwxrwxrwt 13 root wheel 442 Jun 29 23:54 Shared

Under the everyone digits (the letters in bold), instead of the expected x (execute), we
have a t. This is referred to as the sticky bit. When enabled on a directory, it prevents
deletion of a file inside of that directory by anyone other than the file’s owner. Thus, if
Jimbob creates a file, then gives everyone read and write privileges, Geraldine will be
able to edit its content, but not delete it. Only Jimbob can delete the file. It’s worth
noting, though, that with write privileges, nothing stops Gerry from simply deleting all of
the file’s contents.

To assign the sticky bit to a directory, you simply use a forth octal number, which has a
value of 001. Thus, the Shared folder in the example line above has a mode of 1777,
with the 1 (001 binary) being the ‘‘sticky’’ directory. To actually apply this mode to a file,
use the chmod command, run as root if you’re the owner of the targeted directory:

chmod 1777 /Users/Shared
chmod –R 777 /Users/Shared/*

The second line specifies the –R flag, which will actually apply the mode 777 to all items
inside of the /Users/Shared/ directory. Thus, all files in the directory will be editable by
anyone, but because of the first command that was run, only the owner can delete a file.

The fourth octal has two modes in addition to sticky: set-group-ID-on-execution, which
has a value of 010, and set-user-ID-on-execution bit, which has a value of 100. In OS X,
these two operate solely on executable files that contain binary executable data (no #!
scripts). If either of these modes is set on an executable, whenever that file runs, it will
do so in the context of the owner and group assigned to it. Thus, if a program is owned
by root and has setuid on, whoever runs that program will have root access (within the
confines of that program). This is a bit of a scary thought, so use this capability with
great care. Many a local privileged-escalation exploit has been born from the setuid bit.

You should understand one final aspect of POSIX permissioning in OS X: How the
system deals with group assignment on newly created files and directories. Historically
in OS X, when a user creates a file, that file will assume group ownership based on the
creating user’s primary group id. But with OS X 10.5, Apple introduced compliance with
SUS3 (Single Unix Standard, version 3), which dictates that the group established to the
new file will be inherited based on group ownership of the parent directory. This is a
much better system, and produces a lot less frustration.

With this change, you can now use group permissions on directories to establish group-
specific collaboration areas. There’s just one small wrinkle in this plan. By default, OS X
ships with a umask value of 022. When you create a file, the default mode is full
privileges, 777, filtered by the 022 umask. To determine ultimate privileges, you simply
subtract the number representing the umask from that of the privileges. So in this case,
newly created filesystem objects will have a mode of 755 (777 minus 022), or rwxr-xr-x.

CHAPTER 4: Storage

 210

210

The main problem here is that middle octal, the group octal, which assigns read (r) and
execute (e), but not write (w) rights. By default in OS X, newly created files are not group
writeable. Failing to recognize this leads to serious permissions problems in a
collaborative environment. Luckily, you can change the umask. To do so in OS X 10.5,
simply run the umask command with the desired mode. In this case, we want rwxrwxr-x,
so we use a umask of 002. The command for this is (brace yourself): umask 002.

Unfortunately, executing umask may not affect all running processes, and the result won’t
persist across reboots. To remedy the situation, we recommend using the launchd
launchd-user.conf file found in /private/etc. To set this, simply run echo "umask 002"
>> /private/etc/launchd-user.conf as root. That’s it. Reboot and you’re done.

You may also want to set this on your file servers as well. But depending on your
environment and usage, though, this can have security implications, so proceed with
caution. A better solution, at least with AFP, is to use either AFP inheritance or ACLs, as
described in the next section.

If you’re running OS X 10.4 or earlier, the process for changing the umask is slightly
different. We recommend installing the program Umask Doctor and setting it to launch
at login if you do not wish to do this programatically. This utility specifically performs this
duty, and it works out pretty well. Alternatively, you can simply make the change via the
defaults command run with root/sudo privileges:

defaults write /Library/Preferences/.GlobalPreferences NSUmask 2

Note, however, that the NSUmask value is actually a decimal representation of the octal
umask, so you’ll have to do a conversion. One approach is to revert to the binary
representation of the umask and convert that to decimal. For example, in binary, the three
octets of the umask 022 are 000, 010, and 010. Concatenated, they make the binary
number 000010010, which is 18 decimal (0 × 20 + 1 × 21 + 0 × 22 +0 × 23 + 1 × 24 = 18) and
that’s the number to substitute for the NSUmask value. There’s one other note: The
programs that honor the NSUmask value always seem to run under GUIs. Not all third-
party programs support this value, but generally the major players do.

So that my friends, is POSIX permissions in a nutshell. The system may seem somewhat
limited, but really, you’re limited only by your own ingenuity and the speed at which your
fingers type. In a POSIX environment, groups and nested hierarchies are your friend.

Access Control Lists
Mac OS X 10.4 saw the introduction of ACLs, which have been continually refined. For a
traditional Windows system administrator, ACLs are likely easier to work with than
POSIX-----ACLs match the permission options almost identically. In fact the OS X NFSv4
ACL format, is compatible with Windows ACLs.

An ACL is extensible, which allows you to assign very granular permissions to specific
users and groups. It frees you from the constraints of the POSIX user/group/everyone
paradigm and greatly simplifies permissions management. On top of their extensibility,
ACLs also define numerous different access levels and inheritance capabilities, which
allow for especially effective permissions hierarchies. The easiest way to manage ACLs

CHAPTER 4: Storage

 211

211

on a file system is via the Server Admin application (Workgroup Manager in OS X 10.4).
Figure 4-28 is showing the File Sharing tab.

Figure 4-28. OS X Server Admin Screen, File Sharing tab

You get to the File Sharing interface by highlighting the server container in the Server
Admin List, then clicking on File Sharing. Here, you can browse your file systems or
share points and assign both POSIX and ACL permissions. Server Admin is a great tool
for modifying POSIX, but it groups read and execute privileges under a single Read
selection.

You can modify POSIX owners and groups by dragging them into the respective slots
and then choosing the appropriate level of permission for each. To create ACLs for
users and groups, drag them into the ACL list and apply appropriate permissions. Apple
has several basic presets for you to use: Full Control, Read & Write, Read Only, Write
Only, and Custom. The company also provides numerous fine-grained access writes in
four main categories: Administration, Read, Write, and Inheritance. To modify granular
permissions, highlight the ACL, then click on the pencil below. Here are breakdowns of
the categories:

CHAPTER 4: Storage

 212

212

Administration
The Administration section includes two permissions capabilities:

Change Permissions: Users who have this right can manage privileges on a file via
POSIX or ACLs. They may also delete any ACLs on the file or folder, so assign this
permission with caution. When using chmod to manage ACL’s (discussed later), you
grant the change permissions with the writesecurity privilege.

Change Ownership: Enabling this for a user lets that individual assume ownership of
a file. However, that person can’t transfer ownership to anyone else. To do so, a
user must have root access. You grant the change ownership privilege with the
chown permission when using the chmod utility.

Read Permissions
By checking the global read box, you ensure that users have the ability to traverse and
list folders, as well as read file data and metadata stored via extended attributes. The
Read section contains five specific permissions:

Read: The read privilege, when applied via ACLs, behaves similarly on both files and
directories, letting users view the content of both. If you’re working with ACLs from
the command line, you grant this right using read for files and list for directories.

Execute: As with read, when applied using ACLs, execute acts similarly on both files
and directories. From the command line, you grant this privilege using the execute
permission for files and the search permission for folders.

Read Attribute: You grant this permission, using the readattr privilege, to let a user
to view the data describing a file’s characteristics, such as its permissions. You
enable this permission with the readattr privilege.

Read Ext Attribute: This permission allows a user to read a file’s extended-attribute
data-----file attributes not understood by the OS, such as information about the OS X
quarantine system and disk-image checksums. Third-party software for metadata
purposes. Extended attributes are also responsible for the data found under the
More Info tab when you get information on a file. Use the readextattr permission to
grant this right.

Read Permissions: Given this privilege, a user can view security information, such as
ACLs or POSIX permissions, about a file or folder. To assign this right, use the
readsecurity privilege.

Write Permissions
By checking the Global Write box in the ACL, you ensure that users have the ability to
alter file data, however. But this is rarely useful without the ability to read the data as
well. While write-only access on a directory can certainly be handy for creating a private
drop box, we recommend that you do this via the POSIX everyone permission-----its

CHAPTER 4: Storage

 213

213

interface deals with the task better by displaying a custom drop box icon (if you’ve
granted write access via an ACL without read, then the folder will show up with the red
access-denied icon). The write-permissions category also allows users to create and
modify file data, including file metadata stored via extended attributes. There are six
specific write permissions, as shown here:

Write Attributes: This permission allows a user to change a file’s attribute data.

Write Ext Attributes: Granting this right lets a user edit files’ and folders’ extended
attribute data (extra information about a file’s traits) as well as create new entries in
that data. You’ll rarely want to make such data user accessible, though. Software
behind the scenes usually manipulates this data.

Write/Add Files: The write privilege, when applied via ACLs, behaves similarly on
both files and directories. The permission no longer grants the ability to delete a file
or create a new directory. These abilities are now bestowed by delete and append,
respectively. When applying ACLs via the command line, you can use write on both
directories and files, but on directories, it’s ultimately interpreted as the add_file
permission.

Delete: As noted in the information above about Write/Add Files, you now give users
the right to eliminate files using the delete flag rather than write.

Append/Add Directories: This capability is a subset of the POSIX write capability. It
allows users to create new directories and edit existing files. Note that to create new
files, a user must have write privileges. Using chmod, from the command line, you
assign the append/add directories privilege using append. The flag is interpreted as
add_subdirectory.

Delete Child: This permission, which applies solely to directories, lets a user to
delete sub items (provided the user has delete privileges for those items). The
delete_child flag assigns the right.

Inheritance
This section applies solely to directories. You use inheritance to customize how
permissions are inherited by a directory’s children. For instance, if you apply ACL
inheritance to just the first level of subfolders and files, new folders users create will
inherit their parents’ permissions, but items created inside the new folders will not.
Likewise, by using the inheret_only flag, you can assign ACLs specifically for
inheritance, but not have them apply to the parent object, which can be very useful. You
control inheritance with the four separate rights in the following list:

Apply to this folder: When selected, the ACL will apply to this folder. Otherwise, the
folder will have only_inherit permission, and the ACL will be active only on children
that inherit the ACL.

Apply to Child Folders: When you activate this option, newly created child folders of
the directory will inherit the ACL. Use the directory_inherit permission to grant
this privilege.

CHAPTER 4: Storage

 214

214

Apply to Child Files: When enabled, this privilege will cause new files created in the
directory to inherit the ACL. You use the file_inherit permission to grant this right.

Apply to All Descendants: If you activate this option, the inheritance properties of
the directory will pass on to newly created directories; allowing for automated
propagation of ACLs as users create additional directories and files. Otherwise, the
directory you’re currently attending to will have the limit_inherit privilege.

Knowing these basics allow you to better grasp Apple’s presets: Full Control assigns
read, write, and administration capabilities; Read & Write contains the permissions from
each respective category. Likewise Read Only and Write Only are limited to their
respective categories. When using Apple’s presets, full inheritance applies to the folder
and its children (both file and directory), as well as to inheritance of inheritance data.

Using chown and chmod to manage permissions
To change POSIX ownership of a file or folder, you use the chown utility. Its syntax is
fairly straightforward:

chown owner[:group] /path to file

If all you’re doing is changing ownership, you can omit the :group [the colon followed by
the actual value for group]. Alternatively, you can use the chgrp command, which has
similar syntax, if you merely want to change group ownership. To change ownership,
you must either have granted the chown ACL right, or you must be running as root.

You can use chmod to manage both POSIX and ACL permissions. Realize, however, that
managing ACL’s from the command line can be a bit hairy-----it’s not for the faint of heart.
In any case, first though, the basics. As demonstrated earlier, you can use chmod to
modify POSIX permissions. The syntax is:

chmod [-R] mode /path to file

As discussed in this chapter’s section on fragmentation, the ---R option, if used on a
directory, applies the mode recursively to all descendents. To modify or create an Access
Control Entry (an entry in an access control list) or ACE using chmod, you use the +a, and –a
flags. For instance, to grant full control of file test.txt to the user hunterbj, run the command

chmod +a "hunterbj allow read,write,execute,delete,append,readattr,writeattr,«
readextattr,writeextattr,readsecurity,writesecurity,chown" test.txt

Subsequently, you can view the ACLs on that file by passing the –e flag to ls as follows:

ls -ael test.txt
-rw-r--r--+ 1 hunterbj staff 0 Jul 9 00:56 test.txt
0: user:hunterbj allow read,write,execute,delete,append,readattr,writeattr,«
readextattr,writeextattr,readsecurity,writesecurity,chown

Likewise, if you want to grant full control for a directory, run:

chmod +a "hunterbj allow list,add_file,search,delete,add_subdirectory,delete_child,«
readattr,writeattr,readextattr,writeextattr,readsecurity,writesecurity,chown,«
limit_inherit,only_inherit" testfolder

CHAPTER 4: Storage

 215

215

To remove an entire ACE, you can use the –a# flag followed by an index number, as
shown in the first example below, which. Or, if you wish, you can remove only specific
attributes as shown in the second command, which removes only delete privileges,
leaving the others in place.

chmod –a# 0 test.txt
chmod –a "hunterbj allow delete"

When first applying ACLs or when making changes, you’ll likely want to propagate what
you’ve done to existing files and folders, since inheritance rules apply only at file- or
folder-creation time. You can apply permissions recursively via the chmod –R +a
command, but we’d recommended that you do this in Server Admin via its Propagate
Permissions menu item, which you can find by clicking on the widget, shown previously
in Figure 4-28, directly to the right of the pencil icon a bit above the bottom of the
screen. With this method, descendant file-system objects will receive inherited, rather
than explicit permissions.

When a large portion of your file system contains explicit permissions, management
becomes harder. In addition, explicit permissions override inherited permissions, so you
might end up with unexpected results. You can create inherited ACEs with chmod as
well, though. You do so by using the +ai flag instead of the +a flag. For example, the
following commands will set a non-inherited ACE on /MyAwesomeFolder, but will then
recursively copy inherited ACE’s to all descendants:

chmod +a "hunterbj allow read,write,execute,delete,append,readattr,writeattr,«
readextattr,writeextattr,readsecurity,writesecurity,chown" /MyAwesomeFolder
chmod –R +ai "hunterbj allow read,write,execute,delete,append,readattr,writeattr,«
readextattr,writeextattr,readsecurity,writesecurity,chown" /MyAwesomeFolder/*

TIP: Due to the way that the chmod utility parses the ACE, using the documented syntax for
chmod does not work correctly when used with user or group names that contain spaces in the
shortname. This creates issues with many Active Directory groups. Fortunately, to get around
this issue, you can use the colon as a delimeter. So, to assign an ACL for the group
‘‘MYCO\Mac Server Admins,’’ the following syntax can be used: chmod +a
'MYCO\Mac Server Admins:allow:read,write,execute' /MyAwesomeFolder

You can also remove ACLs via the chmod’s ---N argument. Combined with ---R, you can
use chmod to recurse through directories and remove all ACLs. The command syntax is
chmod –RN /MyAwesomeFolder

.DS_Store Files
In a number of environments that use SMB, AFP, and other file-sharing protocols with
Mac OS X, Windows, and Linux clients, OS X leave a number of hidden files behind. If
you’ve managed such environments, you’ve likely noticed the .DS_Store files and
possibly even tried eliminating them. Try as you might, though, always seem to come
back. Well, you don’t have to live with them.

CHAPTER 4: Storage

 216

216

You can tell your Windows clients not to show hidden files. From Windows XP, open
Windows Explorer from the Start menu, an icon, or via the command line (explorer.exe is
the executable). Select the Tools menu, then Folder Options…, click on the View tab,
then mark the Do not show hidden files and folders radio button. For Vista and up, open
the Folder Options control panel, choose the View tab, and then select Do not show
hidden files and folders.

If this proves unwieldy, though, you can prevent each Mac OS X user account from
making the .DS_Store files. This isn’t to say you should -----OS X uses the files to track
the view and icon placements of a folder. But if you need to get rid of the files, you need
to get rid of them…. To do so, create a file called com.apple.desktopservices.plist in the
~/Library/Preferences folder of each user account. Its contents should be:

{
DSDontWriteNetworkStores = true;
}

The easiest way to go about this is on a single system is simple to run the following
command for each user:

defaults write com.apple.desktopservices DSDontWriteNetworkStores true

If, however, you have a large number of clients and use Open Directory, you’ll want to
push out the com.apple.desktopservices.plist as a managed preference-----or, for future
users, you can drop the file into /System/Library/User
Template/English.lproj/Library/Preferences. Now the file is part of the user template.
We discuss managed preferences extensively in Chapter 7: Client Management. Note
that after following this procedure, you should probably reboot. Also, though setting this
option will keep new .DS_Store files from being generated on network volumes (aka
network stores), it won’t do so for local volumes, including those on an Xsan (since Xsan
volumes are basically interpreted by the finder as local volumes, in this context).

Once you’ve disabled the creation of new .DS_Store files, you’ll probably want to
eliminate those already on the volume. Use the find command in conjunction with the -
name and -exec flags followed by rm as (replacing path to share with the path to your
actual share). Here’s the syntax:

find /path to share -name .DS_Store -exec rm {} \;

For the command to process correctly, the account under which it’s running must be
able to access files in all folders of the tree where .DS_Store files may exist. If you find
new .DS_Store files appearing after you’ve followed all these procedures, look at the
owner of the new files. Typically you’ll find that your procedure skipped that user’s
account.

Summary
In this chapter, we discussed how to implement storage solutions on your OS X clients
using network protocols such as AFP, NFS, and SMB. This includes the traditional
members of the Mac OS X storage ecosystem. We also covered Fibre Channel and
connecting to iSCSI targets, but didn’t delve deeply into providing non-Apple LUNs for

CHAPTER 4: Storage

 217

217

either-----attempting to show how to build a LUN for hundreds of products-----those from
EMC, HP, Hitachi, NetApp, Sun and a slew of other vendors isn’t an effective use of
anyone’s time. Each vendor (and open-source project provider, if you prefer) will offer
extensive documentation. The important knowledge to convey was how to deploy the
solutions that can run on Apple iron.

The chapter heavily focused on SAN-based storage for a reason: Storage centralization
and virtualization-----made possible through SAN technologies-----benefits IT departments
by delivering immense flexibility and increased data management capabilities.
Concurrent simultaneous access to data opens up a world of possibilities-----clustered
services, live backups over FC without saturating public networks or servers, and a
cornucopia of other options. Additionally, storage virtualization allows for growth and
expansion, adding performance or storage-based nodes as needed. SAN technology is
at the center of the virtualization movement, and it’s here to stay.

In the next chapter, we’ll discuss various groupware options available to your OS X
clients. We’ll cover topics such as integrating with Exchange, Groupware, and Lotus
Notes, as well as some Apple-hosted products such as iCal Server and Address Book
Server. Where appropriate, we’ll also discuss how to store back-end assets (if they’re
running on Mac OS X) on Xsan or other clustered Mac OS X file-storage offerings.

CHAPTER 4: Storage

 218

218

5Chapter

Messaging and
Groupware
Groupware is one of the most important communication vehicles in the modern
enterprise. Tracking what people are doing in shared calendars, whom your organization
does business with in shared contacts, and communicating with them all with email are
requirements today for any large organization. In fact, it goes a step further in that you
need to extend the same functionality you have at the desktop onto mobile devices,
including, of course, the iPhone and iPod Touch.

For the purpose of this chapter, we will include messaging solutions as part of the
overall groupware ecosystem. We do so because every conversation about shared
contacts and calendars includes e-mail. Some even include instant messaging
frameworks. Over the course of this chapter, we will cover the various solutions that
have become common on the Mac OS X platform, starting with Microsoft Exchange.

There are a number of groupware platforms, each with varying degrees of compatibility
with the Mac. Microsoft Exchange is clearly the most prevalent, so we’ll spend more
time in this chapter covering Exchange than any other solution. However, Exchange isn’t
the only solution out there. Lotus Notes, GroupWise, and a few others have become
fairly common in enterprise organizations and so these are included as well.

But what if you want to be in a purely Mac OS X environment? Well, you can. We’re
not going to say that this will come with the same level of scalability, application
functionality, cross-pollination among applications, and maturity that some of the other
solutions (especially Microsoft Exchange) can provide, because it can’t. The pure Mac
solution is just not there yet. However, Snow Leopard does introduce some new
features on the groupware front that certainly bring a first-party solution much closer to
reality. Moreover, the Mac solution is worth exploring on a service-by-service basis,
considering that licensing and complexity can cause many of the other solutions to
come in at a much higher total cost of ownership for Mac clients than for their Windows
counterparts.

219

CHAPTER 5: Messaging and Groupware

220

Exchange Integration
Mac OS X can communicate with Microsoft Exchange in a variety of ways; most notable
is its support for Outlook Web Access (OWA) from a web browser. But if you use
Microsoft Exchange 2003 or earlier, you need to consider Entourage, an e-mail client
and personal information manager from Microsoft. You can use POP or IMAP mail
accounts with other solutions, or you can use Mail.app, iCal, and Address Book in an
Exchange 2007 environment that you may already be leveraging. While not the only
option, Entourage is a mature product for Exchange integration and the most widely
adopted for such environments.

Exchange 2007 consists of a number of roles, each controlling the functionality that a
server is able to offer to clients and to other Exchange servers. Most of the integration
that will be done with Exchange will be done through the Client Access Server (CAS)
role. For the most part, the technologies included in the CAS role existed in Exchange
2003 and earlier, but the idea of breaking Exchange into predefined roles, and the CAS
role specifically, is new in Exchange Server 2007. One component of Exchange 2007
that does not exist in previous versions is the Exchange Web Services (EWS) API, which
opens up a number of options, including Entourage for Exchange EWS (an Exchange
2007/EWS-optimized Entourage app), or using Mail.app to interface with Exchange.
However, as yet adoption of Exchange 2007 has been relatively limited. In an Exchange
2003 environment, in many cases you will be able to leverage WebDAV, an extension to
the http protocol, when connecting from an OS X client.

Entourage
Microsoft Entourage is a part of the Microsoft Office family of products that most
environments have already deployed. Microsoft Entourage client licensing is not
necessarily bundled with Exchange. Exchange 2003 and earlier do provide a license for
a standalone Microsoft Entourage client; however, Exchange 2007 does not and so will
require additional licensing.

If licensing is not an issue (for example, you already own Microsoft Office for your Mac
clients), then Entourage should be considered as an option for your clients to connect
to Exchange. Entourage has a look and feel that is fairly similar to Microsoft Outlook,
and it has much of the same features (although not all), so a user coming to a Mac
from a PC will find it easier. While Entourage 2004 supports Exchange, 2008 is highly
recommended. It is worth noting that Microsoft has officially announced the death of
Entourage and will be releasing Outlook for Mac (release date unknown).

NOTE: Microsoft Office 2008 for Mac Home, Student, and Teacher Editions do not contain
Exchange support. You must connect over IMAP (and thus lose most groupware functionality).

CHAPTER 5: Messaging and Groupware

221

Paths
One of the very first tasks to undertake when integrating Mac OS X into Microsoft
Exchange is to log into Outlook Web Access. If you can log into OWA without issue, you
should also be able to set up Entourage integration or even configure an iPhone or iPod
Touch (as we describe further in Chapter 10).

In order to authenticate into WebDAV, you should be able to access the server over http
or https. These are the same general paths (often dubbed virtual paths) you will use with
Entourage. In Exchange 2003, the /exchange path handles mailbox access for both
OWA and WebDAV, so it may appear as though they’re the same protocol stack (they’re
not). In Exchange 2003, there are two other paths to consider: the /public path handles
requests for public folders; the /exchweb path has resources that are used by OWA and
WebDAV (and so still need to be accessible even if you don’t typically type them in). You
can also follow the paths with usernames in the form of the fully qualified e-mail
addresses if you’re receiving errors that you can’t authenticate when you haven’t yet
been prompted for a password. The following are paths you may need to use to access
OWA (which, in an Exchange 2003 environment, typically means you can also access
WebDAV). In this example, we are accessing an Exchange server at the address
exchange.krypted.com:

Mailbox access:

 https://exchange.krypted.com/exchange/username@domain.com

 https://exchange.krypted.com/owa

 https://exchange.krypted.com/exchweb

 https://exchange.krypted.com

Public Folder Access:

 https://exchange.krypted.com/public

 https://exchange.krypted.com/public/username@domain.com

In Exchange 2007 there can be even more paths, because Exchange 2007 has a lot more
features. This is not to say that the paths mentioned above have been deprecated; in most
cases they have not. Exchange provides support for these using legacy virtual directories
(made possible by davex.dll) that should be able to handle Exchange WebDAV requests.
However, the following are the mailbox-access URLs you may run into:

 https://exchange.krypted.com

 https://exchange.krypted.com/owa

 https://exchange.krypted.com/exchange

 https://exchange.krypted.com/exchweb

CHAPTER 5: Messaging and Groupware

222

Overall, WebDAV integration is a safe bet, but there is a newer and better way: EWS.
EWS leverages SOAP (Simple Object Access Protocol) to exchange data through XML,
allowing for more developers to interact with Exchange. EWS is faster and chews
through less bandwidth, adding synchronization support for categories and tasks (not
otherwise provided by WebDAV). If you will be using Entourage for EWS or Mail.app,
you will instead want to check for EWS connectivity, which is different from the paths
previously mentioned. Possible URLs that you will see include:

 https://exchange.krypted.com (more than likely an administrator used
a virtual directory to help shorten the path)

 https://exchange.krypted.com/ews (Exchange should throw a
Directory Listing Denied error)

 https://exchange.krypted.com/ews/Exchange.asmx (the default
setting)

 https://exchange.krypted.com/ews/Serivces.wsdl (a redirect to a
blank page)

Once you have confirmed your paths you can move on to setting up the client
application.

TIP: Paths may also be followed by a colon and then the port number that the service is
running on if a custom port has been used (https://exchange.krypted.com:8443/ews).

Troubleshooting Exchange 2007 Virtual Directories
In a number of deployments Entourage simply will not work, even though Outlook Web
Access will authenticate users. To resolve this, we often use a series of Windows
PowerShell commands. PowerShell is the command-line scripting language used for
Windows Server 2008 and Exchange Server 2007 environments. To start off, we’ll get a
list of all of the virtual directories using the Get-OwaVirtualDirectory cmdlet without any
operators:

Get-OwaVirtualDirectory

If you are having an issue with a specific virtual directory, you can delete it using this
command:

Remove-OwaVirtualDirectory "owa (Default Web Site)"

The preceding command uses the owa virtual directory, but it could have used
Exchange, Public, Exchweb or Exadmin as well. To re-create the directory, use the
following command (again replacing owa in the quoted portion of the command with the
specified virtual directory you are re-creating:

New-OwaVirtualDirectory -OwaVersion "Exchange2007• -Name "owa (Default Web Site)"

CHAPTER 5: Messaging and Groupware

223

Because a virtual directory is just that, virtual, you will not encounter any problems from
deleting it, except that while it is offline your clients who use it will not be able to
connect to the server. Note that when you re-create the virtual directory, you will need to
go into IIS and customize the permissions as defined by your organization’s security
policy before using the virtual directory again. The ability to delete virtual directories or,
more importantly, to create new ones is a great help when troubleshooting connectivity
issues. After you’ve created a new virtual directory, before you customize permissions,
test Entourage. Then, after you customize the permissions, test Entourage again. Or,
you may want to create an entirely new virtual directory without deleting the existing one
during testing.

Because Exchange, Public, Exchweb and Exadmin are not native to Exchange 2007,
you would actually replace Exchange2007 with Exchange2003or2000 for those
directories. So if you wanted to re-create Exadmin, for example, you would use the
following command

New-OwaVirtualDirectory -OwaVersion "Exchange2003or2000"-Name "Exadmin (Default Web Site)"

Entourage Setup
First, install Entourage, and feel free to accept the default values during installation.
Once the application has been fully installed, proceed to updates, an option available
through the Entourage Help menu, until the software is running the latest revision. If you
will be automating the installation, read further for more information on doing so.

With the software installed, you can set up your first account. Though there is an
account setup wizard that launches when you first open Entourage, we will walk through
configuring an account manually (without having Entourage ‘‘locate’’ the server). If you
do run the Entourage wizard, you will have to provide your domain. Note that Entourage
does not automatically supply all of the different settings. Microsoft can attempt to
autopopulate all the data it wants, but the fact is that in real world environments, very
few DNS servers have the perfect records to do this. It’s nothing that Microsoft has done
wrong, just that some Active Directory environments have years of cruft hiding in their
bowels. In some cases, you might see no other symptoms in your environment, except
that Entourage would not automatically complete setup. That is, until you go to prep
your domain for 2010 server.

To manually setup an account, click on the Tools menu and select Accounts to bring up
the Accounts window, shown in Figure 5-1. Now click on the disclosure triangle to the
right of the New icon and click on Exchange… You will see the Account Setup Assistant.
Click on the Configure Account Manually button.

CHAPTER 5: Messaging and Groupware

224

Figure 5-1. The Entourage Accounts pane

You should now see the Edit Account screen shown in Figure 5-2. Here, you can provide
the most important Exchange account settings, which configure basic access to the
server, as follows:

 Account Name: A name displayed within Entourage for keeping track
of different accounts you install on the system.

 Name: The name displayed on outgoing messages.

 E-mail Address: The ‘‘reply-to’’ email address used in the message
headers.

CHAPTER 5: Messaging and Groupware

225

 Use my account information: Configure account settings for an
account on the Exchange Server using information entered into
Entourage.

 Account ID: The unique username from Active Directory, used to,
for example, authenticate into Outlook Web Access.

 Domain: The Active Directory domain for your organization.

 Password: The Active Directory password for the Account ID that
resides on the domain.

 Save My Password in My Mac OS Keychain: Saves the
password to the Mac OS X keychain so the user doesn’t have to
enter it each time she initiates a session to the server.

 Use Kerberos authentication: Uses a Kerberos service principal to the
Exchange Server to track account information. (Because it leverages
single-sign on, it does not require a username and password.) Be
careful using this type of authentication if your users travel and will not
have VPN access; unless your key distribution center (KDC) is publicly
accessible, clients will not be able to authenticate from remote
networks.

 Kerberos ID: Allows the user to select a previously joined
Kerberos realm (which should be present if the node is bound to
Active Directory and the user is authenticated into the local host
as an Active Directory account) or to authenticate into a new
realm.

 Exchange Server: The IP address or FQDN (fully qualified domain
name) of the Exchange Server that houses the OWA role (that is, the
front-end server in Exchange 2003 or the server with the CAS Role
installed in Exchange 2007).

 This DAV service requires a secure connection (SSL): This option
forces an SSL connection. It is important to note that Entourage
2008 still uses the now deprecated X509Anchors keychain found
at /Library/Keychains. Any custom CA certificates you add will
need to be added to that keychain for Entourage to properly
resolve the CA chain.

 Override default DAV port: Use a port other than the defaults
(which are 80 for standard http and 443 for https).

CHAPTER 5: Messaging and Groupware

226

Figure 5-2. Entourage Exchange account settings

Once you are satisfied with your entries, click on the Advanced tab where you can
configure access to public folders, directory services, such as the global address book,
and certificates (see Figure 5-3).

Public Folder settings:

 Public Folders server: The IP address or host name of the server,
sometimes followed by the path to the public virtual directory.

CHAPTER 5: Messaging and Groupware

227

 This DAV service requires a secure connection (SSL): The public folder
virtual directory requires SSL for access.

 Override default DAV port: Use a custom port number (if you had to
append a : at the end of a URL to log into the web portal).

Directory Settings

 LDAP server: The IP address or host name of the server. LDAP is used
for Global Address List (GAL) lookups. In some cases the Exchange
server can be used, although you may need to use a domain controller
instead. If lookups are slow for branch offices, consider using a
localized global catalog server for that office.

 This server requires me to log on: If checked, Entourage will
authenticate to the LDAP servers when performing lookups against the
LDAP database.

 This LDAP server requires a secure connection (SSL): The server
requires communication over an SSL port.

 Override default LDAP Port: Use a custom port number for LDAP
access.

 Maximum number of results to return: The maximum number of results
for a given LDAP query. This is similar to how the Active Directory
plug-in returns a maximum number of objects, as described in Chapter
3. If you increase this number, lookups for addresses in the GAL could
take longer, but you may need to increase it in large organizations if
users have search issues.

 Search base: The search base of the domain. For most environments,
this is not required. If the search base is needed, you should be able to
obtain it from Active Directory. You can usually determine this value by
performing an ldap search against one of your global catalogs:

ldapsearch -h myglobalcatalog.myco.com -x -a never -s base namingContexts

Client Certificate-based Authentication

 Selecting a client certificate: Pressing the select button opens a dialog
box to choose an installed SSL certificate to use for authentication. If
an appropriate certificate is not listed, you will need to add one into
the keychain.

CHAPTER 5: Messaging and Groupware

228

Figure 5-3. Entourage Exchange account advanced settings

One of the great features of Exchange is that users can configure who has access to
their information and rights to perform actions on their behalf. This is called delegation,
which Entourage supports. Once you have configured the initial account settings, as
required by your organization, you can go ahead and configure delegation. This is
where you can configure Entourage to allow you to send email as another user of the
organization or provide other users with access to send mail as the account being
configured. To configure access, as shown in Figure 5-4, select the Add button and then

CHAPTER 5: Messaging and Groupware

229

select each user for whom access should be provided (or added to your send as
options).

Figure 5-4. Entourage account delegation user selection

Finally click on the Mail Security tab to configure the digital signing and encryption
options of Entourage (see Figure 5-5). Be sure to have any digital signatures you need
(whether supplied by a public CA or by your own signing environment). Digitally signing
objects allows for non-repudiation (the objects definitely came from you because only
you have your private key). Encryption lets you encrypt all mail, so users who receive
your mail will need a predefined web of trust with your e-mail in order to be able to view
the contents of the message.

CHAPTER 5: Messaging and Groupware

230

Figure 5-5. Entourage Exchange account security options

Automatic Client Configuration
In a large organization, you need to automate as much of the installation process as
possible. Part of this automation might involve deploying the actual software, another
part might be to customize the settings for the software, and finally, you may want to
automate the account configuration for a user. These three tasks need to be viewed as
three separate automations.

CHAPTER 5: Messaging and Groupware

231

Deploying the Package
Microsoft Office comes with a built-in package installer. The installer is actually a
metapackage (a collection of multiple packages bundled together) that can be installed
automatically using the following command (assuming that the package is stored in a
directory called /installers/ on your computer):

installer –applyChoiceChangesXML /installers/scripts/officeanswer –package «
"/installers/Office Installer.mpkg" –target /

If you have a volume license, the media should contain the serial numbers for your
organization and you will need to do nothing more in regard to licensing. After
installation, you no longer see the serial numbers but they do update a file called
SetupInfo.plist that is stored in the /Applications/Microsoft Office 2008/Office directory.
The contents of this file are as follows (substituting the character 1 to obfuscate my
serial information):

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" «
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>SetupInfo</key>
 <array>
 <string>11111</string>
 <string>111-11111</string>
 <string></string>
 <string>Office 2008 for Mac</string>
 <string>111111</string>
 <string>0</string>
 <string></string>
 <string>1</string>
 </array>
</dict>
</plist>

You can take this file and add it to a target desktop as a postflight task, even on
systems not installed with the original volume-keyed media, thus separating your
Microsoft Office installation into two automations (one to deploy the package and
another to establish the serial number). Alternatively, you could embed the serial number
into the Office Installer package (.mpkg) file. To do so, you would place it into the
Contents/PlugIns/ProductKey.bundle/Contents/Resources/Office/ subdirectory of the
metapackage in the form of a file called SetupInfo.plist.

Custom Package Installation

While all of the components of the Microsoft Office package are installed by default, it
doesn’t have to be that way. You can deploy Microsoft Office using a custom set of
items to be installed.

Microsoft Office has a number of choices you select from when you are going through
the graphical installation process. These include the applications to install, the

CHAPTER 5: Messaging and Groupware

232

language packs, fonts, automator actions, and the Dock items that get placed into the
Dock on installation.

To remove various options, you can use the installer command as before, only this time the
–applyChoiceChangesXML option is followed by an answer file. The answer file contains a number
of keys that, when included, will tell the Office package what not to install. The contents of
the answer file can contain the following keys (although you don’t want to use them all):

<array>
 <string>word</string>
 <string>excel</string>
 <string>powerpoint</string>
 <string>entourage</string>
 <string>messenger</string>
 <string>proofing-tools</string>
 <string>danish</string>
 <string>dutch</string>
 <string>finnish</string>
 <string>french</string>
 <string>german</string>
 <string>italian</string>
 <string>japanese</string>
 <string>norwegian</string>
 <string>portuguese</string>
 <string>brazilian</string>
 <string>spanish</string>
 <string>swedish</string>
 <string>fonts</string>
 <string>automator</string>
 <string>dock</string>
</array>

Running the Microsoft Office installer package with all of the items disabled (as would
the above file would do, would be a fairly pointless venture. Therefore, we’ll disable only
the non-English options in proofing tools and Microsoft Messenger. To do this, you
would first build an appropriate XML file containing each of the items you wish to
deactivate from the preceding list. Disabling the non-English proofing tools and
Messenger would mean a file with the following contents:

<array>
 <string>messenger</string>
 <string>proofing-tools</string>
 <string>danish</string>
 <string>dutch</string>
 <string>finnish</string>
 <string>french</string>
 <string>german</string>
 <string>italian</string>
 <string>japanese</string>
 <string>norwegian</string>
 <string>portuguese</string>
 <string>brazilian</string>
 <string>spanish</string>
 <string>swedish</string>
</array>

CHAPTER 5: Messaging and Groupware

233

Once the file is built you can save it. (For this example, the file was saved as
/installers/scripts/officeanswer.) You can then use the following command to run
the installer, taking into account the ‘‘choices’’ defined earlier:

installer –package "/installers/Office Installer.mpkg" –target /

Account Setup
You can also automate the setup of the actual Exchange account by leveraging
AppleScript. To do so, you could have a login item that checks whether the AppleScript
has been run and runs it if it has not, or you could add that logic into the script. However
you choose to push out the AppleScript, it is worth noting that you can control
Entourage to a large degree using AppleScript events. To get started, open the
AppleScript editor of your preference and enter the following:

tell application "Microsoft Entourage"
 make new Exchange account with properties {name:"My Exchange Account", Exchange «
ID:"jdoe", domain:"myco.com", full name:"John Doe", email address:"jdoe@myco.com", search «
base:"dc=myco,dc=com", Exchange server
settings:{address:"https://mail.myco.com/exchange", «
requires SSL:true, port:443}, public folder server settings:{address:" «
https://mail.myco.com/public", requires SSL:true, port:443}, LDAP server «
settings:{address:"ldap.myco.com", LDAP requires authentication:true, requires SSL:true, «
port:636, maximum entries:1000}}
end tell

This AppleScript could be set up to launch when a user logs in and then to self-destruct.
You can even add some code to pull data from the environment using the shell
command whoami, or continue with AppleScript using the following:

tell application "System Events"
 set shortName to name of current user
 set fullName to full name of current user
end tell

Using these values, you can then properly set the display name for the account, the
user’s short name (used for authentication), as well as populate the user’s Full Name
record, which is used for displaying a friendly From: name when sending emails (such as
John Doe rather than jdoe@myco.com). Instead of a login item, you can also call the
AppleScript using the osascript command. However, because this AppleScript is
configuring a userland application, it requires an active user session to run. Because of
this, a login item is generally the best avenue for this type of deployment. Alternatively, a
LaunchAgent could be used (discussed in Chapter 8).

Postflight Tasks
Assuming the serial number was deployed with the initial package, there should be only
a few things remaining to complete your Office for Mac deployment and allow you to
use Entourage effectively. The first is to suppress the Microsoft First Run dialog box,

CHAPTER 5: Messaging and Groupware

234

present by default following an installation (and usually causing a great number of calls
to support teams unless suppressed).

The Office Setup Assistant will present you with a number of questions as part of the
Microsoft First Run process. In order to suppress this you will need to add a key to the
com.microsoft.office property list stored in
~/Library/Preferences/com.microsoft.office.plist. Here, we’ll provide a key of
2008\FirstRun\SetupAssistCompleted with an integer of 1 as the value for the key,
which indicates that the Setup Assistant has been completed. To do so, we’ll use the
defaults command and write the key information into the com.microsoft.office defaults
domain as follows:

defaults write com.microsoft.office "2008\\FirstRun\\SetupAssistCompleted" -int 1

We could also have added the com.microsoft.office.plist into the Managed Client
environment in Workgroup Manager, as we describe doing in Chapter 7. Once done, keys
can be pushed out to these property lists quickly and easily from the centralized
directory service. In addition to managing the FirstRun process with com.microsoft.
office.plist, you can also use preference files com.microsoft.Excel.plist,
com.microsoft.Powerpoint.plist, com.Microsoft.Word.plist and com.microsoft.
autoupdate2.plist to customize various settings for Microsoft Office, including
autoupdates, toolbars, default file formats, and providing a means for users to have their
unique information placed into the file by default.

Once you have deployed Microsoft Entourage, there will likely be times when you need
to alter the settings for the client. For example, you might want to supply a Name to the
registration information. For this, you can deploy a custom plist file to all of your users.
To do this, you need to set up your admin client with the configuration you’d like to push
out. Click on the plus (+) sign in Workgroup Manager and browse to a configured user’s
Library folder. From here, navigate into Preferences, folder, Microsoft, and then finally
Office 2008. Inside of this folder resides the Microsoft Office 2008 Settings.plist file.
Once you’ve imported this file, change Manage import preferences to Often, double-
clicking on Microsoft Office 2008 Settings. Open the disclosure triangle for Often and
then change the string for the 1000 value to what you want the ‘Registered To’ name to
be. Then save and test, logging in as the user to see if the managed setting was applied.
See Chapter 7, Client Management, for more information on deploying preference files.

TIP: You can also set the 1600 field in the same file to match the company name from the
registration dialog.

AutoUpdate
Microsoft Office includes Office AutoUpdate, which runs independently of Software
Update. Many environments will control patch deployment to users, in order to
proactively keep help desk calls from rolling in as patches are applied (user questions
about why Office is asking for update, plus potential support issues arising from a
deployed update can be lethal). Additionally, all Microsoft patches for Office for Mac are

CHAPTER 5: Messaging and Groupware

235

now bundled with previous patches, so many of the updates are fairly substantial in size,
which can chew through your bandwidth.

If you have another vehicle to deploy the Microsoft patches (like Jamf or ARD), you can
disable AutoUpdate using the defaults command to write the HowToCheck key into the
com.microsoft.autoupdate.plist file as follows:

defaults write com.microsoft.autoupdate HowToCheck -string "Manual"

Similarly, you can push out the com.microsoft.autoupdate domain prefs through MCX,
Apple’s built in client management system (discussed further in Chapter 7). You’ll find
this preference file at ~/Library/Preferences/com.microsoft.autoupdate.plist

Disable Sync Services
Microsoft Entourage’s Sync feature can be a bit problematic for certain environments.
While administrators can disable the feature, users often simply turn it back on. But you
can turn it off programmatically if you wish. The settings are stored in ~/Library/
Preferences/com.microsoft.entourage.syncservices.plist. To read the contents of
the com.microsoft.entourage.syncservices domain, use the following command:

defaults read com.microsoft.entourage.syncservices

Your results will be similar to the following:

{ 
"sync calendar" = 1; 
"sync contacts" = 1; 
"sync notes" = 1; 
"sync tasks" = 1; 
}

The above is an array with boolean values for each item. Changing the 1’s to 0’s will
disable syncservices. To do this, you would use the following command:

defaults write com.microsoft.entourage.syncservices '{"sync calendar" = 0;"sync «
contacts" = 0;"sync notes" = 0;"sync tasks" = 0;}'

TIP: You can then resend the array using a 1 in place of a 0 to enable each item individually.

Archiving Mail
Microsoft Entourage does not provide a built-in mechanism for archiving mail. Microsoft
Exchange does and one of the best ways to effectively implement mail archiving for
users is to leverage the built-in Exchange functionality. However, for one reason or
another, a number of sites are unwilling or unable to do so.

In a Microsoft Outlook environment, you may have automated archival to .pst files and
possibly saved those .pst files onto a network share where they could be backed up. In
Entourage, you can move mail to the local database, but this can be problematic as the

CHAPTER 5: Messaging and Groupware

236

database can’t be backed up while open, it becomes bloated over time, and the file is
not readable by non-Apple-based client computers. If you want to archive within
Entourage but not on the server-side, look into the shareware application Entourage
Email Archive X, found at http://www.softhing.com/eeax.html. Alternatively, Apple
provides a mirror of the software:

http://www.apple.com/downloads/macosx/email_chat/entourageemailarchivex.html.

Native Groupware Support
OS X traditionally has not had a strong first-party groupware presence. Traditionally
groupware inherent-apps, such as Address Book, iCal, and Mail, were largely consumer-
oriented and, as such, did not participate well in groupware-oriented environments. This
statement holds a little less true for Apple’s Mail app, which does support prominent
email protocols. With 10.5, Apple began to show its intention to address the issue with
the introduction of iCal server and iCal’s support of the CalDAV standard.

Let’s face it though, when talking groupware the 800 lb. Gorilla in the room is Microsoft
Exchange, and in 10.5, more often than not, that will mean you will be using Entourage
to leverage these services. 10.5’s native toolset just didn’t cut it when Exchange was in
the picture. With the introduction of 10.6, Apple has made some significant strides
toward addressing this issue. Native Exchange support in 10.6 includes full support for
Exchange email, calendaring, contact, and GAL access. Each respective function in 10.6
is provided via a dedicated app: Mail, iCal, and Address Book. Each application
leverages Exchange Web Service (EWS) for integration, which provides excellent feature
compatibility, but it also comes burdened with a very significant gotcha: EWS is a
relatively new technology, one which is only supported in Exchange 2007 or later. If
Exchange 2003 or earlier powers your environment’s groupware presence, have your
Entourage installers handy as you will likely find OS X’s native support lacking even in
10.6. When Exchange 2007 is in the picture however, Apple’s solutions are certainly
worth a look.

Manual Setup
Mail.app includes support for, well, email, and does the job adequately, though it does
lack support for some fringe features, such as setting out-of-the-office status. For these,
users will regrettably need to take a trip to webmail. Notably, it includes support for
separate internal and external servers, with the ability to specify custom paths for each,
a boon for any environments that utilize a private internal domain namespace.

To configure Mail.app to connect to an Exchange Server, startup the app and open its
Preferences, found under the Mail menu. With the preferences window open, select the
accounts tab and click the plus button in the bottom-left corner to create a new
account. As shown in Figure 5-6, in the resulting window, enter the full name, email
address, and password for the desired account. In the next window, also shown in
Figure 5-6, specify the account description, the incoming mail server, and the account
credentials. This dialog also includes two checkboxes, allowing you to also set up

CHAPTER 5: Messaging and Groupware

237

Address Book and iCal. Because of this capability, it is desirable to configure Exchange
accounts from Mail.app, unless you are looking to implement only a particular service.

Figure 5-6. Configure Exchange in Mail.app

Once the account has been set up, it will be listed in the Mail accounts list. From here,
you can highlight the account and edit further details, such as configure a separate
server and path for internal vs external access, as shown in Figure 5-7.

TIP: Though Exchange contact and GAL access is provided via Address Book, Mail will search
both when entering email recipients.

CHAPTER 5: Messaging and Groupware

238

Figure 5-7. Configure Separate Internal and External Servers in Mail.app

As previously mentioned, new to iCal in 10.6 is Exchange support (see Figure 5-8), and
the app sports decent capabilities, including support for free/busy schedules, to-dos,
invitations, file attachments, and delegation.

Figure 5-8. Exchange Support in iCal

CHAPTER 5: Messaging and Groupware

239

Address Book provides support for Exchange contacts and allows for searching of the
Exchange GAL. When an Exchange account is configured in Address Book, the account
will be listed in the left-hand pane. Additionally, the configured account will have a new
entry placed under the ‘‘Directory’’ group, which allows for searching of the GAL, as
shown in Figure 5-9.

Figure 5-9. Searching the GAL in Address Book

As mentioned, it is possible to configure Exchange accounts both in iCal or Address
Book without configuring a mail account. To perform this operation in either program,
open up Preferences from the application’s menu (the iCal and Address Book menu) and
select the accounts tab. Similar to the procedure show in Figure 5-6 for mail, click on
the plus button in each respective app’s accounts pane to add a new account. In each
case, select Exchange 2007 as the account type and enter the appropriate settings.
Similar to the account setup in Mail.app, when configuring Exchange accounts in
Address Book or iCal you have the option to automatically configure the Exchange
account for all groupware apps, similar to how the Mail.app process can set up Address
Book and iCal. Figures 5-10 and 5-11 show configured accounts in both apps,
respectively. Similar to Mail.app’s support, both Address Book and iCal support
separate entries for internal and external servers. In Figure 5-11, shown also is the
delegation tab, which is where users can configure delegate calendars to display or can
also control which users can see their own.

CHAPTER 5: Messaging and Groupware

240

Figure 5-10. Exchange Accounts configured in Address Book

Figure 5-11. Exchange Accounts Configured in iCal

CHAPTER 5: Messaging and Groupware

241

GroupWise and Lotus Notes
Novell’s GroupWise has a client for Mac OS X, which can be obtained from
http://download.novell.com/index.jsp. While Novell does continue to make the
GroupWise client for Mac, at the time of this writing, official support is limited to OS X
v.10.4. Based on our testing, it will need an update to be a viable solution in a 10.6
environment.

TIP: Lotus Notes also has a client for Mac OS X. It can be obtained from
http://www.ibm.com/developerworks/downloads/.

Both Lotus Notes and GroupWise are considered edge cases. However, they both
continue to support the Mac OS X platform. This isn’t to say that their clients will
support each new operating system and that patches will not occasionally cause the
software to stop working. But that’s why you should always run patches in a lab first and
perform the necessary regression testing.

iCal Server
So far in this chapter we have focused on using Mac OS X as a client to other solutions.
Now we’re going to shift gears a little and talk about using an entirely Apple-based
groupware solution. The first step on this journey is using iCal Server to supply shared
calendars to users. To do this, you will need an Open Directory environment, or at a
minimum, augment records to another directory service. The augments will be created
automatically if you first set up your OS X server in WorkGroup mode, bind to your
directory service, and then use the Server Preferences tool rather than Server Admin to
perform the setup.

iCal Server uses CalDAV, an extension of the WebDAV protocol that Microsoft
Entourage can use to interface with Exchange. CalDAV is a well-defined open standard
and so developing around it is in no way a black box. However, it is not as widely
dispersed as Microsoft Exchange and so there are fewer tools that integrate with it. Still,
nothing is likely to work better with iCal Server than the iCal client itself, included by
default with all Mac OS X installations. Alternative clients include open source programs
Mozilla Sunbird and the Mulberry email and calendaring application. Additionally, there
are several third-party Outlook plug-ins available, though they tend to perform as
second-class citizens.

Setting up iCal Server
To get started with iCal Server, first install the service. On a freshly installed Mac OS X
Server that is either running as a directory server or already bound to one, open the
Server Preferences application. Server Preferences can be found at /Applications/Server
and when opened looks far less intimidating than Server Admin (see Figure 5-12). This is
because Server Preferences is a fairly dummied down version of Server Admin.

CHAPTER 5: Messaging and Groupware

242

To enable the iCal service, click on the orb just to the left of the iCal icon. Then, as
shown in Figure 5-13, click on the Limit each calendar event’s size to: field and provide
a number (in megabytes for the maximum size of a calendar event, keeping in mind that
calendar events can contain attachments). Next, click on the Limit each user’s total
calendar size to: field and provide a maximum per user. If you will not be using
attachments, you can use a number around one megabyte or smaller, at which point
storage becomes a minimal issue. Next, move the slider to the On position and the
service will start up.

Figure 5-12. The Server Preferences application

Figure 5-13. Enabling iCal service using Server Preferences

CHAPTER 5: Messaging and Groupware

243

At this point you might be saying to yourself, ‘‘that can’t be all there is.’’ Well, you’re
right. You can use the iCal service in Server Admin in order to more granularly configure
settings, as shown in Figure 5-14. To set up the iCal service from the Server Admin tool,
click on the name of the server in the SERVERS list and then on the Settings icon. Next,
click on the check box next to the iCal entry and you should see the iCal service appear
in the SERVERS list underneath the name of the servers when you click on the Save
button.

Now click on the iCal server entry and you will see a number of options, including:

 Data Store: The location on the server’s file system for the iCal
database.

 Maximum Attachment Size: The maximum size of a given attachment
(and therefore the maximum size of a given event).

 User Quota: The maximum size of a user’s calendar.

 Authentication: The authentication method used-----Digest, Kerberos or
Any Method. (Forcing to Kerberos or Digest can be useful in
troubleshooting or to enforce encryption policies.)

 Host Name: The DNS name of the server (or service if you have
multiple records pointing to the host).

 SSL: Allows you to select a certificate that has been installed on the
host. Even if you are using a self-assigned certificate on the Mac OS X
Server, you should use SSL when possible.

 HTTP Port Number: The port number that the HTTP iCal Service’s
listener uses.

 SSL Port Number: The port number that the SSL iCal Service’s
listener uses.

 Log Level: The verbosity with which you want the iCal server to trap
event logs.

 Push Notification Server: By default this will list the current server, but
it can be used to select another host in high-volume environments.
The Push Notification Server enables the most seamless interaction
between iPhone and Mac OS X Server’s groupware services offerings.
More on Push Notification later in this chapter.

CHAPTER 5: Messaging and Groupware

244

Figure 5-14. Configuring the iCal service using Server Admin

Once you are satisfied with your settings, click on the Save button to start up the
service. Again, you may be thinking, ‘‘that can’t be all the options, can it?’’ Again, you’d
be correct. In addition to the two GUI panels developed by Apple, there are a host of
other options that can be accessed using the serveradmin command. To see the
available settings, use this:

serveradmin settings calendar

You will then see the following items:

calendar:SudoersFile = "/etc/caldavd/sudoers.plist"
calendar:DirectoryService:params:restrictEnabledRecords = no
calendar:DirectoryService:params:restrictToGroup = ""
calendar:DirectoryService:params:cacheTimeout = 30
calendar:DirectoryService:params:node = "/Search"
calendar:DirectoryService:type = "twistedcaldav.directory.appleopendirectory.«

CHAPTER 5: Messaging and Groupware

245

OpenDirectoryService"
calendar:Aliases = _empty_dictionary
calendar:BindSSLPorts = _empty_array
calendar:EnablePrincipalListings = no
calendar:DocumentRoot = "/Library/CalendarServer/Documents/"
calendar:EnableDropBox = yes
calendar:SSLPrivateKey = ""
calendar:ServerStatsFile = "/var/run/caldavd/stats.plist"
calendar:ProcessType = "Combined"
calendar:UserName = "calendar"
calendar:BindHTTPPorts = _empty_array
calendar:EnableAnonymousReadRoot = yes
calendar:HTTPPort = 8008
calendar:ServerHostName = ""
calendar:PIDFile = "/var/run/caldavd.pid"
calendar:Authentication:Digest:Algorithm = "md5"
calendar:Authentication:Digest:Qop = ""
calendar:Authentication:Digest:Enabled = yes
calendar:Authentication:Kerberos:ServicePrincipal = ""
calendar:Authentication:Kerberos:Enabled = yes
calendar:Authentication:Wiki:Enabled = yes
calendar:Authentication:Basic:Enabled = no
calendar:ReadPrincipals = _empty_array
calendar:EnableTimezoneService = yes
calendar:FreeBusyURL:AnonymousAccess = no
calendar:FreeBusyURL:Enabled = yes
calendar:FreeBusyURL:TimePeriod = 14
calendar:UserQuota = 104857600
calendar:MaximumAttachmentSize = 1048576
calendar:MultiProcess:ProcessCount = 0
calendar:EnableProxyPrincipals = yes
calendar:DefaultLogLevel = "warn"
calendar:EnableMonolithicCalendars = yes
calendar:ErrorLogFile = "/var/log/caldavd/error.log"
calendar:SSLCertificate = ""
calendar:EnableSACLs = no
calendar:Notifications:CoalesceSeconds = 10
calendar:Notifications:Services:XMPPNotifier:Host = "snowleopardserver.krypted.com"
calendar:Notifications:Services:XMPPNotifier:JID = "com.apple.notificationuser@«
snowleopardserver.krypted.com"
calendar:Notifications:Services:XMPPNotifier:Enabled = yes
calendar:Notifications:Services:XMPPNotifier:Service = "twistedcaldav.notify.«
XMPPNotifierService"
calendar:Notifications:Services:XMPPNotifier:Port = 5222
calendar:Notifications:Services:XMPPNotifier:ServiceAddress = "pubsub.«
snowleopardserver.krypted.com"
calendar:EnableAnonymousReadNav = no
calendar:DataRoot = "/Library/CalendarServer/Data/"
calendar:BindAddresses = _empty_array
calendar:AdminPrincipals = _empty_array
calendar:RedirectHTTPToHTTPS = no
calendar:RotateAccessLog = no
calendar:GroupName = "calendar"
calendar:EnablePrivateEvents = yes
calendar:AccessLogFile = "/var/log/caldavd/access.log"

CHAPTER 5: Messaging and Groupware

246

calendar:Scheduling:CalDAV:EmailDomain = ""
calendar:Scheduling:CalDAV:HTTPDomain = ""
calendar:Scheduling:CalDAV:AddressPatterns = _empty_array
calendar:Scheduling:iSchedule:Servers = "/etc/caldavd/servertoserver.xml"
calendar:Scheduling:iSchedule:Enabled = no
calendar:Scheduling:iSchedule:AddressPatterns = _empty_array
calendar:Scheduling:iMIP:Receiving:Server = ""
calendar:Scheduling:iMIP:Receiving:UseSSL = yes
calendar:Scheduling:iMIP:Receiving:PollingSeconds = 30
calendar:Scheduling:iMIP:Receiving:Username = ""
calendar:Scheduling:iMIP:Receiving:Type = ""
calendar:Scheduling:iMIP:Receiving:Password = ""
calendar:Scheduling:iMIP:Receiving:Port = 995
calendar:Scheduling:iMIP:MailGatewayServer = "localhost"
calendar:Scheduling:iMIP:Enabled = no
calendar:Scheduling:iMIP:MailGatewayPort = 62310
calendar:Scheduling:iMIP:AddressPatterns = _empty_array
calendar:Scheduling:iMIP:Sending:Server = ""
calendar:Scheduling:iMIP:Sending:Username = ""
calendar:Scheduling:iMIP:Sending:Address = ""
calendar:Scheduling:iMIP:Sending:UseSSL = yes
calendar:Scheduling:iMIP:Sending:Password = ""
calendar:Scheduling:iMIP:Sending:Port = 587

Many of these settings appear fairly cryptic, but you’ll find they allow for very granular
configuration of the service. You can customize these items by using the same command
and but pasting the particular setting on to the end of it, along with the desired value. For
example, if you want to force all users who can authenticate into the iCal service to have
an account in the directory services, you would use the following command:

serveradmin settings calendar:DirectoryService:params:restrictEnabledRecords = yes

TIP: You can further reduce the maximum attachment size to the bytes level using the
calendar:MaximumAttachmentSize setting.

Managing Calendars
Once you have enabled the iCal service, you will want to provide access to calendars for
your users. To do so, you can enable the service for an account, again using the Server
Preferences tool. Simply open Server Preferences and click on the name of a user you’d
like to configure and you’ll see a listing of services the user can access on the right side
of the screen as in Figure 5-15.

CHAPTER 5: Messaging and Groupware

247

Figure 5-15. Enabling services for users

The next step is to set up iCal on the user’s workstation. To get started, open iCal from
the /Application directory, then click on the iCal menu, selecting the preference option
(or use the Command+comma keystroke). Next, click on the Accounts icon in the
application preferences toolbar and then on the plus (+) sign. You will see the Add an
Account screen where you can fill in the name, e-mail address, and password of the
user whose account you are setting up (see Figure 5-16). Click on the Create button
when you are finished.

CHAPTER 5: Messaging and Groupware

248

Figure 5-16. Creating an iCal account

The server will now look up the account type and automatically fill it in for you (see
Figure 5-17). If it can’t find an account type, it will automatically select CalDAV. (iCal
supports both Exchange 2007 and CalDAV.) Next, fill in the Description field with a
name that will appear in iCal for the calendar and then fill in the Account URL, which
should generally be http:// or https:// followed by the name of the server and then
the calendar in question, (for example, http://myserver.com/calendarname). Next,
supply the username and password for the user whose calendar was just enabled,
clicking on the Create button when you are ready to move to the next screen. If you
are in a Kerberized environment, you can click on the Use Kerberos v5 for
authentication check box to enable Kerberos access (standard Kerberos
considerations apply).

CHAPTER 5: Messaging and Groupware

249

Figure 5-17. iCal account creation connection information

If you don’t enable Kerberos or SSL, you will be prompted as to whether you want to
use an unsecured connection. Now you can click on the Continue button to complete
the setup of your server as seen in Figure 5-18.

Figure 5-18. iCal account creation security confirmation.

CHAPTER 5: Messaging and Groupware

250

Delegating Access
Using iCal Server, it is possible to delegate access to a user’s calendar from another
user. Once your account has been configured in iCal, you can access delegation
capabilities through the Accounts tab of iCal preferences, as shown in Figure 5-19. With
iCal open, select Preferences under the iCal menu, and then select Accounts. From
here, highlight your account and select the Delegation Tab. You can then click the Edit
button at the bottom of the window to access the delegation tab, where you can add
users and grant them read only or write privileges as desired.

Figure 5-19. Delegating calendar access

CHAPTER 5: Messaging and Groupware

251

Backing up Calendars
The calendar file itself is located by default in the /Library/CalendarServer/Documents
directory. You can customize this folder, so when you’re going to back it up, be careful
that no one has changed the default location. Simply backing up the contents of this
directory with standard software will provide an archive of the data. You can verify the
directory used by your Calendar store by running the command:

serveradmin settings calendar:DocumentRoot

However, you may choose to back up the settings for the service as well. To do so, you
can use the serveradmin command and list all of the settings as shown earlier in this
chapter. But this time we will push the contents into a file by adding the greater-than
symbol > at the end of the command, followed by the file name. For example, the
following will back up the service settings to a file called icalbak in the /backups
directory:

serveradmin settings calendar > /backups/icalbak

Clustering CalDAV
In Chapter 4 we covered storage options for Mac OS X. Assuming you are using a
storage medium capable of supporting multiple writes on the same volume, you can use
the iCal service in a clustered fashion. Clustering iCal Server can provide an Active-
Active solution, giving users a performance boost if the connections on your server are
saturated, and also providing high availability.

To cluster the iCal service, you configure two iCal servers in an identical manner. To do
this, you can configure the settings as you just did when backing up the iCal server to
the /backups/icalbak file. To configure the same settings on the second host, use the
same serveradmin command but swap the > for a <, assuming that the icalbak file has
been copied to the same location on the second server:

serveradmin settings calendar < /backups/icalbak

After running this, update the SSL settings on the second host to ensure a proper SSL
cert is specified. Next, we’ll move the calendar files to the server in a shared directory
location. In this case, we’ll copy the /Library/CalendarServer directory to the
/volumes/Xsan/ volume we previously created. Then we’ll point the directories for the
calendar server at our shared storage:

serveradmin settings calendar:DocumentRoot = "/Volumes/Xsan/CalendarServer/Documents/"
serveradmin settings calendar:DataRoot = "/Volumes/Xsan/CalendarServer/Data/"

When you are comfortable with the settings, stop and start the iCal service:

serveradmin stop calendar
serveradmin start calendar

The part that is up to you is how to distribute the load across the two servers. Load
balancers are the most obvious choice in many environments, but operating in a shared
namespace and using round robin DNS will work as well, likely incurring no additional

CHAPTER 5: Messaging and Groupware

252

hardware costs for your setup (beyond, of course, having two or more copies of the Mac
OS X Server software).

Wiki Integration
Users are also able to view and manage calendars through the OS X server’s web
services, provided it is enabled. To do so, simply turn on Calendar Services through the
web pane of Server Preferences, as seen in Figure 5-20. The web interface, also shown
in Figure 5-20, allows users full read and write access to their calendars, and enables
them to create new calendars, schedule events and send invites, and view free/busy
schedules. Notable limitations include the inability to access delegated calendars, to-
dos do not register, nor can you attach files to events.

Figure 5-20. Configuring calender web services in server preferences (front), web calender interface (back)

Troubleshooting
So you installed your new server and you’re having a few problems. Let’s look at the
common issues and a few simple fixes for them.

If you find yourself in a situation where iCal will not start, there are a few things you can
try. As always, consult the log entries. In many cases where the service simply won’t

CHAPTER 5: Messaging and Groupware

253

start, your log entries may indicate that the service is unable to create a virtual host. This
is typically a DNS related problem so check your host name. iCal needs the host name
to be correct in order to start. Use scutil -get HostName or changeip –checkhostname
to verify DNS resolution. Next, make sure that the host name listed in the iCal Server
settings is identical to this value. If you prefer to use the serveradmin CLI to control your
services, you can also use the command:

serveradmin settings calendar:ServerHostName

And then configure the setting using:

serveradmin settings calendar:ServerHostName = "SomeHostName"

You can also use the calendar:HTTPPort to change the port number you are using for
connectivity.

If the service is reportedly running, but you still don’t have connectivity, you can verify
that your iCal server is running by visiting it in a web browser at
http://icalserver.myco.com:8008/

If the server is up and running, you should be presented with a generic web page that
lists various XML configuration settings used by the Python-based twistd engine that
iCal server is based on. If the service is not running, verify proper settings of the service,
paying close attention to the Document Root. Verify that there is a data store at this
location, which will be nested inside of two folders: Data and Documents. Verify that the
calendar user _calendar is the owner of these directories and has full read/write/execute
access.

Here’s another common problem with the iCal server: you set up a user, check the box
in Workgroup Manager to Enable Calendaring, and then save your settings-----but you get
the following error in your logs:

Jul10 10:21:56 cedge Workgroup Manager[2282]: +[WPUser userWithGUID::] returned nil!

In this case, you are probably enabling a calendar for a local user. Make sure you are
using an OD-based user and see if you get the same error. Likewise, you can navigate to
the user calendar URI in a web browser:

http://icalserver.myco.com:8008/principals/users/snowcat

If you receive a 404 when browsing to this address, the calendar server is not properly
resolving the user record.

Another issue you may run across occurs when everything is configured and the
account has been created for the user, but when you add the account in iCal it fails to
connect. If you find yourself in this situation, verify that the port specified at the end of
the hostname in the http:// URL is correct. Verify that you can connect to the remote
server port via telnet if necessary, or by using a web browser as previously discussed.
When you connect to the server this way, you will be prompted to authenticate. If you
can authenticate as the user whose calendar you are trying to set up, you can use the
information in this screen to determine ACL information and other security settings that
could be keeping the calendars from working. Pay attention as well to the authentication
method you are using. If you have selected Kerberos authentication only, your client will
need to be able to directly contact the KDC to receive the proper service principal. Also

CHAPTER 5: Messaging and Groupware

254

keep in mind that while your default port might be 8008, if you are using SSL your
default port is actually 8443.

Once you get this far, you should be able to create an event and see data listed in the
Overview tab for iCal. If so, you should be able to find out about anything you want in
the iCal server.

Address Book Server
The Address Book service is new in Mac OS X Server 10.6 and is based on the
emerging CardDAV standard, a specification that defines the exchange of vCard
information via the WebDAV protocol. Also based on the twistedcaldav engine, the
Address Book Server setup and configuration will be much the same as with iCal: you
can use Server Preferences to get the job done easily; you can use Server Admin if you
require more options; or you can use the command line for optimal granularity. The
Address Book Server maintains its own data store, but also allows the option to search
Open Directory for User or Contact information.

Setting up Address Book Server
To set up the Address Book service on Mac OS X Server, open the Server Preferences
application from /Applications/Utilities , then click on the button for Address Book.
When it opens, uncheck the option to limit each user’s total book size if you’d like to
disable user Address Book quotas, as shown in Figure 5-21. Next, move the slider from
the OFF to the ON positions and wait for the service to complete installation and fire up.

Figure 5-21. Server Preferences Address Book pane

CHAPTER 5: Messaging and Groupware

255

Once the service has started, click on the Show All button (see Figure 5-22) to get back
to the main Server Preferences screen. Click on Users and then check the box for the
Address Book service per user who you would like to enable the service.

Figure 5-22. Server Preferences Users pane

As with the iCal Server service, you can also use Server Admin, located in
/Applications/Server to more granularly configure the Address Book Server service.
When you click on the Address Book entry for your Address Book Server in Server
Admin, you’ll see the screen in Figure 5-23.

CHAPTER 5: Messaging and Groupware

256

Figure 5-23. Configuring Address Book Server in Server Admin

Here, you have the following options:

 Directory Searching:--- Allows for searches against the address book
server to optionally query Open Directory for LDAP-based users
(cn=users,dc=myco,dc=com) and/or public contacts
(cn=people,dc=myco,dc=com).

 Data Store: The path to the Address Book database.

 User Quotas: Maximum size per user for the Address Book database
in megabytes.

 Authentication: Allows you to choose Digest or Kerberos
authentication (or both).

 Host Name: By default, this value is dynamically generated based on
the determined host name of the server; it can also be overridden.

CHAPTER 5: Messaging and Groupware

257

 HTTP Port Number: The port that the HTTP service will listen on for
Address Book traffic.

 Enable Secure Sockets Layer (SSL): Enables SSL (requires a certificate
to be accepted).

 SSL Port Number: If SSL is enabled this option allows for the
customization of the port that the listener will run on.

 Certificate: Allows you to choose an SSL certificate that will be used
when serving out SSL encrypted traffic.

With all services, if SSL is an option, it is strongly recommended that you use it. The
stock configuration of Mac OS X Server comes with a self-assigned SSL certificate and
it is a fairly straightforward task to use it to secure your services. Alternatively, you can
obtain a certificate from a third party as those are often easier to deploy. If your
organization has an internal certificate authority, you can use its services to sign
certificates for your OS X host.

Once you are satisfied with your settings, click on the Save button in the lower right
hand corner of the screen and then restart the service using the Server Admin utility or
from the command line. To restart the service from the command line, you can use the
following two commands in sequence:

serveradmin stop addressbook
serveradmin start addressbook

If you need more granularity for your Address Book Server configuration, you can also
use the serveradmin command with the settings option to view all of the settings that
can be changed:

serveradmin settings addressbook

This would result in the following list:

addressbook:SudoersFile = ""
addressbook:DirectoryService:params:restrictEnabledRecords = no
addressbook:DirectoryService:params:cacheTimeout = 30
addressbook:DirectoryService:params:restrictToGroup = ""
addressbook:DirectoryService:params:node = "/Search"
addressbook:DirectoryService:type = "twistedcaldav.directory.«
appleopendirectory.OpenDirectoryService"
addressbook:BindSSLPorts = _empty_array
addressbook:EnablePrincipalListings = no
addressbook:DocumentRoot = "/Library/AddressBookServer/Documents"
addressbook:SSLPrivateKey = ""
addressbook:ServerStatsFile = "/var/run/carddavd/stats.plist"
addressbook:ProcessType = "Combined"
addressbook:UserName = "_calendar"
addressbook:BindHTTPPorts = _empty_array
addressbook:EnableAnonymousReadRoot = no
addressbook:DefaultLogLevel = "info"
addressbook:HTTPPort = 8800
addressbook:ServerHostName = ""
addressbook:PIDFile = "/var/run/carddavd.pid"
addressbook:ReadPrincipals = _empty_array

CHAPTER 5: Messaging and Groupware

258

addressbook:UserQuota = 104857600
addressbook:MultiProcess:ProcessCount = 0
addressbook:EnableProxyPrincipals = no
addressbook:Authentication:Digest:Algorithm = "md5"
addressbook:Authentication:Digest:Qop = ""
addressbook:Authentication:Digest:Enabled = yes
addressbook:Authentication:Kerberos:ServicePrincipal = ""
addressbook:Authentication:Kerberos:Enabled = yes
addressbook:Authentication:Basic:Enabled = no
addressbook:MaxAddressBookMultigetHrefs = 5000
addressbook:ErrorLogFile = "/var/log/carddavd/error.log"
addressbook:SSLCertificate = ""
addressbook:EnableSACLs = yes
addressbook:AB_EnabledGroups = _empty_array
addressbook:EnableAnonymousReadNav = no
addressbook:DataRoot = "/var/run/carddavd"
addressbook:BindAddresses = _empty_array
addressbook:AdminPrincipals = _empty_array
addressbook:MaxAddressBookQueryResults = 1000
addressbook:RedirectHTTPToHTTPS = no
addressbook:EnableSearchAddressBook = yes
addressbook:DirectoryAddressBook:params:queryUserRecords = yes
addressbook:DirectoryAddressBook:params:liveQuery = yes
addressbook:DirectoryAddressBook:params:cacheQuery = no
addressbook:DirectoryAddressBook:params:peopleNode = "/Search/Contacts"
addressbook:DirectoryAddressBook:params:fakeETag = yes
addressbook:DirectoryAddressBook:params:ignoreSystemRecords = yes
addressbook:DirectoryAddressBook:params:queryPeopleRecords = yes
addressbook:DirectoryAddressBook:params:dsLocalCacheTimeout = 30
addressbook:DirectoryAddressBook:params:queryAllAttributes = no
addressbook:DirectoryAddressBook:params:userNode = "/Search"
addressbook:DirectoryAddressBook:params:cacheTimeout = 30
addressbook:DirectoryAddressBook:params:maxDSQueryRecords = 150
addressbook:DirectoryAddressBook:type = "twistedcaldav.directory.«
opendirectorybacker.OpenDirectoryBackingService"
addressbook:RotateAccessLog = no
addressbook:AnonymousDirectoryAddressBookAccess = no
addressbook:GroupName = "_calendar"
addressbook:AccessLogFile = "/var/log/carddavd/access.log"
addressbook:ResponseCompression = yes

Connecting to the Address Book Server
Once your server has been configured optimally for your environment, it’s time to
configure your clients to connect to it. To do so, open the Address Book application
from /Applications, click on the Address Book menu, and then click on Preferences.
Click on the Accounts icon in the Preferences screen, shown in Figure 5-24.

CHAPTER 5: Messaging and Groupware

259

Figure 5-24. Adding an address book account

Click on the + icon in the lower-left corner of the screen to bring up the Add Account
screen, also shown in Figure 5-24. Enter the type of account (CardDAV), the username
from the directory service, and the password for the account. Click on Create when you
are finished.

Once you are back at the Accounts screen, you can set the refresh rate for contacts (see
Figure 5-25). This is the interval that synchronization will occur for the account whose
setup was just completed.

CHAPTER 5: Messaging and Groupware

260

Figure 5-25. Setting the refresh rate for contacts

TIP: Mac OS X 10.5 users will use the Directory application in the /Applications/
Utilities directory to view and edit directory-based Contacts in the Address Book. However,
CardDAV and therefore 10.6 Address Book Server is only supported by Address Book in 10.6.
For 10.5 support, a third party client will be needed.

CHAPTER 5: Messaging and Groupware

261

Backing up Address Books
Backing up the Address Book Server data store is similar to backing up the iCal Server
information store. The path to the database can be found through Server Admin or using
the following command:

serveradmin settings addressbook:DocumentRoot

Once you know the path, you can back up the data store as you would most other
directory structures. The service runs with the _calendar username as the default owner,
although the root account will provide access as well. The default location to the
information store is /Library/AddressBook/.

Instant Messaging

Solutions
Mac OS X comes bundled with iChat, which can use AOL Instant Messenger (AIM),
Jabber, or a .Mac/MobileMe account for standard instant messaging. The Mac OS X
Server iChat solution is actually a pretty interface for managing the popular Jabber
open-source instant messaging server. Most other applications have support for Mac
OS X as well, including Microsoft Messenger.

Microsoft Messenger
Microsoft Messenger is installed as part of the Microsoft Office 2008 suite, which ties in
well to the Office Communication Server environment at most enterprise environments.
Mac clients are available for most other third-party messaging solutions, and if they are
not, a Jabber server environment can often be propped up to allow for federation
between services.

If desired, Microsoft Messenger can tie into the Mac OS X Kerberos libraries and be
configured using the current Kerberos REALM. During setup, the Microsoft Messenger
application will prompt to Use my network ID and password, which triggers the IM client
to request a Service Ticket to use for authentication to the Messaging services (see
Figure 5-26).

Figure 5-26. Microsoft Messenger Kerberos authentication

CHAPTER 5: Messaging and Groupware

262

iChat Server
The iChat application in Mac OS X is a fantastic tool for instant messaging. It supports
video, conferencing video, file transfer, and even sharing screens over an iChat session.
These capabilities make it a great support tool for the service desk, as well as an excellent
communication platform that can enhance an organization’s intra-company communi-
cations. If you like, iChat can also be leveraged to extend internal communication
externally (though it is primarily intended for internal communications).

To set up the iChat Server, the steps you perform are roughly the same as those for
other services. For a simple server setup, use the Server Preferences tool (shown in
Figure 5-27), which allows you to configure server-wide logging and archiving of chat
transcripts, and to enable server-to-server communication, which allows XMPP
(Extensible Messaging and Presence Protocol) federation between hosts.

Figure 5-27. Server Preference iChat pane

Once you have a functional iChat service, chances are you’ll be interested in pushing the
boundaries of what it can do beyond the default two options in Server Preferences. Just
as with iCal and Address Book, you can also access the service from within Server
Admin. To do so, click on the iChat service under the SERVERS list, then under the
General tab (as in Figure 5-28) to configure the appropriate settings:

 Host Domains: Indicates the DNS domain names (or IP addresses) that
will be used by the Jabber server.

 SSL Certificate: Integrates the service with SSL. Once selected,
choose the appropriate certificate.

 Authentication: Sets the method of authentication to Digest, Kerberos
or both, which will attempt Kerberos first and then fail back to Digest.

CHAPTER 5: Messaging and Groupware

263

 Enable XMPP server-to-server federation: Allows you to federate the
server with other servers, which means that users of one host can
establish chat sessions with users from another host. This can be
useful if you have multiple servers in multiple locations, or if you want
to extend your server to communicate with third-party hosts.

 Require secure server-to-server federation: Forces XMPP federation to
use SSL.

 Allow federation with all domains: Allows all other XMPP-compliant
servers to communicate with yours.

 Allow federation with the following domains: Configures other servers
(by IP or DNS) that are federated to this server.

Figure 5-28. Configuring iChat settings in Server Admin

Transcripts
You can also configure message archival (transcript storage) options using Server Admin.
To do so, click on the Settings tab as shown in Figure 5-29. Enable the Automatically save
chat messages features, which will store a centralized copy of all of the instant messaging
chat sessions for each user on the server. Next, click the Choose button to select a
location and then use the Archive saved messages every field to configure how long
messages are kept before they are moved into a compressed archive file. Unfortunately,

CHAPTER 5: Messaging and Groupware

264

this function is limited to text-based transcripts. Audio and Video chats, once initiated, are
peer-to-peer and, as such, the server never sees the data..

Figure 5-29. Saving and archiving chat messages

The serveradmin command can again be used to list additional configuration settings for
the service:

hax.lbc:~ hunterbj$ sudo serveradmin settings jabber
jabber:enableAutoBuddy = no
jabber:s2sAllowedDomains = _empty_array
jabber:requireSecureS2S = no
jabber:sslCAFile = "/etc/certificates/hax.lbc.chcrt"
jabber:sslKeyFile = "/etc/certificates/hax.lbc.crtkey"
jabber:hosts:_array_index:0 = "hax.lbc"
jabber:authLevel = "ANYMETHOD"
jabber:s2sRestrictDomains = no
jabber:savedChatsArchiveInterval = 7
jabber:eventLogArchiveInterval = 7
jabber:savedChatsLocation = "/var/jabberd/message_archives"
jabber:enableSavedChats = yes

CHAPTER 5: Messaging and Groupware

265

jabber:enableXMPP = no
jabber:logLevel = "ALL"

Archiving Transcripts via iChat
If you do not host your own iChat server and still want to save chat transcripts, the iChat
application can fulfill that role. To manually configure transcripts per user in iChat, select
Preferences from the iChat menu. Click on the messages tab to access the functionality
to save chat, shown in Figure 5-30.

Figure 5-30. Configuring iChat to save chat transcripts

More pragmatically, you can deploy these settings via MCX, as discussed in chapter 7,
or you can script the preference chain to your fleet through with the defaults command:

defaults write com.apple.iChat AutosaveChats –int 1

CHAPTER 5: Messaging and Groupware

266

Rerun the command with ---int 0 to turn the feature off. When enabled, iChat will save all
chat transcripts to the logged-in user’s Documents/iChats directory and stores all chats
in daily date and time stamped sub folders. The location for this storage can also be
changed through the defaults command:

defaults write com.apple.iChat SavedChatsFolder –string "~/Library/Backups/iChats"

Autobuddy
Snow Leopard features vastly improved support for autobuddy functionality. The term
autobuddy is fairly self descriptive; it allows you to automatically assign buddy members
to your users, letting you prepopulate their buddy list. Autobuddy functionality in 10.6 is
accessed through the Groups Pane of Server Preferences application and provides you
with the ability to assign autobuddy population based on group membership, which
works out very well. Once configured, user’s will automatically see Buddy Groups for
each group to which they are a member. Figure 5-31 demonstrates the configuration in
Server Preferences and the iChat GUI.

Figure 5-31. Configuring iChat Autobuddy Lists in Server Preferences (back) and the resulting iChat buddy list (front)

CHAPTER 5: Messaging and Groupware

267

Mac OS X Mail Server
While most enterprises will already have a stable messaging and groupware
infrastructure, Mac OS X Server can also be leveraged for much of the same type of
functionality. We have already extolled the virtues of the Address Book, iCal, and iChat;
Mail rounds out the groupware offerings quite nicely and also enables Push Notification
to handheld devices. In environments where an incumbent solution exists for mail, the
Mac OS X mail service can provide ancillary messaging services, such as supplemental
or archival mail storage, listserv functionality, virus and spam filtering before mail goes
into a separate solution, or act as a relay.

While the Mac OS X Server’s mail service doesn’t provide as many services for other
platforms as it could, it’s not because the services that make up the Mac OS X Server
mail service are immature. Mac OS X Server uses Dovecot for the message database
(POP and IMAP), Mailman for listservs, and Postfix for mail services (SMTP). These
tools, deeply rooted in Unix, go back sometimes decades and are as stable, when used
for the appropriate environments, as Microsoft Exchange.

Setting up a Mail Server
Setting up Mac OS X Server to be a mail server is much like setting up the other
services that have been described. To enable the service, you can use the Server
Preferences application. Click on the Mail icon and you will see some simple settings
that can be configured for the Mail service (see Figure 5-32). Use the check boxes to
enable a few features and then move the slider to the ON position to fire up the
service:

 Relay outgoing mail through ISP: Enables all mail being sent from or
through the server to be routed through the organization’s ISP, which,
among other benefits, eliminates the need for reverse DNS.

 Reject email from blacklisted servers: Use spam blacklist server
(DNSBLs): Enables spamhaus blacklist servers (default is
zen.spamhaus.org).

 Enable junk mail and virus filtering: Enables ClamAv for virus filtering
and SpamAssassin for antispam and allows you to set how
aggressively it filters email.

CHAPTER 5: Messaging and Groupware

268

Figure 5-32. Mail Service Server Preferences settings

The features available in Server Preferences are minimal and it is highly likely that any
substantial user base will require far more configuration. As usual, you can also use
Server Admin to configure the Mail Server, with much more granularity.

Configuring Mail with ServerAdmin
To configure mail services with the Server Admin tool, you must first enable the service
in the server overview pane, as described with other services. You can then configure
numerous details, as shown in Figure 5-33. Here are the general global settings you can
configure:

 Domain name: The domain name of the primary mail domain.

 Host name: The host name of the mail server (defaults to the name
entered at the time the server was setup if it has not since been
altered).

 Push Notification Server: Allows the server to be used with the push
notification service to provide iPhone compatibility.

 Enable SMTP: Enables the SMTP service and daemon.

CHAPTER 5: Messaging and Groupware

269

 Allow incoming mail: Enables inbound mail acceptance for configured
users.

 Hold outgoing mail: Do not send outgoing mail until it is manually
released.

 Relay outgoing mail through host: Relays all mail not destined for
local storage through specified server. This option enables an OS X
mail server to operate as an intermediate Mail Transfer Agent (MTA),
which can be used to route local email to a centralized company
SMTP server or to an ISP’s SMTP server. The extensibility of the
postfix MTA engine means you can use it to provide customized e-
mail filtering, which can ultimately be integrated into existing
business systems.

 Authenticate to relay with user name: The username for the SMTP
server specified in the previous field.

 Password: The password for the SMTP server.

 Copy undeliverable mail to: If an e-mail address is specified, it will be
copied on all non-delivery reports (NDRs), a good measure for
proactive admins.

 Copy all mail to: Allows for a backup account to store a copy of each
incoming and outgoing e-mail that routes through the SMTP daemon.
A good measure for the guy who has the ‘‘I read your e-mail’’ bumper
sticker, and means it.

 Enable IMAP with maximum of: Enables the IMAP service and allows
you to limit the maximum number of connections to it.

 Enable POP: Enables the POP service but does not allow you to
throttle the number of connections.

 Deliver to ‘‘/var/mail’’ when IMAP & POP are disabled: stores
messages as flat files in the /var/mail directory if no services have
been enabled to route mail to.

CHAPTER 5: Messaging and Groupware

270

Figure 5-33. Configuring Mail in Server Admin

You can also configure the supported authentication mechanisms. To do so, click on
the Advanced tab, where you will be able to configure authentication options for
SMTP and for POP/IMAP services, as shown in Figure 5-34. Of these options, login,
PLAIN, and Clear all actually utilize cleartext passwords, so you should think twice
about enabling them without SSL configured. CRAM-MD5 is the preferred
authentication method and all popular mail clients support it. However, there will be
times when your best (or only) option is SSL + cleartext authentication. Notably, if
you are using an Active Directory back end for authentication, you will likely need to use
this option. Additionally, if you plan to enable webmail, the backend squirrelmail process
will require cleartext authentication to be enabled in its default configuration.

CHAPTER 5: Messaging and Groupware

271

Figure 5-34. Mail Service authentication settings

Protecting the Mail Servers
Once the settings are configured, click on the Relay tab, shown in Figure 5-35. Here
you can configure how the server manages attempts to relay SMTP traffic through it.
Using the Accept SMTP relays only from these hosts and networks option, you can
configure which IP addresses (and ranges) are able to relay mail through the SMTP
service. With Refuse all messages from these hosts and networks, you can also
configure a blacklist of IP addresses that you will never accept mail from (for
example, those you feel are abusive). Finally, you can configure the Use these junk
mail rejection servers (real-time blacklist) option to indicate multiple RBL servers that
your SMTP server will use when checking the source server that is attempting to
relay or deliver mail.

CHAPTER 5: Messaging and Groupware

272

Figure 5-35. Mail Service relay configuration

It is worth noting that in the Accept SMTP relays… option, the networks and IP
addresses listed specify unauthenticated external relay only. Relay in the context of
SMTP means that the mail is destined for a different mail exchanger. Messages destined
for a mail user stored locally on the mail server are not messages requiring relay, but
rather delivery. E-mails bound for local users will be accepted from hosts that are not
explicitly listed in the Refuse all messages list, or designated as a spammer by a
specified RBL. Be particularly careful when configuring IP address relays, as a poorly
planned relay configuration can result in your email server being flagged as an ‘‘Open
Relay,’’ meaning that your server has been determined to be delivering SPAM. For this
reason, it is recommended that you leave the allowed relay list relatively sparse and
instead require your users to authenticate in order to relay mail.

CHAPTER 5: Messaging and Groupware

273

You can also configure junk mail and spam filters by clicking on the Filters tab (see
Figure 5-36. Here are options you can set:

 Enable junk mail filtering: enables the spam filter, which is based on
the open source spam filter SpamAssassin

 Minimum junk mail score: When junk mail filtering is enabled, each
message is assigned a score that identifies the likelihood the
message is spam. You can use this field to identify the score that a
message would need to exceed before it is flagged as spam and the
appropriate action (defined in the Junk mail messages should be
field) to be taken.

 Accepted languages: Allows you to configure acceptable languages
for incoming mail. All mail determined to be not on the list will be
marked as junk and the appropriate action will be taken.

 Accepted locales: Defines acceptable geographical regions that mail
will be accepted from.

 Junk mail messages should be: Defines the appropriate action that will
be taken with regard to mail identified as being junk mail.

 Attach subject tag: Can be used to augment the subject line of
incoming mail flagged as spam.

 Encapsulate junk mail as MIME attachment: Moves mail flagged as
spam into an attachment, which requires user interaction before the
mail client will attempt to parse and present the message.

 Enable virus filtering: Enables ClamAv scanning for incoming
messages.

 Infected messages should be: Defines the appropriate action to be
taken on e-mail identified as containing a virus.

 Send notification to: Allows infected mail to be sent to a specified
mailbox.

 Notify recipients: Sends an email advising the receiver of an infected
message without sending the message itself.

 Update the virus database: Updates the virus database on a timed
interval, defined in number of times per day.

 Enable server side mail rules: Enables preprocessing of rules for all
mail coming into the server.

CHAPTER 5: Messaging and Groupware

274

NOTE: If you choose that what happens to junk mail messages is anything other than
Delivered, the recipient will never see them and the sender will never know they were deleted.
Only the e-mail address you specify will be notified, which means that you, the admin, will
have to deal with the message. You may be distressed by the lack of an option to inform a
sender that their message was rejected due to spam, but keep in mind that from: addresses
are almost always spoofed on actual spam messages, and you could end up flooding legitimate
email addresses with delivery notices.

Figure 5-36. Mail service filtering options

Another way to protect the mail server is to keep users from abusing resources. Not that
anyone will do so on purpose, but storage in many environments is a finite resource

CHAPTER 5: Messaging and Groupware

275

while consumption typically is not. Therefore, you can configure how mailbox quotas are
handled globally using the Quotas tab, shown in Figure 5-37 (quotas themselves are set
per mailbox using the Quotas tab on a per-account basis in Workgroup Manager). Here,
you specify settings that match your organization’s business logic:

 Refuse messages larger than: Identifies the maximum attachment size
for incoming mail to the organization.

 Enable quota warnings: Warns users when their mailbox exceeds a
specified size.

 Disable a user’s incoming mail when they exceed 100% of quota:
Blocks a user’s mail if his mailbox is full.

Figure 5-37. Configuring Mail service quotas

CHAPTER 5: Messaging and Groupware

276

Mailing Lists
Mac OS X Server comes with a fully functional listserv. To configure it, click on the
Mailing Lists tab in Server Admin and check the box for Enable server group mailing lists
(see Figure 5-38). You can then use the Enable mailman mailing lists check box to
enable actual lists. Use the plus icon (+) to create mailing lists, and then the Users &
Groups button to drag users to the list.

Figure 5-38. Enabling mailing lists in Server Admin

Mailman is a far more complex solution than this simple screen seems to imply. The
configuration files provide an abundance of further options that can be used to tailor
the system to your liking, including full support for automated subscription and
unsubscription via e-mail. Mailman is a tried and true solution and is pretty much the
same beast on OS X as in other environments.

Logging
Mac OS X Server by defaults logs events from the mail server. You can customize
these events on the Logging tab. Here you can customize the log levels for SMTP and
IMAP/POP, as well as for junk mail and viruses (Figure 5-39). Additionally you can set

CHAPTER 5: Messaging and Groupware

277

logs to be compressed on a timed schedule by using the Archive logs every field, which
specifies the number of days logs are stored before they are compressed.

Figure 5-39. Mail service logging options

The Command Line
The Mac OS X Mail Service is one of the most feature-rich, with pages of options that
can be configured using serveradmin, as described in previous sections. The following
command will display a list of settings:

serveradmin settings mail

You can also leverage the various configuration options provided by each of the OS X
mail servers’ underlying packages. Postfix, for instance, is robust and highly extensible
and can be made to work with many plug-ins. For instance, you may wish to inject your
own filtering code into the MTA process to watch for emails with particular criteria. To
inject your own filter into the MTA pipeline, you would modify the postfix master process
config file found at /etc/postfix/master.cf. The main.cf file is another file that controls

CHAPTER 5: Messaging and Groupware

278

the overall behavior of Postfix. While the administration GUI in Server Admin provides a
decent amount of configurability, it exposes only a small subset of Postfix’s capabilities.
Through the direct modification of these files, much, much more flexibility can be
wrangled out of the system.

While on the topic of Postfix, there are numerous command line-binaries that can assist
in the day-to-day management of your mail server. For instance, the postqueue
command can be used to manage basic delivery queuing. The following command will
output a list of all queued massages:

postqueue –p

Messages in the queue can be flushed (re-sent) either by specifying the –f flag to flush
all queued mail, or by specifying the –i flag and a queueid to resubmit just a single
email:

postqueue –f
postqueue –i B8EB9C6BDBD

If you have queue problems, sometimes the only solution is to delete certain messages
from the queue altogether. Malformed messages can certainly cause problems. To
delete a message from the queue, the postsuper command must be used. Postsuper is
very similar to postqueue, but it includes (and requires) superuser access to utilize it.
Postsuper also provides the only supported way to delete particular mail messages from
the queue. For instance, to delete a specific queued message:

sudo postsuper -d 308AE53AF9

or to release all messages on hold:

sudo postsuper –r hold

It is also extremely easy to send an e-mail using postfix’s sendmail compatibility
features. For example, the following single line of shell code will send an e-mail to user
jdoe@myco.com:

printf "To:jdoe@myco.com\nFrom:myserver@myco.com\nSubject:This is the subject\n\n«
This is the message body.\n" | sendmail –t

Choosing Mailbox Locations
The internal storage of a Mac OS X Server is often not where you’ll want to store the
database of the mail service. Instead, if you have spacious and fast external storage,
you will often use that (obviously, number of users and intensity of use would define the
storage requirements). If you want to move the mail database, click on the Advanced tab
of the Mail Settings and then on the Data Store subtab, where you will see the location
of the default mail store, as shown in Figure 5-40. The default store can stay here, or it
can move to external storage by using the Choose button to select an alternate location.
The key point, however, is that you can create multiple mail stores at multiple locations,
allowing you to use different storage for different tiers of users depending on speed,
department, or other requirements you put in place to determine whose mail goes
where.

CHAPTER 5: Messaging and Groupware

279

Figure 5-40. Advanced mail service settings

If you are satisfied with your settings, click on the Save button and then restart the Mail
service. Once you have created additional mail partitions, you assign individual users to
each in Workgroup Manager, under the user’s mail tab.

The Dovecot Mailstore
Starting with Snow Leopard, Mac OS X Server uses the Dovecot mailstore as the
storage mechanism for mail. The Dovecot mailstore by default exists at /var/spool/
imap/dovecot. This folder contains two subdirectories, sieve-scripts, which holds third-
party sieve scripts, and mail, which contains subdirectories with user data, named after

CHAPTER 5: Messaging and Groupware

280

the respective user’s GeneratedUID value. To determine a particular user’s
GeneratedUID, you can use the dscl command

dscl /Search read /Users/jdoe GeneratedUID | awk '{print $2}'

which generates the output, which will be the name of our folder:

C3C4E3BB-1FE8-4A6E-B445-5474CC4E3223

Each user folder is owned by the respective user and contains index and cache files,
mailboxes, and e-mail messages. For e-mail message storage, dovecot uses a flat-file
system. That is, every message is represented by an associated file that contains the e-
mail’s contents, including any attachments in a standard mime-encoded format. Each of
a user’s mailboxes is represented by dot-prepended directories. Thus, for the mailbox
Sent Messages, a folder called .Sent Messages is created. Each of these mailboxes
contains a number of files and directories for storage. For each mailbox, e-mails are
stored in a subdirectory named cur. These files are stored with a standardized file name
that includes a unique identifier, the message size, and the message flags. The user’s
IMAP Inbox is represented by her root folder on the file system. Specifically, for user
jdoe, his inbox is represented by e-mails existing in the folder /var/spool/imap/
dovecot/C3C4E3BB-1FE8-4A6E-B445-5474CC4E3223/cur, using the GeneratedUID value
found earlier. In order to optimize mail listings, dovecot creates per-mailbox index files
that are used to provide accelerated access to commonly queried data, though the
index files themselves do not contain any otherwise unrecoverable data. Dovecot utilizes
the following cache files:

 dovecot.index: Main index file, contains mailbox summary information,
including number of messages and size of and pointer to message
cache file

 dovecot.index.cache: Cached mailbox data, including message
headers, sent date, and other message information.

 dovecot.index.log: Transaction log file. Used to improve performance
in situations where there are multiple concurrent connections.

 dovecot.index.log.2: Rotated transactional log file.

Rebuilding a mailbox in Dovecot is pretty straightforward. To rebuild the index for any
Dovecot user’s mailbox, you can simply remove the cache and index files mentioned
above. The index file will be automatically re-created, and the cache file will begin to
repopulate with data as it is requested. If you want to rebuild all index files for a user, the
command is fairly simple:

find /var/spool/imap/dovecot/mail/C3C4E3BB-1FE8-4A6E-B445-5474CC4E3223 –name «
"dovecot.index*" –exec rm {} \;

This command will delete all index files for the user, which will subsequently be
rebuilt. While this can be done on a live system, you are deleting files that contain
synchronization data, so it’s probably a good idea to ensure there are no active
connections to the user’s mailstore. Upon reconnecting to the server, there may be
slight delays for the user as the index files are rebuilt.

CHAPTER 5: Messaging and Groupware

281

Setting up Public folders
Public folders in dovecot can be configured a few different ways. The easiest way is to simply
use symlinks. A dot prefixed symbolic link to external directories will be properly resolved by
Dovecot and will be presented to the user as a standard mailbox. When setting up such a
public share, it is important to note that Dovecot operates within the user context. Thus each
user who is granted access to the public folder via symlinks must also have the appropriate file
system permissions, designated via either standard POSIX or ACL management. To set up a
shared folder in this manner, you can run the following commands:

cd into the mail store so we can use relative paths
cd /var/spool/imap/dovecot/mail

create our shared folder and mailbox
mkdir –p Shared/.MySharedFolder

setup POSIX and ACL privileges on the mailmox for our users
chgrp –R staff Shared/.MySharedFolder
chmod –R g+rwx Shared/.MySharedFolder
chmod +a "staff allow «
list,add_file,search,delete,add_subdirectory,delete_child,readattr,writeattr,readextattr,«
writeextattr,readsecurity,file_inherit,directory_inherit" Shared/.MySharedFolder

create our symlinks for our users. We first cd into our user’s folder so that we can
use relative paths on our links
cd C3C4E3BB-1FE8-4A6E-B445-5474CC4E3223
ln –s ../Shared/.MySharedFolder .MySharedFolder

NOTE: The ../ portion of the above path references the parent directory. Thus, inside of user
jdoe’s email folder, we are creating a link to the ‘‘Shared’’ folder in the parent folder. Using a
relative symlink like this allows us to move the entire mail store to a different directory or
volume without the paths breaking.

At this point, user jdoe will have full access to the mailbox MySharedFolder. We could
then symlink the same directory to another user, say janedoe. The beauty of file-system-
level permissioning here is that you can do all kinds of cool stuff with ACLs. For
instance, you could prevent janedoe from deleting items, leaving her only with the ability
to add new items to the store.

Backing up Mail
With the introduction of Dovecot in 10.6, backing up mail got quite a bit easier. In 10.5,
the cyrus database risked potential for corruption when backed up live. Though this was
far less of an issue than with earlier versions of OS X, the reality was that it was still
recommended to take the system offline to back it up. No longer! Now, mail can be
backed up by your standard backup program, be it Netvault, TiNa, or rsync, or even
Time Machine. Because each message is stored as its own file system entity, granular
message-level or mailbox-level restores are possible.

CHAPTER 5: Messaging and Groupware

282

To perform a restore, just replace the appropriate e-mails or directories into the user’s
mail root. You can restore entire mailboxes simply by placing the respective dot-prefixed
folder there or: alternatively, you can create your own ‘‘restore’’ mailbox, using the
following command (here we use ‘jdoe’ in the mail paths for brevity, it is necessary to
use the user’s GeneratedUID, as discussed above):

create the new Mailbox Restored, and it’s cur subdirectory, which holds the mail files
mkdir -p /var/spool/imap/dovecot/mail/jdoe/.Restored/cur

copy our backed up email files into our restore mailbox’s cur/ directory.
rsync –avu /path/to/my/backupemaildir/ /var/spool/imap/dovecot/mail/jdoe/.Restored/cur/
make sure the new user is the owner
chown –R jdoe /var/spool/imap/dovecot/mail/jdoe/.Restored
Delete our index file, forcing them to be rebuilt
rm /var/spool/imap/dovecot/mail/jdoe/.Restored/dovecot.index*

You can also copy individual e-mail messages into pre-existing mailboxes without much
fanfare, though it is once again recommended that you remove the index file.

There are other notable mail-related configurations and database files that you may want
to backup, though it’s not strictly required:

 /var/amavis: Contains filtering information, including the
SpamAssassin Bayes database (all learned junkmail)

 /var/clamav: Contains the latest virus definitions

 /etc/freshclam.conf: ClamAv configuration file

 /etc/amavisd.conf: Amavisd configuration file.

 /etc/mail/spamassassin: SpamAssassin configuration files.

If you are running a 10.5-based mail server, it is recommended to backup its Cyrus
database without the service running. An excellent tool named mailbfr can be found at
http://osx.topicdesk.com. It is a free utility and manages the backups of the 10.5
database, including stopping and starting the services as necessary.

Clustering Mail Services
As mentioned previously, the Mail Service provided by Mac OS X Server can be
clustered, provided you have shared storage with file-level locking. Currently, the only
supported means to implement mail clustering is through Xsan.

To set up a cluster, you must first run the Service Configuration Assistant, found by
clicking the Change button on the Mail services Clustering tab. Once the assistant fires,
you will be presented with the option to create a new cluster or join an existing one,
provided that the system detects an available Xsan volume, as shown in Figure 5-41.

CHAPTER 5: Messaging and Groupware

283

Figure 5-41. Changing the Mail clustering setting

Once a cluster is established, it will be stored in a hidden directory, .MailCluster, at the
root of the volume. The Mail Service Cluster will be managed by the first host that is
added to it. Inside of the .MailCluster folder, you will find a directory named after the
name of the Xsan volume, and inside of it reside both configuration files and the mail
datastore:

bash-3.2# ls /Volumes/MyCoSAN/.MailCluster/MyCoSAN/
MailClusterConf.plist config data lock_files

Inside of the config folder you will find both standard dovecot and postfix configuration
files. The data folder contains the mail store, smtp spool, mailman datastore, and
serverside email rules (vacation messages, serverside filters, and sievescripts). Worth
mentioning in this folder is the MailClusterConf.plist file, which contains data relevant to
the configuration of the mail cluster, including a list of member servers:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>cluster_name</key>

CHAPTER 5: Messaging and Groupware

284

 <string>MyCoSAN</string>
 <key>cluster_path</key>
 <string>/Volumes/MyCoSAN</string>
 <key>cluster_type</key>
 <string>combined</string>
 <key>members</key>
 <array>
 <string>snowcat.lbc</string>
 </array>
 <key>name</key>
 <string>MyCoSAN</string>
 <key>path</key>
 <string>/Volumes/MyCoSAN</string>
</dict>
</plist>

Once the cluster is configured, you can verify in the Mail Service’s overview that
clustering is enabled, as seen in Figure 5-42.

Figure 5-42. Mail service overview with cluster

CHAPTER 5: Messaging and Groupware

285

Leveraging Push Notification
New to 10.6 is Apple’s Push Notification service. The push notification requires minimal
configuration and can be started through Server Admin. In order to take advantage of
the push notification services provided by OS X Server, services must be configured to
utilize the server. The Mail and iCal services are the only services shipping with 10.6 that
can be configured to use the push notification service, shown in Figure 5-43. To enable
Push notifications for one of these services, configure it in the desired services
configuration screen.

Figure 5-43. Push notification service

CHAPTER 5: Messaging and Groupware

286

Summary
In this chapter, we learned how OS X clients can interact with various groupware
solutions, most notably Microsoft Exchange. We also discussed heavily the new
groupware options provided by Apple’s latest Server OS release, 10.6 Snow Leopard,
including Address Book Server, iCal Server 2, iChat Server, and the OS X mail server.

In the next chapter, Mass Deployment, we discuss the various technologies and tools
involved with efficiently deploying software and operating systems en masse to your
entire fleet.

Further Reading
For an understanding of the various Microsoft Exchange roles, their interaction, and
the services they provide, see the Microsoft TechNet article on Exchange 2007 at
http://technet.microsoft.com/en-us/library/bb124937.aspx

For an understanding of the WebDAV implementation on Exchange 2003 and below, see
the MSExchange.org article at http://www.msexchange.org/articles/Access-Exchange-
2000-2003-Mailbox-WebDAV.html

Documentation for the Dovecot mailstore can be found at: http://wiki.dovecot.org/

6Chapter

Mass Deployment
Chances are that if you deal with enterprise-level systems management you’ll need to
deploy systems en masse from time to time. If you have a hardware refresh rate of, say,
25 percent per year and a total of 10,000 computers, you’ll have to deploy 2,500
machines every year. The tasks involved in the process are usually repetitive, lending
themselves to batch processing. As a result, you can-----and should-----put solutions in
place that let you automate deployment of systems on an ongoing basis.

If planned properly, you can extend the file sets and tools you develop, using them to
provide everyday troubleshooting capabilities. For example, suppose a problem is
resident on only one computer, but the symptoms present themselves across multiple
users. Many IT departments have a policy of simply reimaging such systems, on the
assumption that the computer in question has somehow varied from an approved
image. This may seem counter intuitive, and an entry-level troubleshooting technique,
however while it may technically satisfying to isolate an issue on a machine, doing so
may be take much more time than simply reimaging a system. In this way, the user has
less down time because you have cloned the same configuration on to all machines, so
if an issue only presents on one, the chances of it being systemic are low. In most
organizations, reimaging as part of a troubleshooting paradigm can sharply reduce the
Total Cost of Ownership (TCO) while simultaneously serving to keep the environment as
homogenous as possible (which further reduces TCO).

To reduce the time spent reimaging, it’s a good idea to keep user data in sync with or
stored on another host or segmented from the system in some fashion, such as a
dedicated partition for user data, or utilizing Apple’s external account technology. In
Microsoft Windows, this would commonly be accomplished using roaming profiles. In
the Apple enterprise vernacular, there are two similarly common options for user data
storage, Portable Home Directories and Network Home Folders. This helps save your
support personnel from either having to back up each user folder or computer prior to
reimaging or replacing a system. One of the goals of implementing an imaging solution
should be to reduce the amount of time spent fixing problems. Commoditizing
computers will help you to achieve that goal. In Chapter 7, we’ll cover portable and
network home folders.

287

CHAPTER 6: Mass Deployment

288

Planning Your Mass Deployment
The first step in preparing to roll out a large number of systems (after you read this
chapter, of course) is to sit down and make a checklist or matrix in the form of a
spreadsheet. Include every task required to set up a new computer, listing each in the
order your personnel must perform it. The items should be: binding to the directory
service, creating local administrative accounts, setting preferences, locking down
permissions, installing software, installing updates, and whatever other specific
procedures apply to your environment. Remember that mass deployment is sometimes
one big hack, and therefore needs to be documented for your predecessor and yourself
six months from now.

Remember to solicit content for this deployment matrix from your end users. After all, your
institutions primary purpose for having computers is to serve your end users and not your
IT staff. This list should be ever growing and should be linked in some way to your trouble
ticket tracking system. If you consider imaging not to simply be a one-time process, but to
be an integral workflow in supporting machines, you can use it to track problems that can
be circumvented or mitigated simply by added preflight stages to your imaging process.
For instance, if you see that 20 percent of your helpdesk tickets relate to improper mail
client configuration, perhaps your image should include one of the many automatic setup
scripts available for common mail clients such as Microsoft Entourage (Outlook).

The tasks that systems require may depend on factors, such as the department they’re
in and what they’re used for. Next, you need to determine which tasks you’ll carry out on
which systems. If the steps are the same for all machines, then following these two
steps will likely be the easiest approach: Initially, simply deploy a large, monolithic image
to every system. A monolithic image is simply an image of an entire system, including
applications, operating, and other requirements. Follow that with other tasks (carried out
by scripts, package installers, or both) that you couldn’t include in the image-----for
example, Active Directory binding, which must run at first boot. While granularity is
normally an IT person’s best friend, keeping things as simple as possible can also be an
important mantra with mass deployment. Much like lawyers are coached never to ask a
question they don’t know the answer to, never include an imaging step either pre- or
post flight that you cannot guarantee through testing will work with all the variables of
your infrastructure. Imaging should serve to simplify your IT infrastructure, not
complicate it. A good example of this was a deployment performed at a large institution.
The on-site IT staff pushed out a non-universal copy of their antivirus software, which
caused startup issues on older PowerPC machines. If their imaging testing would have
been performed on both architectures this would have been caught. The technician in
charge of this deployment used a newer Intel machine for testing. Due to this, it’s
extremely important you have a cross section of hardware to test with what matches
your organization’s current computer inventory.

If procedures must differ for different parts of your organization, make sure to account
for the specific differences in your matrix. Split your tasks (like preferences to be set,
bindings, and software to be installed) into two categories as you can see in Table 6-1.
The first should be the lowest-common-denominator tasks (and software, if required)
that pertain to every single computer. Examples include operating-system installation,

CHAPTER 6: Mass Deployment

289

binding the OS into Active Directory (or other directory service), and other global tasks.
This is sometimes best framed as a timeline, from start to finish. This timeline would
separate the takes that you would perform manually if you were asked to setup a new
employee’s workstation.

Tasks to put in the second category are those that involve taking the groups of
computers and users in your checklist and making them correspond to constructed
users and groups in your global directory service. Based on this checklist, you now have
an object-oriented model for who gets what items in your environment. This will serve as
the blueprint for your deployment system.

Table 6-1. Object-Oriented Tasks

Global Tasks Packages

Enable FileVault Master Password Install Adobe Suite

Install Mac OS X Setup for VPN Access

Install Microsoft Office Fill Bookmarks for HR Dept.

Setup 802.1x Add Server Admin Tools

Add Hidden Local Admin Account Add Citrix Client

Bind to Active Directory Install iWork

Bind to Open Directory Setup iChat

If you are an ITIL-based IT shop, then you likely already have a repository of all
‘‘supported’’ applications in the form of a Definitive Software Library (DSL). In this case,
you will take the supported applications from your DSL and place them into one of the
two columns.

NOTE: Once you know who gets what software, try to get volume-license keys from every
vendor. Sometimes the cost can be prohibitive, but you really want to try even if your
automation choices become very limited or if you have to install a unique key for even a single
software package. Also, be aware that smaller software packages may still require activation
even with volume license keys. Every vendor is different. Software that is not as widely
deployed may have serious design considerations if the vendor does not officially support mass
deployment. Always test your images and processes on at least two systems to see how your
software will handle being moved between different machines, and if necessary in your
environment, hardware platforms. Some software registration systems utilize machine specific
data, such as Mac address or other hardware information. In the event that software
registration cannot be so easily baked into your image or package, you may need to utilize
post-flight scripting to accomplish your task.

CHAPTER 6: Mass Deployment

290

Monolithic vs. Package-Based Imaging
Mac OS X mass deployment is sometimes the subject of much debate. One of the
leading topics in this debate is whether monolithic or package-based installations are
the preferred methodology. This set of authors would like to put this to rest and say both
are preferred in all environments time permitting. The question then becomes more of a
matter of workflow order rather than the headlining technology. Monolithic installations
can simply be the end result of package-based installs, where package-based installs
are just the steps of monolithic installs split up into different file sets. That said, the
preferred methodology is typically to always start with packages and then build
monolithic images from the resultant packages depending on their size. In this way, you
can add and remove items as needed, without the same rebuild time that starting anew
would require. If your end result is a large monolithic image, then larger datasets can be
deployed as one stream of multicast data rather than independent package installs via
unicast. An example would be a package installer in excess of 50GBs, such as one of
Apple’s Pro Applications. While a single package installer would allow you to easily
remove or update this in your image, including this much data in your ‘‘base’’ monolithic
will increase deployments speeds for a number of reasons. If your network supports
multicast, you would be able to push the image to an arbitrary number of computers via
a single stream of data. If you have an image in excess of 50GBs to be deployed to
more than a dozen computers, this can mean big savings in network bandwidth and
deployment speed. Multicast deployment of packages is not a capability available to any
of the most popular deployment systems. In this regard, creating a large base image can
result in a significant yet more efficient deployment, rather than have post-flight installers
run on each system independently. Each technique has its own merits, but when it
comes right down to it nearly every deployment will benefit from a mixture of the two.

While it can seem contradictory given the ease of creating an initial monolithic image,
after a few years of imaging, it seems like everyone ends up learning that pushing out
images monolithically is typically more time-consuming than breaking that same image
up into parts. In package-based imaging, you put down a very sparse ‘‘base’’ image,
which could even be a bare-metal image containing nothing except for a Mac OS X
install which has never been booted (such as what is configured from the factory on a
new machine), then perform post-flight tasks to add the rest of the software and do the
configuration.

With the purely monolithic technique, each time you go to build a new image, you may
have to start from a clean OS installation then perform a certain series of tasks on the
system before making the image of it. If you have multiple architectures in a deployment
(like, PowerPC and Intel), you could find yourself carrying out the procedure once for
every architecture. This redundant work compounds if you have different departments
that receive different software, thus causing you to create more and more images. With
each equipment refresh or major update to push to clients, you might need to create a
new image. Additionally, due to what is typically lack of documentation, if your original
image builder leaves, you often have no idea which changes, scripts, and software was
originally included in your image without back tracking forensics.

Why would anyone use a single large image? Well, for one, it’s pretty easy to do. In fact,
for most simple environments, it’s far easier than breaking that image into parts in

CHAPTER 6: Mass Deployment

291

relation to preparation time. For example, if you want all the computers you deploy to
have the same configuration; you can embed that into the computer from which you’ll
create an image. For example, click a button which creates a preference, rather than
create an installer which installs that preference. Then, when you push that image out,
the setting is there. Later, if you want to change the setting, you can send a script to do
so, either through Apple Remote Desktop (ARD) or as an imaging task for subsequent
sets of imaged computers. At that point, however, you’re going to have to figure out
which files were created by that change or, better yet, how to do this programmatically
(through a script) so you don’t mess up other settings along the way.

As you get more granular with your packages and scripts, you may end up using an
automation of some sort to alter each system-preference pane, configuration file,
application, serial number, and anything else you can think of that you do to each new
machine. That automation may consist of a managed-preference procedure (discussed
in Chapter 7), a script, or a package. It’s not uncommon to have 100 tasks to perform on
a system, post-imaging, but getting to that point can be time consuming. In the long run,
a truly package-based imaging system offers the most systems-management flexibility.

NOTE: While it may end up more work for some environments to build a number of scripts or
packages to automate your deployment, it’s a great learning experience if you have time and
will aid in the ongoing imaging process as you have new machines and new operating systems
(and builds) to redeploy under.

The monolithic image approach for an imaging environment as described in Table 6-1
would then result in a solution similar to Figure 6-1, with packages deployed post
installation.

Figure 6-1. Workflow for monolithic imaging

CHAPTER 6: Mass Deployment

292

Taking the imaging workflow to a more package based approach would then result in a
workflow more similar to Figure 6-2, where we take things into more of the object-
oriented realm.

Figure 6-2. Package-based imaging

CHAPTER 6: Mass Deployment

293

As we’ve indicated, on the outside, Figure 6-2 will seem like more work. However, when
you introduce change into your environment then the larger the environment the less
work this will inevitably be.

Automation
The more computers you deploy, the more you’ll want to automate the setup process. If
you have to bind 25 machines into Active Directory and each takes roughly 5 minutes,
you’ll dedicate about 2 hours-----not too bad. But if you have 1,000 systems, we’re talking
about 83 hours. In that case, though writing a script to automate the process may
consume 5 hours, you’ve saved 78 hours. On the other hand, for just 25 computers,
writing a script wouldn’t seem to make sense, since you’d spend an extra 3 hours.
Except, if those 25 systems ever need reimaging, the work you did to automate the
process will have paid off. An often overlooked component of this type of work is the
massive amount of scripts that are already currently available. Like many other IT
professionals, the authors of this book often publish their scripts online in publicly
accessible forums. With this said, when estimating time to create a script such as one
used for Active Directory binding, always research to see if one is already available freely
from some other source. This small amount of forethought may even mitigate all
development time if the script does exactly what you need it to do, and if not it may be
easier to start with an example then from scratch.

Refer to your checklist to decide which tasks you’ll automate. Generally, you perform
automation one of two ways: using packages (thus the term package-based imaging) or
scripts. Packages are installers; scripts can also ‘‘install’’ items, but most often, you use
them in the deployment process simply to augment or transform existing data. This line
gets blurred a bit in the regard that packages can be ‘‘payload’’ free, meaning that they
can be created with the express purpose of running scripts. Wrapping your final scripts
in a package installer has huge advantages, as Apples package installer infrastructure
includes many different components, such as pre- and post flight scripts, sanity checks
for memory, system version, as well as graphical installer bundles ,which mean you can
even put a basic user interface ‘‘on top’’ of your script to help with the uninitiated.

Later in the section ‘‘InstallEase and Iceberg’’ of this chapter, we’ll cover package-
creation more thoroughly. But for now, take a good look at your checklist. Some
software comes in the form of a package installer that you can use for deploying the
software. If you do use existing package installers, budget a couple of hours for testing
each. If you can’t use an existing package, then you can either create a new one or you
can write a script to place all of the files, or even parts of files, in their appropriate
locations.

NOTE: As experienced scripters (and managers of those who script), take our word for this:
When you get a budget estimate for writing a particular script, just double it. This will save you
a lot of grief down the road.

CHAPTER 6: Mass Deployment

294

Image Delivery
Monolithic images can be pretty easy to deploy, especially on an ad hoc basis. The
general outline of the process is this: Reboot a target system (often referred to as an
imaging or base system) into target disk mode, connect it to a master-control computer,
and then use Carbon Copy Cloner (http://www.bombich.com/software/ccc.html), Super
Duper! (http://www.shirt-pocket.com/SuperDuper), or Apple’s Disk Utility (in
/Applications/Utilities on Mac OS X) to clone the master system to an attached system or
an image file. You can also deploy images over a network, using Apple Software Restore
(ASR) or NetRestore, which is a graphical interface to asr running on Mac OS X Server,
NetInstall, which leverages NetBoot for imaging, or a variety of third-party products.

Most of the complexity of an imaging solution arises from the automation that you put in
place, so whether to automate becomes an issue of economy of scale. As noted earlier,
the more systems you have, the more you’ll want to automate, starting with the delivery
of an image, but then moving into renaming systems, binding to directory services,
installing software and making operating system or application configuration changes.

Through this section, we’ll trace the emergence of an image-delivery environment from
childhood toward maturity. We’ll start with one of the simplest solutions—Disk Utility—to
deliver an image directly to a computer, then move toward using the default solutions from
Apple, and finally explore third-party solutions that can automate even the smallest of details.

If you actually try each of the options we lay out, you’ll spend a number of hours simply
waiting for images to be created-----transferring what is typically a 5 to 10GB file system
into a file and reordering isn’t exactly the fastest operation. So feel free to follow along
with the screens and commands, but don’t feel you must wait for each step to complete
unless you see a compelling reason to do so (for example, you’re considering using that
solution as a mass-deployment strategy).

Creating an Image
The ability to create a hard-drive image and copy it to another hard drive is a basic,
longtime feature of the Mac OS. We’ll begin by illustrating the process using the tried-
and-true Disk Utility, included with Mac OS X. This tool can produce an image of the
computer, which, by default, it does in the form of a disk image (DMG) file.

We’ll start by building the base system that will act as the template. First, install OS X on
a computer and go through the checklist of settings and procedures you normally
follow. Don’t, however, perform any trusted binding of the system into a directory
service. (Creating this binding is the default with Active Directory, which we covered in
Chapters 2 and 3, so don’t do any Active Directory binding prior to making the image.)

Next, install the applications you normally run (using, one hopes, the volume licensing
keys), populate them with your usual files, and reboot the system into FireWire target-
disk mode. You can do so by selecting Target Disk Mode in the startup-disk preference
panel before you reboot or by holding down the T key at boot-up. When the system has
restarted, it will display a gray screen and a masquerading FireWire logo. At this point,
connect the base system to the admin computer to create the image file on the latter.

CHAPTER 6: Mass Deployment

295

One aside: If you don’t have volume licensing for your software, you may be better off by
not licensing the base-image applications, depending on how draconian the software’s
serial number mechanism is. On the other hand, there may be no such checks, and the
maker may even bless using the same license on all machines as long as you’ve
purchased it. Your mileage will vary heavily by application and vendor.

NOTE: An arbitrary version of Mac OS X will usually support all hardware that was available at
the time of its release. However, Apple will sometimes release a newer build of the operating
system for a new hardware model that just shipped. This new build may have the same
operating system version, but may also contain additional components that were added for that
specific hardware (i.e., new track pad driver) which incremented the build identifier of the
system. When presented with this scenario, you should typically make your base or monolithic
image from that newest operating system build. However, the next OS point release should
contain all additions in this ‘‘build train’’ specific operating system (and more). You can
determine a system’s build number by running the terminal command sw_vers. If you must
deploy your image before Apple releases their next point update, such as a lull between 10.6.1,
and your deployment date, be aware that ’’build train’’ specific operating systems are not
officially supported by Apple on anything other than the original hardware. While they often
work, this is a consideration to be aware of if you phone in for support.

Next, as with Microsoft Windows, you’ll want to remove those pesky unique cache files
from that computer. If you don’t, they may be re-created in the image file. The following
are the files to delete:

 .DS_Store files (using the find /Volumes/volumename -name .DS_Store
-exec rm {} \; command)

 .Trashes files (using the find /Volumes/volumename -name .Trash -
exec rm {} \; command)

 /System/Library/Extensions.kextcache

 /System/Library/Extensions.mkext

 /Library/Preferences/SystemConfiguration/NetworkInterfaces.plist

 /var/db/BootCache.playlist

 /var/db/volinfo.database

 Contents of /var/vm/

 Contents of /Library/Caches/

 Contents of /System/Library/Caches/

 /var/vm/sleepimage

 Contents of /Users/Shared/

CHAPTER 6: Mass Deployment

296

 /var/log/secure.log

 /var/db/krb5kdc

 /var/db/volinfo.database

 /var/root/Library/Preferences/com.apple.recentitems.plist

 Contents of /var/root/Library/Preferences/ByHost/

NOTE: This step is similar in functionality to removing the files that are unique to a computer
by using sysprep in Windows environments, but the procedure does not carry out some other
tasks that sysprep does.

Once you’ve deleted the unique information, don’t restart the clone. Instead, on the
system connected to the target-disk-mode computer, open Disk Utility (Applications
Utilities), which will produce the screen shown in Figure 6-3. Click on New Image in the
application toolbar.

Figure 6-3. Apple’s Disk Utility

CHAPTER 6: Mass Deployment

297

In the resulting window, click on the FireWire disk’s volume name (listed along the left
side of the screen), then select New Image from the tool bar or go the File menu located
in the Mac OS X toolbar, choose Folder, and select New Disk Image from Folder. Either
way, you’ll get options you can apply to the new image, as you can see in Figure 6-4.
Configure the Image Format setting to Read Only and verify that the Encryption: option
is set to none. Click Save when you’re done.

Figure 6-4. Choosing where to save the disk image

Disk Utility will now image the drive. The process can take a while, so this is a great time
to check out hdiutil by reading the next section, and maybe even using the section as
a guide while you try out the command.

NOTE: If you’d selected the actual drive device rather than the volume, the disk’s partition and
size information would have been embedded in the image. By choosing the volume itself, as
shown in Figure 6-4, you prevent the utility from recording the size and makeup of the disk.
This is extremely important, as it allows you to deploy the volume to other systems that have
different capacities.

Creating an Image from the Command Line
Mac OS X comes stocked with a number of tools to manage compressed files. Some,
such as gunzip and tar, are standard tools found on most Unix variants. But hdiutil is

CHAPTER 6: Mass Deployment

298

specific to the Mac and a pretty powerful implement for creating and managing disk
images.

Use hdiutil to create an image, called MacBook.dmg, in your working directory by
entering this at the command line:

hdiutil create MacBook.dmg -size 10g –fs HFS+ -type SPARSE

Note that, in this case, you don’t need to include the file’s path. But if you want the
freedom to summon the file from wherever you’ve decided to put it, you can simply
prepend the path.

The sample command, which leverages the create verb, simply tells hdiutil to produce
a disk image, give it a maximum capacity of 10GB, and format it for the HFS+ file
system. (But if you’d like, you can use the -fs option to specify an alternative format.) By
default, the file’s volume name will be the same as that of the file, minus the .dmg suffix.
The command creates an imaged volume name of MacBook, but you can specify a
different one using the -volname flag.

The -type SPARSE option causes the command to generate a file that takes up only as
much room as the data it contains, rather than consuming the same amount of space as
the entire disk. But with a sparse image, as you add data, the file can expand to
accommodate the extra up to the limit you set-----10GB, in this case. If that’s too little
capacity, you can change the maximum size of your DMGs, making MacBook.dmg bigger.
To do so, use the resize verb with the size flag, as in the following code:

hdiutil resize -size 50g MacBook.dmg

If you want, instead of creating a new image from scratch, you can do so from an existing
volume using hdiutil. The steps you performed earlier, graphically, were fairly
straightforward, but you could have carried them out from the command line much more
quickly. To do so, use the create verb along with an option to define the source folder (-
srcfolder) of your imaging station. (This time, the example gives the path to the DMG file.)

hdiutil create -srcfolder /Volumes/MacHD /asr/MacBook.dmg

Notice that the command line specifies the –srcfolder option rather than –srcdevice. This
is for the same reason that you select the volume, rather than the disk, in the graphical
interface. At this point, you have a MacBook.dmg image file, so you can mount it. For that, you
call on the attach verb and specify the DMG file you’d like to mount as follows:

hdiutil attach MacBook.dmg

NOTE: You could also have used the -attach flag with the create verb, which would have
created the DMG file and mounted it in one command.

You can now copy data into and out of your DMG file as you would with a standard
volume. This is useful for adding startup scripts, for example, binding to your directory
service, then running the sanitization process (removing files unique to the computer

CHAPTER 6: Mass Deployment

299

that created the image) defined in the ‘‘Creating an Image’’ section earlier in this chapter,
just in case you forgot to do so before making the image. Once you’re done, you can
unmount the DMG using detach:

hdiutil detach MacBook.dmg

The detach verb has one very useful flag, -force, which (obviously) you use only when
you have to force a disk image to unmount.

The attach verb, on the other hand, has a variety of options. The -readonly flag will mount
the volume strictly for viewing. The -nomount flag, as you might guess, doesn’t actually
mount the volume, which can be useful if, for example, you want to run disk utilities
against it. If you want to mount the disk image at a path other than the default /Volumes
directory, you can use the -mountroot flag followed by the directory path you prefer.

Another commonly used flag, -owners, (followed by on or off) comes in handy. Set to
off, this causes the drive to act much like one plugged into a system when you’ve
checked the box to ignore permissions. We highly recommend that you always mount
the disk image with ownership off; otherwise it’s very easy to corrupt permissions-----not
good when you intend to duplicate this image to hundreds of computers in your fleet.
Obviously, you’d prefer that the original permissions persist. There are other flags, but
these are the ones we find ourselves using most often.

CAUTION: Whenever you work on a base-image volume or disk image, ensure that the volume
is mounted with permissions enforced, otherwise you may corrupt permissions on your base
model. This means that if you make changes you would need to do so with elevated privileges
on your own system so as not to take ownership of files and then make sure to chmod based
on the UID of the user(s) on the target system rather than your own.

Next, let’s say you want to burn that DMG file to optical media. Accomplishing the task is
simple using the burn verb and referencing the image file, as you can see in the following:

hdiutil burn /asr/MacBook.dmg

The hdiutil command will prompt for a blank disk to burn.

Alternatively, you may want to convert the image file to a more compatible format,
perhaps to facilitate mass duplication of the optical media on non-Macintosh systems.
Because the ISO format provides a burnable, platform-agnostic image file, it’s a
commonly used choice for this type of task. To take the MacBook.dmg file from the
current working directory and convert it into an ISO image, use the convert verb and
specify the -format flag along with an output destination.

hdiutil convert MacBook.dmg -format UDTO -o MacBook.iso

You can also use convert to make the MacBook.dmg file read-only. Simply specify -
format followed by the code for read-only and the file name for the converted file, as
shown in the following code:

hdiutil convert MacBook.dmg -format UDRO -o MacBook_ro.dmg

CHAPTER 6: Mass Deployment

300

To make the mynew.dmg file read-write, save it as mynewreadwrite.dmg, then enter the command:

hdiutil convert MacBook_ro.dmg -format UDRW -o MacBook_rw.dmg

The full listing of conversion options and what they produce (from the main page of
hdiutil) is:

 UDRW: UDIF read/write image

 UDRO: UDIF read-only image

 UDCO: UDIF ADC-compressed image

 UDZO: UDIF zlib-compressed image

 UDBZ: UDIF bzip2-compressed image (OS X 10.4+ only)

 UFBI: UDIF entire image with MD5 checksum

 UDRo: UDIF read-only (obsolete format)

 UDCo: UDIF compressed (obsolete format)

 UDTO: DVD/CD-R master for export

 UDxx: UDIF stub image

 UDSP: SPARSE (grows with content)

 UDSB: SPARSEBUNDLE (grows with content; bundle-backed)

 RdWr: NDIF read/write image (deprecated)

 Rdxx: NDIF read-only image (Disk Copy 6.3.3 format)

 ROCo: NDIF compressed image (deprecated)

 Rken: NDIF compressed (obsolete format)

 DC42: Disk Copy 4.2 image

With hdiutil you can also burn an ISO file as well as perform a checksum and segment
an image file by using the verbs burn, verify, and segment, respectively. As you convert
your disk image (if you do so), keep in mind that ultimately you’ll need it to be in read-
only format if you want it to be deployable via ASR or other methods.

Though hdiutil has a number of other great options (for example, the ability to use
shadow files), we’ll review just one more, encryption, because it’s more relevant to our
topic. When you execute hdiutil using the -encryption flag with create, the command
asks you to supply a password. (And naturally, to mount the disk image, you’ll have to
enter whatever password you assigned.)

You can also pipe the password into hdiutil by using echo along with the flags
-encryption and -stdinpass. But because this puts the password into your shell’s history-----
which you don’t want-----you’ll need a second command. The two look like the following:

echo -n "MyPassword" | hdiutil create -encryption -stdinpass -size 1g secret.dmg
clear history

CHAPTER 6: Mass Deployment

301

The first line creates a 1GB disk image called secret.dmg that you can open using
MyPassword. The second wipes out the history, including the saved password. This
command pair can be useful for storing sensitive information created as part of preflight
or post-flight imaging or used for deploying sensitive information with a predefined
password

Operating System Packaging with Composer
Composer, a utility from JAMF software (www.jamfsoftware.com), creates package and
image files. To make the latter, the drive you’re cloning must be connected to your
computer and can’t be acting as a boot volume. With those conditions met, you can
create an image quickly and easily. Open Composer and click on the New Package
button in the Application toolbar. Now click on these three selections: Create OS
Package, the icon for the drive you’re cloning, and Choose (see Figure 6-5).

Figure 6-5. JAMF’s Composer

CHAPTER 6: Mass Deployment

302

The program will prompt you for the location where you want to save the DMG file.
When you click Save, not only will Composer produce the image, it will create a
complete ASR image of the drive and even do all of the machine-specific cleanup we
discussed earlier in the section called ‘‘Creating an Image.’’

Bare-Metal Images
The steps we’ve just outlined are very common when creating standard monolithic
images. But there are a number of opinions about what constitutes a bare-metal image.
Some consider it a base install of Mac OS X. Others consider it to be the actual Mac OS
X installation media. Basically though, for a solution that’s more package-based than
monolithic, the base image should have as little as possible in it-----the more configuration
that post-imaging packages and scripts handle, the more granular you can be with your
imaging.

The difference between the two ways of creating a bare-metal image is this: When using
the OS installation disk as your bare-metal image, once you’ve installed the base Mac
OS X disk image, you customize every single action as a task (including the operating
system installation) at image-delivery time. As a result, you won’t need to sanitize the
system. When you use an installed system, you set up a base OS install, do nothing else
to the system, and then create the image, so you need to sanitize out the unique
information.

When should you employ one method of making a bare-metal image over the other?
Create the image with the installation media when you’re worried about having to
sanitize, or when you’re concerned about incompatible hardware variations in machines
you’re deploying, so you’d rather just image a disk than install a new OS every time you
need a new base image.

This mostly becomes an issue because new machines shipped by Apple often require a
disk with an OS version at or above the one that comes on the installation disk. While
Mac OS X tends to be fairly inclusive of all hardware drivers in retrospect for modern
systems, the developers can’t plan for all future systems as well.

That being said, there are circumstances when certain options are best configured in the
base image. For instance, if you want all of your client machines to connect to a non-
enterprise but internal company WPA Wi-Fi network, but don’t want to disclose the pre-
shared key, then it’s best to configure this option into the base image. The circumstances
in which you’ll need a modified base image are rare, but will occasionally occur.

Deploying Images
Deploying base images to hundreds of machines can be extremely hard on bandwidth
and on the server hosting images. Multicasting can relieve the stress by offloading the
heavy lifting to the switching infrastructure, and there are a number of solutions you can
use for this type of image deployment, including DeployStudio and NetRestore (both use
asr as a back end protocol). With multicasting, the server provides a single stream of
imaging data to which client machines can subscribe and then read. In such a scenario,

CHAPTER 6: Mass Deployment

303

the server constantly streams the block data of the image over the network. On reaching
the end of the image, the server starts re-streaming from the beginning. After
subscribing to the stream, clients begin laying down data to their internal drives
according to the current progress of the stream. A client will continue to write data until
it has completed a full loop of the stream.

A multicast deployment becomes essential as deployment numbers scale; even a
Gigabit Ethernet connection will become fully saturated after about 20 concurrent
unicast restore streams. Solutions capable of multicast deployment in OS X include the
Apple-provided ASR and NetInstall tools, two solutions that have been available for a
long time. Over the past few years, a number of third-party solutions to help deal with
imaging for Mac OS X have also emerged. These range from free alternatives, such as
NetRestore (for 10.4 and below) and DeployStudio, to proprietary solutions that come at
a cost, such as the Casper Suite and LANRev. There are also a number of solutions that
you can use to extend features of Windows- or Linux-based imaging solutions, such as
Altiris and KACE.

Which is the best mass-deployment package? Whichever best automates the aspects of
a deployment that your organization considers most important (and, as a result, provides
the best return on investment in by cutting hours involved in repetitious pre- and post-
flight imaging tasks). For example, the Casper Suite is very popular in environments
implementing ITIL (Information Technology Infrastructure Library) because it takes into
account a number of ITIL best practices, allowing for both deployment and long-term
management of approved fixes and software. But many environments less-complex
needs that an admin can satisfy simply by laying down an image, often opting to use
very cost-effective tools such as NetRestore, ASR, and DeployStudio.

Most of these solutions support both unicast and multicast image deployment. While
multicasting definitely is preferable in large environments, implementation isn’t always
possible due to increased network management complexity, particularly in larger, highly
segmented networks. If this is an issue, either for technical or political reasons, unicast
deployment may be the reality you face. In such cases, deploying site-, building-, or
subnet-specific image servers may be desirable to more evenly distribute network load.
Likewise, you’ll want to perform deployments strictly during off-hours to prevent them
from saturating your network backbone.

Restoring with Disk Utility
Earlier in this chapter, we described how to create an image. If you followed the
instructions in the previous section, that was a monolithic image-----likely one with no
automation in it except for maybe a quick script to sanitize the system. Every computer
that gets the image will have a unique computer name and should be named prior to
being put into production. We’ll be deploying the image over FireWire, which is a unicast
method and limited to one computer at a time.

To roll out this image, you can again use Disk Utility, located in
/Applications/Utilities. Simply click on the destination volume for your image and
then click on the Restore tab, as shown in Figure 6-6. Here you’ll see two fields, Source:
and Destination:. Click on the Image… button to select the DMG file you created in the

CHAPTER 6: Mass Deployment

304

last section, then drag the target volume into the Destination: field to restore the image.
When you’re ready, click on the Restore button.

Figure 6-6. Restoring an image in Disk Utility

When the restore process completes, you can boot the computer with the destination
drive and see if everything is as it should be. This system should be identical to the
source machine, with the exception that any settings unique to a computer (MAC
address, and so forth) would have changed. Conveniently, Apple stores these settings
together in the ByHost directory.

You can also perform the image restore from the command line using hdiutil, as we
did to create the image in the first place. The more experienced you become with
imaging, the more likely you are to use the command line-----or even just a quick shell
script-----to do much of your imaging.

CHAPTER 6: Mass Deployment

305

At this point, you’ve completed imaging in its most basic form. For some environments,
this process will work; others will require a multicast deployment model, or one that lets
you simultaneously deploy to a large number of computers. Other environments might
also require more granularity in the DMG as well as the pre- and post-flight imaging
tasks. In the next section, we’ll review a few options for multicasting your image so you
can go fishing, play some Halo, or do whatever you like while the systems configure
themselves. Or better yet, learn about ASR in the next section so you image 50 (or 500)
systems at a time and take a vacation instead.

Using Apple Software Restore
Every copy of Mac OS X has included the command-line utility asr, so you can perform
multicast imaging right out of the box without installing a thing. You can then use asr to
perform a unicast or multicast restore (the command can be used to create images,
restore images and server images). When the utility runs in multicast mode, it loops an
image on the network as described earlier. The advantage of this is that whether you have
100 or 1,000 clients, they’ll all image using the same stream of data without bogging down
the imaging server by making disparate requests for different sections of the image.

The disadvantage is that if a client misses some data, which will happen eventually, that
system will have to wait for the loop to come full circle to where the data was not
properly delivered. With a unicast restore, in contrast, every client begins at byte 0 on
the source image and requires its own dedicated stream of data from the server.

No matter which restore you use, you’ll need to take an image and scan it first. To do so,
you use the asr command along with imagescan to calculate checksums of the image
file’s contents and store it in the image. When you run imagescan on a disk image, the
tool creates a number of checksums that are used to ensure successful restores.
Additionally, the utility scans the image file and hints it for multicast restore, making sure
the data arrangement on the image is optimized for block transfers. The command you
issue will look like the following:

asr imagescan -–source '/asr/MyImageName.dmg'

NOTE: You can use the –-filechecksum and -–nostream options with the imagescan
verb. The flags will, respectively, calculate checksums on a per-file basis and bypass
reordering of the files for multicast. 10.5 and later require images to be scanned to be
restored using Disk Utility, however asr can disable the check using the ‘‘-noverify’’ option
from the command line. This is obviously never a best practice but will save time if you are
testing.

To perform a unicast restore, run the asr command along with the restore verb from a
host with access to both the DMG file from which you’re restoring and the hard disk to
which you’re restoring. You can define the –source and --target as paths to files (tab
autocomplete might just be your best friend if there as many spaces in your paths as in

CHAPTER 6: Mass Deployment

306

ours). You can also perform the erase and therefore have a proper restore as shown in
the following code:

asr restore --source “/Users/$USER/Desktop/Mac OS X 10.5.4 Image.dmg” --target
/Volumes/ClientMachineHD/ -erase

For a multicast restore, you must first create a property list for the ASR process,
specifying the settings that the network service will use. For this example, we’ve created
a folder called /asr and placed in it a plist called config.plist. To function, asr requires
two settings: data rate and multicast address. The data rate is the maximum speed in
bytes that asr can write data, which we’ll set conservatively at 8000000 (8Mbps).

The multicast address is the address for the data stream. To write these settings into the
file, use the defaults command followed by a write, the file path/name, the key you’re
writing into the file, a flag to indicate the type of key (if required), and the contents of the
key. You then specify a multicast IP address where you announce your datastream.

The Internet Assigned Numbers Authority (IANA) defines multicast address ranges from
224.0.0.1 through 239.255.255.255, with 224.0.0.1 through 224.0.0.255 reserved for
special purposes. Many common solutions, such as Norton Ghost, use addresses in the
224.77.0.0/16. Following this example, use the multicast address 224.77.2.2. It’s very
important that you discuss the appropriate address to use for your specific network with
your network administrators as multicast IP conflicts can arise if you do not. With that in
mind, set the data rate and multicast address as follows:

defaults write ~/asr/config "Data Rate" -int 8000000
defaults write ~/asr/config "Multicast Address" 224.77.2.2

After you’ve written the data, read it and verify that it’s correct using the defaults read
command:

defaults read ~/asr/config.plist
{
 "Data Rate" = 8000000;
 "Multicast Address" = "224.77.2.2";
}

Now that you’ve scanned the image for restoration, load up the ASR server. To do so,
use the asr command with the server option:

asr server --source ~/asr/MacBook.dmg --config /asr/config.plist

NOTE: When configuring the data rate, you must consider both your network connection speed
and the speeds of your clients. The Data Rate value specifies not the speed of the actual
network transmission, but rather the speed at which your clients can write data to disk. This
difference is particularly crucial in the case of compressed disk images. With these, data sent
is compressed but will be uncompressed to disk. Modern-day SATA hard drives can typically
sustain much higher transfer rates than the older 2.5-inch PATA drives in iBooks.
Decompression of data can also be a processor-intensive task. When deploying images to
slower computers, using compressed images may actually result in longer restore times.

CHAPTER 6: Mass Deployment

307

Once you’ve started the ASR server, you’ll need to restore the ASR image onto a target
computer. To do so, boot your clients to a system such as a NetBoot server or a boot
disk that has network access to the ASR server and the asr command available to it.
From there you can run the following command, which is similar to our previous
restores, but with asr://path to denote the multicast address of the ASR stream (in this
example the server will be 239.255.100.100):

asr restore –source asr:// 239.255.100.100–target /MacHD

NetInstall
Every copy of Mac OS X Server includes NetBoot and its children NetRestore and
NetInstall. As we showcase in the next sections, NetBoot can boot a Mac OS X
computer to an image created specifically for the purpose of booting off the NetBoot
server (even in some high security facilities without an internal drive present). A
computer booted to a NetBoot image still provides a fully functional and interactive OS X
experience, but any changes made to the system will revert to the standard
configuration on reboot (Network home directories, which are discussed in Chapter 7,
can mitigate this behavior.) That makes NetBoot a fairly popular solution in lab
environments and kiosks, where the operating system loaded on each system is fairly
static. Netboot typically works best if your environment supports DHCP assigned IP
addresses and either does not block or forwards broadcast traffic between your network
segments.

Netinstall uses netboot, but rather than boot a fully configured system, it typically starts
an Apple installer program. This pre-installation environment is similar to Windows PE as
it does not always include all the same components as normal operating system (such
as the Quicktime framework or the python and ruby programming support files),
Netinstall is used to image Mac OS X computers on a netbooted computer. NetInstall
boots a Mac using NetBoot. It then copies the operating system locally to the target
computer acting much like the stock installation DVD, but with the added benefits that it
can be used to install multiple hosts concurrently over the network and that additional
installation tasks can be configured. NetBoot and NetInstall are functionally the same,
with the latter simply being a single-purpose NetBoot image created specifically for the
deployment of software.

Both NetBoot and NetRestore can leverage HTTP, AFP, NFS to copy your image across
the network. Additionally, aside from a one to one ‘‘unicast‘‘ using NFS or HTTP, ASR
can image client systems using one continuous stream of data, known as ‘‘multicast.’’
Whether you use Netinstall or NetRestore the NetBoot server itself sees all the images
are all the same, but the client will interpret what to do with them differently based on
the operating system stored inside the image. In the ‘‘NetRestore’’ section, we cover
using NetRestore for deploying a fully populated image and in this section we will look at
deploying an image installation media because at this time NetInstall is to be used
strictly to push out installers and provide pre- and post-flight tasks. However, it is worth
noting that historically NetInstall could be used for both the bare metal operating system
found on installation media and for deploying a fully populated installation with the

CHAPTER 6: Mass Deployment

308

software (a monolithic image) and may eventually come back to that in a subsequent
patch release down the road of Mac OS X 10.6 or later.

The first step in using NetInstall is creating what Apple refers to as a Workflow, using
System Image Utility. The Workflow is, at its most basic, simply a single task that
images a computer. However, you can also use workflows for many other purposes,
such as reformatting a hard drive or running preflight or post-flight scripts and packages
(which run, respectively, before or after delivery of the package’s payload, as you might
guess). Later in the chapter, we’ll discuss ordering packages appropriately in further
detail.

To get started with your first Workflow, first insert the operating system installation
media into the system you will be running System Image Utility. Then open System
Image Utility (located by default in the /Applications/Server folder of the Mac OS X
Server (or client computer with the Server Tools installed). For this example, use the
System Image Utility on the Mac OS X Server computer that will run the NetInstall
service. Provided that the installation media is installed you’ll see the Create a Network
Disk Image screen as can be seen in Figure 6-7.

Figure 6-7. Creating a Disk Image in NetInstall

CHAPTER 6: Mass Deployment

309

Go ahead and click on the radio button for NetInstall Image and then click on Continue.
You will then be prompted to supply a Network Disk name (as you can see in Figure 6-
8), which will be the name of the volume that the disk image is mounted as and a
Description, which can be used to provide more detail about the image that you are
creating. Populate these fields as is appropriate for your environment and then choose
whether to allow the image to be served from multiple servers using the Image. When
you are satisfied with your settings, click on the Create button and you will be asked to
agree to the licensing agreement (since the installation on the client is automated and no
licensing agreement will be presented there).

Figure 6-8. NetInstall Image Settings

Finally, provide an administrative user name and password when prompted in order
for the image to be generated. At this point, System Image Utility will create a folder,
with an NBI extension, that contains the resulting NetInstall image as well as a
configuration file named NBImageInfo.plist, which defines the NetBoot image’s
environment. When added to a server’s NetBoot folder, ServerAdmin will use this file
to both read initial settings as well as modify them based on configuration changes.
You’ll also find the folders: i386 and ppc in a NetBoot image’s .nbi directory. These
contain kernel-specific files: booter, an EFI binary file needed for initial boot;

CHAPTER 6: Mass Deployment

310

mach.macosx, our kernel; and mach.macosx.mkext, a NetBoot-optimized kernel-
extension cache.

NOTE: By default NetBoot will use the /Library/NetBoot/NetBootSP0 folder as the first image
to serve, so you can list the folder in the In: field. You can also copy the image elsewhere and then
share it manually through NetBoot at a later time. Mac OS X Server will recognize that the image in
Server Admin automatically, however you may need to enable the image before it is visible on the
network. Keep in mind that you may want to create your image on a model of your target host as it
may have a newer build then what your server has currently installed.

Now that you’ve created your image, open /Applications/Utilities/Server Admin.app,
and in the SERVERS list, click on the server you’re going to configure NetBoot for. To
administer the NetBoot service, you first need to add it to the list of services displayed in
Server Admin. So with the server selected, click on Settings in the Server Admin toolbar
and then on the Services tab. Locate NetBoot in the list of available services, check the
box to enable its display, and click Save. You’ll now see the service displayed
underneath the server name in the server list.

Next, you need to configure, then start the NetBoot service. Click on NetBoot in the list
of available services, then click on the Settings icon in the Server Admin toolbar. By
default, NetBoot isn't enabled for any of the network adapters on your server. Check the
boxes in Enable NetBoot on at least one port for the network interfaces you’d like to use
to serve NetBoot. A port dedicated purely for NetBoot is never a bad idea. Next, select
the hard drive you want to house your NetBoot/NetInstall images, check its box under
the Images column, and click Save.

When you enable a volume for NetBoot, a few things happen. First, the system will
create a supporting folder structure at the root of the selected volume, usually
Library/NetBoot/, which will contain two folders. The first, NetBootClients0, is shared
out over AFP and used for NetBoot shadow files. Diskless NetBoot clients use the share
for temporary file storage. The second folder, NetBootSP0, houses the server’s NetBoot
NBI bundle. Both folders are configured as NFS global exports.

NFS is a key player in NetBoot and so is another protocol, TFTP. NetBoot loads both the
kernel and the booter over TFTP. The protocol’s root folder exists in OS X Server at
/private/tftpboot/. Inside is NetBoot folder, which contains symbolic links to each of
the server’s NetBoot sharepoints. Typically, this is only NetBootSP0, but some servers
will have more than one. (Later in this chapter, we’ll discuss referencing these protocols
to statically set remote-boot capabilities.)

With the server setup done, you need to copy your image’s NBI bundle into the
previously selected volume’s new /Library/NetBoot/NetBootSP0 directory. After you’ve
copied (or moved) the image’s .nbi folder, click on the Refresh button in Server Admin.
You should now see the image listed under the Images tab of the NetBoot Settings
screen. Check the box to enable the image, click on the Save button, and finally, click
on Start NetBoot to bring up the actual NetBoot service.

CHAPTER 6: Mass Deployment

311

Once you’ve configured the service and have it running, you should be able to boot your
client computers from it by pressing the N modifier key at boot, which instructs a client
to attempt a network-based boot.

Boot Modifier Keys
Mac OS X can boot from sources other than your default internal start-up disk through
the use of modifier keys. When you power a system on, using these keystrokes will send
commands to the system to perform the following:

 C: Boot from optical media.

 D (with restore disk in optical slot): Boot from hardware test mode.

 Command-Option-O-F: Boot from OpenFirmware (if you have open
firmware).

 Command-Option-P-R: Reset Parameter RAM.

 Command-Option-P-R (until you hear two tones: Reset non-volatile RAM.

 Command-Option-N-V: Reset non-volatile RAM (similar to above
according to hardware).

 Command-Option-Shift Delete: Bypass the default startup volume and
look for another blessed volume.

 Command-Option-T-V: Boot that Quadra you hax0r’d OS X onto to
use a TV for a monitor.

 Command-S: Boot from single-user mode, a command-line only
environment where you need to mount disks manually.

 Command-V: Boot in verbose mode, which shows what’s loading in a
command-line-like environment as it loads. I boot my machines in this
manner 100 percent of the time, using the nvram boot-args="-v"
command.

 Eject: Ejects media from the optical slot/tray.

 F12: Ejects media from the optical slot/tray.

 Mouse button: Ejects media from the optical slot/tray.

 N: Boot from a NetBoot volume.

 Option: Boot from the startup manager, a list of available startup
volumes that lets you select a startup volume.

 Option-N: Boot from a default boot image on a NetBoot volume.

 Shift: Disables nonessential kernel extensions (drivers).

 Shift (if held after submitting login credentials): Disables user startup
items, launch daemons, and launch agents.

CHAPTER 6: Mass Deployment

312

 Shift (left shift key at the OS progress menu): Bypass automatic login.

 T: Boot from Target Disk Mode, turning a system into a glorified
FireWire drive (including access to optical drives).

 Trackpad button: Ejects media from the optical slot/tray.

 X: Forces the system to boot into Mac OS X (used only with systems
that can run OS 9).

You can also boot an Xserve to a NetBoot server, using the start-up modifier keys
without a keyboard. To do so, boot the system holding down the system-identifier
button until the top row of lights blink in succession, Knight Rider style. At this point, let
go of the system identifier button, then press it again, and you’ll notice that the bottom
light will change positions. The position number, from right to left, indicates the
following:

1: Boot from an optical drive (similar to using the C modifier)

2: Boot from a NetBoot server (similar to using the N modifier)

3: Startup from the first blessed system found on an internal drive (useful if going
from NetBoot or optical)

4: Look for another blessed system on another internal drive (similar to Command-
Option-Shift-Delete modifier)

5: Boot from Target Disk Mode (similar to using the T modifier)

6: Reset NVRAM (similar to using Command-Option-N-V modifier)

8: Diagnostic mode

Once you’ve selected the desired boot option, press and hold the identifier button until
all status indicators light sequentially. Release the button, and the system will finish
booting. If you want to select the optical drive, you need to press the identifier an
additional time once you’ve inserted the disk.

Bless
You can use the bless command to define boot options in a more granular fashion
programmatically. It can define where a Mac OS X computer will boot from. The –folder
option defines a directory to boot from, while you can use the –file option to choose a
specific booter file (such as bootx).

To boot from a second volume, use the –folder option with the path to a volume’s
/System/Library/CoreServices directory:

bless –folder /Volumes/mySecondHD/System/Library/CoreServices –setBoot –nextonly

The command in this example calls bless with the –setBoot option, which tells EFI to
use this device as its primary boot device. The –nextonly option is particularly helpful,
as it allows booting to a device just once, after which it resumes operation from the
previous start-up disk. This option has great utility: rebooting to maintenance partitions

CHAPTER 6: Mass Deployment

313

or NetBoot images, rebooting for complete reimaging, and rebooting into Boot Camp.
Make this option your friend; take it out, wine it, and dine it. Your life will be dreary
without it.

Speaking of Boot Camp, bless has dominion here too. To properly bless a Boot Camp
partition, first figure out which partition, or slice, contains the foreign OS. Use Disk Utility
on the drive with the Boot Camp partition you want to boot from as shown in the
following code:

$diskutil list /
/dev/disk0

which will produce output similar to this:

 #: TYPE NAME SIZE IDENTIFIER
 0: GUID_partition_scheme *149.1 Gi disk0
 1: EFI 200.0 Mi disk0s1
 2: Apple_HFS helyx 122.9 Gi disk0s2
 3: Microsoft Basic Data 25.9 Gi disk0s3

For Windows, specifically, look for the ‘‘Microsoft Basic Data’’ slice. From the output
above, you can see that we want to use disk0s3. To use Windows, you must specify the
device and the –legacy option, which indicates BIOS support. Running the following
command will tell your machine to reboot into Windows:

bless –device /dev/disk0s3 –setBoot –legacy –nextonly && shutdown –r now

The bless command also lets you specify a NetBoot location via the –NetBoot option.
You define a specific server to NetBoot from by using the –server option. For example,
you’d tell the Mac OS X computer to boot from the NetBoot instance running on server
192.168.210.99 with the command

bless –NetBoot –server bsdp://192.168.210.99

By default, NetBoot doesn’t function across subnets because the Boot Service
Discovery Protocol (BSDP) is non-routable. Specifying the –server option alone won't
allow you to NetBoot across subnets. To boot an EFI-based Mac from a NetBoot server
on a different subnet, you must also define the .nbi file, the mach.macosx file, and the
.dmg file of the NetInstall file you created earlier. The following will perform the same
command as above but assumes you’re actually booting from a NetBoot image on a
different subnet:

sudo bless –NetBoot –booter
tftp://192.168.210.99.edu/NetBoot/NetBootSP0/NetInstall.nbi/i386/booter kernel
tftp://192.168.210.99/NetBoot/NetBootSP0/NetInstall.nbi/i386/mach.macosx options
"rp=nfs:192.168.210.99:/private/tftpboot/NetBoot/NetBootSP0:MacBook.nbi/NetBoot.dmg"

Using what we learned in the earlier command, the underlying technology of the
NetBoot service might become a little clearer. The TFTP and NFS services do the heavy
lifting, so it’s actually entirely possible to provide NetBoot services, even if you don’t
have any Mac OS X Servers available. You can use the bless command for a wide
variety of other common tasks. Issue the man bless command to check the man page
for more information and features.

CHAPTER 6: Mass Deployment

314

Apple’s NetRestore
NetRestore is a graphical front-end to the asr command line tool, which we covered in
the ‘‘Using Apple Software Restore’’ section of this chapter. Using System Image Utility
on a Mac OS X Server it is possible to create a NetBoot disk image that automatically
boots a client and runs the asr commands that we referenced above for both uni-cast
and multi-cast (mASR) restores. Once a client is booted into the NetBoot environment
they can select a location (in the form of an image) to restore to their system and then
start the restore using a standard looking installer interface.

System Image Utility can also be used to create the image itself, providing another tool
in the arsenal for image creation. To create an image for restoration using NetRestore,
open System Image Utility from /Applications/Server with installation media inserted or
with a volume mounted that will serve as the source for your NetRestore disk image.
Provided that System Image Utility is able to read the media, the Create a Network Disk
Image screen should then appear. Here, click on the NetRestore Image radio button as
seen in Figure 6-9 and then click on the Continue button. For the purpose of our
example, we will be imaging using a monolithic Mac OS X client that has been booted
into Firewire Target Mode and connected to our imaging station.

Figure 6-9. Creating a Network Disk Image

CHAPTER 6: Mass Deployment

315

At the Image Settings screen, first provide a name that the mounted disk image will
have in the Network Disk field as you can see in Figure 6-10. Then provide an
explanation of what the image is for in the Description field. If the image will be hosted
from multiple NetBoot or NetRestore servers, next click on the check box for Image
will be served from more than one server. Finally, provide the particulars for creating a
new local administrative account for the restored computer, including a name, short
name and password. When you’re satisfied with your settings, click on the Create
button.

Figure 6-10. NetRestore Image Settings

Because your image will install an operating system you will next need to accept Apple’s
licensing agreement. Click on Agree if you do and then provide an administrative
password in order to generate the image. According to the speed of your connection, wait
for the client system and the size of the volume that you are creating an image from.

While waiting, ponder the fact that you could also have installed an operating system
and a number of software titles, configured settings as you would like them to be and
then booted that system into Firewire Target Disk Mode and made a NetRestore set
from the populated system. This would in effect have the same result as running the
image and then any subsequent post-flight actions. However, as your environment
moves into a more mature imaging framework it would inevitably become too

CHAPTER 6: Mass Deployment

316

cumbersome. You can continue to push out large images though, generated on the fly
using InstaDMG.

Once the image has been created, you’ll then want to use the steps described in the
‘‘Using ASR’’ section earlier in this chapter to configure an ASR stream. Alternatively,
you can place the resultant image onto a share point or even on an HTTP server.
Document the path that you’ll then use for accessing the image, and now it’s time to
setup that NetBoot image so that you can provide access to restore the disk image.

To create the NetBoot image, open System Image Utility again. Then click on the plus
sign in the lower-left corner of the screen and select Create New Workflow. You will then
be presented with two screens: the Automator Library and a populated workflow in the
System Image Utility screen. Remove each of the pre-populated workflow items by
clicking on the X in the upper right hand corner of that screen. Here you can drag items
from the Automator Library to the workflow. First, drag Define NetRestore Source, then
drag Create Image, as you can see in Figure 6-11.

Figure 6-11. Creating a NetRestore Workflow

Once you have populated the tasks that comprise the workflow you can move on to
configuring the settings for each task. For the Define NetRestore Source, first click on
the plus sign and then provide the path to the location that you have hosted the image.
If you are creating the path for multicast asr then check the box for ASR multicast
streams. If you would like to list other disk images that can be restored, check the box
for Other NetRestore Sources, and if you would like for the user to be able to type in a
path to restore, click on the box for Allow manual source entry. (This final option is
useful for new environments where you are testing, to check the path and potentially
type in other paths if you need to.)

For the Create Image task, select a Type of image that you will be creating, which
should be NetRestore. Then provide a name for the image in the Image Name field and

CHAPTER 6: Mass Deployment

317

finally a location to save the image to, which if NetBoot has previously been used will
default to the /Library/NetBoot/NetBootSP0 directory that the NetBoot service looks to
by default for which images to host. From Server Admin you can now use the enable
checkbox for your NetBoot service for the newly generated image and test booting a
client to the image.

To boot a client to the image, simply boot holding down the N key (note that at this point
that client system will more than likely be erased, so make sure that it does not have
data that you need on it prior to doing so). There are a number of things that can cause
NetBoot not to work in your environment, as we’ll describe in further detail in the
‘‘Bless’’ section later in this chapter. However, if NetBoot can function in the
environment then the client should boot to a list of images that you can restore from
based on the paths that you entered in the Define NetRestore Source action from the
Automator Library. Select the location to restore to and then test the system when it is
finished imaging.

While the system is imaging, it’s time to ponder something else. If you look on the server
in the Automator Library, you’ll see a number of other tasks that could have been
performed, including Add Packages, Add User Account, and Enable Automated
Installation. The Add Packages option can be used to deploy a package. This could
include any installer, custom-made packages and even payload free packages, which
are typically used as vehicles for scripts; you can also use a package to perform
automated binding on deployed client systems. You could also use the Add User
Account option to create multiple accounts. The real power of this system though
comes from the Enable Automated Installation, which can take your 3 or 4 touch
deployment down to a one touch deployment, meaning boot the client holding down the
N key and it will be completely imaged from start to finish, without having to ‘‘touch’’ the
system again.

DeployStudio
DeployStudio is similar to the now-retired NetRestore, a commonly used free application
that leveraged NetBoot and ASR to create a nicely automated mass-deployment
system, if perhaps a rather utilitarian interface. NetRestore’s killer feature was the ability
to pack everything into a decent Graphical Interface and its ability to be extended on the
fly with user contributed scripts and packages, combined with the ability to deploy
software packages and scripts easily. Luckily, while bombich’s netrestore was widely
deployed, Deploy studio is more the fully featured effective replacement. In fact,
DeployStudio far surpasses even Netrestores ease of use for entry level admins.
Additionally, DeployStudio is written in a much more capable language known as Cocoa,
which allows DeployStudio to look and feel like a rival to even some Apple tools.

DeployStudio, like all modern imaging tools for Mac OS X, automates the setup of ASR
and a number of other technologies described previously. It uses a series of
automations, called Workflows (similar to those in System Image Utility, but without the
raw Automator-style interface), to set up an automation routine. Example workflows
include partitioning a disk, deploying a master image, installing numerous post-imaging
packages, and perhaps, to end the process, performing a Directory Service Binding

CHAPTER 6: Mass Deployment

318

script interface. DeployStudio presents all of this functionality via a simple, easy-to-
understand graphical interface which is constantly being improved. Best of all, it’s free.
So why didn’t we lead off with this tool? Because whether you use the graphical tool or
the command line, it’s vital you understand both as they all use the same basic set of
technologies for all the tools we cover.

You can also use DeployStudio to roll out Windows for Apple Boot Camp environments
using winclone. This isn’t to say that it’s going to sysprep the OS, but it will format the
drive appropriately and lay the OS down on it which itself may then contain a sysprep
file ready for the mouse trap to spring. Further automation is up to you (see Chapter 9).

To get started with DeployStudio, download the latest stable installer at http://
www.deploystudio.com, extract the installation files, and start the actual install. In the
Welcome to the DeployStudio Server Installer screen, click Continue, then click Continue
again at the Important Information page, reading each along the way. Next, read the
Software License Agreement, clicking on Continue if you’re okay with having no major
strings on your free software. Then click on the Agree button. Now you’ll see the Standard
Install portion. Select where on your hard drive you want to install DeployStudio (by default
it’s placed in the /Applications/Utilities directory). You can also select the applications
you want to install. Note that the setup program will install DeployStudio’s Admin, Server,
Runtime, and Assistant components as well as a tool called Startup Disk, which provides
access to the Startup Disk control panel. Available options include:

 DeployStudio Admin: Used to configure workflows in an interface
similar to the one used by NetInstall.

 DeployStudio Assistant: Setup tool for performing initial configuration,
creating NetBoot sets and USB/Firewire disk images for booting clients.

 DeployStudio Runtime: Used to manually run DeployStudio workflows
from machines not booted to the DeployStudio disks (NetBoot or
USB/Firewire). The runtime is pretty useful in seeing both what the
environment for a station being imaged looks like and creating Masters
(or images).

Once you’re satisfied with your selections, click Install and wait for the setup to complete,
then click on the Close button and go to /Applications/Utilities (or wherever you
placed your application bundles), and verify that you see them. Next, open the
DeployStudio Assistant, which will guide you through the configuration of DeployStudio.

NOTE: DeployStudio Runtimes can now be run on live volumes. Therefore, you can now run the
DeployStudio Runtime as a package installer and release packages to users or groups as a
means of a self installation solution, allowing for a more zero-tier support mechanism with
regard to package installers.

When you first open the software, you’ll be prompted to start the services. For the
purpose of this walk-through, start the service immediately. At the first Assistant screen,
choose one of the following:

CHAPTER 6: Mass Deployment

319

 Set up a DeployStudio Server: Configures the DeployStudio Server
and the DeployStudio repository (all of the following options will
require a DeployStudio Server to be set up in your organization).

 Set up DeployStudio PC on this computer: Set up server to accept
PXE booted clients and image hosts based on information from the
DeployStudio Server.

 Create a DeployStudio NetBoot set: Similar to the previous choice for
NetInstall option, but pulls the automations from a DeployStudio
Server.

 Create a DeployStudio bootable external drive (USB & Firewire):
Similar to the previous option for unicast deployment over Firewire but
pulls the image from a server (http) running DeployStudio.

NOTE: As you toggle through the DeployStudio options, you’ll notice that the choices on the left
side of the screen will change, providing you with a general idea of which tasks remain to be
completed in your specific configuration.

Assuming this is the first DeployStudio Server, select the Set up a DeployStudio Server
option, and click on Continue. At the Welcome screen, read the instructions, then click
on the Continue button to bring up the Server connection screen. As requested in this
window, enter the server address, user name, and password. For the address, fill in the
IP or DNS information for the server, prepended with https:// and followed with the
port number :60443. In the next field, enter the user name of the local system, and in the
last text box, type in the password of the local system.

If you’re accessing the server from the host on which you initially installed DeployStudio,
you should be able to click on the drop-down list for the Server address: field to
populate it with the information for the address itself. In our experience, if you’re running
Assistant directly from the DeployStudio Server and you don’t see the server populated
in the drop-down list, more than likely you chose to not start the services earlier. You
can do so now using launchctl, as illustrated in the following code:

Launchctl load –w /Library/LaunchDaemons/com.deploystudio.server.plist

NOTE: If you start the services and then later decide that you don’t want to use DeployStudio, it
has an uninstalled included in its installation disk image. You can also stop and unload the
deamon services to temporarily free up the typically minor amount of resources its database
components use. The command to disable is:

 launchctl unload –w
/LibraryLaunchDaemons/com.deploystudio.server.plist

CHAPTER 6: Mass Deployment

320

When you’ve completed the server-connection information, click on the Continue
button. At the Repository Type screen, enter the repository location you’ll use. The
repository contains the DeployStudio database, software packages, master images,
scripts, and logs. It can become pretty big, so plan accordingly. If you’ll be deploying
systems using a USB or Firewire drive, you can choose to have a local repository.

Most likely, though, you’re setting this up to do mass deployment, in which case you
want to specify a Network sharepoint, assuming you’ll be using a server. Click on
Continue, and at the Repository Settings screen, select the local folder that will host the
repository if you chose local in the previous screen (see Figure 6-12). If you chose a
remote destination, fill in the URL to an AFP or SMB sharepoint. For instance, to use the
sharepoint DeployStudio on the deployment server deploy1, issue this command:

afp://deploy1.myco.com/DeployStudio

Enter a username and password for the share, and if desired, a subfolder and mount
options. Always manually attempt to mount a remote client, read information from it, and
write to it before filling it in here. When you’re ready, click on the Continue button again,
and you’ll be prompted to set up email notifications, a fairly straightforward step.

Figure 6-12. Welcome to DeployStudio Assistant

CHAPTER 6: Mass Deployment

321

By default, these alerts go out to an administrator only when an error occurs. You can,
however, change this so that a notice will go out when the imaging process completes.
(Reminders are nice, aren’t they?) Optionally, you can check the box for Include log file
in mail body to see a granular report of the imaging options you’ve applied. When you’re
satisfied with your email settings, click on the Continue button to move on to the
Network Security screen (see Figure 6-13).

Here you can choose whether to use HTTPS during your imaging. If you choose HTTP,
the default port will be 60080. With HTTPS, it will be 60443. You can also customize the
TCP/IP port that DeployStudio will use by typing a different integer into the Port: field.
When you’ve finished this, click on Continue to move to the next step.

Figure 6-13. DeployStudio Assistant --- Network Security.

Now you’ve arrived at the User groups screen (Figure 6-14). Here, you can define who
can perform various tasks on the server and which groups have access to which
features. The groups can exist either in the local directory, or in remote directories such
as Open Directory or Active directory. We generally like to create a local group on our
DeployStudio using the Accounts System Preference pane for DSAssistant, DSAdmin,
and DSRuntime. That makes adding members with local accounts pretty simple. In
larger environments, you may want to use only directory groups.

CHAPTER 6: Mass Deployment

322

In any case, you can specify three different privilege groups: Assistant setup, which can
run the setup assistant tool; Admin, which can run the DeployStudio Administrator tool;
and Runtime, whose members can use the runtime application. Once you’ve
appropriately configured permissions to the DeployStudio toolset, click on the Continue
button.

Figure 6-14. DeployStudio Assistant---User Groups

Next, you’re presented with a screen in which you can set DeployStudio’s multicast
functionality (Figure 6-15). The values applied here are going to be fairly similar to those
in the file you generated earlier for ASR. Select the network interface, type the multicast
address for the listener to bind to, and customize the first port that you’ll use to stream.
Now set the maximum number of streams and the data rate and provide a TTL, which
defines the maximum number of hops a multicast stream will traverse (provided you’ve
configured your routers for multicast support). Of the final three options, in most
environments you customize only the maximum number of streams and the speed per
stream. With your ASR settings taken care of, click on Continue to bring up the Save
changes screen, and there click on Continue to write the settings to disk.

CHAPTER 6: Mass Deployment

323

Figure 6-15. DeployStudio Assistant---Multicast Settings

Tip Don’t worry too much about these settings, you can always go through and enter them
again, if you wish, by simply rerunning the DeployStudio Assistant and connecting to the
DeployStudio Server!

Now that you’ve completed the setup, it’s time to actually use your server. Enter
DeployStudio Admin, which you’ll find with its brethren in /Applications/Utilities.
When you open the admin tool, it prompts you for a valid server, user name, and
password. Log in as one of the users in the DSadmin group and enter the address,
followed by the port number just specified in the DeployStudio Assistant. By default, the
connection information should be available in the drop-down menu. Once you’ve
connected, along the left side of the screen (Figure 6-16), you’ll see the five options
described on the following:

 Activity: Allows you to view events.

 Computers: Lists the computers, by MAC Address, that you will be
imaging (or have imaged). You can import information into Computers
using ARD or CSV files.

 Workflows: Similar to the Automator-style interface of NetInstall and
allows you to configure the steps for an installation.

CHAPTER 6: Mass Deployment

324

 Masters: List of all images located in the repository. To populate the
Masters list (the base or bare metal images you will use in your
workflows), you will need to use the DeployStudio Runtime.

 Scripts: Central repository for scripts to be run as part of workflows on
computers specified (the existing scripts are mostly for Mac OS X 10.4
and should not be used to image computers with later versions of the
OS). You can pull most scripts from your NetRestore deployment and
use them on a DeployStudio deployment. You’ll also find other scripts,
more compatible with 10.5 and later, located in subfolders of the
DeployStudio root directory defined during installation.

Figure 6-16. DeployStudio Admin Computers

NOTE: If you’re migrating to DeployStudio from NetRestore, you’ll be happy to learn that both
store data in the same format. The format of the CSV file should be (per line with no colons in
the MAC address):

MACAddress,computername,hostname

CHAPTER 6: Mass Deployment

325

You use the DeployStudio runtime to play workflows, including those for capturing an image
or putting one onto your desktops, which you’d typically want to do for mass deployment.
You can run DeployStudio Runtime manually from Mac OS X as well, so you can test your
workflows by playing images onto a local Firewire or USB drive. We’ll use the runtime to
create a master (base image) from a source volume. Open DeployStudio Runtime and
authenticate to the server you set up earlier in this section, then select Create a master from
a volume and click on the Play button, as shown in Figure 6-17.

Figure 6-17. DeployStudio Runtime

Next, provide the specifics for creating the image (see Figure 6-18). Select a source hard
drive to base the image on, then enter the desired name of the image into the Image
Name: field. In the Keywords: field, enter some text to help you find the image later (for
example, Office 2008, Firefox, MacBookPro June, or whatever will help differentiate this
image from others you may set up). Software package lists can become extremely well-
populated, so the better you tag your software, the happier you’ll be when you can
easily find whatever you need. Also, set Type: to Read Only for now-----this is the most
reliable, albeit the slowest. Next, enter the format for the image’s file system-----for OS X
machines, this will pretty much always be HFS+. The tasks in this process are very
similar to those you performed earlier when you used hdiutil to create an image with a
given format from a specified source, then cleaned up the machine-specific files. When
you’re ready, click on the play---button icon (near the upper-right-hand corner of the
window) to begin building an image of the hard drive.

CHAPTER 6: Mass Deployment

326

Figure 6-18. Creating a master

You should be able to see your initial master (image), now that it’s in the repository (if
you were patient enough to let the imaging process complete). Click on MASTERS from
the DeployStudio Admin program and you should see it listed. Next, upload any
packages you’ve built into the Packages directory in the DeployStudio root folder. Once
you’ve added them, you can install them using a workflow. To create one, click on
WORKFLOWS (see Figure 6-19) and then on the plus sign at the bottom of the screen.
Give your new workflow a name, such as Marketing Dept MacBook Deploy, which we
used in our example.

Next, click on the plus sign on the gray bar in the center of the screen and you’ll see a
slider appear with a number of task options. For our workflow, we’ll choose Partition
Disk, followed by Restore a Disk Image. And, finally, we’ll install any custom packages
and scripts pertinent to our build. You may not want to install all of the packages in your
system, but you certainly could. The fact that you’re performing imaging in an almost
object-oriented fashion means you can pull any supported applications from your entire
library with a package and copy the package to the repository. (If you need to embed
serial numbers and the like, you may want to wait until we cover packages in more detail
in a few pages.) You can also use scripts to implement the various settings and
configurations each client needs. The workflow concept will be a recurring theme
through just about any imaging application.

CHAPTER 6: Mass Deployment

327

Figure 6-19. Configuring workflows

Once you have a functional workflow you’d like to test, you can use DeployStudio
Assistant to create a DeployStudio bootable external USB or FireWire drive. For
instance, you can make a USB jump drive that you use to boot a machine and load the
runtime to image over a network. To set this up, select the appropriate option from the
DeployStudio Assistant screen and click through the various dialog boxes until you get
to the Available volumes: field. Select the drive to use as an external boot drive or the
option to make the drive into a single partition if you’d like to erase multiple partitions on
it currently. In the next pane, specify the remote server connection that the new
volume’s Runtime application will connect to.

Next, enter a username and password to allow communication between the
DeployStudio Runtime and the DeployStudio Server, and optionally, type in a Virtual
Network Computing (VNC) password, which lets you control hosts booted from the
runtime through VNC (see Figure 6-20). The remaining options let you specify whether to
display the log window by default, when to put the host display to sleep (to save energy
while it’s imaging), and how long the runtime will remain open yet inactive (for example,
if imaging were to finish or fail to complete). When you’re ready, click Continue.

CHAPTER 6: Mass Deployment

328

Figure 6-20. Creating a DeployStudio NetBoot Set

You can also configure a NetBoot set that will achieve much the same goals of the USB
drive, but rather than booting to removable media, you boot to a NetBoot server. The
resulting NetBoot system is a very small installation capable of running only the Runtime
and giving you VNC access to control the host. The steps are similar to those described
above, except that rather than erase the target drive, you create a NetBoot set, which
you can copy into your /Library/NetBoot/NetBootSP0 directory and enable in Server
Admin. After this, you can boot clients by holding down the N key (if it’s the default
image) or by selecting the volume in Startup Disk.

If you use your DeployStudio Server for other tasks, you may want to turn DeployStudio
off to avoid consuming resources. To do so, open System Preferences, select the
DeployStudio Preference Panel, then click on/off or use the command-line method
covered previously in this chapter.

TIP: You can upgrade DeployStudio by installing the package for the most recent version,
which simply updates the application bundles and leaves the database itself untouched. While
generally updates have been fairly stable consider backing up the Deploy Studio repository
folder prior to any major upgrades.

CHAPTER 6: Mass Deployment

329

Other Third-Party Solutions
There are a number of solutions for mass deployment and patch management in
addition to those we cover from a technical point of view in this Chapter. These include
LANrev, Puppet, Radmind, and even Deep Freeze by Faronics. Deep Freeze can be used
to place a computer into a frozen state. The system can then be thawed for changes
and rebooted to place it back into a frozen state. This is typically reserved for lab
environments. LANrev is a popular product that supports Mac, Windows, and Linux.

Radmind is a suite of command-line tools you can use to manage the software
installation and configuration state across a group of computers. It provides a very
complex toolset for ensuring consistent deployments across an arbitrary number of
clients. Radmind can detect and manage changes to systems via a loadset, a predefined
list of contents that you can compare to what’s resident on clients and then use to
replace, add, or remove client files. Using loadsets and overloads (listings of files,
directories, and items associated with them), administrators can install, customize, and
update software. Radmind is very good at keeping a collection of systems synchronized
with a master environment-----a capability you might need in a lab, for example.

Radmind is slowly being uprooted by products like Casper and Package-based imaging
solutions. The original developers have moved on from this tool. However, it still has a
religious user base.

Puppet is an open-source administration and policy framework, written in Ruby and used
for numerous types of system automations. Radmind and Puppet take a similar approach
to synchronizing systems with a master-----both alter a remote set of files, but they use
different methods. Radmind looks at file systems; Puppet uses facters, which are similar
to the loadsets defined in Ruby, but far more granular. Puppet then employs a client
library, which houses instructions for reaching predefined states. Because Radmind is
great at maintaining file systems and Puppet is great at, and highly configurable for
managing finely grained states, you’ll find both useful.

For example, you can use Radmind to manage certain directories you want to remain
static, such as those involved in deployments of the Developer Tools from Mac OS X.
Then you could put Puppet to work to let users change settings in a non-managed client
environment while still allowing you to maintain some control. Or you might choose to
manage servers with Puppet and workstations with Radmind.

Both offer highly customizable environments for managing Mac OS X (and other operating
systems). They are, however, far more difficult than GUI-centric tools, such as Casper Suite,
LANrev, and DeployStudio. For that reason, Puppet and Radmind often get lumped together
as very similar competing technologies. In fact, though, they’re not that similar.

If you’re interested in exploring the capabilities of Puppet, consider the book Pulling
Strings with Puppet: Configuration Management Made Easy by James Turnbull,
published by Apress.

CHAPTER 6: Mass Deployment

330

Casper Suite
Earlier, we looked at using Composer to create monolithic images. Though you can
purchase the product by itself, it’s actually part of the Casper Suite of tools for Mac OS
X mass deployment-----and the rest of the bundle is pretty darn useful. Its server-side
component, JSS, or Jamf Server Software, integrates with Active Directory and Open
Directory. JSS determines which computers and groups receive which packages in an
object-oriented fashion. Casper Admin manages the process of selecting who gets
what, but JSS can also do so.

One strong feature of the suite, policies, puts packages, scripts, and other maintenance
tasks into groups configured to run at certain times. A highly customizable scheduler
lets you activate policies during specific time windows. You can have policies apply to
computers based on a number of criteria, such as IP subnet, computer group
membership, or even membership in Smart Groups. The last are similar to iTunes smart
playlists in that they’re dynamically generated based on pre-specified criteria.

For instance, I could create such a group for all computers running OS X versions prior
to 10.5.7. I might then design a policy that’s active from 7:00p.m. to 7:00a.m. and add
the 10.5.7 combo updater package. Thus every night, any machines not running 10.5.7
would execute the update. Policies are very dynamic and powerful tools for managing
software deployments across a large number of systems.

The Casper Suite also comes with a self-servicing solution that allows users to install
their own packages. Letting users select from a list of acceptable tools-----installing and
removing them without contacting system administrators-----can greatly reduce support
requirements.

Casper Suite can do a lot for you, including asset tracking, network reconnaissance, and
more, but the server-side component, Casper Admin, and Composer provide the
biggest productivity boost.

Automation
Once you’ve built your base image for deployment, it’s time to consider the other tasks from
the checklist you created at the beginning of this chapter. These chores may include items
such as create an admin user, customize default user template, bind to Open Directory, bind
to Active Directory, or install third-party software—Microsoft Office, for example, or Adobe
Acrobat. Chances are that nearly everyone reading this chapter will want to perform at least
one of these tasks, so let’s step through an example.

Types of Automations
Preflight automations run before imaging and post-flight automations (whether
packages, scripts, or image copies) run after. Thus, you can apply automations in the
order that will most logically supply the necessary software or configurations to a
desktop. You can also nest automations by including one script in another or by using

CHAPTER 6: Mass Deployment

331

different scripts as functions within larger scripts. Generally though, the more granularity
you have, the better, and so it’s often best to leave each as a standalone script unless
you need to transfer data from one automation to another. If you do so, you can then set
your certain automations to execute either before or after others.

Packages, images, and scripts are the major elements of deployment automations in Mac
OS X. The easiest of these to create and use is probably the image, which houses files that
you can copy (or drop) into the file system of a computer as a post-flight task. Scripts are
useful primarily when you have an extremely small but focused payload—one, for example,
that simply want enables a service or performs a regex operation on a configuration file.
Deployment scripts generally are AppleScripts or shell scripts; the former are useful mostly
for configuring userland GUI apps that have no command-line interaction. Packages can be
the most complicated deployment elements but also the most powerful.

Delivering file-system payloads is the primary purpose of packages, but you can also
use them to fire scripts prior to and after performing an installation. You can also create
packages that, rather than containing a file-system payload, exist solely for the purpose
of running pre- or post-action scripts. For this reason, packages represent the most
feature-rich option. Using tools such as Composer or PackageMaker, you can build your
own packages, but the easiest implementation method is likely to be reusing the one
distributed with the original software installer.

At first, determining which type of automation to use for each task can be daunting. But
as a rule of thumb, if you just need to put some files into a location, you’re best off using
an image or a package. If you need to run a command to rename a computer or perhaps
to perform a trusted bind to a Directory Service, you’ll likely want to use a script (though
you might use a package to actually deploy that script). Additionally, the software that
you use can play a big part in determining whether to use packages, scripts, or
images-----and in what order.

When people are getting started with automating tasks for images, they typically use
snapshots to capture changes and create packages. Over time, though, you realize that
a snapshot replaces the entire file, which may not be appropriate for preferences files,
given that they often store information for a number of different functions. Most
experienced imaging aficionados move away from snapshots and use shell scripts to
automate the setting of preferences on imaged computers.

TIP: You can also create a DMG file based on the contents of, say, a scripts directory-----useful if
you’d like to keep a directory with a number of scripts in a folder called Scripts on the root of your
hard drive. To do so, you’d use hdiutil with the create verb, followed by the name of the DMG
file and finally the -srcfolder flag, which requires the actual source directory. As an example, if
we wanted to turn this folder into a DMG called myscripts.dmg we could use the command:

hdiutil create myscripts.dmg –srcfolder /Scripts

CHAPTER 6: Mass Deployment

332

User Templates
New users on Macs have a certain set of default settings that are copied into their user
profiles the first time they log in. If a home directory for a user doesn’t exist when that
person first logs in, the system will create a new one using the contents of the directory
/System/Library/User Template/English.lproj as a template (for English users). You
can modify the contents of this directory, copying new files or editing existing ones.
When someone creates a new account, the system will copy these files into it. This
customizes the look and feel, default documents, fonts, and other aspects of user
accounts without you having to do so each time you create a new user or whenever
someone logs in for the first time.

This can be incredibly useful when you’re not using network or mobile accounts, you
have a number of different people logging into computers, and you want to provide
specific settings or files. It goes without saying that you could set many policies more
easily through MCX (Managed Client for OS X), but this won’t always cover settings you
want, and using templates can be easier in many circumstances.

For example, let’s say you want to provide all users with a default set of stock fonts. By
simply copying fonts into the /System/Library/User Template/English.lproj/Library/
Fonts directory, you’ll provide the fonts to users when they log in. We could just install
the fonts in /Library/Fonts and be done with it, but a user who has the fonts in the
home directory can remove them, if needed, rather than being stuck with them. The
same would be true for any items stored in the home directory, including Microsoft
Office preferences, many of which you can’t modify via MCX.

You can also employ user templates to perform scripts the first time a new employee
logs in. For example, if you have a Microsoft Exchange environment, you can have
Entourage automatically set up a user account on the person’s initial log-in by having a
self-destructing LaunchAgent in the user’s home folder (~/Library/LaunchAgents). This
would create LaunchAgents, a script, and the agent itself in the user template, but if you
have a large number of users it would save a lot of time in setup.

Of course, if you’re using Open Directory, Active Directory, or some other directory
service, there are better ways to accomplish much of what you can do with user
templates. Still, templates are great tools to keep in your batbelt.

Migrating from Monolithic Images
A number of organizations currently use monolithic images. Moving to a package-based
solution may seem like a time-consuming and complicated task, but you can take small
steps towards accomplishing it. Composer 7 gives you one of the quickest and easiest
ways to get to a package-based imaging solution. And the product has a great new
feature that will scan your hard drive for installed packages, letting you create one
package per installed software product. This allows you to, for example, take a
monolithic image, generate a package for individual pieces of software installed on the
image, then create a package for each. You can download Composer 7 from
http://www.jamfsoftware.com.

CHAPTER 6: Mass Deployment

333

After the installation, when you first open the software, you’ll see a screen asking you to
choose a method for creating your package (see Figure 6-21). Select PREINSTALLED on
the left-hand side of the screen and you’ll see a listing of each software package
installed on the computer. Select the appropriate titles (or use Command-A to select
them all) and click on the Choose button.

Figure 6-21. Creating a New Package with Composer

Composer will begin generating the packages, and it will use the original software you
installed as the source. Once Composer has finished, you’ll also add your custom
bindings and then create any scripts and other automations to complete the items on
your checklist. But even if you don’t do that, Composer can perform a number of the
tasks for your migration.

Custom Packages with Composer
You can also use Composer to generate other types of packages. One of the product’s
powerful features is its tool for taking system-state snapshots. To put the feature to use,
build an original file-system state list (by performing a software installation or
configuration change) and have Composer record it. Then build another and record that.

CHAPTER 6: Mass Deployment

334

Comparing the before and after snapshots lets you create a list of modified files, which
(for the most part) will be representative of the software you installed.

To start the process, from the main screen of Composer, click on the New Package icon
in the toolbar. In the left-hand pane of the dialog that appears (Figure 6-22), choose the
Snapshot option. In the main part of the window, you should see three options: Normal
Snapshot, New & Modified Snapshot, and Monitor File System Changes. For the sake of
speed, pick the last.

This option does its monitoring using FSEvents, which is the primary system behind
Spotlight and Time Machine and provides the ability for an application to track file
system changes. You could use Composer’s Normal Snapshot, which creates before
and after picture but records only enough data to detect new (rather than modified) files.
Unfortunately, this method, though faster (creating a snapshot is a fairly slow process)
will miss any file modifications.

That, potentially, is a large problem, and it’s the reason for the New & Modified option-----
which, sadly, takes even longer than Normal Snapshot. However, it has benefits. One of
the main advantages to using snapshots instead of FSEvents is that change-tracking
persists through reboots and is generally more stable when there are large numbers of
data changes.

Figure 6-22. Making Snapshot Packages with Composer

CHAPTER 6: Mass Deployment

335

Once you’ve chosen Monitor File System Changes, at the resulting screen, type a name
for the software package and then click on the Begin button to initiate filesystem
activity-monitoring. Now, just install the software as you would normally. You can
minimize Composer 7 if needed, but make sure to leave the application running. When
you complete the software installation and configuration, come back to the Composer 7
window and click on the Build Package button (Figure 6-23).

Figure 6-23. Capturing a Snapshot Package

Under SOURCES in Figure 6-24, you’ll see a new item bearing the name you provided in
the previous step. You can now select the source list and browse the contents of the
package. Be especially careful to note any files that shouldn’t be members. For
example, we installed Firefox and are creating a snapshot package of Firefox. But we
ended up with data from /var/servermgrd and /var/vm. To remove the extraneous files,
you click on /var in the package and then on the Delete button in the Composer 7
toolbar.

CHAPTER 6: Mass Deployment

336

When first building packages from snapshots or monitoring, including unnecessary and
potentially harmful files is a very common mistake. So again, take extra care to check
thoroughly for unwanted items. You should be especially vigilant about getting rid of
unnecessary items in /System, /Library, /private, /var, and /etc.

Figure 6-24. Browsing Package Contents and assigning permissions with Composer

Once you’ve whittled the package down appropriately, navigate to Package Settings in
the left pane of the dialog and type the information for the package into the
Description.plist file. Finish by checking the other content that will go into the
package as well as by verifying the permissions for the files that will be installed, and
finally, click on Build as PKG.

If, instead, you click on Build as DMG, the same data that would otherwise be in the
package will go into your DMG file. But as mentioned previously, packages give you the
ability to deploy scripts and ensure version control, making them the preferred choice, in
general. So choose Build as PKG, select a valid location for saving your package (you’ll
get a prompt to do so), and finally, test the package.

But once you’ve gone to the trouble of creating a package and have been using it for a
while, expect to encounter expect to encounter one of the more annoying aspects of
being on a deployment team: Vendors continue to update their offerings. Now you have to

CHAPTER 6: Mass Deployment

337

change the package. Luckily, this is a place where Composer shines. From your imaging
workstation, just install the update for the version of the given package that’s currently on
the machine. From the File menu, select Download Latest Diffs and you’ll be able to create
a package based solely on the delta between the original package and the new one.

TIP: Snapshots are incredibly useful when you just want to figure out what data changed----for
example, if you need to determine which property-list file to deploy a setting to. If there’s only one
setting in a property list, then you can make a package out of it. But if a preference file has a
number of items, you may be better off simply creating a script to augment the file. That way you
don’t risk changing other settings by accident----or worse yet, rendering systems unbootable
because you change a file in a way that’s inconsistent with what the operating system demands.

InstallEase and Iceberg
InstallEase is a free package-creation tool from LANrev. Its feature set is similar to that
of Composer, allowing administrators to either create packages based on before and
after snapshots, or to select specific files and directories manually. Once you’ve taken a
snapshot with InstallEase, you use the straightforward GUI to fine-tune the package’s
payload. InstallEase has several advanced features as well, such as the ability to
generate uninstall packages, or-----when used in conjunction with LANrev’s client-
management suite-----to install user-centric files triggered on log-in. The product lets you
generate Apple PKG files, disk images, and Iceberg projects.

Iceberg, a third-party package- and metapackage-creation tool provided under the BSD
license, is very similar to Apple’s PackageMaker, discussed in the next section.
Functionally, though, it doesn’t have a whole lot to offer that you can’t accomplish using
the most recent versions of PackageMaker. It does, though, provide a handy interface
for the implementation of pre- and post-flight scripts.

FileWave
FileWave is another mass deployment and patch management solution. FileWave is
different from most other third-party solutions in that it does not natively create and
leverage packages. Instead, FileWave uses File Sets. These are portable between
operating systems and can be deployed at imaging time or post-imaging using the
native installers to FileWave.

FileWave has the additional feature that it can deploy a file set to a desktop and then
leave it there inactive for a period of time. This allows you to push all of your software to
client computers and then activate it or inactivate it on the fly as needed.

FileWave can also be used as a managed client solution, license management solution,
and inventory management solution, much the same way as LANrev and the Casper
Suite can be used. Because this chapter really focuses on packages and standard Apple
deployment technologies, FileWave is not more prominent, but the lack of page count is

CHAPTER 6: Mass Deployment

338

not a direct correlation to the feelings that the authors have on the product. It is a solid
solution, and if a third-party solution is being looked at then it should be on the list along
with others that we cover more thoroughly.

PackageMaker
As with Composer, you can use PackageMaker from OS X to create packages from
snapshots. But PackageMaker lets you define a lot more information for a package,
including information that gives more granular control over scripts. Composer can add
scripts to a package but can’t provide as much control over how they’re handled.

Apple provides package installers as an installation solution with every copy of Mac OS
X (using Installer.app). PackageMaker, though, is set up with the Developer Tools (also
known as Xcode) and is also an optional installation distributed with the Server Admin
Tools. While you can find the developer tools on the setup media that came with your
client system, the most up-to-date resource for the tools is
http://developer.apple.com. As a sidenote, you can download Mac OS X Server Admin
tools at http://www.apple.com/support.

Once you’ve installed the Developer Tools, you can find PackageMaker inside the
/Developer/Applications/Utilities folder. If the Developer Tools aren’t installed, you
can do so by downloading the Server Admin tools and dragging the PackageMaker
application from the disk image’s Utilities folder onto your local drive, as you can see
in Figure 6-25.

Figure 6-25. Location of PackageMaker

When you run PackageMaker for the first time, you’ll immediately be prompted for the
name of the organization and the Minimum Target. For the first, type the inverse of your
organization’s domain name (which is a pretty standard naming convention for packages
in the Mac OS X community, following Apple’s lead of com.apple.applicationname). For
example, if your organization is named Apress.com, you can simply enter com.apress.
The Minimum Target refers to the minimum version of Mac OS X on which you’ll be
installing packages created in PackageMaker. If the software is exclusive to 10.6, then
select 10.6 in the drop-down menu.

Next, create a faux root directory to represent the destination Volume of the computers
you’ll be installing on. You can create this folder anywhere, but we recommend that you
keep it in a standard location. At the time of this writing, the location for all
PackageMaker project files is an external FireWire hard drive.

Figure 6-26 shows the Corporate Fonts Installer folder on the currently logged-in
user’s desktop. The sub-folders Company Fonts and Resources are, respectively, the faux

CHAPTER 6: Mass Deployment

339

root directory of the installation files and the location of the final package-installer’s
support files, such as the ReadMe documentation , pre- and post-flight scripts, and
configuration files used during installation (for example, postflight.conf).

Now that you’ve built the package-project directory structure, you can save the untitled
package-maker project on the same level as the faux root (Company Fonts) and the
Resources folders, but take care not to save the project in one of the two sub-folders.
The name of the PackageMaker project can differ from the final package name. This
example uses the same name as the faux root folder (Company Fonts) for consistency.

Now that you’ve saved the PackageMaker project file in the package-project directory,
you can associate the project file with the Faux root Directory. The easy way is to drag
the faux root directory and drop it into the Contents section of the PackageMaker
project file, as shown in Figure 6-26.

Figure 6-26. Dragging Items into PackageMaker

Once you’ve established the association, you’ll want to update the PackageMaker
project file to use relative path names, as illustrated in Figure 6-27. This will allow you to
move the package-project directory without breaking the path to the faux root directory.
In other words, after you’ve enabled this setting, you can freely move the parent
directory, Corporate Fonts Installer, without needing to reassociate the project files
with the sub-folders (such as the faux root and Resources directories). You can find this
setting in the Action Menu, next to the faux-root path name.

You’ll need to repeat this operation for the Resources folder you created in the package-
project directory. When using the Relative to Project setting, the graphical interface will
not notify you if the program detects a post-flight script in the Resources directory. We

CHAPTER 6: Mass Deployment

340

recommend that you select each script you’ve created, such as those for pre-flight and
post-flight, using the same methodology as previously (including choosing Relative to
Project) for the script specification.

Figure 6-27. Adding scripts in PackageMaker

Now that you have your PackageMaker project files in order, you can copy the items
you’d like to install and put them into the specified PackageMaker project’s faux root
directory. This example creates a font-installation package. The installer will copy the
CustomCorporateFont.ttf font file into the destination volume’s /Library/Fonts/ directory.

You don’t need to worry about creating a folder structure that already exists on the
system-----in other words, if you create an /Applications folder in your faux root, it will
act as a place holder for the same folder on the destination volume. At installation time,
the installer will see that /Applications already exists and merge your installer’s faux-
root contents with the existing file set. If you create a directory structure that doesn’t
already exist, then as you’d logically expect, the installer will create it so the child files
you’re installing will be placed into the correct directory structure, relative to how they
originally were created in the faux root.

When you’re satisfied with your installation file set, you can build an initial package
(Figure 6-28) to begin testing with. PackageMaker installation packages should always
be tested on a clean system that mimics a majority or cross-section of your client
computers. Keep in mind that using the same system over and over again may skew
results, because the file sets installed may not be completely clean between each

CHAPTER 6: Mass Deployment

341

iteration of the build process. For this reason, we recommend you always start tests on
freshly restored systems.

We also highly recommend that you establish a click matrix-----a set of operations you’ll
perform after a package installation to verify that the newly installed files haven’t
adversely affected any mission-critical functionality. This is crucial for preventing
efficient snapshot-based systems, such as package installers, from creating problems in
your end users’ workflow. We mention an example of this behavior in the ‘‘Snapshot’’
section of this chapter.

Once it has built the package, the software will begin the installation automatically. Even
if you’re not installing on this system, you may still want to choose Build and Run, just to
verify that the Installer.app application can appropriately open the newly created
package installer. When you’ve verified that the package installer opens correctly, you
can simply quit if you don’t want to test the installation. The name of the package
installer doesn’t have to match any of the previously defined values. In this case, a
Corporate Fonts.pkg file will be created on the currently logged-in user’s desktop.

Figure 6-28. Build and run packages to test

After you’ve run the package through the click-matrix test suggested earlier and you’ve
installed all files and package scripts, verifying that they ran correctly, you’re ready to
use the package to deploy (Figure 6-29). Keep in mind that when testing, you always
want to mimic your final installation environment as closely as possible. This may require
that instead of actively installing with Apple Remote Desktop, you run the package
installer on a volume other than the current startup disk, so you can mimic how a
network installer would passively install files.

The best way to carry out the simulation, other than testing with the final deployment
medium, is to mount a machine in Firewire Target Disk mode (hold down the T key at
startup, or enable the mode in the Startup Disk System Preference Pane). Once the
target volume is mounted, choose the appropriate volume while running through the

CHAPTER 6: Mass Deployment

342

installation steps. This type of testing will often reveal installations that work correctly
with tools such as Apple Remote Desktop but fail when using network installers such as
NetInstall or DeployStudio.

Figure 6-29. Ways To deploy packages

NOTE: We strongly endorse picking the right tool for each job. Composer is very easy to learn,
making it well worth the minimal investment to purchase it. However, when you reach the limits
of what it can do, chances are good you’ll look to PackageMaker to move to the next step.

Negative Packages
Negative packages are those you use to remove (rather than add) applications. The easiest
way to remove an application is with an uninstaller that the application vendor provides. If
you don’t have that (or if it doesn’t work, which happens), more than likely you’ll want to use
a negative package. You can also use it at install time to remove any applications bundled
with the operating system if they were in a standard- or bare-metal image.

Suppose you’re attempting to remove Norton AntiVirus for the Mac in an automated
fashion and the uninstaller distributed by Symantec isn’t doing the trick. To start, look at
the package contents to determine what was added to the system. You can find the
contents from the Bill of Materials (BOM) for the package, which resides in the Contents
directory in the initial installation package. Then you can simply build a shell script to
remove all the files added during the installation. Note, however, that this often fails to
remove all items that were installed or moved, and it can also leave settings in various
locations.

But there’s another method to determine what files are in a package: Perform a
snapshot before installation and another following. You can do this easily using the
package-snapshot feature of PackageMaker, Composer, or another snapshot-based
packaging utility. Rather than create a package, you use the tool to look at what was
actually installed-----which might include items not in the BOM.

CHAPTER 6: Mass Deployment

343

When you’ve determined what was added to the system, you can remove it all. The
following script will, to continue the example, remove Symantec’s Norton Antivirus from
Mac OS X.

#! /bin/bash
launchctl stop `launchctl list | grep com.symantec.SymSecondaryLaunch | awk ‘{print
$3}’`
launchctl stop `launchctl list | grep com.symantec.scanNotification | awk ‘{print $3}’`
launchctl stop `launchctl list | grep com.symantec.diskMountNotify | awk ‘{print $3}’`
launchctl stop `launchctl list | grep com.symantec.quickmenu | awk ‘{print $3}’`
kextunload -b com.Symantec.SymEvent.kext
kextunload -b com.Symantec.SymOSXKernelUtilities.kext
kextunload -b com.Symantec.kext.KTUM
rm /etc/liveupdate.conf
rm /etc/Symantec.conf
rm /usr/bin/symsched
rm /usr/bin/navx
rm ~/Library/Preferences/com.Symantec.Scheduler.plist
rm /Users/Shared/snorosx
rm -rfd /Library/Contextual\ Menu\ Items/NAVCMPlugin.plugin
rm -rfd /Applications/Symantec\ Solutions
rm -rfd /Applications/Norton\ AntiVirus
rm -rfd /Library/Receipts/NAVContextualMenu.pkg
rm -rfd /Library/Receipts/NAVEngine.pkg
rm -rfd /Library/Receipts/Norton\ AntiVirus.pkg
rm -rfd /Library/Receipts/SymEvent.pkg
rm -rfd /Library/Receipts/SymOSXKernelUtilities.pkg
rm -rfd /Library/Receipts/NortonQuickMenu.pkg
rm -rfd /Library/Receipts/SymSharedFrameworks.pkg
rm -rfd /Library/Receipts/Norton\ AutoProtect.pkg
rm -rfd /Library/Recepits/Symantec\ Scheduled\ Scans.pkg
rm -rfd /Library/Recepits/Symantec\ Scheduled\ Scans.pkg
rm -rfd /Library/Recepits/Symantec\ Scheduled\ Scans.pkg
rm -rfd /Library/Receipts/navx.pkg
rm -rfd /Library/Receipts/LiveUpdate.pkg
rm -rfd /Library/Receipts/Symantec\ Scheduler.pkg
rm -rfd /Library/Receipts/Stuffit.pkg
rm -rfd /Library/Receipts/SymInstallExtras.pkg
rm -rfd /Library/Receipts/SymHelpScripts.pkg
rm -rfd /Library/Receipts/SymantecUninstaller.pkg
rm -rfd /Library/Receipts/Symantec\ Alerts.pkg
rm -rfd /Library/Application\ Support/Norton\ Solutions\ Support
rm /Library/Application\ Support/NAV.history
rm -rfd /Library/Application\ Support/Symantec
rm -rfd /Library/PreferencePanes/SymantecQuickMenu.prefPane
rm -rfd /Library/PreferencePanes/APPrefPane.prefPane
rm -rfd /Library/PrivateFrameworks/SymAppKitAdditions.framework
rm -rfd /Library/PrivateFrameworks/SymBase.framework
rm -rfd /Library/PrivateFrameworks/SymNetworking.framework
rm -rfd /Library/PrivateFrameworks/SymSystem.framework
rm -rfd /Library/PrivateFrameworks/SymScheduler.framework
rm -rfd /Library/StartupItems/NortonAutoProtect
rm -rfd /Library/StartupItems/NortonMissedTasks
rm -rfd /Library/Documentation/Help/Norton\ Help\ Scripts
rm -rfd /Library/Widgets/Symantec\ Alerts.wdgt

CHAPTER 6: Mass Deployment

344

rm -rfd /System/Library/Extensions/SymEvent.kext
rm -rfd /System/Library/Extensions/SymOSXKernelUtilities.kext
rm -rfd /System/Library/Extensions/KTUM.kext
rm /System/Library/Extensions.mkext.NxdE

A package with just that script in it and no files to place into the file system is a payload-
free (given the lack of files) negative package and would remove data rather than adding it.

Installing a Package
You can install a package by double-clicking on it and following the prompts until the
process completes. You can also use the installer command to install a package.

The installer command also has an option, -applyChoiceChangesXML, which allows you to
build an answer file for any options that can come up during a package. The answer file
is used to toggle options in a package on or off in XML format. The most notable use of
the ---applyChoiceChangesXML option is to choose which component of Microsoft Office
is deployed during installation, which we explored further in Chapter 5, Messaging and
Groupware.

Package Scripts
As mentioned previously, a package file can contain a number of scripts that execute at
various points in the installation process. There are a number of choices of predefined
script designations that you might find in a package’s resources folder. We’ve listed
their names here, along with their functions:

 InstallationCheck: Runs at the beginning of the installation process,
prior to authentication. Typically used for basic sanity checks.

 VolumeCheck: Fires when a user is given the option to choose a
destination. Runs against each attached volume to determine
eligibility.

 preflight: Runs prior to installation.

 preinstall: Executes prior to installation, but requires that the current
package has never been installed on this machine.

 preupgrade: Identical to preinstall, but is triggered only in upgrade
situations, when it finds a receipt, in /Library/Receipts, with a previous
version.

 postinstall: Activates after the successful first installation of a software
package.

 postupgrade: Fires after a successful upgrade installation.

 postflight: Runs at the end of an installation, regardless of the success
of the installation.

CHAPTER 6: Mass Deployment

345

Each script typically gets three variables as arguments-----Package Path, Target Location,
and Target Volume. The exception here is VolumeCheck, which receives only the path to
a volume. In every case, an exit code of 0 signifies success, and you should make sure
your scripts exit cleanly. A script failure reports to end users as an installation failure.

Customizing Prebuilt Packages
As noted, a number of application vendors support customization of their packages to
further automate a deployment. As an example, we’ll look at CheckPoint’s VPN-1
SecureClient, which lets users connect to a company’s VPN servers. When you install
the package, the process runs, as a manual post-flight task, in the /Library/Application
Support/Installers/ directory.

The application bundle of each installer contains a userc.C configuration file that the
installation routine copies to the correct location for the CheckPoint VPN software. You can
take advantage of this when rolling out a new version of the CheckPoint client. Add the
userc.C file which you’ve customized for a particular deployment area (such as Corporate)
and place the file within the package installer package. Now Control-click on the client and
choose Show Package Contents, which will produce the screen shown in Figure 6-30.

Figure 6-30. Placing a file into a package bundle

CHAPTER 6: Mass Deployment

346

Next, place the user.C file in the Resources folder, as shown in Figure 6-30. This
customized userc.C file will be copied automatically to the correct directory on the
destination volume by a vendor script such as the following:

#package customization - check for added userc.C
USERCEXISTS=`ls -l $PACKAGE_PATH/Contents/Resources/userc.C |
wc -l | awk '{print $1}'`
if ["$USERCEXISTS" -gt "0"]; then
 if ["$INST_DEBUG_LEVEL" -gt "0"]; then
 $ECHO Replacing userc.C file.
 fi
 cp $PACKAGE_PATH/Contents/Resources/userc.C $SRDIR/database/userc.C
fi

This is a very useful method for enhancing a package installer to deploy environment-
specific configurations without re-creating the package’s payload. In this case, the
vendor already supplied the post-flight script. But you can also modify a non-flat-file
install package by right-clicking on the package, selecting Show Package Contents, and
then editing an existing script or dropping your own post-flight script file into the
package’s Resources directory.

Customizing OS X Preferences
Often, in the course of a mass deployment system, you’ll want to customize OS X
system or application preference files on a machine-specific basis. With the advent of
OS X, the standardized format for many of these files is that of the property list (plist).
These files contain serialized data organized in a key/value format capable of storing
common data types: strings, numbers, dates, booleans, arrays, dictionaries, and raw
binary data. Using these data elements, applications can store complex data structures
for a wide variety of uses.

The plist format isn’t the most efficient for large data sets, though, so the information
stored rarely exceeds a few hundred kilobytes. Still, that’s ideal for application-
preference storage.

Prior to OS X 10.2, plist files could exist in XML format only. But while XML files are
convenient for human perusal and hand editing, they’re not the most efficient for runtime
processing. So in an effort to optimize performance, Apple introduced the plist binary
format for more efficient access by running processes.

You can edit plist files in numerous ways. With those in XML, you can use the text editor
of your choice. But generally, when a running process accesses the file, the OS convert
the format into the more efficient binary, after which your favorite text editor is all but
useless. Thus, before opening the file, you may want to verify the format using the file
command-line tool:

$ file /Library/Preferences/com.apple.AppleFileServer.plist
/Library/Preferences/com.apple.AppleFileServer.plist: Apple binary property list

CHAPTER 6: Mass Deployment

347

NOTE: In OS X, plist files typically use a naming convention known as reverse-domain notation.
Very basically, this notation is similar to that used for DNS but with the hierarchy reversed.

In this instance, the preference file com.apple.AppleFileServer.plist is in binary
format, and were I to attempt to open it in a text editor, I’d be greeted with a nice display
of gobbledygook. All is not lost, though. If you want to explore the raw XML, you can
use the plutil executable, which can convert between XML and binary formats as well
as run syntax checks on the file. To convert the above example into hand-editable
format, you can call plutil with the -convert argument with a statement like:

$ plutil -convert xml1 /Library/Preferences/com.apple.AppleFileServer.plist

Now, you can run file against the plist again to verify that the conversion worked
properly:

$ file /Library/Preferences/com.apple.AppleFileServer.plist
/Library/Preferences/com.apple.AppleFileServer.plist: XML 1.0 document text

Sure enough, the plist file is now in XML format, and you can view it with any text-
capable editor. To convert it back to binary format, run plutil again, substituting
binary1 for xml1 (though, as noted, the OS will usually handle the conversion for you).

Converting a plist file to XML is all well and good, but hand-editing files is of limited
value in a mass-deployment scenario. Certainly you can use perl, sed, or awk in
combination with extended regular expressions to modify an XML plist, but that's a fairly
ugly endeavor and not for the faint of heart. Luckily, a number of tools exist to help edit
plist files programmatically, most notably are defaults and plistbuddy, described in the
next few sections of this chapter.

Defaults
When you need to deal with the contents of a property-list file, you can call on the
defaults command, which lets you read, write, and delete data in the plist format. You
can also use defaults to list the contents of a preference domain. In OS X, each
application has its own preference, often referred to as defaults. To prevent
configuration collisions, each application must belong to a different domain, which is
structured based on a dictionary of keys and values that can be strings, numbers, or
even another dictionary or array.

Each key in a preference domain represents the configuration of a particular setting or a
behavior within the application that the domain represents. For example, the command
defaults read com.apple.mail will read all preferences used by Apple’s mail
application. On the file-system level, each domain has a .plist file to store these
settings.

All applications and services built into Mac OS X have their own domains. There is also
the NSGlobal Domain, which contains CoreServices preference items. Most third party
programs will also leverage the property list format to store their own preference files as

CHAPTER 6: Mass Deployment

348

well, considering that Apple has made it clear in developer documentation that this is
the preferred method to store preference settings. At first, the defaults framework within
Mac OS X may seem fairly complicated. If you’re familiar with the Microsoft Windows
Registry, using that as an analog might help. The Registry has a number of keys, each
specifying a number of settings available either from the operating system or third party
applications (whether available through the GUI or not). The OS X defaults system is a
feature-rich and easily integrated method of changing application and operating-
systems settings.

Showing hidden files in the Finder provides another example of using defaults. To see
the contents of a property list, you can use defaults along with the read verb. To look at
the contents of the com.apple.finder domain, which controls the Finder, you simply
type the command:

defaults read com.apple.finder

Though this will display the contents of com.apple.finder, by default, the contents
include no key for showing hidden files or for hiding files. With a little research, however,
you’ll discover that you can use the AppleShowAllFiles key, which is Boolean value. So
to see hidden files, enter the command

defaults write com.apple.finder AppleShowAllFiles -boolean true
killall Finder

But there’s a problem with viewing hidden files: You may well see a lot of stuff you really
don’t want to see. To return to a state where you don’t have to view all the invisible files,
just delete the AppleShowAllFiles attribute:

defaults delete com.apple.finder AppleShowAllFiles
killall Finder

Alternatively, you could simply set the opposite value:

defaults write com.apple.finder AppleShowAllFiles -boolean false

In addition to working with the defaults command to edit standard string and Boolean
values in a key, you can also bring information in from other sources using a script. For
example, here’s a script that pulls a URL from a random list of servers:

#!/bin/bash

Sus=”http://swupd.krypted.com:8088
http://sus.krypted.com:8088
http://sus1.krypted.com:8088
http://sus2.krypted.com:8088
http://sus3.krypted.com:8088
http://sus4.krypted.com:8088
http://sus5.krypted.com:8088
http://sus6.krypted.com:8088
http://sus7.krypted.com:8088
http://sus8.krypted.com:8088
http://sus9.krypted.com:8088
http://sus10.krypted.com:8088″
sus=($Sus)
num_sus=${#sus[*]}

CHAPTER 6: Mass Deployment

349

echo -n ${sus[$((RANDOM%num_sus))]}
exit 0

This simply creates an array of the supplied software update servers (the items that start
with http:// and located between the quote marks) and then chooses a random item
from the list, writing the output to the screen of the chosen item. In this case, the array
has been called sus, and the randomization performed using the $RANDOM function. If you
have a number of software update servers you could replace the servers in this array
with your own, and the script would simply write the server chosen from the array to the
screen. Then to have it actually specify the server, remove the line that begins with echo
-n and substitute

defaults write /Library/Preferences/com.apple.SoftwareUpdate CatalogURL
${sus[$((RANDOM%num_sus))]}

For deployment, we’ve handled updates two different ways. With the first, we run this
script at startup as a log-in hook (it’s really quick since it doesn’t do much) and let the
OS run software updates based on whatever schedule we’ve employed. The second
method sets execution of software updates to occur strictly manually, but adds a line at
the end of the script to run the updates, allowing you to schedule the task using launchd
or to run it manually over ARD. To configure software updates to run manually, issue this
command on the target system one time (it will persist):

softwareupdate –schedule off

Now, after it randomly chooses a software-update server, the script will encounter an
instruction telling it that each time it runs, it should install all available software updates
from that server. Here’s that instruction, which we put at the end of the script:

softwareupdate -i -a

You could build a lot more logic into this process, but this shows you the basics of
assigning a random software update server using a shell script, highlighting the defaults
command in; for example, a non-MCX-managed environment. (We’ll more on MCX and
software-update scripts in Chapter 7.)

When Not to Use Defaults
Mac OS X comes with a variety of commands for managing settings without having to
edit a configuration file or, in some cases, making it so you actually don’t want to edit a
property-list file. For example, you can get and set the computer name far more easily
than with defaults by using scutil. This command returns the computer name:

scutil –get ComputerName

If you want to change the name, you use –set. So to make the computer name
kryptedmacbook, you use the command

scutil –set ComputerName kryptedmacbook

Now, let’s say you’re writing a shell script and you want to put the computer name in a
variable called computernm). At the command line, type:

computernm=$(scutil –get ComputerName)

CHAPTER 6: Mass Deployment

350

Network settings are another aspect of client and server configuration that you can deal
with more easily using a tool other than defaults. (We’ll have more on network setup in
Chapter 8.)

PlistBuddy
PlistBuddy is another tool for modifying property list files. In many ways, the
functionality of the defaults command and PlistBuddy overlap. But PlistBuddy is
better-suited for more complex structures. The defaults command is great for
modifying simple data types, such as numbers, strings, dates, and to an extent, arrays.
Once you start dealing with more complex structures, though, such as nested
dictionaries, you can quickly find yourself in a headache-inducing maze of nested
braces. For these complex files, PlistBuddy can help.

You’ll find the tool in the /usr/libexec directory and you can invoke it either interactively
or non-interactively. For the purposes of deployment, we’ll focus on the latter.
PlistBuddy has many options, but for most scenarios you'll use the following arguments:

 Print key: Prints the value of the specified key or the entire file if none
is provided.

 Set key value: Sets the value at entry.

 Add key type value: Adds a key with specified type and value. Types
include string, array, dict, bool, real, integer, date, and data.

 Delete key: Deletes the specified key from the plist.

These four options can handle the majority of your interactions, and you can learn about
handling others by examining the PlistBuddy man page (type man PlistBuddy from any
10.5 machine).

As mentioned, while the defaults command is very useful for basic plist interaction,
PlistBuddy is absolutely essential for more-complex interactions. An excellent example of
this involves modifying an OS X machine’s SystemConfiguration preferences file. The file,
which resides in /Library/Preferences/SystemConfiguration/preferences.plist,
contains extensive data about a computer’s configuration including the ComputerName
value, as noted in the previous section where we discussed defaults. In that context, we
recommended that you not use defaults, opting to use the scutil instead. But scutil
can only modify ComputerName for an active running system. What if you want to change
the computer name on a non-running system, as in a mass-deployment imaging situation?

While most such systems we discuss in this chapter contain some sort of automated
naming systems, if you decide to roll your own using ASR, you may want to modify the
system configuration on a non-active system after deploying an image. For this
scenario, PlistBuddy is the perfect utility. First, though, you need a database of
computer names to poll. The easiest structure to use for the data set is a flat-file CSV
arrangement. For instance, consider the following data in a file:

00:1f:f3:d1:d5:c7,Macbook-1234
00:1f:f3:d1:55:77,Macbook-1234

CHAPTER 6: Mass Deployment

351

Here we have a very basic comma-delimited list consisting of computer MAC addresses
and computer names. This CSV file could be stored on a remote server and provided via
Web services. By using curl to fetch this remote CSV file and then PlistBuddy to modify
the preferences .plist file on the newly imaged system, you can create a fairly basic
post-imaging script that can dynamically rename a machine.

Say the data is stored in the file machinedata.csv on the Web server NetBoot.myco.com,
and we’ve just finished laying down an image to our volume mounted at
/Volumes/MacbookHD. Here’s a script to update this newly imaged system with the
appropriate ComputerName automatically:

#!/bin/bash

setup a variable for our offline system's system configuration file
preferencesfile="/Volumes/MacBookHD/Library/Preferences/SystemConfiguration/preferences.
plist"

fetch the csv file
curl http://NetBoot.myco.com/machinedata.csv -o /tmp/machinedata.csv

get our primary ethernet MAC address
this assumes we are booted off our target computer as opposed to imaging
an external system over firewire
ethernetAddress=$(ifconfig en0 | awk '/ether/ {print $2}')

search our machinedata.csv file for the appropriate ComputerName
computername=$(grep "$ethernetAddress" /tmp/machinedata.csv | awk –F, '{print$2}')

make sure we have a computername value, if not, use the ethernet address
if [-z "$computername"]; then
 computername="Mac-$ethernetAddress"
fi

set the computer name on our offline volume's system configuration
/usr/libexec/PlistBuddy –c "Set:System:System:ComputerName $computername"
"$preferencesfile"

also update the bonjour name
/usr/libexec/PlistBuddy -c "Set:System:Network:HostNames:LocalHostName $comutername"
"$preferencesfile"

This is an optimal scenario for PlistBuddy, and its advantages become immediately
apparent if you attempt to replicate this functionality using defaults. (Hint: it’s not worth
your time.) The PlistBuddy commands are actually referencing multiple nested
dictionaries, specified by the hierarchy System:System:ComputerName or
System:Network:HostNames:LocalHostName. Here, each colon-separated item up to the
final key represents a nested dictionary. In each instance, the last key, ComputerName and
LocalHostName, is a string element containing the respective values.

You can use PlistBuddy to read out these values by simply substituting Print for Set:

/usr/libexec/PlistBuddy -c "Print:System:Network:HostNames:LocalHostName"
"$preferencesfile"

CHAPTER 6: Mass Deployment

352

When Not to Use PlistBuddy
While PlistBuddy is a great utility for dealing with more-complex plist data structures,
it’s important to note that the utility is simply modifying the contents of a file. But you
should avoid modifying preference files of an actively running process-----doing so can
cause problems with the running state of the process. In less-extreme cases, the
process could simply overwrite your changes with active runtime values.

Image Regression Testing
When you’re creating a large number of images, testing each one can be critical to
verifying a successful deployment. Here are the types of testing you might undertake.

The most straightforward form of image testing is going through the process manually
and seeing what happens when you try to do a number of predefined tasks. Doing so
requires having a testing system that you can re-image as needed. But manually testing
images may give only a fraction of what can be done in the same amount of time if the
process is automated. If you have a well-regimented image- and software-deployment
environment, the results of testing against specific known configurations typically
provide an early warning sign of problems in the image or a specific build of a package.

There are a few different solutions for Mac OS X that can be used for regression testing.
Eggplant is primarily used to test software applications during development, but can
also be used for this purpose. Regression testing is mostly useful in larger environments,
with a large number of builds. Not only can it be used to qualify images, but regression
testing can also be leveraged to qualify updates. By automating various testing tasks
you can often quickly reduce the change and release management times for new
software and operating systems. Eggplant can be obtained from Redstone Software at
http://www.testplant.com.

Much of this may seem to be in the ether a bit, so let’s look at how to automate some
post-flight imaging checks you may do on images prior to deployment. Eggplant uses
VNC to run checks on the remote systems and then recognizes events based on known,
predefined patterns. If the pattern is a match then the test is a pass, if not it is a fail.
Because Eggplant uses VNC it comes with VINE server, although you can use ARD as
well if you’ve enabled VNC in your ARD configuration.

The System-Under-Test (SUT), is the client that you are testing. Install Vine Server on
the SUT from the System-Under-Test-Utilities folder located on the Eggplant installer.
Copy the Vine Server to the SUT and open it, providing provide a VNC password that
your eggplant instance will use. Then install Eggplant (Starter Edition is fine for our
testing purposes) by dragging the Eggplant application bundle into the /Applications
directory on your Eggplant station. Open it and provide the license key to be placed at a
blank workflow where you can build new scripts and images (images in the sense that
they are actual image files as opposed to disk images).

To get started, create a new, empty script by clicking on the File menu and selecting
New Script. In the New Script dialog, provide a name for the script (we’re going to call
ours Test Office). Then add the client or clients to test by choosing Add Connection...

CHAPTER 6: Mass Deployment

353

from the Connection menu. When asked, provide an IP address, port number, and
password for VNC. In the display name field, provide a name for Eggplant to reference
the client moving forward and click on the Save button.

Next we’re going to capture our first image. Now that you have a client configured, click
on the Connect button with the client highlighted to open a VNC session into the client.
Click on Enter Capture Mode from the application toolbar to capture images and define
actions to be carried out on the STU. When in Capture Mode the screen is dimmed
except for a box used to capture an image to a file, which is integral to creating actions.
Resize the box by mousing over the corners and move the box over the Microsoft Word
icon in the dock, resizing the screen to match the icon. Then, from the Eggplant toolbar
click on Capture Image. You will then see a dialog box to associate a task with the
image you are capturing and name it. Enter a name for the image into the Image Name:
field. For the purposes of this example, we’ll call the image Word_Dock. In the Where:
field create a folder called Test Office (or another name that helps you to remember
what the items for this script should be called). Then choose Capture Image to Click.
Other actions we could have selected include Double-Click on an item, Move an Item,
and Wait for Item to appear.

When you click on Microsoft Word, the Microsoft Project Gallery will, by default, open.
Assuming Microsoft Office, and the Project Gallery open properly, you’ll then open Word
by creating a new document. Therefore, the next scripted action will be to highlight the
Word icon for Word Document in the Gallery, and create an image, selecting the action
to double-click on it. From the Window menu you can then select Current Script to bring
up the script.

NOTE: Eggplant is image-dependent. Changing the location of a file or directory can cause
your tests to fail.

Now quit Word on your SUT and then click on the Run Script button of the Current
Script window in Eggplant on the testing system to verify that the test was completed
whether Microsoft Word opens properly. If it does, your script has run successfully.

While this example looked at Word, a common application that requires testing, it is
worth noting that Eggplant can be used for testing any application in this manner. We
also picked a very simplistic test in order to showcase how to get up and running. As
your skills with scripting against Eggplant increase, you will be able to automate any
number of tasks.

Summary
Imaging environments often reflect the maturity level of your infrastructure. In the
beginning, you may be creating a large image with all of your software and automations
included in the image. Over time you’ll likely create an image and then move into more
of a package-based deployment to supplement the image, perhaps going so far as to
move to a bare metal image with full package management layered on top.

CHAPTER 6: Mass Deployment

354

In this chapter we looked at creating and deploying images and then creating and
deploying packages. We covered the Apple solutions, and we also covered a number of
third-party solutions. The amount of page space provided to each solution is not worthy
of any single solution, but if your interest was piqued by any solution, we strongly
recommend that you get an evaluation or an engineer from the vendor onsite to your
organization to fill in the gaps. Additionally, some solutions (namely the Apple solutions
and those from JAMF Software) have dedicated training courses with substantially more
information than is possible to include in this chapter.

7Chapter

Client Management
Put simply, no environment is too small to preclude evaluating your client management
strategy. Whether you have two desktops or 100,000, there are tools and practices that
can make both your life and your users’ lives easier. A properly managed environment
can save endless administration hours, and in many cases thousands of phone calls to
an organization’s support center. Long gone are the days of shuffling from computer to
computer meticulously duplicating settings. Numerous tools now abound to save you
from this monotonous nightmare—tools which provide you with the ability to affect
tens, hundreds, or thousands of computers from a central point quickly and
effectively. These tools empower you to effectively manage a computing environment
with minimal staff cost.

What exactly is entailed in a good client management system? The answer will certainly
vary depending upon whom you ask. If you ask a Windows system administrator, you’re
likely to hear talk of proper Active Directory Organizational Unit (OU) structure and
elaborate Group Policy Object (GPO) inheritance trees, or you might hear of third party
solutions and deploying .msi installers for settings, as described in Chapter 6. From a
help desk perspective, the focus will largely be on finding, connecting to, and controlling
client desktops (both the screen and the policies). Policy enforcement to ensure
consistent environments across a multitude of desktops is also an invaluable way to
ease the burden of remote support.

Mass deployment and imaging, along with package management systems, will often be
lumped into the client management category because they intertwine. However, there is
a distinction to be made. The latter is utilized to ensure a consistent, specially tailored
software environment that is preconfigured to utilize your management systems. It is
primarily focused on the deployment of a particular system’s software environment.
In contrast, controlling the user desktop experience is one of the main focal points of
client management, providing facilities for automated setup of supported userland
applications. These include dock, desktop and Finder customization, login items,
network mounts, application preferences, media access, and any application that writes
data into the user’s home folder, such as Entourage. For the purposes of this book,
client management picks up right where mass deployment ends-----once the systems are
deployed client management can be used to push default settings out and then lock
certain features of the system down.

355

CHAPTER 7: Client Management

356

This chapter will attempt to provide insight into the important considerations that are
needed to ensure that your post deployment environment is planned in a manner that
will not only ensure its initial success, but will also be easily adaptable as technical
needs or policies change. A successfully planned and managed client implementation is
predicated by numerous metrics:

1. The existence of a tiered management hierarchy, structured
appropriately for the environment to ensure granularity and scalability.

2. The chosen policy implementation properly addresses the technical
needs of the managed node’s workflow, as well as the managed user’s
workflow.

3. The chosen policy implementation adheres to global MIS policies.

4. Management restrictions are as unobtrusive to end users as possible.

5. Policy implementation is performed centrally, is dynamic, and can be
easily changed across both a small and large scope of machines or users.

After reading this chapter, you will become familiar with numerous management
principals to effect these goals: managing Open Directory’s managed preferences
system, user data planning, implementation and management, software update
management, account and password policy management, and last but not least, live
interactive management of your computer fleet using Apple Remote Desktop.

Managed Preferences
Managed preferences in Mac OS X provide administrators with a valuable tool set for
managing many aspects of the Mac OS X computing environment. Their capabilities
run a wide berth, providing many functions, such as managing individual userland
application settings, applying user restrictions to inserted or removable media,
controlling application access, and deploying network proxy settings. And they can also
provide for managing computer hardware energy saver settings, including the ability to
centrally deploy computer shutdown and reboot schedules.

Managed preferences in OS X are based off of Apple’s MCX system, so the terms are
often used interchangeably. Short for Managed Client OS X, MCX is a piece of Apple’s
solution to the user and computer management equation. MCX settings utilize LDAP for
their application. This is typically Apple’s Open Directory, but it is certainly possible to
extend the schema of alternative LDAP servers to provide full functionality (such as
Active Directory or eDirectory).

Managed preferences are configured through the Preferences interface of the
Workgroup Manager Application, as shown in Figure 7-1. On a macro level, preference
management can be applied at four different levels, each represented by a tab in the
top-left region of Workgroup Manager. These levels include individual users, groups,
individual computers, and groups of computers. Standard groups, once managed, are

CHAPTER 7: Client Management

357

referred to as workgroups. The other levels are simply referred to as managed users,
managed computers, and managed computer groups.

Figure 7-1. Managed preferences overview

In Mac OS X 10.4, computer groups were nonexistent. Preceding them were computer
lists, now deprecated except for basic policy management and otherwise functionally
equivalent. Computer lists are limited in two crucial ways. They cannot be nested and
computers could only be a member of a single list, a limitation particularly cumbersome
in larger environments. One noteworthy computer list-based feature of 10.4 was the
guest computer list. The guest computer list was used to manage any computer, which
was configured with an untrusted bind to an LDAP domain and didn’t have a unique
computer record with the appropriate Ethernet address. This is a fairly common
occurrence in loosely managed environments, and the presence of this catchall
computer-level management list was very useful. This functionality still exists in 10.5 and
10.6, but is implemented as a single computer record, the guest computer. The guest
computer can be found under the computers tab of WGM, but is not available until

CHAPTER 7: Client Management

358

explicitly created. To do so, there is a nifty Create Guest Computer menu item found
under the Server menu in Workgroup manager.

Certain management settings are not available at the user and workgroup levels. These
management levels apply to active user sessions, so settings outside of this purview,
such as login scripts, energy saver settings, and login window preferences are only
managed on the computer and computer group levels. Time Machine settings are
another noteworthy management capability only applicable on the computer level. On
the flip side, the computer-oriented management levels do not share the same deficit-----
they have access to the entire purview of applicable management. Because of this,
having a well structured and populated managed preferences paradigm that includes
users, groups, and computers is highly recommended.

Preference Interactions
One key feature of MCX behavior to understand is the way that managed preferences
are determined when managed on multiple levels. Apple defines three different managed
preference behaviors, referred to as preference interactions, which determine the
resultant policy from multiple levels of management. Overriding preference interactions
refer scenarios where two different levels manage the same domain, each explicitly
providing conflicting settings. In these cases, OS X prioritizes management levels, as
shown in Figure 7-2.

Figure 7-2. Account types election in Workgroup Manager

This works out well for the most part, although there are a few ramifications to discuss.
Most important, managed preferences applied at the user level will be the dominant
preference, persisting for that user in any environment that they log in to, despite any
computer or computer list managed preferences that are applied. After this, you have

CHAPTER 7: Client Management

359

computer and computer groups taking precedence over workgroups. This proves to be
beneficial in lab or kiosk environments where the nodes are typically special usage and
may need specific configurations. Workgroups, though the lowest on the totem pole, will
be your primary application point. The granularity of user-based management is both a
blessing and a curse. While it’s great to ensure VIP status for certain users and
implement further managed preferences for problem users, it also becomes a
management nightmare in medium-to-large environments where a number of policies
overlap on a given object due to a combination of users, groups, computers, and
computer groups.

Another form of interaction is referred to as combined interactions. Some examples of
these include printers, login items, and dock items. In a combined interaction scenario,
preferences from all of the different levels are aggregate. Therefore, if you have a login
item deployed for a specific user and a login item deployed for a group the user is in,
then both login items will take effect when the user logs in.

Inherited interactions are the third type of preference interaction, and simply refer to a
managed preference that is only managed at a single level.

NOTE: Introduced with 10.5 was the ability to combine preferences across groups. In 10.4,
users would be prompted to select a workgroup upon login, and solely that workgroup’s
preferences would be applied. With 10.5 and later, you can define settings across multiple
workgroups. When a user logs in, and is a member of multiple workgroups, they can be
configured to receive the combined policies of those two groups. This was a big boon, as it
simplified the management of complex hierarchies, particularly opening up the ability to apply
management across nested workgroups. The ability still remains to mimic the 10.4 behavior, if
needed.

For the most part, standard preference interactions apply when combining workgroup
management. However, an obvious conflict presents itself: When an overriding
preference interaction occurs between two groups how is precedence determined? In
the case of nested groups, where one of the conflicting groups is a member of the other,
the child-most group will override its parents. That is, if GroupA is nested inside of
GroupB, GroupB’s managed preferences will be applied. If the conflicting groups are
independent, the unfortunate answer is that there is no way to explicitly set precedence
in such an event-----the resulting preference will be determined from the first group sorted
alphabetically. This typically shouldn’t be a problem, as a properly structured system
should avoid conflicting group settings. If the situation is absolutely unavoidable, one
option available is to utilize computer access lists, which serve as a handy filter for
workgroup-based management.

At this point, you may wonder how it is possible to determine the type of interaction
that will be applied to a managed preference. The answer is actually a little more
straightforward than may be expected. In fact, the answer will be fairly obvious. Any
preference, which has a single definitive setting, will result in an override scenario. There

CHAPTER 7: Client Management

360

can be only one after all. Combined interactions are utilized in list-based management
panes, such as dock items, login items, home sync items, printers, system preferences,
and applications. In each of these cases, the user will be presented with the aggregate
of explicitly allowed items.

Utilizing Tiered Management
Once mastered, the system provides for very flexible and granular management. In order
to truly utilize the system to its potential, you must first have a good understanding of the
environment where it is being deployed. This is typically best accomplished by tailoring
the system to the organizational structure of the business that it serves. Take note of the
various delineations in your workforce, and consider categories such as tenure, job roles
and duties, departments, and locations, if applicable. Perhaps some of these categories
transcend others, but the goal is to tailor the specific groups that you would want to target
for management; the more specific, the more adaptable the system will be for your needs.

Picture a fairly large media organization, like Mediaco. Mediaco has two different
campuses, each with fully staffed departments. Mediaco has numerous editors at both
locations that need access to the global company media repository. Each campus also
has a file server hosting data for multiple departments. A flexible group management
structure for this is outlined in Figure 7-3.

Figure 7-3. Tiered management

CHAPTER 7: Client Management

361

In this example, you have created numerous groups to represent your structure. The
user, John Doe, has been added to the group, Building1 Publishing Department Editors.
This group is in turn members of both the All Publishing Editors group, but also the
Building1 Editors group, which is once again nested into multiple groups. In this
example, even though the user is only a direct member of one group, you can still apply
management at six different workgroup tiers. Through the root All Editors group, you
may add a login item for the company media repository file share. You can then specify
your departmental file server login item on the group, Building1 Publishing Department
Editors. Now, when John Doe logs in, he has both his department’s SharePoint and the
global SharePoint mounted and ready for access.

Computer groups can be similarly tiered, though there is a strong case to be made
for the ability to provide logistical-based management. For instance, Mediaco wants to
turn off desktop computers at night to save energy costs. Immediately, the need to
distinguish between laptop and desktop machines is apparent. Further delineation may
be advisable in your organization to account for backup/maintenance schedules, usage
patterns, and so forth.

There really isn’t a wrong way to deploy groups provided your methodology meets your
needs. There certainly are methods to improve efficiency and security. The more specific
and tiered your group structure, the happier you will be whenever a policy change is
needed. Likewise, the more controlled and consistent your structure is, the easier it will
become to avoid membership mistakes. These mistakes can be particularly costly.
Workgroup structure is also utilized for file system access controls via POSIX/ACL
permissions as well as service access control lists (SACLs). Having a fine-tuned
workgroup and computer group structure will provide you with a clean, consistent
system that has the ability to adapt quickly, securely, and (hopefully) with consistency.
Having a decent structure from the start cannot be overstated because responding to
the latest need by simply creating another ad hoc group will ultimately lead to an
incomprehensible mess.

Managed Preferences in Action
Here’s where you get to the core of Managed Preferences: applying it to workstations.
Over the next few pages, we will detail the more notable capabilities in the Managed
Preferences system and the steps required for their implementation.

Preference Manifests and Custom Preferences
As mentioned in the “Managed Preferences” section earlier in this chapter, managed
preferences are applied via the preference pane of workgroup manager. Through this
tool, Apple provides a nice, clean, and simple graphical interface for managing the most
common applications. However, this is not a definitive list of what can and cannot be
managed through MCX. After all, third party programs can be constructed in such a way
to fully support MCX management. Apple’s system provides support in two different ways.
Preferably, Application will support management via Apple’s Preference Manifest system.
Preference manifests allow a third party application to provide an interface that can be

CHAPTER 7: Client Management

362

utilized by system administrators to apply management settings to the application. In
Workgroup Manager, preference manifest support is accessed via the Details tab of the
managed preference interface. In this interface, you can click the plus button and navigate
to the application on the file system that you want to manage. Upon selecting the desired
app, the interface presents the option to import current settings (see Figure 7-4).

Figure 7-4. Preference manifest keys

To determine if an application supports preference manifests, uncheck this option. If the
application has no manifest, you will immediately be presented with an error stating this.
Once a manifest has been added to Workgroup Manager, it will be presented
permanently for that user. Each manifest is stored in the directory at ~/Library/
Preferences/com.apple.mcx.manifests and in the file ~/Library/Preferences/
com.apple.mcx.plist. If desired, you can clear them out by deleting these files.

If the application does have preference manifest support, then upon importing the
application into the system (without importing your personal settings), the details pane in
Workgroup Manager will have an entry for the applications preference domain, such as
com.myco.myapp. The new management functionality isn’t apparent until you try to add
a new key under the Once, Often, or Always sections in that domain. When you create a
new key, you will be presented with a menu selection of supported attributes. Each

CHAPTER 7: Client Management

363

attribute will often have associated applicable values presented via a selection menu.
However, often custom values can be entered in and properly utilized. It all depends
upon the application.

If an application does not support manifests, you’re not completely out of luck. If this is the
case, you must resort to the second method that Apple provides to manage an app: you
can push out just about any defaults-based setting to an app. That is, any application that
properly utilizes Apple’s provided preference system and results in preferences being
stored in a file found at ~/Library/Preferences/com.myco.myapp.plist. By selecting the
option to import settings, regardless of manifest support, it will copy settings for the
application in question from your current operating environment and apply them to the
managed machines. Alternatively, in WGM you can add the preference file itself. Be
careful when doing so as there is often junk that will be in the file. If you push out your
starting window position, other users might not be too happy with your choice.

NOTE: One big limitation to this method is that the %@ string substitution (discussed further in
Chapter 8) used for preference manifests is not supported. This means that preferences with
user-specific settings are not well suited to be deployed from an existing preference file. If you
really must cross that road, some heavy scripting would be needed to parse the settings file
and then deploy the customized MCXSettings attribute additions to each individual user object.
As always, test thoroughly before unleashing on the masses.

The most comprehensive preference manifests is provided by Apple in the
ManagedClient MCX. To utilize this manifest, under the details tab of Workgroup
Manager preference management add the ManagedClient.app application found on any
OS X system at the path /System/Library/CoreServices/ManagedClient.app. The
ManagedClient app contains a manifest which exposes a great deal of various settings
for management. This includes the ability to manage Screen Saver preferences, Login
Redirections, Menu Items, VPN Settings, and Finder Sidebar Items to name a few. It is
definitely worth consulting this manifest if the management setting you wish to deploy
cannot be found in the provided GUI.

Setting MCX from the Command Line
It is certainly possible to set MCX settings from the command line. To access this
functionality, the dscl tool is used. dscl has numerous commands, such as mcxread,
mcxset, mcxedit, mcxexport, and mcximport. Using these commands you can fully
manipulate mcx settings programmatically. For example, you can use mcxset to set a
very basic value:

dscl –u mydiradmin /LDAPv3/dirserv.myco.com mcxset /Groups/coolpeople com.apple.dock no-
glass always -boolean true

The previous command will set the appearance of the dock (key no-glass) to display
without the 3D-background for all members of the group coolpeople, applied always.

CHAPTER 7: Client Management

364

Likewise, if you wanted to push out a setting to enable the Debug menu in Safari to aid
in troubleshooting a user issue you could use the same method:

dscl –u diradmin /LDAPv3/dirserv.myco.com mcxset /Groups/coolpeople com.apple.Safari
IncludeDebugMenu always 1

This tool can be very handy for duplicating settings, like duplicating some home
directory syncing values from one group to another. To do this, first export the good
group’s com.apple.homeSync settings:

dscl –u mydiradmin /LDAPv3/dirserv.myco.com mcxexport /Groups/syncpeeps -o
/tmp/syncpeeps_homesync.plist com.apple.homeSync

Next, import those settings into your new group:

dscl –u mydiradmin /LDAPv3/dirserv.myco.com mcximport /Groups/newsyncgroup
/tmp/syncpeeps_homesync.plist

This is by far the easiest way to duplicate a group’s synchronization settings across a
domain, but the tool is not limited there. For example, if you wanted to simply duplicate
ALL MCX settings the same mcxexport/mcximport process can be run, omitting the
com.apple.homeSync domain to capture all managed preference domains for that group.

The man page for dscl is unfortunately light on details regarding the various mcx
interaction devices. However, the file located at /System/Library/DirectoryServices/
dscl/mcxcl.dsclext/Contents/Resources/mcxdsclhelp.txt provides much information
about using dscl to manipulate MCX.

Automated Client Setup
In this section, I will discuss various MCX configurations that can be deployed to assist
with configuration of the user environment: managing application preferences and
configuration, network proxy configuration, and printer deployment.

Mail
MCX has the ability to automatically configure mail account for your users. It is
fairly basic in nature and provides the ability to populate a single email account.
Unfortunately, preference interactions for Mail result in an override, so it is not possible
at this time to deploy both a personal mail account at one tier, and a departmental or
group account at a different tier. The single account that you do deploy can be either a
POP or IMAP account.

In order to deploy mail accounts, first get com.apple.mail.managed and com.apple.mail
(aka Mail-10.6) into your Details screen following the steps covered in the ‘‘Preference
Manifests and Custom Preferences’’ section earlier in this chapter. Once this has been
added into Workgroup Manager, you can automatically deploy email accounts for clients
by using the com.apple.mail.managed domain in 10.5 and the com.apple.mail domain in
10.6. In either domain, you will have a number of keys that allow you to manage client
settings for Mail.app, as shown in Figure 7-5.

CHAPTER 7: Client Management

365

Figure 7-5. Deploying managed preferences for Mail.app

Figure 7-5 represents a recommended configuration for a mail account (mileage may
vary according to the setup of each organization). Notice the variable substitution being
used here as well, the string %@ is substituted for the user’s short name.

NOTE: In Mac OS X 10.5, the com.apple.mail.managed manifest would be used rather than
com.apple.mail, which is for Mac OS X 10.6. The com.apple.mail.managed domain only
provides Mac OS X 10.5 and doesn’t have as much functionality as the 10.6 implementation.
For instance, the com.apple.mail.managed also does not support deploying SSL settings.

In this example, you are setting up an IMAP account with CRAM-MD5 authentication. To
deploy a POP account, you specify a Mail Account Type of POP Account. Attempting to
deploy account types ExchangeAccount or iToolsAccount (Mobile Me) will fail because
they are not supported. Supported authentication schemes in the manifest is limited to
GSSAPI, however, you can successfully utilize values CRAM-MD5 and NTLM. With the
latter option, there is no provided way to deploy the domain setting, so it is of limited use.

CHAPTER 7: Client Management

366

Overall, the mail preference manifest is rather limited. For example, it is not possible to
deploy authenticated SMTP settings, nor Exchange accounts at the time this book is
written. If you want to deploy these, you’ll need to use a scripted solution, which is
described further in Chapter 5. Hopefully, in the future, these features will be added so
that you will not need a scripted solution for deployments requiring more custom setups.

iCal
Deploying CalDAV accounts for iCal is pretty straightforward. Also accessed through the
ManagedClient manifest (as with Mail before it), iCal is only possible to leverage managed
preferences to deploy a single account. It allows for specifying account name, server
address, and SSL, as well as a few lesser used settings. Figure 7-6 is a screenshot of a
configured iCal preference manifest, deployed at the “Often” level.

Figure 7-6. Managed iCal preferences

Here, you have configured the server address, the URI to the calendars themselves,
which is relative to the server address and enabled SSL authentication. Again, we have
chosen to make use of the %@ to push out settings specific to each user connecting to
the iCal solution.

CHAPTER 7: Client Management

367

NOTE: While Managed Preferences can be used when setting up automatic iCal configuration,
you are better off using DNS as described in the iCal Server Administration document at
http://www.apple.com/server/macosx/resources/documentation.html.

Address Book
Strictly speaking, there is no preference manifest support for Address Book even in
10.6. However, it is still possible to deploy a custom LDAP server for inclusion in
Mail.app lookups. Because there is no preference manifest support for Address Book,
you will need to begin by importing a current preference file. The easiest way to do this
is simply to configure the LDAP server in Address Book on your admin station. Next,
add the preference file located at ~/Library/Preferences/com.apple.addressbook.plist
and specify the ‘‘Once’’ for management. Next, you will want to edit the preference
domain and par down all of the unwanted garbage in the file. Specifically, you only need
to save the key AB3LDAPServers, and its children, as shown in Figure 7-7.

Figure 7-7. Deploying LDAP accounts via MCX

CHAPTER 7: Client Management

368

Application Preferences
Many users will want to customize a particular application’s preferences or behavior that
isn’t otherwise included in the stock ManagedClient bundle. This may be something as
simple as pre-populating registration information for Microsoft Office, possibly for
deploying LDAP server connections utilized for lookups with Address Book and Mail. If
you’re security conscious, you may want to deploy a preference for Safari to disable its
infamous Open safe files after download option.

As discussed earlier, in order for MCX to manage an application, that application
needs to utilize Apple’s defaults preference system. While the majority of native OS X
applications fall into this realm, a good chunk of third party vendors don’t yet support
managed client preferences. The largest offenders here are educational software, as well
as large cross-platform packages, such as Adobe’s Creative Suite and Firefox. MS
Office has a mixed history with MCX, though Office 2008 is much better in this regard,
short of Entourage, which still relies primarily on its database for configuration.

The easiest way to deploy application settings is to first configure the application in a clean
environment, specifically with your settings. Once done, you can utilize Workgroup Manager
to import your preferences, and then whittle them down to a clean, deployable set. In this
case, Word has been installed and configured with the desired settings. To deploy these
settings, open up Workgroup Manager and select the preference management layout. Next,
highlight the desired group for deployment, then in the far right pane select the Details tab.
Click the plus button at the bottom, navigate to and select Microsoft Word, make sure the
option to Import my Preferences is checked, and click add (see Figure 7-8). Because the
settings are pulled from the active environment, you must be running Workgroup Manager
from the computer which configured Office with your settings.

Figure 7-8. Adding the Office preferences manifest

CHAPTER 7: Client Management

369

Alternatively, you can copy the preference file from the configured user’s
~/Library/Preferences folder to your admin machine, and then add the preference file
rather than the MS Word app in Workgroup Manager. After performing either of these
actions, there will be a new entry in the list, labeled com.microsoft.word in italics. The
italic text signifies that this is an imported preference which does not match a known
preference manifest. Nonetheless, MS Word will honor the settings.

If you edit the new managed settings for com.microsoft.word, you see there are several
dozen various preferences that are now managed, not all of which are pertinent to your
purposes. In order to ensure as clean an environment as possible for your users, you will
want to narrow this list down to only the specific preferences that you want to deploy.
Figure 7-9 shows a managed preference on the com.microsoft.office domain, added by
adding the preference file found at ~/Library/Preferences/com.microsoft.office.plist. The
managed preferences for this domain have been reduced to the keys 2008\FirstRun\
SetupAssistantCompleted, and 2008\Toolbars\ShowWysiwyg, which prevent the setup
assistant from launching, and enable Fonts in the toolbar to be displayed in their
appropriate typeset.

Figure 7-9.Configuring the office preference manifest

Figure 7-10 shows the Word specific management settings. Notice that several options
have been moved from Once to Often. Background save, for example, is managed in the
Often category to ensure that user’s don’t permanently shoot themselves in the foot by
disabling autosave. Next, you’ll enable auto grammar and spell checks, but allow the
user the option to turn those off on their own. Moving items between categories Once
and Often can be accomplished through copy and paste. Try to avoid deploying third
party preferences in the Always category-----support for this in third party apps is fairly
rare and may not be honored by the application.

CHAPTER 7: Client Management

370

Figure 7-10. More granularity with the office preferences manifest

This general workflow can be applied to most applications provided the developer
includes support for Apple’s default preferences system. If there is a preference
manifest available for the application, make sure to thoroughly test whether the
managed preferences are actually honored. If the application that you add supports
preference manifests, then the details list will display the domain in non-italic text, and
will provide key validation to affirm proper management settings are applied for that
application. To determine whether an application supports the defaults command to
manage preferences, look for a property list (plist) that stores the preferences for the
application.

NOTE: You can also use the defaults read command to see all registered property lists and
then pipe output into the grep command to limit the output. However, this can be a difficult
way to try and isolate preferences.

CHAPTER 7: Client Management

371

Deploying Proxy Settings via a PAC File
A PAC file is a Proxy Auto Configuration file. PAC files automation configure proxy
settings for users and are commonly utilized in large organizations with complicated
network architectures. Support for configuring network proxy settings is provided via
Workgroup Manager’s managed preference GUI, shown in Figure 7-11. Found under
the Network section, it is possible to deploy a multitude of various proxy settings.
Closely resembling the proxy configuration found in every OS X client’s Network
Preference Pane, it is possible to deploy application specific proxy settings for
http, https, gopher, ftp, or rtsp. SOCKS layer 5 tunneling is also supported here.
Additionally, .pac automatic proxy configuration files can be deployed to your clients
via MCX as well.

Figure 7-11. Proxy managed preferences configuration

CHAPTER 7: Client Management

372

Proxy configuration is available at all MCX levels. However, it is important to note
that not all applications will utilize these settings. Firefox is by far the most notorious
offender here. It has its own internal proxy configuration and ignores the global
system setting. Indeed, Firefox generally snuffs Apple’s defaults system and is
immune to the reach of MCX. Likewise, command-line apps will often require
either their own internal proxy configuration or will require the configuration of
environmental variables for the purpose. The exact configuration will vary from
application to application, but if needed environmental variables can be deployed via
MCX as well.

To configure the proxy auto config option, open Workgroup Manager and then click
on Preferences. Click on the computer or computer list to manage, click on Network,
and then the Proxies tab. Figure 7-11 represents the deployment of a .pac proxy
configuration file located at http://myco.com/userproxy.pac. You can also use the
Bypass proxy settings for these Hosts and Domains field. In the previous example,
you are also deploying an exception for internal myco.int domain.

Network Printing
The ability to easily deploy printers to your user base can be a huge time saver—
managing printers across multiple locations and hundreds of users by hand would
take enormous amounts of time. The good news is that MCX works very well for
managing which network printers are available to users, allowing an administrator to
remotely assign printers at all of the typical MCX management layers. From an end
user’s perspective, they will simply see all of their deployed printers from the available
printer list in any printer dialog box. Beyond this, MCX provides numerous facilities:
setting default printers (useful for deploying at the computer and computer group
levels); forcing a footer on the printout which includes the user’s name, date, and
optionally the printing computer’s MAC address; and restricting access to a printer by
requiring administrative access.

In order to deploy a network printer via MCX, you must first configure the printer on
your administrative computer. Once configured and tested, open up Workgroup
Manager, select the object that you wish to manage, and then select the Printing
preferences pane, as shown in Figure 7-12. There is no right answer here for deploying
printers. In some cases, it may make sense to deploy the occasional printer to an
individual user. In lab or kiosk environments, it makes more sense to deploy at the
computer group and set a default printer. This way, when a user logs into that
computer, their default printer will be the closest one to the computer.

In large environments, it may even be desirable to create and utilize groups specifically
for printer management to provide better visibility and scalability.

CHAPTER 7: Client Management

373

Figure 7-12. Managed printers

The one major “gotcha” to MCX printer management is that it has somewhat limited
support. Its support lies primarily in network printers, which support the postscript protocol
and ppd files. Printers, which require specialized binary drivers, are not going to function
properly with this system. If you desperately need to support such a printer through MCX,
your best bet is to utilize an OS X print server, which can re-share the printer and provide an
abstraction layer. To pull this off, configure the print server to print to the printer, and share
out the printer using the Printer’s service in Server Admin. Next, configure your admin client
to print to the server’s shared printer, and then deploy it via MCX.

In Mac OS X 10.4, it was possible to use MCX to enable an option to display only
managed printers. This was a very handy option to ensure that only the printers that
are managed are displayed in the list. This was a handy feature to ensure that any
other printers which had been set up at one point or another will no longer be
accessible. Fortunately, the option is still available in 10.5, it’s just hidden a bit. To
access the functionality, first deploy the desired printer preferences to your desired
target. Next, select the Details tab of managed preferences, and edit the preference
domain com.apple.mcxprinting. Under the always domain, add a new key named
ShowOnlyManagedPrinters. Set the value type to boolean, and specify a value of true,
as shown in Figure 7-13. From here on, the printers you specify in MCX will be the only
printers listed in a user’s print dialog box.

CHAPTER 7: Client Management

374

Figure 7-13. com.apple.mcxprinting managed preference manifest

It is also possible to deploy printer presets using managed preferences. Printer presets are
simply pre-configuring a printer’s values, such as to turn on duplexing for a supported
printer or to turn on grayscale output for another. Though there is no GUI facility for it, the
process is pretty straightforward. You’ll want to start off with a user environment that has a
clean preset list. Configure the printers and the specific presets that you want to deploy.
Once perfected, snag the preference file stored in the user’s preference folder, specifically
~/Library/Preferences/com.apple.print.custompresets.plist. In Workgroup Manager, select
the object where you want to deploy the presets, and select the Preferences interface.
Once here, click on Details, and click the plus button to add a preference file. Navigate to
the com.apple.print.custompresets.plist file and add it in. When adding the plist, you’ll
likely want to manage import as an Once only setting. Otherwise, you will prevent users
from creating their own presets.

Managed Printers deployed across multiple groups will result in a combined MCX
interaction. That is, a user will have access to all printers deployed from all applicable
workgroups, computer groups, etc. Other settings, such as custom presets, or the
default printer will result in an override, following the standard MCX pecking order.

TIP: There is an option available which allows users to add their own printers. This
functionality was limited to admin users until 10.5.7. In environments where administrators
needed users to be able to add their own printers, there were workarounds involving editing
the /etc/authorization and /etc/cupsd/cupsd.conf files. If these files have been edited, then you
will need to undo the edits in order for this feature to start working again.

CHAPTER 7: Client Management

375

Restricting Applications
MCX application restrictions have been a bit of a moving target.10.4 had a fairly configurable
setup, allowing the option to explicitly allow applications or to specifically deny applications.
Unfortunately, the system wasn’t terribly resilient and was pretty easy to bypass. With 10.5,
a new take on application restrictions were put in place. For this context, you will be referring
primarily to the system introduced with 10.5 and carried forward to 10.6.

In 10.5 and later, restricting applications with MCX is done on an explicit allow basis.
That is, once you choose to restrict applications for a user, an implicit deny will be
applied to all applications that are not in the allowed applications list. Because of this, it
is important to have a good understanding of the applications that will be utilized in the
managed environment prior to embarking on this endeavor. If not properly planned, you
will be flooded with support requests from users, claiming that they can’t access their
applications. However, when implemented using application signing, the system proves
to be extremely resilient to various hacks that might be used to subvert it.

When restricting applications with MCX, you have two primary options, both accessible
from the Applications pane of Workgroup Managers Preference interface, as shown in
Figure 7-14.

Figure 7-14. Configuring application whitelisting

CHAPTER 7: Client Management

376

Using this interface, you can allow a specific application, or you can specify a
whitelisted folder wherein any application resides is always trusted. The latter, if setup
improperly, can be easily exploited. However, if you ensure that you specify only
directories, which are not writeable by the user, then it can be an acceptable measure.
However, local file system permissions can be easily bypassed through single user
mode, so it may be desirable to configure a firmware password to prevent this easy
avenue.

There are a few general whitelist folders, which will make life a bit easier. Specifically,
enabling all applications located in the folder locate at /System/Library/CoreServices will
allow numerous support applications to run. Whitelisting the /Library/Quicktime folder is
needed to prevent numerous QuickTime plug-ins from malfunctioning and whitelisting
/Library/Printers is necessary for certain printer drivers. Each of these folders is
immutable to non-admin users, so they are generally fine for whitelist exclusions.
/Library/Application Support is another directory, which can contain binary support files
needed by various applications.

For the most part though, you will want to allow specific applications. This allows for
fine-grained targeting without the need to worry whether file system restrictions have
been bypassed. Combined with application signing, the system is a very secure way to
ensure that the only applications which launch are the intended applications. Application
signing is a feature introduced with Leopard, and allows for an application to be signed
by a trusted certificate, similar to a standard SSL environment. Application signing is
without a doubt the way of the future. The Mach-O binary format is a bit notorious for
being an easy target for code injection, exposing a potential avenue for viral infection.
By signing an application, you can ensure that the code present in the executable is in
the state shipped by the manufacturer. If it is modified, it will no longer match your
signature, and will thereby be treated as a foreign entity.

Application signing is utilized very heavily by the iPhone and iPod Touch (described
further in Chapter 10), as well as in Mac OS X, which as of 10.5 ships with all Apple apps
signed. In 10.5, it is utilized primarily in my MCX application restrictions and the
application firewall. When an OS X client has an active application firewall that specifies
which applications have access, it utilizes code signing to ensure the identity of the
application. If an unsigned application is added to the list, the system will sign the
application for you behind the scenes.

NOTE: When adding an application to an allowed applications list, you must first specify the
application from the client machine running Workgroup Manager. If the application that you
wish to allow is not resident on this computer, you will not be able to select it from the list, and
thereby will not be able to provision access to the app.

Likewise, when you add an unsigned application to the allowed applications list, you will
be greeted with an option to sign the application, or add it to the list without signing it. If
you choose the latter, the application will be allowed to launch, but it will be possible to
utilize this inclusion for exploitative purposes. Because the application is not signed, it is
possible to alter any arbitrary application to impersonate the application, and thereby

CHAPTER 7: Client Management

377

bypass any restrictions that would otherwise be applied. As such, if any allowed
application is unsigned, it represents the ability for the user to launch any application,
provided they have the skills to do so. When an allowed application is not signed, it will
appear with a yellow triangle next to its entry, as seen for Firefox in Figure 7-15.

Figure 7-15. Adding an unsigned applications

There are some ramifications for signing an application when adding via Workgroup
Manager as well. Most notably, when you sign the application with Workgroup Manager,
you are signing only the local copy of that application. As such, all those hundreds of
copies of that application in the field remain unsigned, and therefore restricted from
launching. In order to fulfill a securely restricted environment, it will be necessary to
deploy the signed applications to all of your clients. Alternatively, Apple has provided the
command-line utility codesign which allows for the signing of applications from the
command line. The syntax to sign an application is as follows:

codesign –s identity /Path/to/Application.app

For most environments, the identity in the previous command will be the name of the
certificate as you see it listed in the keychain in which it is stored. Whereas the identity is
determined by searching the keychain search path for a certificate whose subject
matches the provided string, using this utility and a self-signed certificate you can sign
any applications client-side through automation. As long as you have deployed your

CHAPTER 7: Client Management

378

RootCA to all of your clients as outlined in Chapter 2, then you can ensure proper
validation of your applications.

NOTE: You cannot use an invalid certificate to sign applications. If you see a red ‘‘x’’ on the
certificate in Keychain Access this will have to be resolved prior to using the certificate to
accomplish a successful codesign.

Using the codesign command, you can sign the Microsoft Word application using a
certificate in the keychain. For this example, you will call the certificate mycert. Simply
use the following command:

codesign –s mycert /Applications/Microsoft\ Office\ 2008/Microsoft\ Word.app

Deployed applications result in an additive process. If a user’s management surface has
application restrictions applied at any level, those application restrictions will be applied
everywhere. This is particularly noticeable when application restrictions are applied at the
computer level. When this occurs, all managed users on that computer will have
application restrictions. If an administrator opts to not disable management globally,
the admin will also inherit the computer’s application restrictions. While the application
preference pane does indeed allow an option to uncheck “Restrict which applications
are allowed to launch,” this setting will be overridden based upon standard MCX search
policy. Thus, if you apply management to an admin group, and deploy this setting
unchecked, it will be overridden because of the MCX search policy. Computer and
computer groups take precedence over standard groups, meaning that you need to
deploy this option at the user object to override your computer settings. Unfortunately, this
becomes a pretty big hassle, and isn’t even possible in some environments, such as an
AD/OD triangle, where user objects are stored in AD and outside of the purview of MCX.

Thus, deploying application restrictions at the computer and computer group demands
a decent amount of consideration and testing. In many cases, it makes more sense to
create separate user groups for computer-specific application classes, and then using
computer access filters to grant access to that specific application-based group.

Computer Access Filters
In larger environments, the likelihood of having groups, which have conflicting settings,
is increased. In many cases, it may be desirable to filter out which group settings are
applied to specific levels. Alternatively, it may be desirable to control which users
actually have access to login to a particular computer. Both of these features are
provided in Workgroup Manager preferences management, under the access tab of
the login managed preference pane (see Figure 7-16). Because computer access is a
computer-specific task, the access tab is only accessible under the computer and
computer group sections.

CHAPTER 7: Client Management

379

Figure 7-16. Computer access control lists

This interface allows for control of which groups have access to login to specific
computers. This has the additional effect of filtering out which groups apply MCX. As
with Application management, once you define access restrictions, an implicit deny is
applied to any user or group not in the list.

For example, consider a scenario where a user is a member of two groups Mobile Home
Users and Network Home Users. Perhaps the former group has mobility configured for
the user, such that a mobile account is created for the user of this group on login. It may
be desirable to suppress this behavior on certain computers, therefore you would simply
create an allow rule on these computers for the group ‘‘Network Home Users.’’ When
the user logs in, they will not inherit any of the management settings defined for Mobile
Home Users, due to the implicit deny nature of login restrictions. This in turn becomes a
very handy tool for you to filter group MCX application. The down side of this is that you
must now explicitly allow all groups, including the entire nested hierarchy, if you want all

CHAPTER 7: Client Management

380

of these tiers’ management settings to be applied. Suddenly, you now have allowed
entries for numerous groups, including some potentially very broad groups (such as an
All Staff).

If you want to use a tiered management hierarchy along with actual computer
access restrictions, you have a rather large conundrum. On one hand, you want to
apply the management settings applied to the All Staff group, but the unintended
consequence is that you now have granted login window access to all members of
the All Staff group. From here, you must use explicit denies to deny access to the
desired users and groups. Using explicit denies isn’t a bad idea anyway, but this
means that your computer access list may easily reach 20 to 30 entries in larger
environments.

NOTE: Implementing an explicit deny entry on a group will always take precedent over any
explicit allow entries. An explicit deny on a group will prevent all members of that group
access, regardless of whether they have membership to a different group that is allowed
access. This means that deny entries should only be utilized where login access to all
members of a group must be unconditionally prohibited.

Common Tasks
There are many other common Managed Preferences management tasks which are
worthy of a mention, but not an extensive write-up. Notably, one of the most
common Managed Preferences to apply is automated login items, which specify
applications, documents, or SharePoints that launch upon login to a computer.
Login items are very handy for initiating user environments, such as firing up support
applications or by auto mounting a network share.

To add a login item, simply add it to the Items section found under the Login
Workgroup Manager preferences pane. This item can be an application, a document,
or a network share. For the former two, the added asset will need to be accessible at
the same path on the target client. To deploy a network share login item, simply
connect to the SharePoint from your admin station. Once the SharePoint is mounted
on the desktop, simply drag it into the login items list. With the network share
highlighted, make sure to check the box Mount share point with user’s name and
password, shown in Figure 7-17. This will ensure that proper access to the share is
provided to the user.

CHAPTER 7: Client Management

381

Figure 7-17. Adding login items

This list is additive, so login items across all of a user’s managed groups will be applied.
It is worth noting the options for users to be able to add their own items. This can be
handy if you want a few things to launch, but you want the user to be able to customize
their own environment as well.

At some point, you may also want to modify a user’s dock, perhaps adding in a
reference to a company SharePoint or a business application (to some end user’s after
all, an application does not exist unless it’s in the Dock). Apple has a nifty GUI both for
adding items to the dock, and for organizing the order in which they appear. Like login
items, managed dock items are additive across management groups. The option Merge
with User’s Dock allows users to modify the dock, outside of the management
preferences that you want. This is probably preferable in none-kiosk environments, as
the Dock is a powerful, important part of the OS X experience.

To add in a network SharePoint, first mount it on your administrative workstation then
drag it into the Documents and Folders list. This will create an .afploc file with the
information used to mount the SharePoint initially. Alternatively, you can construct your
own .afploc file and drag that in. This is definitely useful if you do not want to, or simply

CHAPTER 7: Client Management

382

can’t connect to, the SharePoint at the time of management. Constructing your own
.afploc. file can only be done from the command line:

defaults requires absolute paths to the file!
defaults write /Users/myuser/Desktop/myhost URL "afp://myhost.myco.com/MyCoShare"
mv ~/Desktop/myhost.plist ~/Desktop/MyCoShare.afploc

The contents of the .afploc are as follows:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>URL</key>
 <string>afp://192.168.210.2</string>
</dict>
</plist>

You can replace the URL information (in this case, afp://192.168.210.2) with the FQDN
for your server, allowing you to create new .afploc property lists on the fly. From here,
you can simply drag the location file into the Documents and Folders section. These files
can also be utilized by the login items pane, and they can be double-clicked upon from
the Finder. When added to the Dock, the resulting dock item will utilize the file name for
the mouse-over display text.

Other Options in the Dock preference management pane are options to add a My
Applications folder to the dock, which is a dynamically generated list of allowed apps for
a user to use. This is a handy folder in heavily managed environments. If you plan to
deploy these apps, make sure to test it thoroughly, as you may be presenting
applications to the user that you weren’t aware you have granted them privileges to.
Outside of this, you can add links to the User’s documents folder or to mount their
network home. (This is useful if you configure users with local home directories, but
want them to have easily accessible personal storage space on a server.)

Note: Apple utilizes another popular location file, the .webloc file for numerous other purposes.
For instance, you can embed vnc://, smb://, cifs://, and http:// URLs in a .webloc file, utilizing
the same procedure specified here.

Another common MCX management setting involves the deployment of a Software
Update Server. Configuration for this is provided via a very basic Software Update
Workgroup Manager Preference pane, which allows you to specify a Software update
server to query.

Many other management settings are available through the GUI, preference manifests,
and custom .plist files. Worthy of another mention is the Apple provided Managed Client
Preference manifest, which exposes a great deal of various settings for management.
This includes the ability to manage Screen Saver preferences, Home directory
redirections (discussed later in the section titled User Home Folders), Menu Bar Items,

CHAPTER 7: Client Management

383

VPN Settings, and Finder Sidebar Items to name a few. It is definitely worth your time to
add in this manifest and peruse its offerings.

Troubleshooting and Testing
In elaborate environments, it can become difficult to track all of the different groups and
tiers where specific preferences are managed. On top of that, accurately predicting how
all of the various preference interactions will unfold obviously becomes more difficult as
more elements are included. Luckily, Apple provides several tools with the ability to
review the resultant policy in a particular environment. The first method to determine the
final applied management settings for an environment is to take a look at System Profiler
from the managed desktop. Under the Managed Client heading of the Software section
of System Profiler.app can be found a breakdown of each active managed preference
by domain, including the source of each applied setting. Alternatively, the command line
equivalent can be used by querying the datatype: SPManagedClientDataType:

%system_profiler SPManagedClientDataType

The primary limitation to both of these tools is that they must be run from the actual
environment. That environment may even have application restrictions to prevent the
running of these tools, which naturally makes troubleshooting a fun endeavor. In this
case, there are a few options. On option is to temporarily enable access to System
Profiler.app, so that it can be opened and managed client settings can be reviewed and
tweaked. This is a bit of a pain and care has to be taken to ensure the restrictions are
put in place when done. Another option is to invoke the system_profiler command-line
binary remotely via an Apple Remote Desktop (ARD) admin station. This works fine, but
the main limitation here is that the output can be a bit difficult to parse.

Apple provides another command line tool, mcxquery, which can be used to query the
resulting MCX settings from arbitrarily passed data. It is possible to specify user, group,
and a computer, and view the resulting MCX data. For instance, to query the MCX for
user johndoe, logging into computer ‘johndoe-macbook’, I would use the syntax:

mcxquery –user johndoe –computer 'johndoe-macbook$'

Note the $ at the end of the computer name. This character will be suffixed to the names
of computers when they perform a trusted bind to Open Directory. In the previous
example, ‘johndoe-macbook$’ should be the corresponding name for the computer
when viewed in Workgroup Manager. Because the character $ is a bash special
character, you must wrap the computer name in single quotes. Alternatively, a MAC
address can be specified:

mcxquery –user johndoe –computer 00:1f:f3:d1:d5:c7

Or the guest computer:

mcxquery –user johndoe –computer guest

This command becomes very handy for testing new policy changes, but it of course has
caveats. The most important mcxquery limitation lies in the fact that the tool does not do
automatic user membership lookups. That is, if you don’t explicitly specify a group with
the ---group option, then NO workgroup management settings will be output, regardless

CHAPTER 7: Client Management

384

of group membership of the specified user. This limitation becomes a larger issue when
logging into a computer involves combining several workgroup settings. Outside of
nested groups, determining combined workgroup settings isn’t possible with this tool at
this time. Oddly, computer group resolution is fully supported. When specifying a
computer, you will see all the applicable computer group settings that are in play.

Compared to this, the second caveat is really more of a quibble. Output isn’t the
cleanest. There isn’t a great way to query specific preference domains, so you just have
to sort through all of the settings until you find what you’re looking for. The tool supports
outputting to XML, but that isn’t really pleasant to read either. Luckily, you can take
advantage of the powerful tools in OS X to make your life easier. One key tool is the
Apple application Property List Editor, which is installed as part of Apple’s development
tools. With this app installed, you can pretty easily send it output from mcxquery, giving
a pretty decent way of traversing through the MCX domain. This can be done with the
syntax:

mcxquery –user johndoe –group editors –computer \
'johndoe-macbook$' | open -f –a \
/Developer/Applications/Utilities/Property\ List\ Editor.app

Once this command is run, Property List Editor will open up and display the mcxquery
data in a nice presentable fashion. If you’re like me, and will be constantly testing
settings like this, you may even want to create an alias for this command.

To accomplish this in the bash shell, open your ~/.bash_profile file and add the following
text, all on a single line:

function gmcxquery() { /usr/bin/mcxquery -format xml $@ | open -f -a
/Developer/Applications/Utilities/Property\ List\ Editor.app ;}

If you use tcsh shell, then edit ~/.tcshrc and add the following text as a single line:

alias gmcxquery='/usr/bin/mcxquery -format xml \!:* | open -f -a
/Developer/Applications/Utilities/Property\ List\ Editor.app'

After completing the edits, save the file and reload your shell (most easily accomplished
by quitting Terminal and reopening Terminal). Now, type the command:

gmcxquery –user johndoe –group editors –computer guest

If all went well, the output will be nicely displayed in Property List Editor. With identical
syntax to the original mcxquery executable, you now have a very easy way to test
managed preferences on a machine without actually logging into the machine. Believe
me, this can be a significant time saver.

At some point after changing an applications managed preferences via the GUI, you
may find remnants of management settings. This symptom most often occurs when you
switch management settings from Once or Always to Never. Every once in a while, MCX
gremlins can rear their ugly little heads and have you pulling your hair out. Never fret.
Use gmcxquery to determine the source of the errant management setting, and then
follow it up with a dscl mcxdelete command. For instance, I recently had an issue
where a lab decided to remove applications restrictions for the summer, but despite the
GUI claiming the application restriction were set to never, users still could not open up

CHAPTER 7: Client Management

385

supposedly allowed applications. Using gmcxquery, this is an easy problem to solve.
After a quick untrusted bind of my machine to the domain:

gmcxquery -user myUser -group lab -computer 'lab2-par145$'

From here, I look for application of the com.apple.applicationaccess.new, which I am
quickly able to spot. However, I also easily spot some legacy settings in the
com.apple.application domain, which is used for legacy 10.3 and 10.4 support. In each
case, the source of the settings was the ‘lab’ computer group. Resolving the issue is
easy enough, harnessing the power of dscl’s mcx capabilities:

dscl -u hunterbj /LDAPv3/mydirserv mcxdelete /Groups/lab com.apple.applicationaccess
dscl -u hunterbj /LDAPv3/mydirserv mcxdelete /Groups/lab com.apple.applicationaccess.new

Upon next login, users proceed to successfully open previously restricted applications.
Between System Profiler, its command-line equivalent system_profiler, and mcxquery,
you have some decent tools to troubleshoot an MCX environment. Each tool has their
own benefits: mcxquery is highly accessible and can be utilized to test basic policy
application changes, but will not always give the whole picture due to its failure to
perform group lookups on specified users. System Profiler on the other hand displays
the final absolute settings, but must be run from within the managed environment,
limiting its usefulness outside of a troubleshooting environment.

User Home Folders
In a standard desktop computing environment, in order for a user to be able to do
anything useful and have the merits of their work persist, they must have a non-volatile
place to store that work. Most modern day multi-user operating systems provision a
specific directory, typically called a home folder, on the file system for this purpose.

In OS X, there are two different types of home directory storage. A Local home folder is
the most common type, and simply means that a user’s home folder resides on a local
disk of the machine that they are using. A Network home folder, on the other hand,
resides directly on remote storage accessed via a network file system while data
appears to reside on local disk. In actuality, all activity results in file system activity on a
remote server.

The following sections will explain the differences between these different storage types,
provide explanation on how to determine which scheme is right for your users, and
provide you with the necessary information to implement an efficient, effective home
directory strategy.

Local Home Folders
In OS X the default store location for user’s home directories is on the root volume at
the path /Users. Every user created using the Accounts Preference Pane of System
Preferences will be automatically provisioned a folder inside this directory, named
after the user’s short name. For instance, if you were to create a user and specify a
shortname of “bob,” that user would be provisioned a local home folder at path

CHAPTER 7: Client Management

386

/Users/bob. If you were to inspect this folder, you would see a default OS X user
directory containing the following folders:

 Desktop: This folder serves as the user’s desktop folder. Any item
residing in this folder will be displayed on the user’s desktop.

 Documents: This folder is used primarily for user-generated
documents. Occasionally, applications will store support files in this
folder, but this is considered poor form. One infamous offender here is
Microsoft Office, which stores numerous files, including the entire
Entourage email database, inside of this directory in the folder
Microsoft User Data.

 Downloads: This folder is used for content downloaded via Safari,
iChat, or other supporting Cocoa-based apps. This folder typically only
contains transitional or low priority items. Users should be encouraged
to properly organize items in this folder into more appropriate folders
in their home directory.

 Library: The user Library folder is a user-specific version of the main
library folder at /Library. This is where the behind-the-scenes data
resides that can be edited by applications. Data in this folder is
typically not fit for direct user interaction or presentation. Its uses
include, but are not limited to, application databases, preferences,
plug-ins, fonts, and cache files.

 Movies: This folder is pretty self-explanatory, and is intended for the storage
of videos. This folder in an average user’s home directory is typically pretty
barren. This folder isn’t heavily utilized by applications. The most notable app
to make use of this folder is iMovie.

 Music: Like Movies, this folder doesn’t leave much ambiguity. The
most notable app to make heavy use of this directory is iTunes, which
stores all of its music, movies, podcasts, and iPhone/iTouch
applications. It is not uncommon for users to sneak in 10---15 gigabytes
of data into this folder.

 Pictures: This folder is utilized for picture storage. iPhoto maintains its
database in this folder, as do other third-party photo organizers.

 Public: This folder serves as a public store for other users. This folder
is readable by all users on the machine, and serves as a place for a
user to save work and allow other user’s access to it. This folder also
contains a Drop Box, where other users can leave work, only to be
viewed by the home folder’s owner.

 Sites: This is a per-user web folder utilized by the OS X’s web server.
Users can implement their own html sites here and access them at
http://servername/~username.

A user’s home folder is their own private repository, meaning there are access
restrictions in place to prevent other users from violating this privacy. However, there are
a few limitations to these restrictions that are important to know about, both as a user

CHAPTER 7: Client Management

387

and as an administrator. The most notable characteristic is that the root of the user’s
home directory is world-readable. That is, every user on the computer can read and
open any item placed in this directory. This is primarily notable in that many users have
absolutely no qualms saving items in the top level of their home directory, unwillingly
exposing these items to any user on the system. You do not want your users to fall into
this habit, especially if you are dealing with sensitive data. It is important that you train
your users to properly utilize the folder structure in place. If you have a user base that is
particularly unwilling to learn, in some cases it may be desirable to simply restrict users
from saving directly into this folder, forcing them to save to an existing subdirectory.
Read on to the ‘‘User Templates’’ section to learn how to do this.

Another notable characteristic of the default restrictions in a user’s home folder is the
use of ACL’s to maintain the in-place folder structure. Specifically, all of the default
folders contain an ‘everyone deny delete’ ACL to prevent their removal.

 [helyx:/Users/hunterbj] hunterbj% ls -el
total 0
drwx------+ 9 hunterbj staff 306 Jan 9 12:37 Desktop
 0: group:everyone deny delete
drwx------+ 4 hunterbj staff 136 Jan 9 00:46 Documents
 0: group:everyone deny delete
drwx------+ 4 hunterbj staff 136 Jan 9 01:24 Downloads
 0: group:everyone deny delete
drwx------+ 30 hunterbj staff 1020 Jan 9 12:18 Library
 0: group:everyone deny delete
drwx------+ 3 hunterbj staff 102 Jan 9 00:46 Movies
 0: group:everyone deny delete
drwx------+ 3 hunterbj staff 102 Jan 9 00:46 Music
 0: group:everyone deny delete
drwx------+ 4 hunterbj staff 136 Jan 9 00:46 Pictures
 0: group:everyone deny delete
drwxr-xr-x+ 6 hunterbj staff 204 Jan 9 01:23 Public
 0: group:everyone deny delete
drwxr-xr-x+ 5 hunterbj staff 170 Jan 9 00:46 Sites
0: group:everyone deny delete

These ACLs ensure that a default baseline is maintained across all user directories on
the system.

The standard home folder also provides a means for users to privately exchange files
with other users. This is implemented through the ‘Public’ and ‘Sites’ directories. As can
be seen the previous output, these folders are the only folders inside a default home
folder that are world-readable. The Public folder is meant for file exchange. A user can
place an item inside of their public folder and it will be then accessible to all users, but
only with read access. They will not be able to make changes to any files. However, they
do have the ability to upload new files. Inside of every users Public folder, there is a
directory named Drop Box. This drop box folder is world-writeable, but not world-
readable. This means that user’s can place items into this folder, but they cannot see
any of the items inside (including their own). The Drop Box folder is, of course,
accessible to the home folders owner, so only they can see items left for them in this
directory. Though everyone has write access to this folder, a user will not be able to
overwrite an existing file with the same name created by a different user, only their own.

CHAPTER 7: Client Management

388

The Sites directory is a unique directory, and requires that Web Services be enabled for
it to be utilized as intended. When web services are available, users can place items in
this directory and they will be accessible for public consumption via a standard web
browser. For instance, a user could place a PDF file, like presentation.pdf, into their sites
folder. Other users would then be able to download and review this document in a web
browser through the url http://clientip_or_dnsname/~username/presentation.pdf.

In large environments, the functionality of the Public and Sites folders can be less
attractive when used with local home folders, and in such environments these folders
are typically barren. Each workstation must have file and/or web services enabled, each
with their own data stores. Other users must remember both the node to connect to as
well as the user’s short name. In small workgroups, bonjour discovery largely combats
this problem, so all workstations on the same subnet with File Sharing enabled will be
automatically listed under the Shared group in the Finder sidebar. Conversely, Safari’s
bonjour network discovery feature makes it easy to discover local machines running http
services via Web Sharing. In a Windows environment, a Mac OS X workstation with
SMB sharing services enabled will behave much like a native Windows machine.

In environments such as heavy media where workstation performance is paramount,
behind the scenes file server activity may be an unwelcome resource drain. Network
home folders, are better suited for use here. Data is centralized and can be served out
from fewer points (if not a single point), so resource utilization can be better tracked,
managed, and scaled. From an end user’s perspective, a user only need remember the
server’s address and their coworker’s short name to find the resource that they want.

Local home folders have their advantages and disadvantages. Their primary advantage
lies in their minimal reliance on infrastructure. You need not have super robust network
or storage systems to maintain a good user experience. All user resources are stored
locally on a user’s desktop internal storage, storage which will typically provide the
fastest, lowest latency access to data. For this reason, local home folders are often
desirable whenever performance and user experience is paramount.

The disadvantage in local home folders lies in the decentralization of data that is
inherent in such a model. All data maintenance routines become more complex as you
now have to deal with each individual node to gain access to data. This is particularly
true for the deployment of file-system security auditing and policy enforcement. For
instance, if data retention requirements require that all user data be backed up, then
support requirements to manage and maintain the backup system to provide coverage
for all of your nodes will increase. This isn’t a big deal for a few dozen nodes, but
scalability is definitely a consideration that needs to be made. Luckily, there are tools
available to aid in this type of management, such as Apple Remote Desktop.

Local Home Folder Configuration
The process of configuring a user with a local home directory depends mainly on the
directory services model that you are working with.

CHAPTER 7: Client Management

389

No Directory Services

If you have forgone the option of a centralized directory service, then your primary
interface will be the Accounts pane of the System Preferences Application. The System
Preferences Application can be accessed under the Apple Menu, in the Dock (by
default), or by opening the application located in the Applications folder. As mentioned
previously, any account created using this tool will receive a home directory in the
default directory of /Users. However, introduced in this tool with Mac OS X 10.5 was the
ability to specify an alternate directory as well as make additional modifications. This
interface can be found by right-clicking (or control + click) on any account listed and
selecting Advanced Options. As shown in Figure 7-18, you have the ability to change
numerous attributes including User ID, Group ID, shortname, shell, and home directory.
Additionally, you can change the user’s GUID or assign aliases to the account.

Figure 7-18. Changing a User’s GGUID in System Preferences

Open Directory

If you are utilizing Open Directory for your directory system, you’ll define your home
directory for your users by utilizing the application Workgroup Manager.app found on
any server in the folder /Applications/Server. This utility can also be installed on any OS
X client machine by downloading and installing the Server Admin Tools package
available on Apple’s support site (http://support.apple.com/downloads/
#server%20admin%20tools).

CHAPTER 7: Client Management

390

Once installed, open the application and connect to your server. To assign a user a local
home directory, go to the Home tab with the appropriate user selected. Listed in this tab
will be any predefined home directory paths as well as any configured automounts. As
shown in Figure 7-19, /Users is the default home directory location and will typically be a
predefined option. If this is not the case, you can manually specify the path. Once a path
has been defined for any user, it will be listed as a predefined option. To manually
specify a new local path, first note the user’s short name, found under the basic tab then
click the plus button. In the ‘‘Full Path’’ field, enter in the local path for that user. For
instance, if I want to utilize the standard /Users directory for user with short name bob,
then I would enter the value /Users/bob. From then on, the /Users path will be listed as
an option in the list. You can also mass select users and assign them the homedirectory
path with a few clicks.

Figure 7-19. Selecting a home directory in Workgroup Manager

CHAPTER 7: Client Management

391

Active Directory

Configuring Active Directory users to utilize local home directories can be done in a few
different ways. If all Active Directory users on the machine are going to have local home
directories, then the most straightforward way to do this is by utilizing the Force Local
Home on Startup Disk option in the Active Directory plug-in. Alternatively, the Create
mobile account at login option will provide the same effect, with a few differences. When
used, the latter option will create a mobile account, caching all user information locally
for any user that logs in. For more information on Active Directory see Chapter 3.

Third Party LDAP Directory

Configuring LDAP users to utilize local home directories can be done in a few different
ways, depending on your user implementation. If your LDAP schema already contains
the homeDirectory attribute it is typically utilized for this purpose. You just need to map
the NFSHomeDirectory attribute in Directory Utility. Each user will need the value of this
attribute set to /Users/shortname in your LDAP database. Upon login, they will be
assigned a home directory in the /Users folder. If your LDAP schema does not support
this attribute, you have a few options. The cleanest way to implement this without
altering your schema is by mapping the RecordType NFSHomeDirectory to value
#/Users/uid, where uid is the attribute that is utilized for the user’s short name. This
sets all users home directory to the path /Users/shortname. The big limitation here is
that all users on this machine will have their home directory in /Users, which may not
always be desirable. To maintain granularity, you would either have to extend your
schema to support the homeDirectory attribute, or you can utilize an existing, unused
LDAP attribute. To perform the mapping, use Directory Utility to map the
NFSHomeDirectory record to the appropriate value, and ensure that home path values
are pre-populated for all of your users. See Chapter 2 for more information on attribute
mapping with LDAP.

Network Home Folders
Network home folders are structured identically to local home folders. They contain the
same subdirectories that perform the exact same function. The difference between the
two lies in where a user’s data is stored. When a user with a local home directory logs
into a computer, that user’s home directory will be stored on that computer’s hard drive.
Any new files that the user creates will be stored locally to that drive. When that user
later logs into a different computer, they will not have access to any files created on a
different computer. If your users move from computer to computer, this creates a
problem. It’s certainly possible to enable file sharing on all of the workstations, so users
could connect to the other computer and access their data, but this quickly turns into an
unmanageable nightmare. Users need to remember which computer has which
document. Those documents will get duplicated and version tracking will go out the
window. Your users will be miserable, and you, in turn, will be miserable. Most often, a
centralized file server comes into play, offering users the ability to upload their files and
then they will be able to access them from different nodes by connecting to that server.
The central flaw here is that it promotes the illusion that data is centralized. Often times

CHAPTER 7: Client Management

392

in these scenarios, desktop resident data is completely forgotten. If it’s not on the
server, it doesn’t exist, and doesn’t require protection. This mind-set can lead to
expensive mistakes because your data is only as protected as your users are
regimented.

Enter network home folders. Network home folders store data on a network file server.
(It’s not just a clever name.) When a user logs into a computer, the user’s home directory
is never stored on that local machine, but rather directly referenced from a remote
network file server. When a user creates or edits documents, those documents are
actually updated on a remote server. This all happens transparently, unbeknownst to the
user. The main benefit provided by this is mobility. By freeing user data from the
embrace of each individual workstation, users are capable of freely moving from node to
node, traveling with them their entire computing experience. If your organization does
not use assigned workstations, with network home directories, your users will enjoy a
single experience wherever they login. The benefits of this experience are reaped by IT
as well. The advantage of having all user data centralized on the home directory
server(s) is not small. Indeed, the ability to mass deploy software, settings, files, audit
security, and provide data protection are all greatly increased when data is consolidated.

OS X currently supports home directories over a handful of network file protocols, such
as AFP, SMB, as well as NFS. AFP is your native protocol and will typically be your first
choice when available. SMB support has greatly improved in OS X over the years, and
can be utilized for an acceptable experience as well, though it will typically be relegated
to environments with Windows-based file servers. NFS flaws are traditional to the
protocol, security being the primary barrier. However, the introduction of Kerberized
NFS in 10.5 provides improvement here, trusting your environment globally supports it.

The network home folder model is not without its flaws. The largest barrier to entry is
the necessary server-side resources needed to provide an acceptable computing
experience, let alone approach the performance provided by fast local storage used by
local homes. Robust server, network, and storage infrastructure are needed. Gigabit
Ethernet to the desktop will help and to the server is also highly recommended. A
dedicated Intel Xserve with fast external RAID storage and gigabit Ethernet can
acceptably host 40---50 simultaneous light to moderate users when implemented
properly. This is not a hard limit or a guarantee because the qualification for ‘‘acceptable
performance’’ will vary greatly from workflow to workflow and from user to user. If
performance is paramount in your environment, or if you are unfortunate enough to host
particularly feisty users, then the decision to migrate to network home folders should not
be taken lightly.

Special consideration must be paid to your user’s workflow to identify data usage
patterns, which can be detrimental to a file server. Economies of scale play a large
role here. If all of your users run applications that are IO heavy, then all of those
transactions hit the wire, and your server will begin to lag. Likewise, if your users are in
the habit of dealing with large data sets, then even a gigabit pipe on a server can be
easily saturated. Luckily, Mac OS X supports 802.3ad link aggregation, also referred to
as NIC bonding. This is the process of taking two network interfaces on a server, and
presenting them to the network as a single unified connection. This provides benefits
both in redundancy and in throughput. It doesn’t offer perfect 50/50 load balancing,

CHAPTER 7: Client Management

393

because your switch must support it and it will disable Lights Out Management (LOM)
capabilities on your Xserves. LOM is a big advantage for server management, so it is
recommended to utilize a PCIe-based NIC if you plan to go this route. This is a good
way to provide a larger pipe into a server and combat saturation in data heavy
environments.

Redirection
As previously mentioned, network home directories are both a blessing and a curse. On
one hand, they provide a very valuable service to any environment where users do not
have pre-assigned computers and may move about from node to node at will. However, if
you take into account all of the various activities that can occur inside a user’s home
directory, it quickly becomes apparent that the overhead necessary for deploying
the storage infrastructure to handle the burden imposed by such activities is not
insignificant. An IMAP account of even a moderately sized user mailbox can easily contain
tens of thousands of files. A user logging into a computer results in a flurry of activity as
numerous components load their support files. There is the occasional application in
which file system needs are particularly burdensome on a file server. iPhoto and other
media management applications involve not only high levels of I/O requests, but they can
also be throughput intensive when used with higher quality or uncompressed media.
Another class of horrible offenders are video editors, as they require a consistent,
uninterrupted data stream. While most high-end applications of this variety rarely use the
home directory for media storage, the nearly ubiquitous iMovie does. Even at its lowest
quality, DV media played in iMovie requires a 5MBps stream, and things get worse with
HD formats. The main thing to understand is that if your user’s standard usage patterns
involve high I/O or high bandwidth activities, the viability of network-based storage
deteriorates. However, their exclusion shouldn’t be a forgone conclusion.

Redirection is the process of utilizing symbolic links in a network home directory to
redirect traffic to a local disk. For instance, if your users utilize IMAP mail (you’re not using
POP, right?) then there’s no reason to let that traffic burden your server. Through
redirection, you establish a symbolic link at ~/Library/Mail which redirects traffic to a local
path of your choosing, say /Users/theUser/Library/Mail. This way, whenever you start up
mail, all of your data will be accessed off of your local disk. When a user migrates to
another machine and opens up mail, it will need to re-download any messages, but this
will be of minor consequence compared to the alternative. The typical candidate for
redirection is ~/Library/Caches, which contains a decent amount of application cache data
that has no business burdening your server. The use of this folder was slightly mitigated
with the introduction of 10.5 and the /var/tmp/folders caching structure, but it is still used
and redirection will definitely lighten the load on your server. If your users have large
numbers of fonts, redirection of the ~/Library/Fonts folder can help to reduce login times.
However, this can often present its own management problems. For this reason, it is
encouraged to install Fonts at the machine level in /Library/Fonts, or to utilize Font
management software, such as Extensis’ Universal Type Server.

Implementation of redirection can be deployed with two distinct methods. The first
method is new to 10.5 and involves the use of MCX and the preference manifest
provided by /System/Library/CoreServices/ManagedClient.app. Specifically, you will be

CHAPTER 7: Client Management

394

editing the preference manifest for domain com.apple.MCXRedirector. When you create
a new key, the Always target provides three different keys to choose from:

 Login redirections: These are redirections which are fired upon login.

 Logout redirections: These are redirections which are fired upon
logout.

 Other redirections: These are fired periodically whenever policies are
set. After a network change, login, logout, or reboot.

The former two are primarily the ones we’re interested in. You can have a login hook that
creates your symbolic links at login, but then destroys them at logout.

Once you have created your MCXRedirector key under the always target, you want to
set the key Login Redirections. With the new Login Redirections key highlighted, you
create yet another key, which is used to define your redirect actions and paths. The
redirection system provides you with four actions to choose from:

 deleteAndCreateSymLink: This action deletes the network folder and
creates a symbolic link to the specified local path.

 renameAndCreateSymLink: This action renames the existing network
folder, prepending ‘‘Network’’ to the name of the directory. After
renaming, it creates a symbolic link to the specified local path.
Unfortunately, due to the lack of consistent logout cleanup, I
recommend avoiding this option and instead utilizing a login hook,
which gives you much more flexability. However, this option can be
used instead of deleteAndCreateSymLink to ensure that you avoid
deleting user data.

 deletePath: This action simply deletes any item at the specified path.

 deleteSymLinkAndRestore: This action is the counterpart to
renameAndCreateSymLink. Essentially, it will delete the existing
symbolic link and restore the previously renamed directory.
Unfortunately, this option does not function reliably. For this type of
functionality, I recommend implementing a login hook.

For these purposes, you are going to choose the second option. This allows you to
maintain a network version of the redirected folder, but promotes local storage for the
primary folder itself. Thus, if you were to perform redirection of the Movies folder
because your users utilize iMovie, then they will have the ability to access their network
movies folder at ~/Movies (Network). This provides your users with the ability to
manually copy files to the network folder to facilitate migration to a different machine. At
the same time, it relieves the burden of iMovie’s heavy data usage from your server.
While a user’s movie media may not seamlessly transfer with them like the rest of their
homefolder, it is an acceptable compromise in many environments.

To finish the policy creation, you will specify your Folder Path, which is
~/Library/Movies. You also want to specify the Destination Folder Path key, which
signifies the local path that will house your data. For this, you enter in a value of
/Users/%@/Movies. As discussed in Chapter 8, %@ is a variable for your user’s

CHAPTER 7: Client Management

395

shortname. Thus, when bob logs in, his home directory movies folder actually
references /Users/bob/Movies.

To ensure a clean environment, you might also want to deploy a logout redirection, which
deletes all of the redirections that you created at login. To do this, you will create a new
Logout Redirections key under your Always target, and create a new “deletePath” action
key. The key Destination Folder Path is ignored by this action and can be removed. The
path specified by Folder Path is used to determine the alias to remove. If you specify the
value ~/Movies, the action will delete the symbolic link at ~/Movies, but will leave the data
on the local disk untouched. It will also rename your Movies (Network) folder back to just
Movies and order is restored to the universe (see Figure 7-20).Unfortunately, at the time of
this writing, this functionality is only partially functional.

Figure 7-20. Setting MCX login and logout redirects in Workgroup Manager

Basic redirections deployed through MCX are quick and easy, and they work. However,
there are a few implications that will determine their usefulness in your environment. The
biggest gotcha is that they require 10.5. 10.4 clients will pretend they don’t exist. The
second consideration is in regard to MCX itself. MCXRedirector can be deployed at any
level, user, group, computer, or computer group. For reasons previously discussed, I
discourage the use of user-level management, though it’s important to recognize that

CHAPTER 7: Client Management

396

the granularity that they provide can be useful. If you only have a couple of network
home users, this may be a good option, but utilizing a group for this still scales better. It
is also recommended to avoid deploying these at the computer or computer group level.

The main reason for this is that these redirections are user agnostic. That is, when
they’re deployed at the computer level they will redirect the folders of all users who
login, even those with local homes. This isn’t a terribly big deal, but it’s unnecessary and
unsightly. If you use /Users/%@/… as your redirection store, or if you utilize portable
home directories (discussed in the section ‘‘Home Directory Syncing’’ later in this
chapter) then you will definitely have problems. Therefore, this really leaves you to
deploying at the group level. This works for the most part, but what if certain users
should have network homes on some computers (wired nodes), but should also have
local homes on others (laptops)? If you deploy redirects at the group level, then you get
your redirects on your local homes. This example illustrates the main problem with MCX-
based redirections. There is no way to introduce them with logic.

This leads you to the other method of redirection: loginhooks. Because of the
unparalleled freedom that you have, redirecting folders is just a few lines of code away,
or not. Login hook scripts, when done properly, require a decent amount of logic. A very
basic login script is pretty easy to assemble.

#!/bin/sh
PATH="/bin:/usr/bin:/usr/sbin"

simple login redirection script

get our user
theUser=$1

get our home
eval theHome=~$1

if we are a local user, exit
if [-x "/usr/bin/nicl"]; then
10.3 & 10.4 test
[$(nicl . -read /users/"$theUser" &> /dev/null) == 0] &&
echo "User is a local user, aborting! " && exit 1
elif [-x "/usr/bin/dscl"]; then
10.5 test
[$(dscl . -read /users/"$theUser" &> /dev/null) == 0] &&
echo "User is a local user, aborting! " && exit 1
else
 echo "DS Tool not found. " && exit 1
fi

specify our redirect folder, make sure it exists,
set ownership and permissions
redirectDir=/Users/Local/"$theUser"
mkdir –p "$redirectDir" &> /dev/null
chown "$theUser" "$redirectDir"
chmod 700 "$redirectDir"

redirect ~/Library/Caches. For 10.3 compatability,
operations on the home directory must be performed as

CHAPTER 7: Client Management

397

the user. root does have write access to AFP shares.
mkdir –p "$redirectDir"/Library/Caches
sudo –u "$theUser" rm –rf "$theHome"/Library/Caches
sudo –u "$theUser" ln –s "$redirectDir"/Library/Caches \
"$theHome"/Library/Caches
chown "$theUser” "$redirectDir/Library/Caches"
echo "Redirected $theHome/Library/Caches to \
$redirectDir/Library/Caches"

exit 0

Then the requisite logout hook (don’t blink).

#!/bin/sh
PATH="/bin"

simple logout redirection script

get our user
theUser=$1

get our home
eval theHome=~$1

if there's a symlink, break it down
[-L “$theHome”/Library/Caches] &&
rm "$theHome"/Library/Caches &&
echo "Removing symlink at $theHome/Library/Caches"

exit 0

For the logouthook, you don’t need to test for a local user. If the users are local they
won’t have a symlink to begin with. If they do, it shouldn’t be there, so you may as well
delete it.

This is a pretty bare-bones login redirection script, and it doesn’t have a ton of sanity
checks. What if the destructive redirect destroys valuable data, and you need to move it
rather than delete it? What if a user is logged into two sessions at once? When one
instance is logged out, the other’s symbolic links will be torn down, leading to an
unstable environment. Therein lies the strength in loginhook based redirections, you can
pretty much add any functionality that you’re willing to invest time into scripting. Luckily,
we’ve invested that time so you don’t have to. For a more feature packed login script,
see the package 07_loginhooks.zip in the book’s resources. You can find the code
samples for this chapter in the Source Code/Download area of the Apress web site,
www.apress.com. This zip file contains two shell scripts, loginhook, and logouthook,
which are used to create and tear down redirection environments. See the loginhook
scripts inline comments for more details on configuration and usage.

Unfortunately, in reality network home directories just aren’t well suited for certain uses.
Apple discourages their use in Final Cut Studio workflows. Color in particular seems to
have the most issues, it simply doesn’t launch. Miscellaneous apps that are poorly
coded may simply not behave properly. Sometimes these apps can be fooled into
operating through redirections or preference modification, but not always. Make sure to

CHAPTER 7: Client Management

398

take care to thoroughly test your productivity apps before deploying network home
directories on a wide scale.

Network Home Folder Configuration
Depending on your directory service model, you will utilize either Workgroup Manager or
Directory Utility to configure Network Home Directories. While it is possible to implement
network home directories in environments without centralized directory services, their
presence is highly recommended.

Open Directory

In order to assign a user a network home directory in an Open Directory environment,
you must first configure the home directory SharePoint and automount, specifying the
automount as your user’s home directory. When logging in as a network home user, the
bound client will utilize values stored in the user’s record as well as the configured
automount information in order to properly mount the user’s home.

To configure the SharePoint and automount, you utilize the Server Admin application,
located in /Applications/Server. Once open, ensure that your file server appears in the
list, and add it if necessary. With the main server entry selected, highlight the File
Sharing section and then the Share Points subsection. For this example, you will utilize
the existing Users SharePoint, though it doesn’t have to be. The big gotcha here is that
spaces were not allowed prior to 10.5, so the SharePoint User Homes won’t work out so
well. With the Users SharePoint selected, check the box to enable automount. Once
checked, you will be presented with a sheet to specify automount configuration, as
shown in Figure 7-21.

Figure 7-21. Server Admin: SharePoint automount options

CHAPTER 7: Client Management

399

Here you can select your protocols and your mount point. As this SharePoint will be
utilized for user home folders, you select that option and save. This SharePoint has now
been configured to be utilized for network home directories. You can verify this by
observing your Open Directory Mounts container with Workgroup Manager’s Inspector
or with dscl.

 [myserver:~] hunterbj% dscl /LDAPv3/127.0.0.1/ read \
/Mounts/myserver.com:/networkHomes RecordName VFSLinkDir VFSOpts \
VFSType

RecordName: myserver.com:/networkHomes
VFSLinkDir: /Network/Servers/
VFSOpts: net url==afp://;AUTH=NO%20USER%20AUTHENT@myserver.com/networkHomes
VFSType: url

An automount record contains four essential attributes in your directory. The
RecordName attribute follows typical NFS mount syntax; the server’s IP or DNS name, a
colon, and then the path to the share. In this case, it will be the full file system path of
the share from root of your server’s file system. Therefore, if your ‘‘Users’’ SharePoint
resides on a secondary volume (as it always should), then your mount RecordName
might be myserver.com:/Volumes/dataVolume/networkHomes. The path portion of value
is utilized clientside as the file system mount point for the automount. The VFSLinkDir
attribute specifies the base path, which is prepended to the path provided by
RecordName. In the previous scenario, a client machine would mount the user’s home
directory at /Network/Servers/hax.lbc/dataVolume/networkUsers.

One important limitation to know about here is that there is a character limit to an
automount pathname when use specifically with network homes-----the entire path,
including /Network/Servers, cannot contain more than 89 characters. This leaves 72
total characters at your disposal. In 10.3.5---10.4.11, the automount path was at
/private/Network/Servers/ which allowed only 64 usable characters. Prior to this, there
was a slew of rubbish leaving you with only 39 characters. 72 characters is actually
ample for most environments, but if you find yourself running against this limitation, you
do have a couple of options.

The first recommended option is the cleanest, and it cuts out a decent amount of fat
depending on your environment. In fact, it’s so clean that I often deploy it even when the
limitation is not a concern. The basic concept is that you map the top level of your
share’s path to the root of your file system. To understand this, consider the previous
example, where the automount mount point for the ‘‘Users’’ SharePoint was at
/Network/Servers/myserver.com/Volumes/dataVolume/networkHomes. This path
contains over 19 characters which only apply to a single machine, the server itself. Your
remote clients only know about the server name (myserver.com) and SharePoint (Users).
Why can’t you cut out all this excess, like /Volumes/dataVolume/networkHomes? In fact,
you can confidently bypass this once you realize a few things about automount
behavior. First, every OS X machine has a symbolic link at /Network/Servers/fqdn. On
myserver, the command ls ---l /Network/Servers/myserver.com/networkHomes yields the
same results as ls ---l /networkHomes.

CHAPTER 7: Client Management

400

Thus, by placing a symbolic link of the sharepath to its basename on the root of the file
system, you can simulate this on the server:

$ln –s /Volumes/dataVolume/networkHomes /networkHomes

Once run, /Network/Servers/myserver.com/networkHomes is a fully functional path to
your data. All that’s left to do is modify the automount data, replacing the old path with
your modified version.

The VFSOpts attribute specifies that this is a dynamic AFP automount. The
;AUTH=NO%20USER%20AUTHENT string specifies that the machine will first attempt
to mount the automount as guest. Once a user logs in, it will reconnect to the
SharePoint with the user’s access levels. However, there is an important ramification
here. If you have a limited license server, each connected home directory user will utilize
two connections. This value can be changed to ;AUTH=Client%20Krb%20v2 to utilize
Kerberos authentication on the automount. Alternatively, an authentication string can be
dropped all together. Loginwindow will dynamically authenticate and mount the share.

VFSOpts: net url==afp://;AUTH=Client%20Krb%20v2/hax.lbc/networkHomes

Though SMB based home directories are supported, there is no GUI to perform this
configuration in an OD-based environment. However, you can modify your automount’s
uri to specify the smb or cifs protocol:

VFSOpts: net url==smb://hax.lbc/networkHomes

To create an automount from the command line, you would perform the following:

dscl –u mydiradmin /LDAPv3/mydirsirv.myco.com
> delete Mounts/hax.lbc:\\/Users VFSLinkDir /Network/Servers
 > create Mounts/hax.lbc:\\/Users VFSLinkDir /Network/Servers/
 > delete Mounts/hax.lbc:\\/Users
 > create Mounts/hax.lbc:\\/Users VFSType url
 > create Mounts/hax.lbc:\\/Users VFSOpts net
 > append Mounts/hax.lbc:\\/Users VFSOpts
url==afp;AUTH=NO%20USER%20AUTHENT@hax.lbc/Users
 > append Mounts/hax.lbc:\\/Users VFSLinkDir /Network/Servers/
 > read Mounts/hax.lbc:\/Users

Open the application and connect to your server. To assign a user to a local home
directory, go to the Home tab with the appropriate user selected. Listed in this tab will
be any predefined home directory paths, as well as any configured automounts. /Users
is the default home directory location and will typically be a predefined option in the list.
If this is not the case, you can manually specify the path. Once a path has been defined
for any user, it will be listed as a predefined option. To manually specify a new local
path, first note the user’s shortname, found under the basic tab, then click the plus
button. In the Full Path field, enter in the local path for that user. For instance, if I want to
utilize the standard /Users directory for user with shortname bob, then I would enter the
value /Users/bob. From then on, the /Users path will be listed as an option in your list.
You can then mass select users and assign them the home directory path with a few
clicks.

CHAPTER 7: Client Management

401

Home Directory Syncing
Also referred to as Portable Home Directories, Home Directory syncing provides the
ability to allow a user to use a local home directory, but also periodically synchronize
files with a network home directory. This type of setup is great for users who utilize both
a personal laptop and a wired desktop machine. In such cases, the wired desktop
machine could utilize either network home directories, or it could be configured to utilize
a local home, and then sync the content with a network home directory as well. In either
case, you can configure settings which manage these preferences, specifying specific
folders to include in the sync, and the interface also provides a very capable filtering
system to easily ignore cache files and other machine-specific files.

Home directory syncing is broken up into two different sync types: Login/Logout
syncs and background syncs. As the name suggests, Login and Logout
synchronizations fire upon the beginning and end of a user session. The best
utilization of login/logout syncing is probably best described by the setting’s
preference keys: syncedPrefsFolders. That is, this option is best used for application
preference files, or any file, which during a user session is constantly in use and
therefore not a good candidate for background syncing. By default, Apple specifies
two folders to sync at login/logout: ~/Library, and ~/Documents/Microsoft User Data.
The Former option includes Application preference and support files, Safari and
Firefox bookmarks, and User Fonts. The latter folder contains many Microsoft Office
settings, most notably the Entourage database.

Background synchronization, as its name implies, synchronizes files and folders in the
background during an active user session, by default every 20 minutes. As mentioned,
not all files are good candidates for this. For the most part, background synchronization
should be configured for user-generated content, such as the Desktop and Documents
folders.

One thing to consider is that Login and Logout syncing can cause significant delays in
the login and logout process as the user must wait for the synchronization to finish
before they can begin to use the computer or close the laptop’s lid for the day. Because
of this, users may be very prone to simply hitting the cancel button. Essentially, if you do
not build a very specific login item sync list, then the entire login syncing process will
likely be compromised due to user intervention. The entourage database is a great
example of this. Entourage databases can reach gigabytes in size, and even a
wired computer will take a good chunk of time to send this data to the server.
Most users will not find a 30 minute login time to be acceptable. So, keep this list
slim. If you need to synchronize Firefox bookmarks, explicitly specify the folder
~/Library/Application Support/ Firefox. Use ~/Library/Safari for Safari but use
~/Library/Preferences for all user application preferences. Avoid directories with
deeply nested hierarchies, as these will cause syncing delays as the system scans
through everything. For the grunt of the work, background syncing is your go-to
player. 10.6 has some good improvements here, does a better job in general of
informing you of when a particular set of items will sync, and gives you better control
over the process.

CHAPTER 7: Client Management

402

One other noteworthy aspect of login/logout synchronizing is that the system has
detection routines to determine if another computer has synchronized changes. If,
upon logging in, the FileSyncAgent, which is responsible for synchronization, detects
that the user has had an active session on another machine, it will present the user
with a dialog stating that another login session was detected. The dialog will ask the
user if they would like to delay syncing. Upon the next sync the system will require
the user to choose a default conflict resolution source, presenting the option of local
files versus network files. This setting is then applied to all items for that
synchronization. This differs significantly from conflict resolution on background
synchronizations, which allows you to specify the preferred source of each conflict
individually.

If you have sync settings applied to a user account, upon first creation of the
account, a complete sync of both login items and background items is required in
order for the login process to complete. If the initial synchronization is cancelled,
then the login will fail and the user will be returned to the login window. Make sure
that if your user’s have large home directories that you set this expectation when
you deploy the change. Subsequent login syncs will attempt to perform a
synchronization of background items as well, but they can be cancelled without
detriment to the login; the sync will simply pickup where it left off during the next
scheduled scan. Alternatively, if you are running 10.6, you can specify better control
preference syncing vs. background syncing, and specify that background syncing
items do not sync at login or logout.

To configure a user to utilize a portable home directory, you use a process that is a
bit of a hybrid between a network home directory user and a mobile user with a local
home directory, often referred to as a Portable Home Directory. In Workgroup
Manager, the desired user must have their home directory specified to a configured
automount SharePoint, exactly as you would configure a user with a network home
directory. Once this is configured, you must specify mobility management for the
user, such as you would do when setting up a user with a local home directory.
Once you have done this, you must use managed preference to define the user as a
mobile user. For the purposes of this exercise, you are going to utilize a computer
group named “Mobile”.

First, open up Workgroup Manager and connect to the Open Directory Master. Next,
find the desired management object to apply the managed settings to. Once selected,
open up the Mobility pane in the preference management section. In the default Account
Creation Tab, under the creation section, select the option to create a mobile account at
login, but do not require confirmation, as shown in Figure 7-22. Click Apply.

After this change, when the user logs into a computer that is a member of this group, a
mobile account will be created-----a copy of the user Open Directory record is copied into
the local directory services store. This record contains the user’s password, and enables

CHAPTER 7: Client Management

403

the machine to permit a user to login to the computer even when the machine cannot
contact the Open Directory server. Creating mobile accounts is an absolute must on
laptops that will routinely leave the company campus and thereby lose access to
company internal servers. In fact, in many wired-desktop environments, it may be
desirable to force mobile accounts for users. This creates a more robust desktop setup
that will more gracefully deal with any Open Directory outages. There are not many
benefits management-wise to not create a mobile account for any user who will utilize a
local home directory.

Figure 7-22. Force mobile account creation on login using Workgroup Manager

Now that you have configured mobility, you must also configure the actual syncing
settings. You will first configure the login syncing, called preference syncing in 10.6. In
this particular instance, you will be syncing the user’s preference folder, their personal
applications folder, and their Firefox and Safari bookmarks. Respective GUIs are shown
for 10.5 and 10.6. Notice that the 10.6 GUI on the right has specific checkboxes allowing
for granular control of when certain items sync (see Figure 7-23).

CHAPTER 7: Client Management

404

Figure 7-23. Configuring Login/Preference Syncing using Workgroup Manager

Next, you will configure the background syncing options, called Home Syncing in 10.6.
In this instance, you will synchronize the User’s Desktop and Documents folders. You
are not concerned about other media content, such as Pictures, Movies, and Music.
Users can certainly connect to their home folder manually (or you can mount it for them
using MCX), and they can upload any media files that they deem important (perhaps
only the server-side home directories are backed up). In this case, you want to make
sure you exclude some potentially sync-busters, such as the Entourage database at
~/Documents/Microsoft User Data, or potential Virtual Machines at ~/Documents/Virtual
Machines (or ~/Documents/Parallels if you are using parallels instead of VMware), as
shown in Figure 7-24.

CHAPTER 7: Client Management

405

Figure 7-24. Configuring Background/Home Syncing using Workgroup Manager

In order to reduce syncing times, Mac OS X 10.5 server introduced a new feature that
would track server-side modifications to files. This adds additional logic to help a client
and a server determine which files need to be synced and to help with conflict
resolution. To disable server-side syncing, simply enable the option in server admin.
With the main server entry selected, choose the settings tab. Under the general settings
tab, you will be presented with the option to enable several OS X services, such as NTP
serving, as well as Server Side File tracing for home directory syncing. When this option
is enabled, clients will connect to the server via an ssh connection over port 2336. This
connection is used to converse with the server to build an accurate change manifest.
Once this is created, syncing is done per usual over AFP. If you do not enable this
option, all change detection will be performed over AFP.

CHAPTER 7: Client Management

406

Troubleshooting Syncing Issues
Troubleshooting Home Directory syncing issues is something that you will inevitably
have to deal with when you deploy them at a large scale. In the following few
paragraphs, you will try to present a summary of the players involved to help you to
determine the possible origin of different issues.

When syncing issues arrive, the first thing to determine is the breadth of the issue: Is the
problem only occurring with a single user or is it affecting all user’s with the applied
management settings? One of the most common causes of syncing problems is due to
conflicting sync settings. Your ~/Library/Preferences folder isn’t going to sync if you
exclude the ~/Library folder. Use the system_profiler and gmcxquery function discussed
earlier to verify applied settings.

After this, consult the log file found at : ~/Library/Logs/FileSyncAgent.log and
~/Library/Logs/FileSyncAgent-verbose.log. Between these two log files, there will
typically be evidence as to the nature of your problem.

If server-side tracking is enabled, then the client uses public key authentication to
contact the server over port 2336. For this authentication, preshared keys are stored at
~/Library/FileSync/FileSyncAgent_key_dir. In this directory, there contains a public key
and a private key used to authenticate to the server. In earlier versions of 10.5, if
permissions of this folder were such that the user was not the owner, and did not have
exclusive access to the keys, then authentication would fail. This would result in a
complete sync failure. This issue was addressed in a point-release patch. The system
now will detect permissions problems and repair them prior to attempting to connect to
the home directory server.

If interested, you can view the ssh configurations for this service by consulting the files
/System/Library/CoreServices/FileSyncAgent.app/Contents/Resources/FileSyncAgent_s
shd_config and the corresponding client configuration at
/System/Library/CoreServices/FileSyncAgent.app/Contents/Resources/FileSyncAgent_s
sh_config.

If syncing problems persist despite your efforts, you can simply delete all of the user’s
Filesync databases, which will rebuild upon the next operation. Doing this operation will
delete file history, it is possible that files present at one location will be deleted during
the process. Because of this, and when working with syncing issues in general, it is
never a bad idea to have a full backup of the user’s data on both sides: server and
client. If you are reasonably sure that all pertinent data exists at only one location, do
yourself a favor and back it up prior to proceeding. With that out of the way, to delete
the user’s sync database, run the following commands from both the server and the
client, replacing with the user’s short name.

sudo rm -r ~theuser/.FileSync
sudo rm –r ~theuser/Library/FileSync

In the majority of scenarios, assuming the client is getting good MCX sync data, the
previous action will resolve the syncing issues. If the problem still isn’t resolved, you

CHAPTER 7: Client Management

407

could try resetting ownership on the user’s home directory, which may or may not be an
issue:

sudo chown –R theuser ~theuser
sudo chmod –R o+rw ~theuser

Password Policies
When you have large groups of people, and confidential information to disseminate
to them, then special precautions must be made to ensure that the information
doesn’t become available to those who may do harm with it. The most common
access restriction utilized in IT today is the standard username plus password
paradigm. Adoption of two factor and token-based authentication certainly is worth
a look, but for this context I will discuss primarily how to best constrain global and
per-user password policies to maximize the security that they can provide. When left
to their own devices, end users will choose the shortest, easiest, and most
guessable password as possible. Strong passwords to them are nothing more than
an inconvenience, and in many cases, a barrier to work.

Unless you have the infrastructure to implement tokens or smart cards, your users
are stuck in a password world. The unfortunate reality is that the burden to ensure
data confidentiality ultimately falls on you, the system administrator. Luckily,
Mac OS X Server includes a set of tools for implementing password strength
requirements and implementing required, scheduled rotations. These tools are
presented to you via the familiar Workgroup Manager application (for managing
per-user settings), and in Server Admin (for managing system-global settings).
Additionally, in typical fashion Apple provides a command-line tool pw policy for
more advanced uses.

To access global password policy settings, first open up the Server Admin
application found in /Applications/Server and connect to your Open Directory server.
Once connected, view the settings section of the Open Directory service and select
the Policy tab. Under this tab, settings can be found for global user authentication
requirements (the Password tab), computer binding requirements (the binding tab),
and supported hashes, which will be utilized by the OS X password server (the
authentication tab). Figure 7-25 demonstrates the user’s password tab, providing
options to force password strength, such as minimum length, numeric digit, special
character, and uppercase character requirements, and even allows for preventing
user’s to reuse previously used passwords. In this tab, you can also force global
rotation requirements, designating an arbitrary timeframe between password
changes.

CHAPTER 7: Client Management

408

Figure 7-25. Configuring Global Password Policies in Server Admin.

The command-line equivalent to these global settings is found using the pwpolicy
command. Specifically, the -getglobalpolicy and -setglobalpolicy flags. To require a
minimum of 8 characters, you should use an alphanumeric password with at least one
special character for all users. The following is the syntax:

sudo pwpolicy -a hunterbj -setglobalpolicy "requiresNumeric=1 minChars=8 requiresAlpha=1
requiresSymbol=1"

CHAPTER 7: Client Management

409

In this example, you are specifying an Open Directory administrator user name with the
-a flag, and then using -setglobalpolicy to set your specific items. To both ensure your
settings took, and to get a list of possible settings, you rerun the command with the
-getglobalpolicy flag:

sudo pwpolicy -a hunterbj -getglobalpolicy
Password:
usingHistory=0 canModifyPasswordforSelf=1 usingExpirationDate=0
usingHardExpirationDate=0 requiresAlpha=1 requiresNumeric=1 expirationDateGMT=12/31/69
hardExpireDateGMT=12/31/69 maxMinutesUntilChangePassword=0 maxMinutesUntilDisabled=0
maxMinutesOfNonUse=0 maxFailedLoginAttempts=0 minChars=8 maxChars=0
passwordCannotBeName=1 requiresMixedCase=0 requiresSymbol=1 newPasswordRequired=0
minutesUntilFailedLoginReset=0 notGuessablePattern=0

After reading this output, you can definitely see the options that you just set. Likewise,
you can verify that the settings have properly updated in Server Admin.

Note: Global and per-user password policies do not apply to Open Directory Administrator
accounts.

Password Changes at Loginwindow
When first deploying systems to hundreds of users, it is likely that you will first utilize a
standard password or password pattern so that users can successfully login for the first
time. However, as you will likely often need to disseminate this information in an unsafe
manner (such as email), it is important that you ensure that users reset their passwords
to a personal value as soon as possible. To do this, you can modify the global password
policy to force a password change upon first login. To accomplish this, you can simply
check the option for the password to ‘‘Be reset at first login.’’ Alternatively, you can set
this option using pwpolicy:

sudo pwpolicy -a hunterbj -setglobalpolicy "newPasswordRequired=1"

When troubleshooting user desktop issues, it may be necessary to reset the
password. When doing so, you will usually want to force the user to change his or her
password as soon as you’re done with your work. The best way to do this is to force a
password change at next login for that specific user. To do this, open Workgroup
Manager and connect to your Open Directory server, finding the user account in
question. With the user selected, password policies can be found by clicking on the
Options button under the Advanced tab for the user. Here, you can set numerous per-
user password policies. As mentioned in Figure 7-26’s warning, settings set here can
override global policies.

CHAPTER 7: Client Management

410

Figure 7-26. Configuring per-user password policies using Workgroup Manager

There are a few caveats to forcing a user to change their password this setting. First and
foremost, not all network services in OS X support the ability to force a password
change. Notably, the services that do support this are limited in 10.5 and 10.6 to
loginwindow, the account system preference pane, an AFP authentication, Kerberos,
and the web password change portal introduced in 10.6. For other unsupported
services, such as ssh, iCal, mail, and wiki services, when a user has a forced password
change active, then these services will simply fail authentication. As such, it is important
that you properly communicate with your users both that you reset their password, as
well as make sure that they are familiar with the procedure to reset it. If your email
system utilizes Open Directory for authentication, setting this will lock them out of their
email and constrain your ability to communicate with them.

Managing Keychains
Managing keychains will become a clear and present issue in the life of a Mac
administrator. Keychains in OS X are encrypted files, which are used to store various
sensitive information. Keychains are a system-wide framework that allows applications
to utilize, providing a single universal method for password management. Each user has
a default ‘‘login’’ keychain, which is automatically unlocked at login, provided the
password provided at login is the same as that configured for the keychain. The login

CHAPTER 7: Client Management

411

keychain is used by numerous applications such as Safari, Finder, Mail, and Entourage
to store credentials. If a user opens these applications, and the keychain is locked, they
will be presented with a dialog box to enter their keychain. If the user’s login password
and keychain are mismatched, it will be very confusing to the end user, and will force a
level of frustration when they never know which password to use at any given moment.

As you may know already, the main issue is that when a user changes their
password via any means other than the system preferences account pane, then
their keychain password will not get updated. This creates a challenging issue for
end users, as remembering a single password for them is hard enough. Combine
this with the fact that in order to address the issue, users need to be taught about
the Keychain Access application, this may or may not be plausible in your
environment. Luckily, the Macintosh community springs into response. The folks at
www.afp548.com have provided a handy utility, called Keychain Minder, which can
be installed on client machines, and set to autostart. When configured like this,
Keychain Minder will start at user login, and ensure that the login keychain has
successfully unlocked. If not, the application will present the user with a dialog
box, asking them to enter in their former password as well as their new password.
After verifying the new password is the same as the login keychain, it updates the
password. If the user cannot remember the old password, the application provides
an easy interface to start over with a new one.

Keychain Minder can be found for download at http://www.afp548.com/article.
php?story=20080828125103334.

Apple Remote Desktop
Apple Remote Desktop is a desktop management suite sold as a separate product from OS
X Server. Commonly called ARD, the client for this application is installed by default on every
OS X machine. Prior to management availability, a client machine must have the service
turned on and access levels configured for users. This can be done by visiting the Remote
Management service found in the Sharing Preference pane. The Sharing pane can be
accessed by visiting System Preferences under the Apple menu. Under the Remote
Management service UI, you will find options to configure the service for all users or for
specific users. From here, you can add individual users, and configure levels of remote
access, though typically, the only local user that would need remote access would be the
501 user. This user will typically have full access to the machine, and may or may not
present visible queues to the end user when they are being observed or controlled. You can
also configure this application via the command line and the kickstart command, found at
/System/Library/CoreServices/RemoteManagement/ARDAgent.app/Contents/Resources/ki
ckstart. For example, to configure access to your machine for your 501 user, myAdmin, runs
the following command as root:

/System/Library/CoreServices/RemoteManagement/ARDAgent.app/Contents/Resources/kickstart
-configure -access -on -users myAdmin -privs –all -restart -agent –menu

CHAPTER 7: Client Management

412

From here on out, the machine will accept login connections for that user, regardless of
whether or not you enabled the service in System Preferences or from kickstart.

Scanning Networks with ARD
Apple Remote Desktop possesses a network scanner that can detect machines via
bonjour, by a specific IP address or by a range of IP addresses. Multiple Scanners
can be set up, making it easy to rediscover DHCP machines on remote subnets.

To create a network scanner, simply select New Scanner from the File menu. Name
the scanner appropriately, and in the right hand pane, configure the scanner’s
settings. Options are Bonjour, Local Network, Network Range, Network Address, or
File Import. These are mostly self-explanatory. Local Network searches subnets
local to all interfaces on the machine. Network Range allows you to specify a
starting and ending IP address, which is handy for scanning remote subnets. File
Import allows you to import a file that has newline delimited subnet ranges. This is
handy if you have rather intricate subnet configurations and want to capture multiple
ranges in a single scan:

10.0.1.2-10.0.2.50
10.0.3.100-10.0.3.102

TIP: To list or to scan? ARD has both static lists and dynamic scanners. If you find yourself
coming and going from a network a lot, you will be much happier with a scan. If you are
managing static IP addresses only, or have only a single subnet for all machines then lists are
probably better suited. Lists are also better suited if you need to repeatedly target specific
machines.

Controlling machines
Controlling machines is pretty straightforward. First, you must add client machines to
your local database. To do so, use a scanner that you previously configured. The
scanner will display found machines with a blue icon. Simply drag them to the All
Computers container on the left. Once you have performed this action, computers listed
in the scanner will have a blue icon next to them, as shown in Figure 7-27.

CHAPTER 7: Client Management

413

Figure 7-27. Discovering machines with the Scanner in Apple Remote Desktop

Once added, you can control a machine by selecting it in the list and selecting the
Control button. Now you will have remote control of the remote client’s console session,
assuming (or sharing) control of it’s keyboard and mouse. It is important to note that all
ARD sessions and loginwindow sessions share the same console. This is the equivalent
to /console connections in Windows Terminal Services.

Sending Commands, Packages, and Scripts
One extremely powerful feature of ARD lies in its ability to distribute package installers,
send remote unix shell commands, and even copy files to machines. When copying files,
ARD will attempt to utilize multicast for distribution, making distribution of files and
packages to machines on the same subnet extremely efficient. To push installation of a
package to multiple machines, simply select them in your scanner or list and select
‘‘Install Packages.’’ Here, you can install standard mkpg and pkg-based applications.
You can deploy multiple packages at one time, they will execute in the order that they
appear in the list. This makes it especially happy for pushing software installs and then
subsequent updates all in one swoop. Figure 7-28 shows the GUI for remotely executing
UNIX shell scripts via ARD’s Send Unix Command.

CHAPTER 7: Client Management

414

Figure 7-28. Deploy packages in Apple Remote Desktop

Unix shell commands are an equally invaluable utility for remote machines. For example,
you may need to temporarily enable ssh access on a group of machines for remote
management. Using ARD, you can easily push out the command to do this. First, select
the desired target computers from a scanner or list and select the Send Unix Command
option from the Manage menu. Alternatively, you can click on the Unix button in the
toolbar. Regardless of your choice, you will be presented with the window shown in
Figure 7-29. In the top field of the window, enter the command:

launchctl load -w /System/Library/LaunchDaemons/ssh.plist

CHAPTER 7: Client Management

415

This command loads a system daemon, and because of that needs to run with root
privileges. To do this, select the option Run as User: and enter a value of root.

Figure 7-29. Remotely execute shell scripts in Apple Remote Desktop

When you’re done with your SSH work, you can disable it by simply redeploying the
command with the ‘unload’ parameter.

Enabling Directory Service groups
With ARD, it is possible to configure authentication for a user existing in a network
directory service. There are a couple of different approaches for this. First, you must
enable directory authentication client side. This can be done graphically in the ARD
application. Next, you will want to be able to manage the target clients in ARD with a
local user. Once this is setup, select the target clients in a list or scanner and select
the menu item Change Client Settings, found under the Manage menu. From here, you

CHAPTER 7: Client Management

416

will be presented with a list of configuration options. This will ask you a series of
configuration questions. On the fourth pane of the assistant, you are presented with the
option to enable directory based-administration. This option will enable directory users
found in specific groups: ard_admin, ard_interact, ard_manage, and ard_reports. From
there, it will use membership in these groups to grant respective rights to the members.
The ard_admin group represents full access and is the most common. The ard_interact
group limits interaction to screen control. Alternatively, you can configure these options
through the kickstart command:

kickstart -activate -configure -clientopts -setdirlogins -dirlogins yes -setdirgroups -
dirgroups ard_admin, ard_interact, ard_manage, ard_reports -restart -agent

If you find that you need to deploy specific administrators to specific computers, the use
of a single global ard_admin group isn’t going to help you much. Instead, you can
deploy MCX configurations that tell the application to utilize specific groups. The easiest
way to deploy this setting is via the dscl. Specifically, you will be deploying a setting
which will tell ARD to consult a group (or groups) of your choosing in place of the
standard ard_admin, ard_interact, ard_manage, and ard_reports groups. You can
subplant one or any of your groups. For example, if you want to have two administrative
groups applied to your ‘‘lab2’’ computer group, you would use the following syntax:

dscl -u hunterbj /LDAPv3/hax.lbc mcxset /ComputerGroups/local com.apple.remotedesktop
ard_admin always "(admingroup1,admingroup2)"

Once you have deployed the MCX settings, you just need to restart the machine and you
should then be able to manage your machine. Unfortunately, this functionality was broken
around the time of the introduction of Remote Desktop 3.2.2 and OS X 10.5.3 and the
issue persists as of 10.5.7. This is the only official way to deploy ARD management
capabilities to specific groups. However, you can use a workaround. This workaround
involves creating an ard_admin group in the local directory node. From here, you can nest
Open Directory groups inside of these local groups, thereby granting them ard_admin
capabilities. To do this, you use the following syntax, locally on the client (as root):

dseditgroup –o create ard_admin
dseditgroup -o edit –a myadmingroup1 -t group ard_admin

By running these two commands, you create the local group and then nest your DS group
inside of it. It isn’t quite as clean as pure directory groups, but it gets the job done.

Enabling Directory-Based Administrator Groups
It is also possible to enable a directory service group to possess local administrative
access to workstations. This procedure is essentially identical to nesting ard_admin
groups. However, instead of nesting your groups inside of ard_admin, you’ll do it into the
standard admin group. To set up administrative OD groups, you utilize similar syntax:

dseditgroup -o edit –a myadmingroup1 -t group admin

If you are using AD, then the AD plug-in actually provides you with a nice GUI to do this.
Surprisingly, there is no equivalent UI for OD groups. See Chapter 3 for more details on
the AD plug-in.

CHAPTER 7: Client Management

417

To help deploy these configurations in one fell swoop, I have provided a script for you to
use. This script, labeled setNetworkAdminRights, will nest specified OD groups inside of
the local admin and ard_admin groups.

Quota Management
Quota support in OS X allows you to set per-user quotas on a per-user level under the
Homes tab of Workgroup Manager. Once user-specific quotas have been assigned here,
you must then enable quota enforcement on the volume(s) hosting the home directory. To
do this, connect to the home directory server using the Server Admin application. With the
server connected, select the main server entry and select the File Sharing tab. With the
Volumes section selected, highlight the home directory volume and select the Quotas tab.
Check the box to enable quotas. After a brief wait, the list should populate with data that is
on the drives, and will show current quota limits and utilization (see Figure 7-30).

Figure 7-30. Enabling Quotas in Server Admin

CHAPTER 7: Client Management

418

Login Hooks
As discussed earlier, login and logout hooks provide the means to run scripts prior to
and after a user’s login session. Here, the term ‘‘hook’’ is synonymous with ‘‘script.’’ The
term hook is used simply as a colloquialism referring to the manner in which the script is
caught by the login or logout processes. Login and logout hooks are functionally
identical, so you will use the term login hook going forward. Unless otherwise indicated,
information is similarly applicable to logout hooks.

Login hooks are executed under uid 0. That is, they run with root privileges. In order to
properly identify the user environment in which they are running, the system passes the
logging-in-user’s short name as the first argument to a login script. Login hooks can be
utilized to perform custom folder redirections, custom mounts, and file system
modifications. The real beauty of login hooks is that you have access to the same tools
that you would have in an OS X shell environment. You can use it to deploy Perl, Python,
and bash scripts, which can pretty much do your bidding.

Login hooks in OS X are deployable only at the computer and computer group level.
However, out of the box, OS X clients are not configured to trust loginhook settings
deployed from a directory server. To enable this trust, you must modify loginwindow’s
root domain preference to enable login scripts:

defaults write /var/root/Library/preferences/com.apple.loginwindow EnableMCXLoginScripts
–bool true

Next, you have to establish your acceptable trust level, represented by your MCXScriptTrust
attribute. Following are a number of trust levels (ordered from most to least strict):

 FullTrust: The client will only trust loginscripts specified by Directory
Servers to which the client has performed a trusted bind to. A FullTrust
relationship also requires that the options to block man in the middle
attacks, and Digitally sign every packet are checked.

 Authenticated: The client will trust a server only if it has successfully
authenticated via a trusted bind.

 PartialTrust: Like a full trust, a partial trust requires a trusted bind.
Packets here must also be Digitally signed. Active Directory bindings
typically occur at this level.

 Encryption: The client will trust only servers supporting ldaps://
connections, and for whom root CA file is defined in
/etc/openldap/ldap.conf. (See Chapter 1 for more details on SSL and
Directory Services.)

CHAPTER 7: Client Management

419

 DHCP: The client will trust only servers specified in Option 95 of their
active DHCP packet, as discussed in Chapter 1.

 Anonymous:The client will trust loginscripts configured in any
configured directory server.

If you are unsure of which option to set, you can run a query from a client to determine
the possible levels:

dscl localhost read /LDAPv3/dirserv.myco.com dsAttrTypeStandard:TrustInformation
TrustInformation: Authenticated Encryption

You can now use this information to configure your client. When setting your
MCXScriptTrust value, the value that you set will determine the trust level such
that if your client trust connection is at least as secure as the value specified, then
the login script will be trusted. For the preceding example, you could set either
Authenticated or Encrypted. If you are confident that all other Macs in your fleet will
have a similar trust level, then you can pick the strongest of the values—in this case,
Authenticated. To establish this MCXScriptTrust, you run the command (as root on
every client):

defaults write /var/root/Library/preferences/com.apple.loginwindow MCXScriptTrust –
string Authenticated

At this point, you have now laid the groundwork for deploying login scripts. Obviously,
life will be much easier if you build the previous measures into your standard
configuration at imaging time. Now, it’s time to actually deploy your loginhook script. In
order to deploy a script, a little prework needs to be done. First, the script needs to have
a pound-bang statement (like #!/bin/bash) as its first line. Second, it cannot have a file
extension. Lastly, the script must be marked as executable on the file system. To make
a script executable, use chmod:

chmod +x /path/to/scriptfile

With this prework done, all you need to do is deploy the actual loginhook managed
preference. To do this, open up Workgroup Manager and login to the Open
Directory Master as a directory administrator. Once connected, find and select the
computer(s) or computer group(s) where you wish to deploy the loginhook. With
the desired object(s) selected, navigate to the Login Preference management pane.
In this pane, shown in Figure 7-31, under the scripts tab you will find the ability to
specify login scripts. Additionally, you can specify whether login hooks configured
in the machines local loginwindow.plist file will be allowed to run. Be careful, if you
have any client management systems, such as jamf, disabling this option can
interfere with its function.

CHAPTER 7: Client Management

420

Figure 7-31. Deploying loginhooks via Workgroup Manager

To set local loginhooks, run the following command as root on the local client:

sudo defaults write com.apple.loginwindow LoginHook /path/to/loginhook.sh

Software Update Server
With Mac OS X server, Apple provides the Software Update Server service, which allows
you to host your own local software update repository. Referred to as swupd, and built
on top of the Apache web server, this service can provide updates to all client
computers on your local LAN. This not only saves potential gigabytes of data from
hitting your WAN connection, but it also allows you to funnel updates to your clients,
releasing them only after your IT organization has had the ability to vet their compatibility
with business critical applications.

CHAPTER 7: Client Management

421

To Configure a Software Update Server, use the Server Admin application to start the
service and enable the appropriate updates. You have a few options in regard to how
the service handles new updates. For instance, you can choose to automatically copy all
updates or only new updates from Apple’s centralized server. By choosing to copy, but
not autoenable the updates, you ensure that the updates are local to your LAN, and
available for immediate deployment when you are ready finally able to enable. If you
choose not to auto enable updates, then you must manually specify which updates will
be enabled for deployment. The process swupd_sync is responsible for syncing enabled
updates from Apple, and presenting any new updates in the interface.

TIP: Enabling Software Update services on a server can result in a significant amount of data
to the folder located at /usr/share/swupd. Make sure the system has adequate space on its
disk drive prior to enabling this service. If necessary, you can move the software update store.
Moving the directory to a separate volume and then setting up a symlink can do so. The second
option is to modify the apache.conf file utilzed by swupd, located at /etc/swupd/swupd.conf.

To configure software update services on the client side, you can do so locally on each
by running defaults (as root):

defaults write /Library/Preferences/com.apple.SoftwareUpdate CatalogURL
http://myserver.myco.com:8088/

Alternatively, you will probably prefer to deploy these settings via MCX. To do so,
Workgroup Manager provides a managed preference pane (called Software Update).
This preference can be deployed at all tiers of management.

In addition to the graphical Software Update, it is possible to run Software Updates in
the background, without the user’s knowledge. To do so, you will want to utilize the
software update binary, located at /usr/sbin. This command has a few common uses. If
you run your own update, you’ll probably want to automate the following command with
launchd or cron:

softwareupdate –i –a; shutdown –r now

With this syntax, the command will install any available updates and then restart.
However, this command would restart whether updates were installed or not. For
operations like this, a more advanced script is required. Luckily, I’ve got one of those for
you. The following script, runallswupdates.sh, can be copied to /etc/rc.local on newly
imaged machines. Upon boot, they will run all applicable updates and reboot. This
process will continue until all updates are run, at which point the script will self destruct.
Alternatively, it can be pushed out in full via ARD’s run unix command:

#!/bin/bash
PATH=/bin:/sbin:/usr/bin:/usr/sbin
 declare -x swupdServer="hax.lbc"
 #if set to 1, we will reboot when updates recommend it
 declare -i restartOnRecommended=1
 ## Binary vars
 declare -x defaults="/usr/bin/defaults"
 declare -x softwareupdate="/usr/sbin/softwareupdate"

CHAPTER 7: Client Management

422

 declare -x grep="/usr/bin/grep"
 declare -x shutdown="/sbin/shutdown"
 declare -x rm="/bin/rm"
 [! "$(whoami)" == "root"] && printf "Must be run as root! Exiting!\n" && exit 99
 ## set our swupd server
 "$defaults" write /Library/Preferences/com.apple.SoftwareUpdate CatalogURL
"http://$swupdServer:8088/" 2> /dev/null 1>&2
 ## run software update, redirect output so we can actually get useful info
 declare -x swupdateText="$("$softwareupdate" -i -a 2>&1)"

 ## check for text indicating no updates were avail (sloppy but necessary)
 declare -i noUpdates="$(printf "$swupdateText" | "$grep" -c "No updates are
available.")"
 if ["$noUpdates" -eq 0]; then
 ## Here if software update was just run with updates applied
 declare -i recRestart="$(printf "$swupdateText" | "$grep" -c '\[recommended\]')"
 declare -i reqRestart="$(printf "$swupdateText" | "$grep" -c '\[restart\]')"
 declare -i numUpdates="$(printf "$swupdateText" | "$grep" -c '*')"
 if (["$reqRestart" -eq 1] || ["$recRestart" -eq 1] && [
"$restartOnRecommended" -eq 1]); then
 printf "$numUpdates Update(s) installed. We will reboot!\n"
 #"$shutdown" -r now
 else
 printf "$numUpdates Update(s) installed, but no restart is required.\n"
 #printf "recRestart:$recRestart reqRestart:$reqRestart
restartOnRecommended:$restartOnRecommended\n"
 fi
 else
 ## Here if no updates were available, selfdestruct if we're located at
/etc/rc.local
 if [$0 == "/etc/rc.local"]; then
 "$rm" /etc/rc.local
 fi
 ## reset swupd server to standard
 "$defaults" delete /Library/Preferences/com.apple.SoftwareUpdate
CatalogURL
 exit 0
 fi

Further Reading
One of the perennial favorites with regard to centrally managing Mac OS X is John,
which is found at the following URL: http://web.me.com/johnd/JohnDs_Site/
Tips_%26_Tricks/Tips_%26_Tricks.html.

8Chapter

Automating
Administrative Tasks
One of the greatest strengths of Mac OS X and Mac OS X Server is the abundance of
scripting languages it supports out of the box. Many of these scripting languages are
interpreted by a host program rather than run directly as lower-level machine code, and thus
they are text files with human-readable syntax. Because such languages are translated into
machine code at run time, interpreted programs are sometimes much slower than their
compiled equivalents. However, because you can edit these programs and then run them
immediately, they are common tools used by system administrators to automate tasks.

Some interpreters are specifically made to run code such as Python, Perl, or Ruby, while
others are more interactive and are meant for day-to-day use, facilitating most of the
command-line administration tasks covered in this book. Typically, this interactive
interpreter component is referred to as a shell. The primary purpose of a shell is to
translate commands typed at a terminal into some kind of system action. In other words,
the shell is a program through which other programs are invoked.

There are several different Unix shells, including the C shell (csh), the Bourne shell (sh), and
their more modern equivalents, tcsh and bash. In the most recent versions of Mac OS X,
new users are assigned the bash shell as the default shell. In early versions of OS X the
default user shell was tcsh, perhaps due to the presence of Wilfredo Sanchez on Apple’s
team. The former lead engineer for Mac OS X was also a developer of the tcsh shell.
However, bash has proliferated through the various Linux distributions and has become
one of the most prominent shell programs in use today. Perhaps recognizing this, Apple
switched the default shell to bash in Mac OS X v.10.3, and it remains as such today in 10.6.

While the choice of a shell and its resultant scripting language can sometimes be
difficult, we recommend you learn at least the basics of the bash shell before moving
onto any other shell and language that may be better suited to your higher-level tasks.
This is because, unlike with languages such as python or Perl that are more strictly
used for scripting, you will typically use the bash shell every time you open up a
terminal to run any command. The more comfortable you become with bash scripting,

423

CHAPTER 8: Automating Administrative Tasks

424

the more you may find yourself writing one-line scripts that allow you to automate
even basic operations. For instance, every principle discussed in the “Scripting the
Bash Shell” section of this chapter applies to the interactive environment presented
when you fire up Terminal.

In this chapter, we present some basic building blocks you need to build your own
complex automations. In the process, we attempt to show you some real world syntax
examples of scripting in action. Hopefully by the end of this chapter, you’ll be armed
with enough knowledge to tackle the problems you face in your environment. We’d like
to make a strong point at the outset: while you do not have to use the command line to
be a good system administrator, most good system administrators do. This is because a
simple operation, such as creating a series of folders, can be done using basic scripts,
and in using these scripts you will find your administration becomes not only more
efficient but also (and importantly in large environments) more consistent.

This chapter is not intended to provide in-depth coverage of all shells; that could be a
book unto itself. This chapter will introduce you to scripting with bash and then supply
some information on Perl for those who begin to outgrow the bash environment. We
will walk through the basic constructs and control statements, providing a decent
foundation for you to build on. Due to its default support in the latter iterations of Mac
OS X, we will focus primarily on the bash shell syntax, but we will also include fully
constructed examples of scripts using PHP, Perl, and python.

The Basics
Every shell has some built-in functions that it performs directly, but most commands you
enter cause the shell to execute programs that are external to the shell. This sets the
shell apart from other command interpreters, as its primary mechanism for invoking
functionality is largely dependent upon other programs. That’s not to say that shells
don’t have built-in capabilities. They do; they can read, create, and append files,
manipulate data through globbing and variable mangling and, they can utilize looping
constructs. However, the ability to parse and extend that data will more often than not
require external calls. This chapter seeks to arm you with the ability to fully utilize the
Bash shell’s internal functions, as well as introduce pertinent external functions that will
help you to fully employ the power of the command line.

The first step toward learning the shell is actually firing it up and getting your feet wet,
preferably on a non-production box. In OS X, this is done simply by opening up the Terminal
application on your system. When the application opens, provided your user account has
the default shell assigned, you will be presented with a bash prompt, something like:

helyx:~ hunterbj$

The default prompt consists of the following template:

computername:current directory username$

In this example, the current directory is ~. The tilde represents a user’s home directory.
Thus for any respective user, ~ expands to /Users/username. The tilde can be used when

CHAPTER 8: Automating Administrative Tasks

425

specifying paths for commands. You can always reference your own home directory via
~, and you can even reference other users’ home directories as well:

helyx:~ hunterbj$ cd ~monica
helyx:monica hunterbj$ pwd
/Users/monica

In this text, we are issuing the cd command to change directories and passing ~monica
as an argument. We can see at the shell prompt that our new directory is monica. We
then issue the pwd command, which outputs our current path. In this case, it’s Monica’s
home directory at /Users/monica.

NOTE: Pathnames can be passed to commands in two different forms. An absolute path contains
every folder and element relative to the root (/) of the drive. A relative path contains items relative
to the current directory. For instance, if I run the command cd /Users, I have provided cd with
an absolute path to the Users directory. Next I run the command ls monica, providing a path
monica, relative to my current directory, /Users. Alternatively, I can run the command using an
absolute path ls /Users/monica and net the same results regardless of my current directory.

You’ll want to become familiar with the basic commands that are normally used for
administration. Here’s a list of some of the most common ones:

 cd: Change directory. This command takes a single argument-----a path
to a directory. You can use cd to change to the parent directory.

 pwd: List current directory. Pwd accepts no arguments.

 ls: List the contents of the current directory. Ls has numerous options.
A common set of arguments –alh will show all items in list form (by
default, any file beginning with a period is invisible). Optionally, a
directory or file can be provided, and ls will output either the file’s
information or a directory list. For instance, ls –alh /Users will output a
detailed list of files and folders present in the directory /Users.

 rm: Delete a file or directory. Rm offers several options. It can be
passed a file or directory for deletion. If a directory is passed, the –r
flag must be used to recursively delete all children. For instance, the
command rm –r /Users would delete the entire /Users folder
(probably best to avoid that one).

 nano: A very basic text editor for editing files from the command line.
Nano uses emacs-style keyboard shortcuts, supports arrow keys for
navigation, and is pretty basic. It accepts a path to a file as an
argument. When you’re finished editing, type Ctrl+x to save the
document. (Another common text editor is vi, but that utility, though
rewarding, is much more difficult to learn.)

CHAPTER 8: Automating Administrative Tasks

426

 sudo: Execute a command with root privileges. By default, this
command can only be run by administrators. It has numerous options,
but in its most basic form, it can simply be prefixed to any command
to execute that command with root privileges. For instance, to edit a
system configuration file, such as an OS X machines Software Update
server settings, I could run the following, which invokes the defaults
process with root privileges:

sudo defaults write /Library/Preferences/com.apple.SoftwareUpdate CatalogURL«
 http://swupdate.myco.com

 history: Shows the last commands completed from a command line.
The history command requires no other parameters or options.

 whatis: Searches the whatis database, handy for determining the
appropriate command to run. For instance, by using the command
whatis "change owner", you can determine that the chown command
may be what you’re looking for. You can then use the man command,
discussed next, to determine the capabilities of the chown command.

 man: Used to access manual pages for the hundreds of command-line
programs that come with your computer, so it may well be the most
important command to know. For instance, you can type man hier to
see information on OS X’s directory structure, while man chown brings
up the manual page for the chown command, giving you the syntax and
functionality of that command.

 find: Lets you search for a file or directory by name. find is a fairly
complex command and has a lot of utility. In its most basic form, it can
be used for a simple directory search. For example, if you were trying
to hunt down .DS_Store files on a network share mounted at
/Volumes/MyCoolNetworkFolder, you could run the command find
/Volumes/MyCoolNetworkFolder –name ".DS_Store". Pretty nifty. Even
better, find lets you take the output that it’s matching and use this as
input for another command. Say you want to delete all .DS_Store files.
To do this, run the command: find /Volumes/MyCoolNetworkFolder
–name ".DS_Store" –exec rm {} \; In this implementation, we use
find’s –exec option, and call the external program rm. The braces {}
represent a matched item by the utility, and the \; characters
terminate our –exec call.

 echo: Used to output text to the stdout data stream (discussed later in
the section ‘‘Standard Streams and Pipes’’). When writing scripts, the
echo command is a great way to ensure that your script gives proper
feedback to the user.

CHAPTER 8: Automating Administrative Tasks

427

 grep: Used in combination with piping to filter a command’s output
(piping is discussed later in the section Standard Streams and
Pipelines). For instance, the command ls /Users | grep –i admin
would filter the output of ls /Users, outputting only user home folders
that match the admin criteria, using a substring match so that user
home ‘‘admin’’ would match, as would ‘‘mycoadmin’’. The -i flag
means that grep will ignore capitalization. In another form, grep can
be used to search files for strings. The command sudo grep –r
http://www2.myco.com /etc/apache2 would search the directory
/etc/apache2 and output the filenames containing the string
http://www2.myco.com. The –r flag tells grep to recursively search
through a directory. You can omit the –r flag and search across a
single file if necessary. You can prefix the sudo command to ensure
that the grep search has access to all necessary files.

 ps: List running processes. This command has numerous arguments.
One common iteration is ps auxww. The flags auxww result in the output
of all running processes across all users on the system. You can use
piping to filter this list: the command ps auxww | grep httpd will
determine if the Apache daemon (httpd) is running. If httpd is found,
the command will display the processes running id (the PID column),
as well as CPU and memory utilization.

 chmod,chown: Can be used respectively to change permissions and
ownership on a file or group of files. Both commands utilize the –R flag
to recurse across all children of a directory. In the following example,
chown changes the owner of the folder /Users/hunterbj to hunterbj
and changes the group to admin. We then utilize chmod to ensure that
the owner (o) has both read and write (rw) access:

chown –R hunterbj:admin /Users/hunterbj
chmod –R o+rw /Users/hunterbj

 kill: Terminate a running process. This command has a few optional
arguments, but in its most basic form, it is simply given the process id
of a running process to terminate. A process’s id can be determined
through the ps output, as discussed above. The kill command must
be run with root privileges via sudo in order to terminate a process
running as root. Other common flags include –HUP, which can be used
to restart a process. Alternatively, the infamous -9 argument,
equivalent to –KILL, can be used to forcibly terminate a process
without prejudice regardless of state or any pending activity.

These are merely a selection of the available commands. If you know a few commands
that, when executed, will complete a larger overall task, you can then combine them to
make a program, which we’ll call a script. This is how most people start to learn shell
scripting.

CHAPTER 8: Automating Administrative Tasks

428

NOTE: The bash shell has the ability to search back through your history file. Press Ctrl+r to do
a ‘‘reverse’’ search through the history file by typing some or all of the original command or its
arguments. Continue to press Ctrl+r to cycle through previous incarnations.

To switch between shells, you need only type the name of the shell you desire to use. As
you alternate between shells, you’ll notice that the appearance of the screen and the
area where you input text appears slightly different.

Scripting the Bash Shell
The makings of a typical script includes a hash-bang line "!/bin/bash", variable
declarations "declare FOO=BAR" , and optionally command variable declarations, This is
all we need to create a static script. We will cover these terms more in-depth in the
following section, as well as explore the logical constructs that make a script such a
powerful wrapper for the command-line tools Mac OS X provides.

The bash shell is based on the Bourne shell (sh), and is syntactically backward-
compatible. In fact, the b and a in BASH stand for Bourne Again, a tribute to sh and its
author Stephen Bourne. The bash shell is very capable, and has support for numerous
control statements. This includes support for standard control statements: if/elif/else
constructs, case statements, as well as for, while, and until loop statements.

A control statement in a programming or scripting environment provides ways for a
coder to control the execution of code. These statements provide the means to perform
basic tests on data, which will then define the flow of execution, all based upon the
criteria we design. Through the use of if/else and case control statements, we can
control whether or not code gets executed at all. These functions are referred to as
branching statements, as they control specific paths of code execution. Looping
statements, such as for, while, and until are control statements that allow for reuse of
code through iteration. Bash provides looping statements in the form of ‘‘for’’, ‘‘until’’,
and ‘‘while’’ loops. Each of these looping statements provides capabilities to help you
manage highly repetitive tasks. Control statements serve as the fundamental tools for
logical execution of your code.

The bash shell also includes some internal data manipulation routines, provided via
globing and variable mangling, though for any advanced parsing, such as regular
expressions, you’ll be much better off with an external program that is suited for the
purpose. That being said, we’ll walk you through some of the commonly used bash
constructs, which will bestow upon you the building blocks towards implementing your
own automations.

CHAPTER 8: Automating Administrative Tasks

429

NOTE: On many systems, /bin/sh is linked to the bash installation. However, be aware that
with bash built upon the basic sh constructs, language like ‘‘declare’’ will not work when
called from an sh script. We will show you how to set the hash or sh bang to specify that your
script runs in bash; you can add the code at the top of your script [-z "$BASH"] &&
exit 1 to check for this as well.

Declaring Variables
Variables are the single most important concept of scripting in relation to automating
administrative tasks. As we mentioned, while other languages have relative benefits,
most admins typically end up using bash for basic day-to-day administration, where
many tasks can be accomplished by very simple scripts, or even a single line of chained
commands (‘‘one liners’’). A one-line script could look something like this:

systemsetup –setnetworktimeserver my.server.com

This code is straight to the point, but perhaps you are in a Windows Active Directory
environment and the server you use for time is also your authentication server. Your script
may have ‘‘my.server.com’’ listed 10-20 times by the time you are finished. Now imagine
you need to change that code later on. You could cut and paste all 20 lines, but if you use
variables you can declare the server once and then retrieve this value over and over again
in your script. You can even then use it to echo output as well. Even for your one-liner
scripts, using variables will allow them to grow over time and cut down on the number of
typos, as you have just one line rather than 20 to check when you have a problem.

declare TIME_SERVER="my.server.com"
systemsetup –setnetworktimeserver "$TIME_SERVER"
echo "Time Server: $TIME_SERVER has been set"

NOTE: When a variable is used in a script, the script ‘‘expands’’ the variable to its respective
value (in this case $TIME_SERVER becomes ‘‘my.server.com’’). However, a variable may not
always contain string data, which is why you can have a dynamic error message using the
simple echo command. Because of this, it is important to always double quote variables.
Expansion works within double quotation marks, not single quotes. Double quotes also help
when working with file-system paths that have spaces, often the cause of issues with novice
users. When in doubt, quote. If you want to see variable expansion as it occurs (often helpful
for debugging a script) add -x to the hash bang , like this: ‘‘#!/bin/bash –x’’.

Each variable has a name that uniquely identifies it within scope. Variable names need to
begin with an alphabetic character and cannot contain a period. In other words, if you
work for a company called 318, you’d often need to declare variables called, for
example, ‘‘THREE18’’ to avoid starting with a number. Variables can’t be longer than
255 characters.

CHAPTER 8: Automating Administrative Tasks

430

In traditional programming languages you must declare a variable and the kind of
information that will go into it before using the variable (in other words, you tell the script
what going into variable before you actually ‘‘put’’ something in it). In modern scripting
languages, this is usually considered good practice (and great for readability), but it’s
not required. In the bash shell, the command to declare a variable is declare. When you
declare a variable, you can then call it multiple times, adding and removing data from it,
augmenting it, or just reading it for reference.

For example, in bash, the two following statements will both work:

#!/bin/bash
declare –i CUSTOM_PORT=8088

echo "My software update server is running on port $CUSTOM_PORT "

Example script 2
CUSTOM_PORT="8088"

echo "My software update server is running on port $CUSTOM_PORT "

In the first example, we are explicitly defining the variable CUSTOM_PORT as an integer,
and setting it to 8088. In the second, typecasting in bash automatically determines the
type of data that a variable contains. Typecasting occurs when a variable is set to a
certain type (such as an integer) and then used to store a different data type (say the
string ‘‘Hello World’’). In this case, there is a type conversion from integer to string. While
both of the preceding examples work, relying on automatic typecasting can present
problems in certain circumstances; if your script logic is expecting an numeric (integer)
value and is passed a string instead, your script will die with a fatal error. The following
script shows how this works:

#!/bin/bash
A simple script that checks if a console user is active
We will cover the "who | grep 'console' -c" portion later
for now just know that this test will return "1" if a user
is logged in and nothing if no one is logged in

declare -i CONSOLE_USERS="`who | grep 'console' -c`"

The command above returns nothing if no users are logged in.
However, when declared as an integer, if this variable is
set to a null / nothing string, it will convert that to the
number zero; that way the result of the command doesn't matter.
We can always rely of the result being a numerical value,
which we can then numerically test against, using the greater
than or equal to syntax -ge. This type of test expects
CONSOLE_USERS to expand to a numerical value
If we did not use –i, then any numeric tests on $CONSOLE_USERS
would fail if there were no users logged in. The script would
expand CONSOLE_USERS to nothing instead of 0

You can test this by changing the declare line above to
declare CONSOLE_USERS=
which will simulate the command returning nothing
and without the use of the –i, it will stay just that: nothing

CHAPTER 8: Automating Administrative Tasks

431

which will cause the test below to fail with the error:
"line 17: [: -ge: unary operator expected"

if [$CONSOLE_USERS -ge 1] ; then
 echo "Console user logged in, exiting…"
 exit 1

else
 echo "No console users, we can go to town..."
 # Your code goes here
fi

This script uses comments to explain the flow of the script; these are covered later in
this chapter. For now, be aware that any line that starts with a # (except for line 1) is a
comment and the script will not ‘‘run’’ that text. This is a best practice and you should
always comment all of your code, adding notes to explain your script’s logic and
activity. The more complicated a script gets, the more important that commenting
becomes. If you do not comment the script effectively, you will not be able to trace your
own steps at some point, much less have anyone else be able to take over your work
when you, say, get a promotion to Senior Deity of Computer Operations for integrating
10,000 Macs into your enterprise in a week.

Variable Mangling
The bash shell has several facilities for internally altering data in variables. This is referred
to as “variable mangling,” and bash allows for numerous string operators to be applied to
a variable that will filter its value. Mangling in bash uses curly brackets {} that enclose the
variable name prepended to a number of possible special operator characters.

One common use of variable mangling is to perform pattern matching on a variable,
both left to right (specified by the hash (#) character), and right to left (specified by the
percent (%) character):

MY_VAR="the value of a variable"
echo ${MY_VAR#the}
 returns: "value of a variable"
echo ${MY_VAR%a *}
 returns: "the value of"

This can be handy for grabbing filenames, or extensions explicitly:

MY_FILE=songname.mp3
echo "Filename: ${MY_FILE%.*} extension: ${MY_FILE##*.}"

returns: Filename: songname extension: mp3

Notice the use of the greedy string operator (##); this ensures that even if the file has
additional periods in its name, the only one we consider the extension (and thereby
exclude from our filter), is everything past the last dot. The ability to remove file
extensions this way is very handy. For instance, the Apple defaults command requires
you pass in the filename without the .plist extension. In the following script, we utilize
this method to isolate the file extension when needed, allowing us to perform our

CHAPTER 8: Automating Administrative Tasks

432

operations. The commands here are not as important as the concept-----that now we can
use the same variable for both operations and have the extension automatically
removed for commands that require it.

#!/bin/bash

declare -i TIME_OUT=5
This sets the timeout of the AD plug-in in 10.5+

declare PLIST_FILE=\
"/Library/Preferences/DirectoryService/ActiveDirectory.plist"

The path of the plist \ is used to continue the command on the next line
Note that the path has a .plist extension, which normally would cause
The defaults command to fail. However, with variable mangling we can
remove the .plist extension of the PLIST_FILE value when we use it
with defaults and then call it normally when we use a command that
requires a more standard path with file extensions like plutil.

if [-w "$PLIST_FILE"] ; then

 defaults write "${PLIST_FILE%.plist}" 'LDAP Connection Timeout' $TIME_OUT

 plutil -convert xml1 "$PLIST_FILE"

else

 echo "File is not writable try sudo $0"
fi

NOTE: We use a variable that is automatically set by the shell, $0 here. This is the full path to
the script and it’s good for making dynamic usage error messages match your script path and
name automatically.

Another form of variable mangling provided by bash is substitution, which uses four
operators, :-, :=, :+, and :?. Suppose I use the command echo ${MY_VAR:-hello}. If the
variable MY_VAR exists and isn’t null, the command will output its value. If MY_VAR doesn’t
exist or has a null value, the string ‘‘hello’’ will not print out. The := operator is very
similar. The main distinction is that when := is used, it will set the variable $MY_VAR to the
value specified, in this case ‘‘hello.’’ The :+ operator is essentially the inverse of the :-
operator. In the command echo ${MY_VAR:+hello}, if $MY_VAR exists and is not null, then
we return ‘‘hello.’’ If it doesn’t exist or is null, it will return a blank value. Lastly, the :?
operator can be used to perform sanity checks. For instance, when used with the syntax
echo ${MY_VAR:?my error}, if the variable $MY_VAR is not set, the script will immediately
terminate, printing the error message ‘‘my error.’’ If no error is specified, a generic
‘‘parameter null or not set’’ error is output, along with the variable name. Use of the :?
operator is a great way to ensure that critical variables are set.

CHAPTER 8: Automating Administrative Tasks

433

NOTE: Scripts can be very damaging if certain operations are called with malformed data, so
be extra diligent in using these string operators to verify that appropriate values are set.

The bash shell also provides further capabilities for data substitution via the / and //
operators. For instance, if MY_VAR has a value of Hello World, the command echo
${MY_VAR//Hello/Hi} would output the text Hi World. The use of // vs. / simply denotes
how greedy the matching is: echo #{MY_VAR/o/a} would output Hella World, while the
command: echo #{MY_VAR//o/a} outputs Hella Warld. A real-world example of this
follows. Excuse our rather hacky use of Apple script via osascript to get this MAC
address value, but it’s a simple way to get only your MAC address returned.

#!/bin/bash
declare MAC_ADDRESS=`osascript -e 'primary Ethernet address of (system info)'`
echo "Address with colons: $MAC_ADDRESS"
echo "Address without colons: ${MAC_ADDRESS//:/}"

Standard Streams and Pipelines
In any *nix terminal environment, numerous information channels exist that control the
flow of information between a process and its console session. The three primary data
channels from a scripting perspective are standard input (stdin), standard output
(stdout), and standard error (stderr). These data streams can be captured, evaluated,
and redirected through scripting.

 Standard input, or stdin, represents data resulting from a read
operation. This can be text input via keyboard or text that has been
programmatically redirected.

 Standard output, or stdout, represents any data output by a program.
The output will typically go to the current console session but can also
be redirected to other programs or files.

 Standard error, or stderr, is a data channel that represents textual error
information. For instance, if a program detects an error in one of its
subroutines, it will typically spit the details of this error out to stderr.
Understanding the use of these channels by any program you intend
to script will help you to more efficiently write your code.

As mentioned, we can use pipelines or redirects to control the flow of data between
separate programs. The most common use of pipelines is the practice of piping stdout
from one script to stdin of another. Take the previous until loop example. In this
instance, we call the command:

ps auxww | grep –v "grep" | grep –c "Finder"

If you were to look up the man page for grep (man grep), you would find that the program
takes optional flags and two arguments, a string pattern and a path to a file. However, in
this context, we are simply calling grep with only one argument. How does that work?
Well, the answer is due to our implementation of command pipes |. As mentioned, the

CHAPTER 8: Automating Administrative Tasks

434

pipe is used explicitly for passing data between programs. In this case, we are passing
data from the ps command out to grep. The grep command recognizes that it is being
passed data over stdin and utilizes this data as its second argument. After filtering this
data and removing any occurrences of the term grep, it outputs the modified data to
stdout, which is piped to yet another instance of grep. This program is responsible for
outputting a numeric count for the number of times the term Finder appeared in data
passed to it through stdout. In a command pipeline, the resulting text output will be that
parsed by the final command in the chain.

In many cases, you may want to redirect the flow of data to a file. To do this, you use
data stream redirectors. In bash, the most common implementation of redirectors is
through the >> and > operators:

ps auxww > ~/process_list.txt

In this example, we are redirecting stdout of the ps program to the file located at
~/process_list.txt. The use of the > operator means it will overwrite any data that
previously existed with the file. Thus, every time the above command is run, the file will
contain only data from the most recent operation. The >> operator in contrast is an
append operation; any data previously will simply have our latest data added to it. This
is a less destructive redirect, and is desirable in many scenarios.

It is also possible to redirect the data streams themselves. For instance, perhaps we
want to set a variable to the output of the ls command:

lsTxt=$(ls /Applications)

This syntax will capture the output of the ls program’s stdout as a single string.
However, if ls is passed a nonexistent path, it will output its text to stderr, which will
never be passed to our lsTxt variable. To address this issue, we can use data stream
redirects once again. To pull this off, we want to redirect the stderr channel (in *nix
systems channel 2) to stdout channel, channel 1:

lsTxt=$(ls /Applications 2>&1)

This way, lsTxt will contain either the file listing or any subsequent errors. With bash, it
is also possible to perform two redirects:

ls /Applications >> /lsLog.txt 2>&1

In this context, we are redirecting stdout to append our file found at /lsLog.txt.
However, we are also redirecting stderr to stdout. This command will output the results
of both data streams into the file. This becomes a handy way to log all activity reported
by a process, rather than just merely relying on stdout.

If and Case Statements
If/else and case statements in bash serve primarily as traffic routers. Both of these
facilities are specifically referred to as branching statements; their purpose is to directly
affect the flow of code. For instance, perhaps there is a VIP user on the network who
needs VIP treatment. If this particular user logs into a computer, we need to ensure he
has a ‘‘Deep Thoughts’’ folder on his desktop, and then perhaps we need to prune this

CHAPTER 8: Automating Administrative Tasks

435

folder for old files, sweeping them away into a ‘‘Stale Thoughts’’ folder. In the end, the
specific task doesn’t really matter, it is only important that we recognize that all of this
activity represents a ‘‘branch’’ of code; a full path of activity initiated by the evaluation of
an initial if statement. That if statement represents a test-----is this user my VIP? If he is,
the next step is a flurry of activity. Otherwise (else) skip the code and proceed as usual.

NOTE: When coding or scripting in any language, the general rule of thumb when
implementing branching statements is to organize your code so that the most commonly
executed branch is in the first block.

For basic string comparison, both if/else and case statements are pretty similar, though
lengthy case statements tend to be easier to read than lengthy if/else statements. Here
is the syntax to implement each in bash (Note: the USER variable is set automatically by
the bash shell and expands to the username of the user running the script):

Check to see if our user is "jdoe"
if ["$USER" = "jdoe"]; then
 echo "My name is John"
 exit 0
elif ["$USER" = "janedoe"]; then
 echo "My name is Jane"
 exit 1
elif ["$USER" = "jsmith"] ; then
 echo "My name is jsmith"
 exit 1

else
 echo "Failed over to catch all…"
 exit 192
fi

While the above works, it's rather ugly, so a case statement normally is much more
readable

case statement
case $USER in
r"jdoe")
 echo "My name is John";
 exit 0;;

 "jsmith")
 echo "My name is jsmith" ;
 exit 1;;

 "janedoe")
 echo "My name is Jane";
 exit 1;;
 *)
 echo "Failed over to catch all…";
 exit 192 ;;
esac

CHAPTER 8: Automating Administrative Tasks

436

NOTE: When you are using case, you will specify each entry with a ;; following the line, and
then when all possible matches have been specified you will use esac (end of case) to close
out the case statement.

We have introduced a few new concepts here. First, the test brackets []. The use of
brackets represents a conditional expression, which will ultimately evaluate to true or
false. In bash, test brackets are used with conditional operators to form tests. One
example of this is in the previous example’s if statement:

if [$CONSOLE_USERS -ge 1] ; then
\

This logic in English would translate as: if the string variable $USER is equal to the string
‘‘jdoe’’, execute the following code. In this case, ‘‘is equal to’’ is syntactically denoted by
a string comparison operator, =, which compares two arguments (referred to as a binary
operator) and returns true if they have equal string values. It’s antithesis, != will return
true if the two given arguments are not the same. In our case statement, the variable
$USER is tested in a similar fashion (=) against each of our possible matches, each
denoted by the values specified prior to the closing parenthesis. When a match occurs,
the respective code block is executed until it reaches the break specifier ;;. In the case
statement, the last line *) represents a wild card, and is the equivalent to an else block
in an if statement; its execution is dependent on all prior matches failing.

CAUTION: Not all languages, such as PHP and Python, regard the symbol = as a comparison
operator, and will actually interpret it as a value assignment. In many cases, it is best to use
the == operator to do string comparison to prevent alteration of your variable’s value. The ==
comparison operator is fully supported by bash.

In addition to these two binary operators (= and !=), bash provides several arithmetic-
based binary operators:

-eq: arg1 equals arg2

-ne: arg1 does not equal arg2

-lt: arg1 is less than arg2

-le: arg1 is less than or equal to arg2

-gt: arg1 is greater than arg2

-ge: arg1 is greater than or equal to arg2

Beside binary operators, the test facility provides us with many valuable unary operators
(to test against a single argument). Unary operators more often than not are used to

CHAPTER 8: Automating Administrative Tasks

437

perform tests against filesystem objects. Two of the most common unary operators are
–f and –d, which respectively test for the presence of a file or directory.

if [-d /System/Library/CoreServices/Finder.app]; then
 echo 'Finder was Found!'
fi

This code will print the text ‘‘Finder was found!’’ if a directory exists at the path
/System/Library/CoreServices/Finder.app (which is true in any OS X system because the
Application bundle ‘‘Finder’’ is in fact a directory like almost all modern apps). There are
numerous unary operators, most easily found by consulting the man page for test, using
man test. Here are some that are notable:

-f string: true if string is the path to a regular file

-d string: true if string is the path to a directory

-r/-w/-x string: true if string is a file that is readable, writeable, or executable
(respectively)

-L string: true if string is a path to a symbolic link

-z/-n string: true if string is zero or non-zero length (respectively)

NOTE: You can also run these checks directly using the test command (although
you might have to wrap the test condition into quotes or double parenthesis
depending on exactly what you’re attempting to test), like so:

 test –d /Users/ && echo "directory exists"

#!/bin/bash
if (["$USER" == "janedoe"] || ["$USER" ="jsmith"]); then
echo "User is jane or john"
else
 echo "User is not jane or john"
fi

In the if/elif example, we also demonstrate the use of the logical OR operator ||:

if (["$USER" ="janedoe"] || ["$USER" ="jsmith"]); then

The logical OR operator and its partner the logical AND operator (&&), often referred to as
Boolean operators, are used to test against multiple expressions. In the implementation
above, we are using the logical OR operator to test against two possible usernames,
janedoe and jsmith. We want to know if a user is either of these usernames, so we need
to be able to run both tests. In this example, if we used && instead of ||, the end result
would always evaluate to false, as the $USER variable will never be equal to both values.
When using logical operators && and || to combine expressions, execution of the
control statement will terminate immediately after it evaluates to false or true,
respectively. Thus, in the above example, if the username is janedoe, the test will never
be executed against ‘‘jsmith’’. In similar spirit, if we used && in that statement, the test
against ‘‘jsmith’’ will only ever get tested if the first expression is true (the username is

CHAPTER 8: Automating Administrative Tasks

438

‘‘janedoe’’). Understanding this becomes very important to writing clean, effective code.
Recognizing this, we can take previous example:

if [-d /System/Library/CoreServices/Finder.app]; then
 echo 'Finder Found!'
fi

and then slim it down to a single ‘‘one-liner’’:

[-d /System/Library/CoreServices/Finder.app] && echo 'Finder found!'

As we learned earlier, if our expression returns false (in this case because the Finder.app
directory could not be found), then the test will abort and the printf statement will never
fire. In this iteration, we are also omitting our if control statement, as our branching
code (printf "Finder found!\n") can easily fit onto a single line.

In our previous example, the case statement as you may have deduced, also uses a
logical OR operator, implemented by supplying multiple matches in a single test block:

case "$USER" in
"jdoe")
 echo "My name is John";;
"janedoe")
 echo "My name is Jane";;
*)
 echo "Remember Sammy Jenkins…";;
esac

In this example, by placing both ‘‘janedoe’’ and ‘‘jsmith’’ together, we are implying a
logical OR between the two values. A case statement will then perform a string
comparison of $USER to the string ‘‘janedoe’’ and if no match is found, will test against
‘‘jsmith’’, and so on. Once a match is found, it will execute any preceding lines of code
until it runs against our break specifier (;;). In the case of janedoe or jsmith, a match
would result solely in the execution of the code: echo ‘‘My name is Jane’’. Case
statements, unlike if/else statements, do not have access to the more advanced unary
or binary operators provided by bash. They are pretty much limited to string
comparisons and thus provide only limited (but important) functionality.

For, While, and Until Statements
So, at this point, we have learned how to define the flow of our program through the use of
branching statements, expressions, and conditional operators. Automation, however, is
rarely about performing an operation once; the benefits of automation lie in the ability to
scale production as needed with minimal investment. Automation is particularly well-suited
for boring, repetitive tasks that will result in hundreds, thousands, or even millions of
iterations. To harness the ability of repetition and iteration, bash provides three looping
statements: for, while, and until. The for loop is utilized for iterating over items.

declare plistbuddy="/usr/libexec/PlistBuddy"
declare python="/usr/bin/python"

REQUIRED_COMMANDS="$plistbuddy $python"
for COMMAND in $REQUIRED_COMMANDS; do

CHAPTER 8: Automating Administrative Tasks

439

 if [-x $COMMAND] ; then
 echo "Command: $COMMAND is installed"
 else
 echo "Command: $COMMAND is missing"
 fi
done

Every element of this script is native to bash, and would output the text:

Command: /usr/libexec/PlistBuddy is installed
Command: /usr/bin/python is installed

NOTE: To determine if a command will result in the execution of an external program, use
type followed by the name of the function. If the process is external to the shell, it will specify
the absolute path to the binary (as found in $PATH). For example: type echo returns echo
is a shell builtin, meaning that bash will use its internal echo ability rather than the
external command /bin/echo when the echo command is called in a script.

The while and until statements are used for building more customized looping
structures. The and operator allows us to loop while a certain criteria are met:

while [$(ps aux | grep –v "grep" | grep –c "Finder") –ge 1];
do
 echo "Finder is still running"
 sleep 15
done

In this example, there are a few new concepts. First and foremost, whenever we use
expressions, they are primarily expecting string arguments. If we want to call an external
program inside of an expression, we must designate that the text not be treated as a
string, but rather as an external process. To do this, we wrap the entire command
pipeline inside of $(). This wrapper tells the shell to evaluate the contents of the entire
pipeline in a subshell. This same behavior applies if we want to assign the output of a
command to a variable. The following syntax is used to set the value of variable $psTxt
to the output of our ps command chain (this time we will use grep with pipes to
accomplish the same count):

psTxt=$(ps aux | grep –v "grep" | grep –c "Finder")

Examining this command chain, we see that we are utilizing the external programs ps
and grep. The ps command lists running processes, and grep is a basic filtering tool.
Because grep is a program, it will sometimes be found in the ps process list, so we must
first filter out the grep line, using the –v flag. Then we do a search for the string ‘‘Finder.’’
The –c flag specifies that we will output the number of matches. If we find one or more
processes, we will proceed through our loop. Next we output a simple text line stating
that the program is running, then we sleep for 15 seconds. At this point, the end of our
loop has been reached and we will once again test for our criteria. If the criteria match,
we will proceed through our loop again, indefinitely, until our criteria fail to match.

The until loop represents a different utility. In bash it does not represent true trailing
logic (as it does in C), but rather serves as an inverse of the while loop. Because of this,

CHAPTER 8: Automating Administrative Tasks

440

it is of rather limited use. For example, we can pretty easily replicate the logic of the
above while loop, simply inversing our conditional logic:

until [$(ps aux | grep –v "grep" | grep –c "Finder") –lt 1];
do
 printf "Finder is Running\n"
 sleep 15
done

NOTE: Bash, like most languages provides control statements for managing individual loop
iterations. For instance, the control statement continue will instruct a loop to terminate the
execution for that particular instance, at which point it will return to its evaluation statement (or
the next iterated item in the case of a for loop), and continue through the loop. The break
statement will instruct a loop to terminate completely.

Arrays
An array, sometimes known as a vector, is one of the simplest data structures. Arrays
hold a collection of values, generally of the same data type. Each element uses a
consecutive range of numbers (integers) to retrieve and store the values. Bash has basic
support for one-dimensional arrays. Creating a basic array in bash is pretty simple:

set the variable MY_APPS to an array populated with a directory listing of
/Applications
declare -a MY_APPS=(/Applications/*.app)

You can then iterate through these items with a for loop:

for APP in "${MY_APPS[@]}"; do
 echo "Application: $APP"
done

There are a few things to note in this code. In our for statement, we quote the array
string ${MY_APPS[@]} to ensure that individual items with spaces or tabs in the data are
escaped. When accessing a specific index in an array, the curly braces are always
needed and the index number specified inside them. For instance, here’s how to access
the first item list in our applications:

${MY_APPS[1]}.

You can also assign arrays using numeric methodology as well:

declare –a USER_NAME[501]=zack
declare –i USER_UID=501

echo ${USER_NAME[501]}
 returns: "zack"
echo ${USER_NAME[$USER_UID]}
 returns "zack"

CHAPTER 8: Automating Administrative Tasks

441

Arrays are very handy for collating and organizing data. However, their support in bash
is a bit limited compared to more robust programming environments. Also be aware that
one of the major limitations of an array is that their scope is downward only, meaning
you can’t export an array between scripts or functions of a script. Basically, arrays are
going to only work in your main body of code and not in sub-processes you launch. In
practice, this is a major limitation to consider before trying to use bash arrays in a
complicated fashion.

Exit Codes
Command-line applications, when implemented properly, will provide what is called an
Exit Code, or Return Code after execution. This exit code is internally defined in the
program, and is used to signal proper execution, or perhaps a specific error code. When
a Unix command-line utility executes successfully, it should return an integer value of 0,
which indicates successful operation. Any non-zero value will represent an error
condition in the code, and this is a handy way to determine whether a program properly
executed. Exit codes vary from application to application and are often referenced in the
commands’ documentation (192 is also a common error status).To check the exit code
of a process, you can test against the special variable $? Immediately after the
command has executed:

rsync –avu /Folder1/ /Folder2/
if [$? = 0]; then
 echo "The Rsync finished without an error!"
else
 echo "The rsync had problems!!"
fi

Alternatively, you can do the same thing on one line:

rsync –avu /Folder1/ /Folder2/ && (echo "Rsync Finished" || echo "Rsync had problems")

When writing your own scripts, it is important that you follow good practice and properly
report the script’s status. You do this by utilizing the exit statement in your code,
followed by an integer value defining the proper state, remembering to exit 0 on proper
execution, and use an arbitrary value of 1 or greater on error. If your script is primarily a
wrapper for a different program, it may not be a bad idea to mirror its exit code by
referencing the $? variable immediately following the execution of your command.
Because $? will change with each process that is run, you will want to save the $? value
into a separate variable for later reference in the script, allowing your script to exit with
the same value of the original command that you are wrapping your logic around (such
as an if or for statement):

rsync –avu /Folder1/ /Folder2/
declare –i RSYNC_CODE=$?
if [$RSYNC_CODE =0]; then
 echo "The Rsync finished without an error!"
else
 echo "The rsync had problems!!"
fi
exit $RSYNC_CODE

CHAPTER 8: Automating Administrative Tasks

442

Constructing a Shell Script
In order to be properly processed by a shell, a Unix executable script must specify
which interpreter the shell should use to parse and execute its contained shell code.
This information is provided via a hash-bang or shbang (#!) specifier, which should
always be at line 1 of the script and should precede the absolute path to the file’s
interpreter. For instance, in this chapter we are primarily utilizing bash scripts. To specify
the bash interpreter, we use the following hash-bang specifier at the start of the script:

#!/bin/bash

NOTE: You can add an -x to the interpreter line of bash scripts to assist with debugging. This
will echo the expanded variables and actual runtime code in addition to the more common
output vectors like the echo command. For example, #!/bin/bash –x.

Using this syntax, you can also specify atypical shell interpreters, such as Perl
(#!/usr/bin/perl), Python (#!/usr/bin/python), or Ruby (#!/usr/bin/ruby), the list
goes on. For the most part, OS X, and most *nix variants all utilize the same directory
to store interactive user shells in: the /bin/ folder. This folder is defined by BSD as
housing: ‘‘user utilities fundamental to both single-user and multi-user environments.’’
This folder is very common among the *nix variants, and can usually be trusted to
contain at least the Bourne shell (sh), and on most modern systems, the bash shell.
However, non-shell interpreters, such as Python, Perl, or Ruby are going to vary greatly
from OS to OS. Because of this, if we want our shell to be portable (which these
languages provide), then providing a static path is not going to provide much utility on
nonconforming systems. If portability is your goal (and certainly it’s never a bad one),
you may want to forgo specifying an absolute path and instead let the parent shell
dynamically determine its location. To do this, utilize the following hash-bang specifier:

#!/usr/bin/env python

The key thing to know here, is that /usr/bin/env is a very commonly supported binary,
and will cause the shell to search through its $PATH to locate the Python executable. If
that’s found in our path, this executable will be used as the interpreter for the script.
The $PATH variable is an environmental variable used by nearly all shells and specifies a
number of directories that should be consulted when searching for a binary. This
variable contains a colon-delimited string of directories, and will search through them in
order of preference from left to right. For instance, if I run the command echo $PATH, I
will see all of the directories in my path:

echo $PATH
/usr/bin:/bin:/usr/sbin:/sbin

Thus, if I were to run the command ifconfig, my shell would first look for the binary
ifconfig in the /usr/bin folder, then in /bin, /usr/sbin, and so on until it ultimately
finds the command (in this case, in the /sbin directory). If the command is not found
after searching the entire path, the shell will terminate execution of the script with an
error. On top of this, the PATH variable becomes a good way for a user to inject his

CHAPTER 8: Automating Administrative Tasks

443

own versions of a binary in place of a system binary. For instance, Mr. Joebob
Poweruser always likes to have the latest, greatest version of Perl on his system,
dutifully installed at /usr/local/bin/perl. However, with a default PATH variable,
when Joebob runs the command perl, he will be treated to our localization’s binary
stored at /usr/bin/perl. To change this, Joebob will want to modify his ~/.bash
profile file, adding the line

export PATH="/usr/local/bin:$PATH"

After doing this, when Joebob starts a shell, the path /usr/local/bin will be the first folder
searched in his path. Knowing all of this, it is easy to see how utilizing the /usr/bin/env in
your hash-bang line can provide benefits if your script will have a wide audience.

NOTE: With all the variants of Linux and Unix systems out there, it certainly can be a mental
exercise to remember each one’s folder hierarchy. For this purpose, many such systems
provide documentation as to their particular folder eccentricities. On such systems, you can
access this documentation via the hier man page by running the command man hier at your
Terminal prompt.

With the hash-bang out of the way, we can now start writing our script. Typically at this
point in the script, we will do what is referred to as initialization. That is, we will define
the variables to be utilized by the script. Initializing all of your variables at the beginning
of the script provides many benefits. Primarily, it serves as a blueprint for your script.
Assuming you adopt good naming conventions for your variables, the general utility and
configurability of a script can often be deduced by scanning the variables, at least to an
extent. To assign a variable in bash, you simply specify the variable name, followed by
an equal sign, and then the value. For instance, in the following line:

USER_NAME="hunterbj"

With this line, we are assigning the global variable USER_NAME the value of hunterbj.
Variables in bash can be uppercase such as PLIST_FILE and can contain underscores
PLIST_FILE, and can even be camel case— plistFileNumberThree, the choice is up to
you, just be consistent. Notice that during assignment, we do not prepend the variable
name with a $ specifier, unlike Perl. However, utilizing the global scope in bash will
ultimately make your code less extensible. For instance, if you were to refactor the
code into a function, you could have issues with scope conflict. To address this, you
can utilize the declare statement, which will initialize the variable only in the local
context:

declare USER_NAME="hunterbj"
Beau is available only the local context

declare –x USER_NAME="zsmith"
Zack is only available to the local and sub shells

export USER_NAME="cedge"
Charles is available to the local sub shells and parent shells
(but no type assignment such as array "-a" or "-i" integer)

CHAPTER 8: Automating Administrative Tasks

444

Any local declares will not export to sub-processes or script functions, but stay within
the current scope of code running. If you use declare in a function, once the function is
complete the variable will no longer be active. This may be advantageous if, for instance,
you have a function that contains a password as a variable. If you want to keep a
function’s variable around after the function is complete, you can use export, as shown
in this example:

#!/bin/bash

This is a basic function
littleFunction(){
 declare LITTLE_VAR="local"
 export BIG_VAR="global"

 echo "$FUNCNAME: LITTLE_VAR: $LITTLE_VAR"
 echo "$FUNCNAME: BIG_VAR: $BIG_VAR"
}

littleFunction # This is how we run a function

echo "$0: BIG_VAR: $BIG_VAR"
echo "$0: LITTLE_VAR: ${LITTLE_VAR:?}" # This should error out

$./bigscript

littleFunction: LITTLE_VAR: local
littleFunction: BIG_VAR: global
./bigscript: BIG_VAR: global
./ bigscript: line 16: LITTLE_VAR: parameter null or not set

While not always necessary, it is a good idea to get in the habit of using declare
statements with bash. It will definitely save you time and headaches down the road as
you find yourself needing to repurpose code.

One mistake rookie coders make is that they rely heavily on utilizing PATH resolution in
shell scripts. That is, instead of typing the command:

/usr/sbin/networksetup –getdnsservers "Airport"

They actually type the command as:

networksetup –getdnsservers "Airport"

This won’t necessarily prove to be an issue, as networksetup resides in the default path
at /usr/sbin. The main problem with this methodology is that PATH variables can be
manipulated rather easily. If this script were ever to get called with the sudo command,
which escalates privileges to eid 0, then we could potentially compromise a machine
simply by injecting our own path variable into the user environment. This way, instead of
the system calling networksetup, someone could call our own program identically
named networksetup, which might install goodies all over the machine. Modifying a
user’s PATH is rather trivial to do once a user account has been compromised, and can

CHAPTER 8: Automating Administrative Tasks

445

then be used for local privilege escalation and to ultimately control the box. Several OS
X escalation vulnerabilities have been found due to failure to sanitize PATH exploits.

To combat this issue, we have a few options. The first option is to manually specify the
PATH variable in our script. This way, we can utilize the dynamic lookup capabilities of
scripts and still provide our own known-good paths. To do this, we simply declare PATH
in the global scope of the script:

#!/bin/bash
PATH="/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin

By specifying the PATH variable, we are in essence designating trusted paths. Because
we are doing this, it is important that we ensure proper restrictions are applied to these
paths. We want to make sure that all specified paths are locked down from modification,
restricted only to admin users. For instance, the bash /usr/local/bin does not exist by
default, so it could theoretically be possible for a user to create this directory, inject his
own executables, and then interject those executables into our script. To prevent this,
we utilize file system permissions. In the case of /usr/local/bin, a user would first have
to create both the local/bin branch. Thus, that user would need to be able to modify
the directory at /usr. Luckily, file system privileges are locked down such that a user
would need root access to alter any of the specified directories. If they have the ability to
alter these system paths, we have bigger issues to worry about.

Specifying a PATH for our shell script doesn’t solve all issues. For instance, what if the
user installs a copy of a command, which is syntactically incompatible with the options
specified in our script? Perhaps only part of what we utilize the utility for in our script
actually works with the user’s app. In such case, our script would certainly execute
abnormally, at best merely failing to execute, but in a worst case scenario, the side
effects could certainly prove to be damaging. For this reason, you may want to allow
only a specific binary to be utilized for the context of your script. The standard
methodology to implement this is to declare full commands as variables, and then call
that variable instead of the command. Also, you can use the -x test to see if the
command is executable:

#!/bin/bash

declare networksetup =" /usr/sbin/networksetup "

if [-x $networksetup] ; then
 $networksetup -setv6off "Airport"
else
 echo "$networksetup is missing, is this Tiger(10.4)?"
fi

This practice certainly has its benefits. First, we ensure that all binaries paths are hard
coded to the system defaults. Of course, ensuring that the system’s default software
has not been altered is outside of our control. We could certainly calculate md5 sums or
check binary version output, but the risk/effort rewards really aren’t there; it is perfectly
sensible for our script to assume a stock software package, particularly in the context of
this chapter.

CHAPTER 8: Automating Administrative Tasks

446

The second benefit to declaring our commands is that we now have a nice list of all
external commands utilized by the script, which is great way to show our users what we
are using to make our script work.

Passing Arguments to Shell Scripts
When a script is called, it can have options, much like the options present in commands
you run in Mac OS X. These commands are programmatically stored in a predefined
variable called a positional parameter. The positional parameters are easily identified
because they are $1, $2, $3, and so on, with each position the area between a space and
the next input. For example, to send a command called foo a variable called bar you
would use the command foobar, which would result in being able to use the variable $1 in
the script. In the script below, we declare a number of variables and even put the target of
the script and the information to change within the script as follows, this is an example
postflight script in a package installer. Apple’s installer will pass these parameters to a
script automatically, but you can simulate them with the following command:

sudo /path/to/this_script 1 2 /Volumes/Macintosh\ HD /Volumes/Macintosh\ HD

sudo /path/to/this_script 1 2 /Volumes/ /

NOTE: We are putting the placeholders 1 and 2 here to stand in for what would really be
passed during an install. In this case because we don’t use $1 or $2, any value here would do,
just to make sure the count was right. This is a common way of testing scripts that are
destined for Apple package installers.

#!/bin/bash
This script removes the time machine prompt from newly created users
$1 and $2 are not used in this script
declare -x DSTROOT="$3" # Installation Volume of mount point.
declare -x SYSROOT="$4" # The root directory for the system.
declare -x USER_TEMPLATE="/System/Library/User Template/English.lproj"
declare -x PLIST=\
"${DSTROOT:?}/${USER_TEMPLATE:?}/Library/Preferences/com.apple.TimeMachine.plist"

declare defaults="/usr/bin/defaults"
"$defaults" write "${PLIST%.plist}" 'DoNotOfferNewDisksForBackup' -bool 'YES' &&
echo "$PLIST updated successfully"
exit 0

NOTE: As you can see here, we are calling the PLIST variable using "${PLIST%.plist}" to
remove the plist extension. The defaults command requires this rather odd syntax when
referencing a file due to the plist domains concept covered in man defaults.

CHAPTER 8: Automating Administrative Tasks

447

Scheduling Automations
There will be times when you will need to schedule your scripts to perform various tasks.
Maybe you want to periodically run a backup, check and repair permissions, run system
maintenance, run updates, or perform whatever it is that you want your machines to do
in the wee hours of the morn. No matter, OS X has a scheduler that will fit your need. OS
X's scheduling capabilities are rooted both in the past and in the present; its BSD
heritage has provided it with traditional *nix schedulers in cron and at. A more modern
scheduler is provided with launchd, which brings with it a number of advantages, and a
prerequisite to reconsider how schedules are ran.

launchd
launchd is a fairly complex beast, and much more than "just" a scheduler. It provides a
job-watching capability, allowing your scripts to loop and even crash and be restarted. It
can also watch a folder path or individual file for changes, a very common way of
triggering an action. Moreover, launchd allows for items to be created and run by root
but also by ordinary users. As we show below, you can even include scripts right in
launchd items, making the whole thing self contained. It also presents an interesting
solution to the scheduling problem, and as such becomes a very handy tool for
scheduling automations. To schedule an automation you must first construct a
launchd.plist file. This plist file contains a number of keys that tell launchd how to
treat our program. Each launchd.plist file contains a unique label, a series of program
arguments, and a schedule defined for that program. When loaded by launchd, the
superdaemon will fire your program and specified arguments.

A launch daemon is a plist file that can be deployed in two different domains, which
ultimately control the resources that the respective process will have. Launch daemons,
installed at /Library/LaunchDaemons and /System/Library/LaunchDaemons are
considered system domains, though the latter should not be touched outside of Apple-
provided files. The plist file should be named using reverse-domain notation, similar to
other preference files in OS X. As the name ‘‘launch daemon’’ implies, most standard
UNIX daemons are now handled through launch daemons. For instance, named, OS X’s
DNS service, can be found at /System/Library/LaunchDaemons/org.isc.named.plist.

A launch agent, on the other hand, is a launchd.plist that specifies a process that will
run in the context of the user's environment. For this reason, agents are extremely
useful for deploying userland-based automations, but a poor choice for system-level
automations. If your process has dependencies on a windowserver process, such as
an AppleScript/osascript, launch agents afford you access to that resource. Outside of
these differences, all information provided over the next few pages describing
launchd.plists are true of both launch daemons and agents, unless specifically
stated otherwise.

From a scheduling perspective, launchd allows for two different types of schedules;
recurring intervals and specified schedules. The StartInterval key can be used to
specify a sleep interval in seconds that will take place between executions of a program.
In contrast, the StartCalendarInterval key consists of a dictionary, which can be used

CHAPTER 8: Automating Administrative Tasks

448

to specify regularly scheduled maintenance. This dictionary consists of keys for Hour,
Minute, Weekday, and Day (1-31). In both cases, launchd will monitor the processes that
it launches and ensure that there are never any overlapping instances.

To create a launchd plist from scratch, luckily we can use our familiar defaults
command (assuming a com.318.syncdata defaults domain):
sudo defaults write /Library/LaunchDaemons/com.318.syncdata Label com.318.syncdata
sudo defaults write /Library/LaunchDaemons/com.318.syncdata ProgramArguments -array
"/usr/bin/rsync" "-avu" "/Folder1/" "/Folder2/"
sudo defaults write /Library/LaunchDaemons/com.318.syncdata StartInterval -int 3600
sudo plutil -convert xml1 /Library/LaunchDaemons/com.318.syncdata.plist

This will create a launchd plist file that performs the following command, every hour
(3600 seconds):

/usr/bin/rsync -avu /Folder1/ /Folder2/

and has the following structure:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>com.318.syncdata</string>
 <key>ProgramArguments</key>
 <array>
 <array>
 <string>/usr/bin/rsync</string>
 <string>-avu</string>
 <string>/Folder1/</string>
 <string>/Folder2/</string>
 </array>
 </array>
 <key>StartInterval</key>
 <integer>3600</integer>
</dict>
</plist>

TIP: You may need to convert the plist file to xml1 format (from binary) prior to viewing or
editing. Do so using the syntax plutil -convert xml1
/Library/LaunchDaemons/<file>.plist

As you can see, a program and its arguments are specified in the plist as individual
items in an array. Each item will be passed to the command as individual (escaped)
strings.

To use a calendar interval, we can specify a StartCalendarInterval dict. First
though, we will delete our StartInterval key. While both StartInterval and

CHAPTER 8: Automating Administrative Tasks

449

StartCalendarInterval entries will be honored, it's not a very elegant way to do
automations (though perhaps useful in some circumstances):

defaults delete \
/Library/LaunchDaemons/com.318.syncdata StartInterval
defaults write \
/Library/LaunchDaemons/com.318.syncdata StartCalendarInterval -dict Hour -int 3 Minute -
int 0 Weekday -int 0
plutil -convert xml1 /Library/LaunchDaemons/com.318.syncdata.plist

This will change the automation to fire every Sunday at 3:00 AM. All of these values are
strict integer values and no logic is allowed. If you are looking for more flexibility in
scheduling, cron might be a good solution.

If you are looking for an easier way to generate launchd plist files, consider the popular
GUI tool Lingon, available at http://www.macupdate.com/lingon, which serves the
purpose well.

cron
Contrary to the rumors, cron is still alive and well in OS X. The cron daemon itself is fired
via launchd. Its plist is found at /System/Library/LaunchDaemons/com.vix.cron.plist.
However, this has no impact on the actual operation of cron as you would find on a
different system. As with all *nix systems, individual users can configure their own
crontab, stored in /var/cron/tabs/. Naturally, each user's crontab runs in the context of
that user, but does not necessarily need the user to be logged in (unless a window
server connection is needed by the called process). You can edit a user's crontab by
running the terminal command crontab -e while logged in. When run, the command will
drop you into a vi editor and will open up the user's crontab. A crontab is a file that lists
a process and its scheduling information on a single line of text. The schedule is the first
part of the line, and includes 5 tab separated values, seen below, that precede the
actual cron entry:

##Minute Hour MonthDay(1-31) Month (1-12) Weekday (0-7) Command
* * * * * /usr/local/bin/myscript.sh

NOTE: You can change the default editor from vi to pico by running export EDITOR=pico
before you run crontab –e, However, we suggest you give vi a chance as it’s a lifesaver
when it comes to toolkits.

This code is a valid cron entry. The * designates it will match any condition. Therefore,
the above script will fire once per minute, for all of time. Cron also supports ranges and
logic:

##Minute Hour MonthDay(1-31) Month (1-12) Weekday (0-7) Command
*/15 */2 * * 1,3,5 /usr/local/bin/myscript.sh

In the previous entry, the script will run every 15 minutes, every other (even) hour, on
Monday, Wednesday, and Friday. While this particular schedule may seem a little silly, it

CHAPTER 8: Automating Administrative Tasks

450

is meant mainly to illustrate the flexibility of the cron scheduling engine. Certain
workflows have very particular schedules, and the ability to shape your automations
around such schedules is great to have at your fingertips.

Aside from editing individual user crontabs, a global "root" crontab exists, found at
/etc/crontab. This file is similar to other crontabs, but it introduces yet another element,
the username under which the process will be executed:

##Minute Hour MonthDay(1-31) Month (1-12) Weekday (0-7) User Command
*/15 */2 * * 1,3,5 root
/usr/local/bin/myscript.sh

OS X also has support for the at scheduling engine, though it is disabled by default. For
the most part, launchd and cron should be able to meet your needs, but if you must
have at, it is there for you. To use it, all you have to do is load its launchd plist file:

sudo launchctl load -w /System/Library/LaunchDaemons/com.apple.atrun.plist

Now you can use at for scheduling:

at now + 1 minute
echo "hello" > /test.txt
job 4 at Tue Jun 9 01:16:00 2009

atq
4 Tue Jun 9 01:16:00 2009

Daily, Weekly & Monthly Scripts
Mac OS X ships with a number of scripts that run on a timed interval, including those
that run on a daily, weekly, or monthly schedule. These scripts are invoked by entries in
the /System/Library/LaunchDaemons directory: com.apple.periodic-daily.plist,
com.apple.periodic.weekly.plist, and com.apple.periodic.month.plist, respectively.
The periodic scripts are located in /etc/periodic and include the following:

 /etc/periodic/daily/100.clean-logs

 /etc/periodic/daily/110.clean-tmps

 /etc/periodic/daily/130.clean-msgs

 /etc/periodic/daily/430.status-rwho

 /etc/periodic/daily/500.daily

 /etc/periodic/monthly/200.accounting

 /etc/periodic/monthly/500.monthly

 /etc/periodic/monthly/999.local

 /etc/periodic/weekly/310.locate

 /etc/periodic/weekly/320.whatis

 /etc/periodic/weekly/999.local

CHAPTER 8: Automating Administrative Tasks

451

Triggered Automations
Scheduled automations are nice, but wouldn't it be great to fire certain automations just
when you want to? The answer is yes, and the solution is triggers. A trigger is a generic
term for any event that can affect, or trigger, the operation of a process. In OS X, there
are a number of different triggers that can fire automations. Discussed fairly extensively
in Chapter 7, loginhooks are a popular form of userland triggers. Similarly, launchagents
can be instructed to run at login. To do this, set the key RunAtLoad to true, using the
command that follows.

sudo defaults write /Library/LaunchAgents/com.318.syncdata RunAtLoad -bool true

Outside of this, OS X has a few facilities we can use to trigger our automations. The
most common use of triggers in OS X are filesystem watchers, which fire based on
certain filesystem activity. These types of automations in OS X are provided through
launchd. Specifically, launchd provides three functions for monitoring filesystem activity:

 WatchPaths: An array of file paths that, when modified, will trigger a
script.

 QueueDirectories: An array of directory paths that will trigger whenever
a file is added or removed.

 StartOnMount: A bool value that, if set to true, means the script will fire
whenever a new filesystem is mounted

For instance, we could utilize this behavior to sync a directory to a volume whenever it is
mounted. To perform this task, we will first write our basic script:

#!/bin/bash

check for the presence of our volume
if ["$(df -lh | grep "MyVolumeName")"]; then
 rsync -av /Folder1/ /MyVolumeName/Folder1_backup/
fi

and then create and edit our plist at /Library/LaunchDaemons/com.318.MyVolumeSync:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>com.318.myvolumesync</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/local/bin/myVolumeSync.sh</string>
 </array>
 <key>QueueDirectories</key>
 <array/>
 <key>RunAtLoad</key>
 <false/>

CHAPTER 8: Automating Administrative Tasks

452

 <key>StartOnMount</key>
 <true/>
</dict>
</plist>

Now, whenever MyVolume is plugged in, the script will fire, pass its test, and perform
the sync.

Alternatively, you may want to fire a script whenever a network configuration changes.
Network configuration changes occur whenever an interface is taken off or brought
online, and therefore can be a good way to trigger a script when a machine first joins
your network. This can be handy for initiating client-side backups on laptops that are
rarely in the office. By configuring a backup to fire at network change, you can ensure
these mostly absent machines don't waste any time in initiating their backup upon
returning to the network. Previously this type of script was fired off using a component
of the system configuration framework called configd. However, configd kicker scripts
are no more, though open source equivalents such as crankd may be useful). Depending
on your needs, a simple launchd watcher-called script should suffice for network
changes.

Self-Destructing Scripts
In some cases, you may want your script to run only once and then remove all traces
that it ever existed on a system. In such cases, you can actually have the script delete
itself. Because the entire script is loaded into memory, this won’t affect the operation of
the script’s code, the file will just disappear after execution. This can be very handy if
you have sensitive data in the script. For instance, a bind script will likely contain a
password and it would be undesirable to leave that sitting around on every machine in
the fleet, even if the credentials have extremely limited access. To remove a script when
it is complete, you can just put the following line at the very end of the script:

srm "$0"

The srm command is an Apple-provided equivalent of the rm command but will perform
a ‘‘secure erase’’ by writing new, random data over the file’s previous data to limit it’s
recoverability.

The same logic can be applied to launchd items. If you want to deploy a one-time
login action, you can make the launchd item itself self-destructing. For example, the
launchagent below will enable Apple Remote Desktop (ARD), but when it’s done it will
remove itself. This is done by chaining multiple commands together via a single
ProgramArgument string:

<plist version="1.0">
<dict>
 <key>Disabled</key>
 <false/>
 <key>Label</key>
 <string>net.walledcity.enableard</string>
 <key>OnDemand</key>
 <false/>

CHAPTER 8: Automating Administrative Tasks

453

 <key>ProgramArguments</key>
 <array>
 <string>bash</string>
 <string>-c</string>
 <string>/System/Library/CoreServices/RemoteManagement/«
ARDAgent.app/Contents/Resources/kickstart -configure -access -on -privs«
 -all -users adm_mako ;
/System/Library/CoreServices/RemoteManagement/ARDAgent.app/Contents/Resources/«
kickstart -configure -clientopts -setdirlogins -dirlogins yes -setdirgroups«
 -dirgroups ardadmin ; /System/Library/CoreServices/RemoteManagement/«
ARDAgent.app/Contents/Resources/kickstart -activate ;
/System/Library/CoreServices/RemoteManagement/ARDAgent.app/Contents/Resources/«
kickstart -configure -allowAccessFor -specifiedUsers -setreqperm yes;
/bin/launchctl unload /Library/LaunchDaemons/net.walledcity.enableard.plist;
/usr/bin/srm /Library/LaunchDaemons/net.walledcity.enableard.plist
sleep 60;
exit 0</string>
 </array>
</dict>
</plist>

NOTE: In most UNIX shells, the semicolon (;) can be used to separate individual commands on
a single line. When separating commands via a semicolon, once the first command finishes
running, regardless of its exit state, the next program will fire.

Automating User Creation from a Third-Party
Database
In some cases, you may need to integrate an OS X directory system with a third-party
information system, such as an employee database. In an education environment, for
example, tens or hundreds of thousands of student records exist, with new records
being added every day. All of this user information exists largely in third-party
databases, and you may need to ensure that records added to one system can easily be
added to Open Directory.

To successfully import the data, you must get it into an acceptable format. Importing
data into Open Directory can be performed from the GUI with Workgroup Manager,
which supports import of data in a delimited format, with customizable attribute and
record delimiters. This makes it a decently flexible tool for importing from third-party
databases, as most of these systems can import into a delimited format of some sort,
most commonly csv (comma separated values). Once you have a csv file in hand, you
can import the file into the system. Consider a csv file with the following data structure:

shortname,fname,lname,pass
jdoe,John,Doe,JD09876
jsmith,Jane,Smith,JD09876

CHAPTER 8: Automating Administrative Tasks

454

This is about as clean as csv data gets. To import the file, you can open up Workgroup
Manager, connect to your OD master, and select Import from the Server menu. From
there, you can map the attribute delimiter (,) and the record delimiter (Newline, hex value
of 0x0A). If there is a problem with the import, you can check the dsimport log found at
~/Library/Logs/ImportExport/.

NOTE: The delimiter options in Workgroup manager allow for only a single byte of data.
Because of this, you can’t specify a DOS-style line delimiter, which has an ASCII value of \n\r
and a hex value of 0x0D0A and as such, can’t directly be imported via Workgroup Manager.
You can convert line delimiters to UNIX style (\n, 0x0A) with the following command: perl –p
–i –e 's/\r\n/\n/g' /thefile.csv. Some programs such as Excel save csv files with
historic Macintosh-style line delimiters (\r). These files can be imported with the delimiter hex
value of 0x0D.

However, the premise of this section is to help automate this process, and having to
manually specify delimiters each time you do an import isn’t the cleanest way to work.
Thus, we resort to the command line for automation. Importing data from the command
line requires data to be formatted as a dsimport file, a colon-delimited format with an
Open Directory-specific header:

0x0A 0x5C 0x2C 0x3A dsRecTypeStandard:Users 4 dsAttrTypeStandard:RecordName«
dsAttrTypeStandard:FirstName dsAttrTypeStandard:LastName dsAttrTypeStandard:Password

This data consists of a number of values. In this code, the first value, 0x0A, denotes the
record delimiter (a Unix newline \n). The second value, 0x5C, specifies the escape
character (a standard backslash \), which is used for escaping the attribute delimiter
should its value actually be required for a field. For instance, importing computer data
involves importing MAC addresses, which contain a colon. If your attribute delimiter is a
colon, you must escape it with the character specified, so 00:50:56:c0:00:08 must be
represented as 00\:50\:56\:c0\:00\:08.

The next value in the header, 0x2C, is the attribute/field delimiter (in this case, a comma
,). 0x3A then specifies the attribute value delimiter, used if a particular field/attribute
contains more than one value. The next value, dsRecTypeStandard:Users, specifies the
record type for import. You can use this tool to import Users, Groups, Computers,
ComputerGroups or ComputerLists using those respective values. Next, you specify the
number of columns in your import file (4), and the header for each column. The headers
consist of dsAttributeStandard entries, which are records abstracted for use by the
Directory Services API. These attributes do not correspond to LDAP attributes directly,
but rather the abstracted field name. In this example, we are specifying four headers,
RecordName (shortname), FirstName, LastName, and Password. A header of IGNORE can
be set here to ignore the column of data. Once you specify headers, the rest of the file
should consist of record and attribute data conforming to the specified delimiters.

If you have programmatic control over your information system, or if its export options
are decently featured, you may be able to craft your own dsimport file. If not, you’ll need
to process your exports so that they can conform for import. To do so, you have a few

CHAPTER 8: Automating Administrative Tasks

455

options, and luckily one of them is included with this book. In the book’s resource
section, the csvtowgm Python script can be used to process your own csv-delimited
outputs, and convert them to dsimport-compatible import files. The csvtowgm script
accepts data from a csv file, or it can read it from the stdin data stream. Its options are
best displayed through the program’s help page:

csvToWGM: converts a csv delimited import file into a dsimport compatible file

Syntax:
 csvToWGM [-i infile] [-o outfile] [-f format] [-h headers]

Flags:
 -i infile -- path to csv import file
 -o outfile -- destination path for generated dsimport-compatible output file
 -d delimiter -- The field delimeter used in your data, default ","
 -h headers -- specify headers if they are not included in the first line of
 import file. This should be a comma delimited string.
 -f format -- Use specified config file. If none is specified, the format
 "users" is assumed. Supported formats:
 "users"
 "computers"

In its basic usage, you can simply pass csvtowgm a user import file for processing and an
output path to save the file:

csvtowgm –i ~/Documents/users.csv –o ~/Documents/users_dsimport.txt

csvtowgm will try its best to determine header information from the first line in your file.
Optimally, headers will be identical to the dsAttrTypeStandard header. You can find the
header resolution determined by csvtowgm by consulting its log file after running the
import. The log file will contain an entry specifying the header resolution that was used
by the import. Specifically, look for the line:

INFO Importing headers: '['realname', ' shortname', ' password']' as: '['RealName', «
 'RecordName', 'Password']'

Here we are using the csv data specified earlier in this section. We can see the imported
headers: realname, shortname, and password, and see their respective mappings. If the
system does not properly recognize a header, it will specify a header of IGNORE, and
the data will not get imported. To process the file for import, you can specify your
headers in comma-separated arguments passed to csvtowgm:

csvtowgm –i ~/Documents/users.csv –o ~/Documents/users_dsimport.txt –h«
 RealName,RecordName,Password

This will process the file using fixed headers. You can also use csvtowgm to process
computer records. Consider the following computer data file:

name,ethernetid
hax.lbc,00:50:56:c0:00:08
helyx.lbc,00:50:56:c0:00:01

To import this file, the process is identical to that for users, though we instead specify
the computer format using the ---f flag:

csvtowgm –i ~/Documents/machines.csv –o ~/Documents/machines_dsimport.txt –f computers

CHAPTER 8: Automating Administrative Tasks

456

In some cases, you may need some more advanced features, such as field-data
generators or other data-population mechanisms. Currently, csvtowgm simply does
basic file conversion and has only basic facilities to generate data. If data generation is a
need of yours, consider using Passenger (http://macinmind.com), a GUI utility for
generating dsimport-compatible files.

Once you have data in a dsimport-compatible file, you must import that data into your
system. You can do this via the dsimport command, which is fairly straightforward and
has three mandatory parameters: filepath, nodepath (the target Directory node for import
/LDAPv3/odserver.myco.com), and the conflict resolution options. A conflict occurs when
an existing record contains a record name, UID, or GID that’s the same as a new record
to be imported. There are five different values that can be provided for conflict
resolution:

 O: Overwrite an existing record if it contains a matching record name,
UID, or GID.

 M: Merge data with any existing records. Create the record if it does
not exist.

 I: Ignore the new record if there is a conflict.

 A: Append data to an existing record; do not create a new record if it
does not exist

 N: Skip conflict detection. This option can be slow and problematic.

So, to import a dsimport file into an Open Directory system, use the following command:

dsimport ~/Documents/users_dsimport.txt /LDAPv3/odserver.myco.com M –-userpreset "Staff «
Member" –-username diradmin –-password 'mydiradmin password'

In this example, we are importing a user file into our LDAP directory using a merge.
Here, we specify the –userpreset flag, which allows us to set up a preset in Workgroup
manager to establish group memberships, home directory settings, and mail and print
settings. (You can create presets using Workgroup Manager.) In this command, we also
supply our diradmin credentials to provide access for the import itself, presenting one of
the biggest barriers to full automation for this process: any automated processes will
need to have a directory administrator’s credentials embedded.

However, embedding administrator credentials in a script to automate import from a csv
is not the only issue with a fully automated user-generation process. For instance, say
you set up a launchdaemon with a QueueDirectory entry, which watches a directory for
any new files from your information system, passes them to csvtowgm, and then uses the
resulting file for import via dsimport. Such a script might look something like this:

#!/bin/bash

PATH=/bin;/usr/bin;/usr/local/bin

set our variables
declare –x watchFolder="/Library/dsimportwatchdir"
declare –x dirNode="/LDAPv3/odserver.myco.com"

CHAPTER 8: Automating Administrative Tasks

457

create our folder
mkdir –p "$watchFolder" &> /dev/null

loop through all of the csv files in our watch folder, format them,
import them, delete the formatted versions, and copy the original
into an archive directory.
for file in $(ls -1 "$watchFolder" | grep ".csv"); do
 declare –x tempFile=$(mktemp /tmp/dsimport_XXXXX)
 cat "$watchFolder/$file" | csvtowgm –o "$tempFile"
 csvtowgmResultCode=$?
 if [$csvtowgmResultCode == 0]; then
 dsimport "$tempFile" "$dirNode" M –username importadmin –password
'importpassword'
 rm "$tempFile"
 mkdir "$watchFolder/archive/" &> /dev/null
 mv "$watchFolder/$file" "$watchFolder/archive/"
 else
 echo "Error generating import file! error num: $csvtowgmResultCode"
 exit $csvtowgmResultCode
 fi
done

This code would get the job done, but it does present numerous concerns. First and
foremost, we are trusting the security of our user base to the contents of this folder. By
using a merge import, it would certainly be possible for a file to be dropped into our
watchfolder that completely trashes our directory, potentially overriding data for admin
accounts or simply generating accounts for itself.

Due to concerns such as these, the exact level of desired automation will greatly vary
from environment to environment and will depend on the sensitivity of the data housed
by the system and the security requirements set forth by the organization. A fully
automated import process such as this is not advisable in any environment where
security is a concern. However, even if the final dsimport is a manual step, simply by
generating dsimport-style import files you are greatly reducing the possibility for human
error, streamlining the import process, and ensuring more consistent results.

Note: A common automation would also be to tailor this same script to create computers
based on imaging events on a live system. For example, an imaged computer can write a text
file or copy its computer information into a centralized database to aid in managed
preferences. Additionally, the imaged system could automatically connect to the patch
management framework you are utilizing. Finally, for larger installations where users are
actually created in out-of-band solutions (e.g., Oracle-based Student Management System or
SAP-based ERP solution) you can automatically generate user accounts based on events from
those databases.

CHAPTER 8: Automating Administrative Tasks

458

Logging
If your script does anything more than a basic task, it is a good idea to log your output.
Logging output can be useful to ensure that any automations are working as they should
be, and to catch any errors that are discovered during the operation of your scripts.
Likewise, log files can prove extremely handy for historic evaluation of performance and
operation.

Depending on your script, you may want to log to ~/Library/Logs, /Library/Logs, or
/var/log. So how do you know which to log to? ~/Library/Logs can be used whenever
a script is initiated in userland, such as through a LaunchAgent or a user-specific
crontab. For the majority of scripts, though, which likely run with root privileges, Apple’s
addition of a global /Library/Logs to the equation dilutes the situation a bit, as /var/log
is the historic logging directory for many Unix and Linux systems and is even utilized
by many Apple utilities. For instance, Disk Utility logs disk repair information to
/var/log/fsck_hfs.log, and Apple’s Installer app and Software Update app both log to
/var/log/install.log.

Logging to an output file can be achieved in a couple of different ways. First, you can
simply use the echo command and redirect its output to your log file. For instance:

logFile="/var/log/myprogram.log"
echo "My Program: starting rsync!" >> "$logFile"

This works great for sending updates to a log file, and you can use the same type of
technique with any command-line program:

rsync –avu /folder1/ /folder1_copy/ &>> "$logFile"

Here, we utilize the redirect operator &>>, which redirects both stdout and stderr streams
to /var/log/myprogram.log, appending to the end of the file. In this instance, we use this
redirection if rsync outputs any errors; we want the errors to be written to our log.

Alternatively, you can redirect all output streams of a script to a certain file in one line.
This provides a quick and easy way to ensure logging of all of your script’s events. To
implement global redirects to your script, add the following line after your hashbang and
prior to the implementation of any commands or log statements:

logFile="/var/log/myprogram.log"
exec &>> "$logFile"
##From here on, all of our output will be redirected to our log file.

It may also be desirable to send log messages to syslog. This provides the added
benefit of time-stamping output, and provides you with the ability to integrate your script
logging with a more complex syslog system, should your organization employ one. To
send messages to syslog, use the logger command:

logger –t "$0" –p user.notice –s "hello"

The –p flag tells logger to log using user.notice priority, which syslog will output to the
system log, /var/log/system.log:

Sep 7 21:23:31 helyx /usr/local/bin/myprogram.sh[1461]: hello

CHAPTER 8: Automating Administrative Tasks

459

The priority user.notice is the default priority, and in this case, the entire –p
user.notice flag can be omitted; it is added mainly to illustrate how to define custom
logging priorities should you want to integrate with a more complex syslog system. The
string ‘‘hello’’ is also output to the console, due to running logger with the –s flag. This
makes it extremely handy for scripts that might be run by hand. By using logger instead
of echo and global redirects, you can ensure that users receive feedback from your
program directly in the terminal. In addition, by utilizing syslog, your scripts will be more
adaptable, should you adopt a more capable logging system.

Working with Date and Time
There are many instances where it can be beneficial to work with dates in your script. At
a terminal prompt, it is really straight forward to grab the date-----simply use the date
command with no arguments and you will get something similar to the following,
including the day, date, time (with seconds), time zone and year:

Tue Apr 15 00:40:07 CDT 2009

In a shell script, this output can be fairly challenging to parse, especially in cases where
you need to do calculations based upon the time. Here we’re going to grab the current
system date from ESX, OS X, or Linux (or any OS really) and then use a variable,
currentdate, to put that date into a pretty standard format, YYYYMMDD:

declare –x currentdate="$(date "+%Y%m%d")"

This will set the value of current date to:

20090415

Now, in our shell script, we can create files, add lines to files, and so forth with the
shortened date stamp. Some of you will be using log analyzers that depend, for
example, on Unix epoch time. To grab the date formatted as such, use the following
command:

currentdate="$(date +"%s")"

Unix epoch time is a numerical value representing the number of seconds since January
1, 1970, UTC. It is extremely useful if you want to perform basic math on time, as this
value can be used in base 10 arithmetic. For instance, you can use it in your script to
track the amount of time a process takes, and then output as you please:

#!/bin/bash
starttime="$(date +"%s")"

redirect all output to my logfile
exec &>> /var/log/myscript.log

ditto /folder1/ /folder2/

do our time calculations
endtime=$(date +'%s')
totaltime=$(expr $endtime - $starttime)

CHAPTER 8: Automating Administrative Tasks

460

format time values in human readable format
if [$totaltime -ge 7200]; then
 hours=$(expr $totaltime / 3600)
 adjtime=$(expr $totaltime % 3600)
 hourmsg="$hours hours"
else
 adjtime=$totaltime
fi

min=$(expr $adjtime / 60)
secs=$(expr $adjtime % 60)
timemsg="$min minutes $secs seconds"
if ["$status" = 0]; then
 echo "$instance Finished with no errors! Duration: $hourmsg $timemsg"
else
 echo "$instance Encountered error code: $status Duration: $hourmsg $timemsg"
fi

The date command isn’t used as much to set time anymore, since most systems rely on
a Network Time Protocol (NTP) server to supply date and time information. However, it
is worth noting that the date command can also be used to set the time on a computer.

Automating System Tasks

Configuring Local Administrative Permissions
One thing you may notice after working with Open Directory is that there is no good way
to define local administrator access to desktops via an Open Directory group. You can
add users to the Open Directory Admin group, but due to the way that the DS Search
Path is traversed (which is explained in Chapter 2), OS X desktops will search the local
admin group for many administrative checks. Unlike the Active Directory plug-in, the
LDAPv3 plug-in does not provide the ability to specify a local administrative group
mapping. So, you, the administrator, are left to your own devices to accomplish this
task. Luckily, we have just what you need. The following script is also available via digital
download (file 8_setNetworkAdminRights.sh).

#!/bin/bash

############################

Local Permissioning script for setting local administrative groups
for system and ARD admin access. Compatible with 10.5, and 10.6
Uses dseditgroup to modify the active systems group membership. As
Such, it can only operate on the active system volume.

Written by Beau Hunter
04/04/09 beauh@mac.com

CHAPTER 8: Automating Administrative Tasks

461

declare -x version=08310901
export PATH="/usr/bin:/bin:/usr/sbin:/sbin"

vars
localAdminGroup: specify network group to provide local admin access to
declare -x localAdminGroup="od_desktopadmins"

setupLocalARDGroups: if '1', ard access groups
will be created in local Directory Services
declare -x -i setupLocalARDGroups=1

resetARD: if '1', ARD access will be configured
declare -x -i configARD=1

resetARD: if '1', all ARD access privileges will be reset
declare -x -i resetARD=1

ardAdminUser: the specified user will be have ARD admin access
declare -x ardAdminUser="hax_admin"

ardAdminGroup: the specified group will be given ARD admin access
declare -x ardAdminGroup="mobo"

ardInteractGroup: the specified group will be given ARD interact access
declare -x ardInteractGroup="monitors"

static and system vars
declare -x scriptName=setNetworkAdminRights
declare -x theDate=$(date +'%Y%m%d')
declare -x -i isTiger="$(sw_vers | grep -c 10.4)"
declare -x -i isLeopard="$(sw_vers | grep -c 10.5)"
declare -x -i isSnowLeopard="$(sw_vers | grep -c 10.6)"
declare -x ARDVersion="$(defaults read «
/System/Library/CoreServices/RemoteManagement/ARDAgent.app/Contents/Info «
CFBundleShortVersionString)"
declare -x -i ARDMajorVersion="$(echo "$ARDVersion" | awk -F. '{print $1}')"
declare -x -i ARDMinorVersion="$(echo "$ARDVersion" | awk -F. '{print $2}')"

function getGUIDforGroup() {
 ## outputs a GUID for passed group name
 declare -x theGroupName="$1"
 declare -x GUID="$(/usr/bin/dscl /Search read /Groups/"$theGroupName" GeneratedUID | «
awk '{print $2}')"
 if [! -z "$GUID"]; then
 echo $GUID
 else
 logger -s -t "$scriptName" "Error! Could not determine GUID for group«
 \"$theGroupName\""
 return 1
 fi
 return 0
}

CHAPTER 8: Automating Administrative Tasks

462

if ["$USER" != root]; then
 echo "Must run as root user, exiting!!"
 exit 1
fi

if [! -z "$localAdminGroup"]; then
 GUID=$(getGUIDforGroup "$localAdminGroup")
 if [$? == 0]; then
 logger -s -t "$scriptName" "Nesting Directory Group: $localAdminGroup into local «
Group: admin"
 /usr/sbin/dseditgroup -o edit -a "${localAdminGroup:?}" -t group admin
 else
 logger -s -t "$scriptName" "Error! Could not determine GUID for group «
\"$localAdminGroup\""
 fi
fi

if [$configARD -eq 1]; then
 if [$setupLocalARDGroups -eq 1]; then
 if ["$isSnowLeopard" -ge 1]; then
 ardAdminLocalGroup="com.apple.local.ard_admin"
 ardInteractLocalGroup="com.apple.local.ard_interact"
 else
 ardAdminLocalGroup="ard_admin"
 ardInteractLocalGroup="ard_interact"
 fi
 else
 ardAdminLocalGroup=$ardAdminGroup
 ardInteractLocalGroup=$ardInteractGroup
 fi

 ## Process our Admin Group
 if [! -z "$ardAdminGroup"]; then
 GUID=$(getGUIDforGroup "$ardAdminGroup")
 if [$? == 0]; then
 if [$setupLocalARDGroups -eq 1]; then
 logger -s -t "$scriptName" "Nesting Directory Group: $ardAdminGroup into «
local Group: $ardAdminLocalGroup"
 /usr/bin/dscl . read /Groups/$ardAdminLocalGroup &> /dev/null || «
/usr/sbin/dseditgroup -o create -i 115 -g 2806364B-49F6-4F18-89F9-D159BB93B08C «
$ardAdminLocalGroup
 /usr/sbin/dseditgroup -o edit -a "${ardAdminGroup:?}" -t group «
$ardAdminLocalGroup
 fi
 else
 logger -s -t "$scriptName" "Error! Failed to create Local ARD Admin Group: «
$ardAdminLocalGroup"
 errorCode=1
 fi
 fi
 ## Process our Interact Group
 if [! -z "$ardInteractGroup"]; then
 GUID=$(getGUIDforGroup "$ardInteractGroup")
 if [$? == 0]; then

CHAPTER 8: Automating Administrative Tasks

463

 if [$setupLocalARDGroups -eq 1]; then
 logger -s -t "$scriptName" "Nesting Directory Group: «
$ardInteractGroup into local Group:$ardInteractLocalGroup"
 /usr/bin/dscl . read /Groups/"$ardInteractLocalGroup" &> /dev/null || «
/usr/sbin/dseditgroup -o create -i 116 -g 2806364B-49F6-4F18-89F9-D159BB93B08D «
"$ardInteractLocalGroup"
 /usr/sbin/dseditgroup -o edit -a "$ardInteractGroup" -t group «
"$ardInteractLocalGroup"
 else
 ardInteractLocalGroup=$ardInteractGroup
 fi
 else
 logger -s -t "$scriptName" "Error! Failed to create Local ARD Interact
Group"
 errorCode=2
 fi
 fi
 ## Process our kickstart commands
 kickstart="/System/Library/CoreServices/RemoteManagement/«
ARDAgent.app/Contents/Resources/kickstart"
 if [$resetARD -eq 1]; then
 logger -s -t "$scriptName" "Resetting ARD permissions"
 "$kickstart" -uninstall -settings
 "$kickstart" -configure -access -off
 fi
 if [! -z "$ardAdminUser"]; then
 id "$ardAdminUser" &> /dev/null
 if [$? == 0]; then
 logger -s -t "$scriptName" "Setting ARD access for user \"$ardAdminUser\""
 "$kickstart" -configure -access -on -users "$ardAdminUser" -privs -all
 else
 logger -s -t "$scriptName" "Could not resolve user \"$ardAdminUser\""
 errorCode=3
 fi
 fi

 ## reset Directory Services and flush cache
 /usr/bin/dscacheutil -flushcache
 /usr/bin/killall DirectoryService
 sleep 2
 id &> /dev/null

 if ([! -z "$ardAdminGroup"] && [! -z "$ardInteractGroup"]); then
 logger -s -t "$scriptName" "Setting ARD access for groups «
$ardAdminLocalGroup,$ardInteractLocalGroup"
 elif [! -z "$ardAdminGroup"]; then
 logger -s -t "$scriptName" "Setting ARD access for groups $ardAdminLocalGroup"
 elif [! -z "$ardInteractGroup"]; then
 logger -s -t "$scriptName" "Setting ARD access for groups
$ardInteractLocalGroup"
 fi

 if ([$ARDMajorVersion -eq 3] && [$ARDMinorVersion -ge 3]); then
 logger -s -t "$scriptName" "Kickstart -configure -clientopts -setdirlogins -«
dirlogins yes -restart -agent"

CHAPTER 8: Automating Administrative Tasks

464

 "$kickstart" -configure -clientopts -setdirlogins -dirlogins yes -restart -agent
 elif ([$ARDMajorVersion -eq 3]) ; then
 logger -s -t "$scriptName" "Kickstart -configure -clientopts -setdirlogins -«
dirlogins yes -setdirgroups -dirgroups $ardAdminLocalGroup,$ardInteractLocalGroup «
-restart -agent"
 "$kickstart" -configure -clientopts -setdirlogins -dirlogins yes -setdirgroups -«
dirgroups $ardAdminLocalGroup,$ardInteractLocalGroup -restart -agent
 else
 logger -s -t "$scriptName" "ARD Version: $ARDVersion not supported!"
 exit 5
 fi
fi

Allow Local Users to Manage Printers
You can also provide administrative access to a number of granular functions within
Mac OS X by adding a user to the corresponding local group, rather than having a
bunch of extraneous administrative users on your system. A great example is one of
the ways to allow print queue management in Mac OS X. The Managed Client
framework (MCX) has the ability to allow a user to add a printer. The following script
was largely created to address an issue with older OS X 10.5-based machines where
allowing users to modify printer lists via MCX was sometimes problematic. However,
the script is useful to provide granular control to printing functions. Another way to
allow a user to add printers and also let them manage queues is to add a user to the
lpadmin group, (the group historically used for managing ‘‘line printers’’ that now refers
to all printers). The lpadmin group provides capabilities for numerous printing functions,
such as resuming print queues, which is not available to standard users. Printing in OS X
is supplied via CUPS, which provides granular access to numerous functions. The
following script, also available via digital download (file 8_setPrinterAdminRights.sh),
adds a specified Open Directory group into the local _lpadmin group, thereby granting
directory users lpadmin rights.

#!/bin/sh

PATH=/bin:/sbin:/usr/bin:/usr/sbin

only members of the following group will be given printer admin rights
declare -x printAdminGroup="staff"

modifies cupsd.conf to NOT require admin group membership to add printers,
mainly needed for early versions of 10.5 where the equivalent MCX function
was unstable.
declare -x modifyCupsdDotConf=false

script usage vars, should need to make changes beyond this point. ######

declare -x theDate=`date +'%m%d%y'`
declare -x version="20090721_20:03"
declare -x scriptTag="setPrinterAdminRights"

CHAPTER 8: Automating Administrative Tasks

465

logger -s -t "$scriptTag" "Executing $0 v.$version..."

Add printer admin ###

Make sure an admin group was specified
if [-z "$printAdminGroup"]; then
 logger -s -t "$scriptTag" "ERROR: No print admin group specified, exiting!"
 exit 1
fi

Add specified admin group to local lpadmin group
logger -s -t "$scriptTag" "Adding $printAdminGroup to lpadmin group."
dseditgroup -o edit -a "$printAdminGroup" -t group lpadmin
addMemberReturnCode=$?
if [$addMemberReturnCode == 0]; then
 logger -s -t "$scriptTag" "Successfully added $printAdminGroup to lpadmin"
else
 logger -s -t "$scriptTag" "Failed to add $printAdminGroup to lpadmin, returnCode:
«
$addMemberReturnCode"
fi

modify our cupsd.conf file if applicable, this gives lpadmin permissions to
add/modify «
printers
if [${modifyCupsdDotConf:?} == "true"]; then
 logger -s -t "$scriptTag" "Granting group lpadmin rights to add printers in «
cupsd.conf!"
 perl -00pe 's/(<Limit CUPS-Add-Modify-Printer.*?)(AuthType.*)(Require user)(«
\@SYSTEM$)(.*?<\/Limit>)/$1$3 \@SYSTEM \@lpadmin$5/ms' -i /etc/cups/cupsd.conf
else
 logger -s -t "$scriptTag" "cupsd.conf not being touched"
 killall cupsd
fi

Home Folder Permission Maintenance
If you maintain a large number of home directories, you may want to periodically flush
the filesystem structure on the system to guarantee proper access restrictions are in
place. This can be useful, for instance, to protect files and folders that users add directly
into the root of their home directory, often with global read access. Unwitting users can
place sensitive data inside these folders, not realizing they are exposed to every use in
the system. (User home folder structure is covered in depth in Chapter 7.)

The script listed in this section can be used to fix such permissions problems on home
folders. The homeDirectories variable defines all root home folders on the machine in
question and allows for a customizable depth. For instance, an institution might have
two home folder sharepoints on an AFP server, say mapped to /studenthomes1 and
/studenthomes2. Inside these folders, each home folder might contain a list of

CHAPTER 8: Automating Administrative Tasks

466

subdirectories denoting the graduation year of a student, each of which contain user
home directories. On top of all this, you have the local /Users sharepoint, which we will
add to the system as an example. To address these three home folders, we would
specify the following homeDirectories value:

homeDirectories="/studenthomes1:1,/studenthomes2:1,/Users:0"

Using these values, the script will iterate through each of the specified folders, repairing
home folders for each user.

You can also use this script to employ ACLs for administrative access, perhaps for a
group of users-----supervisors -----who need read/write access to all User home folders.
Alternatively, you might want to give your filesystemadmins group access to all data on
the share. This is specified via the aclGroups variable, and allows you to indicate one of
three access levels: fc (equivalent to a Full Control ACE), rw (equivalent to a Read/Write
ACE), ro (equivalent to Read Only). (See Chapter 4 for more information on ACLs.) Our
desired access rights would be accomplished with the following aclGroups entry:

declare -x aclGroups="filesystemadmins:fc,supervisors:rw"

The script also has a variable removeOrphans that, when set to true, will remove any file
or folder found at the specified home folder depth that is not associated with an active
user in the system. This check will fail if the name of the folder is not equivalent to an
active user’s shortname. This can be a very handy function if you have a large number of
users to manage and want to ensure that former users’ folders are cleaned from the
system.

By setting these variables to the desired values in the following script (which is also
available via digital download, file 8_cleanupHomeFolders), we can ensure that these
groups have the appropriate access to all user home folders, and also that user data has
complete confidentiality to the home folder’s owner, outside of the ~/Public and ~/Sites
directories. The script ensures that these folders have the appropriate access rights.

#!/bin/sh

########## Home Directory Privilege Repair Script #####################
Written by Beau Hunter 08/22/08
beauh@mac.com

Script which automates the management of home directory permissions
It's typical usage is to ensure proper permissions on every user's
home directory. That is, mode 700 to all home folders except ~/Public
and ~/Sites. Additionally, if useACLs is set to true, then ACE's will
be pushed to each home directory for its respective user.

On top of this, you can specify global admin groups via the aclGroups
variable, in addition to a permission set to apply to each group.

The tool can be used to cleanup stale home
folders for non-existent users by placing the homes in an orphanage
folder.

CHAPTER 8: Automating Administrative Tasks

467

PATH=/bin:/sbin:/usr/bin:/usr/sbin

homeDirectories: Comma separated list of home roots, specify the
depth via a colon. For instance, a standard
OS X local home folder has user homes directly in
/Users, thus I could specify a homeLoc of
/Users:0. However, a depth of 0 is the default
depth so it can be omitted.
declare -x homeDirectories="/testUsers:1"

declare -x repairPrivs=true
declare -x removeACLs=true
declare -x useACLs=true

$aclGroups Groups sets an inherited ACL across $homeLoc, groups should be
comma delimited. Access levels can be delimited with a colon,
supported values are: "fc", "rw", and "ro". Default is rw.
Example:
aclGroups="admin:fc,powerusers:rw,rousers:ro"

declare -x aclGroups="admin:fc,staff:rw"
declare -x removeOrphans=true ## Remove non-user directories from the path.
declare -x orphanageName="orphanage" ## the name of the orphanage folder

int script vars, probably don't need to make changes beyond this point ####

declare -x date=`date +'%m%d%y'`
declare -x version="20080822_12:03"
declare -x scriptTag="$(basename "$0")"

logger -s -t "$scriptTag" "Executing script: $scriptTag v.$version"

function repairPrivs() {
 ## repair privileges on all items in a particular home folder
 ## expects home profiles based on users shortname.
 ## if the directory name is not resolvable as a user, we skip
 ## A directory path can be passed as a variable, otherwise
 ## executes based on PWD

 declare -x scriptTag="$scriptTag:repairPrivs()"

 if [-n "$1"]; then
 declare -x passedDirectory=$1
 if [-d "$passedDirectory"]; then
 cd "$passedDirectory"
 else
 logger -s -t "$scriptTag" "structureForOSX() passed directory: «
\"$passedDirectory\" does not exist!"
 return 1
 fi
 fi

CHAPTER 8: Automating Administrative Tasks

468

 logger -s -t "$scriptTag" "Validating users in \"$(pwd)\" for privilege repair"

 IFS=$'\n'
 for fileObject in `ls | grep -v .DS_Store | grep -v "$orphanageName" | egrep -v «
'^\.'`; do
 #logger -s -t "$scriptTag" "Validating $fileObject for priviledge repair"
 id "$fileObject" &> /dev/null
 if [$? == 0]; then
 #logger -s -t "$scriptTag" " - validation passed, changing «
permissions for $fileObject at `pwd`/$fileObject"
 logger -s -t "$scriptTag" " Validation passed for $fileObject, «
changing permissions"

 else
 logger -s -t "$scriptTag" " Validation failed for '$fileObject', «
it is an orphan "

 ## get our pwd and get our current directory. We
 ## mimic our structure in the orphanage, this script
 ## needs more facilities to handle depth properly.

 declare -x PWD="$(pwd)"

 if ["$homeDepth" == 0]; then
 declare -x orphanDir="$homeLoc/$orphanageName"
 else
 declare -x orphanDir="$homeLoc/$orphanageName/$(basename "$PWD")"
 fi

 if ["$removeOrphans" == true]; then
 logger -s -t "$scriptTag" " - Placing $fileObject in «
orphanage:$orphanDir!"
 if [! -d "${orphanDir:?}"]; then
 mkdir -p "${orphanDir:?}"
 if [$? != 0]; then
 logger -s -t "$scriptTag" " - ERROR: «
 Could not create $orphanDir, not moving!"
 continue
 fi
 fi

 mv "$fileObject" ${orphanDir:?}/
 if [$? != 0]; then
 logger -s -t "$scriptTag" " - ERROR: «
 Could not move user home \"$fileObject\" to orphanage!"
 fi
 fi
 continue
 fi

 #echo chown -R "$fileObject":admin "$fileObject"
 chown -f -R "$fileObject":admin "$fileObject"
 if [${removeACLs:?} == "true"]; then
 #logger -s -t "$scriptTag" " - removing ACL's"

CHAPTER 8: Automating Administrative Tasks

469

 chmod -f -R -N "$fileObject"
 fi

 ## Apply ACLs to the user dir, we do an explicit ACE at the user's home
 ## and then apply inherited ACLs to children.
 if [${useACLs:?} == "true"]; then
 logger -s -t "$scriptTag" " - applying user ACL's"
 chmod +a "$fileObject:allow:list,add_file,search,delete, «
add_subdirectory,delete_child,readattr,writeattr,readextattr,writeextattr, «
readsecurity,writesecurity,chown,file_inherit,directory_inherit" "$fileObject"
 chmod -f -R +ai "$fileObject:allow:list,add_file,search,delete, «
add_subdirectory,delete_child,readattr,writeattr,readextattr,writeextattr, «
readsecurity,writesecurity,chown,file_inherit,directory_inherit" "$fileObject"/*
 fi

 chmod 755 "$fileObject"
 chmod -R 700 "$fileObject"/*
 if [-d "$fileObject"/Sites]; then
 chmod -R 775 "$fileObject"/Sites
 fi
 if [-d "$fileObject"/Public]; then
 chmod -R 775 "$fileObject"/Public
 chmod -R 773 "$fileObject"/Public/Drop\ Box
 fi
 done
 ## if we were passed a directory, traverse out of it
 if [-n "$passedDirectory"]; then
 cd "$OLDPWD"
 fi
} ## end repairPrivs()

function setACLForGroup() {
 ## passes $directory as first argument, $group as second argument, and
$permissions
 ## this sets an explicit ACL at $directory, with all children receiving an «
'inherited' ACL
 ## we accept several different permission types:
 ## "fc"(Full Control)
 ## "rw" (Read and Write)
 ## "ro" (Read Only)
 ## "append" (Append Only)

 declare -x directory=$1
 declare -x group=$2
 declare -x permissions=$3
 declare -x scriptTag="$scriptTag:setACLForGroup()"

 logger -s -t "$scriptTag" "Attempting to apply: ACL to dir:$directory for group: «
$group with perms:$permissions"

 ## sanity check our directory
 if [! -d "$directory"]; then
 logger -s -t "$scriptTag" " - ERROR: Could not apply ACL.. dir: «
$directory does not exist!"

CHAPTER 8: Automating Administrative Tasks

470

 return 1
 fi

 ## sanity check our group
 dscl /Search read /Groups/"$group" name &> /dev/null
 dsclCode=$?
 if [$dsclCode != 0]; then
 logger -s -t "$scriptTag" " - ERROR: could not apply ACL.. group: «
$group does not exist! dscl code: $dsclCode"
 return 2
 fi

 ## sanity check our permissions
 ##if (["$permissions" != "fc"] && ["$permissions" != "rw"] «
 && ["$permissions" != "ro"]); then
 ## logger -s -t "$scriptTag" "setACLForGroup() could not apply «
 ACL.. permissions:$permissions invalid, use 'fc'(Full Control), 'rw' (Read and Write), «
 'ro' (Read Only)!"
 ## return 3
 ##fi

 ## deploy our ACL's
 case "$permissions" in
 fc) ace="allow:list,add_file,search,delete, «
add_subdirectory,delete_child,readattr,writeattr,readextattr,writeextattr, «
readsecurity,writesecurity,chown,file_inherit,directory_inherit";;
 rw) ace="allow:list,add_file,search,delete, «
add_subdirectory,delete_child,readattr,writeattr,readextattr,writeextattr, «
readsecurity,file_inherit,directory_inherit";;
 append) ace="allow:list,add_file,search,add_subdirectory, «
readattr,writeattr,readextattr,writeextattr,readsecurity,file_inherit, «
directory_inherit";;
 ro) ace="allow:list,search,readattr,readextattr, «
readsecurity,file_inherit,directory_inherit";;
 *) logger -s -t "$scriptTag" "setACLForGroup() could not «
 apply ACL.. permissions:$permissions invalid!! defaulting to 'ro' (Read Only)!"
 ace="allow:list,search,readattr,readextattr, «
readsecurity,file_inherit,directory_inherit"
 permissions="ro"
 ;;
 esac

 logger -s -t "$scriptTag" " - applying ACL to dir:$directory for group: «
$group with perms:$permissions"

 /bin/chmod +a "$group:$ace" "$directory"
 chmodCode1=$?
 if [$? != 0]; then
 logger -s -t "$scriptTag" " - Failed applying ACL to «
 top level of dir:$directory code:$chmodCode1... exiting!"
 return $chmodCode1
 fi

 /bin/chmod -f -R +ai "$group:$ace" "$directory"/*

CHAPTER 8: Automating Administrative Tasks

471

 chmodCode2=$?
 if [$? != 0]; then
 logger -s -t "$scriptTag" " - Failed applying ACL to dir: «
$directory code:$chmodCode2"
 return $chmodCode2
 fi

 return 0
} ## end setACLForGroup()

######### START #############
#############################

Iterate through all of our specified homeDirectories.
OLDIFS=$IFS
IFS=','
for homeEntry in $homeDirectories; do
 ## check to ensure we have a good homeLoc
 homeLoc=$(echo $homeEntry | awk -F: '{print$1}')
 homeDepth=$(echo $homeEntry | awk -F: '/[0-9]/ {print$2}')

 if [-z "$homeDepth"]; then
 homeDepth=0
 fi
 if [-d "${homeLoc:?}"]; then
 cd "$homeLoc"
 else
 logger -s -t "$scriptTag" "Fatal error, $homeLoc is not a directory"
 errorOccured=true
 fi

 if [$homeDepth == 0]; then
 if ["$restructureHomes" == "true"]; then
 logger -s -t "$scriptTag" "Restructuring home folders for $homeLoc"
 structureForOSX
 fi
 if ["$repairPrivs" == "true"]; then
 logger -s -t "$scriptTag" "Reparing Privileges for $homeLoc"
 repairPrivs
 fi
 else
 IFS=$OLDIFS
 for homeDir in `ls | grep -v "$orphanageName" | grep -v "Shared" | «
 egrep -v "^\."`; do
 if [-d "${homeLoc:?}/$homeDir"]; then
 cd "$homeLoc/$homeDir"
 else
 continue
 fi
 if ["$repairPrivs" == "true"]; then
 logger -s -t "$scriptTag" "Reparing Privileges for $homeLoc/$homeDir"
 repairPrivs
 fi

CHAPTER 8: Automating Administrative Tasks

472

 cd ..
 done
 fi

 ## Deploy our aclGroups to the root of the home directory
 if [! -z "$aclGroups"]; then
 IFS=$'\,'
 for group in $aclGroups; do
 groupName=`printf "$group" | awk -F: '{print$1}'`
 groupRights=`printf "$group" | awk -F: '{print$2}'`
 setACLForGroup "$homeLoc" "$groupName" "$groupRights"
 done
 fi
done

Enabling the Software Firewall
The next script enables the Application Firewall in Mac OS X, which should generally be
done in all mass deployments where security is even a minimal concern. The script ends
with exit 0, which you may have noticed in previous scripts as well. The script brings in
positional parameters from PackageMaker, setting them as variables (discussed in detail
in Chapter 6). Then the paths for commands used in the script are declared, with more
lines in the script dedicated to declaring variables than to the payload, a common
occurrence.

#!/bin/bash
declare -x DSTROOT="$3" # Installation Volume of mount point.
declare -x SYSROOT="$4" # The root directory for the system.

declare -x PLIST="${DSTROOT}/Library/Preferences/com.apple.alf.plist"

declare -x defaults="/usr/bin/defaults"
declare -x plutil="/usr/bin/plutil"
declare -x chmod="/bin/chmod"
declare -x mv="/bin/mv"

"$defaults" write "${PLIST%.plist}" 'globalstate' -int 1 &&
echo "Plist Edited: ${PLIST}"

if $plutil "${PLIST:?}" >/dev/null ; then
 echo "Plist written successfully"
 $plutil -convert 'binary1' "${PLIST:?}"
 # Not needed , just for good measure
 $chmod +r "${PLIST:?}"
else
 "$mv" "${PLIST:?}" "${PLIST:?}.bad"
fi
exit 0

Furthermore, we can build on the logic just introduced. The following script will loop
through all of the local users on a system and alter the umask variable for each. Each
section is documented accordingly; note the beginning, where variables from the
positional parameters are mapped into paths for packages, mount points, and the

CHAPTER 8: Automating Administrative Tasks

473

system root. Having a custom system root allows the script to be run against a non-
booted drive, as would be common with InstaDMG style workflows.

#!/bin/bash
Standard Package Install Postional Parameters $1 $3 $4
declare -x PKGBUNDLE="$1" # Full path to the install package.
declare -x DSTROOT="$3" # Installation Volume of mount point.
declare -x SYSROOT="$4" # The root directory for the system.

Command short hand
declare -x awk="/usr/bin/awk"
declare -x chown="/usr/sbin/chown"
declare -x chmod="/bin/chmod"
declare -x basename="/usr/bin/basename"
declare -x dirname="/usr/bin/dirname"
declare -x id="/usr/bin/id"
declare -x ls="/bin/ls"
declare -x plutil="/usr/bin/plutil"
declare -x sudo="/usr/bin/sudo"
declare -x whoami="/usr/bin/whoami"

Run time varibles
declare -x SCRIPT="${0##*/}" ; SCRIPTNAME="${SCRIPT%%\.*}"
declare -x USER_TEMPLATE="$DSTROOT/System/Library/User Template/English.lproj"
declare -x FINDER_PREFS="$DSROOT/Library/Preferences/com.apple.finder.plist"

User customized values, also use a file in the same directory <script>.conf
declare -ix UMASK=2
declare -x HOME_PATH="/Users"
You could change this if you have an external Volume hosting homes
source "${PKGBUNDLE:?}/Contents/Resources/${SCRIPTNAME:-"$SCRIPT_NAME"}.conf"

As root is not covered in /Users/* set it here
if ["$DSTROOT" = '/'] ; then # If Installing on the startup disk
 echo "Setting umask for current user $($whoami):$UMASK"
 $defaults -g 'NSUmask' -int ${UMASK:?}
 # -g means .GlobalPreferences.plist for the current user
fi

This sets the Finder umask, which is not done in umask Doctor AFAIK
echo "Setting Global umask for the Finder: $FINDER_PREF to $UMASK"
$defaults write ${FINDER_PREFS%.plist} 'umask' -int ${UMASK:?}

Loop through the homedirectorys in <Destination Volume>/Users/*
loopThroughHomes(){
OLD_IFS="$IFS" IFS=$'\n'
Reset the Field Sep to spaces don't hose us.
for USERHOME in "${DSTROOT}${HOME_PATH:-"/Users"}"/* ; do
Start looping through the path on the destination Volume,defaults to /Users
 test -d "$USERHOME" || continue
 # Skip anything thats not a directory
 test -d "$USERHOME/Library" || continue
 # If the loop folder is missing a Library skip it
 # This will skip Filevault, Shared, Deleted Users etc.

CHAPTER 8: Automating Administrative Tasks

474

Setup the loop variables
declare USER_NAME="$($basename "$USERHOME")"
 # Pull the username from /Users/<username>
declare USER_PREF="$USERHOME/Library/Preferences/.GlobalPreferences.plist"
 # The users Dot Global Preferences file
declare -i NSUMASK=$($defaults read "$USER_PREF" 'NSUmask' 2>/dev/null)

 test ${NSUMASK:?} =${UMASK:?} && continue
 # If value is already set or to craziness like 0 , then continue
echo "Processing: $USER: $USER_PREF"
echo "Preference file: $USER_PREF"
if ["$DSTROOT" = '/'] ; then
 # if we are running on the active startup Volume
 $id "${USER_NAME:?}" &>/dev/null || continue
 # Check if the user is valid via DS search policy
 # Skip if the user's id lookup fails protects against del
$sudo -u "$USER" $defaults write ${USER_PREF%.plist} 'NSUmask' -int $UMASK
Actively set the Global preferences as the user to keep ownership
 echo "Configured $GLOBAL_PREF for $USER"
else
 declare OWNER_UID="$($ls -lnd "$USERHOME/Library" |
 $awk '/^d/{print $3;exit}')"
 # If we can't rely on DirectoryService, then pull the parent UID
 $defaults write ${USER_PREF%.plist} 'NSUmask' -int ${UMASK:?}

 echo "Chaining ownership on $USER_PREF to UID:$OWNER_UID"
 $chown "${OWNER_UID:-0} ${USER_PREF:?}"
fi

done
IFS="$OLD_IFS" # Reset our field separator
return 0
} # End loopThroughHomes()

Validate plist syntax and ownership and move if they fail the tests
checkPlistFiles(){
declare PLISTS="$@" # Read in all the given files in the PLISTS array
for PLIST in $PLISTS ; do
declare -i OWNER_UID="$($ls -lnd "$($dirname "$PLIST_CHECK")"|
 $awk '/^d/{print $3;exit}')"
declare -i PLIST_UID"$($ls -ln "$PLIST_CHECK"|
 $awk '/^d/{print $3;exit}')"
$plutil "${PLIST:?}" 1>/dev/null
done
return $?
} # End checkPlistFiles()

loopThroughHomes
checkPlistFiles
exit 0

CHAPTER 8: Automating Administrative Tasks

475

Managing Items in ARD
Apple Remote Desktop has the ability to use a task server, but not to share databases
by default. You can import and export databases and copy information between
computers manually from within ARD, but not actually share databases. In
com.apple.RemoteDesktop, there is an array called ComputerDatabase. This array lists all
of the items in the All Computers list within Remote Desktop. You can view a much less
human friendly output of all of the hosts in All Computers by running the following
command:

defaults read com.apple.RemoteDesktop ComputerDatabase

You can push an entry into the list by using the defaults command to write an item into
that array in com.apple.RemoteDesktop. Here’s a command to do so for a computer with
a name of CharlesTest and an IP address of 10.10.10.10. Most of the other fields are
extraneous and could probably be removed from the command, but it works as is:

defaults write com.apple.RemoteDesktop ComputerDatabase -array-add ' «
{ addedToDOC = 0;collectingAppUsage = 1;collectingUserAccounting = 1; «
docInfoUpToDate = 0;hostname = CharlesTest.local;name = "CharlesTest"; «
ncFlags = 0;networkAddress = "10.10.10.10";preferHostname = 0; «
showCursorForLegacy = 1;uuid = "C8F8966B-ED28-4221-CCE0-E1385D366717"; }'

You will need to restart the Remote Desktop services before you can see the new entry
in the Remote Desktop application. You can just reboot, or you can restart using a pair
of commands similar to the following:

launchctl stop `launchctl list | grep com.apple.RemoteDesktop | awk '{print $3}'`
launchctl stop `launchctl list | grep com.apple.RemoteDesktopAgent | awk '{print $3}'`

Disk Utilization
df is a great tool for checking the amount of free space on a disk (and the amount that’s
taken). df has a number of options for viewing the output and can even look at free
iNodes and blocks rather than just showing free space. However, df is going to come up
short if you’re hunting for where all your free space went within a given volume.

For this, look to du, a great tool for checking disk utilization, more at the directory level.
For example, the following command shows you how much space is being taken by
each application in the /Applications directory:

du -d 1 /Applications/

Now run the command without the -d 1 parameters:

du /Applications/

The -d flag limits the depth that the command will traverse. By specifying 0, you’d only
see the files in a given directory, whereas if you specify -d 2, you’ll see the sizes of the
child directories from the path you specified and their children (since that’s two). You
can go as deep as you want with the depth setting, but the data returned by the

CHAPTER 8: Automating Administrative Tasks

476

command can be too much, at times. Also, the longer it will take for the command to
complete as it’s calculating more and more data.

Some other flags that are useful are -x and -H. These will traverse mount points and
symbolic links, respectively (both of which are not followed by default). This can help to
keep your command’s output limited to the host and volume of directories underneath
the specified parent directory.

If you’re interested in seeing way too much information, try just running:

du –a

If you suddenly have only 1KB of free space available, a series of du commands can turn
up information about where all of your data is in no time.

Network Setup
Networking on Mac OS X can be automated. In many environments, system
administrators will want to reorder the network interfaces to leverage wired connections
over wireless when both are available. Therefore, we're going to go ahead and do two
things at once, explain how to configure the interface and show how to automate this
configuration from the command line so you can quickly deploy and then troubleshoot
issues with this machine-specific part of your deployment.

Before getting started, it is important to note that there is a significant distinction in the
nomenclature used in Mac OS X for network interfaces (devices) vs. network services.
An interface is a physical network adapter. These are indicated by traditional Unix
names such as en0, en1, fw0, and so on. You can determine which is which in a variety
of ways, such as using ifconfig or Network Utility from /Applications/Utilities. A
network service, in this context, is an abstraction of a network interface. Each service
will have a physical adapter, and a physical adapter can have multiple services, which is
how, for example, you would go about assigning two IP addresses to a single physical
adapter. Things can get even more confusing when bond interfaces, where you are
virtualizing a service to spread across multiple interfaces, in which case multiple
interfaces are represented as a single network service.

To get a list of the network services running on your machine, you can use the following
command:

networksetup -listallnetworkservices

And that command might return the following:

Ethernet
Airport
FireWire

There are about as many naming conventions for interfaces as there are actual
interfaces. For the purposes of this example, we're going to patch Ethernet into the
network and rename it to WiredNetwork, using the networksetup command again, with
the -renamenetworkservice option as follows:

networksetup -renamenetworkservice Ethernet WiredNetwork

CHAPTER 8: Automating Administrative Tasks

477

While it's not required to rename your network services, people often do. As you can
see, it's quick and easy and can save you a bunch of time in the future in terms of
troubleshooting, remote support, and automation facilitation. Renaming is very specific;
the command looks for a pattern in the name and replaces it with a new pattern. So
Built-in Ethernet would need to be enclosed in quotes, "Built-in Ethernet", and so forth.
Now let's go ahead and rename the other services to WirelessNetwork using the
following command:

networksetup -renamenetworkservice AirPort WirelessNetwork

Next, we want to make sure that the WiredNetwork is listed above WirelessNetwork. This
will ensure that standard communications DNS, directory services, HTTP management
traffic and other unnecessary traffic default to the wired network. To start, let's look at
what order the services are listed in. We're going to use networksetup yet again, this
time with the -listnetworkserviceorder option as follows:

networksetup –listnetworkserviceorder

This should provide a listing similar to the following, though perhaps in a different order:

 (1) WirelessNetwork
(Hardware Port: Ethernet, Device: en1)

(2) WiredNetwork
(Hardware Port: Ethernet, Device: en0)

(3) FireWire
(Hardware Port: FireWire, Device: fw0)

Here we see that WirelessNetwork is listed as the first item in the network service order.
Because we actually want the WiredNetwork first, we're going to reorder our services
using the networksetup command with the -ordernetworkservices option. Using this
option, you simply list each service in order, as you can see here:

networksetup -ordernetworkservices WiredNetwork WirelessNetwork FireWire

Notice that we include FireWire in the command. This is because you have to include all
of your network services for the command to execute successfully. Now we are actually
going to disable the FireWire network service (when we do, the interface itself will still
function) using the -setnetworkserviceenabled option of the networksetup command.
Because the FireWire service is automatically named FireWire, we simply tell
networksetup to setnetworkserviceenabled to off as follows:

networksetup -setnetworkserviceenabled FireWire off

Because most environments do not support IPv6 yet, we're going to disable this for
both WiredNetwork and WirelessNetwork using the -setv6off option as follows:

networksetup -setv6off WiredNetwork
networksetup -setv6off WirelessNetwork

Once IPv6 has been disabled, we're going to configure the IPv4 settings for our two
network interfaces. For example, WiredNetwork might be set up to use DHCP. In that
case there's not much configuration that needs to occur. While DHCP should be the
default setting used with the controller, it would still be wise to specify it again anyway

CHAPTER 8: Automating Administrative Tasks

478

(just in case), using the next command, where -setdhcp is the option that enables DHCP
for the WiredNetwork service.

networksetup -setdhcp WiredNetwork

While the WiredNetwork could be DHCP, in this case we're going to set it as a static IP
address of 10.100.1.11. The subnet mask will be 255.255.0.0 and the gateway will be
10.100.0.1. This is all sent to the service in one command, using the -setmanual option
with networksetup. When you use this option, you use the -setmanual option followed by
the name of the service to configure, then the IP address that will be given to the
service, then the subnet and finally the router (default gateway). In our case, the
command would be:

networksetup -setmanual WiredNetwork 10.100.1.11 255.255.0.0 10.100.0.1

The wireless network is a bit more persnickety. As is typical, we will use DHCP but we
will also need to configure a number of proxy services. Use the following command to
set the adapter to DHCP:

networksetup -setdhcp WirelessNetwork

To set the proxies, use a combination of two of the following proxy options per service:

 Setftpproxystate: Enables the FTP proxy.

 setftpproxy: Sets up a proxy for FTP.

 setwebproxystate: Enables the web proxy.

 setwebproxy: Sets up a proxy for web traffic.

 setsecurewebproxystate: Enables the SSL proxy.

 setsecurewebproxy: Sets a proxy for SSL traffic.

 setstreamingproxystate: Enables the streaming proxy.

 setstreamingproxy: Sets a proxy for streaming traffic.

 setgopherproxystate: Enables the gopher proxy (if you are using
gopher, please stay after class for a parent-teacher conference).

 setgopherproxy: Sets the gopher proxy.

 setsocksfirewallproxystate: Enables a socks firewall.

 setsocksfirewallproxy: Sets up the socks firewall.

 setproxybypassdomains: Defines the domains that the proxy will not
be used for.

To deploy a proxy setting, we’ll use two commands, one to enable the option and the
other to set it. For each proxy option that can be set, you will add the network service, a
host name (or IP address), and a port number that the proxy will run on. Optionally you
can then specify (still on the same line of the command) an authentication option (as
either on or off) along with a username and password for each proxy service. For
example, to set a web proxy for proxy.318.com that runs on port 8080 and requires

CHAPTER 8: Automating Administrative Tasks

479

authentication as username proxyserv with a password of Asimov you would use the
following commands:

networksetup –setwebproxystate on
networksetup –setwebproxy WirelessNetwork proxy.318.com 8080 on proxyserv Asimov

Now that we have the services configured, we need to assign name servers. In order to
set up DNS, we will use the -setdnsservers option with networksetup. In this case, our
DNS servers are 10.100.0.2 and 10.100.0.3. When using the -setdnsservers option, you
simply list the primary name server, followed by the secondary name server and any
tertiary name servers. DNS is used on WiredNetwork as WirelessNetwork picks up DNS
from DHCP:

networksetup -setdnsservers WiredNetwork 10.100.0.2 10.100.0.3

At this point you're probably thinking to yourself that you could have done all of this in
the Network System Preference pane in about two minutes. Now however, we're going
to take all of the commands we used in this example and put them into a shell script,
replacing the actual IP addresses with positional parameters for the WiredNetwork and
WirelessNetwork IP addresses, so that we can send the script along with the IP address
that it will receive to each workstation. The script would look something like this:

#!/bin/bash
networksetup -renamenetworkservice Ethernet WiredNetwork
networksetup -renamenetworkservice Ethernet2 WirelessNetwork
networksetup -ordernetworkservices WiredNetwork WirelessNetwork FireWire
networksetup -setnetworkserviceenabled FireWire off
networksetup -setv6off WiredNetwork
networksetup -setv6off WirelessNetwork
networksetup -setmanual WiredNetwork $1 255.255.0.0 10.100.0.1
networksetup -setdnsservers WiredNetwork 10.100.0.2 10.100.0.3
networksetup -setmanual WirelessNetwork $2 255.255.255.0
networksetup –setwebproxystate on
networksetup –setwebproxy WirelessNetwork proxy.318.com 8080 on proxyserv Asimov

Now the script can be sent to each workstation. For this example, we're going to call the
script setnetworkservices.sh. In order to send an IP address for the WiredNetwork of
10.100.1.12 and an IP for the WirelessNetwork of 192.168.1.12, you would simply send
the following command (including the path of course):

setnetworkservices.sh 10.100.1.12 192.168.1.12

Then, to set up the next host using the same convention you would use:

setnetworkservices.sh 10.100.1.13 192.168.1.13

If you want to get a bit more complicated with the script, you could add some logic. For
example, you might query for en0 and convert a service name to be used with en0 based
on the interface, to keep the script from failing due to someone having renamed the
service in the past. Because a common issue during setup is to patch the wrong
interfaces into the networks (in the case that there are two wired interfaces), you could
also use the ping command to test each network to verify it is live and if not (else) go
ahead and swap the IP settings and names. You might also go ahead and turn every
single setting into a variable to make it much more portable.

CHAPTER 8: Automating Administrative Tasks

480

Finally, as you are updating this information, you are actually augmenting the
/Library/Preferences/SystemConfiguration/com.apple.network.identification.plist
file. While there are a variety of ways to edit this file directly, I wouldn't really suggest it
because most adapters are referenced by MAC and have generated ServiceIDs (for
example F8166C7E-CCFC-438C-98C6-CB05C7FA13E7). It is far easier to simply use
the networksetup tool than it is to actually use a file drop of the plist or augment this file
directly.

In Mac OS X 10.6 there are three major additions to networksetup. The first is that you
can now use networksetup to import and export 802.1x profiles (and link them to
certificates that you import from pkcs12 into Keychain), which will hopefully ease
implementation burdens for environments with supported 802.1x setups. The second is
that networksetup can now be used to manage a Baseboard Management Controller
(BMC), which is the chip that enables ipmi/Lights-Out Management. The third new
option is the addition of network locations control from within networksetup. This means
that networksetup can now be used to configure basically the entire network stack.

First let's look at the options that have been added to ease the burden of integrating
802.1x. In the Network System Preference pane, if you've enabled 802.1x on a Mac host,
you may have noticed that you have user profiles, login window profiles, and a system
profile. The options in networksetup correspond to these, with -listalluserprofiles and
-listloginprofiles showing available user and login profiles respectively (you can only
have one system profile, so there's no need for listing all one of them). Additionally, any
profiles that you generate will need to be enabled. You will use the -enablesystemprofile
to enable the system profile for a given service. And if you are integrating 802.1x with the
loginwindow you'll need to enable one of the profiles that you listed earlier, using the
-enableloginprofile option to networksetup along with the service, followed by the
profile, followed by an on or off switch. For example, if we wanted to enable a profile
called mycompany for the login window and use the service that we'd set up called
PrimaryEthernet, then we could use the following command:

networksetup -enableloginprofile PrimaryEthernet mycompany on

But, where are these profiles coming from? Well, the easiest way to get them on
your system is to use the -export8021xProfiles to export all profiles for a given
service on an imaging station and then the -import8021xProfiles followed by
the service to import the profiles into, followed by the path to the export file.
You can also export just the user profiles using the -export8021xLoginProfiles
or the -export 8021xSystemProfiles options to export just the login profiles
and system profiles respectively. TLS will be a bit trickier. Apple includes the
-settlsidentityonsystemprofile and -settlsidentityonuserprofile to assist with
pkcs12 integration (currently the only supported format).

In addition to 802.1x options, in 10.6 you can also now programmatically configure
and control preferred wireless network settings from the command line. Arguments

CHAPTER 8: Automating Administrative Tasks

481

associated with this functionality are –listpreferredwirelessnetworks,
-addpreferredwirelessnetworkatindex, -removepreferredwirelessnetwork, and
–removeallpreferredwirelessnetworks. For instance, to add a preferred wireless
network ‘‘Ansible’’ with WPA2 personal security, I would use the following command:

sudo networksetup -addpreferredwirelessnetworkatindex Airport Ansible 1 WPA2 Secretp4$$

10.6 also brings location management to networksetup. Locations have always been
pretty straight forward in the Network System Preference pane, and with 10.6 you can
now create and change locations programmatically (previously this was provided via the
scselect utility). Simply use the -getcurrentlocation option to show you which location
is active (if you haven't ever customized network locations this should be ‘‘Automatic’’).
You can see all available locations (not just the active one) by using the -listlocations
option. New locations can be created with the -createlocation argument followed by
the name to be assigned to the location. By default, the default services will not be
included in this location, so use the populate option to add them. As an alternative you
can add individual services manually via the –createnetworkservice option. If we were
creating a new location called ‘‘MyCo Location,’’ with all network services populated,
then our command would look something like the following:

networksetup -createlocation "MyCo Location" populate

To then make that location our active location, use the -switchtolocation option. For
example, we could use the following to activate that location we just created:

networksetup -switchtolocation "MyCo Location"

And to delete it if we did something wrong, use -deletelocation (to continue on with
our previous example):

networksetup -deletelocation "MyCo Location"

NOTE: Mac OS X 10.6 also includes support for automating the deployment of 802.1x profiles.
One of the authors of this book did a write-up on doing so that is available at:
http://www.afp548.com/article.php?story=20090901010221742.

Power Management
Power management can most easily be managed via MCX, as discussed in Chapter 7.
However, there may be instances where you need to resort to scripting to deploy your
power management settings, and you can use the pmsetcommand line utility to
accomplish this. For starters, let’s look at enabling the wake on magic packet:

pmset -a womp 1

The -a indicates that the setting will apply to all settings modes for a computer: it will
apply to the system when on battery, when we’re plugged in, or when we are running on

CHAPTER 8: Automating Administrative Tasks

482

UPS backup power. You can change settings for only a specific state with the following
flags, which fall into the first positional parameter:

 -a: all

 -b: battery

 -c: wall power

 -u: UPS

The next parameter you’ll pass to the command is the option (argument) for that power
setting that you would like to send. Here you can set the number of minutes before the
display goes to sleep, the brightness at various power settings, and other options that
have a direct effect on power behavior. These include the following:

 acwake: Wake when the system is connected to power; it’s a 0 or 1.

 autorestart: Automatically restart when there’s been a power loss
(when the system is plugged in); use 0 or 1.

 disksleep: Number of minutes before the disk spins down.

 displaysleep: Number of minutes before the computers monitor (signal
to the monitor) goes to sleep.

 dps: Allows the CPU speed to dynamically change with power; 0 or 1.

 halfdim: Controls whether the display goes to half- brightness for the
power setting in question; 0 or 1

 lessbright: Same as above, just not as much

 lidwake: Automatically wake the system when the lid is opened; 0 or 1

 powerbutton: Allows the box to go to sleep if someone hits the power
button. If it’s disabled, the system will not go to sleep if someone hits
the power button. This doesn’t disable powering down by holding
down that same power button; 0 or 1.

 reduce: Allows reduction of the CPU speed; 0 or 1.

 ring: Wakes if someone calls the modem (but since the modern
laptops don’t have modems, likely not something you’ll be using). It’s
an integer, 0 or 1.

 sleep: Number of minutes before the computer goes to sleep (but
doesn’t spin down the disk).

 sms: Controls whether you’re using the Sudden Motion Sensor to stop
the disk heads from locking down when the system gets jarred (G
force math is kewl). It’s a Boolean thing, either on or off.

 womp: explained previously.

CHAPTER 8: Automating Administrative Tasks

483

In addition to these, you can also use pmset to get information with the -g flag. Using -g
alone will net you all of the available information and while there are other options to limit
what it outputs, I normally just use grep for that.

There are also a number of options for managing SafeSleep (maintaining the system
state in memory, using the argument hibernatemode) or UPS options (haltvalue for how
much battery to trigger a shutdown and halfafterfor when to spin the CPU to 50% of
full). If you’re trying to manage the system and you have a battery (such as a laptop
plugged into a UPS), the settings will not be respected.

Just as in the System Preference pane, you can also control scheduling for when the
system sleeps, wakes, powers on, or shuts down as well. These events can be
scheduled by using the schedule or repeat arguments, which can be used to set one
time power events, or repeated events, respectively. Options for each are sleep, wake,
poweron, and shutdown in conjunction with using date, time, weekdays. You can
optionally provide a string name of the person setting the schedule for documentation
purposes:

pmset schedule poweron "09/09/09 9:09:09"
pmset repeat shutdown MTWRF 21:00:00

There are also a few other options that you don’t have in the GUI. These include force,
which doesn’t write settings to disk, touch, which reads currently enforced settings from
the disk, noidle, which prevents idle sleep (and just spins the disk down when it’s ready)
and sleepnow, which puts the system to sleep right then. sleepnow is useful when you’re
troubleshooting why a system won’t go to sleep.

For the Xserve specifically, there is also Lights-Out Management (discussed later in the
chapter) in the form of the IPMI toolkit from Intel. You can use that to power systems on,
power them off, and perform a few other tasks. This must be secured with a password,
using Server Monitor. You can then control state through Server Monitor, or through
Apple Remote Desktop. Find out more about IPMI on this page over at Intel.com.

ServerAdmin Backups and Change Monitoring
At its most basic, change control can be used in Mac OS X Server by leveraging the
serveradmin command. You can use the serveradmin command with the settings option
as we’ve done extensively in Chapter 5 to obtain information about settings and
augment those settings in Mac OS X Server on a per-server basis. However, you can
also use the serveradmin command to report all of the settings for all of its services. To
do so, you use the following command:

serveradmin settings all

You can then pipe this information into a file. For example, the following command
would copy the information from serveradmin into a text file in the /scripts directory of
a system called dailyservercheck:

serveradmin settings all > /scripts/dailyservercheck

CHAPTER 8: Automating Administrative Tasks

484

It is important to note that any changes made directly to a particular software package's
configuration files will likely not be detected through this method; for instance, if a user
modified the postfix service's configuration at /etc/postfix/main.cf. To monitor Unix
utilities such as these, Tripwire, a change monitoring solution both with open-source and
enterprise solutions available (www.tripwire.org and www.tripwire.com), is a better
option. That being said, serveradmin is a great way to track changes made through
standard Apple tools and therefore certainly does have a purpose.

To fully automate this task, we can use the code listed below, also available for digital
download (file 8_sabackuplocal.sh). This code creates a folder specified by variable
SABACKUPDIR, and then creates a disk image in the form of a sparsebundle named by the
variable SAARCHIVEDMG. Once these assets are created, they will be utilized for the
backup. This script will automatically mount the disk image, perform a serveradmin
backup, and then check that against the last run to determine if any changes were
made. A symbolic link named "Latest.txt" will always be linked at the latest serveradmin
output. A more robust version of this script can be found for digital download as well (file
8_sabackup.sh).

#!/bin/bash

########## Server Admin Backup Script #####################

Written by Beau Hunter, Zack Smith 7/03/09
beauh@mac.com acid@wallcity.org
Server Admin backup script, equivalent to serveradmin settings all
backs up only when config changes, generates diffs with each change.

User configuration
SABACKUPDIR=/Auto\ Server\ Setup

Serveradmin archive disk image
SAARCHIVEDMG="serveradmin_archives.sparsebundle"
SAARCHIVE_MOUNTPOINT="/Volumes/${SAARCHIVEDMG%.sparsebundle}"

bin vars
declare -x grep="/usr/bin/grep"
declare -x serveradmin="/usr/sbin/serveradmin"
declare -x defaults="/usr/bin/defaults"
declare -x hdiutil="/usr/bin/hdiutil"
declare -x diskutil="/usr/sbin/diskutil"
declare -x mkdir="/bin/mkdir"
declare -x du="/usr/bin/du"
declare -x date="/bin/date"
declare -x diff="/usr/bin/diff"
declare -x awk="/usr/bin/awk"
declare -x mv="/bin/mv"
declare -x ln="/bin/ln"
declare -x mktemp="/usr/bin/mktemp"
declare -x umount="/sbin/umount"
declare -x sleep="/bin/sleep"

CHAPTER 8: Automating Administrative Tasks

485

Runtime variables
DATE=$("$date" +'%Y%m%d.%H%M_%S')
declare -x REQCMDS="$awk,$ntpdate,$perl,$scutil"
declare -x SCRIPT="${0##*/}" ; SCRIPTNAME="${SCRIPT%%\.*}"
declare -x SCRIPTPATH="$0" RUNDIRECTORY="${0%/*}"
declare -x SCRIPTLOG="/Library/Logs/${SCRIPT%%\.*}.log"

test for root
["$EUID" != 0] && printf "%s\n" "This script requires root access ($EUID)!" && exit 1

exec 2>>"${SCRIPTLOG:?}" # Redirect standard error to log file

########## MAIN ##########

check for the backup dir
if [! -d "$SABACKUPDIR"]; then
 echo "A local directory was not found at path: $SABACKUPDIR, attempting to
create"

 "$mkdir" "$SABACKUPDIR" &> /dev/null
 if [$? != 0]; then
 echo "Failed to mount $NFSPATH to $SABACKUPDIR, exiting!"
 exit 1
 fi
fi

Check for directory mounted where our DMG should be
if [-d "$SAARCHIVE_MOUNTPOINT"]; then
 echo "Directory mounted at ServerAdmin Backup DMG mountpath:
$SAARCHIVE_MOUNTPOINT"
 "$umount" "$SAARCHIVE_MOUNTPOINT"

 ## attempt to remove the local directory
 rm "$SAARCHIVE_MOUNTPOINT"/.DS_Store &> /dev/null
 rmdir "$SAARCHIVE_MOUNTPOINT" &> /dev/null
 if [-d "$SAARCHIVE_MOUNTPOINT"]; then
 echo "Could not resolve the issue, please remove: $SAARCHIVE_MOUNTPOINT"
 exit 4
 fi
fi

Check for an archive disk image
if [-d "$SABACKUPDIR"/"$SAARCHIVEDMG"]; then
 ## mount it if it exists
 "$hdiutil" mount -nobrowse "$SABACKUPDIR"/"$SAARCHIVEDMG" >> "$SCRIPTLOG"
 echo "ServerAdmin Backup DMG found, mounting!"
else
 ## here if we need to create our DMG
 echo "ServerAdmin Backup DMG: $SAARCHIVEDMG could not be found! creating..."
 TEMPPATH="$("$mktemp" -d /tmp/XXXXXX)"
 "$hdiutil" create -type SPARSEBUNDLE -size 1g -fs HFS+ -volname «
"${SAARCHIVEDMG%.sparsebundle}" "$TEMPPATH"/"$SAARCHIVEDMG" >> "$SCRIPTLOG"
 "$mv" "$TEMPPATH"/"$SAARCHIVEDMG" "$SABACKUPDIR"/"$SAARCHIVEDMG"
 if [$? != 0]; then

CHAPTER 8: Automating Administrative Tasks

486

 echo "Could not move from $TEMPPATH/$SAARCHIVEDMG"
 exit 3
 fi
 "$hdiutil" mount -nobrowse "$SABACKUPDIR"/"$SAARCHIVEDMG" >> "$SCRIPTLOG"
 echo "Mounting ServerAdmin Backup DMG"
fi

One last sanity check
if [! -d "$SAARCHIVE_MOUNTPOINT"]; then
 echo "Disk image did not seem to mount! Exiting!"
 exit 5
fi

and last but not least, dump our settings
echo "Checking for changes..."
"$serveradmin" settings all | "$grep" -v "info:currentTime" > «
"$TEMPPATH"/sa_export_"$DATE".txt

"$diff" "$SAARCHIVE_MOUNTPOINT"/latest.txt "$TEMPPATH"/"sa_export_$DATE.txt" &>
/dev/null
if [$? == 0]; then
 echo "No changes were detected, not saving export"
else
 echo "Changes found, saving output and creating diff file."
 "$diff" "$SAARCHIVE_MOUNTPOINT"/latest.txt "$TEMPPATH"/"sa_export_$DATE.txt" >> «
 "$SAARCHIVE_MOUNTPOINT"/"sa_export_${DATE}-diff.txt"
 "$mv" -f "$TEMPPATH"/sa_export_"$DATE".txt «
"$SAARCHIVE_MOUNTPOINT"/"sa_export_$DATE.txt"
 cd "$SAARCHIVE_MOUNTPOINT"
 "$ln" -s "sa_export_$DATE.txt" "latest.txt"
 cd "$OLDPWD"
fi

if [-d "$TEMPPATH"]; then
 "$rm" -rf "$TEMPPATH" &> /dev/null
fi

if we're still here, then force the unmount (there is no messing around!)
while [-d "$SAARCHIVE_MOUNTPOINT"]; do
 let COUNT++
 if [$COUNT -le 10]; then
 echo "Unmounting ServerAdmin Backup DMG: $SAARCHIVE_MOUNTPOINT"
 "$hdiutil" eject "$SAARCHIVE_MOUNTPOINT" >> "$SCRIPTLOG"
 elif [$COUNT -eq 11]; then
 echo "ServerAdmin Backup DMG failed to unmount, forcing!"
 "$diskutil" unmount force "$SAARCHIVE_MOUNTPOINT" >> "$SCRIPTLOG"
 else
 echo "ServerAdmin Backup DMG failed to unmount!"
 break
 fi
 "$sleep" 1
done

exit 0

CHAPTER 8: Automating Administrative Tasks

487

Xserve Lights-Out Management
Snow Leopard also comes with the ability to manage that Lights-Out Management
(LOM) port via the previously discussed networksetup command. To see the LOM
settings, you would use networksetup along with the -showBMCSettings option. To set up
LOM, use the -setupBMC option, along with the port on which to use it, followed by
whether it will be static or DHCP (yes, I said DHCP, but I don't think I'd do that: this is a
management interface and should be persistent), the IP, subnet mask, gateway, and
finally the admin user name and password (keep in mind those passwords need 8
characters). So let's say that I wanted to configure my LOM interface to use Ethernet 1,
using 10.1.1.29 with a subnet mask of 255.255.255.0 and a gateway of 10.1.1.1, with a
LOM username of admin and a password of mysecretpassword1. I would then use the
following command:

networksetup -setupBMC 1 static 10.1.1.29 255.255.252.0 10.1.1.1 admin mysecretpassword1

For 10.5 or earlier, or to access additional functionality, you can use the ipmitool
command to accomplish the task. To set the IP address on a LOM interface, use the
following command:

sudo ipmitool lan set 1 ipaddr 10.1.1.29 netmask 255.255.255.0 defgw 10.1.1.1

This sets interface one; replace set 1 with set 2 to set it on the second interface.
There is some pretty cool functionality here, such as specifying VLAN tagging,
backup gateways, hard-coding gateway MAC addresses to protect against arp
poisoning, and so on.

If you want to edit the default user account created by Server Monitor, which resides at
userid 2, you can do so using these commands:

sudo ipmitool user set name 2 myadmin
sudo ipmitool user set password 2 'mypass'

CAUTION: Passwords are provided via stdin and are thereby recorded in your .history file.

If you want to create a new user account altogether (on top of an already configured
apple user), use the following commands:

get a list of current users to determine the nextuser ID.
This will output a list of all user's on the system, as well as their user
id. When creating a new user, we need to make sure we use the next available user id:
sudo ipmitool user list 1

OS X by default has 2 users, one is a built in system user, the other an admin user
which is setup typically in Server Monitor. Id 3 is the next unused id
sudo ipmitool user set name 3 mynewadmin
sudo ipmitool user set password 3 'mynewpass'
sudo ipmitool enable 3

turn on serial over lan for the user on both interfaces (not sure if this «
 is needed, but it's used by the default admin)
sudo ipmitool user sol 3 enable 1

CHAPTER 8: Automating Administrative Tasks

488

sudo ipmitool user sol 3 enable 2

set the user as admin for the first LOM port
sudo ipmitool channel setaccess 1 3 callin=on ipmi=on link=on privilege=4

and then the second
sudo ipmitool channel setaccess 2 3 callin=on ipmi=on link=on privilege=4

After running these commands, you should be able to verify LOM management via ARD
or Server Monitor by using the newly created user.

Troubleshooting
Regardless of the specific debugging techniques you use (and there are about as many
methods for debugging as there are programmers), there are a few general principles to
keep in mind as you debug your scripts.

The first task in any debugging effort is to learn how to consistently reproduce the bug.
If it takes more than a few steps to manually trigger the buggy behavior, consider writing
a script to trigger it. You will be able to debug much more quickly this way.

As you are debugging, you will want to progressively narrow your scope. In many cases,
this involves eliminating half the possibilities at each stage of troubleshooting. Analysis
is the thoughtful consideration of a bug's likely point of origin, based on detailed
knowledge of the code base. In practice, you will probably use a combination of analysis
and sheer brute force. A preliminary analysis will isolate the area of your code that is
most likely to contain a given bug and then reviewing all of the code within that area will
often help to locate it precisely.

Use debuggers, but don’t spend an extended period of time getting the debuggers to
work. Often, you step through a piece of code, statement by statement, only to find that
you accidentally fixed the problem. Stepping through the code is invaluable as the more
times you go through it, the more streamlined and commented it tends to become.
Becoming more in tune with your code in this way can help to make you a better
programmer.

If you are attempting to write scripts just for simple admin purposes and don’t wish to
spend a lot of time debugging, use a search engine and see if the specific portion of
your script has been written before. In the course of writing this book, we found many of
our scripts in an almost identical state on the web. In some cases, there are a finite
number of ways of writing a script and if someone else has found the way to get the
script to work, then learn from their work and build on it.

When trying to isolate a bug, you often want to change only one thing at a time.
Debugging is a process where you make changes to code and then test to see if you've
fixed a bug. Then you make another change, test again, and so on until the bug is fixed.
At each iteration, make sure to change only one thing so that when the bug is fixed, you
will know exactly what caused it. If you change several things at once, you risk including
unnecessary changes in your fix, which may in some cases cause bugs themselves.

CHAPTER 8: Automating Administrative Tasks

489

A trace statement is a console or log message that is inserted into a piece of code
suspected of containing a bug, then generally removed once the bug has been found.
Trace statements not only trace the path of execution through code, but the changing
state of program variables as execution progresses. Once you have found the bug, you
may find it helpful to leave a few of the trace statements in the code, perhaps converting
console messages into file-based logging messages to assist in future debugging.

If you're using a third party server, database, or script, check all of the components and
you will often find a good amount of useful information about errors in the log files for
each application or operating system. You may have to configure the component to log
the sort of information you're interested in.

Sometimes, after you've been hunting a bug for long enough, you begin to despair of
ever finding it. When this happens, it can be useful to start from scratch. Create a new
script, and bring each function from your old script over one at a time, checking each
portion thoroughly before integrating it into the new script. At times, it is also a good
idea to break each portion of a script into a separate scripts of its own.

Research shows that bugs tend to cluster. When you encounter a new bug, think of the
parts of the code where you have found bugs in the past, and whether they could be
involved with the current bug. At times, this is just that the functions you are working
with may not be your strongest, or that the code in general is just buggy, but experience
tells that where there is one pesky bug, there are likely to be others.

One of the most obscure sources of bugs is from using incompatible versions of third-
party libraries. It is also one of the last things to check when you've exhausted other
debugging strategies. For example, if version 5.1 of some library has a dependency on
version 1.4g of SSL or some other library but you install 1.4b instead, the results may be
issues that are difficult or impossible to diagnose. Checking your documentation can
help with this.

If all else fails, read the instructions. It's remarkable how often this simple step is . In
their rush to start programming with some class library or utility, some developers will
adopt a trial-and-error approach to using, for example, a new Perl mod. If there is little
or no documentation, this may be appropriate. It's possible that your bug results from
misuse of the mod and the underlying code is failing to check that you have obeyed all
the necessary preconditions for its use.

When a bug suddenly appears in functionality that has been working for some time, you
should immediately wonder what has recently changed in the scripts or software that
calls the scripts that might have caused the bug. This is where a version control system
can be helpful, providing you with the ability to look at the change history of your code,
or re-creating successively older versions of the code base until you get one in which
the bug disappears. CVS and Subversion are both great examples of version control
systems.

What may be multi-causal problems are often troubleshot as a single-cause bug. When
troubleshooting network issues and buggy scripts, it is often hardest to isolate issues

CHAPTER 8: Automating Administrative Tasks

490

that contain multiple errors. In fact, we often do not consider this until trying everything
else. But they do happen and if nothing else explains an issue, look for multiple bugs.

Normally you scrutinize the error messages you get very carefully, hoping for a clue as
to where to start your debugging efforts. But if you're not having any luck with that
approach, remember that error messages can sometimes be misleading. Sometimes
programmers don't put as much thought into the handling and reporting of error
conditions as one would like, so it may be wise to avoid interpreting the error message
too literally, and to consider possibilities other than the ones that are specifically
identified.

When you're really stuck on a bug, it can be helpful to grab another programmer and
explain the bug to them. Also tell them the efforts you've made so far to hunt down its
source. They may offer some helpful advice, but this is not what the technique is really
about. It sometimes happens that in the course of explaining the problem to another
person, you realize something about the bug you didn't think of before.

Many have noted that solutions come much easier after a period of intense
concentration on the problem, followed by a period of rest. Another way to get a fresh
look at a piece of code you've been staring at for too long is to print it out and review it.
We read faster on paper than on the screen, so this may be why it's slightly easier to
spot an error in printed code than displayed code.

After a time you may notice that you are prone to writing particular kinds of bugs. If you
can identify a consistent weakness like this, you can take preventative steps. If you have
a code-review checklist, augment the checklist to include a check specifically for the
type of bug you favor. Simply maintaining an awareness of your "favorite" defects can
help reduce your tendency to inject them.

Further Reading
Learn Mac Automation with Ruby Scripting. In this chapter we focused on using the
bash shell to script against Mac OS X. However, Ruby is a flexible, popular, and
diverse scripting language that can also be used, as is AppleScript. In this book,
by Matt Neuberg, you will learn how to translate information between Ruby and
AppleScript, which can be very useful, especially if you will be integrating Puppet
into your imaging infrastructure. http://www.apress.com/book/view/9781430224938

Beginning Portable Shell Scripting: From Novice to Professional. This chapter
has a heavy focus on shell scripting, as we feel that such scripts provide a very
accessible, powerful environment, which can be handled for numerous automations.
This book by Peter Seebach provides an excellent look into shell scripting.
http://www.apress.com/book/view/1430210435

Beginning Perl, Second Edition. Perl is another command-line and scripting tool that
can be used to automate almost anything in Mac OS X. In this book, by James Lee,
you will learn the basics of programming in Perl. This is often the next step when
budding programmers outgrow the capabilities of bash. http://www.apress.com/
book/view/9781590593912

CHAPTER 8: Automating Administrative Tasks

491

Pro Perl. Once you have a good fundamental understanding of Perl, it is time to
move on to mastering it. This book, by Peter Wainwright, will guide you through
moving from a Perl youngling to a Perl knight. By the end, you will be developing at
a level that will have you automating even the most basic of tasks, such as walking
the dog. http://www.apress.com/book/view/9781590594384

Beginning Python: From Novice to Professional. Python is another language that
people like to try once they master the shell for Mac OS X. Python has a number of
options that can be leveraged with Mac OS X. http://www.apress.com/book/
view/9781590595190

CHAPTER 8: Automating Administrative Tasks

492

9Chapter

Virtualization
When faced with the ultimate goal of integrating Mac OS X clients into the enterprise, the
preferred focus should be to provide your OS X users with a native environment whenever
possible. There are many benefits to this. First and foremost, your user’s lives will be
better, which will make your life better. They will have a consistent user interface and a
generally smoother experience.

While keeping users in a native environment is preferable, Virtualization is a popular option
when deploying Windows and Linux applications on Mac OS X clients, as there are always
going to be environments where certain business critical applications are platform
dependent. When you have those one or two applications that are business critical to your
organizations, but the applications cannot be used natively for the Mac, virtualization is a
popular way to deploy non-Apple centric solutions onto Mac OS X. Deploying virtual
environments is also a handy way to provide a fall-back when transitioning a user base
from a different platform. Having said that, it’s important to keep in mind that when you
deploy virtual machines, your mass deployment system is now no longer one machine; it
includes the deployment and initial configuration of both your host operating system (the
Mac OS X operating system that will be housing your virtual machines) as well as the sum
of all of your guest operating systems (the operating system running on each of your
virtual machines).

Each guest operating system will come with its own deployment considerations, system
requirements, long-term management requirements and of course, licensing. Each of
these costs adds up to reduce the business case for having Mac OS X in the first place.
Therefore, it is highly recommended to look at alternatives before deciding to deploy
typical virtualization candidates like Microsoft Windows to all of your Macs, when possible.
If you can streamline all of your applications into items available for Mac OS X then your
deployment will go much smoother. The paradigm shift to Web-based applications that is
occurring in most environments might help you in this regard. If you cannot, consider
application publishing to a central server, using a tool such as Citrix prior to considering
whether or not to deploy a virtualization application en masse to your end users. If you are
transitioning a user base to OS X from another platform, you may have the facilities and

493

CHAPTER 9: Virtualization

494

licensing already in place to support the former environment. In this case, you have all of
the pieces in place to deploy a relatively low-cost, historical window to your old
environment-----all provided through visualization.

While the mass deployment of only a single operating system in many environments is
difficult, this task is made wholly more difficult when you are deploying guest operating
systems on top of this. Keep in mind that both operating systems need to be manageable
using your patch management solution or may require two different patch management
solutions. Each typically needs to have policies enforced, and each will need similar
automation logic. They will also need twice the surface space. This sprawl magnifies the
need for centralized management and can often lead to the need for a higher staff count in
order to deal with support tickets.

OS X is a very capable environment in that it plays well with others. If you are migrating
from a UNIX environment, its native support for X11 will likely make you very happy.
Common applications available on Windows like Microsoft Office and Lotus Notes are
both natively supported. More and more business apps are turning into web applications,
where the Mac is (usually) a first-rate citizen. However, the reality of the situation is that
many purpose-built business apps are platform dependent in one way or another.
Sometimes, there may be a native Mac client for your business app, but after testing it
proves to be unreliable and generally unsupported (or perhaps written by the CEO’s
16-year-old son, but you did not hear that from us). In some cases, the OS X client may
just simply be missing critical functionality. If you need to publish alternative platform
applications to users that they can use offline, if you need to allow users to test software,
or you find some features of the Mac OS X versions of certain packages to be lacking,
then you will likely need to deploy Windows alongside Mac OS X. If you find this reality
staring at your face, you need to simply know that the process can work out great,
provided that you follow a few specific steps. In this chapter, we will focus on explaining
aspects of deployment that are unique to the virtualization environment for Mac OS X, with
a general focus toward Microsoft Windows as the guest OS. This will begin with VMware
Fusion, Parallels Desktop and Server, Boot Camp (not technically virtualization, but more
on that later) and finally Crossover, an OS X native Wine implementation (a Windows API
translation layer). We will explain how to deploy the Windows OS to OS X clients, and will
cover various aspects used to manage the actual guest operating system. Once the VM
has been deployed, we will move into patch management of the guest operating system
itself.

Boot Camp
Microsoft Windows can be deployed on a Mac using Boot Camp. Boot Camp will
require the system be rebooted between each operating system switch and comes with
a host of additional deployment considerations. The Mac doesn’t natively support PXE
booting and other traditional Windows Deployment options; however, you can deploy
Boot Camp through DeployStudio, JAMF’s Casper Suite, and by using a number of
other solutions. Because it runs on bare metal, we’re going to leave further discourse on
Boot Camp to Chapter 6.

CHAPTER 9: Virtualization

495

Thin Clients
Before moving into discussing how to deploy virtualization applications, it is never a bad
idea to pose a simple but important question: Why? As we’ve discussed, deploying
multiple operating systems per host can create a large amount of overhead in all facets of
your infrastructure, thus increasing the total cost of ownership of your overall environment.
Why not deploy applications instead of entire operating system environments? The entire
provisioning process occurs faster and upgrades happen centrally, thus there is no need
for an additional infrastructure to support these operating systems.

One of the oldest and most stable thin client solutions with a Mac client is Citrix
XenApp. Citrix can be used to publish a session, whether that session is an entire
operating system environment or a single application. If you are considering deploying
virtualization software to supply only a handful of non-native applications to your Mac
users, consider Citrix as an alternative.

Microsoft also licensed Citrix technology to include Windows Server. This ‘‘Terminal
Services’’ also fully supports a Remote Desktop Connection client for the Mac. You can
download the Remote Desktop Connection at http://www.mactopia.com or use the open
source CoRD at http://cord.sourceforge.net, which provides you with the ability to tap
into multiple Windows RDP sessions concurrently. Terminal Services is going to be less
costly than Citrix, but will also have fewer features and is best used when publishing an
entire operating system environment, rather than a specific application.

The biggest drawback to a thin client environment is that access requires users to be
online. This may or may not be detrimental to your user’s productivity, but whether it is
will generally be a pretty easy question to answer. With Wi-Fi showing up on flights
around the country, high-speed cellular data networks, and a multitude of mobile
devices that support the Remote Desktop Protocol (including the iPhone) thin clients
are becoming a more and more accessible solution.

NOTE: In addition to publishing Windows environments for Mac users, you can also publish
Mac environments for both Windows and Mac users with AquaConnect. More on AquaConnect
can be found on their web site at http://www.aquaconnect.net.

VMware
VMware provides a Mac OS X native virtualization client, dubbed Fusion. VMware
Fusion is a type 2 hypervisor, meaning that it runs on top of an existing operating
system (OS X) as an application. Furthermore, the application currently requires an
active user session, which definitely has implications when deploying in a server
environment. In such a case, a type 1 hypervisor, or bare metal hypervisor, is typically
desirable in a server environment, allowing a system’s virtualized operating systems to
operate independently of each other. Unfortunately, at the time of this writing there are
no true type 1 hypervisor’s available for OS X. That said, VMware Fusion does have
support for hosting both Mac OS X 10.5 or 10.6 server environments. Where Fusion

CHAPTER 9: Virtualization

496

succeeds is desktop OS virtualization, such as Microsoft Windows. A little later,
VMware came on strong with Mac support and provides through Fusion a stable
solution with good features and very decent performance.

The best way to deploy VMware Fusion to Mac clients is via an installer package.
However, at first glance, the VMware Fusion installer is actually an application, and
not an installer package. Never fear, there is in fact a native installer package, it’s
just hidden inside the application bundle’s Resources folder. As such, you can
extract this package for mass deployment, without the installer application, to
deploy VMware Fusion with very little effort, provided that you do not require any
customizations. Many environments will choose to customize the application
installer. If you plan to do so then you may need to create a package or use a
combination of two packages, one to deploy the actual package and another to
deploy the license file. The VM itself will typically warrant its own installer as well.
Splitting items up into individual packages can enable you to later replace only
specific components on clients, conserving bandwidth, disk space and other
resources.

Deploying VMware Fusion on Mac OS X is a three-step process. The first step is to
deploy the VMware Fusion application. This is the software that allows you to run a
guest operating system in a virtual machine. The second step in the process is to
deploy the virtual machines themselves. Each virtual machine will run its own guest
operating system which will need its own post-deployment configuration. This final
configuration makes up the third step. In many cases, the guest operating system
will be able to hook into an existing Windows deployment infrastructure and utilize
in-place systems for policy management, and automations. Since this is not always
the case, once we cover the initial deployment process, we will review bolting on a
new management infrastructure for Open Directory environments.

For those using a package based imaging solution, we typically recommend
breaking your VMware Fusion deployment up into three separate packages. The first
will be the VMware Fusion 2 installer package. The second will be the serial number
(unless you embed the serial number into the installer package) and the third will be
the virtual machines, where each likely has a separate package. The more granular
the approach, the more work it will seem like you have up front, yet a granular
approach will require less work once you move from imaging to patch management.

VMware Fusion in Monolithic Imaging
As described in Chapter 6, a monolithic image will contain all of the items needed to
deploy a workstation in a single image and will not typically rely on bolting any
additional software. Adding VMware Fusion to a monolithic Mac OS X image is a
fairly straightforward process: manually install VMware Fusion on your base image
using a volume license. If you don’t have a Volume License, then you’ll need a post-
flight script or package to deploy a new license on each client after they receive the
initial software.

CHAPTER 9: Virtualization

497

NOTE: With any monolithic imaging solution it is strongly recommended that you maintain a
change log to track software that has been added or removed from your image. It is also
recommended that you list any necessary automations and the utility they provide. Having a
detailed change log becomes a key component to the ongoing management of most any
imaging scenario, but more so in a monolithic imaging environment.

To install VMware Fusion, begin by mounting the VMware Fusion disk image or
launching the installation media that came with the software. Next, double-click on the
Install VMware Fusion icon. At the Welcome to the VMware Fusion Installer prompt, click
on Continue, as seen in Figure 9-1.

Figure 9-1. The Welcome to the VMware Fusion Installer prompt

CHAPTER 9: Virtualization

498

At the screen for Software License Agreement, read the agreement carefully and then
click on the Continue button. This will bring up a dialog box for you to accept the license
agreement. If you agree with the licensing terms then click on Agree to continue, as
shown in Figure 9-2.

Figure 9-2. Software License Agreement screen

Next, you will see the Mount Virtual Disk Support screen, where you will be able to
choose whether or not to install the latest version of MacFUSE. This is open-source
software that has a plug-in to allow VMware Fusion users to mount volumes used by
virtual machines, and it allows a user to browse the file system of a virtual machine from

CHAPTER 9: Virtualization

499

the native OS X Finder, provided the vm is not running. If you would like to enable this
feature for end users, check the box to do so and click on Continue (see Figure 9-3).

Figure 9-3. The Mount Virtual Disk Support screen

At the Standard Install screen (shown in Figure 9-4), you are able to customize which
Mac OS X volume VMware Fusion will be installed or you can click on the Install button if
you don’t wish to perform any customizations. By default, VMware Fusion will install in
the /Applications directory of the volume you are currently booted from. If your
monolithic image is to be a single volume then this is fairly straightforward. If not, then
while you can install it on disks other than a boot volume, you should not do so on a
volume that is destined to be a Boot Camp volume nor one that does not run HFS+.

CHAPTER 9: Virtualization

500

Figure 9-4. The Standard Install screen

When the installation process has completed you will need to enter a license. Here, you
should enter your Volume License Master serial number (shown in Figure 9-5), clicking
on the Continue button when you do so. If you do not have a Volume License serial
number, you will need to go ahead and enter a valid serial number, which will
subsequently automate the replacement of a separate package.

CHAPTER 9: Virtualization

501

Figure 9-5. Enter your Volume License Master serial number

A successful installation will be indicated once the process has finished. At this point,
you can move on to creating a virtual machine to install a guest operating system, as
described later in this section.

VMware Fusion with a Package-Based Deployment
VMware Fusion 2 is distributed as a package installer that has been bundled inside of an
application bundle. They cleverly disguise the .app file with an installer icon, which is
confusing to some administrators. When installing Fusion directly onto a client, you can
deploy either package or run the application. However, when performing mass
installations, installer packages are convenient. Extracting the actual .pkg file will
provide you with much better mass deployment options. When you are pushing out the
.pkg file, you will then be able to embed a license key in it.

CHAPTER 9: Virtualization

502

NOTE: It’s worth mentioning before we get too much further that some snapshot tools like
Jamf’s Composer include presets for automatically creating Package installers from the
existing installation of VMware. These tools typically (by default) grab all files, including
registration, so you may still need to manually separate your serial number files yourself. That
said, if you managed to get a volume license key from VMware, this tool may save you a little
bit of time by bypassing some of the steps covered in this section.

To extract the package, you will first need to mount the latest VMware Fusion disk
image that can be obtained from the VMware web site (you will typically want to make
sure you are deploying the latest stable release of most software). Then, control-click on
Install VMware Fusion to see the menu in Figure 9-6.

Figure 9-6. Menu shown while extracting the VMware Fusion package

Next, click on Show Package Contents and then browse to the Contents folder followed
by the Resources folder. Here you will find the Install VMware Fusion.pkg package,
which is the actual package installer for Fusion. You can now copy Install VMware
Fusion.pkg out into another location, such as the desktop. Once you have completed
preparing the package for deployment, you will want to store it in your package
repository.

Assuming you have a Volume License Master serial, you will now want to customize
the installation package to include the license and therefore fully automate the install.
The license can be included inside the Install VMware Fusion.pkg package so that
when you go to deploy the package through Apple Remote Desktop or another patch
management solution, the installer will not require the end user to enter a serial
number-----an annoyance that potentially prevents the installation from proceeding
(depending on your deployment tool). To embed the license file, first create a file called

CHAPTER 9: Virtualization

503

license.txt. In this file, paste the Volume License Master serial (and only the serial
number, because nothing else should be in this file).

Now we’re going to place the Volume License Master serial file (called license.txt) into
the Install VMware Fusion.pkg package that you just extracted. To get started, browse
to the Install VMware Fusion.pkg package and control-click on it, selecting Show
Package Contents.

Next, browse to the Contents folder and then to the Plug-ins folder, where you will see
the licensingPane.bundle ‘‘installer’’ bundle. A .bundle directory, like an .app or .pkg
directory, is simply a collection of related files which is treated by the Finder as a single
entity. To once again break this facade, we’re going to control-click on it and then click
on Show Package Contents. Next, open the Contents folder of the bundle and then
navigate to the Resources folder. This is where you are going to copy your license.txt
file. The following would achieve the same result in one single step by creating a new
text file in the bundle (assuming you copied the Install VMware Fusion.pkg onto your
desktop):

echo "XXXXX-XXXXX-XXXXX-XXXXX" >"/Users/$USER/Desktop/Install VMware Fusion.pkg/«
Contents/Plugins/licensingPane.bundle/Contents/Resources/license.txt"

One important note about this process is that this installer package relies on scripts and
executables that must run under the host operating system. If you use a product that
installs packages while netbooted, this type of installer will require you to postpone this
installation. This can be accomplished in tools like DeployStudio using the postpone
installation checkbox or a reboot policy in Jamf’s Casper suite. If you fail to do this, you
may find your package installation does not complete correctly or, in the worst-case
scenario, may stall your whole imaging process. If you are relying on the Apple Tools for
imaging, you may want to create a self-destructing startup item that runs the installer
command. More information about this procedure can be found in Chapter 8.

Virtual Machines
Now that you have created a deployment solution for your VMware application, it’s time
to focus attention on pushing out your virtual machines. Keep in mind that deploying any
operating system is equally as complicated as another. You are going to install a virtual
machine of Windows, but once installed it will have a unique serial number and other
unique information that will need to be removed if that same machine will then be
deployed en masse. While this section is meant to be a helpful guide it is by no means a
replacement for books and software that are dedicated to this topic. Having said that,
according to your task you may need to do little more than install Windows and use the
operating system.

To get started, open the newly deployed VMware Fusion application and select New
from the File menu (or use the Command-N keystroke). The New Virtual Machine
Assistant will now ask you to insert a disk, as can be seen in Figure 9-7. Based on the
contents of the disk, the assistant will install an operating system. Go ahead and insert
your installation media and complete the Windows Easy Install wizard, which installs
Windows along with the required VMware drivers.

CHAPTER 9: Virtualization

504

Figure 9-7. Creating a new virtual machine

When creating virtual machines you have a number of options for optimizing
performance. The default VMware Fusion settings are good for a number of
environments, but you should also thoroughly test the performance of your virtual
machines and tweak other settings as needed. For instance, in certain environments,
guest OS performance may be paramount and settings would then be weighted toward
guest OS in terms of RAM allocation and processor priority.

Next, determine whether you want to deploy the guest Operating System’s third party
software along with the OS in the virtual machine, or as separate packages. If you
choose to install all business software into the VM file directly, you may end up pushing
out a rather bloated file. However, the abstraction provided in the vmfile itself provides
the near equivalent of a block transfer, so it is often desirable to deploy as much
software as possible in the VM file right from the start. If you instead choose not to
embed your software in the VM file, and opt rather to deploy it through other means after

CHAPTER 9: Virtualization

505

the fact, then you will likely end up building custom installers and further complicating
the environment. As with choosing a deployment methodology with Mac OS X, you will
want to determine what methodology to take with your Windows virtual machine fleet.
There are arguments for either side, but typically it is best left to the incumbent
methodology being used for your physical Windows desktops, provided you have one.

Following the initial installation of the virtual machine and any third party add-ons, you
will want to manage the systems similarly. If you have an existing solution in place then it
is likely best to continue using it. If not, then consider a solution like Microsoft’s System
Center Configuration Manager (SCCM), LANdesk, or other patch management solutions.
At a minimum you will likely want to leverage Microsoft’s Windows Software Update
Server (WSUS) to cache updates to the Microsoft products installed on your virtual
machines.

Preparing the Virtual Machine for Mass Deployment
When building a base VMware image on one machine to be utilized for the purposes of
mass deployment, there are a number of measures that need be taken to ensure that
each client has a unique environment. In a VMware images .vmx file, there are a number
of attributes, which are specific to the host that it is on. You will want to tailor this host-
specific information to each destination client during deployment. This is similar to how
Mac OS X handles ByHost information such as MAC addresses, but is specific to virtual
machines rather than physical hosts. For starters, you will want to change the UUID, or
unique Identifier. Luckily, if you simply remove the information from the .vmx file, it will
regenerate the next time it is run. Thus, prior to deployment, you will want to clean out
all of our host-specific data so that after deployment to a different client machine, the
VM settings will auto populate with the relevant data.

Both the virtual MAC address and the UUID information that have been generated for a
virtual machine are located in this.vmx file. To sanitize the auto generated information for
a virtual machine, right-click on the virtual machine bundle (or cd into it) and select Show
Package Contents. Find the .vmx file for the virtual machine and open it in a text editor.
Next, remove the lines that contain the following information from the .vmx file:

uuid.bios =
uuid.location =
ethernet0.addressType =
ethernet0.generatedAddress =
ethernet0.generatedAddressOffset =

You will now want to remove any information about Shared and Mirrored folders, since
those can potentially use paths that no longer exist on a host. To do so, open the .vmx
file again and look for a line that is similar to the following:

sharedFolder1.hostPath = "/Users/cedge"

Change the information between the quotation marks to a ~:

sharedFolder1.hostPath = "~"

Once you have made these changes to the virtual machine, do not power on this VM. If
you power on the VM, the settings will be reset to user specific settings and will need to

CHAPTER 9: Virtualization

506

be changed again. Thus, prior to this step, you will want to make sure that the VM host
OS is configured full to your liking. Make sure that any customized settings or software
has been installed. Once the host OS is setup, we will need to normalize the software
install. Similar to our previous cleanup of the .vmx file, Windows has a cleanup process
that it must do in order to be suited for deployment to other machines.

Once you are satisfied with everything, cleanup the appropriate values in the .vmx file
and then copy the virtual machine to another host. Once copied, you can attempt to
open the virtual machine. It should automatically recreate the preceding variables. If so,
then the original virtual machine is ready for deployment (assuming the operating system
resident on it is ready as well).

You can use VMware to automatically run a script, thus allowing you to rename a guest
operating system or automate the binding process.

Virtual Machine Deployment
In addition to deploying VMware Fusion, nearly every organization that leverages it will
also want to deploy the virtual machines on which they have installed their guest OS.
The virtual machines themselves are stored as .vmware bundle files and while you might
think deploying would be as easy as copying these files to workstations, there are a few
other steps involved.

As with many other solutions throughout this book, we’re going to leverage a package to
deploy our virtual machine (more on packages in Chapter 6), which for the purpose of
this example will be running Windows XP. Go ahead and open PackageMaker, found in
the /Developer/Applications/Utilities directory. Upon launching the program, you will be
prompted to specify an organization, which is typically the organization’s DNS domain
written using reverse notation. This value, along with the package name, is utilized by
OS X for package identification. Also, select the minimum operating system on which
the package can be installed, shown in Figure 9-8.

Figure 9-8. Providing installer information

CHAPTER 9: Virtualization

507

Next, provide a name for the package that is unique to your scenario and choose the
destination where that the package will be deployed. In this case, you will use the name
VMDeploy. As it is the most common option, you’ll go ahead and deploy your package onto
the volume that contains your System folder, meaning your startup volume. Optionally, you
could provide the end user with the ability to choose which directory the package will be
installed using the “Volume selected by user” checkbox shown in Figure 9-9. For the
purpose of this example, the package will always be deployed in an automated fashion.

Figure 9-9. Choose destination for package to be deployed

Next, click on the Project menu at the top of the screen and select Add Contents to get a
window that will allow you to browse for your files (shown in Figure 9-10). Navigate to your
virtual machine, select it, and click on the OK button to be placed back at the main
PackageMaker screen. You will see a new container in the left-hand pane, which represents
our vm file. Enter the folder of the volume selected previously where you want the virtual
machine to be located in the Destination: field and optionally provide a version number.

CHAPTER 9: Virtualization

508

Figure 9-10. Browse for your files

Next, click on the Contents tab of PackageMaker and take note of the files. Under the
Contents tab, you can view the files to be customized and the permissions as they will
be laid down on the installing client. This package is going to be deployed to potentially
hundreds or thousands of machines, so use extra diligence to verify everything is in
order. Using this interface, you will want to browse through the presented files, verify
that you are introducing no permissions-related security holes, and remove any
unnecessary files (such as potential cache files) that may be present. When you’re done,
click on the Scripts tab and then define any scripts you may have to aid you in
normalizing the file. For example, if you were to take the information mentioned
previously in this section about client-unique attributes specified in a .vmx file, a post
install script could be specified, which programmatically removes that data for you. To
do so, script a scripts directory located with your project files into the Scripts Directory
section, shown in Figure 9-11. Then choose a script to run located within that folder.

CHAPTER 9: Virtualization

509

Figure 9-11. Scripts Directory

Another appropriate automation for fresh installations is to disable the welcome screen.
To do so you would use the following command:

defaults write /Users/cedge/Library/Preferences/com.vmware.fusion«
 VMWelcomeScreenViewed_2.0 -bool yes

TIP: The defaults write command needs the absolute path else it will write to the active user
domain and if it is being run during imaging it could ergo have unintended consequences.
However, it is also not practical to deploy user-centric settings on a base image, as it is
unlikely that user home folders will be populated with data at this time. For this reason, it is
best to deploy these settings via a system such as MCX, as discussed in Chapter 7.

CHAPTER 9: Virtualization

510

Populating the Virtual Machine List
Another automation as a post-flight for the package might be to populate the Virtual
Machine Library. Once your virtual machine has been placed in the target directory
by the package then you can use the defaults command (which is also described
further in Chapter 6) to populate the listing of Virtual Machines on clients. If you are
only deploying a single virtual machine to each client then you can copy the
com.vmware.fusion.plist property list file to their home directory, which is stored in
each user’s ~/Library/Preferences/ directory. You can also add the file to the
English.lproj User Template directory, as shown in Figure 9-12, in order to add it for
all users of a given host.

Figure 9-12. English.lproj User Template directory

To get started, let’s look at the existing contents of the com.vmware.fusion domain.

defaults read com.vmware.fusion

The list of virtual machines that are available in the virtual machine list is stored in the
VMFavortitesListDefaults2 key, which is an array of machine names and paths. You can
query for a listing of the machines that are currently available to the Virtual Machine
Library by reading the VMFavoritesListDefaults2 key alone:

defaults read com.vmware.fusion VMFavoritesListDefaults2

CHAPTER 9: Virtualization

511

Next, you’ll use the array-add defaults option to add a virtual machine called ‘‘Windows
XP SP3’’ to the Virtual Machine List, assuming it has a local path of
/VM/WindowsXPsp3.vmwarevm:

defaults write com.vmware.fusion VMFavoritesListDefaults2 -array-add '{name =«
 "Windows XP SP3"; path = "/VM/WindowsXPsp3.vmwarevm";}'

NOTE: Rather than use the array-add option, you could have added a whole listing of virtual
machines if you were deploying multiple .vmwarevm bundles by using the -array option.

Assuming that the Virtual Machines List is your final customization to the package, once
the post-flight script is added then you can click on the File menu at the top of the
PackageMaker screen and then select SaveAs. You will then be able to save the
package, as shown in Figure 9-13.

Figure 9-13. Saving the package from the PackageMaker screen

Once saved, go ahead and click on Build to generate your package. Now you can
deploy it using your mass deployment package or by leveraging a variety of patch
management solutions such as Apple Remote Desktop or the Casper Suite.

TIP: We recommend only pushing out one virtual machine per package and then using the
array-add defaults option per virtual machine to populate the Virtual Machine Library list.

Parallels
VMware Fusion is only one of a number of virtualization tools available for Mac OS X.
Parallels is another, and is also a type 2 hypervisor, running as an Application inside of
OS X. Parallels is available at http://www.parallels.com. As with Fusion, you will want
to obtain a volume license for Parallels Desktop prior to leveraging the mass deployment
options we illustrate through the remainder of this section. To get started, first download
the Parallels dmg from the Parallels web site.

CHAPTER 9: Virtualization

512

Parallels on a Monolithic Image
Installing Parallels on an image that will be deployed monolithically is fairly
straightforward. Open the dmg file that you obtained from Parallels and you will see the
standard installation screen. Double-click on the package, as seen in Figure 9-14 to start
the installation.

Figure 9-14. The standard installation screen

The package will then check the Parallels site for updates and verify that the
computer meets the minimum requirements. Provided there are no updates and that
the computer does indeed meet those minimums, you will next see the Introduction
screen of the package. Click on Continue to see the Read Me. Once you’ve read the
Read Me, click on Continue again. You will now see the license agreement, read it
and click on the Continue button again. At the pop-up menu, assuming you agree to
the Parallels software agreement, click on the Agree button and you will be placed at
the Feedback screen. Here, read the contents and click on Continue again,
optionally selecting whether you want to be a part of the Parallels Customer
Experience Program.

CHAPTER 9: Virtualization

513

At the Installation Type screen, choose Change Install Location…, if you would like to
change the path that Parallels will install onto. Otherwise, click on Install as seen in
Figure 9-15 and then enter the username and password to authenticate the Parallels
installer.

Figure 9-15. Click on Install then type username and password to authenticate Parallels Installer

When the installation has completed, click Close. You can now browse to the
/Applications/Parallels directory to see the Parallels Desktop application bundle and
open it. The first time you open Parallels Desktop it will ask you to Activate the product
(enter the serial number). Since you don’t want freshly imaged systems to show the
Welcome to Parallels Desktop splash screen, uncheck the Show at Startup box, and
then click on Start using Parallels Desktop. You will have deployed Parallels to your
monolithic image set.

CHAPTER 9: Virtualization

514

Next, setup the default location that virtual machines will be located. Later, when we
move into automated deployment this will become a key component of ensuring the
.pvm bundle that makes up a virtual machine is located in the desired location. To do so,
open Parallels Desktop and click on the Parallels Desktop menu, selecting Preferences.
Next, click on the General preference line item and then enter the default location (/VMs)
and then click on the OK button, as seen in Figure 9-16.

Figure 9-16. Enter the default location /VMs then click OK

Virtual Machine Deployment
Within Parallels you can easily invoke the Virtual Machine Assistant, used to create new
virtual machine instances. To do so, open Parallels Desktop and then click Virtual
Machine… from the File menu. At the Introduction screen of the assistant, click on the
Continue button. At the Operating System Detection screen, choose how you want

CHAPTER 9: Virtualization

515

Parallels Desktop or optionally click on Skip Detection to be prompted to manually
choose your installation options such as choosing CD and DVD stand alone ‘‘iso’’ files
shown in Figure 9-17.

Figure 9-17. Manually choosing your installation options

Based on the media in the drive the Virtual Machine Assistant will provide you with an
Operating System Type and Version screen so you can confirm the operating system to
deploy. Next, you will see the Virtual Machine Type screen, where you can select to
customize your virtual machine environment. For the purposes of this example, go
ahead and click on Express Windows and then click on the Continue button shown in
Figure 9-18.

CHAPTER 9: Virtualization

516

Figure 9-18. After clicking on Express Windows, click on the Continue button

At the Express Windows Installation screen shown in Figure 9-19, enter the name,
company name, Windows XP serial number, and optionally select whether to install
64-bit. You can then click on the Advanced button to increase the available RAM for
the virtual machine to over 1GB and you can even provision more than one processor
if you so wish. If you will be running more than an application or two, or if the
applications are fairly resource intensive, then it’s recommended to go ahead and
allocate more resources to the virtual machine. Otherwise, simply click on Continue to
move on to the next step.

CHAPTER 9: Virtualization

517

Figure 9-19. The Express Windows Installation screen

At the Name and Location screen, as seen in Figure 9-20, provide a name for the
virtual machine. Also select whether you will enable file sharing (which will share
your Mac home folder to your Windows installation) and user profile sharing (which
will share your Desktop and other items between Mac OS X and Windows).
Additionally, under the More Options portion of the screen, choose whether to
create a desktop icon for the virtual machine, whether to allow other users of the
host to access the virtual machine, and finally a custom location for the virtual
machine. If you do not choose a custom location, the virtual machine will default to
the ~ /Documents/Parallels/ directory. If you are using FileVault then you may want
to move the location outside of your encrypted home folder. Likewise, this VM may
be utilized by multiple users, so you may want to specify the option to save your
virtual machines in the /Users/Shared public directory.

CHAPTER 9: Virtualization

518

Figure 9-20. Provide a name for the virtual machine

Once you click on the Create button you will be in a standard Microsoft Windows
installation screen. Complete the Windows installation and then, once you are finished
change directories inside the resultant .pvm file that makes up your Parallels Virtual
Machine. When you are inside the file from terminal-----in much the same way that you
did in VMware earlier-----you will be able to view the contents of the config.pvs file.

TIP: Once installed you will typically want to install the Parallels Tools software onto the virtual
machine. These will allow for integration between the Mac OS X host operating system and the
guest operating system that you have just installed. This can be accomplished by selecting
‘‘Install Parallels Tools…’’ menu option from the Parallels Desktop VM menu when the guest
OS is booted.

CHAPTER 9: Virtualization

519

The config.pvs file is the settings file for each virtual machine. As with VMware the virtual
machine that you see through the Finder is in fact a bundle, with a number of files inside
of it. Parallels have a fair number of settings in the .pvs file, organized by keys. There are
multiple UUID keys and a number nested within the Network Adapter key that will need
to be changed if you were to mass deploy your virtual machine, although it doesn’t have
to be that complicated, as we will illustrate in the upcoming section.

Automating the Parallels Installation
Parallels provides a solution to mass deploy their software. In order to leverage
the Parallels best practice, to push out Parallels Desktop using a package, go to
http://download.parallels.com/desktop/tools/pd-autodeploy.zip and download the
Autodeploy package. The Autodeploy package will copy the application and virtual
machine files for you and regenerate the unique identification information, similar to how
you did manually for VMware Fusion earlier in the section ‘‘Preparing the Virtual Machine
for Mass Deployment.’’

Once you have downloaded the package, right-click on it and select Show Package
Contents, as you did earlier with VMware Fusion. From here, browse to the Parallels
folder and find the License.txt file, as can be seen in Figure 9-21. By altering this file, you
will provide the Parallels Desktop Autodeploy.pkg file with the serial number to use in an
installation.

Figure 9-21. Browse to the Parallels folder

CHAPTER 9: Virtualization

520

You will then need to place the Parallels Desktop.dmg file that contains the original
package into the Parallels folder as well, which will complete the automated installation
of Parallels.

As you are considering automating the deployment of the Parallels software, it is worth
noting that there are two property lists that control the application’s global behavior
across various virtual machines. These are com.parallels.Parallels Desktop.plist and
com.parallels.desktop.console.plist, both in the ~/Library/Preferences directory.
(These are included with an installation, whether it is the Autodeploy or the standard
installer.) The com.parallels.Parallels Desktop.plist file controls screen settings,
update preferences, application toolbars, and the Virtual Machine Assistant. The
com.parallels.desktop.console.plist controls last used directories. You can now push out
the Autodeploy package in order to automate the installation of the Parallels application.

Automated Virtual Machine Deployment
While we covered pushing out the application itself in the previous section we have not
yet looked into how to push out virtual machines. To do so, you would first normalize the
Windows installation, as we did with VMware Fusion virtual machines and describe in
the section ‘‘Preparing the Virtual Machine for Mass Deployment’’ later in this chapter.
Once normalized, again control-click on the Parallels Desktop Autodeploy.pkg file and
select Show Package Contents. Next, copy the virtual machine bundle from the current
location into the Parallels folder of the package, where you previously edited the
License.txt file, as can be seen in Figure 9-22.

Figure 9-22. The Parallels folder of the package

Upon installation of the Parallels Desktop Autodeploy.pkg package, the .pvm file will
now be copied into the users ~/Documents/Parallels directory by default. You can now
leverage your mass deployment solution (DeployStudio) or your package management
solution (Apple Remote Desktop) and the MAC address and all unique identifiers will be
recreated without using any complicated scripting.

CHAPTER 9: Virtualization

521

However, if you are leveraging a solution such as FileVault and you would like to
alter the location of the virtual machine upon installation of the package, you will
have needed to alter the Default Folder for Virtual Machine Settings when using the
New Virtual Machine Assistant, as previously described. Alternatively, by changing
the path for a virtual machine in the virtual machines preferences, you will also be
telling the automated installer to place it into that location.

Finally, if you are deploying virtual machines after the initial deployment then you will
want to register them with Parallels, potentially as a post-flight scripting task to your
package. Parallels Desktop has a fairly comprehensive set of command-line tools
that can be used to automate a number of tasks, including the registration and
deregistration of virtual machines (which would use the register and unregister
commands, respectively). See the Parallels Desktop Command Line Reference
Guide for more on the Parallels command-line interface at http://download.
parallels.com/desktop/v4/docs/en/Parallels_Command_Line_Reference_Guide.pdf.

Managing Windows
Whether you have deployed Parallels or VMware, working within a virtualized
environment means that your management surface space has just been doubled. You
now have two or more operating systems to manage whereas before you had one. You
now have double the security issues, if not more, and a far more complex environment
with regards to how each part interacts with the other. In short, your total cost of
ownership just shot through the roof! But while your management costs just shot up,
they can be kept in check. In the following sections we’ll look at various ways to
automate deployment and patch management in order to stay a lucid systems
administrator.

Sysprep
Similar to deploying Mac OS X, there are a number of automations that you will want to
perform on each virtual machine. As previously mentioned, each Microsoft Windows
computer needs to be normalized, meaning it will need a unique identifier (SID) and a
unique computer name. This means that two computers, whether physical or virtual,
should not share an identifier, else they have problems, for example, binding to Active
Directory. Other automations often include renaming hosts and, of course, binding
machines into Active Directory. The two primary methods for these automations are
sysprep or using custom scripts, which typically still involves using sysprep. For many
tasks, such as removing machine-specific information and renaming hosts, it will be
difficult to justify custom scripting as sysprep has much of the functionality required
unless your organization’s needs require logic that is beyond the basic sysprep
functionality.

CHAPTER 9: Virtualization

522

To get started with sysprep, first obtain the sysprep for your appropriate version of
Windows by either using the optical media, or if you have applied a service pack since
the optical media was used, by using the deploy.cab from the /Support/Tools directory.
Next, click on the Start menu, select Run, and type sysprep. This will launch the System
Preparation Tool, as shown in Figure 9-23. In the resulting window, ensure the checkbox
‘‘Don’t regenerate security identifiers’’ is not checked and then click on the Reseal
button. This represents sysprep in its basic form. However, most environments are
going to require more automation.

Figure 9-23. Launching the System Preparation Tool

Additional automation is provided via the implementation of a sysprep.inf file. The
sysprep.inf file can be applied to an OS by placing it into the same directory as the
sysprep.exe tool and then using it to reseal the image. However, before doing so from a
freshly installed system, first run setupmgr.exe, because it provides a UI for generating
your sysprep.inf file. This UI will allow you to set certain parameters, such as machine
naming time zone settings and licensing. Once you have tailored the settings to your
liking, select Sysprep setup from the option and click on the Next button, as shown in
Figure 9-24.

CHAPTER 9: Virtualization

523

Figure 9-24. Select Sysprep setup and click on the Next button

Next, go through each of the options along the left side of the screen and fill in the
appropriate information, as can be seen in Figure 9-25.

Figure 9-25. View of the general settings

CHAPTER 9: Virtualization

524

When you get to the Computer Name section of Setup Manager (setupmgr.exe) choose
to Automatically generate computer name, as can be seen in Figure 9-26.

Figure 9-26. Choosing to automatically generate computer name

Once you are satisfied with all of your settings, run Sysprep again, verify that the
sysprep.inf file is in the same directory as the sysprep executable, and then click on the
Reseal button. Even if you use custom scripts for naming hosts and binding, you will
likely end up using sysprep, sealing the image again when you are done. Scripts can be
easily integrated if you are using sysprep. An example of a renaming script leveraging
WMI is the following, which would go in your sealed image for naming:

' ------ SCRIPT CONFIGURATION ------
 strComputer = "."
 strNewName = "NEWCOMPUTER"
' ------ END CONFIGURATION ---------
Set objWMIService = GetObject("winmgmts:{impersonationLevel=impersonate}!\\" _
 & strComputer & "\root\cimv2")
 Set colComputers = objWMIService.ExecQuery ("Select * from
Win32_ComputerSystem")
For Each objComputer in colComputers
 errReturn = ObjComputer.Rename(strNewName)
 WScript.Echo "Computer successfully renamed"
Next

CHAPTER 9: Virtualization

525

TIP: After renaming a computer it seems like the very next step most people want to do is to
join an Active Directory domain. Joining the Domain can be handled using
JoinDomainOrWorkgroup in a Windows Management Instrumentation (WMI) script.

If you run a script at first boot, you can use the registry in combination with the
Startup Items for an administrative user. A combination of the AutoAdminLogon,
DefaultUserName and DefaultPassword keys can be used in the HKEY_LOCAL_
MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon path of the
registry to enable automatic logon for the virtual machine. After your automations have
completed, you will want to edit the same registry keys, remove the DefaultUserName
and DefaultPassword contents, and disable the AutoAdminLogon key, ‘‘possibly using
the method described further in the next section, Configuration Management.’’

You can also run a script by passing the script into a command from your virtualization
software. For example, the vmrun command could be leveraged to initiate a Visual Basic
script as part of an automation. If you have a script that will bind to Active Directory then
you can create a post-flight script in your package or leverage a tool, such as Apple
Remote Desktop, to send a script through VMware Fusion to your virtual machine and
your guest operating system. Assuming the username of an administrator is
administrator with a password of SECRETPASSWORD and a path to the Visual Basic
script in the c:\scripts\bind.vbs of the WindowsXP host, an example of this command
would be the following:

vmrun -T fusion -gu administrator -gp 'SECRETPASSWORD' runScriptInGuest "/VMs/Windows XP«
 Professional.vmwarevm/Windows XP Professional.vmx" cscript.exe "c:\scripts\bind.vbs"

NOTE: You cannot run DOS batch files using vmrun.

The vmrun command can be found in /Library/Application Support/VMware Fusion/. You
can run the command with no arguments to see pretty thorough documentation on the
tool. To give a quick rundown of the above command, the ---T flag designates the host
type (in this case VMware Fusion). The -gu command and -gp flags designate the.guest
host credentials. In order for this command to succeed, an OS X user must be logged in,
and the virtual machine will need to be running. VMware Fusion can also use a
bootcamp partition as its guest OS. For BootCamp based vm’s, Fusion stores the .vmx
file in ~/Library/Application Support/VMware Fusion/Virtual Machines/Boot Camp. Use
the following command to find output the full path to a user’s BootCamp .vmx file.

find /Users/*/Library/Application\ Support/VMware\ Fusion/Virtual\ Machines/Boot\«
 Camp/ -name "*.vmx"

Configuration Management
No matter the platform, patch management is a key pain point of large-scale integrations. In
many environments this is already handled, and from a virtualization standpoint you need
only bind your virtual machines into Active Directory. They will then pick up a Windows

CHAPTER 9: Virtualization

526

Software Update Service location from a GPO and pull down a number of policies, some of
which will automatically install various pieces of software. GPO’s, or Group Policy Objects,
are Active Directory management policies which are used to manage clients.

NOTE: For more information on Group Policy Objects see the following article on Microsoft’s
TechNet http://technet.microsoft.com/en-us/library/cc737816(WS.10).aspx.

The Windows Software Update Service is a part of Windows Server 2008. If you are
already licensed for Windows then it costs nothing extra and, like the Software Update
Server built into Mac OS X Server, Windows Software Update Services caches updates
for all Microsoft products and allows administrators to control which to release to users.
Windows Software Update Services can be configured to mirror the policies that your
organization chooses to practice regarding release management of Microsoft software
updates. For example, if you need to test every update on each build prior to putting a
solution into production, then you can use group policy to configure which patches will be
downloaded for a given group, user, computer or other object housed in Active Directory.

As with the Mac OS X Software Update Server, you can run centralize Windows Update
using Windows Software Update Services without a directory service. With Mac OS X
you update the Software Update Server setting with a key in the system defaults domain
(com.apple.SoftwareUpdate) as described in Chapter 5. In Windows, you use the closest
equivalent to a key in a defaults domain, a registry key. The server that is used for
Windows Update is located in HKEY_LOCAL_MACHINE\SOFTWARE\Policies\
Microsoft\Windows\WindowsUpdate, in the registry, and with the WUServer and
WUStatusServer keys. These should read http:// followed by the path of your server
instance and the FQDN of your server, respectively. For example, if your Windows
Software Update Service were housed on a server called WSUS.krypted.com, then the
following settings would be appropriate:

 WUServer =http://WSUS.krypted.com
 WUStatusServer=WSUS.krypted.com

To push these out you could send the following to the guest operating system in the
form of a Visual Basic script:

Set oshell = CreateObject("WScript.Shell")
 oshell.RegWrite
 "HKLM\SOFTWARE\Policies\Microsoft\Windows\WindowsUpdate\WUServer",«
 "http://WSUS.krypted.com", "REG_SZ"
 oshell.RegWrite

"HKLM\SOFTWARE\Policies\Microsoft\Windows\WindowsUpdate\WUStatusServer",«
 "http://WSUS.krypted.com", "REG_SZ"

You can also control Windows Update at a more granular level than just setting the server.
The following keys are available to control AutoUpdate settings in
HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows\WindowsUpdate\AU:

 AUOptions
 NoAutoUpdate

CHAPTER 9: Virtualization

527

 NoAutoRebootWithLoggedOnUsers
 ScheduledInstallDay
 ScheduledInstallTime
 UseWUServer
 RescheduleWaitTime

While you could send out the preceding script leveraging the command-line integration
with, for example, VMware, you could also just control the Windows Update service
using a group policy object. In Microsoft Windows, Group Policy is akin to the managed
client framework of Mac OS X. GPOs are policies that, for the most part control a
registry key (or more likely a set of registry keys) that control various functions within
Microsoft Windows. Group Policies then become the core of using policies to deploy a
centrally managed environment. These policies are managed through and enforced by
Active Directory (each policy issued will apply to a number of objects in Active
Directory).

NOTE: This includes automating the installation of a piece of software leveraging an .msi or an
.mst file, which is similar to a .pkg file.

As you’ll find with the third-party solutions that were covered in Chapter 6 for patch
management, Microsoft Windows also comes with a number of solutions that can
manage systems, including the manual release management of software updates. These
include applications such as Altiris, LANrev, and FileWave, which are also capable of
working with Mac OS X. Microsoft’s SCCM should also be looked at thoroughly,
although it is not compatible with Mac OS X.

Policies and Open Directory
Group Policies use the registry to define where to pull a policy file from. If a preference
manifest in Mac OS X (described in more detail in Chapter 7) is a container of settings,
then a Group Policy Object is similar in that a file is created and the unique identification
of that file is located in Active Directory. These files are stored in the Group Policy
Template (GPT) subdirectory of the Sysvol folder, a directory created by default on all
Windows Server Directory Controllers.

NOTE: You can also use the Group Policy Object Editor on a host and apply the policies directly
to that system in your virtual machine, which would then apply to virtual machines that are
created based on the initial virtual machine; however, you should use the Sysvol as you will be
able to centrally manage policies.

To create Group Policy Objects log into a Windows Server (if you are in an Active
Directory environment) or a Windows XP computer (if you are applying the policy on the

CHAPTER 9: Virtualization

528

local computer). Click on Start, then Run, and at the Run dialog enter gpedit.msc. The
resulting window will show you two types of policies, as can be seen in Figure 9-27, for
the Local Computer: Computer Configuration and User Configuration. These control
computer based settings and user based settings, respectively.

Figure 9-27. Local Computer: Computer Configuration and User Configuration policies

Computer Configurations
The Computer Configuration options mostly have to do with rights management. Here
you can define which users or groups are capable of performing certain types of tasks
and policies that span multiple users.

CHAPTER 9: Virtualization

529

User Configurations
The User Configuration options are far more granular. Here you can configure various
components of Windows, control applications (such as some of the above Windows
Update settings) and customize user environments (including settings pertaining to the
Desktop, My Documents, Start Menu and the Taskbar, such as whether or not the user
has an option to open a Run dialog).

Other Virtualization Solutions
Up to this point we have focused on VMware and Parallels. The primary reason is that
most enterprises are going to want to pay for support and are not typically considering
free and open source software. However, there are two stand-out applications that can
be used in place of VMware and Parallels that can help to keep TCO numbers in check.

The first is VirtualBox, by Sun Microsystems. VirtualBox, like VMware, is cross platform.
It can run on practically any operating system and virtual machines can be traded
between hosts. VirtualBox comes in a package and can therefore be mass deployed
with little fanfare. VirtualBox does not come with some of the slick additional features
that VMware or Parallels has, but it is capable of running most operating systems as
guests and is a solution that can be deployed inexpensively. For more on VirtualBox,
see: http://www.virtualbox.org.

Another free solution is Q, which can be obtained from http://www.kju-app.org. Q
comes in an .app bundle and can be copied to client computers as a payload of a
package. Bother Q and VirtualBox can have virtual machines deployed alongside the
applications themselves in a package or using a separate package, as we did previously
with VMware and Parallels.

Wine
Wine is an open source application that allows users of various versions of UNIX, Linux,
and Mac OS X to run Windows applications without owning a copy of Microsoft
Windows. Wine provides certain Windows apps to run natively in OS X and Linux-based
systems by re-implementing the Win32 API. Unfortunately, Wine is not the easiest
product on the planet to use and so CodeWeavers (http://www.codeweavers.com) has
released CrossOver Mac, a utility that can allow you to leverage Wine without having to
use complicated command-line structures each and every time you want to access an
application.

Codeweavers does a great job of providing a user-friendly portal to Wine, but the truth
of the matter is that it is a very complex task that the Wine project seeks to undertake.
The reality is that the project simply cannot guarantee compatibility with every single
piece of software out there written for the Windows world. Furthermore, ‘‘compatible’’
isn’t really a black and white designation: some apps will function flawlessly, some apps
will function mostly, and some apps will barely function. To help address the inevitable

CHAPTER 9: Virtualization

530

‘‘will my software work’’ questions, Crossovers offers a Compatibility Center (http://
www.codeweavers.com/compatibility/), which provides a searchable database of
compatable software. This database rates software based upon its reported
compatibility and uses a Gold/Silver/Bronze designation to describe software
compatibility. The Gold designation is obviously desirable, and should your software be
rated Gold, you can be fairly confident that it will function as intended. Silver rated
software is mostly compatible, but designates that the vendor will respond and attempt
to address bugs in the software. Bronze medallion software indicates the software has
compatibility issues and should likely be avoided. Bronze rated software may have
serious show stopping bugs, and should be avoided for business-critical usage. In any
event, make sure to thoroughly test all business uses of the software before adopting
the solution.

If your specific application needs are not present in the compatibility database, that
does not preclude it from operation, it just means that no one has tested or reported the
application. In such an event, you’ll want to download a trial version of Crossover and
fully vet your application’s functions.

After doing so, you can submit (http://www.codeweavers.com/compatibility/submit/)
your findings to Crossover to help share your findings with the community.

Managing VMs and Boot camp Through GPOs
One problem with introducing virtual machines into a mixed platform is that you are also
introducing additional complexity. If you are already running Active Directory, then likely
you will have bound your Macs into the Directory, as described in Chapter 3. When you
introduce virtual machines onto these machines, then you’ll be binding the virtual host
into AD as well. Suddenly, you have two computer objects per machine. If you have
BootCamp partitions not utilized by virtual machines, then this OS instance will also
have its own computer record. How do you organize all of these? First and foremost, the
naming convention on your OS hosts is paramount to be able to properly differentiate
between the respective OS instances. One good practice is to use specialized prefixes
or suffixes. For instance, the OS X environment may be jdoe-lt-0435. For this box, VM
instances Computer Name might be called jdoe-lt-0435-vm, and its BootCamp partition
might be jdoe-lt-0435-bc.

Unless you are using a third-party integration tool, such as Centrify, Quest, or have
extended your Active Directory schema for Mac OS X support, then the computer object
for your primary OS X instance isn’t much good for management on your virtual
machine. Its existence is without doubt a requirement, but any GPO’s which would
normally be applied to a Windows OS are promptly ignored. Because of this, you can
either organize your Mac OS X objects right next to your virtual machine objects, or you
can create purpose-specific Computer containers for each purpose: Computers, Macs,
MacVM, and BootCamp. Using purpose-specific containers is typically recommended
for a number of reasons. First and foremost, in large environments it just helps
organizationally. Most importantly, it provides a way to target each specific environment
for GPO management.

CHAPTER 9: Virtualization

531

There are certainly circumstances where you might only want to target specific VM
instances, or perhaps only BootCamp computers. For instance, both Parallels and
VMware have options to redirect a User’s home profile to local folders on the OS X file
system. This is similar to a basic redirection deployed GPO, but instead of pointing a
user’s folders to a network share, you point them to the filesystem on the host OS. This
way, when you go to My Desktop on your Windows guest OS, you see the exact same
items as you would when you go to your OS X Desktop folder. However, if you deploy
GPO’s by redirecting a user’s My Desktop or My Documents folder to their network
profile, those GPO’s will conflict with the VM software’s redirection, causing
unpredictable results. The goal in this scenario would be to terminate redirections
specifically on OS X virtual machine instances.

However, Document redirection is a User policy, so computer objects do not have
dominion to manage (or prevent) them. Luckily, Active Directory provides a function
called User Group policy loopback. When linked to an OU, User Policy application can
be directly affected by User Policy GPO’s applied to an OU containing computer
records. Normally, only the user’s Group Policy objects determine which user settings
apply. However, if User Group policy loopback is enabled, when a user logs on to this
computer, the computer’s Policy objects determine which set of User Policy objects are
applied. This will effectively allow you to block the inheritance of user folder redirection
policies through the use of computer OUs (see Figure 9-28).

Figure 9-28. Folder redirection policies

Configuring your laptops in this way, by allowing your VM’s to utilize local storage has
numerous benefits. First, the barrier between host OS and guest OS becomes less of a
mental challenge when both have access to the same data. This means your users will
have less difficulty in comprehending the dual OS workflow. Secondly, it allows for the
utilization of OS X-based home directory syncing, which will ensure that both OS X and

CHAPTER 9: Virtualization

532

Windows altered documents in the user’s home folder will get synchronized to the home
directory server. This is particularly handy if your users will move back and forth
between wired desktops and wireless laptops.

Through the use of OS X network home folders, Windows My Desktop and My
Document GPO redirects, and OS X mobile syncing on laptops, you can provide a
completely seamless cross platform existence. When the user logs into a wired lab
Mac, he will have access to his data. If he then logs into his directory integrated laptop,
syncing will ensure any changes made from the lab mac show up on the laptop. The
user then opens up a Windows VM on his laptop and modifies some documents.
The OS X host will eventually sync that data back to his home directory store as well.
Perhaps next, that user logs into a lap running boot camp or even hardware PC’s. All
changes made on the laptop are right there present on the Desktop, and any changes
will be saved back up through the chain.

This integration will be highly desirable in a large cross platform environment. It will
help to reduce end user confusion, as they will no longer have to worry about which
computer and OS their important data was last left on. It will provide the ability to
transition between OS’s with minimal burden on the user to understand the complexity
that must go on behind the scenes.

AntiVirus
Finally, consider the virus. The Mac (according to the commercials you see on television,
and in real life as well) is rarely harmed by malware. But Microsoft Windows, not so
much. Therefore, make sure that you have planned for viral infestations on all of your
computers. Whether you choose to use a solution such as Symantec’s AntiVirus
Corporate Edition or a free solution, such as AVG (http://free.avg.com) or ClamWin
(http://www.clamwin.com), it is important to run some form of antivirus to keep your
environment free from threats.

Further Resources
Virtualization: From the Desktop to the Enterprise by Chris Wolf and Erick M. Halter
(Apress, 2005). http://www.apress.com/book/view/9781590594957. For more
information on virtualization concepts look into this title, which covers leveraging
virtualization overall and is not exclusive to Mac OS X.

Pro Windows PowerShell by Hristo Deshev (Apress, 2008). http://www.apress.com/
book/view/9781590599402. Once you are able to work comfortably in a Windows
environment, then one of the first things you should do is learn PowerShell.
PowerShell is similar to shell scripting in Mac OS X, although nothing like it
whatsoever. Confused? Then you need to check out this book, which will fill you in
on the basics on managing systems using PowerShell and turn you into a Pro.

Active Directory Field Guide by Laura E. Hunter (Apress, 2005). http://www.apress.
com/book/view/9781590594926. Microsoft Active Directory skills are a must if you are

CHAPTER 9: Virtualization

533

going to be centrally managing Windows instances on Mac OS X. This book will help
you bridge the gap and take you further than this book can.

Automating Windows Administration by Stein Borge (Apress, 2004). http://
www.apress.com/book/view/9781590593974. This book, which focuses on WSH, is
going to be a little bit dated, but when used in conjunction with the Microsoft
TechNet site it will provide a great deal of information on the scripting that will be
required to automate your Windows virtual operating systems deployment. The
book takes you from basic to complex scripting, and even has a number of scripts
that you will likely want to use.

Hardening Windows by Jonathan Hassell (Apress, 2005). http://www.apress.com/
book/view/9781590595398. One of the hottest topics to likely come up in a cross-
platform deployment will be security. This book goes into detail on the security
issues and the fixes that you are likely to encounter with regards to your Windows
virtual machines. The book covers the security center, firewall, and a number of
other features that are musts when deploying Windows. If you are a Mac admin and
not a Windows admin, then you should have a resource for security best practices
for each platform that you will be deploying.

CHAPTER 9: Virtualization

534

10Chapter

iPhone
Practically every conversation about integrating Mac OS X into enterprise
environments tends to include the iPhone in some way or another. iPhones are a
darling of the consumerization set because they’re cool, feature rich, extensible
and allow for integration with a number of other solutions. The iPhone also has a
number of features developed almost specifically for satisfying the needs of large
organizations. Most notably is the ability to integrate into Microsoft Exchange.
While the iPhone can also be used to support other messaging solutions, its native
Exchange support provides the most seamless integration and doesn’t require third
party software

The iPod touch is similar to the iPhone, but is lacking in some of the core features
that are found in the iPhone. Most notably is the fact that it is not a phone—it’s an
iPod. Physically, the iPod touch does not have a microphone, camera, or Bluetooth.
The iPod touch also comes with a different dock, has a headphone jack on the
bottom, and older models didn’t have a built-in speaker. The iPod touch is otherwise
very similar to the iPhone, because they are spec’d similarly performance wise and
both run the same software stack. Therefore, the iPod touch makes a good low-cost
alternative solution to the iPhone for testing and remote support staff. Throughout
this chapter we will note when referencing a feature available exclusively for one.

The iPhone and iPod touch both take advantage of a rich development framework
and are b built on a subset of OS X’s Cocoa development platform, Cocoa Touch.
This is a mobile optimized development environment that allows for the creation of
feature rich, user-friendly applications. The numbers of applications that have been
published to the App Store, Apple’s online marketplace, are a testament to the
extensibility of the underlying language. There is definitely a learning curve to writing
applications for the iPhone for those without previous development experience.
Those with OS X development experience, or experience with other Object Oriented
languages, should be able to familiarize themselves with the environment quickly. In
some cases, it will be easier to develop applications that can be leveraged using a
web browser, thus enabling a number of different platforms to connect to the
application and rapid development of portals customized for each type of device
that may be supported.

535

CHAPTER 10: iPhone

536

In this chapter we will cover all the burning questions an enterprise organization
might ask, given an upcoming mass deployment and integration project. We begin
with the basics: how to configure the iPhone and iPod touch for most of the systems
found in a large organization. Next, we move on to automating the installation and
configuration of the devices. Then we discuss the ecosystem: strategies for making
the iPhone and iPod touch as useful in your organization as a desktop computer.
Finally, we look at troubleshooting the iPhone and iPod touch.

NOTE: Before you get started with the technical part of this chapter, if you are using an iPhone
then you will need to make sure that the SIM card has been installed and that the iPhone has
been activated. If your organization uses Microsoft Exchange or VPN connectivity, then you will
also need to make sure you have an Enterprise data plan or the iPhone will not be able to
leverage ActiveSync.

The iPhone Simulator
The iPhone simulator (see Figure 10-1) is an application that Apple provides as part
of its development toolset. The iPhone Simulator provides a means of accessing and
testing core features or options on the devices. However, the usefulness is limited to
testing web sites in Safari and basic troubleshooting. You cannot configure mail
clients, calendars, or install software that you don’t have the uncompiled Xcode
project for. While the iPhone Simulator is often used as a troubleshooting tool, it’s
important to keep in mind that it was released as a development tool, and any
features that it has (or doesn’t have) are meant to aid developers, not to be a
replacement for having an actual device.

While limited as a support tool, the iPhone Simulator is a great tool to use for
application testing during the development process of an application. While writing
an application, you can use the iPhone Simulator for testing the appearance and
functionality. You can also check whether or not your organization’s site and web-
based applications appear and function appropriately on an iPhone or iPod touch.

To obtain the iPhone Simulator, download the iPhone SDK from http://www.
apple.com/downloads/macosx/development_tools/iphonesdk.html. Once
downloaded, install the SDK and then browse to the /Developer/Library/Platforms/
iPhoneSimulator.platform/Developer/ Applications directory and open the iPhone
Simulator.

CHAPTER 10: iPhone

537

Figure 10-1. The iPhone Simulator

NOTE: You also cannot simulate the loss of network connectivity with the iPhone Simulator. The
device connects through the active network connection of your computer and can provide mixed
troubleshooting results, even if you disable the network connection on the computer itself.

Email
The iPhone’s built-in mail client, Mail, supports numerous services and protocols.
Compatible with industry standard IMAP, POP, and SMTP protocols, the device also
has support for Microsoft Exchange, Mobile Me, Gmail, Yahoo! Mail, and AOL. Of these
services, push notifications are available for Exchange, Mobile Me, and Yahoo!.
Configuring the email client is a very straightforward process, and an email account
likely will have been setup by iTunes during the sync setup.

Email account creation is handled on the iPhone through the Mail, Contacts, Calendars
setting pane. To access this, from the iPhone home screen, click on the Settings app.
Once the Settings app has launched, scroll down to Mail, Contacts, Calendars, found
directly below General.

CHAPTER 10: iPhone

538

Tap Add Account. At the Add Account screen, you have to select which type of account
that you will be setting up, as seen in Figure 10-2. Read on for information on
configuring the app for your specific account type.

Figure 10-2. Create a new Mail Account

TIP: If no email account is configured, you can access the Add Account screen by directly
opening the Mail app.

IMAP, POP, and SMTP
To setup an IMAP or POP account, from the Add Account screen, tap Other to bring up
the interface for manually setting up an Email, Contact, or Calendar account, as seen in
Figure 10-3. If you have already setup an account, then use the Settings icon at the
home screen of the device and tap on the Mail, Contacts, Calendars entry. Then click on
the Add Account… option and tap.

CHAPTER 10: iPhone

539

Figure 10-3. Manually create an Account

Tap Add Mail Account. At the New Account screen, enter the full name of the user
whose email you are configuring in the Name field. This will represent the name shown
in the From field when sending emails. After specifying a full name, enter the user’s
email address in the Address field. Next, enter the Password and a short description of
the account into the Password and Description fields respectively, as shown in Figure
10-4. Click Save when you are finished entering the settings into the device.

Figure 10-4. Enter basic account information

CHAPTER 10: iPhone

540

At the second New Account screen, select whether the account should be POP or IMAP by
using the top bar to select the desired protocol, as seen in Figure 10-5. Then enter the settings:

 Provide the server name in the Host Name field.

 Enter the userID from your mail host in the User Name field.

 Type the password used to access your email account in the
Password field.

 For Outgoing server, provide the appropriate information, in many
cases mirroring the fields from above. For the vast majority of
configurations, you will need to supply authentication credentials for
your outgoing (SMTP) server as well.

Figure 10-5. Select IMAP or POP account type.

When you are satisfied with your settings, tap on the Save button in the top-right hand
corner of the screen. The Save button will only be available once you have entered all of
the required fields. The New Account screen should then verify your account
information. Once complete, open Mail and test sending and receiving.

Setting Up the Exchange Client
The iPhone and iPod touch natively support exchange via the ActiveSync protocol and
is officially supported by the Mail app when hosted by Exchange 2003 SP2 or Exchange
2007 SP1. However, the client should work with most third party ActiveSync
implementations, such as Kerio MailServer. Configuring ActiveSync access on an
iPhone is a very straightforward process. As mentioned, Exchange accounts are
configured by adding a new account under the Mail, Contacts, Calendars pane in the
Settings app. From the New Account screen, the very first item in the list is Microsoft
Exchange (see Figure 10-2). Select it to create a new Exchange account.

CHAPTER 10: iPhone

541

Next, you will see some fields to enter your specific user account data, shown in Figure
10-6. Enter the Email address, the Domain, the Username, and the Password. Also,
provide a short description of the account that is being added. Click next after you have
entered all of your appropriate settings. The iPhone or iPod touch will now verify the
Exchange account information you previously provided and often return back to the same
screen, but with the addition of a server field. From here the device will try to configure for
the environment. If the Exchange server cannot be determined from the provided domain
information and DNS, you will be presented to manually specify the DNS name of the
Exchange server. Provided that the device can synchronize with the Exchange server, you
will now see a list of items to potentially synchronize. These include Mail, Contacts, and
Calendars, also shown in Figure 10-6. You can move any of the three to an off slide
position in order to disable synchronization for each specific option. When you’re satisfied
with the options that will be synchronized, tap on the Next button.

Figure 10-6. Exchange Service Configuration

You should now have an Exchange client configured and synchronized on the iPhone
or iPod touch. If your organization supports Outlook Web Access, configuring
synchronization with a Microsoft Exchange environment should occur without much
fanfare. Having said this, ActiveSync requires Outlook Web Access to function. If you
are in a 2003 environment then this is simple enough, but in 2007 you will need to
point your account settings at the server that houses the CAS Client Access Service
(CAS) role for the mailbox in question.

Once your initial synchronization has completed, verify that mail, contacts, and
calendars work as they should.

NOTE: You can only have one active ActiveSync account configured on an iPhone or iPod touch
at any given time.

CHAPTER 10: iPhone

542

Installing Certificates
Certificates can be installed on iPhones through a number of means. The easiest
way to install a new certificate on an iPhone or iPod touch is by providing the
certificate via a web site or by emailing the certificate to the user. In either scenario,
the user needs to visit either the web site or tap on the certificate attached in an
email. Once you have reached this point, you will be presented with the Install Profile
interface. In Figure 10-7, you accessed the organization’s root Certificate Authority
certificate by opening http://myco.com/myco_ca.cer in Safari, which installs our LBC
Certificate Authority root certificate.

NOTE: The iPhone Active Sync client and Wireless configuration can login using certificate-
based authentication if your services support it (such as if you are using Windows Server IAS).
Typically when using RADIUS or Active Sync authentication you will want to install your
certificate along with your wireless or Active Sync configuration at the same time. This will
allow you to specify the certificate to be presented during this authentication challenge within
the configuration profile.

Figure 10-7. Install Certificate screen

At this point, we can verify that it is the appropriate certificate, and then tap on the Install
button to install it. If you are using an internally signed Certificate Authority, then you will
be presented with an error, as seen in Figure 10-8.

CHAPTER 10: iPhone

543

Figure 10-8. Unverified root certificate

Click Install Now to add the certificate to the devices local trust. You will be prompted to
enter your device password, if one has been configured. The certificate will then be
added, and from now on accessing SSL services signed by your Certificate Authority will
function without warning.

To modify certificates which have been installed and remove them from the trust, you
must use the General pane found under the Settings app. In this interface, certificates
will be listed under the Profile section, as seen in Figure 10-9.

Figure 10-9. Installed profiles

CHAPTER 10: iPhone

544

You can click on each installed profile to view more information. In this interface, profiles
can simply be imported certificates, and they can also be configurations created using
the iPhone configuration utility, which has a dedicated section later in this chapter.
Using this interface, you can remove any installed restrictions, provided you can provide
the phones passcode when prompted.

NOTE: As of this writing, the iPhone did not support the Secure/Multipurpose Internet Mail
Extensions (SMIME) standard. Messages cannot be signed or encrypted on the phone even if
the proper certificate bundle is installed.

Network Connections
The iPhone and iPod touch both support connecting to standards compliant wireless
access points and VPNs.

The Wireless network settings can be configured to access a wireless network by
opening the Settings application, typically found on the devices home screen. With
settings open, tap on General button and then Network. Here, you will have access to
configure VPN and Wi-Fi connectivity settings. By tapping on Wi-Fi, you will have
options to turn Wi-Fi off completely, or to join a particular network from a presented list
of found SSIDs. Select the appropriate network and then enter the required information
to connect to it. Alternatively, if you want to connect to a hidden network, tap Other…
and then specify the SSID, security type, and credentials. This should be familiar
because it is also how you would connect to the same type of network from within Mac
OS X (see Figure 10-10).

Figure 10-10. Configurewireless access

CHAPTER 10: iPhone

545

VPN support on the iPhone includes standard PPTP and L2TP clients. Additionally,
you can also connect to a Cisco VPN, because a basic IPSec client built specifically
for Cisco Group authentication is included. Oddly enough, this means that native
VPN support on the iPhone is actually more robust than that provided by Mac OS X,
as the latter has no built-in support for IPsec layer3 tunnels. To access the VPN
settings on a device, tap on Settings from the home screen. Next, tap on General
and then Network. You will now see Wi-Fi and VPN. Tap on VPN and then tap on the
‘Add VPN Configuration’ button. From here you will see three tabs, L2TP, PPTP, and
IPSec. If you are using any of these, then you more than likely already have a VPN
server and configuration will closely resemble configuring VPN settings on any other
platform. Configuration of the actual VPN server is outside of the purview of this
book, so I will spare you the details about the differences between PPTP and L2TP
or what a Group Name is for in IPSec. Enter the appropriate information for your
organization and then select whether you want to encrypt all traffic through the VPN.
If you do so, network connections will default over the virtual VPN interface. It is
worth noting that VPN connections do not persist across different networks—
changes between 3g access and Wi-Fi require the VPN tunnel to be re-established
(see Figure 10-11).

Figure 10-11. Configure VPN

Non-Cisco, IPSec-based VPNs may or may not be supported. Check with your vendor
to determine whether support is available. If it supports one of the aforementioned VPN
protocols, you will most likely have minimal issues. Many vendors, such as CheckPoint,

CHAPTER 10: iPhone

546

now have dedicated portals for their iPhone customers (http://www.checkpoint.com/
iphone). If your company uses a non-standard VPN technology, such as SSL, then I
have some bad news for you. Due to the sandboxed nature of the iPhone software
stack, this type of device-wide network control is not possible. Do not hold your breath
for third party support of web/SSL-based VPN technologies, at least not until Apple
announces some policy changes.

NOTE: As of this writing, Apple officially supports Cisco ASA 550 Security and PIX Firewalls
with software version 7.2 and later (version 8 recommended) and IOD version 12.4(15)T or
later. VPN 3000 Series are not supported. Also, there was no auto connection functionality of
the VPN client. Users must manually connect to the VPN. Keep this in mind for internal web-
based applications or those custom applications that require internal resource access (such as
databases).

Leveraging the Web Browser
iPhone and iPod touch devices come with the Safari web browser, which is based on
the growingly popular OpenSource WebKit engine. Most web sites that function
properly in Safari for Mac OS X will also function appropriately in the mobile edition of
the browser. However, there are a few key technologies that have not been
implemented at the time of this writing. For example, SAML, the single sign on
framework used by a number of large SharePoint Portal Server installations is not
supported on the iPhone or iPod touch. We recommend that if you are going to be
using web applications, such as Software as a Service (SaaS) providers or internal
portals that you thoroughly test each business function (and field of each screen) to
determine what may or may not need some fine tuning to work seamlessly for the
iPhone and iPod touch. For that matter, we recommend the same thing for all of your
supported mobile platforms.

Citrix
Custom application development, whether for web portals or for Objective-C, are native
to the iPhone and iPod touch and can result in delays in getting applications to market.
If you do not need to access your application while the device is offline, and you already
have a Citrix infrastructure in place then it is possible to leverage the Citrix client for the
iPhone and iPod touch to deploy an application store of your own. Using the Citrix
Receiver application from Citrix, you can access any application that has been
published from Citrix’s XenApp.

CHAPTER 10: iPhone

547

To download the Citrix client for the iPhone and iPod touch, first open iTunes
and tap on the link for the App Store. Alternatively, you go directly there using
http://itunes.apple.com/WebObjects/MZStore.woa/wa/viewSoftware?id=313735334&mt=8.
Once you have downloaded the application, install it on the iPhone or iPod touch
and then look for the Citrix application in your list of available applications. When
Citrix is first opened it will prompt you for connection information:

 Address: the host name or IP address of the server you will be logging
into.

 Username: the user account that you will be using on the server.

 Password: the password for the user logging in.

 Domain: the Active Directory domain name on the server.

 Sign in automatically: choose whether to log into the server
automatically.

 Citrix Access gateway: tapping here opens a new screen with the
following settings.

 Access gateway: controls whether you are using an access
gateway.

 Gateway type: only Standard Edition is supported as of the
writing of this book.

 Gateway authentication: allows you to select No Authentication,
Domain Only, RSA SecurID Only, or Domain + RSA SecurID
authentication.

Citrix has published a fair amount of information regarding iPhone support,
and will likely continue to publish more as the product matures at http://
community.citrix.com/iphone.

NOTE: The negative side of deploying applications through Citrix to iPhone and iPod touch
devices is that the application will require a constant Internet connection and will not be useful
to end users while they are not online.

In addition to the Citrix client, there are a few applications available that will allow you to
access standard RDP-based sessions being published from Windows (or AquaConnect
for that matter). These are as follows:

 Jaadu Remote Desktop: allows access to most versions of Windows
(or at least those that support Remote Desktop). Available at
http://itunes.apple.com/WebObjects/MZStore.woa/
wa/viewSoftware?id=299002339&mt=8.

CHAPTER 10: iPhone

548

 Remote Desktop: allows access to Windows XP. Available at
http://itunes.apple.com/
WebObjects/MZStore.woa/wa/viewSoftware?id=288362053&mt=8.

 Jaadu VNC: Allows remote access to Mac and Windows PC’s via the
VNC protocol. Available at
http://itunes.apple.com/WebObjects/MZStore.woa/wa/viewSoftware?
id=288362053&mt=8.

iPhone Configuration Utility
In the first part of this chapter we looked into how to setup the iPhone to connect to
common services that your organization may already have. However, if you’ve got a
project where you need to deploy 100, 1,000, or 10,000 of these devices then you’re
going to want the set up per handheld to be as automated as possible. In order to
streamline deployment, Apple has developed the iPhone Configuration Utility, accessible
at http://www.apple.com/support/iphone/enterprise/.

Building Configurations
The iPhone Configuration Utility can be used to develop configurations that can be
pushed out to iPhones and iPod touches. Once you have downloaded the utility, open
and run the application installer. Once it’s complete, look in /Applications/Utilities on
Mac OS X or by default in C:\Program Files\iPhone Configuration Utility, where you will
find the application bundle. Open it up and you will see the initial configuration utility
screen. Click on Configuration Profiles, and then click on the New icon in the iPhone
Configuration Utility toolbar. You will now see a screen that allows you to configure a
number of settings for the iPhone.

The General Configuration Profiles tab is used to describe the profile you are
creating. Here, you can enter a name, unique identifier (using reverse domain
notation), an organization name, and finally a description of the profile you are
creating. Here, we recommend a good naming convention. If you are going to build
profiles per-user, consider placing the username followed by the time frame or
version of the profile. If you are going to use a generic profile, consider entering a
miniature description and/or a version number/date. In this example, you are
creating a profile for your executive phones. Specify a configuration name, MyCo
Executives, and then your configuration identifier using reverse domain notation:
com.myco.executives.profile. Next, enter relevant information for the organization
and description as shown in Figure 10-12.

CHAPTER 10: iPhone

549

Figure 10-12. iPhone Configuration Utility: General Tab

The next section is the Passcode tab, where you can configure password policies,
(which the iPhone and iPod touch refer to as passcodes). Shown in Figure 10-13,
various settings exist to effect password requirements for sleeping and device power-
on. These include pretty standard options, like the ability to set a lock timer, specify
password minimum length enforcement, create alphanumeric requirements, and there
even includes internal routines to test for weak passwords. You also have the ability to
prevent up to 50 previous passwords for re-use, as well as enforce periodic password
changes. It’s important to note that you do not configure an actual passcode at this time
(that’s done from the device itself after the configuration has loaded). However, if you
wish to configure a passcode policy to be enforced on your company devices, this is the
place to do so. First, check the box for Require passcode on device. Next, select the
appropriate options that fall within the boundaries of your organization’s security policy:

 Allow simple value: indicates that insecure character sequences can
be used as a password. For example, if you insist on using a
palindrome you can use radar as your password using this option.

 Require alphanumeric value: requires that at least one alphabetic
character exist in the password.

 Minimum passcode length: sets the minimum number of characters
that a passcode must contain.

CHAPTER 10: iPhone

550

Minimum number of complex characters: sets the minimum number of
characters allowable in a passcode.

 Maximum passcode age (in days): sets the number of days before a
passcode will need to be changed.

 Auto-Lock (in minutes): configures the device to automatically lock and
require a passcode to wake from the locked status.

 Maximum number of failed attempts: number of times an incorrect
password will be used before erasing all of the data on the device.

Figure 10-13. iPhone Configuration Utility: Configuring Passcode Settings

TIP: If you find that your passcode policies applied in the iPhone Configuration Utility are
getting overridden, look into your Exchange Server for potential policy conflicts.

CHAPTER 10: iPhone

551

The Restrictions tab, shown in Figure 10-14, allows you to restrict certain activities on
the iPhone. This includes disabling built-in features such as the device camera, Safari,
YouTube, and the iTunes Music Store. You can also configure restrictions to prevent
only elicit content from being watched or heard in the iPod app, and you can prevent
additional applications from being installed.

Figure 10-14. iPhone Configuration Utility: Configuring Passcode Settings

The Wi-Fi tab allows you to configure an iPhone and/or an iPod touch to connect to a
variety of standards compliant VPN appliances and servers. Wi-Fi supports WEP, WPA,
and WPA2 Enterprise, which allows support for most modern wireless environments,
including those that depend on 802.1x for authentication and authorization. At the Wi-Fi
section, click ‘‘Configure’’ to be presented with configuration options. In the resulting
screen, shown in Figure 10-15, enter the name of the SSID, the Wireless network’s
broadcast name. There is not a drop-down menu to select discovered Wireless
networks, so you must type the network name by hand. Bear in mind that SSID’s are
case sensitive. Cycle through all the settings, hopefully matching each one in the iPhone
Configuration Utility with those you were able to discover while testing the handhelds.

CHAPTER 10: iPhone

552

Figure 10-15. iPhone Configuration Utility: Wi-Fi

The Hidden Network field will allow you to connect to hidden networks and must be
checked if the network does not publicly announce its SSID. Next, check the Security
Type field and find the type of Wireless network encryption that your organization is
using. At its most basic, WEP and WPA/WPA2 Personal will not require further
configuration. If you select WEP, or WPA/WPA2 options, then the user will need to
enter the wireless network password themselves, it cannot be embedded into the
configuration file. However, if you select WEP Enterprise or WPA/WPA2 Enterprise then
you will need to configure your encryption protocol settings to match the configuration
in production.

Under the Protocols tab for your enterprise Wi-Fi connection you will configure the
protocol stack for your wireless network. First, use the checkboxes to select the
authentication protocols that are supported. Options include TLS, LEAP, TTLS, PEAP,
and EAP-FAST. If you are going to be using EAP-FAST then also select the Protected
Access Credential (PAC) by first choosing whether to use PAC, and if so, whether or not
to provision PAC and whether to do so anonymously.

CHAPTER 10: iPhone

553

Finally, select the authentication protocol to be used to access the inner ring
(MSCHAPv2) and then click on the Authentication tab of the Wi-Fi screen. As shown in
Figure 10-16, use the Authentication tab within the Wi-Fi screen to provide the
username to be used to authenticate to networks and whether you want to send an
authentication password along with the configuration. Then select a certificate to use for
authentication if you have one and provide an outer identity (if required for your
organization).

Figure 10-16. iPhone Configuration Utility: WPA Enterprise User Authentication

Next, click on the Trust tab of the Wi-Fi screen (see Figure 10-17). Here, you will see the
option to provide a certificate that can be used to satisfy the requirement that a client
utilizes an SSL certificate to authenticate into the environment. Here, certificates which
were added under Credentials tab are listed, which we’ll cover later in this section.
However, once added, you would check the box for each to trust and present at
authentication to the wireless network. To do so, click on the checkbox for each to be
sent as part of the configuration. You will also want specify Trusted Certificate names
(as defined in the certificates CN). To do so, use the plus (+) icon below the Trusted
Server Certificate Names, and then type the name of each certificate to be trusted.

CHAPTER 10: iPhone

554

You can also provide multiple preconfigured networks that the mobile device can log
into. Using the + and --- buttons in the upper-right hand corner of the Wi-Fi screen you
can add and remove more networks.

Figure 10-17. iPhone Configuration Utility: WPA Enterprise Trusts

NOTE: You can use the ‘‘Trusted Server Certificate Names’’ to bypass the prompt for users to
trust dialog when connecting to the wireless access point.

Once you are satisfied with your wireless configuration settings, proceed to the VPN tab
of your configuration profile (see Figure 10-18). If desired, click on the Configure button
in order to deploy a VPN payload to the device. First provide a friendly name for your
end users that describes the connection. Next, select a protocol. You can use PPTP,
L2TP, and IPSec (which Apple calls IPSec), much in the same way that you can use the
same options in the VPN when configured on a single mobile device, as shown
previously in this chapter.

CHAPTER 10: iPhone

555

Figure 10-18. iPhone Configuration Utility: VPN configuration

The next section, Email, allows for the configuration of non-ActiveSync-based email
accounts. Skip to the Exchange section if you have no IMAP/POP based email accounts
to configure. Otherwise, click configure to configure the email section, and enter the
appropriate information into the following fields (and as shown in Figure 10-19):

 Account description: a friendly identifier, you will typically want this to
be similar to aid those in your remote support team who may end up
providing phone support.

 Account type: choose POP if your account uses POP or IMAP if your
account uses IMAP.

 Account name: the name that will show on sent email.

 Email address: the email address that will be used with the POP or
IMAP account.

CHAPTER 10: iPhone

556

Once you have entered the global configuration information, use the Incoming Mail sub-
tab to configure the following:

 Mail Server and port: the host name or IP address of the server that
the POP or IMAP account is hosted from.

 User name: the userid for the server entered previously.

 Use password authentication: enables password authentication for the
account.

 Use SSL: configures mail to leverage SSL. (If you use this setting then it
does not hurt to also add and trust the certificate in the Credentials tab if
said ticket was self-assigned rather than originating from a trusted CA.)

Figure 10-19. iPhone Configuration utilty: IMAP/POP Email

NOTE: The password here should only be used with encrypted profiles, as it is stored as a
string in the IncomingPassword key of the file.

CHAPTER 10: iPhone

557

Once you are satisfied with your entries, click on the Outgoing Mail sub-tab and
assuming your server requires (or at least allows) authenticated SMTP enter the
appropriate SMTP information supplied by your mail host, shown in Figure 10-20.

Figure 10-20. iPhone Configuration Utility: SMTP email settings

If you wish to deploy Exchange configurations in this profile, you can configure the
account settings appropriate for your Microsoft Exchange Server environment under the
Exchange section. Only a single Exchange account can be configured on a device.
These settings should match those in the Settings screen fairly accurately. To
successfully configure an account, you will need to enter the following settings, shown
in Figure 10-21:

 Account name: the friendly name for the account.

 Exchange ActiveSync host: the server that houses the Outlook Web
Access role for your organization (your CAS server).

 User: the userID for the user in Active Directory/Exchange.

 Email address: the email address you will use.

 Use SSL: enable ActiveSync over SSL (again, enter the SSL certificate
using the Credentials tab if you will be using this option).

CHAPTER 10: iPhone

558

 Authentication credential: allows for the specification of a certificate
used for authentication.

Figure 10-21. iPhone Configuration Utility: Configuring Exchange Accounts

With iPhone 3.0, we also saw the introduction of address lookup via the LDAP protocol. The
iPhone configuration utility provides the ability to deploy these settings in mass to users. If
you previously provided settings to configure an Exchange account, it is worth noting that
the Global Address List (GAL) will be available for searching via the Contacts app as well as
in the Mail app when specifying email addresses. However, if your environment does not
host Exchange, then configuring iPhones to utilize LDAP services can be very handy. You
can deploy multiple LDAP configurations. When deploying a configuration, it is necessary to
provide the following information, as shown in Figure 10-22:

 Account description: the friendly name for the account.

 Account hostname and port: the server that houses the LDAP service,
and the port which the service is available. By default this is TCP 389,
or TCP 636, when using SSL.

 Account username and password: Allows for the specification of an
LDAP user for authentication. If your LDAP server does not support
anonymous connections, you may want to create a user specific for
this cause, such as ldap_iphone.

CHAPTER 10: iPhone

559

 Use SSL: enable LDAP over SSL, make sure to specify the
appropriate port.

 Search settings: In this field you can supply multiple search paths which
will be searched, as well as the standard LDAP scope options: Base,
One Level, Subtree. If a scope of Base is selected, searches will only
match against the object specified by the distinguished name provided
via the search path. Using “One Level” will search for objects
residing directly in the container or organizational unit specified via
the search path. In an OS X Open Directory environments, a
search path of “cn=Users,dc=myco,dc=com”, but can also be
“cn=People,dc=myco,dc=com”. The subtree scope is the most
forgiving, allowing you to search across all leaves of the provided search
path. As such, a search path of “dc=myco,dc=com” would find entries
both in cn=Users and cn=People. Subtree is also the slowest search
pattern; search paths should be refined as much as possible.

NOTE: As of this writing, the LDAP client did not support self-signed certificates.

Figure 10-22. iPhone Configuration Utility: Configuring LDAP Accounts

CHAPTER 10: iPhone

560

With iPhone 3.0, we also saw the introduction of CalDAV support, allowing the iPhone’s
built-in calendar app to integrate with CalDAV based calendaring services, with full
read/write privileges. Multiple accounts can be configured, and configuration itself of the
CalDAV service is pretty basic, requiring only a few fields, as shown in Figure 10-23:

 Account description: the friendly name for the account.

 Account hostname and port: specify server hostname or IP that
houses the CalDAV service, as well as the port over which the service
is available. By default this is TCP 8008, TCP 8443 when using SSL.

 Principal URL: specify the URL to the user’s calendar. You will
typically leave this blank, as it is best to let it automatically determine
the appropriate URL based upon the user provided username.

 Account username and password: specify the username and
password to authenticate as. You will likely want to leave these fields
blank, which will require the user to enter them upon configuration.

 Use SSL: enable CalDAV over SSL, make sure to specify the
appropriate port

Figure 10-23. iPhone Configuration Utility: Configuring CalDAV Settings

CHAPTER 10: iPhone

561

You can also deploy read-only web-based calendar subscriptions based upon the .ics
format. These can be useful for publishing information such as staff meetings, holidays,
and special events. The payload information for a subscribe calendar is fairly basic and
multiple subscriptions can be deployed. The following field information must be
provided, as shown in Figure 10-24:

 Description: the friendly name for the calendar.

 URL: specify the http:// url where the calendar can be accessed.

 Account username and password: allows for the specification of an
LDAP user for authentication. If your LDAP server does not support
anonymous connections, you may want to create a user specific for
this cause, such as webcal_iphone.

 Use SSL: Utilize SSL via the https protocol.

Figure 10-24. iPhone Configuration Utility: Configuring WebCal Subscriptions

The next section, Web Clips, allows you to create an iconified link to a webpage, which
is very useful for ensuring employees have quick, easy access to things like the
company intranet or help desk system. Deploying web clips is as simple as specifying a
name, a url, and an icon. You can also specify whether or not the user can delete the
webclip, as shown in Figure 10-25.

CHAPTER 10: iPhone

562

Figure 10-25. iPhone Configuration Utility: Configuring WebCal Subscriptions

The next section allows you to deploy custom SSL certificates to your iPhone, shown in
Figure 10-26. If your establishment uses an internal Certificate Authority, you will need to
deploy your CA’s certificate to prevent users from receiving SSL errors when using
encrypted services. Alternatively, if you are using certificate based authentication for any
of the supported services, you deploy them here. Your users will be thankful given that
they will need to click on less items to get setup and your support desk will thank you as
well, considering they will more than likely get fewer phone calls with users who need
help isolating various SSL issues.

To install certificates, click on the configure button in the Credentials section. You will be
presented with an open dialog box, use it to navigate to the folder containing your
certificates in .cer or .p12 format. With the certificate highlighted, click open. Assuming
your certificate is in a supported format, the certificate will then be displayed and added
to the payload. You can use the plus (+) and minus (---) buttons to add more certificates
or remove certificates, respectively.

CHAPTER 10: iPhone

563

TIP: If you browse to an SSL-protected web site from your desktop using Safari or Firefox and
accept the certificate, then it will be located in your Login.keychain, accessed via the Keychain
Access application. From Keychain Access, you can drag it to the desktop to generate a CER
file for the certificate. Alternatively, you can convert a standard PEM style cert (as used by OS
X’s Servers certificate system) to the DER format used in .cer files using the following
command (replacing Default.crt with your certificate):

openssl x509 -in /etc/certificates/Default.crt -inform PEM -out

/etc/certificates/Default.cer -outform DER

Figure 10-26. iPhone Configuration Utility: Deploying Certificates

SCEP allows you to utilize the Simple Certificate Enrollment Protocol for deploying
configuration settings and certificates via SCEP, should you have such facilities in place. SCEP
allows you to deploy highly customized user or device-specific configurations to iPhones.
Unfortunately, setting up the system will require custom development. For more information on
SCEP and Over-the-Air enrollment, see Apple’s iPhone Enterprise Deployment Guide.

The Advanced section contains settings for the device Access Point Name and cellular
proxy settings; they should not be altered unless specified by your carrier.

CHAPTER 10: iPhone

564

NOTE: For more information on enterprise deployment, see the Apple ‘‘iPhone OS Enterprise
Deployment Guide’’ at
http://manuals.info.apple.com/en_US/Enterprise_Deployment_Guide.pdf.

Deploying Configurations
There isn’t much of a reason to build a configuration if you aren’t then going to apply it
to a device. The iPhone Configuration Utility can be used to deploy configurations to
iPhone and iPod touch devices directly, or you can export a signed configuration for
deployment via email or web. The process is very similar to that of manually deploying
certificates, described earlier in this chapter in the Installing Certificates section. To
start, assume that you are batch processing a large number of iPhones, and as such,
you will be doing the deployment from a central location. The process involves first
connecting the device to an admin station running the iPhone configuration utility
with the appropriate mobile profile for deployment. Once connected, the iPhone
configuration utility will discover and catalog the device, including the device serial
number, unique identifier, and the device’s public key. Figure 10-27 illustrates an iPhone
discovered via the iPhone configuration utility.

Figure 10-27. iPhone configuration utility: Devices

CHAPTER 10: iPhone

565

From here, you can assign a user to the device, using the Address Book framework, and
you can specify an email address, though unfortunately this information isn’t used
during the deployment. At this point, you can deploy the configuration file to the device.
To do so, click on the specific iPhone listed under the ‘‘Devices’’ section, and then
select the Configuration Profiles Tab (see Figure 10-28).

Figure 10-28. iPhone configuration utility: Installing Configuration Profiles

With the Configuration Profiles tab selected, you can click Install to install a specific
profile onto the iPhone. Doing so will invoke the standard profile installation GUI, which
is similar to the process of importing certificates.

When loading a mobile configuration, the first screen that you will see is an overview
screen, which displays the profiles intended configuration and trust settings, as shown
in Figure 10-29.

CHAPTER 10: iPhone

566

Figure 10-29. iPhone Profile Installation

Tap on the Install button on the iPhone to install the profile. At this point, you will be
queried for any information missing from the mobile configuration. For instance, if you
configured a VPN, Mail, or CalDAV payload, but did not specify a username, you will be
prompted to provide that information at this point (see Figure 10-30). Likewise, if your
configuration contains passcode enforcement, you will need to enter the passcode at
the tail end of this process. Therefore, if you wish to batch process your iPhones prior to
giving them to your users, your administrators will need your user’s passwords, or the
account creation process will need to be performed by users. In such a case, you will
likely want to provide the configuration via a secured web service. This can be a two
step process as well. For instance, the batch process might include SSL certs, generic
LDAP connections, and perhaps a webclip towards the webhosted service-centric
mobile profile. User’s then need only click on the custom icon that you provide, which
sends them to the remote mobile configuration file, and thereby directly into the
installation screen. While not completely automated, it provides a fairly user-friendly
deployment method.

Unfortunately, there is no authentication sharing between the various services, so you
will have to enter credentials for each individual service.

CHAPTER 10: iPhone

567

Figure 10-30. iPhone Profile Installation: provide authentication credentials

There are a number of reasons why importing a configuration profile can fail. If, for
example, the profile tells the device to configure an ActiveSync account and one is
already present then the user will receive an error when they attempt to install the
profile. If the user fails to enter a passcode with the appropriate passcode strength and
gives up, then the entire configuration process will fail. Alternatively, if you are deploying
Mail accounts which are configured to use SSL that is either self-signed, or signed by a
CA which is not included in the iPhone’s base trust, then the profile installation will fail,
even if it contains the CA root certificate in the profile. For these instances, you may
need to build out and deploy two configurations, one with the SSL certificates, and the
other with the Account configuration payloads.

TIP: For a list of certificates trusted by default on iPhone 3.0, see Apple Knowledge Base
article HT3580: http://support.apple.com/kb/HT3580.

Importing and Exporting Profiles
The iPhone Configuration Utility allows for importing and exporting configuration profiles
for distribution via email or web browser. To perform this task, first ensure that you have
a configuration polished up and ready to go. Once this is done, highlight the profile, and
then select either Share or Export from the toolbar, as shown in Figure 10-31. The
former option will email the mobile configuration file, the latter will present a standard
save dialog box and allow you to specify the name and location for exporting.

CHAPTER 10: iPhone

568

Figure 10-31. Exporting iPhone Configuration Profiles

After selecting either option, you will be presented with a dialog asking whether or not
you want to sign the configuration, as shown in Figure 10-31. If you are exporting this for
deployment, it is highly recommended that you do so. There are a few options here. First
and foremost, you can opt not to sign the profile at all. This provides no security on the
file, and leaves it open for alteration without any detection capabilities. By signing the
configuration, devices which seek to deploy its payload can verify that it is tamper free.
Obviously, this is always desirable. Next, it is possible to simply sign the configuration,
or we can encrypt it for each registered device. The former option is much more
forgiven, and is desirable if you wish to deploy this to an unknown amount of iPhones,
and want the task to be as hassle free as possible. Alternatively, if you have all of your
iPhones cataloged in the iPhone Configuration Utility, then you can create an encrypted
profile for each phone.

The iPhone configuration utility signs exported profiles with a self-signed Certificate
authority created when you first open the application for the first time. This certificate
authority is used to sign the configuration profiles created by your copy of the
application. If you are delegating configuration profile development among multiple
members of your staff, you may wish to export this private key and certificate
programmatically. The following is an example of perl script that will export this
information with the password ‘‘pass’’ to files in the current directory where the script is
run. Using this methodology you can keep all members of your group up to date with the
latest copy of this certificate and private key.

#!/usr/bin/perl -w
ipcuexport.pl Created by Zack Smith

CHAPTER 10: iPhone

569

This script will export the iPhone Configuration Utility certificates and private key
to files in the current directory with the naming
conventions below.
$certname = "iPCUCertificateAuthority.crt";
$pubkey = "iPCUCertificatePublic.p12";
$privkey = "iPCUCertificatePrivate.p12" ;

open(CERTS, "security export -k login.keychain -t certs|");
my $ifile = "";
my $thisfile = "";
while(<CERTS>) {
 $ifile .= $_;
 $thisfile .= $_;
 if($_ =~ /^\-+END(\s\w+)?\sCERTIFICATE\-+$/) {
 $subject = `echo "$thisfile" | openssl x509 -noout -subject`;
 if($subject =~ m/iPCU Certificate Authority/){
 $crtmodulus = `echo "$thisfile" | openssl x509 -noout -modulus`;
 my $fname = $certname;
 open CERT, ">$fname";
 print CERT $thisfile;
 close CERT;
 }
 $thisfile = "";
 }
}
close(CERTS);
$exportPublic = `openssl x509 -inform pem -in $certname -noout -pubkey > $pubkey`;
open(PRIV, "security export -k login.keychain -t privKeys -f pkcs12 -P pass | openssl
pkcs12 -passin pass:pass -passout pass:pass|");
my $kfile = "";
my $thiskey = "";
while(<PRIV>) {
 $kfile .= $_;
 $thiskey .= $_;
 if($_ =~ /^\-+END(\s\w+)?\sRSA PRIVATE KEY\-+$/) {
 $modulus = `echo "$thiskey" | openssl rsa -noout -modulus -passin pass:pass `;
 if($modulus = $crtmodulus){
 my $fname = $privkey;
 open FILE, ">$fname";
 print FILE $thiskey;
 close FILE;
 }
 $thiskey = "";
 }
}
close(PRIV);

The App Store
The iPhone App Store is where users can purchase or download applications for their
iPhone. Application development can be a fairly complicated task. If you are looking for
a specific function outside of the iPhone’s default software, it’s never a bad idea to see if

CHAPTER 10: iPhone

570

such a tool is already on the market before committing development resources to the
task. The App Store should be the first place you look. To access the App Store, open
iTunes and click on the iTunes Store listing under STORE. Then click on the link for App
Store (see Figure 10-32).

Figure 10-32. The iTunes App Store

You will now be able to browse, buy, and download applications.

KACE
The KBOX Systems Management Appliances, from KACE, can be leveraged to provide
centralized configuration management of the iPhone and iPod touch. KBOX applications
can provision, configure, and control policies with more granularity that can be found
with the iPhone Configuration Utility. For example, you can leverage groups with your
policies, monitor utilization, and application installations and track plans and renewals
for the wireless contracts for the iPhone.

More on KACE and KBOX and the ability to manage iPhone and iPod touch can
be found at http://www.kace.com/products/systems-management-appliance/
features/iphone-management.php.

CHAPTER 10: iPhone

571

Managing iTunes
iTunes provides the best, most seamless interface for users who use an iPhone or iPod
touch. You don’t have to use iTunes to interact with the device but it sure makes life
much easier. If you choose to deploy iTunes as part of your mass deployment, whether
it be to Windows or to Mac OS X clients (where it would be installed by default) there are
some features that many organizations will certainly want to limit. Luckily, Apple allows
you to manage various iTunes features for both Windows and Mac OS X clients. For
Windows, there are a number of registry keys that can be used and for Mac OS X there
is the ~/Library/Preferences/com.apple.iTunes.plist file.

Using the com.apple.iTunes.plist file you will have the ability to add the preference
domain into the Workgroup Manager Managed Preferences (as covered in Chapter 7).
Once added, you will be able to set a number of options to manage, including the
following keys (which are self-explanatory for the most part):

 allowiTunesUAccess

 disableAppleTV

 disableAutomaticDeviceSync

 disableCheckForUpdates

 disableDeviceRegistration

 disableGeniusSidebar

 disableGetAlbumArtwork

 disableMusicStore

 disableOpenStream

 disablePlugins

 disablePodcasts

 disableRadio

 disableSharedMusic

 gamesLimit

 moviesLimit

 ratingSystemID

 restrictExplicit

 restrictGames

 restrictMovies

 restrictTVshows

 tvShowsLimit

CHAPTER 10: iPhone

572

If you have not been allowing your users to use iTunes because of a specific feature
having been abused (Radio) then you can now limit many individual features of iTunes,
and therefore allow users to still have access to less intrusive capabilities, such as iTunesU
and Podcasts. Beware if you don’t have a managed environment, and are considering
pushing out a new com.apple.iTunes.plist file to your users. The feet will be a little tricky if
you want to make sure to preserve any paired devices. Information about iPhones and
AppleTVs can be found in this file, so it’s best not to perform file drop’s (common with
package management tools, such as Jamf). If you do wish to push a preference into the
file directly, rather than use MCX it will be best to utilize a shell script and the defaults
command. For example, to disable iTunesRadio you could use the following:

defaults write ~/Library/Preferences/com.apple.iTunes disableRadio -bool true

Troubleshooting
It seems like no matter what technology you are talking about there are going to be a
number of troubleshooting steps that are always appropriate, almost no matter what the
end user’s symptom is. For example, is the hardware working as intended? Will the
iPhone make a phone call? Is the service plan still active for the device?

If a device will not power on, try plugging it into a power source to check the battery. If
the device is on and running, but otherwise unresponsive, you can try to force quit the
frontmost application. To accomplish this, press and hold the lock button until the
Shutdown Slider appears. At this point, press and hold the home button for a second or
two until the front most application quits. This is the equivalent of using Control-Option-
Escape in Mac OS X to force quit an application or Control-Alt-Escape in Windows to
bring up the Task Manager.

If that doesn’t work, reboot the iPhone or iPod touch by holding the sleep button on the
top of the device. After a few moments, a red slider appears, press and slide the slider
from left to right to shut down the device, similar to the procedure used to wake an
iPhone, Press and hold the sleep button to power the device back on. You can also
reset the device by holding down the sleep and home buttons until you see an Apple
logo. Finally, you can perform a factory reset on a device from the Settings icon on the
home screen: click on General Reset Reset All Settings (make sure you’ve got a
good backup of a device before doing this).

If the device isn’t booting at all, you can attempt to boot the device in recovery mode.
To do so, first launch iTunes on your admin station. Next, with the device off, press and
hold the home button. With the home button depressed, plug the device into your admin
station via USB. The iPhone should display that it is in recovery mode, and you can now
restore the phone to factory defaults.

With the iPhone and iPod touch, when you are troubleshooting network services then you
should always verify network connectivity first. This is critical before you do anything else,
as many applications will require the ability to open a network connection to an outside
host. If you are having trouble accessing specific services, then provided you can connect
to a network, verify that network connections are available between the device you are
connecting to and the device you are connecting from. Outside of checking for network

CHAPTER 10: iPhone

573

connectivity with safari, Apple doesn’t really provide a good means for this. You can
examine network settings found under the Settings application, but those don’t give all
the data needed to properly confirm external connectivity. There are some third party
applications that can assist here, providing ping and traceroute capabilities. One such app
with great polish is Bjango, but there are a handful of others to choose from.

If you encounter problems deploying profiles via the iPhone Configuration Utility, say you
receive a generic deployment error when attempting to install a profile on a phone. This can
be caused by a few different things. First, verify that the problem is not due simply to a
misconfiguration. At times, the issue may be device specific. If this is the case, there may be
a problem with your devices configuration file, stored in the folder ~/Library/MobileDevices
and named according to the devices identifier. Deleting that file can sometimes resolve your
issue. If not, consider deleting the application preferences at ~/Library/Preferences/
com.apple.iPhoneConfigurationUtility.plist (make sure it’s not running).

Updates
Software and Firmware updates can only be deployed to an iPhone or iPod touch using
iTunes. To do so, open iTunes, click on the name of the device in the left column, locating
the DEVICES section. Click on the device you are going to update and then click on Check
for Update button (as can be seen in Figure 10-33), following the onscreen instructions to
completion. Unfortunately, there are no capabilities for over-the-air updates, it all must be
user initiated through iTunes syncing. At the time of this writing, Apple does not provide a
solution to mass deploy or manage updates to your fleet of devices.

Figure 10-33. iTunes: iPhone Sync Overview

CHAPTER 10: iPhone

574

Leveraging the Logs
The iPhone and iPod touch store logs that can be useful in troubleshooting the devices.
You can access the logs using the iPhone Configuration Utility. Simply plug the device
into the computer you would like to review logs for and then click on the device in the
DEVICES list. Next, click on the Console tab (as seen in Figure 10-34) and then you will
see the logs there. You can then use the Case Insensitive Filter field to search for
specific entries.

Figure 10-34. Device Console logs

Backup and Restoration
Backup and restoration of an iPhone is also a function solely fulfilled client side via USB
and iTunes. Unfortunately, there are no centralized management capabilities. A device’s
configuration, including third party stored data, is backed up whenever it is plugged into
the computer. Device media itself is backed up solely according to the iTunes sync
settings. This includes the user’s music, movies, and pictures. You can also initiate a
backup manually by right clicking on your iPhone in the iTunes sidebar, listed under
devices. As seen in Figure 10-35, the contextual menu for the device provides several

CHAPTER 10: iPhone

575

different functions, including transferring songs purchased on the phone to the local
computer, backing up, and restoring.

Figure 10-35. Initiate a device backup in iTunes.

Device backups are stored at ~/Library/Application Support/MobileSync/Backup
on OS X machines, on Windows machines they can be found at C:\ Documents and
Settings\username\Application Data\Apple Computer\MobileSync\Backup. Inside of
this directory, you will see a directory for each device that you have synced with your
system, named after the devices identifier, the same identifier utilized by the iPhone
Configuration Utility. Each device will have a primary backup folder, as well as
incremental backup folders, which are named after the device’s identifier and suffixed
with a date string. Inside of the device’s primary folder, you will find a number of
mddata, mdinfo, and mdbackup files. Each file is a plist file in binary format (see
Chapter 7).

Because of the lack of management capabilities, ensuring iPhones are fully backed up
largely becomes reliant on user interaction. Because of this, it is recommended to utilize
server-side storage whenever possible. For instance, it is highly recommended to utilize
IMAP or ActiveSync based mail solutions over POP. Shared calendars should be utilized
wherever possible, as should contacts. In any case, strong user education is highly
encouraged, users need to be aware to their responsibilities to ensuring their iPhone’s
are synced to their computers on a regular basis.

Restoring a device that has previously been synchronized to a Mac OS X computer is a
fairly straightforward process, making resetting devices a plausible troubleshooting step.
To restore a device, open iTunes and click on the Device in the DEVICES section of your
list in the left-hand pane. At the Summary page you will see a button to Restore. Click
on it and you will then be greeted by a confirmation screen asking if you really want to
do this, since after all it is going to wipe out anything that was new to the device since
the last synchronization. If you are OK with that, click on OK and the restore will begin,
and will take as long as the media you have in iTunes will take to synchronize from
iTunes to the device.

CHAPTER 10: iPhone

576

Bypassing the Passcode
Cellebrite has a solution that can unlock the passcode on an iPhone or iPod if you have
a computer that has synchronized with it. iTunes generates a Security ID for each
iPhone or iPod that is synchronized (http://www.cellebrite.com/Cellebrite-Supports-
iPhone.html). Cellebrite can use the Security ID file from iTunes to gain direct access to
the iPhone data and reset the configured passcode. Cellebrite isn’t the only tool though,
there are others as well, many of which will allow you to mount the device with or
without actually writing data to it. But what if you don’t have the passcode or a machine
that the handheld has been synchronized with? Jonathan Zdziarski, in his book iPhone
Forensics, provides steps to remove the passcode without a Security ID file by doing
some fun firmware hacks. Overall, the iPhone Forensics book was a good read, although
it seems that things with the iPhone are moving so rapidly that many of the steps have
changed (or will very shortly).

Prior to the iPhone 3GS, there was still a big component missing for the iPhone and
iPod touch which was the development of a full disk encryption (FDE) solution for the
platform. Full disk encryption is actually a feature provided by the 3GS, which works its
magic, encrypting all data written to the device on the fly. Apple’s solution though, is not
without its caveats. First and foremost, it has been demonstrated that the encryption key
is actually stored in software on the device, rather than utilizing a hardware-based
solution, such as TPM. This means that though the data itself is encrypted, the key to
unlock that encryption can be retrieved from the device. The ramification of this
discovery means that the encryption provided by the 3GS is relegated to one primary
benefit: fast wipes. Fully wiping an old generation iPhone or iPod touch can take several
hours, depending upon the amount of data stored on the device. That’s a lot of time if
you are trying to wipe out potentially sensitive data. Due to the iPhones 3GS’s full disk
encryption, a remote wipe deletes the encryption key in a matter of seconds, rendering
all the data on the device irretrievable. This is certainly beneficial, but an iPhone which
has had its SIM card removed isn’t likely going to receive the remote wipe command. If
the attacker has the toolset to extract the key, then the whole system can be bypassed.

Further Reading
iPhone for Work by Ryan Faas, ISBN # 1-4302-2445-2:
http://www.apress.com/book/view/9781430224457

Apple iPhone Configuration Utilty:
http://www.apple.com/support/iphone/enterprise/

 577

Index

■Symbols
%@ string substitution, 363
&>> (redirect operator), 458
.dsplug files, 47
/ and // operators (bash), 433
/etc/authorization file, 2
; (semicolon) in Unix shells, 453
[] test brackets (bash), 436
== comparison operator, 436
> and >> operators (bash), 434

■A
absolute paths, 425
accounts

setup (Exchange), 233
Accounts System Preference pane, 94
accounts, local. See local accounts
ACFS (Apple clustered file system), 152
ACLs (access control lists), 171, 210−211

Active Directory (AD)
ADmitMac software (Thursby), 134−135

binding to, 93, 106-107
configuring AD admin groups, 122−123

configuring for local home directories,
391

Directory Utility Application, 93−98

DNS and, 105−106

Dual Directory, 113−115

Home Directories, 104-105
Likewise Enterprise software, 134
Likewise Open software, 133
mapping Unique IDs and GUIDs, 111
MCX via Active Directory, 119-121

MCX via Dual Directory, 116
namespace support with dsconfigad,

112
naming conventions for binding scripts,

108-110
nesting administrators in local admin

group, 123
nesting groups, 115-116
overview, 91-93
packet encryption options, 112-113
plug-ins, 91-104
Quest software, 135, 138
scripting automated binding, 108-110
testing authentication at login window,

103
testing connection to, 98, 102

Address Book (MCX), 367
Address Book Server

connecting to, 258-261
overview, 254
setting up, 254-258

Address Book, 239
admin groups

configuring AD, 122-123
nesting administrators in local (AD), 123-

124
Admin, DeployStudio, 323-324
administration commands, 425-427
Administration section (POSIX), 210-211
administrative accounts, hiding, 16
administrative privileges, granting, 4
administrator groups, enabling directory-

based (ARD), 416
administrators in local admin groups,

nesting (AD), 123-124
ADmitMac software (Thursby), 134

Index 578

affinity tags, 171-173
AFP (Apple Filing Protocol)

setting up in ExtremeZ-IP, 202
AFP service, 87
AFP tuning, 178
AFP volumes, manually connecting to

clients, 142-144
Agentless Client, 130
App Store, 569
Apple Active Directory service, 21
Apple Password Server, 21-22
Apple Remote Desktop (ARD)

controlling client machines, 412
directory service groups, enabling, 415
directory-based administrator groups,

enabling, 416
managing items in, 475
overview, 411-412
scanning networks with, 412
sending commands, packages and

scripts, 413
Apple Software Restore (ASR), 294, 305,

307
AppleScript events, 233
Application Firewall, enabling, 472, 475
application preferences (MCX), 368-370
applications signing, 376-378
applications restricting, 375-378
AquaConnect, 495
archiving

transcripts via iChat, 265-266
archiving mail (Exchange), 235-236
ARD (Apple Remote Desktop). See Apple

Remote Desktop (ARD)
arithmetic-based binary operators (bash),

436
arrays, rebuilding on Promise RAID, 187-188
arrays (scripts), 440-441
asr command, 305
attach verb, 299
authentication, verifying user, 36-37
autobuddy funtion, 266-267
Autodeploy package (Parallels Desktop),

519
automated binding, scripting (AD), 108-110

automated client setup, 364
automating system tasks. See system tasks,

automating (scripts)
automating user creation, 453, 457
automations, deployment

Composer, custom packages with, 333,
337

defaults command, 347, 350
Iceberg package-creation tool, 337
InstallEase package-creation tool, 337
migrating from monolithic images, 332
negative packages, 342-344
OS X preferences, customizing, 346-347
package scripts, 344-345
PackageMaker, 338-342
packages, installing, 344
PlistBuddy tool, 350-352
prebuilt packages, customizing, 345
user templates, 332

automations, scheduling (scripts), 447-452
automounts, setting up (client storage), 146-

148

■B
backing up

and restoring iPhones, 574
calendars, 251
mail, 281
Open Directory, 33-35
serveradmin backups, 483-487

backup tools for Xsan, 190
bare-metal images, 302
bash shell, scripting

arrays, 440-441
automating system tasks. See system

tasks, automating (scripts)
automating user creation from third-

party database, 453-457
automations, scheduling, 447
automations, triggered, 451
constructing shell script, 442-446
cron, 449
daily/weekly/monthly scripts, 450
to Active Directory, 93-107
trusted static binding, 55-57

Index 579

unauthenticated dynamic binding, 49-51
unauthenticated static binding, 51-54
with command line, 70

bless command, 312
block sizes, volume (Xsan), 178
Boot Camp, 313

managing via GPOs, 530-532
boot modifier keys, 311
Bourne shell (sh), 428
break statement (bash), 440
Brocade Switches, 155

■C
cabling and tranceivers (Xsan), 150
cache, flushing, 35
CalDAV settings

configuring, 560
CalDAV, clustering, 251-252
calendars

backing up, 251
delegating access to, 250
managing, 246-250

Carbon Copy Cloner, 294
CardDAV standard, 254
Casper Suite, overview, 330
Casper suite, 107
Cellebrite, 576
Certificate Authority (CA), 57
Certificates, installing on iPhones, 542-44
change monitoring, 483-487
chat messages, saving/archiving, 263-265
chown/chmod utilities for managing

permissions, 214
Cisco switches, 155
Citrix client, 546
Citrix XenApp, 495
client automated setup, 364
client machines, controlling (ARD, 412
client management

Apple Remote Desktop. See Apple
Remote Desktop

login hooks, 418-420
MCX basics, 356-61
overview, 355

password policies, 407-411
quota management, 417
reference, 422
Software Update Servers, 420
tiered management, 360

client storage
AFP volumes, manually connecting to,

142-144
automounts, setting up, 146-148
home directory storage provisioning, 149
NFS volumes, manually connecting to,

146
overview, 141-142
SMB volumes, manually connecting to,

144
clients

Exchange client, setting up (iPhones),
540

clustering CalDAV, 251
clustering mail services, 282-285
code, commenting, 431
command line

binding with, 70
creating images from, 297-301
setting MCX from, 363
setting up Open Directory from, 28

Commander, AD, 134
command-line utilities for managing Xsan,

190
commands

for managing and querying data from
local directories, 9-11

for managing NIS, 74
sending (ARD), 413-415
Xsan management, 195

commands, administration, 425-427
commenting code, 431
Compatibility Center, Crossovers, 529
Composer, creating custom packages with,

333-337
Composer, operating system packaging

with, 301
computer access filters (MCX), 378-380
configuration utility, iPhone

Advanced section, 563
building configurations, 548

Index 580

configuring CalDAV settings, 560
configuring exchange accounts, 557
configuring LDAP accounts, 558-60
configuring Web Clips, 561
configuring WebCal subscriptions, 561
deploying configurations, 564-67
deploying custom SSL certificates, 562
General Tab, 548
Hidden Network field, 552
IMAP/POP Email, 555-557
importing/exporting configuration

profiles, 567
overview, 548
Passcode tab, 549
Protocols tab, 552
Restrictions tab, 551
SCEP (Simple Certificate Enrollment

Protocol), 563
SMTP email settings, 557
VPN configuration, 555
Wi-Fi tab, 551
WPA Enterprise Trusts, 554
WPA Enterprise User Authentication, 553

configuring
Active Directory for local home

directories, 391
AD admin groups, 122
CalDAV settings (iPhones), 560
deploying configurations (iPhones), 564
DirectControl software (Centrify), 127
exchange accounts (iPhones), 557
ExtremeZ-IP, 204-206
LDAP accounts (iPhones), 558-60
LDAP for local home directories, 391
local administrative permissions, 460-

464
mail with ServerAdmin, 268-271
NetBoot sets, 328
storage, 156
transcript storage (chat messages), 263-

265
Web Clips (iPhones), 561
WebCal subscriptions (iPhones), 561
workflows (DeployStudio), 326

continue statement (bash), 440

cron, 449-450
custom preferences (MCX), 361-363
customizing

creating custom packages with
Composer, 333-37

OS X preferences, 346
prebuilt packages, 345

cvadmin tool, 193-195
cvfsid command, 180

■D
Data Rate values, 306
databases

automating user creation from third-
party, 453-57

dates and times in scripts, 459
debug logs (directory services), 35
debugging. See troubleshooting
defaults command, 350
Definitive Software Library (DSL), 289
defragmenting Xsan, 189-90
Deploy Studio, 107
deploying

custom SSL certificates, 562
deploying configurations (iPhones), 564-567
deploying systems en masse. See mass

deployment
DeployStudio

configuring workflows, 326-327
DeployStudio Admin, 323
DeployStudio runtime, 325
downloading, 318
NetBoot sets, configuring, 328
overview, 317-318
setting up, 318-21
User groups, 321-22

detach verb, 299
device media backups, 574
DFS (Distributed file system), 202

setting up in ExtremeZ-IP, 207
DHCP service, 49-50
Diffie-Hellman Exchange (DHX), 87
DirectControl software (Centrify)

configuring, 127-131

Index 581

installing, 124-127
overview, 124
using, 131-132

directory service groups, enabling (ARD),
415-416

directory services
authentication, verifying user, 36
cache, flushing, 35
debug logs, 35
defined, 1
external accounts, 19-20
local accounts. See local accounts
Open Directory. See Open Directory
overview, 1-2

Directory Services clients
binding. See binding
Directory Utility, 40, 46
Kerberising services, 81-84

troubleshooting, 84, 88
Kerberos, running on Mac clients, 75-81
NIS, 72-75
overview, 39-40
preferences, 89

Directory Utility Application (AD), 6, 40,46,
55, 56, 72, 93-99

directory-based administrator groups,
enabling (ARD), 416

DirectoryServices Application Programming
Interfaces (APIs), 99

dirt utility, 36-37, 102
Disk Utility, 296-97

restoring images with, 303-305
disk utilization (df tool), 475
DNS Active Directory, and 105
Dovecot mailstore, 279-280
downloading

DeployStudio, 318
Parallels, 511

Drop Box directory, 387
.DS_Store files, 215-216
dscl command

basics, 11-14
defined, 10

dsconfigad command
usage example, 107

dsconfigad, namespace support with (AD),
112

dsconfigldap command, 47
dseditgroup command, 123
dsenableroot command, 7
Dual Directory (AD), 113-115
Dual Directory, 116-119
dynamic binding, unauthenticated, 49-51

■E
Eggplant software, 352-353
Email

IMAP/POP email (iPhones), 555-57
iPhones and, 537-538

Emulex SAN switches, 155
Enterprise data plan, 536
Entourage, Microsoft

client licensing, 220
client licensing, 220
setup, 223
setup, 230
sync services, disabling, 235

Ethernet, configuring, 163
EWS (Exchange Web Services) API, 220,

236
exchange accounts

configuring (iPhones), 557
Exchange client, setting up (iPhones), 540
Exchange, Microsoft

account setup, 233
archiving mail in, 235
deploying Microsoft Office for Mac, 231-

233
Entourage sync services, disabling, 235
Mail.app setup, 236, 241
Microsoft Entourage client licensing and,

220
Microsoft Entourage setup, 223
Microsoft Office AutoUpdate, 234
native groupware support, 236
overview, 220
paths for accessing OWA, 221
virtual directories, troubleshooting, 222

Exit Codes, 441
expansion, volume, 184

Index 582

exporting
iPhone configuration profiles, 567

external accounts, 19
ExtremeZ-IP

configuring, 204-206
overview, 202
setting up AFP in, 202-207

■F
FC (Fibre Channel)

defined, 150
FC (Fibre Channel) switches, 153-55
FC initiators

defined, 152
FC zoning, 155
fibreconfig command, 191
file drops, 15
filesystem permissions, managing in OS X,

207-215
Finisar transceivers, 151
firewalls

Application Firewall, enabling, 472-475
folders

public folders, setting up (Dovecot), 281
for mass deployment

virtual machines, 505
for/while/until statements (scripts), 438-440
full disk encryption, 576
Fusion, VMware. See VMware Fusion

■G
General Tab (iPhone Configuration Utility),

548
globalSAN iSCSI initiator, 196
GPOs (Group Policy Objects)

defined, 527
managing Boot Camp via, 530-532
managing virtual machines via, 530-532
Open Directory and (Windows), 527
Open Directory and (Windows), 528

grep command, 433
Group Policy Object Editor (GPOE), 132
groupware

Address Book Server. See Address Book
Server

GroupWise (Novell), 241
iCal Server. See iCal Server
Lotus Notes, 241
Mac OS X Mail Server. See Mac OS X

Mail Server
Microsoft Exchange integration. See

Exchange, Microsoft
overview, 219

GroupWise (Novell), 241
GUIDs and Unique IDs, mapping (AD), 111

■H
hdiutil, 297-300
Hidden Network field (iPhone Configuration

Utility), 552
hiding

administrative accounts, 16-17
history -c command, 83
Home Directories (AD), 104
home directory storage provisioning, 149
Home Directory syncing, 401-405
home folder permission maintenance, 465-

472
home-directory storage, 141
hooks, login, 418-420
hub-based SAN, 154

■I
iCal managed preferences (MCX), 366
iCal Server

backing up calendars, 251
clustering CalDAV, 251
delegating access to calendars, 250-251
managing calendars, 246-250
overview, 241
seting up, 241-246
troubleshooting, 252-254
wiki integration, 252

iCal, 247
Iceberg package-creation tool, 337
iChat

archiving transcripts via, 265-266

Index 583

iChat Server, 262
iChat, 261
If/else and case statements (scripts), 434-

438
image delivery

bare-metal images, 302
Composer, operating system packaging

with, 301
images, creating from command line,

207-301
images, creating hard-drive, 294-297
overview, 294

image deployment
Apple Software Restore, 305-307
bless command, 312
boot modifier keys, 311
Casper Suite, 330
DeployStudio. See DeployStudio
NetInstall (Apple), 307-311
NetRestore (Apple), 314-317
overview, 302-303
Puppet framework, 329
Radmind command-line tools, 329
restoring with Disk Utility, 303-305

image regression testing
mass deployment, 352-353

images
bare-metal images, 302
creating from command line, 297-301
creating hard-drive, 294-207
image regression testing, 352

imagescan command, 305
imaging

monolitic images on Parallels, 512-515
VMware Fusion in monolithic, 496-501

IMAP mail, 393
IMAP/POP accounts, setting up (iPhones),

538-540
IMAP/POP email, 555-557
importing

iPhone configuration profiles, 567-568
inheritance, permissions and, 213
initialization, script, 443
initiators, Xsan, 152
InstallEase package-creation tool, 337

installing
automating installation of Parallels, 519-

520
certificates on iPhones, 542-544
DirectControl software (Centrify), 124-

127
Linux clients, 180
Microsoft Office for Mac, 231-233
packages, 344

instant messaging
archiving transcripts via iChat, 265
autobuddy, 266
iChat Server, 262-264
iChat, 261
Microsoft Messenger, 261
transcript storage, configuring, 263-265

IP addresses, changing (Xsan), 186
iPhone Forensics (Zdziarski), 576
iPhone/iPod touch

App Store, 569-570
backup and restoration, 574
Citrix client, 546-548
email, 537
Exchange client, setting up, 540
IMAP/POP accounts, setting up, 538-

540
installing certificates, 542-544
iPhone simulator, 536
iTunes, managing, 571
KBOX Systems Management Appliances

(KACE), 570
network connections, 544-546
overview, 535
references, 576
Safari web browser, 546
troubleshooting. See troubleshooting

iPhones
iSCSI network storage protocol, 196-201
iTunes, managing, 571

■K
kadmin.local utility, 85
KBOX Systems Management Appliances

(KACE), 570
Kerberos

Index 584

AD and, 114
Kerberising services, 81 troubleshooting,

81-88
overview, 21
running on Mac clients, 75-81

Keychain Access application, 563
Keychain Access application, 23
keychains, managing, 410
keytab file, 79
kinit command, 77-79
klist command, 77-84
kpasswd command, 79
krbservicesetup tool, 84
kswitch command, 79

■L
labeling LUNs, 192
latency, connection (Xsan), 188
launchctl command, 81
launchd, 447-449
LDAP (Lightweight Directory Access

Protocol)
configuring (iPhones), 558-560

configuring for local home directories,

391
custom settings, 61
overview, 39

LDAP implementation (slapd), 20
LDAP server, 101
LDapper application, 43, 46
ldapsearch utility, 45
LDAPv3 plug-in, 91
Lights Out Management (LOM), 392-393,

487-488
Lightweight Directory Access Protocol

(LDAP). See LDAP
Likewise Enterprise software, 134
Likewise Open software, 133
Linux clients, installing, 180
local accounts

administrative accounts, hiding, 16-17
changing account attributes en masse,

14-15

creating local directory nodes, 18
creating with scripts, 15
creating, 3-4
dscl, 11, 14
file drops, 15
granting administrative privileges, 4
local directory service, 8
local directory service, 11
overview, 2
raw mode, 17
root accounts, 6-7
Search Paths, setting, 18

local administrative permissions,
configuring, 460-464

local directory service, 8, 11
local home directories

configuring Active Directory for, 391
configuring LDAP for, 391

local home folder
configuration, 388-391

local home folders
basics, 385-388

logging
events from Mac OS X Mail Server, 276-

277
logging script output, 458
logical OR & AND operators, 437
login testing authentication at login window

(AD), 103
login hooks, 418-420
logs, troubleshooting iPhones via, 574
Lotus Notes, 241
LUNs (Logical Unit Numbers)

defined, 151
labeling, 192

■M
Mac OS X Mail Server

backing up mail, 281-282
clustering mail services, 282-285
command line, 277
Dovecot mailstore, 279-280
logging events from, 276
mailbox locations, choosing, 278

Index 585

mailing lists, 276
overview, 267
protecting mail servers, 271-276
public folders, setting up (Dovecot), 281
ServerAdmin, configuring mail with, 268-

271
setting up, 267-268

MacFUSE, 498
Machine Access Control (MAC) addresses,

108
Mach-O binary format, 376
mail

configuring with Server Admin, 268-271
mail accounts (MCX), 364-366
mail servers

protecting, 271-276
mail services, clustering, 282-285
Mail.app setup, 236, 241
mailbox locations, choosing, 278
mailing lists, 276
main.cf file, 277
mangling, variable (scripts), 431-433
mangling, variable, 431-433
mapping Unique IDs and GUIDs (AD), 111
mass deployment

automated deployment of virtual
machines in Parallels, 520-521

automation of setup process, 293
image delivery. See image delivery
image regression testing, 352
monolithic vs. package-based imaging,

290-293
of virtual machines within Parallels, 514-

519
overview, 287
planning, 288-293
preparing virtual machines for, 506-509

MCX (Managed Client OS X). See MCX
(Managed Preferences)

Address Book and, 367
application preferences, 368-370
application restrictions, 375-378
automated client setup, 364
basics, 356-361
common tasks, 380-383

computer access filters, 378-380
custom preferences, 361-363
iCal managed preferences, 366
mail accounts, 364-366
network printing, 372-374
PAC files, deploying proxy settings via,

371
Preference Manifest system, 361-363
setting from command line, 363
troubleshooting and testing, 383-385

MCX (Managed Preferences)
adding printers with, 464
via Active Directory, 119-121
via Dual Directory, 116-119

MCXRedirector, 395
Messenger, Microsoft, 261
Microsoft Entourage. See Entourage,

Microsoft
Microsoft Messenger, 261
Microsoft Office for Mac

AutoUpdate, 234
deploying, 231-234

migrating from monolithic images, 332
MIT Kerberos Key Distribution Center (KDC),

21
Mobile Home Folder, 149
monolithic images, migrating from, 332
monolithic imaging

VMware Fusion in, 496-501
monolithic vs. package-based imaging, 290-

293
monolitic images

on Parallels, 512-515
mount_afp command, 143
mount_nfs command, 146
mount_smbfs command, 145
multicast settings (DeployStudio), 322

■N
naming conventions for binding scripts (AD),

108-110
negative packages, 342-344
nesting

Active Directory/Open Directorygroups,
115

Index 586

administrators in local admin groups,
123

NetBoot sets, configuring, 328
NetInstall (Apple), 307-311
NetRestore (Apple), 314-317
NetRestore, 294
network connections (iPhones), 544-546
network home directories

assigning in Open Directory, 398-400
redirection in, 393-398

Network Home Directory, 149
network home folders

configuring, 398-400
Network Home Folders, 287
network home folders, 391-393
network printing (MCX), 372-374
network setup, automating, 476-481
Network Time Protocol (NTP), 23
network utility, 42
networks

scanning with ARD, 412
NFS (Network File System)

volumes, manually connecting to clients,
145-146

NIS (Network Information Service), 72
nodes, creating local directory, 18
non-trusted binding, 47
Normal Snapshot (Composer), 334-346
NTLM hash type, 9

■O
Office, Microsoft. See Microsoft Office for

Mac
custom installation of, 231-233

Open Directory
assigning network home directories in,

398-400
backing up, 33-35
Kerberos and, 21-23
LDAP implementation (slapd), 20
local home folders and, 389
Open Directory Master, demoting, 29
Open Directory Replica, removing, 30
Open Directory Replica, setting up, 29-

30

overview, 20
setting up from command line, 28
setting up with Server Admin, 24-27
Workgroup Manager, creating new users

with, 30-33
Open Directory servers, 92
operating system upgrades, 184
OR & AND operators, 437-438
OS X preferences, customizing, 346
OS X, managing filesystem permissions in,

207-215
OWA (Outlook Web Access), 220

■P
PAC (Proxy Auto Configuration) files, 371

deploying proxy settings via, 371-372
PackageMaker, 506-508
PackageMaker, 338-342
packages

customizing prebuilt, 345
Iceberg package-creation tool, 337
InstallEase package-creation tool, 337
installing, 344
negative, 342
PackageMaker, 338-342
scripts, 344
sending (ARD), 413

packet encryption options (AD), 112
Parallels

automated virtual machine deployment
in, 520

automating installation of, 519
downloading, 511
on monolitic images, 512-515
Parallels Desktop Command Line

Reference Guide, 521
virtual machine deployment within, 514-

519
Passcode tab (iPhone Configuration Utility),

549
Passcodes, bypassing iPhone, 576
Password Assistant, 4
password policies, 407
password policies, 411
passwords, changing at login window, 409

Index 587

paths for accessing OWA, 221
permissions, filesystem (OS X)

ACLs (access control lists), 210
Administration section (POSIX), 210
chown/chmod utilities for managing, 214
inheritance and, 213
overview, 207
POSIX-based permissions, 207-210
read permissions, 212
write permissions, 212

pipelines for data control (scripting), 433
PlistBuddy tool

automations, deployment, 350-352
plug-ins

Active Directory, 91-104
DirectoryService, 99

plug-ins (Director Utility), 47-49
policies feature (Casper Suite), 330
policies, password, 407-411
pools, storage, 152
POP/IMAP accounts, setting up (iPhones),

538-540
Portable Home Directories, 287
Portable Home Directories, 401-405
POSIX-based permissions, 207-210
Postfix, 277
post-flight automations, 330
postqueue command, 278
postsuper command, 278
power management, automating, 481-483
PowerShell, 222
prebuilt packages, customizing, 345
Predictive Data Migration (PDM), 187
Preference Manifest system (MCX), 361-363
Preferences, Directory Services clients, 89-

90
preferences, customizing OS X, 346
preflight automations, 330
printer management by local users, 464
printing, network (MCX), 372-374
profile installations (iPhone), 566
Promise RAID, rebuilding arrays on, 187
property-list files, 347
property-list files, 350

Protocols tab (iPhone Configuration Utility),
552

public folders, setting up (Dovecot), 281
Puppet framework, 329
Push Notification service (Apple), 285

■Q
Qlogic Fabric Suite (switches), 155
QLogic switches, 155
Quantum StorNext client, 180
Quantum StorNext, 150
Quantum StorNext, 153
Quest software, 135-138
quotas, user, 417

■R
Radmind command-line tools, 329
RAID

configuring logical RAID constructs, 156
Raid Admin utility, 159
rebuilding arrays on Promise RAID, 187
rebuilding arrays on Xserve RAID, 187
Xserve RAID, 158-162

raw mode (directory services), 17
read permissions, 212
Reboot imaging system, 294
rebooting, 312-313
redirect operator (&>>), 458
redirection in network home directories,

393-398
references

client management, 422
iPhone/iPod touch, 576
scripting bash shells, 490
virtualization, 532

reinstalling
Xsan, 183

relative paths, 425
Remote Desktop Connection, 495
Resource Records, 96
restoring images with Disk Utility, 303-305
restoring iPhones, 574
restricting applications (MCX), 375-378

Index 588

Restrictions tab (iPhone Configuration
Utility), 551

reverse-domain notation, 347
RFC 2307 standards, 64-65
root accounts, 6-7
RSCNs (*Registered State Change

Notifications), 153
runtime, DeployStudio, 325

■S
Safari web browser on iPhones, 546
SAN (Storage Area Network) storage

configuring storage, 156-157
overview, 149-150
Xsan. See Xsan networking platform

scanning networks with ARD, 412
SCEP (Simple Certificate Enrollment

Protocol), 563
Scripting, binding, 72
scripting automated binding (AD), 108-110
scripting bash shell. See bash shell, scripting
scripts

automations of, scheduling, 447
automations of, triggering (scripts), 451-

452
binding, naming conventions for (AD),

108-110
constructing shell scripts, 442-446
creating local accounts with, 15
daily/weekly/monthly, 450
dates and times in, 459
logging output of, 458
packages, 344
passing arguments to shell scripts, 446
periodic script schedules, 189
self-destructing, 452
sending (ARD), 413-415
troubleshooting, 425

Search Paths, setting, 18
search policy, managing, 67-70
self-destructing scripts, 452
sending commands, packages, nad scripts

(ARD), 413
Server Admin

configuring Address Book Server in,
255-257

configuring mail with, 268-271
Server Admin utility to Kerberise services, 81
Server Admin, setting up Open Directory

with, 24
serveradmin backups, 483-487
Service Configuration Assistant (mail

services), 282
ShadowHash, 9
SharePoints, 380, 398
shelf of storage, 151
shell scripting. See bash shell, scripting
shell scripts

basics, 424
basics, 428
constructing, 442-446
overview, 423
overview, 424
passing arguments to, 446
scripting bash shell. See scripting bash

shell
signing, application, 376
SIM cards, 536
simulator, iPhone, 536
slapd implementation, 20
Small Tree Ethernet adapter/software, 196
Smart Groups (Casper Suite), 330
SMB (Server Message Block)

volumes, manually connecting to clients,
144

SMTP email settings (iPhones), 557
snapshots (Composer), 334-346
snfsdefrag tool, 189
Snow Leopard

autobuddy support in, 266
groupware and, 219

SOAP (Simple Object Access Protocol), 222
Software Update Servers, 420-422
srm command, 452
SSL certificates, 57-61

deploying custom, 562
standard data streams/pipelines (scripting),

433
static binding

Index 589

 trusted, 55-57
 unauthenticated, 51-54
storage

client storage. See client storage
.DS_Store files, 215
ExtremeZ-IP. See ExtremeZ-IP
iSCSI network storage protocol, 196-201
overview, 141
SAN storage. See SAN storage

StorNext, 181-183
Studio Network Solutions (SNS), 196
Super Duper!, 294
switches, FC, 153-155
sync services, disabling (Entourage), 235
syncing, troubleshooting, 406
syncing, Home Directory, 401-405
sysprep for automations (Windows), 521-

525
System Center Configuration Manager

(SCCM), 505
System Preferences panes, 2
system tasks, automating (scripts)

Application Firewall, enabling, 472-475
ARD, managing items in, 475
configuring local administrative

permissions, 460-464
disk utilization (df tool), 475
home folder permission, maintenance,

465-472
Lights Out Management (LOM), 488
network setup, 476-481
power management, 481-483
printer management by local users, 464
serveradmin backups and change

monitoring, 483-487
System-Under-Test (SUT), 352

■T
templates, user (Mac), 332
testing

authentication (AD), 102-103
authentication at login window (AD), 103
connection to AD, 98
image regression testing, 352

MCX, 383-385
thin client solutions, 495
Ticket Granting Server (TGS), 21
Ticket Viewer application (Kerberos), 75
tickle times (AFP), 179
tiered management (MCX), 360
Total Cost of Ownership (TCO), 287
tranceivers and cabling (Xsan), 150
transcript storage, configuring (chat

messages), 263-265
transcripts, archiving via iChat, 265
troubleshooting

directory services, 35-37
iCal Server, 252-254
iPhone/iPod touch. See troubleshooting

iPhones
Kerberising services, 84-88
MCX, 383-385
scripts, 488-490
syncing issues, 406

troubleshooting iPhones
bypassing passcodes, 576
overview, 572
updates, software/firmware, 573
via logs, 574

trusted binding, 46
trusted static binding, 55-57

■U
uidNumber attribute, 91
unauthenticated dynamic binding, 49-51
unauthenticated static binding, 51-54
Unique IDs and GUIDs, mapping (AD), 111
Universal Naming Convention (UNC), 92
until/while/for statements (scripts), 438-440
updates, software/firmware (iPhones), 573
upgrades

operating system, 184
to Xsan, 183

User Configuration options (Windows), 529
User Group policy loopback function (Active

Directory), 531
User groups screen (DeployStudio), 321
user home folders

Index 590

Home Directory syncing, 401-405
local home folder configuration, 388-391
local home folders, 385-388
network home folder configuration, 398-

400
network home folders, 391-393
overview, 385
redirection in network home directories,

393-398
troubleshooting syncing issues, 406

user quotas, 417
user templates (Mac), 332
users

automating user creation from third-
party database, 453-457

creating with Workgroup Manager, 30-33
printer management by local users, 464
verifying authentication of, 36

UUIDs (Universally Unique IDentifiers), 9

■V
variables

declaring (scripts), 429-431
variable mangling, 431

Vine Server, 352
VintelaAuthentication Services (VAS), 135
virtual directories, troubleshooting, 222
virtual machines

automated deployment in Parallels, 520-
521

creating, 503-505
deployment of, 506-509
deployment within Parallels, 514-519
managing via GPOs, 530-532
populating Virtual Machine Library, 510
preparing for mass deployment, 505

Virtual Network Computing (VNC) password,
327

virtualization
Boot Camp, managing via GPOs, 530-

532
overview, 493-494
Parallels. See Parallels
resources and references, 532
thin clients, 495

virtual machines. See virtual machines
VMware Fusion. See VMware Fusion
Windows, managing. See Windows

management
Wine application, 529-530

virtualized storage, 152
VMware Fusion

in monolithic imaging, 496-501
overview, 495-496
with a package-based deployment, 501-

503
volume, expanding (Xsan), 184-186
volume expansion, 184
volumes, repairing (Xsan), 195
VPN configuration (iPhones), 555
VPN support on iPhones, 545
Vtrak (Promise), 157

■W
Web Clips

configuring (iPhones), 561-562
WebCal subscriptions, configuring, 561
websites, for downloading

applications for accessing RDP-based
sessions, 547

Autodeploy package (Parallels Desktop),
519

Carbon Copy Cloner, 294
Citrix client, 547
Composer 7, 332
Composer, 301
Eggplant software, 352
ExtremeZ-IP whitepaper, 207
globalSAN iSCSI initiator, 196
iPhone Configuration Utility, 548
iPhone Simulator, 536
Parallels Desktop Command Line

Reference Guide, 521
Quantum StorNext, 150
Remote Desktop Connection, 495
Super Duper!, 294
tools for backing up Xsan, 190
Vtrack-configuring scripts, 157
Xsan 1.x tuning guide, 170

websites, for further information

Index 591

Apple iPhone Configuration Utilty, 576
Apple list of qualified switches, 153
AquaConnect, 495
central management of Mac OS X, 422
certificates trusted by default on iPhone

3.0, 567
Compatibility Center, Crossovers, 529
iPhone/iPod touch references, 576
KACE and KBOX, 570
Quantum StorNext registration, 181
shell scripting, 490
Small Tree Ethernet adapter/software,

196
virtualization resources, 532-533

while/for/until statements (scripts), 438-440
Wi-Fi tab (iPhone Configuration Utility), 551
wiki integration (iCal Server), 252
Windows clients, installing Xsan on, 181-183
Windows management

computer configuration options, 528
Group Policy Objects and Open

Directory, 527-528
sysprep for automations, 521, 525
user configurations, 529
Windows Software Update Service, 525-

527
Windows Software Update Server

(WSUS), 505
Wine application, 529-530
workflows

configuring (DeployStudio), 326-327
Workgroup Manager, creating new users

with, 30-33
WPA Enterprise Trusts, 554
WPA Enterprise User Authentication, 553
write permissions, 212-213
WWN (WorldWide Name), 152
WWPN (WorldWide Port Name), 152

■X, Y
Xsan Deployment and Tuning Guide (Apple),

174
Xsan networking platform

adding computers, 177
AFP tuning, 178

backup tools for, 190
block sizes, 178
cabling and tranceivers, 150
command-line utilities for managing, 190
connection latency and, 188
cvadmin command, 193
defragmentation of, 189
Ethernet, configuring, 163
FC switches, 153-155
FC zoning, 155
fibreconfig, 191
initiators, 152
installing, 164-168
IP addresses, changing, 186
Linux clients, installing, 180
LUNs, labeling, 192
management of, 183
operating system upgrades and, 184
overview, 150
periodic script schedules, 189
rebuilding arrays on Promise RAID, 187-

188
rebuilding arrays on Xserve RAID, 187
reinstalling, 183
resetting client settings, 187
setting up, 164
shelf of storage, 151
tickle times, 179
upgrades to, 183
virtualized storage, 152
volume expansion, 184
volume, building, 169-176
volume, resharing, 177
volumes, repairing, 195
Vtrak, Promise, 157
Windows clients, 181-183
Xsan commands, 195
Xserve RAID, 158-162

Xserve RAID, rebuilding arrays on, 187
Xserve RAID, 158-162

■Z
Zdziarski, Jonathan, 576
zoning, FC, 155-156

Offer valid through 4/10.

233 Spring Street, New York, NY 10013

	Edge 2443-3 FSB.pdf
	Edge000.pdf
	Edge001.pdf
	Edge002.pdf
	Edge003.pdf
	Edge004.pdf
	Edge005.pdf
	Edge006.pdf
	Edge007.pdf
	Edge008.pdf
	Edge009.pdf
	Edge010.pdf
	Edge_index.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [576.000 729.000]
>> setpagedevice

