
Driscoll
Gupta
Vettor
Hirani
Tenny

Shelve in
Databases/MS SQL Server

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Entity Framework 6 Recipes
Entity Framework 6 Recipes provides an exhaustive collection of ready-to-use code 
solutions for Entity Framework, Microsoft’s model-centric, data-access platform for the 
.NET Framework and ASP.NET development. With this book, you will learn the core 
concepts of Entity Framework through a broad range of clear and concise solutions 
to everyday data access tasks. Armed with this experience, you will be ready to dive 
deep into Entity Framework, experiment with new approaches, and develop ways to 
solve even the most difficult data access challenges. If you are a developer who likes 
to learn by example, then this is the right book for you. 

•    Gives ready-to-use, real-world recipes to help you with everyday tasks 
•    Places strong focus on DbContext and the Code First approach 
•    Covers new features such as Asynch Query and Save, Codebased Configuration, 

Connection Resiliency, Dependency Resolution, and much more 

What You’ll Learn

•    Implement basic data access design patterns using Entity Framework 
•    Seamlessly model your solutions across both code and data 
•    Provide data access to Windows 8 and Metro applications 
•    Integrate with WCF Data Services 
•    Improve data access performance 
•    Simplify and reduce your code through data binding 

SECOND
EDITION

RELATED

9 781430 257882

ISBN 978-1-4302-5788-2

www.allitebooks.com

http://www.allitebooks.org


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For your convenience Apress has placed some of the front 
matter material after the index. Please use the Bookmarks 

and Contents at a Glance links to access them. 
 
 

 
 

 

www.allitebooks.com

http://www.allitebooks.org


v

Contents at a Glance

About the Authors������������������������������������������������������������������������������������������������������������ xxvii

About the Technical Reviewer������������������������������������������������������������������������������������������ xxix

Preface����������������������������������������������������������������������������������������������������������������������������� xxxi

Chapter 1: Getting Started with Entity Framework■■ ������������������������������������������������������������1

Chapter 2: Entity Data Modeling Fundamentals■■ ���������������������������������������������������������������11

Chapter 3: Querying an Entity Data Model■■ �����������������������������������������������������������������������55

Chapter 4: Using Entity Framework in ASP.NET MVC■■ ������������������������������������������������������107

Chapter 5: Loading Entities and Navigation Properties■■ ��������������������������������������������������129

Chapter 6: Beyond the Basics with Modeling and Inheritance■■ ���������������������������������������183

Chapter 7: Working with Object Services■■ �����������������������������������������������������������������������235

Chapter 8: Plain Old CLR Objects■■ ������������������������������������������������������������������������������������257

Chapter 9: Using the Entity Framework in N-Tier Applications■■ ��������������������������������������295

Chapter 10: Stored Procedures■■ ��������������������������������������������������������������������������������������341

Chapter 11: Functions■■ ����������������������������������������������������������������������������������������������������375

Chapter 12: Customizing Entity Framework Objects■■ ������������������������������������������������������413

Chapter 13: Improving Performance■■ ������������������������������������������������������������������������������451

Chapter 14: Concurrency■■ ������������������������������������������������������������������������������������������������483

Index����������������������������������������������������������������������������������������������������������������������������������503

www.allitebooks.com

http://www.allitebooks.org


1

Chapter 1

Getting Started with Entity Framework

When working with relational databases, we think in terms of tables with rows and columns. Tables are highly 
structured and excel at set-based processing. Before the wide adoption of object-oriented programming, we thought 
about problems “procedurally” and solved them by writing code in a structured, top-down manner, function after 
function. Both worlds lined up well: Tables, rows, and columns closely matched the structured and procedural 
patterns in our code. Life was good - for a time ...

Much has evolved on the code side. We now think in terms of objects and domain models. We architect, 
design, and program against real-world things, like customers and orders. We draw nouns in our problem space 
on whiteboards. We draw lines between them, denoting relationships and interactions. We build specifications 
and assign work to development teams in terms of these drawings. In short, we architect, design, and program at a 
conceptual level that is very distant from the logical and physical organization of the database.

While the software development process has dramatically matured and the way in which we reason and 
solve problems has evolved, the database has not. The data remains locked in the same tables, rows, and columns 
paradigm, where it has been for many years. Unfortunately, this creates a mismatch (an impedance mismatch, as 
Microsoft fellow Anders Hejlsberg might call it): Object-oriented class hierarchies vs. a highly normalized database 
structure.

To cope with this gap, software projects often introduce a “database layer” that translates application domain 
classes into the rows and columns saved in tables. This approach has spawned many commercial and open-source 
data access frameworks; all attempting to bridge the ever widening gap between evolving development processes and 
structured data. Interestingly, an entire new field of Object Relational Mapping (ORM) has come out it.

The Entity Framework, coupled with the Language-Integrated Query (LINQ) framework, both from Microsoft, 
enables us to address the mismatch problem head-on. Using Entity Framework, we model entity classes for our 
application on a design surface or directly in code. Then we model relationships (associations) between these entities. 
In our code, we construct LINQ queries to program against these entities and associations. LINQ allows us to express 
relational database set concepts directly into our code while working in terms of entity types and associations. All 
of this helps to streamline our development experience while reducing the overall effort. Instead of coding large 
numbers of highly redundant ADO.NET data access constructs, we express our data needs in simple LINQ queries. 
Instead of programming against the schema of a highly normalized database, we code against entity classes. Entity 
Framework maps entity classes to the underlying database for you.

Note■■   We use the term entity class or entity object to refer to a class that typically represents a domain item in an  
application. Domain classes represent real-world objects, such as an Employee, Department, or Manager, which your 
application will represent and track. The end users and stakeholders of your application should be able to look at the 
domain classes in your application and say, “Yes, that’s what our business does.” Entity classes define the schema,  
or properties, but not the behavior, of a domain class. In essence, entity classes expose the state of an object.

www.allitebooks.com

http://www.allitebooks.org


Chapter 1 ■ Getting Started with Entity Framework

2

1-1. A Brief Tour of the Entity Framework World
Entity Framework is Microsoft’s strategic approach to data access technology for building software applications. 
Unlike earlier data access technologies, Entity Framework, coupled with Visual Studio, delivers a comprehensive, 
model-based ecosystem that enables you to develop a wide range of data-oriented applications, including desktop, 
Internet, cloud, and service-based applications, many of which will be covered in this book.

The History
Entity Framework is not new. The product dates back to Visual Studio 2008 and has come a long way in features and 
functionality. Figure 1-1 gives the pictorial history.

The first version of Entity Framework was limited, featuring basic ORM support and the ability to implement 
a single approach known as Database First, which we thoroughly demonstrate in this book. Version 4 brought us 
another approach to using Entity Framework: Model First, along with full Plain Old CLR Object (POCO) support and 
default lazy loading behavior. Soon after, the Entity Framework team released three smaller, or point releases, 4.1 
through 4.3, which represented yet another approach to using Entity Framework: Code First. As shown above,  
Version 5 of Entity Framework coordinated with the release of the .NET 4.5 framework and Visual Studio 2012, 
delivering significant performance improvements along with support for enums, table value functions, spatial types, 
the batch import of stored procedures, and deep support with the ASP.NET MVC framework.

Now we are at Version 6 of the Entity Framework. Version 6 delivers asynchronous support for querying and 
updates, stored procedure support for updates in Code First, improved performance, and a long list of new features, 
which we will focus on in this book.

Figure 1-1.  A short history of the Entity Framework

www.allitebooks.com

http://www.allitebooks.org


Chapter 1 ■ Getting Started with Entity Framework

3

Note■■   Version 5 of Entity Framework can also be used with Visual Studio 2010. Version 6 of Entity Framework, released  
with Visual Studio 2013, has tooling/runtime support for Visual Studio 2012 and runtime support for Visual Studio 2010.

To level set, let’s take a brief look at some of the key components of the Entity Framework ecosystem. What 
follows is not by any means a comprehensive description of Entity Framework; that would take hundreds of pages. 
We’ll look at just a few key areas to help get you oriented for the recipes that are at the heart of this book.

The Model
Entity Framework is a technology with a strong focus on modeling. As you model with Entity Framework, you will 
see many familiar genetic markers from previous technologies and patterns. For example, you will, no doubt, see a 
resemblance to entity-relationship diagrams and the widely adopted conceptual, logical, and physical design layering 
approach.

The model that you create in Entity Framework is characterized by a construct called an Entity Data Model 
(EDM), which enables you to code against strongly typed entity classes, not database schema and objects. (Figure 1-2 
shows this model in conceptual form.) The Entity Data Model enables you to customize the mappings between entity 
classes and database tables to move beyond the classic, one-to-one mapping, or class-to-table mapping.

In Figure 1-2, note how the database tables (on the left) do not directly map to the entity classes, which we code 
against (on the right). Instead, the mapping capabilities built into the Entity Data Model enable the developer to code 
against a set of entity classes that more closely resemble the problem domain, as opposed to a highly normalized 
database, designed for performance, scalability, and maintainability.

For example, note above how the Employees, Devices, and Phone numbers) are physically stored in three 
different tables, which from a DBA perspective makes perfect sense. But the developer codes against a single 
Employee entity class that contains a collection of Devices and Phone Numbers. From a developer and project 

Figure 1-2.  The Entity Data Model

www.allitebooks.com

http://www.allitebooks.org


Chapter 1 ■ Getting Started with Entity Framework

4

stakeholder perspective, an employee is a single object, which happens to contain phone numbers and devices. 
The developer is unaware, and does not care, that the DBA has normalized this employee object into three separate 
database tables. Once configured, the mapping between the single class and three database tables is abstracted away 
and handled by the Entity Framework.

A reverse situation can be seen for the single Department table, which programmatically maps to three entity 
classes that represent individual departments. Again, to the developer and project stakeholders, a separate entity 
object represents each department (Accounting, Marketing, Finance, and so on), but DBA optimizes and collapses 
these objects into a single database table for data storage purposes.

Of course, as can be seen in the Location table, you can easily map a single entity class to a single database table, 
which is the default behavior for Entity Framework.

The key takeaway here is that developer and project stakeholders work with a representation of domain classes 
that make sense in the context of the application. The DBA can structure the underlying database tables in order to 
efficiently tune the database. And you can easily bridge these two worlds with the Entity Framework.

The Layers
The Entity Data Model consists of three separate layers: the conceptual, store, and mapping layers. Each layer is 
decoupled from the others.

The entity classes are contained in the conceptual layer of the Entity Data Model. This is layer in which developers 
and project stakeholders work. Depending upon how you implement the Entity Framework, the conceptual layer can 
be modeled with a designer or from code. Once you make that decision, you can reverse- engineer your model from 
an existing database, leveraging the designer and extensive tooling that ships with Entity Framework or create your 
model with code and have Entity Framework generate the database for you. The syntax for the conceptual layer is 
defined in the Conceptual Schema Definition Language (CSDL).

Every useful application needs to persist objects to some data store. The store layer of the Entity Data Model 
defines the tables, columns, relationships, and data types that map to the underlying database. The Store Schema 
Definition Language (SSDL) defines the syntax for the store model.

Finally, the mapping layer defines the mapping between the conceptual and store layer. Among other things, 
this layer defines how properties from entity classes map to columns in database tables. This layer is exposed to the 
developer from the Mapping Details window contained in the Entity Framework designer or data annotations and 
fluent API if choosing a code-based approach. The Mapping Specification Language (MSL) defines the syntax for the 
mapping layer.

The Terminology
As expected, the Entity Framework comes with its own vocabulary. If you have used any of the popular ORM tools 
or are familiar with database modeling, you’ve probably encountered some of the terminology before. Although the 
entire vocabulary is extensive, we’ll provide just a few of the basic terms to get us started.

As discussed earlier, an EntityType represents a class in your domain model. An instance of an EntityType is often 
referred to as an entity. If you are using the Entity Framework designer, an EntityType is represented on the design 
surface as a box with various properties. Figure 1-3 shows two EntityTypes: Employee and Task.

www.allitebooks.com

http://www.allitebooks.org


Chapter 1 ■ Getting Started with Entity Framework

5

An EntityType usually has one or more properties. Just like with a class, a property is a named value with a specific 
data type. Properties can have simple types like integer, string, and so on; or have ComplexTypes; or be collections. 
Navigation properties refer to other related entities (typically represented by foreign key relationships in a database). 
The non-navigation properties on an EntityType are usually just called scalar properties.

A relationship between two entities is called an association. Associations between EntityTypes are shown on the 
design surface as a line connecting the EntityTypes. The line is annotated to show the multiplicity on each end of the 
association. The association in Figure 1-3 is a one-to-many association between Employee and Task. An Employee 
can have zero or more tasks. Each Task is associated to exactly one Employee.

Every EntityType has a property or set of properties that denote its EntityKey. An EntityKey uniquely identifies 
the entity to Entity Framework and is most often mapped to a primary key from the entity’s representation in the 
underlying database.

Finally, no discussion on Entity Framework would be complete without mentioning the context object. The 
context object for Entity Framework is your gateway into the Entity Framework services. The context object exposes 
entity objects, manages the database connection, generates parameterized SQL, marshals data to and from the 
database, caches objects, helps maintain change tracking and materializes, or transforms, an untyped result set into a 
collection of strongly typed objects.

In the beginning, there was the ObjectContext object. Now, Entity Framework supports an alternate, more 
streamlined context object called the DbContext. The DbContext greatly simplifies the developer experience when 
working with Entity Framework. Interestingly, the DbContext is a wrapper, or facade, around the ObjectContext, 
exposing the underlying ObjectContext functionality in an intuitive, friendly and productive way.

Clearly, the DbContext is the preferred approach for working with Entity Framework as we will demonstrate in 
great detail in this book.

The Code
Despite a tremendous emphasis on visual design support, the Entity Framework is all about code. The models, 
EntityTypes, associations, mappings, and so on are ultimately expressed in concrete code that becomes part of 
your application. This code is either generated by Visual Studio and Entity Framework or created manually by the 
development team. You can choose quite a bit about the code-generation process or the lack of it by changing various 
properties on your project or modifying the underlying code-generation templates.

Visual Studio uses a code-generation technology called Text Template Transformation Toolkit, simply referred 
to as T4 templates. The Visual Studio tooling uses T4 templates to generate, or scaffold, code automatically. The great 
thing about T4 template support in Visual Studio is that you can edit the templates to tailor the code-generation 
process to match your exact needs. This is an advanced technique, but it is necessary in some cases. We’ll show you 
how to do this in a few recipes.

Figure 1-3.  A model with Employee and Task with a one-to-many association between them

www.allitebooks.com

http://www.allitebooks.org


Chapter 1 ■ Getting Started with Entity Framework

6

Alternatively, you can leverage the more recent Code-First approach to manually create the concrete code 
yourself, gaining direct control over the entire process. With Code First, the developer can create entity classes, 
mappings and context object, all without the help of a designer. These manually created entity classes, commonly 
referred to as POCO, or Plain Old CLR Objects, have no dependence on Entity Framework plumbing. Even more 
interesting, the development team can leverage the Entity Framework Power Tool utilities (free download from 
Microsoft) to reverse-engineer a Code First model from an existing database, foregoing the effort to have manually 
create the entity classes, mappings and context object. The recipes in Chapter 8 show you the basics of creating and 
using POCO. Many of the recipes throughout the book will show you how to use Code First across specific contexts 
such as in n-Tier applications.

Visual Studio
Of course, the main tool we use when developing applications for the Windows environment is Visual Studio. This 
Integrated Development Environment has evolved over many years from a simple C++ compiler and editor to a 
highly integrated, multi-language environment that supports the entire software development lifecycle. Visual Studio 
and its related tools and services provide for design, development, unit testing, debugging, software configuration 
management, build management and continuous integration, and much more. Don’t be worried if you haven’t used 
all these in your work; few developers have. The point is that Visual Studio is a full-featured toolset. Visual Studio 
plays a vital role in the development of Entity Framework applications.

Visual Studio provides an integrated design surface for Entity Framework models. Using this design surface and 
other tools in Visual Studio, you can create models from scratch or create them from an existing database. You also 
have the option to completely eliminate the designer and manually craft your Entity Types and configuration.

If you have an existing database, which is the case for many of us with existing applications, Visual Studio 
provides tools for importing your tables and relationships into a model. This fits nicely with the real world because 
few of us have the luxury of developing brand-new applications. Most of us have to extend, maintain, and evolve our 
existing code and databases.

Alternately, you can create a model from scratch by starting with an empty design surface and adding new 
EntityTypes to the surface, creating both associations and inheritance hierarchies for your model. When you are done 
creating the model, right-click the design surface and select Generate Database from Model.

If your project team is code-centric, you can instead create a set of domain classes, including relationships and a 
context class and then wire up these classes to hook into the Entity Framework engine and features without having to 
use a designer.

Once you have created your model, changes often happen. That’s the nature of software development. Visual 
Studio provides tools for updating the model from the database. This will keep the model synchronized with changes 
in the database. Additionally, the Entity Framework Team also supports a tool called Code First Migrations, which can 
be used to keep your database up-to-date with changes in your model.

1-2. Using Entity Framework
Entity Framework is tightly integrated with Visual Studio. To implement Entity Framework in your application, add a 
new ADO.NET Entity Data Model in your project. Right-click your project and select Add ➤ New Item. In the dialog 
box (see Figure 1-4), choose the ADO.NET Entity Data Model template. This template is located under the Data 
templates. Click Add to launch the Entity Data Model Wizard.

www.allitebooks.com

http://www.allitebooks.org


Chapter 1 ■ Getting Started with Entity Framework

7

There are two options on the first page of the Entity Data Model Wizard: start with an existing database or start 
with an empty model. (The former option is actually labeled “Generate from database.”) This first page is shown in 
Figure 1-5.

Figure 1-4.  Adding a new model to your project

www.allitebooks.com

http://www.allitebooks.org


Chapter 1 ■ Getting Started with Entity Framework

8

Generating a model from an existing database is the Database-First approach. From the tables, views, and stored 
procedures that you select from the underlying database, the wizard will create a model and entity classes, against 
which you can write code. The immediate benefit here is that you write code against strongly typed entity classes, 
which Entity Framework maps to the underlying database tables and columns. If the tables you include are related in 
the database, these relationships will be modeled as associations. This is one way to create your model if you already 
have a database for your application. However, if you prefer to use the Code-First approach with an existing database, 
worry not. The Entity Framework team has created tooling (The Entity Framework Power Tools) that reverse-engineers 
an existing database into domain entity classes, just as if you coded them by hand.

If you’re working on a brand-new application, without an existing database, you have options as well. In the 
Entity Framework designer, you can start with an empty design surface. Right-click the design surface to create new 
EntityTypes, associations, or inheritances. You can also drag them from the Toolbox onto the design surface. Once 
your model is complete, just right-click the design surface and select Generate Database from Model. This will 
generate a script you can use to create the database tables and relationships for the model.

Figure 1-5.  The Entity Data Model Wizard gives you a choice between creating a model from an existing database or 
starting with an empty model



Chapter 1 ■ Getting Started with Entity Framework

9

Alternately, you can manually create each of your entity classes in Visual Studio and simply register them in 
the DbContext object, then hook into the Entity Framework services. Entity Framework will map the classes to the 
underlying databases and automatically create a model in memory at runtime.

With the Model-First or Database-First approaches, you use the Entity Framework designer to develop your 
model. The key parts of a model in the designer are shown in Figure 1-6. In this model, a Customer has a one-to-many 
association with an Order. Each customer may have many orders, but each order is associated with just one customer. 
The Mapping Details window shows that the Customer EntityType maps to the Customer table in the database. 
The Mapping Detail window also shows the mapping between the columns in the Customer table and the scalar 
properties in the Customer EntityType. Keep in mind that you can make the same kind of mapping configurations 
using the data annotations or fluent API features found in the Code First approach to using Entity Framework.

Figure 1-6.  Key parts of a model in the designer



Chapter 1 ■ Getting Started with Entity Framework

10

Of course, there’s more to the designer and model than just the few key parts illustrated in Figure 1-6. In the 
recipes in this book, we’ll cover just about every aspect of using the designer to create models. In some cases, we go 
beyond what can be done with the designer and show you how to create models that require direct editing of the 
underlying .edmx file. The .edmx file contains the complete model definition, including the conceptual layer, store 
layer, and mapping layer.

So, whether we implement Entity Framework with the Database-First, Model-First or Code-First approach, 
we always end up with a model. We gain significant productivity, as we can program against objects in the model 
(EntityTypes) as you do with other objects in your application. For the model in Figure 1-6, your code uses Customer 
and Order in much the same way as you use other objects.

If you want to insert a new customer and order into the database, you can create instances of the Customer 
and Order types, set the properties, add them to the in-memory context that represents the model, and call 
SaveChanges(). All the necessary SQL code is generated and sent to the database to insert the rows. To retrieve 
customers and orders from the database, you use either LINQ or Entity SQL to create a query in terms of the 
EntityTypes and associations in the model.

The recipes throughout this book will show you step by step how to model just about every conceivable database 
scenario; how to query, insert, update, and delete using these models; and how to use Entity Framework in many 
kinds of applications.



11

Chapter 2

Entity Data Modeling Fundamentals

More likely than not, you are just beginning to explore Entity Framework, and you are probably asking the question, 
“Okay, how do I get started?” If this describes you, this chapter is a great place to start. If, on the other hand,  
you have built some working models and feel comfortable with a few key modeling concepts, such as entity splitting 
and inheritance, you can skip this chapter.

In this chapter, we will walk you through the basic examples of modeling with Entity Framework. Modeling is 
the core feature of Entity Framework and what distinguishes Entity Framework from previous Microsoft data access 
platforms. Once you have built your model, you can write code against the model rather than against the rows and 
columns in the relational database.

We start off this chapter with an example of how to create a simple conceptual model, and then let Entity 
Framework create the underlying database. In the remaining examples, we will show you how to create models from 
existing tables and relationships in your databases.

2-1. Creating a Simple Model
Problem
You have a brand new project, and you want to create a model.

Solution
Let’s imagine that you want to create an application to hold the names and phone numbers of people that you know. 
To keep things simple, let’s assume that you need just one entity type: Person.

To create the new model, do the following:

	 1.	 Right-click your project, and select Add ➤ New Item.

	 2.	 From the templates, select ADO.NET Entity Data Model and click Add. This template is 
located in Data under Visual C# Items (see Figure 2-1).



Chapter 2 ■ Entity Data Modeling Fundamentals

12

	 3.	 In the first step of the wizard, choose Empty Model and click Finish. The wizard will create 
a new conceptual model with an empty design surface.

	 4.	 Right-click the design surface, and select Add ➤ Entity.

	 5.	 Type Person in the Entity name field, and select the box to Create a key property. Use Id  
as the Key Property. Make sure that its Property Type is Int32. Click OK, and a new Person 
entity will appear on the design surface (see Figure 2-2).

Figure 2-1.  Adding a new .emdx file that contains XML describing the conceptual model, storage model,  
and mapping layer



Chapter 2 ■ Entity Data Modeling Fundamentals

13

	 6.	 Right-click near the top of the Person entity, and select Add ➤ Scalar Property.  
A new scalar property will be added to the Person entity.

	 7.	 Rename the scalar property FirstName. Add scalar properties for LastName, MiddleName, 
and PhoneNumber.

	 8.	 Right-click the Id property, and select Properties. In the properties view, change  
the StoreGeneratedPattern property to Identity if it is not already set to Identity.  
This flags the Id property as a value that will be computed by the store layer (database). 
The database script we get at the end will flag the Id column as an identity column,  
and the storage model will know that the database will automatically manage the values  
in this column.

The completed conceptual model should look like the model in Figure 2-3.

Figure 2-2.  Adding a new entity type representing a Person in our conceptual model



Chapter 2 ■ Entity Data Modeling Fundamentals

14

You now have a simple conceptual model. To generate a database for our model, there are a few things we still 
have to do:

	 9.	 We need to change a couple of properties of our model to help with housekeeping. 
Right-click the design surface, and select properties. Change the Database Schema Name 
to Chapter2, and change the Entity Container Name to EF6RecipesContext. Figure 2-4 
illustrates these changes.

Figure 2-4.  Changing the properties of our model

Figure 2-3.  Our completed model with an entity type representing a Person



Chapter 2 ■ Entity Data Modeling Fundamentals

15

	 10.	 Right-click the design surface, and select Generate Database Script from Model. Select an 
existing database connection or create a new one. In Figure 2-5, we’ve opted to create a 
new connection to our local machine and to the database EF6Recipes.

	 11.	 Click OK to complete the connection properties, and click Next to preview the database 
script (see Figure 2-6). Once you click Finish, the generated script is added to your project.

Figure 2-5.  Creating a new database connection that will be used by Entity Framework to create a database script that 
we can use to create a database from our conceptual model



Chapter 2 ■ Entity Data Modeling Fundamentals

16

	 12.	 Run the database script in an SSMS query window to create the database and the  
People table.

How It Works
The Entity Framework Designer is a powerful tool for creating and updating a conceptual model, storage model,  
and mapping layer. This tool provides support for bidirectional model development. You can either start with a clean 
design surface and create a model; or start with a database that you already have and import it to create a conceptual 
model, storage model, and mapping layer. The current version of the Designer supports somewhat limited roundtrip 
modeling, allowing you to re-create your database from a model and update the model from changes in your 
database.

The model has a number of properties that affect what goes in the generated storage model and database script. 
We changed two of these properties. The first was the name of the container. This is the class derived from DbContext. 
We called this EF6RecipesContext to be consistent with the contexts we use throughout this book.

Additionally, we changed the schema to “Chapter 2.” This represents the schema used to generate the storage 
model as well as the database script.

Figure 2-6.  Generating the storage model in the .edmx file and creating the database script



Chapter 2 ■ Entity Data Modeling Fundamentals

17

The code in Listing 2-1 demonstrates one simple way to create and insert instances of our Person entity type.  
The code also demonstrates iterating through all the Person entities in our database.

Listing 2-1.  Inserting into and Retrieving from Our Model

using (var context = new EF6RecipesContext())
{
    var person = new Person { FirstName = "Robert", MiddleName="Allen",
                                LastName = "Doe", PhoneNumber = "867-5309" };
    context.People.Add(person);
    person = new Person { FirstName = "John", MiddleName="K.",
                            LastName = "Smith", PhoneNumber = "824-3031" };
    context.People.Add(person);
    person = new Person { FirstName = "Billy", MiddleName="Albert",
                            LastName = "Minor", PhoneNumber = "907-2212" };
    context.People.Add(person);
    person = new Person { FirstName = "Kathy", MiddleName="Anne",
                            LastName = "Ryan", PhoneNumber = "722-0038" };
    context.People.Add(person);
 
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    foreach (var person in context.People)
    {
        System.Console.WriteLine("{0} {1} {2}, Phone: {3}",
                                  person.FirstName, person.MiddleName,
                                  person.LastName, person.PhoneNumber);
    }
}
 

The output of the code in Listing 2-1 should look something like the following:

John K. Smith, Phone: 824-3031
Robert Allen Doe, Phone: 867-5309
Kathy Anne Ryan, Phone: 722-0038
Billy Albert Minor, Phone: 907-2212

Best Practice
When we created a new instance of the database context, we did it within a using() statement:
 
using (var context = new EF6RecipesContext())
{
...
}
 



Chapter 2 ■ Entity Data Modeling Fundamentals

18

If you are not familiar with this pattern, it’s really pretty simple. Normally, when we get a new instance of an 
object, we use the new operator and assign the result to some variable. When the variable goes out of scope and the 
object is no longer referenced by anything else, the garbage collector will do its job at some point and reclaim the 
memory for the object. That works great for most of the objects that we create in our .NET applications because most 
objects hold on to resources that can wait around for whenever the garbage collector has a chance to reclaim them. 
The garbage collector is rather nondeterministic. It reclaims resources pretty much on its own schedule, which we can 
only partially influence.

Instances of DbContext hold on to system resources such as database connections that we want to release as 
soon as we’re done with them. We don’t really want these database connections to stay open waiting for the garbage 
collector eventually to reclaim them.

There are a few nice features of using() statements. First, when the code execution leaves the using() {} block, 
the Dispose() method on the context will be called because DbContext implements the IDisposable interface. For 
DbContext, the Dispose() method closes any active database connections and properly cleans up any other resources 
that need to be released.

Second, no matter how the code leaves the using(){} block, the Dispose() method is called. Most importantly, 
this includes return statements and exceptions that may be thrown within the code block. The using(){} block is kind 
of a guarantee that critical resources will be reclaimed properly.

The best practice here is always to wrap your code in the using(){} block when creating new instances of 
DbContext. It’s one more step to help bulletproof your code.

2-2. Creating a Model from an Existing Database
Problem
You have an existing database with tables, perhaps a few views, and some foreign key constraints, and you want to 
create a model for this database.

Solution
Let’s say that you have database describing poets and their poetry. Your relational database might look something like 
the diagram in Figure 2-7.

From this database diagram, you can see that a poet can be the author of one or more poems, and each poem 
can be categorized by its meter, which is the basic pattern of a poem’s verse. It’s not shown in this diagram, but our 
database also has a view that joins the tables together so that we can more easily enumerate each poet and poem,  
as well as the poem’s meter.

Figure 2-7.  A simple database for poets and their poetry



Chapter 2 ■ Entity Data Modeling Fundamentals

19

To import the view, tables, and relationships into a model, do the following:

	 1.	 Right-click your project, and select Add ➤ New Item.

	 2.	 From the Visual C# Items Data templates, select ADO.NET Entity Data Model.

	 3.	 Select Generate from database to create the model from our existing tables. Click Next.

	 4.	 Either choose an existing connection to your database or create a new connection.  
If you are creating a new connection, you will need to select your database server,  
your authentication method (Windows or SQL Server), and the database. Once you have 
selected these, it’s a good idea to click Test Connection to be sure that the connection is 
ready to go. Once you have tested the connection, click Next.

The next dialog box shows all of the tables, views, and stored procedures in the database. 
Check the items you want to include in the model. We want to select all of the tables  
(Meter, Poem, and Poet). We also want to select the view (vwLibrary). For now, leave 
the two check boxes for pluralizing and including foreign key columns selected. We will 
discuss them further momentarily. Figure 2-8 shows the things we’ve selected.

When you click Finish, the wizard will create a new model with our three tables and the view. The wizard will also 
read the foreign key constraints from the database and infer a one-to-many relationship between Poet and Poem(s)  
as well as a one-to-many relationship between Meter and Poem(s).

Figure 2-8.  Selecting the tables and view to include in our model. Leave the Pluralize or singularize generated object 
names and Include Foreign Key Columns in the model checked



Chapter 2 ■ Entity Data Modeling Fundamentals

20

Figure 2-9 shows the new model created for us by including the Poet, Poem, and Meter tables as well as the 
vwLibrary view.

You now have a model that you can use in your code. Note that the vwLibrary entity is based on the vwLibrary 
view in our database. In most databases, views are read-only objects: inserts, deletes, and updates are typically not 
supported at the database layer. This is also the case with Entity Framework. Entity Framework considers views read 
only. You can get around this by mapping stored procedures for the create, update, and delete actions for view-based 
entities. We will show you how to do just that in Chapter 6.

How It Works
Let’s look at the model created for us by the importing process. Notice that the entities have scalar properties and 
navigation properties. The scalar properties map to the columns in the tables of the database, while the navigation 
properties are derived from the relationships between the tables.

In our database diagram, a poem has a meter and a poet (the author). These correspond to the Meter and Poet 
navigation properties. If we have an instance of a Poem entity, the Poet navigation property holds an instance of a Poet 
entity, while the Meter navigation property holds an instance of a Meter entity.

A poet can be the author of any number of poems. The Poems navigation property contains a collection of 
instances of the Poem entity. This collection can be empty, of course, for those poets that have yet to write any poetry. 
For the Meter entity, the Poems navigation property is also a collection. For this navigation property, the collection 
holds instances of Poems that have the given meter. SQL Server does not support relationships defined on views, and 
our model reflects this with an empty set of navigation properties on the vwLibrary entity.

Notice that the Import Wizard was smart enough to pluralize the navigation properties that contained collections. 
If you right-click the entities and look at their properties, you will notice that the entity set names for each of the 

Figure 2-9.  Our completed model



Chapter 2 ■ Entity Data Modeling Fundamentals

21

entities are also property pluralized. For example, the entity set name for the Poem entity is Poems. This automatic 
pluralization happened because we left the Pluralize or singularize generated object names option checked.

The Include Foreign Key Columns in the model option also caused the foreign keys to be included in the model. 
Although it may seem a little unnecessary to have both foreign keys and navigation properties, we’ll see in many of the 
following recipes that having direct access to the foreign keys can be useful.

The code in Listing 2-2 demonstrates how to create instances of Poet, Poem, and Meter entities in our model and 
how to save these entities to our database. The code also shows you how to query the model to retrieve the poets and 
poems from the database.

Listing 2-2.  Inserting into and Querying Our Model

using (var context = new EF6RecipesContext())
{
    var poet = new Poet { FirstName = "John", LastName = "Milton" };
    var poem = new Poem { Title = "Paradise Lost" };
    var meter = new Meter { MeterName = "Iambic Pentameter" };
    poem.Meter = meter;
    poem.Poet = poet;
    context.Poems.Add(poem);
    poem = new Poem { Title = "Paradise Regained" };
    poem.Meter = meter;
    poem.Poet = poet;
    context.Poems.Add(poem);
 
    poet = new Poet { FirstName = "Lewis", LastName = "Carroll" };
    poem = new Poem { Title = "The Hunting of the Shark" };
    meter = new Meter { MeterName = "Anapestic Tetrameter" };
    poem.Meter = meter;
    poem.Poet = poet;
    context.Poems.Add(poem);
 
    poet = new Poet { FirstName = "Lord", LastName = "Byron" };
    poem = new Poem { Title = "Don Juan" };
    poem.Meter = meter;
    poem.Poet = poet;
    context.Poems.Add(poem);
 
    context.SaveChanges();
 
}
 
using (var context = new EF6RecipesContext())
{
    var poets = context.Poets;
    foreach (var poet in poets)
    {
        Console.WriteLine("{0} {1}", poet.FirstName, poet.LastName);
        foreach (var poem in poet.Poems)
        {
            Console.WriteLine("\t{0} ({1})", poem.Title, poem.Meter.MeterName);
        }
    }
}
 



Chapter 2 ■ Entity Data Modeling Fundamentals

22

// using our vwLibrary view
using (var context = new EF6RecipesContext())
{
    var items = context.vwLibraries;
    foreach (var item in items)
    {
        Console.WriteLine("{0} {1}", item.FirstName, item.LastName);
        Console.WriteLine("\t{0} ({1})", item.Title, item.MeterName);
    }
}
 

In the first block of code in Listing 2-2, we create instances of the Poet, Poem, and Meter entity types for the poet 
John Milton, his poem “Paradise Lost,” and the meter for the poem, which in this case is Iambic Pentameter. Once we 
have created the instances of the entity types, we set the poem’s Meter property to the meter instance and the poem’s 
Poet property to the poet instance. Using the same approach, we build up the other entities relating each poem to its 
meter and poet. Once we have everything in place, we call SaveChanges()to generate and execute the appropriate 
SQL statements to insert the rows into the underlying database.

The output from the code in Listing 2-2 is as follows:

Lord Byron
        Don Juan (Anapestic Tetrameter)
Lewis Carroll
        The Hunting of the Shark (Anapestic Tetrameter)
John Milton
        Paradise Regained (Iambic Pentameter)
        Paradise Lost (Iambic Pentameter)
Lewis Carroll
        The Hunting of the Shark (Anapestic Tetrameter)
Lord Byron
        Don Juan (Anapestic Tetrameter)
John Milton
        Paradise Regained (Iambic Pentameter)
John Milton
        Paradise Lost (Iambic Pentameter)

In the code, we start by creating and initializing instances of the poet, poem, and meter for the first of John 
Milton’s poems. Once we have these in place, we set the poem’s Meter navigation property and the poem’s Poet 
navigation property to the instances of poem and meter. Now that we have the poem instance completed, we add it 
using the Add() method. Entity Framework does all of the remaining work of adding the poem to the Poems collection 
on the poet instance and adding the poem to the Poems collection on the meter instance. The rest of the setup follows 
the same pattern. To shorten the code, we reuse variables and instances where we can.

Once we have all of the objects created and all the navigation properties initialized, we have completed the 
object graph. Entity Framework keeps track of the changes we’ve made to build the object graph. These changes 
are tracked in the database context. Our context variable contains an instance of the database context (it’s of type 
DbContext), and it is what we used to build the object graph. To send these changes to the database, we call the 
SaveChanges() method.



Chapter 2 ■ Entity Data Modeling Fundamentals

23

To query our model and, of course, verify that we did indeed save everything to the database, we grab a fresh 
instance of the object context and query it using LINQ to Entities. We could have reused the same instance of the 
database context, but then we know it has the object graph and any subsequent queries we run against it won’t flow 
through to the database because the graph is already in memory.

Using LINQ to Entities, we query for all of the poets, and for each poet we print out the poet’s name and the 
details for each of their poems. The code is pretty simple, but it does use a couple of nested for loops.

The last block of code uses the vwLibrary entity. This entity is based on our vwLibrary view. This view joins the 
tables together to flatten things out a bit and provide a cleaner perspective. When we query for each poet against the 
vwLibraries entity set, we can get by with just one for loop. The output is a little different because we repeat the poet’s 
name for each poem.

There is one last thing to note in this example. We didn’t insert the poets, poems, and meters using the vwLibrary 
entity because views are always read-only in most database systems. In Entity Framework, we can’t insert (or update, 
or delete) entities that are based on views. Of course, we’ll show you exactly how to overcome this little challenge in 
many of the recipes in this book!

2-3. Modeling a Many-to-Many Relationship with No Payload
Problem
You have a couple of tables in an existing database that are related to each other via a link or junction table. The link 
table contains just the foreign keys used to link the two tables together into a many-to-many relationship. You want  
to import these tables to model this many-to-many relationship.

Solution
Let’s say that your database tables look something like the database diagram in Figure 2-10.

To create a model and import these tables and relationships, do the following:

	 1.	 Add a new model to your project by right-clicking your project and selecting Add ➤ New 
Item. Choose ADO.NET Entity Data Model from the Visual C# Items Data templates.

	 2.	 Select Generate from database. Click Next.

	 3.	 Use the wizard to select an existing connection to your database, or create a new 
connection.

	 4.	 From the Choose Your Database Object dialog box, select the tables Album, LinkTable, 
and Artist. Leave the Pluralize and Foreign Key options checked. Click Finish.

The wizard will create the model shown in Figure 2-11.

Figure 2-10.  Artists and albums in a many-to-many relationship



Chapter 2 ■ Entity Data Modeling Fundamentals

24

The many-to-many relationship between Album and Artist is represented by a line with the * character on 
both ends. Because an Album can have many Artists, and an Artist can responsible for many Albums, each of these 
navigation properties is of type EntityCollection.

How It Works
In Figure 2-11, an artist can be related to many albums, whereas an album can be the work of many artists. Notice 
that the link table from Figure 2-10 is not represented as an entity in our model. Because our link table has no scalar 
properties (that is, it has no payload), Entity Framework assumes that its sole purpose is to create the association 
between Album and Artist. If the link table had scalar properties, Entity Framework would have created a very 
different model, as we will see in the next recipe.

The code in Listing 2-3 demonstrates how to insert new albums and artists into our model and how to query our 
model for both artists and their albums and albums with their artists.

Listing 2-3.  Inserting and Querying Our Artists and Albums Model Through the Many-to-Many Association

using (var context = new EF6RecipesContext())
{
    // add an artist with two albums
    var artist = new Artist { FirstName = "Alan", LastName = "Jackson" };
    var album1 = new Album { AlbumName = "Drive" };
    var album2 = new Album { AlbumName = "Live at Texas Stadium" };
    artist.Albums.Add(album1);
    artist.Albums.Add(album2);
    context.Artists.Add(artist);
 
    // add an album for two artists
    var artist1 = new Artist { FirstName = "Tobby", LastName = "Keith" };
    var artist2 = new Artist { FirstName = "Merle", LastName = "Haggard" };
    var album = new Album { AlbumName = "Honkytonk University" };
    artist1.Albums.Add(album);
    artist2.Albums.Add(album);
    context.Albums.Add(album);
 
    context.SaveChanges();
}
 

Figure 2-11.  The model with a many-to-many relationship between our tables



Chapter 2 ■ Entity Data Modeling Fundamentals

25

using (var context = new EF6RecipesContext())
{
    Console.WriteLine("Artists and their albums...");
    var artists = context.Artists;
    foreach (var artist in artists)
    {
        Console.WriteLine("{0} {1}", artist.FirstName, artist.LastName);
        foreach (var album in artist.Albums)
        {
            Console.WriteLine("\t{0}", album.AlbumName);
        }
    }
 
    Console.WriteLine("\nAlbums and their artists...");
    var albums = context.Albums;
    foreach (var album in albums)
    {
        Console.WriteLine("{0}", album.AlbumName);
        foreach (var artist in album.Artists)
        {
            Console.WriteLine("\t{0} {1}", artist.FirstName, artist.LastName);
        }
    }
}
 

The output from the code in Listing 2-3 looks like the following:

Artists and their albums...
Alan Jackson
        Drive
        Live at Texas Stadium
Tobby Keith
        Honkytonk University
Merle Haggard
        Honkytonk University
 
Albums and their artists...
Drive
        Alan Jackson
Live at Texas Stadium
        Alan Jackson
Honkytonk University
        Tobby Keith
        Merle Haggard

After getting an instance of our database context, we create and initialize an instance of an Artist entity type and 
a couple of instances of the Album entity type. We add the albums to the artist and then add the artist to the Database 
Context.

Next we create and initialize a couple of instances of the Artist entity type and an instance of the Album entity 
type. Because the two artists collaborated on the album, we add the album to both artists’ Albums navigation property 
(which is of type EntityCollection). Adding the album to the Database Context causes the artists to get added as well.



Chapter 2 ■ Entity Data Modeling Fundamentals

26

Now that the completed object graph is part of the database context, the only thing left to do is to use 
SaveChanges() to save the whole thing to the database.

When we query the database in a brand-new Database Context, we grab the artists and display their albums. 
Then we grab the albums and print the artists that created the albums.

Notice that we never refer to the underlying LinkTable from Figure 2-10. In fact, this table is not even represented 
in our model as an entity. The LinkTable is represented in the many-to-many association, which we access via the 
Artists and Albums navigation properties. 

2-4. Modeling a Many-to-Many Relationship with a Payload
Problem
You have a many-to-many relationship in which the link table contains some payload data (any additional columns 
beyond the foreign keys), and you want to create a model that represents the many-to-many relationship as two  
one-to-many associations.

Solution
Entity Framework does not support associations with properties, so creating a model like the one in the previous 
recipe won’t work. As we saw in the previous recipe, if the link table in a many-to-many relationship contains just the 
foreign keys for the relationship, Entity Framework will surface the link table as an association and not as an entity 
type. If the link table contains additional information, Entity Framework will create a separate entity type to represent 
the link table. The resulting model will contain two one-to-many associations with an entity type representing the 
underlying link table.

Suppose we have the tables and relationships shown in Figure 2-12.

Figure 2-12.  A many-to-many relationship with payload

An Order can have many Items. An Item can be on many Orders. Additionally, we have a Count property 
connected to each instance of the Order, Item relationship. This Count property is referred to as a payload.

To create a model and import these tables and relationships into the model, do the following:

	 1.	 Add a new model to your project by right-clicking your project and selecting  
Add ➤ New Item. Choose ADO.NET Entity Data Model from the Visual C# Data templates.

	 2.	 Select Generate from database. Click Next.

	 3.	 Use the wizard to select an existing connection to your database or create a new 
connection.

	 4.	 From the Choose Your Database Object dialog box, select the tables Order, OrderItem,  
and Item. Leave the Pluralize and Foreign Key options checked. Click Finish. 

The wizard will create the model in Figure 2-13.



Chapter 2 ■ Entity Data Modeling Fundamentals

27

How It Works
As we saw in the previous recipe, for a many-to-many relationship with no payload, the model is clean and simple to 
navigate. Because Entity Framework does not support the notion of payloads on associations, it surfaces the link table 
as an entity with two one-to-many associations to the related entities. In this case, the OrderItem table is represented 
not as an association, but as an entity type with a one-to-many association to Order and a one-to-many association  
to Item. In the previous recipe, the payload-free link table did not translate into an entity type in the model. Instead,  
it became part of the many-to-many association.

The addition of a payload requires an additional hop through the entity representing the link table to retrieve the 
related items. This is illustrated in code in Listing 2-4.

Listing 2-4.  Inserting into and Retrieving from the Model

using (var context = new EF6RecipesContext())
{
    var order = new Order { OrderId = 1,
                            OrderDate = new DateTime(2010, 1, 18) };
    var item = new Item { SKU = 1729, Description = "Backpack",
                          Price = 29.97M };
    var oi = new OrderItem { Order = order, Item = item, Count = 1 };
    item = new Item { SKU = 2929, Description = "Water Filter",
                      Price = 13.97M };
    oi = new OrderItem { Order = order, Item = item, Count = 3 };
    item = new Item { SKU = 1847, Description = "Camp Stove",
                      Price = 43.99M };
    oi = new OrderItem { Order = order, Item = item, Count = 1 };
    context.Orders.Add(order);
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{    foreach (var order in context.Orders)
     {
        Console.WriteLine("Order # {0}, ordered on {1}",
                           order.OrderId.ToString(),
                           order.OrderDate.ToShortDateString());

Figure 2-13.  Two one-to-many associations from a many-to-many relationship with payload

www.allitebooks.com

http://www.allitebooks.org


Chapter 2 ■ Entity Data Modeling Fundamentals

28

        Console.WriteLine("SKU\tDescription\tQty\tPrice");
        Console.WriteLine("---\t-----------\t---\t-----");
        foreach (var oi in order.OrderItems)
        {
            Console.WriteLine("{0}\t{1}\t{2}\t{3}", oi.Item.SKU,
                               oi.Item.Description, oi.Count.ToString(),
                               oi.Item.Price.ToString("C"));
        }
    }
}
 

The following is the output from the code shown in Listing 2-4.

Order # 1, ordered on 1/18/2010
SKU     Description    Qty     Price
----    -----------    ---     ------
1729    Backpack       1       $29.97
1847    Camp Stove     1       $43.99
2929    Water Filter   3       $13.97

After we create an instance of our database context, we create and initialize an Order entity as well as the items 
and order items for the order. We connect the order with the items by initializing the OrderItem entities with the 
instances of the Order entity and the Item entity. We use the Add() method to add the order to the context.

With the object graph complete and the order added to the context, we update the database with the 
SaveChanges() method.

To retrieve the entities from the database, we create a fresh instance of the context and iterate through the 
context.Orders collection. For each order (well, we just have one in this example), we print the order detail and 
we iterate through the entity collection on the OrderItems navigation property. These instances of the OrderItem 
entity type give us access to the Count scalar property (the payload) directly, and each item on the order via the Item 
navigation property. Going through the OrderItems entity to get to the items is the “extra” hop that is the cost of 
having a payload in the link table (OrderItems, in our example) in a many-to-many relationship.

Best Practice
Unfortunately, a project that starts out with several payload-free many-to-many relationships often ends up with 
several payload-rich many-to-many relationships. Refactoring a model, especially late in the development cycle, 
to accommodate payloads in the many-to-many relationships can be tedious. Not only are additional entities 
introduced, but the queries and navigation patterns through the relationships change as well. Some developers 
argue that every many-to-many relationship should start off with some payload, typically a synthetic key, so that the 
inevitable addition of more payload has significantly less impact on the project.

So here’s the best practice: If you have a payload-free many-to-many relationship and you think there is some 
chance that it may change over time to include a payload, start with an extra identity column in the link table. When 
you import the tables into your model, you will get two one-to-many relationships, which means the code you write 
and the model you have will be ready for any number of additional payload columns that come along as the project 
matures. The cost of an additional integer identity column is usually a pretty small price to pay to keep the model 
more flexible.



Chapter 2 ■ Entity Data Modeling Fundamentals

29

2-5. Modeling a Self-Referencing Relationship with  
a Code-First Approach
Problem
You have a table that references itself, and you want to model this as an entity with a self-referencing association using 
a Code-First approach.

Solution
Let’s say that you have a self-referencing table that’s like the one shown in the database diagram in Figure 2-14.

To create a model and import this table and the self-referencing relationship into the model, do the following:

	 1.	 Create a new class that inherits from DbContext in your project.

	 2.	 Use the code in Listing 2-5 to create the PictureCategory POCO entity.

Listing 2-5.  Creating the PictureCategory POCO Entity

public class PictureCategory
{
    [Key]
    [DatabaseGenerated(DatabaseGeneratedOption.Identity)]
    public int CategoryId { get; private set; }
    public string Name { get; set; }
    public int? ParentCategoryId { get; private set; }
 
    [ForeignKey("ParentCategoryId")]
    public PictureCategory ParentCategory { get; set; }
 
    public List<PictureCategory> Subcategories { get; set; }
 
    public PictureCategory()
    {
        Subcategories = new List<PictureCategory>();
    }
}

 

Figure 2-14.  A self-referencing table



Chapter 2 ■ Entity Data Modeling Fundamentals

30

	 3.	 Add a DbSet<PictureCategory> auto property to your DbContext subclass.

	 4.	 Override the OnModelCreating method in your DbContext class to configure the 
bidirectional association (ParentCategory and SubCategories), as seen in Listing 2-6.

Listing 2-6.  Overriding OnModelCreating in DbContext Subclass

public class EF6RecipesContext : DbContext
{
    public DbSet<PictureCategory> PictureCategories { get; set; }
 
    public PictureContext() : base("name=EF6CodeFirstRecipesContext")
    {
         
    }
 
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        base.OnModelCreating(modelBuilder);
 
        modelBuilder.Entity<PictureCategory>()
                    .HasMany(cat => cat.SubCategories)
                    .WithOptional(cat => cat.ParentCategory);
    }
}

How It Works
Database relationships are characterized by degree, multiplicity, and direction. Degree is the number of entity types 
that participate in the relationship. Unary and binary relationships are the most common. Tertiary and n-place 
relationships are more theoretical than practical.

Multiplicity is the number of entity types on each end of the relationship. You have seen the multiplicities 0..1 
(zero or 1), 1 (one), and * (many).

Finally, the direction is either one-way or bidirectional.
The Entity Data Model supports a particular kind of database relationship called an Association Type.  

An Association Type relationship has either unary or binary degree, multiplicities 0..1, 1, or *, and a direction that  
is bidirectional.

In this example, the degree is unary (just the entity type PictureCategory is involved), the multiplicity is 0..1  
and *, and the direction is, of course, bidirectional.

As is the case in this example, a self-referencing table often denotes a parent-child relationship, with each parent 
having many children while each child has just one parent. Because the parent end of the relationship is 0..1 and  
not 1, it is possible for a child to have no parent. This is just what you want to leverage in representing the root node; 
that is, the one node that has no parent and is the top of the hierarchy.

Listing 2-7 shows how you can recursively enumerate the picture categories starting with the root node, which,  
of course, is the only node that has no parent.



Chapter 2 ■ Entity Data Modeling Fundamentals

31

Listing 2-7.  Inserting into Our Model and Recursively Enumerating All of the Instances of the Self-referencing entity

static void RunExample()
{
    using (var context = new EF6RecipesContext())
    {
        var louvre = new PictureCategory { Name = "Louvre" };
        var child = new PictureCategory { Name = "Egyptian Antiquites" };
        louvre.Subcategories.Add(child);
        child = new PictureCategory { Name = "Sculptures" };
        louvre.Subcategories.Add(child);
        child = new PictureCategory { Name = "Paintings" };
        louvre.Subcategories.Add(child);
        var paris = new PictureCategory { Name = "Paris" };
        paris.Subcategories.Add(louvre);
        var vacation = new PictureCategory { Name = "Summer Vacation" };
        vacation.Subcategories.Add(paris);
        context.PictureCategories.Add(paris);
        context.SaveChanges();
    }
 
    using (var context = new EF6RecipesContext())
    {
     var roots = context.PictureCategories.Where(c => c.ParentCategory == null);
        roots.ForEach(root => Print(root, 0));
    }
}
 
static void Print(PictureCategory cat, int level)
{
    StringBuilder sb = new StringBuilder();
    Console.WriteLine("{0}{1}", sb.Append(' ', level).ToString(), cat.Name);
    cat.Subcategories.ForEach(child => Print(child, level + 1));
}
 

The output of the code in Listing 2-7 shows our root node: Summer Vacation. The first (and only) child is Paris. 
Paris has Louvre as a child. Finally, at the Louvre, we categorized our pictures by the various collections we visited.

Summer Vacation
 Paris
  Louvre
   Egyptian Antiquities
   Sculptures
   Paintings

Clearly, the code is a little involved. We start by creating and initializing the instances of our entity types. We wire 
them together in the object graph by adding the PictureCategories to our louvre category. Then we add the louvre 
category to the paris category. Finally, we add the paris category to our summer vacation category. We build the 
hierarchy from the bottom up.



Chapter 2 ■ Entity Data Modeling Fundamentals

32

Once we do a SaveChanges(), the inserts are all done on the database, and it’s time to query our tables to see 
whether we’ve actually inserted all of the rows correctly.

For the retrieval part, we start by getting the root entity. This is the one that has no parent. In our case, we created 
a summer vacation entity, but we didn’t make it the child of any other entity. This makes our summer vacation entity 
the root of the hierarchy.

Now, with the root, we call another method we wrote: Print(). The Print() method takes a couple of 
parameters. The first parameter is an instance of a PictureCategory. The second parameter is a level, or depth,  
we are at in the hierarchy. With the root category, summer vacation, we’re at the top of the hierarchy, so we pass in 0. 
The method call looks like Print(root, 0).

In the Print() method, we write out the name of the category preceded by a space for each level deep in the 
hierarchy. One of the Append() methods of the StringBuilder class takes a character and an integer. It creates an 
instance of StringBuilder with the character appended the number of times specified by the integer parameter. In our 
call, we send in a space and level, and it returns a string with a space for every level deep that we are in the hierarchy. 
We use the ToString() method to convert the StringBuilder instance to a string.

Now for the recursive part: We iterate through the children and call the Print() method on each child, making 
sure to increment the level by one. When we run out of children, we simply return. The result is the output shown 
previously.

In Recipe 6-5, we show another approach to this problem using a Common Table Expression in a stored 
procedure on the store side to iterate through the graph and return a single flattened result set.

2-6. Splitting an Entity Among Multiple Tables
Problem
You have two or more tables that share the same primary key, and you want to map a single entity to these two tables.

Solution
Let’s illustrate the problem with the two tables shown in Figure 2-15.

Figure 2-15.  Two tables, Product and ProductWebInfo, with common primary keys

To create a model with a single entity representing these two tables, do the following:

	 1.	 Create a new class in your project that inherits from DbContext.

	 2.	 Create a Product POCO entity using the code in Listing 2-8.



Chapter 2 ■ Entity Data Modeling Fundamentals

33

Listing 2-8.  Creating the Product POCO Entity

public class Product
{
    [Key]
    [DatabaseGenerated(DatabaseGeneratedOption.None)]
    public int SKU { get; set; }
    public string Description { get; set; }
    public decimal Price { get; set; }
    public string ImageURL { get; set; }
}
 
	 3.	 Add an auto-property of type DbSet<Product> to your DbContext subclass.

	 4.	 Override the OnModelCreating() method of DbContext with the code in Listing 2-9.

Listing 2-9.  Overriding OnModelCreating in the DbContext Subclass

public class EF6RecipesContext : DbContext
{
    public DbSet<Product> Products { get; set; }
 
    public ProductContext() : base("name=EF6CodeFirstRecipesContext")
    {
    }
 
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        base.OnModelCreating(modelBuilder);
 
        modelBuilder.Entity<Product>()
                    .Map(m =>
                             {
                                 m.Properties(p => new {p.SKU, p.Description, p.Price});
                                 m.ToTable("Product", "Chapter2");
                             })
                    .Map(m =>
                             {
                                 m.Properties(p => new {p.SKU, p.ImageURL});
                                 m.ToTable("ProductWebInfo", "Chapter2");
                             });
    }
}

How It Works
It seems all too common in legacy systems to find “extra” information for each row in one table tucked away in 
another table. Often this happens over time as a database evolves, and no one is willing to break existing code by 
adding columns to some critical table. The answer is to “graft on” a new table to hold the additional columns.

By merging two or more tables into a single entity or, as it is usually perceived, splitting a single entity across two 
or more tables, we can treat all of the parts as one logical entity. This process is often referred to as vertical splitting.



Chapter 2 ■ Entity Data Modeling Fundamentals

34

The downside of vertical splitting is that retrieving each instance of our entity now requires an additional join for 
each additional table that makes up the entity type. This extra join is shown in Listing 2-10.

Listing 2-10.  Additional Join Required by Vertical Splitting

SELECT
[Extent1].[SKU] AS [SKU],
[Extent2].[Description] AS [Description],
[Extent2].[Price] AS [Price],
[Extent1].[ImageURL] AS [ImageURL]
FROM  [dbo].[ProductWebInfo] AS [Extent1]
INNER JOIN [dbo].[Product] AS [Extent2] ON [Extent1].[SKU] = [Extent2].[SKU]
 

Nothing special is required to insert into or retrieve from the Product entity. Listing 2-11 demonstrates working 
with the vertically split Product entity type.

Listing 2-11.  Inserting into and Retrieving from Our Model with the Product Entity Type

using (var context = new EF6RecipesContext())
{
    var product = new Product { SKU = 147,
                                Description = "Expandable Hydration Pack",
                                Price = 19.97M, ImageURL = "/pack147.jpg" };
    context.Products.Add(product);
    product = new Product { SKU = 178,
                            Description = "Rugged Ranger Duffel Bag",
                            Price = 39.97M, ImageURL = "/pack178.jpg" };
    context.Products.Add(product);
    product = new Product { SKU = 186,
                            Description = "Range Field Pack",
                            Price = 98.97M, ImageURL = "/noimage.jp" };
    context.Products.Add(product);
    product = new Product { SKU = 202,
                            Description = "Small Deployment Back Pack",
                            Price = 29.97M, ImageURL = "/pack202.jpg" };
    context.Products.Add(product);
 
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    foreach (var p in context.Products)
    {
        Console.WriteLine("{0} {1} {2} {3}", p.SKU, p.Description,
                            p.Price.ToString("C"), p.ImageURL);
    }
}
 



Chapter 2 ■ Entity Data Modeling Fundamentals

35

The code in Listing 2-7 produces the following results:

147 Expandable Hydration Pack $19.97 /pack147.jpg
178 Rugged Ranger Duffel Bag $39.97 /pack178.jpg
186 Range Field Pack $98.97 /noimage.jpg
202 Small Deployment Back Pack $29.97 /pack202.jpg

2-7. Splitting a Table Among Multiple Entities
Problem
You have a table with some frequently used fields and a few large, but rarely needed fields. For performance reasons, 
you want to avoid needlessly loading these expensive fields on every query. You want to split the table across two or 
more entities.

Solution
Let’s say that you have a table like the one shown in Figure 2-16, which holds information about photographs as well 
as the bits for both the thumbnail and full-resolution image of the photograph.

Figure 2-16.  A Photograph table with a field holding the binary large object (blob) representing the data for the image

To create an entity type that contains the reasonably low-cost and frequently used columns, as well as an entity 
type containing the high-cost but rarely used HighResolutionBits column, do the following:

	 1.	 Create a new class in your project that inherits from DbContext.

	 2.	 Create a Photograph POCO entity class using the code in Listing 2-12.



Chapter 2 ■ Entity Data Modeling Fundamentals

36

Listing 2-12.  Creating the Photograph POCO Entity

public class Photograph
{
    [Key]
    [DatabaseGenerated(DatabaseGeneratedOption.Identity)]
    public int PhotoId { get; set; }
    public string Title { get; set; }
    public byte[] ThumbnailBits { get; set; }
 
    [ForeignKey("PhotoId")]
    public virtual PhotographFullImage PhotographFullImage { get; set; }
}

 
	 3.	 Create a PhotographFullImage POCO entity class using the code in Listing 2-13.

Listing 2-13.  Creating the PhotographFullImage POCO Entity

public class PhotographFullImage
{
    [Key]
    public int PhotoId { get; set; }
    public byte[] HighResolutionBits { get; set; }
 
    [ForeignKey("PhotoId")]
    public virtual Photograph Photograph { get; set; }
}

 
	 4.	 Add an auto-property of type DbSet<Photograph> to your DbContext subclass.

	 5.	 Add another auto-property type of DbSet<PhotographFullImage> to your DbContext 
subclass.

	 6.	 Override the OnModelCreating() method of the DbContext class, as shown in Listing 2-14.

Listing 2-14.  Overriding the OnModelCreating Method of DbContext

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
    base.OnModelCreating(modelBuilder);
 
            modelBuilder.Entity<Photograph>()
                .HasRequired(p => p.PhotographFullImage)
                .WithRequiredPrincipal(p => p.Photograph);
 
    modelBuilder.Entity<Photograph>().ToTable("Photograph", "Chapter2");
    modelBuilder.Entity<PhotographFullImage>().ToTable("Photograph", "Chapter2");
}



Chapter 2 ■ Entity Data Modeling Fundamentals

37

How It Works
Entity Framework does not directly support the notion of lazy loading of individual entity properties. To get the effect 
of lazy loading expensive properties, we exploit Entity Framework’s support for lazy loading of associated entities.  
We created a new entity type to hold the expensive full image property and created a one-to-one association between 
our Photograph entity type and the new PhotographFullImage entity type. We added a referential constraint on the 
conceptual layer that, much like a database referential constraint, tells Entity Framework that a PhotographFullImage 
can’t exist without a Photograph.

Due to the referential constraint, there are a couple of things to note about our model. If we have a newly created 
PhotographFullImage, an instance of Photograph must exist in the object context or the data source prior to calling 
SaveChanges(). Also, if we delete a photograph, the associated PhotographFullImage is also deleted. This is just like 
cascading deletes in database referential constraints.

The code in Listing 2-15 demonstrates inserting and retrieving from our model.

Listing 2-15.  Inserting into and Lazy Loading Expensive Fields

byte[] thumbBits = new byte[100];
byte[] fullBits = new byte[2000];
using (var context = new EF6RecipesContext())
{
    var photo = new Photograph { Title = "My Dog",
                                 ThumbnailBits = thumbBits };
    var fullImage = new PhotographFullImage { HighResolutionBits = fullBits };
    photo.PhotographFullImage = fullImage;
    context.Photographs.Add(photo);
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    foreach (var photo in context.Photographs)
    {
        Console.WriteLine("Photo: {0}, ThumbnailSize {1} bytes",
                           photo.Title, photo.ThumbnailBits.Length);
 
        // explicitly load the "expensive" entity,  
PhotographFullImagecontext.Entry(photo).Reference(p => p.PhotographFullImage).Load();  
       Console.WriteLine("Full Image Size: {0} bytes",
                photo.PhotographFullImage.HighResolutionBits.Length);
    }
}
 

The output from Listing 2-15 is as follows:

Photo: My Dog, Thumbnail Size: 100 bytes
Full Image Size: 2000 bytes

The code in Listing 2-15 creates and initializes instances of the Photograph and PhotographFullImage entities, 
adds them to the object context, and calls SaveChanges().



Chapter 2 ■ Entity Data Modeling Fundamentals

38

On the query side, we retrieve each of the photographs from the database, print some information about the 
photograph, and then explicitly load the associated PhotographFullImage entity. Notice that we did not change the 
default context option to turn off lazy loading. This puts the burden on us to load related entities explicitly. This is 
just what we want. We could have chosen not to load the associated instances of PhotographFullImage, and if we 
were iterating through hundreds or thousands of photographs, this would have saved us an awful lot of cycles and 
bandwidth.

2-8. Modeling Table per Type Inheritance
Problem
You have some tables that contain additional information about a common table, and you want to model this using 
table per type inheritance.

Solution
Suppose that you have two tables that are closely related to a common table, as shown in Figure 2-17. The Business 
table is on the 1 side of a 1:0..1 relationship with the eCommerce and the Retail tables. The key feature here is that the 
eCommerce and Retail tables extend information about a business represented in the Business table.

The tables Retail and eCommerce are related to the Business table, which holds a few properties that we would 
naturally associate with any business. To model table per type inheritance such that entities Retail and eCommerce 
inherit from the Business base entity type, perform the following steps:

	 1.	 Create a new class in your project that inherits from DbContext.

	 2.	 Create a Business POCO entity class using the code in Listing 2-16.

Figure 2-17.  Closely related tables ripe for inheritance



Chapter 2 ■ Entity Data Modeling Fundamentals

39

Listing 2-16.  Creating the Business POCO Entity Class

[Table("Business", Schema = "Chapter2")]
public class Business
{
    [Key]
    [DatabaseGenerated(DatabaseGeneratedOption.Identity)]
    public int BusinessId { get; protected set; }
    public string Name { get; set; }
    public string LicenseNumber { get; set; }
}
 

	 3.	 Create an eCommerce POCO entity class that inherits from the Business class using the 
code in Listing 2-17.

Listing 2-17.  Creating the eCommerce POCO Entity Class

[Table("eCommerce", Schema = "Chapter2")]
public class eCommerce : Business
{
    public string URL { get; set; }
}
 

	 4.	 Create a Retail POCO entity class that inherits from the Business class using the code  
in Listing 2-18.

Listing 2-18.  Creating the Retail POCO Entity Class

[Table("Retail", Schema = "Chapter2")]
public class Retail : Business
{
    public string Address { get; set; }
    public string City { get; set; }
    public string State { get; set; }
    public string ZIPCode { get; set; }
}

 
	 5.	 Add an auto-property of type DbSet<Business> to your DbContext subclass.

How It Works
Both the Retail and the eCommerce tables are on the 0..1 side of a 1:0..1 relationship with the Business table. 
This means that we could have a business with no additional information or a business with additional Retail or 
eCommerce information. In object-oriented programming terms, we have a base type, Business, with two derived 
types, Retail and eCommerce.

Because of the 1:0..1 relationship, we cannot have a row in the Retail or eCommerce tables without a 
corresponding row in the Business table. In object-oriented terms, an instance of a derived type has the properties  
of the base type. This concept of a derived type extending the properties of a base type is a key feature of inheritance. 
In table per type (often abbreviated TPT) inheritance, each of the derived types is represented in separate tables.



Chapter 2 ■ Entity Data Modeling Fundamentals

40

Listing 2-19 demonstrates inserting and retrieving from our model.

Listing 2-19.  Inserting and Retrieving Entities in TPT Inheritance

using (var context = new EF6RecipesContext())
{
    var business = new Business { Name = "Corner Dry Cleaning",
                                  LicenseNumber = "100x1" };
    context.Businesses.Add(business);
    var retail = new Retail { Name = "Shop and Save", LicenseNumber = "200C",
                              Address = "101 Main", City = "Anytown",
                              State = "TX", ZIPCode = "76106" };
    context.Businesses.Add(retail);
    var web = new eCommerce { Name = "BuyNow.com", LicenseNumber = "300AB",
                              URL = "www.buynow.com" };
    context.Businesses.Add(web);
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    Console.WriteLine("\n--- All Businesses ---");
    foreach (var b in context.Businesses)
    {
        Console.WriteLine("{0} (#{1})", b.Name, b.LicenseNumber);
    }
 
    Console.WriteLine("\n--- Retail Businesses ---");
    foreach (var r in context.Businesses.OfType<Retail>())
    {
        Console.WriteLine("{0} (#{1})", r.Name, r.LicenseNumber);
        Console.WriteLine("{0}", r.Address);
        Console.WriteLine("{0}, {1} {2}", r.City, r.State, r.ZIPCode);
    }
 
    Console.WriteLine("\n--- eCommerce Businesses ---");
    foreach (var e in context.Businesses.OfType<eCommerce>())
    {
        Console.WriteLine("{0} (#{1})", e.Name, e.LicenseNumber);
        Console.WriteLine("Online address is: {0}", e.URL);
    }
}
 

The code in Listing 2-19 creates and initializes instances of the Business entity type and the two derived types.  
To add these to the Database Context, we use the Add() method exposed on the Business entity set in the context.

On the query side, to access all of the businesses, we iterate through the Businesses entity set. For the derived 
types, we use the OfType<>() method specifying the derived type to filter the Business entity set.

http://buynow.com/
http://www.buynow.com/


Chapter 2 ■ Entity Data Modeling Fundamentals

41

The output of Listing 2-19 looks like the following:

--- All Businesses ---
Corner Dry Cleaning (#100X1)
Shop and Save (#200C)
BuyNow.com (#300AB)

--- Retail Businesses ---
Shop and Save (#200C)
101 Main
Anytown, TX 76106
 
---- eCommerce Businesses ---
BuyNow.com (#300AB)
Online address is: www.buynow.com

Table per type is one of three inheritance models supported by Entity Framework. The other two are Table per 
Hierarchy (discussed in this chapter) and Table per Concrete Type (see Chapter 15).

Table per type inheritance provides a lot of database flexibility because we can easily add tables as new derived 
types find their way into our model as an application develops. However, each derived type involves additional joins 
that can reduce performance. In real-world applications, we have seen significant performance problems with TPT 
when many derived types are modeled.

Table per hierarchy, as you will see in Recipe 2-10, stores the entire hierarchy in a single table. This eliminates  
the joins of TPT and thereby provides better performance, but at the cost of some flexibility.

Table per concrete type is supported by the Entity Framework runtime, but not by the designer. Table per 
Concrete Type has some important applications, as we will see in Chapter 15.

2-9. Using Conditions to Filter an ObjectSet
Problem
You want to create a permanent filter on an entity type so that it maps to a subset of the rows in a table.

Solution
Let’s say that you have a table holding account information, as shown in the database diagram in Figure 2-18.  
The table has a DeletedOn nullable column that holds the date and time the account was deleted. If the account  
is still active, the DeletedOn column is null. We want our Account entity to represent only active accounts; that is,  
an account without a DeletedOn value.

http://buynow.com/
http://buynow.com/
http://www.buynow.com/


Chapter 2 ■ Entity Data Modeling Fundamentals

42

To model this table so that only active accounts are used to populate the Account entity type, do the following:

	 1.	 Add a new model to your project by right-clicking your project and selecting Add ➤ New 
Item. Choose ADO.NET Entity Data Model from the Visual C# Data templates.

	 2.	 Select Generate from database. Click Next.

	 3.	 Use the wizard to select an existing connection to your database, or create a new 
connection.

	 4.	 From the Choose Your Database Object dialog box, select the Account table. Leave the 
Pluralize and Foreign Key options checked. Click Finish.

	 5.	 Click the Account entity to view the Mapping Details window. If the Mapping Details 
window is not visible, show it by selecting View ➤ Other Windows ➤ Entity Data Model 
Mapping Details. Click Add a Condition, and select the DeletedOn column. In the 
Operator column, select Is, and in the Value/Property column, select Null. This creates a 
mapping condition when the DeletedOn column is Is Null (see Figure 2-19).

Figure 2-18.  Account table with DeletedOn DateTime column



Chapter 2 ■ Entity Data Modeling Fundamentals

43

	 6.	 Right-click the DeletedOn property and select Delete. Because we’re using the DeletedOn 
column in a conditional mapping, we can’t map it to a property. Its value would always be 
null anyway in our model.

How It Works
Conditional mappings are often used when you want to apply a permanent filter on an entity. Conditional mappings 
are also key to implementing Table per Hierarchy Inheritance. You can apply conditions using the following:
 
<value> Is Null
<value> Is Not Null
<integer> = <value>
<string> = <value>
 

Figure 2-19.  Creating the conditional mapping for the Account entity to the Account table



Chapter 2 ■ Entity Data Modeling Fundamentals

44

In this example, we applied an Is Null condition on the Account entity that filters out rows that contain a 
DeletedOn date/time. The code in Listing 2-20 demonstrates inserting into and retrieving rows from the Account table.

Listing 2-20.  Inserting into and Retrieving from the Account

using (var context = new EF6RecipesContext())
{
    context.Database.ExecuteSqlCommand(@"insert into chapter2.account
            (DeletedOn,AccountHolderId) values ('2/10/2009',1728)");
 
    var account = new Account { AccountHolderId = 2320 };
    context.Accounts.Add(account);
    account = new Account { AccountHolderId = 2502 };
    context.Accounts.Add(account);
    account = new Account { AccountHolderId = 2603 };
    context.Accounts.Add(account);
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    foreach (var account in context.Accounts)
    {
        Console.WriteLine("Account Id = {0}",
                           account.AccountHolderId.ToString());
    }
}
 

In Listing 2-20, we use the ExecuteSqlCommand() method on the Database property of the DbContext to insert a 
row into the database the old-fashioned way. We need to do this because we are inserting a row with a nonnull value 
for the DeletedOn column. In our model, the Account entity type has no property mapping to this column; in fact, the 
Account entity type would never be materialized with a row that had a DeletedOn value—and that’s exactly what we 
want to test.

The rest of the first part of the code creates and initializes three additional instances of the Account entity type. 
These are saved to the database with the SaveChanges() method.

When we query the database, we should get only the three instances of the Account entity type that we added 
with the SaveChanges() method. The row that we added using the ExecuteSqlCommand() method should not be 
visible. The following output confirms it:

Account Id = 2320
Account Id = 2502
Account Id = 2603



Chapter 2 ■ Entity Data Modeling Fundamentals

45

2-10. Modeling Table per Hierarchy Inheritance
Problem
You have a table with a type or discriminator column that you use to determine what the data in a row represents in 
your application. You want to model this with table per hierarchy inheritance.

Solution
Let’s say that your table looks like the one shown in Figure 2-20. This Employee table contains rows for both hourly 
employees and salaried employees. The EmployeeType column is used to discriminate between the two types of rows. 
When EmployeeType is 1, the row represents a salaried or full-time employee. When the EmployeeType is 2, the row 
represents an hourly employee.

To create a model using table per hierarchy inheritance based on the Employee table, do the following:

	 1.	 Create a new class in your project that inherits from DbContext.

	 2.	 Create an abstract Employee POCO entity class using the code in Listing 2-21.

Figure 2-20.  An Employee table containing both hourly and full-time employees



Chapter 2 ■ Entity Data Modeling Fundamentals

46

Listing 2-21.  Creating the Abstract Employee POCO Entity Class

[Table("Employee", Schema="Chapter2")]
public abstract class Employee
{
    [Key]
    [DatabaseGenerated(DatabaseGeneratedOption.Identity)]
    public int EmployeeId { get; protected set; }
    public string FirstName { get; set; }
    public string LastName { get; set; }
}
 

	 3.	 Create a FullTimeEmployee POCO entity class that inherits from Employee using the code 
in Listing 2-22.

Listing 2-22.  Creating the FullTimeEmployee POCO Entity Class

public class FullTimeEmployee : Employee
{
    public decimal? Salary { get; set; }
}
 

	 4.	 Create an HourlyEmployee POCO entity class that inherits from Employee using the code 
in Listing 2-23.

Listing 2-23.  Creating the HourlyEmployee POCO Entity Class

public class HourlyEmployee : Employee
{
    public decimal? Wage { get; set; }
}
 

	 5.	 Add an auto-property of type DbSet<Employee> to your DbContext subclass.

	 6.	 Override the OnModelCreating method of DbContext to map your concrete employee type 
classes to the EmployeeType discriminator column, as shown in Listing 2-24.

Listing 2-24.  Overriding the OnModelCreating Method of DbContext

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
    base.OnModelCreating(modelBuilder);
 
    modelBuilder.Entity<Employee>()
                .Map<FullTimeEmployee>(m => m.Requires("EmployeeType").HasValue(1))
                .Map<HourlyEmployee>(m => m.Requires("EmployeeType").HasValue(2));
}

Note■■  N onshared properties (for example, Salary and Wage) must have nullable types.



Chapter 2 ■ Entity Data Modeling Fundamentals

47

How It Works
In table per hierarchy inheritance, often abbreviated TPH, a single table is used to represent the entire inheritance 
hierarchy. Unlike table per type inheritance, the TPH rows for the derived types as well as the base type are 
intermingled in the same table. The rows are distinguished by a discriminator column. In our example,  
the discriminator column is EmployeeType.

In TPH, mapping conditions, which are set in entity configuration, are used to indicate the values of the 
discriminator column that cause the table to be mapped to the different derived types. We marked the base type as 
abstract. By marking it as abstract, we didn’t have to provide a condition for the mapping because an abstract entity 
can’t be created. We will never have an instance of an Employee entity. We did not implement an EmployeeType 
property in the Employee entity. A column used in a condition is not, in general, mapped to a property.

The code in Listing 2-25 demonstrates inserting into and retrieving from our model.

Listing 2-25.  Inserting into and Retrieving from Our TPH Model

using (var context = new EF6RecipesContext())
{
    var fte = new FullTimeEmployee { FirstName = "Jane", LastName = "Doe",
                                     Salary = 71500M};
    context.Employees.Add(fte);
    fte = new FullTimeEmployee { FirstName = "John", LastName = "Smith",
                                 Salary = 62500M };
    context.Employees.Add(fte);
    var hourly = new HourlyEmployee { FirstName = "Tom", LastName = "Jones",
                                      Wage = 8.75M };
    context.Employees.Add(hourly);
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    Console.WriteLine("--- All Employees ---");
    foreach (var emp in context.Employees)
    {
        bool fullTime = emp is HourlyEmployee ? false : true;
        Console.WriteLine("{0} {1} ({2})", emp.FirstName, emp.LastName,
                           fullTime ? "Full Time" : "Hourly");
    }
 
    Console.WriteLine("--- Full Time ---");
    foreach (var fte in context.Employees.OfType<FullTimeEmployee>())
    {
        Console.WriteLine("{0} {1}", fte.FirstName, fte.LastName);
    }
 
    Console.WriteLine("--- Hourly ---");
    foreach (var hourly in context.Employees.OfType<HourlyEmployee>())
    {
        Console.WriteLine("{0} {1}", hourly.FirstName, hourly.LastName);
    }
}
 

www.allitebooks.com

http://www.allitebooks.org


Chapter 2 ■ Entity Data Modeling Fundamentals

48

Following is the output of the code in Listing 2-25:

--- All Employees ---
Jane Doe (Full Time)
John Smith (Full Time)
Tom Jones (Hourly)
--- Full Time ---
Jane Doe
John Smith
--- Hourly ---
Tom Jones

The code in Listing 2-25 creates, initializes, and adds two full-time employees and an hourly employee. On the 
query side, we retrieve all of the employees and use the is operator to determine what type of employee we have.  
We indicate the employee type when we print out the employee’s name.

In separate code blocks, we retrieve the full-time employees and the hourly employees using the OfType<>() 
method.

Best Practice
There is some debate over when to use abstract base entities in TPH inheritance and when to create a condition  
on the base entity. The difficulty with a concrete base entity is that it can be very cumbersome to query for all of the 
instances in the hierarchy. The best practice is that if your application never needs instances of the base entity is to 
make it abstract.

If your application needs instances of the base entity, consider introducing a new derived entity to cover the 
condition for the concrete base entity. For example, we might create a new derived class, such as UnclassifiedEmployee. 
Once we have this new derived entity, we can safely make our base entity abstract. This provides us with a simple way to 
query for condition formally covered by the base entity with a condition.

There are some rules to keep in mind when using TPH. First, the conditions used must be mutually exclusive. 
That is, you cannot have a row that can conditionally map to two or more types.

Second, the conditions used must account for every row in the table. You cannot have a row in the table that 
has a discriminator value that does not map the row to exactly one type. This rule can be particularly troubling if you 
are working with a legacy database in which other applications are creating rows for which you have no appropriate 
condition mappings. What will happen in these cases? The rows that do not map to your base or derived types will 
simply not be accessible in your model.

The discriminator column cannot be mapped to an entity property unless it is used in an is not null condition 
At first, this last rule might seem overly restrictive. You might ask, “How can I insert a row representing a derived 
type if I can’t set the discriminator value?” The answer is rather elegant. You simply create an instance of the derived 
type and add it to the context in the same way that you would any other entity instance. Object Services takes care of 
creating the appropriate insert statements to create a row with the correct discriminator value.



Chapter 2 ■ Entity Data Modeling Fundamentals

49

Follow these steps to model both of these relationships:

	 1.	 Add a new model to your project by right-clicking your project and selecting Add ➤ New 
Item. Choose ADO.NET Entity Data Model from the Visual C# Data templates.

	 2.	 Select Generate from database. Click Next.

	 3.	 Use the wizard to select an existing connection to your database or create a new 
connection.

	 4.	 From the Choose Your Database Object dialog box, select the Location and Park tables. 
Leave the Pluralize and Foreign Key options checked. Click Finish.

	 5.	 Delete the one-to-zero or one association created by the Entity Data Model Wizard. 

	 6.	 Right-click the Location entity, and select Add ➤ Inheritance. Select the Park entity as the 
derived entity and the Location entity as the base entity.

	 7.	 Delete the ParkId property from the Park entity type.

	 8.	 Click the Park entity to view the Mapping Details window. If the Mapping Details window 
is not visible, show it by selecting View ➤ Other Windows ➤ Entity Data Model Mapping 
Details. Map the ParkId column to the LocationId property.

	 9.	 Change the name of the Location1 navigation property in the Park entity type to Office. 
This represents the office location for the park.

2-11. Modeling Is-a and Has-a Relationships Between  
Two Entities
Problem
You have two tables that participate in both Is-a and Has-a relationships, and you want to model them as two entities 
with the corresponding Is-a and Has-a relationships.

Solution
Let’s say that you have two tables that describe scenic parks and their related locations. In your database, you 
represent these with a Location table and a Park table. For the purposes of your application, a park is simply a type 
of location. Additionally, a park can have a governing office with a mailing address, which is also represented in the 
Location table. A park, then, is both a derived type of Location and can have a location that corresponds to the park’s 
governing office. It is entirely possible that the office is not located on the grounds of the park. Perhaps several parks 
share an office in a nearby town. Figure 2-21 shows a database diagram with the Park and Location tables.

Figure 2-21.  Location and Park in both a Has-a and Is-a relationship



Chapter 2 ■ Entity Data Modeling Fundamentals

50

The completed model is shown in Figure 2-22.

How It Works
Entities can have more than one association with other entities. In this example, we created an Is-a relationship using 
table per type inheritance with Location as the base entity type and Park as the derived entity type. We also created a 
Has-a relationship with a one-to-many association between the Location and Park entity types.

In Listing 2-26, we demonstrate creating a new Park entity that also results in creating a Location because of the 
Is-a relationship. We attach an office Location to the Park, which results in a second row in the Location table.

Listing 2-26.  Creating and Retrieving Park and Location Entities

using (var context = new EF6RecipesContext())
{
    var park = new Park { Name = "11th Street Park",
                          Address = "801 11th Street", City = "Aledo",
                          State = "TX", ZIPCode = "76106" };
    var loc = new Location { Address = "501 Main", City = "Weatherford",
                             State = "TX", ZIPCode = "76201" };
    park.Office = loc;
    context.Locations.Add(park);
    park = new Park { Name = "Overland Park", Address = "101 High Drive",
                      City = "Springtown", State = "TX", ZIPCode = "76081" };
    loc = new Location { Address = "8705 Range Lane", City = "Springtown",
                         State = "TX", ZIPCode = "76081" };
    park.Office = loc;
    context.Locations.Add(park);
    context.SaveChanges();
}
 

Figure 2-22.  The completed model with Park deriving from Location. A Park is-a location. A park has-a location  
for its office



Chapter 2 ■ Entity Data Modeling Fundamentals

51

using (var context = new EF6RecipesContext())
{
    context.ContextOptions.LazyLoadingEnabled = true;
    Console.WriteLine("-- All Locations -- ");
    foreach (var l in context.Locations)
    {
        Console.WriteLine("{0}, {1}, {2} {3}", l.Address, l.City,
                            l.State, l.ZIPCode);
    }
 
    Console.WriteLine("--- Parks ---");
    foreach (var p in context.Locations.OfType<Park>())
    {
        Console.WriteLine("{0} is at {1} in {2}", p.Name, p.Address, p.City);
        Console.WriteLine("\tOffice: {0}, {1}, {2} {3}", p.Office.Address,
                            p.Office.City, p.Office.State, p.Office.ZIPCode);
    }
}
 

The output of the code in Listing 2-26 is as follows:

-- All Locations --
501 Main, Weatherford, TX 76201
801 11th Street, Aledo, TX 76106
8705 Range Lane, Springtown, TX 76081
101 High Drive, Springtown, TX 76081
--- Parks ---
11th Street Park is at 801 11th Street in Aledo
        Office: 501 Main, Weatherford, TX 76201
Overland Park is at 101 High Drive in Springtown
        Office: 8705 Range Lane, Springtown, TX 76081

2-12. Creating, Modifying, and Mapping Complex Types
Problem
You want to create a complex type, set it as a property on an entity, and map the property to some columns on a table.

Solution
Let’s say that you have the table shown in Figure 2-23. You want to create a Name complex type for the FirstName and 
LastName columns. You also want to create an Address complex type for the AddressLine1, AddressLine2, City, State, 
and ZIPCode columns. You want to use these complex types for properties in your model, as shown in Figure 2-24.



Chapter 2 ■ Entity Data Modeling Fundamentals

52

Follow these steps to create the model with the Name and Address complex types:

	 1.	 Add a new model to your project by right-clicking your project and selecting Add ➤ New 
Item. Choose ADO.NET Entity Data Model from the Visual C# Data templates.

	 2.	 Select Generate from database. Click Next.

	 3.	 Use the wizard to select an existing connection to your database or create a new 
connection.

	 4.	 From the Choose Your Database Object dialog box, select the Agent table. Leave the 
Pluralize and Foreign Key options checked. Click Finish.

	 5.	 Select the FirstName and LastName properties, then right-click and select Refactor Into 
Complex Type. 

	 6.	 In the Model Browser, rename the new complex type from ComplexType1 to Name.  
This changes the name of the type. On the Agent, rename the ComplexTypeProperty  
to Name. This changes the name of the property.

	 7.	 We’ll create the next complex type from scratch so that you can see an alternative 
approach. Right-click on the design surface, and select Add ➤ Complex Type.

	 8.	 In the Model Browser, rename the new complex type from ComplexType1 to Address.

	 9.	 Select the AddressLine1, AddressLine2, City, State, and ZIPCode properties in the Agent. 
Right-click and select Cut. Paste these properties onto the Address complex type in the 
Model Browser.

	 10.	 Right-click the Agent, and select Add ➤ Complex Property. Rename the property Address.

	 11.	 Right-click on the new Address property and select Properties. Change its type to Address. 
This changes the new property’s type to the new Address complex type.

Figure 2-24.  The completed model with the name and address components refactored into complex types

Figure 2-23.  The Agent table with the name and address of the agent



Chapter 2 ■ Entity Data Modeling Fundamentals

53

	 12.	 View the Mapping Details window for the Agent. Map the columns from the Agent table 
to the properties on the two complex types we’ve created. The mappings are shown in 
Figure 2-25.

How It Works
Complex types allow you to group several properties into a single type for a property on an entity. A complex type  
can contain scalar properties or other complex types, but they cannot have navigation properties or entity collections. 
A complex type cannot be an entity key. Complex types are not tracked on their own in an object context.

A property whose type is a complex type cannot be null. When you work with entities with complex type 
properties, you have to be mindful of this rule. Occasionally, when the value of a complex type property is unimportant 
for a particular operation, you may need to create a dummy value for the property so that it has some nonnull value.

When you modify any field in complex type property, the property is marked as changed by Entity Framework, 
and an update statement will be generated that will update all of the fields of the complex type property.

In Listing 2-27, we demonstrate this using the model by inserting a few agents and displaying them.

Listing 2-27.  Inserting Agents and Selecting from Our Model

using (var context = new EF6RecipesContext())
{
    var name1 = new Name { FirstName = "Robin", LastName = "Rosen" };
    var name2 = new Name { FirstName = "Alex", LastName = "St. James" };
    var address1 = new Address { AddressLine1 = "510 N. Grant",
                                 AddressLine2 = "Apt. 8",
                                 City = "Raytown", State = "MO",
                                 ZIPCode = "64133" };
    var address2 = new Address { AddressLine1 = "222 Baker St.",
                                 AddressLine2 = "Apt.22B",
                                 City = "Raytown", State = "MO",
                                 ZIPCode = "64133" };

Figure 2-25.  Mapping the fields of the complex types to the columns in the Agent table



Chapter 2 ■ Entity Data Modeling Fundamentals

54

    context.Agents.Add(new Agent { Name = name1, Address = address1 });
    context.Agents.Add(new Agent {Name = name2, Address = address2});
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    Console.WriteLine("Agents");
    foreach (var agent in context.Agents)
    {
        Console.WriteLine("{0} {1}", agent.Name.FirstName, agent.Name.LastName);
        Console.WriteLine("{0}", agent.Address.AddressLine1);
        Console.WriteLine("{0}", agent.Address.AddressLine2);
        Console.WriteLine("{0}, {1} {2}", agent.Address.City,
                           agent.Address.State, agent.Address.ZIPCode);
        Console.WriteLine();
    }
}
 

The output of the code in Listing 2-27 is as follows:

Agents
Robin Rosen
510 N. Grant
Apt. 8
Raytown, MO 64133
 
Alex St. James
222 Baker St.
Apt.22B
Raytown, MO 64133



55

Chapter 3

Querying an Entity Data Model

In the previous chapter, we showed you many ways to model some fairly common database scenarios. The recipes in 
this chapter will show you how to query your model. Generally speaking, you can query your model three different 
ways, using:

	 1.	 LINQ to Entities

	 2.	 Entity SQL

	 3.	 Native SQL

We’ll demonstrate all three approaches in this chapter and, at the same time, cover a wide range of common, and 
not so common, scenarios that will help you understand the basics of querying models with Entity Framework. We’ll 
also explore some of the new capabilities for querying data available with Entity Framework 6.

3-1. Querying Asynchronously 
You have a long-running Entity Framework querying operation. You do not want to block the application running on 
the main thread while the query executes. Instead, you’d like the user to be able to perform other operations until 
data is returned. Equally important, you will want to query the model leveraging the Microsoft LINQ-to-Entities 
framework, which is the preferred approach for querying an entity data model.

Solution
Let’s say that you have a model like the one shown in Figure 3-1.

Figure 3-1.  A model with an Associate entity type representing an associate; and an AssociateSalary entity type 
representing the salary history for the associate



Chapter 3 ■ Querying an Entity Data Model

56

In this simple model, we have entities that represent associates and their salary history.
To start, this example leverages the Code-First approach for Entity Framework. In Listing 3-1, we create the entity 

classes.

Listing 3-1.  Associate and AssociateSalary Entity Types

public class Associate
{
    public Associate()
    {
        AssociateSalaries = new HashSet<AssociateSalary>();
    }
  
    public int AssociateId { get; set; }
    public string Name { get; set; }
    public virtual ICollection<AssociateSalary> AssociateSalaries { get; set; }
}
 
public class AssociateSalary
{
    public int SalaryId { get; set; }
    public int AssociateId { get; set; }
    public decimal Salary { get; set; }
    public DateTime SalaryDate { get; set; }
    public virtual Associate Associate { get; set; }
}
 

Next, in Listing 3-2, we create the DbContext object required for our Code-First approach. Note in the 
OnModelCreating method how we explicitly map the SalaryId property as the primary key for the AssociateSalary. 
When using Code First, if a property has the name Id or <table name>Id, Entity Framework assumes that it is the 
primary key for the table. Otherwise, you must explicitly specify the key, as we have done here.

Listing 3-2.  The DbContext Object

public class EFRecipesEntities : DbContext
{
    public EFRecipesEntities()
        : base("ConnectionString")
    {
    }
  
    public DbSet<Associate> Associates { get; set; }
    public DbSet<AssociateSalary> AssociateSalaries { get; set; }
  
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        modelBuilder.Entity<Associate>().ToTable("Chapter3.Associate");
        modelBuilder.Entity<AssociateSalary>().ToTable("Chapter3.AssociateSalary");
  
        // Explicilty assign key as primary key in AssociateSalary does not meet
        // Entity Framework default mapping conventions.



Chapter 3 ■ Querying an Entity Data Model

57

        modelBuilder.Entity<AssociateSalary>().HasKey(x => x.SalaryId);
        base.OnModelCreating(modelBuilder);
    }
}
 

Listing 3-3 demonstrates how we can leverage the new Entity Framework Async methods to implement 
asynchronous processing for the queries that remove, load, and fetch data.

Listing 3-3.  Asynchronously Processing Entity Framework Queries

private static void Main()
{
    var asyncTask = EF6AsyncDemo();
  
    foreach (var c in BusyChars())
    {
        if (asyncTask.IsCompleted)
        {
            break;
        }
        Console.Write(c);
        Console.CursorLeft = 0;
        Thread.Sleep(100);
    }
    Console.WriteLine("\nPress <enter> to continue...");
    Console.ReadLine();
}
  
private static IEnumerable<char> BusyChars()
{
    while (true)
    {
        yield return '\\';
        yield return '|';
        yield return '/';
        yield return '-';
    }
}
  
private static async Task EF6AsyncDemo()
{
    await Cleanup();
    await LoadData();
    await RunForEachAsyncExample();
    await RunToListAsyncExampe();
    await RunSingleOrDefaultAsyncExampe();
}
  



Chapter 3 ■ Querying an Entity Data Model

58

private static async Task Cleanup()
{
    using (var context = new EFRecipesEntities())
    {
        // delete previous test data
        // execute raw sql statement asynchronoulsy
        Console.WriteLine("Cleaning Up Previous Test Data");
        Console.WriteLine("=========\n");
  
        await context.Database.ExecuteSqlCommandAsync("delete from chapter3.AssociateSalary");
        await context.Database.ExecuteSqlCommandAsync("delete from chapter3.Associate");
        await Task.Delay(5000);
    }
}
  
private static async Task LoadData()
{
    using (var context = new EFRecipesEntities())
    {
        // add new test data
        Console.WriteLine("Adding Test Data");
        Console.WriteLine("=========\n");
  
        var assoc1 = new Associate { Name = "Janis Roberts" };
        var assoc2 = new Associate { Name = "Kevin Hodges" };
        var assoc3 = new Associate { Name = "Bill Jordan" };
        var salary1 = new AssociateSalary
        {
            Salary = 39500M,
            SalaryDate = DateTime.Parse("8/4/09")
        };
        var salary2 = new AssociateSalary
        {
            Salary = 41900M,
            SalaryDate = DateTime.Parse("2/5/10")
        };
        var salary3 = new AssociateSalary
        {
            Salary = 33500M,
            SalaryDate = DateTime.Parse("10/08/09")
        };
        assoc1.AssociateSalaries.Add(salary1);
        assoc2.AssociateSalaries.Add(salary2);
        assoc3.AssociateSalaries.Add(salary3);
        context.Associates.Add(assoc1);
        context.Associates.Add(assoc2);
        context.Associates.Add(assoc3);
  
        // update datastore asynchronoulsy
        await context.SaveChangesAsync();
        await Task.Delay(5000);
    }
}
  



Chapter 3 ■ Querying an Entity Data Model

59

private static async Task RunForEachAsyncExample()
{
    using (var context = new EFRecipesEntities())
    {
        Console.WriteLine("Async ForEach Call");
        Console.WriteLine("=========");
  
        // leverage ForEachAsync
        await context.Associates.Include(x => x.AssociateSalaries).ForEachAsync(x =>
        {
            Console.WriteLine("Here are the salaries for Associate {0}:", x.Name);
  
            foreach (var salary in x.AssociateSalaries)
            {
                Console.WriteLine("\t{0}", salary.Salary);
            }
        });
        await Task.Delay(5000);
    }
}
  
private static async Task RunToListAsyncExampe()
{
    using (var context = new EFRecipesEntities())
    {
        Console.WriteLine("\n\nAsync ToList Call");
        Console.WriteLine("=========");
  
        // leverage ToListAsync
        var associates = await context.Associates.Include(x => x.AssociateSalaries).OrderBy(x => 
x.Name).ToListAsync();
  
        foreach (var associate in associates)
        {
            Console.WriteLine("Here are the salaries for Associate {0}:", associate.Name);
            foreach (var salaryInfo in associate.AssociateSalaries)
            {
                Console.WriteLine("\t{0}", salaryInfo.Salary);
            }
        }
        await Task.Delay(5000);
    }
}
  
private static async Task RunSingleOrDefaultAsyncExampe()
{
    using (var context = new EFRecipesEntities())
    {
        Console.WriteLine("\n\nAsync SingleOrDefault Call");
        Console.WriteLine("=========");
  



Chapter 3 ■ Querying an Entity Data Model

60

        var associate = await context.Associates.
            Include(x => x.AssociateSalaries).
                OrderBy(x => x.Name).
                    FirstOrDefaultAsync(y => y.Name == "Kevin Hodges");
  
        Console.WriteLine("Here are the salaries for Associate {0}:", associate.Name);
        foreach (var salaryInfo in associate.AssociateSalaries)
        {
            Console.WriteLine("\t{0}", salaryInfo.Salary);
        }
        await Task.Delay(5000);
    }
}
 

Listing 3-3 outputs the following result:

Cleaning Up Previous Test Data
=========
Adding Test Data
=========
Async ForEach Call
=========
Here are the salaries for Associate Janis Roberts:
        39500.00
Here are the salaries for Associate Kevin Hodges:
        41900.00
Here are the salaries for Associate Bill Jordan:
        33500.00
Async ToList Call
=========
Here are the salaries for Associate Bill Jordan:
        33500.00
Here are the salaries for Associate Janis Roberts:
        39500.00
Here are the salaries for Associate Kevin Hodges:
        41900.00
Async SingleOrDefault Call
=========
Here are the salaries for Associate Kevin Hodges:
        41900.00 

How It Works
In this example, we demonstrate two key concepts of Entity Framework usage: Querying the model using the LINQ 
extensions for Entity Framework and the new asynchronous capabilities implemented in Entity Framework 6.

For the vast majority of your query operations, you want to use LINQ. Doing so will give you IntelliSense,  
compile-time checking, and a great strongly typed experience. If you have a use case that requires the construction  
of a dynamic query at runtime, you may consider using Entity SQL, which enables you to concatenate strings for 
various parts of the query expression. You will find Entity SQL examples contained in the recipes in this chapter.



Chapter 3 ■ Querying an Entity Data Model

61

We start by clearing out any previous test data in the underlying data store. Notice how we wrap the 
Cleanup() operation  inside an async method. We then generate native SQL statements using the new 
ExecuteSqlCommandAsync() method. Note how we leverage the async/await patterns found in the 4.5 version of the 
.NET framework.  This pattern enables asynchronous operations without explicitly instantiating a background thread; 
additionally, it frees up the current CLR thread while it is waiting for the database operation to complete.

Next we load test data for both Associate and Associate Salaries. To execute the call asynchronously, as before, 
we wrap the LoadData() operation inside an async method and insert new test data into the underlying data store by 
calling the newly added SaveChangesAsync() method.

Next, we present three different queries that go against the model. Each leverages the LINQ extensions 
for Entity Framework. Each is contained within an async method, leveraging the await/async pattern. In the 
RunForEachAsyncExample() method, we make use of the ForEachAsync() extension method, as there is no async 
equivalent of a foreach statement. Leveraging this async method, along with the Include() method, we are able to 
query and enumerate these objects asynchronously.

In the subsequent RunToListAsyncExample() and RunSingelOrDefaultAsyncExample() queries, we leverage the 
new asynchronous methods for ToList() and SingleOrDefault().

Entity Framework now asynchronously exposes a large number of its operational methods. The naming 
convention appends the suffix Async to the existing API name, making it relatively simple to implement asynchronous 
processing when adding or fetching data from the underlying data store.

3-2. Updating with Native SQL Statements
Problem
You want to execute a native SQL statement against the Entity Framework to update the underlying data store.

Solution
Let’s say that you have a Payment database table like the one shown in Figure 3-2, and you have created a model such 
as the one in Figure 3-3, which is from the Entity Framework designer tool.

Figure 3-2.  A Payment table that contains information about a payment made by a vendor

Figure 3-3.  A model with a Payment entity



Chapter 3 ■ Querying an Entity Data Model

62

To execute one or more SQL statements directly against the underlying Payment table, use the 
ExecuteSqlCommand() method available from the Database property from DbContext.class. Although we could query 
the Payment entity in our model, the ExecuteSqlCommand enables us to query the underlying database table directly, 
forgoing some Entity Framework features such as change tracking. We simply need a model object that inherently 
contains a context object against which we execute ad hoc SQL commands.

Follow the pattern in Listing 3-4 to execute one or more SQL statements.

Listing 3-4.  Executing an Insert Statement

// delete previous test data
using (var context = new EFRecipesEntities())
{
    context.Database.ExecuteSqlCommand("delete from chapter3.payment");
}
// insert two rows of data
using (var context = new EFRecipesEntities())
{
    // note how using the following syntax with parameter place holders of @p0 and @p1
    // automatically create the ADO.NET SqlParameters object for you
    var sql = @"insert into Chapter3.Payment(Amount, Vendor) values (@p0, @p1)";
    var rowCount = context.Database.ExecuteSqlCommand(sql, 99.97M, "Ace Plumbing");
    rowCount += context.Database.ExecuteSqlCommand(sql, 43.83M, "Joe's Trash Service");
    Console.WriteLine("{0} rows inserted", rowCount);
}
 
// retrieve and materialize data using (var context = new EFRecipesEntities())
{
    Console.WriteLine("Payments");
    Console.WriteLine("========");
    foreach (var payment in context.Payments)
    {
        Console.WriteLine("Paid {0} to {1}", payment.Amount.ToString(),
                            payment.Vendor);
    }
}
 

Following is the output of the code in Listing 3-4:

2 rows inserted
Payments
========
Paid $99.97 to Ace Plumbing
Paid $43.83 to Joe's Trash Service 

How It Works
In Listing 3-4, we start by removing any previous test data. Notice how we use the ExecuteSqlCommand method from 
the Database object from the DbContext object to execute this operation. Note how we feed a native SQL Delete 
statement directly into the method.



Chapter 3 ■ Querying an Entity Data Model

63

Then we create a string containing a SQL Insert statement. This statement contains two parameters: @Amount and 
@Vendor. These are placeholders that will be replaced by values when the statement is executed.

Next we create two DbParameter parameter objects, which bind the placeholder names to specific values. For the 
first insert, we bind the value 99.97 to the Amount placeholder along with “Ace Plumbing” to the Vendor placeholder. 
We then create another vendor record. Notice how both vendors are assigned to an array of type DbParameter. To 
execute the SQL statement, we pass both the string containing the SQL statement and the array of DbParameter 
objects to the ExecuteSqlCommand() method. ExecuteSqlCommand() returns the count of rows affected by the 
statement. In our case, one row is inserted each time we call ExecuteSqlCommand().

If you don’t have any parameters for a SQL statement, there is an overload of the ExecuteSqlCommand() method 
with a single parameters that expects only a SQL statement.

The pattern in Listing 3-4 is similar to how we would query data leveraging the Microsoft ADO.•	
NET framework with the SqlClient object. The difference is that we don’t need to construct a 
connection string and explicitly open a connection. The underlying Entity Framework context 
object automatically performs this work. Note that there are two versions of the context object 
in Entity Framework: The DbContext object in Entity Framework versions 5, 6, and the 4.x 
Code-First approach.

The ObjectContext in earlier versions of Entity Framework.•	

Keep in mind as well that the DbContext is simply a wrapper, or “Façade,” which wraps the legacy ObjectContext, 
making the context object significantly more intuitive and easy to use. All functionality from the underlying 
ObjectContext is still available.

The way we express the command text and the parameters is also different. With the ADO.NET 
ExecuteNonQuery() method, the command text and parameters are set on the underlying Command object. Here, 
these are passed into the ExecuteSqlCommand() method as simple arguments.

Of course, the observant reader will notice here (and this is important) that we’re really not querying the model. 
In fact, as we mentioned, you don’t need to have the Payment entity shown in Figure 3-3. The ExecuteSqlCommand() 
method simply uses the object’s DbContext for its connection to the underlying data store.

Best Practice
To parameterize or not to parameterize, that is the question . . . Okay, Shakespeare aside, should you use parameters 
for SQL statements or just create the SQL statement strings dynamically? The best practice is to use parameters 
whenever possible. Here are some reasons why:

Parameterized SQL statements help prevent SQL Injection attacks. If you construct a complete •	
SQL statement as a string by dynamically appending together strings that you get from a 
user interface, such as an ASP.NET TextBox control, you may end up inadvertently exposing 
yourself to injected SQL statements that can significantly damage your database and reveal 
sensitive information. When you use parameterized SQL statements, the parameters are 
handled in a way that prevents this.

Parameterized SQL statements, as we have shown in this recipe, allow you to reuse parts of the •	
statement. This reuse can make your code more simple and easier to read.

Following the re-use idea, most enterprise-class databases like Oracle Database, IBM DB2, •	
and even Microsoft SQL Server in some circumstances, can take advantage of parameterized 
queries by reusing the parsed version of the query even if the parameters have changed. This 
boosts performance and lowers the processing overhead for SQL statement re-use.

Parameterized SQL statements make your code more maintainable and configurable. For •	
example, the statements could come from a configuration file. This would allow you to make 
some changes to the application without changing the code.



Chapter 3 ■ Querying an Entity Data Model

64

3-3. Fetching Objects with Native SQL Statements  
Problem
You want to execute a native SQL statement and fetch objects from your database.

Solution
Let’s say that you have a model with a Student entity type, as shown in Figure 3-4.

You want to execute a native SQL statement that returns a collection of instances of the Student entity type. 
As you saw in the previous recipe, the ExecuteSqlCommand() method is similar to ADO.NET SQLCommand’s 
ExecuteNonQuery() method. It executes a given SQL statement and returns the number of rows affected. To have 
Entity Framework materialize this untyped data into strongly-typed entity objects, we can use the SqlQuery() 
method.

To start, this example leverages the Code-First approach for Entity Framework. In Listing 3-5, we create the 
Student entity class.

Listing 3-5.  Student Entity Class

public class Student
{
    public int StudentId { get; set; }
    public string Degree { get; set; }
    public string FirstName { get; set; }
    public string LastName { get; set; }
}
 

Next, in Listing 3-6, we create the DbContext object required for our Code-First approach.

Listing 3-6.  The DbContext Object

public class EFRecipesEntities : DbContext
{
    public EFRecipesEntities()
        : base("ConnectionString") {}
  
    public DbSet<Student> Students { get; set; }
  

Figure 3-4.  A model with a Student entity type



Chapter 3 ■ Querying an Entity Data Model

65

    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        modelBuilder.Entity<Student>().ToTable("Chapter3.Student");
    }
}
 

To execute a SQL statement and get back a collection of instances of the Student entity type, follow the pattern  
in Listing 3-7.

Listing 3-7.  Using ExecuteStoreQuery() to Execute a SQL statement and Get Back Objects

using (var context = new EFRecipesEntities())
{
    // delete previous test data
    context.Database.ExecuteSqlCommand("delete from chapter3.student");
 
    // insert student data
    context.Students.Add (new Student
    {
        FirstName = "Robert",
 
        LastName = "Smith",
        Degree = "Masters"
    });
 
    context.Students.Add (new Student
    {
        FirstName = "Julia",
        LastName = "Kerns", Degree = "Masters"
    });
 
    context.Students.Add (new Student
    {
        FirstName = "Nancy",
 
        LastName = "Stiles", Degree = "Doctorate"
    });
 
    context.SaveChanges();}
 
using (var context = new EFRecipesEntities())
{
    string sql = "select * from Chapter3.Student where Degree = @Major";
    var parameters = new DbParameter[] {
        new SqlParameter {ParameterName = "Major", Value = "Masters"}};
    var students = context.Students.SqlQuery(sql, parameters);
    Console.WriteLine("Students...");
    foreach (var student in students)
    {
        Console.WriteLine("{0} {1} is working on a {2} degree",
                    student.FirstName, student.LastName, student.Degree);
    }
}
 



Chapter 3 ■ Querying an Entity Data Model

66

Following is the output of the code in Listing 3-7:

Students...
Robert Smith is working on a Masters degree
Julia Kerns is working on a Masters degree 

How It Works
In Listing 3-7, we add three Students to the DbContext and save them to the database using SaveChanges().

To retrieve the Students who are working on a master’s degree, we use the SqlQuery() method with a 
parameterized SQL statement and a parameter set to “Masters.” We iterate through the returned collection of Students 
and print each of them. Note that the associated context object implements change tracking for these values.

Here we use * in place of explicitly naming each column in the select statement. This works because the columns 
in the underlying table match the properties in the Student entity type. Entity Framework will match the returned 
values to the appropriate properties. This works fine in most cases, but if fewer columns returned from your query, 
Entity Framework will throw an exception during the materialization of the object. A much better approach and best 
practice is to enumerate the columns explicitly (that is, specify each column name) in your SQL statement.

If your SQL statement returns more columns than required to materialize the entity (that is, more column values 
than properties in the underlying entity object), Entity Framework will happily ignore the additional columns. If you 
think about this for a moment, you’ll realize that this isn’t a desirable behavior. Again, consider explicitly enumerating 
the expected columns in your SQL statement to ensure they match your entity type.

There are some restrictions around the SqlQuery() method. If you are using Table per Hierarchy inheritance and 
your SQL statement returns rows that could map to different derived types, Entity Framework will not be able to use 
the discriminator column to map the rows to the correct derived types. You will likely get a runtime exception because 
some rows don’t contain the values required for the type being materialized.

Interestingly, you can use SqlQuery() to materialize objects that are not entities at all. For example, we could 
create a StudentName class that contains just first and last names of a student. If our SQL statement returned just these 
two strings, we could use SqlQuery<StudentName>() along with our SQL statement to fetch a collection of instances of 
StudentName.

We’ve been careful to use the phrase SQL statement rather than select statement because the SqlQuery() 
method works with any SQL statement that returns a row set. This includes, of course, Select statements, but it can 
also include statements that execute stored procedures.

3-4. Querying a Model with Entity SQL
Problem
You want to execute an Entity SQL statement that queries your underlying entity data model and returns  
strongly-typed objects.

Solution
Let’s say that you have a model like the one shown in Figure 3-5, which contains a single Customer entity type.  
The Customer entity type has a Name and an Email property. You want to query this model using Entity SQL.



Chapter 3 ■ Querying an Entity Data Model

67

To query the model using Entity SQL (eSQL), a dialect of SQL implemented by Entity Framework, follow the 
pattern in Listing 3-8. Keep in mind that when querying the underlying data store, you should favor LINQ-to-Entity 
queries over eSQL, due to feature-rich and strong-typing experience that LINQ provides. Entity SQL gives you the 
flexibility to construct database queries dynamically against the entity data model.

Listing 3-8.  Executing an Entity SQL Statement Using Both Object Services and EntityClient

using (var context = new EFRecipesEntities())
{
// delete previous test data
context.Database.ExecuteSqlCommand("delete from chapter3.customer");                // add new  
 test data
var cus1 = new Customer { Name = "Robert Stevens",
                              Email = "rstevens@mymail.com" };
    var cus2 = new Customer { Name = "Julia Kerns",
                              Email = "julia.kerns@abc.com" };
    var cus3 = new Customer { Name = "Nancy Whitrock",
                              Email = "nrock@myworld.com" };
    context.Customers.Add(cus1);
    context.Customers.Add(cus2);
    context.Customers.Add(cus3);
    context.SaveChanges();
}
 
// using object services from ObjectContext object
using (var context = new EFRecipesEntities())
{
    Console.WriteLine("Querying Customers with eSQL Leveraging Object Services...");
    String esql = "select value c from Customers as c";     
// cast the DbContext to the underlying ObjectContext, as DbContext does not
    // provide direct support for EntitySQL queries
 
    var customers = ((IObjectContextAdapter)context).ObjectContext.CreateQuery<Customer>(esql);
     Foreach (var customer in customers)
    {
        Console.WriteLine ("{0}'s email is: {1}",
                           customer.Name, customer.Email);
    }
}
 

Figure 3-5.  A model with a Customer entity

http://rstevens@mymail.com
http://julia.kerns@abc.com
http://nrock@myworld.com


Chapter 3 ■ Querying an Entity Data Model

68

Console.WriteLine();
 
// using EntityClient
using (var conn = new EntityConnection("name=EFRecipesEntities"))
{
    Console.WriteLine("Querying Customers with eSQL Leveraging Entity Client...");
    var cmd = conn.CreateCommand();
    conn.Open();
    cmd.CommandText = "select value c from EFRecipesEntities.Customers as c";
    using (var reader = cmd.ExecuteReader(CommandBehavior.SequentialAccess))
    {
        while (reader.Read())
        {
            Console.WriteLine("{0}'s email is: {1}",
                               reader.GetString(1), reader.GetString(2));
        }
    }
}
 

Following is the output from the code in Listing 3-8:

Querying Customers with eSQL Leveraging Object Services...
Robert Stevens's email is: rstevens@mymail.com
Julia Kerns's email is: julia.kerns@abc.com
Nancy Whitrock's email is: nrock@myworld.com
Customers Customers with eSQL Leveraging Entity Client...
Robert Stevens's email is: rstevens@mymail.com
Julia Kerns's email is: julia.kerns@abc.com
Nancy Whitrock's email is: nrock@myworld.com 

How It Works
In Listing 3-8, we start by removing previous test data from the database. Then we create three customers, add them to 
the context object, and call SaveChanges() to insert them into the database.

With customers in the database, we demonstrate two different approaches to retrieving them using Entity SQL. In 
the first approach, we use the CreateQuery() method exposed by the legacy object context to create an ObjectQuery 
object. Note how we cast the DbContext to an ObjectContextAdapter type to get to its underlying ObjectContext type 
(keep in mind the newer DbContext wraps the older ObjectContext to improve the developer experience). We do so as 
the DbContext does not provide direct support for eSQL queries. Note as well how we assign the Customer class type 
to the generic placeholder value for CreateQuery() and pass in the eSQL query as a parameter. As we iterate over the 
customers collection, the query is executed against the database and the resulting collection is printed to the console. 
Because each element in the collection is an instance of our Customer entity type, we can use the properties of the 
Customer entity type to gain strongly typed usage.

In the second approach, we use the EntityClient libraries in a pattern that is very similar to how we would use 
SqlClient or any of the other client providers in ADO.NET. We start by creating a connection to the database. With the 
connection in hand, we create a command object and open the connection. Next we initialize the command object 
with the text of the Entity SQL statement we want to execute. We execute the command using ExecuteReader() and 
obtain an EntityDataReader, which is a type of the familiar DbDataReader. We iterate over the resulting collection 
using the Read () method.

http://rstevens@mymail.com
http://julia.kerns@abc.com
http://nrock@myworld.com
http://rstevens@mymail.com
http://julia.kerns@abc.com
http://nrock@myworld.com


Chapter 3 ■ Querying an Entity Data Model

69

Note that the Entity SQL statement in listing 3-8 uses the value keyword. This keyword is useful when we need 
to fetch the entire entity. If our Entity SQL statement projected a specific subset of columns (that is, we use some of 
the columns and/or create columns using Entity SQL expressions), we can dispense with the value keyword. When 
working with a context object, this means working with a DbDataRecord directly as demonstrated in Listing 3-9.

Listing 3-9.  Projecting with Both Object Services and EntityClient

// using object services without the VALUE keyword
using (var context = new EFRecipesEntities())
{
    Console.WriteLine("Customers...");
    string esql = "select c.Name, c.Email from Customers as c";
    var records = context.CreateQuery<DbDataRecord>(esql);
    foreach (var record in records)
    {
        var name = record[0] as string;
        var email = record[1] as string;
        Console.WriteLine("{0}'s email is: {1}", name, email);
    }
}
 
Console.WriteLine();
 
// using EntityClient without the VALUE keyword
using (var conn = new EntityConnection("name=EFRecipesEntities"))
{
    Console.WriteLine("Customers...");
    var cmd = conn.CreateCommand();
    conn.Open();
    cmd.CommandText = @"select c.Name, C.Email from
                         EFRecipesEntities.Customers as c";
    using (var reader = cmd.ExecuteReader(CommandBehavior.SequentialAccess))
    {
        while (reader.Read())
        {
            Console.WriteLine("{0}'s email is: {1}",
                        reader.GetString(0), reader.GetString(1));
        }
    }
}
 

When you form a projection in Entity SQL, the results are returned in a DbDataRecord object that contains one 
element for each column in the projection. With the value keyword, the single object resulting from the query is 
returned in the first element of the DbDataRecord.



Chapter 3 ■ Querying an Entity Data Model

70

3-5. Finding a Master That Has Detail in a Master-Detail 
Relationship
Problem
You have two entities in a one-to-many association (aka Master-Detail), and you want to find all the master entities 
that have at least one associated detail entity.

Solution
Imagine that you have a model for blog posts and the comments associated with each post. Some posts have lots of 
comments. Some posts have few or no comments. The model might look something like the one shown in Figure 3-6.

You want to find all of the blog posts that have at least one comment. To do this using either LINQ to Entities or 
Entity SQL, follow the pattern in Listing 3-10.

Listing 3-10.  Finding the Masters That Have Detail Using Both LINQ and Entity SQL

using (var context = new EFRecipesEntities())
{
    // delete previous test data
    context.Database.ExecuteSqlCommand("delete from chapter3.blogpost");
    context.Database.ExecuteSqlCommand("delete from chapter3.comment");
 
    // add new test data
    var post1 = new BlogPost { Title = "The Joy of LINQ",
           Description = "101 things you always wanted to know about LINQ" };
    var post2 = new BlogPost { Title = "LINQ as Dinner Conversation",
           Description = "What wine goes with a Lambda expression?" };
    var post3 = new BlogPost {Title = "LINQ and our Children",
           Description = "Why we need to teach LINQ in High School"};
    var comment1 = new Comment {
         Comments = "Great post, I wish more people would talk about LINQ" };
    var comment2 = new Comment {
         Comments = "You're right, we should teach LINQ in high school!" };
    post1.Comments.Add(comment1);
    post3.Comments.Add(comment2);

Figure 3-6.  A model for blog posts and the associated comments



Chapter 3 ■ Querying an Entity Data Model

71

    context.BlogPosts.Add(post1);
    context.BlogPosts.Add(post2);
    context.BlogPosts.Add(post3);
    context.SaveChanges();
}
 
using (var context = new EFRecipesEntities())
{
    Console.WriteLine("Blog Posts with comments...(LINQ)");
    var posts = from post in context.BlogPosts
                where post.Comments.Any()
                select post;
    foreach (var post in posts)
    {
        Console.WriteLine("Blog Post: {0}", post.Title);
        foreach (var comment in post.Comments)
        {
            Console.WriteLine("\t{0}", comment.Comments);
        }
    }
}
 
Console.WriteLine();
 
using (var context = new EFRecipesEntities())
{
    Console.WriteLine("Blog Posts with comments...(ESQL)");
    var esql = "select value p from BlogPosts as p where exists(p.Comments)";
    var posts = ((IObjectContextAdapter)context).ObjectContext.CreateQuery<BlogPost>(esql);
    foreach (var post in posts)
    {
        Console.WriteLine("Blog Post: {0}", post.Title);
        foreach (var comment in post.Comments)
        {
            Console.WriteLine("\t{0}", comment.Comments);
        }
    }
}
 

Following is the output of the code in Listing 3-10:

Blog Posts with comments...(LINQ)
Blog Post: The Joy of LINQ
        Great post, I wish more people would talk about LINQ
Blog Post: LINQ and our Children
        You're right, we should teach LINQ in high school!
Blog Posts with comments...(ESQL)
Blog Post: The Joy of LINQ
        Great post, I wish more people would talk about LINQ
Blog Post: LINQ and our Children
        You're right, we should teach LINQ in high school! 



Chapter 3 ■ Querying an Entity Data Model

72

How It Works
We start off the code in Listing 3-10 by deleting prior test data and inserting new blog posts and comments into the 
database. We left one of the blog posts without any comments to make sure our query performs correctly.

In the LINQ query, we leverage the LINQ Extension Method Any() in the where clause to determine whether 
there are comments for a given post. The query finds all of the posts for which the Any() method returns true. In 
this usage, we iterate through each blog post with Any() returning true if there are comments for the specific post. 
Moreover, that’s just what we want: all of the posts for which there is at least one comment.

For the Entity SQL approach, we use the SQL exists() operator, again in a where clause, to determine whether 
the given post has at least one comment.

Of course there are other ways to get the same result. For example, we could use the Count() method in the 
LINQ query’s where clause and test to see if the count is greater than 0. For the Entity SQL approach, we could use 
count(select value 1 from p.Comments) > 0 in the where clause. Either one of these approaches would work. 
However, the code in Listing 3-10 seems a bit cleaner and, from a performance perspective, the semantics behind 
Any() and exists() don’t require the enumeration of the entire collection on the server (meaning that, after finding 
the first comment for a blog entry, the process moves onto to the next blog entry), whereas count() does require  
a full enumeration on the server (meaning that, each comment will be enumerated, despite the fact that one was 
already found).

3-6. Setting Default Values in a Query
Problem
You have a use case for which you must assign a default value to a property when the query returns a null value. In our 
recipe, we’ll assign a value of ‘0’ to the Years Worked property when a null value for it is returned from the database.

Solution
Let’s say that you have a model like the one shown in Figure 3-7. You want to query the model for employees.  
In the database, the table representing employees contains a nullable YearsWorked column. This is the column 
mapped to the YearsWorked property in the Employee entity. You want the rows that contain a null value for the 
YearsWorked to default to the value 0.

To start, this example leverages the Code-First approach for Entity Framework. In Listing 3-11, we create the 
Student entity class.

Figure 3-7.  A model with an Employee entity type containing an EmployeeId property, a Name property,  
and a YearsWorked property



Chapter 3 ■ Querying an Entity Data Model

73

Listing 3-11.  Employee Entity Class

public class Employee
{
    public int EmployeeId { get; set; }
    public string Name { get; set; }
    public int? YearsWorked { get; set; }
}
 

Next, in Listing 3-12, we create the DbContext object required for our Code-First approach.

Listing 3-12.  The DbContext Object

public class EFRecipesEntities : DbContext
{
    public EFRecipesEntities()
        : base("ConnectionString") {}
 
    public DbSet<Employee> Employees { get; set; }
 
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        modelBuilder.Entity<Employee>().ToTable("Chapter3.Employee");
        base.OnModelCreating(modelBuilder);
    }
}
 

Since we are implementing the Code-First approach for Entity Framework, we can programmatically assign 
default values via a query as shown in Listing 3-13. Note that the pattern in Listing 3-13 doesn’t actually materialize 
(return from the database) instances of the Employee entity type with the default value. Instead, it projects, 
that is, places the results of the query into a collection of an anonymous type whose YearsWorked property is 
programmatically set to the value of 0 whenever the underlying value is null. Thus the underlying value in the column 
remains NULL, but we project a value of zero as a default value in our Entity Framework result. Keep in mind that an 
anonymous type, as shown in Listing 3-13, is a class that gets created on the fly at runtime based on the properties that 
we include within the curly braces that immediately precede the new keyword.

Listing 3-13.  Using Both LINQ and Entity SQL to Fill in Default Values for Nulls

using (var context = new EFRecipesEntities())
{
    // delete previous test data
    context.Database.ExecuteSqlCommand("delete from chapter3.employee");
    // add new test data
    context.Employees.Add(new Employee { Name = "Robin Rosen",
                                               YearsWorked = 3 });
    context.Employees.Add(new Employee { Name = "John Hancock" });
    context.SaveChanges();
}
 
using (var context = new EFRecipesEntities())
{
    Console.WriteLine("Employees (using LINQ)");
    var employees = from e in context.Employees
                    select new {Name = e.Name, YearsWorked = e.YearsWorked ?? 0};



Chapter 3 ■ Querying an Entity Data Model

74

    foreach(var employee in employees)
    {
        Console.WriteLine("{0}, years worked: {1}",employee.Name,
                            employee.YearsWorked);
    }
}
 
using (var context = new EFRecipesEntities())
{
    Console.WriteLine("Employees (using ESQL w/named constructor)");
    string esql = @"select value Recipe3_6.Employee(e.EmployeeId,
                      e.Name,
                      case when e.YearsWorked is null then 0
                           else e.YearsWorked end)
                    from Employees as e";
    var employees = context.Database.SqlQuery<Employee>(esql);
    foreach(var employee in employees)
    {
        Console.WriteLine("{0}, years worked: {1}",employee.Name,
                            employee.YearsWorked.ToString());
    }
}
 

Following is the output of the code in Listing 3-13:

Employees (using LINQ)
Robin Rosen, years worked: 3
John Hancock, years worked: 0
Employees (using ESQL w/named constructor)
Robin Rosen, years worked: 3
John Hancock, years worked: 0

How It Works
Here, our approach is to use either LINQ or eSQL to project the results into a collection of an anonymous type. The 
query sets the YearsWorked to 0 when the underlying value is null.

For the LINQ approach, we use the C# null-coalescing operator ?? to assign the value of 0 when the underlying 
value is null. We project the results into a collection of an anonymous type.

For Entity SQL, we use a case statement to assign the value of 0 to YearsWorked when the underlying value 
is null. Here, we demonstrate how to use Entity SQL to materialize instances of the Employee entity type without 
setting the Default Value property for the entity. To do this, we use the named constructor for the entity type. This 
constructor assigns the values from the parameters to the properties in the same order as the properties are defined in 
the entity. In our case, the properties for the Employee entity are defined in the following order: EmployeeId, Name, 
and YearsWorked. The parameters to the constructor, as do our arguments in the eSQL query, follow this same order. 
Unfortunately, there is no corresponding name constructor syntax for LINQ to Entities.



Chapter 3 ■ Querying an Entity Data Model

75

3-7. Returning Multiple Result Sets from a Stored Procedure
Problem
You have a stored procedure that returns multiple result sets, and you want to materialize entities from each result set.

Solution
Suppose that you have a model like the one shown in Figure 3-8 and a stored procedure like the one shown in Listing 3-14, 
which returns both jobs and bids.

Listing 3-14.  A Stored Procedure That Returns Multiple Result Sets

create procedure Chapter3.GetBidDetails
as
begin
  select * from Chapter3.Job
  select * from Chapter3.Bid
end
 

In our model, for each job we have zero or more bids. Our stored procedure returns all of the jobs and all of the 
bids. We want to execute the stored procedure and materialize all of the jobs and all of the bids from the two result 
sets. To do this, follow the pattern in Listing 3-15.

Listing 3-15.  Materializing Jobs and Bids from the Two Result Sets Returned by Our Stored Procedure

using (var context = new EFRecipesEntities())
{
    var job1 = new Job { JobDetails = "Re-surface Parking Log" };
    var job2 = new Job { JobDetails = "Build Driveway" };
    job1.Bids.Add(new Bid { Amount = 948M, Bidder = "ABC Paving" });
    job1.Bids.Add(new Bid { Amount = 1028M, Bidder = "TopCoat Paving" });
    job2.Bids.Add(new Bid { Amount = 502M, Bidder = "Ace Concrete" });
    context.Jobs.AddObject(job1);
    context.Jobs.AddObject(job2);
    context.SaveChanges();
}
 

Figure 3-8.  A model representing jobs and bids for the jobs



Chapter 3 ■ Querying an Entity Data Model

76

using (var context = new EFRecipesEntities())
{
    var conn = context.Database.Connection;
    var cmd = conn.CreateCommand();
    cmd.CommandType = System.Data.CommandType.StoredProcedure;
    cmd.CommandText = "Chapter3.GetBidDetails";
    conn.Open();
    var reader = cmd.ExecuteReader(CommandBehavior.CloseConnection);
    var jobs = ((IObjectContextAdapter)context).ObjectContext.Translate<Job>(reader, "Jobs",
                                       MergeOption.AppendOnly).ToList();
    reader.NextResult();
    ((IObjectContextAdapter)context).ObjectContext.Translate<Bid>(reader, "Bids",  
MergeOption.AppendOnly).ToList();
    foreach (var job in jobs)
    {
        Console.WriteLine("\nJob: {0}", job.JobDetails);
        foreach (var bid in job.Bids)
        {
            Console.WriteLine("\tBid: {0} from {1}",
                               bid.Amount.ToString("C"), bid.Bidder);
        }
    }
}
 

Following is the output of the code in Listing 3-15:

Job: Re-surface Parking Log
        Bid: $948.00 from ABC Paving
        Bid: $1,028.00 from TopCoat Paving
 
Job: Build Driveway
        Bid: $502.00 from Ace Concrete 

How It Works
We start out by adding a couple of jobs and a few bids for the jobs. After adding them to the context, we use 
SaveChanges() to save them to the database.

Entity Framework 5.0 has improved capabilities for working with multiple results sets returned from a stored 
procedure. However, to leverage this functionality, you’ll have to use the legacy ObjectContext object, as the more 
recent DbContext object does not directly support multiple result sets. To solve the problem, we read the stored 
procedure data using the familiar SqlClient pattern. This pattern involves creating a SqlConnection, SqlCommand 
setting the command text to the name of the stored procedure and calling ExecuteReader() to get a data reader.

With a reader in hand, we use the Translate() method from the ObjectContext to materialize instances of the 
Job entity from the reader. This method takes a reader; the entity set name, and a merge option. The entity set name  
is required because an entity can live in multiple entity sets. Entity Framework needs to know which to use.

The merge option parameter is a little more interesting. Using MergeOption.AppendOnly causes the new instances 
to be added to the object context and tracked. We use this option because we want to use Entity Framework’s entity 
span to fix up the associations automatically between jobs and bids. For this to happen, we simply add to the context 
all of the jobs and all of the bids. Entity Framework will automatically associate the bids to the right jobs. This saves us 
a great deal of tedious code.



Chapter 3 ■ Querying an Entity Data Model

77

A simpler version of the Translate() method does not require a MergeOption. This version materializes objects 
that are disconnected from the object context. This is subtly different from objects that are not tracked in that the 
objects are created completely outside of the object context. If you were to use this simpler Translate() to read the 
jobs, you would not be able later to materialize new bids into the object context because Entity Framework would 
not have any reference to the associated jobs. Those jobs are completely disconnected from the object context. 
Additionally, you cannot change the properties of the instances and expect Entity Framework to be able to save those 
changes.

We used ToList() to force the evaluation of each query. This is required because the Translate() method 
returns an ObjectResult<T>. It does not actually cause the results to be read from the reader. We need to force the 
results to be read from the reader before we can use NextResult() to advance to the next result set. In practice, you 
would most likely construct your code to continue to loop through each result set with NextResult() that the stored 
procedure might return.

Although we didn’t run into it in this example, it is important to note that Translate() bypasses the mapping 
layer of the model. If you try to map an inheritance hierarchy or use an entity that has complex type properties, 
Translate() will fail. Translate() requires that the DbDataReader have columns that match each property on 
the entity. This matching is done using simple name matching. If a column name can’t be matched to a property, 
Translate() will fail.

3-8. Comparing Against a List of Values
Problem
You want to query entities in which a specific property value matches a value contained in a given list.

Solution
Suppose that you have a model like the one shown in Figure 3-9.

You want to find all of the books in a given list of categories. To do this using LINQ or Entity SQL, follow the 
pattern in Listing 3-16.

Figure 3-9.  A model for books and their categories



Chapter 3 ■ Querying an Entity Data Model

78

Listing 3-16.  Finding Books in a List of Categories Using Both LINQ and Entity SQL

using (var context = new EFRecipesEntities())
{
    // delete previous test data
    context.Database.ExecuteSqlCommand("delete from chapter3.category");
    context.Database.ExecuteSqlCommand("delete from chapter3.book");
    // add new test data
    var cat1 = new Category { Name = "Programming" };
    var cat2 = new Category { Name = "Databases" };
    var cat3 = new Category {Name = "Operating Systems"};
    context.Books.Add(new Book { Title = "F# In Practice", Category = cat1 });
    context.Books.Add(new Book { Title = "The Joy of SQL", Category = cat2 });
    context.Books.Add(new Book { Title = "Windows 7: The Untold Story",
                                       Category = cat3 });
    context.SaveChanges();
}
 
using (var context = new EFRecipesEntities())
{
    Console.WriteLine("Books (using LINQ)");
    var cats = new List<string> { "Programming", "Databases" };
    var books = from b in context.Books
                where cats.Contains(b.Category.Name)
                select b;
    foreach (var book in books)
    {
        Console.WriteLine("'{0}' is in category: {1}", book.Title,
                            book.Category.Name);
    }
}
 
using (var context = new EFRecipesEntities())
{
    Console.WriteLine("Books (using ESQL)");
    var esql = @"select value b from Books as b
                 where b.Category.Name in {'Programming','Databases'}";
    var books = ((IObjectContextAdapter)context).ObjectContext.CreateQuery<Book>(esql);
    foreach (var book in books)
    {
        Console.WriteLine("'{0}' is in category: {1}", book.Title,
                            book.Category.Name);
    }
}
 



Chapter 3 ■ Querying an Entity Data Model

79

Following is the output of the code in Listing 3-16:

Books (using LINQ)
'F# In Practice' is in category: Programming
'The Joy of SQL' is in category: Databases
Books (using ESQL)
'F# In Practice' is in category: Programming
'The Joy of SQL' is in category: Databases 

How It Works
For the LINQ query, we build a simple list of category names and include the list in the query along with the LINQ 
Contains query operator. The observant reader will note that we start with the cats collection and determine if it 
contains any category names. Entity Framework translates the Contains clause to a SQL statement with an in clause, 
as shown in Listing 3-17.

Listing 3-17.  The SQL Statement Created for the LINQ Expression from Listing 3-16

SELECT
[Extent1].[BookId] AS [BookId],
[Extent1].[Title] AS [Title],
[Extent1].[CategoryId] AS [CategoryId]
FROM  [chapter3].[Books] AS [Extent1]
LEFT OUTER JOIN [chapter3].[Category] AS [Extent2] ON [Extent1].[CategoryId] = [Extent2].[CategoryId]
WHERE [Extent2].[Name] IN (N'Programming',N'Databases')
 

It is interesting to note that the generated SQL statement in Listing 3-17 does not use parameters for the items 
in the in clause. This is different from the generated code we would see with LINQ to SQL, where the items in the list 
would be parameterized. With this code, we don’t run the risk of exceeding the parameters limit that is imposed by 
SQL Server.

If we are interested in finding all of the books in a given list of categories that are not yet categorized, we simply 
include null in the category list. The generated code is shown in Listing 3-18.

Listing 3-18.  The SQL Statement Created for a LINQ Expression Like the One in Listing 3-16, but with a Null in the 
List of Categories

SELECT
[Extent1].[BookId] AS [BookId],
[Extent1].[Title] AS [Title],
[Extent1].[CategoryId] AS [CategoryId]
FROM  [chapter3].[Books] AS [Extent1]
LEFT OUTER JOIN [chapter3].[Category] AS [Extent2] ON [Extent1].[CategoryId] = [Extent2].[CategoryId]
WHERE [Extent2].[Name] IN (N'Programming',N'Databases')
 
      OR [Extent2].[Name] IS NULL
 

For parity, we also include an Entity SQL version of the query, in which we explicitly include a SQL IN clause.



Chapter 3 ■ Querying an Entity Data Model

80

3-9. Filtering Related Entities
Problem
You want to want to retrieve some, but not all, related entities.

Solution
Let’s say that you have a model like the one shown in Figure 3-10.

In this model, we have a Worker who has experienced zero or more accidents. Each accident is classified by its 
severity. We want to retrieve all workers, but we are interested only in serious accidents. These are accidents with a 
severity greater than 2.

To start, this example leverages the Code-First approach for Entity Framework. In Listing 3-19, we create entity 
classes for Worker and Accidents.

Listing 3-19.  Worker Entity Class

public class Worker
{
    public Worker()
    {
        Accidents = new HashSet<Accident>();
    }
  
    public int WorkerId { get; set; }
    public string Name { get; set; }
  
    public virtual ICollection<Accident> Accidents { get; set; }
}
  
public class Accident
{
    public int AccidentId { get; set; }
    public string Description { get; set; }

Figure 3-10.  A model for a Worker and their Accidents



Chapter 3 ■ Querying an Entity Data Model

81

    public int? Severity { get; set; }
    public int WorkerId { get; set; }
  
    public virtual Worker Worker { get; set; }
}
 

Next, in Listing 3-20, we create the DbContext object required for our Code-First approach.

Listing 3-20.  The DbContext Object

public class EFRecipesEntities : DbContext
{
    public EFRecipesEntities()
        : base("ConnectionString") {}
  
    public DbSet<Accident> Accidents { get; set; }
    public DbSet<Worker> Workers { get; set; }
  
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        modelBuilder.Entity<Accident>().ToTable("Chapter3.Accident");
        modelBuilder.Entity<Worker>().ToTable("Chapter3.Worker");
        base.OnModelCreating(modelBuilder);
    }
}
 

To retrieve all of the workers, but limit the accidents retrieved to just the serious ones, follow the pattern in 
Listing 3-21.

Listing 3-21.  Retrieving Serious Accidents Using Anonymous Types and Using CreateSourceQuery()

using (var context = new EFRecipesEntities())
{
    // delete previous test data
    context.Database.ExecuteSqlCommand("delete from chapter3.accident");
    context.Database.ExecuteSqlCommand("delete from chapter3.worker");
    // add new test data
    var worker1 = new Worker { Name = "John Kearney" };
    var worker2 = new Worker { Name = "Nancy Roberts" };
    var worker3 = new Worker { Name = "Karla Gibbons" };
    context.Accidents.Add(new Accident {
                  Description = "Cuts and contusions",
                  Severity = 3, Worker = worker1 });
    context.Accidents.Add(new Accident {
                  Description = "Broken foot",
                  Severity = 4, Worker = worker1});
    context.Accidents.Add(new Accident {
                  Description = "Fall, no injuries",
                  Severity = 1, Worker = worker2});
    context.Accidents.Add(new Accident {
                  Description = "Minor burn",
                  Severity = 3, Worker = worker2});



Chapter 3 ■ Querying an Entity Data Model

82

    context.Accidents.Add(new Accident {
                  Description = "Back strain",
                  Severity = 2, Worker = worker3});
    context.SaveChanges();
}
 
using (var context = new EFRecipesEntities())
{
    // explicitly disable lazy loading
    context.Configuration.LazyLoadingEnabled = false;
    var query = from w in context.Workers
                select new
                {
                    Worker = w,
                    Accidents = w.Accidents.Where(a => a.Severity > 2)
                };
    query.ToList();
    var workers = query.Select(r => r.Worker);
    Console.WriteLine("Workers with serious accidents...");
    foreach (var worker in workers)
    {
        Console.WriteLine("{0} had the following accidents", worker.Name);
        if (worker.Accidents.Count == 0)
            Console.WriteLine("\t--None--");
        foreach (var accident in worker.Accidents)
        {
            Console.WriteLine("\t{0}, severity: {1}",
                  accident.Description, accident.Severity.ToString());
        }
    }
}
 

Following is the output of the code in Listing 3-21:

Workers with serious accidents...
John Kearney had the following accidents
        Cuts and contusions, severity: 3
        Broken foot, severity: 4
Nancy Roberts had the following accidents
        Minor burn, severity: 3
Karla Gibbons had the following accidents
        --None-- 

How It Works
As you will see in Chapter 5, when we want to eagerly load a related collection, we often use the Include() method with 
a query path. (The Include() method returns the parent entity along with all of the child entities in a single query.)  
However, the Include() method does not allow filtering on the related child entities. In this recipe, we show a slight 
variation that allows you to load and filter related child entities.



Chapter 3 ■ Querying an Entity Data Model

83

In the block of code, we create a few workers and assign them accidents of varying levels of severity. Granted, it’s 
a little creepy to assign accidents to people, but it’s all in the name of getting some data with which you can work.

In the subsequent query, we select from all of the workers and project the results into an anonymous type. The 
type includes the worker and the collection of accidents. For the accidents, notice how we filter the collection to get 
just the serious accidents.

The very next line is important. Here we force the evaluation of the query by calling the ToList() method. (Keep 
in mind that LINQ queries typically default to deferred loading, meaning that the query is not actually executed until 
necessary. The ToList() method forces this very execution.) Enumerating this query brings all of the workers and all 
of the serious accidents into the DbContext. The anonymous type didn’t attach the accidents to the workers, but by 
bringing them into the Context, Entity Framework will fix up the navigation properties, attaching each collection of 
serious accidents to the appropriate worker. This process, commonly known as Entity Span, is a powerful yet subtle 
side effect that happens behind the scenes to fix up relationships between entities as they are materialized into the 
Entity Framework Context object.

We’ve turned off lazy loading so that only the accidents in our filter are loaded. (We’ll discuss lazy loading further 
Chapter 5.) With lazy loading on, all of the accidents would get loaded when we referenced each worker’s accidents. 
That would defeat the purpose of the filter.

Once we have the collection, we iterate through it, printing out each worker and their serious accidents. If a 
worker didn’t have any serious accidents, we print none to indicate their stellar safety record.

3-10. Applying a Left-Outer Join 
Problem
You want to combine the properties of two entities using a left-outer join.

Solution
Suppose that you have a model like the one shown in Figure 3-11.

The top-selling products have a related TopSelling entity. Of course, not all products are top sellers, and that’s 
why the relationship is one to zero or one. When a product is a top seller, the related TopSeller entity also contains the 
customer rating for the product. You want to find and present all of the products and their related TopSeller entities 
even if, in some cases, the product is not a top seller. In the case where a product does not have a related TopSelling 
entity, we simply set to the rating to “0”. In database terms, this is called a left-outer join.

The code in Listing 3-22 demonstrates three slightly different approaches to this problem.

Figure 3-11.  Our model with a Product entity type and its related TopSelling entity type



Chapter 3 ■ Querying an Entity Data Model

84

Listing 3-22.  Doing a Left-Outer Join Between Entities

using (var context = new EFRecipesEntities())
{
    // delete previous test data
    context.Database.ExecuteSqlCommand("delete from chapter3.topselling");
    context.Database.ExecuteSqlCommand("delete from chapter3.product");
    // add new test data
    // note that p1 has no associated TopSelling entity as do the other products
    var p1 = new Product { Name = "Trailrunner Backpack" };
    var p2 = new Product { Name = "Green River Tent",
                           TopSelling = new TopSelling { Rating = 3 } };
    var p3 = new Product { Name = "Prairie Home Dutch Oven",
                           TopSelling = new TopSelling { Rating = 4 } };
    var p4 = new Product { Name = "QuickFire Fire Starter",
                           TopSelling = new TopSelling { Rating = 2 } };
    context.Products.Add(p1);
    context.Products.Add(p2);
    context.Products.Add(p3);
    context.Products.Add(p4);
    context.SaveChanges();
}
 
using (var context = new EFRecipesEntities())
{
    var products = from p in context.Products
                   orderby p.TopSelling.Rating descending
                   select p;
    Console.WriteLine("All products, including those without ratings");
    foreach (var product in products)
    {
        Console.WriteLine("\t{0} [rating: {1}]", product.Name,
            product.TopSelling == null ? "0"
                : product.TopSelling.Rating.ToString());
    }
}
 
using (var context = new EFRecipesEntities())
{
    var products = from p in context.Products
                   join t in context.TopSellings on
                      // note how we project the results together into another
                      // sequence, entitled 'g' and apply the DefaultIfEmpty method
                      p.ProductID equals t.ProductID into g
                   from tps in g.DefaultIfEmpty()
                   orderby tps.Rating descending
                   select new
                   {
                       Name = p.Name,
                       Rating = tps.Rating == null ? 0 : tps.Rating
                   };
 



Chapter 3 ■ Querying an Entity Data Model

85

    Console.WriteLine("\nAll products, including those without ratings
                                                                    ");
    foreach (var product in products)
    {
        if (product.Rating != 0)
            Console.WriteLine("\t{0} [rating: {1}]", product.Name,
                product.Rating.ToString());
    }
}
 
using (var context = new EFRecipesEntities())
{
    var esql = @"select value p from products as p
                 order by case when p.TopSelling is null then 0
                                    else p.TopSelling.Rating end desc";
    var products =((IObjectContextAdapter)context).ObjectContext.CreateQuery<Product>(esql);
    Console.WriteLine("\nAll products, including those without ratings
                                               ");
    foreach (var product in products)
    {
        Console.WriteLine("\t{0} [rating: {1}]", product.Name,
            product.TopSelling == null ? "0"
                : product.TopSelling.Rating.ToString());
 
    }
}
 

Following is the output of the code in Listing 3-22:

Top selling products sorted by rating
        Prairie Home Dutch Oven [rating: 4]
        Green River Tent [rating: 3]
        QuickFire Fire Starter [rating: 2]
               Trailrunner Backpack [rating: 0]Top selling products sorted by rating
        Prairie Home Dutch Oven [rating: 4]
        Green River Tent [rating: 3]
        QuickFire Fire Starter [rating: 2]
               Trailrunner Backpack [rating: 0]Top selling products sorted by rating
        Prairie Home Dutch Oven [rating: 4]
        Green River Tent [rating: 3]
        QuickFire Fire Starter [rating: 2]
               Trailrunner Backpack [rating: 0] 

How It Works
In Listing 3-22, we show three slightly different approaches to this problem. The first approach is the simplest, as 
Entity Framework handles the join automatically for related entities based on a navigation property that was created 
between the two entities when the model was created. The entities are in a one-to-zero or one association, which 
means that Entity Framework will automatically generate a SQL query that includes a left-outer join between the two 
entities. When the product entities are materialized, any associated top sellers are also materialized. The TopSeller 



Chapter 3 ■ Querying an Entity Data Model

86

navigation property is either set to the associated TopSeller entity or to null if no TopSeller exists. If a TopSeller entity 
does not exist for a given Product (that is, it has not been rated as a top seller), we simply assign a value of “0” for the 
Product Rating.

In some cases, you might not have a relationship (for instance, a navigation property) between the entities that 
you want to join. In these cases, you can explicitly join the entities, projecting the results into an anonymous type. 
We need to project into an anonymous type because the unrelated entities won’t have navigation properties, so we 
wouldn’t otherwise be able to reference the related entity.

The code in the second query block illustrates this approach. Here we join the entities on the ProductId key and 
put the result into a new sequence entitled “g”. Then, from g we apply the DefaultIfEmpty() method to fill in nulls 
when g is empty. Sure enough, when the SQL is generated, it includes a left-outer join between the two entities. We 
include an orderby clause to order the results by the rating. Finally, we project the results into an anonymous type.

In the third approach, we show you how to do the left-outer join more explicitly using Entity SQL, embedding an 
Entity SQL Case statement within the query.

3-11. Ordering by Derived Types
Problem
You are using Table per Hierarchy inheritance, and you want to sort results by the derived type.

Solution
Let’s suppose that you have a model like the one shown in Figure 3-12.

Figure 3-12.  A model using Table per Hierarchy inheritance with three derived types



Chapter 3 ■ Querying an Entity Data Model

87

This model uses Table per Hierarchy inheritance (TPH), which is a feature of Entity Framework. TPH creates an 
inheritance structure where a parent and given number of related child classes all derive from a single database table.

In this example, the Media entity has a property entitled MediaType, which is used as a discriminator property for 
our TPH construct. The value of MediaType determines which derived type (Article, Picture, or Video) is represented 
by a row from the database. The discriminator column has a value of 1 for an Article type, 2 for a Video type, and 3 for 
the Picture type. Because the property is used only to determine the derived type, it is not shown as part of the Media 
entity.

To start, this example leverages the Code-First approach for Entity Framework. In Listing 3-23, we create the 
entity classes. To keep the example simple, we’ll create empty child objects, as we only want to demonstrate how to 
order a query based on a derived type.

Listing 3-23.  Parent and Child Entity Types

public class Media
{
    public int MediaId { get; set; }
    public string Title { get; set; }
}
 
public class Article : Media
{
}
 
public class Picture : Media
{
}
public class Video : Media
{
}
 

Next, in Listing 3-24, we create the DbContext object, which is your gateway into Entity Framework functionality 
when leveraging the Code-First approach. Note how in the OnModelCreating method, we explicitly map the 
discriminator column, MediaType, to the child entities using a FluentAPI coding approach (that is, chaining together 
extension methods to create an operation).

Listing 3-24.  The DbContext Object

public class EFRecipesEntities : DbContext
{
    public EFRecipesEntities()
        : base("ConnectionString")
    {
    }
  
    public DbSet<Media> Media { get; set; }
 
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        modelBuilder.Entity<Media>().ToTable("Chapter3.Media");
  



Chapter 3 ■ Querying an Entity Data Model

88

        // Map child entities to the 'Discriminator' column, MediaType, from parent table,
        // which will determine the type of medium
        modelBuilder.Entity<Media>().Map<Article>(x => x.Requires("MediaType").HasValue(1));
        modelBuilder.Entity<Media>().Map<Picture>(x => x.Requires("MediaType").HasValue(2));
        modelBuilder.Entity<Media>().Map<Video>(x => x.Requires("MediaType").HasValue(3));
  
        base.OnModelCreating(modelBuilder);
    }
}
 

With the Code-First artifacts created, we’ll query the model for all of the media and sort the results by the derived 
types: Article, Video, and Picture. To do this, follow the pattern in Listing 3-25.

Listing 3-25.  Sorting Table per Hierarchy Inheritance by Type

using (var context = new EFRecipesEntities())
{
    context.Media.Add(new Article {
                  Title = "Woodworkers' Favorite Tools" });
    context.Media.Add(new Article {
                  Title = "Building a Cigar Chair" });
    context.Media.Add(new Video {
                  Title = "Upholstering the Cigar Chair" });
    context.Media.Add(new Video {
                  Title = "Applying Finish to the Cigar Chair" });
    context.Media.Add(new Picture {
                  Title = "Photos of My Cigar Chair" });
    context.Media.Add(new Video {
                  Title = "Tour of My Woodworking Shop" });
    context.SaveChanges();
}
 
using (var context = new EFRecipesEntities())
{
    var allMedia = from m in context.Media
                   let mediatype = m is Article ? 1 :
                                   m is Video ? 2 : 3
                   orderby mediatype
                   select m;
    Console.WriteLine("All Media sorted by type...");
    foreach (var media in allMedia)
    {
        Console.WriteLine("Title: {0} [{1}]", media.Title, media.GetType().Name);
    }
}
 



Chapter 3 ■ Querying an Entity Data Model

89

Following is the output of the code in Listing 3-25:

All Media sorted by type...
Title: Woodworkers' Favorite Tools [Article]
Title: Building a Cigar Chair [Article]
Title: Upholstering the Cigar Chair [Video]
Title: Applying Finish to the Cigar Chair [Video]
Title: Tour of My Woodworking Shop [Video]
Title: Photos of My Cigar Chair [Picture] 

How It Works
When we use Table per Hierarchy inheritance, we leverage a column in the table to distinguish which derived type 
represents any given row. This column, often referred to as the discriminator column, can’t be mapped to a property 
of the base entity. Because we don’t have a property with the discriminator value, we need to create a variable to hold 
comparable discriminator values so that we can do the sort. To do this, we use a LINQ let clause, which creates a 
the mediatype variable. We use a conditional statement to assign an integer to this variable based on the type of the 
media. For Articles, we assign the value 1. For Videos, we assign the value 2. We assign a value of 3 to anything else, 
which will always be of type Picture because no other derived types remain.

3-12. Paging and Filtering
Problem
You want to create a query with a filter and paging.

Solution
Let’s say that you have a Customer entity type in a model, as shown in Figure 3-13.

You have an application that displays customers based on a filter. Your company has many customers (perhaps 
millions!), and to keep the user experience as responsive as possible, you want to show only a limited number of 
customers on each page. To create a query that both filters the customers and returns a manageable set for each 
results page in your application, follow the pattern in Listing 3-26.

Figure 3-13.  A model with a Customer entity type



Chapter 3 ■ Querying an Entity Data Model

90

Listing 3-26.  Filtering and Paging a Query

using (var context = new EFRecipesEntities())
{
    // delete previous test data
    context.Database.ExecuteSqlCommand("delete from chapter3.customer");
    // add new test data
    context.Customers.Add(new Customer { Name = "Roberts, Jill",
                                 Email = " jroberts@abc.com" });
    context.Customers.Add(new Customer { Name = "Robertson, Alice",
                                 Email = " arob@gmail.com" });
    context.Customers.Add(new Customer { Name = "Rogers, Steven",
                                 Email = " srogers@termite.com" });
    context.Customers.Add(new Customer { Name = "Roe, Allen",
                                 Email = " allenr@umc.com" });
    context.Customers.Add(new Customer { Name = "Jones, Chris",
                                 Email = " cjones@ibp.com" });
    context.SaveChanges();
}
 
using (var context = new EFRecipesEntities())
{
    string match = "Ro";
    int pageIndex = 0;
    int pageSize = 3;
 
    var customers = context.Customers.Where(c => c.Name.StartsWith(match))
                        .OrderBy(c => c.Name)
                        .Skip(pageIndex * pageSize)
                        .Take(pageSize);
    Console.WriteLine("Customers Ro*");
    foreach (var customer in customers)
    {
        Console.WriteLine("{0} [email: {1}]", customer.Name, customer.Email);
    }
}
using (var context = new EFRecipesEntities())
{
    string match = "Ro%";
    int pageIndex = 0;
    int pageSize = 3;
 
    var esql = @"select value c from Customers as c
                 where c.Name like @Name
                 order by c.Name
                 skip @Skip limit @Limit";
    Console.WriteLine("\nCustomers Ro*");

http://jroberts@abc.com
http://arob@gmail.com
http://srogers@termite.com
http://allenr@umc.com
http://cjones@ibp.com


Chapter 3 ■ Querying an Entity Data Model

91

    var customers =
        ((IObjectContextAdapter)context).ObjectContext.CreateQuery<Customer>(esql, new[]
                      {
                        new ObjectParameter("Name",match),
                        new ObjectParameter("Skip",pageIndex * pageSize),
                        new ObjectParameter("Limit",pageSize)
                      });
    foreach (var customer in customers)
    {
        Console.WriteLine("{0} [email: {1}]", customer.Name, customer.Email);
    }
}
 

Following is the output from the code in Listing 3-26:

Customers Ro*
Roberts, Jill [email: jroberts@abc.com]
Robertson, Alice [email: arob@gmail.com]
Roe, Allen [email: allenr@umc.com]
 
Customers Ro*
Roberts, Jill [email: jroberts@abc.com]
Robertson, Alice [email: arob@gmail.com]
Roe, Allen [email: allenr@umc.com] 

How It Works
In Listing 3-26, we show two different approaches to the problem. In the first approach, we use LINQ-To-Entities 
extension methods to construct a LINQ query. We use the Where() method to filter the results to customers whose 
last name starts with Ro. Because we are using the StartsWith() extension method inside the lambda expression, we 
don’t need to use a SQL wildcard expression such as “Ro%”.

After filtering, we use the OrderBy() method to order the results. Ordered results are required by the Skip() 
method. We use the Skip() method to move over pageIndex number of pages, each of size pageSize. We limit the 
results with the Take() method. We only need to take one page of results.

Note that in this code block, we create the entire query using LINQ extension methods and not the SQL  
query-like expressions that we have seen in examples up to now. Both the Skip() and Take() methods are only 
exposed by extension methods, not query syntax.

For the second approach, we construct a complete, parameterized Entity SQL expression. This is perhaps the 
most familiar way to solve the problem, but it exposes some of the inherent mismatch risks between a query language 
expressed using strings and executable code expressed, in this case, in C#.

3-13. Grouping by Date
Problem
You have an entity type with a DateTime property, and you want to group instances of this type based on just the date 
portion of the property.

http://jroberts@abc.com
http://arob@gmail.com
http://allenr@umc.com
http://jroberts@abc.com
http://arob@gmail.com
http://allenr@umc.com


Chapter 3 ■ Querying an Entity Data Model

92

Solution
Let’s say that you have a Registration entity type in your model, and the Registration type has a DateTime property. 
Your model might look like the one shown in Figure 3-14.

To start, this example leverages the Code-First approach for Entity Framework. In Listing 3-27, we create the 
entity classes.

Listing 3-27.  Registration Entity Type

public class Registration
{
    public int RegistrationId { get; set; }
    public string StudentName { get; set; }
    public DateTime? RegistrationDate { get; set; }
}

Next, in Listing 3-28, we create the DbContext object, which is your gateway into Entity Framework functionality 
when leveraging the Code-First approach.

Listing 3-28.  The DbContext Object

public class EFRecipesEntities : DbContext
{
    public EFRecipesEntities()
        : base("ConnectionString") {}
  
    public DbSet<Registration> Registrations { get; set; }
   
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        modelBuilder.Entity<Registration>().ToTable("Chapter3.Registration");
        base.OnModelCreating(modelBuilder);
    }
}
  

We want to group all of the registrations by just the date portion of the RegistrationDate property. You might be 
tempted in LINQ to group by RegistrationDate.Date. Although this will compile, you will receive a runtime error 
complaining that Date can’t be translated into SQL. To group by just the date portion of the RegistrationDate, follow 
the pattern in Listing 3-29.

Figure 3-14.  A model with a single Registration entity type. The entity type’s RegistrationDate property is a DateTime



Chapter 3 ■ Querying an Entity Data Model

93

Listing 3-29.  Grouping by the Date Portion of a DateTime Property

using (var context = new EFRecipesEntities())
{
    context.Registrations.Add(new Registration {
          StudentName = "Jill Rogers",
          RegistrationDate = DateTime.Parse("12/03/2009 9:30 pm") });
    context.Registrations.Add(new Registration {
          StudentName = "Steven Combs",
          RegistrationDate = DateTime.Parse("12/03/2009 10:45 am") });
    context.Registrations.Add(new Registration {
          StudentName = "Robin Rosen",
          RegistrationDate = DateTime.Parse("12/04/2009 11:18 am") });
    context.Registrations.Add(new Registration {
          StudentName = "Allen Smith",
          RegistrationDate = DateTime.Parse("12/04/2009 3:31 pm") });
    context.SaveChanges();
}
  
using (var context = new EFRecipesEntities())
{
    var groups = from r in context.Registrations
    // leverage built-in TruncateTime function to extract date portion
                 group r by DbFunctions.TruncateTime(r.RegistrationDate)
                    into g
                 select g;
    foreach (var element in groups)
    {
        Console.WriteLine("Registrations for {0}",
               ((DateTime)element.Key).ToShortDateString());
        foreach (var registration in element)
        {
            Console.WriteLine("\t{0}", registration.StudentName);
        }
    }
}
  

Following is the output of the code in Listing 3-29:

Registrations for 12/3/2009
        Jill Rogers
        Steven Combs
Registrations for 12/4/2009
        Robin Rosen
        Allen Smith 



Chapter 3 ■ Querying an Entity Data Model

94

How It Works
The key to grouping the registrations by the date portion of the RegistrationDate property is to use the Truncate() 
function. This built-in Entity Framework function, contained in the DbFunctions class, extracts just the date portion 
of the DateTime value. The built-in DbFunctions contain a wide array of formatting, aggregation, string manipulation, 
date-time, and mathematical services, and they are found in the System.Data.Entity namespace. The legacy 
class, EntityFunctions, used prior to Entity Framework 6, will still work with Entity Framework 6, but will give you 
a compiler warning suggesting you move to the DbFunctions class. We’ll have a lot more to say about functions in 
Chapter 11.

3-14. Flattening Query Results
Problem
You have two entity types in a one-to-many association, and you want, in one query, to obtain a flattened projection of 
all of the entities in the association. By flattened, we are referring to denormalizing, or compressing, an object graph 
with parent/child relationships into a result represented by a single class.

Solution
Let’s say that you have a couple of entity types in a one-to-many association. Perhaps your model looks something like 
the one shown in Figure 3-15.

You want to get all of the associates and all of their salary history in one query. There may be some new hires that 
are in the system, but they don’t yet have a salary set. You want your query results to include these associates as well.

To query the model and get the results you want, follow the pattern in Listing 3-30.

Listing 3-30.  Flattening Out the Results Using Both LINQ and Entity SQL

using (var context = new EFRecipesEntities())
{
    // delete previous test data
    context.Database.ExecuteSqlCommand("delete from chapter3.associatesalary");
    context.Database.ExecuteSqlCommand("delete from chapter3.associate");
    // add new test data

Figure 3-15.  A model with an Associate entity type representing an associate, and an AssociateSalary entity type 
representing the salary history for the associate



Chapter 3 ■ Querying an Entity Data Model

95

    var assoc1 = new Associate { Name = "Janis Roberts" };
    var assoc2 = new Associate { Name = "Kevin Hodges" };
    var assoc3 = new Associate { Name = "Bill Jordan" };
    var salary1 = new AssociateSalary { Salary = 39500M,
                        SalaryDate = DateTime.Parse("8/4/09") };
    var salary2 = new AssociateSalary { Salary = 41900M,
                        SalaryDate = DateTime.Parse("2/5/10") };
    var salary3 = new AssociateSalary { Salary = 33500M,
                        SalaryDate = DateTime.Parse("10/08/09") };
    assoc2.AssociateSalaries.Add(salary1);
    assoc2.AssociateSalaries.Add(salary2);
    assoc3.AssociateSalaries.Add(salary3);
    context.Associates.Add(assoc1);
    context.Associates.Add(assoc2);
    context.Associates.Add(assoc3);
    context.SaveChanges();
}
 
using (var context = new EFRecipesEntities())
{
    Console.WriteLine("Using LINQ...");
    var allHistory = from a in context.Associates
                     from ah in a.AssociateSalaries.DefaultIfEmpty()
                     orderby a.Name
                     select new
                     {
                         Name = a.Name,
                         Salary = (decimal ?) ah.Salary,
                         Date = (DateTime ?) ah.SalaryDate
                     };
    Console.WriteLine("Associate Salary History");
    foreach (var history in allHistory)
    {
        if (history.Salary.HasValue)
            Console.WriteLine("{0} Salary on {1} was {2}", history.Name,
                               history.Date.Value.ToShortDateString(),
                               history.Salary.Value.ToString("C"));
        else
            Console.WriteLine("{0} --", history.Name);
    }
}
 
using (var context = new EFRecipesEntities())
{
    Console.WriteLine("\nUsing Entity SQL...");
    var esql = @"select a.Name, h.Salary, h.SalaryDate
                 from Associates as a outer apply
                   a.AssociateSalaries as h order by a.Name";
    var allHistory =
        ((IObjectContextAdapter)context).ObjectContext.CreateQuery<DbDataRecord>(esql);
Console.WriteLine("Associate Salary History");
foreach (var history in allHistory)



Chapter 3 ■ Querying an Entity Data Model

96

    {
        if (history["Salary"] != DBNull.Value)
            Console.WriteLine("{0} Salary on {1:d} was {2:c}", history["Name"],
                               history["SalaryDate"], history["Salary"]);
        else
            Console.WriteLine("{0} --",history["Name"]);
    }
}
 

The trick here is that we want to “flatten” out hierarchical data, such as an associate with multiple salary inputs.
Following is the output of the code in Listing 3-30:

Using LINQ...
Associate Salary History
Bill Jordan Salary on 10/8/2009 was $33,500.00
Janis Roberts --
Kevin Hodges Salary on 8/4/2009 was $39,500.00
Kevin Hodges Salary on 2/5/2010 was $41,900.00
Using Entity SQL...
Bill Jordan Salary on 10/8/2009 was $33,500.00
Janis Roberts --
Kevin Hodges Salary on 8/4/2009 was $39,500.00
Kevin Hodges Salary on 2/5/2010 was $41,900.00 

How It Works
To flatten the query results, we followed the strategy in Recipe 3-10 and used a nested from clause and the 
DefaultIfEmpty() method to get a left-outer join between the tables. The DefaultIfEmpty() method ensured that 
we have rows from the left side (the Associate entities), even if there are no corresponding rows on the right side 
(AssociateSalary entities). We project the results into an anonymous type, being careful to capture null values for the 
salary and salary date when there are no corresponding AssociateSalary entities.

For the Entity SQL solution, we use the outer apply operator to create unique pairings between each Associate 
entity and AssociateSalary entity. Both the cross and outer apply operators are available in SQL Server.

3-15. Grouping by Multiple Properties
Problem
You want to group the results of a query by multiple properties so as to group by multiple columns when the query 
executes against the database.

Solution
Let’s say that you have a model with an Event entity type like the one shown in Figure 3-16. Event has a name, city, and 
state. You want to group events by state and then by city.



Chapter 3 ■ Querying an Entity Data Model

97

To start, this example leverages the Code-First approach for Entity Framework. In Listing 3-31, we create the 
entity classes.

Listing 3-31.  Event Entity Type

public class Event
{
    public int EventId { get; set; }
    public string Name { get; set; }
    public string State { get; set; }
    public string City { get; set; }
}
 

Next, in Listing 3-32, we create the DbContext object, which is your gateway into Entity Framework functionality 
when leveraging the Code-First approach.

Listing 3-32.  The DbContext Object

public class EFRecipesEntities : DbContext
{
    public EFRecipesEntities()
        : base("ConnectionString") {}
  
    public DbSet<Event> Events { get; set; }
  
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        modelBuilder.Entity<Event>().ToTable("Chapter3.Event");
        base.OnModelCreating(modelBuilder);
    }
}
 

Figure 3-16.  A model with an Event entity type that has properties for the event’s name, state, and city

www.allitebooks.com

http://www.allitebooks.org


Chapter 3 ■ Querying an Entity Data Model

98

To get all of the events grouped by state and then city, follow the pattern in Listing 3-33.

Listing 3-33.  Grouping by Multiple Properties

using (var context = new EFRecipesEntities())
{
    // delete previous test data
    context.Database.ExecuteSqlCommand("delete from chapter3.event");
    // add new test data
    context.Events.Add(new Event { Name = "TechFest 2010",
                                         State = "TX", City = "Dallas" });
    context.Events.Add(new Event { Name = "Little Blue River Festival",
                                         State = "MO", City = "Raytown" });
    context.Events.Add(new Event { Name = "Fourth of July Fireworks",
                                         State = "MO", City = "Raytown" });
    context.Events.Add(new Event { Name = "BBQ Ribs Championship",
                                         State = "TX", City = "Dallas" });
    context.Events.Add(new Event { Name = "Thunder on the Ohio",
                                         State = "KY", City = "Louisville" });
    context.SaveChanges();
}
 
using (var context = new EFRecipesEntities())
{
    Console.WriteLine("Using LINQ");
    var results = from e in context.Events
                 // create annonymous type to encapsulate composite
                 // sort key of State and City
                 group e by new { e.State, e.City } into g
                 select new
                     {
                         State = g.Key.State,
                         City = g.Key.City,
                         Events = g                     };
    Console.WriteLine("Events by State and City...");
    foreach (var item in results)
    {
        Console.WriteLine("{0}, {1}", item.City, item.State);
        foreach (var ev in item.Events)
        {
            Console.WriteLine("\t{0}", ev.Name);
        }
    }
}
 
using (var context = new EFRecipesEntities())
{
    Console.WriteLine("\nUsing Entity SQL");
    var esql = @"select e.State, e.City, GroupPartition(e) as Events
                 from Events as e
                 group by e.State, e.City";



Chapter 3 ■ Querying an Entity Data Model

99

    var records =
        ((IObjectContextAdapter)context).ObjectContext.CreateQuery<DbDataRecord>(esql);
    Console.WriteLine("Events by State and City...");
    foreach (var rec in records)
    {
        Console.WriteLine("{0}, {1}", rec["City"], rec["State"]);
        var events = (List<Event>)rec["Events"];
        foreach (var ev in events)
        {
            Console.WriteLine("\t{0}", ev.Name);
        }
    }
}
 

Following is the output of the code in Listing 3-33:

Using LINQ
Events by State and City...
Louisville, KY
        Thunder on the Ohio
Raytown, MO
        Little Blue River Festival
        Fourth of July Fireworks
Dallas, TX
        TechFest 2010
        BBQ Ribs Championship
 
Using Entity SQL
Events by State and City...
Louisville, KY
        Thunder on the Ohio
Raytown, MO
        Little Blue River Festival
        Fourth of July Fireworks
Dallas, TX
        TechFest 2010
        BBQ Ribs Championship 

How It Works
In Listing 3-33, we show two different approaches to the problem. The first approach uses LINQ and the group by 
operator to group the results by state and city. When using the group by operator for multiple properties, we create an 
anonymous type to initially group the data. We use an into clause to send the groups to g, which is a second sequence 
created to hold the results of the query.

We project the results from g into a second anonymous type getting the State from the group key’s State field 
(from the first anonymous type) and the City from the group key’s City field. For the events, we simply select all of the 
members of the group.

For the Entity SQL approach, we can only project columns used in the group by clause, a constant value, or a 
computed value from using an aggregate function. In our case, we project the state, city, and the collection of events 
for each grouping.



Chapter 3 ■ Querying an Entity Data Model

100

3-16. Using Bitwise Operators in a Filter
Problem
You want to use bitwise operators to filter a query.

Solution
Let’s say that you have an entity type with an integer property that you want to use as a set of bit flags. You’ll use 
some of the bits in this property to represent the presence or absence of some particular attribute for the entity. For 
example, suppose you have an entity type for patrons of a local art gallery. Some patrons contribute money. Some 
volunteer during gallery hours. A few patrons serve on the board of directors. A few patrons support the art gallery in 
more than one way. A model with this entity type is shown in Figure 3-17.

We want to query for patrons and filter on the type of sponsorship provided by the patron. To do this, follow the 
pattern in Listing 3-34.

Listing 3-34.  Using Bitwise Operators in a Query

static void Main()
{
    RunExample();
}
 
[Flags]
public enum SponsorTypes
{
    None = 0,
    ContributesMoney = 1,
    Volunteers = 2,
    IsABoardMember = 4
};
  

Figure 3-17.  A Patron entity type with a SponsorType property that we use as a collection of bit flags indicating the 
sponsorship type for the patron



Chapter 3 ■ Querying an Entity Data Model

101

static void RunExample()
{
    using (var context = new EFRecipesEntities())
    {
        // delete previous test data
        context.Database.ExecuteSqlCommand("delete from chapter3.patron");
        // add new test data
        context.Patrons.Add(new Patron { Name = "Jill Roberts",
                   SponsorType = (int)SponsorTypes.ContributesMoney });
        context.Patrons.Add(new Patron { Name = "Ryan Keyes",
                   // note the useage of the bitwise OR operator: '|'
                   SponsorType = (int)(SponsorTypes.ContributesMoney |
                                       SponsorTypes.IsABoardMember)});
        context.Patrons.Add(new Patron {Name = "Karen Rosen",
                   SponsorType = (int)SponsorTypes.Volunteers});
        context.Patrons.Add(new Patron {Name = "Steven King",
                   SponsorType = (int)(SponsorTypes.ContributesMoney |
                                       SponsorTypes.Volunteers)});
        context.SaveChanges();
    }
 
    using (var context = new EFRecipesEntities())
    {
        Console.WriteLine("Using LINQ...");
        var sponsors = from p in context.Patrons
                       // note the useage of the bitwise AND operator: '&'
                       where (p.SponsorType &
                              (int)SponsorTypes.ContributesMoney) != 0
                       select p;
        Console.WriteLine("Patrons who contribute money");
        foreach (var sponsor in sponsors)
        {
            Console.WriteLine("\t{0}", sponsor.Name);
        }
    }
 
    using (var context = new EFRecipesEntities())
    {
        Console.WriteLine("\nUsing Entity SQL...");
        var esql = @"select value p from Patrons as p
                     where BitWiseAnd(p.SponsorType, @type) <> 0";
        var sponsors = ((IObjectContextAdapter)context).ObjectContext.CreateQuery<Patron>(esql,
           new ObjectParameter("type", (int)SponsorTypes.ContributesMoney));
        Console.WriteLine("Patrons who contribute money");
        foreach (var sponsor in sponsors)
        {
            Console.WriteLine("\t{0}", sponsor.Name);
        }
    }
}
 



Chapter 3 ■ Querying an Entity Data Model

102

Following is the output of the code in Listing 3-34:

Using LINQ...
Patrons who contribute money
        Jill Roberts
        Ryan Keyes
        Steven King
 
Using Entity SQL...
Patrons who contribute money
        Jill Roberts
        Ryan Keyes
        Steven King 

How It Works
In our model, the Patron entity type packs multiple bit flags into a single integer property. A patron can sponsor the 
gallery in a number of ways. Each type of sponsorship is represented as a different bit in the SponsorType property. 
We represent each of the ways a sponsor can contribute in the SponsorTypes enum. We are careful to assign integers 
in power of 2 increments for each sponsor type. This means that each will have exactly one unique bit in the bits of the 
SponsorType property.

When we insert patrons, we assign the sponsorship type to the SponsorType property. For patrons that contribute 
in more than one way, we simply use the bitwise OR (|) operator to build the bit pattern representing all of the ways 
the patron contributes to the gallery.

For the LINQ query, we use the bitwise AND (&) operator to extract the bit for the ContributesMoney flag from the 
SponsorType property value. If the result is nonzero, then the patron has the ContributesMoney flag set. If we needed 
to find patrons that contribute in more than one way, we would OR all of the SponsorTypes we’re interested in together 
before we used the AND operator to extract one or more set bits.

The second solution demonstrates the same approach using Entity SQL. Here we use the BitWiseAnd() function 
to extract the set bit. Entity SQL supports a full complement of bitwise functions.

3-17. Joining on Multiple Columns
Problem
You want to join two entity types on multiple properties.

Solution
Let’s say that you have a model like the one shown in Figure 3-18. The Account entity type is in a one-to-many 
association with the Order type. Each account may have many orders, while each order is associated with exactly one 
account. You want to find all of the orders that are being shipped to the same city and state as the account.



Chapter 3 ■ Querying an Entity Data Model

103

To start, this example leverages the Code-First approach for Entity Framework. In Listing 3-35, we create the 
entity classes.

Listing 3-35.  Account and Order Entity Types

public class Account
{
    public Account()
    {
        Orders = new HashSet<Order>();
    }
    public int AccountId { get; set; }
    public string City { get; set; }
    public string State { get; set; }
    public virtual ICollection<Order> Orders { get; set; }
}
 
public class Order
{
    public int OrderId { get; set; }
    public Decimal Amount { get; set; }
    public int AccountId { get; set; }
    public string ShipCity { get; set; }
    public string ShipState { get; set; }
    public virtual Account Account { get; set; }
}
 

Next, in Listing 3-36, we create the DbContext object, which is your gateway into Entity Framework functionality 
when leveraging the Code-First approach.

Listing 3-36.  The DbContext Object

public class EFRecipesEntities : DbContext
{
    public EFRecipesEntities()
        : base("ConnectionString") {}
  

Figure 3-18.  A model with an Account entity type and its associated Order entity type



Chapter 3 ■ Querying an Entity Data Model

104

    public DbSet<Order> Orders { get; set; }
    public DbSet<Account> Accounts { get; set; }
  
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        modelBuilder.Entity<Account>().ToTable("Chapter3.Account");
        modelBuilder.Entity<Order>().ToTable("Chapter3.Order");
  
        base.OnModelCreating(modelBuilder);
    }
}
  

To find the orders, follow the pattern in Listing 3-37.

Listing 3-37.  Using a Join on Multiple Properties to Find All of the Orders Being Shipped to the Account’s City  
and State

using (var context = new EFRecipesEntities())
{
    var a1 = new Account { City = "Raytown", State = "MO" };
    a1.CustomerOrders.Add(new CustomerOrder { Amount = 223.09M, ShipCity = "Raytown",
                              ShipState = "MO" });
    a1. CustomerOrders.Add(new CustomerOrder { Amount = 189.32M, ShipCity = "Olathe",
                              ShipState = "KS" });
  
    var a2 = new Account { City = "Kansas City", State = "MO" };
    a2. CustomerOrders.Add(new CustomerOrder { Amount = 99.29M, ShipCity = "Kansas City",
                              ShipState = "MO" });
  
    var a3 = new Account { City = "North Kansas City", State = "MO"};
    a3. CustomerOrders.Add(new CustomerOrder { Amount = 102.29M, ShipCity = "Overland Park",
                              ShipState = "KS" });
    context.Accounts.Add(a1);
    context.Accounts.Add(a2);
    context.Accounts.Add(a3);
    context.SaveChanges();
}
  
using (var context = new EFRecipesEntities())
{
    var orders = from o in context.CustomerOrders
                 join a in context.Accounts on
                  new {Id = o.AccountID, City = o.ShipCity, State = o.ShipState }
                 equals
                  new {Id = a.AccountID, City = a.City, State = a.State }
                 select o;
  
    Console.WriteLine("Orders shipped to the account's city, state...");
    foreach (var order in orders)
    {
        Console.WriteLine("\tOrder {0} for {1}", order.AccountID.ToString(),
                            order.Amount.ToString());
    }
}
 



Chapter 3 ■ Querying an Entity Data Model

105

Following is the output of the code in Listing 3-37:

Orders shipped to the account's city, state...
       Order 31 for $223.09
       Order 32 for $99.29 

How It Works
To solve this problem, you could find all the accounts and then go through each Orders collection and find the orders 
that are in the same city and state as the account. For a small number of accounts, this may be a reasonable solution. 
But in general, it is best to push this sort of processing into the store layer where it can be handled much more 
efficiently.

Out-of-the-gate, both Account and Order are joined by the AccountId property. However, in this solution, we 
form an explicit join by creating an anonymous type on each side of the equals clause for each of the entities. The 
anonymous construct is required when we join entities on more than one property. We need to make sure that both 
anonymous types are the same. They must have the same properties in the same order. Here, we are explicitly creating 
an inner-join relationship between the two tables on the database, meaning that orders to other cities and states 
would not be included due to the join condition.



107

Chapter 4

Using Entity Framework in  
ASP.NET MVC

ASP.NET is a free Web framework that supports three different technologies to create websites and Web applications; 
that is, Web Pages, Web Forms, and MVC. Although MVC is a very popular and well-established concept designed to 
be used as a pattern in software development, MVC in ASP.NET framework is fairly new technology. The latest version 
of ASP.NET MVC 4 was released in 2012. Since the release of the initial version in 2008, it has become a popular means 
for ASP.NET Web Forms development. Therefore, this chapter shows you recipes made only with ASP.NET MVC 4 and 
Entity Framework. Two other forms of ASP.NET technology—ASP.NET Web Forms and ASP.NET Web Pages—are not 
covered in this chapter.

The recipes in this chapter cover everything from building an insert, update, delete, and list page to 
implementing search functionality.

Each of the recipes in this chapter is shown using an ASP.NET MVC 4 Web application project in Visual Studio 
2012. We’ve tried to keep things simple by not including all of the extra code that comes with the default project 
template.

4.1. Building CRUD Operations in an ASP.NET MVC Page
The create, read, update, and delete (CRUD) operations are fundamental to almost every software application. We are 
going to implement these operations in this section using ASP.NET MVC.

Problem
You want to build an ASP.NET MVC page that allows inserting, updating, deleting, and reading from your model.

Solution
Let’s say you have a Web application that manages the list of software apps for a mobile device. You have a model like 
the one shown in Figure 4-1.



Chapter 4 ■ Using Entity Framework in ASP.NET MVC 

108

The model contains a Category entity. You want to create a few simple ASP.NET MVC pages to show the list of all 
of the app categories. You also want to allow the user to create a new app category, update an existing app category, 
and delete an app category. Although there are number of ways to do this, we will do it in a very simple way to build 
your understanding of the integration of Entity Framework with ASP.NET MVC. To create an MVC application,  
you will need three parts: a model, a controller, and a view. We have used the file MyStore.mdf as our database for 
this recipe. We are also using the Razor engine for all of the views. There is only one model but with multiple views, 
depending on the actions or operations required. In this case, we will have four views: one each for Create, Update, 
Delete, and List.

First we will create an ASP.NET MVC 4 Web Application using the project template Internet Application,  
as demonstrated in Figure 4-2 and Figure 4-3.

Figure 4-1.  A model with a Category entity that contains an application’s category name and description

Figure 4-2.  Selecting an ASP.NET MVC Web Application project in Visual Studio 2012



Chapter 4 ■ Using Entity Framework in ASP.NET MVC 

109

A new project is created in Visual Studio IDE with number of default files and folders.
Now we have to set up the database for this application. We will use a MyStore.mdf file database within our 

project to make everything simple and clear.
An MDF file-based database can easily be created within the Visual Studio development environment. This 

MDF file-based database can then be attached to a SQL Server Express instance and used as a normal, full-fledged 
database. The difference here is that it is attached through a connection string and not as a permanently attached 
database onto a SQL Server instance.

Right click on the App_Data folder to add a new .mdf file. This file can be added in two ways: either click on New 
Item in the Add context menu, as shown in Figure 4-4, or click on SQL Server Database entry, as shown in Figure 4-5.

Figure 4-3.  Selecting a project template for an ASP.NET MVC application



Chapter 4 ■ Using Entity Framework in ASP.NET MVC 

110

After creating the three tables as .mdf files, as shown in Figure 4-6, we generated a new model using Entity 
Framework.

Figure 4-5.  Selecting a SQL Server Database file as a new item to add

Figure 4-4.  Adding a new item in the App_Data folder



Chapter 4 ■ Using Entity Framework in ASP.NET MVC 

111

The model is generated by adding an ADO.NET Entity Data Model into Models folder of your project,  
as shown in Figure 4-7.

Figure 4-6.  Three tables with their relationships



Chapter 4 ■ Using Entity Framework in ASP.NET MVC 

112

As we have discussed, there are three parts to an ASP.NET MVC application: model, view, and controller. We have 
now completed the model creation part. Next we need to create a controller and then finally create the views. The 
number of views is dependent on the amount of actions that are required to be performed through the controller.

Add a new controller, as shown in Figure 4-8, by right-clicking on the Controllers folder and then selecting Add 
Controller. Name the controller CategoryController.

Figure 4-7.  Adding an Entity Data Model

Figure 4-8.  Adding a controller



Chapter 4 ■ Using Entity Framework in ASP.NET MVC 

113

As you know, we selected the template of empty read/write actions while adding CategoryController. It will 
create all of the dummy action methods in the controller code. The DbContext code for this recipe is shown in 
Listing 4-1.

Listing 4-1.  Inherited DbContext Class to Perform Operations in the Database Using Entity Framework

namespace MyStore.Models
{
    using System;
    using System.Data.Entity;
    using System.Data.Entity.Infrastructure;
     
    public partial class MyStoreEntities : DbContext
    {
        public MyStoreEntities()
            : base("name=MyStoreEntities")
        {
        }
     
        protected override void OnModelCreating(DbModelBuilder modelBuilder)
        {
            throw new UnintentionalCodeFirstException();
        }
     
        public DbSet<App> Apps { get; set; }
        public DbSet<Category> Categories { get; set; }
        public DbSet<Developer> Developers { get; set; }
    }
}
 

We have to change the code, as shown in Listing 4-2, in these action methods to perform insert, delete, edit, and 
view on models using DbContext class.

Listing 4-2.  Controller Code for Category Model

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using MyStore.Models;
namespace MyStore.Controllers
{
    public class CategoryController : Controller
    {
        // GET: /Category/
 



Chapter 4 ■ Using Entity Framework in ASP.NET MVC 

114

        public ActionResult Index()
        {
            using (var db = new MyStoreEntities())
                {
                    return View(db.Categories.ToList());
                }
        }
 
        //
        // GET: /Category/Details/5
 
        public ActionResult Details(int id)
        {
            using (var db = new MyStoreEntities())
                {
                    return View(db.Categories.Find(id));
                }
        }
 
        //
        // GET: /Category/Create
 
        public ActionResult Create()
        {
            return View();
        }
 
        //
        // POST: /Category/Create
 
        [HttpPost]
        public ActionResult Create(Category categoryValue)
        {
            try
                {
                    using (var db = new MyStoreEntities())
                        {
                            db.Categories.Add(categoryValue);
                            db.SaveChanges();
                        }
                            return RedirectToAction("Index");
                }
            catch
                {
                    return View();
                }
        }
         



Chapter 4 ■ Using Entity Framework in ASP.NET MVC 

115

        // GET: /Category/Edit/5
        public ActionResult Edit(int id)
        {
            using (var db = new MyStoreEntities())
                {
                    return View(db.Categories.Find(id));
                }
        }
                   
        // POST: /Category/Edit/5
        [HttpPost]
        public ActionResult Edit(int id, Category categoryValue)
        {
            try
                {
                    using (var db = new MyStoreEntities())
                        {
                            db.Entry(categoryValue).State = System.Data.EntityState.Modified;
                            db.SaveChanges();
                            return RedirectToAction("Index");
                        }
                }
            catch
                {
                    return View();
                }
        }
 
        //
        // GET: /Category/Delete/5
 
        public ActionResult Delete(int id)
        {
            using (var db = new MyStoreEntities())
                {
                    return View(db.Categories.Find(id));
                }
        }
 
        //
        // POST: /Category/Delete/5
 
        [HttpPost]
        public ActionResult Delete(int id, Category categoryValue)
        {
            try
                {
                    using (var db = new MyStoreEntities())



Chapter 4 ■ Using Entity Framework in ASP.NET MVC 

116

                        {
                            db.Entry(categoryValue).State = System.Data.EntityState.Deleted;
                            db.SaveChanges();
                            return RedirectToAction("Index");
                        }
                }
            catch
                {
                    return View();
                }
        }
    }
}
 

Create five views for all of the actions as Create, Delete, Details, Edit, and Index in CategoryController. You can 
add a view, as shown in Figure 4-9, by right-clicking on any operation in the controller and selecting AddView. A new 
view will be added into the Views ➤ Category folder, as shown in Figure 4-9.

Figure 4-9.  Adding a view using an action method in the controller



Chapter 4 ■ Using Entity Framework in ASP.NET MVC 

117

In the Add View dialog box shown in Figure 4-10, select View Engine as Razor (CSHTML), and then click the 
checkbox to create a strongly-typed view, and finally select the Model class as Category (MyStore.Models).

The index view in Listing 4-3 displays a page that lists the app categories, along with buttons for inserting new 
categories as well as editing and deleting current categories. The create view page in Listing 4-4 is used to insert a new 
application category.

Listing 4-3.  The Code of Index View

@model IEnumerable<MyStore.Models.Category>
 
@{
    Layout = null;
}
 
<!DOCTYPE html>
 

Figure 4-10.  Adding a view



Chapter 4 ■ Using Entity Framework in ASP.NET MVC 

118

<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Entity Framework Recipes - Recipe 1</title>
</head>
<body>
                 <h2>Manage Apps Category</h2>
    <p>
        @Html.ActionLink("Create New", "Create")
    </p>
    <table>
        <tr>
            <th>
                @Html.DisplayNameFor(model => model.Name)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Description)
            </th>
            <th></th>
        </tr>
     
    @foreach (var item in Model) {
        <tr>
            <td>
                @Html.DisplayFor(modelItem => item.Name)
            </td>
            <td>
                @Html.DisplayFor(modelItem => item.Description)
            </td>
            <td>
                @Html.ActionLink("Edit", "Edit", new { id=item.CategoryId }) |
                @Html.ActionLink("Details", "Details", new { id=item.CategoryId }) |
                @Html.ActionLink("Delete", "Delete", new { id=item.CategoryId })
            </td>
        </tr>
    }
     
    </table>
</body>
</html>

Listing 4-4.  The Code of Create View

@model MyStore.Models.Category
 
@{
    Layout = null;
}
 
<!DOCTYPE html>
 



Chapter 4 ■ Using Entity Framework in ASP.NET MVC 

119

<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Entity Framework Recipes - Recipe 1</title>
</head>
<body>
                 <h2>Manage Apps Category</h2>
     
    @using (Html.BeginForm()) {
        @Html.AntiForgeryToken()
        @Html.ValidationSummary(true)
     
        <fieldset>
            <legend>Category</legend>
     
            <div class="editor-label">
                @Html.LabelFor(model => model.Name)
            </div>
            <div class="editor-field">
                @Html.EditorFor(model => model.Name)
                @Html.ValidationMessageFor(model => model.Name)
            </div>
     
            <div class="editor-label">
                @Html.LabelFor(model => model.Description)
            </div>
            <div class="editor-field">
                @Html.EditorFor(model => model.Description)
                @Html.ValidationMessageFor(model => model.Description)
            </div>
     
            <p>
                <input type="submit" value="Create" />
            </p>
        </fieldset>
    }
     
    <div>
        @Html.ActionLink("Back to List", "Index")
    </div>
    <script src="~/Scripts/jquery-1.8.2.min.js"></script>
    <script src="~/Scripts/jquery.validate.min.js"></script>
    <script src="~/Scripts/jquery.validate.unobtrusive.min.js"></script>
</body>
</html>
 

The code of the index view in Listing 4-3 displays a page that lists the app categories, along with the buttons 
for inserting new categories as well as those for editing and deleting current categories. This index page is shown in 
Figure 4-11.



Chapter 4 ■ Using Entity Framework in ASP.NET MVC 

120

The text boxes shown in Figure 4-12 allow the user to enter the category information. Clicking the Create button 
causes the new record to be added to the database.

Figure 4-11.  The listing of the app categories

Figure 4-12.  Inserting a new app category

Clicking the Edit button on a category shows the view that allows editing of an existing app category as shown in 
Figure 4-13.



Chapter 4 ■ Using Entity Framework in ASP.NET MVC 

121

How It Works
The entire code base is divided into three parts:

	 1.	 Model with DbContext class (Listing 4-1)

	 2.	 Controller code  (Listing 4-2)

	 3.	 View code (Listing 4-3 and Listing 4-4)

The controller is the largest piece of the code, and it is the heart of the functionality of all the operations. The 
views are created on the basis of action methods in the Controller. All of the code that is used to fetch, create, update, 
and delete is addressed in the action methods. Whenever a view is accessed through a URL or another view, the 
corresponding action method of that operation is called upon in the controller to perform that action. We selected the 
scaffolding option while creating new views, which automatically generates the HTML code of edit, create, and list 
using the Razor view engine, depending upon the scaffolding option selected.

4-2. Building a Search Query 
Searching data is a very basic functionality that most of the applications have. It is very dynamic in nature, as users 
can use any criteria, if provided, to search, or none.  So we discuss below in detail the basic implementation of search 
functionality.

Problem
You want to build a search page in ASP.NET MVC 4 using Entity Framework.

Figure 4-13.  Editing an app category



Chapter 4 ■ Using Entity Framework in ASP.NET MVC 

122

Solution
Let’s say you have a model like the one in Figure 4-14. In the solution, we are going to use three basic parts to build our 
search page:

	 1.	 A table to structure the query parameters.

	 2.	 A WebGrid to present the results in Razor view.

	 3.	 A Controller to incorporate the logic for the view.

In the database, you have a Customer table, which stores the Name, City and State information of all the 
customers. The data model (schema) of the Customer table is shown in Figure 4-14.

After having the Customer view model created, we need to write the view using Razor. In this view, we are using 
WebGrid control to show the Customer records as mentioned in Listing 4-5.

Listing 4-5.  Using WebGrid in MVC Razor View

@model EntityFrameworkRecipe2.ViewModels.CustomerVM
 
@{
    Layout = null;
}
 
@{
    ViewBag.Title = "Customer";
    WebGrid grid = new WebGrid(canPage:false,canSort:false);
                   grid.Bind(Model.Customers,
                   autoSortAndPage: false
    );
}
 
@using (Html.BeginForm())
{
<table>
    <tr>
        <td>
            Name
        </td>

Figure 4-14.  A model with a Customer entity



Chapter 4 ■ Using Entity Framework in ASP.NET MVC 

123

        <td>
            @Html.TextBoxFor(model => model.Name)
        </td>
    </tr>
    <tr>
        <td>
            City
        </td>
        <td>
            @Html.TextBoxFor(model => model.City)
        </td>
    </tr>
    <tr>
        <td>
            State
        </td>
        <td>
            @Html.TextBoxFor(model => model.State)
        </td>
    </tr>
    <tr>
        <td colspan="2">
            <input type="submit" id="search" title="Search" value="Search" />
        </td>
    </tr>
</table>
<div id="searchResults">
    <!-- placeHolder for search results -->
         @grid.GetHtml(
         fillEmptyRows: true,
         alternatingRowStyle: "alternate-row",
         headerStyle: "grid-header",
         footerStyle: "grid-footer",
         columns: new [] {
         grid.Column("Name"),
         grid.Column("City"),
         grid.Column("State")
         })
</div>
} 

Once this view is written, we are going to write the Controller with both Get and Post actions of Search function, 
in which we are going to provide the implementation to fetch the Customer data from database and populate into the 
view model. This implementation is shown in Listing 4-6.



Chapter 4 ■ Using Entity Framework in ASP.NET MVC 

124

Listing 4-6.  The Controller Code That Builds the Data to Test Our Search Page

public class CustomerController : Controller
    {
        public ActionResult Search()
            {
                using (var db = new CustomerEntities())
                    {
                        var customer = db.Customers.ToList();
                        var data = new CustomerVM()
                            {
                                Customers = customer
                            };
                        return View(data);
                    }
            }
    [HttpPost]
        public ActionResult Search(CustomerVM customerVmValue)
            {
                using (var db = new CustomerEntities())
                    {
                        var customerSearchResults = from customerRec in db.Customers
                        where ((customerVmValue.Name == null) || (customerRec.Name == 
customerVmValue.Name.Trim()))
                        && ((customerVmValue.City == null) || (customerRec.City ==  
customerVmValue.City.Trim()))
                        && ((customerVmValue.State == null) || (customerRec.State == 
customerVmValue.State.Trim()))
                        select new
                            {
 
                                Id = customerRec.CustomerId,
                                Name = customerRec.Name,
                                City = customerRec.City,
                                State = customerRec.State
                            };
                                List<Customer> lstCustomer = new  List<Customer>();
                                    foreach (var record in customerSearchResults)
                                        {
                                            Customer customerValue = new Customer();
                                            customerValue.Id = record.Id;
                                            customerValue.Name = record.Name;
                                            customerValue.City = record.City;
                                            customerValue.State = record.State;
                                            lstCustomer.Add(customerValue);
                                        }
                                            customerVmValue.Customers = lstCustomer;
                                            return View(customerVmValue);
                    }
            }
    }
 



Chapter 4 ■ Using Entity Framework in ASP.NET MVC 

125

How It Works
In the first section of the page (see Listing 4-5), we format the query fields using a table. There’s nothing fancy 
here—the idea is to provide some structure to capture the three query fields: Name, City, and State. These values, or 
the lack of them, will be used in the Controller’s Search action method after the Search button is clicked. Thus these 
parameters will form the filter for the query.

Next we use an HTML helper to show the result set using WebGrid control. The data source will be the view 
model. Take note here that we have created two models: one to fetch the data from the database and one to be used 
as a model for the view that will capture the query parameters from the page and also show the customer records. 
Actually, the first model will be created at the moment we generate the entity data model for Customer table.

We are using Linq-to-entities to query the Customer entity data model. The where clause and parameter 
variables define the filter of our query. In the view, we map the parameters of the search query to the Name, City, and 
State HTML helper text boxes. We map the Name property of the model to the Name text box, and so on.

We use a WebGrid to display the results. The WebGrid is bound with the Customer model list, which is a model 
that is capturing only the search results.

The controller code, shown in Listing 4-6, is used fetch the results from database and fill the view the first time 
view is rendered and also when the Search button is clicked. We have used an .mdf file local database and filled the 
records in Customer table.

4-3. Filtering with ASP.NET’s URL Routing
Problem
You want to simplify the URLs on your site using a MapRoute. You also want to leverage these routes to filter the result 
sets in the Razor view engine.

Figure 4-15.  The rendered view shown in a browser

In your browser, the page should appear similar to the one shown in Figure 4-15.



Chapter 4 ■ Using Entity Framework in ASP.NET MVC 

126

Solution
Suppose your model looks like the one in Figure 4-16. Here we’ve modeled our products, represented by the Product 
entity, together with their categories. In a typical eCommerce website, we would show products by category. We 
want to avoid exposing query strings like /Products/Index?Category=Tents in our URLs. While these cryptic URLs 
simplify programming a little, they don’t help much when it comes to search engine optimization. We would rather 
have URLs that look more like /Products/Tents.

We can get this more Search Engine Optimization–friendly URL structure by using routing. Routes are typically 
created in the Application_Start() event handler in Global.asax. The code in Listing 4-7 illustrates adding a route 
for the Product controller.

Listing 4-7.  Adding the Route in Global.asax

protected void Application_Start()
{
    RouteTable.Routes.MapRoute("Product", "{controller}/{name}", new { controller = "Product", 
action = "Index" });
    RouteConfig.RegisterRoutes(RouteTable.Routes);
}
 

In the Index view as shown in the Listing 4-8, we use the category name bound to the name parameter in the Index 
method of Product controller, as illustrated in Listing 4-7. We use the controller code in Listing 4-9 to fetch the value of 
the category name parameter and produce the results through View. Figure 4-17 and Figure 4-18 show the rendered 
pages for categories Tents and Cooking Equipment.

Listing 4-8.  The Index View Code That Displays the Products Filtered by Category

@model IEnumerable<EntityFrameworkRecipe3.ViewModels.ProductVM>
 
@{
    Layout = null;
}
 
<!DOCTYPE html>
 

Figure 4-16.  A model for products and their categories



Chapter 4 ■ Using Entity Framework in ASP.NET MVC 

127

<html>
<head>
    <meta name="viewport" content="width=device-width" />
    <title>Index</title>
</head>
<body>
    <table>
        <tr>
            <th>
                @Html.DisplayNameFor(model => model.Name)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.CategoryName)
            </th>
            <th></th>
        </tr>
     
    @foreach (var item in Model) {
        <tr>
            <td>
                @Html.DisplayFor(modelItem => item.Name)
            </td>
            <td>
                @Html.DisplayFor(modelItem => item.CategoryName)
            </td>
        </tr>
    }
     
    </table>
</body>
</html> 

Listing 4-9.  The Controller Code That Populates the Model with the Product Data Filtered by Category Name

public class ProductController : Controller
    {
        //
        // GET: /Product/
 
        public ActionResult Index(string name)
        {
            using (var db = new ProductEntities())
                {
                    var query = from productRec in db.Products
                    join categoryRec in db.Categories
                    on productRec.CategoryId
                    equals categoryRec.CategoryId
                    where categoryRec.Name == name
                    select new



Chapter 4 ■ Using Entity Framework in ASP.NET MVC 

128

                        {
                            Name = productRec.Name,
                            CategoryName = categoryRec.Name
                        };
                            List<ProductVM> lstProduct = new List<ProductVM>();
                            foreach(var record in query)
                                {
                                    ProductVM productValue = new ProductVM();
                                    productValue.Name = record.Name;
                                    productValue.CategoryName = record.CategoryName;
                                    lstProduct.Add(productValue);
                                }
                            return View(lstProduct);
                }
        }
 
    } 

How It Works
In the Application_Start() event handler in Global.asax, we mapped the route /Product/{name} to the /Product/
Index?name=category. The route key, category, is bound to the actual category string in the URL. In the Product 
controller, we used the name route key in a MapRoute to filter the result set to filter those products in the given category.

Figure 4-17.  Using the route /Product/Tents, the result set is filtered to the Tents category

Figure 4-18.  Using the route /Product/Cooking Equipment, the result set is filtered to the Cooking Equipment category



129

Chapter 5

Loading Entities and Navigation 
Properties

Entity Framework provides a rich modeling environment that enables the developer to work visually with entity 
classes that map to database tables, views, stored procedures, and relationships. The recipes in this chapter show you 
how to control the loading of related entities in your query operations.

The default behavior for Entity Framework is to load only the entities directly needed by your application. In general, 
this is exactly what you want. If Entity Framework aggressively loaded all of the entities related through one or more 
associations, you would likely end up loading more entities than you needed. This would increase the memory footprint  
of your application as well as impact performance.

In Entity Framework, you can control when the loading of related entities occurs and optimize the number of 
database queries executed. Carefully managing if and when related entities are loaded can increase application 
performance and provide you more control over your data.

In this chapter, we illustrate the various options available for loading related data along with an explanation 
about the benefits and drawbacks of each. Specifically, we discuss the default behavior of lazy loading and what it 
really means. Then we’ll look at a number of recipes illustrating the various options you have to load some or all of 
the related entities in a single query. This type of loading, called eager loading, is used both to reduce the number of 
round trips to the database and, more precisely, to control which related entities are loaded.

Sometimes you need to defer loading of certain related entities because they may be expensive to load or are not 
used very often. For these cases, we’ll cover yet another approach to loading related entities, entitled explicit loading, 
and demonstrate a number of scenarios using the Load() method to control precisely when to load one or more 
related entities.

Finally, we’ll take a brief look at some of the asynchronous operations that are now available.

5-1. Lazy Loading Related Entities
Problem
You want to load an entity and then load related entities, only if and when they are needed by your application.

Solution
Let’s say that you have a model like the one shown in Figure 5-1.



Chapter 5 ■ Loading Entities and Navigation Properties

130

In this model, we have a Customer entity with a single CustomerType and many CustomerEmail addresses.  
The association with CustomerType is one-to-many with CustomerType on the one side of the association. This is an 
entity reference.

The association with CustomerEmail is also one-to-many but with CustomerEmail on the many side of the 
association. This is an entity collection.

When we put all three entity classes together, we arrive at a construct called an object graph. An object graph is  
a set of individual, but related entities, which together form a logical whole unit. Specifically, an object graph is a view 
of a given entity and its related entities at a specific point in time. For example, during an operation in our application, 
a customer with an Id of 5 may contain the name “John Smith,” have a customer type of “preferred,” and a collection  
of 10 customer emails.

Listing 5-1 demonstrates the lazy loading behavior of Entity Framework, which is the default behavior for loading 
related entity objects.

Listing 5-1.  Lazy Loading of Instances of Customertype and Customeremail Along with Instances of Customer

using (var context = new EFRecipesEntities())
{
    var customers = context.Customers;
     
    Console.WriteLine("Customers");
    Console.WriteLine("=========");
 
    // Only information from the Customer entity is requested
    foreach (var customer in customers)
    {
        Console.WriteLine("Customer name is {0}", customer.Name);
    }
 
    // Now, application is requesting information from the related entities, CustomerType
    // and CustomerEmail, resulting in Entity Framework generating separate queries to each
    // entity object in order to obtain the requested information.
    foreach (var customer in customers)
    {
        Console.WriteLine("{0} is a {1}, email address(es)", customer.Name,
                            customer.CustomerType.Description);
        foreach (var email in customer.CustomerEmails)

Figure 5-1.  A model with a Customer and its related information



Chapter 5 ■ Loading Entities and Navigation Properties

131

        {
            Console.WriteLine("\t{0}", email.Email);
        }
    }
 
    // Extra credit:
    // If you enable SQL Profiler, the following query will not requery the database
    // for related data. Instead, it will return the in-memory data from the prior query.
    foreach (var customer in customers)
    {
        Console.WriteLine("{0} is a {1}, email address(es)", customer.Name,
                            customer.CustomerType.Description);
        foreach (var email in customer.CustomerEmails)
        {
            Console.WriteLine("\t{0}", email.Email);
        }
    }
}
 

The output of the code in Listing 5-1 is the following:

Customers
=========
Customer name is Joan Smith
Customer name is Bill Meyers
Joan Smith is a Web Customer, email address(es)
        jsmith@gmail.com
        joan@smith.com
Bill Meyers is a Retail Customer, email address(es)
        bmeyers@gmail.com
Joan Smith is a Web Customer, email address(es)
        jsmith@gmail.com
        joan@smith.com
Bill Meyers is a Retail Customer, email address(es)
        bmeyers@gmail.com

How It Works
By default, Entity Framework loads only entities that you specifically request. This is known as lazy loading, and it 
is an important principle to keep in mind. The alternative, loading the parent and every associated entity, known as 
eager loading, may load a much larger object graph into memory than you need, not to mention the added overhead 
of retrieving, marshaling, and materializing a larger amount of data.

In this example, we start by issuing a query against the Customer entity to load all customers. Interestingly, the 
query itself is not executed immediately, but rather when we first enumerate the Customer entity in the first foreach 
construct. This behavior follows the principle of deferred loading upon which LINQ is built.

In the first foreach construct, we only request data elements from the underlying Customer table and not any 
data from the CustomerType or CustomerEmail table. In this case, Entity Framework only queries the Customer table 
and not the related CustomerType or CustomerEmail tables.

Then, in the second foreach construct, we explicitly reference the Description property from the CustomerType entity 
and the Email property from the CustomerEmail entity. Directly accessing these properties results in Entity Framework 
generating a query to each related table for the requested data. It’s important to understand that Entity Framework generates 

http://jsmith@gmail.com/
http://joan@smith.com/
http://mailto:bmeyers@gmail.com/
http://jsmith@gmail.com/
http://joan@smith.com/
http://bmeyers@gmail.com/


Chapter 5 ■ Loading Entities and Navigation Properties

132

a separate query the first time either of the related tables are accessed. Once a query has been invoked for a property from 
a related entity, Entity Framework will mark the property as loaded and will retrieve the data from memory as opposed to 
requerying the underlying table over and over again. In this example, four separate queries are generated for child data:

A select statement against CustomerType and CustomerEmail for Joan Smith•	

A select statement against CustomerType and CustomerEmail for Bill Meyers•	

This separate query for each child table works well when a user is browsing your application and requests 
different data elements depending on his or her needs at the moment. It can improve application response time, 
since data is retrieved as needed with a series of small queries, as opposed to loading a large amount of data up front, 
potentially causing a delay in rendering the view to the user.

This approach, however, is not so efficient when you know, up front, that you will require a large set of data from 
related tables. In those cases, a query with eager loading may be a better option as it can retrieve all of the data  
(from both the parent and related tables) in a single query.

The last code block, entitled ‘Extra Credit,’ demonstrates that once child properties are loaded, Entity Framework will 
retrieve their values from in-memory and not requery the database. Turn on the SQL Server Profiler Tool, run the example 
and note how the ‘Extra Credit’ code block does not generate SQL Select statements when child properties are referenced.

Note■■  S QL Server Profiler is a great tool for inspecting the actual query statements generated by SQL Server. It is free and 
included with SQL Server Developer Edition and better: http://technet.microsoft.com/en-us/library/ms181091.aspx

5-2. Eager Loading Related Entities
Problem
You want to load an entity along with some related entities in a single trip to the database.

Solution
Let’s say that you have a model like the one shown in Figure 5-2.

Figure 5-2.  A model with a Customer and its related information

Similar to Recipe 5-1, in this model we have a Customer entity with a single CustomerType and many 
CustomerEmail addresses. The association with CustomerType is one-to-many with CustomerType on the one side of 
the association. This is an entity reference.

http://technet.microsoft.com/en-us/library/ms181091.aspx


Chapter 5 ■ Loading Entities and Navigation Properties

133

To fetch the parent customer entity objects and all of the related CustomerEmail entities and CustomerType 
entity objects at once, we use the Include() method syntax, as shown in Listing 5-2.

Listing 5-2.  Eager Loading of Instances of Customertype and Customeremail Along with Instances of Customer

using (var context = new EFRecipesEntities())
{
    var web = new CustomerType { Description = "Web Customer",
                                 CustomerTypeId = 1 };
    var retail = new CustomerType { Description = "Retail Customer",
                                    CustomerTypeId = 2 };
    var customer = new Customer { Name = "Joan Smith", CustomerType = web };
    customer.CustomerEmails.Add(new CustomerEmail
                                        { Email = "jsmith@gmail.com" });
    customer.CustomerEmails.Add(new CustomerEmail { Email = "joan@smith.com" });
    context.Customers.Add(customer);
    customer = new Customer { Name = "Bill Meyers", CustomerType = retail };
    customer.CustomerEmails.Add(new CustomerEmail
                                        { Email = "bmeyers@gmail.com" });
    context.Customers.Add(customer);
    context.SaveChanges();
}
 
using (var context = new EFRecipesEntities())
{
    // Include() method with a string-based query path to the
    // corresponding navigation properties
    var customers = context.Customers
          .Include("CustomerType")
          .Include("CustomerEmails");
 
    Console.WriteLine("Customers");
    Console.WriteLine("=========");
    foreach (var customer in customers)
    {
        Console.WriteLine("{0} is a {1}, email address(es)", customer.Name,
                            customer.CustomerType.Description);
        foreach (var email in customer.CustomerEmails)
        {
            Console.WriteLine("\t{0}", email.Email);
        }
    }
}
 
using (var context = new EFRecipesEntities())
{
    // Include() method with a strongly typed query path to the
    // corresponding navigation properties
    var customerTypes = context.CustomerTypes
          .Include(x => x.Customers)
          .Select(y =>y.CustomerEmails));
 

http://jsmith@gmail.com/
http://joan@smith.com/
http://bmeyers@gmail.com/


Chapter 5 ■ Loading Entities and Navigation Properties

134

    Console.WriteLine("\nCustomers by Type");
    Console.WriteLine("=================");
    foreach (var customerType in customerTypes)
    {
        Console.WriteLine("Customer type: {0}", customerType.Description);
        foreach (var customer in customerType.Customers)
        {
            Console.WriteLine("{0}", customer.Name);
            foreach (var email in customer.CustomerEmails)
            {
                Console.WriteLine("\t{0}", email.Email);
            }
        }
    }
}
 

The output of the code in Listing 5-2 is the following:

Customers
=========
Joan Smith is a Web Customer, email address(es)
        jsmith@gmail.com
        joan@smith.com
Bill Meyers is a Retail Customer, email address(es)
        bmeyers@gmail.com
 
Customers by Type
=================
Customer type: Web Customer
Joan Smith
        jsmith@gmail.com
        joan@smith.com
Customer type: Retail Customer
Bill Meyers
        bmeyers@gmail.com

How It Works
By default, Entity Framework loads only entities that you specifically request. This is known as lazy loading and can 
be quite efficient in the use case where a user is browsing your application and may navigate to different views based 
upon his or her needs.

An alternative, loading the parent and related entities (keep in mind that our object graph is a set of parent/child 
entities based on relationships, similar to parent/child database tables with foreign key relationships) at once, is known 
as eager loading. This approach can be efficient when you know, up front, that you will require a large set of related 
data, as it can retrieve all data (both from the parent and related entities) in a single query.

In Listing 5-2, to fetch the object graph all at once, we use the Include() method twice. In the first use, we start 
the object graph with Customer and include an entity reference to the CustomerType entity. This is on the one side 
of the one-to-many association. Then, in the subsequent Include() method (contained in the same line of code, 
chained together), we get the many side of the one-to-many association, bringing along all of the instances of the 

http://jsmith@gmail.com/
http://joan@smith.com/
http://bmeyers@gmail.com/
http://jsmith@gmail.com/
http://joan@smith.com/
http://bmeyers@gmail.com/


Chapter 5 ■ Loading Entities and Navigation Properties

135

CustomerEmail entity for the customer. By chaining together the Include() method twice in a fluent API manner,  
we fetch referenced entities from both of the Customer’s navigation properties. Note that in this example we use string 
representations of the navigation properties, separated by the “.” character, to identify the related entity objects.  
The string representation is referred as the query path of the related objects.

In the following foreach construct, we perform the exact same operation, but using strongly typed query paths. 
Note here how we use lambda expressions to identify each of the related entities. The strongly typed usage provides us 
with both IntelliSense, compile-time safety and refactoring support.

Note that the SQL query that is generated in Listing 5-3 is generated from usage of the Include() method. Entity 
Framework automatically removes data that is duplicated by the query, as shown in Figure 5-3, before the result is 
materialized and sent back to the application.

Listing 5-3.  The SQL Query Resulting from Our Use of the Include() Method

SELECT
[Project1].[CustomerId] AS [CustomerId],
[Project1].[Name] AS [Name],
[Project1].[CustomerTypeId] AS [CustomerTypeId],
[Project1].[CustomerTypeId1] AS [CustomerTypeId1],
[Project1].[Description] AS [Description],
[Project1].[C1] AS [C1],
[Project1].[CustomerEmailId] AS [CustomerEmailId],
[Project1].[CustomerId1] AS [CustomerId1],
[Project1].[Email] AS [Email]
FROM ( SELECT
                 [Extent1].[CustomerId] AS [CustomerId],
                 [Extent1].[Name] AS [Name],
                 [Extent1].[CustomerTypeId] AS [CustomerTypeId],
                 [Extent2].[CustomerTypeId] AS [CustomerTypeId1],
                 [Extent2].[Description] AS [Description],
                 [Extent3].[CustomerEmailId] AS [CustomerEmailId],
                 [Extent3].[CustomerId] AS [CustomerId1],
                 [Extent3].[Email] AS [Email],
                 CASE WHEN ([Extent3].[CustomerEmailId] IS NULL) THEN CAST(NULL AS int) ELSE 1 END AS [C1]
                 FROM   [Chapter5].[Customer] AS [Extent1]
                 INNER JOIN [Chapter5].[CustomerType] AS [Extent2] ON  
[Extent1].[CustomerTypeId] = [Extent2].[CustomerTypeId]
                 LEFT OUTER JOIN [Chapter5].[CustomerEmail] AS [Extent3] ON  
[Extent1].[CustomerId] = [Extent3].[CustomerId]
)  AS [Project1]
ORDER BY [Project1].[CustomerId] ASC, [Project1].[CustomerTypeId1] ASC, [Project1].[C1] ASC 

Figure 5-3.  Redundant data resulting from the Include() method



Chapter 5 ■ Loading Entities and Navigation Properties

136

5-3. Finding Single Entities Quickly
Problem
You want to load a single entity, but you do not want to make another trip to the database if the entity is already loaded in 
the context. Additionally, you want to implement the Code-First approach for Entity Framework 6 to manage data access.

Solution
Let’s say that you have a model like the one shown in Figure 5-4.

Figure 5-4.  A simple model that represents Club entity objects

In this model, we have a Club entity that we can query to obtain information about various clubs.
Start by adding a console application project to Visual Studio entitled Recipe3. Be certain to reference the Entity 

Framework 6 libraries. Leveraging the NuGet Package Manager does this best. Right-click on Reference, and select 
Manage NuGet Packages. From the Online tab, locate and install the Entity Framework 6 package. Doing so will 
download, install, and configure the Entity Framework 6 libraries in your project.

To create the club entity, create a class entitled Club and copy the properties into it from Listing 5-4.

Listing 5-4.  Club Entity Class

public class Club
{
    public int ClubId { get; set; }
    public string Name { get; set; }
    public string City { get; set; }
}
 

Next create a class entitled Recipe3Context and add the code from Listing 5-5 to it, ensuring the class derives 
from the Entity Framework DbContext class.

Listing 5-5.  Context Class

public class Recipe3Context : DbContext
{
    public Recipe3Context()
        : base("Recipe3ConnectionString")



Chapter 5 ■ Loading Entities and Navigation Properties

137

    {
        // Disable Entity Framework Model Compatibility
        Database.SetInitializer<Recipe3Context>(null);
    }
  
    public DbSet<Club> Clubs { get; set; }
 
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        modelBuilder.Entity<Club>().ToTable("Chapter5.Club");
    }
}
 

Next add an App.Config class to the project, and add the code from Listing 5-6 to it under the ConnectionStrings 
section.

Listing 5-6.  Connection String

<connectionStrings>
  <add name="Recipe3ConnectionString"
       connectionString="Data Source=.;
       Initial Catalog=EFRecipes;
       Integrated Security=True;
       MultipleActiveResultSets=True"
       providerName="System.Data.SqlClient" />
</connectionStrings>
 

If we are searching for an entity by a key value, a common operation, we can leverage the Find() method first 
to search the in-memory context object for a requested entity before attempting to fetch it from the database. Keep 
in mind that the default behavior of Entity Framework is to query the database each time you issue an operation to 
retrieve data, even if that data has already been loaded into memory in the context object.

The Find() method is a member of the DbSet class, which we use to register each entity class in the underlying 
DbContext object. The pattern is demonstrated in Listing 5-7.

Listing 5-7.  Leveraging the Find() Method in Entity Framework to Avoid Fetching Data That Has Already Been 
Loaded into the Context

using (var context = new Recipe3Context())
{
    var starCity = new Club {Name = "Star City Chess Club", City = "New York"};
    var desertSun = new Club {Name = "Desert Sun Chess Club", City = "Phoenix"};
    var palmTree = new Club {Name = "Palm Tree Chess Club", City = "San Diego"};
  
    context.Clubs.Add(starCity);
    context.Clubs.Add(desertSun);
    context.Clubs.Add(palmTree);
    context.SaveChanges();
  
    // SaveChanges() returns newly created Id value for each club
    starCityId = starCity.ClubId;
    desertSunId = desertSun.ClubId;
    palmTreeId = palmTree.ClubId;
}
 



Chapter 5 ■ Loading Entities and Navigation Properties

138

using (var context = new Recipe3Context())
{
    var starCity = context.Clubs.SingleOrDefault(x => x.ClubId == starCityId);
    starCity = context.Clubs.SingleOrDefault(x => x.ClubId == starCityId);
    starCity = context.Clubs.Find(starCityId);
    var desertSun = context.Clubs.Find(desertSunId);
    var palmTree = context.Clubs.AsNoTracking().SingleOrDefault(x => x.ClubId == palmTreeId);
    palmTree = context.Clubs.Find(palmTreeId);
    var lonesomePintId = -999;
    context.Clubs.Add(new Club {City = "Portland", Name = "Lonesome Pine", ClubId = lonesomePintId,});
    var lonesomePine = context.Clubs.Find(lonesomePintId);
    var nonexistentClub = context.Clubs.Find(10001);
}

How It Works
When querying against the context object, a round trip will always be made to the database to retrieve requested data, 
even if that data has already been loaded into the context object in memory. When the query completes, entity objects 
that do not exist in the context are added and then tracked. By default, if the entity object is already present in the 
context, it is not overwritten with more recent database values.

However, the DbSet object, which wraps each of our entity objects, exposes a Find() method. Specifically, Find() 
expects an argument that represents the primary key of the desired object. Find() is very efficient, as it will first search 
the underlying context for the target object. If the object is not found, it then automatically queries the underlying data 
store. If still not found, Find() simply returns NULL to the caller. Additionally, Find() will return entities that have 
been added to the context (think, having a state of “Added”), but not yet saved to the underlying database. Fortunately, 
the Find() method is available with any of three modeling approaches: Database First, Model First, or Code First.

In this example, we start by adding three new clubs to the Club entity collection. Note how we are able to 
reference the newly created Id for each Club entity immediately after the call to SaveChanges(). The context will 
return the Id for the new object immediately after the SaveChanges() operation completes.

We next query the Clubs entity from the DbContext object to return the StarCity Club entity. Note how we 
leverage the SingleOrDefault() LINQ extension method, which returns exactly one object, or NULL, if the object 
does not exist in the underlying data store. SingleOrDefault() will throw an exception if more than one object 
with the search criteria is found. SingleOfDefault() is an excellent approach to querying entities by a primary key 
property. If you should desire the first object when many exist, consider the FirstOrDefault() method.

If you were to run SQL Profiler tool (available in SQL Server Developer Edition or better, not in SQL Express) to 
examine the underlying database activity, you would see that the SQL query shown in Figure 5-5 was generated.

Figure 5-5.  SQL query returning the Star City Club

Note in Figure 5-5 how querying Clubs in the context object always results in a SQL query generated against the 
underlying data store. Here we retrieve the Club with the Id of 80, materialize the data into a Club entity object, and 
store it in the context. Interestingly, note how the SingleOrDefault() LINQ extension method always generates a Select 
Top 2 SQL query. Interestingly, the Select Top 2 SQL query ensures that only one row is returned. If more than one row 
is returned, Entity Framework will throw an exception as the SingleOrDefault() method guarantees a single result.



Chapter 5 ■ Loading Entities and Navigation Properties

139

The next line of code re-queries the database for the exact same Star City Club. Note that, even though this entity 
object already exists in the context, the default behavior of the DbContext is to re-query the database for the record. In 
profiler, we see the exact same SQL query generated. What’s more, since the Star City entity is already loaded in the context, 
the DbContext does not overwrite the current values with updated values from the database, as shown in Figure 5-6.

Figure 5-6.  SQL query returning the Star City Club

In the next line of code we once again search for the Star City Club. This time, however, we leverage the Find() 
method that is exposed by the DbSet Class. Since the Club entity is a DbSet class, we simply call the Find() method on 
it and pass in the primary key of the entity as an argument to Find(), which in this case is the value of 80.

Find() first searches the context object in memory for Star City, finds the object, and returns a reference to it. The 
key point is that Find() only queries the database if it cannot find the requested object in the context object. Note in 
Figure 5-7 how a SQL query was not generated.

Figure 5-7.  The Find() method locates the object in the context, and it never generates a query to the database

Next we again use the Find() method to retrieve the entity for the Desert Sun Club. This Find() does not locate 
the target entity in the context object, and it next queries the underlying data store to return the information. Note in 
Figure 5-8 the SQL query that is generated to retrieve the data.

Figure 5-8.  SQL query generated to return the Desert Sun Club

In the next query, we retrieve entity information for the Palm Tree Club, but pay particular attention to the LINQ 
query. Note the AsNoTracking() clause that has been appended to Clubs. The NoTracking option disables object state 
tracking for the specific entity. With NoTracking, Entity Framework will not track changes to the Palm Tree object, nor 
will it load it into the underlying context object.

When we issue a subsequent request to obtain the Palm Tree club entity object, Find() generates a SQL query 
to retrieve the entity from the data store, as shown in Figure 5-9. The round trip to the database is necessary as we 
instructed Entity Framework not to track the object in the context object with the AsNoTracking() clause. Keep in 
mind that Find() requires the entity object to be tracked in the context in order to avoid a call to the database.



Chapter 5 ■ Loading Entities and Navigation Properties

140

Figure 5-9.  Another SQL query generated to return the Desert Sun Club

Next we add a new Club entity object to the context. We instantiate an instance of the Club entity class and populate it 
with the necessary data. We assign it a temporary Id of −999. Keep in mind that we have not yet requested a SaveChanges() 
operation to commit this new club, the Lonesome Pine Club, to the data store. Interestingly, when we issue a Find() 
operation and pass in the argument −999, Entity Framework returns the newly created Lonesome Pine Club entity from 
the context object. You can see in Figure 5-10 that the Find() call generated no database activity. Take note: Find() will 
return a newly added entity instance from the underlying context object that has not yet been saved to the data store.

Figure 5-10.  The Find() method locates the newly created, but not yet saved object in the context and returns it without 
generating a query to the database

Finally, we issue a Find() query passing in an argument value that does not exist in the data store. Here we pass 
an Id value of 10001. In Figure 5-11, we see that Find() issues a SQL query to the database attempting to return a 
record with an Id of 10001. Similar to the SingleOrDefault() LINQ extension method, Find() returns NULL to calling 
method when it does not find the record.

Figure 5-11.  The Find() method generates a SQL query and returns NULL if the record is not found in the database

5-4. Querying In-Memory Entities
Problem
You want to work with entity objects from your model, but do not want to make a round trip to the database if the 
desired entity is already loaded in the in-memory context object. Additionally, you want to implement the Code-First 
approach for Entity Framework 6 to manage data access.

Solution
Let’s say that you have a model like the one shown in Figure 5-12.



Chapter 5 ■ Loading Entities and Navigation Properties

141

Figure 5-12.  A simple model that represents Club entity objects

Start by adding a console application project to Visual Studio entitled Recipe4. Be certain to reference the Entity 
Framework 6 libraries. Leveraging the NuGet Package Manager does this best. Right-click on Reference, and select 
Manage NuGet Packages. From the Online tab, locate and install the Entity Framework 6 package. Doing so will 
download, install, and configure the Entity Framework 6 libraries in your project.

To create the club entity, create a class entitled Club and copy the information into it from Listing 5-8.

Listing 5-8.  Club Entity Class

public class Club
{
    public int ClubId { get; set; }
    public string Name { get; set; }
    public string City { get; set; }
}
 

Next create a class entitled Recipe4Context, and add the code from Listing 5-9 to it, ensuring the class derives 
from the Entity Framework DbContext class.

Listing 5-9.  Context Class

public class Recipe4Context : DbContext
{
    public Recipe4Context()
        : base("Recipe4ConnectionString")
    {
        // disable Entity Framework Model Compatibility
        Database.SetInitializer<Recipe4Context>(null);
    }
  
    public DbSet<Club> Clubs { get; set; }
 
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        modelBuilder.Entity<Club>().ToTable("Chapter5.Club");
    }
}
 



Chapter 5 ■ Loading Entities and Navigation Properties

142

Next add an App.Config classd to the project, and add the code from Listing 5-10 to it under the 
ConnectionStrings section.

Listing 5-10.  Connection String

<connectionStrings>
  <add name="Recipe4ConnectionString"
       connectionString="Data Source=.;
       Initial Catalog=EFRecipes;
       Integrated Security=True;
       MultipleActiveResultSets=True"
       providerName="System.Data.SqlClient" />
</connectionStrings>
 

In this model, we have a Club entity from which we can query information about various clubs. We can reduce 
round trips to the database by directly querying the Local property of the underlying DbSet, which we use to wrap 
the Club entity. The Local property exposes an observable collection of in-memory entity objects, which stays in sync 
with the underlying context. Usage of the Local collection is demonstrated in Listing 5-11.

Listing 5-11.  Common Usage of the Local Property for a DbSet Object

using (var context = new Recipe4Context())
{
    Console.WriteLine("\nLocal Collection Behavior");
    Console.WriteLine("=================");
  
    Console.WriteLine("\nNumber of Clubs Contained in Local Collection: {0}",  
context.Clubs.Local.Count);
    Console.WriteLine("=================");
  
    Console.WriteLine("\nClubs Retrieved from Context Object");
    Console.WriteLine("=================");
    foreach (var club in context.Clubs.Take(2))
    {
        Console.WriteLine("{0} is located in {1}", club.Name, club.City);
    }
  
    Console.WriteLine("\nClubs Contained in Context Local Collection");
    Console.WriteLine("=================");
    foreach (var club in context.Clubs.Local)
    {
        Console.WriteLine("{0} is located in {1}", club.Name, club.City);
    }
  
    context.Clubs.Find(desertSunId);
  
    Console.WriteLine("\nClubs Retrieved from Context Object - Revisted");
    Console.WriteLine("=================");



Chapter 5 ■ Loading Entities and Navigation Properties

143

    foreach (var club in context.Clubs)
    {
        Console.WriteLine("{0} is located in {1}", club.Name, club.City);
    }
  
    Console.WriteLine("\nClubs Contained in Context Local Collection - Revisted");
    Console.WriteLine("=================");
    foreach (var club in context.Clubs.Local)
    {
        Console.WriteLine("{0} is located in {1}", club.Name, club.City);
    }
  
    // Get reference to local observable collection
    var localClubs = context.Clubs.Local;
  
    // Add new Club
    var lonesomePintId = -999;
    localClubs.Add(new Club
    {
        City = "Portland",
        Name = "Lonesome Pine",
        ClubId = lonesomePintId
    });
  
    // Remove Desert Sun club
    localClubs.Remove(context.Clubs.Find(desertSunId));
  
    Console.WriteLine("\nClubs Contained in Context Object - After Adding and Deleting");
    Console.WriteLine("=================");
    foreach (var club in context.Clubs)
    {
        Console.WriteLine("{0} is located in {1} with a Entity State of {2}",
            club.Name, club.City, context.Entry(club).State);
    }
  
    Console.WriteLine("\nClubs Contained in Context Local Collection - After Adding and Deleting");
    Console.WriteLine("=================");
    foreach (var club in localClubs)
    {
        Console.WriteLine("{0} is located in {1} with a Entity State of {2}",
        club.Name, club.City, context.Entry(club).State);
   }
  
   Console.WriteLine("\nPress <enter> to continue...");
   Console.ReadLine();
}
 



Chapter 5 ■ Loading Entities and Navigation Properties

144

The code in Listing 5-11 produces the following output:

Local Collection Behavior
=================
 
Number of Clubs Contained in Local Collection: 0
=================
 
Clubs Retrieved from Context Object
=================
Star City Chess Club is located in New York
Desert Sun Chess Club is located in Phoenix
 
Clubs Contained in Context Local Collection
=================
Star City Chess Club is located in New York
Desert Sun Chess Club is located in Phoenix
 
Clubs Retrieved from Context Object - Revisted
=================
Star City Chess Club is located in New York
Desert Sun Chess Club is located in Phoenix
Palm Tree Chess Club is located in San Diego
 
Clubs Contained in Context Local Collection - Revisted
=================
Star City Chess Club is located in New York
Desert Sun Chess Club is located in Phoenix
Palm Tree Chess Club is located in San Diego
 
Clubs Contained in Context Object – After Adding and Deleting
=================
Star City Chess Club is located in New York with a Entity State of Unchanged
Desert Sun Chess Club is located in Phoenix with a Entity State of Deleted
Palm Tree Chess Club is located in San Diego with a Entity State of Unchanged
 
Clubs Contained in Context Local Collection – After Adding and Deleting
=================
Star City Chess Club is located in New York with a Entity State of Unchanged
Palm Tree Chess Club is located in San Diego with a Entity State of Unchanged
Lonesome Pine is located in Portland with a Entity State of Added 

How It Works
This example works with Club entity objects. We begin by requesting a count of Club entity objects from the 
observable collection that is exposed by the Local property from the Club entity object. Note in Figure 5-13 that no 
SQL query is generated, as a query against the Local Property never generates a SQL query to the data store.



Chapter 5 ■ Loading Entities and Navigation Properties

145

Right now, the result is zero, as we have not yet executed a query for Clubs against the context object. Keep in 
mind that the Local collection is automatically kept in sync with the underlying context object.

Next we query the context object for the first two Club entities in the data store and loop through them, rendering 
the name and location of each, as shown in Figure 5-14.

Figure 5-13.  Accessing the Local collection never generates a SQL query

Figure 5-14.  Querying the context object always generates a SQL query

Figure 5-15.  Accessing the Local collection never generates a SQL query

Figure 5-16.  Querying the context object always generates a SQL query

Immediately after, we loop through the corresponding Local collection for Clubs and get the same result. 
Remember that the results are identical, as the Local collection automatically synchronizes with the DbContext. When 
new entities are fetched into the context, the Local collection is automatically updated with those entities. However, 
note in Figure 5-15 that no SQL query was generated when accessing the Local collection.

To demonstrate further the Local Property default behavior, we fetch a third Club entity by querying from the 
underlying context object. Once again, as we loop through both the context and Local collection, we get the same 
result. Note in Figure 5-16 that querying the context object always generates a SQL statement and that querying the 
Local collection does not, as shown in Figure 5-17.



Chapter 5 ■ Loading Entities and Navigation Properties

146

Next we add a new Club entity entitled the Lonesome Pine Club to the Local collection and, at the same time, 
remove the Desert Sun Club from the Local collection. We then iterate through the context object for Clubs, which as 
expected, generates a SQL query against the underlying data store, as shown in Figure 5-18.

Figure 5-17.  Accessing the Local collection never generates a SQL query

Figure 5-18.  Querying the context object always generates a SQL query

Interestingly, in the context, we see that the Desert Sun Club has been marked for deletion, but we do not see the 
newly added Lonesome Pine Club. Keep in mind that Lonesome Pine has been added to the Context object, but we 
have not yet called the SaveChanges() operation to update the underlying data store.

However, when we iterate through the Local collection for Clubs, we do not generate a query to the underlying 
data store, as shown in Figure 5-19. Instead, we see the newly added Lonesome Pine Club, but we no longer see the 
Desert Sun Club that is marked for deletion. The default behavior of the Local collection is to hide any entities that are 
marked for deletion, as these objects are no longer valid.

Figure 5-19.  Accessing the Local collection never generates a SQL query

The bottom line: Accessing the Local collection never causes a query to be sent to the database; accessing the 
context object always causes a query to be sent to the database.

To summarize, each entity set exposes a property called Local, which is an observable collection that mirrors the 
contents of the underlying context object. As demonstrated in this recipe, querying the Local Collection can be very 
efficient in that doing so never generates a SQL query to the underlying data store.

5-5. Loading a Complete Object Graph
Problem
You have a model with several related entities, and you want to load the complete object graph of all the instances of 
each entity in a single query. Normally, when a specific view requires a set of related entities in order to render, you’ll 
prefer this approach as opposed to the lazy loading approach that fetches related data with a number of smaller queries.



Chapter 5 ■ Loading Entities and Navigation Properties

147

Solution
Suppose you have a conceptual model like the one in Figure 5-20. Each course has several sections. Each section is 
taught by an instructor and has several students.

Figure 5-20.  A model with a few related entities

To retrieve all of the courses, sections, instructors, and students represented in the database in a single query,  
use the Include() method with a query path parameter, as shown in Listing 5-12.

Listing 5-12.  Retrieving an Entire Object Graph in a Single Query

using (var context = new EFRecipesEntities())
{
    var course = new Course { Title = "Biology 101" };
    var fred = new Instructor { Name = "Fred Jones" };
    var julia = new Instructor { Name = "Julia Canfield" };
     
    var section1 = new Section { Course = course, Instructor = fred };
    var section2 = new Section { Course = course, Instructor = julia };
                 



Chapter 5 ■ Loading Entities and Navigation Properties

148

    var jim = new Student { Name = "Jim Roberts" };
    jim.Sections.Add(section1);
                 
    var jerry = new Student { Name = "Jerry Jones" };
    jerry.Sections.Add(section2);
                 
    var susan = new Student { Name = "Susan O'Reilly" };
    susan.Sections.Add(section1);
                 
    var cathy = new Student { Name = "Cathy Ryan" };
    cathy.Sections.Add(section2);
 
    course.Sections.Add(section1);
    course.Sections.Add(section2);
 
    context.Students.Add(jim);
    context.Students.Add(jerry);
    context.Students.Add(susan);
    context.Students.Add(cathy);
 
    context.Courses.Add(course);
    context.SaveChanges();
}
 
// String query path argument for the Include method
using (var context = new EFRecipesEntities())
{
    var graph = context.Courses
                       .Include("Sections.Instructor")
                       .Include("Sections.Students");
    Console.WriteLine("Courses");
    Console.WriteLine("=======");
 
    foreach (var course in graph)
    {
        Console.WriteLine("{0}", course.Title);
        foreach (var section in course.Sections)
        {
            Console.WriteLine("\tSection: {0}, Instrutor: {1}", section.SectionId,  
section.Instructor.Name);
            Console.WriteLine("\tStudents:");
            foreach (var student in section.Students)
            {
                Console.WriteLine("\t\t{0}", student.Name);
            }
            Console.WriteLine("\n");
        }
    }
}
 



Chapter 5 ■ Loading Entities and Navigation Properties

149

// Strongly typed query path argument for the Include method
using (var context = new EFRecipesEntities())
{
    var graph = context.Courses
                       .Include(x => x.Sections.Select(y => y.Instructor))
                       .Include(x => x.Sections.Select(z => z.Students));
 
    Console.WriteLine("Courses");
    Console.WriteLine("=======");
 
    var result = graph.ToList();
 
    foreach (var course in graph)
    {
        Console.WriteLine("{0}", course.Title);
        foreach (var section in course.Sections)
        {
            Console.WriteLine("\tSection: {0}, Instrutor: {1}", section.SectionId,  
section.Instructor.Name);
            Console.WriteLine("\tStudents:");
                foreach (var student in section.Students)
                {
                    Console.WriteLine("\t\t{0}", student.Name);
                }
                Console.WriteLine("\n");
            }
        }
    }
 
    Console.WriteLine("Press <enter> to continue...");
    Console.ReadLine();
}
 

The code in Listing 5-12 produces the following output:

Courses
Courses
=======
Biology 101
        Section: 19, Instructor: Fred Jones
        Students:
                Jim Roberts
                Susan O'Reilly
 
        Section: 20, Instructor: Julia Canfield
        Students:
                Jerry Jones
                Cathy Ryan



Chapter 5 ■ Loading Entities and Navigation Properties

150

How It Works
A query path is a string or strongly typed argument that is passed to the Include() method. A query path represents 
the entire path of the object graph that you want to load with the Include() method. The Include() method extends 
the query to include the entities referenced along the query path.

In Listing 5-12, we start by demonstrating the Include() method with string-based query parameters. Include() 
is invoked first with a query path parameter that includes the part of the graph extending through Section to 
Instructor. This modifies the query to include all of the Sections and their Instructors. Then, chained to the first 
Include() method is another Include() method that includes a path extending through Section to Student. This 
modifies the query to include Sections and their Students. The result is a materialization of the complete object graph 
including all Course entities along with entities on each end of the associations in the model.

In the second part of Listing 5-12, we demonstrate the usage of the Include() method with strongly typed query 
path parameters. Notice how both Include() methods here combine one parameter, Sections, with the associated 
Instructor and Student entity objects by using a Select() method.

Note■■  T he overloaded Include() method that accepts strongly-typed parameters is an extension method that is 
exposed from the System.Data.Entity namespace. You will need to add a using directive to your class that references 
this namespace in order to use the overloaded version of this method.

You can construct query paths from navigation properties to any depth. This gives you a great deal of flexibility 
in partial or complete object graph loading. Entity Framework attempts to optimize the final query generation by 
pruning off overlapping or duplicate query paths.

The syntax and semantics of the Include() method are deceptively simple. Don’t let the simplicity fool you 
into thinking that there is no performance price to be paid when using the Include() method. Eager loading with 
several Include() method invocations can rapidly increase the complexity of the query sent to the database and 
dramatically increase the amount of data returned from the database. The complex queries generated can lead to 
poor performance plan generation, and the large amount of returned data can cause Entity Framework to spend an 
inordinate amount of time removing duplicate data. You would be wise to profile all queries generated from usage of 
the Include() method to ensure that you are not causing potential performance problems for your application.

5-6. Loading Navigation Properties on Derived Types
Problem
You have a model with one or more derived types that are in a Has-a relationship (wherein one object is a part of 
another object) with one or more other entities. You want to eagerly load all of the related entities in one round trip 
to the database.

Solution
Suppose that you have a model like the one in Figure 5-21.



Chapter 5 ■ Loading Entities and Navigation Properties

151

In this model, the Plumber entity extends the Tradesman entity. A Plumber has a JobSite that is represented by 
a one-to-many association. The JobSite type extends the Location entity. Location has a Phone, which is represented 
by a one-to-many association. Finally, a JobSite can have zero or more Foremen. A one-to-many association also 
represents this.

Suppose that you want to retrieve a plumber, the job site she works on, the job site’s phone number, and all of the 
foremen at the job site. You want to retrieve all of this in one round trip to the database.

The code in Listing 5-13 illustrates one way to use the Include() method to eagerly load the related entities in 
one query.

Listing 5-13.  Retrieving Related Entities in One Round Rrip to the Database Using Eager Loading with the  
Include() Method

using (var context = new EFRecipesEntities())
{
    var foreman1 = new Foreman { Name = "Carl Ramsey" };
    var foreman2 = new Foreman { Name = "Nancy Ortega" };
    var phone = new Phone { Number = "817 867-5309" };

Figure 5-21.  A model for Plumbers with their JobSite and other related entities



Chapter 5 ■ Loading Entities and Navigation Properties

152

    var jobsite = new JobSite { JobSiteName = "City Arena",
                                Address = "123 Main", City = "Anytown",
                                State = "TX", ZIPCode = "76082",
                                Phone = phone };
    jobsite.Foremen.Add(foreman1);
    jobsite.Foremen.Add(foreman2);
    var plumber = new Plumber { Name = "Jill Nichols",
                                Email = "JNichols@plumbers.com",
                                JobSite = jobsite };
    context.Tradesmen.Add(plumber);
    context.SaveChanges();
}
 
using (var context = new EFRecipesEntities())
{
    var plumber = context.Tradesmen.OfType<Plumber>()
                                   .Include("JobSite.Phone")
                                   .Include("JobSite.Foremen").First();
    Console.WriteLine("Plumber's Name: {0} ({1})", plumber.Name, plumber.Email);
    Console.WriteLine("Job Site: {0}", plumber.JobSite.JobSiteName);
    Console.WriteLine("Job Site Phone: {0}", plumber.JobSite.Phone.Number);
    Console.WriteLine("Job Site Foremen:");
    foreach (var boss in plumber.JobSite.Foremen)
    {
        Console.WriteLine("\t{0}", boss.Name);
    }
}
 

The following output is produced by code in Listing 5-13:

Plumber's Name: Jill Nichols (JNichols@plumbers.com)
Job Site: City Arena
Job Site Phone: 817 867-5309
Job Site Foremen:
        Carl Ramsey
        Nancy Ortega

How It Works
Our query starts by selecting instances of the derived type Plumber. To fetch them, we use the OfType<Plumber>() 
method. The OfType<>() method selects instances of the given subtype from the entity set.

From Plumber, we want to load the related JobSite and the Phone for the JobSite. Notice that the JobSite entity 
does not have a Phone navigation property, but JobSite derives from Location, which does have a Phone navigation 
property. Because Phone is a property of the base entity, it’s also available on the derived entity. That’s the beauty of 
inheritance. This makes the query path simply: JobSite.Phone.

Then we again use the Include() method with a query path that references the Foreman entities from the 
JobSite entity. Here we have a one-to-many association, JobSite and Foreman. Notice that the wizard pluralized the 
navigation property (from Foreman to Foremen).

Finally, we use the First() method to select just the first Plumber instance. Doing so returns a type of Plumber, 
as opposed to a collection of Plumber objects.

http://JNichols@plumbers.com/
http://JNichols@plumbers.com/


Chapter 5 ■ Loading Entities and Navigation Properties

153

The resulting query is somewhat complex; involving several joins and sub-selects. The alternative, leveraging the 
default lazy loading behavior of Entity Framework, would require several round trips to the database and could result 
in a performance hit, especially if we retrieved many Plumbers.

5-7. Using Include( ) with Other LINQ Query Operators
Problem
You have a LINQ query that uses operators such as group by, join, and where; and you want to use the Include() 
method to eagerly load additional entities. Additionally, you want to implement the Code-First approach for Entity 
Framework 6 to manage data access.

Solution
Let’s say that you have a model like the one shown in Figure 5-22.

Figure 5-22.  A simple model with a one-to-many association between Club and Event

Start by adding a console application project to Visual Studio entitled Recipe7. Be certain to reference the Entity 
Framework 6 libraries. Leveraging the NuGet Package Manager does this best. Right-click on Reference, and select 
Manage NuGet Packages. From the Online tab, locate and install the Entity Framework 6 package. Doing so will 
download, install, and configure the Entity Framework 6 libraries in your project.

To create our entity objects, create a class entitled Club and Event and add the code from Listing 5-14.

Listing 5-14.  Club Entity Class

public class Club
{
    public Club()
    {
        Events = new HashSet<Event>();
    }
  
    public int ClubId { get; set; }
    public string Name { get; set; }
    public string City { get; set; }
  
    public virtual ICollection<Event> Events { get; set; }
}
 



Chapter 5 ■ Loading Entities and Navigation Properties

154

public class Event
{
    public int EventId { get; set; }
    public string EventName { get; set; }
    public DateTime EventDate { get; set; }
    public int ClubId { get; set; }
  
    public virtual Club Club { get; set; }
}
 

Next create a class entitled Recipe7Context, and add the code from Listing 5-15 to it, ensuring the class derives 
from the Entity Framework DbContext class.

Listing 5-15.  Context Class

public class Recipe7Context : DbContext
{
    public Recipe7Context()
        : base("Recipe7ConnectionString")
    {
        // Disable Entity Framework Model Compatibility
        Database.SetInitializer<Recipe7Context>(null);
    }
  
    public DbSet<Club> Clubs { get; set; }
    public DbSet<Event> Events { get; set; }
  
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        modelBuilder.Entity<Club>().ToTable("Chapter5.Club");
        modelBuilder.Entity<Event>().ToTable("Chapter5.Event");
    }
}
 

Next add an App.Config class to the project, and add the code from Listing 5-16 to it under the 
ConnectionStrings section.

Listing 5-16.  Connection String

<connectionStrings>
  <add name="Recipe7ConnectionString"
       connectionString="Data Source=.;
       Initial Catalog=EFRecipes;
       Integrated Security=True;
       MultipleActiveResultSets=True"
       providerName="System.Data.SqlClient" />
</connectionStrings>
 

To use the Include() method in combination with a group by clause, the Include() method must be placed 
after filtering and grouping operations for the parent entity. The code in Listing 5-17 demonstrates this approach.



Chapter 5 ■ Loading Entities and Navigation Properties

155

Listing 5-17.  The Correct Placement of the Include Method When Applying Filtering and Grouping Expressions on 
the Parent Entity

using (var context = new Recipes7Context())
{
    var club = new Club {Name = "Star City Chess Club", City = "New York"};
    club.Events.Add(new Event
    {
        EventName = "Mid Cities Tournament",
        EventDate = DateTime.Parse("1/09/2010"), Club = club
    });
    club.Events.Add(new Event
    {
        EventName = "State Finals Tournament",
        EventDate = DateTime.Parse("2/12/2010"), Club = club
    });
    club.Events.Add(new Event
    {
        EventName = "Winter Classic",
        EventDate = DateTime.Parse("12/18/2009"), Club = club
    });
 
    context.Clubs.Add(club);
    context.SaveChanges();
}
 
using (var context = new Recipes7Context())
{
    var events = from ev in context.Events
                         where ev.Club.City == "New York"
                         group ev by ev.Club
                             into g
                             select g.FirstOrDefault(e1 => e1.EventDate == g.Min(evt => evt.EventDate));
 
    var eventWithClub = events.Include("Club").First();
 
    Console.WriteLine("The next New York club event is:");
    Console.WriteLine("\tEvent: {0}", eventWithClub.EventName);
    Console.WriteLine("\tDate: {0}", eventWithClub.EventDate.ToShortDateString());
    Console.WriteLine("\tClub: {0}", eventWithClub.Club.Name);
}
 

The output of the code in Listing 5-17 is the following:

The next New York club event is:
        Event: Winter Classic
        Date: 12/18/2009
        Club: Star City Chess Club



Chapter 5 ■ Loading Entities and Navigation Properties

156

How It Works
We start by creating a Club and three Events. In the query, we grab all of the events at clubs in New York, group them 
by club, and find the first one in date order. Note how the FirstOrDefault() LINQ extension method is cleverly 
embedded in the Select, or projection, operation. However, the events variable holds just the expression. It hasn’t 
executed anything on the database yet.

Next we leverage the Include() method to eagerly load information from the related Club entity object using the 
variable, events, from the first LINQ query as the input for the second LINQ query. This is an example of composing 
LINQ queries—breaking a more complex LINQ query into a series of smaller queries, where the variable of the 
preceding query is in the source of the query.

Note how we use the First() method to select just the first Event instance. Doing so returns a type of 
Event, as opposed to a collection of Event objects. Entity Framework 6 contains a new static class entitled 
IQueryableExtensions, which exposes an Include() method prototype that accepts either a string-based or strongly 
typed query path parameter. The IQueryableExtensions class replaces the DbExtensions class from EF 4 and EF 5.

Many developers find the Include() method somewhat confusing. In some cases, IntelliSense will not show it as 
available (because of the type of the expression). At other times, it will be silently ignored at runtime. Surprisingly, the 
compiler rarely complains unless it cannot determine the resulting type. The problems usually show up at runtime 
when they can be a more difficult fix. Here are some simple rules to follow when using Include():

	 1.	 The Include() method is an extension method on type IQueryable<T>. 

	 2.	 Include() applies only to the final query results. When Include() is applied to a 
subquery, join, or nested from clause, it is ignored when the command tree is generated. 
Under the hood, Entity Framework translates your LINQ-to-Entities query into a construct 
called a command tree, which is then handed to the database provider to construct a SQL 
query for the target database. 

	 3.	 Include() can be applied only to results that are entities. If the expression projects results 
that are not entities, Include() will be ignored.

	 4.	 The query cannot change the type of the results between the Include() and the outermost 
operation. A group by clause, for example, changes the type of the results. 

	 5.	 The query path used in the Include() expression must start at a navigation property 
on the type returned from the outermost operation. The query path cannot start at an 
arbitrary point.

Let’s see how these rules apply to the code in Listing 5-17. The query groups the events by the sponsoring club. 
The group by operator changes the result type from Event to a grouping result. Here Rule 4 says that we need to 
invoke the Include() method after the group by clause has changed the type. We do this by invoking Include() 
at the very end. If we applied the Include() method earlier as in from ev in context.Events.Include(), the 
Include() method would have been silently dropped from the command tree and never applied.

5-8. Deferred Loading of Related Entities
Problem
You have an instance of an entity, and you want to defer the loading of two or more related entities in a single query. 
Especially important here is how we use the Load() method to avoid requerying the same entity twice. Additionally, 
you want to implement the Code-First approach for Entity Framework 6 to manage data access.

Solution
Suppose that you have a model like the one in Figure 5-23.



Chapter 5 ■ Loading Entities and Navigation Properties

157

Start by adding a console application project to Visual Studio entitled Recipe8. Be certain to reference the Entity 
Framework 6 libraries. Leveraging the NuGet Package Manager does this best. Right-click on Reference, and select 
Manage NuGet Packages. From the Online tab, locate and install the Entity Framework 6 package. Doing so will 
download, install, and configure the Entity Framework 6 libraries in your project.

Next we create three entity objects: Company, Department, and Employee, and copy the code from Listing 5-18 into 
three classes.

Listing 5-18.  Entity Classes

public class Company
{
    public Company()
    {
        Departments = new HashSet<Department>();
    }
  
    public int CompanyId { get; set; }
    public string Name { get; set; }
  
    public virtual ICollection<Department> Departments { get; set; }
}
 
public class Department
{
    public Department()
    {
        Employees = new HashSet<Employee>();
    }
  
    public int DepartmentId { get; set; }
    public string Name { get; set; }
    public int CompanyId { get; set; }
  
    public virtual Company Company { get; set; }
    public virtual ICollection<Employee> Employees { get; set; }
}
 

Figure 5-23.  A a model with an employee, her department, and the department’s company



Chapter 5 ■ Loading Entities and Navigation Properties

158

public class Employee
{
    public int EmployeeId { get; set; }
    public string Name { get; set; }
    public int DepartmentId { get; set; }
  
    public virtual Department Department { get; set; }
}
 

Next create a class entitled Recipe8Context, and add the code from Listing 5-19 to it, ensuring that the class 
derives from the Entity Framework DbContext class.

Listing 5-19.  Context Class

public class Recipe8Context : DbContext
{
    public Recipe8Context()
        : base("Recipe8ConnectionString")
    {
        // Disable Entity Framework Model Compatibility
        Database.SetInitializer<Recipe8Context>(null);
    }
  
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        modelBuilder.Entity<Company>().ToTable("Chapter5.Company");
        modelBuilder.Entity<Employee>().ToTable("Chapter5.Employee");
        modelBuilder.Entity<Department>().ToTable("Chapter5.Department");
    }
  
    public DbSet<Company> Companies { get; set; }
    public DbSet<Department> Departments { get; set; }
    public DbSet<Employee> Employees { get; set; }
}
 

Next add an App.Config class to the project, and add the code from Listing 5-20 to it under the 
ConnectionStrings section.

Listing 5-20.  Connection String

<connectionStrings>
  <add name="Recipe8ConnectionString"
       connectionString="Data Source=.;
       Initial Catalog=EFRecipes;
       Integrated Security=True;
       MultipleActiveResultSets=True"
       providerName="System.Data.SqlClient" />
</connectionStrings>
 



Chapter 5 ■ Loading Entities and Navigation Properties

159

In the model shown in Figure 5-23, an Employee is associated with exactly one Department. Each Department is 
associated with exactly one Company.

Given an instance of an Employee, you want to load both her department and the department’s company. What 
makes this problem somewhat unique is that we already have an instance of Employee, and we want to avoid going 
back to the database to get another copy of the Employee just so that we can use the Include() method to obtain the 
related instances of Company and Department. Perhaps in your real-world problem, Employee is a very expensive 
entity to retrieve and materialize.

We could use the Load() method twice to load the related Department instance and then again to load the 
related Company instance. However, this would generate two round trips to the database. To load the related 
instances using just one query, we can either requery the Employee entity set using the Include() method with a 
query path including the Department and the Company, or combine the Reference() and Query() methods exposed 
by the Entry Class. The code in Listing 5-21 shows both approaches.

Listing 5-21.  Inserting into the Model and Retrieving the Related Entities Using Two Slightly Different Approaches

using (var context = new EFRecipesEntities())
{
    var company = new Company { Name = "Acme Products" };
    var acc = new Department { Name = "Accounting", Company = company };
    var ship = new Department { Name = "Shipping", Company = company };
    var emp1 = new Employee { Name = "Jill Carpenter", Department = acc };
    var emp2 = new Employee { Name = "Steven Hill", Department = ship };
    context.Employees.Add(emp1);
    context.Employees.Add(emp2);
    context.SaveChanges();
}
 
// First approach
using (var context = new EFRecipesEntities())
{
    // Assume we already have an employee
    var jill = context.Employees.First(o => o.Name == "Jill Carpenter");
 
    // Get Jill's Department and Company, but we also reload Employees
    var results = context.Employees
                         .Include("Department.Company")
                         .First(o => o.EmployeeId == jill.EmployeeId);
       
    Console.WriteLine("{0} works in {1} for {2}",
                           jill.Name, jill.Department.Name, jill.Department.Company.Name);
}
 
// More efficient approach, does not retrieve Employee again
using (var context = new EFRecipesEntities())
{
    // Assume we already have an employee
    var jill = context.Employees.Where(o => o.Name == "Jill Carpenter").First();
 



Chapter 5 ■ Loading Entities and Navigation Properties

160

    // Leverage the Entry, Query, and Include methods to retrieve Department and Company data
    // without requerying the Employee table
    context.Entry(jill).Reference(x => x.Department).Query().Include(y => y.Company).Load();
                
    Console.WriteLine("{0} works in {1} for {2}",
                               jill.Name, jill.Department.Name, jill.Department.Company.Name);
}
 

The following is the output of the code in Listing 5-21:

Jill Carpenter works in Accounting for Acme Products
Jill Carpenter works in Accounting for Acme Products

How It Works
If we didn’t already have an instance of the Employee entity, we could simply use the Include() method with a 
query path Department.Company. This is essentially the approach we take in earlier queries. The disadvantage of this 
approach is that it retrieves all of the columns for the Employee entity. In many cases, this might be an expensive 
operation. Because we already have this object in the context, it seems wasteful to gather these columns again from 
the database and transmit them across the wire.

In the second query, we use the Entry() method exposed by the DbContext object to access the Employee object 
and perform operations against it. We then chain the Reference() and Query() methods from the DbReferenceEntity 
class to return a query to load the related Department object from the underlying data store. Additionally, we chain 
the Include() method to pull in the related Company information. As desired, this query retrieves both Department 
and Company data without needlessly requerying the data store for Employees data, which has already been loaded 
into the context.

5-9. Filtering and Ordering Related Entities 
Problem
You have an instance of an entity and you want to load a related collection of entities applying both a filter and an 
ordering.

Solution
Suppose that you have a model like the one shown in Figure 5-24.



Chapter 5 ■ Loading Entities and Navigation Properties

161

Let’s assume we have an instance of a Hotel entity. To retrieve the executive suite rooms for the hotel, see which 
have reservations, and order them by room rate, use the pattern shown in Listing 5-22.

Listing 5-22.  Filtering and Ordering an Entity Collection Using Explicit Loading Along with the Entry() and  
Query() Methods

using (var context = new EFRecipesEntities())
{
    var hotel = new Hotel { Name = "Grand Seasons Hotel" };
    var r101 = new Room { Rate = 79.95M, Hotel = hotel };
    var es201 = new ExecutiveSuite { Rate = 179.95M, Hotel = hotel };
    var es301 = new ExecutiveSuite { Rate = 299.95M, Hotel = hotel };
 
    var res1 = new Reservation { StartDate = DateTime.Parse("3/12/2010"),
                     EndDate = DateTime.Parse("3/14/2010"), ContactName = "Roberta Jones", Room = es301 };
    var res2 = new Reservation { StartDate = DateTime.Parse("1/18/2010"),
                     EndDate = DateTime.Parse("1/28/2010"), ContactName = "Bill Meyers", Room = es301 };
    var res3 = new Reservation { StartDate = DateTime.Parse("2/5/2010"),
                     EndDate = DateTime.Parse("2/6/2010"), ContactName = "Robin Rosen", Room = r101 };
 
    es301.Reservations.Add(res1);
    es301.Reservations.Add(res2);
    r101.Reservations.Add(res3);
 

Figure 5-24.  A model for a hotel reservation system



Chapter 5 ■ Loading Entities and Navigation Properties

162

    hotel.Rooms.Add(r101);
    hotel.Rooms.Add(es201);
    hotel.Rooms.Add(es301);
                 
    context.Hotels.Add(hotel);
    context.SaveChanges();
}
 
using (var context = new EFRecipesEntities())
{
    // Assume we have an instance of hotel
    var hotel = context.Hotels.First();
 
    // Explicit loading with Load() provides opportunity to filter related data
    // obtained from the Include() method
    context.Entry(hotel)
                .Collection(x => x.Rooms)
                .Query()
                .Include(y => y.Reservations)
                .Where(y => y is ExecutiveSuite && y.Reservations.Any())
                .Load();
 
    Console.WriteLine("Executive Suites for {0} with reservations", hotel.Name);
                 
    foreach (var room in hotel.Rooms)
    {
        Console.WriteLine("\nExecutive Suite {0} is {1} per night",
        room.RoomId.ToString(), room.Rate.ToString("C"));
        Console.WriteLine("Current reservations are:");
        foreach (var res in room.Reservations.OrderBy(r => r.StartDate))
        {
            Console.WriteLine("\t{0} thru {1} ({2})", res.StartDate.ToShortDateString(),
            res.EndDate.ToShortDateString(), res.ContactName);
         }
  }
}
 

The following is the output of the code shown in Listing 5-22:

Executive Suites for Grand Seasons Hotel with reservations
 
Executive Suite 65 is $299.95 per night
Current reservations are:
        1/18/2010 thru 1/28/2010 (Bill Meyers)
        3/12/2010 thru 3/14/2010 (Roberta Jones)
 
Executive Suite 64 is $79.95 per night
Current reservations are:
        2/5/2010 thru 2/6/2010 (Robin Rosen)
 
Executive Suite 66 is $179.95 per night



Chapter 5 ■ Loading Entities and Navigation Properties

163

How It Works
The code in Listing 5-22 uses explicit loading to retrieve a collection of related entity objects and perform filtering and 
ordering on them.

Along with lazy and eager loading, explicit loading is the third option for loading related data. When explicitly 
loading data, you are in full control. You issue commands that retrieve the data. You control if, when, and where 
related data is brought into the context object.

To implement explicit loading, you start with the Entry() method that is exposed by the DbContext object. Entry() 
accepts an argument that represents the parent entity that you wish to query. Entry() provides a wealth of information 
about the entity, including access to the related entity objects via the Collection() and Reference() methods.

In the example above, we start with the parent entity, Hotel, and then query related Room entities by chaining 
the Collection() method and passing in the navigation property, Rooms, as a parameter. The associated Query() 
method from the DbCollectionEntry class generates a query to load the room objects from the underlying data store.

Finally, we eagerly load the related reservations for each room by querying the Reservations navigation property 
as a parameter to the Include() method, applying where clause filters to retrieve only the collection of rooms of type 
ExecutiveSuite that have at least one reservation. We then order the collection by room rate using an OrderBy clause.

Normally, the Include() method returns all related objects for a parent with no opportunity to filter or manipulate 
the result set. The exception to this rule is when implementing explicit loading. As demonstrated here, we are able to 
filter and sort the results from related Reservation entities.

Keep in mind that we can only apply filters against related data from an Include() method using this pattern. 
This feature is not available when implementing lazy loading or eager loading.

5-10. Executing Aggregate Operations on Related Entities
Problem
You want to apply an aggregate operator on a related entity collection without loading the entire collection. 
Additionally, you want to implement the Code-First approach for Entity Framework 6 to manage data access.

Solution
Suppose that you have a model like the one shown in Figure 5-25.

Figure 5-25.  Orders and their associated order items



Chapter 5 ■ Loading Entities and Navigation Properties

164

Start by adding a console application project to Visual Studio entitled Recipe10. Be certain to reference the 
Entity Framework 6 libraries. Leveraging the NuGet Package Manager does this best. Right-click on Reference, and 
select Manage NuGet Packages. From the Online tab, locate and install the Entity Framework 6 package. Doing so will 
download, install, and configure the Entity Framework 6 libraries in your project.

Next we create three entity objects. Create two classes: Order and OrderItem, and copy the code from Listing 5-23 
into the classes.

Listing 5-23.  Entity Classes

public class Order
{
    public Order()
    {
        OrderItems = new HashSet<OrderItem>();
    }
  
    public int OrderId { get; set; }
    public System.DateTime OrderDate { get; set; }
    public string CustomerName { get; set; }
  
    public virtual ICollection<OrderItem> OrderItems { get; set; }
}
 
public class OrderItem
{
    public int OrderItemId { get; set; }
    public int OrderId { get; set; }
    public int SKU { get; set; }
    public int Shipped { get; set; }
    public decimal UnitPrice { get; set; }
  
    public virtual Order Order { get; set; }
}
 

Next create a class entitled Recipe10Context and add the code from Listing 5-24 to it, ensuring the class derives 
from the Entity Framework DbContext class.

Listing 5-24.  Context Class

public class Recipe10Context : DbContext
{
    public Recipe10Context()
        : base("Recipe10ConnectionString")
    {
        // Disable Entity Framework Model Compatibility
        Database.SetInitializer<Recipe10Context>(null);
    }
  
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        modelBuilder.Entity<Order>().ToTable("Chapter5.Order");
        modelBuilder.Entity<OrderItem>().ToTable("Chapter5.OrderItem");
    }
  



Chapter 5 ■ Loading Entities and Navigation Properties

165

    public DbSet<Order> Orders { get; set; }
    public DbSet<OrderItem> OrderItems { get; set; }
}
 

Next, add an App.Config class to the project and add the code from Listing 5-25 to it under the 
ConnectionStrings section.

Listing 5-25.  Connection String

<connectionStrings>
  <add name="Recipe10ConnectionString"
       connectionString="Data Source=.;
       Initial Catalog=EFRecipes;
       Integrated Security=True;
       MultipleActiveResultSets=True"
       providerName="System.Data.SqlClient" />
</connectionStrings>
 

In Figure 5-25, we have a simple model composed of an order and the products (collection of OrderItems) shipped 
for the order. One way to get the total amount for the order is to use the Load() method to load the entire collection of 
order items and then iterate through this collection, calculating the sum of the amount for each order item.

Another way to get the same result is to push the iteration to the database, letting it compute the total amount. 
The advantage to this second approach is that we avoid the potentially costly overhead of materializing each order 
item for the sole purpose of summing the total order amount. To implement this second approach, follow the pattern 
shown in Listing 5-26.

Listing 5-26.  Applying an Aggregate Operator on Related Entities Without Loading Them

using (var context = new EFRecipesEntities())
{
    var order = new Order { CustomerName = "Jenny Craig", OrderDate = DateTime.Parse("3/12/2010") };
                 
    var item1 = new OrderItem { Order = order, Shipped = 3, SKU = 2827, UnitPrice = 12.95M };
    var item2 = new OrderItem { Order = order, Shipped = 1, SKU = 1918, UnitPrice = 19.95M };
    var item3 = new OrderItem { Order = order, Shipped = 3, SKU = 392, UnitPrice = 8.95M };
 
    order.OrderItems.Add(item1);
    order.OrderItems.Add(item2);
    order.OrderItems.Add(item3);
 
    context.Orders.Add(order);
    context.SaveChanges();
}
 
using (var context = new EFRecipesEntities())
{
    // Assume we have an instance of Order
    var order = context.Orders.First();
 



Chapter 5 ■ Loading Entities and Navigation Properties

166

    // Get the total order amount
    var amt = context.Entry(order)
                     .Collection(x => x.OrderItems)
                     .Query()
                     .Sum(y => y.Shipped * y.UnitPrice);
                 
    Console.WriteLine("Order Number: {0}", order.OrderId);
    Console.WriteLine("Order Date: {0}", order.OrderDate.ToShortDateString());
    Console.WriteLine("Order Total: {0}", amt.ToString("C"));
}
 

The following is the output of the code in Listing 5-26:

Order Number: 6
Order Date: 3/12/2010
Order Total: $85.65

How It Works
In Listing 5-26, we implement explicit loading and start with the Entry() method that is exposed by the DbContext 
object. Entry() accepts an argument of Order, which represents the parent entity that we wish to query. Entry() 
provides a wealth of information about the Order, including access to related entity objects via the Collection() and 
Reference() methods.

In the example above, we query related Order Items entities by chaining the Collection() method and passing 
in the navigation property, OrderItems, as a parameter. The associated Query() method from the DbCollectionEntry 
class generates a query to load the Order Item objects from the underlying data store.

Finally, we apply the Sum() LINQ extension method, passing in a lambda expression that calculates the item 
total. The resulting sum over the collection is the order total. This entire expression is converted to the appropriate 
store layer commands and executed in the storage layer, saving the cost of materializing each order item.

This simple example demonstrates the flexibility of combining explicit loading with the Entry() and Query() 
method to modify the query used to retrieve the underlying associated entity collection (OrderItems). In this case, we 
leveraged the query, summing the amounts for OrderItems that are related to the first order without actually loading 
the collection.

5-11. Testing Whether an Entity Reference or Entity Collection  
Is Loaded
Problem
You want to test whether the related entity or entity collection is loaded in the context. Additionally, you want to 
implement the Code-First approach for Entity Framework 6 to manage data access.

Solution
Suppose that you have a model like the one shown in Figure 5-26.



Chapter 5 ■ Loading Entities and Navigation Properties

167

Start by adding a console application project to Visual Studio entitled Recipe11. Be certain to reference the 
Entity Framework 6 libraries. Leveraging the NuGet Package Manager does this best. Right-click on Reference, and 
select Manage NuGet Packages. From the Online tab, locate and install the Entity Framework 6 package. Doing so will 
download, install, and configure the Entity Framework 6 libraries in your project.

Next we create three entity objects: Contractor, Manager, and Project. Then copy the code from Listing 5-27  
into the classes.

Listing 5-27.  Entity Classes

public class Contractor
{
    public int ContracterID { get; set; }
    public string Name { get; set; }
    public int ProjectID { get; set; }
  
    public virtual Project Project { get; set; }
}
 
public class Manager
{
    public Manager()
    {
        Projects = new HashSet<Project>();
    }
  
    public int ManagerID { get; set; }
    public string Name { get; set; }
  
    public virtual ICollection<Project> Projects { get; set; }
}
 
public class Project
{
    public Project()
    {
        Contractors = new HashSet<Contractor>();
    }
  

Figure 5-26.  A model for projects, managers, and contractors



Chapter 5 ■ Loading Entities and Navigation Properties

168

    public int ProjectID { get; set; }
    public string Name { get; set; }
    public int ManagerID { get; set; }
  
    public virtual ICollection<Contractor> Contractors { get; set; }
    public virtual Manager Manager { get; set; }
}
 

Next create a class entitled Recipe11Context, and add the code from Listing 5-28 to it, ensuring the class  
derives from the Entity Framework DbContext class.

Listing 5-28.  Context Class

public class Recipe11Context : DbContext
{
    public Recipe11Context()
        : base("Recipe11ConnectionString")
    {
        // Disable Entity Framework Model Compatibility
        Database.SetInitializer<Recipe11Context>(null);
    }
  
    public DbSet<Contractor> Contractors { get; set; }
    public DbSet<Manager> Managers { get; set; }
    public DbSet<Project> Projects { get; set; }
  
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        modelBuilder.Entity<Contractor>().ToTable("Chapter5.Contractor");
        modelBuilder.Entity<Manager>().ToTable("Chapter5.Manager");
        modelBuilder.Entity<Project>().ToTable("Chapter5.Project");
  
        // Explilcitly map key for Contractor entity
        modelBuilder.Entity<Contractor>().HasKey(x => x.ContracterID);
    }
}
 

Next add an App.Config class to the project, and add the code from Listing 5-29c to it under the 
ConnectionStrings section.

Listing 5-29.  Connection String

<connectionStrings>
  <add name="Recipe11ConnectionString"
       connectionString="Data Source=.;
       Initial Catalog=EFRecipes;
       Integrated Security=True;
       MultipleActiveResultSets=True"
       providerName="System.Data.SqlClient" />
</connectionStrings>
 



Chapter 5 ■ Loading Entities and Navigation Properties

169

Entity Framework exposes the IsLoaded property that it sets to true when it is 100% certain that all data from 
the specified entity or entity collection is loaded and available in the context. The model in Figure 5-26 represents 
projects, the managers for the projects, and the contractors that work on the projects. To test whether a related entity 
is loaded into the context object, follow the pattern shown in Listing 5-30.

Listing 5-30.  Using IsLoaded to Determine Whether an Entity or Entity Collection Is in the Context

using (var context = new EFRecipesEntities())
{
    var man1 = new Manager { Name = "Jill Stevens" };
    var proj = new Project { Name = "City Riverfront Park", Manager = man1 };
    var con1 = new Contractor { Name = "Robert Alvert", Project = proj };
    var con2 = new Contractor { Name = "Alan Jones", Project = proj };
    var con3 = new Contractor { Name = "Nancy Roberts", Project = proj };
    context.Projects.Add(proj);
    context.SaveChanges();
}
 
using (var context = new EFRecipesEntities())
{
    var project = context.Projects.Include("Manager").First();
               
    if (context.Entry(project).Reference(x => x.Manager).IsLoaded)
        Console.WriteLine("Manager entity is loaded.");
    else
        Console.WriteLine("Manager entity is NOT loaded.");
                 
    if (context.Entry(project).Collection(x => x.Contractors).IsLoaded)
        Console.WriteLine("Contractors are loaded.");
    else
        Console.WriteLine("Contractors are NOT loaded.");
    
    Console.WriteLine("Calling project.Contractors.Load()...");
    context.Entry(project).Collection(x => x.Contractors).Load();
                 
    if (context.Entry(project).Collection(x => x.Contractors).IsLoaded)
        Console.WriteLine("Contractors are now loaded.");
    else
        Console.WriteLine("Contractors failed to load.");
 }
 

The following is the output from the code in Listing 5-30:

Manager entity is loaded.
Contractors are NOT loaded.
Calling project.Contractors.Load()...
Contractors are now loaded.



Chapter 5 ■ Loading Entities and Navigation Properties

170

How It Works
We start by using the Include() method to eagerly load the Project entity together with its related Manager for the 
first Project from the data store.

After the query, we check whether the manager instance is loaded by obtaining a reference to the related 
Manager entity using the Reference() method and checking the value of the IsLoaded property. Because this is an 
entity reference (reference to a single parent entity), the IsLoaded property is available on the Reference property of 
the DbEntityEntry type that is returned for calling the Entry() method. As we loaded both Projects and Manager, the 
IsLoaded property returns true.

Next we check whether the Contractor entity collection is loaded. It is not loaded because we didn’t eagerly load 
it with the Include() method, nor did we load it directly (yet) with the Load() method. Once we fetch it with the 
Load() method, the IsLoaded property for it is set to true.

When lazy loading is enabled on the context object, which is the default behavior, the IsLoaded property is set 
to true when the entity or entity collection is referenced. Lazy loading causes Entity Framework to load the entity 
or entity collection automatically when referenced. Explicit loading is similar to lazy loading, but is not automatic. 
Instead, the developer must explicitly load the related entity with the Load() method, giving the developer complete 
control over if and when related entities are loaded.

The exact meaning of IsLoaded can be a little more confusing than it seems it should be. IsLoaded is set by the 
results of a query by calling the Load() method, or implicitly by the span of relationship keys. When you query for 
an entity, there is an implicit query for the key of the related entity. If the result of this implicit query is a null key 
value, then IsLoaded is set to true, indicating that there is no related entity in the database. This is the same value for 
IsLoaded that we would expect if we did an explicit load on the relationship and found no related entity.

5-12. Loading Related Entities Explicitly
Problem
You want to load related entities directly, without relying on the default lazy loading behavior of Entity Framework.

Solution
Let’s say that you have a model like the one in Figure 5-27.

Figure 5-27.  A model for doctors, their patients, and appointments



Chapter 5 ■ Loading Entities and Navigation Properties

171

The model depicted in Figure 5-27 represents doctors, their patients, and appointments. To explicitly load related 
entities, follow the pattern in Listing 5-31.

Listing 5-31.  Using the Load() Method

using (var context = new EFRecipesEntities())
{
    // disable lazy loading feature as we are explicitly loading
    // child entities
    context.Configuration.LazyLoadingEnabled = false;
 
    var doctorJoan = context.Doctors.First(o => o.Name == "Joan Meyers");
 
    if (!context.Entry(doctorJoan).Collection(x => x.Appointments).IsLoaded)
    {
        context.Entry(doctorJoan).Collection(x => x.Appointments).Load();
        Console.WriteLine("Dr. {0}'s appointments were explicitly loaded.",
                                       doctorJoan.Name);
    }
                 
    Console.WriteLine("Dr. {0} has {1} appointment(s).",
                                    doctorJoan.Name,
                                    doctorJoan.Appointments.Count());
 
    foreach (var appointment in context.Appointments)
    {
        if (!context.Entry(appointment).Reference(x => x.Doctor).IsLoaded)
        {
            context.Entry(appointment).Reference(x => x.Doctor).Load();
            Console.WriteLine("Dr. {0} was explicitly loaded.",
                                           appointment.Doctor.Name);
        }
        else
            Console.WriteLine("Dr. {0} was already loaded.",
                                           appointment.Doctor.Name);
    }
 
    Console.WriteLine("There are {0} appointments for Dr. {1}",
                                   doctorJoan.Appointments.Count(),
                                   doctorJoan.Name);
 
    doctorJoan.Appointments.Clear();
                 
    Console.WriteLine("Collection clear()'ed");
    Console.WriteLine("There are now {0} appointments for Dr. {1}",
                                   doctorJoan.Appointments.Count(),
                                   doctorJoan.Name);
 
    context.Entry(doctorJoan).Collection(x => x.Appointments).Load();
    Console.WriteLine("Collection loaded()'ed");
    Console.WriteLine("There are now {0} appointments for Dr. {1}",
                                   doctorJoan.Appointments.Count().ToString(),
                                   doctorJoan.Name);
 



Chapter 5 ■ Loading Entities and Navigation Properties

172

    // Currently, there isn't an easy way to refresh entities with the DbContext API.
    // Instead, drop down into the ObjectContext and perform the following actions
    var objectContext = ((IObjectContextAdapter)context).ObjectContext;
    var objectSet = objectContext.CreateObjectSet<Appointment>();
    objectSet.MergeOption = MergeOption.OverwriteChanges;
    objectSet.Load();
 
    Console.WriteLine("Collection loaded()'ed with MergeOption.OverwriteChanges");
    Console.WriteLine("There are now {0} appointments for Dr. {1}",
                                   doctorJoan.Appointments.Count(),
                                   doctorJoan.Name);
}
 
// Demonstrating loading part of the collection then Load()'ing the rest
using (var context = new EFRecipesEntities())
{
    // disable lazy loading feature as we are explicitly loading
    // child entities
    context.Configuration.LazyLoadingEnabled = false;
                 
    // Load the first doctor and attach just the first appointment
    var doctorJoan = context.Doctors.First(o => o.Name == "Joan Meyers");
  
    context.Entry(doctorJoan).Collection(x => x.Appointments).Query().Take(1).Load();
  
    Console.WriteLine("Dr. {0} has {1} appointments loaded.",
                             doctorJoan.Name,
                             doctorJoan.Appointments.Count());
  
    // When we need all of the remaining appointments, simply Load() them
    context.Entry(doctorJoan).Collection(x => x.Appointments).Load();
    Console.WriteLine("Dr. {0} has {1} appointments loaded.",
                             doctorJoan.Name,
                             doctorJoan.Appointments.Count());
}
 

The output of the code in Listing 5-31 is the following:

Dr. Joan Meyers's appointments were explicitly loaded
Dr. Joan Meyers has 2 appointment(s)
Dr. Joan Meyers was already loaded
Dr. Steven Mills was lazy loaded
Dr. Joan Meyers was already loaded
There are 2 appointments for Dr. Joan Meyers
Collection clear()'ed
There are now 0 appointments for Dr. Joan Meyers
Collection loaded()'ed
There are now 0 appointments for Dr. Joan Meyers
Collection loaded()'ed with MergeOption.OverwriteChanges
There are now 2 appointments for Dr. Joan Meyers
Dr. Joan Meyers has 2 appointments loaded
Dr. Joan Meyers has 2 appointments loaded



Chapter 5 ■ Loading Entities and Navigation Properties

173

How It Works
After inserting some sample data into our database, we explicitly disable the lazy loading feature of Entity Framework, 
as we want to explicitly control the loading of related child entities. We can disable lazy loading in one of two ways:

Set the LazyLoadingEnabled property from the •	 Context.Configuration object to false. This 
approach disables lazy loading for all entities assigned to the context.

Remove the virtual access modifier from each navigation property in each entity class. This •	
approach disables lazy loading per entity class, giving you explicit control of lazy loading.

The first bit of code retrieves an instance of the Doctor entity. If you are using the explicit loading approach, it 
would be a good practice to use the IsLoaded property to check whether the entity or entity collection is already loaded. 
In the code, we check whether the doctor’s appointments are loaded. If not, we use the Load() method to load them.

In the foreach loop, we iterate through the appointments, checking if the associated doctor is loaded. Notice in 
the output that one doctor was already loaded while the other one was not. This is because our first query retrieved 
this doctor. During the retrieval process for the appointments, Entity Framework connected the loaded instance of the 
doctor with her appointments. This process is informally referred to as relationship fixup. Relationship fixup will not 
fix up all associations. In particular, it will not tie in entities across a many-to-many association.

In the last bit of code, we print the number of appointments we have for the doctor. Then we clear the collection 
from the context using the Clear() method. The Clear() method removes the relationship between the Doctor 
and appointments entity objects.. Interestingly, it does not remove the instances from memory;they are still in the 
context—they are just no longer connected to this instance of the Doctor entity.

Somewhat surprisingly, after we call Load() to reload the appointments, we see from the output that no appointments 
are in our collection! What happened? It turns out that the Load() method is overloaded to take a parameter that controls 
how the loaded entities are merged into the context. The default behavior for the Load() method is MergeOption.
AppendOnly, which simply appends instances that are not already in the context. In our case, none of the appointments 
was actually removed from the context. Our use of the Clear() method simply removed them from the entity collection, 
not the context. When we called Load() with the default MergeOption.AppendOnly, no new instances were found, 
so nothing was added to the entity collection. Other merge options include NoTracking, OverwriteChanges, and 
PreserveChanges. When we use the OverwriteChanges option, the appointments appear in the Doctor’s Appointments.

Note in our code how we drop down into the underlying ObjectContext object in order to gain access to 
the MergeOption behaviors exposed by Entity Framework. The MergeOption type is not directly available in the 
DbContext. You’ll recall that when using Entity Framework, there are two context objects available for use. The 
preferred context object for Entity Framework 6 is the DbContext object, which provides an intuitive and easy-to-use 
facade around the legacy Object Context object. The older Object Context object is still available through an explicit 
cast against the DbContext object, as demonstrated in our recipe.

Along with AppendOnly, the MergeOption type exposes three other options:

The •	 NoTracking option turns off object state tracking for the loaded instances. With 
NoTracking, Entity Framework will not track changes to the object and will not be aware that 
the object is loaded into the context. The NoTracking option can be used on a navigation 
property of an object only if the object was loaded with the NoTracking option. NoTracking 
has one additional side effect. If we had loaded an instance of the Doctor entity with 
NoTracking, loading the appointments with the Load() method would also occur with 
NoTracking, regardless of the default AppendOnly option.

The •	 OverwriteChanges option will update the values in the current instance with that from 
the database. Entity Framework will continue to use the same instance of the entity object. 
This option is particularly useful if you need to discard changes made in the context and 
refresh them from the database. This would be helpful, for example, in implementing an undo 
operation in an application.



Chapter 5 ■ Loading Entities and Navigation Properties

174

The •	 PreserveChanges option is, essentially, the opposite of the OverwriteChanges option.  
It will update the values of any entities that have database changes, but no in-memory 
changes. An entity that has been modified in memory will not be refreshed. To be precise, the 
current value of an entity modified in memory will not be changed, but the original value will 
be updated if it has changed on the database.

There are some restrictions on when you can use Load(). Load() cannot be called on an entity that is in the 
Added, Deleted, or Detached state.

The Load() method can be helpful in improving performance by restricting how much of a collection is loaded 
at any one time. For example, suppose our doctors had lots of appointments, but in many cases we needed to work 
with just a few of them. In the rare case that we need the entire collection, we can simply call Load() to append the 
remaining appointment instances to the context. This is demonstrated in the code snippet in Listing 5-32.

Listing 5-32.  Code Snippet Demonstrating Partial Loading of an Entity Collection

// Demonstrating loading part of the collection then Load()'ing the rest
using (var context = new EFRecipesEntities())
{
    // Load the first doctor and attach just the first appointment
    var doctorJoan = context.Doctors.First(o => o.Name == "Joan Meyers");
                 
    context.Entry(doctorJoan).Collection(x => x.Appointments).Query().Take(1).Load();
    // note that IsLoaded returns false here since all related data has not been loaded into the context
    var appointmentsLoaded = context.Entry(doctorJoan).Collection(x => x.Appointments).IsLoaded;

    Console.WriteLine("Dr. {0} has {1} appointments loaded.",
                                   doctorJoan.Name,
                                   doctorJoan.Appointments.Count());
                 
    // When we need all of the remaining appointments, simply Load() them
    context.Entry(doctorJoan).Collection(x => x.Appointments).Load();
    Console.WriteLine("Dr. {0} has {1} appointments loaded.",
                                   doctorJoan.Name,
                                   doctorJoan.Appointments.Count());
            }
 

The output of the code snippet in Listing 5-12b is the following:

Dr. Joan Meyers has 1 appointments loaded.
Dr. Joan Meyers has 2 appointments loaded.

5-13. Filtering an Eagerly Loaded Entity Collection
Problem
You want to filter an eagerly loaded collection. Additionally, you want to implement the Code-First approach for 
Entity Framework 6 to manage data access.



Chapter 5 ■ Loading Entities and Navigation Properties

175

Solution
Entity Framework does not directly support filtering with the Include() method, but we can accomplish the same 
thing by creating an anonymous type that includes the entity along with the filtered collection of related entities.

Let’s assume that you have a model like the one in Figure 5-28.

Figure 5-28.  A model for movies and their categories

Start by adding a console application project to Visual Studio entitled Recipe13. Be certain to reference the 
Entity Framework 6 libraries. Leveraging the NuGet Package Manager does this best. Right-click on Reference, and 
select Manage NuGet Packages. From the Online tab, locate and install the Entity Framework 6 package. Doing so will 
download, install, and configure the Entity Framework 6 libraries in your project.

Next we create three entity objects. Create two classes: Category and Movie, and copy the code from Listing 5-33 
into the classes.

Listing 5-33.  Entity Classes

public class Category
{
    public Category()
    {
        Movies = new HashSet<Movie>();
    }
  
    public int CategoryId { get; set; }
    public string Name { get; set; }
    public string ReleaseType { get; set; }
  
    public virtual ICollection<Movie> Movies { get; set; }
}
 
public class Movie
{
    public int MovieId { get; set; }
    public string Name { get; set; }
    public string Rating { get; set; }
    public int CategoryId { get; set; }
  
    public virtual Category Category { get; set; }
}
 



Chapter 5 ■ Loading Entities and Navigation Properties

176

Next create a class entitled Recipe13Context and add the code from Listing 5-34 to it, ensuring the class derives 
from the Entity Framework DbContext class.

Listing 5-34.  Context Class

public class Recipe13Context : DbContext
{
    public Recipe13Context()
        : base("Recipe13ConnectionString")
    {
        // Disable Entity Framework Model Compatibility
        Database.SetInitializer<Recipe13Context>(null);
    }
  
    public DbSet<Category> Categories { get; set; }
    public DbSet<Movie> Movies { get; set; }
  
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        modelBuilder.Entity<Category>().ToTable("Chapter5.Category");
        modelBuilder.Entity<Movie>().ToTable("Chapter5.Movie");
    }
}
 

Next add an App.Config class to the project, and add the code from Listing 5-35 to it under the 
ConnectionStrings section.

Listing 5-35.  Connection String

<connectionStrings>
  <add name="Recipe13ConnectionString"
       connectionString="Data Source=.;
       Initial Catalog=EFRecipes;
       Integrated Security=True;
       MultipleActiveResultSets=True"
       providerName="System.Data.SqlClient" />
</connectionStrings>
 

To eagerly load and filter both the categories and their associated movies, follow the pattern in Listing 5-36.

Listing 5-36.  Filtering an Eagerly Loaded Entity Collection

using (var context = new EFRecipesEntities())
{
    var cat1 = new Category { Name = "Science Fiction", ReleaseType = "DVD" };
    var cat2 = new Category { Name = "Thriller", ReleaseType = "Blu-Ray" };
    new Movie { Name = "Return to the Moon", Category = cat1, Rating = "PG-13" };
    new Movie { Name = "Street Smarts", Category = cat2, Rating = "PG-13" };
    new Movie { Name = "Alien Revenge", Category = cat1, Rating = "R" };
    new Movie { Name = "Saturday Nights", Category = cat1, Rating = "PG-13" };
    context.Categories.AddObject(cat1);
    context.Categories.AddObject(cat2);
    context.SaveChanges();
}



Chapter 5 ■ Loading Entities and Navigation Properties

177

using (var context = new EFRecipesEntities())
{
    // filter on ReleaseType and Rating
    // create collection of anonymous types
    var cats = from c in context.Categories
               where c.ReleaseType == "DVD"
               select new
               {
                   category = c,
                   movies = c.Movies.Where(m => m.Rating == "PG-13")
               };
 
    Console.WriteLine("PG-13 Movies Released on DVD");
    Console.WriteLine("============================");
    foreach (var cat in cats)
    {
        Category category = cat.category;
        Console.WriteLine("Category: {0}", category.Name);
        foreach (var movie in cat.movies)
        {
            Console.WriteLine("\tMovie: {0}", movie.Name);
        }
    }
}
 

The code in Listing 5-36 produces the following output:

PG-13 Movies Released on DVD
============================
Category: Science Fiction
        Movie: Return to the Moon
        Movie: Saturday Nights

How It Works
We start off in Listing 5-36 by creating and initializing the categories and movies. To keep things short, we’ve created 
only a couple of categories and four movies.

In the query, we create a collection of anonymous types with the category instance and the filtered collection 
of movies in the category. The query also filters the category collection, retrieving only categories whose movies are 
released on DVD. In this example, just one category was released on DVD. Here we rely on relationship span to attach 
the movies to the categories.

This approach of leveraging an anonymous type helps gets around the limitation in eager loading that prevents 
us from filtering an eagerly loaded collection. Note that when explicitly loading, we do have the ability to filter 
an eagerly loaded collection, as demonstrated in some of the earlier recipes in this chapter. Keep in mind that 
anonymous types only have scope in the method in which they are created—we cannot return anonymous types from 
a method. If our goal were to return the entity set for further processing in the application, then we would want to 
create an explicit type into which we could load the data and then return from a method. In our example, that explicit 
type would be a simple class with two properties: Category and a collection of Movies.



Chapter 5 ■ Loading Entities and Navigation Properties

178

5-14. Modifying Foreign Key Associations
Problem
You want to modify a foreign key association.

Solution
Entity Framework provides a couple of ways to modify a foreign key association. You can add the associated entity to 
a navigation property collection or assign it to a navigation property. You can also set the foreign key value with the 
associated entity’s key value.

Suppose that you have a model like the one shown in Figure 5-29.

Figure 5-29.  A model for clients and invoices

To modify the foreign key association between client entities and invoice entities in two different ways, do the 
following:

	 1.	 Right-click your project, and select Add New ➤ ADO.NET Entity Data Model. Import the 
Client and Invoice tables. Be certain that the Include foreign key columns in the model 
check box is checked, which is the default behavior, as shown in Figure 5-30. Doing 
so will import foreign key associations from the database that are not many-to-many 
relationships.



Chapter 5 ■ Loading Entities and Navigation Properties

179

	 2.	 Use the code in Listing 5-37 to demonstrate the ways in which a foreign key association 
can be modified.

Listing 5-37.  Demonstrating the Ways in Which a Foreign Key Association Can Be Modified

using (var context = new EFRecipesEntities())
{
    var client1 = new Client { Name = "Karen Standfield", ClientId = 1 };
     
    var invoice1 = new Invoice { InvoiceDate = DateTime.Parse("4/1/10"), Amount = 29.95M };
    var invoice2 = new Invoice { InvoiceDate = DateTime.Parse("4/2/10"), Amount = 49.95M };
    var invoice3 = new Invoice { InvoiceDate = DateTime.Parse("4/3/10"), Amount = 102.95M };
    var invoice4 = new Invoice { InvoiceDate = DateTime.Parse("4/4/10"), Amount = 45.99M };
 
    // add the invoice to the client's collection
    client1.Invoices.Add(invoice1);
 

Figure 5-30.  Checking the Include foreign key columns in the model check box will create foreign key associations for 
database relationships that are not many-to-many



Chapter 5 ■ Loading Entities and Navigation Properties

180

    // assign the foreign key directly
    invoice2.ClientId = 1;
 
    // Attach() an existing row using a "fake" entity
    context.Database.ExecuteSqlCommand("insert into chapter5.client values (2, 'Phil Marlowe')");
    var client2 = new Client { ClientId = 2 };
    context.Clients.Attach(client2);
     
    invoice3.Client = client2;
 
    // using the ClientReference
 
    invoice4.Client = client1;
 
    // save the changes
    context.Clients.Add(client1);
    context.Invoices.Add(invoice2);
    context.Invoices.Add(invoice3);
    context.Invoices.Add(invoice4);
    context.SaveChanges();
}
 
using (var context = new EFRecipesEntities())
{
    foreach (var client in context.Clients)
    {
        Console.WriteLine("Client: {0}", client.Name);
        foreach (var invoice in client.Invoices)
        {
            Console.WriteLine("\t{0} for {1}", invoice.InvoiceDate.ToShortDateString(),
                                           invoice.Amount.ToString("C"));
        }
    }
}
 

The following is the output of the code in Listing 5-37:

Client: Karen Standfield
        4/1/2010 for $29.95
        4/4/2010 for $45.99
        4/2/2010 for $49.95
Client: Phil Marlowe
        4/3/2010 for $102.95

How It Works
Entity Framework supports independent associations and foreign key associations. For an independent association, 
the association between the entities is tracked separately from the entities, and the only way to change the association 
is through object references.



Chapter 5 ■ Loading Entities and Navigation Properties

181

With foreign key associations, you can change the association by changing object references or by directly 
changing the foreign key property value. Foreign key associations are not used for many-to-many relationships.

Note■■   Keep in mind that Foreign Key Associations are simpler, easier, the default approach and recommended by  
the Entity Framework team. Unless you have a concrete business reason to use an Independent Association, always 
consider using a Foreign Key Association.

Table 5-1 illustrates the main differences between foreign key associations and independent associations.

Table 5-1.  The Differences Between Foreign Key Associations and Independent Associations

Foreign Key Association Independent Association

Can be set using foreign key and navigation properties Can only be set using a navigation property

Is mapped as a property and does not require a separate 
mapping

Is tracked independently from the entity, which means 
that changing the association does not change the state 
of the entity

Data binding scenarios are easier because they can bind 
to a property value.

Data binding is complicated because you have to create 
a property manually, which reads the foreign key value 
from the entity key, or traverse the navigation property 
to load the related key.

Finding the old value for a foreign key is easier because it 
is a property of an entity.

Accessing an old relationship is complicated because 
relationships are tracked separately.

To delete an entity that uses a foreign key association, you 
only need the entity key.

To delete an entity that uses an independent 
association, you need the entity key and the original 
values for all reference keys.

N-Tier scenarios are easier because you don’t have to send 
the related end’s entity key along with the entity.

The client must send the related end’s entity key value 
along with the entity when the entity is attached. Entity 
Framework will create a stub entry, and the update 
statement includes the related end’s entity key.

Three representations of the same association are kept 
in sync: the foreign key, the reference, and the collection 
navigation property on the other side. Entity Framework 
handles this with the default code generation.

Two representations are kept in sync: the reference and 
the navigation property

When you load a related entity, Entity Framework uses the 
foreign key value currently assigned on the entity, not the 
foreign key value in the database.

When you load a related entity, the foreign key value 
is read from the database and, based on this value, the 
related entity is loaded.



183

Chapter 6

Beyond the Basics with Modeling  
and Inheritance

By now you have a solid understanding of basic modeling techniques in Entity Framework. In this chapter, you will 
find recipes that will help you address many common, and often complex, modeling problems. The recipes in this 
chapter specifically address problems that you are likely to face in modeling existing, real-world databases.

We start this chapter by working with many-to-many relationships. This type of relationship is very common in 
many modeling scenarios in both existing databases and new projects. Next we’ll look at self-referencing relationships 
and explore various strategies for retrieving nested object graphs. We round out this chapter with several recipes 
involving more advanced modeling of inheritance and entity conditions.

6-1. Retrieving the Link Table in a Many-to-Many Association
Problem
You want to retrieve the keys in the link table that connect two entities in a many-to-many association.

Solution
Let’s say that you have a model with a many-to-many association between Event and Organizer entities, as is shown  
in Figure 6-1.

Figure 6-1.  Many-to-many association between Event and Organizer entities



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

184

As we illustrated in several recipes in Chapter 2, a many-to-many relationship is represented in a database  
using an intermediate table called a link table. The link table holds the foreign keys on each side of the relationship  
(see Figure 6-2). When a link table with no additional columns and the related tables are imported into Entity 
Framework, the Entity Data Model Wizard creates a many-to-many association between the related tables. The link 
table is not represented as an entity; however, it is used internally for the many-to-many association.

To retrieve the entity keys EventId and OrganizerId, we can use either a nested from clause or the 
SelectMany()method. Listing 6-1 shows both approaches.

Listing 6-1.  Retrieving a Link Table Using Both a Nested from Clause and the SelectMany() Method

using (var context = new EF6RecipesContext())
{
    var org = new Organizer { Name = "Community Charity" };
    var evt = new Event { Name = "Fundraiser" };
    org.Events.Add(evt);
    context.Organizers.Add(org);
    org = new Organizer { Name = "Boy Scouts" };
    evt = new Event { Name = "Eagle Scout Dinner" };
    org.Events.Add(evt);
    context.Organizers.Add(org);
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    var evsorg1 = from ev in context.Events
                 from organizer in ev.Organizers
                 select new { ev.EventId, organizer.OrganizerId };
    Console.WriteLine("Using nested from clauses...");
    foreach (var pair in evsorg1)
    {
        Console.WriteLine("EventId {0}, OrganizerId {1}",
                           pair.EventId,
                           pair.OrganizerId);
    }
 
    var evsorg2 = context.Events
                         .SelectMany(e => e.Organizers,
                            (ev, org) => new { ev.EventId, org.OrganizerId });
    Console.WriteLine("\nUsing SelectMany()");

Figure 6-2.  A database diagram showing the EventOrganizer link table holding the foreign keys to the related Event 
and Organizer tables



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

185

    foreach (var pair in evsorg2)
    {
        Console.WriteLine("EventId {0}, OrganizerId {1}",
                           pair.EventId, pair.OrganizerId);
    }
}
 

The output of the code in Listing 6-1 should be similar to the following:

Using nested from clauses...
EventId 31, OrganizerId 87
EventId 32, OrganizerId 88
 
Using SelectMany()
EventId 31, OrganizerId 87
EventId 32, OrganizerId 88

How It Works
A link table is a common way of representing a many-to-many relationship between two tables in a database. Because 
it serves no purpose other than defining the relationship between two tables, Entity Framework represents a link table 
as a many-to-many association, not as a separate entity.

The many-to-many association between Event and Organizer allows easy navigation from an Event entity to the 
associated organizers and from an Organizer entity to all of the associated events. However, you may want to retrieve 
just the keys in the link table. You may want to do this because the keys are themselves meaningful or you want to use 
these keys for operations on these or other entities. The problem here is that the link table is not represented as an 
entity, so querying it directly is not an option. In Listing 6-1, we show a couple of ways to get just the underlying keys 
without materializing the entities on each side of the association.

The first approach in Listing 6-1 uses nested from clauses to retrieve the organizers for each event. Using the 
Organizers’ navigation property on the instances of the Event entity leverages the underlying link table to enumerate 
all of the organizers for each of the events. We reshape the results to the pairs of corresponding keys for the entities. 
Finally, we iterate through the results, printing the pair of keys to the console.

In the second approach, we use the SelectMany() method to project the organizers for each event into the pairs 
of keys for the events and organizers. As with the nested from clauses, this approach uses the underlying link table 
through the Organizers’ navigation property. We iterate through the results in the same way as with the first approach.

6-2. Exposing a Link Table as an Entity
Problem
You want to expose a link table as an entity instead of a many-to-many association.

Solution
Let’s say that your database has a many-to-many relationship between workers and tasks, and it looks something  
like the one in the database diagram shown in Figure 6-3.



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

186

The WorkerTask link table contains nothing more than the foreign keys supporting the many-to-many 
relationship.

To convert the association to an entity representing the WorkerTask link table, follow these steps.

	 1.	 Create a WorkerTask POCO entity class, as shown in Listing 6-2.

	 2.	 Replace the Tasks property of the Worker POCO entity with a WorkerTasks property of type 
ICollection<WorkerTask>.

	 3.	 Replace the Workers property of the Task POCO entity with a WorkerTasks property of type 
ICollection<WorkerTask>.

	 4.	 Add an auto-property of type DbSet<WorkerTask> to your DbContext subclass.

The final model should look like the one shown in Listing 6-2.

Listing 6-2.  The Final Data Model Including WorkerTask

[Table("Worker", Schema="Chapter6")]
public class Worker
{
    [Key]
    [DatabaseGenerated(DatabaseGeneratedOption.Identity)]
    public int WorkerId { get; set; }
    public string Name { get; set; }
 
    [ForeignKey("WorkerId")]
    public virtual ICollection<WorkerTask> WorkerTasks { get; set; }
}
 
[Table("Task", Schema = "Chapter6")]
public class Task
{
    [Key]
    [DatabaseGenerated(DatabaseGeneratedOption.Identity)]
    public int TaskId { get; set; }
    public string Title { get; set; }
 
    [ForeignKey("TaskId")]
    public virtual ICollection<WorkerTask> WorkerTasks { get; set; }
}
 

Figure 6-3.  A many-to-many relationship between workers and tasks



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

187

[Table("WorkerTask", Schema = "Chapter6")]
public class WorkerTask
{
    [Key]
    [Column(Order = 1)]
    public int WorkerId { get; set; }
     
    [Key]
    [Column(Order = 2)]
    public int TaskId { get; set; }
 
    [ForeignKey("WorkerId")]
    public virtual Worker Worker { get; set; }
 
    [ForeignKey("TaskId")]
    public virtual Task Task { get; set; }
}

How It Works
During the application development lifecycle, developers often find the need to add payload to the many-to-many 
associations that started life payload-free. In this recipe, we show how to surface the many-to-many association as a 
separate entity so that additional scalar properties (for example, payload) can be added.

Many developers choose to assume that all many-to-many relationships will ultimately hold a payload, and they 
create a synthetic key for the link table rather than the traditional composite key formed by combining the foreign keys.

The downside of our new model is that we do not have a simple way to navigate the many-to-many association. 
We have two one-to-many associations that require an additional hop through the linking entity. The code in  
Listing 6-3 demonstrates this additional bit of work on both the insert side and the query side.

Listing 6-3.  Inserting into and Retrieving Task and Worker Entities

using (var context = new EF6RecipesContext())
{
    var worker = new Worker { Name = "Jim" };
    var task = new Task { Title = "Fold Envelopes" };
    var workertask = new WorkerTask { Task = task, Worker = worker };
    context.WorkerTasks.Add(workertask);
    task = new Task { Title = "Mail Letters" };
    workertask = new WorkerTask { Task = task, Worker = worker };
    context.WorkerTasks.Add(workertask);
    worker = new Worker { Name = "Sara" };
    task = new Task { Title = "Buy Envelopes" };
    workertask = new WorkerTask { Task = task, Worker = worker };
    context.WorkerTasks.Add(workertask);
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    Console.WriteLine("Workers and Their Tasks");
    Console.WriteLine("=======================");



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

188

    foreach (var worker in context.Workers)
    {
        Console.WriteLine("\n{0}'s tasks:", worker.Name);
        foreach (var wt in worker.WorkerTasks)
        {
            Console.WriteLine("\t{0}", wt.Task.Title);
        }
    }
}
 

The code in Listing 6-3 produces the following output:

Workers and Their Tasks
=======================
 
Jim's tasks:
        Fold Envelopes
        Mail Letters
 
Sara's tasks:
        Buy Envelopes

6-3. Modeling a Many-to-Many, Self-Referencing Relationship
Problem
You have a table with a many-to-many relationship with itself, and you want to model this table and relationship.

Solution
Let’s say that you have a table that has relationship to itself using a link table, as shown in Figure 6-4.

To create a model, do the following:

	 1.	 Create a new class in your project that inherits from DbContext.

	 2.	 Add a Product POCO entity class to your project using the code in Listing 6-4.

Figure 6-4.  A table with a many-to-many relationship to itself



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

189

Listing 6-4.  Creating the Product POCO Entity Class

[Table("Product", Schema = "Chapter6")]
public class Product
{
    public Product()
    {
        RelatedProducts = new HashSet<Product>();
        OtherRelatedProducts = new HashSet<Product>();
    }
 
    [Key]
    [DatabaseGenerated(DatabaseGeneratedOption.Identity)]
    public int ProductId { get; set; }
    public string Name { get; set; }
    public decimal Price { get; set; }
 
    // Products related to this product
    public virtual ICollection<Product> RelatedProducts { get; set; }
         
    // Products to which this product is related
    public virtual ICollection<Product> OtherRelatedProducts { get; set; }
}

 
	 3.	 Add an auto-property of type DbSet<Product> to your DbContext subclass.

	 4.	 Override the OnModelCreating method of DbContext in your subclass to create the  
many-to-many self-referencing relationship mapping, as shown in Listing 6-5.

Listing 6-5.  Overriding OnModelCreating in the DbContext Subclass to Create the  
Many-to-Many Self-Referencing Mapping

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
    base.OnModelCreating(modelBuilder);
 
    modelBuilder.Entity<Product>()
                .HasMany(p => p.RelatedProducts)
                .WithMany(p => p.OtherRelatedProducts)
                .Map(m =>
                         {
                             m.MapLeftKey("ProductId");
                             m.MapRightKey("RelatedProductId");
                             m.ToTable("RelatedProduct", "Chapter6");
                         });
}

How It Works
As you can see, the Entity Framework supports a many-to-many self-referencing association with little effort. We 
created two navigation properties in our Product class, RelatedProducts and OtherRelatedProducts, and mapped 
those properties to the underlying database schema in our DbContext subclass.



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

190

The code in Listing 6-6 inserts a few related products and retrieves the related products. To retrieve all of the 
related products for a given product, we need to traverse both the RelatedProducts navigation property and the 
OtherRelatedProducts navigation property.

Tent is related to Ground Cover through the RelatedProducts navigation property because we added Ground 
Cover to Tent’s RelatedProducts collection. Pole is related to Tent through Tent’s OtherRelatedProducts collection 
because we added Tent to Pole’s RelatedProducts collection. The associations go both ways. In one direction,  
it’s a related product. In the other direction, it’s an OtherRelatedProduct.

Listing 6-6.  Retrieving the Related Products

using (var context = new EF6RecipesContext())
{
    var product1 = new Product { Name = "Pole", Price = 12.97M };
    var product2 = new Product { Name = "Tent", Price = 199.95M };
    var product3 = new Product { Name = "Ground Cover", Price = 29.95M };
    product2.RelatedProducts.Add(product3);
    product1.RelatedProducts.Add(product2);
    context.Products.Add(product1);
    context.SaveChanges();
}

using (var context = new EF6RecipesContext())
{
    var product2 = context.Products.First(p => p.Name == "Tent");
    Console.WriteLine("Product: {0} ... {1}", product2.Name,
                       product2.Price.ToString("C"));
    Console.WriteLine("Related Products");
    foreach (var prod in product2.RelatedProducts)
    {
        Console.WriteLine("\t{0} ... {1}", prod.Name, prod.Price.ToString("C"));
    }
    foreach (var prod in product2.OtherRelatedProducts)
    {
        Console.WriteLine("\t{0} ... {1}", prod.Name, prod.Price.ToString("C"));
    }
}
 

The output of Listing 6-6 is as follows:

Product: Tent ... $199.95
Related Products
        Ground Cover ... $29.95
        Pole ... $12.97

The code in Listing 6-6 retrieves only the first level of related products. A transitive relationship is one that spans 
multiple levels, like a hierarchy. If we assume that the “related products” relationship is transitive, we might want to 
form the transitive closure. The transitive closure would be all of the related products regardless of how many hops 
away they may be. In an eCommerce application, product specialists could create the first level of related products. 
Additional levels could be derived by computing the transitive closure. The end result would allow the application to 
show the familiar “…you may also be interested in …” message that we often see during the checkout process.

In Listing 6-7, we use a recursive method to form the transitive closure. In traversing both the RelatedProducts 
and OtherRelatedProducts associations, we need to be careful not to get stuck in a cycle. If product A is related to B, 



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

191

and product B is related to product A, our application would get trapped in the recursion. To detect cycles, we use a 
Dictionary<> to help prune off paths that we have already traversed.

Listing 6-7.  Forming the Transitive Closure of the “Related Products” Relationship

static void RunExample2()
{
    using (var context = new EF6RecipesContext())
    {
        var product1 = new Product { Name = "Pole", Price = 12.97M };
        var product2 = new Product { Name = "Tent", Price = 199.95M };
        var product3 = new Product { Name = "Ground Cover", Price = 29.95M };
        product2.RelatedProducts.Add(product3);
        product1.RelatedProducts.Add(product2);
        context.Products.Add(product1);
        context.SaveChanges();
    }
 
    using (var context = new EF6RecipesContext())
    {
        var product1 = context.Products.First(p => p.Name == "Pole");
        Dictionary<int, Product> t = new Dictionary<int, Product>();
        GetRelated(context, product1, t);
        Console.WriteLine("Products related to {0}", product1.Name);
        foreach (var key in t.Keys)
        {
            Console.WriteLine("\t{0}", t[key].Name);
        }
    }
}
 
static void GetRelated(DbContext context, Product p, Dictionary<int, Product> t)
        {
            context.Entry(p).Collection(ep => ep.RelatedProducts).Load();
            foreach (var relatedProduct in p.RelatedProducts)
            {
                if (!t.ContainsKey(relatedProduct.ProductId))
                {
                    t.Add(relatedProduct.ProductId, relatedProduct);
                    GetRelated(context, relatedProduct, t);
                }
            }
            context.Entry(p).Collection(ep => ep.OtherRelatedProducts).Load();
            foreach (var otherRelated in p.OtherRelatedProducts)
            {
                if (!t.ContainsKey(otherRelated.ProductId))
                {
                    t.Add(otherRelated.ProductId, otherRelated);
                    GetRelated(context, otherRelated, t);
                }
            }
}
 



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

192

In Listing 6-7, we use the Load() method (see the recipes in Chapter 5) to ensure that the collections of related 
products are loaded. Unfortunately, this means that we will end up with many additional round trips to the database. 
We might be tempted to load all of the rows from the Product table up front and hope that relationship span would fix 
up the associations. However, relationship span will not fix up entity collections, only entity references. Because our 
associations are many-to-many (entity collections), we cannot rely on relationship span to help out and we have to 
resort to using the Load() method.

Following is the output of the code in Listing 6-7. From the first block of code that inserts the relationships, we 
can see that a Pole is related to a Tent, and a Tent is related to Ground Cover. The transitive closure for the products 
related to a Pole includes a Tent, Ground Cover, and Pole. Pole is included because it is on the other side of the 
relationship with Tent, which is a related product.

Products related to Pole
        Tent
        Ground Cover
        Pole

6-4. Modeling a Self-Referencing Relationship Using Table per 
Hierarchy Inheritance
Problem
You have a table that references itself. The table represents several different but related kinds of objects in your 
database. You want to model this table using Table per Hierarchy inheritance.

Solution
Suppose that you have a table like the one shown in Figure 6-5, which describes some things about people. People 
often have a hero, perhaps the individual who inspired them the most. We can represent a person’s hero with a 
reference to another row in the Person table.

Each person has some role in life. Some people are firefighters. Some people are teachers. Some people  
are retired. Of course, there could be many other roles. Information about people can be specific to their roles.  
A firefighter is stationed at a firehouse. A teacher teaches at a school. A retired person often has a hobby.

Figure 6-5.  Person table containing people with different roles



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

193

For our example, the possible roles are firefighter (f ), teacher (t), or retired (r). A single character in the role 
column indicates the role for a person.

To create a model, do the following:

	 1.	 Create a new class in your project that inherits from DbContext

	 2.	 Add an abstract Person POCO entity class using the code found in Listing 6-8.

Listing 6-8.  Creating the Abstract Person POCO Entity Class

[Table("Person", Schema = "Chapter6")]
public abstract class Person
{
    [Key]
    [DatabaseGenerated(DatabaseGeneratedOption.Identity)]
    public int PersonId { get; protected set; }
    public string Name { get; set; }
 
    public virtual Person Hero { get; set; }
    public virtual ICollection<Person> Fans { get; set; }
}

 
	 3.	 Add an auto-property of type DbSet<Person> to your DbContext subclass.

	 4.	 Add concrete POCO entity classes for Firefighter, Teacher, and Retired entities using the 
code found in Listing 6-9.

Listing 6-9.  Creating Concrete POCO Entities for Firefighter, Teacher, and Retired

public class Firefighter : Person
{
    public string FireStation { get; set; }
}
 
public class Teacher : Person
{
    public string School { get; set; }
}
 
public class Retired : Person
{
    public string FullTimeHobby { get; set; }
}

 
	 5.	 Override the OnModelCreating method of DbContext in your subclass to configure the 

HeroId foreign key as well as the type hierarchy, as shown in Listing 6-10.

Listing 6-10.  Overriding OnModelCreating in the DbContext Subclass

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
    base.OnModelCreating(modelBuilder);
 
    modelBuilder.Entity<Person>()



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

194

                .HasMany(p => p.Fans)
                .WithOptional(p => p.Hero)
                .Map(m => m.MapKey("HeroId"));
 
    modelBuilder.Entity<Person>()
                .Map<Firefighter>(m => m.Requires("Role").HasValue("f"))
                .Map<Teacher>(m => m.Requires("Role").HasValue("t"))
                .Map<Retired>(m => m.Requires("Role").HasValue("r"));
}

How It Works
The code in Listing 6-11 demonstrates inserting and retrieving Person entities from our model. We create a single 
instance of each of the derived types and wire in a few hero relationships. We have a teacher who is the hero of a 
firefighter and a retired person who is the hero of the teacher. When we set the firefighter as the hero of the retired 
person, we introduce just enough of a cycle so that Entity Framework generates a runtime error (a DbUpdateException) 
because it cannot determine the appropriate order for inserting the rows into the table. In the code, we get around 
this problem by calling the SaveChanges() method before wiring in any of the hero relationships. Once the rows are 
committed to the database, and the store-generated keys are brought back into the object graph, we are free to update 
the graph with the relationships. Of course, these changes must be saved with a final call to SaveChanges().

Listing 6-11.  Inserting into and Retrieving from Our Model

using (var context = new EF6RecipesContext())
{
    var teacher = new Teacher { Name = "Susan Smith",
                                School = "Custer Baker Middle School" };
    var firefighter = new Firefighter { Name = "Joel Clark",
                                FireStation = "Midtown" };
    var retired = new Retired { Name = "Joan Collins",
                                FullTimeHobby = "Scapbooking" };
    context.People.Add(teacher);
    context.People.Add(firefighter);
    context.People.Add(retired);
    context.SaveChanges();
    firefighter.Hero = teacher;
    teacher.Hero = retired;
    retired.Hero = firefighter;
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    foreach(var person in context.People)
    {
        if (person.Hero != null)
            Console.WriteLine("\n{0}, Hero is: {1}", person.Name,
                                person.Hero.Name);
        else
            Console.WriteLine("{0}", person.Name);



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

195

        if (person is Firefighter)
            Console.WriteLine("Firefighter at station {0}",
                               ((Firefighter)person).FireStation);
        else if (person is Teacher)
            Console.WriteLine("Teacher at {0}", ((Teacher)person).School);
        else if (person is Retired)
            Console.WriteLine("Retired, hobby is {0}",
                               ((Retired)person).FullTimeHobby);
        Console.WriteLine("Fans:");
        foreach (var fan in person.Fans)
        {
            Console.WriteLine("\t{0}", fan.Name);
        }
    }
}
 

The output from the code in Listing 6-11 is as follows:

Susan Smith, Hero is: Joan Collins
Teacher at Custer Baker Middle School
Fans:
        Joel Clark
 
Joel Clark, Hero is: Susan Smith
Firefighter at station Midtown
Fans:
        Joan Collins
 
Joan Collins, Hero is: Joel Clark
Retired, hobby is Scapbooking
Fans:
        Susan Smith

6-5. Modeling a Self-Referencing Relationship and Retrieving  
a Complete Hierarchy
Problem
You are using a self-referencing table to store hierarchical data. Given a record, you want to retrieve all associated 
records that are part of that hierarchy at any level deep.

Solution
Suppose that you have a Category table like the one in the database diagram shown in Figure 6-6.



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

196

To create our model, do the following:

	 1.	 Create a new class in your project that inherits from DbContext.

	 2.	 Add a Category POCO entity class using the code in Listing 6-12.

Listing 6-12.  Creating the Category POCO Entity Class

[Table("Category", Schema = "Chapter6")]
public class Category
{
    [Key]
    [DatabaseGenerated(DatabaseGeneratedOption.Identity)]
    public int CategoryId { get; set; }
    public string Name { get; set; }
 
    public virtual Category ParentCategory { get; set; }
    public virtual ICollection<Category> SubCategories { get; set; }
}

 
	 3.	 Add an auto-property of type DbSet<Category> to the DbContext subclass.

	 4.	 Override the OnModelCreating method of DbContext in your subclass, as shown in  
Listing 6-13. In the override, we will create the ParentCategory and SubCategories 
associations and configure the foreign key constraint.

Listing 6-13.  Overriding OnModelCreating in the DbContext Subclass

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
    base.OnModelCreating(modelBuilder);
 
    modelBuilder.Entity<Category>()
                .HasOptional(c => c.ParentCategory)
                .WithMany(c => c.SubCategories)
                .Map(m => m.MapKey("ParentCategoryId"));
}

 
In our model, the Category entity has a Subcategories navigation property that we can use to get the collection 

of all of the immediate subcategories of the Category. However, to access them, we need to load them explicitly using 
either the Load()or the Include() methods. The Load() method requires an additional round trip to the database, 
while the Include() method provides only a predefined, limited depth.

We want to bring the entire hierarchy into the object graph as efficiently as possible. To do this, we use a 
Common Table Expression in a stored procedure.

Figure 6-6.  Self-referencing Category table



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

197

To add the stored procedure to our model, do the following:

	 5.	 Create a stored procedure called GetSubCategories that makes use of a Common Table 
Expression to return all of the subcategories for a CategoryId recursively. The stored 
procedure is shown in Listing 6-14.

Listing 6-14.  The GetSubCategories() Stored Procedure That Returns Subcategories for a Given 
CategoryId

create proc chapter6.GetSubCategories
(@categoryid int)
as
begin
with cats as
                (
                select c1.*
                from chapter6.Category c1
                where CategoryId = @categoryid
                union all
                select c2.*
                �from cats join  chapter6.Category c2 on cats.CategoryId = 

c2.ParentCategoryId
                )
                select * from cats where CategoryId != @categoryid
end

 
	 6.	 Add a method that takes an integer parameter and returns an ICollection<Category> to 

your DbContext subclass, as shown in Listing 6-15. Entity Framework 6 Code First does not 
yet support function imports in the way that the EF designer does, so in the method body 
we'll call our stored procedure with the SqlQuery method that's defined in the Database 
property of DbContext.

Listing 6-15.  Implementing the GetSubCategories Method in Our DbContext Subclass

public ICollection<Category> GetSubCategories(int categoryId)
{
    return this.Database.SqlQuery<Category>("exec Chapter6.GetSubCategories @catId",
                      new SqlParameter("@catId", categoryId)).ToList();
}

 
We can use the GetSubCategories method that we've defined in our DbContext subclass to materialize our entire 

graph of categories and subcategories. The code in Listing 6-16 demonstrates the use of the GetSubCategories() 
method.

Listing 6-16.  Retrieving the Entire Hierarchy Using the GetSubCategories() Method

using (var context = new EF6RecipesContext())
{
    var book = new Category { Name = "Books" };
    var fiction = new Category { Name = "Fiction", ParentCategory = book };
    var nonfiction = new Category { Name = "Non-Fiction", ParentCategory = book };
    var novel = new Category { Name = "Novel", ParentCategory = fiction };
    var history = new Category { Name = "History", ParentCategory = nonfiction };



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

198

    context.Categories.Add(novel);
    context.Categories.Add(history);
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    var root = context.Categories.Where(o => o.Name == "Books").First();
    Console.WriteLine("Parent category is {0}, subcategories are:", root.Name);
    foreach (var sub in context.GetSubCategories(root.CategoryId))
    {
        Console.WriteLine("\t{0}", sub.Name);
    }
}
 

The output from the code in Listing 6-16 is as follows:

Parent category is Books, subcategories are:
        Fiction
        Non-Fiction
        History
        Novel

How It Works
Entity Framework supports self-referencing associations, as we have seen in Recipe 6.2 and Recipe 6.3. In these 
recipes, we directly loaded the entity references and collections using the Load() method. We cautioned, however, 
that each Load() results in a round trip to the database to retrieve an entity or entity collection. For larger object 
graphs, this database traffic may consume too many resources.

In this recipe, we demonstrated a slightly different approach. Rather than explicitly using Load() to materialize 
each entity or entity collection, we pushed the work off to the storage layer by using a stored procedure to enumerate 
recursively all of the subcategories and return the collection. We used a Common Table Expression in our stored 
procedure to implement the recursive query. In our example, we chose to enumerate all of the subcategories. You 
could, of course, modify the stored procedure to enumerate elements of the hierarchy selectively.

To use our stored procedure, we added a method to our DbContext subclass that calls the stored procedure 
through DbContext.Database.SqlQuery<T>() and called the method within our code. We use the SqlQuery<T>() 
method rather than the ExecuteSqlCommand() method because our stored procedure returns a result set.

6-6. Mapping Null Conditions in Derived Entities
Problem
You have a column in a table that allows null. You want to create a model using Table per Hierarchy inheritance with 
one derived type representing instances in which the column has a value and another derived type representing 
instances in which the column is null.



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

199

Solution
Let’s say that you have a table describing experimental medical drugs. The table contains a column indicating when 
the drug was accepted for production. Until the drug is accepted for production, it is considered experimental. Once 
accepted, it is considered a medicine. We’ll start with the Drug table in the database diagram in Figure 6-7.

To create a model using the Drug table, do the following:

	 1.	 Create a class in your project that inherits from DbContext.

	 2.	 Create Drug, Medicine, and Experimental POCO entity classes, as shown in Listing 6-17.

Listing 6-17.  Creating the Drug, Medicine, and Experimental POCO Entity Classes

[Table("Drug", Schema = "Chapter6")]
public abstract class Drug
{
    [Key]
    [DatabaseGenerated(DatabaseGeneratedOption.Identity)]
    public int DrugId { get; set; }
    public string Name { get; set; }
}
 
public class Experimental : Drug
{
    public string PrincipalResearcher { get; set; }
 
    public void PromoteToMedicine(DateTime acceptedDate, decimal targetPrice,
                          string marketingName)
    {
        var drug = new Medicine { DrugId = this.DrugId };
        using (var context = new DrugContext())
        {
            context.Drugs.Attach(drug);
            drug.AcceptedDate = acceptedDate;
            drug.TargetPrice = targetPrice;
            drug.Name = marketingName;
            context.SaveChanges();
        }
    }
 
}
 

Figure 6-7.  Drug table with the nullable discriminator column, AcceptedDate



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

200

public class Medicine : Drug
{
    public decimal? TargetPrice { get; set; }
    public DateTime AcceptedDate { get; set; }
}

 
	 3.	 Add an auto-property of type DbSet<Drug> to your DbContext subclass.

	 4.	 Override the OnModelCreating method of DbContext to configure the TPH mapping for 
Medicine and Experimental types, as shown in Listing 6-18.

Listing 6-18.  Overriding OnModelCreating to Configure TPH Mapping

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
    base.OnModelCreating(modelBuilder);
    modelBuilder.Entity<Experimental>()
                .Map(m => m.Requires("AcceptedDate").HasValue((DateTime?)null));
    modelBuilder.Entity<Medicine>()
                .Map(m => m.Requires(d => d.AcceptedDate).HasValue());
}

How It Works
In this example, we made use of the null and is not null conditions to map a Drug without an AcceptedDate to an 
Experimental drug and a Drug with an AcceptedDate to a Medicine. As in many inheritance examples, we marked the 
base entity, Drug, as abstract because in our model we would never have an uncategorized drug.

It is interesting to note that, in the Medicine entity, we mapped the AcceptedDate discriminator column to a 
scalar property. In most scenarios, mapping the discriminator column to scalar property is prohibited. However, in 
this example, our use of the null and is not null conditions, as well as marking the AcceptedDate as not nullable, 
sufficiently constrains the values for property to allow the mapping.

In Listing 6-19, we insert a couple of Experimental drugs and query the results. We take the opportunity provided 
by the exposed AcceptedDate property to demonstrate one way to change an object from one derived type to another. 
In our case, we create a couple of Experimental drugs and then promote one of them to a Medicine.

Listing 6-19.  Inserting and Retrieving Instances of Our Derived Types

class Program
{
    ...
    static void RunExample()
    {
        using (var context = new EF6RecipesContext())
        {
            var exDrug1 = new Experimental { Name = "Nanoxol",
                         PrincipalResearcher = "Dr. Susan James" };
            var exDrug2 = new Experimental { Name = "Percosol",
                         PrincipalResearcher = "Dr. Bill Minor" };
            context.Drugs.Add(exDrug1);
            context.Drugs.Add(exDrug2);
            context.SaveChanges();
 



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

201

            // Nanoxol just got approved!
            exDrug1.PromoteToMedicine(DateTime.Now, 19.99M, "Treatall");
            context.Entry(exDrug1).State = EntityState.Detached // better not use this instance any longer
        }
 
        using (var context = new EF6RecipesContext())
        {
            Console.WriteLine("Experimental Drugs");
            foreach (var d in context.Drugs.OfType<Experimental>())
            {
                Console.WriteLine("\t{0} ({1})", d.Name, d.PrincipalResearcher);
            }
 
            Console.WriteLine("Medicines");
            foreach (var d in context.Drugs.OfType<Medicine>())
            {
                Console.WriteLine("\t{0} Retails for {1}", d.Name,
                          d.TargetPrice.Value.ToString("C"));
            }
        }
    }
}
 

Following is the output of the code in Listing 6-19:

Experimental Drugs
        Percosol (Dr. Bill Minor)
Medicines
        Treatall Retails for $19.99

We change an Experimental drug to a Medicine using the PromoteToMedicine()method. In the implementation 
of this method, we create a new Medicine instance, attach it to a new DbContext, and initialize it with the appropriate 
new values. Once the new instance is attached and initialized, we use the SaveChanges()method on the DbContext 
to save the new instance to the database. Because the instance has the same key (DrugId) as the Experimental drug, 
Entity Framework generates an update statement rather than an insert statement.

We implemented the PromoteToMedicine() method inside the POCO class Experimental. This allows us 
seamlessly to add the method to the class, and it provides for a much cleaner implementation. That being said, in the 
interest of creating persistence-ignorant POCO entities that can be used in multiple DbContexts, it might make more 
sense to implement a slightly altered version of this method in a helper class instead.

6-7. Modeling Table per Type Inheritance Using a Nonprimary 
Key Column
Problem
You have one or more tables in an existing schema that have a one-to-one relationship to a common table using keys 
that are not primary keys in the tables. You want to model this using Table per Type inheritance.



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

202

Solution
Let’s say that your database contains the tables shown in the database diagram in Figure 6-8.

In Figure 6-8, we have a Staff table containing the name of the staff member and two related tables containing 
information about Principals and Instructors. The important thing to notice here is that the Principal and Instructor 
tables have primary keys that are not the foreign keys for the Staff table. This type of relationship structure is not 
directly supported in Table per Type inheritance. For Table per Type, the related tables’ primary keys must also be 
the foreign key for the primary (base) table. Also notice that the relationship is one-to-one. This is because we have 
constrained the StaffId columns in the Principal and Instructor tables to be unique by creating a unique index on this 
column in both tables.

To model the tables and relationships in Figure 6-8 using Table per Type inheritance, do the following:

	 1.	 Add a new ADO.NET Entity Data Model to your project, and import the Staff, Principal, 
and Instructor tables.

	 2.	 Delete the associations between the Principal and the Staff entities and between the 
Instructor and the Staff entities.

	 3.	 Right-click the Staff entity, and choose Add ➤ Inheritance. Select Staff as the base entity 
and Principal as the derived entity. Repeat this step by selecting Staff as the base entity and 
Instructor as the derived entity.

	 4.	 Delete the StaffId property from the Instructor and Principal entities.

	 5.	 Right-click the Staff entity, and choose Properties. Set the Abstract attribute to True. This 
marks the Staff entity as abstract.

	 6.	 Because the StaffId is not the primary key in either the Principal or the Instructor tables, 
we cannot use the default table mapping to map the Principal, Instructor, or Staff entities. 
Select each entity, view the Mapping Details window, and delete the table mapping. 
Repeat this for each entity.

Figure 6-8.  A database diagram containing Staff, Principal, and Instructor tables



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

203

	 7.	 Create the stored procedures in Listing 6-20. We will map these procedures to the Insert, 
Update, and Delete actions for the Principal and Instructor entities.

Listing 6-20.  Stored Procedures for the Insert, Update, and Delete Actions for the Instructor and 
Principal Entities

create procedure [chapter6].[InsertInstructor]
(@Name varchar(50), @Salary decimal)
as
begin
                declare @staffid int
                insert into Chapter6.Staff(Name) values (@Name)
                set @staffid = SCOPE_IDENTITY()
                insert into Chapter6.Instructor(Salary,StaffId) values (@Salary,@staffid)
                select @staffid as StaffId,SCOPE_IDENTITY() as InstructorId
end
go
 
create procedure [chapter6].[UpdateInstructor]
(@Name varchar(50), @Salary decimal, @StaffId int, @InstructorId int)
as
begin
                update Chapter6.Staff set Name = @Name where StaffId = @StaffId
                update Chapter6.Instructor set Salary = @Salary where InstructorId = @InstructorId
end
go
 
create procedure [chapter6].[DeleteInstructor]
(@StaffId int)
as
begin
                delete Chapter6.Staff where StaffId = @StaffId
                delete Chapter6.Instructor where StaffId = @StaffId
end
go
 
create procedure [Chapter6].[InsertPrincipal]
(@Name varchar(50),@Salary decimal,@Bonus decimal)
as
begin
                declare @staffid int
                insert into Chapter6.Staff(Name) values (@Name)
                set @staffid = SCOPE_IDENTITY()
                �insert into Chapter6.Principal(Salary,Bonus,StaffId) values  

(@Salary,@Bonus,@staffid)
                select @staffid as StaffId, SCOPE_IDENTITY() as PrincipalId
end
go
 
create procedure [Chapter6].[UpdatePrincipal]
(@Name varchar(50),@Salary decimal, @Bonus decimal, @StaffId int, @PrincipalId int)
as



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

204

begin
                update Chapter6.Staff set Name = @Name where StaffId = @StaffId
                �update Chapter6.Principal set Salary = @Salary, Bonus = @Bonus where 

PrincipalId = @PrincipalId
end
go
 
create procedure [Chapter6].[DeletePrincipal]
(@StaffId int)
as
begin
                delete Chapter6.Staff where StaffId = @StaffId
                delete Chapter6.Principal where StaffId = @StaffId
end

 
	 8.	 Right-click the design surface, and select Update Model from Database. Add the stored 

procedures that you created in step 7.

	 9.	 Select the Principal entity, and view the Mapping Details window. Click the Map Entity 
to Functions button. This is the bottom button on the left side of the Mapping Details 
window. Map the Insert, Update, and Delete actions to the stored procedures. Make  
sure that you map the result columns StaffId and PrincipalId from the Insert action  
(see Figure 6-9).

Figure 6-9.  Insert, Update, and Delete actions mapped for the Principal entity



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

205

	 10.	 Repeat step 9 for the Instructor entity. Be sure to map the result columns StaffId and 
InstructorId from the Insert action.

Right-click the .edmx file in the Solution Explorer, and select Open With ➤ XML Editor. This will close the 
designer and open the .edmx file in the XML editor. Scroll down to <EntityContainerMapping> tag in the mapping 
layer. Insert the QueryView in Listing 6-21 into the <EntitySetMapping> tag.

Listing 6-21.  QueryView for the Instructor and Principal Entities

<EntitySetMapping Name="Staffs">
    <QueryView>
        select value
        case
        when (i.StaffId is not null) then
        EFRecipesModel.Instructor(s.StaffId,s.Name,i.InstructorId,i.Salary)
        when (p.StaffId is not null) then
        EFRecipesModel.Principal(s.StaffId,s.Name,p.PrincipalId,p.Salary,p.Bonus)
        END
        from EFRecipesModelStoreContainer.Staff as s
        left join EFRecipesModelStoreContainer.Instructor as i
        on s.StaffId = i.StaffId
        left join EFRecipesModelStoreContainer.Principal as p
        on s.StaffId = p.StaffId
    </QueryView>
</EntitySetMapping>

How It Works
With Table per Type inheritance, Entity Framework requires that the foreign key for the base entity’s table be the 
primary keys in the derived entity’s table. In our example, each of the tables for the derived entities has separate 
primary keys.

To create a Table per Type inheritance model, we started at the conceptual level by deriving the Principal and 
Instructor entities from the Staff entity. Next we deleted the mappings that were created when we imported the table. 
We then used a QueryView expression to create the new mappings. Using QueryView pushed the responsibility for the 
Insert, Update, and Delete actions onto our code. To handle these actions, we used traditional stored procedures in 
the database.

We used QueryView to supply the mappings from our underlying tables to the scalar properties exposed by our 
derived entities. The key part of the QueryView is the case statement. There are two cases: either we have a Principal 
or we have an Instructor. We have an Instructor if the Instructor’s StaffId is not null, or we have a Principal if the 
Principal’s StaffId is not null. The remaining parts of the expression bring in the rows from the derived tables.

The code in Listing 6-22 inserts a couple of Principals and one Instructor into our database.

Listing 6-22.  Inserting into and Retrieving from Our Model

using (var context = new EF6RecipesContext())
{
    var principal = new Principal { Name = "Robbie Smith",
                                    Bonus = 3500M, Salary = 48000M };
    var instructor = new Instructor { Name = "Joan Carlson",
                                    Salary = 39000M };



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

206

    context.Staffs.Add(principal);
    context.Staffs.Add(instructor);
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    Console.WriteLine("Principals");
    Console.WriteLine("==========");
    foreach (var p in context.Staffs.OfType<Principal>())
    {
        Console.WriteLine("\t{0}, Salary: {1}, Bonus: {2}",
                           p.Name, p.Salary.ToString("C"),
                           p.Bonus.ToString("C"));
    }
    Console.WriteLine("Instructors");
    Console.WriteLine("===========");
    foreach (var i in context.Staffs.OfType<Instructor>())
    {
        Console.WriteLine("\t{0}, Salary: {1}", i.Name, i.Salary.ToString("C"));
    }
}
 

The following is the output of the code in Listing 6-22:

Principals
==========
        Robbie Smith, Salary: $48,000.00, Bonus: $3,500.00
Instructors
===========
        Joan Carlson, Salary: $39,000.00

6-8. Modeling Nested Table per Hierarchy Inheritance
Problem
You want to model a table using more than one level of Table per Hierarchy inheritance.

Solution
Suppose that we have an Employee table that contains various types of employees such as Hourly and Salaried 
Employee, as shown in Figure 6-10.



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

207

The Employee table contains hourly employees, salaried employees, and commissioned employees, which is a 
subtype of salaried employees. To model this table with derived types for the hourly and salaried employees and a 
commissioned employee type derived from the salaried employee, do the following:

	 1.	 Create a new class in your project that inherits from DbContext.

	 2.	 Create POCO entity classes for Employee, HourlyEmployee, SalariedEmployee,  
and CommissionedEmployee, as shown in Listing 6-23.

Listing 6-23.  Creating the Employee, HourlyEmployee, SalariedEmployee, and CommissionedEmployee 
POCO Entities

public abstract class Employee
{
 
    public int EmployeeId { get; set; }
    public string Name { get; set; }
}
 
public class SalariedEmployee : Employee
{
    public decimal? Salary { get; set; }
}
 
public class CommissionedEmployee : SalariedEmployee
{
    public decimal? Commission { get; set; }
}
 
public class HourlyEmployee : Employee
{
    public decimal? Rate { get; set; }
    public decimal? Hours { get; set; }
}

 
	 3.	 Add an auto-property of type DbSet<Employee> to your DbContext subclass.

	 4.	 Override the OnModelCreating method of DbContext to configure the TPH discriminator 
values for each derived type, as shown in Listing 6-24.

Figure 6-10.  The Employee table containing various types of employees



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

208

Listing 6-24.  Overriding OnModelCreating in Our DbContext Subclass to Configure TPH Discriminator Values

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
    base.OnModelCreating(modelBuilder);
 
    modelBuilder.Entity<Employee>()
                .HasKey(e => e.EmployeeId)
                .Property(e => e.EmployeeId)
                .HasDatabaseGeneratedOption(DatabaseGeneratedOption.Identity);
 
    modelBuilder.Entity<Employee>()
         .Map<HourlyEmployee>(m => m.Requires("EmployeeType").HasValue("hourly"))
         .Map<SalariedEmployee>(m => m.Requires("EmployeeType").HasValue("salaried"))
         .Map<CommissionedEmployee>(m => m.Requires("EmployeeType").HasValue("commissioned"))
         .ToTable("Employee", "Chapter6");
}

How It Works
Table per Hierarchy inheritance is a flexible modeling technique. The depth and breadth of the inheritance tree can 
be reasonably large and is easily implemented. This approach is efficient because no additional tables and their 
required joins are involved.

Implementing TPH with a Code-First approach is straightforward because object-oriented inheritance is 
hierarchical in nature.

Listing 6-25 demonstrates inserting into and retrieving from our model.

Listing 6-25.  Inserting and Retrieving Derived Entities from Employee

using (var context = new EF6RecipesContext())
{
    var hourly = new HourlyEmployee { Name = "Will Smith", Hours = 39,
                                      Rate = 7.75M };
    var salaried = new SalariedEmployee { Name = "JoAnn Woodland",
                                      Salary = 65400M };
    var commissioned = new CommissionedEmployee { Name = "Joel Clark",
                                      Salary = 32500M, Commission = 20M };
    context.Employees.Add(hourly);
    context.Employees.Add(salaried);
    context.Employees.Add(commissioned);
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    Console.WriteLine("All Employees");
    Console.WriteLine("=============");
    foreach (var emp in context.Employees)



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

209

    {
        if (emp is HourlyEmployee)
            Console.WriteLine("{0} Hours = {1}, Rate = {2}/hour",
                               emp.Name,
                               ((HourlyEmployee)emp).Hours.Value.ToString(),
                               ((HourlyEmployee)emp).Rate.Value.ToString("C"));
        else if (emp is CommissionedEmployee)
            Console.WriteLine("{0} Salary = {1}, Commission = {2}%",
                        emp.Name,
                        ((CommissionedEmployee)emp).Salary.Value.ToString("C"),
                        ((CommissionedEmployee)emp).Commission.ToString());
        else if (emp is SalariedEmployee)
            Console.WriteLine("{0} Salary = {1}", emp.Name,
                        ((SalariedEmployee)emp).Salary.Value.ToString("C"));
    }
}
 

The output of the code in Listing 6-25 is as follows:

All Employees
=============
Will Smith Hours = 39.00, Rate = $7.75/hour
JoAnn Woodland Salary = $65,400.00
Joel Clark Salary = $32,500.00, Commission = 20.00%

6-9. Applying Conditions in Table per Type Inheritance
Problem
You want to apply conditions while using Table per Type inheritance.

Solution
Let’s say that you have the two tables depicted in Figure 6-11. The Toy table describes toys a company produces. 
Most toys manufactured by the company are for sale. Some toys are made just to donate to worthy charities. During 
the manufacturing process, a toy may be damaged. Damaged toys are refurbished, and an inspector determines the 
resulting quality of the refurbished toy.

Figure 6-11.  Toy and RefurbishedToy tables with a one-to-one relationship



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

210

The application that generates reports for the company has no need to access toys manufactured for donations. 
To create a model that filters out toys manufactured for donation while representing the Toy and RefurbishedToy 
tables using Table per Type inheritance, do the following:

	 1.	 Add a new ADO.NET Entity Data Model to your project, and import the Order and  
Lookup tables.

	 2.	 Delete the association between Toy and RefurbishedToy.

	 3.	 Right-click the Toy entity, and select Add ➤ Inheritance. Select Toy as the base entity and 
RefurbishedToy as the derived entity.

	 4.	 Delete the ToyId property in the RefurbishedToy entity.

	 5.	 Select the RefurbishedToy entity. In the Mapping Details window, map the ToyId column 
to the ToyId property. This value will come from the Toy base entity.

	 6.	 Delete the ForDonationOnly scalar property from the Toy entity.

	 7.	 Select the Toy entity, and view the Mapping Details window. Use Add a Table or View to 
map this entity to the Toy table. Add a condition When ForDonationOnly = 0.

The resulting model is shown in Figure 6-12.

How It Works
We limited the RefurbishedToy instances to nondonation toys by applying a condition on the base entity. This 
approach is useful in cases such as when we need to apply a permanent filter to an inheritance structure while using 
separate tables to implement some of the derived types.

The code in Listing 6-26 demonstrates inserting into and retrieving from our model.

Figure 6-12.  The completed model with the Toy entity and derived RefurbishedToy entity



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

211

Listing 6-26.  Inserting into and Retrieving from Our Model

using (var context = new EF6RecipesContext())
{
    Context.Database.ExecuteSqlCommand(@"insert into chapter6.toy
             (Name,ForDonationOnly) values ('RagDoll',1)");
    var toy = new Toy { Name = "Fuzzy Bear", Price = 9.97M };
    var refurb = new RefurbishedToy { Name = "Derby Car", Price = 19.99M,
                                      Quality = "Ok to sell" };
    context.Toys.Add(toy);
    context.Toys.Add(refurb);
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    Console.WriteLine("All Toys");
    Console.WriteLine("========");
    foreach (var toy in context.Toys)
    {
        Console.WriteLine("{0}", toy.Name);
    }
    Console.WriteLine("\nRefurbished Toys");
    foreach (var toy in context.Toys.OfType<RefurbishedToy>())
    {
        Console.WriteLine("{0}, Price = {1}, Quality = {2}", toy.Name,
                           toy.Price, ((RefurbishedToy)toy).Quality);
    }
}
 

The following is the output from Listing 6-26:

All Toys
========
Fuzzy Bear
Derby Car
 
Refurbished Toys
Derby Car, Price = 19.99, Quality = Ok to sell

6-10. Creating a Filter on Multiple Criteria
Problem
You want to filter rows for an entity based on multiple criteria.

Solution
Let’s assume that we have a table that holds web orders, as shown in Figure 6-13.



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

212

Suppose that we have a business requirement, which defines instances of WebOrder as orders placed after the 
first day of 2012 or orders placed between 2010 and 2012 that are not deleted or orders placed before 2010 that have an 
order amount greater than $200. This kind of filter cannot be created using the rather limited conditions available in 
the Mapping Details window in the designer. One way to implement this complex filter is to use QueryView. To model 
this entity and implement a filter that satisfies the business requirement using QueryView, do the following:

	 1.	 Add a new ADO.NET Entity Data Model to your project, and import the WebOrder table.

Create the stored procedures in Listing 6-27. In the next two steps, we’ll map these to the 
insert, update, and delete actions for the WebOrder entity.

Listing 6-27.  Procedures Defined in the Database for the Insert, Update, and Delete Actions on the 
WebOrder Entity

create procedure [Chapter6].[InsertOrder]
(@CustomerName varchar(50),@OrderDate date,@IsDeleted bit,@Amount decimal)
as
begin
                insert into chapter6.WebOrder (CustomerName, OrderDate, IsDeleted, Amount)
                values (@CustomerName, @OrderDate, @IsDeleted, @Amount)
                select SCOPE_IDENTITY() as OrderId
end
go
 
create procedure [Chapter6].[UpdateOrder]
(@CustomerName varchar(50),@OrderDate date,@IsDeleted bit,
 @Amount decimal, @OrderId int)
as
begin
                update chapter6.WebOrder set CustomerName = @CustomerName,
         OrderDate = @OrderDate,IsDeleted = @IsDeleted,Amount = @Amount
                where OrderId = @OrderId
end
go
 
create procedure [Chapter6].[DeleteOrder]
(@OrderId int)
as
begin
                delete from Chapter6.WebOrder where OrderId = @OrderId
end

 

Figure 6-13.  The WebOrder table containing information about a web order



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

213

	 2.	 Right-click the design surface, and select Update Model from Database. In the Update 
Wizard, select the InsertOrder, UpdateOrder, and DeleteOrder stored procedures.

	 3.	 Select the WebOrder entity, and select the Map Entities to Functions button in the 
Mapping Details window. This button is the second of two buttons on the left side of the 
window. Map the InsertOrder procedure to the Insert action, the UpdateOrder procedure 
to the Update action, and the DeleteOrder procedure to the Delete action. The  
property/parameter mappings should automatically line up. However, the return value 
from the InsertOrder procedure must be mapped to the OrderId property. This is used  
by Entity Framework to get the value of the identity column OrderId after an insert. 
Figure 6-14 shows the correct mappings.

	 4.	 Select the table mapping (top button) in the Mapping Details window. Delete the mapping 
to the WebOrder table. We’ll map this using QueryView.

Right-click the .edmx file in the Solution Explorer window, and select Open With ➤ XML Editor. In the  
C-S mapping layer, inside the <EntitySetMapping> tag, enter the code shown in Listing 6-28 This is the QueryView 
that will map our WebOrder entity.

Be careful! Changes made to the C-S mapping layer will be lost if you do another Update Model from Database.

Figure 6-14.  Details for the stored procedure/action mappings



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

214

Listing 6-28.  Entity Set Mapping Using QueryView for the WebOrder Table

<EntitySetMapping Name="WebOrders">
  <QueryView>
    select value
    EFRecipesModel.WebOrder(o.OrderId,
    o.CustomerName,o.OrderDate,o.IsDeleted,o.Amount)
    from EFRecipesModelStoreContainer.WebOrder as o
    where (o.OrderDate > datetime'2007-01-01 00:00') ||
    (o.OrderDate between cast('2005-01-01' as Edm.DateTime) and
    cast('2007-01-01' as Edm.DateTime) and !o.IsDeleted) ||
    (o.Amount > 800 and o.OrderDate &lt;
    cast('2005-01-01' as Edm.DateTime))
  </QueryView>
</EntitySetMapping>

How It Works
QueryView is a read-only mapping that can be used instead of the default mapping offered by Entity Framework. 
When QueryView is inside of the <EntitySetMapping> tag of the mapping layer, it maps entities defined on the store 
model to entities defined on the conceptual model. When QueryView is inside of the <AssociationSetMapping> tag,  
it maps associations defined on the store model to associations defined on the conceptual model. One common use 
of QueryView inside of an <AssociationSetMapping> tag is to implement inheritance based on conditions that are 
not supported by the default condition mapping.

QueryView is expressed in Entity SQL. QueryView can query only entities defined on the store model. 
Additionally, eSQL in QueryView does not support group by and group aggregates.

When entities are mapped using QueryView, Entity Framework is unaware of the precise implementation of 
the mapping. Because Entity Framework does not know the underlying columns and tables used to create instances 
of the entities, it cannot generate the appropriate store-level actions to insert, update, or delete the entities. Entity 
Framework does track changes to these entities once they are materialized, but it does not know how to modify them 
in the underlying data store.

The burden of implementing the insert, update, and delete actions falls onto the developer. These actions can be 
implemented directly in the .edmx file or they can be implemented as stored procedures in the underlying database. 
To tie the procedures to the actions, you need to create a <ModificationFunctionMapping> section. We did this in 
step 4 using the designer rather than directly editing the .edmx file.

If an entity mapped using QueryView has associations with other entities, those associations, along with the 
related entities, also need to be mapped using QueryView. Of course, this can become rather tedious. QueryView  
is a powerful tool, but it can rapidly become burdensome.

Some of the common use cases for using QueryView are as follows.

	 1.	 To define filters that are not directly supported, such as greater than, less than, and so on

	 2.	 To map inheritance that is based on conditions other than is null, not null, or equal to

	 3.	 To map computed columns or return a subset of columns from a table, or to change a 
restriction or data type of a column, such as making it nullable, or to surface a string 
column as integer

	 4.	 To map Table per Type Inheritance based on different primary and foreign keys

	 5.	 To map the same column in the storage model to multiple types in the conceptual model

	 6.	 To map multiple types to the same table



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

215

Inside the QueryView in Listing 6-28, we have an Entity SQL statement that contains three parts. The first part is 
the select clause which instantiates an instance of the WebOrder entity with a constructor. The constructor takes the 
property values in precisely the same order as they are defined on the conceptual model in Listing 6-29.

Listing 6-29.  The Definition of the WebOrder Entity in the Conceptual Model

<EntityType Name="WebOrder">
  <Key>
    <PropertyRef Name="OrderId" />
  </Key>
  <Property Name="OrderId" Type="Int32" Nullable="false"
            annotation:StoreGeneratedPattern="Identity" />
  <Property Name="CustomerName" Type="String" Nullable="false"
            MaxLength="50" Unicode="false" FixedLength="false" />
  <Property Name="OrderDate" Type="DateTime" Nullable="false" />
  <Property Name="IsDeleted" Type="Boolean" Nullable="false" />
  <Property Name="Amount" Type="Decimal" Nullable="false"
            Precision="18" Scale="2" />
</EntityType>
 

Notice that, in the Entity SQL in Listing 6-29 we fully qualified the conceptual namespace EFRecipesModel when 
creating an instance of the WebOrder entity. However, in the from clause we also fully qualified the store container, 
EFRecipesModelStoreContainer.

The final section of the Entity SQL expression includes the where clause that, of course, is the whole reason 
for using a QueryView in this example. Although the where clause can be arbitrarily complex, it is subject to the 
restrictions for Entity SQL in QueryView as noted above.

The code in Listing 6-30 demonstrates inserting and retrieving WebOrdersin our model.

Listing 6-30.  Inserting and Retrieving WebOrder Entities

using (var context = new EF6RecipesContext())
{
    var order = new WebOrder {CustomerName = "Jim Allen",
                              OrderDate = DateTime.Parse("5/3/2012"),
                              IsDeleted = false, Amount = 200};
    context.WebOrders.Add(order);
    order = new WebOrder { CustomerName = "John Stevens",
                           OrderDate = DateTime.Parse("1/1/2011"),
                           IsDeleted = false, Amount = 400 };
    context.WebOrders.Add(order);
    order = new WebOrder { CustomerName = "Russel Smith",
                           OrderDate = DateTime.Parse("1/3/2011"),
                           IsDeleted = true, Amount = 500 };
    context.WebOrders.Add(order);
    order = new WebOrder { CustomerName = "Mike Hammer",
                           OrderDate = DateTime.Parse("6/3/2013"),
                           IsDeleted = true, Amount = 1800 };
    context.WebOrders.Add(order);



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

216

    order = new WebOrder { CustomerName = "Steve Jones",
                           OrderDate = DateTime.Parse("1/1/2008"),
                           IsDeleted = true, Amount = 600 };
    context.WebOrders.Add(order);
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    Console.WriteLine("Orders");
    Console.WriteLine("======");
    foreach (var order in context.WebOrders)
    {
        Console.WriteLine("\nCustomer: {0}", order.CustomerName);
        Console.WriteLine("OrderDate: {0}", order.OrderDate.ToShortDateString());
        Console.WriteLine("Is Deleted: {0}", order.IsDeleted.ToString());
        Console.WriteLine("Amount: {0}", order.Amount.ToString("C"));
    }
}
 

The output of the code in Listing 6-30 follows. Notice that only customers that meet the criteria that we defined in 
the Entity SQL expression inside the QueryView are displayed.

Orders...
 
Customer: John Stevens
Order Date: 1/1/2011
Is Deleted: False
Amount: $400.00
 
Customer: Jim Allen
Order Date: 5/3/2012
Is Deleted: False
Amount: $200.00
 
Customer: Mike Hammer
Order Date: 6/3/2013
Is Deleted: True
Amount: $1,800.00

6-11. Using Complex Conditions with Table per Hierarchy 
Inheritance
Problem
You want to model a table using Table per Hierarchy inheritance by applying conditions more complex than those 
supported directly by Entity Framework.



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

217

Solution
Suppose that we have a Member table, as depicted in Figure 6-15. The Member table describes members in our club. 
In our model, we want to represent adult members, senior members, and teen members as derived types using Table 
per Type inheritance.

Entity Framework supports Table per Hierarchy inheritance based on the conditions =, is null, and is not 
null. Simple expressions such as <, between, and > are not supported. In our case, a member whose age is less than 20 
is a teen (the minimum age in our club is 13). A member between the ages of 20 and 55 is an adult. And, as you might 
expect, a member over the age of 55 is a senior. To create a model for the member table and the three derived types,  
do the following:

	 1.	 Add a new ADO.NET Entity Data Model to your project, and import the Member table.

	 2.	 Right-click the Member entity, and select Properties. Set the Abstract attribute to true. 
This marks the Member entity as abstract.

	 3.	 Create the stored procedures in Listing 6-31. We will use them to handle the Insert, 
Update, and Delete actions on the entities we’ll derive from the Member entity.

Listing 6-31.  Stored Procedures for the Insert, Update, and Delete Actions

create procedure [chapter6].[InsertMember]
(@Name varchar(50), @Phone varchar(50), @Age int)
as
begin
                insert into Chapter6.Member (Name, Phone, Age)
                values (@Name,@Phone,@Age)
                select SCOPE_IDENTITY() as MemberId
end
go
 
create procedure [chapter6].[UpdateMember]
(@Name varchar(50), @Phone varchar(50), @Age int, @MemberId int)
as
begin
                update Chapter6.Member set Name=@Name, Phone=@Phone, Age=@Age
                where MemberId = @MemberId
end
go
 

Figure 6-15.  The Member table describing members in our club



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

218

create procedure [chapter6].[DeleteMember]
(@MemberId int)
as
begin
                delete from Chapter6.Member where MemberId = @MemberId
end

 
	 4.	 Right-click the design surface, and select Update Model from Database. Select the stored 

procedures that you created in step 3.

	 5.	 Right-click the design surface, and select Add ➤ Entity. Name the new entity Teen, and set 
the base type to Member. Repeat this step, creating the derived entities Adult and Senior.

	 6.	 Select the Member entity, and view the Mapping Details window. Click Maps to Member, 
and select <Delete>. This deletes the mappings to the Member table.

	 7.	 Select the Teen entity, and view the Mapping Details window. Click the Map Entity to 
Functions button. This is the bottom button on the left of the Mapping Details window. 
Map the stored procedures to the corresponding Insert, Update, and Delete actions. The 
parameter/property mappings should automatically populate. Make sure that you set the 
Result Column Bindings to map the return value to the MemberId property for the Insert 
action. This identity column is generated on the database side (see Figure 6-16).

	 8.	 Repeat step 7 for the Adult and Senior entities.

Right-click the .edmx file in the Solution Explorer window, and select Open With ➤ XML Editor. This will open 
the .edmx file in the XML editor.

Figure 6-16.  Mapping the Insert, Update, and Delete actions for the Teen entity



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

219

	 9.	 In the C-S mapping section, inside the <EntityContainerMapping> tag, enter the 
QueryView code shown in Listing 6-32.

Listing 6-32.  QueryView for Mapping the Member Table to the Derived Types Teen, Adult, and Senior

<EntitySetMapping Name="Members">
  <QueryView>
    select value
    case
    when m.Age &lt; 20 then
    EFRecipesModel.Teen(m.MemberId,m.Name,m.Phone,m.Age)
    when m.Age between 20 and 55 then
    EFRecipesModel.Adult(m.MemberId,m.Name,m.Phone,m.Age)
    when m.Age > 55 then
    EFRecipesModel.Senior(m.MemberId,m.Name,m.Phone,m.Age)
    end
    from EFRecipesModelStoreContainer.Member as m
  </QueryView>
</EntitySetMapping>

 
The resulting model should look like the one in Figure 6-17.

How It Works
Entity Framework supports only a limited set of conditions when modeling Table per Hierarchy inheritance. In this 
recipe, we extended the conditions using QueryView to define our own mappings between the underlying Member 
table and the derived types: Senior, Adult, and Teen. This is shown in Listing 6-32.

Figure 6-17.  The resulting model with Member and the three derived types: Senior, Adult, and Teen



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

220

Unfortunately, QueryView comes at a price. Because we have defined the mappings ourselves, we also take 
on the responsibility for implementing the Insert, Update, and Delete actions for the derived types. This is not too 
difficult in our case.

In Listing 6-31, we defined the procedures to handle the Insert, Delete, and Update actions. We need to create 
only one set because these actions target the underlying Member table. In this recipe, we implemented them as stored 
procedures in the underlying database. We could have implemented in the .edmx file.

Using the designer, we mapped the procedures to the Insert, Update, and Delete actions for each of the derived 
types. This completes the extra work we need to do when we use QueryView.

The code in Listing 6-33 demonstrates inserting into and retrieving from our model. Here we insert one instance 
of each of our derived types. On the retrieval side, we print the members together with their phone number, unless the 
member is a Teen.

Listing 6-33.  Inserting into and Retrieving from Our Model

using (var context = new EF6RecipesContext())
{
    var teen = new Teen { Name = "Steven Keller", Age = 17,
                          Phone = "817 867-5309" };
    var adult = new Adult { Name = "Margret Jones", Age = 53,
                            Phone = "913 294-6059" };
    var senior = new Senior { Name = "Roland Park", Age = 71,
                              Phone = "816 353-4458" };
    context.Members.Add(teen);
    context.Members.Add(adult);
    context.Members.Add(senior);
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    Console.WriteLine("Club Members");
    Console.WriteLine("============");
    foreach(var member in context.Members)
    {
        bool printPhone = true;
        string str = string.Empty;
        if (member is Teen)
        {
            str = " a Teen";
            printPhone = false;
        }
        else if (member is Adult)
            str = "an Adult";
        else if (member is Senior)
            str = "a Senior";
        Console.WriteLine("{0} is {1} member, phone: {2}",member.Name,
                           str, printPhone ? member.Phone : "unavailable");
    }
}
 



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

221

The following is the output from the code in Listing 6-33:

Members of our club
===================
Steven Keller is a Teen member, phone: unavailable
Margret Jones is an Adult member, phone: 913 294-6059
Roland Park is a Senior member, phone: 816 353-4458

It is important to note here that no design time, or even runtime checking, is done to verify the ages for the 
derived types. It is entirely possible to create an instance of the Teen type and set the age property to 74—clearly not a 
teen. On the retrieval side, however, this row will be materialized as a Senior member—a situation likely to offend our 
Teen member.

We can introduce validation before changes are committed to the data store. To do this, register for the 
SavingChanges event when the context is created. We wire this event to our code that performs the validation.  
This code is shown in Listing 6-34.

Listing 6-34.  Handling Validation in the SavingChanges Event

public partial class EF6RecipesContext
{
    partial void OnContextCreated()
    {
        this.SavingChanges += new EventHandler(Validate);
    }
 
    public void Validate(object sender, EventArgs e)
    {
        var entities = this.ObjectStateManager
                            .GetObjectStateEntries(EntityState.Added |
                                                    EntityState.Modified)
                            .Select(et => et.Entity as Member);
        foreach (var member in entities) {
            if (member is Teen && member.Age > 19) {
                throw new ApplicationException("Entity validation failed");
            }
            else if (member is Adult && (member.Age < 20 || member.Age >= 55)) {
                throw new ApplicationException("Entity validation failed");
            }
            else if (member is Senior && member.Age < 55) {
                throw new ApplicationException("Entity validation failed");
            }
        }
    }
}
 

In Listing 6-34, when SaveChanges() is called, our Validate() method checks each entity that has either been 
added or modified. For each of these, we verify that the age property is appropriate for the type of the entity. When we 
find a validation error, we simply throw an exception.

We have several recipes in Chapter 12 that focus on handling events and validating objects before they are 
committed to the database.



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

222

6-12. Modeling Table per Concrete Type Inheritance
Problem
You have two or more tables with similar schema and data, and you want to model these tables as types derived from 
a common entity using Table per Concrete Type inheritance.

Solution
Let’s assume that we have the tables shown in Figure 6-18.

In Figure 6-18, the tables Toyota and BMW have similar schema and represent similar data. The BMW table has 
an additional column with a bit value indicating whether the instance has the collision-avoidance feature. We want 
to create a model with a base entity holding the common properties of the Toyota and BMW tables. Additionally, we 
want to represent the one-to-many relationship between the car dealer and cars held in inventory. Figure 6-22 shows 
the final model.

To create the model, do the following:

	 1.	 Add a new ADO.NET Entity Data Model to your project, and import the Toyota, BMW, 
CarDealer, and Dealer tables.

	 2.	 Right-click the design surface, and select Add ➤ Entity. Name the new entity Car, and 
unselect the Create key property check box.

	 3.	 Right-click the Car entity, and view its properties. Set the Abstract property to true.

	 4.	 Move the common properties of the Toyota and BMW entities to the Car entity. You can 
use Cut/Paste to move these properties. Make sure that only the CollisionAvoidance 
property remains with the BMW entity and the Toyota entity has no properties. Both of 
these entities will inherit these common properties from the Car entity.

	 5.	 Right-click the Car entity, and select Add ➤ Inheritance. Set the base entity as Car and the 
derived entity as BMW.

Figure 6-18.  Tables Toyota and BMW with similar structure that will become derived types of the Car entity



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

223

	 6.	 Repeat step 5, but this time set the Toyota as the derived entity.

	 7.	 Right-click the CarDealer entity and select Delete. When prompted to delete the CarDealer 
table from the store model, select No.

	 8.	 Right-click the design surface, and select Add ➤ Association. Name the association 
CarDealer. Select Dealer on the left with a multiplicity of one. Select Car on the right 
with a multiplicity of many. Name the navigation property on the Car side Dealer. Name 
the navigation property on the Dealer side Cars. Be sure to uncheck the Add foreign key 
properties.

	 9.	 Select the association, and view the Mapping Details window. Select CarDealer in the 
Add a Table or View drop-down menu. Make sure that the DealerId property maps to the 
DealerId column, and the CarId property maps to the CarId column.

Right-click the .edmx file, and select Open With ➤ XML Editor. Edit the mapping section with the changes shown 
in Listing 6-35 for the BMW and Toyota entities.

Listing 6-35.  Mapping the BMW and Toyota Tables

<EntitySetMapping Name="Cars">
  <EntityTypeMapping TypeName="IsTypeOf(EFRecipesModel.BMW)">
    <MappingFragment StoreEntitySet="BMW">
      <ScalarProperty Name="CollisionAvoidance"
                ColumnName="CollisionAvoidance" />
      <ScalarProperty Name="CarId" ColumnName="CarId"/>
      <ScalarProperty Name="Model" ColumnName="Model"/>
      <ScalarProperty Name="Year" ColumnName="Year"/>
      <ScalarProperty Name="Color" ColumnName="Color"/>
    </MappingFragment>
  </EntityTypeMapping>
  <EntityTypeMapping TypeName="IsTypeOf(EFRecipesModel.Toyota)">
    <MappingFragment StoreEntitySet="Toyota">
      <ScalarProperty Name="CarId" ColumnName="CarId"/>
      <ScalarProperty Name="Model" ColumnName="Model"/>
      <ScalarProperty Name="Year" ColumnName="Year"/>
      <ScalarProperty Name="Color" ColumnName="Color"/>
    </MappingFragment>
  </EntityTypeMapping>
</EntitySetMapping>

The resulting model is shown in Figure 6-19.



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

224

How It Works
Table per Concrete Type is an interesting inheritance model in that it allows each derived entity to map to separate 
physical tables. From a practical perspective, the tables need to share at least some part of a common schema. This 
common schema is mapped in the base entity while the additional schema parts are mapped in the derived entities. 
For Table per Concrete Type inheritance to work properly, the entity key must be unique across the tables.

The base entity is marked abstract, and it is not mapped to any table. In Table per Concrete Type, only the derived 
entities are mapped to tables.

In our example, we marked the Car entity as abstract and we did not map it to any table. In the mapping shown 
in Listing 6-35, notice that we mapped only the derived entities BMW and Toyota. We moved all of the common 
properties (CarId, Model, Year, and Color) to the base entity. The derived entities contained only the properties 
unique to the entity. For instance, the BMW entity has the additional CollisionAvoidance property.

Because the entities Toyota and BMW derived from the Car entity, they became part of the same Cars entity set. 
This means that the CarId entity key must be unique within the entity set that now contains all of the derived entities. 
Because the entities are mapped to different tables, it is possible that we can have collisions in the keys. To avoid this, 
we set the CarId column in each table as an identity column. For the BMW table, we set the initial seed to 1 with an 
increment of 2. This will create odd values for the CarId key. For the Toyota table, we set the initial seed to 2 with an 
increment of 2. This will create event values for the CarId key.

When modeling relationships in Table per Concrete Type inheritance, it is better to define them at the derived 
type rather than at the base type. This is because the Entity Framework runtime would not know which physical table 
represents the other end of the association. In our example, of course, we provided a separate table (CarDealer) that 
contains the relationship. This allowed us to model the relationship at the base entity by mapping the association to 
the CarDealer table.

Figure 6-19.  The completed model with the derived entities BMW and Toyota represented in the database  
as separate tables



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

225

There are many practical applications of Table per Concrete Type inheritance Perhaps the most common is in 
working with archival data. Imagine that you have a several years worth of orders for your eCommerce site. At the 
end of each year, you archive the orders for the previous 12 months in an archive table and start the New Year with 
an empty table. With Table per Concrete Type inheritance, you can model the current and archived orders using the 
approach demonstrated here.

Table per Concrete Type inheritance has a particularly important performance advantage over other inheritance 
models When querying a derived type, the generated query targets the specific underlying table without the 
additional joins of Table per Type inheritance or the filtering of Table per Hierarchy. For large datasets or models with 
several derived types, this performance advantage can be significant.

The disadvantages of Table per Concrete Type inheritance include the overhead of potentially duplicate data across 
tables and the complexity of insuring unique keys across the tables. In an archival scenario, data is not duplicated but 
simply spread across multiple tables. In other scenarios, data (properties) may be duplicated across the tables.

The code in Listing 6-36 demonstrates inserting into and retrieving from our model.

Listing 6-36.  Inserting into and Querying Our Model

using (var context = new EF6RecipesContext())
{
    var d1 = new Dealer { Name = "All Cities Toyota" };
    var d2 = new Dealer { Name = "Southtown Toyota" };
    var d3 = new Dealer { Name = "Luxury Auto World" };
    var c1 = new Toyota { Model = "Camry", Color = "Green",
                          Year = "2014", Dealer = d1 };
    var c2 = new BMW { Model = "310i", Color = "Blue",
                       CollisionAvoidance = true,
                       Year = "2014", Dealer = d3 };
    var c3 = new Toyota { Model = "Tundra", Color = "Blue",
                       Year = "2014", Dealer = d2 };
    context.Dealers.Add(d1);
    context.Dealers.Add(d2);
    context.Dealers.Add(d3);
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    Console.WriteLine("Dealers and Their Cars");
    Console.WriteLine("======================");
    foreach (var dealer in context.Dealers)
    {
        Console.WriteLine("\nDealer: {0}", dealer.Name);
        foreach(var car in dealer.Cars)
        {
            string make = string.Empty;
            if (car is Toyota)
                make = "Toyota";
            else if (car is BMW)
                make = "BMW";
            Console.WriteLine("\t{0} {1} {2} {3}", car.Year,
                               car.Color, make, car.Model);
        }
    }
}
 



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

226

The output of the code in Listing 6-36 is as follows:

Dealers and Their Cars
======================
 
Dealer: Luxury Auto World
        2014 Blue BMW 310i
 
Dealer: Southtown Toyota
        2014 Blue Toyota Tundra
 
Dealer: All Cities Toyota
        2014 Green Toyota Camry

6-13. Applying Conditions on a Base Entity
Problem
You want to derive a new entity from a base entity that currently exists in a model and continue to allow the base 
entity to be instantiated.

Solution
Let’s assume that you have a model like the one shown in Figure 6-20.

Figure 6-20.  Our model with the Invoice entity



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

227

This model contains a single Invoice entity. We want to derive a new entity that represents deleted invoices. 
This will allow us to separate more cleanly business logic that operates on active invoices differently than on deleted 
invoices. To add the derived entity, do the following:

	 1.	 View the Mapping Details window for the Invoice entity. Add a condition on the IsDeleted 
column to map the entity when the column is 0, as shown in Figure 6-21.

	 2.	 Now that the IsDeleted column is used in a condition, we need to remove it from the scalar 
properties for the entity. Right-click the IsDeleted property in the entity and select Delete.

	 3.	 Right-click the design surface, and select Add ➤ Entity. Name the new entity 
DeletedInvoice, and select Invoice as the base type.

	 4.	 View the Mapping Details window for the DeletedInvoice entity. Map the entity to the 
Invoice table. Add a condition on the IsDeleted column to map the entity when the 
column is 1, as shown in Figure 6-22.

Figure 6-21.  Mapping the Invoice entity when the IsDeleted column is 0



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

228

The final model with the Invoice entity and the derived DeletedInvoice entity is shown in Figure 6-23.

Figure 6-23.  Our completed model with the Invoice entity and the DeletedInvoice entity

Figure 6-22.  Mapping the DeletedInvoice entity to the Invoice table when the IsDeleted column is 1



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

229

How It Works
There are two different ways to model our invoices and deleted invoices. The approach we’ve shown here is 
only recommended if you have an existing model and code base, and you would like to add the DeletedInvoice 
derived type with as little impact as possible to the existing code. For a new model, it would be better to derive an 
ActiveInvoice type and a DeletedInvoice type from the Invoice base type. In this approach, you would mark the base 
type as abstract.

Using the approach we’ve shown here, you could can determine, as we do in the code in Listing 6-37, if the entity 
is a DeletedInvoice, either by casting or by using the OfType<>() method. However, you can’t select for the Invoice 
entity alone. This is the critical drawback to the approach we’ve shown here.

The approach you should use for new code is to derive two new entities: ActiveInvoice and DeleteInvoice. With 
these two sibling types, you can use either casting or the OfType<>() method to operate on either type uniformly.

Listing 6-37.  Using the as Operator to Determine If We Have an Invoice or DeletedInvoice

using (var context = new EF6RecipesContext())
{
    context.Invoices.Add(new Invoice { Amount = 19.95M,
                                    Description = "Oil Change",
                                    Date = DateTime.Parse("4/11/13") });
    context.Invoices.Add(new Invoice { Amount = 129.95M,
                                    Description = "Wheel Alignment",
                                    Date = DateTime.Parse("4/01/13") });
    context.Invoices.Add(new DeletedInvoice { Amount = 39.95M,
                                    Description = "Engine Diagnosis",
                                    Date = DateTime.Parse("4/01/13") });
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    foreach (var invoice in context.Invoices)
    {
        var isDeleted = invoice as DeletedInvoice;
        Console.WriteLine("{0} Invoice",
                          isDeleted == null ? "Active" : "Deleted");
        Console.WriteLine("Description: {0}", invoice.Description);
        Console.WriteLine("Amount: {0}", invoice.Amount.ToString("C"));
        Console.WriteLine("Date: {0}", invoice.Date.ToShortDateString());
        Console.WriteLine();
    }
}
 



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

230

The following is the output of the code in Listing 6-37:

Active Invoice
Description: Oil Change
Amount: $19.95
Date: 4/11/2013
 
Active Invoice
Description: Wheel Alignment
Amount: $129.95
Date: 4/1/2013
 
Deleted Invoice
Description: Engine Diagnosis
Amount: $39.95
Date: 4/1/2013

6-14. Creating Independent and Foreign Key Associations
Problem
You want to use Model First to create both independent and foreign key associations.

Solution
Foreign keys and independent associations help us maintain referential integrity within the database schema and 
provide navigation paths to related entities. In order to create foreign keys and independent associations using Model 
First, do the following:

	 1.	 Add a new ADO.NET Entity Data Model to your project. Select Empty Model when 
prompted to choose the model contents. Click Finish. This will create an empty design 
surface.

	 2.	 Right-click the design surface, and select Add ➤ Entity. Name the new entity User and 
click OK.

	 3.	 Right-click the new entity, and add a scalar property for the UserName.

	 4.	 Right-click the design surface, and select Add ➤ Entity. Name the new entity 
PasswordHistory and click OK.

	 5.	 Right-click the new entity, and add a scalar property for the LastLogin. Right-click the 
LastLogin property, and change its type to DateTime.

	 6.	 Right-click the User entity, and select Add ➤ Association. To create a foreign key 
association, check the Add foreign key properties to the PasswordHistory entity check box. 
To create an independent association, uncheck this box.

	 7.	 Right-click the design surface, and select Generate Model from Database. Select a 
database connection, and complete the remainder of the wizard. This will generate the 
storage and mapping layers of the model and produce a script to generate the database  
for the model.

4



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

231

If you choose to create a foreign key association, the model should look like the one shown in Figure 6-24. If you 
choose to create an independent association, the model should look like the one shown in Figure 6-25.

How It Works
With a foreign key association, the foreign key is exposed as a property in the dependent entity. Exposing the foreign 
key allows many aspects of the association to be managed with the same code that manages the other property values. 
This is particularly helpful in disconnected scenarios, as we will see in Chapter 9. Foreign key associations are the 
default in Entity Framework.

For independent associations, the foreign keys are not exposed as properties. This makes the modeling at the 
conceptual layer somewhat cleaner because there is no noise introduced concerning the details of the association 
implementation. In the early versions of Entity Framework, only independent associations were supported.

6-15. Changing an Independent Association into a Foreign Key 
Association
Problem
You have a model that uses an independent association, and you want to change it to a foreign key association.

Figure 6-24.  A foreign key association between User and PasswordHistory

Figure 6-25.  An independent association between User and PasswordHistory



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

232

Solution
Let’s say that you have a model like the one shown in Figure 6-26.

To change the association from an independent association to a foreign key association, do the following:

	 1.	 Right-click the Ticket entity, and select Add ➤ Scalar Property. Rename the property 
LicenseNumber.

	 2.	 View the Mapping Details window for the association. Remove the mapping to the Ticket 
table by selecting <Delete> from the Maps to Ticket control.

	 3.	 Right-click the association, and view the properties. Click in the button in the Referential 
Constraint control. In the dialog box, select the Vehicle entity in the Principal drop-down  
control. The Principal Key and the Dependent Property should both be set to LicenseNumber,  
as shown in Figure 6-27.

Figure 6-27.  Creating the referential constraint for the foreign key association

Figure 6-26.  A model for vehicles and tickets using an independent association



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

233

	 4.	 View the Mapping Details window for the Ticket entity. Map the LicenseNumber column 
to the LicenseNumber property, as shown in Figure 6-28.

The final model is shown in Figure 6-29.

Figure 6-28.  Mapping the LicenseNumber column to the LicenseNumber property for the Ticket entity

Figure 6-29.  The model with the independent association changed to a foreign key association



Chapter 6 ■ Beyond the Basics with Modeling and Inheritance 

234

How It Works
When you change an independent association into a foreign key association, most of your existing code will 
continue to work. You will find it easier now to associate two entities by simply setting the exposed foreign key to 
the appropriate value. To change a relationship with an independent association, you need to create a new instance 
of EntityKey and set the entity’s xxxReference.EntityKey to this new instance. With a foreign key association, you 
simply set the exposed foreign key property to the key value.

Foreign key associations are not currently supported for many-to-many associations because these associations 
must be mapped to the underlying link table. A future version of Entity Framework may support foreign key 
associations, along with payloads, for many-to-many associations.



235

Chapter 7

Working with Object Services

This chapter contains a rather eclectic collection of recipes that provide practical solutions to common problems in 
real-world applications. We build our applications to tolerate changes in deployment environments, and we make our 
applications flexible enough so that few if any configuration details need to be hard-coded.

The first three recipes provide you with the tools to meet these challenges. The remaining recipes cover topics 
such as Entity Framework’s Pluralization Service, using the edmgen.exe utility, working with identifying relationships, 
and retrieving objects from an object context.

7-1. Dynamically Building a Connection String
Problem
You want to build the connection string dynamically for your application.

Solution
Many real-world applications start out on a developer’s desktop; move through one or more testing, integration, 
and staging environments; and finally end up in a production deployment. You want to configure the application’s 
connection string dynamically depending on the current environment.

To build the connection string dynamically for your application, follow the pattern in Listing 7-1.

Listing 7-1.  Dynamically Building a Connection String

public static class ConnectionStringManager
{
    public static string EFConnection = GetConnection();
 
    private static string GetConnection()
    {
            var sqlBuilder = new SqlConnectionStringBuilder();
 
            sqlBuilder.DataSource = ConfigurationManager.AppSettings["SqlDataSource"];
 
            // fill in the rest
            sqlBuilder.InitialCatalog = ConfigurationManager.AppSettings["SqlInitialCatalog"];
            sqlBuilder.IntegratedSecurity = true;
            sqlBuilder.MultipleActiveResultSets = true;
 



Chapter 7 ■ Working with Object Services

236

            var eBuilder = new EntityConnectionStringBuilder();
            eBuilder.Provider = "System.Data.SqlClient";
            eBuilder.Metadata =
                  "res://*/Recipe1.csdl|res://*/Recipe1.ssdl|res://*/Recipe1.msl";
            eBuilder.ProviderConnectionString = sqlBuilder.ToString();
            return eBuilder.ToString();    }
}
 
public partial class EF6RecipesContainer
    {
        public EF6RecipesContainer(string nameOrConnectionString)
            : base(nameOrConnectionString)
        {
             
        }
    }

How It Works
When you add an ADO.NET Entity Data Model to your project, Entity Framework adds an entry to the 
<connectionStrings> section in your project’s .config file. At runtime, the constructor for the object context is passed 
the key for this configuration entry (EF6RecipesContext for many of the recipes in this book). Given this key, the 
database context uses the connection string found in the .config file.

To create the connection string dynamically based on the environment in which our application is 
deployed, we created the ConnectionStringManager class (refer to Listing 7-1). In the GetConnection()method, 
we obtain the environment-specific values for data source and initial catalog from a config file. To use our 
ConnectionStringManager, we implemented an additional constructor that takes a string parameter representing the 
connection string or name inside the EF6RecipesContainer partial class.

When we instantiate EF6RecipesContainer, we can pass into it the value of ConnectionStringManager.EFConnection 
and, as a result, the instance will use the dynamically created connection string to connect to the database server.

7-2. Reading a Model from a Database
Problem
You want to read the CSDL, MSL, and SSDL definitions for your model from a database table.

Solution
Suppose that you have a model like the one shown in Figure 7-1.

Figure 7-1.  A model with a Customer entity



Chapter 7 ■ Working with Object Services

237

Our model has just one entity: Customer. The conceptual layer (CSDL mapping layer (MSL and storage layer 
(SSDL definitions are typically found in the .edmx file in your project. We want to read these definitions from a 
database. To read these definitions from a database, do the following:

	 1.	 Right-click the design surface, and view the Properties. Change the Code Generation 
Strategy to None. We’ll use POCO for our Customer class. See Chapter 8 for more recipes 
on using POCO.

	 2.	 Create the table shown in Figure 7-2. This table will hold the definitions for our project.

	 3.	 Right-click the design surface, and view the Properties. Change the Metadata Artifact 
Processing to Copy to Output Directory. Rebuild your project. The build process will create 
three files in the output directory: Recipe2.ssdl, Recipe2.csdl, and Recipe2.msl.

	 4.	 Insert the contents of these files into the Definitions table in the corresponding columns. 
Use 1 for the Id column.

	 5.	 Follow the pattern in Listing 7-2 to read the metadata from the Definitions table, and 
create a MetadataWorkspacethat your application will use.

Listing 7-2.  Reading the Metadata from the Definitions Table

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Data.Metadata.Edm;
using System.Data.SqlClient;
using System.Data.EntityClient;
using System.Xml;
using System.Data.Mapping;
using System.Data.Objects;
 
namespace Recipe2
{
    class Program
    {
        static void Main(string[] args)

Figure 7-2.  The Definitions table holds the definitions for our SSDL, CSDL, and MSL. Note that the column data types 
for the definitions are XML



Chapter 7 ■ Working with Object Services

238

        {
            RunExample();
        }
 
        static void RunExample()
        {
            using (var context = ContextFactory.CreateContext())
            {
                context.Customers.AddObject(
                      new Customer { Name = "Jill Nickels" });
                context.Customers.AddObject(
                      new Customer { Name = "Robert Cole" });
                context.SaveChanges();
            }
 
            using (var context = ContextFactory.CreateContext())
            {
                Console.WriteLine("Customers");
                Console.WriteLine("---------");
                foreach (var customer in context.Customers)
                {
                    Console.WriteLine("{0}", customer.Name);
                }
            }
        }
    }
 
    public class Customer
    {
        public virtual int CustomerId { get; set; }
        public virtual string Name { get; set; }
    }
 
    public class EFRecipesEntities : ObjectContext
    {
        private ObjectSet<Customer> customers;
        public EFRecipesEntities(EntityConnection cn)
            : base(cn)
        {
        }
 
        public ObjectSet<Customer> Customers
        {
            get
            {
                return customers ?? (customers = CreateObjectSet<Customer>());
            }
        }
    }
     



Chapter 7 ■ Working with Object Services

239

    public static class ContextFactory
    {
        static string connString = @"Data Source=localhost;
           Initial Catalog=EFRecipes;Integrated Security=True;";
        private static MetadataWorkspace workspace = CreateWorkSpace();
 
        public static EFRecipesEntities CreateContext()
        {
            var conn = new EntityConnection(workspace,
                             new SqlConnection(connString));
            return new EFRecipesEntities(conn);
        }
 
        private static MetadataWorkspace CreateWorkSpace()
        {
            string sql = @"select csdl,msl,ssdl from Chapter7.Definitions";
            XmlReader csdlReader = null;
            XmlReader mslReader = null;
            XmlReader ssdlReader = null;
 
            using (var cn = new SqlConnection(connString))
            {
                using (var cmd = new SqlCommand(sql, cn))
                {
                    cn.Open();
                    var reader = cmd.ExecuteReader();
                    if (reader.Read())
                    {
                        csdlReader = reader.GetSqlXml(0).CreateReader();
                        mslReader = reader.GetSqlXml(1).CreateReader();
                        ssdlReader = reader.GetSqlXml(2).CreateReader();
                    }
                }
            }
 
            var workspace = new MetadataWorkspace();
            var edmCollection = new EdmItemCollection(new XmlReader[]
                                                   { csdlReader });
            var ssdlCollection = new StoreItemCollection(new XmlReader[]
                                                   { ssdlReader });
            var mappingCollection = new StorageMappingItemCollection(
                edmCollection, ssdlCollection, new XmlReader[] { mslReader });
 
            workspace.RegisterItemCollection(edmCollection);
            workspace.RegisterItemCollection(ssdlCollection);
            workspace.RegisterItemCollection(mappingCollection);
            return workspace;
        }
    }
}
 



Chapter 7 ■ Working with Object Services

240

Following is the output of the code in Listing 7-2:

Customers
---------
Jill Nickels
Robert Cole

How It Works
The first part of the code in Listing 7-2 should be very familiar to you by now. We use Entity Framework to create 
a new context, create a few entities, and call SaveChanges()to persist the entities to the database. To retrieve the 
entities, we iterate through the collection and display each on the console. The only difference in this part is the call 
to ContextFactory.CreateContext().Normally, we would just use the new operator to get a new instance of our 
EFRecipesEntities context.

We’ve created the ContextFactory to create our context from the model metadata stored, not in the .edmx file, 
but in a table in a database. We do this in the CreateContext() method. The CreateContext() method creates a new 
EntityConnection based on two things: a workspace that we create with the CreateWorkSpace()method and a SQL 
connection string. The real work happens in how we create the workspace in the CreateWorkSpace() method.

The CreateWorkSpace() method opens a connection to the database where our metadata is stored. We construct 
a SQL statement that reads the one row from the Definitions table (refer to Figure 7-2) that holds our definitions 
for the conceptual layer, storage layer, and mapping layer. We read these definitions with XmlReaders. With these 
definitions, we create an instance of a MetadataWorkspace. A MetadataWorkspace is an in-memory representation  
of a model. Typically, this workspace is created by the default plumbing in Entity Framework from your .edmx file.  
In this recipe, we create this workspace from the definitions in a database. There are other ways to create this 
workspace including using embedded resources and an implementation with Code First.

The code in Listing 7-2 uses POCOs for our Customer entity. We cover POCO extensively in Chapter 8, but here 
we use POCO to simplify the code. With POCO, we don’t use the classes generated by Entity Framework. Instead, 
we use our own classes that have no particular dependence on Entity Framework. In Listing 7-2, we created our own 
definition of the Customer entity in the Customer class. We also created our own object context: EFRecipesEntities. 
Our context, of course, does have a dependence on Entity Framework because it derives from ObjectContext.

7-3. Deploying a Model
Problem
You want to know the various options for deploying a model.

Solution
When you add a new ADO.NET Entity Data Model to your project, Entity Framework sets the Build Action property for 
the .edmx file to Entity Deploy. Additionally, the Metadata Artifact Processing property of the model is set to Embed 
in Output Assembly. When you build your project, the Entity Deploy action extracts three sections from the .edmx 
file into three separate files. The CSDL section is extracted into the Model.csdl file. The MSL section is extracted into 
the Model.msl file. The SSDL section is extracted into the Model.ssdl file. With the Embed in Output Assembly, these 
three files get embedded into the assembly as resources.

Changing the Metadata Artifact Processing property to Copy to Output Directory causes the three Model.* files to 
be copied to the same directory as the resulting assembly. The files are not embedded as a resource.



Chapter 7 ■ Working with Object Services

241

How It Works
The .edmx file contains all three model layers: conceptual, mapping, and storage. The file also contains additional 
data used by the designer to manage the design surface. At runtime, Entity Framework uses each of the layers 
separately. The .edmx file is just a convenient container for the design time user experience. The deployment of a 
model depends on model layers either embedded in the assembly, stored in files, or, as we saw in Recipe 7-2, retrieved 
from another source and used to complete a MetadataWorkspace.

If your Metadata Artifact Processing property is set to Embed in Output Assembly, you will notice that the 
connection string in your App.config or web.config file includes a metadata tag, which looks something like the 
following:
 
metadata=res://*/Recipe3.csdl|res://*/Recipe3.ssdl|res://*/Recipe3.msl;
 

This notation indicates a search path for each of the model layers embedded in the assembly. If you change 
the Metadata Artifact Processing property to Copy to Output Directory, you will see the connection string change to 
something like this:
 
metadata=.\Recipe3.csdl|.\Recipe3.ssdl|.\Recipe3.msl;
 

This notation indicates a file path to each of the model layers.
When embedding the model layers as resources in an assembly, you are not restricted by the connection string 

syntax to referencing only the executing assembly. Table 7-1 illustrates some of the possible constructions you can use 
to reference the embedded model layers in other assemblies.

7-4. Using the Pluralization Service
Problem
You want to use Entity Framework’s Pluralization Service when you import a table from a database.

Solution
Suppose that you have a database with the tables shown in Figure 7-3.

Table 7-1.  Connection String Syntax for Loading Model Layers

Syntax Meaning

res://myassembly/file.ssdl Loads the SSDL from myassembly

res://myassembly/ Loads the SSDL, CSDL, and MSL from myassembly

res://*/file.ssdl Loads the SSDL from all assemblies in the AppDomain

res://*/ Loads the SSDL, CSDL, and MSL from all assemblies



Chapter 7 ■ Working with Object Services

242

Notice that the tables in Figure 7-3 take the plural form. This is common in many databases. Some DBAs believe 
that all table names should be plural; other DBAs believe just the opposite. Of course, there are a few that don’t 
seem to follow any particular view and mix things up. Depending on your perspective, you may want to use the 
singular form of the table names for your model’s entities. Entity Framework provides a Pluralization Service that can 
automatically generate the singular form of a table name to use as the corresponding entity name.

To use the Pluralization Service when importing your tables, check the Pluralize or singularize generated object 
names box in the last step of the Entity Data Model Wizard (see Figure 7-4). By default, this box is checked.

Figure 7-5 shows a model created when we import the table in Figure 7-3 without the Pluralization Service enabled. 
Notice that entity names are taken directly from the table names and retain the plural form. Figure 7-6 shows the same 
tables imported with the Pluralization Service enabled. These entities use the singular forms of the table names.

Figure 7-3.  Employees and Tasks tables in our database

Figure 7-4.  Enabling the Pluralization Service



Chapter 7 ■ Working with Object Services

243

How It Works
Most developers prefer the entity names in the model in Figure 7-6. (Look at the names in boldface at the top of each 
entity.) Not only are the entity names singular, but the Employee navigation property in the Task entity also makes 
more sense than the Employees navigation property in the Tasks entity in Figure 7-5. In both cases, this navigation 
property is an EntityReference, not a collection. The plural form in Figure 7-5 seems somewhat confusing.

If our table names were singular to start with, the Pluralization Service would correctly pluralize the  
collection-based navigation properties and pluralize the underlying entity set names. This takes cares of the  
other half of the DBA community that uses singular names for tables.

You can set the default on/off state of the Pluralization Service for new entities in your model by changing the 
Pluralize New Objects property When you add new entities to your model, this setting will change the default on/off 
state for the Pluralization Service.

You can use the Pluralization Service outside of the context of Entity Framework. This service is available in 
the System.Data.Entity.Design namespace To add a reference to the System.Data.Entity.Design.dll, you will need to 
change your project’s Target framework from the default .NET Framework 4 Client Profile to the more expansive .NET 
Framework 4. This setting is changed in the properties of the project. The code in Listing 7-3 demonstrates using the 
Pluralization Service to pluralize and singularize the words “Person” and “People.”

Listing 7-3.  Using the Pluralization Service

var service = PluralizationService.CreateService(new CultureInfo("en-US"));
string person = "Person";
string people = "People";
Console.WriteLine("The plural of {0} is {1}", person,
                   service.Pluralize(person));

Figure 7-5.  The model created from the tables in Figure 7-3 without the Pluralization Service

Figure 7-6.  The model created from the tables in Figure 7-3 with the Pluralization Service



Chapter 7 ■ Working with Object Services

244

Console.WriteLine("The singular of {0} is {1}", people,
                   service.Singularize(people));
 

Following is the output of the code in Listing 7-3:

The plural of Person is People
The singular of People is Person

7-5. Retrieving Entities from the Change Tracker
Problem
You want to create an extension method that retrieves entities from the change tracker in order to perform some 
operation before the data is saved.

Solution
Suppose that you have a model like the one shown in Figure 7-7.

In this model, each technician has service calls that include the contact name and issue for the call. You want 
to create an extension method that retrieves all entities in the model that are in the Added, Modified, or Unchanged 
state. To do this, follow the pattern in Listing 7-4.

Listing 7-4.  Creating an Extension Method That Retrieves All of the Entities in the Added, Modified,  
or Unchanged State

class Program
{
    static void Main(string[] args)
    {
        RunExample();
    }
 

Figure 7-7.  Our model with technicians and their service calls



Chapter 7 ■ Working with Object Services

245

    static void RunExample()
    {
        using (var context = new EF6RecipesContext())
        {
            var tech1 = new Technician { Name = "Julie Kerns" };
            var tech2 = new Technician { Name = "Robert Allison" };
            context.ServiceCalls.Add(new ServiceCall {
                  ContactName = "Robin Rosen",
                  Issue = "Can't get satellite signal.",
                  Technician = tech1 });
            context.ServiceCalls.Add(new ServiceCall {
                  ContactName = "Phillip Marlowe",
                  Issue = "Channel not available",
                  Technician = tech2 });
 
            // now get the entities we've added
            foreach (var tech in
                     context.ChangeTracker.GetEntities<Technician>())
            {
                Console.WriteLine("Technician: {0}", tech.Name);
                foreach (var call in tech.ServiceCalls)
                {
                    Console.WriteLine("\tService Call: Contact {0} about {1}",
                                       call.ContactName, call.Issue);
                }
            }
        }
    }
}
 
public static class ChangeTrackerExtensions
{
    public static IEnumerable<T> GetEntities<T>(this DbChangeTracker tracker)
    {
        var entities = tracker
                 .Entries<T>()
                 .Where(entry => entry.State != EntityState.Detached && entry.Entity != null)
                 .Select(entry => entry.Entity)();
        return entities;
    }
}
 

Following is the output of the code in Listing 7-4:

Technician: Julie Kerns
        Service Call: Contact Robin Rosen about Can't get satellite signal.
Technician: Robert Allison
        Service Call: Contact Phillip Marlowe about Channel not available



Chapter 7 ■ Working with Object Services

246

How It Works
In Listing 7-4, we implemented the GetEntities<T>() extension method to retrieve all of the entities in the object 
context that are in the Added, Modified, or Unchanged state. Because this may be a common activity in your 
application, it makes sense to implement this just once in an extension method. In the implementation of the 
GetEntities<T>() method, we use LINQ-to-Entities to filter the set of entries returned by the Entries<T>() method. 
The method returns all entries that are not in the Detached state. From these, we filter out relationships and null 
entries. From the remaining entries, we select only those of the given type.

There are some important scenarios in which you might want to implement a method like GetEntities<T>(). 
For example, in the SavingChanges event, you may want to validate entities that are about to be inserted, modified,  
or deleted.

7-6. Generating a Model from the Command Line
Problem
You want to generate a model from the command line.

Solution
To generate a model for a given database from the command line, use the edmgen.exe program. To access the Visual 
Studio Command Prompt click Visual Studio 2012 Command Prompt under Microsoft Visual Studio 2012 from the 
Start menu.

The Microsoft documentation for the edmgen command provides a complete list of the command line options. 
The edmgen command supports a lot of useful command line options The following command, for example,  
will generate a model from all of the tables in the given Test database:
 
edmgen /mode:FullGeneration /project:Test /provider:"System.Data.SqlClient" 
/c:"server=localhost;integrated security=true;database=Test;"
 

Other /mode options are available. One that can be particularly useful in a continuous integration build process is 
/mode:ValidateArtifacts. With this option, one or more of the generated layers are validated. You need to use one 
or both of the /inssdl or /incsdl options. If you are validating the mapping layer, all three layers must be specified.

You can use one of the /out options to specify the name of the generated file for specific model layers.  
For example, using /outcsdl:MyProject.csdl will create the conceptual layer definitions in a file named  
MyProject.csdl. There are similar options for the other layers.

How It Works
The edmgen command provides a convenient way to automate some of the build processes, and it is a useful tool for 
pregenerating query views and generating separate files for the model layers. One restriction of edmgen is that it does 
not provide a way to generate a model based on a subset of the tables in a database.

Using the edmgen command to pregenerate views can be tremendously helpful for application performance. 
Before a query can be executed, Entity Framework must build a set of views that it uses to access and query the 
database. Without using the edmgen utility, view generation takes place on the first Entity Framework call. If the data 
model is relatively small this initialization at first call may pose minimal risk; however, if the data model is large or 
particularly complex, then such a performance hit might not be acceptable. In a case such as the latter it may make 
sense to pregenerate query views using the edmgen command-line utility.



Chapter 7 ■ Working with Object Services

247

7-7. Working with Dependent Entities in an Identifying 
Relationship
Problem
You want to insert, update, and delete a dependent entity in an identifying relationship.

Solution
Suppose that you have a model like the one shown in Figure 7-8. The LineItem’s entity key is a composite key 
comprised of InvoiceNumber and ItemNumber. InvoiceNumber is also a foreign key to the Invoice entity.

Figure 7-8.  Invoice and LineItem in an identifying relationship because of the composite entity key in the LineItem entity

When one of the properties of an entity key is both the primary key and the foreign key, the entity is said to be 
participating in an identifying relationship. In our model, LineItem’s entity key, its identity, is also a foreign key to the 
Invoice entity. The LineItem entity is referred to as the dependent entity, while Invoice is the principal entity.

There is a subtle difference in how Entity Framework handles the deletion of dependent entities in an identifying 
relationship. Because the dependent entity cannot exist without participating in the relationship, simply removing 
the dependent entity from the principal’s collection will result in Entity Framework marking the dependent entity for 
deletion. Additionally, deleting the principal entity will also mark the dependent for deletion. This is reminiscent of 
the cascading deletes common in database systems. Of course, Entity Framework allows you to delete the dependent 
entity explicitly. The code in Listing 7-5 demonstrates all three of these scenarios.

Listing 7-5.  Deleting the Dependent Entity

static void Main(string[] args)
{
    RunExample();
}
 
static void RunExample()
{
    using (var context = new EF6RecipesContext())
    {
 
        var invoice1 = new Invoice { BilledTo = "Julie Kerns",
                          InvoiceDate = DateTime.Parse("9/19/2013") };



Chapter 7 ■ Working with Object Services

248

        var invoice2 = new Invoice { BilledTo = "Jim Stevens",
                          InvoiceDate = DateTime.Parse("9/21/2013") };
        var invoice3 = new Invoice { BilledTo = "Juanita James",
                          InvoiceDate = DateTime.Parse("9/23/2013") };
        context.LineItems.Add(new LineItem { Cost = 99.29M,
                                     Invoice = invoice1 });
        context.LineItems.Add(new LineItem { Cost = 29.95M,
                                     Invoice = invoice1 });
        context.LineItems.Add(new LineItem { Cost = 109.95M,
                                     Invoice = invoice2 });
        context.LineItems.Add(new LineItem { Cost = 49.95M,
                                     Invoice = invoice3 });
        context.SaveChanges();
 
        // display the line items
        Console.WriteLine("Original set of line items...");
        DisplayLineItems();
 
        // remove a line item from invoice1's collection
        var item = invoice1.LineItems.ToList().First();
        invoice1.LineItems.Remove(item);
        context.SaveChanges();
        Console.WriteLine("\nAfter removing a line item from an invoice...");
        DisplayLineItems();
 
        // remove invoice2
        context.Invoices.Remove(invoice2);
        context.SaveChanges();
        Console.WriteLine("\nAfter removing an invoice...");
        DisplayLineItems();
 
        // remove a single line item
        context.LineItems.Remove(invoice1.LineItems.First());
        context.SaveChanges();
        Console.WriteLine("\nAfter removing a line item...");
        DisplayLineItems();
 
        // update a single line item
        var item2 = invoice3.LineItems.ToList().First();
        item2.Cost = 39.95M;
        context.SaveChanges();
        Console.WriteLine("\nAfter updating a line item from an invoice...");
        DisplayLineItems();
    }
}
 



Chapter 7 ■ Working with Object Services

249

static void DisplayLineItems()
{
    bool found = false;
    using (var context = new EF6RecipesContext())
    {
        foreach (var lineitem in context.LineItems)
        {
            Console.WriteLine("Line item: Cost {0}",
                               lineitem.Cost.ToString("C"));
            found = true;
        }
    }
    if (!found)
        Console.WriteLine("No line items found!");
}
 

Following is the output of the code in Listing 7-5:

Original set of line items...
Line item: Cost $99.29
Line item: Cost $29.95
Line item: Cost $109.95
Line item: Cost $49.95
 
After removing a line item from an invoice...
Line item: Cost $29.95
Line item: Cost $109.95
Line item: Cost $49.95
 
After removing an invoice...
Line item: Cost $29.95
After removing a line item...
Line item: Cost $49.95
After updating a line item...
Line item: Cost $39.95

How It Works
The code in Listing 7-5 deletes line items in three ways. First it deletes a line item from an invoice’s collection. Because 
a line item is dependent on the invoice for its identity, Entity Framework marks the referenced line item for deletion. 
Next it deletes an invoice. Entity Framework marks all of the dependent line items for deletion. Finally, the code 
deletes the last remaining line item directly by calling Remove() on the context’s LineItems entity set.

You can modify all of the properties of a dependent entity except for properties that participate in the identifying 
relationship. In our model, we can modify the Cost property in a line item, but we can’t change the Invoice navigation 
property.

When a principal object in an identifying relationship is saved to the database, the key that is generated at the 
database (for store-generated values) is written to the principal entity and to all of its dependent entities. This ensures 
that all are synchronized in the database context.



Chapter 7 ■ Working with Object Services

250

7-8. Inserting Entities Using a Database Context
Problem
You want to insert entities in your model to the database using a database context.

Solution
Suppose that you have a model like the one shown in Figure 7-9.

The model in Figure 7-9 represents employees and their tasks. You want to insert new employees and their tasks 
into the underlying database. To insert an Employee, create a new instance of Employee and call the Add()method 
available on the Employees entity set in the context. To add a Task for an employee, create a new instance of Task and 
add it to the Tasks collection of the employee. You must also call Add() to add either the employee or the task to the 
database context. To persist the changes to the database, call the SaveChanges() method.

The code in Listing 7-6 demonstrates using Add() to add new objects to the database context and persist them  
to the database with SaveChanges().

Listing 7-6.  Inserting New Entities into the Database

using (var context = new EF6RecipesContext())
{
    var employee1 = new Employee {EmployeeNumber = 629,
                                  Name = "Robin Rosen", Salary = 106000M };
    var employee2 = new Employee {EmployeeNumber = 147,
                                  Name = "Bill Moore", Salary = 62500M };
    var task1 = new Task { Description = "Report 3rd Qtr Accounting" };
    var task2 = new Task { Description = "Forecast 4th Qtr Sales" };
    var task3 = new Task { Description = "Prepare Sales Tax Report" };
 
    // use Add() on the Employees entity set
    context.Employees.Add(employee1);
 
    // add two new tasks to employee1's tasks
    employee1.Tasks.Add(task1);
    employee1.Tasks.Add(task2);
 

Figure 7-9.  A model with employees and their tasks



Chapter 7 ■ Working with Object Services

251

    // add a task to the employee and use
    // Add() to add the task to the database context
    employee2.Tasks.Add(task3);
    context.Tasks.Add(task3);
 
    // persist all of these to the database
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    foreach (var employee in context.Employees)
    {
        Console.WriteLine("Employee: {0}'s Tasks", employee.Name);
        foreach (var task in employee.Tasks)
        {
            Console.WriteLine("\t{0}", task.Description);
        }
    }
}
 

Following is the output of the code in Listing 7-6:

Employee: Bill Moore's Tasks
        Prepare Sales Tax Report
Employee: Robin Rosen's Tasks
        Report 3rd Qtr Accounting
        Forecast 4th Qtr Sales

How It Works
In Listing 7-6, we used the Add() method available on the Employees and Tasks entity sets to add entities to the 
database context.

When you add an entity to the database context, Entity Framework creates a temporary entity key for the newly 
added entity. Entity Framework uses this temporary key to uniquely identify the entity. This temporary key is replaced 
by a real key after the object is persisted to the database. If saving two entities to the database results in both entities 
being assigned the same entity key, Entity Framework will throw an exception. This can happen if the keys are 
assigned the same value by the client or by some store-generating process.

For foreign key associations, you can assign the foreign key property of an entity the value of the entity key of a 
related entity. Although temporary keys are involved, Entity Framework will fix up the keys and relationships correctly 
when the entities are saved to the database.

You can also use the Attach() method to add an entity to a database context. This is a two-step process. First 
call Attach() with the entity. This adds it to the database context, but the change tracker initially marks the entity as 
Unchanged. Calling SaveChanges() at this point will not save the entity to the database. The second step is to pass the 
entity into the database context’s Entry() method to obtain a DbEntityEntry instance and set its State property to the 
new state: EntityState.Added. Calling SaveChanges() at this point will save the new entity to the database.



Chapter 7 ■ Working with Object Services

252

7-9. Querying and Saving Asynchronously
Problem
You need to maintain the responsiveness of your application while performing queries and persisting changes to the 
database.

Solution
Suppose that you have Account and Transactions POCO entities, which you’ve written using the Code-First modeling 
strategy, like the ones shown in Listing 7-7.

Listing 7-7.  Account and Transaction POCO Entities

    public class Account
    {
        public int AccountNumber { get; set; }
        public string AccountHolder { get; set; }
 
        public virtual ICollection<Transaction> Transactions { get; set; }
    }
 
    public class Transaction
    {
        public int AccountNumber { get; set; }
        public int TransactionNumber { get; set; }
        public DateTime TransactionDate { get; set; }
        public decimal Amount { get; set; }
    }
 

The Transaction entity is clearly a dependent entity of the Account entity, so we’ll configure that relationship  
by creating EntityTypeConfiguration subclasses for each entity type, as shown in Listing 7-8.

Listing 7-8.  Configuring the Account and Transaction Entity Types

    public class AccountTypeConfiguration : EntityTypeConfiguration<Account>
    {
        public AccountTypeConfiguration()
        {
            HasKey(a => a.AccountNumber);
 
            Property(a => a.AccountNumber)
                .HasDatabaseGeneratedOption(DatabaseGeneratedOption.Identity);
 
            HasMany(a => a.Transactions)
                .WithRequired();
        }
    }
 



Chapter 7 ■ Working with Object Services

253

    public class TransactionTypeConfiguration : EntityTypeConfiguration<Transaction>
    {
        public TransactionTypeConfiguration()
        {
            HasKey(t => new {t.AccountNumber, t.TransactionNumber});
 
            Property(t => t.TransactionNumber)
                .HasDatabaseGeneratedOption(DatabaseGeneratedOption.Identity);
        }
    }
 

Finally, in Listing 7-9, we set up the DbContext subclass and implement an override of the OnModelCreating 
method in which we add the entity configurations to the model builder’s Configurations collection.

Listing 7-9.  Creating the DbContext Subclass

    public class EF6RecipesContext : DbContext
    {
        public DbSet<Account> Accounts { get; set; }
        public DbSet<Transaction> Transactions { get; set; }
 
        public EF6RecipesContext() : base("name=EF6CodeFirstRecipesContext")
        {
             
        }
 
        protected override void OnModelCreating(DbModelBuilder modelBuilder)
        {
            base.OnModelCreating(modelBuilder);
 
            modelBuilder.Configurations.Add(new AccountTypeConfiguration());
            modelBuilder.Configurations.Add(new TransactionTypeConfiguration());
        }
    }
 

In order to query and save asynchronously, we will use the ForEachAsync() LINQ-to-Entities method and the 
SaveChangesAsync() DbContext method respectively. The code in Listing 7-10 demonstrates the usage of each 
method.

Listing 7-10.  Querying and Saving Entities Asynchronously

        static void Main(string[] args)
        {
            RunExample().Wait();
            Console.ReadKey(true);
        }
 
        static async Task RunExample()
        {
            using (var context = new EF6RecipesContext())
            {
                var account1 = new Account



Chapter 7 ■ Working with Object Services

254

                    {
                        AccountHolder = "Robert Dewey",
                        Transactions = new HashSet<Transaction>
                            {
                                new Transaction
                                    {
                                        TransactionDate = Convert.ToDateTime("07/05/2013"),
                                        Amount = 104.00M
                                     },
                                new Transaction
                                    {
                                        TransactionDate = Convert.ToDateTime("07/12/2013"),
                                        Amount = 104.00M
                                    },
                                new Transaction
                                    {
                                        TransactionDate = Convert.ToDateTime("07/19/2013"),
                                        Amount = 104.00M
                                    }
                            }
                    };
                var account2 = new Account
                    {
                        AccountHolder = "James Cheatham",
                        Transactions = new List<Transaction>
                            {
                                new Transaction
                                    {
                                        TransactionDate = Convert.ToDateTime("08/01/2013"),
                                        Amount = 900.00M
                                    },
                                new Transaction
                                    {
                                        TransactionDate = Convert.ToDateTime("08/02/2013"),
                                        Amount = -42.00M
                                    }
                            }
                    };
                var account3 = new Account
                    {
                        AccountHolder = "Thurston Howe",
                        Transactions = new List<Transaction>
                            {
                                new Transaction
                                    {
                                        TransactionDate = Convert.ToDateTime("08/05/2013"),
                                        Amount = 100.00M
                                    }
                            }
                     };
 



Chapter 7 ■ Working with Object Services

255

                context.Accounts.Add(account1);
                context.Accounts.Add(account2);
                context.Accounts.Add(account3);
                context.SaveChanges();
 
                // Add monthly service charges for each account.
                foreach (var account in context.Accounts)
                {
                    var transactions = new List<Transaction>
                        {
                            new Transaction
                                {
                                    TransactionDate = Convert.ToDateTime("08/09/2013"),
                                    Amount = -5.00M
                                },
                            new Transaction
                                {
                                    TransactionDate = Convert.ToDateTime("08/09/2013"),
                                    Amount = -2.00M
                                }
                        };
 
                    Task saveTask = SaveAccountTransactionsAsync(account.AccountNumber, transactions);
 
                    �Console.WriteLine("Account Transactions for the account belonging to {0}  

(acct# {1})", account.AccountHolder, account.AccountNumber);
 
                    await saveTask;
                    await ShowAccountTransactionsAsync(account.AccountNumber);
                }
 
 
            }
        }
 
        �private static async Task SaveAccountTransactionsAsync(int accountNumber, 

ICollection<Transaction> transactions)
        {
            using (var context = new EF6RecipesContext())
            {
                var account = new Account { AccountNumber = accountNumber };
                context.Accounts.Attach(account);
                context.Entry(account).Collection(a => a.Transactions).Load();
                foreach (var transaction in transactions.OrderBy(t => t.TransactionDate))
                {
                    account.Transactions.Add(transaction);
                }
 
                  await context.SaveChangesAsync();
            }
        }
 



Chapter 7 ■ Working with Object Services

256

        private static async Task ShowAccountTransactionsAsync(int accountNumber)
        {
            Console.WriteLine("TxNumber\tDate\tAmount");
            using (var context = new EF6RecipesContext())
            {
                var transactions = context.Transactions.Where(t => t.AccountNumber == accountNumber);
                �await transactions.ForEachAsync(t => Console.WriteLine("{0}\t{1}\t{2}", 

t.TransactionNumber, t.TransactionDate, t.Amount));
            }
        }

How It Works
Asynchronous constructs were introduced in .NET 4.5 to reduce the complexity normally associated with 
writing asynchronous code. When we call SaveAccountTransactionsAsync(), we assign it to a Task object, 
which calls the method and then returns execution control to the caller while the asynchronous portion of the 
SaveAccountTransactionsAsync() method is executing. The code that calls ShowAccountTransactionsAsync()  
is structured in much the same way. When the awaited calls in each of these two methods return, execution returns  
to the line following the caller’s await statement.

It’s important to know that the async model in .NET 4.5 is single-threaded rather than multi-threaded, so the 
code that follows await SaveAccountTransactionsAsync() is suspended until SaveAccountTransactionsAsync() 
returns. It’s additionally important to know that any method that calls an async method must itself be marked with  
the async modifier and have Task or Task<T> as its return type.

The output of the code in Listing 7-10 is shown below.

Account Transactions for the account belonging to Robert Dewey (acct# 1)
TxNumber        Date                    Amount
1               7/5/2013 12:00:00 AM    104.00
2               7/12/2013 12:00:00 AM   104.00
3               7/19/2013 12:00:00 AM   104.00
7               8/9/2013 12:00:00 AM    -5.00
8               8/9/2013 12:00:00 AM    -2.00
 
Account Transactions for the account belonging to James Cheatham (acct# 2)
TxNumber        Date                    Amount
4               8/1/2013 12:00:00 AM    900.00
5               8/2/2013 12:00:00 AM    -42.00
9               8/9/2013 12:00:00 AM    -5.00
10              8/9/2013 12:00:00 AM    -2.00
 
Account Transactions for the account belonging to Thurston Howe (acct# 3)
TxNumber        Date                    Amount
6               8/5/2013 12:00:00 AM    100.00
11              8/9/2013 12:00:00 AM    -5.00
12              8/9/2013 12:00:00 AM    -2.00



257

Chapter 8

Plain Old CLR Objects

Objects should not know how to save themselves, load themselves, or filter themselves. That’s a familiar mantra in 
software development, and especially in Domain Driven Development. There is a good bit of wisdom in this mantra. 
Having persistence knowledge bound too tightly to domain objects complicates testing, refactoring, and reuse. In 
ObjectContext, the classes generated by Entity Framework for model entities are heavily dependent on the plumbing 
of Entity Framework. For some developers, these classes know too much about the persistence mechanism, and they 
are too closely tied to the concerns of models and mapping. There is another option, however.

Entity Framework also supports using your own classes for the entities in the model. The term Plain Old CLR 
Object, often simply referred to as POCO, isn’t meant to imply that your classes are either plain or old. It merely means 
that they don’t contain any reference at all to specialized frameworks, they don’t need to derive from third-party code, 
they don’t need to implement any special interface, and they don’t need to live in any special assembly or namespace. 
You may implement your domain objects however you see fit and tie them to the model with a custom object 
context. With that being said, you are ready to leverage all of the power of Entity Framework and follow just about any 
architectural pattern you choose. You can also use DbContext to generate the POCO classes for you.

This chapter covers a wide variety of recipes specific to POCO. The first recipe shows you the basics of using POCO. 
The remaining recipes focus on loading entities and keeping Entity Framework in sync with the state of your objects.

In this chapter, we’ve intentionally focused on writing most of the POCO-related code by hand to demonstrate 
how things work. All of the work involved in building the POCO plumbing goes away if you use the POCO T4 template 
available from the ADO.NET development team at Microsoft.

8-1. Using POCO
Problem
You want to use Plain Old CLR Objects (POCO) in your application.

Solution
Let’s say that you have a data model like the one shown in Figure 8-1.



Chapter 8 ■ Plain Old CLR Objects

258

To create an Entity Framework model based on the database tables in Figure 8-1, and using the POCO classes 
generated by Entity Framework representing an Order, OrderDetail, Customer, and Product, follow the steps below: 

	 1.	 Right-click your project, and select Add ➤ New Item.

	 2.	 From the Visual C# Items Data templates, select ADO.NET Entity Data Model.

	 3.	 Select Generate from database to create the model from our existing tables.

	 4.	 Select the Order, OrderDetail, Customer, and Product tables, and click Next. In the 
generated model, the Product entity has an OrderDetails navigation property for all of 
the order details associated with this product. This is unnecessary here, so delete this 
navigation property. The completed model is shown in Figure 8-2.

Figure 8-1.  A database model for customers and their orders



Chapter 8 ■ Plain Old CLR Objects

259

	 5.	 We will be using generated classes for our entities. By default, Entity Framework 6 
generates entity classes in the form of POCO. Thus all of the database access code is in a 
separate class, and entities are generated in separate plain classes. It will yield the same 
implementation result as would have been created manually in previous Entity Framework 
versions by turning off code generation for the model. In this version, Code Generation 
Strategy is already set to None. The code in Listing 8-1 shows the classes for our model. 

Listing 8-1.  The Plain Old CLR classes for Our Model

public partial class Customer
    {
        public Customer()
        {
            this.Orders = new HashSet<Order>();
        }
        public int CustomerId { get; set; }
        public string ContactName { get; set; }
        public virtual ICollection<Order> Orders { get; set; }
    }

Figure 8-2.  The model for our customers’ orders



Chapter 8 ■ Plain Old CLR Objects

260

public partial class Order
    {
        public Order()
        {
            this.OrderDetails = new HashSet<OrderDetail>();
        }

        public int OrderId { get; set; }
        public int CustomerId { get; set; }
        public System.DateTime OrderDate { get; set; }

        public virtual Customer Customer { get; set; }
        public virtual ICollection<OrderDetail> OrderDetails { get; set; }
    }
public partial class OrderDetail
    {
        public int OrderId { get; set; }
        public int ProductId { get; set; }
        public decimal UnitPrice { get; set; }
        public int Quantity { get; set; }

        public virtual Order Order { get; set; }
        public virtual Product Product { get; set; }
    }
public partial class Product
    {
        public Product()
        {
            this.OrderDetails = new HashSet<OrderDetail>();
        }

        public int ProductId { get; set; }
        public string ProductName { get; set; }
        public decimal UnitPrice { get; set; }

        public virtual ICollection<OrderDetail> OrderDetails { get; set; }
    }

 
Notice that there is no association from Product to OrderDetail, because we removed that navigation property  

in the designer.

	 6.	 To use POCO classes, Entity Framework also generated the class that is derived from 
DbContext. This class will expose an ObjectSet<T> for each of the entities in our model. 
The code in Listing 8-2 illustrates how we might define this class.

Listing 8-2.  DbContext for Our Model Created While Generating an Entity Data Model

public partial class EFRecipesEntities : DbContext
    {
        public EFRecipesEntities()
            : base("name=EFRecipesEntities")
        {
        }



Chapter 8 ■ Plain Old CLR Objects

261

        protected override void OnModelCreating(DbModelBuilder modelBuilder)
        {
            throw new UnintentionalCodeFirstException();
        }
        public DbSet<Customer> Customers { get; set; }
        public DbSet<Order> Orders { get; set; }
        public DbSet<OrderDetail> OrderDetails { get; set; }
        public DbSet<Product> Products { get; set; }
    }
 

This completes the model with the generated POCO classes. The code in Listing 8-3 demonstrates inserting into 
and querying our model. 

Listing 8-3.  Using Our POCO Classes

using (var context = new EFRecipesEntities())
         {
            var tea = new Product { ProductName = "Green Tea", UnitPrice = 1.09M };
            var coffee = new Product
            {
               ProductName = "Colombian Coffee",
               UnitPrice = 2.15M
            };
            var customer = new Customer { ContactName = "Karen Marlowe" };
            var order1 = new Order { OrderDate = DateTime.Parse("10/06/13") };
            order1.OrderDetails.Add(new OrderDetail
            {
               Product = tea,
               Quantity = 4,
               UnitPrice = 1.00M
            });
            order1.OrderDetails.Add(new OrderDetail
            {
               Product = coffee,
               Quantity = 3,
               UnitPrice = 2.15M
            });
            customer.Orders.Add(order1);
            context.Customers.Add(customer);
            context.SaveChanges();
         }
 
         using (var context = new EFRecipesEntities())
         {
            var query = context.Customers.Include("Orders.OrderDetails.Product");
            foreach (var customer in query)
            {
               Console.WriteLine("Orders for {0}", customer.ContactName);
               foreach (var order in customer.Orders)
               {
                  Console.WriteLine("--Order Date: {0}--",
                            order.OrderDate.ToShortDateString());



Chapter 8 ■ Plain Old CLR Objects

262

                  foreach (var detail in order.OrderDetails)
                  {
                     Console.WriteLine(
                        "\t{0}, {1} units at {2} each, unit discount: {3}",
                        detail.Product.ProductName,
                        detail.Quantity.ToString(),
                        detail.UnitPrice.ToString("C"),
                        (detail.Product.UnitPrice - detail.UnitPrice).ToString("C"));
                  }
               }
            }
         }
 

The following is the output of the code in Listing 8-3:
 

Orders for Karen Marlowe
--Order Date: 4/19/2010--
        Green Tea, 4 units at $1.00 each, unit discount: $0.09
        Colombian Coffee, 3 units at $2.15 each, unit discount: $0.00 

How It Works
The POCO class generation is the default feature of current version of Entity Framework. Code generation property 
value is already set to None. The DbContext class is also generated separately, so no data access code is plugged into 
the POCO classes.

All of the classes corresponding to each of the entities in our model are created. They are pretty simple and clean. 
Of course, without code generation, no DbContext is generated. To implement a DbContext that is specific to our 
model and our entities, a new class derived from DbContext is created while generating the Entity Data Model, and 
this class provides properties of type DbSet<T> corresponding to each of the Db sets in our context. By default, our 
EFRecipesEntities DbContext has the constructor code that enables it to be connected to the underlying database. 

8-2. Loading Related Entities with POCO
Problem
Using POCO, you want to eagerly load related entities.

Solution
Suppose that you have a model like the one in Figure 8-3. 



Chapter 8 ■ Plain Old CLR Objects

263

We’re using POCO for our entities, and we want to eagerly load the related entities (navigation properties).  
To do this, we use the Include() method available on the object context. The code in Listing 8-4 illustrates using the 
Include() method to do this.

Listing 8-4.  Using the Include() Method Explicitly to Load Navigation Properties

class Program
{
    static void Main(string[] args)
    {
        RunExample();
    }
 
    static void RunExample()
    {
using (var context = new EFRecipesEntities())
         {
            var venue = new Venue { Name = "Sports and Recreational Grounds" };
            var event1 = new Event { Name = "Inter-school Soccer" };
            event1.Competitors.Add(new Competitor { Name = "St. Mary's School" });
            event1.Competitors.Add(new Competitor { Name = "City School" });
            venue.Events.Add(event1);
            context.Venues.Add(venue);
            context.SaveChanges();
         }
         using (var context = new EFRecipesEntities())
         {
            foreach (var venue in context.Venues.Include("Events").Include("Events.Competitors"))
            {
               Console.WriteLine("Venue: {0}", venue.Name);
               foreach (var evt in venue.Events)
               {
                  Console.WriteLine("\tEvent: {0}", evt.Name);
                  Console.WriteLine("\t--- Competitors ---");
                  foreach (var competitor in evt.Competitors)

Figure 8-3.  A model representing venues, their events, and the competitors in the events



Chapter 8 ■ Plain Old CLR Objects

264

                  {
                     Console.WriteLine("\t{0}", competitor.Name);
                  }
               }
            }
         }
    }
}
 
public partial class Venue
    {
        public Venue()
        {
            this.Events = new HashSet<Event>();
        }
        public int VenueId { get; set; }
        public string Name { get; set; }

        public virtual ICollection<Event> Events { get; set; }
    }
public partial class Event
    {
        public Event()
        {
            this.Competitors = new HashSet<Competitor>();
        }

        public int EventId { get; set; }
        public string Name { get; set; }
        public int VenueId { get; set; }

        public virtual ICollection<Competitor> Competitors { get; set; }
        public virtual Venue Venue { get; set; }
    }
public partial class Competitor
    {
        public int CompetitorId { get; set; }
        public string Name { get; set; }
        public int EventId { get; set; }

        public virtual Event Event { get; set; }
    }
public partial class EFRecipesEntities : DbContext
    {
        public EFRecipesEntities()
            : base("name=EFRecipesEntities")
        {
            this.Configuration.LazyLoadingEnabled = false;
        }



Chapter 8 ■ Plain Old CLR Objects

265

        protected override void OnModelCreating(DbModelBuilder modelBuilder)
        {
            throw new UnintentionalCodeFirstException();
        }
        public DbSet<Competitor> Competitors { get; set; }
        public DbSet<Event> Events { get; set; }
        public DbSet<Venue> Venues { get; set; }
    }
 

The following is the output of the code in Listing 8-4: 

Venue: City Center Hall
        Event: All Star Boxing
        --- Competitors ---
        Big Joe Green
        Terminator Tim
Venue: Sports and Recreational Grounds
        Event: Inter-school Soccer
        --- Competitors ---
        St. Mary's School
        City School
 

How It Works
When we’re using code generated by Entity Framework for our model, we use the Include() method on the context 
query objects to load the related entities, and these related entities can be lists of entities or single objects. There are 
three methods of loading or querying related entities in Entity Framework: Eager Loading, Lazy Loading, and Explicit 
Loading. We have used the Include() method to demonstrate eagerly loading related entities. By default, Lazy 
Loading is enabled in Entity Framework, but we have disabled that here. To load a navigation property explicitly when 
using POCO, you need to use the Include() method exposed on the DbContext.

8-3. Lazy Loading with POCO
Problem
You are using Plain Old CLR Objects, and you want to lazy load related entities.

Solution
Let’s say that you have a model like the one in Figure 8-4.



Chapter 8 ■ Plain Old CLR Objects

266

To enable lazy loading, you don’t need to do anything. Lazy loading is enabled by default when an Entity Data 
Model is added into a Visual Studio project. The code in Listing 8-5 illustrates this approach.

Listing 8-5.  Entity Classes Generation and Properties Set to Virtual: A Default Behavior of Entity Framework 

class Program
{
    static void Main(string[] args)
    {
        RunExample();
    }
 
    static void RunExample()
    {
        using (var context = new EFRecipesEntities())
         {
            var vh1 = new Vehicle { LicenseNo = "BR-549" };
            var t1 = new Ticket { IssueDate = DateTime.Parse("06/10/13") };
            var v1 = new Violation
            {
               Description = "20 MPH over the speed limit",
               Amount = 125M
            };
            var v2 = new Violation
            {
               Description = "Broken tail light",
               Amount = 50M
            };
            t1.Violations.Add(v1);
            t1.Violations.Add(v2);
            t1.Vehicle = vh1;
            context.Tickets.Add(t1);
            var vh2 = new Vehicle { LicenseNo = "XJY-902" };
            var t2 = new Ticket { IssueDate = DateTime.Parse("06/12/13") };
            var v3 = new Violation

Figure 8-4.  A simple model for traffic tickets, the offending vehicles, and the details of the violation



Chapter 8 ■ Plain Old CLR Objects

267

            {
               Description = "Parking in a no parking zone",
               Amount = 35M
            };
            t2.Violations.Add(v3);
            t2.Vehicle = vh2;
            context.Tickets.Add(t2);
            context.SaveChanges();
         }
         using (var context = new EFRecipesEntities())
         {
            foreach (var ticket in context.Tickets)
            {
               Console.WriteLine(" Ticket: {0}, Total Cost: {1}",
                 ticket.TicketId.ToString(),
                 ticket.Violations.Sum(v => v.Amount).ToString("C"));
               foreach (var violation in ticket.Violations)
               {
                  Console.WriteLine("\t{0}", violation.Description);
               }
            }
         }
 
    }
}
 
public partial class Ticket
    {
        public Ticket()
        {
            this.Violations = new HashSet<Violation>();
        }

        public int TicketId { get; set; }
        public int VehicleId { get; set; }
        public System.DateTime IssueDate { get; set; }

        public virtual Vehicle Vehicle { get; set; }
        public virtual ICollection<Violation> Violations { get; set; }
    }
public partial class Vehicle
    {
        public Vehicle()
        {
            this.Tickets = new HashSet<Ticket>();
        }

        public int VehicleId { get; set; }
        public string LicenseNo { get; set; }

        public virtual ICollection<Ticket> Tickets { get; set; }
    }



Chapter 8 ■ Plain Old CLR Objects

268

public partial class Violation
    {
        public int ViolationId { get; set; }
        public string Description { get; set; }
        public decimal Amount { get; set; }
        public int TicketId { get; set; }
        public virtual Ticket Ticket { get; set; }
    }
public partial class EFRecipesEntities : DbContext
    {
        public EFRecipesEntities()
            : base("name=EFRecipesEntities")
        {
        }

        protected override void OnModelCreating(DbModelBuilder modelBuilder)
        {
            throw new UnintentionalCodeFirstException();
        }

        public DbSet<Ticket> Tickets { get; set; }
        public DbSet<Vehicle> Vehicles { get; set; }
        public DbSet<Violation> Violations { get; set; }
 

The following is the output of the code in Listing 8-5: 

Ticket: 1, Total Cost: $175.00
        20 MPH over the speed limit
        Broken tail light
Ticket: 2, Total Cost: $35.00
        Parking in a no parking zone 

How It Works
Lazy loading is the default setting when generating an Entity Data Model. The navigation entity properties are also 
marked as virtual by default. You don’t need to do anything explicitly to get this to work.

We have not done anything in the console program code to load the Violation object, which is related to the 
Ticket object when the ticket context is fetched. Lazy loading enables the access of related entity properties at the 
moment you access them in your code. It does not require you to query those properties at the time of the first loading 
of the context object of the main entity, as we did using Include() method in the previous recipe.

8-4. POCO with Complex Type Properties
Problem
You want to use a complex type in your POCO entity.

Solution
Suppose that your model looks like the one in Figure 8-5. In this model, the Name property is a complex type.



Chapter 8 ■ Plain Old CLR Objects

269

Complex types are supported with POCO. When we refactor two or more entity properties to a new complex type, 
a new class is generated by default for that complex type. A property of the complex type class is also added into the 
main entity POCO class. Only classes are supported, as Entity Framework generates these while saving new complex 
types. The code in Listing 8-6 illustrates using the Name class for the complex type representing the employee’s 
FirstName and LastName.

Figure 8-5.  A model for an employee. The Name property is a complex type, composed of FirstName and LastName



Chapter 8 ■ Plain Old CLR Objects

270

Listing 8-6.  Using a Complex Type with POCO

class Program
{
    static void Main(string[] args)
    {
        RunExample();
    }
 
static void RunExample()
      {
         using (var context = new EFRecipesEntities())
         {
            context.Employees.Add(new Employee
            {
               Name = new Name
               {
                  FirstName = "Annie",
                  LastName = "Oakley"
               },
               Email = "aoakley@wildwestshow.com"
            });
            context.Employees.Add(new Employee
            {
               Name = new Name
               {
                  FirstName = "Bill",
                  LastName = "Jordan"
               },
               Email = "BJordan@wildwestshow.com"
            });
            context.SaveChanges();
         }
 
         using (var context = new EFRecipesEntities())
         {
            foreach (var employee in
                   context.Employees.OrderBy(e => e.Name.LastName))
            {
               Console.WriteLine("{0}, {1} email: {2}",
                              employee.Name.LastName,
                              employee.Name.FirstName,
                              employee.Email);
            }
         }
      }}
 

http://aoakley@wildwestshow.com/
http://BJordan@wildwestshow.com/


Chapter 8 ■ Plain Old CLR Objects

271

public partial class Employee
    {
        public Employee()
        {
            this.Name = new Name();
        }

        public int EmployeeId { get; set; }
        public string Email { get; set; }

        public Name Name { get; set; }
    }
public partial class Name
    {
        public string FirstName { get; set; }
        public string LastName { get; set; }
    }
public partial class EFRecipesEntities : DbContext
    {
        public EFRecipesEntities()
            : base("name=EFRecipesEntities")
        {
        }

        protected override void OnModelCreating(DbModelBuilder modelBuilder)
        {
            throw new UnintentionalCodeFirstException();

        }

        public DbSet<Employee> Employees { get; set; }
    }
 

The following is the output of the code in Listing 8-6: 

Jordan, Bill email: BJordan@wildwestshow.com
Oakley, Annie email: aoakley@wildwestshow.com
 

How It Works
When you use complex types with POCO, keep in mind the following two rules:

The complex type must be a •	 class.

Inheritance cannot be used with complex type classes.•	

In Entity Framework, complex types do not leverage change tracking. Changes to complex types will not be 
reflected in change tracking. This means that if you mark the properties on a complex type as virtual, there is no 
change-tracking proxy support. All change tracking is snapshot-based.

When you delete or update a POCO entity with a complex type without first loading it from the database, you need 
to be careful to create an instance of the complex type. In Entity Framework, instances of complex types are structurally 
part of the entity, and null values are not supported. The code in Listing 8-7 illustrates one way to handle deletes.

http://BJordan@wildwestshow.com/
http://aoakley@wildwestshow.com/


Chapter 8 ■ Plain Old CLR Objects

272

Listing 8-7.  Deleting a POCO Entity with a Complex Type

int id = 0;
         using (var context = new EFRecipesEntities())
         {
            var emp = context.Employees.Where(e =>
                     e.Name.FirstName.StartsWith("Bill")).FirstOrDefault();
            id = emp.EmployeeId;
         }
 
         using (var context = new EFRecipesEntities())
         {
            var empDelete = new Employee
            {
               EmployeeId = id,

            };
            context.Employees.Attach(empDelete);
            context.Employees.Remove(empDelete);
            context.SaveChanges();
         }
 

In Listing 8-7, we first have to find the EmployeeId of Bill Jordan. Because we are trying to show how we would 
delete Bill without first loading the entity into the context, we create a new context to illustrate deleting Bill given just 
his EmployeeId. We need to create an instance of the Employee entity complete with the Name type. Because we 
are deleting, it doesn’t matter much what values we put in for FirstName and LastName. The key is that the Name 
property is not null. We satisfy this requirement by assigning a new (dummy) instance of Name. We then Attach() the 
entity and call Remove() and SaveChanges(). This deletes the entity.

8-5. Notifying Entity Framework About Object Changes
Problem
You are using POCO, and you want to have Entity Framework and the object state manager notified of changes to your 
objects.

Solution
Let’s say that you have a model like the one in Figure 8-6.



Chapter 8 ■ Plain Old CLR Objects

273

This model represents donations and donors. Because some donations are anonymous, the relationship between 
donor and donation is 0..1 to *.

We want to make changes to our entities, such as moving a donation from one donor to another, and have Entity 
Framework and the object state manager notified of these changes. In addition, we want Entity Framework to leverage 
this notification to fix up any relationships that are affected by such changes. In our case, if we change the Donor on 
a Donation, we want Entity Framework to fix up both sides of the relationship. The code in Listing 8-8 demonstrates 
how to do this.

The key part of Listing 8-8 is that we marked each property as virtual and each collection a type of 
ICollection<T>. This allows Entity Framework to create proxies for our POCO entities that enable change tracking. 
When creating instances of POCO entity types, Entity Framework often creates instances of a dynamically generated 
derived type that acts as a proxy for the entity. This proxy overrides some virtual properties of the entity that inserts 
hooks for performing actions automatically when the property is accessed. This mechanism is used to support lazy 
loading of relationships and change tracking of objects. Note that Entity Framework will not create proxies for types 
where there is nothing for the proxy to do. This means that you can also avoid proxies by having types that are sealed 
and/or have no virtual properties. 

Listing 8-8.  By Marking Each Property as virtual and Each Collection a Type of ICollection<T>, We Get Proxies 
That Enable Change Tracking

class Program
{
    static void Main(string[] args)
    {
        RunExample();
    }
 
static void RunExample()
      {
         using (var context = new EFRecipesEntities())
         {
            var donation = context.Donations.Create();
            donation.Amount = 5000M;
 
            var donor1 = context.Donors.Create();
            donor1.Name = "Jill Rosenberg";
            var donor2 = context.Donors.Create();
            donor2.Name = "Robert Hewitt";
 

Figure 8-6.  A model for donors and their donations



Chapter 8 ■ Plain Old CLR Objects

274

            // give Jill the credit for the donation and save
            donor1.Donations.Add(donation);
            context.Donors.Add(donor1);
            context.Donors.Add(donor2);
            context.SaveChanges();
 
            // now give Robert the credit
            donation.Donor = donor2;
 
            // report
            foreach (var donor in context.Donors)
            {
               Console.WriteLine("{0} has given {1} donation(s)", donor.Name,
                              donor.Donations.Count().ToString());
            }
            Console.WriteLine("Original Donor Id: {0}",
               context.Entry(donation).OriginalValues["DonorId"]);
            Console.WriteLine("Current Donor Id: {0}",
                           context.Entry(donation).CurrentValues["DonorId"]);
         }
      }}
 
public partial class Donor
    {
        public Donor()
        {
            this.Donations = new HashSet<Donation>();
        }

        public virtual int DonorId { get; set; }
        public virtual string Name { get; set; }

        public virtual ICollection<Donation> Donations { get; set; }
    }
 
public partial class Donation
    {
        public virtual int DonationId { get; set; }
        public virtual Nullable<int> DonorId { get; set; }
        public virtual decimal Amount { get; set; }

        public virtual Donor Donor { get; set; }
    }
 
public partial class EFRecipesEntities : DbContext
    {
        public EFRecipesEntities()
            : base("name=EFRecipesEntities")
        {
        }



Chapter 8 ■ Plain Old CLR Objects

275

        protected override void OnModelCreating(DbModelBuilder modelBuilder)
        {
            throw new UnintentionalCodeFirstException();
        }

        public DbSet<Donation> Donations { get; set; }
        public DbSet<Donor> Donors { get; set; }
    }
 

The following is the output of the code in Listing 8-8: 

Jill Rosenberg has given 0 donation(s)
Robert Hewitt has given 1 donation(s)
Original Donor Id: 1
Current Donor Id: 2
 

How It Works
By default, Entity Framework uses a snapshot-based approach for detecting changes made to POCO entities. If you 
make some minor code changes to your POCO entities, Entity Framework can create change-tracking proxies that 
keep the DbContext synchronized with the runtime changes in your POCO entities.

There are two important benefits that come with change-tracking proxies. First, the DbContext stays informed  
of the changes, and it can keep the entity object graph state information synchronized with your POCO entities.  
This means that no time need be spent detecting changes using the snapshot-based approach.

Additionally, when the DbContext is notified of changes on one side of a relationship, it can mirror the change on 
the other side of the relationship if necessary. In Listing 8-8, when we moved a Donation from one Donor to another, 
Entity Framework also fixed up the Donations collections of both Donors.

For the Entity Framework to create the change-tracking proxies for your POCO classes, the following conditions 
must be met.

The class must be public, nonabstract, and nonsealed.•	

The class must implement virtual getters and setters for all properties that are persisted.•	

You must declare collection-based relationships navigation properties as •	 ICollection<T>. 
They cannot be a concrete implementation or another interface that derives from ICollection<T>.

Once your POCO classes have met these requirements, Entity Framework will return instances of the proxies 
for your POCO classes. If you need to create instances, as we have in Listing 8-8, you will need to use the Create() 
method on the DbContext. This method creates the instance of the proxy for your POCO entity, and it initializes all of 
the collections as instances of EntityCollection. It is this initialization of your POCO class’s collections as instances of 
EntityCollection that enables fixing up relationships.

8-6. Retrieving the Original (POCO) Object
Problem
You are using POCO, and you want to retrieve the original object from a database.

Solution
Let’s say that you are using a model like the one in Figure 8-7, and you are working in a disconnected scenario.  
You want to use a Where clause with FirstOrDefault() to retrieve the original object from the database before you 
apply changes received from a client.



Chapter 8 ■ Plain Old CLR Objects

276

To update the entity with new values after retrieving the entity and then to apply changes to save in database, 
follow the pattern in Listing 8-9.

Listing 8-9.  Retrieving the Newly Added Entity and Replacing Its Values Using the Entry() Method

class Program
   {
      static void Main(string[] args)
      {
         RunExample();
      }
 
      static void RunExample()
      {
         int itemId = 0;
         using (var context = new EFRecipesEntities())
         {
            var item = new Item
            {
               Name = "Xcel Camping Tent",
               UnitPrice = 99.95M
            };
            context.Items.Add(item);
            context.SaveChanges();
 
            // keep the item id for the next step
            itemId = item.ItemId;
            Console.WriteLine("Item: {0}, UnitPrice: {1}",
                   item.Name, item.UnitPrice.ToString("C"));
         }
 
         using (var context = new EFRecipesEntities())
         {
            // pretend this is the updated
            // item we received with the new price
            var item = new Item

Figure 8-7.  A model with a single Item entity



Chapter 8 ■ Plain Old CLR Objects

277

            {
               ItemId = itemId,
               Name = "Xcel Camping Tent",
               UnitPrice = 129.95M
            };
            var originalItem = context.Items.Where(x => x.ItemId ==  itemId).FirstOrDefault<Item>();
            context.Entry(originalItem).CurrentValues.SetValues(item);
            context.SaveChanges();
         }
         using (var context = new EFRecipesEntities())
         {
            var item = context.Items.Single();
            Console.WriteLine("Item: {0}, UnitPrice: {1}", item.Name,
                           item.UnitPrice.ToString("C"));
         }
      }
   }
public partial class Item
    {
        public int ItemId { get; set; }
        public string Name { get; set; }
        public decimal UnitPrice { get; set; }
    }
public partial class EFRecipesEntities : DbContext
    {
        public EFRecipesEntities()
            : base("name=EFRecipesEntities")
        {

        }

        protected override void OnModelCreating(DbModelBuilder modelBuilder)
        {
            throw new UnintentionalCodeFirstException();
        }
        public DbSet<Item> Items { get; set; }
    }
 

The following is the output of the code in Listing 8-9: 

Item: Xcel Camping Tent, UnitPrice: $99.95
Item: Xcel Camping Tent, UnitPrice: $129.95
 

How It Works
In Listing 8-9, we inserted an item into the model and saved it to the database. Then we pretended to receive an 
updated item, perhaps from a Silverlight client. 

Next we need to update the item in the database. To do this, we need to get the entity from the database into the 
context. To get the entity, we used a Where clause with FirstorDefault and checked with the ID of the item. After 
that, we used the Entry() method of the context, which enables access to entire entity to apply any methods on that 
entity. Thus we used CurrentValues.SetValues to replace the original values with new values that come through the 
client. Finally, SaveChanges is called on the DbContext.



Chapter 8 ■ Plain Old CLR Objects

278

8-7. Manually Synchronizing the Object Graph and the  
Change Tracker
Problem
You want to control manually the synchronization between your POCO classes and the Change Tracker.

Change Tracker has access to the information that Entity Framework is storing about the entities that it is 
tracking. This information goes beyond the values stored in the properties of your entities and includes the current 
state of the entity, the original values from the database, which properties have been modified, and other data.  
The Change Tracker also gives access to additional operations that can be performed on an entity, such as reloading 
its values from the database to ensure that you have the latest data.

There are two different ways that Entity Framework can track changes to your objects: snapshot change tracking 
and change-tracking proxies.

Snapshot Change Tracking
POCO classes don’t contain any logic to notify Entity Framework when a property value is changed. Because there 
is no way to be notified when a property value changes, Entity Framework will take a snapshot of the values in each 
property when it first sees an object and store the values in memory. This snapshot occurs when the object is returned 
from a query or when we add it to a DbSet. When Entity Framework needs to know what changes have been made,  
it will scan each object and compare its current values to the snapshot. This process of scanning each object is 
triggered through a method of Change Tracker called DetectChanges.

Change-Tracking Proxies
The other mechanism for tracking changes is through change-tracking proxies, which allow Entity Framework to 
be notified of changes as they are made. Change-tracking proxies are created using the mechanism of dynamic 
proxies that are created for lazy loading, but in addition to providing for lazy loading, they also have the ability to 
communicate changes to the context. To use change-tracking proxies, you need to structure your classes in such a way 
that Entity Framework can create a dynamic type at runtime that derives from your POCO class and overrides every 
property. This dynamic type, known as a dynamic proxy, includes logic in the overridden properties to notify Entity 
Framework when those properties are changed.

Snapshot change tracking depends on Entity Framework being able to detect when changes occur. The 
default behavior of the DbContext API is to perform this detection automatically as the result of many events on 
the DbContext. DetectChanges not only updates the context’s state management information so that changes can 
be persisted to the database, but it also performs relationship fix-up when you have a combination of reference 
navigation properties, collection navigation properties, and foreign keys. It’s important to have a clear understanding 
of how and when changes are detected, what to expect from them, and how to control them.

The most obvious time that Entity Framework needs to know about changes is during SaveChanges, but there 
are many others. For example, if we ask the Change Tracker for the current state of an object, it will need to scan and 
check if anything has changed. Scanning isn’t just restricted to the object in question either—many of the operations 
you perform on the DbContext API will cause DetectChanges to be run. In most cases, DetectChanges is fast enough 
that it doesn’t cause performance issues. However, if you have a very large number of objects in memory or you are 
performing a lot of operations on DbContext in quick succession, the automatic DetectChanges behavior may be a 
performance concern. Fortunately, you have the option of switching off the automatic DetectChanges behavior and 
calling it manually when you know that it needs to be called. Failure to do this can result in unexpected side effects. 
DbContext takes care of this requirement for you, provided that you leave automatic DetectChanges enabled. If you 
switch it off, you are responsible for calling DetectChanges for poorly performing sections of code and to reenable 
it once the section in question has finished executing. Automatic DetectChanges can be toggled on and off via the 
DbContext.Configuration.AutoDetectChangesEnabled Boolean flag.



Chapter 8 ■ Plain Old CLR Objects

279

Solution
Suppose that we have a model for speakers and the talks prepared for various conferences. The model might look 
something like the one in Figure 8-8.

Figure 8-8.  A model with a many-to-many association between speakers and the talks they prepare

The first thing to note in our model is that Speaker and Talk are in a many-to-many association. We have, through 
an independent association (and in an intermediate SpeakerTalk table in the database), a model that supports many 
speakers for any given talk and many talks for any given speaker.

We want to control manually the synchronization between our object graph and the Change Tracker. We will do 
this by calling the DetectChanges() method. Along the way, we’ll illustrate how the synchronization is progressing.

Follow the pattern in Listing 8-10 to synchronize manually your POCO object graph with the Change Tracker.

Listing 8-10.  Using DetectChanges() Explicitly When Required to Synchronize the Change Tracker Manually

class Program
{
    static void Main(string[] args)
    {
        RunExample();
    }
 
static void RunExample()
      {
         using (var context = new EFRecipesEntities())
         {
            context.Configuration.AutoDetectChangesEnabled = false;
            var speaker1 = new Speaker { Name = "Karen Stanfield" };
            var talk1 = new Talk { Title = "Simulated Annealing in C#" };
            speaker1.Talks = new List<Talk> { talk1 };
 
            // associations not yet complete
            Console.WriteLine("talk1.Speaker is null: {0}",
                           talk1.Speakers == null);
 
            context.Speakers.Add(speaker1);
 



Chapter 8 ■ Plain Old CLR Objects

280

            // now it's fixed up
            Console.WriteLine("talk1.Speaker is null: {0}",
                           talk1.Speakers == null);
            Console.WriteLine("Number of added entries tracked: {0}",
                           context.ChangeTracker.Entries().Where(e => e.State ==  
System.Data.Entity.EntityState.Added).Count());
            context.SaveChanges();
            // change the talk's title
            talk1.Title = "AI with C# in 3 Easy Steps";
            Console.WriteLine("talk1's state is: {0}",
                           context.Entry(talk1).State);
            context.ChangeTracker.DetectChanges();
            Console.WriteLine("talk1's state is: {0}",
                           context.Entry(talk1).State);
            context.SaveChanges();
         }
 
         using (var context = new EFRecipesEntities())
         {
            foreach (var speaker in context.Speakers.Include("Talks"))
            {
               Console.WriteLine("Speaker: {0}", speaker.Name);
               foreach (var talk in speaker.Talks)
               {
                  Console.WriteLine("\tTalk Title: {0}", talk.Title);
               }
            }
         }
      }
}
 
public partial class Speaker
    {
        public int SpeakerId { get; set; }
        public string Name { get; set; }
        public ICollection<Talk> Talks { get; set; }
    }
 
public partial class Talk
    {
        public int TalkId { get; set; }
        public string Title { get; set; }
        public System.DateTime CreateDate { get; set; }
        public System.DateTime RevisedDate { get; set; }
        public ICollection<Speaker> Speakers { get; set; }
    }
 
public partial class EFRecipesEntities : DbContext
    {
        public EFRecipesEntities()
            : base("name=EFRecipesEntities")
        {
        }



Chapter 8 ■ Plain Old CLR Objects

281

        protected override void OnModelCreating(DbModelBuilder modelBuilder)
        {
            throw new UnintentionalCodeFirstException();
        }

        public DbSet<Speaker> Speakers { get; set; }
        public DbSet<Talk> Talks { get; set; }
 
      public override int SaveChanges()
      {
         var changeSet = this.ChangeTracker.Entries().Where(e => e.Entity is Talk);
         if (changeSet != null)
         {
            foreach (var entry in changeSet.Where(c => c.State ==  
System.Data.Entity.EntityState.Added).Select(a => a.Entity as Talk))
            {
               entry.CreateDate = DateTime.UtcNow;
               entry.RevisedDate = DateTime.UtcNow;
            }
            foreach (var entry in changeSet.Where(c => c.State ==  
System.Data.Entity.EntityState.Modified).Select(a => a.Entity as Talk))
            {
               entry.RevisedDate = DateTime.UtcNow;
            }
         }
         return base.SaveChanges();
      }
   }
 

The following is the output of the code in Listing 8-10: 

talk1.Speaker is null: True
talk1.Speaker is null: False
Number of added entries tracked: 2
talk1's state is: Unchanged
talk1's state is: Modified
Speaker: Karen Stanfield
        Talk Title: AI with C# in 3 Easy Steps
 

How It Works
The code in Listing 8-10 is a little involved, so let’s take it one step at a time. First off, we create a speaker and a talk. 
Then we add the talk to the speaker’s collection. At this point, the talk is part of the speaker’s collection, but the 
speaker is not part of the talk’s collection. The other side of the association has not been fixed up just yet.

Next we add the speaker to the DbContext with Add(speaker1). The second line of the output shows now that 
the talk’s speaker collection is correct. Entity Framework has fixed up the other side of the association. Here Entity 
Framework did two things. It notified the object state manager that there are three entries to be created, although 
it is not shown in the result of number of entities added by Entity Framework, as it considers many-to-many 



Chapter 8 ■ Plain Old CLR Objects

282

relationships as independent relationships and not as separate entities. Thus it is only showing the entries as two: 
one of these entries is for the speaker and the other is for the talk. No entry is made for the many-to-many association 
entry, because Change Tracker does not return the state of independent relationships. The second thing that Entity 
Framework did was to fix up the talk’s speaker collection.

When we call SaveChanges(), Entity Framework raises the overridden SaveChanges event. Inside this event,  
we update the CreateDate and RevisedDate properties. Before the SaveChanges() method is called, Entity Framework 
calls DetectChanges() to find any changes that occurred before. In Listing 8-10, we override the SaveChanges() method.

The DetectChanges() method relies on a snapshot base comparison of the original and current values for each 
property on each entity. This process determines what has changed in the object graph. For large object graphs,  
this comparison process may be time consuming.

8-8. Testing Domain Objects
Problem
You want to create unit tests for the business rules you have defined for your entities.

This type of recipe is often used when unit testing of specific data access functionality has to be performed.

Solution
For this solution, you’ll use the POCO template to generate the classes for your entities. Using the POCO template will 
reduce the amount of code you need to write, and it will make the solution a more clear. Of course, you will use the 
remaining steps in this solution with your handcrafted POCO classes.

Suppose you have a model like the one shown in Figure 8-9.

Figure 8-9.  A model of reservations, schedules, and trains



Chapter 8 ■ Plain Old CLR Objects

283

This model represents reservations for train travel. Each reservation is for a particular scheduled train departure. 
To create the model and prepare the application for unit testing, do the following:

	 1.	 Create an empty solution. Right-click the solution in the Solution Explorer, and 
select Add ➤ New Project. Add a new Class Library project. Name this new project 
TrainReservation.

	 2.	 Right-click the TrainReservation project, and select Add ➤ New Item. Add a new ADO.
NET Entity Data Model. Import the Train, Schedule, and Reservation tables. The resulting 
model should look like the one in Figure 8-9.

	 3.	 Add the IValidate interface and ChangeAction enum in Listing 8-11 to the project.

Listing 8-11.  The IValidate Interface

public enum ChangeAction
{
    Insert,
    Update,
    Delete
}
 
interface IValidate
{
    void Validate(ChangeAction action);
}
 

	 4.	 Add the code in Listing 8-12 to the project. This code adds the validation code (the 
implementation of IValidate) to the Reservation and Schedule classes.

Listing 8-12.  Implementation of the IValidate Interface for the Reservation and Schedule Classes

public partial class Reservation : IValidate
{
    public void Validate(ChangeAction action)
    {
        if (action == ChangeAction.Insert)
        {
            if (Schedule.Reservations.Count(r =>
                          r.ReservationId != ReservationId &&
                          r.Passenger == this.Passenger) > 0)
                throw new InvalidOperationException(
                          "Reservation for the passenger already exists");
        }
    }
}
 
public partial class Schedule : IValidate
{
    public void Validate(ChangeAction action)
    {
        if (action == ChangeAction.Insert)
        {
            if (ArrivalDate < DepartureDate)



Chapter 8 ■ Plain Old CLR Objects

284

            {
                throw new InvalidOperationException(
                          "Arrival date cannot be before departure date");
            }
 
            if (LeavesFrom == ArrivesAt)
            {
                throw new InvalidOperationException(
                          "Can't leave from and arrive at the same location");
            }
        }
    }
}

 
	 5.	 Override the SaveChanges() method in the DbContext with the code in Listing 8-13. This 

will allow you to validate the changes before they are saved to the database.

Listing 8-13.  Overriding the SaveChanges() Method

public partial class EFRecipesEntities
{

public override int SaveChanges()
      {
         this.ChangeTracker.DetectChanges();
         var entries = from e in this.ChangeTracker.Entries().Where(e => e.State == 
(System.Data.Entity.EntityState.Added | EntityState.Modified | EntityState.Deleted))
                    where (e.Entity != null) &&
                        (e.Entity is IValidate)
                    select e;
         foreach (var entry in entries)
         {
            switch (entry.State)
            {
               case EntityState.Added:
                  ((IValidate)entry.Entity).Validate(ChangeAction.Insert);
                  break;
               case EntityState.Modified:
                  ((IValidate)entry.Entity).Validate(ChangeAction.Update);
                  break;
               case EntityState.Deleted:
                  ((IValidate)entry.Entity).Validate(ChangeAction.Delete);
                  break;
            }
         }
         return base.SaveChanges();
      }
}

 



Chapter 8 ■ Plain Old CLR Objects

285

	 6.	 Create the IReservationContext interface in Listing 8-14. We’ll use this interface to help us 
test against a fake DbContext so that changes are not saved to the real database.

Listing 8-14.  Use this IReservationContext to Define the Methods You’ll Need from the DbContext

public interface IReservationContext : IDisposable
{
    IDbSet<Train> Trains { get; }
    IDbSet<Schedule> Schedules { get; }
    IDbSet<Reservation> Reservations { get; }

    int SaveChanges();
}

 
	 7.	 The POCO template generates both the POCO classes and the class that implements the 

object context. We’ll need this object context class to implement the IReservationContext 
interface. To do this, edit the Recipe8.Context.tt template file and add 
IReservationContext at the end of the line that generates the name of the object context 
class. The complete line should look like the following:

 
<#=Accessibility.ForType(container)#> partial class <#=code.Escape(container)#> :
 DbContext,IReservationContext

 
	 8.	 Create the repository class in Listing 8-15. This class takes an IReservationContext in  

the constructor.

Listing 8-15.  The ReservationRepository Class That Takes an IReservationContext in the  
Constructor

public class ReservationRepository: IDisposable
   {
      private IReservationContext _context;
 
      public ReservationRepository(IReservationContext context)
      {
         if (context == null)
            throw new ArgumentNullException("context is null");
         _context = context;
      }
      public void AddTrain(Train train)
      {
         _context.Trains.Add(train);
      }
 
      public void AddSchedule(Schedule schedule)
      {
         _context.Schedules.Add(schedule);
      }
 
      public void AddReservation(Reservation reservation)
      {
         _context.Reservations.Add(reservation);
      }

 



Chapter 8 ■ Plain Old CLR Objects

286

      public void SaveChanegs()
      {
         _context.SaveChanges();
      }
 
      public List<Schedule> GetActiveSchedulesForTrain(int trainId)
      {
         var schedules = from r in _context.Schedules
                     where r.ArrivalDate.Date >= DateTime.Today &&
                          r.TrainId == trainId
                     select r;
         return schedules.ToList();
      }
   }

 
	 9.	 Right-click the solution, and select Add ➤ New Project. Add a Test Project to the solution. 

Name this new project Tests. Add a reference to System.Data.Entity.

	 10.	 Create a fake object set and fake DbContext so that you can test your business rules in 
isolation without interacting with the database. Use the code in Listing 8-16.

Listing 8-16.  The Implementation of the Fake Object Set and Fake Object Context

public class FakeDbSet<T> : IDbSet<T>
    where T : class
{
    HashSet<T> _data;
    IQueryable _query;
 
    public FakeDbSet()
    {
        _data = new HashSet<T>();
        _query = _data.AsQueryable();
    }
 
    public virtual T Find(params object[] keyValues)
    {
        throw new NotImplementedException("Derive from FakeDbSet<T> and override Find");
    }
 
    public void Add(T item)
    {
        _data.Add(item);
    }
 
    public void Remove(T item)
    {
        _data.Remove(item);
    }
 



Chapter 8 ■ Plain Old CLR Objects

287

    public void Attach(T item)
    {
        _data.Add(item);
    }
    public void Detach(T item)
    {
        _data.Remove(item);
    }
    Type IQueryable.ElementType
    {
        get { return _query.ElementType; }
    }
    System.Linq.Expressions.Expression IQueryable.Expression
    {
        get { return _query.Expression; }
    }
 
    IQueryProvider IQueryable.Provider
    {
        get { return _query.Provider; }
    }
    System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
    {
        return _data.GetEnumerator();
    }
    IEnumerator<T> IEnumerable<T>.GetEnumerator()
    {
        return _data.GetEnumerator();
    }
}
 
public class FakeReservationContext : IReservationContext, IDisposable
   {
      private IDbSet<Train> trains;
      private IDbSet<Schedule> schedules;
      private IDbSet<Reservation> reservations;
      public FakeReservationContext()
      {
         trains = new FakeDbSet<Train>();
         schedules = new FakeDbSet<Schedule>();
         reservations = new FakeDbSet<Reservation>();
      }
 
      public IDbSet<Train> Trains
      {
         get { return trains; }
      }
 



Chapter 8 ■ Plain Old CLR Objects

288

      public IDbSet<Schedule> Schedules
      {
         get { return schedules; }
      }
 
      public IDbSet<Reservation> Reservations
      {
         get { return reservations; }
      }
 
      public int SaveChanges()
      {
         foreach (var schedule in Schedules.Cast<IValidate>())
         {
            schedule.Validate(ChangeAction.Insert);
         }
         foreach (var reservation in Reservations.Cast<IValidate>())
         {
            reservation.Validate(ChangeAction.Insert);
         }
         return 1;
      }
      public void Dispose()
      {
      }
   }

 
	 11.	 We don’t want to test against our real database, so we need to create a fake DbContext that 

simulates the DbContext with in-memory collections acting as our data store. Add the unit 
test code in Listing 8-17 to the Tests project.

Listing 8-17.  The Unit Tests for Our Tests Project

[TestClass]
public class ReservationTest: IDisposable
{
    private IReservationContext _context;
 
    [TestInitialize]
    public void TestSetup()
    {
        var train = new Train { TrainId = 1, TrainName = "Polar Express" };
        var schedule = new Schedule { ScheduleId = 1, Train = train,
                                      ArrivalDate = DateTime.Now,
                                      DepartureDate = DateTime.Today,
                                      LeavesFrom = "Dallas",
                                      ArrivesAt = "New York" };
        var reservation = new Reservation { ReservationId = 1,
                                            Passenger = "Phil Marlowe",
                                            Schedule = schedule };
        _context = new FakeReservationContext();
        var repository = new ReservationRepository(_context);



Chapter 8 ■ Plain Old CLR Objects

289

        repository.AddTrain(train);
        repository.AddSchedule(schedule);
        repository.AddReservation(reservation);
        repository.SaveChanges();
    }
 
    [TestMethod]
    [ExpectedException(typeof(InvalidOperationException))]
    public void TestForDuplicateReservation()
    {
        var repository = new ReservationRepository(_context);
        var schedule = repository.GetActiveSchedulesForTrain(1).First();
        var reservation = new Reservation { ReservationId = 2,
                                            Schedule = schedule,
                                            Passenger = "Phil Marlowe" };
        repository.AddReservation(reservation);
        repository.SaveChanges();
    }
 
    [TestMethod]
    [ExpectedException(typeof(InvalidOperationException))]
    public void TestForArrivalDateGreaterThanDepartureDate()
    {
        var repository = new ReservationRepository(_context);
        var schedule = new Schedule { ScheduleId = 2, TrainId = 1,
                                      ArrivalDate = DateTime.Today,
                                      DepartureDate = DateTime.Now,
                                      ArrivesAt = "New York",
                                      LeavesFrom = "Chicago" };
        repository.AddSchedule(schedule);
        repository.SaveChanges();
    }
 
    [TestMethod]
    [ExpectedException(typeof(InvalidOperationException))]
    public void TestForArrivesAndLeavesFromSameLocation()
    {
        var repository = new ReservationRepository(_context);
        var schedule = new Schedule { ScheduleId = 3, TrainId = 1,
                                      ArrivalDate = DateTime.Now,
                                      DepartureDate = DateTime.Today,
                                      ArrivesAt = "Dallas",
                                      LeavesFrom = "Dallas" };
        repository.AddSchedule(schedule);
        repository.SaveChanges();
    }
}

 



Chapter 8 ■ Plain Old CLR Objects

290

The Test project now has three unit tests that exercise the following business rules:

A passenger cannot have more than one reservation for a scheduled departure.•	

The arrival date and time for a schedule must be after the departure date and time.•	

The departure location cannot be the same as the arrival location.•	

How It Works
With quite a lot of code, we’ve managed to build a complete solution that includes an interface (IReservationContext) 
that we can use to abstractly reference a DbContext, a fake DbSet (FakeDbSet<T>), a fake DbContext 
(FakeReservationContext), and a small set of unit tests. We use the fake DbContext so that our tests don’t interact with 
the database. The purpose of the tests is to validate our business rules, not to test the database interactions.

One key to the solution is that we created a simplified repository that managed the inserting and selecting of our 
objects. The constructor for this repository takes an IReservationContext. This subtle abstraction allows us to pass in 
an instance of any class that implements IReservationContext. To test our domain objects, we pass in an instance of 
FakeReservationContext. To allow our domain objects to be persisted to the database, we would pass in an instance of 
our real DbContext: EFRecipesEntities.

We need the DbSets returned by our fake DbContext to match the DbSets returned by the real 
EFRecipesEntities DbContext. To do this, we changed the T4 template that generates the context to return 
IDbSet<T> in place of DbSet<T>. We made sure our fake DbContext also returned DbSets of type IDbSet<T>. With this 
in place, we implemented our FakeDbSet<T> and derived it from IDbSet<T>.

In the Tests project, we set up the tests by creating a Reservation Repository based on an instance of the 
FakeReservationContext. The unit tests interact with the FakeReservationContext in place of the real DbContext.

Best Practice
There are two testing approaches that seem to work well for Entity Framework: Define a repository interface that 
both the real repository and one or more “testing” repositories implement. By hiding all of the interactions with the 
persistence framework behind the implementation of the repository interface, there is no need to create fake versions 
of any of the other infrastructure parts. This can simplify the implementation of the testing code, but it may leave parts 
of the repository itself untested.

Define an interface for the DbContext that exposes properties of type IDbSet<T> and a SaveChanges() method, 
as we have done in this recipe. The real DbContext and all of the fake DbContexts must implement this interface. 
Using this approach, you don’t need to fake the entire repository, which may be difficult in some cases. Your fake 
DbContexts don’t need to mimic the behavior of the entire DbContext class; that would be a real challenge. You do 
need to limit your code to just what is available on the interfaces.

8-9. Testing a Repository Against a Database
Problem
You want to test your repository against the database.

This type of recipe is often used when integration testing of whole-data access functionality has to be performed.

Solution
You have created a repository that manages all of the queries, inserts, updates, and deletes. You want to test this repository 
against a real instance of the underlying database. Suppose that you have a model like the one shown in Figure 8-10. 
Because we will create and drop the database during the tests, let’s start from the beginning in a test database.



Chapter 8 ■ Plain Old CLR Objects

291

To test your repository, do the following:

	 1.	 Create an empty solution. Right-click the solution in the Solution Explorer, and select  
Add ➤ New Project. Add a new Class Library project. Name this new project 
BookRepository.

	 2.	 Create a new database. Call the database Test. We’ll create and drop this database in the 
unit tests, so make sure you create a new empty database.

	 3.	 Add the Book and Category tables along with the relation corresponding to the model in 
Figure 8-10. Import these tables into a new model. Alternatively, you can use Model First 
to create the model and then generate the database script to create the database.

	 4.	 Add the code in Listing 8-18. This will create a BookRepository class that handles inserts 
and queries against the model.

Listing 8-18.  The BookRepository Class That Handles Inserts and Queries Against the Model

namespace BookRepository
{
    public class BookRepository
   {
      private TestEntities _context;
 
      public BookRepository(TestEntities context)
      {
         _context = context;
      }
 
      public void InsertBook(Book book)
      {
         _context.Books.Add(book);
      }
 
      public void InsertCategory(Category category)
      {
         _context.Categories.Add(category);
      }
 

Figure 8-10.  A model of books in categories



Chapter 8 ■ Plain Old CLR Objects

292

      public void SaveChanges()
      {
         _context.SaveChanges();
      }
 
      public IQueryable<Book> BooksByCategory(string name)
      {
         return _context.Books.Where(b => b.Category.Name == name);
      }
 
      public IQueryable<Book> BooksByYear(int year)
      {
         return _context.Books.Where(b => b.PublishDate.Year == year);
      }
   }
 
}

 
	 5.	 Right-click the solution, and select Add ➤ New Project. Select Test Project from the installed 

templates. Add a reference to System.Data.Entity and a project reference to BookRepository.

	 6.	 Right-click the Test project, and select Add ➤ New Test. Add a Unit Test to the Test project. 
Add the code in Listing 8-19 to create the tests.

Listing 8-19.  BookRepositoryTest Class with the Unit Tests

[TestClass]
public class BookRepositoryTest
{
    private TestEntities _context;
 
    [ClassInitialize]
    public void TestSetup()
    {
        _context = new TestEntities();
        if (_context.DatabaseExists())
        {
            _context.DeleteDatabase();
        }
        _context.CreateDatabase();
    }
 
    [TestMethod]
    public void TestsBooksInCategory()
    {
        var repository = new BookRepository.BookRepository(_context);
        var construction = new Category { Name = "Construction" };
        var book = new Book { Title = "Building with Masonary",
                              Author = "Dick Kreh",
                              PublishDate = new DateTime(1998, 1, 1) };
        book.Category = construction;
        repository.InsertCategory(construction);
        repository.InsertBook(book);
        repository.SaveChanges();
 



Chapter 8 ■ Plain Old CLR Objects

293

        // test
        var books = repository.BooksByCategory("Construction");
        Assert.AreEqual(books.Count(), 1);
    }
 
    [TestMethod]
    public void TestBooksPublishedInTheYear()
    {
        var repository = new BookRepository.BookRepository(_context);
        var construction = new Category { Name = "Construction" };
        var book = new Book { Title = "Building with Masonary",
                              Author = "Dick Kreh",
                              PublishDate = new DateTime(1998, 1, 1) };
        book.Category = construction;
        repository.InsertCategory(construction);
        repository.InsertBook(book);
        repository.SaveChanges();
 
        // test
        var books = repository.BooksByYear(1998);
        Assert.AreEqual(books.Count(), 1);
    }
}

 
	 7.	 Right-click the Test project, and select Add ➤ New Item. Select Application Configuration File 

from the General templates. Copy the <connectionStrings> section from the App.config file 
in the BookRepository project, and insert it into the new App.config file in the Test project.

	 8.	 Right-click the Test project, and select Set as Startup Project. Select Debug ➤ Start 
Debugging, or press F5 to execute the tests. Make sure that there are no active connections 
to the Test database. Active connections will cause the DropDatabase() method to fail.

How It Works
There are two common approaches to testing that are used with Entity Framework. The first approach is to test the 
business logic implemented in your objects. For this approach, you test against a “fake” database layer because your 
focus is on the business logic that governs the interactions of the objects and the rules that apply just before objects 
are persisted to the database. We illustrated this approach in Recipe 8-8.

A second approach is to test both the business logic and the persistence layer by interacting with the real 
database. This approach is more extensive, and also more costly in terms of time and resources. When it is 
implemented in an automated test harness, like the ones often used in a continuous integration environment, you 
need to automate the creation and dropping of the test database.

Each test iteration should start with a database in a known clean state. Subsequent test runs should not  
be affected by residue left in the database by previous tests. Dropping and creating databases together with the  
end-to-end code exercise requires more resources than the business logic only testing, as illustrated in Recipe 8-8.

In the unit tests in Listing 8-19, we checked to see whether the database exists in the Test Initialize phase. 
If the database exists, it is dropped with the DropDatabase() method. Next we create the database with the 
CreateDatabase() method. These methods use the connection string contained in the App.config file.  
This connection string would likely be different from the development database connection string. For simplicity,  
we used the same connection string for both.



295

Chapter 9

Using the Entity Framework in  
N-Tier Applications

Not all applications can be neatly bundled into a single process (that is, reside on a single physical server). In fact, 
in this ever-increasingly networked world, many application architectures support the classic logical layers of 
presentation, application, and data and also are physically deployed across multiple computers. While logically 
layering an application on a single computer can be accommodated in a single Application Domain without much 
concern for proxies, marshalling, serialization, and network protocols, applications that span from something as small 
as a mobile device to an enterprise application server found in a data center need to take all of these considerations 
into account. Fortunately, the Entity Framework together with technologies like Microsoft’s Windows Communication 
Foundation, or the Microsoft Web API framework, are well suited for these types of n-Tier applications.

In this chapter, we’ll cover a wide range of recipes for using the Entity Framework with n-Tier applications. 
To be clear, n-Tier is defined as an application architecture in which the presentation, business logic, and data 
access processing tiers are physically separated across multiple servers. This physical separation can help improve 
the scalability, maintainability, and future extensibility of an application, but often can have a negative impact on 
performance, as we are now crossing physical machine boundaries when processing application operations.

N-Tier architecture adds some special challenges to the change-tracking features of Entity Framework. Initially, 
data is fetched with an Entity Framework context object that is destroyed after the data is sent to the client. While on the 
client, changes made to the data are not tracked. Upon an update, a new context object must be created to process  
the submitted data. Obviously, the new context object knows nothing of the previous context object, nor the values  
of the original entities. In this chapter, we’ll look at some approaches that you can implement to help bridge this gap.

In past versions of Entity Framework, a developer could leverage a special template entitled Self-Tracking 
Entities, which provided built-in plumbing to help track changes to disconnected entity objects. However, in Entity 
Framework 6, the self-tracking entity approach has been deprecated. While the legacy ObjectContext will support 
self-tracking entities, the more recent DbContext object does not. The recipes in this chapter focus on basic create, 
read, update, and delete operations you’ll typically use in your n-Tier applications. Additionally, we’ll take a deep dive 
into entity and proxy serialization, concurrency, and working with the unique challenges of tracking entity changes 
outside the scope of an object context.

9-1. Updating Single Disconnected Entities with the Web API
Problem
You want to leverage REST-based Web API services for inserts, deletes, and updates to a data store. Additionally,  
you want to implement the code-first approach for Entity Framework 6 to manage data access.

In this example, we emulate an n-Tier scenario where a stand-alone client application (Console Application) is 
calling a stand-alone website (Web API Project) that exposes REST-based services. Note that each tier is contained in a 
separate Visual Studio Solution, so as to allow for easier configuring, debugging, and simulation of an n-Tier application.



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

296

Solution
Let’s say that you have a model like the one shown in Figure 9-1.

Figure 9-1.  A model for orders

Our model represents Orders. We want to put the model and database code behind a Web API service so that 
any client that consumes HTTP can insert, update, and delete data into orders. To create the service, perform the 
following steps:

	 1.	 Create a new ASP.NET MVC 4 Web Application project, selecting the Web API template 
from the Project Templates wizard. Name the project Recipe1.Service.

	 2.	 Add a new Web API Controller to the project entitled OrderController.

	 3.	 As shown in Listing 9-1, add the Order entity class.

Listing 9-1.  Order Entity Class

public class Order
{
    public int OrderId { get; set; }
    public string Product { get; set; }
    public int Quantity { get; set; }
    public string Status { get; set; }
    public byte[] TimeStamp { get; set; }
}

 
	 4.	 Add a reference in the Recipe1.Service project to the Entity Framework 6 libraries. 

Leveraging the NuGet Package Manager does this best. Right-click on Reference, and 
select Manage NuGet Packages. From the Online tab, locate and install the Entity 
Framework 6 package. Doing so will download, install and configure the Entity Framework 
6 libraries in your project.

	 5.	 Then add a new class entitled Recipe1Context, and add the code from Listing 9-2 to it, 
ensuring that the class derives from the Entity Framework DbContext class.



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

297

Listing 9-2.  Context Class

public class Recipe1Context : DbContext
{
    public Recipe1Context() : base("Recipe1ConnectionString") { }
 
    public DbSet<Order> Orders { get; set; }
  
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        modelBuilder.Entity<Order>().ToTable("Chapter9.Order");
        // Following configuration enables timestamp to be concurrency token
        modelBuilder.Entity<Order>().Property(x => x.TimeStamp)
            .IsConcurrencyToken()
            .HasDatabaseGeneratedOption(DatabaseGeneratedOption.Computed);
    }
}
 
	 6.	 Next, from Listing 9-3, add the RecipeConnectionString connection string to the  

Web.Config file under the ConnectionStrings section.

Listing 9-3.  Connection String for the Recipe1 Web API Service

<connectionStrings>
  <add name="Recipe1ConnectionString"
    connectionString="Data Source=.;
       Initial Catalog=EFRecipes;
       Integrated Security=True;
       MultipleActiveResultSets=True"
    providerName="System.Data.SqlClient" />
</connectionStrings>
 
	 7.	 Then add the code in Listing 9-4 to the Application_Start method in the Global.asax 

file. This code will disable the Entity Framework Model Compatibility check.

Listing 9-4.  Disable the Entity Framework Model Compatibility Check

protected void Application_Start()
{
    // Disable Entity Framework Model Compatibilty
    Database.SetInitializer<Recipe1Context>(null);
    ...
}
 
	 8.	 Finally, replace the code in the OrderController with that from Listing 9-5.

Listing 9-5.  Code for the OrderController

public class OrderController : ApiController
{
    // GET api/order
    public IEnumerable<Order> Get()



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

298

    {
        using (var context = new Recipe1Context())
        {
            return context.Orders.ToList();
        }
    }
  
    // GET api/order/5
    public Order Get(int id)
    {
        using (var context = new Recipe1Context())
        {
            return context.Orders.FirstOrDefault(x => x.OrderId == id);
        }
    }
  
    // POST api/order
    public HttpResponseMessage Post(Order order)
    {
        // Cleanup data from previous requests
        Cleanup();
 
        using (var context = new Recipe1Context())
        {
            context.Orders.Add(order);
            context.SaveChanges();
  
            // create HttpResponseMessage to wrap result, assigning Http Status code of 201,
            // which informs client that resource created successfully
            var response = Request.CreateResponse(HttpStatusCode.Created, order);
 
            // add location of newly-created resource to response header
                            response.Headers.Location = new Uri(Url.Link("DefaultApi",  
new { id = order.OrderId }));
                 
            return response;
        }
    }
  
    // PUT api/order/5
    public HttpResponseMessage Put(Order order)
    {
        using (var context = new Recipe1Context())
        {
            context.Entry(order).State = EntityState.Modified;
            context.SaveChanges();
                  
    // return Http Status code of 200, informing client that resouce updated successfully
            return Request.CreateResponse(HttpStatusCode.OK, order);
        }
    }
  



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

299

    // DELETE api/order/5
    public HttpResponseMessage Delete(int id)
    {
        using (var context = new Recipe1Context())
        {
                var order = context.Orders.FirstOrDefault(x => x.OrderId == id);
                context.Orders.Remove(order);
                context.SaveChanges();

          // Return Http Status code of 200, informing client that resouce removed successfully
          return Request.CreateResponse(HttpStatusCode.OK);
        }
    }
  
    private void Cleanup()
    {
        using (var context = new Recipe1Context())
        {
            context.Database.ExecuteSqlCommand("delete from chapter9.[order]");
        }
    }
}
 

It’s important to point out that when using Entity Framework with MVC or Web API, these ASP.NET frameworks 
contain a great deal of scaffolding (i.e., code generation tempates) that can generate a functioning controller that 
contains Entity Framework plumbing code for you, saving you the effort of constructing it manually.

Next we create the client solution, which will consume the Web API service.

	 9.	 Create a new Visual Studio solution that contains a Console application entitled  
Recipe1.Client.

	 10.	 Add the same Order entity class to the client that we added to the service back in Listing 9-1.

Finally, replace the code in the program.cs file with that from Listing 9-6.

Listing 9-6.  Our Windows Console Application That Serves as Our Test Client

private HttpClient _client;
private Order _order;
 
private static void Main()
{
    Task t = Run();
    t.Wait();
    Console.WriteLine("\nPress <enter> to continue...");
    Console.ReadLine();
}
  
private static async Task Run()
{
    // create instance of the program class
    var program = new Program();
    program.ServiceSetup();



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

300

    program.CreateOrder();
    // do not proceed until order is added
    await program.PostOrderAsync();
    program.ChangeOrder();
    // do not proceed until order is changed
     await program.PutOrderAsync();
    // do not proceed until order is removed
   await  program.RemoveOrderAsync();
}
  
private void ServiceSetup()
{
    // map URL for Web API cal
    _client = new HttpClient { BaseAddress = new Uri("http://localhost:3237/") };
  
    // add Accept Header to request Web API content
    // negotiation to return resource in JSON format
    _client.DefaultRequestHeaders.Accept.
        Add(new MediaTypeWithQualityHeaderValue("application/json"));
}
  
private void CreateOrder()
{
    // Create new order
    _order = new Order { Product = "Camping Tent", Quantity = 3, Status = "Received" };
}
  
private async Task PostOrderAsync()
{
    // leverage Web API client side API to call service
    var response = await _client.PostAsJsonAsync("api/order", _order);
    Uri newOrderUri;
  
    if (response.IsSuccessStatusCode)
    {
        // Capture Uri of new resource
        newOrderUri = response.Headers.Location;
  
        // capture newly-created order returned from service,
        // which will now include the database-generated Id value
        _order = await response.Content.ReadAsAsync<Order>();
        Console.WriteLine("Successfully created order. Here is URL to new resource: {0}", newOrderUri);
    }
    else
        Console.WriteLine("{0} ({1})", (int)response.StatusCode, response.ReasonPhrase);
}
  
private void ChangeOrder()
{
    // update order
    _order.Quantity = 10;
}
   

http://localhost:3237/


Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

301

private async Task PutOrderAsync()
{
    // construct call to generate HttpPut verb and dispatch
    // to corresponding Put method in the Web API Service
    var response = await _client.PutAsJsonAsync("api/order", _order);
  
    if (response.IsSuccessStatusCode)
    {
        // capture updated order returned from service, which will include new quanity
        _order = await response.Content.ReadAsAsync<Order>();
        Console.WriteLine("Successfully updated order: {0}", response.StatusCode);
    }
    else
        Console.WriteLine("{0} ({1})", (int)response.StatusCode, response.ReasonPhrase);
}
  
private async Task RemoveOrderAsync()
{
    // remove order
    var uri = "api/order/" + _order.OrderId;
    var response = await _client.DeleteAsync(uri);
  
    if (response.IsSuccessStatusCode)
        Console.WriteLine("Sucessfully deleted order: {0}", response.StatusCode);
    else
        Console.WriteLine("{0} ({1})", (int)response.StatusCode, response.ReasonPhrase);
 }
 

The following is the output of our test client from Listing 9-6: 

Successfully created order: http://localhost:3237/api/order/1054
Successfully updated order: OK
Sucessfully deleted order: OK 

How It Works
Start by running the Web API application. The Web API application contains an MVC Web Controller that, when 
started, will bring up a home page. At this point, the site is running and its services are available.

Next open the console application, set a breakpoint on the first line of code in the program.cs file, and run the 
console application. First we establish some basic plumbing—mapping the Web API service URI and configuring 
the Accept Header—that will ask the Web API service to return the data in a JSON format. Then we create an Order 
object, which we send to the Web API service by calling the PostAsJsonAsync method from the HttpClient object.  
If you place a breakpoint in the Post Action Method in the Order Web API controller class, you’ll see that it receives 
the order object as a parameter and adds it to the Order entity in the context object. Doing so marks the object as 
added and causes the context to start tracking it. Finally, we call the SaveChanges method to insert the new data into 
the underlying data store. We then wrap a HTTP status code of 201 and the URI location of the newly created resource 
into an HttpResponseMessage object and return it to the calling application. When using the ASP.NET Web API, we 
want to ensure that our client generates an HTTP Post verb when inserting new data. The HTTP Post verb will invoke 
the corresponding Post action method in the Web API controller.

http://localhost:3237/api/order/1054


Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

302

Back in the client, we execute our next operation, changing the quantity of order and sending the entity back to 
the Web API service by calling the PutAsJsonAsync method from the HttpClient object. If you place a breakpoint in 
the Put Action Method in the Order Web API controller class, you’ll see that it receives the order object as a parameter 
in the service. From the context object, we invoke the Entry method, passing in the Order entity reference. Then, 
by setting the State property to Modified attaches the entity of the underlying context object. The subsequent call 
to SaveChanges generates a SQL Update statement. In this case, we update all columns for order. In later recipes, 
we’ll see how we can update only those properties that have changed. We complete the operation by sending an 
HttpResponseMethod to caller with a HTTP status code of 200.

Back in the client, we invoke our final operation, which will delete the Order entity from the underlying data 
store. We append the Id for the order as an additional URI segment and call the Web API service with the DeleteAsync 
method from the HttpClient object. In the service, we retrieve the target order from the data store and pass its 
reference to the Remove method, called from the Order entity and context object. Doing so marks the entity as deleted. 
The subsequent call to SaveChanges generates a SQL Delete statement that removes the order from the underlying 
data store.

In this recipe, we’ve seen that we can encapsulate Entity Framework data operations behind a Web API service. 
The client can consume the service by using the HttpClient object that is exposed by the Web API client API. Adhering 
to the Web API’s HTTP verb-based dispatch, we leverage the Post action method to add a new record, the Put action 
method to update a record, and the Delete action method to remove a record. Also in the recipe, we implement Entity 
Framework using the code-first approach.

In a production application, we would most likely create a separate layer (Visual Studio class project) to separate 
the Entity Framework data access code from the Web API service.

9-2.  Updating Disconnected Entities with WCF
Problem
You want to use a Windows Communication Foundation (WCF) service to expose selects, inserts, deletes, and updates 
for a data store and keep the database operations as simple as possible. Additionally, you want to implement the 
code-first approach for Entity Framework 6 to manage data access.

Solution
Let’s say that you have a model like the one shown in Figure 9-2.

Figure 9-2.  A model for blog posts and comments



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

303

Our model represents blog posts and the comments that readers have about the posts. To make things clearer, 
we’ve stripped out most of the properties that we would normally have, such as the body of the post, the author,  
the date and time of the post, and so on.

We want to put all of the database code behind a WCF service so that clients can read, update, and delete posts 
and comments, as well as insert new ones. To create the service, do the following:

	 1.	 Create a new Visual Studio solution, adding a c# class library project. Name the class 
library Recipe2.

	 2.	 Add a reference to the Entity Framework 6 libraries in the new project. Leveraging the 
NuGet Package Manager does this best. Right-click on Reference, and select Manage 
NuGet Packages. From the Online tab, locate and install the Entity Framework 6 package.

	 3.	 Add three classes to the Recipe2 project: Post, Comment, and Recipe2Context. Post and 
Comment represent POCO entity classes that will directly map to the corresponding 
Post and Comment tables. Recipe2Context is the DbContext object that will serve as the 
gateway to Entity Framework functionality. Make sure that you include the required WCF 
DataContract and DataMember attributes in the entity classes as shown in Listing 9-7.

Listing 9-7.  Our POCO Classes Post, Comment, and Our Recipe2Context Context Object

[DataContract(IsReference = true)]
public class Post
{
    public Post()
    {
        comments = new HashSet<Comments>();
    }
 
    [DataMember]
    public int PostId { get; set; }
    [DataMember]
    public string Title { get; set; }
    [DataMember]
    public virtual ICollection<Comment> Comments { get; set; }
}
 
[DataContract(IsReference=true)]
public class Comment
{
    [DataMember]
    public int CommentId { get; set; }
    [DataMember]
    public int PostId { get; set; }
    [DataMember]
    public string CommentText { get; set; }
    [DataMember]
    public virtual Post Post { get; set; }
}
 
public class EFRecipesEntities : DbContext
{
    public EFRecipesEntities()
        : base("name=EFRecipesEntities")



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

304

    {
    }
 
    public DbSet<Post> posts;
    public DbSet<Comment> comments;
 
}

 
	 4.	 Add an App.config file to the Recipe2 project, and copy the connection string from Listing 9-8.

Listing 9-8.  The Connection String for the Recipe1 Class Library

<connectionStrings>
  <add name="Recipe2ConnectionString"
  connectionString="Data Source=.;
      Initial Catalog=EFRecipes;
      Integrated Security=True;
      MultipleActiveResultSets=True"
  providerName="System.Data.SqlClient" />
</connectionStrings>

 
	 5.	 Next add a WCF service project to the solution. Use the default name Service1 just to  

keep things simple. Change the IService1.cs file to reflect the new IService1 interface  
in Listing 9-9.

Listing 9-9.  The Service Contract for Our Service

[ServiceContract]
public interface IService1
{
    [OperationContract]
    void Cleanup();
 
    [OperationContract]
    Post GetPostByTitle(string title);
 
    [OperationContract]
    Post SubmitPost(Post post);
 
    [OperationContract]
    Comment SubmitComment(Comment comment);
 
    [OperationContract]
    void DeleteComment(Comment comment);
}

 
	 6.	 Change the service application code in the Service1.svc.cs file using the code from 

Listing 9-10. Add a project reference to the Recipe2 class library and a using statement 
so that the references to the POCO classes resolve correctly. You will also need to add a 
reference to Entity Framework 6 libraries.



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

305

Listing 9-10.  The Implementation of the Service Contract in Listing 9-9. (Be sure to add references to  
System.Data.Entity and System.Security to this project.)

public class Service1 : IService
{
    public void Cleanup()
    {
        using (var context = new EFRecipesEntities())
        {
            context.Database.ExecuteSqlCommand("delete from chapter9.comment");
            context. Database.ExecuteSqlCommand ("delete from chapter9.post");
        }
    }
 
    public Post GetPostByTitle(string title)
    {
        using (var context = new EFRecipesEntities())
        {
            context.Configuration.ProxyCreationEnabled = false;
            var post = context.Posts.Include(p => p.Comments)
                              .Single(p => p.Title == title);
            return post;
        }
    }
 
    public Post SubmitPost(Post post)
    {
            context.Entry(post).State =
                // if Id equal to 0, must be insert; otherwise, it's an update
            post.PostId == 0 ? EntityState.Added : EntityState.Modified;
            context.SaveChanges();
            return post;
    }
 
    public Comment SubmitComment(Comment comment)
    {
        using (var context = new EFRecipesEntities())
        {
            context.Comments.Attach(comment);
            if (comment.CommentId == 0)
            {
                // this is an insert
                context.Entry(comment).State = EntityState.Added);
            }
            else
            {
                // set single property to modified, which sets state of entity to modified, but
                // only updates the single property – not the entire entity
                context.entry(comment).Property(x => x.CommentText).IsModified = true;
            }



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

306

            context.SaveChanges();
            return comment;
        }
    }
 
    public void DeleteComment(Comment comment)
    {
        using (var context = new EFRecipesEntities())
        {
            context.Entry(comment).State = EntityState.Deleted;
            context.SaveChanges();
        }
    }
}
 
	 7.	 Finally, add a Windows Console Application to the service project. We’ll use this for our client 

to test the WCF service. Copy the code from Listing 9-11 into the Program class in the Console 
application. Right-click the console application project, select Add Service Reference, and 
add a reference to the Service1 service. You will also need to add a project reference to the 
class library created in step 1 or expose it through a proxy class from the service.

Listing 9-11.  Our Windows Console Application That Serves as Our Test Client

class Program
{
    static void Main(string[] args)
    {
        using (var client = new ServiceReference2.Service1Client())
        {
            // cleanup previous data
            client.Cleanup();
 
            // insert a post
            var post = new Post { Title = "POCO Proxies" };
            post = client.SubmitPost(post);
 
            // update the post
            post.Title = "Change Tracking Proxies";
            client.SubmitPost(post);
 
            // add a comment
            var comment1 = new Comment {
                 CommentText = "Virtual Properties are cool!",
                 PostId = post.PostId };
            var comment2 = new Comment {
                 CommentText = "I use ICollection<T> all the time",
                 PostId = post.PostId };
            comment1 = client.SubmitComment(comment1);
            comment2 = client.SubmitComment(comment2);
 



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

307

            // update a comment
            comment1.CommentText = "How do I use ICollection<T>?";
            client.SubmitComment(comment1);
 
            // delete comment 1
            client.DeleteComment(comment1);
 
            // get posts with comments
            var p = client.GetPostByTitle("Change Tracking Proxies");
            Console.WriteLine("Comments for post: {0}", p.Title);
            foreach (var comment in p.Comments)
            {
                Console.WriteLine("\tComment: {0}", comment.CommentText);
            }
        }
    }
}
 

The following is the output of our test client from Listing 9-11: 

Comments for post: Change Tracking Proxies
        Comment: I use ICollection<T> all the time 

How It Works
Let’s start with the Windows console application, which is our test client for the service. We create an instance of our 
service client in a using {} block. Just as we’ve done when creating an instance of an Entity Framework context in a using 
{} block, this ensures that Dispose() is implicitly called when we leave the block, either normally or via an exception.

Once we have an instance of our service client, the first thing we do is call the Cleanup() method. We do this to 
remove any previous test data we might have.

With the next couple of lines, we call the service’s SubmitPost() method. In this method’s implementation  
(see Listing 9-10), we interrogate the value of PostId. If the PostId is 0, we then assume it’s a new post and set the 
Entity State to Added. Otherwise, we assume the entity exists and we are modifying it, thus setting the Entity State 
to Modified. Although somewhat crude, this approach can determine the state (new or existing) of the post entity, 
depending on the domain of the valid Ids for a post as well as the runtime initializing integers to 0. A better approach 
might involve sending an additional parameter to the method or creating a separate InsertPost() method. The best 
approach depends on the structure of your application.

If the post is to be inserted, we change the object state of the post to EntityState.Added. Otherwise, we change its 
object state to EntityState.Modified. The EntityState value drives whether an insert or update statement is generated. 
If the post is inserted, the post instance’s PostId is updated with the new correct value. The post is returned.

Inserting and updating a single property on the Comment entity is similar to inserting and updating a post with 
one significant difference: as a business rule, when we update a comment, we want to make sure only to update the 
CommentText property. This property holds the body of the comment, and we don’t want to update any other part 
of the Comment entity object. To do this, we mark just the CommentText property as modified. Entity Framework 
will generate a simple update statement that changes just the CommentText column in the database. Note that this 
works as we are just changing a single property of the entity. If we were changing multiple properties on the Comment 
entity, we would then need some way to track which properties were changed on the client. In cases where multiple 
properties can change, it is often more efficient to update the entity object, without need for complex client-side 
change tracking.

w



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

308

To delete a comment, we call the Entity() method on the context object, passing in the comment entity as an 
argument and set the EntityState to Deleted, which marks the comment for deletion and generates a SQL Delete 
statement.

Finally, the GetPostByTitle() method eagerly loads the comments for each post and returns an object graph of 
posts and related comments. Because we have implemented POCO classes, Entity Framework returns what is called 
a dynamic proxy object that wraps the underlying post and comments class. Unfortunately, WCF cannot serialize a 
proxy object. However, with the line ProxyCreationEnabled = false, we simply disable proxy class generation for 
the query and Entity Framework returns the actual objects. If we attempted to serialize the proxy object, we would 
receive the following error message: 

The underlying connection was closed: The connection was closed unexpectedly 

We could even move the ProxyCreationEnabled = false to the constructor of the service to enforce it for all the 
service methods.

In this recipe, we’ve seen that we can use POCO objects to handle CRUD operations with WCF. Because there 
is no state information stored on the client, we’ve built separate methods for inserting, updating, and deleting posts 
and comments. Other recipes in this chapter will demonstrate techniques used to reduce the number of methods our 
service must implement and to simplify the communication between the client and the server.

9-3.  Finding Out What Has Changed with Web API
Problem
You want to leverage REST-based Web API services for database insert, delete, and update operations for an object 
graph without having to expose a separate method for updating each entity class. Additionally, you want to implement 
the code-first approach for Entity Framework 6 to manage data access.

In this example, we emulate an n-Tier scenario where a stand-alone client application (Console Application) is 
calling a stand-alone website (Web API Project) that exposes REST-based services. Note that each tier is contained in 
a separate Visual Studio Solution, to allow for easier configuring, debugging and simulation of an n-Tier application. 
Let’s say that you have a model like the one shown in Figure 9-3.

Figure 9-3.  A model for Travel Agents and Bookings



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

309

Our model represents Travel Agents and their corresponding Bookings. We want to put the model and database 
code behind a Web API service so that any client that consumes HTTP can insert, update, and delete orders. To create 
the service, perform the following steps:

	 1.	 Create a new ASP.NET MVC 4 Web Application project, selecting the Web API template 
from the Project Templates wizard. Name the project Recipe3.Service.

	 2.	 Add a new Web API Controller to the project entitled TravelAgentController.

	 3.	 Next, from Listing 9-12 add the TravelAgent and Booking entity classes.

Listing 9-12.  Travel Agent and Booking Entity Classes

public class TravelAgent
{
    public TravelAgent()
    {
        this.Bookings = new HashSet<Booking>();
    }
  
    public int AgentId { get; set; }
    public string Name { get; set; }
  
    public virtual ICollection<Booking> Bookings { get; set; }
}
  
public class Booking
{
    public int BookingId { get; set; }
    public int AgentId { get; set; }
    public string Customer { get; set; }
    public DateTime BookingDate { get; set; }
    public bool Paid { get; set; }
  
    public virtual TravelAgent TravelAgent { get; set; }
}

 
	 4.	 Add a reference in the Recipe3.Service project to the Entity Framework 6 libraries. 

Leveraging the NuGet Package Manager does this best.  Right-click on Reference, 
and select Manage NuGet Packages. From the Online tab, locate and install the Entity 
Framework 6 package.

	 5.	 Then add a new class entitled Recipe3Context, and add the code from Listing 9-13 to it, 
ensuring that the class derives from the Entity Framework DbContext class.

Listing 9-13.  Context Class

public class Recipe3Context : DbContext
{
    public Recipe3Context() : base("Recipe3ConnectionString") { }
 
    public DbSet<TravelAgent> TravelAgents { get; set; }
    public DbSet<Booking> Bookings { get; set; }
  

o



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

310

    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        modelBuilder.Entity<TravelAgent>().HasKey(x => x.AgentId);
        modelBuilder.Entity<TravelAgent>().ToTable("Chapter9.TravelAgent");
        modelBuilder.Entity<Booking>().ToTable("Chapter9.Booking");
    }
}

 
	 6.	 Next, from Listing 9-14, add the Recipe3ConnectionString connection string to the  

Web.Config file under the ConnectionStrings section.

Listing 9-14.  Connection String for the Recipe1 Web API Service

<connectionStrings>
  <add name="Recipe3ConnectionString"
    connectionString="Data Source=.;
       Initial Catalog=EFRecipes;
       Integrated Security=True;
       MultipleActiveResultSets=True"
    providerName="System.Data.SqlClient" />
</connectionStrings>

 
	 7.	 Then add the code in Listing 9-15 to the Application_Start method in the Global.asax 

file. This code will disable the Entity Framework Model Compatibility check and instruct 
the JSON serializer to ignore the self-referencing loop caused by navigation properties 
being bidirectional between TravelAgent and Booking.

Listing 9-15.  Disable the Entity Framework Model Compatibility Check

protected void Application_Start()
{
    // Disable Entity Framework Model Compatibilty
    Database.SetInitializer<Recipe1Context>(null);
 
    // The bidirectional navigation properties between related entities
    // create a self-referencing loop that breaks Web API's effort to
    // serialize the objects as JSON. By default, Json.NET is configured
    // to error when a reference loop is detected. To resolve problem,
    // simply configure JSON serializer to ignore self-referencing loops.
    GlobalConfiguration.Configuration.Formatters.JsonFormatter
        .SerializerSettings.ReferenceLoopHandling =
            Newtonsoft.Json.ReferenceLoopHandling.Ignore;
    ...
}

 
	 8.	 Modify the Web API routing by changing the code in RouteConfig.cs file to match that  

of Listing 9-16.



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

311

Listing 9-16.  Modifications to RouteConfig Class to Accommodate RPC-Style Routing

public static void Register(HttpConfiguration config)
{
    config.Routes.MapHttpRoute(
        name: "ActionMethodSave",
        routeTemplate: "api/{controller}/{action}/{id}",
        defaults: new { id = RouteParameter.Optional }
    );
}

 
	 9.	 Finally, replace the code in the TravelAgentController with that from Listing 9-17. 

Listing 9-17.  Travel Agent Web API Controller

public class TravelAgentController : ApiController
{
    // GET api/travelagent
    [HttpGet]
    public IEnumerable<TravelAgent> Retrieve()
    {
        using (var context = new Recipe3Context())
        {
            return context.TravelAgents.Include(x => x.Bookings).ToList();
        }
    }
   
    /// <summary>
    /// Update changes to TravelAgent, implementing Action-Based Routing in Web API
    /// </summary>
    public HttpResponseMessage Update(TravelAgent travelAgent)
    {
        using (var context = new Recipe3Context())
        {
            var newParentEntity = true;
  
            // adding the object graph makes the context aware of entire
            // object graph (parent and child entities) and assigns a state
            // of added to each entity.
            context.TravelAgents.Add(travelAgent);
 
            if (travelAgent.AgentId > 0)
            {
                // as the Id property has a value greater than 0, we assume
                // that travel agent already exists and set entity state to
                // be updated.
                context.Entry(travelAgent).State = EntityState.Modified;
                newParentEntity = false;
            }
 



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

312

            // iterate through child entities, assigning correct state.
            foreach (var booking in travelAgent.Bookings)
            {
                if (booking.BookingId > 0)
                    // assume booking already exists if ID is greater than zero.
                    // set entity to be updated.
                    context.Entry(booking).State = EntityState.Modified;
            }
  
            context.SaveChanges();
  
            HttpResponseMessage response;
  
            // set Http Status code based on operation type
            response = Request.CreateResponse(newParentEntity
                 ? HttpStatusCode.Created : HttpStatusCode.OK, travelAgent);
  
            return response;
        }
}
  
[HttpDelete]
public HttpResponseMessage Cleanup()
{
    using (var context = new Recipe3Context())
    {
        context.Database.ExecuteSqlCommand("delete from chapter9.booking");
        context.Database.ExecuteSqlCommand("delete from chapter9.travelagent");
    }
  
        return Request.CreateResponse(HttpStatusCode.OK);
    }
  
}

 
Next we create the client Visual Studio solution that will consume the Web API service.

	 10.	 Create a new Visual Studio solution that contains a Console application entitled  
Recipe3.Client.

	 11.	 Replace the code in the program.cs file with that from Listing 9-18. 

Listing 9-18.  Our Windows Console Application That Serves as Our Test Client

internal class Program
{
    private HttpClient _client;
    private TravelAgent _agent1, _agent2;
    private Booking _booking1, _booking2, _booking3;
    private HttpResponseMessage _response;
  



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

313

    private static void Main()
    {
        Task t = Run();
        t.Wait();
        Console.WriteLine("\nPress <enter> to continue...");
        Console.ReadLine();
    }
  
    private static async Task Run()
    {
        var program = new Program();
        program.ServiceSetup();
        // do not proceed until clean-up is completed
        await program.CleanupAsync();
        program.CreateFirstAgent();
        // do not proceed until agent is created
        await program.AddAgentAsync();
        program.CreateSecondAgent();
        // do not proceed until agent is created
        await program.AddSecondAgentAsync();
        program.ModifyAgent();
        // do not proceed until agent is updated
        await program.UpdateAgentAsync();
        // do not proceed until agents are fetched
        await program.FetchAgentsAsync();
    }
  
    private void ServiceSetup()
    {
        // set up infrastructure for Web API call
        _client = new HttpClient {BaseAddress = new Uri("http://localhost:6687/")};
  
        // add Accept Header to request Web API content negotiation to return resource in JSON format
        _client.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue("application/json"));
    }
  
    private async Task CleanupAsync()
    {
        // call cleanup method in service
        _response = await _client.DeleteAsync("api/travelagent/cleanup/");
    }
  
    private void CreateFirstAgent()
    {
        // create new Travel Agent and booking
        _agent1 = new TravelAgent {Name = "John Tate"};
        _booking1 = new Booking
        {
            Customer = "Karen Stevens",
            Paid = false,
            BookingDate = DateTime.Parse("2/2/2010")
        };

http://localhost:6687/


Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

314

        _booking2 = new Booking
        {
            Customer = "Dolly Parton",
            Paid = true,
            BookingDate = DateTime.Parse("3/10/2010")
        };
        _agent1.Bookings.Add(_booking1);
        _agent1.Bookings.Add(_booking2);
    }
  
    private async Task AddAgentAsync()
    {
        // call generic update method in Web API service to add agent and bookings
        _response = await _client.PostAsync("api/travelagent/update/",
           _agent1, new JsonMediaTypeFormatter());
  
        if (_response.IsSuccessStatusCode)
        {
            // capture newly created travel agent from service, which will include
            // database-generated Ids for each entity
            _agent1 = await _response.Content.ReadAsAsync<TravelAgent>();
            _booking1 = _agent1.Bookings.FirstOrDefault(x => x.Customer == "Karen Stevens");
            _booking2 = _agent1.Bookings.FirstOrDefault(x => x.Customer == "Dolly Parton");
  
            Console.WriteLine("Successfully created Travel Agent {0} and {1} Booking(s)",
                _agent1.Name, _agent1.Bookings.Count);
        }
        else
            Console.WriteLine("{0} ({1})", (int) _response.StatusCode, _response.ReasonPhrase);
    }
   
    private void CreateSecondAgent()
    {
        // add new agent and booking
        _agent2 = new TravelAgent {Name = "Perry Como"};
        _booking3 = new Booking
        {
            Customer = "Loretta Lynn",
            Paid = true,
            BookingDate = DateTime.Parse("3/15/2010")
        };
        _agent2.Bookings.Add(_booking3);
    }
  
    private async Task AddSecondAgentAsync()
    {
        // call generic update method in Web API service to add agent and booking
        _response = await _client.PostAsync("api/travelagent/update/",
            _agent2, new JsonMediaTypeFormatter());
  



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

315

        if (_response.IsSuccessStatusCode)
        {
            // capture newly created travel agent from service
            _agent2 = await _response.Content.ReadAsAsync<TravelAgent>();
            _booking3 = _agent2.Bookings.FirstOrDefault(x => x.Customer == "Loretta Lynn");
  
            Console.WriteLine("Successfully created Travel Agent {0} and {1} Booking(s)",
                _agent2.Name, _agent2.Bookings.Count);
        }
        else
            Console.WriteLine("{0} ({1})", (int) _response.StatusCode, _response.ReasonPhrase);
    }
  
    private void ModifyAgent()
    {
        // modify agent 2 by changing agent name and assigning booking 1 to him from agent 1
        _agent2.Name = "Perry Como, Jr.";
        _agent2.Bookings.Add(_booking1);
    }
  
    private async Task UpdateAgentAsync()
    {
        // call generic update method in Web API service to update agent 2
        _response = await _client.PostAsync("api/travelagent/update/",
            _agent2, new JsonMediaTypeFormatter());
  
        if (_response.IsSuccessStatusCode)
        {
            // capture newly created travel agent from service, which will include Ids
            _agent1 = _response.Content.ReadAsAsync<TravelAgent>().Result;
            Console.WriteLine("Successfully updated Travel Agent {0} and {1} Booking(s)",
               _agent1.Name, _agent1.Bookings.Count);
        }
        else
            Console.WriteLine("{0} ({1})", (int) _response.StatusCode, _response.ReasonPhrase);
    }
  
    private async Task FetchAgentsAsync()
    {
        // call Get method on service to fetch all Travel Agents and Bookings
        _response = _client.GetAsync("api/travelagent/retrieve").Result;
  
        if (_response.IsSuccessStatusCode)
        {
            // capture newly created travel agent from service, which will include Ids
            var agents = await _response.Content.ReadAsAsync<IEnumerable<TravelAgent>>();
  
            foreach (var agent in agents)
            {
               Console.WriteLine("Travel Agent {0} has {1} Booking(s)", agent.Name,  
agent.Bookings.Count());
                }
            }



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

316

            else
                Console.WriteLine("{0} ({1})", (int) _response.StatusCode, _response.ReasonPhrase);
        }
    }
  
	 12.	 Finally, add the TravelAgent and Booking classes to this project just as we added to the 

service in Listing 9-12.

Following is the output of the test client from Listing 9-18: 

Successfully created Travel Agent John Tate and 2 Booking(s)
Successfully created Travel Agent Perry Como and 1 Booking(s)
Successfully updated Travel Agent Perry Como, Jr. and 2 Booking(s)
Travel Agent John Tate has 1 Booking(s)
Travel Agent Perry Como, Jr. has 2 Booking(s) 

How It Works
Start by running the Web API application. The Web API application contains an MVC Web Controller, which, when 
started, will bring up a home page. At this point, the site is running and its services are available.

Next open the console application, set a breakpoint on the first line of code in the program.cs file, and run the 
console application. First we establish some basic plumbing—mapping the Web API service URI and configuring the 
Accept Header—that will ask the Web API service to return data in a JSON format.

We then call the Cleanup action method on the TravelAgent Web API controller using the Client.DeleteAsync 
method exposed by the HttpClient object. Cleanup truncates the database tables to clear data from any previous 
operations.

Back in the client, we create a new travel agent and two bookings and then send these three new entities to the 
service by calling the PostAsync from the HttpClient object. If you place a breakpoint in the Update Action Method 
in the TravelAgent Web API controller class, you’ll see that it receives the TravelAgent object as a parameter and adds 
it to the TravelAgents entity in the context object. Doing so marks the object and all its related child entity objects as 
added and causes the context to start tracking them.

Note■■  I t’s worthwhile to mention that you should Add rather Attach a set of objects if there are multiple added  
entities with the same value in the Primary Key property (in this case, multiple Bookings with an Id = 0). If using Attach 
in this scenario, Entity Framework will throw an exception because of the Primary Key conflicts (multiple entities with a 
primary key = 0) in the non-added entities.

We next check the Id property and make a somewhat crude determination that if it is greater than 0, then this is 
an existing entity, and we set the entity state property to Modified by calling the Entry method on the Context object. 
Additionally, we set a flag entitled newParentEntity, so that we can return the correct Http Status Code later in the 
operation. In the event that the Id property of TravelAgent is equal to 1, then we leave the state property as Added.

We next iterate through each of the child booking objects applying the exact same logic. Upon completion, we 
call the SaveChanges method, which generates SQL Update statements for Modified entities and Sql Insert statements 
for Added entities. Then we return an Http Status Code of 201 for inserted entities and 200 for modified entities.  
The 200 Http Status Code informs the calling program that the operation completed successfully; while 201 informs 
the client that an insert operation completed successfully. When exposing REST-based services, it is a best practice to 
return an Http Status Code to the calling program to verify the outcome of the operation.



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

317

Subsequently in the client, we add another new travel agent and booking, using the PostAsync method to call the 
Update action method in the service, using the PostAsync method which again inserts each of the new objects into  
the database.

Next, we modify the name of the second agent and move one the bookings from the first agent to the second.  
This time, when we call the Update method, each of the entities has an Id property with a value greater than 1, and 
thus we set the entity state as modified, causing SQL Updates to be issued by the Entity Framework.

Finally, the client calls the Retrieve Action Method on the service leveraging the GetAsync method exposed  
by the HttpClient API. The Retrieve method is invoked, and returns all of the travel agent and booking entities.  
Here we simply implement eager loading with the Include() method, which returns all of the properties in each  
child booking entity.

Be aware that the JSON serializer will return all public properties in an entity object, even if you only project  
(for example, select) a subset of the properties.

In this recipe, we’ve seen that we can encapsulate Entity Framework data operations behind a Web API service. 
The client can consume the service by using the HttpClient object that is exposed by the Web API client API. In this 
example, we moved away from the Web API’s preferred HTTP verb-based dispatch and implemented more of an  
RPC-based routing approach. In production applications, you’d most likely want to utilize the HTTP verb-based 
approach, as it fits into the underlying intent of the ASP.NET Web API, which is to expose REST-based services.

In a production application, we would most likely create another layer (Visual Studio class project) to separate 
the Entity Framework data access code from the Web API service.

9-4. Implementing Client-Side Change Tracking with Web API
Problem
You want to leverage REST-based Web API services for database insert, delete, and update operations to an object 
graph while implementing a reusable client-side approach to updating entity classes. Additionally, you want to 
leverage the code-first approach for Entity Framework 6 to manage data access.

In this example, we emulate an n-Tier scenario where a stand-alone client application (Console Application) is 
calling a stand-alone website (Web API Project) that exposes REST-based services.

Note that each tier is contained in a separate Visual Studio Solution, so as to allow for easier configuring, 
debugging, and simulation of an n-Tier application.

Solution
Let’s say that you have a model like the one shown in Figure 9-4.

Figure 9-4.  A Customer and Phone Numbers model



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

318

Our model represents Customers and their corresponding Phone Numbers. We want to put the model and 
database code behind a Web API service so that any client that consumes HTTP can insert, update, and delete orders. 
To create the service, perform the following steps:

	 1.	 Create a new ASP.NET MVC 4 Web Application project, selecting the Web API template 
from the Project Templates wizard. Name the project Recipe4.Service.

	 2.	 Add a new Web API Controller to the project entitled CustomerController.

	 3.	 Next, from Listing 9-19 add the entity base class entitled BaseEntity and the enum type 
entitled TrackingState. The base class extends each entity, adding a TrackingState 
property that the client is required to set when manipulating entity objects. The 
TrackingState property is driven from the TrackingState enum. Note that the TrackingState 
is not persisted to the database. Creating our own internal tracking state enum class lets 
us keep the client free of Entity Framework dependencies that would be required if we 
were to expose the Entity Framework tracking states to the client. In the DbContext file, 
note how we will instruct Entity Framework not to map the TrackingState property to the 
underlying database tables in the OnModelCreating method. 

Listing 9-19.  Entity Base Class and TrackingState Enum Type

public abstract class BaseEntity
{
    protected BaseEntity()
    {
        TrackingState = TrackingState.Nochange;
    }
  
    public TrackingState TrackingState { get; set; }
}
 
public enum TrackingState
{
    Nochange,
    Add,
    Update,
    Remove,
}
 

	 4.	 Next, from Listing 9-20, add the Customer and PhoneNumber entity classes.

Listing 9-20.  Customer and Phone Entity Classes

public class Customer : BaseEntity
{
    public int CustomerId { get; set; }
    public string Name { get; set; }
    public string Company { get; set; }
  
    public virtual ICollection<Phone> Phones { get; set; }
}
 



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

319

public class Phone : BaseEntity
{
    public int PhoneId { get; set; }
    public string Number { get; set; }
    public string PhoneType { get; set; }
    public int CustomerId { get; set; }
  
    public virtual Customer Customer { get; set; }
}

 
	 5.	 Add a reference in the Recipe4.Service project to the Entity Framework 6 libraries. 

Leveraging the NuGet Package Manager does this best.  Right-click on Reference, 
and select Manage NuGet Packages. From the Online tab, locate and install the Entity 
Framework 6 package.

	 6.	 Then add a new class entitled Recipe4Context, and add the code from Listing 9-21 to it, 
ensuring that the class derives from the Entity Framework DbContext class. Note closely 
how we leverage a new Entity Framework 6 features entitled “Configuring Unmapped 
Base Types.” In Listing 9-21, we define a convention that instructs each entity class to 
“ignore” (i.e., not map to the underlying database) the TrackingState property from the 
BaseEntity base class which we include only to track the state of the disconnected entities 
in operations that cross service boundaries.

Note■■  R owan Martin, Microsoft Program Manager for the Entity Framework Team has published a helpful blog  
post about Configuring Unmapped Base Types: http://romiller.com/2013/01/29/ef6-code-first-configuring-
unmapped-base-types/. Be certain to check out Rowan’s other outstanding blog posts on the Entity Framework.

Listing 9-21.  Context Class

public class Recipe4Context : DbContext
{
    public Recipe4Context() : base("Recipe4ConnectionString") { }
  
    public DbSet<Customer> Customers { get; set; }
    public DbSet<Phone> Phones { get; set; }
  
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        // Do not persist TrackingState property to data store
        // This property is used internally to track state of
        // disconnected entities across service boundaries.
        // Leverage the Custom Code First Conventions features from Entity Framework 6.
        // Define a convention that performs a configuration for every entity
        // that derives from a base entity class.
        modelBuilder.Types<BaseEntity>().Configure(x => x.Ignore(y => y.TrackingState));
        modelBuilder.Entity<Customer>().ToTable("Chapter9.Customer");
        modelBuilder.Entity<Phone>().ToTable("Chapter9.Phone");
    }
}

 

http://romiller.com/2013/01/29/ef6-code-first-configuring-unmapped-base-types/
http://romiller.com/2013/01/29/ef6-code-first-configuring-unmapped-base-types/


Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

320

	 7.	 Next, from Listing 9-22, add the Recipe4ConnectionString connection string to the  
Web.Config file under the ConnectionStrings section.

Listing 9-22.  Connection string for the Recipe1 Web API Service

<connectionStrings>
  <add name="Recipe4ConnectionString"
    connectionString="Data Source=.;
       Initial Catalog=EFRecipes;
       Integrated Security=True;
       MultipleActiveResultSets=True"
    providerName="System.Data.SqlClient" />
</connectionStrings>

 
	 8.	 Then add the code in Listing 9-23 to the Application_Start method in the Global.asax 

file. This code will disable the Entity Framework Model Compatibility check and instruct 
the JSON serializer to ignore the self-referencing loop caused by navigation properties 
being bidirectional between Customer and PhoneNumber.

Listing 9-23.  Disable the Entity Framework Model Compatibility Check

 protected void Application_Start()
{
            // Disable Entity Framework Model Compatibilty
            Database.SetInitializer<Recipe1Context>(null);
 
            // The bidirectional navigation properties between related entities
            // create a self-referencing loop that breaks Web API's effort to
            // serialize the objects as JSON. By default, Json.NET is configured
            // to error when a reference loop is detected. To resolve problem,
            // simply configure JSON serializer to ignore self-referencing loops.
            GlobalConfiguration.Configuration.Formatters.JsonFormatter
                .SerializerSettings.ReferenceLoopHandling =
                    Newtonsoft.Json.ReferenceLoopHandling.Ignore;
            ...
}
 

	 9.	 Next add a class entitled EntityStateFactory, and add the code from Listing 9-24 to it. 
The factory will translate the TrackingState enum values exposed to the client to Entity 
Framework state value required by the change tracking components. 

Listing 9-24.  Customer Web API Controller

public static EntityState Set(TrackingState trackingState)
{
    switch (trackingState)
    {
        case TrackingState.Add:
            return EntityState.Added;
        case TrackingState.Update:
            return EntityState.Modified;
        case TrackingState.Remove:
            return EntityState.Deleted;



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

321

        default:
            return EntityState.Unchanged;
    }
}

 
Finally, replace the code in the CustomerController with that from Listing 9-25.

Listing 9-25.  Customer Web API Controller

public class CustomerController : ApiController
{
    // GET api/customer
    public IEnumerable<Customer> Get()
    {
        using (var context = new Recipe4Context())
        {
            return context.Customers.Include(x => x.Phones).ToList();
        }
    }
  
    // GET api/customer/5
    public Customer Get(int id)
    {
        using (var context = new Recipe4Context())
        {
            return context.Customers.Include(x => x.Phones)
                 .FirstOrDefault(x => x.CustomerId == id);
        }
    }
  
    [ActionName("Update")]
    public HttpResponseMessage UpdateCustomer(Customer customer)
    {
        using (var context = new Recipe4Context())
        {
            // Add object graph to context setting default state of 'Added'.
            // Adding parent to context automatically attaches entire graph
            // (parent and child entities) to context and sets state to 'Added'
            // for all entities.
            context.Customers.Add(customer);
  
            foreach (var entry in context.ChangeTracker.Entries<BaseEntity>())
            {
                entry.State = EntityStateFactory.Set(entry.Entity.TrackingState);
  
                if (entry.State == EntityState.Modified)
                {
                    // For entity updates, we fetch a current copy of the entity
                    // from the database and assign the values to the orginal values
                    // property from the Entry object. OriginalValues wrap a dictionary
                    // that represents the values of the entity before applying changes.
                    // The Entity Framework change tracker will detect
                    // differences between the current and original values and mark



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

322

                    // each property and the entity as modified. Start by setting
                    // the state for the entity as 'Unchanged'.
                    entry.State = EntityState.Unchanged;
                    var databaseValues = entry.GetDatabaseValues();
                    entry.OriginalValues.SetValues(databaseValues);
                }
            }
  
            context.SaveChanges();
        }
  
        return Request.CreateResponse(HttpStatusCode.OK, customer);
    }
  
    [HttpDelete]
    [ActionName("Cleanup")]
    public HttpResponseMessage Cleanup()
    {
        using (var context = new Recipe4Context())
        {
            context.Database.ExecuteSqlCommand("delete from chapter9.phone");
            context.Database.ExecuteSqlCommand("delete from chapter9.customer");
  
            return Request.CreateResponse(HttpStatusCode.OK);
        }
    }
}
 

Next we create the Visual Studio solution that will contain the client project that will consume the Web  
API service.

	 10.	 Create a new Visual Studio solution that contains a Console application entitled  
Recipe3.Client.

	 11.	 Replace the code in the program.cs file with that from Listing 9-26. 

Listing 9-26.  Our Windows Console Application That Serves as Our Test Client

internal class Program
{
    private HttpClient _client;
    private Customer _bush, _obama;
    private Phone _whiteHousePhone, _bushMobilePhone, _obamaMobilePhone;
    private HttpResponseMessage _response;
  
    private static void Main()
    {
        Task t = Run();
        t.Wait();
        Console.WriteLine("\nPress <enter> to continue...");
        Console.ReadLine();
    }
  



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

323

    private static async Task Run()
    {
        var program = new Program();
        program.ServiceSetup();
        // do not proceed until clean-up completes
        await program.CleanupAsync();
        program.CreateFirstCustomer();
        // do not proceed until customer is added
        await program.AddCustomerAsync();
        program.CreateSecondCustomer();
        // do not proceed until customer is added
        await program.AddSecondCustomerAsync();
        // do not proceed until customer is removed
        await program.RemoveFirstCustomerAsync();
        // do not proceed until customers are fetched
        await program.FetchCustomersAsync();
    }
   
    private void ServiceSetup()
    {
        // set up infrastructure for Web API call
        _client = new HttpClient {BaseAddress = new Uri("http://localhost:62799/")};
  
        // add Accept Header to request Web API content negotiation to return resource in JSON format
        _client.DefaultRequestHeaders.Accept.Add(new MediaTypeWithQualityHeaderValue 
("application/json"));
    }
  
    private async Task CleanupAsync()
    {
        // call the cleanup method from the service
        _response = await _client.DeleteAsync("api/customer/cleanup/");
    }
  
    private void CreateFirstCustomer()
    {
        // create customer #1 and two phone numbers
        _bush = new Customer
        {
            Name = "George Bush",
            Company = "Ex President",
            // set tracking state to 'Add' to generate a SQL Insert statement
            TrackingState = TrackingState.Add,
        };
  
        _whiteHousePhone = new Phone
        {
            Number = "212 222-2222",
            PhoneType = "White House Red Phone",
            // set tracking state to 'Add' to generate a SQL Insert statement
            TrackingState = TrackingState.Add,
        };
  

http://localhost:62799/


Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

324

        _bushMobilePhone = new Phone
        {
            Number = "212 333-3333",
            PhoneType = "Bush Mobile Phone",
            // set tracking state to 'Add' to generate a SQL Insert statement
            TrackingState = TrackingState.Add,
        };
  
        _bush.Phones.Add(_whiteHousePhone);
        _bush.Phones.Add(_bushMobilePhone);
    }
  
    private async Task AddCustomerAsync()
    {
        // construct call to invoke UpdateCustomer action method in Web API service
        _response = await _client.PostAsync("api/customer/updatecustomer/", _bush,  
new JsonMediaTypeFormatter());
  
        if (_response.IsSuccessStatusCode)
        {
            // capture newly created customer entity from service, which will include
            // database-generated Ids for all entities
            _bush = await _response.Content.ReadAsAsync<Customer>();
            _whiteHousePhone = _bush.Phones.FirstOrDefault(x => x.CustomerId == _bush.CustomerId);
            _bushMobilePhone = _bush.Phones.FirstOrDefault(x => x.CustomerId == _bush.CustomerId);
  
            Console.WriteLine("Successfully created Customer {0} and {1} Phone Numbers(s)",
                _bush.Name, _bush.Phones.Count);
            foreach (var phoneType in _bush.Phones)
            {
                Console.WriteLine("Added Phone Type: {0}", phoneType.PhoneType);
            }
        }
        else
           Console.WriteLine("{0} ({1})", (int) _response.StatusCode, _response.ReasonPhrase);
    }
  
    private void CreateSecondCustomer()
    {
        // create customer #2 and phone numbers
        _obama = new Customer
        {
            Name = "Barack Obama",
            Company = "President",
            // set tracking state to 'Add' to generate a SQL Insert statement
            TrackingState = TrackingState.Add,
        };
  



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

325

        _obamaMobilePhone = new Phone
        {
            Number = "212 444-4444",
            PhoneType = "Obama Mobile Phone",
            // set tracking state to 'Add' to generate a SQL Insert statement
            TrackingState = TrackingState.Add,
        };
  
        // set tracking state to 'Modifed' to generate a SQL Update statement
        _whiteHousePhone.TrackingState = TrackingState.Update;
  
        _obama.Phones.Add(_obamaMobilePhone);
        _obama.Phones.Add(_whiteHousePhone);
    }
  
    private async Task AddSecondCustomerAsync()
    {
        // construct call to invoke UpdateCustomer action method in Web API service
        _response = await _client.PostAsync("api/customer/updatecustomer/",
            _obama, new JsonMediaTypeFormatter());
  
        if (_response.IsSuccessStatusCode)
        {
            // capture newly created customer entity from service, which will include
            // database-generated Ids for all entities
            _obama = await _response.Content.ReadAsAsync<Customer>();
            _whiteHousePhone = _bush.Phones.FirstOrDefault(x => x.CustomerId == _obama.CustomerId);
            _bushMobilePhone = _bush.Phones.FirstOrDefault(x => x.CustomerId == _obama.CustomerId);
  
            Console.WriteLine("Successfully created Customer {0} and {1} Phone Numbers(s)",
                _obama.Name, _obama.Phones.Count);
  
            foreach (var phoneType in _obama.Phones)
            {
                Console.WriteLine("Added Phone Type: {0}", phoneType.PhoneType);
            }
        }
        else
            Console.WriteLine("{0} ({1})", (int) _response.StatusCode, _response.ReasonPhrase);
    }
  
    private async Task RemoveFirstCustomerAsync()
    {
        // remove George Bush from underlying data store.
        // first, fetch George Bush entity, demonstrating a call to the
        // get action method on the service while passing a parameter
        var query = "api/customer/" + _bush.CustomerId;
        _response = _client.GetAsync(query).Result;
  



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

326

        if (_response.IsSuccessStatusCode)
        {
            _bush = await _response.Content.ReadAsAsync<Customer>();
  
            // set tracking state to 'Remove' to generate a SQL Delete statement
            _bush.TrackingState = TrackingState.Remove;
  
            // must also remove bush's mobile number -- must delete child before removing parent
            foreach (var phoneType in _bush.Phones)
            {
                // set tracking state to 'Remove' to generate a SQL Delete statement
                phoneType.TrackingState = TrackingState.Remove;
            }
  
            // construct call to remove Bush from underlying database table
            _response = await _client.PostAsync("api/customer/updatecustomer/", _bush,  
new JsonMediaTypeFormatter());
  
            if (_response.IsSuccessStatusCode)
            {
                Console.WriteLine("Removed {0} from database", _bush.Name);
                foreach (var phoneType in _bush.Phones)
                {
                    Console.WriteLine("Remove {0} from data store", phoneType.PhoneType);
                }
            }
            else
                Console.WriteLine("{0} ({1})", (int) _response.StatusCode, _response.ReasonPhrase);
        }
        else
        {
            Console.WriteLine("{0} ({1})", (int) _response.StatusCode, _response.ReasonPhrase);
        }
    }
  
    private async Task FetchCustomersAsync()
    {
  
        // finally, return remaining customers from underlying data store
        _response = await _client.GetAsync("api/customer/");
  
        if (_response.IsSuccessStatusCode)
        {
            var customers = await _response.Content.ReadAsAsync<IEnumerable<Customer>>();
  
            foreach (var customer in customers)
            {
                Console.WriteLine("Customer {0} has {1} Phone Numbers(s)",
                    customer.Name, customer.Phones.Count());



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

327

                foreach (var phoneType in customer.Phones)
                {
                    Console.WriteLine("Phone Type: {0}", phoneType.PhoneType);
                }
            }
        }
        else
        {
            Console.WriteLine("{0} ({1})", (int) _response.StatusCode, _response.ReasonPhrase);
        }
    }
}
 
	 12.	 Finally, add the same Customer, Phone, BaseEntity, and TrackingState classes that we 

added to service in Listings 9-19 and 9-20. 

Following is the output of our test client from Listing 9-26: 

Successfully created Customer Geroge Bush and 2 Phone Numbers(s)
Added Phone Type: White House Red Phone
Added Phone Type: Bush Mobile Phone
Successfully created Customer Barrack Obama and 2 Phone Numbers(s)
Added Phone Type: Obama Mobile Phone
Added Phone Type: White House Red Phone
Removed Geroge Bush from database
Remove Bush Mobile Phone from data store
Customer Barrack Obama has 2 Phone Numbers(s)
Phone Type: White House Red Phone
Phone Type: Obama Mobile Phone 

How It Works
Start by running the Web API application. The Web API application contains an MVC Web Controller that, when 
started, will bring up a home page. At this point, the site is running and its services are available.

Next open the console application, set a breakpoint on the first line of code in the program.cs file, and run the 
console application. We first establish some basic plumbing—mapping the Web API service URI and configuring the 
Accept Header—that will ask the Web API service to return the data in a JSON format.

We then call the Cleanup action method on the Customer Web API controller using the Client.DeleteAsync 
method exposed by the HttpClient object. This call invokes the Cleanup action method in the service and truncates 
data from the database tables for any previous operations.

Back in the client, we create a new customer and two phone number objects. Note how we explicitly set the 
TrackingState property for each entity in the client to instruct the Entity Framework Change Tracking Components of 
the SQL operation required for each entity.

We then invoke the UpdateCustomer action method from the service by making a call to the PostAsync method 
from the HttpClient object. If you place a breakpoint in the UpdateCustomer Action Method in the Customer Web API 
controller class, you’ll see that it receives the Customer object as a parameter and immediately adds it to the context 
object. Doing so marks the object graph as added, and it causes the context to start tracking it.

Interestingly, we next hook into the underlying DbChangeTracker, which is exposed as a property of the context 
object. DbChangeTracker exposes a generic IEnumerable type of <DbEntityEntry> entitled Entries. We simply 
assign the base EntityType to it. Doing so allows us to enumerate through each of the entities in the context that are of 



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

328

type BaseEntity (the base type from which our entity classes derive in this recipe). For each iteration, we make a call 
to the EntityStateFactory to translate our internal TrackingState enum value to a valid EntityState value used by Entity 
Framework to drive change tracking. If the client set the TrackingState to Modified, we do some additional processing. 
We set the state of the entity (from Modified) to Unchanged and call the GetDatabaseValues method on the Entry 
object, which returns the current values for the entity from the underlying data store. We then assign these current 
values to the OriginalValues collection in the Entry object. Under the hood, the Entity Framework change-tracking 
engine detects any differences between the original and submitted values, and it marks those individual properties as 
Modified and the entity as Modified. The subsequent SaveChanges operation will then only update those properties 
that we changed in the client—not all of the properties in the entity.

Back in the client, we demonstrate adding, modifying, and deleting entity objects by setting the TrackingState. 
The UpdateCustomer method in the service simply translates the TrackingState values to Entity Framework state 
properties and submits the objects to the change-tracking engine for the correct SQL operation.

In this recipe, we’ve seen that we can encapsulate Entity Framework data operations behind a Web API service. 
The client can consume the service by using the HttpClient object that is exposed by the Web API client API. By 
requiring each entity object to derive from a base entity type, we can expose a TrackingState value that the client can 
set to communicate the needed SQL operation to the Entity Framework change-tracking engine.

In a production application, we would most likely create another layer (Visual Studio class project) to separate 
the Entity Framework data access code from the Web API service. More importantly, it would not be difficult to take 
the client-side tracking approach used in this recipe and implement it using generic types. Doing so would allow us to 
reuse the base functionality across all of our entity types, thus reducing large amounts of redundant code.

9-5. Deleting an Entity When Disconnected
Problem
You have an object that you have retrieved from a WCF service and you want to mark it for deletion.

Solution
Suppose that you have a model like the one shown in Figure 9-5.

Figure 9-5.  A model for payments on invoices



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

329

Our model represents payments on invoices. In our application, we have implemented a WCF service to handle 
the database interactions from a client. We want to delete an object, in our case a Payment entity, using the service.  
To keep the solution as simple as possible, we’ll build a WCF service library and define the model inside of it by doing 
the following:

	 1.	 Create a WCF Service Library by right-clicking the solution and selecting Add New Project. 
Select WCF ➤ WCF Service Library. Name the WCF library Recipe5.

	 2.	 Right-click the Recipe5 project, and select Add New Item. Select Data ➤ ADO.NET Entity 
Data Model. Use the wizard to add a model with the Invoice and Payment tables. For 
simplicity, we’ve removed the Payments navigation property on the Invoice entity.  
(Right-click on the Payments navigation property in the Invoice entity in the Entity 
Framework designer, and click Delete From Model.) Right-click the TimeStamp property 
in the Payment entity, select Properties, and set its Concurrency Mode to Fixed. Doing so 
will engage the TimeStamp property in concurrency control, sending the value as part of 
the WHERE clauses in all subsequent SQL update and delete operations.

	 3.	 In the IService1.cs file, change the service definition as shown in Listing 9-27. 

Listing 9-27.  The Service Contract for Our WCF Service

[ServiceContract]
public interface IService1
{
    [OperationContract]
    Payment InsertPayment();
 
    [OperationContract]
    void DeletePayment(Payment payment);
}

 
	 4.	 In the Service1.cs file, implement the service as shown in Listing 9-28. 

Listing 9-28.  The Implementation of Our Service Contract

public class Service1 : IService1
{
    public Payment InsertPayment()
    {
        using (var context = new EFRecipesEntities())
        {
            // delete the previous test data
            context.Database.ExecuteSqlCommand("delete from chapter9.payment");
            context.Database.ExecuteSqlCommand("delete from chapter9.invoice");
 
            var payment = new Payment { Amount = 99.95M, Invoice =
                              new Invoice { Description = "Auto Repair" } };
            context.Payments.Add(payment);
            context.SaveChanges();
            return payment;
        }
    }
 



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

330

    public void DeletePayment(Payment payment)
    {
        using (var context = new EFRecipesEntities())
        {
            context.Entry(payment).State = EntityState.Deleted;
            context.SaveChanges();
        }
    }
}

 
	 5.	 To test our service, we’ll need a client. Add a new Windows Console Application project to 

the solution. Use the code in Listing 9-29 for the client. Add a service reference to the client 
by right-clicking the client project and selecting Add Service Reference. You may need to 
right-click the service project and select Debug ➤ Start Instance to start an instance of 
your service before you can add a service reference in the client.

Listing 9-29.  A Simple Console Application to Test Our WCF Service

class Program
{
    static void Main()
    {
        var client = new Service1Client();
        var payment = client.InsertPayment();
        client.DeletePayment(payment);
    }
}
 
If you set a breakpoint on the first line in the Main() method of the client and debug the application, you can step 

through the insertion and deletion of a Payment entity.

How It Works
In this recipe, we demonstrate a common pattern for updating disconnected entities where the client is consuming 
WCF or Web API services that expose data from Entity Framework.

In the client, we use the InsertPayment() method to insert a new payment into the database. The method returns 
the payment that was inserted. The payment that is returned to the client is disconnected from the DbContext. In fact, 
in a situation such as this, the context object may be in a different process space or on an entirely different computer.

We use the DeletePayment() method to delete the Payment entity from the database. In the implementation 
of this method (see Listing 9-28), we call the Entry() method from the DbContext object passing in an argument of 
payment. We then set the State property for this entity to EntityState.Deleted, which marks the object for deletion. 
SaveChanges() deletes the payment from the database.

The payment object that we attached for deletion had all its properties set as they were when the object was 
inserted into the database. However, because we’re using foreign key association, only the entity key, concurrency 
property, and TimeStamp property are needed for Entity Framework to generate the appropriate where clause 
to delete the entity. The one exception to this rule is when your POCO class has one or more properties that are 
complex types. Because complex types are considered structural parts of an entity, they cannot be null. To keep 
things simple, you could simply create a dummy instance of the complex type, as Entity Framework is building its 
SQL Delete statement from the entity key and concurrency property only. If you leave the complex type property null, 
SaveChanges() will throw an exception.



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

331

If you are using an independent association in which the multiplicity of the related entity is one or 0..1, then Entity 
Framework requires the entity keys of those references to be set correctly in order to generate the appropriate where 
clause of an update or delete statement. In our example, if we had an independent association between Invoice and 
Payment, we would need to set the Invoice navigation property to an instance of Invoice with the correct value for the 
InvoiceId property. The resulting where clause would include the PaymentId, TimeStamp, and InvoiceId.

Note■■  W hen implementing an N-Tier architecture with Entity Framework, serious consideration should be given to 
using the Foreign Key Association approach for related entities. The Independent Association approach is difficult to 
implement and can make your code quite complex. For a great explanation of these approaches, including their benefits 
and drawbacks, check out the following blog post from Arthur Vickers, Developer on the Entity Framework Team:  
whats-the-deal-with-mapping-foreign-keys-using-the-entity-framework. Be certain to check out Arthur’s other 
outstanding blog posts on the Entity Framework.

If your entity object contains several independent associations, setting all of them can quickly become tedious. 
You might find it simpler just to retrieve the instance from the database and mark it for deletion. This makes your code 
a little simpler, but when you retrieve the object from the database, Entity Framework will rewrite the query to bring 
in all of the relationships that are one or 0..1, unless, of course, you are using the NoTracking context option. If this 
Recipe were implementing the Independent Association approach, when we load the Payment entity prior to marking 
for deletion, Entity Framework would create an object state entry for the Payment entity and a relationship entry for 
the relationship between Payment and Invoice. When we marked the Payment entity for deletion, Entity Framework 
would also mark the relationship entry for deletion. Like previously, the resulting where clause would include the 
PaymentId, TimeStamp, and InvoiceId.

Another option for deleting entities in independent associations is to eagerly load the related entities and 
transport the entire object graph back to the WCF or Web API service for deletion. In this example, we could eagerly 
load the related Invoice entity with the Payment entity. If we were to delete the Payment entity, we could send back 
the graph containing both entities to the service. But, be forewarned that this approach consumes more network 
bandwidth and processing time for serialization, so the cost may outweigh the benefit of more clarity in the code.

9-6. Managing Concurrency When Disconnected
Problem
You want to make sure that changes made on an entity by a WCF client are applied only if the concurrency token has 
not changed.

Solution
Let’s suppose that you have a model like the one shown in Figure 9-6.



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

332

We want to update an order using a WCF service while guaranteeing that the order we’re updating has not 
changed since the last time we retrieved the order. We’ll show two slightly different ways to handle this. In both 
approaches, we use a concurrency column, in our case, the TimeStamp column.

	 1.	 Create a WCF Service Library by right-clicking the solution and selecting Add New Project. 
Select WCF ➤ WCF Service Library. Name the project Recipe6.

	 2.	 Right-click the project, and select Add New Item. Select Data ➤ ADO.NET Entity Data Model. 
Use the wizard to add a model with the Order table. In the Entity Framework designer,  
right-click the TimeStamp property, select Properties, and set its Concurrency Mode to Fixed.

	 3.	 In the IService1.cs file, change the service definition as shown in Listing 9-30.

Listing 9-30.  Our WCF Service Contract

[ServiceContract]
public interface IService1
{
    [OperationContract]
    Order InsertOrder();
 
    [OperationContract]
    void UpdateOrderWithoutRetrieving(Order order);
 
    [OperationContract]
    void UpdateOrderByRetrieving(Order order);
}
 
	 4.	 In the Service1.cs file, implement the service as shown in Listing 9-31. 

Listing 9-31.  The Implementation of Our Service Contract

public class Service1 : IService1
{
    public Order InsertOrder()
    {
        using (var context = new EFRecipesEntities())
        {
            // remove previous test data
            context.Database.ExecuteSqlCommand("delete from chapter9.[order]");
 

Figure 9-6.  Our model with a single Order entity



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

333

            var order = new Order { Product = "Camping Tent",
                              Quantity = 3, Status = "Received" };
            context.Orders.Add(order);
            context.SaveChanges();
            return order;
        }
    }
 
    public void UpdateOrderWithoutRetrieving(Order order)
    {
        using (var context = new EFRecipesEntities())
        {
                try
                {
                    context.Orders.Attach(order);
                    if (order.Status == "Received")
                    {
                        context.Entry(order).Property(x => x.Quantity).IsModified = true;
                        context.SaveChanges();
                    }
                }
                catch (OptimisticConcurrencyException ex)
                {
                    // Handle OptimisticConcurrencyException
                     
                }
        }
    }
 
    public void UpdateOrderByRetrieving(Order order)
    {
        using (var context = new EFRecipesEntities())
        {
            // fetch current entity from database
            var dbOrder = context.Orders
                           .Single(o => o.OrderId == order.OrderId);
            if (dbOrder != null &&
                // execute concurrency check
                StructuralComparisons.StructuralEqualityComparer.Equals(order.TimeStamp, dbOrder.TimeStamp))
            {
                dbOrder.Quantity = order.Quantity;
                context.SaveChanges();
            }
      else
      {
         // Add code to handle concurrency issue 
      }
        }
    }
}
 



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

334

	 5.	 To test our service, we’ll need a client. Add a new Windows Console Application project to 
the solution. Use the code in Listing 9-32 for the client. Add a service reference to the client 
by right-clicking the client project and selecting Add Service Reference. You may need to 
right-click the service project and select Debug ➤ Start Instance to start an instance of 
your service before you can add a service reference in the client.

Listing 9-32.  The Client We Use to Test Our WCF Service

class Program
{
    static void Main(string[] args)
    {
        var service = new Service1Client();
        var order = service.InsertOrder();
        order.Quantity = 5;
        service.UpdateOrderWithoutRetrieving(order);
        order = service.InsertOrder();
        order.Quantity = 3;
        service.UpdateOrderByRetrieving(order);
    }
}
 

If you set a breakpoint on the first line in the Main() method of the client and debug the application, you can step 
through inserting the order and updating the order using both methods.

How It Works
Our InsertOrder() method (see Listing 9-31) deletes any previous test data, inserts a new order, and returns the 
order. The order returned has both the database generated OrderId and TimeStamp properties. In our client, we use 
two slightly different approaches to update this order.

In the first approach, UpdateOrderWithoutRetrieving(), we Attach() the order from the client and check 
whether the order status is Received, and, if it is, we mark the entity’s Quantity property as modified and call 
SaveChanges(). Entity Framework will generate an update statement setting the new quantity with a where clause that 
includes both the OrderId and the TimeStamp values from the Order entity. If the TimeStamp value has changed by 
some intermediate update to the database, this update will fail. To capture and handle such a concurrency exception, 
we wrap the operation with Try/Catch construct, trap for an OptimisticConcurrencyException, and handle the 
exception. This ensures that the Order entity we are updating has not been modified between the time we obtained 
it from the InsertOrder() method and the time we updated it in the database. Note in the example how all entity 
properties are updated, whether they have changed or not.

Alternately, you could explicitly check the concurrency of an entity before performing an update. Here you 
could retrieve the target entity from the database and manually compare the TimeStamp properties to determine 
whether an intervening change has occurred. This approach is illustrated in Listing 9-31 with a fresh order by calling 
the UpdateOrderByRetrieving() method. Although not foolproof (the order could be changed by another client 
between the time you retrieve the order from the database, compare TimeStamp values, and call SaveChanges()), this 
approach does provide valuable insight into what properties or associations have changed on an entity. Although not 
efficient as the first approach, this method might be useful if the object graph or entities are large or complex.



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

335

9-7. Serializing Proxies in a WCF Service
Problem
You have a dynamic proxy object returned from a query. You want to serialize the proxy as a plain old CLR object. 
When Implementing POCO-based entity objects (Plain-Old CLR Objects), Entity Framework automatically generates 
a dynamically generated derived type at runtime, known as a dynamic proxy object, for each POCO entity object.  
The proxy object overrides many of the virtual properties of the POCO class to inject hooks for performing actions 
such as change tracking and the lazy loading of related entities.

Solution
Let’s suppose that you have a model like the one shown in Figure 9-7.

Figure 9-7.  A model with a Client entity

We’ll use the ProxyDataContractResolver class to deserialize a proxy object on the server to a POCO object on the 
WCF client. Do the following:

	 1.	 Create a new WCF Service Application. Add an ADO.NET Entity Data Model with the 
Client table. The model should look like the one shown in Figure 9-7.

	 2.	 Open the Client POCO class that Entity Framework generated, and add the virtual 
keyword to each property, as shown in Listing 9-33. Doing so will cause Entity Framework 
to generate dynamic proxy classes.

Note■■  K eep in mind that if you make any changes to the EDMX file, Entity Framework will automatically  
regenerate your underlying classes and overwrite your changes from Step #2. You could repeat your changes or even 
consider modifying the underlying T4 template that generates the entity code.

Listing 9-33.  Our Client POCO Class and Our Object Vontext

public class Client
{
    public virtual int ClientId { get; set; }
    public virtual string Name { get; set; }
    public virtual string Email { get; set; }
}

 



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

336

	 3.	 We need the DataContractSerializer to use a ProxyDataContractResolver class to 
transform the client proxy to the client entity for the WCF service’s client. For this, we’ll 
create an operation behavior attribute and apply the attribute on the GetClient() service 
method. Add the code in Listing 9-34 to create the new attribute. Keep in mind that the 
ProxyDataContractResolver class resides in the Entity Framework namespace.

Listing 9-34.  Our Custom Operation Behavior Attribute

using System.ServiceModel.Description;
using System.ServiceModel.Channels;
using System.ServiceModel.Dispatcher;
using System.Data.Objects;
 
namespace Recipe8
{
    public class ApplyProxyDataContractResolverAttribute : Attribute,
                 IOperationBehavior
    {
        public void AddBindingParameters(OperationDescription description,
                                          BindingParameterCollection parameters)
        {
        }
 
        public void ApplyClientBehavior(OperationDescription description,
                                         ClientOperation proxy)
        {
            DataContractSerializerOperationBehavior
                dataContractSerializerOperationBehavior =
                      description.Behaviors
                       .Find<DataContractSerializerOperationBehavior>();
            dataContractSerializerOperationBehavior.DataContractResolver =
                      new ProxyDataContractResolver();
        }
 
        public void ApplyDispatchBehavior(OperationDescription description,
                    DispatchOperation dispatch)
        {
            DataContractSerializerOperationBehavior
                dataContractSerializerOperationBehavior =
                      description.Behaviors
                       .Find<DataContractSerializerOperationBehavior>();
            dataContractSerializerOperationBehavior.DataContractResolver =
                      new ProxyDataContractResolver();
        }
 
        public void Validate(OperationDescription description)
        {
        }
    }
}

 



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

337

	 4.	 Change the IService1.cs interface using the code in Listing 9-35. 

Listing 9-35.  Our IService1 Interface Definition, Which Replaces the Code in IService1.cs

[ServiceContract]
public interface IService1
{
    [OperationContract]
    void InsertTestRecord();
 
    [OperationContract]
    Client GetClient();
 
    [OperationContract]
    void Update(Client client);
}

 
	 5.	 Change the implementation of the IService1 interface in the IService1.svc.cs file with the  

code shown in Listing 9-36. 

Listing 9-36.  The Implementation of the IService1 Interface, Which Replaces the Code in IService1.svc.cs

public class Client
{
    [ApplyProxyDataContractResolver]
    public Client GetClient()
    {
        using (var context = new EFRecipesEntities())
        {
            context.Cofiguration.LazyLoadingEnabled = false;
            return context.Clients.Single();
        }
    }
 
    public void Update(Client client)
    {
        using (var context = new EFRecipesEntities())
        {
            context.Entry(client).State  =
                   EntityState.Modified;
            context.SaveChanges();
        }
    }
 
    public void InsertTestRecord()
    {
        using (var context = new EFRecipesEntities())
        {
            // delete previous test data
            context.ExecuteSqlCommand("delete from chapter9.client");
 



Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

338

            // insert new test data
            context.ExecuteStoreCommand(@"insert into
                      chapter9.client(Name, Email)
                      values ('Jerry Jones','jjones@gmail.com')");
        }
    }
}

 
	 6.	 Add a Windows Console Application to the solution. This will be our test client. Use the 

code shown in Listing 9-37 to implement our test client. Add a service reference to our 
WCF service.

Listing 9-37.  Our Windows console application test client

using Recipe8Client.ServiceReference1;
 
namespace Recipe8Client
{
    class Program
    {
        static void Main(string[] args)
        {
            using (var serviceClient = new Service1Client())
            {
                serviceClient.InsertTestRecord();
                var client = serviceClient.GetClient();
                Console.WriteLine("Client is: {0} at {1}",
                                    client.Name, client.Email);
                client.Name = "Alex Park";
                client.Email = "AlexP@hotmail.com";
                serviceClient.Update(client);
                client = serviceClient.GetClient();
                Console.WriteLine("Client changed to: {0} at {1}",
                                    client.Name, client.Email);
            }
        }
    }
}

 
Following is the output of our test client: 

Client is: Jerry Jones at jjones@gmail.com
Client changed to: Alex Park at AlexP@hotmail.com 

How It Works
Microsoft recommends using POCO objects with WCF to simplify serialization of the entity object. However, if your 
application is using POCO objects with changed-based notification (you have marked properties as virtual and 
navigation property collections are of type ICollection), then Entity Framework will create dynamic proxies for entities 
returned from queries.

http://jjones@gmail.com/
http://AlexP@hotmail.com/
http://jjones@gmail.com/
http://AlexP@hotmail.com/


Chapter 9 ■ Using the Entity Framework in N-Tier Applications 

339

There are two problems with dynamic proxies and WCF. The first problem has to do with the serialization of the 
proxy. The DataContractSerializer can only serialize and deserialize known types, such as the Client entity in our 
example. However, as Entity Framework generates a dynamic proxy class for the Client entity, we need to serialize the 
proxy class, not the Client. Here is where DataContractResolver comes to the rescue. It can map one type to another 
during serialization. ProxyDataContractResolver derives from DataContractResolver and maps proxy types to POCO 
classes, such as our Client entity. To use the ProxyDataContractResolver, we created an attribute (see Listing 9-34) to 
resolve proxies into POCO classes. We applied this attribute to the GetClient() method in Listing 9-36. This causes 
the dynamic proxy for the Client entity returned by the GetClient() to be correctly serialized for its journey to the 
user of the WCF service.

The second problem with dynamic proxies and WCF has to do with lazy loading. When the 
DataContractSerializer serializes the entity, it accesses each of the properties of the entity that would trigger lazy 
loading of navigation properties. This, of course, is not what we want. To prevent this, we explicitly turned off lazy 
loading in Listing 9-36.



341

Chapter 10

Stored Procedures

Stored procedures are fixtures in the life of just about anyone who uses modern relational database systems such 
as Microsoft’s SQL Server. A stored procedure is a bit of code that lives on the database server and often acts as an 
abstraction layer isolating the code consuming the data from many of the details of the physical organization of the 
data. Stored procedures can increase performance by moving data-intensive computations closer to the data, and 
they can act as a data-side repository for business and security logic. The bottom line is that if you use data, you will 
consume it at some point through a stored procedure.

In this chapter, we explore a number of recipes specifically focused on using stored procedures with Entity 
Framework. We used stored procedures in other recipes throughout this book, but usually they were in the context 
of implementing Insert, Update, and Delete actions. In this chapter, we’ll show you several ways to consume the data 
exposed by stored procedures.

10-1. Returning an Entity Collection with Code Second 
Problem
You want to get an entity collection from a stored procedure using a code-second approach.

Solution
Code second refers to the practice of applying Code-First techniques to model an existing database schema.

Let’s say that you have a POCO model like the one shown in Listing 10-1.

Listing 10-1.  The Customer POCO Model

    public class Customer
    {
        public int CustomerId { get; set; }
        public string Name { get; set; }
        public string Company { get; set; }
        public string ContactTitle { get; set; }
    }
 

We’ve set up our DbContext subclass and have configured our Customer entities in Listing 10-2.



Chapter 10 ■ Stored Procedures

342

Listing 10-2.  The DbContext Subclass for Customer Entities

    public class EF6RecipesContext : DbContext
    {
        public DbSet<Customer> Customers { get; set; }
 
        public EF6RecipesContext() : base("name=EF6CodeFirstRecipesContext")
        {
             
        }
 
        protected override void OnModelCreating(DbModelBuilder modelBuilder)
        {
            base.OnModelCreating(modelBuilder);
 
            modelBuilder.Types<Customer>()
                        .Configure(c =>
                           {
                               c.HasKey(cust => cust.CustomerId);
                                            
                               c.Property(cust => cust.CustomerId)                                           
.HasDatabaseGeneratedOption(DatabaseGeneratedOption.Identity);
                                            
                               c.Property(cust => cust.Name)
                                .HasMaxLength(50);
 
                               c.Property(cust => cust.Company)
                                .HasMaxLength(50);
 
                               c.Property(cust => cust.ContactTitle)
                                .HasMaxLength(50);
 
                               c.ToTable("Customer", "Chapter10");
                           });
        }
    }
 

In the database, we have defined the stored procedure in Listing 10-3, which returns customers for given a 
company name and customer title.

Listing 10-3.  GetCustomers Returns All of the Customers with the Given Title in the Given Company.

create procedure Chapter10.GetCustomers
(@Company varchar(50),@ContactTitle varchar(50))
as
begin
select * from
chapter10.Customer where
(@Company is null or Company = @Company) and
(@ContactTitle is null or ContactTitle = @ContactTitle)
End
 



Chapter 10 ■ Stored Procedures

343

To use the GetCustomers stored procedure in the model, do the following.

	 1.	 Create a new public method called GetCustomers in the DbContext subclass that takes two 
string parameters and returns a collection of Customer objects, as shown in Listing 10-4.

Listing 10-4.  A New Method to Return a Collection of Customer Objects

public ICollection<Customer> GetCustomers(string company, string contactTitle)
{
    throw new NotImplementedException();
} 

	 2.	 Implement the GetCustomers() method by calling SqlQuery on the DbContext.Database 
object (see Listing 10-5).

Listing 10-5.  DbContext Subclass with GetCustomers() Implementation

public class EF6RecipesContext : DbContext
{
    public DbSet<Customer> Customers { get; set; }
 
    public EF6RecipesContext() : base("name=EF6CodeFirstRecipesContext")
    {
             
    }
 
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        base.OnModelCreating(modelBuilder);
 
        modelBuilder.Types<Customer>()
                    .Configure(c =>
                           {
                               c.HasKey(cust => cust.CustomerId);
                                            
                               c.Property(cust => cust.CustomerId)
                                   .HasDatabaseGeneratedOption(DatabaseGeneratedOption.Identity);
                                            
                               c.Property(cust => cust.Name)
                                .HasMaxLength(50);
 
                               c.Property(cust => cust.Company)
                                .HasMaxLength(50);
 
                               c.Property(cust => cust.ContactTitle)
                                .HasMaxLength(50);
 
                               c.ToTable("Customer", "Chapter10");
                           });
    }
 



Chapter 10 ■ Stored Procedures

344

    public ICollection<Customer> GetCustomers(string company, string contactTitle)
    {
        return Database.SqlQuery<Customer>(�"EXEC Chapter10.GetCustomers @Company,  

                        @ContactTitle"
                                  , new SqlParameter("Company", company)
                                  , new SqlParameter("ContactTitle", contactTitle))
                                  .ToList();
    }
}
 

	 3.	 Follow the pattern in Listing 10-6 to use the GetCustomers stored procedure.

Listing 10-6.   Querying the Model with the GetCustomers Stored Procedure via the GetCustomers() 
Method

//Add customers to the database that we will query with our stored procedure.
using (var context = new EF6RecipesContext())
{
    var c1 = new Customer {Name = "Robin Steele", Company = "GoShopNow.com",
                           ContactTitle="CEO"};
    var c2 = new Customer {Name = "Orin Torrey", Company = "GoShopNow.com",
                           ContactTitle="Sales Manager"};
    var c3 = new Customer {Name = "Robert Lancaster", Company = "GoShopNow.com",
                           ContactTitle = "Sales Manager"};
    var c4 = new Customer { Name = "Julie Stevens", Company = "GoShopNow.com",
                           ContactTitle = "Sales Manager" };
    context.Customers.Add(c1);
    context.Customers.Add(c2);
    context.Customers.Add(c3);
    context.Customers.Add(c4);
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    var allCustomers = context.GetCustomers("GoShopNow.com", "Sales Manager");
    Console.WriteLine("Customers that are Sales Managers at GoShopNow.com");
    foreach (var c in allCustomers)
    {
        Console.WriteLine("Customer: {0}", c.Name);
    }
}
 

The following is the output of the code in Listing 10-6: 

Customers that are Sales Managers at GoShopNow.com
Customer: Orin Torrey
Customer: Robert Lancaster
Customer: Julie Stevens

http://goshopnow.com/
http://goshopnow.com/
http://goshopnow.com/
http://goshopnow.com/
http://goshopnow.com/
http://goshopnow.com/
http://goshopnow.com/


Chapter 10 ■ Stored Procedures

345

How It Works
To retrieve an entity collection from a stored procedure in the database, we implemented a new method in  
the DbContext subclass called GetCustomers(). Within the method implementation, we call  
DbContext.Database.SqlQuery<T>() to execute the GetCustomers stored procedure, which we defined in Listing 10-3.

The SqlQuery() method can be used to execute nearly any DML statement that returns a result set. The method 
takes a string parameter to specify the query to execute, as well as additional SQL parameters to be substituted in the 
query itself. The SqlQuery<T>() generic method will return a strongly-typed collection of T entities, which allows  
the developer to avoid enumerating and casting a collection of objects.

10-2. Returning Output Parameters 
Problem
You want to retrieve values from one or more output parameters of a stored procedure.

Solution
Let’s say you have a model like the one shown in Figure 10-1.

Figure 10-1.  A simple model for vehicle rental

For a given date, you want to know the total number of rentals, the total rental payments made, and the vehicles 
rented. The stored procedure in Listing 10-7 is one way to get the information you want.

Listing 10-7.  A Stored Procedure for the Vehicles Rented, the Number of Rentals, and the Total Rental Payments

create procedure [chapter10].[GetVehiclesWithRentals]
(@date date,
@TotalRentals int output,
@TotalPayments decimal(18,2) output)
as
begin
  select @TotalRentals = COUNT(*), @TotalPayments = SUM(payment)
  from chapter10.Rental
  where RentalDate = @date
 



Chapter 10 ■ Stored Procedures

346

  select distinct v.*
  from chapter10.Vehicle v join chapter10.Rental r
  on v.VehicleId = r.VehicleId
end
 

To use the stored procedure in Listing 10-7 in the model, do the following.

	 1.	 Right-click the design surface, and select Update Model From Database. In the dialog 
box, select the GetVehiclesWithRentals stored procedure. Click Finish to add the stored 
procedure to the model.

	 2.	 Right-click the design surface, and select Add ➤ Function Import. Select the 
GetVehiclesWithRentals stored procedure from the Stored Procedure Name drop-down. 
In the Function Import Name text box, enter GetVehiclesWithRentals. This will be the 
name used for the method in the model. Select the Entities Return Type, and select Vehicle 
in the drop-down. Click OK.

	 3.	 Follow the pattern in Listing 10-8 to use the GetVehiclesWithRentals stored procedure.

Listing 10-8.  Querying the Model Using the GetVehiclesWithRentals Stored Procedure via the 
GetVehiclesWithRentals() method

using (var context = new EF6RecipesContext())
{
    var car1 = new Vehicle { Manufacturer = "Toyota", Model = "Camry",
                             Year = 2013 };
    var car2 = new Vehicle { Manufacturer = "Chevrolet", Model = "Corvette",
                             Year = 2013 };
    var r1 = new Rental { Vehicle = car1,
                          RentalDate = DateTime.Parse("5/7/2013"),
                          Payment = 59.95M };
    var r2 = new Rental { Vehicle = car2,
                          RentalDate = DateTime.Parse("5/7/2013"),
                          Payment = 139.95M };
    context.AddToRentals(r1);
    context.AddToRentals(r2);
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    string reportDate = "5/7/2013";
    var totalRentals = new ObjectParameter("TotalRentals", typeof(int));
    var totalPayments = new ObjectParameter("TotalPayments", typeof(decimal));
    var vehicles = context.GetVehiclesWithRentals(DateTime.Parse(reportDate),
                     totalRentals, totalPayments);
    Console.WriteLine("Rental Activity for {0}",reportDate);
    Console.WriteLine("Vehicles Rented");
    foreach(var vehicle in vehicles)
    {
        Console.WriteLine("{0} {1} {2}",vehicle.Year.ToString(),
                           vehicle.Manufacturer, vehicle.Model);
    }



Chapter 10 ■ Stored Procedures

347

    Console.WriteLine("Total Rentals: {0}",
                       ((int)totalRentals.Value).ToString());
    Console.WriteLine("Total Payments: {0}",
                       ((decimal)totalPayments.Value).ToString("C"));
}
 

The following is the output of the code in Listing 10-8: 

Rental Activity for 5/7/2013
Vehicles Rented
2013 Toyota Camry
2013 Chevrolet Corvette
Total Rentals: 2
Total Payments: $200.00

How It Works
When we updated the model with the GetVehiclesWithRentals stored procedure, the wizard updated the store 
model with the stored procedure. By importing the function (in Step 2), we updated the conceptual model. The result 
is that the stored procedure is exposed as the GetVehiclesWithRentals() method, which has a signature semantically 
similar to the stored procedure.

There is one important thing to note when calling the GetVehiclesWithRentals() method: the returned entity 
collection must be materialized before the output parameters will become available. This should not be too surprising 
to those who have used multiple result sets in ADO.NET. The data reader must be advanced (with the NextResult() 
method) to the next result set. Similarly, the entire returned entity collection must be accessed or disposed before the 
output parameters can be accessed.

In our example, it is not enough to materialize the first vehicle for the output parameters to become available. 
The entire collection must be materialized. This means moving the lines that print the total rentals and total payments 
to a position after the foreach loop. Alternatively, we could materialize the entire collection with the ToList() 
method and then iterate through the list. This would allow us to access the output parameters prior to iterating 
through the collection.

10-3. Returning a Scalar Value Result Set 
Problem
You want to use a stored procedure that returns a result set containing a single scalar value.

Solution
Let’s say you have a model like the one shown in Figure 10-2.



Chapter 10 ■ Stored Procedures

348

You want to use a stored procedure that returns the total amount withdrawn from a given ATM on a given date. 
The code in Listing 10-9 is one way to implement this stored procedure.

Listing 10-9.  The GetWithdrawals Stored Procedure That Returns the Total Amount Withdrawn from a Given ATM  
on a Given Date

create procedure [Chapter10].[GetWithdrawals]
(@ATMId int, @WithdrawalDate date)
as
begin
        select SUM(amount) TotalWithdrawals
        from Chapter10.ATMWithdrawal
        where ATMId = @ATMId and [date] = @WithdrawalDate
end
 

To use the stored procedure in Listing 10-9 in the model, do the following:

	 1.	 Right-click the design surface, and select Update Model From Database. In the dialog box, 
select the GetWithdrawals stored procedure. Click Finish to add the stored procedure to 
the model.

	 2.	 Right-click the design surface, and select Add ➤ Function Import. Select the 
GetWithdrawals stored procedure from the Stored Procedure Name drop-down. In the 
Function Import Name text box, enter GetWithdrawals. This will be the name used for the 
method in the model. Select the Scalars Return Type, and select Decimal in the  
drop-down. Click OK.

	 3.	 Follow the pattern in Listing 10-10 to use the GetWithdrawals stored procedure.

Listing 10-10.  Querying the Model with the GetWithdrawals Stored Procedure via the GetWithdrawals() 
Method

DateTime today = DateTime.Parse("5/7/2013");
DateTime yesterday = DateTime.Parse("5/6/2013");
using (var context = new EF6RecipesContext())
{
    var atm = new ATMMachine { ATMId = 17, Location = "12th and Main" };
    atm.ATMWithdrawals.Add(new ATMWithdrawal {Amount = 20.00M, Date= today});
    atm.ATMWithdrawals.Add(new ATMWithdrawal {Amount = 100.00M, Date = today});

Figure 10-2.  A model representing ATM machines and withdrawal transactions



Chapter 10 ■ Stored Procedures

349

    atm.ATMWithdrawals.Add(new ATMWithdrawal {Amount = 75.00M, Date = yesterday});
    atm.ATMWithdrawals.Add(new ATMWithdrawal {Amount = 50.00M, Date=  today});
    context.ATMMachines.Add(atm);
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    var forToday = context.GetWithdrawals(17, today).FirstOrDefault();
    var forYesterday = context.GetWithdrawals(17, yesterday).FirstOrDefault();
    var atm = context.ATMMachines.Where(o => o.ATMId == 17).FirstOrDefault();
    Console.WriteLine("ATM Withdrawals for ATM at {0} at {1}",
             atm.ATMId.ToString(), atm.Location);
    Console.WriteLine("\t{0} Total Withdrawn = {1}",
             yesterday.ToShortDateString(), forYesterday.Value.ToString("C"));
    Console.WriteLine("\t{0} Total Withdrawn = {1}", today.ToShortDateString(),
             forToday.Value.ToString("C"));
}
 

The following is the output from the code in Listing 10-10: 

ATM Withdrawals for ATM at 17 at 12th and Main
        5/6/2013 Total Withdrawn = $75.00
        5/7/2013 Total Withdrawn = $170.00

How It Works
Notice that Entity Framework expects the stored procedure to return a collection of scalar values. In our example, 
our store procedure returns just one decimal value. We use the FirstOrDefault() method to extract this scalar from 
the collection.

10-4. Returning a Complex Type from a Stored Procedure
Problem
You want to use a stored procedure that returns a complex type in the model.

Solution
Let’s say that you have a model with an Employee entity. Employee contains the employee’s ID, name, and a complex 
address type that holds the address, city, state, and ZIP code for the employee. The name of the complex type is 
EmployeeAddress. The property in the Employee entity is simply Address. The Employee entity is shown in Figure 10-3.



Chapter 10 ■ Stored Procedures

350

You want to use a stored procedure to return a collection of instances of the EmployeeAddress complex type. The 
stored procedure that returns the addresses might look like the one shown in Listing 10-11.

Listing 10-11.  A Stored Procedure to Return the Addresses for Employees in a Given City

create procedure [Chapter10].[GetEmployeeAddresses]
(@city varchar(50))
as
begin
        select [address], city, [state], ZIP
        from Chapter10.Employee where city = @city
end
 

To use the stored procedure in Listing 10-11 in the model, do the following.

	 1.	 Right-click the design surface, and select Update Model From Database. In the dialog 
box, select the GetEmployeeAddresses stored procedure. Click Finish to add the stored 
procedure to the model.

	 2.	 Right-click the design surface, and select Add ➤ Function Import. Select the 
GetEmployeeAddresses stored procedure from the Stored Procedure Name drop-down. 
In the Function Import Name text box, enter GetEmployeeAddresses. This will be the 
name used for the method in the model. Select the Complex Return Type, and select 
EmployeeAddress in the drop-down. Click OK.

	 3.	 Follow the pattern in Listing 10-12 to use the GetEmployeeAddresses stored procedure.

Listing 10-12.  Querying the Model Using the GetEmployeeAddresses Stored Procedure via the 
GetEmployeeAddresses() Method

using (var context = new EF6RecipesContext())
{
    var emp1 = new Employee { Name = "Lisa Jefferies",
                    Address = new EmployeeAddress {
                                 Address = "100 E. Main",
                                 City = "Fort Worth", State = "TX",
                                 ZIP = "76106" } };
    var emp2 = new Employee { Name = "Robert Jones",

Figure 10-3.  An Employee entity with an Address property of type EmployeeAddress, which is a complex type



Chapter 10 ■ Stored Procedures

351

                    Address = new EmployeeAddress {
                                Address = "3920 South Beach",
                                City = "Fort Worth", State = "TX",
                                ZIP = "76102" } };
    var emp3 = new Employee { Name = "Steven Chue",
                    Address = new EmployeeAddress {
                                Address = "129 Barker",
                                City = "Euless", State = "TX",
                                ZIP = "76092" } };
    var emp4 = new Employee { Name = "Karen Stevens",
                    Address = new EmployeeAddress {
                                Address = "108 W. Parker",
                                City = "Fort Worth", State = "TX",
                                ZIP = "76102" } };
    context.Employees.Add(emp1);
    context.Employees.Add(emp2);
    context.Employees.Add(emp3);
    context.Employees.Add(emp4);
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    Console.WriteLine("Employee addresses in Fort Worth, TX");
    foreach (var address in context.GetEmployeeAddresses("Fort Worth"))
    {
        Console.WriteLine("{0}, {1}, {2}, {3}", address.Address,
                           address.City, address.State, address.ZIP);
    }
}
 

The following is the output of the code in Listing 10-12:
 

Employee addresses in Fort Worth, TX
100 E. Main, Fort Worth, TX, 76106
3920 South Beach, Fort Worth, TX, 76102
108 W. Parker, Fort Worth, TX, 76102

How It Works
Complex types offer a convenient way to refactor repeated groups of properties into a single type that can be 
reused across many entities. In this recipe, we created a stored procedure that returned the address information for 
employees in a given city. In the model, we mapped these returned columns to the fields of the EmployeeAddress 
complex type. The GetEmployeeAdresses() method is defined by the Function Import Wizard to return a collection of 
instances of the EmployeeAddress type.

Complex types are often used to hold arbitrarily shaped data returned from a stored procedure. The data is not 
required to map to any entity in the model. Because complex types are not tracked by the object context, they are both 
a lightweight and efficient alternative to handling shaped data in the model.



Chapter 10 ■ Stored Procedures

352

10-5. Defining a Custom Function in the Storage Model
Problem
You want to define a custom function inside the model rather than a stored procedure in the database.

Solution
Let’s say that you have a database that keeps track of members and the messages they have sent. Figure 10-4 shows 
one representation of this database.

Figure 10-5.  The model for members and their messages

Figure 10-4.  A simple database of members and their messages

It may be the case that, as an entry-level programmer, you have not been granted access to the database to create 
stored procedures. However, being wise and productive, you want to encapsulate the query logic for finding the 
members with the highest number of messages into a reusable custom function in the storage model procedure. The 
model looks like the one shown in Figure 10-5.

To define the custom function in the storage model, do the following:

	 1.	 Right-click the .edmx file, and select Open With ➤ XML (Text) Editor. This will open the 
.edmx file in the XML editor.

Add the code in Listing 10-13 into the <Schema> element. This defines the custom function.



Chapter 10 ■ Stored Procedures

353

Listing 10-13.  The Definition of the Custom Function MembersWithTheMostMessages

<Function Name="MembersWithTheMostMessages" IsComposable="false">
  <CommandText>
    select m.*
    from chapter10.member m
    join
    (
    select msg.MemberId, count(msg.MessageId) as MessageCount
    from chapter10.message msg where datesent = @datesent
    group by msg.MemberId
    ) temp on m.MemberId = temp.MemberId
    order by temp.MessageCount desc
  </CommandText>
  <Parameter Name="datesent" Type="datetime" />
</Function> 

	 2.	 Open the .edmx file in the Designer. Right-click the design surface, and select Add ➤ Function 
Import. In the dialog box, select the MembersWithTheMostMessages in the Stored Procedure 
Name drop-down. Enter MembersWithTheMostMessages in the Function Import Name text 
box. Finally, select Entities as the return type and choose Member as the entity type. Click OK.

	 3.	 Follow the pattern in Listing 10-14 to use the MembersWithTheMostMessages() method, 
which exposes the MembersWithTheMostMessages custom function.

Listing 10-14.  Using the MembersWithTheMostMessages Function via the 
MembersWithTheMostMessages() method

DateTime today = DateTime.Parse("5/7/2013");
using (var context = new EF6RecipesContext())
{
    var mem1 = new Member { Name = "Jill Robertson" };
    var mem2 = new Member { Name = "Steven Rhodes" };
    mem1.Messages.Add(new Message { DateSent = today,
                                    MessageBody = "Hello Jim",
                                    Subject = "Hello" });
    mem1.Messages.Add(new Message { DateSent = today,
                                    MessageBody = "Wonderful weather!",
                                    Subject = "Weather" });
    mem1.Messages.Add(new Message { DateSent = today,
                                    MessageBody = "Meet me for lunch",
                                    Subject = "Lunch plans" });
    mem2.Messages.Add(new Message { DateSent = today,
                                    MessageBody = "Going to class today?",
                                    Subject = "What's up?" });
    context.Members.Add(mem1);
    context.Members.Add(mem2);
    context.SaveChanges();
}
 



Chapter 10 ■ Stored Procedures

354

using (var context = new EF6RecipesContext())
{
    Console.WriteLine("Members by message count for {0}",
                       today.ToShortDateString());
    var members = context.MembersWithTheMostMessages(today);
    foreach (var member in members)
    {
        Console.WriteLine("Member: {0}", member.Name);
    }
}
 

Following is the output of the code in Listing 10-14: 

Members by message count for 5/7/2013
Member: Jill Robertson
Member: Steven Rhodes

How It Works
A custom function is different from a model-defined function (see Chapter 11) in that a custom function is defined in the 
storage model. This makes the custom function much more like a traditional stored procedure in a database. Just like a 
DefiningQuery in the storage model defines a “virtual” table that doesn’t really exist in the database, a custom function 
in the storage model is like a “virtual” stored procedure. Some in the Entity Framework community refer to custom 
functions as native functions. The Microsoft documentation uses the term “custom function,” so we’ll go with that.

The code in Listing 10-13 defines our custom function. We put this in the storage model section of the .edmx 
file by directly editing the file using the XML editor. Note that if you use the Update From Database Wizard to update 
the model with new objects from your database, the wizard will overwrite this section. So be careful to save out any 
changes that you’ve made to the storage model before you use the Update From Database Wizard.

Just like with the stored procedures in the previous recipes, we used the Function Import Wizard to map the 
custom function to a CLR method. This defines the name of the CLR method and the expected return type. In our 
case, the Custom Function returns a collection of instances of the Member entity.

In Listing 10-14, the code uses the MembersWithTheMostMessages() method to invoke the custom function. This 
is the same pattern we used with stored procedures.

Custom functions can be helpful in the following scenarios:

You don’t have permissions to create the stored procedures you need in the database.•	

You want to manage deployments of the code and the database separately. Using one or more •	
custom functions, you can deploy your code without deploying new stored procedures for the 
database.

The existing stored procedures in the database have parameters that are incompatible with •	
your entities. Using custom functions, you can create an abstraction layer that drops, adds, or 
changes types between the stored procedure parameters and the properties on your entity.



Chapter 10 ■ Stored Procedures

355

10-6. Populating Entities in a Table per Type Inheritance Model 
Problem
You want to use a stored procedure to populate entities in a Table per Type inheritance model.

Solution
Let’s say the model looks like the one shown in Figure 10-6. In this model, the entities Magazine and DVD extend 
the base entity Media. In the underlying database, we have a table for each of these entities. We have modeled these 
tables using Table per Type inheritance. We want to use a stored procedure to obtain the data for this model from 
the database.

Figure 10-6.  A model using Table per Type inheritance. The model represents some information about magazines  
and DVDs

Tip■■   Need to brush up on Table per Type modeling and its performance implications? Check out Recipe 2-8 in  
Chapter 2.



Chapter 10 ■ Stored Procedures

356

To create and use a stored procedure that returns these entities, do the following.

	 1.	 In your database, create the stored procedure in Listing 10-15.

Listing 10-15.  The GetAllMedia Stored Procedure That Returns a Rowset with a Discriminator Column

create procedure [Chapter10].[GetAllMedia]
as
begin
select m.MediaId,c.Title,m.PublicationDate, null PlayTime,'Magazine' MediaType
from chapter10.Media c join chapter10.Magazine m on c.MediaId = m.MediaId
union
select d.MediaId,c.Title,null,d.PlayTime,'DVD'
from chapter10.Media c join chapter10.DVD d on c.MediaId = d.MediaId
end
 

	 2.	 Right-click the design surface, and select Update Model from Database. Select the 
GetAllMedia stored procedure. Click Finish to add the stored procedure to the model.

	 3.	 Right-click the design surface, and select Add ➤ Function Import. In the dialog box, select 
the GetAllMedia stored procedure. Enter GetAllMedia in the Function Import Name text 
box. Select Entities as the type of collection and Media as the type of entity returned. Click 
OK. This will create the skeleton <FunctionImportMapping>. 

	 4.	 Right-click the .edmx file, and select Open With ➤ XML Editor. Edit the 
<FunctionImportMapping> tag in the mapping section of the .edmx file to match the 
code in Listing 10-16. This maps the rows returned by the stored procedure either to the 
Magazine or to the DVD entity based on the MediaType column.

Listing 10-16.  This FunctionImportMapping Conditionally Maps the Returned Rows to Either the 
Magazine or the DVD Entity.

<FunctionImportMapping FunctionImportName="GetAllMedia"
 FunctionName="EF6RecipesModel.Store.GetAllMedia">
  <ResultMapping>
    <EntityTypeMapping TypeName="EF6RecipesModel.Magazine">
      <ScalarProperty ColumnName="PublicationDate" Name="PublicationDate"/>
      <Condition ColumnName="MediaType" Value="Magazine"/>
    </EntityTypeMapping>
    <EntityTypeMapping TypeName="EF6RecipesModel.DVD">
      <ScalarProperty ColumnName="PlayTime" Name="PlayTime"/>
      <Condition ColumnName="MediaType" Value="DVD"/>
    </EntityTypeMapping>
  </ResultMapping>
</FunctionImportMapping>

 
	 5.	 Follow the pattern in Listing 10-17 to use the GetAllMedia stored procedure via the 

GetAllMedia() method. 



Chapter 10 ■ Stored Procedures

357

Listing 10-17.  Using the GetAllMedia Stored Procedure via the GetAllMedia() Method

Using (var context = new EF6RecipesContext())
{
    context.MediaSet.Add(new Magazine { Title = "Field and Stream",
                        PublicationDate = DateTime.Parse("6/12/1945") });
    context.MediaSet.Add(new Magazine { Title = "National Geographic",
                        PublicationDate = DateTime.Parse("7/15/1976") });
    context.MediaSet.Add(new DVD { Title = "Harmony Road",
                        PlayTime = "2 hours, 30 minutes" });
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    var allMedia = context.GetAllMedia();
    Console.WriteLine("All Media");
    Console.WriteLine("=========");
    foreach (var m in allMedia)
    {
        if (m is Magazine)
            Console.WriteLine("{0} Published: {1}", m.Title,
                            ((Magazine)m).PublicationDate.ToShortDateString());
        else if (m is DVD)
            Console.WriteLine("{0} Play Time: {1}", m.Title, ((DVD)m).PlayTime);
    }
}
 

The following is the output of the code in Listing 10-17: 

All Media
=========
Field and Stream Published: 6/12/1945
National Geographic Published: 7/15/1976
Harmony Road Play Time: 2 hours, 30 minutes

How It Works
The two key parts to the solution are the discriminator column injected into the result set by the stored procedure and 
the conditional mapping of the results to the Magazine and DVD entities.

Note■■  T he discriminator column is a metadata column that specifies the type of object represented by the database  
record.



Chapter 10 ■ Stored Procedures

358

The stored procedure in Listing 10-15 forms a union of rows from the Magazine and DVD tables, and it injects the 
strings Magazine or DVD into the MediaType discriminator column. For each select, we join to the Media table, which 
is represented in the model by the base entity, to include the Title column. All of the rows from all three tables are now 
in the result set with each row tagged to indicate the table from where it came.

With each row tagged with either Magazine or DVD, we conditionally map the rows either to the Magazine or 
DVD entities based on the tag or value in the discriminator column. This is done in the <FunctionImportMapping> 
section.

In Listing 10-17, we call the CLR method GetAllMedia(), which we mapped to the GetAllMedia stored 
procedure when we added the Function Import. When we call GetAllMedia(), the entire object graph is 
materialized with the inheritance hierarchy intact. We iterate through the collection, alternately printing out the 
Magazine and DVD entities.

10-7. Populating Entities in a Table per Hierarchy  
Inheritance Model
Problem
You want to use a stored procedure to populate entities in a Table per Hierarchy inheritance model.

Solution
Suppose you have a model like the one shown in Figure 10-7. We have two derived entities: Instructor and Student. 
Because this model is using Table per Hierarchy inheritance, we have just one table in the database. The Person table 
has a discriminator column that is used to map the table to the derived entities. You want to populate the entities with 
a stored procedure.

Figure 10-7.  A model for instructors and students



Chapter 10 ■ Stored Procedures

359

To create and use a stored procedure that returns these entities, do the following:

	 1.	 In your database, create the stored procedure in Listing 10-18. This stored procedure 
returns all of the people in the hierarchy.

Listing 10-18.  The GetAllPeople Stored Procedure, Which Returns All the People, Both  
Students and Instructors, in the Model

create procedure [Chapter10].[GetAllPeople]
as
begin
select * from chapter10.Person
end

 
	 2.	 Right-click the design surface, and select Update Model from Database. Select the 

GetAllPeople stored procedure. Click Finish to add the stored procedure to the model.

	 3.	 Right-click the design surface, and select Add  ➤ Function Import. In the dialog box, select 
the GetAllPeople stored procedure. Enter GetAllPeople in the Function Import Name 
text box. Select Entities as the type of collection and Person as the type of entity returned. 
Click OK. This will create the skeleton <FunctionImportMapping> section. 

	 4.	 Right-click the .edmx file, and select Open With  ➤ XML Editor. Edit the 
<FunctionImportMapping> tag in the mapping section of the .edmx file to match the 
code in Listing 10-19. This maps the rows returned by the stored procedure either to the 
Instructor or to Student entity based on the PersonType column.

Listing 10-19.  The FunctionImportMapping Conditionally Maps Rows to Either the  
Instructor or Student Entity

<FunctionImportMapping FunctionImportName="GetAllPeople"
        FunctionName="EF6RecipesModel.Store.GetAllPeople">
  <ResultMapping>
    <EntityTypeMapping TypeName="EFRecipesModel.Student">
      <ScalarProperty Name="Degree" ColumnName="Degree" />
      <Condition ColumnName="PersonType" Value="Student"/>
    </EntityTypeMapping>
    <EntityTypeMapping TypeName="EF6RecipesModel.Instructor">
      <ScalarProperty Name="Salary" ColumnName="Salary"/>
      <Condition ColumnName="PersonType" Value="Instructor"/>
    </EntityTypeMapping>
  </ResultMapping>
</FunctionImportMapping>

 
	 5.	 Follow the pattern in Listing 10-20 to use the GetAllPeople stored procedure via the 

GetAllPeople() method

Listing 10-20.  Querying the Model Using the GetAllPeople Stored Procedure via  
the GetAllPeople() Method.

using (var context = new EF6RecipesContext())
{
    context.People.Add(new Instructor { Name = "Karen Stanford",
                                              Salary = 62500M });
    context.People.Add(new Instructor { Name = "Robert Morris",
                                              Salary = 61800M });



Chapter 10 ■ Stored Procedures

360

    context.People.Add(new Student { Name = "Jill Mathers",
                                           Degree = "Computer Science" });
    context.People.Add(new Student { Name = "Steven Kennedy",
                                           Degree = "Math" });
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    Console.WriteLine("Instructors and Students");
    var allPeople = context.GetAllPeople();
    foreach (var person in allPeople)
    {
        if (person is Instructor)
            Console.WriteLine("Instructor {0} makes {1}/year",
                                person.Name,
                                ((Instructor)person).Salary.ToString("C"));
        else if (person is Student)
            Console.WriteLine("Student {0}'s major is {1}",
                                person.Name, ((Student)person).Degree);
    }
}
 

The following is the output of the code in Listing 10-20: 

Instructors and Students
Instructor Karen Stanford makes $62,500.00/year
Instructor Robert Morris makes $61,800.00/year
Student Jill Mathers's major is Computer Science
Student Steven Kennedy's major is Math

How It Works
Using a stored procedure to populate entities in a Table per Hierarchy inheritance model turns out to be a little easier 
than for Table per Type (see Recipe 10-6). Here the stored procedure just selected all rows in the Person table. The 
PersonType column contains the discriminator value that we use in <FunctionImportMapping> in Listing 10-19 to 
map the rows conditionally either to the Student or to the Instructor entity. In Recipe 10-6, the stored procedure 
had to create the column. In this recipe as well as in Recipe 10-6, the key part is the conditional mapping in the 
<FunctionImportMapping> tag.

10-8. Mapping the Insert, Update, and Delete Actions to Stored 
Procedures 
Problem
You want to map the Insert, Update, and Delete actions to stored procedures.



Chapter 10 ■ Stored Procedures

361

Solution
Let’s say you have a model with the Athlete entity shown in Figure 10-8. The underlying database has the Athlete table 
shown in Figure 10-9. You want to use stored procedures for the Insert, Update, and Delete actions.

Figure 10-9.  The Athlete table with some basic information about athletes

Figure 10-8.  The Athlete entity in the model

To map stored procedures to the Insert, Update, and Delete actions for the Athlete entity, do the following:

	 1.	 In your database, create the stored procedures in Listing 10-21.

Listing 10-21.  The Stored Procedures for the Insert, Update, and Delete Actions

create procedure [chapter10].[InsertAthlete]
(@Name varchar(50), @Height int, @Weight int)
as
begin
        insert into Chapter10.Athlete values (@Name, @Height, @Weight)
       select SCOPE_IDENTITY() as AthleteId
end
go
 
create procedure [chapter10].[UpdateAthlete]
(@AthleteId int, @Name varchar(50), @Height int, @Weight int)
as
begin
        update Chapter10.Athlete set Name = @Name, Height = @Height, [Weight] = @Weight
        where AthleteId = @AthleteId



Chapter 10 ■ Stored Procedures

362

end
go
 
create procedure [chapter10].[DeleteAthlete]
(@AthleteId int)
as
begin
        delete from Chapter10.Athlete where AthleteId = @AthleteId
end

	 2.	 Right-click the design surface and select Update Model from Database. Select the new 
stored procedures from Listing 10-19 and click Finish. This will add the stored procedures 
to the model.

	 3.	 Right-click the Athlete Entity, and select Stored Procedure Mapping. Select the stored 
procedures for each of the actions. For the Insert action, map the return column AthleteId 
for the Insert action to the AthleteId property (see Figure 10-10). 

Figure 10-10.  Mapping the stored procedures, parameters, and return values for the Insert, Update, and Delete actions



Chapter 10 ■ Stored Procedures

363

How It Works
We updated the model with the stored procedures we created in the database. This makes the stored procedures 
available for use in the model. Once we have the stored procedures available in the model, we mapped them to the 
Insert, Update, and Delete actions for the entity.

In this recipe, the stored procedures are about as simple as you can get. They take in properties as parameters 
and perform the action. For the Insert stored procedure, we need to return the stored generated key for the entity. In 
this recipe, the stored generated key is just an identity column. We need to return this from the stored procedure for 
the Insert action and map this returned value to the AthleteId property. This is an important step. Without this, Entity 
Framework would not be able to get the entity key for the instance of the Athlete entity just inserted.

You may ask, “When do I map stored procedures to the actions?” In most cases, Entity Framework will generate 
efficient code for the Insert, Update, and Delete actions. You may also be wondering, “When would I ever need to 
replace this with my own stored procedures?” Here are the best-practice answers to this question.

Your company requires you to use stored procedures for some or all of the Insert, Update, or •	
Delete activity for certain tables.

You have additional tasks to do during one or more of the actions. For example, you might •	
want to manage an audit trail or perform some complex business logic, or perhaps you need 
to leverage a user’s privileges to execute stored procedures for security checking.

Your entity is based on a QueryView (see Chapter 6 and Chapter 15) that requires you to map •	
some or all of the actions to stored procedures.

The code in Listing 10-22 demonstrates inserting, deleting, and updating in the model. The code isn’t any different 
because of the mapping of the actions, and that’s fine. The fact that we have replaced the code that Entity Framework 
would have dynamically generated with our own stored procedures will not affect the code that uses the entity.

Listing 10-22.  Executing the Insert, Update, and Delete Actions

using (var context = new EF6RecipesContext())
{
    context.Athletes.Add(new Athlete { Name = "Nancy Steward",
                                Height = 167, Weight = 53 });
    context.Athletes.Add(new Athlete { Name = "Rob Achers",
                                Height = 170, Weight = 77 });
    context.Athletes.Add(new Athlete { Name = "Chuck Sanders",
                                Height = 171, Weight = 82 });
    context.Athletes.Add(new Athlete { Name = "Nancy Rodgers",
                                Height = 166, Weight = 59 });
    context.SaveChanges();
}
using (var context = new EF6RecipesContext())
{
    // do a delete and an update
    var all = context.Athletes;
    context.Delete(all.First(o => o.Name == "Nancy Steward"));
    all.First(o => o.Name == "Rob Achers").Weight = 80;
    context.SaveChanges();
}
 



Chapter 10 ■ Stored Procedures

364

using (var context = new EF6RecipesContext())
{
    Console.WriteLine("All Athletes");
    Console.WriteLine("============");
    foreach (var athlete in context.Athletes)
    {
        Console.WriteLine("{0} weighs {1} Kg and is {2} cm in height",
         athlete.Name, athlete.Weight, athlete.Height);
    }
}
 

The following is the output of the code in Listing 10-22: 

All Athletes
============
Rob Achers weighs 80 Kg and is 170 cm in height
Chuck Sanders weighs 82 Kg and is 171 cm in height
Nancy Rodgers weighs 59 Kg and is 166 cm in height

10-9. Using Stored Procedures for the Insert and Delete Actions 
in a Many-to-Many Association
Problem
You want to use stored procedures for the Insert and Delete actions in a payload-free, many-to-many association. 
These stored procedures affect only the link table in the association and not the associated entities.

Solution
Let’s say that you have a many-to-many relationship between an Author table and a Book table. The link table, 
AuthorBook, is used as part of the relationship, as shown in Figure 10-11.

Figure 10-11.  A payload-free, many-to-many relationship between an Author and a Book



Chapter 10 ■ Stored Procedures

365

When you import these tables into a model, you get a model that looks like the one shown in Figure 10-12.

Figure 10-12.  The model created by importing the tables in Figure 10-11

To use stored procedures for the Insert and Delete actions, do the following.

	 1.	 In your database, create the stored procedures in Listing 10-23.

Listing 10-23.  The stored Procedures for the Insert and Delete Actions

create procedure [chapter10].[InsertAuthorBook]
(@AuthorId int,@BookId int)
as
begin
        insert into chapter10.AuthorBook(AuthorId,BookId) values (@AuthorId,@BookId)
end
go
 
create procedure [chapter10].[DeleteAuthorBook]
(@AuthorId int,@BookId int)
as
begin
        delete chapter10.AuthorBook where AuthorId = @AuthorId and BookId = @BookId
end 

	 2.	 Right-click the design surface, and select Update Model from Database. Select the new 
stored procedures from Listing 10-23 and click Finish. This will add the stored procedures 
to the model.

	 3.	 The current release of Entity Framework does not have designer support for mapping 
stored procedures to the Insert and Delete actions for an association. To perform this 
mapping manually, right-click the .edmx file and select Open With † XML Editor. Add the 
code in Listing 10-24 in the Mappings section inside the <AssociationSetMapping> tag.



Chapter 10 ■ Stored Procedures

366

Listing 10-24.  Mapping the Stored Procedures to the Insert and Delete Actions for the Many-to-Many Association

<ModificationFunctionMapping>
  <InsertFunction FunctionName="EF6RecipesModel.Store.InsertAuthorBook">
    <EndProperty Name="Author">
      <ScalarProperty Name="AuthorId" ParameterName="AuthorId"  />
    </EndProperty>
    <EndProperty Name="Book">
      <ScalarProperty Name="BookId" ParameterName="BookId" />
    </EndProperty>
  </InsertFunction>
  <DeleteFunction FunctionName="EF6RecipesModel.Store.DeleteAuthorBook">
    <EndProperty Name="Author">
      <ScalarProperty Name="AuthorId" ParameterName="AuthorId"  />
    </EndProperty>
    <EndProperty Name="Book">
      <ScalarProperty Name="BookId" ParameterName="BookId" />
    </EndProperty>
  </DeleteFunction>
</ModificationFunctionMapping>
 

The code in Listing 10-25 demonstrates inserting into and deleting from the model. As you can see from the SQL 
Profiler output that follows, our InsertAuthorBook and DeleteAuthorBook stored procedures are called when Entity 
Framework updates the many-to-many association.

Listing 10-25.  Inserting into the Model

using (var context = new EF6RecipesContext())
{
    var auth1 = new Author { Name = "Jane Austin"};
    var book1 = new Book { Title = "Pride and Prejudice",
                           ISBN = "1848373104" };
    var book2 = new Book { Title = "Sense and Sensibility",
                           ISBN = "1440469563" };
    auth1.Books.Add(book1);
    auth1.Books.Add(book2);
    var auth2 = new Author { Name = "Audrey Niffenegger" };
    var book3 = new Book { Title = "The Time Traveler's Wife",
                           ISBN = "015602943X" };
    auth2.Books.Add(book3);
    context.Authors.Add(auth1);
    context.Authors.Add(auth2);
    context.SaveChanges();
    context.Delete(book1);
    context.SaveChanges();
}
 



Chapter 10 ■ Stored Procedures

367

Here is the output of the SQL Profiler showing the SQL statements that are executed by the code in Listing 10-25: 

exec sp_executesql N'insert [Chapter10].[Author]([Name])
values (@0)
select [AuthorId]
from [Chapter10].[Author]
where @@ROWCOUNT > 0 and [AuthorId] = scope_identity()',N'@0 varchar(50)',
 @0='Jane Austin'
 
exec sp_executesql N'insert [Chapter10].[Author]([Name])
values (@0)
select [AuthorId]
from [Chapter10].[Author]
where @@ROWCOUNT > 0 and [AuthorId] = scope_identity()',N'@0 varchar(50)',
 @0='Audrey Niffenegger'
 
exec sp_executesql N'insert [Chapter10].[Book]([Title], [ISBN])
values (@0, @1)
select [BookId]
from [Chapter10].[Book]
where @@ROWCOUNT > 0 and [BookId] = scope_identity()',N'@0 varchar(50),
 @1 varchar(50)',@0='Pride and Prejudice',@1='1848373104'
exec sp_executesql N'insert [Chapter10].[Book]([Title], [ISBN])
values (@0, @1)
select [BookId]
from [Chapter10].[Book]
where @@ROWCOUNT > 0 and [BookId] = scope_identity()',N'@0 varchar(50),
 @1 varchar(50)',@0='Sense and Sensibility',@1='1440469563'
 
exec sp_executesql N'insert [Chapter10].[Book]([Title], [ISBN])
values (@0, @1)
select [BookId]
from [Chapter10].[Book]
where @@ROWCOUNT > 0 and [BookId] = scope_identity()',N'@0 varchar(50),
 @1 varchar(50)',@0='The Time Traveler''s Wife',@1='015602943X'
 
exec [Chapter10].[InsertAuthorBook] @AuthorId=1,@BookId=1
 
exec [Chapter10].[InsertAuthorBook] @AuthorId=1,@BookId=2
 
exec [Chapter10].[InsertAuthorBook] @AuthorId=2,@BookId=3
 
exec [Chapter10].[DeleteAuthorBook] @AuthorId=1,@BookId=1
 
exec sp_executesql N'delete [Chapter10].[Book]
 where ([BookId] = @0)',N'@0 int',@0=7



Chapter 10 ■ Stored Procedures

368

How It Works
To map the stored procedures to the Insert and Delete actions for the many-to-many association, we created the 
stored procedures in our database and then updated the model with the stored procedures.

Because Entity Framework’s designer does not currently support mapping stored procedures to the Insert 
and Delete actions for associations, we need to edit the .edmx file directly. In the Mappings section, we added a 
<ModificationFunctionMapping> tag that maps the Insert and Delete actions for the association to our stored 
procedures. In this tag, we refer to the InsertAuthorBook and DeleteAuthorBook stored procedures, which are 
defined in the Store model because we updated the model with these stored procedures from the database.

In the trace from Listing 10-25, we can see not only the expected inserts for the Author and Book tables, but we 
can also see that our stored procedures are used to insert and delete the association.

10-10. Mapping the Insert, Update, and Delete Actions to Stored 
Procedures for Table per Hierarchy Inheritance
Problems
You have a model that uses Table per Hierarchy inheritance, and you want to map the Insert, Update, and Delete 
actions to stored procedures.

Solution
Let’s say that your database contains a Product table that describes a couple of different kinds of products (see 
Figure 10-14). You have created a model with derived types for each of the product types represented in the Product 
table. The model looks like the one shown in Figure 10-14.

Figure 10-13.  A Product table with a discriminator column, ProductType, that indicates the type of product described 
by the row in the table



Chapter 10 ■ Stored Procedures

369

To map stored procedures to the Insert, Update, and Delete actions for this model, do the following:

	 1.	 In your database, create the stored procedures in Listing 10-26. These stored procedures 
will handle the Insert, Update, and Delete actions for the Book and DVD entities.

Listing 10-26.  The Stored Procedure We Map to the Insert, Update, and Delete Actions for the Model

create procedure [chapter10].[InsertBook]
(@Title varchar(50), @Publisher varchar(50))
as
begin
        insert into Chapter10.Product (Title, Publisher, ProductType) values
           (@Title,@Publisher, 'Book')
        select SCOPE_IDENTITY() as ProductId
end
go
create procedure [chapter10].[UpdateBook]
(@Title varchar(50), @Publisher varchar(50), @ProductId int)
as
begin
        update Chapter10.Product set Title = @Title, Publisher = @Publisher
          where ProductId = @ProductId
end
go
 
create procedure [chapter10].[DeleteBook]
(@ProductId int)

Figure 10-14.  A model using Table per Hierarchy inheritance with a derived type for each of the products



Chapter 10 ■ Stored Procedures

370

as
begin
        delete from Chapter10.Product where ProductId = @ProductId
end
go
 
create procedure [chapter10].[InsertDVD]
(@Title varchar(50), @Rating varchar(50))
as
begin
        insert into Chapter10.Product (Title, Rating, ProductType) values
           (@Title, @Rating, 'DVD')
        select SCOPE_IDENTITY() as ProductId
end
go
 
create procedure [chapter10].[DeleteDVD]
(@ProductId int)
as
begin
        delete from Chapter10.Product where ProductId = @ProductId
end
go
 
create procedure [chapter10].[UpdateDVD]
(@Title varchar(50), @Rating varchar(50), @ProductId int)
as
begin
        update Chapter10.Product set Title = @Title, Rating = @Rating
          where ProductId = @ProductId
end

	 2.	 Right-click the design surface, and select Update Model from Database. Select the newly 
created stored procedures, and click Finish to add them to the model.

	 3.	 Right-click the Book entity and select Stored Procedure Mapping. Map the InsertBook, 
UpdateBook, and DeleteBook stored procedures to the corresponding actions for the 
entity. Map the Result Column Binding for the Insert action to the ProductId property  
(see Figure 10-15).



Chapter 10 ■ Stored Procedures

371

	 4.	 Right-click the DVD entity, and select Stored Procedure Mapping. Map the InsertDVD, 
UpdateDVD, and DeleteDVD stored procedures to the corresponding actions for the 
entity. Map the Result Column Binding for the Insert action to the ProductId property  
(see Figure 10-16). 

Figure 10-15.  Mapping the stored procedures to the Insert, Update, and Delete actions for the Book entity. Be 
particularly careful to map the Result Column Binding to the ProductId property for the Insert action



Chapter 10 ■ Stored Procedures

372

How It Works
We created the stored procedures for the Insert, Update, and Delete actions for both the Book and DVD entities 
and imported them into the model. Once we have these stored procedures in the model, we mapped them to the 
corresponding actions, being careful to map the Result Column Binding for the Insert action to the ProductId 
property. This ensures that the store generated key for the Product is mapped to the ProductId property.

The Table per Hierarchy inheritance is supported by the implementation of the Insert stored procedures. Each 
of them inserts the correct ProductType value. Given these values in the tables, Entity Framework can correctly 
materialize the derived entities.

The code in Listing 10-27 demonstrates inserting, updating, deleting, and querying the model.

Listing 10-27.  Exercising the Insert, Update, and Delete Actions

using (var context = new EF6RecipesContext())
{
    var book1 = new Book { Title = "A Day in the Life",
                           Publisher = "Colorful Press" };
    var book2 = new Book { Title = "Spring in October",
                           Publisher = "AnimalCover Press" };

Figure 10-16.  Mapping the stored procedures to the Insert, Update, and Delete actions for the DVD entity



Chapter 10 ■ Stored Procedures

373

    var dvd1 = new DVD { Title = "Saving Sergeant Pepper", Rating = "G" };
    var dvd2 = new DVD { Title = "Around The Block", Rating = "PG-13" };
    context.Products.Add(book1);
    context.Products.Add(book2);
    context.Products.Add(dvd1);
    context.Products.Add(dvd2);
    context.SaveChanges();
 
    // update a book and delete a dvd
    book1.Title = "A Day in the Life of Sergeant Pepper";
    context.Delete(dvd2);
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    Console.WriteLine("All Products");
    Console.WriteLine("============");
    foreach (var product in context.Products)
    {
        if (product is Book)
            Console.WriteLine("'{0}' published by {1}",
                  product.Title, ((Book)product).Publisher);
        else if (product is DVD)
            Console.WriteLine("'{0}' is rated {1}",
                  product.Title, ((DVD)product).Rating);
    }
}
 

The following is the output of the code in Listing 10-27: 

All Products
============
'Spring in October' published by AnimalCover Press
'A Day in the Life of Sergeant Pepper' published by Colorful Press
'Saving Sergeant Pepper' is rated G



375

Chapter 11

Functions

Functions provide a power mechanism for code reuse, and offer you a good way to make your code cleaner and 
more understandable. They can also be used to leverage code in the Entity Framework runtime as well as in the 
database layer. Functions are of various types: Rowset Functions, Aggregate Functions, Ranking Functions, and 
Scalar Functions. Functions are either deterministic or nondeterministic. Functions are deterministic when they 
always return the same result any time that they are called by using a specific set of input values. Functions are 
nondeterministic when they could return different results every time they are called, even with the same specific set of 
input values.

In the first seven recipes, we explore model-defined functions. These functions allow you to create functions at the 
conceptual layer. These functions are defined in terms of Entity Framework types and your model entities. This makes 
them portable across data store implementations.

In the remaining recipes, we show you how to use functions defined by Entity Framework and the database layer. 
These functions are implemented for you, and they allow you to leverage existing code either in Entity Framework’s 
runtime or, closer to your data, in the database layer.

11-1. Returning a Scalar Value from a Model-Defined Function
Problem
You want to define a function in the conceptual model that takes an instance of an entity and returns a scalar value.

Solution
Suppose that you have a model like the one shown in Figure 11-1.

Figure 11-1.  A model for products and categories



Chapter 11 ■ Functions

376

To create a model-defined function that takes an instance of the Category entity and returns the average unit 
price for all of the products in the given category, do the following:

	 1.	 Right-click the .edmx file in the Solution Explorer, and select Open With ➤ XML Editor. 

	 2.	 Insert the code in Listing 11-1 just below the <Schema> tag in the conceptual models 
section of the .edmx file. This defines the function in the model.

Listing 11-1.  Definition of the AverageUnitPrice() Function in the Model

<Function Name="AverageUnitPrice" ReturnType="Edm.Decimal">
               <Parameter Name="category" Type="EFRecipesModel.Category" />
               <DefiningExpression>
                  ANYELEMENT(Select VALUE Avg(p.UnitPrice)
                  from EFRecipesEntities.Products as p where p.Category == category
                   
                  )
               </DefiningExpression>
            </Function>
 

	 3.	 Insert into and query the model using code similar to the pattern shown in Listing 11-2.

Listing 11-2.  Inserting into and Querying the Model Using the Model-Defined Function 
AverageUnitPrice()

   class Program
   {
      static void Main(string[] args)
      {
         RunExample();
      }
 
      static void RunExample()
      {
         using (var context = new EFRecipesEntities())
         {
            var c1 = new Category { CategoryName = "Backpacking Tents" };
            var p1 = new Product
            {
               ProductName = "Hooligan",
               UnitPrice = 89.99M,
               Category = c1
            };
             
            var p2 = new Product
            {
               ProductName = "Kraz",
               UnitPrice = 99.99M,
               Category = c1
            };
             



Chapter 11 ■ Functions

377

            var p3 = new Product
            {
               ProductName = "Sundome",
               UnitPrice = 49.99M,
               Category = c1
            };
            context.Categories.Add(c1);
            context.Products.Add(p1);
            context.Products.Add(p2);
            context.Products.Add(p3);
 
            var c2 = new Category { CategoryName = "Family Tents" };
            var p4 = new Product
            {
               ProductName = "Evanston",
               UnitPrice = 169.99M,
               Category = c2
            };
            var p5 = new Product
            {
               ProductName = "Montana",
               UnitPrice = 149.99M,
               Category = c2
            };
            context.Categories.Add(c2);
            context.Products.Add(p4);
            context.Products.Add(p5);
            context.SaveChanges();
         }
         // with eSQL
         using (var context = new EFRecipesEntities())
         {
            Console.WriteLine("Using eSQL for the query...");
            Console.WriteLine();
            string sql = @"Select c.CategoryName, EFRecipesModel
                         .AverageUnitPrice(c) as AveragePrice from
                         EFRecipesEntities.Categories as c";
            var objectContext = (context as IObjectContextAdapter).ObjectContext;
            var cats = objectContext.CreateQuery<DbDataRecord>(sql);
            foreach (var cat in cats)
            {
               Console.WriteLine("Category '{0}' has an average price of {1}",
                         cat[”CategoryName”], ((decimal)cat["AveragePrice"]).ToString("C"));
            }
         }
 
         // with LINQ
         using (var context = new EFRecipesEntities())
         {
            Console.WriteLine();
            Console.WriteLine("Using LINQ for the query...");
            Console.WriteLine();



Chapter 11 ■ Functions

378

            var cats = from c in context.Categories
                     select new
                     {
                        Name = c.CategoryName,
                        AveragePrice = MyFunctions.AverageUnitPrice(c)
                     };
            foreach (var cat in cats)
            {
               Console.WriteLine("Category '{0}' has an average price of {1}",
                              cat.Name, cat.AveragePrice.ToString("C"));
            }
         }
      }
   }
   public class MyFunctions
   {
      [EdmFunction("EFRecipesModel", "AverageUnitPrice")]
      public static decimal AverageUnitPrice(Category category)
      {
         throw new NotSupportedException("Direct calls are not supported!");
      }
   }
 

Following is the output of the code in Listing 11-2: 

Using eSQL for the query...
 
Category 'Backpacking Tents' has an average price of $79.99
Category 'Family Tents' has an average price of $159.99
 
Using LINQ for the query...
 
Category 'Backpacking Tents' has an average price of $79.99
Category 'Family Tents' has an average price of $159.99

How It Works
Model-defined functions are created in the conceptual layer and written in eSQL. Of course, this allows you to 
program against the entities in your model as we have done here, referencing the Category and Product entities and 
their association in the function’s implementation. The added benefit is that we are not tied to a specific storage layer. 
We could swap out the lower layers, even the database provider, and our program would still work.

The designer currently provides no support for model-defined functions. Unlike stored procedures, which are 
supported by the designer, model-defined functions do not show up in the model browser nor anywhere else in the 
designer. The designer will not check for syntax errors in the eSQL. You will find out about these at runtime. However, 
the designer will at least tolerate model-defined functions enough to open the .edmx file. Model-defined functions are 
evaluated in Entity Framework and not in the back-end database.

In Listing 11-2, the code starts off by inserting a couple of categories and a few products for each. Once we have 
the data in place, we query it using two slightly different approaches.



Chapter 11 ■ Functions

379

In the first query example, we build an eSQL statement that calls the AverageUnitPrice() function. We create 
and execute the query. For each row in the results, we pull out the data for the first column, which is the category 
name, and the data for the second column, which is the average unit price for the category. We display them for  
each row.

The second query example is a little more interesting. Here we use the AverageUnitPrice() function in 
a LINQ query. To do this, we need to add a stub method in a separate class. The method is decorated with the 
[EdmFunction()] attribute, which marks it as an implementation of a model-defined function. This CLR method will 
not actually be called, which is evident by the exception we throw in the body of the method. Because we return a 
scalar value, the method’s implementation here is simply for the signature (the parameter number, types, and return 
type). In the LINQ query, we grab each category and reshape the results into an anonymous type that holds the 
category name and the result of calling the AverageUnitPrice() method in the MyFunction class. This is the stub we 
created that is tied to the AverageUnitPrice() model-defined function. For each of the resulting objects, we display 
the category name and the category’s average unit price.

DbContext is the light version of ObjectContext. Whenever a CreateQuery is to be used to execute a Sql 
(Entity SQL), then ObjectContext is required. Thus ObjectContext is fetched through DbContext using  (context as 
IObjectContextAdapter) ObjectContext.

The parameters for model-defined functions can be scalar, entity types, complex types, anonymous types, or 
collections of these. In many of the recipes in this chapter, we’ll show you how to create and use model-defined 
functions with these parameter types.

The parameters for model-defined functions don’t show direction. There are no “out” parameters, only implied 
“in” parameters. The reason for this is that model-defined functions are composable and can be used as part of LINQ 
queries. This prevents them from returning values in output parameters.

In this example, we returned a single scalar decimal value. To do this, we had to explicitly return a scalar using the 
AnyElement operator.  Entity Framework does not know how to map a collection to a scalar value. We help out here by 
using the AnyElement operator, which signals that only a single value will result from the query. It just so happens that 
we return a collection of just one element from which the AnyElement operator selects just one element.

Best Practice
Model-defined functions provide a clean and practical way to implement parts of a conceptual model that would be 
tedious if not impossible any other way. Here are some best practices and uses for model-defined functions.

Model-defined functions are written in eSQL and defined at the conceptual layer. This 
provides a level of abstraction from the details of the store layer and allows you to leverage a 
more complete model independent of the store layer.

You can define functions for expressions that you commonly use in your LINQ or eSQL 
queries. This provides better code organization and allows code reuse. Also, if you use 
LINQ, then due to the nature of IntelliSense and compile-time checks, there will be fewer 
code issues because of typos.

Model-defined functions are composable, which allows you to implement functions that 
serve as building blocks for more complex expressions. This can both simplify your code 
and make it more maintainable.

Model-defined functions can be used in places where you have computed properties. 
A computed property, like a function, is a read-only value. For properties, you incur the 
cost of computing the value when the entity is materialized, whether or not you need the 
computed property. With a model-defined function, the cost of computing the value is 
incurred only when you actually need the value.



Chapter 11 ■ Functions

380

11-2. Filtering an Entity Collection Using a  
Model-Defined Function
Problem
You want to create a model-defined function that filters a collection.

Solution
Suppose that we have a model with Customers and Invoices, as shown in Figure 11-2.

Figure 11-2.  Customer and Invoice in a model

Let’s say that we want to create a model-defined function that takes a collection of invoices and filters the 
collection to those invoices that have an amount greater than $300. Just for fun, let’s use this model-defined function 
in a query that further filters this collection to just those invoices created after 5/1/2013. Of course, we’ll want to load 
all of the customers associated with these invoices.

To get started, do the following:

	 1.	 Right-click the .edmx file in the Solution Explorer, and select Open With ➤ XML Editor. 

	 2.	 Insert the code in Listing 11-3 just below the <Schema> tag in the conceptual models 
section of the .edmx file. This defines the function in the model.

Listing 11-3.  The GetInvoices() Model-Defined Function

<Function Name="GetInvoices" ReturnType="Collection(EFRecipesModel.Invoice)" >
               <Parameter Name="invoices" Type="Collection(EFRecipesModel.Invoice)">
               </Parameter>
               <DefiningExpression>
                  Select VALUE i
                  from invoices as i where i.Amount > 300M
               </DefiningExpression>
            </Function>
 

	 3.	 Insert into and query the model using code similar to the pattern shown in Listing 11-4.



Chapter 11 ■ Functions

381

Listing 11-4.  Querying the Model Using the GetInvoices() Model-Defined Function with Both eSQL and LINQ
 
class Program
   {
      static void Main(string[] args)
      {
         RunExample();
      }
 
      static void RunExample()
      {
         using (var context = new EFRecipesEntities())
         {
            DateTime d1 = DateTime.Parse("8/8/2013");
            DateTime d2 = DateTime.Parse("8/12/2012");
            var c1 = new Customer { Name = "Jill Robinson", City = "Dallas" };
            var c2 = new Customer { Name = "Jerry Jones", City = "Denver" };
            var c3 = new Customer { Name = "Janis Brady", City = "Dallas" };
            var c4 = new Customer { Name = "Steve Foster", City = "Dallas" };
            context.Invoices.Add(new Invoice
            {
               Amount = 302.99M,
               Description = "New Tires",
               Date = d1,
               Customer = c1
            });
            context.Invoices.Add(new Invoice
            {
               Amount = 430.39M,
               Description = "Brakes and Shocks",
               Date = d1,
               Customer = c2
            });
            context.Invoices.Add(new Invoice
            {
               Amount = 102.28M,
               Description = "Wheel Alignment",
               Date = d1,
               Customer = c3
            });
            context.Invoices.Add(new Invoice
            {
               Amount = 629.82M,
               Description = "A/C Repair",
               Date = d2,
               Customer = c4
            });
            context.SaveChanges();
         }
 



Chapter 11 ■ Functions

382

         using (var context = new EFRecipesEntities())
         {
            Console.WriteLine("Using eSQL query...");
            string sql = @"Select value i from
                    EFRecipesModel.GetInvoices(EFRecipesEntities.Invoices) as i
                    where i.Date > DATETIME'2013-05-1 00:00'
                    and i.Customer.City = @City";
            var objectContext = (context as IObjectContextAdapter).ObjectContext;
            var invoices = objectContext.CreateQuery<Invoice>(sql,
                  new ObjectParameter("City", "Dallas")).Include("Customer");
            foreach (var invoice in invoices)
            {
               Console.WriteLine("Customer: {0}\tInvoice for: {1}, Amount: {2}",
                   invoice.Customer.Name, invoice.Description, invoice.Amount);
            }
         }
 
         using (var context = new EFRecipesEntities())
         {
            Console.WriteLine();
            Console.WriteLine("Using LINQ query...");
            DateTime date = DateTime.Parse("5/1/2013");
            var invoices = from invoice in
                           MyFunctions.GetInvoices(context.Invoices)
                        where invoice.Date > date
                        where invoice.Customer.City == "Dallas"
                        select invoice;
            foreach (var invoice in ((DbQuery<Invoice>)invoices)
                                       .Include("Customer"))
            {
               Console.WriteLine("Customer: {0}, Invoice for: {1}, Amount: {2}",
                   invoice.Customer.Name, invoice.Description, invoice.Amount);
            }
         }
      }
   }
 
   public class MyFunctions
   {
      [EdmFunction("EFRecipesModel", "GetInvoices")]
      public static IQueryable<Invoice> GetInvoices(IQueryable<Invoice> invoices)
      {
         return invoices.Provider.CreateQuery<Invoice>(
            Expression.Call((MethodInfo) MethodInfo.GetCurrentMethod(),
                        Expression.Constant(invoices,
                                       typeof(IQueryable<Invoice>))));
      }
   }
 



Chapter 11 ■ Functions

383

Following is the output of the code in Listing 11-4: 

Using eSQL for the query...
Customer: Jill Robinson Invoice for: New Tires, Amount: 302.99
 
Using LINQ for the query...
Customer: Jill Robinson, Invoice for: New Tires, Amount: 302.99 

How It Works
From the definition of our GetInvoices() function in Listing 11-3, we see that it takes a collection of Invoices and 
returns a collection of Invoices. On the CLR side, this translates to taking an IQueryable<Invoice> and returning an 
IQueryable<Invoice>.

In the eSQL expression, we use the GetInvoices() function in the from clause. We pass in the unfiltered 
collection of Invoices and our GetInvoices() function returns the filtered collection. We further filter the 
collection by date and the customer’s city using a where clause. Then we use CreateQuery<Invoice>() to build 
the ObjectQuery<Invoice>. In building the query, we pass in the parameter to filter by city and use the Include() 
method to include the related customers. Once we have the ObjectQuery<Invoice>, we iterate over the resulting 
collection and print out the invoices that matched the two filters that we applied.

For the LINQ query, the story is a little more interesting. Here we build the expression using the GetInvoices() 
method in the from clause and filter the resulting collection by date and city, much like we did with the 
eSQLexpression. However, to use our function in a LINQ query, we need to implement a CLR method that takes 
an IQueryable<Invoice> and returns an IQueryable<Invoice>. Unlike the stub method in Recipe 11-1, in which 
the model-defined function returned a scalar value, here we have to provide an implementation in the body of the 
method. Creating this method is often referred to as bootstrapping.

Here are some rules for bootstrapping:

Bootstrapping is required when a model-defined function returns an •	 IQueryable<T>.

When a function returns an •	 IQueryable<T> but does not take an IQueryable<T>, the 
bootstrapping method must be implemented in a partial class of the ObjectContext.

The second rule comes about because we can’t return an IQueryable<T> that has meaning in our ObjectContext 
without starting with an IQueryable<T>. If we pass in an IQueryable<T>, then we can perform some operation in 
our bootstrapping method that returns a related IQueryable<T>. However, we can’t manufacture an IQueryable<T> 
outside of a partial class of our ObjectContext. In our example, we received an IQueryable<T> as a parameter, so we 
are free to implement the bootstrapping code outside of a partial class of our ObjectContext.

In the implementation of our bootstrapping method, we get an instance of IQueryProvider from the 
IQueryable<Invoice> through the Provider property. IQueryProvider.CreateQuery<Invoice>() allows us to tack 
onto the expression tree for the IQueryable<T>. Here we add in the call to the GetInvoices() function, passing in the 
collection of invoices that we have.

11-3. Returning a Computed Column from a Model-Defined 
Function
Problem
You want to return a computed column from a model-defined function.



Chapter 11 ■ Functions

384

Solution
Suppose that we have an Employee entity containing the properties FirstName, LastName, and BirthDate, as shown  
in Figure 11-3.

Figure 11-3.  An Employee entity with a few typical properties

We want to create a model-defined function that returns the full name of the employee by combining the 
FirstName and LastName columns. We want to create another model-defined function that returns the age of the 
employee based on the value in the BirthDate column.

To create and use these functions, do the following:

	 1.	 Right-click the .edmx file in the Solution Explorer, and click Open With ➤ XML Editor. This 
will open the .edmx file in the XML Editor.

	 2.	 Insert the code in Listing 11-5 just below the <Schema> tag in the conceptual models 
section of the .edmx file. This defines the functions in the model.

Listing 11-5.  Code for Model-Defined Functions

   <Function Name="FullName" ReturnType="Edm.String">
               <Parameter Name="emp" Type="EFRecipesModel.Employee" />
               <DefiningExpression>
                  Trim(emp.FirstName) + " " + Trim(emp.LastName)
               </DefiningExpression>
            </Function>
            <Function Name="Age" ReturnType="Edm.Int32">
               <Parameter Name="emp" Type="EFRecipesModel.Employee" />
               <DefiningExpression>
                  Year(CurrentDateTime()) - Year(emp.BirthDate)
               </DefiningExpression>
            </Function>

 
	 3.	 Insert into and query the model using code similar to the pattern shown in Listing 11-6.

Listing 11-6.  Inserting into and Querying the Model Invoking the Model-Defined Functions  
Using Both eSQL and LINQ

class Program
   {
      static void Main(string[] args)
      {
         RunExample();
      }
 



Chapter 11 ■ Functions

385

      static void RunExample()
      {
         using (var context = new EFRecipesEntities())
         {
            context.Employees.Add(new Employee
            {
               FirstName = "Jill",
               LastName = "Robins",
               BirthDate = DateTime.Parse("3/2/1976")
            });
            context.Employees.Add(new Employee
            {
               FirstName = "Michael",
               LastName = "Kirk",
               BirthDate = DateTime.Parse("4/12/1985")
            });
            context.Employees.Add(new Employee
            {
               FirstName = "Karen",
               LastName = "Stanford",
               BirthDate = DateTime.Parse("7/6/1963")
            });
            context.SaveChanges();
         }
 
         using (var context = new EFRecipesEntities())
         {
            Console.WriteLine("Query using eSQL");
            var esql = @"Select EFRecipesModel.FullName(e) as Name,
                         EFRecipesModel.Age(e) as Age from
                         EFRecipesEntities.Employees as e";
            var objectContext = (context as IObjectContextAdapter).ObjectContext;
            var emps = objectContext.CreateQuery<DbDataRecord>(esql);
            foreach (var emp in emps)
            {
               Console.WriteLine("Employee: {0}, Age: {1}", emp["Name"],
                              emp["Age"]);
            }
         }
 
         using (var context = new EFRecipesEntities())
         {
            Console.WriteLine("\nQuery using LINQ");
            var emps = from e in context.Employees
                     select new
                     {
                        Name = MyFunctions.FullName(e),
                        Age = MyFunctions.Age(e)
                     };



Chapter 11 ■ Functions

386

            foreach (var emp in emps)
            {
               Console.WriteLine("Employee: {0}, Age: {1}", emp.Name,
                              emp.Age.ToString());
            }
         }
      }
   }
 
   public class MyFunctions
   {
      [EdmFunction("EFRecipesModel", "FullName")]
      public static string FullName(Employee employee)
      {
         throw new NotSupportedException("Direct calls are not supported.");
      }
 
      [EdmFunction("EFRecipesModel", "Age")]
      public static int Age(Employee employee)
      {
         throw new NotSupportedException("Direct calls are not supported.");
      }
   }
 

The output of the code from Listing 11-6 is as follows: 

Query using eSQL
Employee: Jill Robins, Age: 37
Employee: Michael Kirk, Age: 28
Employee: Karen Stanford, Age: 50
 
Query using LINQ
Employee: Jill Robins, Age: 37
Employee: Michael Kirk, Age: 28
Employee: Karen Stanford, Age: 50

How It Works
Our model-defined functions return types Edm.String for the FullName() function and Edm.Int32 for the Age() 
function. These functions are defined on the conceptual level, so they don’t directly refer to any type system outside of 
the Entity Data Model’s type system. These primitive types are easily translated to the CLR type system.

In the <DefiningExpression> or body of the model-defined functions, we directly access the properties of the 
entities we received in the parameters. There is no need to use a select statement. However, the resulting expression 
must have a type that matches the type defined as the return type of the function.

After inserting a few employees into our model, we first query using eSQL. We construct an eSQL expression that 
invokes our two model-defined functions and projects the results to the Name and Age columns. Our eSQL expression 
results in a collection of anonymous types that contain just the Name and Age members. Because we’re not returning 
one of the types defined in the model, we declare the type in CreateQuery<T>() to be DbDataRecord. We iterate over 
the collection resulting from the evaluation of the query and print out the employees’ names and ages.



Chapter 11 ■ Functions

387

For the LINQ query, we select from the Employees entity set and project onto an anonymous type containing the 
Name and Age members. We set these members to the result of invoking our FullName() and Age() functions. As seen 
in the previous recipes in this chapter, we need to define the corresponding CLR methods. Because we are returning 
scalar values, these methods are never called and are used only for their signatures. The implementation of these 
methods reflects this.

We could have created read-only properties in a partial declaration of our Employee entity to implement the 
full name and age calculations. However, this would force the evaluation of these methods each time the entity is 
retrieved. With model-defined functions, we perform the calculations only when needed.

11-4. Calling a Model-Defined Function from  
a Model-Defined Function
Problem
You want to use a model-defined function in the implementation of another model-defined function.

Solution
Suppose that we have the model shown in Figure 11-4, representing the types of associates in a company along with 
their reporting structure

Figure 11-4.  A model representing the associate types in a company together with the reporting association

In our fictional company, team members are managed by a team leader. Team leaders are managed by project 
managers. Supervisors manage project managers. Of course, there could be many other associate types, but for 
simplicity we’ll stick with just these few.

If we wanted to return all of the team members for a given project manager or supervisor, we would need to 
drill down through the project managers and team leaders to get to the team members. To hide the complexity of 
navigating through these layers, we can create model-defined functions that allow easier and more direct access to 
these navigation properties.



Chapter 11 ■ Functions

388

To create and use these functions, do the following:

	 1.	 Right-click the .edmx file in the Solution Explorer, and click Open With ➤ XML Editor. This 
will open the .edmx file in the XML Editor.

	 2.	 Insert the code in Listing 11-7 just below the <Schema> tag in the conceptual models 
section of the .edmx file. This defines the functions in the model.

Listing 11-7.  Model-Defined Functions for Navigating the Associate Hierarchy

<Function Name="GetProjectManager" ReturnType="EFRecipesModel.ProjectManager">
  <Parameter Name="teammember" Type="EFRecipesModel.TeamMember" />
  <DefiningExpression>
    treat(teammember.Manager.Manager as EFRecipesModel.ProjectManager)
  </DefiningExpression>
</Function>
 
<Function Name="GetSupervisor" ReturnType="EFRecipesModel.Supervisor">
  <Parameter Name="teammember" Type="EFRecipesModel.TeamMember" />
  <DefiningExpression>
    treat(EFRecipesModel.GetProjectManager(teammember).Manager as
       EFRecipesModel.Supervisor)
  </DefiningExpression>
</Function>

 
	 3.	 Insert into and query the model using code similar to the pattern shown in Listing 11-8.

Listing 11-8.  Using Both eSQL and LINQ to Query the Model

class Program
{
    static void Main(string[] args)
    {
        RunExample();
    }
 
    static void RunExample()
    {
        using (var context = new EFRecipesEntities())
        {
            var john = new Supervisor { Name = "John Smith" };
            var steve = new Supervisor {Name = "Steve Johnson"};
            var jill = new ProjectManager { Name = "Jill Masterson",
                                            Manager = john };
            var karen = new ProjectManager { Name = "Karen Carns",
                                             Manager = steve };
            var bob = new TeamLead { Name = "Bob Richardson", Manager = karen };
            var tom = new TeamLead { Name = "Tom Landers", Manager = jill };
            var nancy = new TeamMember { Name = "Nancy Jones", Manager = tom };
            var stacy = new TeamMember { Name = "Stacy Rutgers",
                                         Manager = bob };



Chapter 11 ■ Functions

389

            context.Associates.Add(john);
            context.Associates.Add(steve);
            context.SaveChanges();
        }
 
        using (var context = new EFRecipesEntities())
        {
            Console.WriteLine("Using eSQL...");
            var emps = context.Associates.OfType<TeamMember>()
                .Where(@"EFRecipesModel.GetProjectManager(it).Name =
                       @projectManager ||
                       EFRecipesModel.GetSupervisor(it).Name == @supervisor",
                new ObjectParameter("projectManager", "Jill Masterson"),
                new ObjectParameter("supervisor", "Steve Johnson"));
            Console.WriteLine("Team members that report up to either");
            Console.WriteLine("Project Manager Jill Masterson ");
            Console.WriteLine("or Supervisor Steve Johnson");
            foreach (var emp in emps)
            {
                Console.WriteLine("\tAssociate: {0}", emp.Name);
            }
        }
 
        using (var context = new EFRecipesEntities())
        {
            Console.WriteLine();
            Console.WriteLine("Using LINQ...");
            var emps = from e in context.Associates.OfType<TeamMember>()
                       where MyFunctions.GetProjectManager(e).Name ==
                        "Jill Masterson" ||
                       MyFunctions.GetSupervisor(e).Name == "Steve Johnson"
                       select e;
            Console.WriteLine("Team members that report up to either");
            Console.WriteLine("Project Manager Jill Masterson ");
            Console.WriteLine("or Supervisor Steve Johnson");
            foreach (var emp in emps)
            {
                Console.WriteLine("\tAssociate: {0}", emp.Name);
            }
        }
    }
}
 
public class MyFunctions
{
    [EdmFunction("EFRecipesModel", "GetProjectManager")]
    public static ProjectManager GetProjectManager(TeamMember member)
    {
        throw new NotSupportedException("Direct calls not supported.");
    }

 



Chapter 11 ■ Functions

390

    [EdmFunction("EFRecipesModel", "GetSupervisor")]
    public static Supervisor GetSupervisor(TeamMember member)
    {
        throw new NotSupportedException("Direct calls not supported.");
    }
}

 
The output of the code from Listing 11-8 is as follows: 

Using eSQL...
Team members that report up to either
Project Manager Jill Masterson
or Supervisor Steve Johnson
        Associate: Nancy Jones
        Associate: Stacy Rutgers
Using LINQ...
Team members that report up to either
Project Manager Jill Masterson
or Supervisor Steve Johnson
        Associate: Nancy Jones
        Associate: Stacy Rutgers

How It Works
In the GetSupervisor() function in Listing 11-7, we need to make three hops through the Manager navigation 
property. The first one gets the team lead from the team member, the second one gets the project manager 
from the team lead, and the final one gets the supervisor from the project manager. We already created the 
GetProjectManager() function in Listing 11-7, so we can leverage that function to simplify the implementation of the 
GetSupervisor() function.

We use the treat() eSQL operator to cast an instance of Associate to its concrete type, which is either 
ProjectManager or Supervisor. If we didn’t use the treat() operator, Entity Framework would raise an exception 
complaining that it cannot map the instance of Associate to ProjectManager or Supervisor.

In Listing 11-8, using the GetProjectManager() and GetSupervisor() functions allows us to simplify the code by 
hiding all of the traversal through the object graph via the Manager navigation property.

Because we are not returning IQueryable<T> from our model-defined function, we didn’t need to provide an 
implementation of the stubs we require to use these functions in the LINQ query.

11-5. Returning an Anonymous Type from a  
Model-Defined Function
Problem
You want to create a model-defined function that returns an anonymous type.

Solution
Let’s say that you have a model for hotel reservations like the one shown in Figure 11-5.



Chapter 11 ■ Functions

391

You want to retrieve the total number of reservations and the total room revenue for each visitor. Because you will 
need this information in several places, you want to create a model-defined function that takes in a search parameter 
and returns a collection of anonymous types containing the summary information for each visitor.

To create and use this model-defined function, do the following:

	 1.	 Right-click the .edmx file in the Solution Explorer, and click Open With ➤ XML Editor. This 
will open the .edmx file in the XML Editor.

	 2.	 Insert the code in Listing 11-9 just below the <Schema> tag in the conceptual models 
section of the .edmx file. This defines the function in the model.

Listing 11-9.  The VisitorSummary() Model-Defined Function

<Function Name="VisitorSummary">
  <Parameter Name="StartDate" Type="Edm.DateTime" />
  <Parameter Name="Days" Type="Edm.Int32" />
  <ReturnType>
    <CollectionType>
      <RowType>
        <Property Name="Name" Type="Edm.String" />
        <Property Name="TotalReservations" Type="Edm.Int32" />
        <Property Name="BusinessEarned" Type="Edm.Decimal" />
      </RowType>
    </CollectionType>
  </ReturnType>
  <DefiningExpression>
    Select
    r.Visitor.Name,
    COUNT(r.ReservationId) as TotalReservations,
    SUM(r.Cost) as BusinessEarned
    from EFRecipesEntities.Reservations as r
    where r.ReservationDate between StartDate and
    AddDays(StartDate,Days)
    group by r.Visitor.Name
  </DefiningExpression>
</Function>
 

Figure 11-5.  A model for hotel reservations



Chapter 11 ■ Functions

392

	 3.	 Insert into and query the model using code similar to the pattern shown in Listing 11-10.

Listing 11-10.  Querying the Model Using the VistorySummary() Model-Defined Function

class Program
{
    static void Main(string[] args)
    {
        RunExample();
    }
 
    static void RunExample()
    {
        using (var context = new EFRecipesEntities())
        {
            var hotel = new Hotel { Name = "Five Seasons Resort" };
            var v1 = new Visitor { Name = "Alex Stevens" };
            var v2 = new Visitor { Name = "Joan Hills" };
            var r1 = new Reservation { Cost = 79.99M, Hotel = hotel,
                ReservationDate = DateTime.Parse("2/19/2010"), Visitor = v1 };
            var r2 = new Reservation { Cost = 99.99M, Hotel = hotel,
                ReservationDate = DateTime.Parse("2/17/2010"), Visitor = v2 };
            var r3 = new Reservation { Cost = 109.99M, Hotel = hotel,
                ReservationDate = DateTime.Parse("2/18/2010"), Visitor = v1 };
            var r4 = new Reservation { Cost = 89.99M, Hotel = hotel,
                ReservationDate = DateTime.Parse("2/17/2010"), Visitor = v2 };
            context.Hotels.Add(hotel);
            context.SaveChanges();
        }
 
        using (var context = new EFRecipesEntities())
        {
            Console.WriteLine("Using eSQL...");
            var esql = @"Select value v from
             EFRecipesModel.VisitorSummary(DATETIME'2010-02-16 00:00', 7) as v";
var objectContext = (context as IObjectContextAdapter).ObjectContext;
            var visitors = objectContext.CreateQuery<DbDataRecord>(esql);
             
            foreach (var visitor in visitors)
            {
                Console.WriteLine("{0}, Total Reservations: {1}, Revenue: {2:C}",
                    visitor["Name"], visitor["TotalReservations"],
                    visitor["BusinessEarned"]);
            }
        }
 
        using (var context = new EFRecipesEntities())
        {
            Console.WriteLine();
            Console.WriteLine("Using LINQ...");
            var visitors = from v in



Chapter 11 ■ Functions

393

                           context.VisitorSummary(DateTime.Parse("2/16/2010"), 7)
                           select v;
            foreach (var visitor in visitors)
            {
                Console.WriteLine("{0}, Total Reservations: {1}, Revenue: {2:C}",
                    visitor["Name"], visitor["TotalReservations"],
                    visitor["BusinessEarned"]);
            }
        }
    }
}
 
partial class EFRecipesEntities
{
    [EdmFunction("EFRecipesModel", "VisitorSummary")]
    public IQueryable<DbDataRecord> VisitorSummary(DateTime StartDate, int Days)
    {
        return this.QueryProvider.CreateQuery<DbDataRecord>(
            Expression.Call(
            Expression.Constant(this),
            (MethodInfo)MethodInfo.GetCurrentMethod(),
            new Expression[] { Expression.Constant(StartDate),
                               Expression.Constant(Days) }
            ));
    }
}
 

The output from the code in Listing 11-10 is as follows: 

Using eSQL...
Alex Stevens, Total Reservations: 2, Revenue: $189.98
Joan Hills, Total Reservations: 2, Revenue: $189.98
 
Using LINQ...
Alex Stevens, Total Reservations: 2, Revenue: $189.98
Joan Hills, Total Reservations: 2, Revenue: $189.98

How It Works
In Listing 11-9, for the definition of the VisitorSummary() function, we group the results by visitor, which is the 
navigation property exposed on the entity. To get the total count of reservations for each visitor, we use the eSQL 
Count()function. To get the total revenue, we use the Sum() function.

In the function, we shape the results as a collection of rows of three values: Name, TotalReservations, and 
BusinessEarned. Here we use the <CollectionType> and <RowType> tags to indicate the return type. In CLR terms, 
this is a collection of DbDataRecords.

To use the function in a LINQ query, we create a CLR method that returns IQueryable<DbDataRecord>. As in 
the previous recipes, we decorated the method with the EdmFunction()attribute. However, because we are returning 
an IQueryable<T>, we need to implement the body of the method to include the function call in the expression tree. 
Furthermore, because we need access to the QueryProvider in our ObjectContext to return an IQueryable<T>,  
we need to implement this method inside the EFRecipesEntities class.



Chapter 11 ■ Functions

394

11-6. Returning a Complex Type from a Model-Defined Function
Problem
You want to return a complex type from a model-defined function.

Solution
Suppose that we have a model for patients and their visits to a local hospital. This model is shown in Figure 11-6.

Figure 11-6.  A model for patient visits

You want to create a model-defined function that returns summary information about the patient with their 
name, the total number of visits, and their accumulated bill. Additionally, you want to filter the results to include only 
patients over 40 years old.

To create and use the model-defined function, do the following:

	 1.	 Right-click the designer, and select Add ➤ Complex Type.

	 2.	 Right-click the new complex type in the Model Browser. Rename the type to 
VisitSummary, and add the following properties:

a.	 Name of type String, not nullable

b.	 TotalVisits of type Int32, not nullable

c.	 TotalCost of type Decimal, not nullable

	 3.	 Right-click the .edmx file in the Solution Explorer, and click Open With ➤ XML Editor. This 
will open the .edmx file in the XML Editor.

	 4.	 Insert the code in Listing 11-11 just below the <Schema> tag in the conceptual models 
section of the .edmx file. This defines the function in the model.

Listing 11-11.  The GetVisitSummary() Model-Defined Function

<Function Name="GetVisitSummary"  ReturnType="Collection(EFRecipesModel.VisitSummary)">
  <DefiningExpression>
    select VALUE EFRecipesModel.VisitSummary(pv.Patient.Name,
                    Count(pv.VisitId),Sum(pv.Cost))
    from EFRecipesEntities.PatientVisits as pv
    group by pv.Patient.PatientId
  </DefiningExpression>
</Function>

 



Chapter 11 ■ Functions

395

	 5.	 Insert into and query the model using code similar to the pattern shown in Listing 11-12.

Listing 11-12.  Using eSQL and LINQ with the VisitSummary() Function to Query the Model

class Program
{
    static void Main(string[] args)
    {
        RunExample();
    }
 
    static void RunExample()
    {
        using (var context = new EFRecipesEntities())
        {
            string hospital = "Oakland General";
            var p1 = new Patient { Name = "Robin Rosen", Age = 41 };
            var p2 = new Patient { Name = "Alex Jones", Age = 39 };
            var p3 = new Patient { Name = "Susan Kirby", Age = 54 };
            var v1 = new PatientVisit { Cost = 98.38M, Hospital = hospital,
                                        Patient = p1 };
            var v2 = new PatientVisit { Cost = 1122.98M, Hospital = hospital,
                                        Patient = p1 };
            var v3 = new PatientVisit { Cost = 2292.72M, Hospital = hospital,
                                        Patient = p2 };
            var v4 = new PatientVisit { Cost = 1145.73M, Hospital = hospital,
                                        Patient = p3 };
            var v5 = new PatientVisit { Cost = 2891.07M, Hospital = hospital,
                                        Patient = p3 };
            context.Patients.Add (p1);
            context.Patients.Add (p2);
            context.Patients.Add (p3);
            context.SaveChanges();
        }
 
        using (var context = new EFRecipesEntities())
        {
            Console.WriteLine("Query using eSQL...");
            var esql = @"Select value ps from EFRecipesEntities.Patients
                          as p join EFRecipesModel.GetVisitSummary()
                          as ps on p.Name = ps.Name where p.Age > 40";
            var objectContext = (context as IObjectContextAdapter).ObjectContext;
            var patients = objectContext.CreateQuery<VisitSummary>(esql);
            foreach (var patient in patients)
            {
                Console.WriteLine("{0}, Visits: {1}, Total Bill: {2}",
                    patient.Name, patient.TotalVisits.ToString(),
                    patient.TotalCost.ToString("C"));
            }
        }

 



Chapter 11 ■ Functions

396

        using (var context = new EFRecipesEntities())
        {
            Console.WriteLine();
            Console.WriteLine("Query using LINQ...");
            var patients = from p in context.Patients
                           join ps in context.GetVisitSummary() on p.Name equals
                            ps.Name
                           where p.Age >= 40
                           select ps;
            foreach (var patient in patients)
            {
                Console.WriteLine("{0}, Visits: {1}, Total Bill: {2}",
                    patient.Name, patient.TotalVisits.ToString(),
                    patient.TotalCost.ToString("C"));
            }
        }
    }
}
 
partial class EFRecipesEntities
{
    [EdmFunction("EFRecipesModel", "GetVisitSummary")]
    public IQueryable<VisitSummary> GetVisitSummary()
    {
        return this.QueryProvider.CreateQuery<VisitSummary>(
            Expression.Call(Expression.Constant(this),
              (MethodInfo)MethodInfo.GetCurrentMethod()));
    }
}

 
The code in Listing 11-12 produces the following output: 

Query using eSQL...
Robin Rosen, Visits: 2, Total Bill: $1,221.36
Susan Kirby, Visits: 2, Total Bill: $4,036.80
 
Query using LINQ...
Robin Rosen, Visits: 2, Total Bill: $1,221.36
Susan Kirby, Visits: 2, Total Bill: $4,036.80

How It Works
We started by creating the complex type in the model. With the complex type created, we defined the 
GetVisitSummary() function in Listing 11-11 as returning a collection of our newly created complex type. Notice that 
the constructor for our complex type takes in parameters in the same order as those defined by our complex type. You 
might need to double-check in the .edmx file to make sure that the designer created the complex type properties in 
the order in which you created them interactively.



Chapter 11 ■ Functions

397

Because our function returns IQueryable<VisitSummary>, we need to implement the bootstrapping code. Also, 
because we need to get access to the QueryProvider inside our ObjectContext, we need to implement the method in a 
partial class of our EFRecipesEntities class, which is our ObjectContext.

You might be wondering when you would return a collection of complex types rather than a collection of 
anonymous types from a function. If you used the function in a LINQ query, the bootstrapping method would need 
to return IQueryable<DbDataRecord> for the anonymous type. However, although this collection could not be filtered 
further, a collection of complex types could be further filtered.

11-7. Returning a Collection of Entity References from a  
Model-Defined Function
Problem
You want to return a collection of entity references from a model-defined function.

Solution
Let’s say that you have a model, such as the one shown in Figure 11-7, for events and their sponsors. Sponsors provide 
different levels of financial support for events. Platinum sponsors provide the highest level of financial support.

Figure 11-7.  A model for events and their sponsors

You want to create a model-defined function that returns a collection of all the sponsors who are at the Platinum 
level. Because you need only the entity key information for the sponsor, the function needs to return only a collection 
of references to the sponsors.

To create and use the model-defined function, do the following:

	 1.	 Right-click the .edmx file in the Solution Explorer, and click Open With ➤ XML Editor. This 
will open the .edmx file in the XML Editor.

	 2.	 Insert the code in Listing 11-13 just below the <Schema> tag in the conceptual models 
section of the .edmx file. This defines the function in the model.



Chapter 11 ■ Functions

398

Listing 11-13.  The Definition of the PlatinumSponsors() Function

<Function Name="PlatinumSponsors">
          <ReturnType>
            <CollectionType>
              <ReferenceType Type="EFRecipesModel.Sponsor" />
            </CollectionType>
          </ReturnType>
          <DefiningExpression>
            select value ref(s)
            from EFRecipesEntities.Sponsors as s
            where s.SponsorType.Description == 'Platinum'
          </DefiningExpression>
        </Function> 

	 3.	 Insert into and query the model using code similar to the pattern shown in Listing 11-14.

Listing 11-14.  Using eSQL and Our PlatinumSponsors() Function to Find All Events  
with Platinum-Level Sponsors

   class Program
   {
      static void Main(string[] args)
      {
         RunExample();
      }
 
      static void RunExample()
      {
         using (var context = new EFRecipesEntities())
         {
            var platst = new SponsorType { Description = "Platinum" };
            var goldst = new SponsorType { Description = "Gold" };
            var sp1 = new Sponsor
            {
               Name = "Rex's Auto Body Shop",
               SponsorType = goldst
            };
            var sp2 = new Sponsor
            {
               Name = "Midtown Eye Care Center",
               SponsorType = platst
            };
            var sp3 = new Sponsor
            {
               Name = "Tri-Cities Ford",
               SponsorType = platst
            };
            var ev1 = new Event { Name = "OctoberFest", Sponsor = sp1 };
            var ev2 = new Event { Name = "Concerts in the Park", Sponsor = sp2 };
            var ev3 = new Event { Name = "11th Street Art Festival", Sponsor = sp3 };
            context.Events.Add(ev1);
            context.Events.Add(ev2);



Chapter 11 ■ Functions

399

            context.Events.Add(ev3);
            context.SaveChanges();
         }
 
         using (var context = new EFRecipesEntities())
         {
            Console.WriteLine("Events with Platinum Sponsors");
            Console.WriteLine("=============================");
            var esql = @"select value e from EFRecipesEntities.Events as e where
                ref(e.Sponsor) in (EFRecipesModel.PlatinumSponsors())";
 
            var objectContext = (context as IObjectContextAdapter).ObjectContext;
 
            var events = objectContext.CreateQuery<Event>(esql);
            foreach (var ev in events)
            {
               Console.WriteLine(ev.Name);
            }
         }
      }
   }

 
The output of the code in Listing 11-14 is as follows: 

Events with Platinum Sponsors
=============================
Concerts in the Park
11th Street Art Festival

How It Works
The <ReferenceType> element in the conceptual model denotes a reference to an entity type. This means that we are 
returning a reference to an entity, not the complete entity. Our model-defined function returns a collection of references 
to Platinum-level sponsors. To illustrate using our function, we created an eSQL expression in Listing 11-14 to get all 
of the events with Platinum-level sponsors. There are, of course, lots of different ways to get the events sponsored by 
Platinum-level sponsors, but by encapsulating the collection of Platinum-level sponsors in our model-defined function, 
we introduce a bit of code reusability.

We didn’t show a corresponding use in a LINQ query because the bootstrapping code would need to return an 
IQueryable<EntityKey>, which is fine, but a subsequent Contains clause would not work because the result is not 
strongly typed.

11-8. Using Canonical Functions in eSQL
Problem
You want to call a canonical function in your eSQL query. A canonical function is an eSQL function that is natively 
supported by all data providers. Examples include Sum(), Count(), and Avg().



Chapter 11 ■ Functions

400

Solution
Suppose that we have a model for customers and their orders, as shown in Figure 11-8.

Figure 11-8.  A model for customers and their orders

You want to retrieve the number of orders and the total purchase amount made by customers who have placed 
orders above the average order.

To create and use this query, follow the pattern shown in Listing 11-15.

Listing 11-15.  Querying the Model in eSQL Using the Sum(), Count(), and Avg() Functions

   class Program
   {
      static void Main(string[] args)
      {
         RunExample();
      }
 
      static void RunExample()
      {
         using (var context = new EFRecipesEntities())
         {
            var c1 = new Customer { Name = "Jill Masters", City = "Raytown" };
            var c2 = new Customer { Name = "Bob Meyers", City = "Austin" };
            var c3 = new Customer { Name = "Robin Rosen", City = "Dallas" };
            var o1 = new Order { OrderAmount = 12.99M, Customer = c1 };
            var o2 = new Order { OrderAmount = 99.39M, Customer = c2 };
            var o3 = new Order { OrderAmount = 101.29M, Customer = c3 };
            context.Orders.Add(o1);
            context.Orders.Add(o2);
            context.Orders.Add(o3);
            context.SaveChanges();
         }
 
         using (var context = new EFRecipesEntities())
         {
            Console.WriteLine("Customers with above average total purchases");
            var esql = @"select o.Customer.Name, count(o.OrderId) as TotalOrders,
                 Sum(o.OrderAmount) as TotalPurchases



Chapter 11 ■ Functions

401

                 from EFRecipesEntities.Orders as o
                 where o.OrderAmount >
                   anyelement(select value Avg(o.OrderAmount) from
                              EFRecipesEntities.Orders as o)
                 group by o.Customer.Name";
 
            var objectContext = (context as IObjectContextAdapter).ObjectContext;
 
            var summary = objectContext.CreateQuery<DbDataRecord>(esql);
            foreach (var item in summary)
            {
               Console.WriteLine("\t{0}, Total Orders: {1}, Total: {2:C}",
                  item["Name"], item["TotalOrders"], item["TotalPurchases"]);
            }
         }
      }
   }
 

The output of the code in Listing 11-15 is as follows: 

Customers with above average total purchases
        Bob Meyers, Total Orders: 1, Total: $99.39
        Robin Rosen, Total Orders: 1, Total: $101.29

How It Works
In this recipe, we used the canonical functions Count(),Sum(),and Avg(). These functions are independent of the 
data store, which means that they are portable and return types in the EDM space rather than data store-specific or 
CLR types.

11-9. Using Canonical Functions in LINQ
Problem
You want to use canonical functions in a LINQ query.

Solution
Let’s say that you have a model for movie rentals like the one shown in Figure 11-9. The MovieRental entity holds the 
date that the movie was rented and the date that it was returned, as well as any late fees that have been accumulated.



Chapter 11 ■ Functions

402

You want to retrieve all of the movies that were returned more than 10 days after they were rented. These are the 
late movies.

To create and use this query, follow the pattern shown inListing 11-16.

Listing 11-16.  Retrieving the Late Movies using the DateDiff() Function

class Program
   {
      static void Main(string[] args)
      {
         RunExample();
      }
         
      static void RunExample()
      {
         using (var context = new EFRecipesEntities())
         {
            var mr1 = new MovieRental
            {
               Title = "A Day in the Life",
               RentalDate = DateTime.Parse("2/19/2013"),
               ReturnedDate = DateTime.Parse("3/4/2013"),
               LateFees = 3M
            };
            var mr2 = new MovieRental
            {
               Title = "The Shortest Yard",
               RentalDate = DateTime.Parse("3/15/2013"),
               ReturnedDate = DateTime.Parse("3/20/2013"),
               LateFees = 0M
            };
            var mr3 = new MovieRental
            {
               Title = "Jim's Story",
               RentalDate = DateTime.Parse("3/2/2013"),
               ReturnedDate = DateTime.Parse("3/19/2013"),
               LateFees = 3M
            };

Figure 11-9.  The MovieRental entity that has the dates for a rental period along with any late fees



Chapter 11 ■ Functions

403

            context.MovieRentals.Add(mr1);
            context.MovieRentals.Add(mr2);
            context.MovieRentals.Add(mr3);
            context.SaveChanges();
         }
 
         using (var context = new EFRecipesEntities())
         {
            Console.WriteLine("Movie rentals late returns");
            Console.WriteLine("==========================");
            var late = from r in context.MovieRentals
                     where DbFunctions.DiffDays(r.RentalDate, r.ReturnedDate) > 10
                     select r;
            foreach (var rental in late)
            {
               Console.WriteLine("{0} was {1} days late, fee: {2}", rental.Title,
                          (rental.ReturnedDate - rental.RentalDate).Days - 10,
                          rental.LateFees.ToString("C"));
            }
         }
      }
   }
 

The output of the code in Listing 11-16 is the following: 

Movie rentals late returns
==========================
A Day in the Life was 3 days late, fee: $3.00
Jim's Story was 7 days late, fee: $3.00

How It Works
Canonical functions, which are defined in Entity Framework, are data source-agnostic and supported by all data 
providers. The types returned from canonical functions are defined in terms of types from the Entity Data Model.

In this recipe, we used the DiffDays() function to calculate the number of days between the start and end of the 
rental period. Because DiffDays() is a canonical function, it will be implemented by all providers.

Best Practice
You may be asking yourself, “When should I use EntityFunctions?” Entity Framework provides translations for some 
expressions into the canonical functions, but the translation is limited. Not every CLR method will translate to the 
corresponding canonical function.



Chapter 11 ■ Functions

404

Here’s the best practice. If there is a translation available, use it. It makes the code easier to read. If there is no 
translation available, use the EntityFunction class to call the canonical function explicitly, as in the following code 
snippet:
 
var laterentals = from r in context.MovieRentals
                  where (r.ReturnedDate - r.RentalDate).Days > 10
                  select r;
does not translate to the Canonical Function, so you should use,
var laterentals = from r in context.MovieRentals
                  where EntityFunctions.DiffDays(r.RentalDate,
                                                  r.ReturnedDate) > 10
                  select r;

11-10. Calling Database Functions in eSQL
Problem
You want to call a database function in an eSQL statement.

Solution
Let’s say that you have an eCommerce website, and you need to find all of the customers within a certain distance of a 
given ZIP code. Your model might look like the one shown in Figure 11-10.

Figure 11-10.  WebCustomer and Zip entities in a model

We’ll need to pull out some basic math functions to get this to work. Unfortunately, Entity Framework does not 
have the canonical functions we need, so we’ll have to use the functions available in the data store.

Use the pattern in Listing 11-17 to call the database functions from an eSQL expression.

Listing 11-17.  Using Database Functions to Determine the Distance between a Customer and a Given Zip Code

class Program
   {
      static void Main(string[] args)
      {
         RunExample();
      }
 



Chapter 11 ■ Functions

405

      static void RunExample()
      {
         using (var context = new EFRecipesEntities())
         {
            var c1 = new WebCustomer { Name = "Alex Stevens", Zip = "76039" };
            var c2 = new WebCustomer { Name = "Janis Jones", Zip = "76040" };
            var c3 = new WebCustomer { Name = "Cathy Robins", Zip = "76111" };
            context.Zips.Add(new Zip
            {
               Latitude = 32.834298M,
               Longitude = -32.834298M,
               ZipCode = "76039"
            });
            context.Zips.Add(new Zip
            {
               Latitude = 32.835298M,
               Longitude = -32.834798M,
               ZipCode = "76040"
            });
            context.Zips.Add(new Zip
            {
               Latitude = 33.834298M,
               Longitude = -31.834298M,
               ZipCode = "76111"
            });
            context.WebCustomers.Add(c1);
            context.WebCustomers.Add(c2);
            context.WebCustomers.Add(c3);
            context.SaveChanges();
         }
 
         using (var context = new EFRecipesEntities())
         {
            string esql = @"select value c
                    from EFRecipesEntities.WebCustomers as c
                    join
                    (SELECT z.ZipCode,
                      3958.75 * (SqlServer.Atan(SqlServer.Sqrt(1 -
                       SqlServer.power(((SqlServer.Sin(t2.Latitude/57.2958M) *
                           SqlServer.Sin(z.Latitude/57.2958M)) +
                           (SqlServer.Cos(t2.Latitude/57.2958M) *
                           SqlServer.Cos(z.Latitude/57.2958M) *
                            SqlServer.Cos((z.Longitude/57.2958M) -
                           (t2.Longitude/57.2958M)))), 2)) /(
                             ((SqlServer.Sin(t2.Latitude/57.2958M) *
                             SqlServer.Sin(z.Latitude/57.2958M)) +
                              (SqlServer.Cos(t2.Latitude/57.2958M) *
                               SqlServer.Cos(z.Latitude/57.2958M) *
                               SqlServer.Cos((z.Longitude/57.2958M) -
                                 (t2.Longitude/57.2958M))))))
                     ) as DistanceInMiles



Chapter 11 ■ Functions

406

                     FROM EFRecipesEntities.Zips AS z join
                      (select top(1) z2.Latitude as Latitude,z2.Longitude as
                       Longitude
                       from EFRecipesEntities.Zips as z2
                       where z2.ZipCode = @Zip
                      ) as t2 on 1 = 1
                    ) as matchingzips on matchingzips.ZipCode = c.Zip
                   where matchingzips.DistanceInMiles <= @RadiusInMiles";
             
            var objectContext = (context as IObjectContextAdapter).ObjectContext;
 
            var custs = objectContext.CreateQuery<WebCustomer>(esql,
                        new ObjectParameter("Zip", "76039"),
                        new ObjectParameter("RadiusInMiles", 5));
            Console.WriteLine("Customers within 5 miles of 76039");
            foreach (var cust in custs)
            {
               Console.WriteLine("Customer: {0}", cust.Name);
            }
         }
      }
   }
 

The output of the code in Listing 11-17 is as follows: 

Customers within 5 miles of 76039
Customer: Alex Stevens
Customer: Janis Jones

How It Works
Okay, the eSQL is a little complex, but the complexity is because we’re calling a bunch of database functions. Using 
the database functions in eSQL is fairly simple. These functions are available in the SqlServer namespace. Not all 
database functions are available in eSQL, so check the current Microsoft documentation to get a complete list. These 
functions are available only for SQL Server database.

In this example, the Zip entity has the latitude and longitude for each ZIP code. These values represent the 
geographic location of the center of the ZIP code. To calculate the distance between two ZIP codes involves a bit of 
math. Luckily, the database side provides the necessary functions to do the calculation.

11-11. Calling Database Functions in LINQ
Problem
You want to call a database function in a LINQ query.

Solution
Let’s say that you have an Appointment entity in your model, and you want to query for all of the appointments that 
you have on a given day of the week. The Appointment entity might look like the one shown in Figure 11-11.



Chapter 11 ■ Functions

407

If we want to find all of the appointments for Thursday, we can’t use the CLR enum DayOfWeek.Thursday to 
compare with the StartsAt property in a where clause because this does not translate to a data store statement.  
We need to use the pattern shown in Listing 11-18.

Listing 11-18.  Using a Database Function in a LINQ Query

class Program
   {
      static void Main(string[] args)
      {
         RunExample();
      }
 
      static void RunExample()
      {
         using (var context = new EFRecipesEntities())
         {
            var app1 = new Appointment
            {
               StartsAt = DateTime.Parse("7/23/2013 14:00"),
                    GoesTo = DateTime.Parse("7/23/2013 15:00")
            };
            var app2 = new Appointment
            {
               StartsAt = DateTime.Parse("7/24/2013 9:00"),
               GoesTo = DateTime.Parse("7/24/2013 11:00")
            };
            var app3 = new Appointment
            {
               StartsAt = DateTime.Parse("7/24/2013 13:00"),
                    GoesTo = DateTime.Parse("7/23/2013 15:00")
            };
            context.Appointments.Add(app1);
            context.Appointments.Add(app2);
            context.Appointments.Add(app3);
            context.SaveChanges();
         }
 

Figure 11-11.  An Appointment entity with the start and end times for appointments



Chapter 11 ■ Functions

408

         using (var context = new EFRecipesEntities())
         {
            var apps = from a in context.Appointments
                     where SqlFunctions.DatePart("WEEKDAY", a.StartsAt) == 4
                     select a;
            Console.WriteLine("Appointments for Thursday");
            Console.WriteLine("=========================");
            foreach (var appointment in apps)
            {
               Console.WriteLine("Appointment from {0} to {1}",
                          appointment.StartsAt.ToShortTimeString(),
                          appointment.GoesTo.ToShortTimeString());
            }
         }
      }
   }
 

The output of the code in Listing 11-18 is as follows:

Appointments for Thursday
=========================
Appointment from 9:00 AM to 11:00 AM
Appointment from 1:00 PM to 3:00 PM

How It Works
Database functions are available for use in both eSQL and LINQ queries. These functions are exposed via methods 
in the SqlFunctions class. Because these functions execute on the database side, the behavior you get might differ 
slightly from what you would expect on the .NET side. For example, DayOfWeek.Thursday evaluates to 4 on the .NET 
side. On the database side, Thursday is the fifth day of the week, so we check for a value of 5.

As with database functions in eSQL, not all database functions are available for LINQ queries. Check the current 
documentation from Microsoft for a complete list of the available functions.

11-12. Defining Built-in Functions
Problem
You want to define a built-in function for use in an eSQL or LINQ query.

Solution
Let’s say that you want to use the IsNull function in the database, but this function is not currently exposed by Entity 
Framework for either eSQL or LINQ. Suppose we have a WebProduct entity in our model like the one shown in 
Figure 11-12.



Chapter 11 ■ Functions

409

To expose this database function for your queries, do the following:

	 1.	 Right-click the .edmx file in the Solution Explorer, and click Open With ➤ XML Editor. This 
will open the .edmx file in the XML Editor.

	 2.	 Insert the code in Listing 11-19 just below the <Schema> tag in the storage models section 
of the .edmx file. This defines the functions in the storage layer.

Listing 11-19.  Defining Our Function in the Storage Layer

<Function Name="ISNULL" ReturnType="varchar" BuiltIn="true" Schema="dbo">
   <Parameter Name="expr1" Type="varchar"  Mode="In" />
   <Parameter Name="expr2" Type="varchar"  Mode="In" />
</Function>
 

	 3.	 Insert into and query the model using code similar to the pattern shown in Listing 11-19.

Listing 11-20.  Using the ISNULL() Function in an eSQL and LINQ Query

class Program
   {
      static void Main(string[] args)
      {
         RunExample();
      }
 
      static void RunExample()
      {
         using (var context = new EFRecipesEntities())
         {
            var w1 = new WebProduct
            {
               Name = "Camping Tent",
               Description = "Family Camping Tent, Color Green"
            };
            var w2 = new WebProduct { Name = "Chemical Light" };
            var w3 = new WebProduct
            {
               Name = "Ground Cover",
               Description = "Blue ground cover"
            };

Figure 11-12.  A WebProduct entity in our model



Chapter 11 ■ Functions

410

            context.WebProducts.Add(w1);
            context.WebProducts.Add(w2);
            context.WebProducts.Add(w3);
            context.SaveChanges();
         }
 
         using (var context = new EFRecipesEntities())
         {
            Console.WriteLine("Query using eSQL...");
            var esql = @"select value
                 EFRecipesModel.Store.ISNULL(p.Description,p.Name)
                 from EFRecipesEntities.WebProducts as p";
            var objectContext = (context as IObjectContextAdapter).ObjectContext;
            var prods = objectContext.CreateQuery<string>(esql);
            foreach (var prod in prods)
            {
               Console.WriteLine("Product Description: {0}", prod);
            }
         }
 
         using (var context = new EFRecipesEntities())
         {
            Console.WriteLine();
            Console.WriteLine("Query using LINQ...");
            var prods = from p in context.WebProducts
                            select BuiltinFunctions.ISNULL(p.Description, p.Name);
            foreach (var prod in prods)
            {
               Console.WriteLine(prod);
            }
         }
      }
   }
 
    public class BuiltinFunctions
    {
        [EdmFunction("EFRecipesModel.Store", "ISNULL")]
        public static string ISNULL(string check_expression, string replacementvalue)
        {
            throw new NotSupportedException("Direct calls are not supported.");
        }
    }

 



Chapter 11 ■ Functions

411

The output from the code in Listing 11-20 is as follows:

Query using eSQL...
Product Description: Family Camping Tent, Color Green
Product Description: Chemical Light
Product Description: Blue ground cover
 
Query using LINQ...
Family Camping Tent, Color Green
Chemical Light
Blue ground cover

How It Works
In the definition of the ISNULL() function in Listing 11-18, we need to match the name of the database function with 
our function’s name. Both have to be the same in spelling but not in case.

We defined the function not in the conceptual layer, as in previous recipes in this chapter, but in the store layer. 
This function is already available in the database; we are simply surfacing it in the store layer for our use.

When we use the function in the eSQL statement, we need to fully qualify the namespace for the function. Here 
that fully qualified name is EFRecipesModel.Store.ISNULL().

To use the function in a LINQ query, we need to create the bootstrapping method. We are not returning an 
IQueryable<T>, so no implementation of the method is required.



413

Chapter 12

Customizing Entity Framework 
Objects

The recipes in this chapter explore some of the customizations that can be applied to objects and to the processes in 
Entity Framework. These recipes cover many of the “behind the scenes” things that you can do to make your code 
more uniform by pushing concerns about things like business rule enforcement out of the details of your application 
to a central, application-wide implementation.

We start off this chapter with a recipe that shows you how to have your own code executable anytime 
SaveChanges() is called within your application. This recipe and a few others are particularly useful if you want to 
enforce business rules from a single point in your application.

In other recipes, we show you how to track database connections, how to automate responses to collection 
changes, how to implement cascading deletes, how to assign default values, and how to work with strongly typed  
XML properties.

The common thread of all of these recipes is extending the objects and processes in Entity Framework to make 
your code more resilient, uniform, and maintainable.

12-1. Executing Code When SaveChanges( ) Is Called
Problem
You want to execute code anytime SaveChanges() is called in a data context.

Solution
Let’s say that you have a model that represents a job applicant. As part of the model, you want the file containing the 
applicant’s resume to be deleted when the applicant’s record is deleted. You could find every place in your application 
where you need to delete an applicant’s record, but you want a more consistent and unified approach.

Your model looks like the one shown in Figure 12-1.



Chapter 12 ■ Customizing Entity Framework Objects

414

To ensure that the applicant’s resume file is deleted when the applicant is deleted, we override the 
SavingChanges() method in the DbContext. In our overridden method, we need to scan the DbContext for changes 
that include deleting instances of the Applicant entity. Next we need to tell Entity Framework to save the changes by 
calling the real SaveChanges() method. Finally, for each of the deleted Applicants, we need to delete the associated 
resume file. The code in Listing 12-1 demonstrates this approach.

Listing 12-1.  Overriding SaveChanges() to Delete the Resume File When the Applicant Is Deleted

class Program
   {
      static void Main(string[] args)
      {
         RunExample();
      }
 
      static void RunExample()
      {
         using (var context = new EFRecipesEntities())
         {
            var path1 = "AlexJones.txt";
            File.AppendAllText(path1, "Alex Jones\nResume\n...");
            var path2 = "JanisRogers.txt";
            File.AppendAllText(path2, "Janis Rodgers\nResume\n...");
            var app1 = new Applicant
            {
               Name = "Alex Jones",
               ResumePath = path1
            };
            var app2 = new Applicant
            {
               Name = "Janis Rogers",
               ResumePath = path2
            };
            context.Applicants.Add(app1);
            context.Applicants.Add(app2);
            context.SaveChanges();
 

Figure 12-1.  A model for job applicant



Chapter 12 ■ Customizing Entity Framework Objects

415

            // delete Alex Jones
             context.Applicants.Remove(app1);
             context.SaveChanges();
         }
      }
   }
   public partial class EFRecipesEntities
   {
      public override int SaveChanges()
      {
         Console.WriteLine("Saving Changes...");
         var applicants = this.ChangeTracker.Entries().Where(e => e.State == System.Data.Entity.
EntityState.Deleted).Select(e => e.Entity).OfType<Applicant>().ToList();
 
         int changes = base.SaveChanges();
         Console.WriteLine("\n{0} applicants deleted",
                        applicants.Count().ToString());
         foreach (var app in applicants)
         {
            File.Delete(app.ResumePath);
            Console.WriteLine("\n{0}'s resume at {1} deleted",
                           app.Name, app.ResumePath);
         }
         return changes;
      }
   }
 

Following is the output from the code in Listing 12-1:

Saving Changes...
0 applicants deleted
Saving Changes...
 
1 applicants deleted
 
Alex Jones's resume at AlexJones.txt deleted

How It Works
The code in Listing 12-1 starts by inserting two applicants, each with the path to a resume file that we also created. 
The goal here is to delete the resume file in a structured way when the instance of the Applicant entity is deleted. We 
do this by overriding the SaveChanges() method.

In our SaveChanges() method, first we gather up all of the instances of Applicant that have been marked for 
deletion. These are the ones that will be deleted from the database when we call the real SaveChanges() method. We 
need to get them before we call SaveChanges(), because after we call SaveChanges() these instances will be detached 
from the context and we will no longer be able to use this query to retrieve them. Once we have the instances that will 
be deleted, we call SaveChanges() to do the real work of persisting objects to the database. Once the changes have 
been successfully committed, we can delete the resume files.

Entity Framework does not expose insert, update, and delete events for each entity. However, much of what we 
would do in these events can be handled, as we have demonstrated here, by overriding the SaveChanges() method.



Chapter 12 ■ Customizing Entity Framework Objects

416

12-2. Validating Property Changes
Problem
You want to validate a value being assigned to a property.

Solution
Let’s say that you have a model with a User entity. The User entity has properties for the full name and user name for 
the user. You have a business rule that says that each user must have a UserName greater than five characters long. 
You want to enforce this business rule with code that sets the IsActive property to false if the UserName is set to a 
string less than or equal to five characters; otherwise the IsActive flag is set to true. This approach does not work in a 
Code-First approach. The model is shown in Figure 12-2.

Figure 12-2.  The User entity in our model

To enforce our business rule, we need to implement the partial methods OnUserNameChanging() and 
OnUserNameChanged().These methods are called during the property change activity and after the property has been 
changed. The code in Listing 12-2 demonstrates one solution.

Listing 12-2.  Monitoring the Changing of the UserName Property

class Program
{
    static void Main(string[] args)
    {
        RunExample();
    }
 
    static void RunExample()
    {
        using (var context = new EFRecipesEntities())
        {
            var user1 = new User { FullName = "Robert Meyers",
                                   UserName = "RM" };
            var user2 = new User { FullName = "Karen Kelley",
                                   UserName = "KKelley" };
            context.Users.AddObject(user1);
            context.Users.AddObject(user2);



Chapter 12 ■ Customizing Entity Framework Objects

417

            context.SaveChanges();
            Console.WriteLine("Users saved to database");
        }
 
        using (var context = new EFRecipesEntities())
        {
            Console.WriteLine();
            Console.WriteLine("Reading users from database");
            foreach (var user in context.Users)
            {
                Console.WriteLine("{0} is {1}, UserName is {2}", user.FullName,
                        user.IsActive ? "Active" : "Inactive", user.UserName);
            }
        }
    }
}
 
public partial class User
{
    partial void OnUserNameChanging(string value)
    {
        if (value.Length > 5)
            Console.WriteLine("{0}'s UserName changing to {1}, OK!",
                               this.FullName, value);
        else
            Console.WriteLine("{0}'s UserName changing to {1}, Too Short!",
                               this.FullName, value);
    }
 
    partial void OnUserNameChanged()
    {
        this.IsActive = (this.UserName.Length > 5);
    }
}
 

Following is the output of the code in Listing 12-2:

Robert Meyers's UserName changing to RM, Too Short!
Karen Kelley's UserName changing to KKelley, OK!
Users saved to database
 
Reading users from database
Robert Meyers's UserName changing to RM, Too Short!
Robert Meyers is Inactive, UserName is RM
Karen Kelley's UserName changing to KKelley, OK!
Karen Kelley is Active, UserName is KKelley



Chapter 12 ■ Customizing Entity Framework Objects

418

How It Works
In the solution, we implement the partial methods OnUserNameChanging() and OnUserNameChanged() to monitor the 
property change activity. The OnUserNameChanging() method is called when the property value is being set. Here we 
have an opportunity to throw an exception or, as in our example, simply report that the UserName is being set to a 
value of five characters or fewer.

The OnUserNameChanged() method is called after the property has been changed. Here we simply set the IsActive 
property based on the length of the final UserName property value.

These partial methods are created by Entity Framework as part of the code generation process. The names of 
the partial methods are derived from the property names. In our case, each method name included the name of the 
property. These partial methods are called inside the setter for each property.

You may be wondering a bit about the output of code. Notice that the partial methods are called twice in our 
example. They are called when the property value is set. They are also called when the User instances are materialized 
from the database. This second call happens, of course, because the materialization process involves setting the 
property value from the persisted value in the database.

In addition to these two partial methods, Entity Framework exposes two events for monitoring property changes. 
These events, PropertyChanging and PropertyChanged, are raised when any property on an Entity is changed. The 
sender of the event is the instance of the entity, and the PropertyEventArgs parameter contains a PropertyName that 
holds the name of the property that is changing or that has changed. Because these events are fired for any property 
change on the entity, they can be useful in some scenarios, particularly if you have an entity with many properties. 
They are somewhat less useful in practical terms because they don’t readily expose the current and proposed values 
for the property.

When our UserName property value changes, the sequence is as follows:

	 1.	 OnUserNameChanging() method is called.

	 2.	 PropertyChanging event is raised.

	 3.	 PropertyChanged event is raised.

	 4.	 OnUserNameChanged() method is called.

The PropertyChanging and PropertyChanged events are not raised when a navigation property value is changed. 
The state of an entity changes only when a scalar or complex property changes.

12-3. Logging Database Connections
Problem
You want to create a log entry each time a connection is opened or closed to the database.

Solution
Entity Framework exposes a StateChange event on the connection for a DbContext. To create a log entry each time a 
connection is opened or closed, we need to handle this event.

Suppose our model looks like the one shown in Figure 12-3. In Listing 12-3, we create a few instances of a 
Donation and save them to the database. The code implements the override SaveChanges() method to wire in our 
handler for the StateChange event.



Chapter 12 ■ Customizing Entity Framework Objects

419

Listing 12-3.  Code to Implement Logging of Open and Close of a Database Connection

class Program
   {
      static void Main(string[] args)
      {
         RunExample();
      }
 
      static void RunExample()
      {
         using (var context = new EFRecipesEntities())
         {
            context.Donations.Add(new Donation
            {
               DonorName = "Robert Byrd",
               Amount = 350M
            });
            context.Donations.Add(new Donation
            {
               DonorName = "Nancy McVoid",
               Amount = 250M
            });
            context.Donations.Add(new Donation
            {
               DonorName = "Kim Kerns",
               Amount = 750M
            });
            Console.WriteLine("About to SaveChanges()");
            context.SaveChanges();
         }
 
         using (var context = new EFRecipesEntities())
         {
            var list = context.Donations.Where(o => o.Amount > 300M);
            Console.WriteLine("Donations over $300");
            foreach (var donor in list)

Figure 12-3.  The model with the Donation entity



Chapter 12 ■ Customizing Entity Framework Objects

420

            {
               Console.WriteLine("{0} gave {1}", donor.DonorName,
                              donor.Amount.ToString("C"));
            }
         }
         Console.WriteLine("Press any key to close...");
         Console.ReadLine();
      }
   }
 
   public partial class EFRecipesEntities
   {
      public override int SaveChanges()
      {
         this.Database.Connection.StateChange += (s, e) =>
         {
            var conn = (DbConnection)s;
            Console.WriteLine("{0}: Database: {1}, State: {2}, was: {3}",
               DateTime.Now.ToShortTimeString(), conn.Database,
               e.CurrentState, e.OriginalState);
         };
         return base.SaveChanges();
      }
   }
 

Following is the output from the code in Listing 12-3:

About to SaveChanges()
09:56 : Database: EFRecipes, State: Open, was: Closed
09:56: Database: EFRecipes, State: Closed, was: Open
Donations over $300
Robert Byrd gave $350.00
Kim Kerns gave $750.00

How It Works
To wire in the handler for the StateChange event, we implement the override SaveChanges() method.

Our event handler receives two parameters: the sender of the event and a StateChangeEventArgs. This second 
parameter provides access to the CurrentState of the connection and the OriginalState of the connection. We create a 
log entry indicating both of these states as well as the time of the event and the associated database.

If you are paying particularly close attention to the order of the log entries, you will notice that, in the second 
using block, the connection to the database occurs during the execution of the query in the foreach loop, and 
not when the query is constructed. This demonstrates the important concept that queries are executed only when 
explicitly required. In our case, this execution occurs during the iteration.



Chapter 12 ■ Customizing Entity Framework Objects

421

12-4. Recalculating a Property Value When an Entity  
Collection Changes
Problem
You want to recalculate a property value on the entity when its entity collection changes.

Solution
Both EntityCollection and EntityReference derive from RelatedEnd.  RelatedEnd exposes an AssociationChanged 
event. This event is raised when the association is changed or modified. In particular, this event is raised when an 
element is added to, or removed from, a collection.

To recalculate a property values, we implement a handler for the AssociationChanged event.
Let’s say that you have a model with a shopping cart and items for the cart. The model is shown in Figure 12-4.

Figure 12-4a.  A model for a cart

Figure 12-4b.  The cart’s items

The code in Listing 12-4 demonstrates using the AssociationChanged event to recalculate the CartTotal property 
on the Cart entity when items are added to, or removed from, the CartItems collection.



Chapter 12 ■ Customizing Entity Framework Objects

422

Listing 12-4.  Using the AssociationChanged Event to Keep the CartTotal in Sync with the Items in the Cart

class Program
{
    static void Main(string[] args)
    {
        RunExample();
    }
 
    static void RunExample()
    {
        using (var context = new EFRecipesEntities())
        {
            var item1 = new CartItem { SKU = "AMM-223", Quantity = 3,
                                       Price = 19.95M };
            var item2 = new CartItem { SKU = "CAMP-12", Quantity = 1,
                                       Price = 59.95M };
            var item3 = new CartItem { SKU = "29292", Quantity = 2,
                                       Price = 4.95M };
            var cart = new Cart { CartTotal = 0 };
            cart.CartItems.Add(item1);
            cart.CartItems.Add(item2);
            cart.CartItems.Add(item3);
            context.Carts.AddObject(cart);
            item1.Quantity = 1;
            context.SaveChanges();
        }
 
        using (var context = new EFRecipesEntities())
        {
            foreach (var cart in context.Carts)
            {
                Console.WriteLine("Cart Total = {0}",
                                   cart.CartTotal.ToString("C"));
                foreach (var item in cart.CartItems)
                {
                    Console.WriteLine("\tSKU = {0}, Qty = {1}, Unit Price = {2}",
                                       item.SKU, item.Quantity.ToString(),
                                       item.Price.ToString("C"));
                }
            }
        }
    }
}
 
public partial class Cart
{
    public Cart()
    {
        this.CartItems.AssociationChanged += (s, e) =>
            {
                if (e.Action == CollectionChangeAction.Add)



Chapter 12 ■ Customizing Entity Framework Objects

423

                {
                    var item = e.Element as CartItem;
                    item.PropertyChanged += (ps, pe) =>
                        {
                            if (pe.PropertyName == "Quantity")
                            {
                                this.CartTotal =
                                  this.CartItems.Sum(t => t.Price * t.Quantity);
                                Console.WriteLine("Qty changed, total = {0}",
                                  this.CartTotal.ToString("C"));
                            }
                        };
                }
                this.CartTotal = this.CartItems.Sum(t => t.Price * t.Quantity);
                Console.WriteLine("New total = {0}",
                                   this.CartTotal.ToString("C"));
            };
    }
}
 

Following is the output from the code in Listing 12-4:

New total = $59.85
New total = $119.80
New total = $129.70
Qty changed, total = $89.80
Cart Total = $89.80
New total = $89.80
        SKU = AMM-223, Qty = 1, Unit Price = $19.95
        SKU = CAMP-12, Qty = 1, Unit Price = $59.95
        SKU = 29292, Qty = 2, Unit Price = $4.95

How It Works
To keep the CartTotal property in sync with the items in the CartItems collection, we need to wire in a handler for the 
AssociationChanged event on the CartItems collection. We do this in the constructor for the Cart entity.

The event handler is a little complicated because we have to consider two cases. In the first case, we’re simply 
adding or removing an item from the cart. Here we just recalculate the total by iterating through the collection and 
summing the price for each item multiplied by the quantity of the item. To get this sum, we use the Sum() method and 
pass in a lambda expression that multiplies the price and quantity.

In the second case, the entity collection remains the same, but one of the items has its quantity changed. This 
also affects the cart total and requires that we recalculate. For this case, we wire in a handler for the PropertyChanged 
event whenever we add an item to the cart. This second handler simply recalculates the cart total when the Quantity 
property changes.

To wire in this second handler, we depend on the Action property exposed in the CollectionChangedEventArgs,  
which is passed as the second parameter to our first event handler. The actions defined are Add, Remove, and Refresh.

Batch operations such as Load(), Clear(), and Attach() raise the CollectionChangedEvent just once regardless 
of how many elements are in the collection. This can be good if your collection contains lots of elements and you 
are interested in, as we are here, the entire collection. It can, of course, be annoying if you need to track collection 
changes at a more granular level.



Chapter 12 ■ Customizing Entity Framework Objects

424

12-5. Automatically Deleting Related Entities
Problem
When an entity is deleted, you want to delete the related entities automatically.

Solution
Suppose that you have a table structure that consists of a course, the classes for the course, and the enrollment in each 
class, as shown in Figure 12-5.

Figure 12-5.  The Course, Class, and Enrollment tables in our database

Figure 12-6.  A model with the Course, Class, and Enrollment entities and their associations

Given these tables, you have created a model like the one shown in Figure 12-6.

When a course is deleted from the database, you want all of the classes for the course to be deleted and all of the 
enrollments for the classes to be deleted as well. To get this to work, we set a cascade delete rule in the database for 
the relationships. To set this rule, select the relationship in SQL Server Management Studio, view the properties, and 
select Cascade in the INSERT and UPDATE Specification’s Delete Rule.

When these tables are imported into the model, these cascade delete rules will also be imported. You can see this 
by selecting the one-to-many association between Course and Class and viewing the properties (see Figure 12-7).



Chapter 12 ■ Customizing Entity Framework Objects

425

The cascade delete shown in Figure 12-7 is in the conceptual layer. There is a similar rule present in the store 
layer. Both of these Entity Framework rules and the underlying database cascade delete rule are necessary to keep the 
object context and the database in sync when objects are deleted.

The code in Listing 12-5 demonstrates the cascade delete.

Listing 12-5.  Using the Underlying Cascade Delete Rules to Delete the Related Objects

class Program
    {
        static void Main(string[] args)
        {
            RunExample();
        }
 
        static void RunExample()
        {
            using (var context = new EFRecipesEntities())
            {
                var course1 = new Course { CourseName = "CS 301" };
                var course2 = new Course { CourseName = "Math 455" };
                var en1 = new Enrollment { Student = "James Folk" };

Figure 12-7.  The cascade delete rule from the database was imported into the model, and it is shown in the properties 
for the association



Chapter 12 ■ Customizing Entity Framework Objects

426

                var en2 = new Enrollment { Student = "Scott Shores" };
                var en3 = new Enrollment { Student = "Jill Glass" };
                var en4 = new Enrollment { Student = "Robin Rosen" };
                var class1 = new Class { Instructor = "Bill Meyers" };
                var class2 = new Class { Instructor = "Norma Hall" };
                class1.Course = course1;
                class2.Course = course2;
                class1.Enrollments.Add(en1);
                class1.Enrollments.Add(en2);
                class2.Enrollments.Add(en3);
                class2.Enrollments.Add(en4);
                context.Classes.Add(class1);
                context.Classes.Add(class2);
                context.SaveChanges();
                context.Classes.Remove(class1);
                context.SaveChanges();
            }
            using (var context = new EFRecipesEntities())
            {
                foreach (var course in context.Courses)
                {
                    Console.WriteLine("Course: {0}", course.CourseName);
                    foreach (var c in course.Classes)
                    {
                        Console.WriteLine("\tClass: {0}, Instructor: {1}",
                                           c.ClassId.ToString(), c.Instructor);
                        foreach (var en in c.Enrollments)
                        {
                            Console.WriteLine("\t\tStudent: {0}", en.Student);
                        }
                    }
                }
            }
 
            Console.WriteLine("Press any key to close...");
            Console.ReadLine();
        }
    }
 

Following is the output from the code in Listing 12-5:

Course: CS 301
Course: Math 455
        Class: 8, Instructor: Norma Hall
                Student: Jill Glass
                Student: Robin Rosen



Chapter 12 ■ Customizing Entity Framework Objects

427

How It Works
This recipe has the cascade delete rule both in the database and in the model. In the model, the rule is represented 
both at the conceptual layer and in the store layer. To keep the object context in sync with the database, we defined 
the cascade delete in both the database and in the model.

Best Practice
Now you may be asking, “Why do we need this rule in both the model and in the database? Wouldn’t it suffice to have 
the rule either in the database, or in the model?”

The reason cascade delete exists at the conceptual layer is to keep the objects loaded in the object context in 
sync with the cascade delete changes made by the database. For example, if we have classes and enrollments for a 
given course loaded in the object context and we mark the course for deletion, Entity Framework would also mark 
the course’s classes and their enrollments for deletion. All of this happens before anything is sent to the database. At 
the model layer, cascade delete means to mark related entities for deletion. Ultimately, Entity Framework will issue 
redundant deletes for these entities.

Thus if Entity Framework will issue redundant deletes, why not just have the rules in the model and not in the 
database? Here’s why: For Entity Framework to mark entities for deletion, they must be loaded into the DbContext. 
Imagine that we have a course in the DbContext, but we haven’t loaded the related classes or the related enrollments. 
If we delete the course, the related classes and enrollments can’t be marked for deletion because they are not in the 
DbContext. No commands will be sent to the database to delete these related rows. However, if we have the cascade 
delete rules in place in the database, the database will take care of deleting the rows.

The best practice here is to have the cascade delete rules both in the model and in the database.
If you have added a cascade delete rule to a model, Entity Framework will not overwrite it if you update the 

model from the database. Unfortunately, if you don’t have a cascade delete rule in the model and you update the 
model from the database while the database has a newly created cascade delete rule, Entity Framework will not add a 
cascade delete rule in the conceptual layer. You will have to add it manually.

12-6. Deleting All Related Entities
Problem
You want to delete all of the related entities in the most generic way possible.

Solution
We want to delete all of the related entities in a generic way; that is, in a way that will work across all entities without 
specific reference to any particular entity type. To do this, we will create a method that uses the Relationship Manager 
to get all of the related ends. With these, we can use CreateSourceQuery() to retrieve the entities and delete them.

The code in Listing 12-6 demonstrates this method using the model in Figure 12-8. In this model, we have recipes 
with related ingredients and steps.



Chapter 12 ■ Customizing Entity Framework Objects

428

Listing 12-6.  Demonstrating the DeleteRelatedEntities<>() Method

class Program
{
    static void Main(string[] args)
    {
        RunExample();
    }
 
    static void DeleteRelatedEntities<T>(T entity, EFRecipesEntities context)
                where T : EntityObject
    {
        var entities = ((IEntityWithRelationships)entity)
                        .RelationshipManager.GetAllRelatedEnds()
                        .SelectMany(e =>
                          e.CreateSourceQuery().OfType<EntityObject>()).ToList();
        foreach (var child in entities)

Figure 12-8.  A model with ingredients and steps for each recipe



Chapter 12 ■ Customizing Entity Framework Objects

429

        {
            context.DeleteObject(child);
        }
        context.SaveChanges();
    }
 
    static void RunExample()
    {
        using (var context = new EFRecipesEntities())
        {
            var recipe1 = new Recipe { RecipeName = "Chicken Risotto" };
            var recipe2 = new Recipe { RecipeName = "Baked Chicken" };
            recipe1.Steps.Add(new Step { Description = "Bring Broth to a boil" });
            recipe1.Steps.Add(new Step { Description =
                                           "Slowly add Broth to Rice" });
            recipe1.Ingredients.Add(new Ingredient { Name = "1 Cup White Rice" });
            recipe1.Ingredients.Add(new Ingredient { Name =
                                           "6 Cups Chicken Broth"});
            recipe2.Steps.Add(new Step { Description =
                                           "Bake at 350 for 35 Minutes" });
            recipe2.Ingredients.Add(new Ingredient { Name = "1 lb Chicken" } );
            context.Recipes.AddObject(recipe1);
            context.Recipes.AddObject(recipe2);
            context.SaveChanges();
            Console.WriteLine("All the Related Entities...");
            ShowRecipes();
            DeleteRelatedEntities(recipe2, context);
            Console.WriteLine("\nAfter Related Entities are Deleted...");
            ShowRecipes();
        }
    }
 
    static void ShowRecipes()
    {
        using (var context = new EFRecipesEntities())
        {
            foreach (var recipe in context.Recipes)
            {
                Console.WriteLine("\n*** {0} ***", recipe.RecipeName);
                Console.WriteLine("Ingredients");
                foreach (var ingredient in recipe.Ingredients)
                {
                    Console.WriteLine("\t{0}", ingredient.Name);
                }
                Console.WriteLine("Steps");
                foreach (var step in recipe.Steps)
                {
                    Console.WriteLine("\t{0}", step.Description);
                }
            }
        }
    }
}
 



Chapter 12 ■ Customizing Entity Framework Objects

430

Following is the output of the code in Listing 12-6:

All the Related Entities...
 
*** Chicken Risotto ***
Ingredients
        1 Cup White Rice
        6 Cups Chicken Broth
Steps
        Bring Broth to a boil
        Slowly add Broth to Rice
 
*** Baked Chicken ***
Ingredients
        1 lb Chicken
Steps
        Bake at 350 for 35 Minutes
 
After Related Entities are Deleted...
 
*** Chicken Risotto ***
Ingredients
        1 Cup White Rice
        6 Cups Chicken Broth
Steps
        Bring Broth to a boil
        Slowly add Broth to Rice
 
*** Baked Chicken ***
Ingredients
Steps

How It Works
Of course, there is no real performance benefit using the code in Listing 12-6. What is useful about this approach is that 
it deletes all of the related entities without reference to any particular entity type. We could have loaded the second 
recipe and simply marked each of the ingredients and steps for deletion, but this code snippet would be specific to 
these entities in this model. The method in Listing 12-6 will work across all entity types and delete all related entities.

12-7. Assigning Default Values
Problem
You want to assign default values to the properties of an entity before it is saved to the database.

Solution
Let’s say that you have a table similar to the one in Figure 12-9, which holds information about a purchase order. 
The key, PurchaseOrderId, is a GUID, and there are two columns holding the date and time for the creation and last 



Chapter 12 ■ Customizing Entity Framework Objects

431

modification of the object. There is also a comments column that is no longer used and should always be set to “N/A”. 
Because we no longer use the comments, we don’t have this property available on the entity. You want to initialize the 
PurchaseOrderId column, the date fields, the Paid column, and the comments column to default values. Our model is 
shown in Figure 12-10.

Figure 12-10.  The model created from the PurchaseOrder table in Figure 12-9

Figure 12-9.  The PurchaseOrder table with several columns that need default values

We will illustrate three different ways to set default values. Default values that don’t need to be dynamically 
calculated can be set as the Default Value for the property in the conceptual model. Select the Paid property and view 
its Properties. Set the Default Value to false.

For properties that need to be calculated at runtime, we need to override the SaveChanges event. This is 
illustrated in Listing 12-7. In this event, if the object is in the Added state, we set the PurchaseOrderId to a new GUID 
and set the CreateDate and ModifiedDate fields.

To illustrate setting the default value outside of the conceptual model, we can modify the store layer to set a 
default value for the comments column. This approach would be useful if we didn’t want to surface some properties 
in the model, yet wanted to set their default values. To set the default value through the store layer, right-click the 
.edmx file and select Open With ➤ XML Editor. Add DefaultValue="N/A" to the <Property> tag for the Comment 
property in the SSDL section of the .edmx file.



Chapter 12 ■ Customizing Entity Framework Objects

432

Listing 12-7.  Overriding the SaveChanges Event to Set the Default Values

class Program
    {
        static void Main(string[] args)
        {
            RunExample();
        }
 
        static void RunExample()
        {
            using (var context = new EFRecipesEntities())
            {
                context.PurchaseOrders.Add(
                                  new PurchaseOrder { Amount = 109.98M });
                context.PurchaseOrders.Add(
                                  new PurchaseOrder { Amount = 20.99M });
                context.PurchaseOrders.Add(
                                  new PurchaseOrder { Amount = 208.89M });
                context.SaveChanges();
            }
 
            using (var context = new EFRecipesEntities())
            {
                Console.WriteLine("Purchase Orders");
                foreach (var po in context.PurchaseOrders)
                {
                    Console.WriteLine("Purchase Order: {0}",
                                       po.PurchaseOrderId.ToString(""));
                    Console.WriteLine("\tPaid: {0}", po.Paid ? "Yes" : "No");
                    Console.WriteLine("\tAmount: {0}", po.Amount.ToString("C"));
                    Console.WriteLine("\tCreated On: {0}",
                                       po.CreateDate.ToShortTimeString());
                    Console.WriteLine("\tModified at: {0}",
                                       po.ModifiedDate.ToShortTimeString());
                }
            }
        }
    }
 
    public partial class EFRecipesEntities
    {
        public override int SaveChanges()
        {
            var changeSet = this.ChangeTracker.Entries().Where(e => e.Entity is PurchaseOrder);
            if (changeSet != null)
            {
                �foreach (var order in changeSet.Where(c => c.State == System.Data.Entity.

EntityState.Added).Select(a => a.Entity as PurchaseOrder))



Chapter 12 ■ Customizing Entity Framework Objects

433

                {
                    order.PurchaseOrderId = Guid.NewGuid();
                    order.CreateDate = DateTime.UtcNow;
                    order.ModifiedDate = DateTime.UtcNow;
                }
                �foreach (var order in changeSet.Where(c => c.State == System.Data.Entity.

EntityState.Modified).Select(a => a.Entity as PurchaseOrder))
                {
                    order.ModifiedDate = DateTime.UtcNow;
                }
            }
            return base.SaveChanges();
        }
    }
 

Following is the output from the code in Listing 12-7:

Purchase Orders
Purchase Order: 1b4df3c6-6f72-4c6b-9ce2-331bad509be5
        Paid: No
        Amount: $208.89
        Created On: 3:15 PM
        Modified at: 3:15 PM
Purchase Order: c042f045-38af-4bfc-93c0-a870ffd36195
        Paid: No
        Amount: $20.99
        Created On: 3:15 PM
        Modified at: 3:15 PM
Purchase Order: 223faf4a-e128-4f5a-8dee-b9b104ed43b7
        Paid: No
        Amount: $109.98
        Created On: 3:15 PM
        Modified at: 3:15 PM

How It Works
We demonstrated three different ways to set default values. For values that are static and for which a property is 
exposed on the entity for the underlying column, we can use the designer’s Default Value for the property. This is 
ideally suited for the Paid property. By default, we want to set this to false. New purchase orders are typically unpaid.

For columns that need dynamically calculated values, such as the CreateDate, ModifiedDate, and 
PurchaseOrderId columns, we override the SaveChanges event that computes these values and sets the column values 
just before the entity is saved to the database.

Finally, for columns that are not surfaced as properties on the entity and need a static default value, we can use 
the Default Value attribute in the store layer property definition. In this recipe, we set the comments column default 
value to “N/A” in the store layer property definition.

There is another option for assigning default values. You could assign them in the constructor for the entity. 
The constructor is called each time a new instance of the entity is created. This includes each time the instance is 
materialized from the database. You have to be careful not to overwrite previous values for the properties from  
the database.



Chapter 12 ■ Customizing Entity Framework Objects

434

12-8. Retrieving the Original Value of a Property
Problem
You want to retrieve the original value of a property before the entity is saved to the database.

Solution
Let’s say that you have a model (see Figure 12-11) representing an Employee, and part of this entity includes the 
employee’s salary. You have a business rule that an employee’s salary cannot be increased by more than 10 percent. 
To enforce this rule, you want to check the new salary against the original salary for increases in excess of 10 percent. 
You want to do this check just before the entity is saved to the database.

To verify that a salary increase does not exceed 10 percent as required by our business rule, we override the 
SaveChanges event. In the overridden event, we retrieve the current and original values. If the new value is more than 
110 percent of the original value, we throw an exception. This exception, of course, causes the saving of the entity to 
fail. The code in Listing 12-8 provides the details.

Listing 12-8.  Overriding the SaveChanges Event to Enforce the Business Rule

class Program
    {
        static void Main(string[] args)
        {
            RunExample();
        }
 
        static void RunExample()
        {
            using (var context = new EFRecipesEntities())
            {
                var emp1 = new Employee { Name = "Roger Smith", Salary = 108000M };
                var emp2 = new Employee { Name = "Jane Hall", Salary = 81500M };
                context.Employees.Add(emp1);
                context.Employees.Add(emp2);
                context.SaveChanges();
                emp1.Salary = emp1.Salary * 1.5M;
                try

Figure 12-11.  An Employee entity with the employee’s salary



Chapter 12 ■ Customizing Entity Framework Objects

435

                {
                    context.SaveChanges();
                }
                catch (Exception)
                {
                    Console.WriteLine("Oops, tried to increase a salary too much!");
                }
            }
 
            using (var context = new EFRecipesEntities())
            {
                Console.WriteLine();
                Console.WriteLine("Employees");
                foreach (var emp in context.Employees)
                {
                    Console.WriteLine("{0} makes {1}/year", emp.Name,
                                       emp.Salary.ToString("C"));
                }
            }
            Console.WriteLine("Press any key to close...");
            Console.ReadLine();
        }
    }
 
    public partial class EFRecipesEntities
    {
        public override int SaveChanges()
        {
            �var entries = this.ChangeTracker.Entries().Where(e => e.Entity is Employee && e.State == 

System.Data.Entity.EntityState.Modified);
            foreach (var entry in entries)
            {
                var originalSalary = Convert.ToDecimal(
                                entry.OriginalValues["Salary"]);
                var currentSalary = Convert.ToDecimal(
                                entry.CurrentValues["Salary"]);
                if (originalSalary != currentSalary)
                {
                    if (currentSalary > originalSalary * 1.1M)
                        throw new ApplicationException(
                                    "Can't increase salary more than 10%");
                }
            }
            return base.SaveChanges();
        }
    }
 



Chapter 12 ■ Customizing Entity Framework Objects

436

Following is the output of the code in Listing 12-8:

Oops, tried to increase a salary too much!
 
Employees
Roger Smith makes $108,000.00/year
Jane Hall makes $81,500.00/year

How It Works
In the SaveChanges overridden event, we first retrieve all of the object state entries for the Employee entity that are in 
the modified state. For each of them, we look for a modified “Salary” property with both original and current value, 
which represents the value after modification. If they differ, we check to see if they differ by more than 10 percent. If 
they do, then we throw an ApplicationException. Otherwise, we simply call the SaveChanges of the DbContext and 
let Entity Framework save the changes to the database.

12-9. Retrieving the Original Association for Independent 
Associations
Problem
You have an independent association. You want to retrieve the original association prior to saving the changes to the 
database using ObjectContext.

Solution
Suppose that you have a model representing an order and the order’s status (see Figure 12-12). The fulfillment of an 
order goes through three stages, as represented in the OrderStatus entity. First the order is assembled. Next the order 
is tested. Finally, the order is shipped. Your application has a business rule that confines all orders to this three-step 
process. You want to enforce this rule by throwing an exception if an order goes, for example, from assembly to 
shipped without first being tested. The association between Order and OrderStatus is an independent association.

To solve this problem, we wire in a handler for the SavingChanges event. In this handler, we check to verify that 
the order status changes follow the prescribed sequence. The code in Listing 12-9 provides the details.

Figure 12-12.  A model with orders and their status



Chapter 12 ■ Customizing Entity Framework Objects

437

Listing 12-9.  Enforcing the Sequence of Fulfillment Steps for an Order

class Program
{
    static void Main(string[] args)
    {
        RunExample();
    }
 
    static void RunExample()
    {
        using (var context = new EFRecipesEntities())
        {
            // static order status
            var assemble = new OrderStatus { OrderStatusId = 1,
                                             Status = "Assemble" };
            var test = new OrderStatus { OrderStatusId = 2,
                                         Status = "Test" };
            var ship = new OrderStatus { OrderStatusId = 3,
                                         Status = "Ship" };
            context.OrderStatus.AddObject(assemble);
            context.OrderStatus.AddObject(test);
            context.OrderStatus.AddObject(ship);
 
            var order = new Order { Description = "HAL 9000 Supercomputer",
                                    OrderStatus = assemble };
            context.Orders.AddObject(order);
            context.SaveChanges();
 
            order.OrderStatus = ship;
            try
            {
                context.SaveChanges();
            }
            catch (Exception)
            {
                Console.WriteLine("Oops...better test first.");
            }
            order.OrderStatus = test;
            context.SaveChanges();
            order.OrderStatus = ship;
            context.SaveChanges();
        }
 
        using (var context = new EFRecipesEntities())
        {
            foreach (var order in context.Orders)
            {
                Console.WriteLine("Order {0} [{1}], status = {2}",
                                    order.OrderId.ToString(),



Chapter 12 ■ Customizing Entity Framework Objects

438

                                    order.Description,
                                    order.OrderStatus.Status);
            }
        }
    }
}
 
public partial class EFRecipesEntities
{
    partial void OnContextCreated()
    {
        this.SavingChanges += new EventHandler(EFRecipesEntities_SavingChanges);
    }
 
    void EFRecipesEntities_SavingChanges(object sender, EventArgs e)
    {
        // all the tracked orders
        var orders = this.ObjectStateManager.GetObjectStateEntries(
                        EntityState.Modified | EntityState.Unchanged)
                        .Where(entry => entry.Entity is Order)
                        .Select(entry => entry.Entity as Order);
 
        foreach (var order in orders)
        {
            var deletedEntry = this.ObjectStateManager
                     .GetObjectStateEntries(EntityState.Deleted)
                     .Where(entry => entry.IsRelationship &&
                             entry.EntitySet.Name == order
                                .OrderStatusReference
                                .RelationshipSet.Name).First();
            if (deletedEntry != null)
            {
                EntityKey deletedKey = null;
                if ((EntityKey)deletedEntry.OriginalValues[0] == order.EntityKey)
                {
                    deletedKey = deletedEntry.OriginalValues[1] as EntityKey;
                }
                else if ((EntityKey)deletedEntry.OriginalValues[1] ==
                          order.EntityKey)
                {
                    deletedKey = deletedEntry.OriginalValues[0] as EntityKey;
                }
                if (deletedKey != null)
                {
                    var oldStatus = this.GetObjectByKey(deletedKey)
                                        as OrderStatus;
 
                    // better be going to the next status
                    if (oldStatus.OrderStatusId + 1 !=
                        order.OrderStatus.OrderStatusId)



Chapter 12 ■ Customizing Entity Framework Objects

439

                        throw new ApplicationException(
                          "Can't transition to that order status!");
                }
            }
        }
    }
}
 

Following is the output of the code in Listing 12-9:

Oops...better test first.
Order 2 [HAL 9000 Supercomputer], status = Ship

How It Works
We wired in a handler for the SavingChanges event. In this handler, we picked out the previous order status and the 
new (current) order status and verified that the new status ID is one greater than the previous ID. Of course, the code 
in Listing 12-9 doesn’t look quite that simple. Here’s how to find both the original order status and the new one.

For independent associations, in the object state manager there is an entry for the order, the order status, and a 
relationship entry with one end pointing to the order and the other end pointing to the order status. The relationship 
entry is identified by IsRelationship set to true.

First we get all of the orders tracked in the object context. To do this, we use the object state manager to get all of 
the entries that are either modified or unchanged. We use a Where clause to filter this down to just entities of type Order.

For each order, we get all object state entries that are deleted. Then we use a Where clause to pick out just the 
relationship entries (IsRelationship is true) in the OrderStatus relationship set. Because there should be at most one 
of these for any order, we pick the first. We look for the deleted relationships because when a relationship is changed, 
the original one is marked deleted and the new one is created. Because we’re interested in the previous relationship, 
we look for a deleted relationship between the order and the order status.

Once we have the deleted relationship, we need to look at the original values for the entry to find both the order 
end and the order status end. Be careful not to reference the current values here. Because the relationship is deleted, 
referencing the current values will cause an exception. As we don’t know which end of the relationship is the order 
and which end is the order status, we test both.

With the original order status entity in hand, we simply check whether the original OrderStatusId is one less than 
the new OrderStatusId. We created the OrderStatus objects so that their IDs would increment by one just to make the 
code a little easier.

12-10. Retrieving XML
Problem
You want to treat a scalar property of type string as XML data.

Solution
Let’s say that you have an XML column in a table in your database. When you import this table into a model, Entity 
Framework interprets the data type as a string rather than XML (see Figure 12-13). The current version of Entity 
Framework does not expose XML data types from the database. You want to work with this property as if it were an 
XML data type.



Chapter 12 ■ Customizing Entity Framework Objects

440

The Resume property of the Candidate entity is of type string in the model, but it is an XML type in the database.  
To manipulate the property as if it were of type XML, we’ll make the property private and expose a CandidateResume 
property as XML.

Select the Resume property and view its properties. Change the setter and getter to private. Next, we need to 
expose a new property that will surface the resume as XML. The code in Listing 12-10 provides the details.

With the CandidateResume property, we can manipulate the Resume natively by using the XML API. In Listing 12-10,  
we create a strongly-typed resume using XElement class and assign it to the CandidateResume property, which 
assigns the original string Resume property inside the setter. After saving the Candidate entity to the database, we later 
update the Resume element inside the CandidateResume and update the changes made to the database.

Listing 12-10.  Using the CandidateResume Property to Expose the Resume as XML

class Program
    {
        static void Main(string[] args)
        {
            RunExample();
        }
 
        static void RunExample()
        {
            using (var context = new EFRecipesEntities())
            {
                var resume = new XElement("Person",
                    new XElement("Name", "Robin St.James"),
                    new XElement("Phone", "817 867-5201"),
                    new XElement("FirstOffice", "Dog Catcher"),
                    new XElement("SecondOffice", "Mayor"),
                    new XElement("ThirdOffice", "State Senator"));
                var can = new Candidate
                {
                    Name = "Robin St.James",
                    CandidateResume = resume
                };
                context.Candidates.Add(can);
                context.SaveChanges();
                can.CandidateResume.SetElementValue("Phone", "817 555-5555");
                context.SaveChanges();
            }
 

Figure 12-13.  A model with a Candidate entity. The Resume property is of type string in the model but of type XML in 
the database



Chapter 12 ■ Customizing Entity Framework Objects

441

            using (var context = new EFRecipesEntities())
            {
                foreach (var can in context.Candidates)
                {
                    Console.WriteLine("{0}", can.Name);
                    Console.WriteLine("Phone: {0}",
                            can.CandidateResume.Element("Phone").Value);
                    Console.WriteLine("First Political Office: {0}",
                            can.CandidateResume.Element("FirstOffice").Value);
                    Console.WriteLine("Second Political Office: {0}",
                            can.CandidateResume.Element("SecondOffice").Value);
                    Console.WriteLine("Third Political Office: {0}",
                            can.CandidateResume.Element("ThirdOffice").Value);
                }
            }
            Console.WriteLine("Press any key to close...");
            Console.ReadLine();
        }
    }
 
    public partial class Candidate
    {
        private XElement candidateResume = null;
 
        public XElement CandidateResume
        {
            get
            {
                if (candidateResume == null)
                {
                    candidateResume = XElement.Parse(this.Resume);
                    candidateResume.Changed += (s, e) =>
                    {
                        this.Resume = candidateResume.ToString();
                    };
                }
                return candidateResume;
            }
            set
            {
                candidateResume = value;
                candidateResume.Changed += (s, e) =>
                {
                    this.Resume = candidateResume.ToString();
                };
                this.Resume = value.ToString();
            }
        }
    }
 



Chapter 12 ■ Customizing Entity Framework Objects

442

Following is the output of the code in Listing 12-10:

Robin St.James
Phone: 817 555-5555
First Political Office: Dog Catcher
Second Political Office: Mayor
Third Political Office: State Senator

How It Works
The current release of Entity Framework does not support the XML data type. Given the importance of XML, it is likely 
that some future version will provide full support. In this recipe, we created a new property, CandidateResume, which 
exposes the candidate’s resume as XML.

The code in Listing 12-10 demonstrates using the CandidateResume property in place of the Resume property. 
For both the getter and setter, we wired in a handler for the Changed event on the XML. This handler keeps the Resume 
property in sync with the CandidateResume property. Entity Framework will look at the Resume property when it comes 
time to persist an instance of the Candidate entity. Only changes to the Resume property will be saved. We need to reflect 
changes in the CandidateResume property to the Resume property for the database to stay in sync (via Entity Framework).

12-11. Applying Server-Generated Values to Properties
Problem
You have several columns in a table whose values are generated by the database. You want to have Entity Framework 
set the corresponding entity properties after inserts and updates.

Solution
Suppose that you have a table like the one in Figure 12-14.

Figure 12-14.  The ParkingTicket table with the TicketId, CreateDate, PaidDate, and TimeStamp columns generated by 
the database



Chapter 12 ■ Customizing Entity Framework Objects

443

Also, let’s say that you have created a trigger, like the one in Listing 12-11, so that the PaidDate column is 
populated when the Paid column is set to true. You’ve also set the TicketId to be an Identity column and CreateDate to 
default to the current date. With the trigger in Listing 12-11 and the automatically generated values, only the Amount 
and Paid columns are required for an insert.

Listing 12-11.  A Trigger That Sets the PaidDate Column When the Paid Bit is Set to true.

CREATE TRIGGER UpdateParkingTicket
ON ParkingTicket
FOR UPDATE
AS
UPDATE ParkingTicket
  SET PaidDate = GETDATE()
  FROM ParkingTicket
   JOIN Inserted i ON
                        ParkingTicket.TicketId = i.TicketId
  WHERE i.Paid = 1
 

After an insert or an update, you want Entity Framework to populate the entity with the values generated by the 
database. To create the model that supports this, do the following:

	 1.	 Right-click the project, and select Add ➤ New Item. Add a new ADO.NET Entity Data 
Model. Import the ParkingTicket table. The resulting model should look like the one 
shown in Figure 12-15.

	 2.	 Right-click on each of the scalar properties in the ParkingTicket entity. View the 
properties of each. Notice that the StoreGeneratedPattern property is set to Identity for 
the TicketId. For TimeStamp, the StoreGeneratedPattern property is set to Computed. The 
StoreGeneratedPattern property for CreateDate and PaidDate is not set. Change both the 
values to Computed.

Figure 12-15.  The model with the ParkingTicket entity



Chapter 12 ■ Customizing Entity Framework Objects

444

Listing 12-12.  Code to Check if the Database-Generated Values Are Populated Back to the Properties on Inserts  
and Updates

class Program
    {
        static void Main(string[] args)
        {
            RunExample();
        }
 
        static void RunExample()
        {
            using (var context = new EFRecipesEntities())
            {
                context.ParkingTickets.Add(new ParkingTicket { Amount = 132.0M, Paid = false });
                context.ParkingTickets.Add(new ParkingTicket { Amount = 255.0M, Paid = false });
                context.SaveChanges();
            }
 
            using (var context = new EFRecipesEntities())
            {
                foreach (var ticket in context.ParkingTickets)
                {
                    Console.WriteLine("Ticket: {0}", ticket.TicketId);
                    Console.WriteLine("Date: {0}", ticket.CreateDate.ToShortDateString());
                    Console.WriteLine("Amount: {0}", ticket.Amount.ToString("C"));
                    Console.WriteLine("Paid: {0}",
                                ticket.PaidDate.HasValue ?
                                ticket.PaidDate.Value.ToShortDateString() : "Not Paid");
                    Console.WriteLine();
                    ticket.Paid = true; // just paid ticket!
                }
 
                // save all those Paid flags
                context.SaveChanges();
                foreach (var ticket in context.ParkingTickets)
                {
                    Console.WriteLine("Ticket: {0}", ticket.TicketId);
                    Console.WriteLine("Date: {0}", ticket.CreateDate.ToShortDateString());
                    Console.WriteLine("Amount: {0}", ticket.Amount.ToString("C"));
                    Console.WriteLine("Paid: {0}",
                                ticket.PaidDate.HasValue ?
                                ticket.PaidDate.Value.ToShortDateString() : "Not Paid");
                    Console.WriteLine();
                }
            }
            Console.WriteLine("Press any key to close...");
            Console.ReadLine();
        }
    }
 



Chapter 12 ■ Customizing Entity Framework Objects

445

Following is the output of the code in Listing 12-12:

Ticket: 5
Date: 7/3/2013
Amount: $132.00
Paid: Not Paid
 
Ticket: 6
Date: 7/3/2013
Amount: $255.00
Paid: Not Paid
 
Ticket: 5
Date: 7/3/2013
Amount: $132.00
Paid: 3/24/2010
 
Ticket: 6
Date: 7/3/2013
Amount: $255.00
Paid: 3/24/2010

How It Works
When you set a property’s StoreGeneratedPattern to Identity or Computed, Entity Framework knows that the database 
will generate the value. Entity Framework will retrieve these columns from the database with a subsequent select 
statement.

When the StoreGeneratePattern is set to Identity, Entity Framework retrieves the database-generated value just 
once at the time of insert. When the StoreGeneratedPattern is set to Computed, Entity Framework will refresh the 
value on each insert and update. In this example, the PaidDate column was set by the trigger (because we set Paid to 
true) on update and Entity Framework acquired this value after the update.

12-12. Validating Entities on Saving Changes
Problem
You want to validate entities before they are saved to the database using an ObjectContext.

Solution
Suppose that you have a model like the one shown in Figure 12-16.



Chapter 12 ■ Customizing Entity Framework Objects

446

There are certain business rules around customers and their orders. You want to make sure that these rules are 
checked before an order is saved to the database. Let’s say that you have the following rules:

The order date on an order must be after the current date.•	

The ship date on an order must be after the order date.•	

An order cannot be shipped unless it is in an “Approved” status.•	

If an order amount is over $5,000, there is no shipping charge.•	

An order that has shipped cannot be deleted.•	

To check if changes to an entity violates any of these rules, we’ll define an IValidatable interface that has just 
one method: Validate(). Any of our entity types can implement this interface. For this example, we’ll show the 
implementation for the SalesOrder entity. We’ll handle the SavingChanges event and call Validate() on all entities 
that implement IValidator. This will allow us to intercept and validate entities before they are saved to the database. 
The code in Listing 12-13 provides the details.

Listing 12-13.  Validating SaleOrder Entities in the SavingeChanges Event

class Program
{
    static void Main(string[] args)
    {
        RunExample();
    }
 
    static void RunExample()
    {
        // bad order date
        using (var context = new EFRecipesEntities())
        {
            var customer = new Customer { Name = "Phil Marlowe" };
            var order = new SalesOrder { OrderDate = DateTime.Parse("3/12/18"),

Figure 12-16.  A model for customers and their orders



Chapter 12 ■ Customizing Entity Framework Objects

447

                                         Amount = 19.95M, Status = "Approved",
                                         ShippingCharge = 3.95M,
                                         Customer = customer };
            context.Customers.AddObject(customer);
            try
            {
                context.SaveChanges();
            }
            catch (Exception ex)
            {
                Console.WriteLine(ex.Message);
            }
        }
 
        // order shipped before it was ordered
        using (var context = new EFRecipesEntities())
        {
            var customer = new Customer { Name = "Phil Marlowe" };
            var order = new SalesOrder { OrderDate = DateTime.Parse("3/12/10"),
                                         Amount = 19.95M, Status = "Approved",
                                         ShippingCharge = 3.95M,
                                         Customer = customer };
            context.Customers.AddObject(customer);
            context.SaveChanges();
            try
            {
                order.Shipped = true;
                order.ShippedDate = DateTime.Parse("3/10/10");
                context.SaveChanges();
            }
            catch (Exception ex)
            {
                Console.WriteLine(ex.Message);
            }
        }
 
        // order shipped, but not approved
        using (var context = new EFRecipesEntities())
        {
            var customer = new Customer { Name = "Phil Marlowe" };
            var order = new SalesOrder { OrderDate = DateTime.Parse("3/12/10"),
                                         Amount = 19.95M, Status = "Pending",
                                         ShippingCharge = 3.95M,
                                         Customer = customer };
            context.Customers.AddObject(customer);
            context.SaveChanges();
            try
            {
                order.Shipped = true;
                order.ShippedDate = DateTime.Parse("3/13/10");
                context.SaveChanges();
            }



Chapter 12 ■ Customizing Entity Framework Objects

448

            catch (Exception ex)
            {
                Console.WriteLine(ex.Message);
            }
        }
 
        // order over $5,000 and shipping not free
        using (var context = new EFRecipesEntities())
        {
            var customer = new Customer { Name = "Phil Marlowe" };
            var order = new SalesOrder { OrderDate = DateTime.Parse("3/12/10"),
                                         Amount = 6200M, Status = "Approved",
                                         ShippingCharge = 59.95M,
                                         Customer = customer };
            context.Customers.AddObject(customer);
            context.SaveChanges();
            try
            {
                order.Shipped = true;
                order.ShippedDate = DateTime.Parse("3/13/10");
                context.SaveChanges();
            }
            catch (Exception ex)
            {
                Console.WriteLine(ex.Message);
            }
        }
 
        // order deleted after it was shipped
        using (var context = new EFRecipesEntities())
        {
            var customer = new Customer { Name = "Phil Marlowe" };
            var order = new SalesOrder { OrderDate = DateTime.Parse("3/12/10"),
                                         Amount = 19.95M, Status = "Approved",
                                         ShippingCharge = 3.95M,
                                         Customer = customer };
            context.Customers.AddObject(customer);
            context.SaveChanges();
            order.Shipped = true;
            order.ShippedDate = DateTime.Parse("3/13/10");
            context.SaveChanges();
            try
            {
                context.DeleteObject(order);
                context.SaveChanges();
            }
            catch (Exception ex)
            {
                Console.WriteLine(ex.Message);
            }
        }
    }
}
 



Chapter 12 ■ Customizing Entity Framework Objects

449

public partial class EFRecipesEntities
{
    partial void OnContextCreated()
    {
        this.SavingChanges +=new EventHandler(EFRecipesEntities_SavingChanges);
    }
 
    private void EFRecipesEntities_SavingChanges(object sender, EventArgs e)
    {
        var entries = this.ObjectStateManager
                       .GetObjectStateEntries(EntityState.Added |
                                              EntityState.Modified |
                                              EntityState.Deleted)
                       .Where(entry => entry.Entity is IValidator)
                       .Select(entry => entry).ToList();
        foreach (var entry in entries)
        {
            var entity = entry.Entity as IValidator;
            entity.Validate(entry);
        }
    }
}
 
public interface IValidator
{
    void Validate(ObjectStateEntry entry);
}
 
public partial class SalesOrder : IValidator
{
    public void Validate(ObjectStateEntry entry)
    {
        if (entry.State == EntityState.Added)
        {
            if (this.OrderDate > DateTime.Now)
                throw new ApplicationException(
                  "OrderDate cannot be after the current date");
        }
        else if (entry.State == EntityState.Modified)
        {
            if (this.ShippedDate < this.OrderDate)
            {
                throw new ApplicationException(
                  "ShippedDate cannot be before OrderDate");
            }
            if (this.Shipped.Value && this.Status != "Approved")
            {
                throw new ApplicationException(
                  "Order cannot be shipped unless it is Approved");
            }



Chapter 12 ■ Customizing Entity Framework Objects

450

            if (this.Amount > 5000M && this.ShippingCharge != 0)
            {
                throw new ApplicationException(
                  "Orders over $5000 ship for free");
            }
        }
        else if (entry.State == EntityState.Deleted)
        {
            if (this.Shipped.Value)
                throw new ApplicationException(
                  "Shipped orders cannot be deleted");
        }
    }
}
 

Following is the output of the code in Listing 12-13:

OrderDate cannot be after the current date
ShippedDate cannot be before OrderDate
Order cannot be shipped unless it is Approved
Orders over $5000 ship for free
Shipped orders cannot be deleted

How It Works
When you call SaveChanges(), Entity Framework raises the SavingChanges event before it saves the object changes 
to the database. We implemented the partial method OnContextCreated() so that we can wire in a handler for this 
event. When SavingChanges is raised, we handle the event by calling the Validate() method on every entity that 
implements the IValidator interface. We’ve shown an implementation of this interface that supports our business 
rules. If you have business rules for other entity types in your model, you could implement the IValidator interface  
for them.

Best Practice
Business rules in many applications almost always change over time. Industry or government regulation changes, 
continuous process improvement programs, evolving fraud prevention, and many other factors influence the 
introduction of new business rules as well as changes to existing rules. It’s a best practice to organize your code base 
so that the concerns around business rule validation and enforcement are more easily maintained. Often, this means 
keeping all of this code in a separate assembly or in a separate folder in the project. Defining and implementing 
interfaces, such as the IValidator interface in this recipe, help to ensure that business rules validation is uniformly 
applied.



451

Chapter 13

Improving Performance

The recipes in this chapter cover a wide range of specific ways to improve the performance of your Entity Framework 
applications. In many cases, simple changes to a query or to the model, or even pushing startup overhead to a 
different part of application, can significantly improve some aspect of your application’s performance.

13-1. Optimizing Queries in a Table per Type Inheritance Model
Problem
You want to improve the performance of a query in a model with Table per Type inheritance.

Solution
Let’s say that you have a simple Table per Type inheritance model, like the one shown in Figure 13-1.

Figure 13-1.  A simple Table per Type inheritance model for Salaried and Hourly employees



Chapter 13 ■ Improving Performance

452

You want to query this model for a given employee. To improve the performance of the query when you know 
the type of employee, use the OfType<T>() operator to narrow the result to entities of the specific type, as shown 
in Listing 13-1.

Listing 13-1.  Improving the Performance of a Query Against a Table per Type Inheritance Model When You Know 
the Entity Type

using (var context = new EFRecipesEntities())
{
    context.Employees.Add(new SalariedEmployee { Name = "Robin Rosen",
                                       Salary = 89900M });
    context.Employees.Add(new HourlyEmployee { Name = "Steven Fuller",
                                       Rate = 11.50M });
    context.Employees.Add(new HourlyEmployee { Name = "Karen Steele",
                                       Rate = 12.95m });
    context.SaveChanges();
}
 
using (var context = new EFRecipesEntities())
{
    // a typical way to get Steven Fuller's entity
    var emp1 = context.Employees.Single(e => e.Name == "Steven Fuller");
    Console.WriteLine("{0}'s rate is: {1} per hour", emp1.Name,
                      ((HourlyEmployee)emp1).Rate.ToString("C"));
 
    // slightly more efficient way if we know that Steven is an HourlyEmployee
    var emp2 = context.Employees.OfType<HourlyEmployee>()
                                 .Single(e => e.Name == "Steven Fuller");
    Console.WriteLine("{0}'s rate is: {1} per hour", emp2.Name,
                      emp2.Rate.ToString("C"));
}
 

Following is the output of the code in Listing 13-1: 

Steven Fuller's rate is: $11.50 per hour
Steven Fuller's rate is: $11.50 per hour

How It Works
The key to making the query in a Table per Type inheritance model more efficient is to tell Entity Framework 
explicitly the type of the expected result. This allows Entity Framework to generate code that limits the search to 
the specific tables that hold the values for the base type and the derived type. Without this information, Entity 
Framework has to generate a query that pulls together all of the results from all of the tables holding derived type 
values, and then it determines the appropriate type for materialization (for example, fetching and transformation 
of data to entity objects). Depending on the number of derived types and the complexity of your model, this may 
require substantially more work than is necessary. Of course, this assumes that you know exactly what derived type 
the query will return.



Chapter 13 ■ Improving Performance

453

13-2. Retrieving a Single Entity Using an Entity Key
Problem
You want to retrieve a single entity using an entity key, regardless of whether you’re implementing a Database-First, 
Model-First, or Code-First approach for Entity Framework. In this example, you want to implement the Code-First 
approach.

Solution
Suppose that you have a model with an entity type representing a painting. The model might look like the one shown 
in Figure 13-2.

Figure 13-2.  The Painting entity type in our model

To start, this example leverages the Code-First approach for Entity Framework. In Listing 13-2, we create the 
entity class, Painting.

Listing 13-2.  The Painting Entity Object

public class Painting
{
    public string AccessionNumber { get; set; }
    public string Name { get; set; }
    public string Artist { get; set; }
    public decimal LastSalePrice { get; set; }
}
 

Next, in Listing 13-3, we create the DbContext object, which is our gateway into Entity Framework functionality 
when leveraging the Code-First approach.

Listing 13-3.  DbContext Object

public class Recipe2Context : DbContext
{
    public Recipe2Context()
        : base("Recipe2ConnectionString")



Chapter 13 ■ Improving Performance

454

    {
        // Disable Entity Framework Model Compatibility
        Database.SetInitializer<Recipe2Context>(null);
    }
  
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        // map AccessionNumber as primary key to table
        modelBuilder.Entity<Painting>().HasKey(x => x.AccessionNumber);
        modelBuilder.Entity<Painting>().ToTable("Chapter13.Painting");
    }
  
    public DbSet<Painting> Paintings { get; set; }
 

Next add an App.Config class to the project, and add to it the code from Listing 13-4, under the 
ConnectionStrings section.

Listing 13-4.   Connection String

<connectionStrings>
  <add name="Recipe2ConnectionString"
       connectionString="Data Source=.;
       Initial Catalog=EFRecipes;
       Integrated Security=True;
       MultipleActiveResultSets=True"
       providerName="System.Data.SqlClient" />
</connectionStrings>
 

In Listing 13-5, we load data and demonstrate both fetching an entity with a LINQ query and then with the  
Find() method.

Listing 13-5.   Retrieving an Entity with the Find() Method

private static void RunExample()
{
    using (var context = new Recipe2Context())
    {
        context.Paintings.Add(new Painting
        {
            AccessionNumber = "PN001",
            Name = "Sunflowers",
            Artist = "Rosemary Golden",
            LastSalePrice = 1250M
        });
    }
  
    using (var context = new Recipe2Context())
    {
// LINQ query always fetches entity from database, even if it already exists in context
         var paintingFromDatabase =
             context.Paintings.FirstOrDefault(x => x.AccessionNumber == "PN001");
             



Chapter 13 ■ Improving Performance

455

         // Find() method fetches entity from context object
         var paintingFromContext = context.Paintings.Find("PN001");
     }

     Console.WriteLine("Press <enter> to continue...");
     Console.ReadLine();
}

How It Works
When issuing a LINQ query, a round trip will always be made to the database to retrieve the requested data, even if 
that data has already been loaded into the context object in memory. When the query completes, entity objects that 
do not exist in the context are added and then tracked. By default, if the entity object is already present in the context, 
it is not overwritten with the more recent database values.

However, the DbSet object, which wraps each of our entity objects, exposes a Find() method. Specifically, Find() 
expects a single argument that represents the primary key of the entity object. If necessary, an array of values can be 
passed into Find() to support a composite key. Find() is very efficient, as it will first search the underlying context for 
the target object. If found, Find() returns the entity directly from the context object. If not found, then it automatically 
queries the underlying data store. If still not found, Find() simply returns NULL to the caller. Additionally, Find() 
will return entities that have been added to the context (think of having a state of “Added”), but not yet saved to the 
underlying database. Fortunately, the Find() method is available with any of three modeling approaches: Database-
First, Model-First, or Code-First.

In Listing 13-5, we invoke a LINQ query to retrieve a Painting. A LINQ query will always query the underlying 
database, even if the entity is already loaded into the context. Figure 13-3 shows the SQL query that is generated.

Figure 13-3.  SQL Query returning our painting

In the next line of code, we once again search for the same painting. This time, however, we leverage the Find() 
method exposed by the DbSet Class. Since the Painting entity is a DbSet class, we simply call the Find() method on 
it and pass in the primary key of the entity as an argument. Find() first searches the context object in memory for 
“PN001,” finds the object, and returns a reference to it, avoiding a round trip to the database. Note in Figure 13-4 how 
a SQL Query was not generated.



Chapter 13 ■ Improving Performance

456

For a more detailed example of leveraging the Find() method in your application, take a look at Recipe 5-3.

13-3. Retrieving Entities for Read-Only Access
Problem
You want to retrieve some entities efficiently that you will only display and not need to update. Additionally, you want 
to implement the Entity Framework Code-First approach.

Solution
A very common activity in many applications, especially websites, is to let the user browse through data. In many 
cases, the user will never update the data. For these situations, you can make your code much more efficient if 
you avoid the overhead of caching and change tracking from the context object. You can easily do this using the 
AsNoTracking method.

Let’s say that you have an application that manages appointments for doctors. Your model may look something 
like the one shown in Figure 13-5.

Figure 13-4.  The Find() method locates the object in memory, not generating a database query

Figure 13-5.  A model for managing doctors and their appointments

To start, this example leverages the Code-First approach for Entity Framework. In Listing 13-6, we create our 
entity classes, Company, Doctor, and Appointment.



Chapter 13 ■ Improving Performance

457

Listing 13-6.  The Painting Entity Object

public class Company
{
    public Company()
    {
        Doctors = new HashSet<Doctor>();
    }
  
    public int CompanyId { get; set; }
    public string Name { get; set; }
  
    public virtual ICollection<Doctor> Doctors { get; set; }
}
 
public class Doctor
{
    public Doctor()
    {
        Appointments = new HashSet<Appointment>();
    }
 
    public int DoctorId { get; set; }
    public string Name { get; set; }
    public int CompanyId { get; set; }
  
    public virtual ICollection<Appointment> Appointments { get; set; }
    public virtual Company Company { get; set; }
}
 
public class Appointment
{
    public int AppointmentId { get; set; }
    public System.DateTime AppointmentDate { get; set; }
    public string Patient { get; set; }
    public int DoctorId { get; set; }
  
    public virtual Doctor Doctor { get; set; }
}
 

Next, in Listing 13-7, we create the DbContext object, which is our gateway into Entity Framework functionality 
when leveraging the Code-First approach.

Listing 13-7.  DbContext Object

public class Recipe3Context : DbContext
{
    public Recipe3Context()
        : base("Recipe3ConnectionString")
    {
        // Disable Entity Framework Model Compatibility
        Database.SetInitializer<Recipe3Context>(null);
    }
  



Chapter 13 ■ Improving Performance

458

    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        modelBuilder.Entity<Appointment>().ToTable("Chapter13.Appointment");
        modelBuilder.Entity<Company>().ToTable("Chapter13.Company");
        modelBuilder.Entity<Doctor>().ToTable("Chapter13.Doctor");
    }
  
    public DbSet<Appointment> Appointments { get; set; }
    public DbSet<Company> Companies { get; set; }
    public DbSet<Doctor> Doctors { get; set; }
    }
 

Next add an App.Config class to the project, and add to it the code from Listing 13-8, inside the 
ConnectionStrings section.

Listing 13-8.  Connection String

<connectionStrings>
  <add name="Recipe3ConnectionString"
       connectionString="Data Source=.;
       Initial Catalog=EFRecipes;
       Integrated Security=True;
       MultipleActiveResultSets=True"
       providerName="System.Data.SqlClient" />
</connectionStrings>
 

To retrieve the doctors and the companies they work for without adding them to the context object, chain the 
AsNoTracking method to the query that fetches Doctors, appointments, and company information as we have done  
in Listing 13-9.

Listing 13-9.  Doing a Simple Query Using the AsNoTracking Method

using (var context = new Recipe3Context())
{
    var company = new Company {Name = "Paola Heart Center"};
    var doc1 = new Doctor {Name = "Jill Mathers", Company = company};
    var doc2 = new Doctor {Name = "Robert Stevens", Company = company};
    var app1 = new Appointment
    {
        AppointmentDate = DateTime.Parse("3/18/2010"),
        Patient = "Karen Rodgers",
        Doctor = doc1
    };
    var app2 = new Appointment
    {
        AppointmentDate = DateTime.Parse("3/20/2010"),
        Patient = "Steven Cook",
        Doctor = doc2
    };
    context.Doctors.Add(doc1);
    context.Doctors.Add(doc2);
    context.Appointments.Add(app1);



Chapter 13 ■ Improving Performance

459

    context.Appointments.Add(app2);
    context.Companies.Add(company);
    context.SaveChanges();
}
  
using (var context = new Recipe3Context())
{
    Console.WriteLine("Entities tracked in context for Doctors...");
  
    // execute query using the AsNoTracking() method
    context.Doctors.Include("Company").AsNoTracking().ToList();
     
    Console.WriteLine("Number of entities loaded into context with AsNoTracking: {0}",
        context.ChangeTracker.Entries().Count());
  
    // execute query without the AsNoTracking() method
    context.Doctors.Include("Company").ToList();
  
    Console.WriteLine("Number of entities loaded into context without AsNoTracking: {0}",
        context.ChangeTracker.Entries().Count());
  
}
 

Following is the output of the code in Listing 13-9: 

Entities tracked in context for Doctors...
Number of entities loaded into context with AsNoTracking: 0
Number of entities loaded into context without AsNoTracking: 3

How It Works
When chaining the AsNoTracking method to your query, the objects resulting from that query are not tracked in 
the context object. In our case, this includes the doctors and the companies the doctors work for because our query 
explicitly included these.

By default, the results of your queries are tracked in the context object. This makes updating and deleting objects 
effortless, but at the cost of some memory and CPU overhead. For applications that stream large numbers of objects, 
such as browsing products at an ecommerce website, using the AsNoTracking option can result in less resource 
overhead and better application performance.

As you are not caching the results of a query, each time you execute the query Entity Framework will need 
to materialize the query result. Normally, with change tracking enabled, Entity Framework will not need to re-
materialize a query result if it is already cached in the context object.

When you include the AsNoTracking option (as we do in Listing 13-9), it only affects the current query for the 
given entity and any related entities included in the query. It does affect subsequent queries that do not include the 
AsNoTracking option, as demonstrated in Listing 13-9.



Chapter 13 ■ Improving Performance

460

13-4. Efficiently Building a Search Query
Problem
You want to write a search query using LINQ so that it is translated to more efficient SQL. Additionally, you want to 
implement the Entity Framework Code-First approach.

Solution
Let’s say that you have a model like the one shown in Figure 13-6.

Figure 13-6.  A simple model with a Reservation entity

To start, this example leverages the Code-First approach for Entity Framework. In Listing 13-10, we create the 
entity class, Reservation.

Listing 13-10.  The Reservation Entity Object

public class Reservation
{
    public int ReservationId { get; set; }
    public System.DateTime ResDate { get; set; }
    public string Name { get; set; }
}
 

Next, in Listing 13-11, we create the DbContext object, which is our gateway into Entity Framework functionality 
when leveraging the Code-First approach.

Listing 13-11.  DbContext Object

public class Recipe5Context : DbContext
{
    public Recipe4Context()
        : base("Recipe4ConnectionString")
    {
        // disable Entity Framework Model Compatibility
        Database.SetInitializer<Recipe5Context>(null);
    }
  



Chapter 13 ■ Improving Performance

461

    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        modelBuilder.Entity<Reservation>().ToTable("Chapter13.Reservation");
    }
  
    public DbSet<Reservation> Reservations { get; set; }
}
 

Next add an App.Config class to the project, and also add to it the code from Listing 13-12, under the 
ConnectionStrings section.

Listing 13-12.   Connection String

<connectionStrings>
  <add name="Recipe4ConnectionString"
       connectionString="Data Source=.;
       Initial Catalog=EFRecipes;
       Integrated Security=True;
       MultipleActiveResultSets=True"
       providerName="System.Data.SqlClient" />
</connectionStrings>
 

You want to write a search query using LINQ to find reservations for a particular person, or reservations on a 
given date, or both. You might use the let keyword as we did in the first query in Listing 13-13 to make the LINQ 
expression fairly clean and easy to read. However, the let keyword is translated to more complex and often less 
efficient SQL. Instead of using the let keyword, consider explicitly creating two conditions in the where clause, as we 
did in the second query in Listing 13-13.

Listing 13-13.  Using Both the let Keyword and Explicit Conditions in the Query

using (var context = new Recipe4Context())
{
    context.Reservations.Add(new Reservation
        {Name = "James Jordan", ResDate = DateTime.Parse("4/18/10")});
    context.Reservations.Add(new Reservation {Name = "Katie Marlowe",
         ResDate = DateTime.Parse("3/22/10")});
              context.Reservations.Add(new Reservation {Name = "Roger Smith",
         ResDate = DateTime.Parse("4/18/10")});
    context.Reservations.Add(new Reservation {Name = "James Jordan",
              ResDate = DateTime.Parse("5/12/10")});
              context.Reservations.Add(new Reservation {Name = "James Jordan",
                    ResDate = DateTime.Parse("6/22/10")});
              context.SaveChanges();
          }
  
          using (var context = new Recipe4Context())
          {
              DateTime? searchDate = null;
              var searchName = "James Jordan";
  



Chapter 13 ■ Improving Performance

462

              Console.WriteLine("More complex SQL...");
              var query2 = from reservation in context.Reservations
                  let dateMatches = searchDate == null || reservation.ResDate == searchDate
                  let nameMatches = searchName == string.Empty || reservation.Name.Contains(searchName)
                  where dateMatches && nameMatches
                  select reservation;
              foreach (var reservation in query2)
              {
                  Console.WriteLine("Found reservation for {0} on {1}", reservation.Name,
                      reservation.ResDate.ToShortDateString());
              }
  
              Console.WriteLine("Cleaner SQL...");
              var query1 = from reservation in context.Reservations
                  where (searchDate == null || reservation.ResDate == searchDate)
                        &&
                        (searchName == string.Empty || reservation.Name.Contains(searchName))
                  select reservation;
              foreach (var reservation in query1)
              {
                  Console.WriteLine("Found reservation for {0} on {1}", reservation.Name,
                      reservation.ResDate.ToShortDateString());
              }
          }
 

Following is the output of the code in Listing 13-13: 

More complex SQL...
Found reservation for James Jordan on 4/18/2010
Found reservation for James Jordan on 5/12/2010
Found reservation for James Jordan on 6/22/2010
Cleaner SQL...
Found reservation for James Jordan on 4/18/2010
Found reservation for James Jordan on 5/12/2010
Found reservation for James Jordan on 6/22/2010

How It Works
Writing conditions inline, as we did in the second query in Listing 13-13, is not very good for readability or 
maintainability. Typically, we would use the let keyword to make the code cleaner and more readable. In some cases, 
however, this leads to more complex and often less efficient SQL code.

Let’s take a look at the SQL generated by both approaches. Listing 13-14 shows the SQL generated for the first 
query. Notice that the where clause contains a case statement with quite a bit of cast’ing going on. If we had more 
parameters in our search query beyond just name and reservation date, the resulting SQL statement would get 
even more complicated.



Chapter 13 ■ Improving Performance

463

Listing 13-14.  SQL Generated When let Is Used in the LINQ Query

SELECT
[Extent1].[ReservationId] AS [ReservationId],
[Extent1].[ResDate] AS [ResDate],
[Extent1].[Name] AS [Name]
FROM [Chapter13].[Reservation] AS [Extent1]
WHERE (
  (CASE WHEN (@p__linq__0 IS NULL OR
         @p__linq__1 =  CAST( [Extent1].[ResDate] AS datetime2))
        THEN cast(1 as bit)
        WHEN ( NOT (@p__linq__0 IS NULL OR
         @p__linq__1 =  CAST( [Extent1].[ResDate] AS datetime2)))
        THEN cast(0 as bit) END) = 1) AND
  ((CASE WHEN ((@p__linq__2 = @p__linq__3) OR
          ([Extent1].[Name] LIKE @p__linq__4 ESCAPE N''~''))
         THEN cast(1 as bit)
         WHEN ( NOT ((@p__linq__2 = @p__linq__3) OR
          ([Extent1].[Name] LIKE @p__linq__4 ESCAPE N''~'')))
         THEN cast(0 as bit) END) = 1)
 

Listing 13-15 shows the SQL generated from the second query, where we created the conditions inline. This query 
is simpler and might execute more efficiently at runtime.

Listing 13-15.  Cleaner, More Efficient SQL Generated When Not Using let in a LINQ Query

SELECT
[Extent1].[ReservationId] AS [ReservationId],
[Extent1].[ResDate] AS [ResDate],
[Extent1].[Name] AS [Name]
FROM [Chapter13].[Reservation] AS [Extent1]
WHERE (@p__linq__0 IS NULL OR
       @p__linq__1 = CAST( [Extent1].[ResDate] AS datetime2)) AND
      ((@p__linq__2 = @p__linq__3) OR
       ([Extent1].[Name] LIKE @p__linq__4 ESCAPE N''~''))

13-5. Making Change Tracking with POCO Faster 
Problem
You are using POCO, and you want to improve the performance of change tracking while at the same time minimizing 
memory usage. Additionally, you want to implement the Entity Framework Code-First approach.

Solution
Suppose that you have a model with an account and related payments like the one shown in Figure 13-7.

w



Chapter 13 ■ Improving Performance

464

To start, this example leverages the Code-First approach for Entity Framework. In Listing 13-16, we create 
two entity classes: Account and Payment. To achieve the best change-tracking performance, we need to allow 
Entity Framework to wrap our entity classes automatically with change-tracking proxy classes, which immediately 
notify the underlying change-tracking mechanism any time that the value of a property changes. With proxies, 
Entity Framework knows the state your entities at all times. When creating the proxy, notification events are added 
to the setter method of each property, which are processed by the Object State Manager. Entity Framework will 
automatically create a proxy class when two requirements are met: (1) all properties in an entity must be marked 
as virtual, and (2) any navigation property referencing a collection must be of type ICollection<T>. Meeting these 
requirements allows Entity Framework to override the class and add the necessary change-tracking plumbing.

Both of our Account and Payment entity classes meet these requirements, as seen in Listing 13-16.

Listing 13-16.  Our Entity Classes with Properties Marked as virtual and the Navigation Properties Are of Type 
ICollection<T>

public class Account
{
    public virtual int AccountId { get; set; }
    public virtual string Name { get; set; }
    public virtual decimal Balance { get; set; }
    public virtual ICollection<Payment> Payments { get; set; }
}
 
public class Payment
{
    public virtual int PaymentId { get; set; }
    public virtual string PaidTo { get; set; }
    public virtual decimal Paid { get; set; }
    public virtual int AccountId { get; set; }
}
 

Next, in Listing 13-17, we create the DbContext object, which is our gateway into Entity Framework functionality 
when leveraging the Code-First approach.

Figure 13-7.  A model with an Account entity and a related Payment



Chapter 13 ■ Improving Performance

465

Listing 13-17.  DbContext Object

public class Recipe5Context : DbContext
{
    public Recipe5Context()
        : base("Recipe5ConnectionString")
    {
        // Disable Entity Framework Model Compatibility
        Database.SetInitializer<Recipe6Context>(null);
    }
  
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        modelBuilder.Entity<Account>().ToTable("Chapter13.Account");
        modelBuilder.Entity<Payment>().ToTable("Chapter13.Payment");
    }
  
    public DbSet<Account> Accounts { get; set; }
    public DbSet<Payment> Payments { get; set; }
}
 

Next add an App.Config class to the project, and add to it the code from Listing 13-18 under the 
ConnectionStrings section.

Listing 13-18.  Connection String

<connectionStrings>
  <add name="Recipe5ConnectionString"
       connectionString="Data Source=.;
       Initial Catalog=EFRecipes;
       Integrated Security=True;
       MultipleActiveResultSets=True"
       providerName="System.Data.SqlClient" />
</connectionStrings>
 

The code in Listing 13-19 illustrates inserting, retrieving, and updating our model.

Listing 13-19.  Inserting, Retrieving, and Updating Our Model

using (var context = new Recipe5Context())
{
    var watch = new Stopwatch();
    watch.Start();
    for (var i = 0; i < 5000; i++)
    {
        var account = new Account { Name = "Test" + i, Balance = 10M,
        Payments = new Collection<Payment> { new Payment {PaidTo = "Test" + (i + 1), Paid = 5M }},} ;
        context.Accounts.Add(account);
        Console.WriteLine("Adding Account {0}", i);
    }
    context.SaveChanges();
    watch.Stop();
    Console.WriteLine("Time to insert: {0} seconds", watch.Elapsed.TotalSeconds.ToString());
}
  



Chapter 13 ■ Improving Performance

466

using (var context = new Recipe5Context())
{
    var watch = new Stopwatch();
    watch.Start();
    var accounts = context.Accounts.Include("Payments").ToList();
    watch.Stop();
    Console.WriteLine("Time to read: {0} seconds", watch.Elapsed.TotalSeconds.ToString());
    watch.Restart();
    foreach (var account in accounts)
    {
        account.Balance += 10M;
        account.Payments.First().Paid += 1M;
    }
    context.SaveChanges();
    watch.Stop();
    Console.WriteLine("Time to update: {0} seconds", watch.Elapsed.TotalSeconds.ToString());
}

How It Works
With later versions of Entity Framework, including version 6.0, we specificy POCO classes to represent entities. POCO 
is an abbreviation for a Plain Old CLR Object, which is a class that typically contains only states, or properties, that 
map to corresponding database columns. POCO classes have no dependencies beyond the .NET CLR base classes 
and, specifically, no dependency on Entity Framework.

Change tracking with POCO entity classes occurs using either snapshots or proxy classes. With the snapshot 
approach, Entity Framework takes a picture, so to speak, of the data values of an entity as it is loaded into the context 
object from a query or an Attach() operation. Upon a SaveChanges() operation, the original snapshot is compared to the 
current data values to determine the data values that have changed. Using this approach, Entity Framework maintains 
two copies of each object and compares them, generating the necessary corresponding SQL Update, Insert, and Delete 
statements. You might expect this approach to be very slow, but Entity Framework is very fast in finding the differences.

Note■■  T he Add() operation from the context object does not invoke a snapshot as the entity is new and there is no 
need to track changes to the individual values. Entity Framework marks the entity as added, and it will issue a SQL Insert 
statement upon a SaveChanges() operation.

The second approach, depicted in Listing 13-19, wraps the underlying entity POCO object with a proxy 
object that implements the IEntityWithChangeTracking interface. This proxy is responsible for notifying the 
Object State Manager of changes to values and relationships on the object. Entity Framework automatically 
creates these proxies for your POCO object when you mark all of the properties on your POCO class as virtual 
and mark all Navigation properties that return a collection as ICollection<T>. Proxies avoid the potentially 
complex object-by-object comparisons of the snapshot approach. It does, however, require some overhead to 
track each change as it occurs.

Although change-tracking proxies immediately notify the change tracker components about changes to the 
objects and avoid object comparisons, in practice, performance benefits are typically seen only when the model is 
quite complex and/or when few changes are made to a large number of objects. The model in Figure 13-7 is very 
simple, and every object is updated in the code in Listing 13-19. If you were to change the code to use snapshots, you 
would notice only a second or so saved for the updates when proxies are used.



Chapter 13 ■ Improving Performance

467

Note■■  P roxy classes can be troublesome in n-Tier scenarios where you need to serialize data to send to another 
physical tier, such as to a WCF or to a Web API client. See Recipe 9-7 for more detail.

13-6. Auto-Compiling LINQ Queries
Problem
You want to improve the performance of queries that are reused several times, and you would like to achieve this 
performance upgrade with no additional coding or configuration.

Solution
Let’s say that you have a model like the one shown in Figure 13-8.

Figure 13-8.  A model with an Associate and its related Paycheck

In this model, each Associate has zero or more paychecks. You have a LINQ query that is used repeatedly 
throughout your application, and you want to improve the performance of this query by compiling it just once and 
reusing the compiled version in subsequent executions.

When executing against a database, Entity Framework must translate your strongly typed LINQ query to a 
corresponding SQL query, based upon your database provider (SQL Server, Oracle, and so on). Beginning with 
version 5 of Entity Framework, each query translation is cached by default. This process is referred to as auto-caching. 
With each subsequent execution of a given LINQ query, the corresponding SQL query is retrieved directly from 
query plan cache, bypassing the translation step. For queries containing parameters, changing parameter values will 
still retrieve the same query. Interestingly, this query plan cache is shared among all instances of a context object 
instantiated with the application’s AppDomain, meaning that, once cached, any context object in the AppDomain has 
access to it.

In Listing 13-10, we compare performance with caching enabled and then disabled. To illustrate the performance 
benefit, we’ve instrumented the code in Listing 13-10 to print the number of ticks for each of ten iterates taken for 
both the uncompiled and the compiled versions of the LINQ query. In this query, we can see that we get roughly a 
2X performance boost. Most of this, of course, is due to the relatively high cost of compiling versus the low cost for 
actually performing this simple query.

g



Chapter 13 ■ Improving Performance

468

Listing 13-20.  Comparing the Performance of a Simple Compiled LINQ Query

private static void RunUncompiledQuery()
{
    using (var context = new EFRecipesEntities())
    {
        // Explicitly disable query plan caching
        var objectContext = ((IObjectContextAdapter) context).ObjectContext;
        var associateNoCache = objectContext.CreateObjectSet<Associate>();
        associateNoCache.EnablePlanCaching = false;
  
        var watch = new Stopwatch();
        long totalTicks = 0;
  
        // warm things up
        associateNoCache.Include(x => x.Paychecks).Where(a => a.Name.StartsWith("Karen")).ToList();
  
        // query gets compiled each time
        for (var i = 0; i < 10; i++)
        {
            watch.Restart();
            associateNoCache.Include(x => x.Paychecks).Where(a => a.Name.StartsWith("Karen")).ToList();
            watch.Stop();
            totalTicks += watch.ElapsedTicks;
            Console.WriteLine("Not Compiled #{0}: {1}", i, watch.ElapsedTicks);
        }
        Console.WriteLine("Average ticks without compiling: {0}", (totalTicks/10));
        Console.WriteLine("");
    }
}
  
private static void RunCompiledQuery()
{
    using (var context = new EFRecipesEntities())
    {
        var watch = new Stopwatch();
        long totalTicks = 0;
  
        // warm things up
        context.Associates.Include(x => x.Paychecks).Where(a => a.Name.StartsWith("Karen")).ToList();
  
        totalTicks = 0;
        for (var i = 0; i < 10; i++)
        {
            watch.Restart();
            context.Associates.Include(x => x.Paychecks).Where(a => a.Name.StartsWith("Karen")).ToList();
            watch.Stop();
            totalTicks += watch.ElapsedTicks;
            Console.WriteLine("Compiled #{0}: {1}", i, watch.ElapsedTicks);
        }
        Console.WriteLine("Average ticks with compiling: {0}", (totalTicks/10));
    }
}
 



Chapter 13 ■ Improving Performance

469

Following is the output of the code in Listing 13-20:
 

Not Compiled #0: 10014
Not Compiled #1: 5004
Not Compiled #2: 5178
Not Compiled #3: 7624
Not Compiled #4: 4839
Not Compiled #5: 5017
Not Compiled #6: 4864
Not Compiled #7: 5090
Not Compiled #8: 4499
Not Compiled #9: 6942
Average ticks without compiling: 5907
 
Compiled #0: 3458
Compiled #1: 1524
Compiled #2: 1320
Compiled #3: 1283
Compiled #4: 1202
Compiled #5: 1145
Compiled #6: 1075
Compiled #7: 1104
Compiled #8: 1081
Compiled #9: 1084
Average ticks with compiling: 1427

How It Works
When you execute a LINQ query, Entity Framework builds an expression tree object for the query, which is then 
converted, or compiled, into an internal command tree. This internal command tree is passed to the database 
provider to be converted into the appropriate database commands (typically SQL). The cost of converting an 
expression tree can be relatively expensive depending on the complexity of the query and the underlying model. 
Models with deep inheritance or horizontal splitting introduce enough complexity in the conversion process that 
the compile time may become significant relative to the actual query execution time. However, in Version 5 of the 
Entity Framework, automatic query caching for LINQ queries was introduced. You can get an idea of the performance 
benefits of this feature by examining the results of Listing 13-20.

Additionally, as shown in Listing 13-20, you can disable the auto-compiling features by dropping down from the 
DbContext object into the underlying ObjectContext object, obtaining a reference to the entity object and setting its 
EnablePlanCaching property to false.

To track each compiled query, Entity Framework walks the nodes of the query expression tree and creates a 
hash, which becomes the key for that compiled query in the underlying query cache. For each subsequent call, Entity 
Framework will attempt to locate the hash key from the cache, eliminating the overhead cost of the query translation 
process. It’s important to note that the cached query plan is independent of the context object, instead being tied 
to the AppDomain of the application, meaning that the cached query is available to all instances of a given Entity 
Framework context object.



Chapter 13 ■ Improving Performance

470

Once the underlying query cache contains 800 or more query plans, a cache eviction process automatically kicks 
off. Each minute, a sweeping process removes entries based upon a LFRU (least frequently/recently used) algorithm, 
driven by hit count and age of the query.

Compiled queries are especially helpful in ASP.NET search page scenarios where parameter values may change, 
but the query is the same and can be reused on each page rendering. This works because a compiled query is 
parameterized, meaning that it can accept different parameter values.

13-7. Returning Partially Filled Entities
Problem
You have a property on an entity that is seldom read and updated. This property is expensive to read and update 
because of its size. To improve performance, you want to populate this property selectively.

Solution
Let’s say that you have a model like the one shown in Figure 13-9.

Figure 13-9.  A model with a Resume entity with a Body property that contains the entire text of the applicant’s resume

We can simply avoid loading one or more properties on an entity by leveraging the SqlQuery() method from the 
context to execute a SQL statement. The code in Listing 13-21 illustrates this approach.

Listing 13-21.  Returning Partially Filled Entities Using Both eSQL and ExecuteStoreQuery()

using (var context = new EFRecipesEntities())
{
    var r1 = new Resume
    {
        Title = "C# Developer",
        Name = "Sally Jones",
        Body = "...very long resume goes here..."
    };
    context.Resumes.Add(r1);
    context.SaveChanges();
}
  



Chapter 13 ■ Improving Performance

471

using (var context = new EFRecipesEntities())
{
    // using SqlQuery()
    var result1 =
    context.Resumes.SqlQuery
        ("select ResumeId, Title, Name,'' Body from chapter13.Resume",
          "Resumes", MergeOption.AppendOnly).Single();
    Console.WriteLine("Resume body: {0}", result1.Body);

    var result2 =
    context.Database.SqlQuery<Resume>("select * from chapter13.Resume", "Resumes",
                     MergeOption.OverwriteChanges).Single();
    Console.WriteLine("Resume body: {0}", result2.Body);
}
 

Following is the output of the code in Listing 13-21: 

Resume body:
Resume body: ...very long resume goes here...

How It Works
An approach for partially filling an entity is to use the SqlQuery() method that is exposed from the static Database 
object, which can be accessed from the DbContext object. Here we execute a SQL statement that fills all of the 
properties except for the Body property, which we initialize to the empty string. If needed, we can fill in the Body 
property from the database by setting the MergeOption to MergeOption.OverwriteChanges and requerying for the 
object for all of the properties. Be careful though, as the second query will overwrite any changes we’ve made to the 
object in memory. Keep in mind that this approach exposes the SQL query as string, which yields no compile-time 
checking or IntelliSense.

Recipe 13-8 shows a model-centric and perhaps cleaner approach to this problem.

13-8. Moving an Expensive Property to Another Entity
Problem
You want to move a property to another entity so that you can lazy load that entity. This is often helpful if the property 
is particularly expensive to load and rarely used.



Chapter 13 ■ Improving Performance

472

We’ll assume, as we did in the previous recipe, that the Body property for the Resume may contain a rather large 
representation of the applicant’s resume. We want to move this property to another entity so that we can lazy load, 
only if we really want to read the resume.

To move the Body property to another entity, do the following:

	 1.	 Right-click the design surface, and select Add ➤ Entity. Name the new entity 
ResumeDetail, and uncheck the Create key property check box.

	 2.	 Move the Body property from the Resume entity to the ResumeDetail entity. You can use 
Cut/Paste to move the property.

	 3.	 Right-click the design surface, and select Add ➤ Association. Set the multiplicity to One on 
the Resume side and One on the ResumeDetail side. Check the Add foreign key properties 
box. (See Figure 13-11.)

Figure 13-10.  A model with a Resume entity with a Body property that contains the entire text of the applicant’s 
resume. In this recipe, we’ll move the Body property to another entity

Solution
As with the previous recipe, let’s say that you have a model that looks like the one shown in Figure 13-10.



Chapter 13 ■ Improving Performance

473

	 4.	 Change the name of the foreign key that was created by the association from 
ResumeResumeId to just ResumeId.

	 5.	 Select the ResumeDetail entity, and view the Mapping Details window. Map the entity 
to the Resume table. Map the Body property to the Body column. Map the ResumeId 
property to the ResumeId column. (See Figure 13-12.)

Figure 13-11.  Adding an association between Resume and ResumeDetail



Chapter 13 ■ Improving Performance

474

	 6.	 Select the ResumeId property on the ResumeDetail entity and view the properties. Change 
the EntityKey property to true. This marks the ResumeId property as the entity’s key. The 
completed model is shown in Figure 13-13.

Figure 13-13.  The completed model with the Body property moved to the new ResumeDetail entity

Figure 13-12.  Map the ResumeDetail entity to the Resume table. Map the ResumeId and Body properties as well

The code in Listing 13-22 demonstrates how to use the ResumeDetail entity.

Listing 13-22.  Using the ResumeDetail Entity to Lazy Load the Expensive Body Property

using (var context = new EFRecipesEntities())
{
    var r1 = new Resume {Title = "C# Developer", Name = "Sally Jones"};
    r1.ResumeDetail = new ResumeDetail {Body = "...very long resume goes here..."};
    context.Resumes.Add(r1);
    context.SaveChanges();
}
  



Chapter 13 ■ Improving Performance

475

using (var context = new EFRecipesEntities())
{
    var resume = context.Resumes.Single();
    Console.WriteLine("Title: {0}, Name: {1}", resume.Title, resume.Name);
  
    // note, the ResumeDetail is not loaded until we reference it
    Console.WriteLine("Body: {0}", resume.ResumeDetail.Body);
}
 

Following is the output of the code in Listing 13-22: 

Title: C# Developer, Name: Sally Jones
Body: ...very long resume goes here...

How It Works
We avoided loading the expensive Body property on the Resume entity by moving the property to a new related entity. 
By splitting the underlying table across these two entities, we can exploit the default lazy loading of Entity Framework 
so that the Body property is loaded only when we reference it. This is a fairly clean approach to the problem, but it 
does introduce an additional entity into our model that we have to manage in our code.

Note■■  T he following link shows how to move a property from one entity to another entity using the Code-First 
approach: http://msdn.microsoft.com/en-us/data/jj591617#2.8. This process is referred to as Entity Splitting, 
allowing the properties of an entity type to be spread across multiple tables.

13-9. Avoiding Include
Problem
You want to eagerly load a related collection without using Include(). Additionally, you want to implement the Entity 
Framework Code-First approach.

Solution
Let’s say that you have a model like the one shown in Figure 13-14.

http://msdn.microsoft.com/en-us/data/jj591617#2.8


Chapter 13 ■ Improving Performance

476

To start, this example leverages the Code-First approach for Entity Framework. In Listing 13-23, we create the 
Customer, CreditCard, and Transaction entity classes.

Listing 13-23.  The Reservation Entity Object

public class Customer
{
    public Customer()
    {
        CreditCards = new HashSet<CreditCard>();
    }
  
    public int CustomerId { get; set; }
    public string Name { get; set; }
    public string City { get; set; }
  
    public virtual ICollection<CreditCard> CreditCards { get; set; }
}
 
public class CreditCard
{
    public CreditCard()
    {
        Transactions = new HashSet<Transaction>();
    }
  
    public string CardNumber { get; set; }
    public string Type { get; set; }
    public System.DateTime ExpirationDate { get; set; }
    public int CustomerId { get; set; }
  
    public virtual Customer Customer { get; set; }
    public virtual ICollection<Transaction> Transactions { get; set; }
}
 

Figure 13-14.  A model for a Customer, their CreditCards, and Transactions



Chapter 13 ■ Improving Performance

477

public class Transaction
{
    public int TransactionId { get; set; }
    public string CardNumber { get; set; }
    public decimal Amount { get; set; }
  
    public virtual CreditCard CreditCard { get; set; }
}
 

Next, in Listing 13-24, we create the DbContext object, which is our gateway into Entity Framework functionality 
when leveraging the Code-First approach.

Listing 13-24.  DbContext Object

public class Recipe9Context : DbContext
{
    public Recipe9Context()
        : base("Recipe9ConnectionString")
    {
        // Disable Entity Framework Model Compatibility
        Database.SetInitializer<Recipe10Context>(null);
    }
  
    protected override void OnModelCreating(DbModelBuilder modelBuilder)
    {
        // explicilty specify primary key for CreditCard
        modelBuilder.Entity<CreditCard>().HasKey(x => x.CardNumber);
  
        modelBuilder.Entity<Customer>().ToTable("Chapter13.Customer");
        modelBuilder.Entity<CreditCard>().ToTable("Chapter13.CreditCard");
        modelBuilder.Entity<Transaction>().ToTable("Chapter13.Transaction");
    }
  
    public DbSet<CreditCard> CreditCards { get; set; }
    public DbSet<Customer> Customers { get; set; }
    public DbSet<Transaction> Transactions { get; set; }
}
 

Next add an App.Config class to the project, and add to it the code from Listing 13-25, under the 
ConnectionStrings section.

Listing 13-25.  Connection String

<connectionStrings>
  <add name="Recipe9ConnectionString"
       connectionString="Data Source=.;
       Initial Catalog=EFRecipes;
       Integrated Security=True;
       MultipleActiveResultSets=True"
       providerName="System.Data.SqlClient" />
</connectionStrings>
 



Chapter 13 ■ Improving Performance

478

To load all of the Customers in a given city together with their credit cards and transactions without using 
Include(), explicitly load the entities and let Entity Framework fix up the associations, as shown in Listing 13-26.

Listing 13-26.  Loading Related Entities without Using Include()

using (var context = new Recipe9Context())
{
   var cust1 = new Customer { Name = "Robin Rosen", City = "Raytown" };
   var card1 = new CreditCard { CardNumber = "41949494338899",

ExpirationDate = DateTime.Parse("12/2010"), Type = "Visa" };
   var trans1 = new Transaction { Amount = 29.95M };
   card1.Transactions.Add(trans1);
   cust1.CreditCards.Add(card1);
   var cust2 = new Customer { Name = "Bill Meyers", City = "Raytown" };
   var card2 = new CreditCard { CardNumber = "41238389484448",

ExpirationDate = DateTime.Parse("12/2013"), Type = "Visa" };
   var trans2 = new Transaction { Amount = 83.39M };
   card2.Transactions.Add(trans2);
   cust2.CreditCards.Add(card2);
   context.Customers.Add(cust1);
   context.Customers.Add(cust2);
   context.SaveChanges();
}
  
using (var context = new Recipe9Context())
{
   var customers = context.Customers.Where(c => c.City == "Raytown");
   var creditCards = customers.SelectMany(c => c.CreditCards);
   var transactions = creditCards.SelectMany(cr => cr.Transactions);
  
   // execute queries, EF fixes up associations
   customers.ToList();
   creditCards.ToList();
   transactions.ToList();
  
   foreach (var customer in customers)
   {
       Console.WriteLine("Customer: {0} in {1}", customer.Name, customer.City);
       foreach (var creditCard in customer.CreditCards)
       {
           Console.WriteLine("\tCard: {0} expires on {1}",

creditCard.CardNumber, creditCard.ExpirationDate.ToShortDateString());
           foreach (var trans in creditCard.Transactions)
           {
               Console.WriteLine("\t\tTransaction: {0}", trans.Amount.ToString("C"));
           }
       }
   }
}
 



Chapter 13 ■ Improving Performance

479

Following is the output of the code in Listing 13-26:
 

Customer: Robin Rosen in Raytown
        Card: 41949494338899 expires on 12/1/2010
                Transaction: $29.95
Customer: Bill Meyers in Raytown
        Card: 41238389484448 expires on 12/1/2013
                Transaction: $83.39

How It Works
The Include() method is a powerful and usually efficient way to eagerly load related entities. However, Include() 
does have some performance drawbacks. Although using Include() results in just one round trip to the database 
in place of the three shown in Listing 13-26, the single query is quite complex and, in some cases, may not perform 
as well as three much simpler queries. Additionally, the result set from this single, more complex query contains 
duplicate columns that increase the amount of data sent over the wire if the database server and the application are 
on separate machines. As a rule, the more Includes contained in your query, the higher the performance penalty.

On the flip side, not using an Include() method and iterating over a large number of Customers can generate an 
excessive number of small queries, resulting in a large performance hit as well. Chapter 5 discusses the trade-offs and 
alternate approaches in detail.

13-10. Generating Proxies Explicitly
Problem
You have POCO entities that use dynamic proxies. When you execute a query, you do not want to incur the cost of 
Entity Framework lazily creating the proxies.

Solution
Suppose that you have a model like the one shown in Figure 13-15.

Figure 13-15.  A model for CDs and music titles



Chapter 13 ■ Improving Performance

480

The corresponding POCO classes are shown in Listing 13-27. Note how each property includes the virtual 
keyword and each reference to the Tracks property is of type ICollection. This will allow Entity Framework to create 
the tracking proxies dynamically. (See Recipe 13-5 for more information on tracking proxy objects.)

Listing 13-27.  The POCO Classes Along with Our Object Context

public partial class CD
{
    public CD()
    {
        this.Tracks = new HashSet<Track>();
    }
     
    public int CDId { get; set; }
    public string Title { get; set; }
     
    public virtual ICollection<Track> Tracks { get; set; }
}
 
public partial class Track
{
    public string Title { get; set; }
    public string Artist { get; set; }
    public int CDId { get; set; }
}
 

To cause Entity Framework to generate the proxies before they are required (before an entity is loaded), we need 
to use the CreateProxyTypes() method on the object context, as illustrated in Listing 13-28.

Listing 13-28.  Generating the tracking proxies before loading the entities

using (var context = new EFRecipesEntities())
{
            // to trigger proxy generation we need to drop-down into the underlying
            // ObjectContext object as DbContext does not expose the CreateProxyTypes() method

            var objectContext = ((IObjectContextAdapter) context).ObjectContext;
            objectContext.CreateProxyTypes(new Type[] { typeof(CD), typeof(Track) });
            var proxyTypes = ObjectContext.GetKnownProxyTypes();
            Console.WriteLine("{0} proxies generated!", ObjectContext.GetKnownProxyTypes().Count());
  
            var cds = context.CDs.Include("Tracks");
            foreach (var cd in cds)
            {
                Console.WriteLine("Album: {0}", cd.Title);
                foreach (var track in cd.Tracks)
                {
                    Console.WriteLine("\t{0} by {1}", track.Title, track.Artist);
                }
            }
        }
 



Chapter 13 ■ Improving Performance

481

Following is the output of the code in Listing 13-28:
 

2 proxies generated!
Album: Abbey Road
        Come Together by The Beatles
Album: Cowboy Town
        Cowgirls Don't Cry by Brooks & Dunn
Album: Long Black Train
        In My Dreams by Josh Turner
        Jacksonville by Josh Turner

How It Works
Dynamic proxies are created just before they are needed at runtime. This, of course, means that the overhead of 
creating the proxy is incurred on the first query. This lazy creation approach works well in most cases. However,  
you can generate the proxies before the entities are first loaded by calling the CreateProxyTypes() method.

The CreateProxyTypes() method takes an array of types and generates the corresponding tracking proxies. Once 
created, the proxies remain in the AppDomain for the life of the AppDomain. Notice that the lifetime of the proxy is 
tied to the AppDomain, not the object context. We could dispose of the object context and create another, and the 
proxies would not be disposed. You can retrieve the proxies in the AppDomain with the GetKnownProxyTypes() static 
method on the object context.



483

Chapter 14

Concurrency

Most applications that use sophisticated database management systems, such as Microsoft’s SQL Server, are used by 
more than one person at a time. The concurrency concerns surrounding shared access to simple data files are often 
the motivating reason why developers turn to relational database systems to support their applications. Many, but not 
all, of the concurrency concerns evaporate when an application relies on a relational database for its data store. The 
concerns that remain usually involve detecting and controlling when an object state is different in memory than in 
the database. The recipes in this chapter provide an introduction to solving some of the problems typically faced by 
developers when it comes to detecting concurrency violations and controlling which copy of the object is ultimately 
persisted in the database.

14-1. Applying Optimistic Concurrency
Problem
You want to use optimistic concurrency with an entity in your model.

Solution
Let’s suppose you have a model like the one shown in Figure 14-1.

Figure 14-1.  A Product entity describing products in your application



Chapter 14 ■ Concurrency

484

The Product entity describes products in your application. You want to throw an exception if an intermediate 
update occurs between the time you retrieve a particular product entity and the time an update is performed in the 
database. To implement that behavior, do the following:

	 1.	 Add a column of type RowVersion to the table mapped to the Product entity.

	 2.	 Right-click the design surface, and select Update Model from Database. Update the model 
with the newly changed table. The updated model is shown in Figure 14-2.

Figure 14-2.  The updated model with the newly added TimeStamp property

	 3.	 Right-click the TimeStamp property and select Properties. Change its Concurrency Mode 
property to Fixed.

The code in Listing 14-1 demonstrates that changing the underlying row in the table between the time the product 
entity is materialized and the time we update the table from changes in the product entity throws an exception.

Listing 14-1.  Throwing an Exception If Optimistic Concurrency Is Violated

using (var context = new EF6RecipesContext())
{
    context.Products.Add(new Product
                             {
                                 Name = "High Country Backpacking Tent",
                                 UnitPrice = 199.95M
                             });
 
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    // get the product
    var product = context.Products.SingleOrDefault();
    Console.WriteLine("{0} Unit Price: {1}", product.Name,
                       product.UnitPrice.ToString("C"));
 
    // update out of band
    context.Database.ExecuteSqlCommand(@"update chapter14.product set
            unitprice = 229.95 where productId = @p0", product.ProductId);
 



Chapter 14 ■ Concurrency

485

    // update the product via the model
    product.UnitPrice = 239.95M;
    Console.WriteLine("Changing {0}'s Unit Price to: {1}", product.Name,
                       product.UnitPrice.ToString("C"));
 
    try
    {
        context.SaveChanges();
    }
    catch (DbUpdateConcurrencyException ex)
    {
        Console.WriteLine("Concurrency Exception! {0}", ex.Message);
    }
    catch (Exception ex)
    {
        Console.WriteLine("Exception! {0}", ex.Message);
    }
}
 

The following is the output of the code in Listing 14-1: 

High Country Backpacking Tent Unit Price: $199.95

Changing High Country Backpacking Tent's Unit Price to: $239.95

Concurrency Exception! Store update, insert, or delete statement affected an unexpected number 
of rows (0). Entities may have been modified or deleted since entities were loaded. Refresh 
ObjectStateManager entries. 

How It Works
Optimistic concurrency is a low-contention concurrency strategy because rows are not locked when they are 
updated; rather it is up to the application to check for changes in row data before updating the row. The downside to 
optimistic concurrency is the potential for overwriting data if the application does not check for changes in the data 
before updating the database. Pessimistic concurrency, on the other hand, is a high-contention concurrency strategy 
because rows are locked during updates. The disadvantage of pessimistic concurrency is clearly the potential for 
degraded application performance caused by row locking, or even worse, deadlocks.

Optimistic concurrency is not enabled by default when tables are imported into a model. To enable optimistic 
concurrency, change the Concurrency Mode property of one of the entity’s properties to Fixed. You do not have to 
use a TimeStamp property as we did in this recipe. You do need to choose a property that you know will be changed 
in every update to the underlying table. Typically, you would use a column whose value is generated by the database 
on each update. The TimeStamp column is a good candidate. If you choose another column, be sure to set the 
StoreGeneratedPattern property to Computed for the corresponding entity property. This will tell Entity Framework that 
the value is generated by the database. Entity Framework recognizes the TimeStamp data type as a Computed property.

In Listing 14-1, we inserted a new product into the database. We queried the model for the one product we 
inserted. Once we had the product, we updated the row out-of-band using the ExecuteSqlCommand() method to send 
a SQL update statement to the database changing the row. This out-of-band update simulates two users updating 
the same row simultaneously. On the database side, this update caused the UnitPrice to be changed to $229.95 and 
the TimeStamp column to be updated automatically by the database. After the out-of-band update, we changed the 
UnitPrice on the product in the database context to $239.95. At this point, the database context believes (incorrectly) 
that it has the most recent values for the product, including an update to the UnitPrice now set at $239.95. When we 



Chapter 14 ■ Concurrency

486

call SaveChanges(), Entity Framework generates an update statement with a where clause that includes both the 
ProductId and the TimeStamp values we have for the product. The value for this TimeStamp is the one retrieved 
when we read the product from the database before the out-of-band update. Because the out-of-band update caused 
the TimeStamp to change, the value for the TimeStamp column in the database is different from the value of the 
TimeStamp property on the product entity in the database context. The update statement will fail because no row is 
found in the table matching both the ProductId and the TimeStamp values. Entity Framework will respond by rolling 
back the entire transaction and throwing a DbUpdateConcurrencyException.

In responding to the exception, the code in Listing 14-1 printed a message and continued. This is probably not 
how you would handle a concurrency violation in a real application. One way to handle this exception is to refresh the 
entity with the current value of the concurrency column from the database. With the correct value for the concurrency 
column, a subsequent SaveChanges() will likely succeed. Of course, it might not for the same reason that it failed the 
first time, and you need to be prepared for this as well.

The DbUpdateConcurrencyException object has an Entries collection property, which contains a DbEntityEntry 
instance for each entity that fails to update. The DbEntityEntry class defines a Reload() method that will cause the 
entry to be updated with the values from the database (database wins), and all changes made to the entry in the 
database context are lost.

It is possible, however, to overwrite the entry's OriginalValues property such that SaveChanges() can be called on 
the database context without a concurrency violation, as shown in Listing 14-2.

Listing 14-2.  Resolving a Concurrency Conflict in a Client Wins Scenario

bool saveChangesFailed;
do
{
    saveChangesFailed = false;
    try
    {
        context.SaveChanges();
    }
    catch (DbUpdateConcurrencyException ex)
    {
        saveChangesFailed = true;
        var entry = ex.Entries.Single();
        entry.OriginalValues.SetValues(entry.GetDatabaseValues());
    }
} while (saveChangesFailed);
 

In addition to the two aforementioned scenarios, it is possible to write custom code to update a conflicting entity 
with data from both the database and the client, or to allow user intervention to resolve data conflicts.

14-2. Managing Concurrency When Using Stored Procedures
Problem
You want to use optimistic concurrency when using stored procedures for the insert, update, and delete actions.

Solution
Let’s suppose that we have a table like the one shown in Figure 14-3 and the entity shown in Listing 14-3, which is 
mapped to the table.



Chapter 14 ■ Concurrency

487

Listing 14-3.  The Agent Model

[Table("Agent", Schema = "Chapter14")]
public class Agent
{
    [Key]
    [MaxLength(50)]
    public string Name { get; set; }
 
    [Required]
    [MaxLength(50)]
    public string Phone { get; set; }
 
    [Timestamp]
    public byte[] TimeStamp { get; set; }
}
 

You want to use stored procedures to handle the insert, update, and delete actions for the model. These stored 
procedures need to be written so that they leverage the optimistic concurrency support provided in Entity Framework. 
Do the following to create the stored procedures and map them to actions:

	 1.	 Create the stored procedures in the database using the code in Listing 14-4.

Listing 14-4.  Stored Procedures for the Insert, Update, and Delete actions

create procedure Chapter14.InsertAgent
(@Name varchar(50), @Phone varchar(50))
as
begin
  insert into Chapter14.Agent(Name, Phone)
  output inserted.TimeStamp
  values (@Name, @Phone)
end
go
create procedure Chapter14.UpdateAgent
(@Name varchar(50), @Phone varchar(50), @TimeStamp_Original TimeStamp, @RowsAffected int OUTPUT)
as
begin
  update Chapter14.Agent set Phone = @Phone where Name = @Name
  and TimeStamp = @TimeStamp_Original
  set @RowsAffected = @@ROWCOUNT
end
go

Figure 14-3.  The Agent table in our database



Chapter 14 ■ Concurrency

488

create procedure Chapter14.DeleteAgent
(@Name varchar(50), @TimeStamp_Original TimeStamp, @RowsAffected int OUTPUT)
as
begin
  delete Chapter14.Agent where Name = @Name and TimeStamp = @TimeStamp_Original
  set @RowsAffected = @@ROWCOUNT
end

 	 2.	 Override the OnModelCreating method in your code-first DbContext class, and call 
Entity<Agent>().MapToStoredProcedures() to map the stored procedures to the insert, 
update, and delete actions on your agent model, as shown in Listing 14-5.

Listing 14-5.  Overriding DbContext.OnModelCreating() to Map Stored Procedures to Insert, Update,  
and Delete Operations

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
base.OnModelCreating(modelBuilder);
 
modelBuilder
    .Entity<Agent>()
    .MapToStoredProcedures(agent =>
          {
              agent.Insert(i => i.HasName("Chapter14.InsertAgent"));
              agent.Update(u => u.HasName("Chapter14.UpdateAgent"));
              agent.Delete(d => d.HasName("Chapter14.DeleteAgent"));
          });
 
}
 

The code in Listing 14-6 demonstrates inserting and updating the database using the stored procedures. In the 
code, we update the phone numbers for both agents. For the first agent, we update the agent in the object context and 
save the changes. For the second agent, we do an out-of-band update before we update the phone using the object 
context. When we save the changes, Entity Framework throws an OptimisticConcurrencyException, indicating that 
the underlying database row was modified after the agent was materialized in the object context.

Listing 14-6.  Demonstrating How Entity Framework and Our Insert and Update Stored Procedures Respond  
to a Concurrency Violation

using (var context = new EF6RecipesContext())
{
    context.Agents.Add(new Agent { Name = "Phillip Marlowe",
                                         Phone = "202 555-1212" });
    context.Agents.Add(new Agent { Name = "Janet Rooney",
                                         Phone = "913 876-5309" });
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    // change the phone numbers
    var agent1 = context.Agents.Single(a => a.Name == "Janet Rooney");



Chapter 14 ■ Concurrency

489

    var agent2 = context.Agents.Single(a => a.Name == "Phillip Marlowe");
    agent1.Phone = "817 353-4458";
    context.SaveChanges();
 
    // update the other agent's number out-of-band
    context.Database.ExecuteSqlCommand(@"update Chapter14.agent
         set Phone = '817 294-6059' where name = 'Phillip Marlowe'");
 
    // now change it using the model
    agent2.Phone = "817 906-2212";
    try
    {
        context.SaveChanges();
    }
    catch (DbUpdateConcurrencyException ex)
    {
        Console.WriteLine("Exception caught updating phone number: {0}",
                           ex.Message);
    }
}
 
using (var context = new EF6RecipesContext())
{
    Console.WriteLine("-- All Agents --");
    foreach (var agent in context.Agents)
    {
        Console.WriteLine("Agent: {0}, Phone: {1}", agent.Name, agent.Phone);
    }
}
 

The following is the output of the code in Listing 14-6. Notice that we caught the exception thrown during 
SaveChanges() and printed the exception message: 

Exception caught updating phone number: Store update, insert, or delete statement

affected an unexpected number of rows (0). Entities may have been modified or deleted since entities 
were loaded. Refresh ObjectStateManager entries.
-- All Agents --
Agent: Janet Rooney, Phone: 817 353-4458
Agent: Phillip Marlowe, Phone: 817 294-6059 

How It Works
The key to leveraging the concurrency infrastructure in Entity Framework is in the implementation of the stored 
procedures (see Listing 14-4) and in how we mapped the input parameters and the result values. Let’s look at each 
stored procedure.

The InsertAgent() procedure takes in the name and phone number for the agent and executes an insert 
statement. This results in the database computing a timestamp value that is inserted into the table along with the 
name and phone number. The select statement retrieves this newly generated timestamp. After the insert, the entity 



Chapter 14 ■ Concurrency

490

has the current values for the name and phone number and the newly generated timestamp. At that instant, the entity 
is in sync with the database.

With the UpdateAgent() procedure, Entity Framework automatically maps our Name and Phone properties to the 
stored procedure's parameters as long as the property names and parameter names match. However, we've named 
the timestamp parameter @TimeStamp_Original. This ensures that the original value for the TimeStamp property 
is sent to the database when we call the stored procedure. The where clause on the update statement includes the 
timestamp; if the timestamp value for the row in the database is different from the value in the entity, the update will 
fail. Because no rows are updated, Entity Framework responds by throwing a DbUpdateConcurrencyException.  
If the update succeeds, the new timestamp value is mapped to the TimeStamp property on the entity. At this point,  
the entity and row in the table are once again synchronized.

For the DeleteAgent() procedure, Entity Framework once again maps the Name  and TimeStamp properties to 
the parameters of the procedure automatically. The where clause on the delete statement includes the primary key, 
Name, and the timestamp value; this ensures that the row is deleted if, and only if, no intermediate update of the row 
has occurred. If no row is deleted, Entity Framework will respond with a DbUpdateConcurrencyException.

Entity Framework relies on each of these stored procedures returning some indication of the number of rows 
affected by the operation. We’ve crafted each procedure to return this value either using a select statement that 
returns either one or zero rows, or the row count from the statement.

There are three ways, in order of precedence, that Entity Framework interprets the number of rows affected by 
a stored procedure: the return value from ExecuteNonQuery(), the number of rows returned, or an explicit output 
parameter (see Recipe 14-5).

The code in Listing 14-6 demonstrates that an intervening update, which we do out-of-band with the 
ExecuteSqlCommand() method, causes a concurrency violation when we update Phillip Marlowe’s phone number.

14-3. Reading Uncommitted Data
Problem
Your application requires fast concurrent access with as little database overhead as possible, so you want to read 
uncommitted data using LINQ to entities.

Solution
Suppose you have an Employee entity like the one shown in Figure 14-4. You want to insert a new employee, but 
before the row is committed to the database, you want to read the uncommitted row into a different object context. 
To do this, create nested instances of the TransactionScope class and set the IsolationLevel of the innermost scope to 
ReadUncommitted, as shown in Listing 14-7. You will need to add a reference in your project to System.Transactions.

Figure 14-4.  An Employee entity



Chapter 14 ■ Concurrency

491

Listing 14-7.  Creating Nested TransactionScopes and Setting the IsolationLevel to ReadUncommitted

using (var context = new EF6RecipesContext())
{
    using (var scope1 = new TransactionScope())
    {
        // save, but don't commit
        var outerEmp = new Employee { Name = "Karen Stanfield" };
        Console.WriteLine("Outer employee: {0}", outerEmp.Name);
        context.Employees.Add(outerEmp);
        context.SaveChanges();
 
        // second transaction for read uncommitted
        using (var innerContext = new EF6RecipesContext())
        {
            using (var scope2 = new TransactionScope(
                TransactionScopeOption.RequiresNew,
                new TransactionOptions {
                   IsolationLevel = IsolationLevel.ReadUncommitted }))
            {
                var innerEmp = innerContext.Employees
                                .First(e => e.Name == "Karen Stanfield");
                Console.WriteLine("Inner employee: {0}", innerEmp.Name);
                scope1.Complete();
                scope2.Complete();
            }
        }
    }
}
 

The following is the output of the code in Listing 14-7: 

Outer employee: Karen Stanfield
Inner employee: Karen Stanfield 

How It Works
In SQL, one of the common ways of reading uncommitted data is to use the NOLOCK query hint. However, Entity 
Framework does not support the use of hints. In Listing 14-7, we used a TransactionScope with the IsolationLevel set 
to ReadUncommitted. This allowed us to read the uncommitted data from the outer TransactionScope. We did this in a 
fresh data context.



Chapter 14 ■ Concurrency

492

14-4. Implementing the “Last Record Wins” Strategy
Problem
You want to make sure that changes to an object succeed regardless of any intermediate changes to the database.

Solution
Suppose you have a model like the one shown in Figure 14-5.

Figure 14-5.  Our model with the ForumPost entity

Our model represents posts by users of an Internet forum. Moderators of forums often want to review posts and 
possibly change or delete them. The changes a moderator makes need to take precedence over any changes made by 
the forum’s users. In general, this can be implemented without much concern for concurrency, except when the user 
makes a change between the time the moderator retrieves the post and the when the moderator calls SaveChanges() 
to commit a change, such as a delete, to the database. In this case, we want the moderator’s changes to overwrite the 
user’s changes. We want the moderator to win.

To implement this, follow the pattern shown in Listing 14-8. Be sure to set the Concurrency Mode on the 
TimeStamp property to Fixed.

Listing 14-8.  Implementing Last Record Wins

int postId = 0;
using (var context = new EF6RecipesContext())
{
    // post is created
    var post = new ForumPost { ForumUser = "FastEddie27", IsActive = false,
                  Post = "The moderator is a great guy." };
    context.ForumPosts.Add(post);
    context.SaveChanges();
    postId = post.PostingId;
}
 
using (var context = new EF6RecipesContext())
{
    // moderator gets post to review
    var post = context.ForumPosts.First(p => p.PostingId  == postId);
    Console.WriteLine("Post by {0}: {1}", post.ForumUser, post.Post);
 



Chapter 14 ■ Concurrency

493

    // poster changes post out-of-band
    Context.Database.ExecuteSqlCommand(@"update chapter14.forumpost
             set post='The moderator''s mom dresses him funny.'
             where postingId = @p0", new object[] { postId.ToString() });
    Console.WriteLine("Fast Eddie changes the post");
 
    // moderator doesn't trust Fast Eddie
    if (string.Compare(post.ForumUser, "FastEddie27") == 0)
        post.IsActive = false;
    else
        post.IsActive = true;
 
    try
    {
        // refresh any changes to the TimeStamp
        var postEntry = context.Entry(post);
        postEntry.OriginalValues.SetValues(postEntry.GetDatabaseValues());
        context.SaveChanges();
        Console.WriteLine("No concurrency exception.");
    }
    catch (DbUpdateConcurrencyException exFirst)
    {
        try
        {
            // try one more time.
            var postEntry = context.Entry(post);
            postEntry.OriginalValues.SetValues(postEntry.GetDatabaseValues());
            context.SaveChanges();
        }
        catch (DbUpdateConcurrencyException exSecond)
        {
            // we tried twice...do something else
        }
    }
}
 

The following is the output of the code in Listing 14-8: 

Post by FastEddie27: The moderator is a great guy.
Fast Eddie changes the post
No concurrency exception. 

How It Works
The TimeStamp property is marked for concurrency because its ConcurrencyMode is set to Fixed. As part of the 
update statement, the value of the TimeStamp property is checked against the value in the database. If they differ, 
Entity Framework will throw a DbUpdateConcurrencyException. We’ve seen this behavior in the previous recipes in 
this chapter. What’s different here is that we want the change from the client, in this case the moderator, to overwrite 
the newer row in the database. We do this by repeating a particular strategy; however, even using this strategy,  
it's possible that we will not be able to update our data successfully.



Chapter 14 ■ Concurrency

494

The strategy we use in Listing 14-8 is to obtain the DbEntityEntry that is tracking changes to our ForumPost 
object and then refresh the OriginalValues property with the values currently in the data store. Armed with the latest 
TimeStamp property, our call to SaveChanges() should succeed. There is a chance, especially in a highly concurrent 
environment, that some intervening update could occur to change the row before our update hits the database. If 
this occurs, Entity Framework will throw a DbUpdateConcurrencyException. If that should occur, we try to repeat our 
DbEntityEntry refresh in the catch block and call SaveChanges() again.

Even with these two approaches in place, it is still possible for an intervening update to occur between the refresh 
and the time the update is executed on the database.

14-5. Getting Affected Rows from a Stored Procedure
Problem
You want to return the number of rows affected by a stored procedure through an output parameter.

Solution
Entity Framework uses the number of rows affected by an operation to determine whether the operation succeeded or 
the operation failed because of a concurrency violation. When using stored procedures (see Recipe 14-2), one of the 
ways to communicate the number of rows affected by an operation is to return this value as an output parameter of 
the stored procedure.

Let’s suppose you have a model like the one shown in Figure 14-6.

Figure 14-6.  Our model with the Account entity

To return the number of rows affected by the stored procedures mapped to the insert, update, and delete actions, 
do the following:

	 1.	 Create the stored procedures in the database using the code in Listing 14-9.

Listing 14-9.  The Stored Procedures for the Insert, Update, and Delete Actions

create procedure [Chapter14].[UpdateAccount]
(@AccountNumber varchar(50), @Name varchar(50), @Balance decimal, @TimeStamp TimeStamp,  
 @RowsAffected int output)
as
begin
  update Chapter14.Account
  output inserted.TimeStamp
  set Name = @Name, Balance = @Balance



Chapter 14 ■ Concurrency

495

  where AccountNumber = @AccountNumber and TimeStamp = @TimeStamp
  set @RowsAffected = @@ROWCOUNT
end
 
go
 
create procedure [Chapter14].[InsertAccount]
(@AccountNumber varchar(50), @Name varchar(50), @Balance decimal,
 @RowsAffected int output)
as
begin
  insert into Chapter14.Account (AccountNumber, Name, Balance)
  output inserted.TimeStamp
  values (@AccountNumber, @Name, @Balance)
  set @RowsAffected = @@ROWCOUNT
end
 
go
 
create procedure [Chapter14].[DeleteAccount]
(@AccountNumber varchar(50), @TimeStamp TimeStamp,  
@RowsAffected int output)
as
begin
  delete Chapter14.Account where AccountNumber = @AccountNumber and
         TimeStamp = @TimeStamp
  set @RowsAffected = @@ROWCOUNT
end

 	 2.	 Right-click the design surface, and select Update Model from Database. Select the stored 
procedures you created in Step 1. Click Finish. This will import the stored procedures into 
the model.

	 3.	 View the Mapping Details window for the Account entity. Click the Map Entity to 
Functions button on the left side of the tool window. Map the insert, update, and delete 
actions to the stored procedures, as shown in Figure 14-7. Make sure that you map the 
Result column to the TimeStamp property for both the insert and update actions. For the 
update action, check the Use Original Value box for the procedure’s TimeStamp parameter. 
For each procedure, check the Rows Affected Parameter boxes, as shown in Figure 14-7.



Chapter 14 ■ Concurrency

496

When we call the SaveChanges() method in Listing 14-10 to update, insert, or delete, these actions are performed 
by the stored procedures in Listing 14-9 because of the mappings shown in Figure 14-7. Both the insert and update 
procedures return the updated TimeStamp value. This value is used by Entity Framework to enforce optimistic 
concurrency.

Listing 14-10.  Demonstrating the stored procedures mapped to the insert, update, and delete actions

using (var context = new EF6RecipesContext())
{
    context.Accounts.Add(new Account { AccountNumber = "8675309",
                                Balance = 100M, Name = "Robin Rosen"});
    context.Accounts.Add(new Account { AccountNumber = "8535937",
                                Balance = 25M, Name = "Steven Bishop"});
    context.SaveChanges();
}
 

Figure 14-7.  When mapping the stored procedures to the insert, update, and delete actions, make sure that you check 
the Rows Affected Parameter check boxes and Use Original Value check box as shown



Chapter 14 ■ Concurrency

497

using (var context = new EF6RecipesContext())
{
    // get the account
    var account = context.Accounts.First(a => a.AccountNumber == "8675309");
    Console.WriteLine("Account for {0}", account.Name);
    Console.WriteLine("\tPrevious Balance: {0}", account.Balance.ToString("C"));
 
    // some other process updates the balance
    Console.WriteLine("[Rogue process updates balance!]");
    context.Database.ExecuteSqlCommand(@"update chapter14.account set balance = 1000
                                   where accountnumber = '8675309'");
 
    // update the account balance
    account.Balance = 10M;
 
    try
    {
        Console.WriteLine("\tNew Balance: {0}", account.Balance.ToString("C"));
        context.SaveChanges();
    }
    catch (DbUpdateConcurrencyException ex)
    {
        Console.WriteLine("Exception: {0}", ex.Message);
    }
}
     

The following is the output of the code in Listing 14-10: 

Account for Robin Rosen
        Previous Balance: $100.00
[Rogue process updates balance!]
        New Balance: $10.00
Exception: Store update, insert, or delete statement affected an unexpected number of rows (0). 
Entities may have been modified or deleted since entities were loaded. Refresh ObjectStateManager 
entries. 

How It Works
The code in Listing 14-10 demonstrates using the stored procedures we’ve mapped to the insert, update, and delete 
actions. In the code, we purposely introduce an intervening update between the retrieval of an account object and 
saving the account object to the database. This rogue update causes the TimeStamp value to be changed in the 
database after we’ve materialized the object in the DbContext. This concurrency violation is detected by Entity 
Framework because the number of rows affected by the UpdateAccount() procedure is zero.

The mappings shown in Figure 14-7 tell Entity Framework how to keep the TimeStamp property correctly 
synchronized with the database and how to be informed of the number of rows affected by the insert, update, or 
delete actions. The Result Column for the insert and the update actions is mapped to the TimeStamp property on 
the entity. For the update action, we need to make sure that Entity Framework uses the original value from the entity 
when it constructs the statement invoking the UpdateAccount() procedure. These two settings keep the TimeStamp 
property synchronized with the database. Because our stored procedures return the number of rows affected by their 
respective updates in an output parameter, we need to check the Rows Affected Parameter box for this parameter for 
each of the action mappings.



Chapter 14 ■ Concurrency

498

14-6. Optimistic Concurrency with Table Per Type Inheritance
Problem
You want to use optimistic concurrency in a model that uses Table per Type inheritance.

Solution
Let’s suppose you have the tables shown in Figure 14-8, and you want to model these tables using Table per Type 
inheritance and use optimistic concurrency to ensure that updates are persisted correctly. To create the model 
supporting optimistic concurrency, do the following:

	 1.	 Add a TimeStamp column to the Person table.

	 2.	 Create a new class that inherits from DbContext in your project.

	 3.	 Create new POCO entities for Person, Instructor, and Student, as shown in Listing 14-11. 
The Person entity should be abstract because we do not want to create a person entity 
directly, while both the Instructor and Student entities will inherit from the Person entity.

	 4.	 Add an auto-property of type DbSet<Person> to the DbContext subclass.

Figure 14-8.  A database diagram with our Person table and the related Instructor and Student tables

Listing 14-11.  Entity Classes Reflecting Our Table per Type Inheritance Model with the TimeStamp Property Added 
to the Person Class

[Table("Person", Schema = "Chapter14")]
public abstract class Person
{
    [Key]
    public int PersonId { get; set; }
 
    public string Name { get; set; }
 
    [Timestamp]
    public byte[] TimeStamp { get; set; }
}
 



Chapter 14 ■ Concurrency

499

[Table("Student", Schema = "Chapter14")]
public class Student : Person
{
    public DateTime? EnrollmentDate { get; set; }
}
 
[Table("Instructor", Schema = "Chapter14")]
public class Instructor : Person
{
    public DateTime? HireDate { get; set; }
} 

The code in Listing 14-12 demonstrates what happens in the model when an out-of-band update happens.

Listing 14-12.  Testing the Model by Applying a Rogue Update

using (var context = new EF6RecipesContext())
{
    var student = new Student { Name = "Joan Williams",
                                EnrollmentDate = DateTime.Parse("1/12/2010") };
    var instructor = new Instructor { Name = "Rodger Keller",
                                HireDate = DateTime.Parse("7/14/1992") };
    context.People.Add(student);
    context.People.Add(instructor);
    context.SaveChanges();
}
 
using (var context = new EF6RecipesContext())
{
    // find the student and update the enrollment date
    var student = context.People.OfType<Student>()
                    .First(s => s.Name == "Joan Williams");
    Console.WriteLine("Updating {0}'s enrollment date", student.Name);
 
    // out-of-band update occurs
    Console.WriteLine("[Apply rogue update]");
    context.Database.ExecuteSqlCommand(@"update chapter14.person set name = 'Joan Smith'
          where personId =
          (select personId from chapter14.person where name = 'Joan Williams')");
 
    // change the enrollment date
    student.EnrollmentDate = DateTime.Parse("5/2/2010");
    try
    {
        context.SaveChanges();
    }
    catch (DbUpdateConcurrencyException ex)
    {
        Console.WriteLine("Exception: {0}", ex.Message);
    }
}
 



Chapter 14 ■ Concurrency

500

The following is the output of the code in Listing 14-12: 

Updating Joan Williams's enrollment date
[Apply rogue update]
Exception: Store update, insert, or delete statement affected an unexpected number of rows (0). 
Entities may have been modified or deleted since entities were loaded. Refresh ObjectStateManager 
entries. 

How It Works
In Listing 14-12, the code retrieves a student entity. An intervening update occurs to the Person table before the code 
updates the EnrollmentDate property on the entity and calls SaveChanges(). Entity Framework detects the concurrency 
violation when updating the tables in the database because the value in the TimeStamp column in the Person table 
does not match the TimeStamp value in the student entity. Entity Framework applies concurrency at the entity level. 
Before the Student table is updated, the Person table is updated with a meaningless or dummy update and the new 
TimeStamp value is obtained. This can be seen in the trace in Listing 14-13. If this update fails to affect any rows, Entity 
Framework knows that the underlying table was changed since the last read. This would cause Entity Framework to 
throw an OptimisticConcurrencyException.

Listing 14-13.  Entity Framework Updates the TimeStamp in the Base Table Prior to Performing the Update in  
the Derived Table

exec sp_executesql N'declare @p int
update [Chapter14].[Person]
output [Inserted].[TimeStamp]
set @p = 0
where (([PersonId] = @0) and ([TimeStamp] = @1))
select [TimeStamp]
from [Chapter14].[Person]
where @@ROWCOUNT > 0 and
[PersonId] = @0',N'@0 int,@1 binary(8)',@0=10,@1=0x0000000000007D19
 

Note that, if the rogue update occurred on the Student table in the database, the TimeStamp column in the 
Person table would not have been changed and Entity Framework would not have detected a concurrency violation. 
This is an important point to remember. The concurrency detection illustrated here extends just to rogue updates to 
the base entity.

14-7. Generating a Timestamp Column with Model First
Problem
You want to use Model First, and you want an entity to have a TimeStamp property for use in optimistic concurrency.



Chapter 14 ■ Concurrency

501

Solution
To use Model First and create an entity with a TimeStamp property, do the following:

	 1.	 Find the T4 Template that is used to generate the DDL for Model First. This file is located in  
Program Files\Microsoft Visual Studio 10.0\Common7\IDE\Extensions\Microsoft\
Entity Framework Tools\DBGen\SSDLToSQL10.tt. Copy this file, and rename this copy to 
SSDLToSQL10Recipe7.tt. Place the copy in the same folder as the original.

	 2.	 Replace the line that starts with [<#=Id(prop.Name)#>] with the code in Listing 14-14. 
We’ll use this modified T4 Template to generate the DDL for our database.

Listing 14-14.  Replace the Line in the T4 Template with This Line

 [<#=Id(prop.Name)#>]
<#if (string.Compare(prop.Name,"TimeStamp",true) == 0)
{#>TIMESTAMP<#} else { #><#=prop.ToStoreType()#><#} #>
<#=WriteIdentity(prop, targetVersion)#> <#=WriteNullable(prop.Nullable)#>
<#=(p < entitySet.ElementType.Properties.Count - 1) ? "," : ""#> 

	 3.	 Add a new ADO.NET Entity Data Model to your project. Start with an Empty Model.

	 4.	 Right-click the design surface, and select Add ➤ Entity. Name this new entity PhonePlan. 
Change the Key Property name to PhonePlanId. Click OK.

	 5.	 Add Scalar properties for Minutes, Cost, and TimeStamp. Change the type for the Minutes 
property to Int32. Change the type for the Cost property to Decimal.

	 6.	 Change the type of the TimeStamp property to Binary. Change its StoreGeneratedPattern 
to Computed. Change the Concurrency Mode to Fixed.

	 7.	 Right-click the design surface, and view the Properties. Change the DDL Generation 
Template to SSDLToSQL10Recipe7.tt. This is the template that you modified in step 2. 
Change the Database Schema Name to Chapter14.

	 8.	 Right-click the design surface, and click Generate Database from Model. Select the 
connection and click Next. The generated DDL is shown in the dialog box. Listing 14-15 
shows an extract from the generated DDL that creates the PhonePlan table. Click Finish to 
complete the generation.

Listing 14-15.  The DDL that creates the PhonePlan table

-- Creating table 'PhonePlans'
CREATE TABLE [Chapter14].[PhonePlans] (
[PhonePlanId] int  IDENTITY(1,1) NOT NULL,
[Minutes] int   NOT NULL,
[Cost] decimal(18,0)   NOT NULL,
[TimeStamp] TIMESTAMP   NOT NULL
);
GO 

How It Works
The TimeStamp data type is not a portable type. Not all database vendors support it. It is unlikely that this type will be 
supported at the conceptual layer in future versions of Entity Framework. However, future versions will likely improve 
the user experience in selecting or modifying the appropriate T4 template that will generate the DDL.



A�       �
Add()method, 250
ADO.NET Entity Data Model, 111
Age() function, 386
@Amount parameter, 63
AnyElement operator, 379
App.Config class, 142
Application_Start() event handler, 126, 128
Application_Start method, 320
AsNoTracking method, 456, 458
ASP.NET MVC

building CRUD operations
adding view, 116–117
ADO.NET Entity Data Model, 111
App_Data folder, 110
application’s category name and  

description, 108
CategoryController, 112–113, 116
Category entity, 108
Category model, 113
create view code, 118
DbContext class, 113
index view code, 117
MDF file-based database, 109
MyStore.mdf file, 108–109
SQL Server Database file selection, 110
Visual Studio 2012, 108
Visual Studio IDE, 109
Web application, 107–108

building search query
Customer entity, 122
Customer entity data model, 125
formatting query field, 125
Linq-to-entities, 125
Razor view, 122
rendered view, 125
testing controller code, 124
WebGrid control, 122, 125

filtering with URL
category name, 127
Cooking Equipment category, 128
Global.asax, 126, 128
index view code, 126
products and categories model, 126
Search engine optimization, 126
Tents category, 128

<AssociationSetMapping>, 365
Athlete entity, 361
AthleteId property, 363

B�       �
Buil-in functions

IsNull function, 408–410
storage layer, 409, 411
WebProduct entity, 409

C�       �
Canonical functions

eSQL
customers and order, 400
definition of, 399
Sum(), Count(), and Avg() Functions, 400

LINQ
MovieRental entity, 401
movies retrieval, 402–403

Change-tracking proxies, 278
Cleanup() method, 61, 307
Clear() method, 173
Client.DeleteAsync method, 327
CollectionChangedEventArgs, 423
Collection() method, 163, 166
CollisionAvoidance property, 224
CommentText property, 307
Conceptual Schema Definition  

Language (CSDL), 4

Index

503



Concurrency
DbEntityEntry, 494
DbEntityEntry class, 486
DbUpdateConcurrencyException, 493–494
DbUpdateConcurrencyException object, 486
DDL, 501
EnrollmentDate property, 500
Entity Framework Updates, 500
ExecuteSqlCommand() method, 485
ForumPost entity, 492
ForumPost object, 494
“Last Record Wins” strategy, 492
optimistic concurrency, 483

product entity, 483–484
Table per Type inheritance, 498

OptimisticConcurrencyException, 488, 500
OriginalValues property, 486
reading uncommitted data

Employee entity, 490
IsolationLevel, 491
NOLOCK query hint, 491
System.Transactions, 490
TransactionScope class, 490

RowVersion, 484
SaveChanges(), 500
stored procedures, 486

account entity, 494
affected rows, 494
Agent Model, 487
DbContext.OnModelCreating(), 488
DbUpdateConcurrencyException, 490
DeleteAgent() procedure, 490
Entity Framework, 488
ExecuteNonQuery(), 490
ExecuteSqlCommand() method, 490
InsertAgent() procedure, 489
insert, update, and delete actions, 487, 494, 496
MapToStoredProcedures(), 488
OnModelCreating method, 488
Original Value check box, 496
Parameter check boxes, 496
SaveChanges() method, 496
UpdateAccount() procedure, 497
UpdateAgent() procedure, 490

StoreGeneratedPattern property, 485
T4 Template, 501
Timestamp Column, Model First, 500
TimeStamp property, 484–485, 493
TimeStamp value, 500

Contains clause, 399
Context.Configuration, 173
Count() method, 72
CreateContext() method, 240
CreateDatabase(), 293
CreateProxyTypes() method, 479–480

CreateQuery() method, 68
Create, read, update, and delete (CRUD) operations

adding view, 116–117
ADO.NET Entity Data Model, 111
App_Data folder, 110
application’s category name and  

description, 108
CategoryController, 112–113, 116
Category entity, 108
Category model, 113
create view code, 118
DbContext class, 113
index view code, 117
MDF file-based database, 109
MyStore.mdf file, 108–109
SQL Server Database file selection, 110
Visual Studio 2012, 108
Visual Studio IDE, 109
Web application, 107–108

CustomerEmail, 130, 132
Customer POCO Model, 341
CustomerType, 130, 132

D�       �
Database functions

LINQ
Appointment entity, 406
StartsAt property, 407

WebCustomer and Zip entity, 404, 406
DbChangeTracker, 327
DbContext class, 113
DbContext.Database.SqlQuery<T>(), 345
DbContext object, 5
DefaultIfEmpty() method, 96
DeleteAuthorBook stored procedure, 366, 368
DeletePayment() method, 330
DiffDays() function, 403
Dispose() method, 18
DropDatabase(), 293

E�       �
Eager loading, 129

Customeremail, 133
CustomerEmail, 132–133
Customertype, 133
CustomerType, 132–133
definition, 131
model, 132

EmployeeAddress complex type, 349, 351
Entities

deferred loading of related entities, 156
Connection String, 158
Context Class, 158

■ index

504



Entity Classes, 157
model, 157

entity collection, 166
entity reference, 166
executing aggregate operations on related  

entities, 163
filtering and ordering related entities, 160
filtering an eagerly loaded entity collection, 174
independent associations, 181
loading of related entities

complete object graph, 146
eager loading, 132
Include() method, 151
Include() method, LINQ query  

operators, 153
JobSite entity, 152
JobSite type, 151
lazy loading, 129
Navigation Properties, derived types, 150
Plumber entity, 151
querying in-memory entities (see Querying 

in-memory entities)
loading related entities explicitly, 170
modifying foreign key associations, 178
single entities

Club entity class, 136
Club entity objects, 136
Connection String, 137
context class, 136
Find() method, 137, 139
SQL query, 138–139

Entity data model, 3
complex type, 51
conceptual model

ADO.NET Entity Data Model, 11–12
bidirectional model development, 16
database connection, 15
Database Schema Name, 14
database script, 15–16
Dispose() method, 18
entity type, 12–13
Person entity type, 16–17
scalar property, 13
using() statement, 17–18

eSQL (see Entity SQL (eSQL))
existing database

Add() method, 22
Foreign Key Columns, 21
navigation property, 20
object graph building, 22
poet, poem, and meter entity  

types, 22
relationships, 19
scalar property, 20
vwLibrary view, 20, 23

Is-a and Has-a relationships, 49
LINQ

Associate and AssociateSalary Entity Types, 56
bitwise operators, 100
Cleanup() method, 61
DbContext Object, 56
flattening query results, 94
LoadData() method, 61
multiple properties, 96
output, 60
remove, load, and fetch data, 57
SaveChangesAsync() method, 61
ToList() and SingleOrDefault() method, 61

many-to-many relationship (see Many-to-many 
relationship)

native SQL statements
@Amount parameter, 63
ASP.NET TextBox control, 63
DbContext object, 64
ExecuteSqlCommand() method, 62
ExecuteStoreQuery() method, 65
payment entity, 61, 63
payment table, 61
reuse method, 63
SaveChanges() method, 66
SQL injection attacks, 63
SqlQuery() method, 66
student entity class, 64
student entity type, 64
@Vendor parameter, 63

ObjectSet, 41
self-referencing relationship

association type, 30
creation, 29
DbContext Subclass, 30
degree, 30
multiplicity, 30
PictureCategory, 29
Print() method, 32
root node, 30–31

table per hierarchy inheritance
Abstract Employee, 46
EmployeeType property, 47
FullTimeEmployee, 46
HourlyEmployee, 46
is not null condition, 48
mapping conditions, 47
OfType<>() method, 48
OnModelCreating method, 46
UnclassifiedEmployee, 48

table per type inheritance
Add() method, 40
business table, 38–39
concrete type, 41
eCommerce table, 39

■ Index

505



insert and retrieve entities, 40–41
table per hierarchy, 41

tables
binary large object, 35
DbContext Subclass, 33
HighResolutionBits column, 35
lazy loading, 37–38
OnModelCreating method, 36
photograph, 36
PhotographFullImage, 36
Product and ProductWebInfo, 32
Product Entity Type, 34–35
product POCO entity, 33
vertical splitting, 34

Entity Framework
ADO.NET Entity Data Model, 6
code, 5
conceptual layer, 4
definition, 2
designer, 9
EDM, 3
.edmx file, 10
existing database, 8
history of, 2
LINQ, 1
mapping layer, 4
SaveChanges(), 10
store layer, 4
terminology, 4
Visual Studio, 6

EntityFunction class, 404
EntityKey, 5
Entity SQL (eSQL)

bitwiseoperators, 100
CreateQuery() method, 68
customer entity, 66
DateTime property, 91
DbDataRecord object, 69
default values, 72
derived types

discriminator property, 87
mediatype variable, 89
OnModelCreating method, 87
parent and child entity types, 87
TPH, 86, 88

flattening query results, 94
left-outer join

DefaultIfEmpty() method, 86
definition, 83
product entity type, 83
TopSeller navigation property, 86
TopSelling entity, 83

master-detail relationship, 70
multiple columns, 102

multiple properties, 96
multiple result sets, 75
object services and EntityClient, 67
paging and filtering, 89
Read() method, 68
related entity

CreateSourceQuery() method, 81
DbContext object, 81
Include() method, 82
ToList() method, 83
worker entity class, 80

SaveChanges() method, 68
vs. LINQ, 77

EntityState value, 307
EntityType, 5
Entry() method, 161, 163, 166, 170, 251, 330
ExecuteNonQuery() method, 63
ExecuteSqlCommandAsync() method, 61
ExecuteSqlCommand() method, 44, 62–63, 485

F�       �
Find() method, 138–140
First() method, 152, 156
FirstOrDefault() method, 349
ForEachAsync() extension method, 61
From clause, 383
FullName() function, 386
<FunctionImportMapping>, 356, 360
Functions

Age(), 386
Avg(), 401
built-in (see Built-in functions)
canonical function (see Canonical functions)
Count(), 393, 401
database (see Database functions)
DiffDays(), 402–403
EdmFunction(), 393
EntityFunction class, 404
FullName(), 386
GetProjectManager(), 390
GetSupervisor(), 390
model (see Model-defined function)
overview of, 375
SqlFunctions class, 408
SqlServer namespace, 406
Sum(), 401
treat(), 390

G�       �
GetAllMedia() method, 357
GetAllMedia Stored Procedure, 356–357
GetAllPeople() method, 359
GetAllPeople Stored Procedure, 359

■ index

506

Entity data model (cont.)



GetCustomers() method, 344
GetCustomers stored procedure, 343
GetDatabaseValues method, 328
GetEmployeeAddresses() method, 350
GetPostByTitle() method, 308
GetProjectManager() function, 390
GetSupervisor() function, 390
GetVehiclesWithRentals() method, 346–347
GetWithdrawals() method, 348
Global.asax, 126, 128

H�       �
HttpClient object, 301

I, J, K�       �
Include() method, 82, 134–135, 147, 150, 152, 156, 160, 170

ConnectionStrings, 477
customer, creditcard, and transaction entity classes, 476
DbContext Object, 477
LINQ query operators

Club Entity class, 153
Connection String, 154
context class, 154
filtering and grouping expressions, 155
model, 153

query path, 156
Include() Method, 135
Inheritance modeling

base entity, 226–228, 230
complex conditions

member table, 217
SavingChanges Event, 221
stored procedures, 217
teen entity, 218–219

concrete table
BMW and toyota entities, 223–224
car entity, 222–223
CarId column, 225–226

independent and foreign key association
LicenseNumber column, 233
Model First, 230
referential constraint, 232
user and password history, 231
vehicles and tickets, 232

link table, 185–186, 188
many-to-many association, 183–185
many-to-many relationship

DbContext subclass, 189
POCO entity class, 189
related products collection, 190, 192

multiple criteria
conceptual model, 215
entity set mapping, 214

QueryView, 212
stored procedure/action mapping, 213
WebOrdersin, 215
WebOrder table, 212

null conditions
AcceptedDate property, 200–201
drug table, 199
TPH Mapping, 200

self-referencing relationship
abstract person POCO entity class, 193
DbContext subclass, 193, 196
firefighter, teacher, and retired, 193
GetSubCategories(), 197–198
person table, 192
POCO entity class, 196
retrieving person entities, 194–195
self-referencing category table, 196

table per type inheritance
employee table, 207–209
insert, update, and delete actions, 204–205
QueryView, 205–206
staff, principal, and instructor tables, 202–203
toy and RefurbishedToy tables, 209, 211

InsertAuthorBook stored procedure, 366, 368
InsertOrder() method, 334
InsertPayment() method, 330
InsertPost() method, 307
IsActive property, 416, 418
IsLoaded property, 170, 173
IsRelationship property, 439

L�       �
Language-Integrated Query (LINQ), 1, 153–156, 379, 

383–387, 401–404, 406–408, 454–455, 463, 467–470
Lazy loading, 129

CustomerEmail, 130
Customer entity, 130
CustomerType, 130
definition of, 131

LazyLoadingEnabled property, 173
LoadData() method, 61
Load() method, 159, 170–171, 173–174, 192

M�       �
Many-to-many relationship

without payload
artists and albums model, 23–25
EntityCollection type, 24
LinkTable, 23, 26
SaveChanges(), 26

with payload
count property, 26
link table, 26

■ Index

507



OrderItem entity, 27–28
refactoring model, 28
SaveChanges() method, 28

Mapping Specification Language (MSL), 4
MembersWithTheMostMessages custom function, 353
MergeOption, 173
Model-defined function

anonymous type
hotel reservations, 390
VisitorSummary(), 391–393

associate types, 387
complex type

constructor, 396
GetVisitSummary(), 394–395
patient visit, 394

computed column
eSQL and LINQ, 384–386
<Schema> tag, 384
typical properties, 384

entity collection filtering
bootstrapping, 383
creation, 380
from clause, 383
customer and invoice, 380
GetInvoices() function, 380–382
Include() method, 383
where clause, 383

entity references
events and sponsors, 397
<ReferenceType> element, 399
PlatinumSponsors() Function, 398

navigation properties, 387–388
query the model, 388–389
scalar value

AnyElement operator, 379
AverageUnitPrice() Function, 376
best practices, 379
conceptual model, 375
eSQL, 378
LINQ query, 379
MyFunction class, 379
parameters, 379
products and categories, 375
query model, 376–378

<ModificationFunctionMapping> tag, 368
MyFunction class, 379

N�       �
NoTracking option, 173
N-Tier applications

concurrency, 331
Service Contract, 332
single Order entity, 332

definition, 295
deleting entities, 328
WCF service (see Windows Communication 

Foundation (WCF) service)
Web API application

ASP.NET MVC 4 Web Application project, 318
Cleanup action method, 316
Client.DeleteAsync method, 316
client-side change tracking, 317
Connection string for, 297, 310, 320
context class, 297, 309, 319
Customer and Phone Entity Classes, 318
Customer and Phone Numbers model, 317
Customer Web API Controller, 320–321
DeleteAsync method, 302
Entity Base class and TrackingState  

enum type, 318
Entity Framework Model Compatibility  

check, 297, 310, 320
GetAsync method, 317
HttpClient object, 302
HttpResponseMessage object, 301
HttpResponseMethod, 302
model for orders, 296
model for Travel Agents and Bookings, 308
OrderController, 297
order entity class, 296
Post Action Method, 301
PostAsync method, 317
PutAsJsonAsync method, 302
Retrieve Action Method, 317
RouteConfig Class, RPC-Style Routing, 311
SaveChanges method, 316
single disconnected entities, 295
steps, 296
Travel Agent and Booking Entity Classes, 309
Travel Agent Web API Controller, 311
UpdateCustomer Action Method, 327
Windows Console Application,  

test client, 299, 312, 322
NuGet Package Manager, 136, 164, 175, 303

O�       �
Object Relational Mapping (ORM), 1, 4
Objects customization

code execution
DbContext, 414
job applicant model, 414
Resume File deletion, 414–415
SaveChanges(), 413

default value assignment
attribute, 433
Paid property, 431
PurchaseOrder table, 431

■ index

508

Many-to-many relationship (cont.)



SaveChanges event, 431, 433
store layer, 431

entity deletion
cascade rule, 424–427
Course, Class, and Enrollment tables, 424
DbContext, 427
generic way, 427–428, 430
SQL Server Management Studio, 424

entity validation
business rules, 450
customers and orders, 446
IValidatable interface, 446
ObjectContext, 445
SaleOrder, 446–449

logging database connection, 418–420
original association

fulfillment steps for order, 437
IsRelationship, 439
ObjectContext, 436
Order and OrderStatus, 436

original value retrieval
ApplicationException, 436
business rule, 434
employee entity, 434
overridden event, 434

property validation
IsActive property, 416
monitoring the change, 416
OnUserNameChanging() method, 418
partial methods, 416, 418
PropertyChanging and PropertyChanged  

events, 418
User entity, 416

property value recalculation
AssociationChanged event, 421, 423
CartItems collection, 423
cart model, 421
CollectionChangedEventArgs, 423
EntityCollection and EntityReference, 421
Sum() method, 423

server-generated value
ParkingTicket entity, 443
ParkingTicket table, 442
Populated Back, 444
StoreGeneratedPattern, 445
trigger, 443

XML data retrieval
candidate entity, 439–440
CandidateResume Property, 440–441
Changed event, 442
Resume property, 440
scalar property, 439

Object services
command line, 246
connection string, 235–236

database context, 250–251
database table, 236–240
dependent entity, 247, 249
deployment, 240–241
pluralization service, 241–243
query method, 252–253, 255–256
SaveAccountTransactionsAsync()  

call, 256
tracker changing, 244–245

OfType<>() method, 40, 229
OfType<Plumber>() method, 152
OnModelCreating method, 36, 46, 87, 318
OnUserNameChanged(), 418
Optimistic concurrency

Concurrency Mode property, 485
Product entity, 483
Table per Type inheritance, 498

OrderBy() method, 91
OverwriteChanges option, 173–174

P�       �
Performance improvement

auto-caching LINQ query, 467
CreateProxyTypes() method, 479
Include() method

ConnectionStrings, 477
customer, creditcard, and transaction  

entity classes, 476
DbContext Object, 477

POCO, 463
properties, 470
read-only access, 456
resume entity, body property, 471
search query

ConnectionStrings, 461
DbContext object, 460
keyword and explicit condition, 461–462
LINQ/SQL query, 463
reservation entity, 460

single entity retrieval
ConnectionStrings, 454
DbContext object, 453
Find() method, 454, 456
LINQ query, 455
painting entity type, 453

Table per Type inheritance model, 451
PhonePlan, 501
Plain Old CLR Objects (POCO), 2, 257

Change Tracker
Change-tracking proxies, 278
DetectChanges() method, 279
SaveChanges() method, 282
snapshot change tracking, 278
working principle, 281

■ Index

509



change-tracking proxies
benefits, 275
donors and donations, 272
requirements, 275
virtual and ICollection<T> type, 273
working principle, 275

complex types, 268
delete/update entity, 271
employee model, 269
Name class, 269
rules, 271
working principle, 271–272

database model, 257
Entity Framework model

classes, 259–262
DbContext, 260
steps involved, 258–259
working principle, 262

integration testing, 290
BookRepository Class, 291–292
working principle, 293

lazy loading, 265
Entity Classes Generation and Properties, 266
traffic tickets, offending vehicles and  

violation details, 266
working principle, 268

load related entities
Eager Loading, 265
Explicit Loading, 265
Include() method, 263
lazy loading, 265
venues, events, and competitors, 262
working principle, 265

retrieve object
Entry() Method, 276
single Item entity, 275
working principle, 277

unit testing, 282
Fake Object Set and Fake Object Context, 286
IReservationContext, 285
IReservationRepository class, 285
IValidate Interface, 283
reservations, schedules and trains, 283
SaveChanges() method override, 284
Tests project, 288
working principle, 290

POCO
CreateDatabase(), 293
DropDatabase(), 293

PostAsJsonAsync method, 301
PostAsync method, 327
PreserveChanges option, 174
Print() method, 32
ProductId property, 372

PromoteToMedicine()method, 201
PropertyEventArgs parameter, 418
ProxyDataContractResolver class, 335

Q�       �
Querying in-memory entities

Club Entity Class, 141
Connection String, 142
Context Class, 141
DbSet Object, 142
model, 141

Query() method, 161, 163, 166

R�       �
Read() method, 68
Recipe1Context, 296
Recipe1.Service project, 296
Reference() method, 170
RelatedEnd, 421
Reload() method, 486
RunForEachAsyncExample() method, 61

S�       �
SaveAccountTransactionsAsync() call, 256
SaveChanges(), 138
SaveChangesAsync() method, 61
SaveChanges() method, 22, 66, 68, 194, 250, 301
SaveChanges() operation, 466
Schema Definition Language (SSDL), 4
Search engine optimization, 126
SelectMany()method, 184
Select statement, 386
Service1.svc.cs file, 304
SingleOrDefault() method, 61
Skip() and Take() methods, 91
Snapshot change tracking, 278
Solution Explorer, 380
SqlFunctions class, 408
SQL query

context object, 145–146
Desert Sun Club, 139
Include() method, 135
local collection, 145–146
Star City Club, 138–139

SqlQuery<T>() generic method, 345
SqlQuery() method, 66, 345
StateChange event, 418
Stored procedures

complex type, 349
custom function, 352
definition, 341
entity collection, code second approach, 341

■ index

510

Plain Old CLR Objects (POCO) (cont.)



insert, update, and delete actions
Athlete entity, 361
code, 363
many-to-many association, 364
Table per Hierarchy inheritance, 368

output parameters, 345
single scalar value, 347
Table per Hierarchy inheritance model, 358
Table per Type inheritance model, 355

StringBuilder class, 32
SubmitPost() method, 307
Sum(), 166

T�       �
Table per Hierarchy inheritance (TPH), 45–48, 87, 

192–195, 206–209, 216–221, 358–360, 368–373
Text Template Transformation Toolkit, 5
ToList() method, 61, 83, 347
Transitive relationship, 190
Translate() method, 77
Treat() function, 390
Truncate() function, 94

U�       �
Update Action Method, 316
UpdateCustomer action method, 327
UpdateCustomer method, 328
UpdateOrderWithoutRetrieving(), 334
User entity, 416

V�       �
@Vendor parameter, 63
VisitorSummary() function, 393
Visual Studio solution, 303
vwLibrary entity, 20

W�       �
Where clause, 383
Where() method, 91
Windows Communication Foundation  

(WCF) service
ADO.NET Entity Data Model, 335
blog posts and comments, model for, 302
Connection String, 304
DbContext object, 303
payments on invoices, model for, 328
POCO Classes, 303
Recipe2 project, 303
serialization of the proxy

client entity, 335
client POCO Class, 335
custom operation behavior  

attribute, 336
DataContractResolver, 339
DataContractSerializer, 336, 339
GetClient() method, 339
GetClient() service method, 336
IService1 Interface, 337
Windows console application  

test client, 338
Service Contract, 304–305, 329, 332
service library, 329
Simple Console Application, 330
WCF Service Library, 332
Windows Console Application, 306, 334

Windows Console Application, 299, 306, 334

X, Y, Z�       �
XElement class, 440

■ Index

511



Entity Framework 6 
Recipes

Second Edition

Brian Driscoll

Nitin Gupta

Rob Vettor

Zeeshan Hirani

Larry Tenny



Entity Framework 6 Recipes, Second Edition

Copyright © 2013 by Brian Driscoll, Nitin Gupta, Rob Vettor, Zeeshan Hirani, and Larry Tenny

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material 
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, 
reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, 
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. 
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material 
supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the 
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the 
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from 
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are 
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-5788-2

ISBN-13 (electronic): 978-1-4302-5789-9

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every 
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion 
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified 
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither 
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may 
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

President and Publisher: Paul Manning
Lead Editor: Gary Schwartz
Technical Reviewer: Sergey Barskiy
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Louise Corrigan,  

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,  
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, 
Gwenan Spearing, Matt Wade, Steve Weiss, Tom Welsh

Coordinating Editor: Mark Powers
Copy Editor: Richard Isomaki
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, 
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit  
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + 
Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation. 

For information on translations, please e-mail rights@apress.com, or visit www.apress.com. 

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook 
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers at  
www.apress.com/9781430257882. For detailed information about how to locate your book’s source code, go to  
www.apress.com/source-code/.

orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
www.apress.com/9781430257882
http://www.apress.com/source-code/


To Susan, Holden, and Henry who bring me laughter, love, and the occasional  
banana nut muffin to my work.

—Brian Driscoll

To the “leading light” of my life—Sahibji, and to the most important and lovely part of my life,  
my wife Nancy and daughter Arushi.

—Nitin Gupta

As you might imagine, a great deal of effort goes into writing a book. Across the many months  
of late-night sessions, many people provided guidance and inspiration: many thanks to Rowan  

Miller, Program Manager for Microsoft Entity Framework, and to Sergey Barskiy, our fearless technical  
reviewer, for their technical expertise and oversight. Much appreciation goes to John Mason and Ben  

Williams from the Microsoft Developer Consulting Team for their technical guidance. A special thanks  
goes to the Microsoft Premier leadership team: Jeremy Rule, Kevin Carberry, Niel Sutton, and especially  

Bill Wenger for their inspiration, leadership, and direction. Finally, and most important,  
all my love goes to my beautiful wife Laura and our “very cool” twin boys, Jeremy and Nicholas.

—Rob Vettor



vii

Contents

About the Authors������������������������������������������������������������������������������������������������������������ xxvii

About the Technical Reviewer������������������������������������������������������������������������������������������ xxix

Preface����������������������������������������������������������������������������������������������������������������������������� xxxi

Chapter 1: Getting Started with Entity Framework■■ ������������������������������������������������������������1

1-1. A Brief Tour of the Entity Framework World����������������������������������������������������������������������������2

The History������������������������������������������������������������������������������������������������������������������������������������������������������������� 2

The Model��������������������������������������������������������������������������������������������������������������������������������������������������������������� 3

The Layers�������������������������������������������������������������������������������������������������������������������������������������������������������������� 4

The Terminology����������������������������������������������������������������������������������������������������������������������������������������������������� 4

The Code����������������������������������������������������������������������������������������������������������������������������������������������������������������� 5

Visual Studio����������������������������������������������������������������������������������������������������������������������������������������������������������� 6

1-2. Using Entity Framework����������������������������������������������������������������������������������������������������������6

Chapter 2: Entity Data Modeling Fundamentals■■ ���������������������������������������������������������������11

2-1. Creating a Simple Model�������������������������������������������������������������������������������������������������������11

Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 11

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 11

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 16

Best Practice�������������������������������������������������������������������������������������������������������������������������������������������������������� 17

2-2. Creating a Model from an Existing Database������������������������������������������������������������������������18

Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 18

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 18

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 20



■ Contents

viii

2-3. Modeling a Many-to-Many Relationship with No Payload����������������������������������������������������23

Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 23

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 23

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 24

2-4. Modeling a Many-to-Many Relationship with a Payload������������������������������������������������������26

Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 26

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 26

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 27

Best Practice�������������������������������������������������������������������������������������������������������������������������������������������������������� 28

2-5. Modeling a Self-Referencing Relationship with a Code-First Approach�������������������������������29

Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 29

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 29

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 30

2-6. Splitting an Entity Among Multiple Tables�����������������������������������������������������������������������������32

Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 32

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 32

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 33

2-7. Splitting a Table Among Multiple Entities�����������������������������������������������������������������������������35

Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 35

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 35

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 37

2-8. Modeling Table per Type Inheritance������������������������������������������������������������������������������������38

Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 38

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 38

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 39

2-9. Using Conditions to Filter an ObjectSet��������������������������������������������������������������������������������41

Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 41

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 41

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 43



■ Contents

ix

2-10. Modeling Table per Hierarchy Inheritance��������������������������������������������������������������������������45

Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 45

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 45

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 47

Best Practice�������������������������������������������������������������������������������������������������������������������������������������������������������� 48

2-11. Modeling Is-a and Has-a Relationships Between Two Entities�������������������������������������������49

Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 49

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 49

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 50

2-12. Creating, Modifying, and Mapping Complex Types��������������������������������������������������������������51

Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 51

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 51

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 53

Chapter 3: Querying an Entity Data Model■■ �����������������������������������������������������������������������55

3-1. Querying Asynchronously�����������������������������������������������������������������������������������������������������55

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 55

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 60

3-2. Updating with Native SQL Statements����������������������������������������������������������������������������������61

Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 61

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 61

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 62

Best Practice�������������������������������������������������������������������������������������������������������������������������������������������������������� 63

3-3. Fetching Objects with Native SQL Statements���������������������������������������������������������������������64

Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 64

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 64

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 66

3-4. Querying a Model with Entity SQL����������������������������������������������������������������������������������������66

Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 66

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 66

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 68



■ Contents

x

3-5. Finding a Master That Has Detail in a Master-Detail Relationship����������������������������������������70
Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 70

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 70

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 72

3-6. Setting Default Values in a Query�����������������������������������������������������������������������������������������72
Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 72

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 72

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 74

3-7. Returning Multiple Result Sets from a Stored Procedure�����������������������������������������������������75
Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 75

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 75

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 76

3-8. Comparing Against a List of Values���������������������������������������������������������������������������������������77
Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 77

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 77

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 79

3-9. Filtering Related Entities�������������������������������������������������������������������������������������������������������80
Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 80

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 80

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 82

3-10. Applying a Left-Outer Join �������������������������������������������������������������������������������������������������83
Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 83

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 83

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 85

3-11. Ordering by Derived Types��������������������������������������������������������������������������������������������������86
Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 86

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 86

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 89

3-12. Paging and Filtering������������������������������������������������������������������������������������������������������������89
Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 89

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 89

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 91



■ Contents

xi

3-13. Grouping by Date����������������������������������������������������������������������������������������������������������������91

Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 91

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 92

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 94

3-14. Flattening Query Results�����������������������������������������������������������������������������������������������������94

Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 94

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 94

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 96

3-15. Grouping by Multiple Properties�����������������������������������������������������������������������������������������96

Problem���������������������������������������������������������������������������������������������������������������������������������������������������������������� 96

Solution���������������������������������������������������������������������������������������������������������������������������������������������������������������� 96

How It Works��������������������������������������������������������������������������������������������������������������������������������������������������������� 99

3-16. Using Bitwise Operators in a Filter�����������������������������������������������������������������������������������100

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 100

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 100

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 102

3-17. Joining on Multiple Columns��������������������������������������������������������������������������������������������102

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 102

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 102

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 105

Chapter 4: Using Entity Framework in ASP.NET MVC■■ ������������������������������������������������������107

4.1. Building CRUD Operations in an ASP.NET MVC Page�����������������������������������������������������������107

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 107

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 107

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 121

4-2. Building a Search Query ����������������������������������������������������������������������������������������������������121

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 121

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 122

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 125



■ Contents

xii

4-3. Filtering with ASP.NET’s URL Routing����������������������������������������������������������������������������������125

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 125

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 126

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 128

Chapter 5: Loading Entities and Navigation Properties■■ ��������������������������������������������������129

5-1. Lazy Loading Related Entities���������������������������������������������������������������������������������������������129

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 129

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 129

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 131

5-2. Eager Loading Related Entities�������������������������������������������������������������������������������������������132

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 132

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 132

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 134

5-3. Finding Single Entities Quickly�������������������������������������������������������������������������������������������136

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 136

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 136

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 138

5-4. Querying In-Memory Entities����������������������������������������������������������������������������������������������140

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 140

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 140

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 144

5-5. Loading a Complete Object Graph��������������������������������������������������������������������������������������146

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 146

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 147

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 150

5-6. Loading Navigation Properties on Derived Types����������������������������������������������������������������150

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 150

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 150

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 152



■ Contents

xiii

5-7. Using Include( ) with Other LINQ Query Operators��������������������������������������������������������������153

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 153

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 153

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 156

5-8. Deferred Loading of Related Entities����������������������������������������������������������������������������������156

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 156

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 156

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 160

5-9. Filtering and Ordering Related Entities ������������������������������������������������������������������������������160

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 160

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 160

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 163

5-10. Executing Aggregate Operations on Related Entities��������������������������������������������������������163

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 163

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 163

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 166

5-11. Testing Whether an Entity Reference or Entity Collection Is Loaded���������������������������������166

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 166

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 166

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 170

5-12. Loading Related Entities Explicitly������������������������������������������������������������������������������������170

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 170

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 170

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 173

5-13. Filtering an Eagerly Loaded Entity Collection�������������������������������������������������������������������174

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 174

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 175

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 177



■ Contents

xiv

5-14. Modifying Foreign Key Associations���������������������������������������������������������������������������������178

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 178

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 178

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 180

Chapter 6: Beyond the Basics with Modeling and Inheritance■■ ���������������������������������������183

6-1. Retrieving the Link Table in a Many-to-Many Association��������������������������������������������������183

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 183

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 183

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 185

6-2. Exposing a Link Table as an Entity��������������������������������������������������������������������������������������185

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 185

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 185

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 187

6-3. Modeling a Many-to-Many, Self-Referencing Relationship������������������������������������������������188

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 188

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 188

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 189

6-4. Modeling a Self-Referencing Relationship Using Table per Hierarchy Inheritance�������������192

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 192

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 192

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 194

6-5. Modeling a Self-Referencing Relationship and Retrieving a Complete Hierarchy��������������195

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 195

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 195

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 198

6-6. Mapping Null Conditions in Derived Entities�����������������������������������������������������������������������198

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 198

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 199

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 200



■ Contents

xv

6-7. Modeling Table per Type Inheritance Using a Nonprimary Key Column������������������������������201

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 201

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 202

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 205

6-8. Modeling Nested Table per Hierarchy Inheritance��������������������������������������������������������������206

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 206

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 206

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 208

6-9. Applying Conditions in Table per Type Inheritance��������������������������������������������������������������209

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 209

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 209

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 210

6-10. Creating a Filter on Multiple Criteria���������������������������������������������������������������������������������211

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 211

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 211

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 214

6-11. Using Complex Conditions with Table per Hierarchy Inheritance��������������������������������������216

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 216

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 217

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 219

6-12. Modeling Table per Concrete Type Inheritance�����������������������������������������������������������������222

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 222

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 222

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 224

6-13. Applying Conditions on a Base Entity��������������������������������������������������������������������������������226

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 226

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 226

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 229



■ Contents

xvi

6-14. Creating Independent and Foreign Key Associations��������������������������������������������������������230

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 230

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 230

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 231

6-15. Changing an Independent Association into a Foreign Key Association�����������������������������231

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 231

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 232

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 234

Chapter 7: Working with Object Services■■ �����������������������������������������������������������������������235

7-1. Dynamically Building a Connection String��������������������������������������������������������������������������235

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 235

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 235

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 236

7-2. Reading a Model from a Database��������������������������������������������������������������������������������������236

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 236

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 236

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 240

7-3. Deploying a Model��������������������������������������������������������������������������������������������������������������240

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 240

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 240

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 241

7-4. Using the Pluralization Service�������������������������������������������������������������������������������������������241

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 241

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 241

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 243

7-5. Retrieving Entities from the Change Tracker����������������������������������������������������������������������244

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 244

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 244

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 246



■ Contents

xvii

7-6. Generating a Model from the Command Line���������������������������������������������������������������������246

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 246

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 246

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 246

7-7. Working with Dependent Entities in an Identifying Relationship����������������������������������������247

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 247

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 247

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 249

7-8. Inserting Entities Using a Database Context�����������������������������������������������������������������������250

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 250

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 250

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 251

7-9. Querying and Saving Asynchronously���������������������������������������������������������������������������������252

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 252

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 252

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 256

Chapter 8: Plain Old CLR Objects■■ ������������������������������������������������������������������������������������257

8-1. Using POCO�������������������������������������������������������������������������������������������������������������������������257

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 257

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 257

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 262

8-2. Loading Related Entities with POCO�����������������������������������������������������������������������������������262

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 262

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 262

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 265

8-3. Lazy Loading with POCO�����������������������������������������������������������������������������������������������������265

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 265

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 265

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 268



■ Contents

xviii

8-4. POCO with Complex Type Properties�����������������������������������������������������������������������������������268

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 268

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 268

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 271

8-5. Notifying Entity Framework About Object Changes������������������������������������������������������������272

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 272

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 272

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 275

8-6. Retrieving the Original (POCO) Object���������������������������������������������������������������������������������275

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 275

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 275

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 277

8-7. Manually Synchronizing the Object Graph and the Change Tracker�����������������������������������278

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 278

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 279

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 281

8-8. Testing Domain Objects������������������������������������������������������������������������������������������������������282

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 282

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 282

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 290

8-9. Testing a Repository Against a Database����������������������������������������������������������������������������290

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 290

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 290

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 293

Chapter 9: Using the Entity Framework in N-Tier Applications■■ ��������������������������������������295

9-1. Updating Single Disconnected Entities with the Web API���������������������������������������������������295

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 295

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 296

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 301



■ Contents

xix

9-2. Updating Disconnected Entities with WCF��������������������������������������������������������������������������302
Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 302

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 302

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 307

9-3. Finding Out What Has Changed with Web API���������������������������������������������������������������������308
Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 308

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 316

9-4. Implementing Client-Side Change Tracking with Web API��������������������������������������������������317
Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 317

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 317

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 327

9-5. Deleting an Entity When Disconnected�������������������������������������������������������������������������������328
Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 328

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 328

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 330

9-6. Managing Concurrency When Disconnected����������������������������������������������������������������������331
Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 331

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 331

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 334

9-7. Serializing Proxies in a WCF Service����������������������������������������������������������������������������������335
Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 335

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 335

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 338

Chapter 10: Stored Procedures■■ ��������������������������������������������������������������������������������������341

10-1. Returning an Entity Collection with Code Second ������������������������������������������������������������341
Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 341

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 341

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 345

10-2. Returning Output Parameters ������������������������������������������������������������������������������������������345
Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 345

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 345

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 347



■ Contents

xx

10-3. Returning a Scalar Value Result Set ��������������������������������������������������������������������������������347

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 347

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 347

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 349

10-4. Returning a Complex Type from a Stored Procedure��������������������������������������������������������349

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 349

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 349

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 351

10-5. Defining a Custom Function in the Storage Model�����������������������������������������������������������352

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 352

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 352

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 354

10-6. Populating Entities in a Table per Type Inheritance Model �����������������������������������������������355

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 355

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 355

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 357

10-7. Populating Entities in a Table per Hierarchy Inheritance Model����������������������������������������358

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 358

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 358

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 360

10-8. Mapping the Insert, Update, and Delete Actions to Stored Procedures ���������������������������360

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 360

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 361

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 363

10-9. Using Stored Procedures for the Insert and Delete Actions in a Many-to-Many  
Association���������������������������������������������������������������������������������������������������������������������������������364

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 364

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 364

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 368



■ Contents

xxi

10-10. Mapping the Insert, Update, and Delete Actions to Stored Procedures for Table per 
Hierarchy Inheritance�����������������������������������������������������������������������������������������������������������������368

Problems������������������������������������������������������������������������������������������������������������������������������������������������������������ 368

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 368

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 372

Chapter 11: Functions■■ ����������������������������������������������������������������������������������������������������375

11-1. Returning a Scalar Value from a Model-Defined Function������������������������������������������������375

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 375

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 375

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 378

Best Practice������������������������������������������������������������������������������������������������������������������������������������������������������ 379

11-2. Filtering an Entity Collection Using a Model-Defined Function�����������������������������������������380

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 380

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 380

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 383

11-3. Returning a Computed Column from a Model-Defined Function��������������������������������������383

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 383

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 384

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 386

11-4. Calling a Model-Defined Function from a Model-Defined Function����������������������������������387

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 387

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 387

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 390

11-5. Returning an Anonymous Type from a Model-Defined Function���������������������������������������390

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 390

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 390

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 393

11-6. Returning a Complex Type from a Model-Defined Function���������������������������������������������394

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 394

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 394

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 396



■ Contents

xxii

11-7. Returning a Collection of Entity References from a Model-Defined Function�������������������397

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 397

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 397

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 399

11-8. Using Canonical Functions in eSQL����������������������������������������������������������������������������������399

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 399

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 400

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 401

11-9. Using Canonical Functions in LINQ�����������������������������������������������������������������������������������401

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 401

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 401

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 403

Best Practice������������������������������������������������������������������������������������������������������������������������������������������������������ 403

11-10. Calling Database Functions in eSQL�������������������������������������������������������������������������������404

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 404

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 404

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 406

11-11. Calling Database Functions in LINQ��������������������������������������������������������������������������������406

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 406

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 406

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 408

11-12. Defining Built-in Functions���������������������������������������������������������������������������������������������408

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 408

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 408

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 411

Chapter 12: Customizing Entity Framework Objects■■ ������������������������������������������������������413

12-1. Executing Code When SaveChanges( ) Is Called���������������������������������������������������������������413

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 413

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 413

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 415



■ Contents

xxiii

12-2. Validating Property Changes���������������������������������������������������������������������������������������������416

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 416

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 416

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 418

12-3. Logging Database Connections����������������������������������������������������������������������������������������418

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 418

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 418

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 420

12-4. Recalculating a Property Value When an Entity Collection Changes���������������������������������421

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 421

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 421

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 423

12-5. Automatically Deleting Related Entities����������������������������������������������������������������������������424

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 424

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 424

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 427

Best Practice������������������������������������������������������������������������������������������������������������������������������������������������������ 427

12-6. Deleting All Related Entities����������������������������������������������������������������������������������������������427

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 427

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 427

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 430

12-7. Assigning Default Values���������������������������������������������������������������������������������������������������430

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 430

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 430

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 433

12-8. Retrieving the Original Value of a Property�����������������������������������������������������������������������434

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 434

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 434

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 436



■ Contents

xxiv

12-9. Retrieving the Original Association for Independent Associations������������������������������������436

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 436

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 436

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 439

12-10. Retrieving XML����������������������������������������������������������������������������������������������������������������439

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 439

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 439

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 442

12-11. Applying Server-Generated Values to Properties������������������������������������������������������������442

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 442

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 442

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 445

12-12. Validating Entities on Saving Changes����������������������������������������������������������������������������445

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 445

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 445

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 450

Best Practice������������������������������������������������������������������������������������������������������������������������������������������������������ 450

Chapter 13: Improving Performance■■ ������������������������������������������������������������������������������451

13-1. Optimizing Queries in a Table per Type Inheritance Model�����������������������������������������������451

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 451

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 451

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 452

13-2. Retrieving a Single Entity Using an Entity Key������������������������������������������������������������������453

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 453

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 453

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 455

13-3. Retrieving Entities for Read-Only Access�������������������������������������������������������������������������456

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 456

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 456

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 459



■ Contents

xxv

13-4. Efficiently Building a Search Query����������������������������������������������������������������������������������460

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 460

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 460

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 462

13-5. Making Change Tracking with POCO Faster ���������������������������������������������������������������������463

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 463

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 463

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 466

13-6. Auto-Compiling LINQ Queries��������������������������������������������������������������������������������������������467

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 467

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 467

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 469

13-7. Returning Partially Filled Entities��������������������������������������������������������������������������������������470

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 470

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 470

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 471

13-8. Moving an Expensive Property to Another Entity��������������������������������������������������������������471

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 471

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 472

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 475

13-9. Avoiding Include����������������������������������������������������������������������������������������������������������������475

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 475

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 475

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 479

13-10. Generating Proxies Explicitly������������������������������������������������������������������������������������������479

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 479

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 479

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 481



■ Contents

xxvi

Chapter 14: Concurrency■■ ������������������������������������������������������������������������������������������������483

14-1. Applying Optimistic Concurrency��������������������������������������������������������������������������������������483

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 483

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 483

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 485

14-2. Managing Concurrency When Using Stored Procedures��������������������������������������������������486

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 486

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 486

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 489

14-3. Reading Uncommitted Data����������������������������������������������������������������������������������������������490

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 490

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 490

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 491

14-4. Implementing the “Last Record Wins” Strategy���������������������������������������������������������������492

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 492

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 492

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 493

14-5. Getting Affected Rows from a Stored Procedure��������������������������������������������������������������494

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 494

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 494

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 497

14-6. Optimistic Concurrency with Table Per Type Inheritance��������������������������������������������������498

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 498

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 498

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 500

14-7. Generating a Timestamp Column with Model First�����������������������������������������������������������500

Problem�������������������������������������������������������������������������������������������������������������������������������������������������������������� 500

Solution�������������������������������������������������������������������������������������������������������������������������������������������������������������� 501

How It Works������������������������������������������������������������������������������������������������������������������������������������������������������� 501

Index����������������������������������������������������������������������������������������������������������������������������������503



xxvii

About the Authors

Brian Driscoll has been developing business information systems using both 
Microsoft and traditional open source technologies since 2002. He specializes 
in providing consultative solutions to small- and mediumsized businesses in 
industries ranging from healthcare to market research. Brian earned a Master of 
Software Engineering degree with a concentration in expert systems from Drexel 
University in 2011.

Nitin Gupta is a Microsoft-certified technology consultant in .NET, and he 
is a certified PRINCE2 practitioner. He has extensive experience developing 
enterprise applications using a broad range of development tools since .NET 1.1. 
He’s also worked on a variety of applications ranging from middleware business 
components, datadriven services using different ORM technologies, to  
customer-facing windows and web applications in a number of business domains 
including e-commerce, banking, digital advertising and marketing, travel, ERP 
procurement, financial accounting, and insurance. He has led and worked on 
projects for Allstate Insurance, Citigroup, Janus Capital, and United Healthcare.  
In his spare time, he enjoys traveling, world history, movies, and documentaries.

Rob Vettor is a Developer Consultant with Microsoft, helping Microsoft Enterprise 
customers build high-quality software. Rob’s focus is on application architecture 
along with the Microsoft web and data programmability stack, including ASP.NET 
MVC, Web API, and the Entity Framework. An INETA Regional Speaker, user group 
leader, and former three-time C# MVP, Rob is a frequent presenter at regional 
technical conferences, and he has built systems for a number of corporations 
including Avanade, Raytheon, American Express, and Jack Henry and Associates. 
Rob lives in Dallas, TX, with his wife, twin sons, and two dogs. You can contact Rob 
at robvet@microsoft.com.

http://robvet@microsoft.com


■ About the Authors

xxviii

Zeeshan Hirani actively uses Entity framework in the development of an 
e-commerce website for a top-300 e-commerce retailer. He has written several 
articles and maintains an active and influential Entity framework blog at  
http://weblogs.asp.net/zeeshanhirani.

Larry Tenny has more than 20 years’ experience developing applications using a 
broad range of development tools, primarily targeting the Microsoft platform. He 
has extensive .NET development experience. He has a Ph.D. in computer science 
from Indiana University.

http://weblogs.asp.net/zeeshanhirani


xxix

About the Technical Reviewer

Sergey Barskiy is an architect with Tyler Technologies. He is a Microsoft MVP and 
holds the following certifications: MCPD, MCTS, MCSD for .NET, MCAD for .NET, 
MCDBA, and MCP. He has been working with Microsoft technologies for over  
15 years, and he is a frequent speaker at various regional and national conferences, 
such as VS Live, DevLink, CodeStock, and Atlanta Code Camp, as well as at local 
user groups. He is one of the organizers of Atlanta Code Camp and the Atlanta 
Windows Apps users group. He is also the INETA membership mentor for the state 
of Georgia. 



xxxi

Preface

Anyone who has been developing on the Microsoft platform for the last several years knows the drill: there’s a new 
database access technology every few years. There was ODBC, then DAO and RDO, OLEDB, ADO, and ADO.NET, 
LINQ to SQL, and now Entity Framework! Although this progression of technologies has introduced rapid change, 
it has also been wonderfully refreshing as we have evolved from simple open connectivity, to componentized 
connectivity, to disconnected access in a managed environment, to frictionless access syntax, and finally to 
conceptual modeling.

Conceptual modeling is the defining feature of Entity Framework, and it is at the heart of this book. Entity 
Framework builds upon the previous data access paradigms, and it provides an environment that supports rich, 
real-world domain-level modeling. We can now think of and program against real-world items, such as orders and 
customers, and leverage concepts, such as inheritance, to reason about things in our domain and not just rows  
and columns.

There is no question that Entity Framework is the future of data access for the Microsoft platform. The first release 
in August 2008, although somewhat deficient, was widely considered a good first step. Now, many releases later, Entity 
Framework 6 has matured into a full-featured data access technology ready for production use in both greenfield and 
legacy applications.

The concepts and patterns that you will learn as you work with the recipes in this book will serve you well into the 
future as Microsoft continues to evolve Entity Framework in the years to come.

Who This Book Is For
This book is for anyone who develops applications for the Microsoft platform. All of us who work in this field need 
access to data in our applications. We are all interested in more powerful and intuitive ways to reason about and 
program against the real-world objects in our applications. It makes much more sense for us to architect, design, and 
build applications in terms of customers, orders, and products rather than rows and columns scattered among tables 
locked away in a database. Because we can reason about problem space in terms of real-world objects, we have a lot 
more confidence in our design and in the code that we build. We are also better able to document and explain our 
applications to others. This makes our code much more maintainable. 

Entity Framework is not just for development teams building custom applications. Microsoft is aggressively 
positioning the modeling concepts in Entity Framework to serve as the conceptual domain for Reporting Services and 
Integration Services as well as other technologies that process, report on, and transform data. Entity Framework is 
quickly becoming a core data access foundation for many other Microsoft technologies.

This book contains well over 100 recipes that you can put to work right away. Entity Framework is a large and 
complex topic. Perhaps it’s too big for a monolithic reference book. In this book, however, you will find direct and 
self-contained answers to just about any problem that you’re facing in building your Entity Framework-powered 
applications. Along the way, you’ll learn an enormous amount about Entity Framework.



■ Preface

xxxii

What’s in This Book
We’ve organized the recipes in this book by topic. Often we’ve found that a recipe fits into more than one chapter, 
and sometimes we find that a recipe doesn’t fit perfectly into any chapter. We think it’s better to include all of the 
important recipes rather than just the ones that fit, so you might find yourself wondering why a particular recipe is in a 
certain chapter. Don’t worry. If you find the recipe useful, we hope that you can forgive its (mis)placement. At least we 
got it into the book.

The following is a list of the chapters and a brief synopsis of the recipes that you’ll find within them:

Chapter 1: Getting Started with Entity Framework. We explain the motivation behind 
Entity Framework. We also explain what the framework is and what it does for you. 

Chapter 2: Entity Data Modeling Fundamentals. This chapter covers the basics in 
modeling. Here you’ll find out how to get started with modeling and with Entity Framework 
in general. If you’re just getting started, this chapter probably has the recipes you’re 
seeking.

Chapter 3: Querying an Entity Data Model. We’ll show you how to query your model 
using both LINQ to Entities and Entity SQL. 

Chapter 4: Using Entity Framework in ASP.NET MVC. Web applications are an important 
part of the development landscape, and Entity Framework is ideally suited for ASP.NET. In 
this chapter, we focus on using the EntityDataSource to interact with your model for selects, 
inserts, updates, and deletes. 

Chapter 5: Loading Entities and Navigation Properties. The recipes in this chapter cover 
just about every possibility for loading entities from the database.

Chapter 6: Beyond the Basics with Modeling and Inheritance. Modeling is a key part 
of Entity Framework. This is the second of three chapters with recipes specifically about 
modeling. In this chapter, we included recipes that cover many of the more complicated, 
yet all-too-common modeling problems that you’ll find in real-world applications.

Chapter 7: Working with Object Services. In this chapter, we included recipes that provide 
practical solutions for the deployment of your models. We also provide recipes for using the 
Pluralization Service, using the edmgen.exe utility, and working with so-called identifying 
relationships.

Chapter 8: Plain Old CLR Objects. Using code-generated entities is fine in many scenarios, 
but there comes a time when you need to use your own classes as EntityTypes. The recipes 
in this chapter cover Plain Old CLR Objects (POCO) in depth. They show you how to use 
your own classes and reduce code dependence on Entity Framework.

Chapter 9: Using Entity Framework in N-Tier Applications. The recipes in this chapter 
cover a wide range of topics using Entity Framework across the wire. We cover Entity 
Framework usage with WCF and ASP.NET Web API services, as well as related topics such 
as serialization and concurrency.

Chapter 10: Stored Procedures. If you are developing or maintaining a real-world, data-centric  
application, you most likely work with stored procedures. The recipes in this chapter show 
you how to consume the data exposed by those stored procedures.

Chapter 11: Functions. The recipes in this chapter show you how to create and use  
model-defined functions. We also show you how to use functions provided by Entity 
Framework, as well as functions exposed by the storage layer.



■ Preface

xxxiii

Chapter 12: Customizing Entity Framework Objects. The recipes in this chapter show you 
how to respond to key events, such as when objects are persisted. We also show you how to 
customize the way those events are handled.

Chapter 13: Improving Performance. For many applications, getting the best performance 
possible is an important goal. This chapter shows you several ways to improve the performance of 
your Entity Framework applications.

Chapter 14: Concurrency. Lots of instances of your application are changing the database. How 
do you control who wins? The recipes in this chapter show you how to manage concurrency.

About the Recipes
At present, there are three perspectives on model development in Entity Framework. Each of these perspectives is at a 
different level of maturity in the product and at a different level of use in the community.

The initial perspective supported by Entity Framework is called Database First. Using Database First, a developer 
starts with an existing database that is used to create an initial conceptual model. This initial model serves as the 
starting point for further development. As changes occur in the database, the model can be updated from these 
database changes. Database First was the initial perspective supported in Entity Framework. It is the best-supported 
approach, and it is widely used to migrate existing applications to Entity Framework.

Another perspective for model development is the Model-First approach. With Model First, the developer 
starts with a blank design surface and creates a conceptual model. Once the conceptual model is complete, Entity 
Framework can automatically generate a script to create a complete database for the conceptual model.

Finally, there is the Code-First perspective for model development. In this approach, there is no .edmx file, which 
encapsulates model and mapping information. Your objects create and use a model dynamically at runtime. This 
approach is gaining popularity quickly as it enables you to create and maintain your own domain classes, but still 
hook into Entity Framework features, like query generation, lazy loading, and change tracking.

In this book, we focus on both the Database-First and Code-First perspectives. Both are widely used across  
the community. 

Many, if not most, developers in the Entity Framework community find themselves working with existing 
applications or developing models that are not readily supported by the other perspectives. We also have to share 
a dirty little secret: many existing applications don’t exactly use the best database designs. Way too often we find 
ourselves working with databases (of course, created by other, less-talented developers) that are poorly designed. As 
developers, sometimes working in larger organizations with lots of process control, or with lots of fragile legacy code, 
we can’t change the database enough to truly fix the design. In these cases, we simply have to work with the database 
design that we have.

Many of the recipes that we selected for this book take on the task of modeling some of these more challenged 
database designs. We’ve found hundreds of examples of these databases in the wild, and we’ve worked with many 
developers in the Entity Framework community who have struggled to model these databases. We’ve learned from 
these experiences, and we’ve selected a number of recipes that will help you solve these problems.

Stuff You Need to Get Started
Okay, what do you need? First off, you will need Microsoft’s latest software development environment. Microsoft 
Visual Studio 2013 comes complete with full support for Entity Framework 6. If you are using Microsoft Visual  
Studio 2012, you can easily install Entity Framework 6. Keep in mind that the Visual Studio 2013 Express Edition is 
freely available. The other versions of Visual Studio fully support Entity Framework.

You’ll need a database. Microsoft SQL Server 2012 is the preferred choice, but there are Entity Framework 
providers for databases from other vendors. Keep in mind that Microsoft SQL Server 2012 Express is freely available. 
Make sure that you apply the latest service packs and updates. These recipes were built and tested using Microsoft 
SQL Server 2012. Previous versions of SQL Server or other databases may not play well with a few of the recipes.



■ Preface

xxxiv

Code Examples
This book is all about recipes that solve very specific problems in a way that allows you to apply the solution directly  
to your code. Feel free to use and adapt any of the code you find here to help build or maintain your applications.  
Of course, it’s not okay to copy large parts of this material and distribute it for fun or profit. If you need to copy large 
parts of this material, contact our publisher, Apress, to get permission.

If you use our code publicly (in blogs, forums, and so on), we would appreciate, but don’t require, some modest 
attribution, such as author, title, and ISBN.

We’ve taken a decidedly low-tech approach in the code in each recipe. We’ve tried not to clutter the code with 
unnecessary constructs and clever tricks. In the text, we show just the code of interest, but we also show enough to 
give the proper context. In the download for the code, we have complete solutions for each recipe. The solutions build 
simple applications that you can modify and run over and over again to play with various changes that suit  
your needs.

The Database
Of course, there is more to each recipe than just the code. We created a single database for all of the recipes. This 
makes it much easier to work through the recipes because there is just one database to create in your development 
environment. 

To keep some sanity in the table names and provide at least a little organization, we created a schema for each 
chapter. The recipes in the chapter use the tables in the corresponding schema. In the text, we often show database 
diagrams similar to the one in Figure 0-1. This helps clarify the table structure with which we’re working. Each table 
in a diagram is annotated (courtesy of SQL Server Management Studio) with the name of the table and the schema 
for the table. Because we reuse table names throughout the book (we’re just not creative enough not to), this helps to 
keep straight exactly which tables we’re referring to in the database.

Figure 0-1.  Each database diagram in the text has the schema name next to the table name

We’ve also provided the complete set of database diagrams for each recipe as part of the database. If something 
isn’t clear from just the tables, especially when several tables are involved, it often helps to look at the diagram to sort 
things out.

Apress Website
Visit the Apress website for this book (http://apress.com/9781430257882) for the complete code download as well 
as the database with all of the tables and database diagrams used in the book. Please look for the “Source Code” link 
underneath the cover image. 

http://apress.com/9781430257882

	Entity Framework 6Recipes
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Preface
	Chapter 1: Getting Started with Entity Framework
	1-1. A Brief Tour of the Entity Framework World
	The History
	The Model
	The Layers
	The Terminology
	The Code
	Visual Studio

	1-2. Using Entity Framework

	Chapter 2: Entity Data Modeling Fundamentals
	2-1. Creating a Simple Model
	Problem
	Solution
	How It Works
	Best Practice

	2-2. Creating a Model from an Existing Database
	Problem
	Solution
	How It Works

	2-3. Modeling a Many-to-Many Relationship with No Payload
	Problem
	Solution
	How It Works

	2-4. Modeling a Many-to-Many Relationship with a Payload
	Problem
	Solution
	How It Works
	Best Practice

	2-5. Modeling a Self-Referencing Relationship with a Code-First Approach
	Problem
	Solution
	How It Works

	2-6. Splitting an Entity Among Multiple Tables
	Problem
	Solution
	How It Works

	2-7. Splitting a Table Among Multiple Entities
	Problem
	Solution
	How It Works

	2-8. Modeling Table per Type Inheritance
	Problem
	Solution
	How It Works

	2-9. Using Conditions to Filter an ObjectSet
	Problem
	Solution
	How It Works

	2-10. Modeling Table per Hierarchy Inheritance
	Problem
	Solution
	How It Works
	Best Practice

	2-11. Modeling Is-a and Has-a Relationships Between Two Entities
	Problem
	Solution
	How It Works

	2-12. Creating, Modifying, and Mapping Complex Types
	Problem
	Solution
	How It Works


	Chapter 3: Querying an Entity Data Model
	3-1. Querying Asynchronously
	Solution
	How It Works

	3-2. Updating with Native SQL Statements
	Problem
	Solution
	How It Works
	Best Practice

	3-3. Fetching Objects with Native SQL Statements
	Problem
	Solution
	How It Works

	3-4. Querying a Model with Entity SQL
	Problem
	Solution
	How It Works

	3-5. Finding a Master That Has Detail in a Master-Detail Relationship
	Problem
	Solution
	How It Works

	3-6. Setting Default Values in a Query
	Problem
	Solution
	How It Works

	3-7. Returning Multiple Result Sets from a Stored Procedure
	Problem
	Solution
	How It Works

	3-8. Comparing Against a List of Values
	Problem
	Solution
	How It Works

	3-9. Filtering Related Entities
	Problem
	Solution
	How It Works

	3-10. Applying a Left-Outer Join
	Problem
	Solution
	How It Works

	3-11. Ordering by Derived Types
	Problem
	Solution
	How It Works

	3-12. Paging and Filtering
	Problem
	Solution
	How It Works

	3-13. Grouping by Date
	Problem
	Solution
	How It Works

	3-14. Flattening Query Results
	Problem
	Solution
	How It Works

	3-15. Grouping by Multiple Properties
	Problem
	Solution
	How It Works

	3-16. Using Bitwise Operators in a Filter
	Problem
	Solution
	How It Works

	3-17. Joining on Multiple Columns
	Problem
	Solution
	How It Works


	Chapter 4: Using Entity Framework in ASP.NET MVC
	4.1. Building CRUD Operations in an ASP.NET MVC Page
	Problem
	Solution
	How It Works

	4-2. Building a Search Query
	Problem
	Solution
	How It Works

	4-3. Filtering with ASP.NET’s URL Routing
	Problem
	Solution
	How It Works


	Chapter 5: Loading Entities and Navigation Properties
	5-1. Lazy Loading Related Entities
	Problem
	Solution
	How It Works

	5-2. Eager Loading Related Entities
	Problem
	Solution
	How It Works

	5-3. Finding Single Entities Quickly
	Problem
	Solution
	How It Works

	5-4. Querying In-Memory Entities
	Problem
	Solution
	How It Works

	5-5. Loading a Complete Object Graph
	Problem
	Solution
	How It Works

	5-6. Loading Navigation Properties on Derived Types
	Problem
	Solution
	How It Works

	5-7. Using Include( ) with Other LINQ Query Operators
	Problem
	Solution
	How It Works

	5-8. Deferred Loading of Related Entities
	Problem
	Solution
	How It Works

	5-9. Filtering and Ordering Related Entities
	Problem
	Solution
	How It Works

	5-10. Executing Aggregate Operations on Related Entities
	Problem
	Solution
	How It Works

	5-11. Testing Whether an Entity Reference or Entity Collection Is Loaded
	Problem
	Solution
	How It Works

	5-12. Loading Related Entities Explicitly
	Problem
	Solution
	How It Works

	5-13. Filtering an Eagerly Loaded Entity Collection
	Problem
	Solution
	How It Works

	5-14. Modifying Foreign Key Associations
	Problem
	Solution
	How It Works


	Chapter 6: Beyond the Basics with Modeling and Inheritance
	6-1. Retrieving the Link Table in a Many-to-Many Association
	Problem
	Solution
	How It Works

	6-2. Exposing a Link Table as an Entity
	Problem
	Solution
	How It Works

	6-3. Modeling a Many-to-Many, Self-Referencing Relationship
	Problem
	Solution
	How It Works

	6-4. Modeling a Self-Referencing Relationship Using Table per Hierarchy Inheritance
	Problem
	Solution
	How It Works

	6-5. Modeling a Self-Referencing Relationship and Retrieving a Complete Hierarchy
	Problem
	Solution
	How It Works

	6-6. Mapping Null Conditions in Derived Entities
	Problem
	Solution
	How It Works

	6-7. Modeling Table per Type Inheritance Using a Nonprimary Key Column
	Problem
	Solution
	How It Works

	6-8. Modeling Nested Table per Hierarchy Inheritance
	Problem
	Solution
	How It Works

	6-9. Applying Conditions in Table per Type Inheritance
	Problem
	Solution
	How It Works

	6-10. Creating a Filter on Multiple Criteria
	Problem
	Solution
	How It Works

	6-11. Using Complex Conditions with Table per Hierarchy Inheritance
	Problem
	Solution
	How It Works

	6-12. Modeling Table per Concrete Type Inheritance
	Problem
	Solution
	How It Works

	6-13. Applying Conditions on a Base Entity
	Problem
	Solution
	How It Works

	6-14. Creating Independent and Foreign Key Associations
	Problem
	Solution
	How It Works

	6-15. Changing an Independent Association into a Foreign Key Association
	Problem
	Solution
	How It Works


	Chapter 7: Working with Object Services
	7-1. Dynamically Building a Connection String
	Problem
	Solution
	How It Works

	7-2. Reading a Model from a Database
	Problem
	Solution
	How It Works

	7-3. Deploying a Model
	Problem
	Solution
	How It Works

	7-4. Using the Pluralization Service
	Problem
	Solution
	How It Works

	7-5. Retrieving Entities from the Change Tracker
	Problem
	Solution
	How It Works

	7-6. Generating a Model from the Command Line
	Problem
	Solution
	How It Works

	7-7. Working with Dependent Entities in an Identifying Relationship
	Problem
	Solution
	How It Works

	7-8. Inserting Entities Using a Database Context
	Problem
	Solution
	How It Works

	7-9. Querying and Saving Asynchronously
	Problem
	Solution
	How It Works


	Chapter 8: Plain Old CLR Objects
	8-1. Using POCO
	Problem
	Solution
	How It Works

	8-2. Loading Related Entities with POCO
	Problem
	Solution
	How It Works

	8-3. Lazy Loading with POCO
	Problem
	Solution
	How It Works

	8-4. POCO with Complex Type Properties
	Problem
	Solution
	How It Works

	8-5. Notifying Entity Framework About Object Changes
	Problem
	Solution
	How It Works

	8-6. Retrieving the Original (POCO) Object
	Problem
	Solution
	How It Works

	8-7. Manually Synchronizing the Object Graph and the Change Tracker
	Problem
	Snapshot Change Tracking
	Change-Tracking Proxies

	Solution
	How It Works

	8-8. Testing Domain Objects
	Problem
	Solution
	How It Works
	Best Practice


	8-9. Testing a Repository Against a Database
	Problem
	Solution
	How It Works


	Chapter 9: Using the Entity Framework in N-Tier Applications
	9-1. Updating Single Disconnected Entities with the Web API
	Problem
	Solution
	How It Works

	9-2. Updating Disconnected Entities with WCF
	Problem
	Solution
	How It Works

	9-3. Finding Out What Has Changed with Web API
	Problem
	How It Works

	9-4. Implementing Client-Side Change Tracking with Web API
	Problem
	Solution
	How It Works

	9-5. Deleting an Entity When Disconnected
	Problem
	Solution
	How It Works

	9-6. Managing Concurrency When Disconnected
	Problem
	Solution
	How It Works

	9-7. Serializing Proxies in a WCF Service
	Problem
	Solution
	How It Works


	Chapter 10: Stored Procedures
	10-1. Returning an Entity Collection with Code Second
	Problem
	Solution
	How It Works

	10-2. Returning Output Parameters
	Problem
	Solution
	How It Works

	10-3. Returning a Scalar Value Result Set
	Problem
	Solution
	How It Works

	10-4. Returning a Complex Type from a Stored Procedure
	Problem
	Solution
	How It Works

	10-5. Defining a Custom Function in the Storage Model
	Problem
	Solution
	How It Works

	10-6. Populating Entities in a Table per Type Inheritance Model
	Problem
	Solution
	How It Works

	10-7. Populating Entities in a Table per Hierarchy Inheritance Model
	Problem
	Solution
	How It Works

	10-8. Mapping the Insert, Update, and Delete Actions to Stored Procedures
	Problem
	Solution
	How It Works

	10-9. Using Stored Procedures for the Insert and Delete Actions in a Many-to-Many Association
	Problem
	Solution
	How It Works

	10-10. Mapping the Insert, Update, and Delete Actions to Stored Procedures for Table per Hierarchy Inheritance
	Problems
	Solution
	How It Works


	Chapter 11: Functions
	11-1. Returning a Scalar Value from a Model-Defined Function
	Problem
	Solution
	How It Works
	Best Practice

	11-2. Filtering an Entity Collection Using a Model-Defined Function
	Problem
	Solution
	How It Works

	11-3. Returning a Computed Column from a Model-Defined Function
	Problem
	Solution
	How It Works

	11-4. Calling a Model-Defined Function from a Model-Defined Function
	Problem
	Solution
	How It Works

	11-5. Returning an Anonymous Type from a Model-Defined Function
	Problem
	Solution
	How It Works

	11-6. Returning a Complex Type from a Model-Defined Function
	Problem
	Solution
	How It Works

	11-7. Returning a Collection of Entity References from a Model-Defined Function
	Problem
	Solution
	How It Works

	11-8. Using Canonical Functions in eSQL
	Problem
	Solution
	How It Works

	11-9. Using Canonical Functions in LINQ
	Problem
	Solution
	How It Works
	Best Practice

	11-10. Calling Database Functions in eSQL
	Problem
	Solution
	How It Works

	11-11. Calling Database Functions in LINQ
	Problem
	Solution
	How It Works

	11-12. Defining Built-in Functions
	Problem
	Solution
	How It Works


	Chapter 12: Customizing Entity Framework Objects
	12-1. Executing Code When SaveChanges( ) Is Called
	Problem
	Solution
	How It Works

	12-2. Validating Property Changes
	Problem
	Solution
	How It Works

	12-3. Logging Database Connections
	Problem
	Solution
	How It Works

	12-4. Recalculating a Property Value When an Entity Collection Changes
	Problem
	Solution
	How It Works

	12-5. Automatically Deleting Related Entities
	Problem
	Solution
	How It Works
	Best Practice

	12-6. Deleting All Related Entities
	Problem
	Solution
	How It Works

	12-7. Assigning Default Values
	Problem
	Solution
	How It Works

	12-8. Retrieving the Original Value of a Property
	Problem
	Solution
	How It Works

	12-9. Retrieving the Original Association for Independent Associations
	Problem
	Solution
	How It Works

	12-10. Retrieving XML
	Problem
	Solution
	How It Works

	12-11. Applying Server-Generated Values to Properties
	Problem
	Solution
	How It Works

	12-12. Validating Entities on Saving Changes
	Problem
	Solution
	How It Works
	Best Practice


	Chapter 13: Improving Performance
	13-1. Optimizing Queries in a Table per Type Inheritance Model
	Problem
	Solution
	How It Works

	13-2. Retrieving a Single Entity Using an Entity Key
	Problem
	Solution
	How It Works

	13-3. Retrieving Entities for Read-Only Access
	Problem
	Solution
	How It Works

	13-4. Efficiently Building a Search Query
	Problem
	Solution
	How It Works

	13-5. Making Change Tracking with POCO Faster
	Problem
	Solution
	How It Works

	13-6. Auto-Compiling LINQ Queries
	Problem
	Solution
	How It Works

	13-7. Returning Partially Filled Entities
	Problem
	Solution
	How It Works

	13-8. Moving an Expensive Property to Another Entity
	Problem
	Solution
	How It Works

	13-9. Avoiding Include
	Problem
	Solution
	How It Works

	13-10. Generating Proxies Explicitly
	Problem
	Solution
	How It Works


	Chapter 14: Concurrency
	14-1. Applying Optimistic Concurrency
	Problem
	Solution
	How It Works

	14-2. Managing Concurrency When Using Stored Procedures
	Problem
	Solution
	How It Works

	14-3. Reading Uncommitted Data
	Problem
	Solution
	How It Works

	14-4. Implementing the “Last Record Wins” Strategy
	Problem
	Solution
	How It Works

	14-5. Getting Affected Rows from a Stored Procedure
	Problem
	Solution
	How It Works

	14-6. Optimistic Concurrency with Table Per Type Inheritance
	Problem
	Solution
	How It Works

	14-7. Generating a Timestamp Column with Model First
	Problem
	Solution
	How It Works


	Index




