
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Expert Android® Studio

FOREWORD. . xxiii

Introduction. . xxv

Chapter 1	 Getting Started . . 1

Chapter 2	 Android Studio Basics. . 21

Chapter 3	 Android Application Development With Android Studio 45

Chapter 4	 Android Studio In Depth. . 81

Chapter 5	 Layouts with Android Studio. . 115

Chapter 6	 Android Build System . . 143

Chapter 7	 Multi-Module Projects. . 159

Chapter 8	 Debugging and Testing. . 195

Chapter 9	 Using Source Control: GIT. . 245

Chapter 10	 Continuous Integration. . 281

Chapter 11	 Using Android NDK with Android Studio. . 309

Chapter 12	 Writing Your Own Plugin. . 331

Chapter 13	 Third-Party Tools. . 363

Index. . 405

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Expert

Android® Studio

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Expert

Android® Studio

Murat Yener

Onur Dundar

www.allitebooks.com

http://www.allitebooks.org

Expert Android® Studio

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-08925-4
ISBN: 978-1-119-11071-2 (ebk)
ISBN: 978-1-119-11073-6 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2016947909

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. Android is a registered trademark of Google, Inc. All other trademarks
are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor men-
tioned in this book.

www.allitebooks.com

www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
www.wiley.com
http://www.allitebooks.org

To Nilay, Burak, Semra, and Mustafa Yener, for all

your support and the time I needed to write this book.

—Murat

To Canan and my entire family: Aysel, Ismail, Ugur,

Umut, Aysun, and Murat.

—Onur

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Murat Yener  is a code geek, open source committer, Java Champion, and Google Developer
Expert on Android, who is working at Intel as an Android developer. He is the author of
Professional Java EE Design Patterns (Wrox, 2015). He has extensive experience with developing
Android, Java, web, Java EE, and OSGi applications, in addition to teaching courses and mentoring.
Murat is an Eclipse committer and one of the initial committers of the Eclipse Libra project.

Murat has been a user group leader at GDG Istanbul since 2009, organizing, participating, and
speaking at events. He is also a regular speaker at major conferences such as DroidCon, JavaOne,
and Devoxx.

LinkedIn: www.linkedin.com/in/muratyener

Twitter: @yenerm

Blog: www.devchronicles.com

Onur Dundar  started his professional career in software engineering at Intel Corporation as
a Software Application Engineer working on mobile platforms, tablets, and phones with MeeGo
and Android, and later on IoT platforms such as IPTV, Intel’s Galileo, and Edison. He is the author
of Home Automation with Intel Galileo (Packt Publishing, 2015). Onur presents training sessions
on Android application development, so he was keen to author this book.

LinkedIn: www.linkedin.com/in/odundar

Twitter: @odunculuk

Amazon author page: www.amazon.com/Onur-Dundar/e/B00V0VOIGA

About the Technical Editor

Xavier Hallade  is Application Engineer at Intel Software and Services Group in France. He’s
been working on a wide range of Android frameworks, libraries, and applications. Xavier is a
Google Developer Expert in Android, with a focus on the Android NDK, and actively contributes
in the Android community, writing articles, helping developers on Stack Overflow, and giving talks
around the word.

www.linkedin.com/in/muratyener
www.devchronicles.com
www.linkedin.com/in/odundar
www.amazon.com/Onur-Dundar/e/B00V0VOIGA

Project Editor
Tom Dinse

Technical Editor
Xavier Hallade

Production Editor
Barath Kumar Rajasekaran

Copy Editor
Nancy Rapoport

Manager of Content Development &
Assembly
Mary Beth Wakefield

Production Manager
Kathleen Wisor

Marketing Manager
Carrie Sherrill

Professional Technology & Strategy
Director
Barry Pruett

Business Manager
Amy Knies

Executive Editor
Jody Lefevere

Project Coordinator, Cover
Brent Savage

Proofreader
Nancy Bell

Indexer
Johnna VanHoose

Cover Designer
Wiley

Cover Image
Leo Blanchette/Shutterstock

Credits

Acknowledgments

I want to thank my coauthor, Onur Dundar,  for all his hard work and for his efforts to keep
me on schedule. Without him, this book wouldn’t be half as good.

I am grateful to my team and colleagues, in particular John Wei and Sunil Tiptur Nataraj, who gave
me the time and flexibility to work on this book, and Angus Yeung for his support. My thanks also
go to my Google Developer Relations contacts, Uttam Tripathi, Martin Omander, Baris Yesugey,
and others who supported me in all ways possible. I want to thank Alex Theedom for covering
for me on my Java EE–related responsibilities while I was deeply buried in Android. No words are
enough to thank Jim Minatel and Tom Dinse, who patiently worked on all the details while keeping
most of the stresses away from us. And thanks, of course, to everyone at Wrox/Wiley who got this
book on the shelves.

I must thank three important people who are responsible for who I am in my professional life.

First, thanks to my dad, Mustafa Yener, for giving me my first computer, a C64, at an early age
while I was asking for slot cars. I wrote my very first code on that computer.

Second, thanks to my thesis advisor, Professor Mahir Vardar, for the early guidance I needed to
start my career.

Finally, thanks to my lifetime mentor and friend, Naci Dai, who taught me almost everything I
know about being a professional software developer.

—Murat Yener

I want to thank Murat Yener  for taking me on this journey and enabling me to share in the fun
of writing this book. With Murat’s experience and knowledge, we delivered a high quality book for
developers and engineers.

I am thankful to Oktay Ozgun for his wisdom and advice throughout my career and life. His
guidance has helped me become a passionate engineer and a better person.

I also want to thank Professor Arda Yurdakul, who was generous with her experience and guidance
as she encouraged me to learn more about software and computers and to become a better engineer.

In my final year at Bogazici University, Professor Cem Ersoy, Professor Alper Sen, and Dr. Hande
Alemdar provided great assistance. I would also like to thank the folks at Intel—Steve Cutler,
Andrew John, Brendan LeFoll, Todor Minchev, Peter Rohr, Rami Radi, Alex Klimovitski, and
Marcel Wagner—for their great support and for the opportunities they provided to help me learn
and develop in my engineering career.

xiv

Acknowledgments

I want to thank Professor Gurkan Kok, for the interesting stuff I am working on right now.

Thanks to all the Wiley/Wrox editors for their help with this book.

Finally, my special thanks to Ali Caglar Ozkan for motivating me (and taking great photos) after
my first book, along with with Aytac Yurdakurban and Engin Efecik, for supporting my continuing
interest in writing books.

—Onur Dundar

Contents

FOREWORD	 xxiii
Introduction	 xxv

Chapter 1: Getting Started	 1

System Requirements for Windows, Mac OS X, and Linux	 1
Installing Java	 3

Installing Java for Windows OS	 3
Installing Java for MacOS X	 7
Installing Java for Linux	 8

Installing Android Studio	 9
Installing Android Studio for Microsoft Windows 10	 10
Installing Android Studio for Mac OS X	 12
Installing Android Studio for Linux	 16

Launching Android Studio for the First Time	 18
Welcome to Android Studio	 18

Standalone SDK Installation	 18
Summary	 19

Chapter 2: Android Studio Basics	 21

Creating a New Sample Project	 22
Using Different SDKs	 27
Android Project Structure	 27
Building and Running a Project	 33

Android Emulator	 35
Installing HAXM	 35
Creating a New Android Virtual Device	 36
Using ADB	 40

Migrating Projects from Eclipse	 41
Summary	 43

Chapter 3: Android Application Development
With Android Studio	 45

Android Projects	 46
Creating a New Android Project	 46
Creating a Project with Multiple Target Devices	 52
Launching Android Applications	 54

xvi

Contents

Android Activities	 56
The Intent Event Handler	 58
Adding Template Activities to Android Projects	 58
Adding a Blank Activity	 59
Android Fragments	 63
Adding a Tabbed Activity	 64

Android Services	 69
Adding a Service Template with Android Studio	 69

Add Assets for Android Project	 72
Adding Images Assets	 73
Adding Sound Assets	 74
Adding Video Assets	 75

Adding XML Files to an Android Project	 76
Android Manifest File	 76
Android Modules	 78
Summary	 79

Chapter 4: Android Studio In Depth	 81

Android Studio Menu Items	 82
Android Studio	 82
File 	 83
Edit 	 84
View 	 86
Navigate 	 86
Code 	 88
Analyze 	 88
Refactor 	 89
Build	 89
Run 	 90
Tools	 90
Version Control System	 90
Window and Help Menu	 90

Android Studio Shortcuts	 91
Android Studio Tool Views	 92

Messages	 93
Android Studio Project Structure 	 94
Favorites	 96
Android Monitor	 96
Structure	 97
Android Model	 97

xvii

contents

Gradle and Gradle Console	 98
Run	 98
Debug	 99
Event Logs	 100
Terminal	 100

Android Studio Editor	 100
Code Assist	 101
Commenting Out Code Blocks	 101
Moving Code Blocks	 101
Navigating Inside the Editor	 101
Refactoring	 102

Android Studio Live Templates	 102
Inserting a Live Template 	 103
Creating Live Templates	 104

Code Refactoring in Android Studio	 107
Creating a Signing Key for Android Applications
in Android Studio	 112
Building APKs in Android Studio	 114
Summary	 114

Chapter 5: Layouts with Android Studio	 115

Layouts with Android Studio	 116
Adding a New Layout File	 116
Layout Design Structure in Android Studio	 118

Layout Previews	 120
Layout Rendering Options	 120
Previewing Virtual Device Views	 121
Previewing on Different Android SDK Versions	 121
Selecting Themes	 122

Designing Layouts with Android Studio	 123
Managing Resources	 127

Using Strings	 127
Using Styles	 127
Using Dimens	 129
Using Colors	 130
Using Drawables	 130

Using Layout Tools	 131
Translation	 131
Activity Association	 133

Asset Management	 134
Summary	 141

xviii

Contents

Chapter 6: Android Build System	 143

Using Gradle	 144
Anatomy of Gradle	 144

Dependency Management with Gradle	 147
External Dependencies	 147
Local Dependencies	 149
Legacy Maven Dependencies	 149

Android Plugin for Gradle	 150
Configuring Android Plugin for Gradle	 150
Build Configuration	 151
Build Tasks	 151
Flavors	 152
ProGuard	 153
Automated Tests	 155

Gradle Plugins	 155
Writing Your Own Gradle Plugin	 155
Extending Android Plugin for Gradle	 156

Summary	 157

Chapter 7: Multi-Module Projects	 159

Adding Modules to Android Project	 160
Phone & Tablet Module	 161
Android Libraries	 164

Working with Android Libraries	 165
Java Libraries	 167
Android Wear Module	 169

Running and Debugging an Android Wear Module	 170
Building APKs with Android Wear Support	 173

Android TV Module	 173
Glass Module	 179
Android Auto Module	 182
Google Cloud Module	 184
Importing Modules	 189

Importing a Gradle Project	 189
Importing an Eclipse ADT Project	 190
Importing a JAR/AAR Package	 191

Removing Modules from a Project	 192
Summary	 193

xix

contents

Chapter 8: Debugging and Testing	 195

Debugging Android Code	 196
Android Debug Bridge	 196
Wireless Debugging	 197
Start Debugging	 198

Android Monitor	 206
Using logcat	 209
Using Memory Monitor	 210
Using CPU Monitor	 213
Using GPU Monitor	 214
Using Network Monitor	 215

Android Device Monitor	 216
Android Virtual Device Extended Controls	 222
Using Lint	 225
Testing Android Code and Application UIs	 226

Unit Tests	 230
Integration Tests	 232
UI Tests	 235
Performance Testing	 241
Performance Tests Task 	 242

Summary	 244

Chapter 9: Using Source Control: GIT	 245

Introduction to Git	 246
Understanding Git	 246
Installing Git	 247

Using Git	 248
Using the GitHub Client	 249
Using Git in Android Studio	 259
Git Flow	 266
Summary	 279

Chapter 10: Continuous Integration	 281

What Is Continuous Integration?	 281
Integrating Android Projects with a Continuous
Integration Server	 282
Installing Jenkins	 283
Creating Build Jobs	 291
Release Management	 298
Summary	 306

xx

Contents

Chapter 11: Using Android NDK
with Android Studio	 309

Introduction to Android NDK	 310
Android Studio NDK Integration	 310

Android NDK Installation on Linux	 311
Android NDK Installation on Windows 10	 312
Android NDK Installation on Mac OS X	 313

Android NDK with Android Studio Projects	 315
Importing a Sample NDK Project 	 316
Migrating an Existing NDK Project	 322
Building Android NDK Projects 	 326

Android NDK Projects Release and Deployment	 328
Multi vs. Fat Android Application APKs	 329

Summary	 330

Chapter 12: Writing Your Own Plugin	 331

IntelliJ Idea Plugin Architecture	 332
Actions	 332
Threading	 341
File System	 342
Projects and Components	 342
Editors	 351
Wizards	 354

Packaging and Distribution	 360
Summary	 362

Chapter 13: Third-Party Tools	 363

Android Studio Plugins	 363
Intel’s Android Software Tools	 374

Intel System Studio	 374
Intel C++ Compiler	 377
Intel Integrated Performance Primitives (Intel IPP) 	 378
Intel Thread Building Blocks (Intel TBB)	 379
Intel VTune Amplifier	 379
Intel GPA	 381

Intel INDE	 382
Intel Tamper Protection Toolkit	 382
Intel Multi-OS Engine	 382
Intel Context Sensing SDK	 384

xxi

contents

Qualcomm Android Software Tools	 387
Snapdragon LLVM Compiler for Android	 388
Qualcomm Adreno GPU SDK	 388
Qualcomm FastCV Computer Vision SDK 	 389
Snapdragon SDK for Android	 393
Qualcomm AllPlay Click SDK	 397
Qualcomm Profilers	 399

NVIDIA Software Tools	 401
Summary	 404

Index	 405

Foreword

“A bad workman always blames his tools.”

When my brother and I were growing up in leafy, suburban England, my father relied on that old
proverb. My brother and I often found excuses to avoid the admittedly small number of chores we
were asked to do, and we placed the blame for not completing the task at hand on an inanimate
object that couldn’t answer back. This proverb was my father’s standard response to our excuses,
and it immediately negated our protestations.

As I’ve gotten older, I have learned that there is far more wisdom in this old proverb than merely
getting young boys to complete their chores. It is not just about ensuring that you have the right
tools for the task at hand, but it is also about having the knowledge of how to use them effectively
that is key to being productive. If you think about the standard tools in a handyman’s toolkit, it is
pretty clear to most people that a hammer is not the most appropriate tool to remove a screw from
a piece of wood, but as tools become more complex and refined, these distinctions become less clear.

In the Android development world, the de-facto standard development tool is Android Studio, not
least because it is under extremely active development by Google—the same organization respon-
sible for Android itself. Since the early preview versions arrived in May 2013, the feature set has
grown quite considerably and continues to do so at an impressive rate. If we also consider that
Android Studio is built on the foundations of IntelliJ IDEA—which is already an extremely feature-
rich development environment—then it should be pretty clear that any analogies with hammers or
screwdrivers are going to break down rather quickly. Rather than comparing Android Studio with
individual tools, it is, perhaps, better to consider it as the entire toolbox, which contains lots of indi-
vidual tools that can sometimes be used individually, sometimes be used together, but, when used
effectively, can simplify and speed up many of our everyday development tasks—including the really
mundane or repetitive ones that we all hate!

Modern software development is so much more than simply writing code, and this is especially true
on Android. The main logic of your app may be written in Java. You also have resources (which are
largely XML-based) such as vector drawables (which incorporate SVG path data into that XML),
build files (which are groovy/grade files), and test source code (which is Java with test domain–
specific dialects such as Espresso, Fest, or Hamcrest). This is before you start considering frame-
works that change the syntax and flow of your code, such as Rx, and even alternate languages that
are gaining traction, such as Kotlin. Mastery of all of this can be hard. The ability to “context
switch” between different components, languages, frameworks, and dialects is made much easier
by basic features such as code highlighting and pre-compilation, which show errors inline as you
code. But we are so used to these that we hardly notice them, and because they have become second
nature to us, context switching itself becomes second nature.

xxiv

Foreword

While using the tools available until they become second nature is important, a prerequisite for that
is actually knowing what tools there are and how to use them effectively. That is where this book
comes in. Murat and Onur have provided a guide to Android Studio and its many facets that will be
of great value to both the novice and the seasoned Android Studio user alike.

Mark Allison
June 2016

Introduction

No matter how good you are at writing code,  without proper knowledge of Integrated
Development Environments (IDEs), you will face many obstacles. This book covers Google’s
Android Studio, the official tool for developing Android applications. Each chapter focuses on a
specific topic, progressing from the basics of how to use the IDE to advanced topics such as writing
plugins to extend the capabilities of the IDE.

Who This Book Is For

This book is for developers with any level of experience. Whether you are new to Android or a sea-
soned Android developer who used Eclipse-based ADT before, this book will bring you to a level
where you can unleash your true development potential by making use of Android Studio’s tools.

What This Book Covers

This book not only covers features of Android Studio essential for developing Android apps but also
touches on topics related to the whole development cycle. The following are just a few examples of
the topics covered that are basic to Android Studio or that extend its capabilities:

➤➤ Sharing and versioning your code with Git

➤➤ Managing your builds with Gradle

➤➤ Keeping your code maintainable and bug free with testing

➤➤ Controlling the whole build and test cycle with Continuous Integration

➤➤ Writing plugins for Android Studio to extend its capabilities and add desired custom features

➤➤ Using third-party tools with Android Studio to improve the development process

How This Book Is Structured

Each chapter focuses on a specific topic related to Android Studio or an accompanying tool by
explaining why it is needed and how it is used or configured. Some chapters provide code samples to
demonstrate the use case or provide an example for the topic.

➤➤ Chapter 1: Getting Started: Installing and setting up your development environment.
Creating an emulator for running your projects.

➤➤ Chapter 2: Android Studio Basics: Beginning with Android Studio, creating a new project,
building your project, and migrating projects to Android Studio.

xxvi

introduction

➤➤ Chapter 3: Android Application Development with Android Studio: Structure of Android
Studio projects. How to use assets, XML files and the Android Manifest. Creating and work-
ing with modules.

➤➤ Chapter 4: Android Studio In Depth: Deep dive into Android Studio, explaining menus, edi-
tors, views, and shortcuts. How to use live templates and refactoring. How to build your
projects and sign apks.

➤➤ Chapter 5: Layouts with Android Studio: How to use layouts with Android Studio.
Explanation of previews and tools for UI development. Managing external dependencies.
How to use and organize assets.

➤➤ Chapter 6: Android Build System: How to use and configure Gradle effectively. Writing
plugins for Gradle

➤➤ Chapter 7: Multi-Module Projects: Adding modules in your project. How to create and work
with Phone/Tablet, Library, Wear, TV, Glass, Auto, and Cloud modules.

➤➤ Chapter 8: Debugging and Testing: Debugging Android code with ADB. Learn details of the
Android Devices Monitor, Android virtual devices, Lint, and testing your code.

➤➤ Chapter 9: Using Source Control: GIT: How to share your project and enable version control
by using Git.

➤➤ Chapter 10: Continuous Integration: Automating your builds, tests, and releases using con-
tinuous integration servers.

➤➤ Chapter 11: Using Android NDK with Android Studio: Installing and using Android NDK
for building projects with C/C++ code.

➤➤ Chapter 12: Writing Your Own Plugins: Writing your own plugins to extend the capabilities
of the IntelliJ platform. Interacting with UI, editor, and adding your actions.

➤➤ Chapter 13: Third-Party Tools: Other accompanying tools that can help and speed the devel-
opment lifecycle.

What You Need to Use This Book

Any modern computer with an operating system that is supported by Android SDK and Android
Studio is sufficient to use Android Studio, build Android apps, and run the samples given in this
book. You need to install appropriate Android SDK, Android Studio, and Java Virtual Machine
(JVM) for your OS. Some chapters require additional tools or frameworks to be installed such
as Android NDK. You can find more information on exact hardware requirements needed in
Chapter 1.

xxvii

introduction

Why We Wrote This Book

In November 2007, Google released a preview version of Android SDK to allow developers to start
playing with the new mobile operating system. Roughly two years later, in October 2009, ADT
(Android Developer Tools) a plugin set for Eclipse, was released to the public.

As a Google I/O 2009 attendee, I (Murat) was lucky enough to have an Android device and was
probably one of the earliest developers to download and install the plugins to my Eclipse. As years
passed, we both followed the same passion to download and try new stuff released with new ADT
versions.

At the time, I was an Eclipse committer who knew how to write plugins, extend the IDE’s capabili-
ties, and introduce the behavior and functionality I needed. So with each release of ADT, I was more
and more excited to see what had been done with the tools.

On May 2013, at Google I/O, roughly four years after our love-hate relationship with ADT started,
Google announced Android Studio, which soon became the official, supported IDE for Android
development. ADT was never perfect. but it was familiar. Like many other developers, we knew
all the shortcuts, how things work, what to do when something was not working, workarounds,
and how the projects were structured. More significantly, we were able to write our own plugins
or inspect ADT plugins to see why something went wrong. However, with the release of Android
Studio, suddenly we were all in a new platform that we knew very little about.

We resisted switching to Android Studio for a while, but finally gave it a try. Suddenly, Android, a
platform we were long familiar with, was a stranger. The new project structure was very different
because of the changes introduced by IntelliJ and Gradle. To adopt IntelliJ, we decided to follow
IntelliJ shortcuts instead of using IntelliJ shortcut mapping for Eclipse shortcuts, which made the
situation even worse. We were barely able to search for a file or piece of code, navigate through
menus, right-click to create files, or even generate some basic getters and setters. We went from
being experts with ADT to beginners with Android Studio.

We had finally had enough! We were experienced developers, but struggled with Android Studio and
were not able to show our skills. So we started following IntelliJ talks, pinning the IntelliJ shortcut
cheat sheet in our cubicles, reading IntelliJ plugin code, and forcing ourselves to use Android Studio
in our daily work.

This book is the summary of the lessons we learned walking unaided on this difficult path . This
book is what we needed for ourselves when we were switching from Eclipse-based ADT to IntelliJ-
based Android Studio. This is why we believe any developer, whether an Android newbie or a sea-
soned Android developer who used to work on ADT, will find this book useful for developing his
or her knowledge of the tools that are actually there to support his or her coding skills.

xxviii

introduction

Quoting Alex Theedom, co-author of my previous book: “Every chapter that we wrote has this goal:
Write content that we would like to read ourselves.” We followed the same goal with Onur and the
result is the book you are holding in your hands.

We hope that you enjoy reading this book as much as we enjoyed writing it.

Note  Be sure to read our blog at http://www.devchronicles.com/2016/06/
expert-android-studio-book-updates.html to see the changes announced at
Google I/O 2016.

Conventions

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

WARNING  Boxes like this one hold important, not-to-be forgotten information
that is directly relevant to the surrounding text.

Note  Notes, tips, hints, tricks, and asides to the current discussion are offset
and placed in italics like this.

As for styles in the text:

➤➤ We highlight new terms and important words when we introduce them.

➤➤ We show keyboard strokes like this: Ctrl+A.

➤➤ We show file names, URLs, and code within the text like so: persistence.properties.

➤➤ For code:

We use a monofont type for code examples.
We use bold to emphasize code that is of particular importance in
the current context.

www.allitebooks.com

http://www.devchronicles.com/2016/06/expert-android-studio-book-updates.html
http://www.devchronicles.com/2016/06/expert-android-studio-book-updates.html
http://www.allitebooks.org

xxix

introduction

Source Code

As you work through the examples in this book, you may choose either to type in all the code
manually or to use the source code files that accompany the book. All of the source code used in
this book is available for download at www.wiley.com/go/expertandroid. Once at the site, simply
click the Download Code link on the book’s detail page to obtain all the source code for the book.

Note  Because many books have similar titles, you may find it easiest to search
by ISBN; this book’s ISBN is 978-1-119-08925-4.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/
download.aspx to see the code available for this book and all other Wrox books.

Errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake
or a faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration and at the same time you will be helping us provide even
higher quality information.

To find the errata page for this book, go to http://www.wrox.com and locate the title using the
Search box or one of the title lists. Then, on the book details page, click the Book Errata link. On
this page you can view all errata that have been submitted for this book and posted by Wrox edi-
tors. A complete book list including links to each book’s errata is also available at www.wrox.com/
misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fix the problem in
subsequent editions of the book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

www.wiley.com/go/expertandroid
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com
www.wrox.com/misc-pages/booklist.shtml
www.wrox.com/misc-pages/booklist.shtml
www.wrox.com/contact/techsupport.shtml
www.wrox.com/contact/techsupport.shtml

xxx

introduction

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

	 1.	 Go to p2p.wrox.com and click the Register link.

	 2.	 Read the terms of use and click Agree.

	 3.	 Complete the required information to join as well as any optional information you wish to
provide and click Submit.

	 4.	 You will receive an e-mail with information describing how to verify your account and
complete the joining process.

Note  You can read messages in the forums without joining P2P but in order to
post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

http://p2p.wrox.com

Getting Started
What’s in this chapter?

➤➤ System requirements for Android Studio

➤➤ Java installation instructions for Microsoft Windows, Mac OSX,
and Linux

➤➤ Android Studio installation instructions for Microsoft Windows,
Mac OSX, and Linux

In this chapter you get started with setting up your development environment so you can start
Android development with Android Studio. To that end, this chapter covers the basic installa-
tion instructions for Android Studio and its system requirements.

Although the Android operating system is based on Linux, the Android SDK and tools are
available for all major operating systems, so you can set up your development environment for
the operating system you are working with. Throughout this book we use Mac OS as the main
environment; however, we cover Linux and Windows setup as well.

System Requirements for Windows, Mac OS X,
and Linux

To use Android Studio, your development system must meet the minimum system require-
ments. This section lists the minimum requirements for Windows, Mac OS X, and Linux.

Microsoft Windows

➤➤ Microsoft Windows 10/8/7/Vista/2003 (32 or 64 bit)

➤➤ 2GB RAM minimum, 4GB RAM recommended

1

2  x  Chapter 1   Getting Started

➤➤ 400MB hard disk space

➤➤ At least 1GB for Android SDK, emulator system images, and caches

➤➤ 1280 × 800 minimum screen resolution

➤➤ Java Runtime Environment (JRE) 6 or higher

➤➤ Java Development Kit (JDK) 7

➤➤ Optional for accelerated emulator: Intel processor with support for Intel VT-x, Intel EM64T
(Intel 64), and Execute Disable (XD) Bit functionality

Mac OS X

➤➤ Mac OS X 10.8.5 or higher, up to 10.9 (Maverick)

➤➤ 2GB RAM minimum, 4GB RAM recommended

➤➤ 400MB hard disk space

➤➤ At least 1GB for Android SDK, emulator system images, and caches

➤➤ 1280 × 800 minimum screen resolution

➤➤ Java Runtime Environment (JRE) 6

➤➤ Java Development Kit (JDK) 7

➤➤ Optional for accelerated emulator: Intel processor with support for Intel VT-x, Intel EM64T
(Intel 64), and Execute Disable (XD) Bit functionality

Linux

➤➤ GNOME or KDE desktop

➤➤ GNU C Library (glibc) 2.15 or later

➤➤ 2GB RAM minimum, 4GB RAM recommended

➤➤ 400MB hard disk space

➤➤ At least 1GB for Android SDK, emulator system images, and caches

➤➤ 1280 × 800 minimum screen resolution

➤➤ Java Runtime Environment (JRE) 6 or higher

➤➤ Oracle Java Development Kit (JDK) 7

More details about system requirements can be found at https://developer.android.com/sdk/
index.html#Requirements.

Keep in mind that based on the size of the project, number of your dependencies, and emulator
usage, you will likely need more resources. Typically, you will need at least 8GB of RAM and GPU
support to run an emulator and work smoothly with better compilation times.

https://developer.android.com/sdk/index.html#Requirements
https://developer.android.com/sdk/index.html#Requirements

Installing Java  x  3

In most cases, developers need to test applications on multiple devices. Because they usually don’t
have enough devices to test adequately, they rely on emulators. Emulators require a high amount of
storage and memory to run faster.

note  Emulators are virtual devices, so having a CPU with virtualization sup-
port is crucial for developers to get the best experience with Android emulators.

Installing Java

Java is essential for all operating systems. You must install Java SE (Standard Edition) Development
Kit (JDK) for your operating system.

note  We suggest the Java distribution provided by Oracle. It is possible to
encounter problems with OpenJDK or other Java distributions.

note  At the time of this writing, Java SE 8 is the latest version of JDK.

The JDK 7 download page can be accessed directly at http://www.oracle.com/technetwork/
java/javase/downloads/jdk7-downloads-1880260.html. When you navigate there, the page
shown in Figure 1-1 appears.

To download the required installation binary or packages, select the Accept License Agreement
option and then click the download link of the binary or package for your operating system.

The following sections provide installation instructions for Oracle Java version 7 on 64 bit
Windows, Mac OS X, and Linux.

Installing Java for Windows OS
Java installation on Windows is pretty straightforward. As mentioned in the previous section,
installing JDK provides JRE as well.

note  Depending on the version of your Windows installation, you need to
download and install either the 64 bit or 32 bit version of the JDK. Since most
modern computers are equipped with 64 bit CPUs, we will continue with instal-
lation of the 64 bit version. If you have a 32 bit Windows installation, use the
32 bit JDK, which is listed as the Windows x86 version.

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html

4  x  Chapter 1   Getting Started

Download the jdk-7u79-windows-x64.exe file and run it to start the installation.

Figure 1-1:  JDK download page

Install Java
Start the Java installation by clicking the jdk-7u79-windows-x64.exe file after downloading it; you
will see the dialog box shown in Figure 1-2.

Installing Java  x  5

Figure 1-2:  Java installation setup wizard

	 1.	 Click the Next button to continue.

	 2.	 In the window that opens, all items are selected by default to be installed on your local hard
drive. You can change the installation path and which installation modules to install. For
Android application development, the Public JRE and Development Tools options must be
selected if they are not already installed on your machine. (If they are already installed, they
will not be listed inside the window.) You may deselect Source Code, which is used to install
public Java API classes. It is not mandatory to install the source code. Make your selections
in the dialog shown in Figure 1-3.

Figure 1-3:  Java installation setup window

6  x  Chapter 1   Getting Started

	 3.	 We suggest that you continue with the default selections and use the default installation path,
then click Next to finish the installation.

Setting Paths for Java on Windows 10
After the installation finishes, you need to set the Windows 10 environment paths for Java to config-
ure the system environment. You need to set a path for the JAVA_HOME system variable.

WARNING  In earlier versions of Windows, the steps for setting the environ-
ment path might be a little different.

	 1.	 Right-click the Start menu icon and click File Explorer. In the window that opens, right-click
This PC and select Properties to open the System window.

	 2.	 From the options at the left of the System window, select Advanced system settings. This will
open the dialog box shown in Figure 1-4 with the Advanced tab enabled.

Figure 1-4:  Java path setup for Windows 10

	 3.	 Click the Environment Variables… button shown in Figure 1-4.

	 4.	 From the Environment Variables window that opens, click the New button and set the
Java path with your installation directory. As shown in Figure 1-5, the path is C:\Program
Files\Java\jdk1.7.0_79 for our 64 bit installation. If you installed the x86 version, your
path would be different, such as C:\Program Files (x86)\Java\jdk1.7.0_79.

Installing Java  x  7

Figure 1-5:  Java Environment Variables setup for Windows 10 64-bit

Installing Java for MacOS X
Java used to be a part of Mac OS X and was shipped by Apple. This changed several years ago.
Apple also decided to remove Java from Mac OS so JDK, which is provided by Oracle, needs to be
installed separately.

	 1.	 Start by downloading the jdk-7u79-macosx-x64.dmg file from the page shown in
Figure 1-1.

	 2.	 Launch the dmg file to display the window shown in Figure 1-6.

Figure 1-6:  Mac OS X Java installation

8  x  Chapter 1   Getting Started

	 3.	 Double click the JDK 7 Update 79.pkg file link to start the installation.

	 4.	 Select the installation directory you want and complete the installation in the window shown
in Figure 1-7.

Figure 1-7:  Java installation Max OS X

Now JDK is ready to use on Mac OS X. You can check the installed JDK version from System
Preferences of Mac OS X or type 'java –version' in the terminal window to see whether Java
installed properly.

Installing Java for Linux
Two types of installation packages are available for Linux. If you use a distribution with an rpm
package manager like Fedora, you can download the rpm package and install Java via rpm. In this
section you install JDK with the tar.gz package on Ubuntu 14.04.

	 1.	 Download jdk-7u79-x64.tar.gz from the download page shown in Figure 1-1 and extract
it to the directory where you downloaded the tar.gz file using the following command:

user@ubuntu$ tar xzvf jdk-7uXX-x64.tar.gz

That command will extract JDK into the jdk1.7.0_79 folder where you ran the command.

	 2.	 Move that folder to /usr/local/java with the following command:

user@ubuntu$ mv jdk1.7.0_79 /usr/local/java

Installing Android Studio  x  9

	 3.	 Edit the /etc/profile file to set Java paths for your session. You can copy and paste the
following lines to the end of the /etc/profile file.

##Java Path
JAVA_HOME=/usr/local/java/jdk1.7.0_79
JRE_HOME=$JAVA_HOME/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
export JAVA_HOME
export JRE_HOME
export PATH

	 4.	 Install Java binaries for system-wide use with the following commands:

➤➤ Install the Java binary:

user@ubuntu$ sudo update-alternatives --install "/usr/bin/java" "java"
"/usr/local/java/jdk1.7.0_79/bin/java" 1

➤➤ Install the Java Compiler binary javac:

user@ubuntu$ sudo update-alternatives --install "/usr/bin/javac" "javac"
"/usr/local/java/jdk1.7.0_79/bin/javac" 1

➤➤ Install the Java Web Start binary javaws:

user@ubuntu$ sudo update-alternatives --install "/usr/bin/javaws" "javaws"
"/usr/local/java/jdk1.7.0_79/bin/javaws" 1

	 5.	 Set Oracle Java as the default Java for your system with the following commands:

user@ubuntu$ sudo update-alternatives --set java
/usr/local/java/jdk1.7.0_79/bin/java

user@ubuntu$ sudo update-alternatives --set javac
/usr/local/java/jdk1.7.0_79/bin/javac

user@ubuntu$ sudo update-alternatives --set javaws
/usr/local/java/jdk1.7.0_79/bin/javaws

When you are done with the previous instructions, JDK and JRE will be ready to use when you
restart Ubuntu. You can test whether Java installed correctly with version control. The command
and output for that will look like this:

user@ubuntu~$ java -version
java version "1.7.0_79"
Java(TM) SE Runtime Environment (build 1.7.0_79-b15)
Java HotSpot(TM) 64-Bit Server VM (build 24.79-b02, mixed mode)

Installing Android Studio

Android Studio installation, like Java installation, differs by operating system. The following sec-
tions provide installation instructions for Windows, Mac OS X, and Linux platforms.

10  x  Chapter 1   Getting Started

The direct link for the installation binaries is https://developer.android.com/sdk/index.html.

The download link that’s available when you go to this site will be correct for the operating system
you are running, as shown in Figure 1-8.

Figure 1-8:  Android Studio download page

Note  Download options have installers bundled with Android SDK tools.

Installing Android Studio for Microsoft Windows 10
This section covers the installation instructions for Android Studio on Microsoft Windows 10.

WARNING  Make sure you are connected to Internet while you are installing
the Android Studio because installation process includes downloading required
Android SDK installation files from the web.

https://developer.android.com/sdk/index.html

Installing Android Studio  x  11

	 1.	 Click the Download Android Studio for Windows link to download the latest Android
Studio installer exe file.

	 2.	 Run the exe file after the download completes. You will see the window shown in Figure 1-9.

Figure 1-9:  Android Studio Setup window

	 3.	 Click the Next button to select installation components. The Android Studio option can’t be
changed, but you can deselect the Android SDK, Emulator, and Intel HAXM installations, as
shown in Figure 1-10.

Figure 1-10:  Android Studio Setup configuration for Windows

	 4.	 The next window prompts you for installation paths for Android Studio and Android SDK
separately.

12  x  Chapter 1   Getting Started

	 5.	 As shown in Figure 1-11, the installation asks about Intel HAXM memory configuration, and
lets you choose a custom memory configuration.

Figure 1-11:  Intel HAXM configuration dialog for Windows

TIP  Recommended memory for HAXM is 2GB, but you can change that based
on your hardware. We recommend that you install HAXM if you plan to use the
emulator.

HAXM is a hardware-assisted virtualization engine that lets you use your com-
puter’s processor to generate x86 Android images. Without HAXM, the emula-
tor’s performance will greatly suffer.

You are now ready to launch Android Studio on Windows. The first time you launch Android
Studio, it asks you to select the theme for the IDE, as shown in Figure 1-12.

Finally, the installation completes and Android Studio is ready to work on Android application
projects.

Installing Android Studio for Mac OS X
This section covers the basic steps to install Android Studio on Mac OS X.

	 1.	 From the page shown in Figure 1-8, click the Download Android Studio for MAC link.

Download the android-studio-ide-141.2178183-mac.dmg file, which includes the
Android Studio IDE installer for Mac OS.

	 2.	 Launch the file you just downloaded.

	 3.	 Drag and drop the Android Studio.app icon into Applications folder, as shown in
Figure 1-13.

Installing Android Studio  x  13

Figure 1-12:  Android Studio theme selection on Windows

Figure 1-13:  Android Studio installer for Mac OS X

14  x  Chapter 1   Getting Started

After copying Android Studio to the Applications folder, Android Studio is ready to launch. You can
then remove the .dmg file from your system.

When you first launch Android Studio, it asks if you want to install Android SDK, the Android
emulator, and Intel HAXM. It will also ask for the setup path for them, as shown in Figure 1-14.

Figure 1-14:  Android Studio Setup Wizard for Max OS X

If you selected Intel HAXM installation, you are asked for the amount of RAM memory you want
to make available for the virtual devices, as shown in Figure 1-15.

After you click Finish from the Emulator Settings dialog box, a window with an installation sum-
mary will display as shown in Figure 1-16.

Installing Android Studio  x  15

Figure 1-15:  Intel HAXM configuration for Mac OS X

Figure 1-16:  Summary window for Max OS X installation

16  x  Chapter 1   Getting Started

Installing Android Studio for Linux
Navigate to the download page shown in Figure 1-9 to download Android Studio for Linux
(android-studio-ide-141.2178183-linux.zip). After you’ve downloaded the file, follow these
steps:

	 1.	 Enter the following command to extract the setup file to the android-studio folder where you
executed the command:

user@ubuntu$ unzip android-studio-ide-141.2178183-linux.zip

In this example you move the android-studio folder to the /opt directory. You can select
your own home directory as well, to make it available only to you.

user@ubuntu$ sudo mv android-studio /opt

	 2.	 Start Android Studio with the ./opt/android-studio/bin/studio.sh command.

When you first launch Android Studio on Linux, it will display the screen shown in
Figure 1-17.

Figure 1-17:  Android Studio Setup Wizard for Linux

Then the setup wizard will ask for Standard or Custom installation.

	 3.	 Select Custom installation to see the installation packages.

The wizard moves to the window shown in Figure 1-18 where you can select an Android
Studio UI theme.

Installing Android Studio  x  17

Figure 1-18:  Theme selection window for Linux

Figure 1-18 shows that the IntelliJ theme has been selected for this installation.

	 4.	 Select the Android Studio, Android SDK, and Emulator as shown in Figure 1-19.

Figure 1-19:  Android SDK configuration on Linux

18  x  Chapter 1   Getting Started

	 5.	 Indicate the installation path for Android SDK in the Android SDK Location field at the
bottom of the dialog box, as shown in Figure 1-19. Click Finish to complete the Android
SDK installation.

Launching Android Studio for the First Time

When you first launch Android Studio, you will see the Complete Installation dialog box shown in
Figure 1-20, which enables you to import settings from a previous installation. Because we made a
clean installation for this example, we selected the last option in the dialog box. If you have a previ-
ous installation with customization you’d like to import, you can specify your previous installation
path (see the first two options in Figure 1-20).

Figure 1-20:  First launch of Android Studio

Welcome to Android Studio
Welcome to the world of Android development! When you finish installing Android Studio, you
will finally reach the screen shown in Figure 1-21. Android Studio is ready to work with Android
projects.

Standalone SDK Installation

In this book, the main focus is on using Android Studio for development at an advanced level.
Therefore, the book covers Android SDK and tools installations together with Android Studio. If
you would like to explore Android SDK and tools separately, you can get the standalone installation
binaries for your choice of operating system.

Standalone installation will help you either work with an IDE other than Android Studio, or to use
the tools alone. The binaries are available at http://developer.android.com/sdk/index.html at the
bottom of the page.

www.allitebooks.com

http://developer.android.com/sdk/index.html
http://www.allitebooks.org

Summary  x  19

Figure 1-21:  Welcome to Android Studio

As you did in this chapter, you can download the compatible binary for your operating system and
follow similar installation steps to continue. After you download and extract the SDK, you can
add its location to Android Studio using Settings ➪ Appearance & Behavior ➪ System Settings ➪

Android SDK ➪ Android SDK Location.

Summary

In this chapter, we wanted to make sure you have all the necessary tools to work on the examples
in the following chapters. We started by providing the requirements for the basic computer system
needed to install the required software.

We then covered the installation of Android Studio for Windows, Mac OS, and Linux. We continue
with what is required to begin Android application development in Android Studio in Chapter 2.

Android Studio Basics
WHAT’S IN THIS CHAPTER?

➤➤ How to create an Android Studio project

➤➤ Android project structure

➤➤ Creating and configuring virtual devices

➤➤ Building and running your project via ADB

➤➤ Migrating Android projects from Eclipse IDE

Welcome to Android Studio! Whether you are an Eclipse-based ADT veteran or a total newbie
to Android development, you will enjoy Android Studio, which is based on IntelliJ IDEA and
offers new tools, a UI editor, a whole new build system, memory/CPU analyzers, and many
more new features and functionalities.

After long years of the Eclipse-based ADT plugin suite, Google announced (at Google I/O
2014) that Android Studio would be the official supported IDE for Android Development. Of
course, you can still use ADT if you are coming from a strong Eclipse background; however,
you will probably face problems that you may need to solve on your own.

As an Eclipse committer who has written code for several Eclipse projects, I preferred to stay
with ADT for a long time. However, with the announcement that Android Studio is the offi-
cial IDE, “resistance is futile.”

If you are new to Android development, it may even be easier to adapt to Android Studio
because your previous Eclipse experience might not necessarily help you a lot on the IntelliJ
platform.

2

22  x  Chapter 2   Android Studio Basics

Creating a New Sample Project

Figure 2-1 shows the welcome screen of Android Studio, which is the first screen you will see when
you launch Android Studio. From here, you can start a new project. In this chapter, you will work
on a sample project, so let’s open an existing project by importing the code.

Figure 2-1:  Welcome to Android Studio window

	 1.	 Click the Import an Android code sample option in the list shown in Figure 2-1.

Numerous sample projects are hosted in GitHub. Because those projects are always up-to-
date and new ones are added when a new API or functionality is introduced, it is a good
idea to use them as a reference template for your own projects. Plus, all those samples are
under the Apache software license, which makes them available to be used freely even in
commercial products.

Creating a New Sample Project  x  23

Because everyone loves selfies, in this example you build yet another selfie app.

	 2.	 Scroll down to Camera and select Camera2 Basic from the list shown in Figure 2-2.

Figure 2-2:  Import Sample—Browse Samples window

Keep the Application name and Project location that appear on the Sample Setup screen
(see Figure 2-3).

	 3.	 Click Finish.

Your project will be downloaded from GitHub, and the main IDE window, which is mostly empty,
will appear.

Once you click Finish, Android Studio creates the project and switches to the main development
layout. Before you figure out where to find your project files, let’s take a look at Android SDK con-
figuration in the following sidebar.

24  x  Chapter 2   Android Studio Basics

Figure 2-3:  Import Sample—Sample Setup window

Android SDK Configuration Inside Android Studio

Android SDK can be downloaded and configured within Android Studio too with
using Android Studio Preferences window. The following steps walk you through
the configuration process.

	1.	 Click the SDK Manager icon on the right side of the top toolbar, as shown in
Figure 2-4.

Figure 2-4:  SDK Manager button in Android Studio

Creating a New Sample Project  x  25

The Android Studio Default Preferences window opens, as shown in Figure
2-5. The window focuses on the SDK integration option, listing the installed
and available SDK versions as well as showing if any of them are eligible for
an update.

Figure 2-5:  Android Default Preferences for Android SDK window

	2.	 You can use the checkboxes next to installed versions and click Apply to start
the installation of the desired version. As shown in Figure 2-5, a typical setup
may include installed, not installed, and partially installed SDK versions.

You can also choose to start the standalone SDK Manager by clicking the
Launch Standalone SDK Manager link shown at the bottom of Figure 2-5.
After clicking that link, you see the detailed installation options shown in
Figure 2-6.

continues

26  x  Chapter 2   Android Studio Basics

Figure 2-6:  Android SDK Manager installation window

Note  We recommend that you install and update to the latest version of
Android SDK Tools and Android SDK Platform tools. The SDK version
you should use mostly depends on your project requirements. As a start-
ing point, we recommend installing the latest SDK, which is API 23, and a
widely accepted version such as API 19 or 20.

	3.	 Scroll down to Extras and make sure Support Repository, Support Library,
Google Play Services, Google Repository, Google USB Driver (only for
Windows), and Intel x86 Emulator Accelerator are selected.

	4.	 Once you make sure all components are selected, click the Install button and
accept the license. The SDK Manager will start the download, which may take
a while depending on your selections.

Note  Android SDK Manager can also be used for deleting unused SDKs
and build tools.

Alternatively, you can use the Android Studio Preferences view and select the SDK
version you want to install.

continued

Creating a New Sample Project  x  27

Using Different SDKs
When the SDK installations are complete, you can start working with one of them. As long as your
Android project does not make use of a feature that is introduced with a specific version of an SDK,
you can easily convert your project to work with an older SDK.

Note  We recommend that you work with the latest version of the SDK to build
and compile your project, but use the minSDK attribute to support the earliest
supported version.

Note  We cover build and support versions of the SDK in this and following
chapters.

Android Project Structure
Everything looks great? Well, not exactly because you should probably be looking at an empty
screen, as shown in Figure 2-7.

Note  We say that “you should probably be looking at an empty screen”
because we want these instructions to remain version agnostic. It is possible that
future updates might cause a change and your screen might not be empty.

Although the initial project screen shows nothing about your project, Android Studio gives you a list
of hints about how to move to the next step. For this example, press Command+1 on Mac or Alt+1
on Windows to open the project view. The project view, shown in Figure 2-8, displays all the con-
tents of your project.

WARNING  If you are coming from an ADT background, be aware that Android
project structure has changed dramatically with Gradle. With Android Studio, proj-
ect resources are grouped by types, which does not correspond to their locations
on the file system. Although this is a clever approach and is handy, it can also be
tricky if you are used to the projects view from ADT.

If you prefer to list resources similar to the way they are hosted in the file system, click the Android
list on the top left and a menu with different options will open. Choose Project, and Android Studio
will group your project resources as they appear in the file system, as shown in Figure 2-9.

28  x  Chapter 2   Android Studio Basics

Figure 2-7:  Android Studio after importing the sample project

Figure 2-8:  Project view on Android Studio

Creating a New Sample Project  x  29

Figure 2-9:  Traditional project view

Let’s examine this view to gain a better understanding of Android Studio project structure. Every
project has a few hidden folders, which you might not be able to navigate with your file manager.

Typically, an Android project has three hidden folders, as listed at the top left of Figure 2-9. The hid-
den folders are:

➤➤ .idea folder—This folder keeps IntelliJ-specific project metadata and settings not necessarily
shared with source control systems (so not shared to someone else).

➤➤ .gradle folder—This folder keeps Gradle-related bin files. This folder’s contents are not sub-
ject to change unless you change the project’s Gradle version.

➤➤ .google folder—This folder includes sample packing files from Google.

Note  Typically, users should not directly edit any file in the hidden folders. Let
the IDE deal with them.

Next is the application folder. The name of this folder can change depending on your appli-
cation name and preferences. However, you can easily recognize the folder because it has
a small device symbol on the lower right of the folder icon. This type of folder holds the
source code, application files, and configuration.

30  x  Chapter 2   Android Studio Basics

There can be more than one Application folder in your project depending on its size and
architecture. In this chapter we will assume there’s one named “app,” but will dig into dif-
ferent combinations in later chapters.

Expand the app folder by clicking the triangle to the left of the folder name. If you have
developed Android applications before, the contents should be familiar to you. If not, the
following pages give detailed information.

The project folders are:

➤➤ build folder—This folder might be the least important of all because, as a developer, you
won’t need to deal with or edit anything inside it. The Gradle build system will be triggered
to build your source files by the IDE and produce the output into this folder.

➤➤ src/main folder—This folder might be the most important folder because it hosts all your
source code except for tests. If you expand the src folder, you may see package folders that
group your source files. We will explain this later in this chapter.

➤➤ src/test and src/androidTest folders—These folders might be the most underestimated in the
whole Android project. The basic convention with tests is to place Unit tests into src/test and
instrumentation tests into src/androidTest folders. They hold your test files, which can be run
during compilation, packaging, or even on a build server. Good test coverage for your source
files is needed if you want to keep your code maintainable, open to change, and still bug free!

There are also several files in the root of the project folder. These are essential because they usually
affect each module in the project. You may need to edit the following essential project files.

➤➤ build.gradle—Although each module in a project has its own build.gradle file, the top level
build.gradle is inherited by each of them. Any global Gradle setting for a repository or a
library can be added to this file.

➤➤ local.properties—Each user has an SDK and NDK file path in their computer. For example,
say you work for a corporation where you need to have proxy settings, including your cre-
dentials. Adding that personal data to a Gradle file, which would be added to source control,
may not be wise. Such info can be added to local.properties and kept out of source control.

➤➤ settings.gradle—Most Android projects have multiple modules, which may consist of libs or
wear extensions. Once a build is executed, Gradle checks settings.gradle to figure out which
projects need to be included in the build.

You may find additional files in the root project folder, which you don’t need to edit or worry about
for now. Although we covered all root level files and folders, we haven’t covered the most important
one, the src folder.

The src folder hosts all source, resource, and application manifests. Expand the source folder to list
its contents, as shown in Figure 2-10.

Inside the src folder is only one folder, which is named main. The main folder contains the java and
res folders, which have different icons than other folders to highlight their importance.

The java folder contains all the packages in the format of reverse URL and Java classes. In our
example, we have only one package, com.example.android.camera2basic, which has three Java
classes. Clicking a class file will open the editor and display the chosen Java file’s contents, as shown
in Figure 2-11.

Creating a New Sample Project  x  31

Figure 2-10:  Expanded view of project folders

Figure 2-11:  Opened Java file on Android Studio

32  x  Chapter 2   Android Studio Basics

We cover the editor in detail but first let’s move to the other folder inside main. The res folder
holds all resource files, including images, layouts, localization files, and so on. Android projects
have different folders for different screen sizes, pixel densities, and other parameters, as shown in
Figure 2-12.

Figure 2-12:  res folder in Android project view

Placing different sizes of the same image into a drawable folder will leverage the ability of Android
to display the most appropriate image for the device your application is running on. The idea is the
same for the layout and values folders. Different layouts can be added for landscape and portrait
views, and different values can be added for different versions and pixel densities.

This approach has given Android the capability to run on different screen sizes and densities from
the beginning, unlike most other mobile platforms, which used to offer only a fixed resolution.

TIP  When you are developing for Android always keep in mind that your appli-
cation may target very different screen sizes—from phones to tablets, as well as
watches, TVs, and even glasses.

Finally, we can focus on one final file that is very trivial for an Android application, the
AndroidManifest.xml file. The Android manifest holds metadata from the list of activities, ser-
vices, application name and version, target and minimum SDK requirements, and hardware require-
ments for the target devices, as well as the permissions that your app requires. Listing 2-1 shows the
contents of AndroidManifest.xml.

Listing 2-1:  AndroidManifest.xml Content

<?xml version="1.0" encoding="UTF-8"?>
<!--
 Copyright 2014 The Android Open Source Project

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

Creating a New Sample Project  x  33

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
-->

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.android.camera2basic">

 <uses-permission android:name="android.permission.CAMERA" />

 <uses-feature android:name="android.hardware.camera" />
 <uses-feature android:name="android.hardware.camera.autofocus" />

 <application android:allowBackup="true"
 android:label="@string/app_name"
 android:icon="@drawable/ic_launcher"
 android:theme="@style/MaterialTheme">

 <activity android:name=".CameraActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

Our manifest file starts with the manifest declaration, which also declares the main package. This
declaration enables us to refer to subpackages and classes by using only the suffix after the root
package.

Next, the manifest declares the permissions, followed by the uses-feature tag to declare the hard-
ware requirements of the application.

Every activity and service component that resides in an Android project must be listed under the
application tag. The sample project consists of only one activity, which is used as the entry point
of the sample app, so the activity is listed as .CameraActivity, only with the full path and name
after the root package and with the LAUNCHER intent. This activity will be used for launching the
application presented in the Android manifest.

Building and Running a Project
The sample project is a complete and ready-to-run application, so we can move on to building
and running the application. Android Studio offers different ways to compile and run projects. To
simply build a project, select Build from the toolbar and then the Make Project option, as shown in
Figure 2-13.

34  x  Chapter 2   Android Studio Basics

Figure 2-13:  Build menu list

Although this option will compile and package your app, it will not execute your app on either a
device or the emulator. To run the sample project, select Run from the toolbar and then the Run
Application option, as shown in Figure 2-14.

Figure 2-14:  Run menu items in Android Studio

Android Emulator  x  35

Alternatively, you can click the green Play icon (or Control+R on Mac, Ctrl+R in Windows), as
shown in Figure 2-15.

Figure 2-15:  Android Studio Run ‘Application’ button

Depending on your computer’s hardware, Android Studio will spend some time to build the appli-
cation and later will ask for a target device, which can also be an emulator, to run the application
on. You haven’t either created a virtual device or connected a real device yet, so you’ll do that in the
next section.

Android Emulator

Android Emulator is a great tool that is bundled with Android Studio. It enables your computer
to emulate Android hardware and operating system to run your apps and provide a preview of
how it would behave on a real device. The Android emulator enables you to test your application
on a variety of screen sizes, hardware configurations, Android versions, and even different CPU
architectures.

However, the Android emulator has a bad reputation for being very slow. Developers used to make
fun of it by saying, “If you optimize your app for the emulator, it will run smoothly on any device.”
This may sound exaggerated but was almost true in the past.

The main performance problem behind the emulation resulted from the ARM CPU emulation on
personal computers, which mostly run on x86 CPU architecture. In 2011, Intel introduced HAXM
and Google started providing x86-based Android system images, which boosted the emulator per-
formance by using the host CPU instead of emulating a different CPU architecture.

Installing HAXM
To start using the emulator, you need to install HAXM and the x86 image of the desired version of
Android. HAXM requires a minimum version of Android SDK 17. In most cases, HAXM installa-
tion is pretty straightforward. If you already installed the SDK (see Chapter 1), you can start creat-
ing your virtual device. If you didn’t install it, you can set it up with the SDK Manager, as discussed
in the “Android SDK Configuration Inside Android Studio” sidebar earlier in this chapter.

	 1.	 Click Launch Standalone SDK Manager (refer to Figure 2-5) to open the Standalone SDK
Manager shown in Figure 2-6.

	 2.	 Scroll down to Extras and select Intel x86 HAXM Emulator Accelerator (HAXM Installer),
as in Figure 2-16.

36  x  Chapter 2   Android Studio Basics

Figure 2-16:  Intel HAXM selection in Windows

	 3.	 Once the download of HAXM is complete, you need to manually trigger its installer, from
sdk\extras\intel\Hardware_Accelerated_Execution_Manager\ on Windows, or sdk/
extras/intel/Hardware_Accelerated_Execution_Manager/ on Mac.

Creating a New Android Virtual Device
It is very easy to create a new Android device. AVD (Android Virtual Device) Manager is the next
icon. It’s to the left of the SDK Manager, as shown in Figure 2-17.

Figure 2-17:  Android Studio AVD Manager button

Android Emulator  x  37

	 1.	 Click the AVD Manager button. Because you haven’t created a virtual device before, AVD
Manager is currently empty (see Figure 2-18).

	 2.	 Click the Create Virtual Device button, shown in Figure 2-18, to start creating a virtual
Android device.

Figure 2-18:  AVD Manager’s initial appearance

A list of available devices appears, as shown in Figure 2-19. At the top of the list are Nexus
devices, which are the reference devices released by Google. The rest of the list contains
common screen sizes and device properties. You are free to modify any device from the list
or even create your own for testing purposes. Creating your own device might be a good
idea for testing devices that you don’t have access to. In addition to creating virtual devices
to simulate phones, AVD Manager also supports tablets, wear, and TV.

	 3.	 Select Nexus 5X. The Nexus 5x is one of the two reference devices released with Android
6.0. Although you will continue with Nexus 5X here, you can choose any device to create a
virtual device.

	 4.	 Select Marshmallow and make sure the target column (see Figure 2-20) includes “(with
Google APIs).” In this step, you are free to choose either the ARM or Intel-based Android
images listed in Figure 2-20.

38  x  Chapter 2   Android Studio Basics

Figure 2-19:  List of virtual device hardware

Nexus 5X is an ARM-based device. Although selecting ARM will provide more accurate
device/virtual device testing, emulating ARM on an x86-based laptop will require addi-
tional memory and processing power and will result in performance issues. By installing
HAXM, you can have your virtual device run an Intel image to provide better performance.

	 5.	 Click the Next button shown in Figure 2-20 to tweak final settings of your virtual device.

	 6.	 Make the final configurations, as shown in Figure 2-21, and click Finish.

That is it—you created a virtual device that can run your sample project. To run the emulator, open
AVD Manager and click the Play icon shown in the Actions column of the virtual device, as shown
in Figure 2-22.

Android Emulator  x  39

Figure 2-20:  System Image selection for AVD

Figure 2-21:  AVD configuration window

TIP  Make sure the Use Host GPU option shown in Figure 2-21 is selected. You
can also select the Store a snapshot for faster startup option, which will save the
last state of the virtual device and load it from disk when it is launched again.

40  x  Chapter 2   Android Studio Basics

Figure 2-22:  List of created virtual devices

Depending on your hardware configuration, the emulator may take a while to boot up. The initial
bootup will take longer than subsequent launches, which might be close to instantaneous if you have
chosen the Store a snapshot for faster startup option.

You now have a new Android device to play with and it didn’t cost you a penny.

Using ADB
You have now imported and built your project and created a new Android virtual device. In this sec-
tion, you learn how to deploy the binary to the virtual device. To do that, you need to know how to
connect the two.

Luckily, you won’t need to do much; Android Debug Bridge (ADB) will handle all the heavy lifting
here. ADB works almost seamlessly to deploy and run your app in a virtual or real device. However,
you can always access ADB through your OS’s shell and execute commands manually. ADB bridges
between your computer and the connected device whether it is a real or a virtual device. Most of
the time, you won’t need to interact with ADB manually. To use ADB, open a console and type adb.
You should see something similar to Listing 2-2 followed by the usage and option details.

Listing 2-2: ADB launch command

$ adb
Android Debug Bridge version 1.0.32
Revision eac51f2bb6a8-android
...

Migrating Projects from Eclipse  x  41

Note  If the adb command isn’t found, you’ll have to add it to your system’s
path. The adb executable is located in the sdk/platform-tools folder.

Given that the emulator you just created is still running, if you execute adb devices you’ll see a list
of the devices available over ADB. You can use adb install <apk path> to install a packaged apk
to the connected device. However, because the IDE performs this for you, you won’t be using the
install option extensively.

Other useful adb options are push and pull. These commands are used to access the device’s file
system. The following commands will copy a file from your computer to the device and from your
device to the computer:

$ adb push <local> <remote>
$ adb pull <remote> <local>

Migrating Projects from Eclipse

Eclipse ADT and Android Studio have very different project structures and configurations, but
importing projects from Eclipse to Android Studio is very straightforward in most cases.

The first option for migrating your Eclipse project to IntelliJ is to import the project into Android
Studio.

	 1.	 Select File ➪ New ➪ Import Project as shown in Figure 2-23.

Figure 2-23:  Start migrating from Eclipse

42  x  Chapter 2   Android Studio Basics

	 2.	 Navigate through your Eclipse project folder and click OK, as shown in Figure 2-24.

The IDE will create the necessary files, including Gradle files, and set up your project.

Figure 2-24:  Select project path to import

Once the import is complete, import-summary.txt will be shown, which displays the results of the
migration.

Another way to migrate your project is to export the project from Eclipse. To export from Eclipse,
your ADT plugins should be up-to-date.

	 1.	 Right-click on your project and select Export, as shown in Figure 2-25.

Figure 2-25:  Export from Eclipse

Summary  x  43

	 2.	 Navigate to the Android folder group and select Generate Gradle build files, as shown in
Figure 2-26.

Figure 2-26:  Export window on Eclipse

	 3.	 Follow the instructions in the wizard that opens. That will generate the Gradle files needed
for Android Studio.

Although your project is converted to Gradle by the end of this process, the project still needs to be
imported to Android Studio for IntelliJ-specific files to be created.

Both methods work on most of Android projects without any problem. However, if you happen to
come across a problem in either method, switch to the other method to complete the migration.

Summary

This chapter gave you a basic overview of the whole Android Studio project structure, Gradle, and
ADB. We have seen how to create and configure virtual Android devices using an emulator and how
to run your applications using ADB.

We also covered how to migrate Eclipse ADT-based Android projects to new Android Studio–based
Gradle projects.

Android Application
Development With Android
Studio

WHAT’S IN THIS CHAPTER?

➤➤ Android projects

➤➤ Android activities

➤➤ Android services

➤➤ Assets of Android projects

➤➤ XML files in Android projects

➤➤ Android manifest file

➤➤ Creating and working with modules

➤➤ Building modules for Android Projects

Android Studio is your best friend when it comes to Android application development and
distribution. Android Studio doesn’t only help you writing code but it also provides tools and
templates to fasten your development process. Android Studio is increasingly more capable
than a traditional Android development environment in Eclipse with the Android Developer
Tools (ADK) plugin.

This chapter guides you through Android application development in Android Studio.
We cover the basic building blocks of Android applications and the capabilities of Android
Studio.

3

46  x  Chapter 3   Android Application Development With Android Studio

We start by creating an Android application project for phones and tablets and continue with addi-
tional development modules for your application.

Android Projects

Software applications with many source files and resources are organized under a project structure
or a folder structure to better classify files and define source code compiling and binary generation
order with a hierarchy. We call these predefined folder and file structures a project, which is an
organizational unit that represents a complete software solution.

Android applications also have a file and folder hierarchy structure, referred to as an Android appli-
cation project. Android application projects include Java source code, XML configuration files,
images, videos, sounds, and other resources within an organizational structure. For each unique
application you develop, you need to create a new project. Android Studio helps from the first step
when creating the initial project structure.

The build process uses the configuration files and folder hierarchy to identify Java source and
resource file relations in the Android Project to create the final application package to run on an
Android device. If you don’t follow the correct structure, you won’t be able to create the final
application package and your application simply won’t build.

In Chapter 2, you saw how to import an example project. In this chapter, you create a new empty
project with auto-generated files for Android Studio’s application build process.

Creating a New Android Project
Creating a new Android project is pretty straightforward with Android Studio. If you have just
launched the Android Studio, it will display the screen shown in Figure 3-1 and list the Quick Start
options.

Note  If Android Studio is already running, you need to select File ➪ New ➪
New Project from the Android Studio menu to create a new Android Studio
project.

	 1.	 To begin, click Start a new Android Studio project.

	 2.	 Name your application. Your application’s name will be shown in the list of applications
on the Android menu to launch the application. It’s conventional to start an application
name with a capital letter. As you can see in Figure 3-2, we named this example application
ChapterThree.

Note  If you are going to distribute your application in the Play Store, the
application’s name should be unique, catchy, and easy to search for.

Android Projects  x  47

Figure 3-1:  Android Studio Welcome window

	 3.	 Configure your domain name for packaging application source files. Reserved domain name
syntax is used by Android Studio to create a package name and store Java source files.

Sun, later acquired by Oracle, recommends that developers use a company domain written
in reverse for the package name to prevent name collisions for the Java classes. By default,
Android Studio shows com.example, which is overwritten after you enter the domain name.
You don’t need to buy a domain name for your personal project but you need to make sure
the domain name you are about to choose is unique.

We named our first example’s company domain with our book’s title expertandroid.com
(refer to Figure 3-2). You may choose your company’s name as the domain name or just
write any name.

	 4.	 Accept the default project location and click Next to select the device type and SDK
version you want to deploy your application to. Deployment targets can be phones, tablets,
wearables, TVs, or Android Auto applications. Throughout the book, Android SDK 6.0
(Marshmallow) is used, so for this example we selected Android SDK 6.0 for Phone and
Tablet, as shown in Figure 3-3.

48  x  Chapter 3   Android Application Development With Android Studio

Figure 3-2:  Create New Project window

Figure 3-3:  Target device selection window

Android Projects  x  49

You can select previous versions of Android SDK according to your application’s require-
ments. It is not always the best option to select the latest version for Android applications
because not all the devices on the market are updated for the latest version. Earlier SDK
versions are compatible with the latest releases so if you select an earlier version, your
application will work on the latest devices.

Android Studio can help you select the best SDK version for your application. Click the
Help me choose link shown in Figure 3-3 to see the Android Platform/API Distribution.
The window shown in Figure 3-4 will appear.

Figure 3-4:  Android Platform/API Version Distribution window

The distribution list might help you to decide about your application’s target audience, but
remember that the latest devices from Google always have the most recent Android distribu-
tion and get updated regularly.

Also, be aware of device proliferation. There are thousands of different Android devices and
most have different specifications, so you need to test your application for several of them.

	 5.	 After selecting the device and SDK version, click OK to display the window shown in
Figure 3-5. Here you select the initial activity for the application.

50  x  Chapter 3   Android Application Development With Android Studio

Figure 3-5:  Add activity window

	 6.	 Select the Empty Activity template, which doesn’t include a user interface. The Empty
Activity just creates the initial related source and XML layout files. It simply creates the
Hello World project for the Android Studio.

Note  You can also select Add No Activity and choose to add activities at a
later stage in the development process. The Add No Activity option is also used
when you want to create a service application without a user interface or a
library, which would be consumed by other projects with activities.

	 7.	 After you select the Empty Activity option, click Next to open the window shown in Figure
3-6. This is where you name your activity. Each activity selection requires different naming
and configuration options. The Empty Activity only needs naming and layout generation
selection. We selected to generate the main activity layout, which is the user interface con-
figuration file, so we named our first activity MainActivity.

All related resources will use the activity’s name so, for example, the layout xml file and
other configuration files will include “Main” in their names.

After you click Finish, Android Studio generates files and folders for the application and configures
the application build environment. When the project is complete, it is displayed in Android Studio,
as shown in Figure 3-7.

Android Projects  x  51

Figure 3-6:  Activity customization window

Figure 3-7:  First Project View in Android Studio

52  x  Chapter 3   Android Application Development With Android Studio

Creating a Project with Multiple Target Devices
In the past few years, the Android operating system has expanded to devices such as set top boxes,
TVs, wearable devices such as watches and glasses, and even automobiles. Android Studio helps you
create multiple modules for each device while you are creating the Android application project.

In the previous section, we selected only Phone and Tablet. As shown in Figure 3-8, the list of Target
Android Devices includes Wear for wearable devices such as watches, TV for Android TV–enabled
devices, and Auto for cars with Android-enabled infotainment systems.

	 1.	 For this example, select both Wear and Phone and Tablet.

Figure 3-8:  Multiple target device selection

	 2.	 Just like applications for Phone and Tablet, applications for other devices should have an
activity. The setup wizard for wearable devices offers a variety of activities for you to choose
from, as shown in Figure 3-9.

	 3.	 The setup wizard prompts you to name the activity and populate the rest of the fields for the
project. Note that Wear Activity has more fields to initialize. Name the activity MainActivity,
as shown in Figure 3-10.

Note  Using the same name for both the Wear Activity and the Phone and
Tablet application activity doesn’t create a conflict because they are handled in
different directories.

Android Projects  x  53

Figure 3-9:  Adding a Wear Activity

Figure 3-10:  Wear Activity configuration window

54  x  Chapter 3   Android Application Development With Android Studio

	 4.	 Click Finish and after the project is initialized, you will see two modules in Android Studio,
as shown in Figure 3-11.

Having two target platforms in one project is
suggested when you are creating an application
designed to run on both platforms. Health and fit-
ness applications are a good example of these kinds
of projects: A fitness application on a phone or tab-
let receives a user’s running and walking data from
the Android watch device and displays the details.

To accomplish this cooperation between devices,
both target platforms’ source and resource files
must be in the same project, but they will be
divided into different modules. Android applica-
tion architecture requires Wear application bina-
ries to be distributed inside the phone/tablet binary
package, which is facilitated when you have both
apps in a single project. This structure will make
you design better communication between devices,
use common Java libraries on both applications,
and maintain consistency between user interface
designs.

Launching Android Applications
After you have created the application project, you need to build the application and launch it on a
device. (You learn about configuring it in the following sections of this chapter.) The build process
is covered in Chapter 2; here we cover launching your first application with Android Studio. This
example shows Hello World on the Android phone’s screen.

If you already have a device attached to your development machine with a compatible Android SDK
version, select that directly or, as shown in the previous section, you can create a virtual Android
device to run your application.

	 1.	 To run an Android application from the initial project, click the Run ‘app’ arrow shown in
Figure 3-12. Alternatively, you can type Shift+F10 (Control+R on Mac) on your keyboard.

Figure 3-12:  Android Studio toolbar Run ‘app’ button

	 2.	 Android Studio will prompt you to select a device from the list of available running devices,
as shown in Figure 3-13. If a virtual device is already running, it will be listed as well.

Figure 3-11:  Two modules shown in Project
View

Android Projects  x  55

Figure 3-13:  Device selection window

If an emulator is not running, you can select the Launch emulator option and click OK to
launch the virtual device and run the application, as shown in Figure 3-14. If you intend
to use the same device again for running or debugging your project, you can check the Use
same device for future launches box.

Figure 3-14:  Launch emulator option in the Device selection window

The application will automatically launch and you will see the activity you created running on the
device.

56  x  Chapter 3   Android Application Development With Android Studio

If you followed this example, you will see an empty application printing “Hello World!” to the
screen, as shown in Figure 3-15.

Figure 3-15:  Hello World application running on the emulator

The following section covers the details of other activity templates that can be added to Android
projects.

Android Activities

Android is a Linux-based operating system; all applications running on the Android devices are
Linux processes and each application’s lifecycle is predetermined from start to finish.

Activities are the most fundamental building blocks of an Android application. There is no main
function defined for Android applications so the Android system launches applications with the
defined launcher activity, which serves as the entry point for the application.

When the application is launched, the Android operating system application manager uses the Main
Activity to start the application. The Main Activity is the first activity users see.

Android activities have a defined lifecycle to manage application runtime from launch to the end of
application life. Figure 3-16 shows the simple states of an activity’s lifecycle.

Android Activities  x  57

Figure 3-16:  Android Activity lifecycle

Source: Figure 3.16 is reproduced from work created and shared by the Android Open Source Project and used
according to terms described in the Creative Commons 2.5 Attribution License. (https://developer.
android.com/training/basics/activity-lifecycle/starting.html)

To understand Android applications. you must understand the Activity lifecycle. Understanding the
lifecycle is crucial to designing a better application while complying with the standards of Android
applications.

Note  Android activities are like the pages of a web site: They are assigned a
specific task to present and users interact with them. The user switches between
activities, going from one to another and back to the previous activity.

The following list describes the Activity lifecycle states with Activity methods.

➤➤ onCreate—In the creation state, activities load the static user interface elements and allocate
system resources such as the display device, network device, and other resources required for
the application.

➤➤ onStart—After creation by the onCreate method, an activity enters the started state.
It becomes visible and ready to handle user interaction.

➤➤ onResume—In the resumed state, all actions are performed, such as user input, drawing new
user interface elements according to user input, and so on.

➤➤ onPause—In the paused state, the application is taken to the background, or another
application is started and brought to the front.

➤➤ onStop—In the stopped state, the application is totally invisible and in a sleeping state.

➤➤ onDestroy—The destroyed state means that all processes are killed and all device resources
released.

Activities handle drawing the user interface, user inputs, and response to user input. For example, when
you launch an application, it launches the main activity to draw to the device’s screen the first user
interface defined in the layout XML file. It also handles touch inputs and responds to user interaction.

https://developer.android.com/training/basics/activity-lifecycle/starting.html
https://developer.android.com/training/basics/activity-lifecycle/starting.html

58  x  Chapter 3   Android Application Development With Android Studio

User-defined activities derive from the Android API’s super class Activity in the android.app
package. There are also other derived classes, which you can inherit to develop an Activity module
for your application. ListActivity and AppCompatActivity are two Java classes derived from
Activity. They provide extensions to configure your Activity class without requiring reimplemen-
tation of features you require.

The Activity super class inherits the activity lifecycle methods and application context fields that
you can override to customize your own Activity for the application.

Listing 3-1 is from Android Studio’s Empty Activity template. It overrides the onCreate method
of the Activity super class to initialize the activity’s activity_main user interface and displays
“Hello World!”

Listing 3-1:  Empty Activity template code

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
}

The Intent Event Handler
Starting an application activity requires you to create an event handler called Intent. The Intent
object is accessible through the android.content package. You can create a new Intent handler as
follows:

Intent intent = new Intent();

Intent is a data structure that holds the description of the action to be performed, such as starting
a new activity, application, service, and so on. The following code snippet creates a new Intent to
start the NextActivityClass activity.

Intent intent = new Intent(this, NextActivityClass.class);

When a new application starts, the main activity becomes the first screen you see. The Intent
abstract class is used by the Android system to launch the main activity. Intent is also used to start
another activity within an activity.

Adding Template Activities to Android Projects
Android Studio provides several template activities for developers to seamlessly start development.
In addition to providing a starting point for developing your application, they help ensure compli-
ance with the Android application development guidelines.

In this section, you add two template activities: the Blank Activity and the Tabbed Activity.
(You added the Empty Activity during project creation.)

Android Activities  x  59

Adding a Blank Activity
Let’s add a Blank Activity template to your project. The Blank Activity template consists of two
components in addition to the Empty Activity template.

Adding an activity template is an easy process in Android Studio. You can add a Blank Activity by
performing the following steps.

	 1.	 Right-click on the project and select New ➪ Activity ➪ Blank Activity from the list of
available activities, as shown in Figure 3-17. Alternatively, from the Android Studio menu,
select New ➪ Activity ➪ Blank Activity. Both methods list the same activity templates from
which to choose.

Figure 3-17:  Adding a new activity template

	 2.	 Customize the new activity in the Customize the Activity window that displays
(see Figure 3-18). Enter the name, title, UI layout name, and the Java package name you
want to add to your new Activity class.

Note  As you can see in Figure 3-18, you can choose that the activity be your
launcher activity. You can also select the Use a fragment option to load content
instead of the default, a floating button on the bottom-left corner. Finally, you
can set the hierarchical parent activity, which will make this new activity directly
navigate to its parent with an Up button.

60  x  Chapter 3   Android Application Development With Android Studio

Figure 3-18:  Activity template customization

After clicking Finish (without making the additional configurations mentioned in the previous note),
the new activity’s Java class, named NextActivity.java, is created in the com.expertandroid
.chapterthree package. Listing 3-2 shows the auto-generated code from this example.

Listing 3-2:  Blank Activity template code

public class NextActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_next);
 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);

 FloatingActionButton fab = (FloatingActionButton) findViewById(R.id.fab);
 fab.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 Snackbar.make(view, "Replace with your own action",
 Snackbar.LENGTH_LONG)
 .setAction("Action", null).show();
 }
 });
 }
}

Android Activities  x  61

As you can see in this source code, unlike the Empty
Activity, the blank template includes a toolbar object and
loads a layout to initialize its view on the phone or tablet.

In addition to the toolbar object, a FloatingActionButton
object is defined for the Blank Activity and an action method
to show a notification with Android API’s Snackbar object
has been defined by default with the template.

You cannot directly launch the Empty Activity you added
earlier in the chapter. However, as the first activity you
added, it is still the main launcher activity. As a result, you
can either set an intent object inside the launcher activity
to start the NextActivity class you just created, or you can
set the NextActivity as the launcher activity when you add
it. The second option makes it easier to display the Blank
Activity onscreen immediately, as shown in Figure 3-19.

Together with the Java class, the template generates two
XML files. Because we named the activity NextActivity, one
class is named activity_next.xml and the other is content
_next.xml.

The activity_next.xml file defines the main
layout user interface elements, including a tool-
bar widget (AppBarLayout) and a button widget
(FloatingActionButton). content_next.xml is the layout
defined to include user interface elements in the blank area.
It has been defined as a RelativeLayout to configure and design the main user interface for the
activity.

Note  Widgets are the user interface classes of Android API. All unique ele-
ments on the screen are derived from the widget super class. The following sec-
tions go into greater detail about UI elements.

Listing 3-3 shows the activity_next.xml file for this example, without any modification.

Listing 3-3:  Blank Activity XML layout template

<?xml version="1.0" encoding="utf-8"?>
<android.support.design.widget.CoordinatorLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent" android:fitsSystemWindows="true"
 tools:context="com.expertandroid.chapterthree.NextActivity">

Figure 3-19:  Empty Activity template
on an Android device

62  x  Chapter 3   Android Application Development With Android Studio

 <android.support.design.widget.AppBarLayout
 android:layout_height="wrap_content"
 android:layout_width="match_parent"
 android:theme="@style/AppTheme.AppBarOverlay">
 <android.support.v7.widget.Toolbar android:id="@+id/toolbar"
 android:layout_width="match_parent"
 android:layout_height="?attr/actionBarSize"
 android:background="?attr/colorPrimary"
 app:popupTheme="@style/AppTheme.PopupOverlay" />
 </android.support.design.widget.AppBarLayout>
 <include layout="@layout/content_next" />
 <android.support.design.widget.FloatingActionButton android:id="@+id/fab"
 android:layout_width="wrap_content" android:layout_height="wrap_content"
 android:layout_gravity="bottom|end"
 android:layout_margin="@dimen/fab_margin"
 android:src="@android:drawable/ic_dialog_email" />
</android.support.design.widget.CoordinatorLayout>

All elements (the toolbar, the content_next.xml layout, and the FloatingActionButton) are
defined in the XML file inside another UI component named CoordinatorLayout. content_next
.xml. That file includes just a RelativeLayout with the required configurations but no other
elements. RelativeLayout is shown in Listing 3-4.

Listing 3-4:  Blank Activity Content Layout XML File

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 app:layout_behavior="@string/appbar_scrolling_view_behavior"
 tools:showIn="@layout/activity_next"
 tools:context="com.expertandroid.chapterthree.NextActivity">

</RelativeLayout>

Further development can be done inside the NextActivity.java file. You can override onStart(),
onResume(), and other Activity class functions to determine what this activity performs when it is
running. UI design and customization can be made in the activity_next and content_next XML
files, together with the Java class file.

In the next two sections, we briefly discuss fragments. Then, in the “Tabbed Activity” section, we
demonstrate an activity that includes a fragment.

Android Activities  x  63

Android Fragments
Fragments are like subactivities; they handle partial UI opera-
tions for a better user experience. Using fragments decreases
the number of activities used inside the application and pro-
vides a smooth transition between user interface elements.

Using fragments simply divides the UI tasks defined for
activities into subcomponents. Fragments allow developers to
design a more compact application without the need to launch
a large number of activities, which decreases the application
stack.

Fragments are even more useful in large screen applications
because you must make use of each part of the application
without blocking the activity thread that handles the user
interface.

Fragments are bound to a root activity to handle their jobs.
For example, a typical mail application lists e-mail messages.
When a user selects an e-mail to read, a fragment can be used
to load only the e-mail content to the screen. If you use an
activity instead of a fragment, you need to switch to the new
activity and load the e-mail content to the activity; if you want
to read another e-mail, you need to go back to the previous
activity again, and so on. Fragments prevent this overload.

Fragments make an application respond faster and provide a
more continuous user experience. Fragments can be reused
within other activities, which helps reduce the number of
fragment objects to be used.

Understanding the Fragment Lifecycle
Android fragments are like activities within an activity, so they
have a similar lifecycle with additional bindings to the root
activity they run in. Figure 3-20 shows the fragment lifecycle.

As described in detail in the previous section, fragments are
like activities. A fragment has all the lifecycle states of an
activity. In addition to the activity’s lifecycle states, fragments
have additional states to identify the activity they will be run-
ning in since a fragment’s lifecycle is dependent on its parent
activity. These additional lifecycle states are described in the
following list.

➤➤ onAttach—The fragment’s association with the root
activity

➤➤ onCreateView—Creates and returns the view hierarchy associated with the fragment

Figure 3-20:  Fragment lifecycle

Source: Figure 3-20 is reproduced from
work created and shared by the Android
Open Source Project and used accord-
ing to terms described in the Creative
Commons 2.5 Attribution License.
(https://developer.android.
com/guide/components/
fragments.html)

https://developer.android.com/guide/components/fragments.html
https://developer.android.com/guide/components/fragments.html
https://developer.android.com/guide/components/fragments.html

64  x  Chapter 3   Android Application Development With Android Studio

➤➤ onActivityCreated—Method called when the activity is ready after the onCreate state

➤➤ onDestroyView—Method called when the fragment frees resources and views

➤➤ onDetach—Method called when the fragment is no longer associated with the activity

The activity template presented in the following section is the Tabbed Activity, which has fragment
definitions included.

Note  The Tabbed activity template is not the only template that includes a
fragment. The Master/Detail Flow template also includes fragment definitions.

Adding a Tabbed Activity
The Tabbed Activity template is a complex activity template with fragments. The Tabbed Activity
is also a very popular activity type that is used in many productive applications to switch between
states of the application.

To add a Tabbed Activity, you can repeat the steps you followed to add a new Blank Activity
earlier in this chapter, but the Tabbed Activity has a different configuration window, as shown in
Figure 3-21.

Figure 3-21:  Tabbed Activity customization window

Android Activities  x  65

Figure 3-21 shows more fields to configure than the Blank Activity.

	 1.	 Named this activity as TabbedActivity, which auto configures the other fields, adding
_tabbed to the Layout Name, Fragment Layout Name, and Menu Resource Name. The
Title becomes TabbedActivity, as shown in Figure 3-21.

Note  As with the Blank Activity, you have an option to select this activity as a
LauncherActivity.

	 2.	 Enter our project’s default, com.expertandroid.chapterthree, as the package name.

The Navigation Style list offers three options; Swiping Views, Action Bar Tabs, and Spinner. These
determine the style for switching between contents of the activity, such as changing between videos
by clicking on a tab or using a swiping movement. By selecting the navigation style you can custom-
ize the UI.

When you change from one style option to another, you can see a preview at the left of the window
shown in Figure 3-21. In this example, we do not recommend selecting a particular style because we
want to show the results for each of them.

Changing the navigation style affects the UI widgets and views styles as well as the template’s Java
code. Swipe Views and Action Bar Tabs navigation styles generate similar code and XML files but
the Action Bar Spinner is little different than the others because the method for navigation between
fragments changes. The following list explains these three navigation styles:

➤➤ Swipe Views—Swipe screen to change between fragments.

➤➤ Action Bar tabs—Touch the tabs on the menu to switch between fragments.

➤➤ Action Bar Spinner—Use a drop-down menu on the toolbar to switch between fragments.

The Tabbed Activity is created from the super class AppCompatActivity: public class
TabbedActivity extends AppCompatActivity.

The generated TabbedActivity.java template’s code is longer and has additional methods to the
Blank Activity because it has to account for swipes between fragment pages.

The Tabbed Activity template has two private fields for pager activity. The pagers, shown in the
following code, handle switching between fragments.

private SectionsPagerAdapter mSectionsPagerAdapter;
private ViewPager mViewPager;

Note  These pagers are not generated if the Action Bar Spinner navigation style
has been selected. The Action Bar Spinner generates a drop-down list that helps
the application switch between fragment objects.

66  x  Chapter 3   Android Application Development With Android Studio

The onCreate function is similar to the same function in the Blank Activity template except there
are initializations for paging operations. The onCreate function for the Tabbed Activity is shown in
Listing 3-4.

Listing 3-4: Tabbed Activity template onCreate method code

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_tabbed);

 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);
 // Create the adapter that will return a fragment for each of the three
 // primary sections of the activity.
 mSectionsPagerAdapter = new SectionsPagerAdapter(getSupportFragmentManager());

 // Set up the ViewPager with the sections adapter.
 mViewPager = (ViewPager) findViewById(R.id.container);
 mViewPager.setAdapter(mSectionsPagerAdapter);

 FloatingActionButton fab = (FloatingActionButton) findViewById(R.id.fab);
 fab.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 Snackbar.make(view, "Replace with your own action",
 Snackbar.LENGTH_LONG).setAction("Action", null).show();
 }
 });
}

mSectionsPagerAdapter is set to FragmentManager, which interacts with the fragments associated
with the activity. mViewPager is set to the container that includes the fragment’s XML layout.

Dealing with fragments requires defining additional classes and functions for the activity. One
class with its members is required to handle paging the activity and navigation between fragments:
public classSectionsPagerAdapter extends FragmentPagerAdapter. (The constructor for
this class is public SectionsPagerAdapter(FragmentManager fm) { super(fm); }.) The fol-
lowing functions help FragmentManager to get the page and to set the page title in the activity:

➤➤ public Fragment getItem(int position)

➤➤ public int getCount()

➤➤ public CharSequence getPageTitle(int position)

Then there is the Fragment class need to handle the views and states of the fragment. Listing 3-5
shows the Fragment class, which is auto-generated inside the TabbedActivity.java class and
overrides the onCreateView() function to initialize the fragment’s layout XML file.

Android Activities  x  67

Listing 3-5:  Tabbed Activity template fragment class code

public static class PlaceholderFragment extends Fragment {
 /**
 * The fragment argument representing the section number for this
 * fragment.
 */
 private static final String ARG_SECTION_NUMBER = "section_number";

 /**
 * Returns a new instance of this fragment for the given section
 * number.
 */
 public static PlaceholderFragment newInstance(int sectionNumber) {
 PlaceholderFragment fragment = new PlaceholderFragment();
 Bundle args = new Bundle();
 args.putInt(ARG_SECTION_NUMBER, sectionNumber);
 fragment.setArguments(args);
 return fragment;
 }

 public PlaceholderFragment() {
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View rootView = inflater.inflate(
 R.layout.fragment_tabbed, container, false);
 TextView textView = (TextView)
 rootView.findViewById(R.id.section_label);
 textView.setText(getString(R.string.section_format,
 getArguments().getInt(ARG_SECTION_NUMBER)));
 return rootView;
 }
}

When you launch the Tabbed Activity template, you see the UI on the device screen, as shown in
Figure 3-22, if the Swipe Views navigation style is selected.

Figure 3-23 shows the screenshots taken for the other navigation styles: Action Bar Tabs and Action
Bar Spinner.

Adding activity templates is easy with some practice, but the real work starts after you select the
template that’s suited to your application design. If your application will load content on the UI at
each change, using a fragment is a good choice. If one screen on your application will be tasked to
do a specific job, and you would not require a dynamic update on the UI content, you can add an
activity without any fragments.

68  x  Chapter 3   Android Application Development With Android Studio

Figure 3-22:  Tabbed Activity template screenshot with Swipe Views navigation style

Figure 3-23:  Action Bar Tabbed and Spinner UI screenshots for the Tabbed Activity template

www.allitebooks.com

http://www.allitebooks.org

Android Services  x  69

Selecting templates for your application takes some effort and makes you focus on the design and
development process. After your template and activity creation, you can work on the detailed imple-
mentation of features you want to add.

Activity templates save you from having to initialize your activity in the AndroidManifes.xml file
because you create layout files in the right directory and perform initialization directly in the code.
You save time with these great features of Android Studio.

In addition to Activity templates, Android Studio has templates for services, which are another main
building block of Android applications. In the next section, you learn how to add service templates
for your application.

Android Services

Services can be defined as activities without a user interface that run in the background to per-
form long-running tasks. Android applications can bind to services to perform file IO or retrieve
sensor data.

A music player application is a good example to demonstrate services. When you open a music
player application, start playback, and then switch to another application, the music player
continues to play music in the background by using a service component that can stay active
without a UI.

Android Studio provides two basic service templates for developers to add to their application. One
is the standard Android Service class and the other one is the Intent Service.

Services usually handle tasks within the application’s main thread; they are designed to be short
running. However, IntentService handles long running tasks; they need to be designed as a sepa-
rate thread than the main application thread.

Adding a Service Template with Android Studio
To add a service template to your application, follow the steps for adding an activity template, but
click New ➪ Service ➪ Service or Service (IntentService).

Because services don’t have a user interface, the new service wizard just asks for the service name
and additional check buttons to configure service.

Figure 3-24 shows the window when you add a service.

There are two check buttons to configure Android Manifest initialization:

➤➤ Exported—When checked, other applications can invoke or interact with the service.

➤➤ Enabled—When checked, the system service can be instantiated by the system.

70  x  Chapter 3   Android Application Development With Android Studio

Figure 3-24:  Customizing the service class name

The template source code overrides only the onBind method, which is used when another compo-
nent wants to bind to the service (see Listing 3-6).

Listing 3-6:  Android Studio service template code

public class MyService extends Service {
 public MyService() {
 }

 @Override
 public IBinder onBind(Intent intent) {
 // TODO: Return the communication channel to the service.
 throw new UnsupportedOperationException("Not yet implemented");
 }
}

If you selected IntentService when you added the service template, you will see the window
shown in Figure 3-25. Here you name the service and can check the option to add a static start
method for the IntentService.

Android Services  x  71

Figure 3-25:  IntentService customization window

IntentService handles asynchronous tasks such as incoming requests from other components. For
this reason, the IntentService class differs from the Service class. The template includes compo-
nents related to asynchronous tasks you can customize as needed (see Listing 3-7).

Listing 3-7:  IntentService Template Code

public class MyIntentService extends IntentService {
 // TODO: Rename actions, choose action names that describe tasks that this
 // IntentService can perform, e.g. ACTION_FETCH_NEW_ITEMS
 public static final String ACTION_FOO =
"com.expertandroid.firstmobileapplication.action.FOO";
 public static final String ACTION_BAZ =
"com.expertandroid.firstmobileapplication.action.BAZ";

 // TODO: Rename parameters
 public static final String EXTRA_PARAM1 =
"com.expertandroid.firstmobileapplication.extra.PARAM1";
 public static final String EXTRA_PARAM2 =
"com.expertandroid.firstmobileapplication.extra.PARAM2";

 public MyIntentService() {
 super("MyIntentService");
 }

72  x  Chapter 3   Android Application Development With Android Studio

 @Override
 protected void onHandleIntent(Intent intent) {
 if (intent != null) {
 final String action = intent.getAction();
 if (ACTION_FOO.equals(action)) {
 final String param1 = intent.getStringExtra(EXTRA_PARAM1);
 final String param2 = intent.getStringExtra(EXTRA_PARAM2);
 handleActionFoo(param1, param2);
 } else if (ACTION_BAZ.equals(action)) {
 final String param1 = intent.getStringExtra(EXTRA_PARAM1);
 final String param2 = intent.getStringExtra(EXTRA_PARAM2);
 handleActionBaz(param1, param2);
 }
 }
 }

 /**
 * Handle action Foo in the provided background thread with the provided
 * parameters.
 */
 private void handleActionFoo(String param1, String param2) {
 // TODO: Handle action Foo
 throw new UnsupportedOperationException("Not yet implemented");
 }

 /**
 * Handle action Baz in the provided background thread with the provided
 * parameters.
 */
 private void handleActionBaz(String param1, String param2) {
 // TODO: Handle action Baz
 throw new UnsupportedOperationException("Not yet implemented");
 }
}

Add Assets for Android Project

While developing an application, you need to include resource files such as the logo art for your
application, photos, figures, custom sounds, music, videos or animations. These files are the assets
the application loads while running.

Each asset type should be added to its own directory to comply with the Android development stan-
dards. All assets are stored in the res folder. Initially, Android Studio creates only the drawable and
mipmap-xdpi folders to store resources other than XML files.

Note  This section covers how to add assets to your project; working with
assets is covered in the following chapters.

Switch to the traditional Project View to better see the res folder content, as shown in Figure 3-26.

Add Assets for Android Project  x  73

Adding Images Assets
Images that you plan to use as a background on
your project, or as a background for your buttons
and so on, can be in many formats, such as PNG
or JPEG. Image resources should be stored in the
mipmap-xx folders (see Figure 3-26).

If your application will be running on multiple
devices with different screen resolutions, you
should add images to the corresponding resolution
folder in your project directory and store the same
image at different resolutions in the appropriate
folder from the following list:

➤➤ mipmap-hdpi—High density images

➤➤ mipmap-mdpi—Medium density images

➤➤ mipmap-xhdpi—Extra high density images

➤➤ mipmap-xxhdpi—Extra extra high density
images

➤➤ mipmap-xxxhdpi—Extra extra extra high
density images

To add image resources to your project, follow
these steps:

	 1.	 Either drag-and-drop the file onto your project or right-click on the project and select Image
Asset from the menu, as shown in Figure 3-27.

Figure 3-27:  New Image Asset menu

Figure 3-26:  res folder content

74  x  Chapter 3   Android Application Development With Android Studio

	 2.	 Click Image Asset to open a new window where you can select the image size, type, and other
properties to let Android Studio to customize the image, and load the image into all related
folders easily as shown in Figure 3-28.

Figure 3-28:  Image Asset Studio window

	 3.	 After completing the Asset Studio options, click Next. The Image Asset Wizard will show a
summary of where the new resource will be placed (see Figure 3-29).

Adding Sound Assets
Sound assets are placed in subfolders in the raw directory. The raw directory is not auto-generated
by Android Studio. If you would like to add a sound asset, create a subdirectory in the res folder by
right-clicking on the res folder in Project View, and then select New ➪ Folder. That opens a new win-
dow where you can name the new folder. Type raw and you are done adding the sound asset folder.

Add Assets for Android Project  x  75

Figure 3-29:  Image Asset Studio summary

Note  These instructions follow the standard naming conventions but are
not written in stone. You may create your own folder any time to store resources
you need.

Later you can add sounds by either dragging and dropping or copying and pasting to the Project View.

Adding Video Assets
Videos are also stored in the raw folder. Create subfolders for videos as you do for audio files (see
the preceding section). Videos are not reliable because they are large files that can be expensive to

76  x  Chapter 3   Android Application Development With Android Studio

load and play on a mobile device, so including videos is not preferred practice, although you may
want to add a short animation of 2–5 seconds. That may create a better experience for your users.

Adding XML Files to an Android Project

You define static strings in XML files; these files contain static information to be encoded by an
application at runtime. You sometimes need to define a list of strings in an XML file instead of
declaring them in the Java source code. In fact, it is a very bad practice to define static strings in
the Java source code, and Android advises developers to define static strings in the XML files.
Figure 3-30 shows where strings are defined for the ChapterThree application.

Figure 3-30:  string.xml and the values folder content

XML files also define user interface modules, UI layouts, and styles to be reused in UI development.
In order to add a new XML values file (not a layout file), right-click the values folder and select New
➪ XML ➪ Values XML File.

Since we will work on layouts in Chapter 5, we skip adding layout XMLs for this section. XML files
also helps you to make an application more configurable, improve the UI, and implement more reus-
able code for your Android application.

Android Manifest File

The Android manifest file is like an Android application’s signature for the Android operating sys-
tem. It defines the starting activity and other activities the application includes in the package, such
as services, the application’s name, the Android SDK version, and required permissions needed to
access data and sensors on the device.

Android Manifest File  x  77

The Android manifest informs the Android operating system of possible processes and threads
that can be generated for the application along with activity and service descriptions. The manifest
informs the system that the application will get access to certain sensor devices and networks, will
gather location information, and so on.

You might have noticed that some installed applications on your Android device ask for permission
to access the Internet, your location, contacts, camera, and so on. These permissions are defined in
the Android Manifest file.

The Android manifest file can be accessed from the Android manifest folder. Each time you define
an activity or service manually, you should enter the required info into the AndroidManifest.xml
file as well.

Listing 3-8 is the Android Manifest file of our application with the two activities and one
service added in this chapter. You may notice that we also have requested Internet access with the
permission tag. It can be found under the ‘manifests’ directory in the Android Project View.

Listing 3-8: AndroidManifest.xml sample

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.expertandroid.chapterthree" >

 <uses-permission android:name="android.permission.INTERNET"></uses-permission>

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:supportsRtl="true"
 android:theme="@style/AppTheme" >
 <activity android:name=".MainActivity" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name=".NextActivity"
 android:label="@string/title_activity_next"
 android:theme="@style/AppTheme.NoActionBar" >
 </activity>
 <activity
 android:name=".TabbedActivity"
 android:label="@string/title_activity_tabbed"
 android:theme="@style/AppTheme.NoActionBar" >
 </activity>

 <service
 android:name=".MusicService"
 android:enabled="false"
 android:exported="false" >
 </service>

78  x  Chapter 3   Android Application Development With Android Studio

 </application>
</manifest>

If you were using the Eclipse IDE previously, you were able to add tags with the help of UI compo-
nents. You may struggle to find that capability in Android Studio; you should instead enter the new
entry manually. Android Studio’s IntelliSense feature will help you to auto-complete the entry in the
Android Manifest file.

Android Modules

Modules are additional software components for the projects being developed. If you have created
a project only for Phone and Tablet devices, initial application is the first module. Modules you can
add include Android Library, Wear, TV, Glass, Phone and Tablet, and so on. Figure 3-31 shows all
modules available to add on to your project.

Figure 3-31:  New Module selection window

Let’s add an Android Library to our project. In the window shown in Figure 3-32, Android Studio
helps you configure your module by first asking for the module name.

Summary  x  79

Figure 3-32:  Creating a new module

After you add the module, you will see a sec-
ond directory in the Android Project View
(see Figure 3-33).

You can add a new Java class to develop your
own library to ease development of and reuse
on other applications.

Modules have independent build configura-
tions, and after the build process they also pro-
duce their own binaries.

Summary

In this chapter, we worked on creating the main building blocks of Android application projects
using Android Studio. The main building blocks of Android applications are activities, services,
assets, XML files, the Android Manifest file, and modules.

Brief information about building blocks has been provided to help you better understand what you
are dealing with so you can follow the best practices of Android Studio application development.

Figure 3-33:  Project View after a new module is
created

Android Studio In Depth
WHAT’S IN THIS CHAPTER?

➤➤ Android Studio menu

➤➤ Android Studio shortcuts

➤➤ Android Studio tool views

➤➤ Editors

➤➤ Android Studio live templates

➤➤ Code refactoring in Android Studio

➤➤ Updating existing code

➤➤ Signing key for Android application in Android Studio

➤➤ Building APKs in Android Studio

The previous three chapters provided an introduction to environment setup and how to start a
new project with Android Studio. This chapter dives into Android Studio’s tools and best
practices before digging into application development with Android Studio.

A good introduction to Android Studio tools will help you develop applications efficiently and
enable you to take advantage of Android Studio as an IDE to ease the development process
and optimize your application.

Throughout the chapter, we will review the Android Studio menu items and tools and answer
questions you might have about why and when to use or access them. The chapter begins with
menu items and then tackles shortcuts and tools used in Android Studio. Then you look at
code refactoring with Android Studio and Live Templates. The chapter concludes with a focus
on Android Studio’s APK building utilities.

4

82  x  Chapter 4   Android Studio In Depth

Android Studio Menu Items

If you are used to developing Android applications with Eclipse-based ADT, it may take a while to
get to know Android Studio menu items.

Figure 4-1 shows all the menus: Android Studio (only in the Mac version), File, Edit, View,
Navigate, Code, Analyze, Refactor, Build, Run, Tools, VCS, Window, and Help. The figure shows
the Mac OS X version of Android Studio but the menus don’t change much by OS.

Figure 4-1:  Menus on Mac OS X

Note  Although menu items do not change between OSes, Mac OS and several
Linux window managers tend to display menu items in the top bar whereas
Windows keeps menu items in application windows.

Familiarize yourself with the menu items within a desktop application so that you can easily utilize
the application in a way that meets your specific needs and enables you to find a solution within the
IDE itself for such tasks as adding a new file to your project, enabling additional application win-
dows, configuring the application or checking for updates, and so on. The following sections exam-
ine Android Studio’s menu items in more detail.

Android Studio
The Android Studio menu lists the main menu items, which provide access to updates and window
management, along with the hide, quit, and show options, as shown in Figure 4-1.

Note  The Android Studio menu isn’t present in other OS versions, so most
items listed in this menu are found in the File menu.

Android Studio Menu Items  x  83

The most important item in this menu is Preferences (Settings in Windows and Linux), which you
may need to access many times to configure Android Studio.

The Preferences window gives you access to all the detailed Android Studio configurations:
Appearance & Behavior, Keymap, Editor, Plugins, Version Control, Build, Execution, Deployment,
Languages & Frameworks, and Tools, as shown in Figure 4-2.

Note  The Keymap option is not covered in this section. We cover it in the sec-
tion “Android Studio Shortcuts” later in the chapter.

Figure 4-2:  Preferences window

File
The File menu gives you access to file operations such as saving a file, adding a new file, selecting
templates, opening existing files, and closing a project folder, as shown in Figure 4-3. It also includes

84  x  Chapter 4   Android Studio In Depth

file operations including setting the style of files in Android Studio, exporting any file as HTML,
and setting Line Separators for the corresponding operating system to make a file readable by other
operating systems.

In addition to the File menu giving access to file settings, it also has a New submenu (see Figure 4-4)
with actions to create a new project and to import a project from local sources or from a version
control system. Adding and importing a new module is also done from the New menu. Finally, can
add a new file, directory, C++ Class, C/C++ Source or Header file with the actions defined in the
New menu.

Figure 4-3:  File operations menu

In addition to file operations, you can access the Project Structure window shown in Figure 4-5
from the File menu. The Project Structure window includes options for configuring the project,
such as the Android SDK, NDK, and Java path, and developer services provided by Google, such as
Google Sign-In authentication service configurations.

Edit
The Edit menu includes text operations such as copy, paste, and cut functionality, and so on, as
shown in Figure 4-6. The following list provides a quick reference to the operations for copying and
pasting during coding.

➤➤ Copy Path—Copies the full path of a recently opened file

Figure 4-4:  New menu action items

Android Studio Menu Items  x  85

➤➤ Copy as Plain Text—Copies any text without formatting.

➤➤ Copy Reference—Copies the reference to the file in the system. For example, if you select
Copy Reference for a Java file, it will copy only the name of the Java class.

➤➤ Paste from History—Lists previously copied texts and so you can select from the history to
paste them.

➤➤ Paste Simple—Pastes the last copied text without formatting.

Figure 4-5:  Project Structure window

The Edit menu options are not limited to basic copy and paste; there are more complex functions
for searching and selecting under the Find submenu such as Find in Path and Replace in Path, Find,
Duplicate Line, and Join Lines (see Figure 4-7).

86  x  Chapter 4   Android Studio In Depth

Figure 4-6:  Edit menu items

There is also a Macros submenu that is used to save keystrokes to a macro for reuse.

In summary, this menu provides access to text editor functions available in most text editors. These
items simplify the process of writing code and editing files. We
recommend that you become familiar with shortcuts listed in the
menu to make these functions easier to use.

View
The View menu, shown in Figure 4-8, provides easy access to
functions for working with windows, configuring the editor spac-
ing, adding line numbers, accessing the compare tool, and other
similar functionalities of Android Studio.

Through the View menu, you can change the current view of
Android Studio as well as enable or disable the Tool buttons,
Toolbar, Status Bar, and Navigation Bar. In summary, this menu
will help you change or customize the view of Android Studio’s
windows.

Navigate
The Navigate menu, shown in Figure 4-9, lists the actions you can
take to navigate between files in the current open project. Practice

Figure 4-7:  Find menu items

Figure 4-8:  View menu items

Android Studio Menu Items  x  87

with the navigation functions will make it easy to handle large projects with many files, classes, and
long files.

You can add bookmarks to file lines so you can directly jump there during development, or navigate
to a superclass by pressing Command+U on Mac or Ctrl+U in Windows. As shown in Figure 4-10,
you can also see all the implementations of a superclass to enable you to navigate to a subclass.

Figure 4-9:  Navigate menu items

Figure 4-10:  Implementation of the superclass BroadcastReceiver

88  x  Chapter 4   Android Studio In Depth

All functionality provided in the Navigation menu will help you manage and find related files, fold-
ers, classes, declarations, and inherited classes easily and to understand the architecture of the soft-
ware and avoid wasting time looking for a superclass’s definition. Developing familiarity with these
functions will definitely increase how much you like the IDE.

Code
The Code menu, shown in Figure 4-11, provides access to functions to easily generate code snippets,
arrange code lines, add block comments, access Live Templates, add getters and setters, and similar
activities.

Most of the functions are usable if you are in a Java file, but not if you are not in a Java file.

Let’s look at two of this menu’s options. Click Override Methods (Control+O on Mac or Ctrl+O
in Windows) while in a Java class to open a new window that shows the methods you can over-
ride from inherited classes. If you want to re-indent your code, click the Auto-Indent Lines option
(Control+Option+I on Mac or Ctrl+Alt+I in Windows).

Familiarizing yourself with the shortcuts on this menu will enable you to efficiently develop your
code. For example, if you just inherited an interface, navigate to the Code menu and press the indi-
cated shortcut for the Implement Methods option to see the list of methods you should implement
for the current class. This saves the time that would otherwise be spent on documentation or navi-
gating between superclasses.

Analyze
Analyzing your code with Android Studio is fun. Analysis gives you many insights into what to do
next to improve the quality and stability of your code. Figure 4-12 shows the Analyze menu.

Figure 4-11:  Code menu items Figure 4-12:  Analyze menu items

Android Studio Menu Items  x  89

From the Analyze menu, let’s inspect the UniversalMusicPlayer’s MediaNotificationManager.java
file. With the file open, select Inspect Code. This will open a new window at the bottom of the main
editor and project pane to show the code maturity, possible bugs, and spelling and declaration sug-
gestions, as you can see in Figure 4-13.

Figure 4-13:  Inspection window

Refactor
Refactor menu tools provide developers easy access to
certain refactoring operations, as shown in Figure 4-14.

To start refactoring, select a piece of the code in the file and
then press Control+T on Mac or Ctrl+Alt+Shift+T in Windows
to display the refactoring options, as shown in Figure 4-15.

Refactoring a large project might be difficult, but Android
Studio’s refactoring tools, when appropriate for your purpose,
leads you to the right standards-compliant approach. The sec-
tion “Code Refactoring with Android Studio” later in this
chapter provides additional information on refactoring.

Build
The Build menu lists the commands to build the application
and related configuration functions. These commands include
APK generation of Android applications, signing APK files,
editing dependencies, configuring build types, and selecting
SDK versions, as you can see in Figure 4-16.

The Clean Project and Rebuild Project options are straight-
forward. They start clean and build functions as in other
IDEs. Other options in this menu are mostly related to the
output APK file configuration. We will cover these in greater
detail in the APK generation and signing APK sections, later
in the chapter. Figure 4-14:  Refactor menu items

90  x  Chapter 4   Android Studio In Depth

Run
The Run menu provides options for managing application process-
ing such as running in debug mode or not, or accessing APK release
configuration while running/debugging the application.

You can see all the shortcuts related to running and debugging your
application from the menu. It will give you fast access during debug-
ging. If your application is not in debugging mode, most of the menu
items are disabled.

Tools
The Tools menu provides some tools not directly related to Android
application development. You can create tasks to follow up with
your development, generate JavaDoc, and create new scratch files to
test some code snippets directly inside the project instead of
creating a new Java or Android project, This menu is shown in
Figure 4-17.

Finally, from the Tools menu you can launch the Android SDK
Manager, AVD Manager, and Android Device Monitor.

Version Control System
The VCS (Version Control System) menu, shown in Figure 4-18,
gives access to tools related to source control management.
Android Studio helps developers to locally control the source
code history, integrate with a selected version control system, and
check out the source code from the remote repository.

Chapter 9 explores the use of Android Studio’s version control
system in greater detail.

Window and Help Menu
The Window menu helps you manage tabs and windows, includ-
ing the management of each tool window’s visibility type, such
as docked, floating, and so on. You can also navigate between
Android Studio windows if multiple Android Studio windows
are open.

The Help menu gives you access to the Android Studio documenta-
tion, where you can easily search for an action. If you want to look
for the refactor or block comment shortcut, go to the Help menu
and click Find Action (Shift+Command+A on Mac or Ctrl+Shift+A
in Windows) to search for a specific action in Android Studio.

Figure 4-15:  Refactor options

Figure 4-16:  Build menu items

Figure 4-17:  Android Studio
Tools menu

Android Studio Shortcuts  x  91

Android Studio Shortcuts

IDE shortcuts are important for any developer because an effi-
cient use of an IDE starts with knowing how to easily refactor
code, find any file or text in the project, or navigate to a required
file by pressing a combination of keys on the keyboard. It is like
living in a country and knowing all the public transportation
alternatives or driving routes without spending any time search-
ing the web. It can save you a lot of time.

Actually, you have seen many shortcuts for some operations in
the figures in the previous sections. However, the menu items do
not provide a comprehensive list of shortcuts—there are more
than a hundred shortcut key mappings in Android Studio. You can see them all in the Keymap page
of the Preferences window, as shown in Figure 4-19.

Figure 4-19:  Keymap window

The Keymap window is useful not only for viewing the list of shortcuts, but also for editing, delet-
ing, or adding shortcuts. It is always possible that existing mappings are not sufficient or not useful
for you, so you can just edit them how you feel comfortable.

Figure 4-18:  VCS menu items

92  x  Chapter 4   Android Studio In Depth

The following actions are available in Keymap:

➤➤ Adding Shortcut—Go to an empty action and right-click
on it or click the pencil button above the list of Editor
Actions in the Preferences window; then select between
Add Keyboard Shortcut, Add Mouse Shortcut, or Add
Abbreviation for the action.

To try this, select an action, and either from the right-
click menu or after clicking the pencil button, select Add
Keyboard Shortcut to open the window shown in Figure
4-20. With the cursor in the First Stroke area, press the
key combination you want to assign to the action you
selected. If the key combination is already assigned, you
will see the conflict in the Conflicts area.

➤➤ Deleting a shortcut—When you want to delete the short-
cut for an action, find the action in the Keymap list,
right-click on the item and select Remove. Alternatively,
you can click the pencil button again to see the options.

➤➤ Editing shortcut—In order to edit a shortcut, you should click on the Add Keyboard Shortcut
option as discussed earlier in this list and edit the stroke, as shown in Figure 4-17.

Android Studio Tool Views

Android Studio provides a number of useful tools that help you
take control and monitor the application development process effi-
ciently. These tools are available from the Tool Windows option
on the View menu. Figure 4-21 shows the list of tools: Messages,
Project, Favorites, Run, Debug, Android Monitor, Structure, Version
Control, Android Model, Build Variants, Capture Analysis, Capture
Tool, Captures, Designer, Event Log, Gradle, Gradle Console, Maven
Projects, Palette, Terminal, and TODO.

Notice that in Figure 4-21 some of the tools are disabled. These tools
will be available when the development context is available for the use
of the tool. For example, Designer and Palette get active when you start
designing user interfaces. When you start debugging your application,
the Debug option will be available to open the Debug window.

A quick way to see all active views is to move the mouse pointer to the
bottom-left corner of the main Android Studio window and hover over
the square icon. That opens the Tools list shown in Figure 4-22 so you
can select and open the tool you need.

Figure 4-20:  Enter Keyboard
Shortcut window

Figure 4-21:  Tools Window
items

Android Studio Tool Views  x  93

Available tools are displayed at the edges of the Android Studio window. You can activate them
either from the list or by clicking on the buttons on the window’s edges. Figure 4-23 shows that the
Project and Terminal tools are activated. When active, their background color is darker.

tip  Clicking the bottom-left corner of the window will hide all the edges and
thus hide the clickable tool’s buttons from the edge.

It is essential for a developer to know both programming and the IDE—in
detail—to solve development issues immediately and create a stable application.
We see these tools as an essential part of the Android development process.

The following subsections cover the details of the tools mentioned to this
point. To help clarify the discussions of the tools that follow, let’s open the
UniversalMusicPlayer sample project to better show the options. (Opening a
sample application was covered in Chapter 2.)

Messages
The Messages tool, shown in Figure 4-24, is available by default; it will get
active when there is a need to show messages to the developer such as errors,
warnings, information, notes, and generic information about the build pro-
cess, as shown in Figure 4-24.

Figure 4-23:  Activated tools

Figure 4-22:  Accessing
the tools shortcuts

94  x  Chapter 4   Android Studio In Depth

Figure 4-24:  Messages tool window

In Figure 4-24, the Messages window shows the output messages from a Gradle build. If you opened
the sample application as suggested in the previous section, it may automatically start the build pro-
cess and show the output from the Messages window.

The Messages tool helps you follow what other tools are doing. In showing the errors, information,
and warnings for the process in the window, the tool reveals what is going on in the background.
Otherwise, it would be hard to follow up with ongoing processes.

The Messages tool has additional features to export messages in a text file to share with your team,
get help, and resolve issues quickly.

The buttons on the left-hand side of the window let you easily navigate between messages. That can
be difficult because there will often be more than the ten lines of messages shown in Figure 4-24;
you may encounter thousands of lines. The buttons help you to expand or filter the list, and even go
to the source of the error when necessary.

Android Studio Project Structure
Android Studio’s Project tool is responsible for listing your project’s files. It helps you directly
browse the files and folders of your project in a tree structure from within Android Studio.

Android view shows files and folders grouped under Android modules and scripts. Each Android
Module’s Java source, test, manifest, and resource files will be grouped under the module name.
Scripts will be under a different group named Gradle Scripts as shown in Figure 4-25.

The file and folder view options shown in Figure 4-25 are useful for creating a custom view for
developers working on separate parts of the project because they enable the developer to focus on
the context of his or her area of development. Compared to Eclipse IDE, this feature helps you filter
to a simplified view of the project instead of forcing you to see all the files; it eliminates most auto-
generated files, which you generally don’t need to view. You can interpret this as a simple separation
of concerns by Android Studio.

The view options change the file and folder listings as follows:

➤➤ Project—Lists all files and folders located in the Android application’s project folder, which
select while you are populating the project. This view option also lists the external libraries
used in the project.

Android Studio Tool Views  x  95

➤➤ Packages—Lists the files with package classification. XML files, menu files, layout files, draw-
able files, and Java source files are classified under a list of folders to ease direct access to the
package you are working on.

➤➤ Scratches—Shows the list of scratch files created and used.

➤➤ Android —Shows only an application’s related files. Applications are shown as modules—
mobile, wear, library, and so on. This view enables fast access to your application.

➤➤ Project Files—Presents the build, license, and source control management–related project
files. These include the.gitignore and local.properties files, and the .google and .ide
folders.

➤➤ Problems—Shows only files with problems. To test this feature, delete a semicolon from a
line in a Java file. The file will then be shown in this view to direct you to the problem.

➤➤ Production—Shows the folders related to the production of the application, such as the build
output folder and the configuration folder, as well as the final source files which affect the
production version of the application.

➤➤ Tests—Shows test-related results.

➤➤ Android Instrumentation Tests—Presents the Android Instrumentation test files.

Figure 4-25:  Project view options

96  x  Chapter 4   Android Studio In Depth

Favorites
The Favorites tool, shown in Figure 4-26, provides fast access to your favorite folders and files, to
bookmarked locations in files, and to toggled break points in the project.

Figure 4-26:  Favorites window

Adding a favorite is easy, just right-click a file in Project view or right-click an opened file’s tab in
the editor; then click Add to Favorites. The first time you do this, you will see only one group to add
your file to in the favorites list. If you are following our example, it is UniversalMusicPlayer. You
can also generate your own favorite group to classify your favorites under different lists.

Adding a new bookmark is also easy: Press F3 or F11 in Windows or use the Navigate menu’s
Bookmark option. A bookmark will be added to a line you select and the bookmark will be listed in
the Bookmarks list in the Favorites window.

You can navigate between bookmarks by selecting the Show Bookmarks option from the Navigate
➪ Bookmarks menu, or just press Command+F3 on Mac or Shift+F11 in Windows.

Breakpoints are added as favorites in the same way as Bookmarks. After you add a breakpoint in a
file, it is listed in the Favorites window. In Figure 4-26, you can see that we added two bookmarks
and one breakpoint to the sample project randomly.

Android Monitor
While developing your application, you will use the Android Monitor extensively (see Figure 4-27).
With this tool, you can start and stop tools that monitor the use of resources on the Android
device. The Android Monitor monitors the application during debugging or when it’s running on
the device. Processes monitored include GPU, memory, CPU, and network utilization.

The Android Monitor includes Android’s logger tool, the Logcat utility. Figure 4-27 shows a typical
log output.

Chapter 8 covers Android Monitor tools in detail.

Android Studio Tool Views  x  97

Figure 4-27:  Android Monitor window

Structure
The Structure window lists the components of structured files such as Java, XML, and Gradle.
Using this view, you can see all the methods, fields, and tags of XML files, and inherited members
of a Java class. Instead of scrolling up and down, you can directly access a member of the file and
work on it.

In our sample application, let’s open a more complex class named MediaNotificationManager,
placed under java sources, inside the com.example.android.uamp package. MediaNotification
Manager inherits members from BroadcastReceiver to be able to list the details of the Java class,
as shown in Figure 4-28.

In this window you can see the members that are inherited from BroadcastReceiver or Java’s
object class itself. Constant (final) or static members are identified by a lock symbol. In addition,
(m) indicates the methods, (f) indicates the fields of the class, (C) shows the classes, (I) shows the
interfaces, (p) indicates properties of class. This helps you understand any Java classes’ design and
architecture and assists with analyzing existing code. For example if you are navigating in a large
project to understand the design of the classes, you can see the structures easily to understand how
they were created.

You can also open XML files to see the details and relationship of the tags to each other.

Android Model
The Android Model view provides an easy access to an Android application member’s initial
values. These values do not contain the Java class members; the model includes the project build
members, folder locations, compilation configurations, build type initializations, APK signing
options, and so on.

The list is very long so it is hard to remember all the required fields to configure. Having this tool,
which lets you see and review all the configuration’s constant values, is very valuable. As shown in
Figure 4-29, you can see all initializations.

This example shows only a single mobile application; if you have multiple modules in your project,
the tool will show related configuration parameter values.

98  x  Chapter 4   Android Studio In Depth

Figure 4-28:  Structure view of a Java class

Gradle and Gradle Console
The Gradle and Gradle Console window tools show Gradle tasks in your project. When you
open the Gradle window, you can execute any task independently and remove or add a new Gradle
task to your project.

Gradle Console connects to Gradle builds, and this window shows whether the Gradle build tasks
are successful or not. It is a simple console that shows only the output text.

We don’t do any more changes to the default Gradle configuration and tasks in this chapter,
because we will cover Gradle and Gradle Console in more detail in Chapter 6, which discusses the
Gradle build system.

Run
The Run window is enabled when you run the application (as shown in Chapter 3) on a remote
Android device or emulator. It lists the process and commands launched during the run phase such
as APK installation on the device and the process ID of the application.

As shown in Figure 4-30, we launched the UniversalMusicPlayer application from our development
machine to a remote Android phone.

Android Studio Tool Views  x  99

Figure 4-29:  Android Model view for mobile applications

Figure 4-30:  Run window

This tool also gives you the ability to stop, run, or re-run the application with the buttons shown at
the left.

Debug
The Debug window is inactive by default and activated when you start debugging your application.
After you click the debug button at the top of the Android Studio window or press Control+D on
Mac or Shift+F9 in Windows to launch the application in debug mode, the Debug window appears
at the bottom, as shown in Figure 4-31.

100  x  Chapter 4   Android Studio In Depth

Figure 4-31:  Debug window

In short, this window enables you to run an application step by step and see the variables. It also
provides all required debugging ability to analyze and find the vulnerabilities of the application.
(Detailed debugging properties are investigated in Chapter 8.)

Event Logs
The Event Logs tool prints events such as the Gradle build’s start date and when you started an
application’s run session. It also prints errors or warnings that have occurred. The best feature of
the Event Log tool is that it notifies users about these events and their start and finish times. Event
logs help you understand the history of your development.

Terminal
The Terminal allows you to interact with the operating system’s shell. It helps you do the required
configuration and file manipulation, such as deleting, moving, and renaming files and folders in the
current project directory without changing your context.

There are tools provided with Android SDK that do not have GUI support, so they are accessed via
the command line.

As shown in Figure 4-32, when you open the Terminal window, you enter the current user’s project’s
root folder.

Figure 4-32:  Android Studio Terminal

Android Studio Editor

Android Studio comes with powerful and context-aware editors. Depending on what file format you
are working with, Android Studio highlights, formats, indents, offers auto completion, uses color
and text formatting, provides smart navigation, and, of course, includes all mandatory editing tools.

Android Studio Editor  x  101

Code Assist
The killer feature of Android Studio editors is code completion assist. This feature has been a stan-
dard in similar IDEs such as Eclipse, Visual Studio, and NetBeans; however, Android Studio brings
the assist to a completely new level.

For basic code completion, you can use Control+space on Mac or Ctrl+space in Windows. Although
this works pretty much like the code completion offered by other IDEs, it is case-sensitive. For
example, typing Na after hitting Control+space will list all methods that have that substring, such as
getName and setName; typing get will list each method that starts with the string get and methods
where the string get occurs somewhere in the method name.

Another great feature offered by Android Studio is Smart Type Completion. If you press
Control+Shift+space on Mac or Ctrl+Shift+space in Windows for completion assist, Android Studio
will filter the suggested item list with compatible return types. This offers smart and context aware
code completion. If you hit Control+Shift+space after typing Na, which would be assigned to a
String variable, you get only getName but not setName.

Commenting Out Code Blocks
Commenting out a piece of code might be the most used feature of an IDE. The key combinations
Control+Shift+/ on Mac or Ctrl+Shift+/ in Windows will comment out the selected portion of the
code with the proper syntax.

Moving Code Blocks
Moving code blocks without cut and paste can be very effective and helpful. Android Studio
supports the following commands to help you to move the code around in the editor without cut
and paste:

➤➤ Move line up: Command+Shift+ up arrow on Mac (Ctrl+Shift+up arrow in Windows)—
Because the editor is context aware, if the line is broken into several lines, all related lines are
moved.

➤➤ Move line down: Command+Shift+ down arrow on Mac (Ctrl+Shift+ down arrow in
Windows)—Because the editor is context aware, if the line is broken into several lines, all
related lines will be replaced.

➤➤ Move line to the top: Command+Shift+ up arrow on Mac (Ctrl+Shift+ up arrow in
Windows)—Because the editor is context aware, it will not move a variable or method above
the class declaration.

➤➤ Move line to the bottom: Command+Shift+ down arrow on Mac (Ctrl+Shift+ down arrow in
Windows)—Because the editor is context aware, it will not move a variable or method out-
side the class parenthesis.

All options also work with selected blocks of code, enabling you to move large pieces of code blocks.

Navigating Inside the Editor
The capability to jump to the right place in the file you are editing can greatly reduce the time you
spend navigating. Android Studio is very helpful and offers the following flexible options:

102  x  Chapter 4   Android Studio In Depth

➤➤ Move cursor to the last editing position: Command+Shift+Delete on Mac
(Ctrl+Shift+Backspace in Windows)

➤➤ Move cursor to the start of the current code block: Command+Option+[on Mac
(Ctrl+Shift+[in Windows)

➤➤ Move cursor to the end of the current code block: Command+Option+] on Mac (Ctrl+Shift+]
in Windows)

➤➤ Move cursor to the previous word: Option+left arrow on Mac (Ctrl+left arrow in Windows)

➤➤ Move cursor to the next word: Option+right arrow on Mac (Ctrl+right arrow in Windows)

➤➤ Select and move cursor to the previous word: Option+Shift+left arrow on Mac
(Ctrl+Shift+left arrow in Windows)

➤➤ Select and move cursor to the next word: Option+Shift+right arrow on Mac (Ctrl+Shift+right
arrow in Windows)

Refactoring
Refactoring is another area where Android Studio shines. From changing a variable or method
name to extracting a block of code to a method, Android Studio offers many powerful refactoring
options; they are covered later in this chapter, in the section “Code Refactoring in Android Studio.”

Refactoring in Android Studio also checks other types of resources and performs string name
checking to make sure the refactoring does not cause any compilations or runtime problems.

Android Studio Live Templates

Live Templates are predefined code snippets that you can easily add to your code so you don’t have
to write the same code over and over. Live Templates are very useful when it comes to repeating a
specific type of code block such as loops. For example, you may need to use a simple for loop many
times in your code so adding a template would ease that process.

Live Templates may also be very useful if you want to create coding standards for your company.
When you have a new developer in your company or team, you can just encourage him or her to use
the predefined templates you already created while they work on new projects.

There are many predefined Live Templates already in Android Studio. In order to see, add, or
remove Live Templates, navigate to Preferences, expand to Editor, and then click Live Template.

You will see an expandable list of names for the Live Template group, which includes the Live
Templates shown in Figure 4-33.

Android Studio Live Templates  x  103

Figure 4.33:  Live Template window

Live Templates are available for a wide variety of uses, such as comments for code, generic tags for
Android XML, and so on. You can also customize them as needed during development.

Lists of Live Templates are available by expanding all the groups. As you may notice, Live Templates
are very common code snippets with a high number of reuses at any point of your Java code. For
example, fori is a predefined Live Template that creates a code snippet to create a basic for loop.

Inserting a Live Template
When you want to add any of the templates to your code, just type the name of the Live Template in
the editor. It will auto-complete to easily add it to your code. Figure 4-34 shows the auto-complete
drop-down for the fori Live Template.

Figure 4-34:  Auto complete for a Live Template

104  x  Chapter 4   Android Studio In Depth

After you add the fori Live Template to your Java code, it will
highlight the variables you need to edit to implement your own cus-
tom for loop, as shown in Figure 4-35. When you type your own
variable name and press Enter or Tab, the cursor will automatically
move to the next variable to edit and so on. This action makes it
very easy to customize a Live Template.

This is not the only way to add Live Templates to your code. You can also navigate to code from
the Android Studio menu and click Insert Live Template or just use the shortcut (Command+J in
Mac or Ctrl+J in Windows) to list all available Live Templates for the current context, as shown in
Figure 4-36.

Figure 4-36:  Insert Live Template

Another way to add a Live Template is to surround your
code selection with the Live Template. After you select the
code, navigate to the Code menu and then select Surround
with Live Template or just press Option+Command+J on
Mac Alt+Ctrl+J on other OSes to surround the selected
code block with the code snippet, as shown in Figure 4-37.

We discussed Live Templates Java code in this section but they are available for all the structured
files editable on Android Studio. If you navigate to HTML/XML, you can see the templates for
HTML and XML files. If you expand the Android group, you will see around 18 (this number can
change for the new versions of Android Studio) preconfigured live templates on the list. Toast Live
Template is a good example for that. You can type Toast into your activity class and create a Toast
object easily with Live Template.

We suggested expanding all the groups and exploring all the predefined templates. Try to use them
in your application to get in the habit of using the templates. Keep in mind that there are pre-
implemented code templates to launch activities, such as the starter template. If you need to define a
constant (final) Java variable, just typing const, it will get the const Live Template and write a final
variable for you.

Creating Live Templates
According to your applications, habits, or code practices you may need additional templates to speed
your application development. In that case, you need to create your own template to share with your
team to increase code reusability.

Figure 4-35:  Cursor highlight
in a Live Template

Figure 4-37:  Surrounding Live Templates

Android Studio Live Templates  x  105

Creating a Live Template
In this section you create basic Live Template. In the first example, you create a
function template to get the absolute value of a given variable.

Before starting to create a new template, we should navigate back to the Editor
tab of Live Templates section of Preferences window (refer to Figure 4-33).

	 1.	 Select a group from the Live Template group list, click the + button
and click Live Template as shown in Figure 4-38 to start adding a live
template.

	 2.	 Select other to add our absolute value template.

When you select a Live Template, you will see the window shown in Figure 4-39, where you
customize the Live Template.

	 3.	 Type an abbreviation, and make it short and easy to remember. We named our Live
Template abs. Write the description.

Listing 4-1 shows the necessary code to create the template. Type this code in the Template
text area shown in Figure 4-39.

Figure 4-39:  Adding a Live Template

Figure 4-38:  Add
template button

106  x  Chapter 4   Android Studio In Depth

Listing 4-1:  Live Template code for absolute value

ABS = Math.abs(VAR)

Variables are defined as shown in Listing 4-1, starting and ending with the $ sign. You can
also configure variables by clicking the Edit variables button, which opens the window
shown in Figure 4-40.

Figure 4-40:  Edit Template Variables window

note  Variables can be anything that fits the context of the template. For exam-
ple, an Android object can be a variable for a template in the Android group of
templates.

	 4.	 Select the context you would like to apply this template. You will see a blue text link named
Define, as shown in Figure 4-39. After you click it, it will prompt the possible contexts to
select from, as shown in Figure 4-41.

In this example, we selected Java because it uses Java’s Math
library. As you can see in Figure 4-41, you are able to select the
type of text: Comment, String, Expression. and so on.

Create a Surrounding Template
The Live Templates that are able to surround selected text appear
under the surround group, as shown in Figure 4-42.

Let’s create a template to surround selected code text with an if
statement that checks whether a variable is null.

The process is the same as adding a template but you also need to
define where in the template the selected text will be placed. You
do that by defining the $SELECTION$ variable. You can see the
sample template IFS, shown in Figure 4-42.

Figure 4-41:  Live Template con-
text list

Code Refactoring in Android Studio  x  107

You can also add live templates to surround selected code with block comments. If it is easier for
you to remember Live Template shortcuts than the Android Studio block comment key combination
(Option + Command + /), it might be easier for you to create a live template with a synonym to add
a block comment.

Figure 4-42:  Surrounding Live Template

Code Refactoring in Android Studio

We visited the refactoring tools briefly in the “Android Studio Menu Items” section. This section
dives into the details of what you can do with the code refactoring tools.

Having efficient refactoring tools can be a lifesaver in many situations. For example, you may
change your mind a lot during development, or there may be a change in the software design, or you
may want to change your naming conventions or function signatures or variable naming, and you
want to change everything all at once. For these situations, Android Studio provides tools and GUI
helpers to identify what you are doing.

You can see refactoring options in Figures 4-14 and 4-15, which appeared earlier in this chapter,
after pressing Control+T on Mac or Ctrl+Alt+Shift+T in Windows, or you can also access refactor-
ing options when you right-click on a Java file, as shown in Figure 4-43. The easiest method is to use
the shortcut Control+T to see all the refactoring options.

Some popular refactoring options are discussed in the following list:

➤➤ Rename—You may need to rename a file, class name, or variable name. If you’re changing a
file or class name, you will need to look for all references to it and rename them as well. This
is a mainstream tool almost all IDEs provide.

108  x  Chapter 4   Android Studio In Depth

To do this, go to your code file and select a variable or any method, field, or even class
name; right-click it or press Shift+F6 or Control+T (Ctrl + Alt + Shift + T for Windows/
Linux) to select the rename option. This will highlight the selection and when you finish
renaming, all related references will be updated.

➤➤ Pull/Push Members Up/Down—This option helps you manage inheritance of recently devel-
oped methods in your current class. Pull Members Up will send the selected methods up
to the super class or interface. Push Members Down will take the selected members of the
superclass or interface to the current child class.

To use the Push Members Down or Pull Members Up option, your current class should
have a base class or implement an interface. To access these methods easily, use Control+T
(Ctrl + Alt + Shift + T for Windows/Linux) again to get the refactor options, and select Push
Members Down or Pull Members Up to implement the interfaces.

When you select the Push Members Down option, the window shown in Figure 4-44 opens
so you can select the members to push. After you’ve made the selection, refactor your code
by pressing the Refactor button.

Figure 4-43:  Refactoring options right-click menu

Code Refactoring in Android Studio  x  109

Figure 4-44:  Push Members Down window

The Pull Members Up option works like the Pull Members Up operation, as shown in
Figure 4-45.

Figure 4-45:  Pull Members Up window

➤➤ Encapsulation—This option opens a window that allows you to see and select from all the
fields. Selected fields are encapsulated with getter and setter methods, as shown in Figure 4-46.

➤➤ Change Signature—This refactoring option allows you to refactor a signature name. Press
Control+T and select Change Signature to see the Change Signature window shown in Figure
4-47. This window presents the visibility, return type, and name of the function. It also
allows you to add and remove parameters for the existing function. It is a practical way to
edit the function and complete the refactoring.

110  x  Chapter 4   Android Studio In Depth

Figure 4-46:  Encapsulation

Figure 4-47:  Change Signature window

Code Refactoring in Android Studio  x  111

Refactoring is a very useful technique to clean up the code you have written in a rush or while just
trying out code snippets.

Another very useful concept is extraction of resources. The following list discusses the options:

➤➤ Extract Variable—Extracting an expression into a variable instead of recursive method
calls is widely used to write clean, easy-to-understand code. To extract an expression into a
variable, first select the expression and select Variable under Extract. The selection will be
assigned into a new variable.

➤➤ Extract Constant—You may end up using the same type of string or int values over and
over in your code. Extracting repeated constant values into Constants saves memory and
offers better maintainability.

To extract into a constant, select the value or expression and select Constant under Extract.
The selection will be turned into a public static final constant in class scope. You will
also be asked if you want to Replace all occurrences and Move to another class.

➤➤ Extract Method—As you progress in a project, sooner or later you will notice repeating code
blocks. This repetition causes the same bugs to appear in many places in a project and cre-
ates hard-to-maintain code. Extracting a code block into a method is a powerful technique to
organize your code.

To do this, select the code block you want to extract and then select Method from Extract.

Next, you are asked for the visibility, method name, and parameters, followed by a preview
to show your proposed method signature.

➤➤ Extract Interface—Although the extraction options covered so far are quite powerful and
simple, you may need more structural changes in your class hierarchy in your development
lifecycle. To extract an Interface from your class, navigate to the class in the target and select
Interface from Extract.

The Extract Interface dialog box opens to let you choose an interface name, package, and
methods to be added to the interface as a member.

Plus, Android Studio offers the option to rename the original class and create a copy of the
original interface with selected definitions from the original interface. When you click the
Refactor button, Android Studio automatically adds references and creates the new inter-
face, and adds references where the new interface has been implemented.

➤➤ Extract Superclass—Another powerful tool to manipulate your class hierarchy is to extract
a superclass from your target class. Extracting a superclass works pretty much the same as
Extracting an Interface.

Navigate to the class in the target and select Superclass from Extract. A dialog box will
open to let you choose a class name, package, and methods to be added to the superclass.
Next to each method is a checkbox to declare the extracted method as abstract.

Android Studio offers the option Rename original class and use superclass where possible
to change references for the given class to the newly created parent class. Clicking the
Refactor button will extract the superclass.

112  x  Chapter 4   Android Studio In Depth

Creating a Signing Key for Android Applications in
Android Studio

Creating a signing key is an essential part of the release process. Apps built with Android Studio need
to be signed to run on a device. During the development process, Android Studio uses a debug certifi-
cate, which makes the signing process almost seamless. However, signing becomes more important
when it is time to release your APK to the Google Play Store. You already know that the application
ID is the unique identifier. However, you need a proper way to keep the application ID safe.

An Android signing certificate is a standard key store certificate. Each key store can have more than
one key and certificate.

note  Signing certificates can also be created by external tools. In fact, in early
versions of the Eclipse-based Android Developer Tools, developers needed to
create their certificates via the command line.

To create a new signing certificate, select Create signed APK from the Build menu. Android Studio
will ask you to select the module to sign, as shown in Figure 4-48.

Figure 4-48:  Select the module to create a signed APK

Click the Next button to open the Generate Signed APK window shown in Figure 4-49. Enter the
path to save your key store somewhere safe, and provide a password for the key store.

note  The location of your key store file is crucial. If you happen to lose your
key, there is no way you can upload an update for your application. Always keep
your key store file secure and make sure you don’t lose it.

Creating a Signing Key for Android Applications in Android Studio  x  113

Figure 4-49:  Create new key for the signing certificate

Next, you need to provide an alias and a password for your key and complete the rest of the fields
shown in Figure 4-50. Click OK and you’re done.

Figure 4-50:  Certificate form

warning  Make sure not to forget your passwords. You will need to enter
them each time you need to sign an APK.

114  x  Chapter 4   Android Studio In Depth

Building APKs in Android Studio

Building APKs in Android Studio is very straightforward. Each time you select Make project from
the Build menu, a debuggable APK is packaged with the latest compiled code. The newly built APK
can be found under your module’s build/outputs/apk folder.

The previous section covered how to create a signing certificate. Click the Create signed APK option
from the Build menu and select your certificate. Android Studio will package a signed APK.

Android Studio lets you change build variants for the default APK. Click Select built variant from
the Build menu. On the bottom right of the IDE, the built variants window will be displayed. You
can choose between the debug and release build for each module. Chapter 6 covers how to create
custom build variants, which can be configured from this window.

Summary

This chapter touched on almost all the visible parts of Android Studio so that you are familiar with
them when you need any feature in the IDE.

The chapter has offered practical advice about the functions of Android Studio for file operations,
debugging, text, and code to refactor, edit, get help and access any part of the IDE for further
configuration.

Our intention is that this chapter provides a useful guide to all important features: editing texts,
creating templates, editing shortcuts, accessing required extra features of Android Studio to be a
good Android Studio user and become an efficient Android developer.

Layouts with Android Studio
WHAT’S IN THIS CHAPTER?

➤➤ Layouts with Android Studio

➤➤ Layout previews

➤➤ Designing layouts with Android Studio

➤➤ Resource management

➤➤ Editing component properties

➤➤ Using other layout tools

➤➤ Asset management

So far in this book, we have covered Android Studio tools, mostly dealing with files and fold-
ers and assistants to the general application development process. This chapter explores details
about another important part of the application development process: user interfaces.

User interfaces are defined with XML files in Android applications. User interface elements in
Android are configured using XML tags and attributes. The Android operating system ren-
ders the user interface using the XML file and Java code to draw the user interface elements to
Android devices.

Common terms used in Android UI development are layout, view, and widgets. We reference
these many times in this chapter and in later chapters as well.

View is the base class of user interface elements. Widgets are derived from the View class
and they become a ready-to-use user interface element such as images, texts, text inputs,
drop-down boxes, and so on. Layouts are the containers for views and widgets; they are
group of views.

5

116  x  Chapter 5   Layouts with Android Studio

You should now create a new project, as you did in Chapter 3. Name it ChapterFive and add a
BlankActivity. You will use this new project in the following section.

Layouts with Android Studio

Layouts define the structure for a user interface in Android applications and app widgets. In
Android applications, each Android activity handles the user interface operations so all activities
have a layout design. App widgets are the small interaction interfaces placed in the home screen of
Android for easy access to main functions of an application. Layouts are being used for the struc-
tured design of these interfaces.

XML is used to create a layout, which is stored in the res
/layout folder. The build system automatically recognizes
XML files in the layout folder as a user interface element to be
displayed.

When you create a new application, you select an activity,
for which layouts are auto-generated and placed in the
layout folder. If you created the ChapterFive project with a
BlankActivity, as suggested in the chapter introduction, you
will see the layouts shown in Figure 5-1.

Figure 5-1 shows two layout files and one activity, which means
that you can use layouts inside layouts to create reusable user
interface structures in multiple activities and ease the refactoring
of the user interface design.

Adding a New Layout File
Now that you know where layouts are stored, let’s add a new layout to your recently created
application. In Android Studio, it is pretty easy to identify a layout file and add it to your project.
Go to File ➪ New, select XML at the bottom of the menu, and then Layout XML, as shown in
Figure 5-2.

After you click Layout XML File, the window shown in Figure 5-3 opens. In this window, you can
name the layout and select the Root Tag.

The Root Tag field shows the structure type for the layout. The following list describes layout tags
you can use to arrange views.

➤➤ Linear Layout—Linear Layout is used to arrange views as a single row with multiple columns
or a single column with multiple rows. Each element comes either after or beside the previous
element. Designers can choose to arrange this type of layout as they prefer. This is an easy
layout to use.

➤➤ Relative Layout—Relative Layout is used to arrange views relative to another view’s posi-
tion. This layout is a little harder to manage than the Linear Layout because it is the design-
er’s task to position elements relative to one another.

➤➤ Frame Layout—Frame Layout is used as a placeholder layout for a single view. It makes it
easier to arrange a view’s position in another layout. Video playback is a good Frame Layout

Figure 5-1:  Layouts in the
Project view

Layouts with Android Studio  x  117

use case. Because video playback is done using a single video view, assigning a video view to
a Frame Layout would make video seem better aligned with the application user interface.

➤➤ Table Layout—Table Layout creates table-like views with columns and rows. You can
choose how many columns you want for each row.

➤➤ Grid Layout—Grid Layout offers the ability to create a user interface with elements arranged
in multiple rows and columns. For example, if you need to list multiple photos in the same
screen at once, you can create a grid to show their thumbnails easily. Although Grid Layout
offers functionality that’s similar to Table Layout, it is more like a mixture of Table Layout
and Linear Layout.

Figure 5-2:  Adding a new layout in Android Studio

Note  In addition to the preceding list of layouts, List/Recycler/GridView are
useful views that display items in their own layouts using adapters, and should
be used to display dynamic data efficiently. However, they are not used as a lay-
out in Android SDK, so we don’t cover them in this chapter.

118  x  Chapter 5   Layouts with Android Studio

Figure 5-3:  Configuring a new layout file

Layout Design Structure in Android Studio
Now, let’s discover Android Studio’s basic layout design and development properties. We go into
greater detail in later sections.

Right after you add a new XML layout, Android Studio opens it as an XML file or in Design mode.
If a layout has been opened in Text mode, you will see the content of the XML file: either just the
file, or the layout preview as well, as shown in Figure 5-4.

In case the preview is not opened by default, you can activate it with the Preview button on the edge of
Android Studio or you can navigate to the Tool Windows option on the View menu and select Preview.

Note  Preview is a recent enhancement in Android Studio, as compared to
Eclipse IDE. In Eclipse, you would switch to the Design perspective to see the
effects of changes made in a layout XML file. Now, with Android Studio, you
are able to directly see the preview of the layout right after you make changes to
the XML file.

For a professional Android UI developer, using XML files is the best way to develop the user inter-
faces. However, if you want to drag and drop, Android Studio provides the Palette tool shown in
Figure 5-5, with layouts and views to easily design the user interface. To switch between design per-
spectives, you can use the Text and Design buttons.

Layouts with Android Studio  x  119

Figure 5-4:  Layout in text mode

Figure 5-5:  Visually designing in Android Studio

120  x  Chapter 5   Layouts with Android Studio

The Palette view shows a preview of the layout for the selected device. In Design view, you see a
component tree that defines the child and parent relationships with additional views in the layout.
You can also change the order of views in the component tree because some layouts require that.

There is also a Properties window where you can edit the properties of a layout, view, and all other
user interface components. In Text mode, the editing is done within the XML tags. We revisit the
design details with Android Studio in later chapters.

Layout Previews

The Preview window helps designers see the
changes applied to a layout instantly without
launching the application.

Having an efficient preview tool is really
important for GUI-based application devel-
opment. This is especially true for mobile
applications, which rely on a good user expe-
rience, especially for Android application
development.

Android is growing faster than any mobile
platform, not only on mobile phones but
on wearables, TVs, cars, and Google Glass.
There are probably hundreds of different
screen sizes running Android, so developing
a generic user interface or developing a user
interface for the most used sizes and resolu-
tions is really critical in Android application
development to be sure all users have a good
experience.

With the Preview tool, you can test your lay-
out on any kind of screen for defined resolu-
tions, the orientation of the device, and older
Android SDKs. These functions are accessed by pressing the appropriate buttons, some of which are
shown in Figure 5-6.

For example, clicking the third button from the left in Figure 5-6 rotates the device image horizon-
tally so you can see how your layout looks when the target device’s orientation changes.

Layout Rendering Options
Android Studio provides practical preview options to easily render the layout for all devices and
SDK versions simultaneously on the same screen. The options are shown in Figure 5-7.

Figure 5-6:  Preview window

Layout Previews  x  121

Having rendering options that enable you to see preview-
based Android versions and screen sizes eliminates the work
of opening each rendering option one by one, which makes a
UI designer’s life easier.

Previewing Virtual Device Views
Because Android is an open source operating system, many
companies, including large global brands and local OEMs,
have customized and used it on their own hardware devices.
As a result, you can see Android running on screens of almost
any size.

Testing applications on the many common devices used by consumers is a necessary but painful and
slow process. Launching applications on a wide variety of virtual devices during development is an
option, but it is a very time-consuming process. Another option
is to try layouts on real devices, but this is also a time-consuming
and expensive process.

Android Studio improves this process by supplying predefined
screen devices for previewing the layout during development. You
can select devices by clicking the button with a device name to
display the list of available previews, as shown in Figure 5-8.

You can also select tablet and TV-sized devices, and wear devices.
As Figure 5-8 shows, entries in the list match the name, screen
size, and resolution of the target product. If you want to test with
other, generic devices, navigate to the Generic Phones and Tablets
option to see the list shown in Figure 5-9.

Figure 5-9 shows the list of predefined generic screen resolutions
and sizes for testing. If you want to define a new size or resolution
you can select the Add Device Definition option, which leads you
through the process of creating a new virtual device. Once created,
you can use its settings in the preview view. As you saw in Figure
5-8, we use a virtual device for previews (the Nexus 4 option that is
checked).

Previewing on Different Android SDK Versions
Previewing your layout according to size and resolution is not enough if your application’s audience is
large; you should also check that the layout is rendered the same in the current Android SDK. Many
people use different Android devices with different release versions, so you can’t be sure that every-
body will use the same version at the same time and that your UI will work the same in all of them.

At each big release of Android, there can be minor or major changes to the API, which is directly
related to UI layout. For example, FrameLayout is used a lot but was not a defined layout in earlier

Figure 5-7:  Layout rendering options

Figure 5-8:  Selecting a layout to
preview in Android Studio

122  x  Chapter 5   Layouts with Android Studio

releases of Android and so may not be rendered in older versions.
To avoid a situation like this, install the Android SDKs you want
to test the UI on, and preview your layout with the major SDK
versions, as shown Figure 5-10.

Selecting Themes
A theme is a set of styles applied to all user interface elements to
keep them looking similar in all application windows. There are
many examples. A font style is a theme: When you define a font
and apply it to all text views in the application, all text will be
similar. A predefined color style also can be applied to all views
to keep them in a similar color.

Predefined themes for Android applications come with Android
SDK. You will noticed that a predefined theme has been assigned
by Android Studio while previewing your layout. However, there
are additional style options for layouts. Just click the Theme
Selection button (to the right of the device orientation button
shown in Figure 5-6) to open the window shown in Figure 5-11.

Figure 5-11:  Theme selection window

Themes enable you to observe the appearance of the layout in any selected application style. Using
themes makes styling recurring views with same look easier. Views such as dialogs and alerts can

Figure 5-9:  List of generic devices

Figure 5-10:  Picking the Android
SDK version for previewing

Designing Layouts with Android Studio  x  123

show different content but have the same appearance by applying same theme to those UI elements.
Developers might want their application to be either full screen or only show the Android action bar
while running; this can also be done using themes. (Notice the themes ending with NoActionBar in
Figure 5-11.)

Designing Layouts with Android Studio

In this section, you add user interface components and views to the layout you are designing.

Note  Layouts can also be designed within Java code, but it is not a recom-
mended development practice.

There are two ways to add views to your layout. The first option is to use the Palette tool to add a
predefined view or layout to your user layout. Figure 5-12 shows part of the Pallet.

Figure 5-12:  Palette tool

Note  Layouts can contain one or more other layouts. This way you can reuse
a layout you previously designed in many other layouts.

124  x  Chapter 5   Layouts with Android Studio

The Palette tool includes the following views and layouts:

➤➤ Widgets—Widgets are single views that present a user element such as TextView,
RadioButton, CheckBox, Button, and Switch.

➤➤ Text Fields—Contains predefined text fields for different types of text inputs such as pass-
word, date time, number, and e-mail. Selecting a text field with a predefined input type will
make keyboard input easier. For example, when you select a number field, the keyboard
opens with only numbers available.

➤➤ Containers—This group of views can contain any view type such as RadioGroup, ListView,
GridView, SearchView, and VideoView.

➤➤ Date Time—This group includes date- and time-related views.

➤➤ Expert—This group includes view items with advanced uses such as the TextureView and
SurfaceView, which are used to render OpenGL graphics. They are used primarily by game
developers. Resources that use OpenGL will be presented using the SurfaceView.

➤➤ Custom—This group has four items to define customized views that are not included in the
palette.

Let’s play with a Plain TextView widget in our layout.

	 1.	 First drag a Plain TextView widget (refer to Figure 5-12) from the pallet to the preview.

The Plain TextView widget will show up in the layout preview, and an XML entry is created
in the Text mode view. According to your choice of layout, its location on the screen may
change. Figure 5-13 shows that views are added vertically. If LinearLayout was chosen to be
horizontal, views would be added side by side, horizontally.

Figure 5-13:  New components added to a layout

Designing Layouts with Android Studio  x  125

	 2.	 After adding the views, you may want to make changes to the view’s ID, text, position,
background color, and position. You can do this from the Properties pane at the right of the
Designer window shown in Figure 5-13. Setting the id property gives a unique ID for the
view. If you set the text property to Chapter Five, the text Medium Text will disappear and
you will see Chapter Five in the preview window.

	 3.	 In the Properties pane, you can change the text’s width by setting the layout:width prop-
erty to fill_parent to extend it and use all the available vertical space.

	 4.	 Finally, set the text’s position to center by setting the gravity property to center_horizon-
tal. When you set the view’s property to center, the text will be centered. You can also set it
to left or right, which will move the text in that direction.

After you change the width and gravity properties, you see that the view has been changed
as well, as in Figure 5-14.

Figure 5-14:  Editing properties

In the Properties window, some items have a list of values to set and some are set manually. You
can also access the Help documentation by clicking the question mark (?) button on the top right.
Clicking the rightmost button reveals the hidden properties for more advanced view settings.

To set properties in XML format, you have to know the names of the elements because you have to
type them. However, Android Studio provides help by listing all the options right after you type < to
start a new tag in the XML file, as shown in Figure 5-15.

126  x  Chapter 5   Layouts with Android Studio

Figure 5-15:  Adding a new component in XML files

After adding the element tag in the XML file, you can edit the attributes. You will see the pos-
sible properties listed when you hit Control + spacebar. After you add a property, you set its
value by first typing two double quote marks (""). Then place the cursor between them and press
Control+spacebar to list the possible values you can assign to the property. Figure 5-16 shows an
example of changing the properties of the CheckBox View shown in Figure 5-15.

Figure 5-16:  Editing view properties in XML

Managing Resources  x  127

Managing Resources

To make a better Android UI, you need to know how to use static resources, strings, color defini-
tions, style definitions, dimensional definitions, and drawables.

Resources are the main building blocks for layouts. They are reusable and easy to manage, and they
enable developers to create consistency over all their user interfaces. Relying on the Android guide-
lines helps make your application easy for end users.

This section provides a brief overview of strings, styles, colors, dimens, and drawable resources and
provides examples of how to use them in the layouts.

Using Strings
While developing user interfaces, you will need to use text on the screen. The Android guidelines
suggest adding text to user elements using string resources instead of just writing the text to XML
files or to a text property.

You create string resources in another XML file containing a list of elements. Initially there are only
two items, but for this example we added new ones in a similar style—using the string tag in the
XML file. Listing 5-1 shows the content of the string.xml file located in the res/values folder.

Listing 5-1:  string.xml content, string resources

<resources>
 <string name="app_name">ChapterFive</string>
 <string name="action_settings">Settings</string>
 <string name="ok_button">OK</string>
 <string name="chapter_name">ChapterFive</string>
 <string name="next">Next</string>
</resources>

To use a string resource in the UI layout, you assign a property’s text starting with @string in the
XML file. For example:

"android:text="@string/chapter_name"

You can also do this using the Properties window. With the mouse pointer on the property field,
click the button that appears and a window will pop up that lists all the resources you can use, as
shown in Figure 5-17. Select the string resource to assign to your view.

Notice the New Resource button at the bottom of Figure 5-17. It is another alternative to add a new
string resource to the string.xml file.

Using Styles
String resources are not the only resources you can reuse for your views. There are also style
resources to assign to your view to change the appearance of text, including background color, size
of text, font, shadowing, and so on.

128  x  Chapter 5   Layouts with Android Studio

Figure 5-17:  Resource selection window

Style resources are stored in the res/values/styles.xml file. Some predefined styles are already in
the styles.xml file. Let’s quickly make a new style to apply our layouts.

Listing 5-2 shows a simple style resource in the styles.xml file. It uses the style XML tag to
create a new style to change the text color, size, padding, gravity (placement on the layout), and font.

Listing 5-2:  Style sample

<style name="NewStyle" parent="AppTheme">
 <item name="android:textColor">#229933</item>
 <item name="android:textSize">20sp</item>
 <item name="android:padding">5sp</item>
 <item name="android:typeface">monospace</item>
 <item name="android:gravity" >center</item>
</style>

To apply a style to a view, in the text mode of layout, add the style="@style/NewStyle" line or
find the style property to select the NewStyle resource from the list. After you apply the style to the
view, you will see that the view element changed in the preview. See Listing 5-4 in the following
section for a sample style assignment in an XML layout file.

Managing Resources  x  129

Styles are important. To make your user interface consistent, reusing and applying styles to all views
will make them seem more professional and ordered.

Using Dimens
Dimen definitions are used to change the width, length, height, and margins of the assigned view in
the layout for devices with different resolutions and screen sizes.

Using dimens gives you the flexibility to both design your layout for a specific device size and to
assign a dimen resource to change to a different device size at runtime. You can create a better expe-
rience with all devices using the dimen resource.

Dimen tags are stored in the res/values/dimens.xml file. Dimension resources are created under
the resources XML tag with dimen tags, as shown in Listing 5-3, which is the dimen.xml file gen-
erated right after the project was created.

Listing 5-3:  dimen.xml content

<resources>
 <!-- Default screen margins, per the Android Design guidelines. -->
 <dimen name="activity_horizontal_margin">16dp</dimen>
 <dimen name="activity_vertical_margin">16dp</dimen>
 <dimen name="fab_margin">16dp</dimen>
</resources>

To use the dimen resource right after definition, you need to find the resource that is related with
the dimensions of the view. For example you can go to the layout:margin property and click the
button to select from the available resources in the window that opens.

Assignment of the dimen resource in XML files is similar to assignment for strings and styles. For
example if you want to assign fab_margin to your check box, added in previous section, you need
to define the layout:margin attribute and assign the dimen with "@dimen/fab_margin", as in
Listing 5-4.

Listing 5-4:  Sample view with style, dimen, and string resources

<CheckBox
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:gravity="center"
 android:text="@string/chapter_name"
 android:id="@+id/checkBox"
 style="@style/NewStyle"
 android:layout_margin="@dimen/fab_margin" />

All the defined resources are auto-referenced by Android Studio, so right after you start typing
@dimen, @string, and @style recently defined resources will be listed.

130  x  Chapter 5   Layouts with Android Studio

Using Colors
Color definition resources can be used to assign layout
and view color-related properties such as background,
text color, border color, and so on. Color resources
are defined in the res/values/colors.xml file. Right
after you define the color, the editor in Android Studio
provides a preview of the color on the left (a colored
square), as shown in Figure 5-18.

As you do for other resources, you assign a color by finding the property that can take a color (such
as background) and assign the resource.

In an XML file, typing android:background="@color/colorBlack makes the background black.

Using Drawables
Drawables are resources which contain graphics that can be drawn on screen. They can be applied
directly in the XML layout file with the android:drawable attribute. As in the previous example,
you can add a color value as a drawable with android:drawable="@color/colorBlack".

Of course, drawables are not limited to color values and can be used for bitmaps and nine patch
files; state, level, and layer lists; and transition, clip, scale, shape, and inset drawables.

Drawables can be defined in XML format. Listing 5-5 provides a simple example to draw a
rectangle with rounded corners and has a gradient fill.

Listing 5-5:  Drawable definition

<shape
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="rectangle">
<corners
 android:bottomRightRadius="10dp"
 android:bottomLeftRadius="10dp"
 android:topLeftRadius="10dp"
 android:topRightRadius="10dp" />
<gradient
 android:endColor="#DD888888"
 android:startColor="#DD333333"
 android:angle="45" />
</shape>

Other drawables that can be declared in XML are vector, transition, state, and animation
drawables.

Figure 5-18:  Color resources definition

Using Layout Tools  x  131

Using Layout Tools

Android Studio provides developers translation capabiltiy to ease localization of Android UI text,
and Activity Association to assign Android Activities to layouts and indicate the application themes
on previews.

Translation
As a developer, you might be surprised that adding a translation will boost your downloads. There
are several markets and languages that have a large Android ecosystem but low levels of English
adaptation.

Translating your text resources can be simpler than you might imagine if you have externalized
all the strings. As you saw in the “Using Strings” section, each string value should be externalized
in the strings.xml file and never under any condition hard coded.

Right-click the strings.xml file and select Open Translations Editor. This editor not only serves
as a key/value strings editor but also helps you to localize your resources. Figure 5-19 shows the
Translation Editor.

Figure 5-19:  Translation Editor

132  x  Chapter 5   Layouts with Android Studio

The green plus sign icon at the top left of the window creates a new key value pair, as shown in
Figure 5-19. Because you don’t have any other locale yet, the created values are the default locale
for the app. The default locale acts as the fallback locale if no localization matches the user locale.
Figure 5-20 shows the expanded list of locals.

Figure 5-20:  Expanded list of locales

The second blue globe icon in Figure 5-10 adds a new locale to our app. You can choose to add sev-
eral locales and they will all show up in the Translation Editor. To edit a value, select a cell from any
locale and the key, default value, and the translated value you wish to enter will be displayed at the
bottom of the editor, as shown in Figure 5-21.

Figure 5-21:  Translated and default value

Ideally an application should have a full list of values for each key in each locale. If a value is miss-
ing, the default for that value will be used instead. To check for missing values, click the Show only
keys needing translations check box and the editor will filter out the complete localized keys.

Supporting many locales looks pretty easy but in practice can be very troublesome. How would you
support an East Asian language with a different alphabet if you do not have any knowledge of the
target language? Fortunately, Google has a solution for that. You can buy a language for the desired
locales and then you can ask for only the needed value using the filter tool, which helps you identify
the required value. To order a language, click the Order a translation link at the top right of the edi-
tor (refer to Figure 5-19). Android Studio will open a web page in your default browser, as shown in
Figure 5-22.

Next, you need to select your source language and upload the XML file. In the next step, you will
be asked for the target languages you want to order. This is a paid service and you pay for the

Using Layout Tools  x  133

number of languages and items you need, but it’s well worth the expense because with the right set
of locales, your market accessibility will dramatically increase.

Figure 5-22:  Android Studio language ordering web page

Activity Association
All layouts are associated with an activity during runtime. However, because this association comes
during runtime, it can be difficult to see a preview of the layout during development because you
might miss the theme selection for the activity, which is made in the AndroidManifest.xml file with
a setting similar to the following:

android:theme="@style/AppTheme.NoActionBar

There are two ways to set the layout’s context: either associate an activity visually in Design view or
in the XML file. In the XML file, you need to associate an activity using the tools:context attri-
bute in the layout tag itself, as shown in Listing 5-6.

Listing 5-6:  Theme association in layout

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:weightSum="1"
 android:background="@color/colorBlack"
 tools:context=".MainActivity">

 <CheckBox
 android:layout_width="match_parent"

134  x  Chapter 5   Layouts with Android Studio

 android:layout_height="wrap_content"
 android:gravity="center"
 android:text="@string/chapter_name"
 android:id="@+id/checkBox"
 style="@style/NewStyle"
 android:layout_margin="@dimen/fab_margin" />

</LinearLayout>

In Design view, click the MainActivity button and select the Associate with other Activity option as
shown in Figure 5-23.

Figure 5-23:  Associate with other Activity

After association, the layout preview will change if your Activity theme is different than the cur-
rently selected theme.

Asset Management

Asset management is one of the most undervalued topics in
Android development. Not surprisingly, developers like to
write code and may tend to skip best practices when it comes
to assets such as images and bitmaps.

Since the early versions of Android, Google invested in tools
to help developers deal with assets. The draw nine patch tool
was one of the early tools provided for handling images that
can be displayed properly on different screen sizes. Android
Asset Studio and other tools integrated with ADT followed.

Android Studio is integrated with tools and offers different
project views to group and organize assets. Each Android
module has a res folder to host all assets as well as other
resources except for source code. Because the Android eco-
system has a wide variety of devices with different screen
sizes and densities, assets that can handle these different
screen sizes are needed. Figure 5-24 shows asset folders to
address resolution/density differences.

Early on, Android limited this list to ldpi, mdpi, and hdpi,
but with the higher density pixels and larger screens available Figure 5-24:  Asset resolution list

Asset Management  x  135

today, you have up to xxxhdpi density. Ideally, an image file should be resized for each screen resolu-
tion/density your app supports.

Android view (as opposed to Project view shown in Figure 5-24) offers an easier-to-follow visual
structure for grouping the asset files (see Figure 5-25).

Figure 5-25:  Visual structure for asset resources

This view groups different image sizes under the same resource name, in the mipmap folder, and
also displays dpi info and the number of files in the folder. Android Studio handles all resizing pro-
cessing when an image resource is created or imported via Android Studio. To import an existing
image, right-click the project and select Image Asset from New, as shown in Figure 5-26.

Next, the Asset Studio window is displayed for importing your image, as shown in Figure 5-27.

Asset Studio creates different sizes of resources from your input and places them into the appropri-
ate folders.

136  x  Chapter 5   Layouts with Android Studio

The wizard has several options, as follows:

➤➤ Asset Type—Allows you to choose icons between launcher, action bar/tab, or notification
(see Figure 5-28).

Figure 5-26:  Adding an image asset

➤➤ Foreground—Allows you to select an image, clip art, or text as an asset (see Figure 5-29).

Asset Management  x  137

Figure 5-27:  Asset Studio window

➤➤ Image File—Allows you to choose an image.

➤➤ Additional Padding—Increases the space around the image.

138  x  Chapter 5   Layouts with Android Studio

Figure 5-28:  Asset type listing

➤➤ Foreground Scaling—Allows you to choose between cropping or centering the image during
resizing.

➤➤ Shape—Allows you to choose the output image shape.

➤➤ Background Color—Allows you to choose a background color for the created images.

Asset Management  x  139

➤➤ Resource Name—Allows you to decide on the output file name. All the various sizes of the
same image will be named the same but will be placed into appropriate folders based on the
image size.

Figure 5-29:  Foreground options

Another useful tool for creating image resources is the Vector Asset Studio. To create a vector asset,
right-click on the project tree and select Vector Asset under New, as shown in Figure 5-30.

140  x  Chapter 5   Layouts with Android Studio

Figure 5-30:  Adding a vector asset

Vector Asset Studio is very similar to Asset Studio. Vector Asset Studio can create vector assets from
material icons or local SVG files. To create a vector asset based on a material icon, select the first
option, as shown in Figure 5-31.

Next, configure vector by selecting icon, setting size, and opacity from Vector Asset Studio window:

➤➤ Icon—An icon that the vector asset will be built from

➤➤ Size—The output size of the asset in terms of dp

➤➤ Opacity—The opacity of the created vector asset

The Local SVG file option offers the same configuration except that it asks for a file instead of an
icon.

Summary  x  141

Figure 5-31:  Creating a vector asset

Summary

This chapter covered the details of user interface design and development with a focus on layout.
User experience is at the heart of Android application development to reach a wider audience. We
covered the functions, including resource management, that we think are important and which you
will need to use repeatedly during layout development with Android Studio.

Note  Read our blog at http://www.devchronicles.com/2016/06/expert-
android-studio-book-updates.html to see the changes announced at
Google I/O 2016.

http://www.devchronicles.com/2016/06/expert-android-studio-book-updates.html
http://www.devchronicles.com/2016/06/expert-android-studio-book-updates.html

Android Build System
WHAT’S IN THIS CHAPTER?

➤➤ Android build system: Gradle

➤➤ Using Gradle

➤➤ Managing dependencies

➤➤ Configuring Android Plugin for Gradle

➤➤ Writing a Gradle plugin

Android Studio has introduced many changes to the Android development lifecycle that are
limited not only to the IDE and tools but also to the build system. A Gradle-based build sys-
tem was introduced with the initial release of Android Studio.

Prior to Android Studio, the Android ecosystem did not have one default build system. Some
developers relied on Apache Ant scripts, whereas other developers preferred more sophisti-
cated Maven builds. Another popular way to build Android apps uses mk files, which were
widely used by developers using the Native Development Kit (NDK).

A common and yet simple approach followed by developers was to copy libraries (jar or aar
files) into the libs folder and let Eclipse build tools to handle the build. However, this approach
created problems when the project was integrated with source control systems. Although
Maven addressed most of the dependency and automated test/build issues, it introduced
another layer of complexity and performance problems.

In this chapter, you learn how to use Gradle effectively to control builds, manage dependencies
and, even better, how to add custom tasks by writing your own plugins.

6

144  x  Chapter 6   Android Build System

Using Gradle

The Gradle build system was first released in 2007. Unlike Maven, which relies on XML, Gradle
uses a Groovy-based domain-specific language for project configuration.

Basically, Gradle offers a simpler syntax to declare dependencies and build properties. It can eas-
ily be extended and used for complicated tasks and large projects. Gradle uses a directed acyclic
graph to determine the order of the tasks. Gradle is widely used to build Java, Scala, and, of course,
Groovy projects.

Gradle met Android in the release of Android Studio. Android Studio comes with a Gradle wrap-
per for seamless integration with Gradle. The Android build system offers an Android Plugin for
Gradle, which not only takes care of all IDE-based compiles and builds but Gradle can also run
standalone even when Android Studio is not installed. This allows Android projects to be easily
integrated with Continuous Integration servers such as Hudson and Jenkins.

Anatomy of Gradle
Gradle build configuration is defined in the build.gradle files in Android projects. Build files exist
both in modules and in the project to configure properties related to the given scope. A build file
typically contains Android plugins to configure your project.

Project scope is defined in the build.gradle file and is mainly used to declare project-wide reposito-
ries and dependencies, as shown in Listing 6-1.

Listing 6-1:  build.gradle file content

buildscript {
 repositories {
 mavenCentral()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:1.3.0'
 }
}

allprojects {
 repositories {
 mavenCentral()
 }
}

This build file adds mavenCentral as a repository and the classpath dependency for the Android
Plugin for Gradle version 1.3.

Using Gradle  x  145

Note  The Android Plugin for Gradle has introduced some changes that broke
backward compatibility in the past. An infamous change that resulted in broken
builds happened with version 1.0 when the runProguard property was changed
to minifyEnabled. Always take a look at the change log before upgrading your
Android Studio or Android Plugin for Gradle.

In addition to the project-scope build.gradle file, each module has its own build.gradle file for
project-specific configuration. The module-scope build file is where the Android Plugin for Gradle
really kicks in and works its magic. The module build file offers the user numerous options, such as
the capability to override the manifest settings and to change the app package, source, resources,
and ID.

The Android Plugin for Gradle can configure the following:

➤➤ Android settings, such as compileSdkVersion and buildToolsVersion

➤➤ Product flavors and defaultConfig, which can override applicationId, minSdkVersion,
targetSdkVersion, and test information

➤➤ Build types such as debug, version name, and ProGuard configuration

➤➤ Dependencies such as external, local, or other modules

Listing 6-2 shows a typical module Gradle file.

Listing 6-2:  Module Gradle content

buildscript {
 repositories {
 jcenter()
 }

 dependencies {
 classpath 'com.android.tools.build:gradle:1.3.0'
 }
}

apply plugin: 'com.android.application'

repositories {
 jcenter()
}

dependencies {
 compile "com.android.support:support-v4:23.1.0"

146  x  Chapter 6   Android Build System

 compile "com.android.support:support-v13:23.1.0"
 compile "com.android.support:cardview-v7:23.1.0"
 compile 'com.android.support:appcompat-v7:23.0.0'
}

android {
 compileSdkVersion 23
 buildToolsVersion "23.0.2"

 defaultConfig {
 minSdkVersion 21
 targetSdkVersion 23
 }

 compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_7
 targetCompatibility JavaVersion.VERSION_1_7
 }

}

The first part of the build script declares repositories and dependencies for the module. As discussed
previously, you can use this configuration on both the project and module scope. These dependen-
cies are Gradle dependencies and should not be mixed with Android project dependencies. In this
example, we simply add the Android plugin for Gradle version 1.3.0 to make Gradle and Android
Studio work in harmony to build our Android project.

Next, you need to apply the Android Plugin for Gradle you have just added as a dependency. The
apply plugin: task followed by the plugin name does the magic. You can also choose to apply
other Gradle plugins, which would offer other tasks and functionality. This is covered in the
“Writing Your Own Gradle Plugin” section later in this chapter.

Once the Android Plugin for Gradle is applied, you can declare Android dependencies for the given
module. In this example, you use four support libraries from Google, which provides support to use
new widgets, APIs and libraries on older versions of Android. With the help of support libraries,
you can keep your minSdk level to target older versions while being able to use cool newly released
functionality.

You are almost there; finally, you can configure the Android plugin for Gradle in the Android block.
The Android Plugin for Gradle offers many capabilities, which we cover in this chapter.

Listing 6-2 gives a basic example that sets SDK and tool versions as well as declaring a version
of Java for the compile options. Although you may not need to tweak those configurations daily,
you definitely need to learn the details in order to have full control of your project. For example,
Retrolambda, a popular third-party open source library that lets you use Java 8 syntax on Android,
requires you to set the Java version to 8 in order for the Android Plugin for Gradle and Android
Studio to function properly.

Dependency Management with Gradle  x  147

Dependency Management with Gradle

Gradle offers a great way to handle project dependencies without the need to copy source code from
project to project. Even better is that Gradle’s way to declare dependencies is very simple when com-
pared to Maven, yet still very flexible and customizable. Gradle really shines when it comes to deal-
ing with dependencies.

Gradle offers different scopes for declaring dependencies:

➤➤ Compile—Declares dependencies that are required to compile the project from source code.

➤➤ Runtime—Declares dependencies that are needed during the execution of the compiled
code. Typically, the dependency is packaged with your compiled code but is not used during
compilation.

➤➤ testCompile—Declares dependencies that are only required during the compilation of test
source but will be left out while running the app.

➤➤ testRuntime—Declares dependencies that would be required while running the tests. Once
again, they will be left out while running the app.

External Dependencies
Working with external dependencies might be the most important offering of build systems. Unlike
local dependencies, external dependencies are available on repositories.

The most common approaches for dealing with external dependencies are as follows:

➤➤ Committing compiled binaries, which result in waste of disk space in source control, waste of
network resources during commits, and waste of both when upgrading to a newer version.

➤➤ Copying/cloning source code into project, which results in a copy/paste fork of the target
library. This approach will result in a project that is very hard to upgrade and is prone to
cloning the bugs in the project.

Gradle resolves external dependencies within given repositories, either public or private. Gradle
allows you to work with a range of versions of the dependency, or you can target the specific ver-
sion you want to work with. In addition to this flexibility, Gradle also offers much simpler syntax to
declare dependencies when compared to XML-based Maven syntax.

A typical Gradle dependency is declared with the library name followed by the version number. The
following code snippet adds a supported library as a dependency:

dependencies {
 compile "com.android.support:support-v4:+"
}

148  x  Chapter 6   Android Build System

The “+” character in the example tells Gradle that any version of support library is okay for the
project. In such a case, Gradle will look for the most recent available version of the given project.

However, most of the time you need to declare a specific version of the target library to ensure com-
patibility and reproducibility. For example, to have Gradle download version 23.1.0 of the target
library, type the version number as shown in the following code:

dependencies {
 compile "com.android.support:support-v4:23.1.0"
}

On the other hand, you may be looking to get minor version updates while still using a major ver-
sion. For example, you might want the most recent update based on version 23.1 (i.e., 23.1.X). Once
again Gradle lets you to use the “+” character for fine-tuning version numbers.

dependencies {
 compile "com.android.support:support-v4:23.1.+"
}

This example will retrieve the most recent support library based on version 23.1 but will not move
to version 24 even if it is available. You can use the “+” sign for any digit or digits in the version
number.

Although using Gradle is very easy and straightforward, you may need to have more control over
the transitive dependencies. Gradle dependencies introduce their own dependencies, which would
either form a tree or graph until a dependency does not need another dependency.

Usually transitive dependencies, which form a tree structure, do not impose any problem because
each dependency has only one parent dependency. However if the transitive dependencies form a
graph in which one dependency has more than one parent that requires that dependency, you may
need to tweak dependency settings in order to provide the most suitable version for the needed
dependency. Let’s assume your project has two dependencies, A and B, which both require the
dependency of C. If either A or B declares an incompatible version of C for the other, you would
need to exclude the dependency from the graph.

This may also be an issue if your project already has a newer version of a dependency that is needed
by another dependency. In the following code example, the project uses support library v4 23.1; let’s
assume dependencyA introduces an older version of the given support library.

dependencies {
 compile "com.android.support:support-v4:23.1.+"
 compile ("com.dependencyA:1.+") {
 exclude group: 'com.android.support', module: ' support-v4'
 }
}

This way, you ask dependencyA not to include support-v4 because you know a newer version is
already there.

Dependency Management with Gradle  x  149

Local Dependencies
As a best practice, you would need to upload jar or aar dependencies to private repositories even if
they are not available on public repositories. However, if you still need to add a local jar or aar file
as a dependency, you can point to the local library within parenthesis.

dependencies {
 compile "com.android.support:support-v4:23.1.+"
 compile files ("com.dependencyA_local.jar")
}

Note  Having local binary file library dependencies defeats the point of depen-
dency management and build systems and makes Gradle an unnecessary level
of complexity over your project. With hardcoded local binary files, your project
would never be easy to run in a new environment and would require custom
configuration and setup.

Although having a local binary file dependency is highly discouraged, you may need local mod-
ules, which already exist in source control, as dependencies. Gradle can easily declare dependencies
between modules. The following example declares moduleA as a dependency of the project.

dependencies {
 compile "com.android.support:support-v4:23.1.+"
 compile :com.moduleA
}

Real projects might have a mixture of local module dependencies and dependencies from
repositories.

Legacy Maven Dependencies
On occasion, you may not be able to find a Gradle reference to a dependency, but you can find
the Maven reference. This used to be a common problem in the early days of the Gradle–Android
flirtation.

Converting a Maven reference into a Gradle reference is pretty easy and straightforward. The exam-
ple in Listing 6-3 declares for log4j-api and log4j-core version 2.4.1.

Listing 6-3:  Setting dependency version

<dependencies>
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>

150  x  Chapter 6   Android Build System

 <artifactId>log4j-api</artifactId>
 <version>2.4.1</version>
 </dependency>
 <dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-core</artifactId>
 <version>2.4.1</version>
 </dependency>
</dependencies>

To convert a Maven dependency to Gradle, you must start with mapping the groupId with a group,
followed by mapping name with name and, finally, version with version, as shown in the following
code.

dependencies {
 compile group: 'org.apache.logging.log4j', name: 'log4j-api', version: '2.4.1'
 compile group: 'org.apache.logging.log4j', name: 'log4j-core', version: '2.4.1'
}

Gradle also offers a simpler syntax, which allows a colon (:) to be used between each property with-
out using the property names.

dependencies {
 compile 'org.apache.logging.log4j:log4j-api:2.4.1'
 compile 'org.apache.logging.log4j:log4j-core:2.4.1'
}

The “:” notation is the most accepted and widely used dependency declaration syntax in the
Android ecosystem. Once you get used to Gradle dependency syntax, you could easily convert any
Maven-based project or dependency to Gradle.

Android Plugin for Gradle

Gradle is great but what makes it better for Android is the Android Plugin for Gradle. So far in this
chapter, you have used many features and properties of Android Plugin for Gradle. This section cov-
ers Android Plugin for Gradle in detail.

The new Android build system comes with Android Plugin for Gradle integrated with Android
Studio. It can also be run independently, so it can easily be integrated with continuous integration
servers. Either way, the build system will build the same APK described in the build.gradle file.

Configuring Android Plugin for Gradle
The “Anatomy of Gradle” section earlier in this chapter covered the basics of the Android Plugin for
Gradle. As an Android developer, you may never develop and build applications without customiz-
ing the Android plugin, although it introduces many great capabilities without customization.

Android Plugin for Gradle  x  151

Build Configuration
The build.gradle file holds the build configuration for your project. You have already seen how to
add dependencies, but the Android plugin for Gradle offers much beyond that.

The Android Plugin can control and configure the following items in your project:

➤➤ Dependencies—Dependency management is an important part of build systems, which enable
dynamic, versioned, and transitive dependency management. We covered dependency man-
agement earlier in this chapter.

➤➤ Android Manifest options—Android Manifest is the heart of every Android application. The
most trivial configuration details, such as application ID, supported compile/target/minimum
SDK version, and application version info, will end up in AndroidManifest.xml.

➤➤ Build type—The Android build system is designed to build different binaries depending on
your platform or application properties. This gives you the flexibility to build different appli-
cations or versions from one code base as well as different build options of the same code,
such as debuggable or obfuscated builds.

➤➤ Signing—Applications need to be signed to be eligible to upload to the Google Play Store. By
configuring signing settings, the build system can build ready-to-publish APKs without fur-
ther user interaction.

➤➤ Testing—The build system can run your test during build and also package an APK file con-
taining the test resources in your project.

➤➤ ProGuard—The flexibility of running in a virtual machine such as JVM, ART, Dalvik, and
so on introduces easy-to-obfuscate portable byte code instructions. Prior to ProGuard, many
Android applications suffered from decompilation and reverse engineering. ProGuard obfus-
cation not only is necessary for security but also shrinks the final APK size because variable,
method, and class names are shortened.

Build Tasks
The Android build system is based on a set of hierarchical build tasks, which invoke child tasks in
order to complete the whole build flow.

The following items are the top-level build tasks described by the Android build system.

➤➤ Assemble—Builds the project output, including code generation tasks and compilation

➤➤ Check—Runs checks (such as lint) and tests

➤➤ Build—Runs both assemble and check

➤➤ Clean—Cleans up the project

152  x  Chapter 6   Android Build System

Flavors
Flavors, or build variants, are a flexible option provided by the Android build system. By default,
each app comes with two different flavors: debug and release.

The following additional flavors can be defined for different purposes:

➤➤ Variations of an app such as free, demo, or paid versions.

➤➤ Apps with different app IDs from the same code base. Gradle is flexible enough to describe
flavor-specific source and resource folders.

➤➤ Binaries for different CPU architectures such as ARM, x86, or MIPS.

To create a new flavor, you need to add your flavor definitions to the build.gradle file. Listing 6-4
declares two flavor versions for your app: demo (a free version) and full (the paid version).

Listing 6-4:  Gradle script with flavors

productFlavors {
 demo {
 applicationId = "com.expertandroid.chapter6.demo"
 }

 full {
 applicationId = " com.expertandroid.chapter6.full"
 }
}

You can also add a flavor by selecting the Edit flavors option from the Build menu. Click the plus (+)
sign to define a new flavor. The new flavor with a default name will be created with empty options
such application id, min sdk, and so on, which can be used to override the settings of the application
defaults.

You have created a flavor that can be used while packaging your app and because you changed the
app ID of both apps, they can be deployed to the Play Store as different apps. Now let’s look at the
changes needed for different app IDs.

First let’s add a source file for each flavor:

	 1.	 Navigate to the src folder under your application and create two folders, demo and full, in
addition to the main folder that’s already there.

	 2.	 Create a folder named java and place your default package structure inside that. Each folder
named for a flavor will inherit all the code inside the main folder but will also add the code
inside its own folder.

Android Plugin for Gradle  x  153

	 3.	 Create a class with a constant field demo in the demo folder
and full in the full folder.

	 4.	 Now it is time to select a flavor and use our flavor-specific
code. Click the Select build variant option from the Build
menu to open the window shown in Figure 6-1. Select demo
from the bottom left of your IDE.

Notice that the demo folder turned blue, indicating that you
can use the demo flavor code in the src/main folder. If you
select full, you can use the code inside the src/full folder.

	 5.	 Add different resources in your flavors.

Create a rex/drawable folder inside each flavor and copy a different ic_launcher.png
to each to override the default icon. Notice the small yellow icon on the res folder, which
shows that it’s part of the active app’s resources.

With the help of flavors, you can customize anything between builds, such as app ID, sources,
resources, SDK version, UI layouts, assets—basically anything inside the main and flavor folders.

ProGuard
ProGuard is another great feature integrated into the Android build system. ProGuard is a tool for
both security and performance. Before ProGuard, most Android applications were unprotected
against decompilation and reverse engineering. ProGuard obfuscates your code by renaming classes,
methods, and fields and removing unused code. The resulting APK is not only harder to reverse
engineer but also smaller in size.

Note  Although ProGuard is very easy to enable, it doesn’t always come for
free. If you use external libraries, you must check their ProGuard configuration
in order to not break functionality. Usually, there’s either no configuration or
just a few lines to keep several class and method names untouched.

ProGuard is enabled by default but only for the release version of your app. To enable ProGuard, the
minifyEnabled property must be set to true in buildTypes.

 buildTypes {
 release {
 minifyEnabled true
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
 'proguard-rules.pro'
 }
 }

Figure 6-1:  Build
variant selection

154  x  Chapter 6   Android Build System

WARNING  You may need to configure ProGuard to keep specific method or
class names, especially if your execution flow relies on reflection. Reflection
works by looking up a method by its name, as represented in a string. Because
the obfuscated name of a method by ProGuard is impossible to guess, ProGuard
will most likely break reflection code. The same also applies for a method called
from JNI.

To configure ProGuard, you have two options. Android Studio adds proguard-rules.txt to the
root of the project at project creation. This configuration file holds global ProGuard settings for
whole modules in your project. For module-based configuration, proguard-rules.pro can be used.

To configure ProGuard not to obfuscate some part of the project, use the -keep option. Any class,
interface, method, or field can be kept out of obfuscation with the -keep option.

-keep class com.expertandroid.chapter6.MyActivity

Listing 6-5 shows ProGuard options for the popular okhttp library from Square. To keep attributes,
use -keepattributes Signature and -keepatributes *Annotation*. Refer to the ProGuard
documentation for the full list of attribute settings. To keep classes and interfaces out of obfusca-
tion, use keep class and keep interface.

Listing 6-5:  ProGuard options

-keepattributes Signature
-keepattributes *Annotation*
-keep class com.squareup.okhttp.** { *; }
-keep interface com.squareup.okhttp.** { *; }
-dontwarn com.squareup.okhttp.**

The previous section in this chapter covered product flavors. ProGuard also supports flavor-specific
configuration. To add a new ProGuard configuration to the previous flavor example, you can add
full-rules.pro.

productFlavors {
 demo {
 applicationId = "com.experandroid.chapter6.demo"
 }

 full {
 applicationId = " com.experandroid.chapter6.full"
 proguardFile 'full-rules.pro'

 }
}

Gradle Plugins  x  155

Using ProGuard is essential for applications that will be released to the public. ProGuard not only
protects your code against reverse engineering but also helps with securing your app.

Automated Tests
As mentioned previously in this chapter, Gradle executes all tests during the check task. The
Android build system will execute both Android tests (built on JUnit) and JUnit tests. Chapter 8
covers testing and integrating tests; Chapter 10 covers Gradle and continuous integration.

Gradle Plugins

The Android Plugin for Gradle is basically a Gradle plugin. Gradle plugins can be written with Java,
Scala, and, of course, with Groovy. Each plugin can be put to work using the apply keyword with
your plugin’s name.

Writing Your Own Gradle Plugin
Writing a plugin of your own can customize the build process the way you want and is surprisingly
something very easy to achieve.

Gradle plugins implement the Plugin<Project> interface; the apply (Project p) method needs
to be implemented. As you might guess from the syntax, the targeted project is passed as a param-
eter to the apply method. Listing 6-6 adds the task customTask to your project, which currently
only prints a log about starting the execution.

Listing 6-6:  Adding a custom task to a Gradle plugin

class CustomPlugin implement Plugin<Project> {

 void apply(Project p) {
 project.task('customTask') << {
 Log.info("Starting custom task...")
 }
 }
}

Now that your plugin is ready, you need to call apply to use it.

Apply plugin: CustomPlugin

Once the build process has executed, your plugin will run and print your log message. Alternatively,
you can choose to run Gradle from the command line.

Gradle –q customTask

156  x  Chapter 6   Android Build System

Let’s add some more functionality to your plugin. Previously, you implemented different build fla-
vors. Listing 6-7 will list all product flavors declared in your project.

Listing 6-7:  Listing all product flavors

class CustomPlugin implement Plugin<Project> {

 void apply(Project p) {
 project.task('customTask') << {
 Log.info("Starting custom task...")

 //check if this is an android project
 if (AndroidPluginTools.hasAndroidPlugin(p)){
 def flavors = p.android.productFlavors*.name
 for (String f in flavor){
 Log.info("Product Flavor $f is found")
 }
 }
 }
 }
}

At this point you’ve added your plugin source code to the build script. This a very simple way to
add a new plugin, but your new plugin is only available in your project. To promote reusability, cre-
ate a separate project for the plugin that will be packaged as a jar and can easily be added to other
projects.

Extending Android Plugin for Gradle
Extending the Android plugin can be useful and painful at the same time. The Android Plugin is just
another Gradle plugin and is subject to change. Be aware that any change to the Android Plugin for
Gradle may break your plugin’s functionality. Listing 6-8 simply extends the Android plugin while
displaying a simple log message.

Listing 6-8:  Display log message for a Gradle plugin

class CustomPlugin implement Plugin<Project> {

 void apply(Project p) {
 project.plugins.apply(AndroidPlugin.class)
 project.task('extendedAndroidPlugin') << {

 Log.info("Android Plugin is about to start")
 }
 }
}

Summary  x  157

Another great way to extend the Android plugin is to use afterEvaluate, which adds the defined
closures to the end of the configuration phase. For example, let’s say you want to create a report
after running your extended task example:

afterEvaluate { project ->
 project.tasks.extendedAndroidPlugin << {
 println 'Your lint report is being generated'
 }
}

afterEvaluate can be used for adding hooks into any tasks. The execution order is based on first-
in first-out, and the plugin does not have any control on the execution order.

Summary

This chapter dug into some of the specifics of Gradle. We started with the basic syntax of Gradle
and then focused on how to manage remote, local, and even Maven dependencies through Gradle.

In our exploration of the Android Plugin for Gradle, we showed you how to change its configura-
tion, control the build tasks, and create flavors for different build settings from the same code base.
Next, we moved to another important topic, ProGuard, and showed how to configure ProGuard for
specific needs.

Finally, we covered the Gradle plugin system by showing how to write a Gradle plugin as well as
extending Android Plugin for Gradle.

Entire books have been written about Gradle; this chapter’s coverage really just scratches the surface
of what is possible with advanced knowledge of the Groovy and Gradle lifecycles

Multi-Module Projects
WHAT’S IN THIS CHAPTER?

➤➤ Adding modules

➤➤ Phone & Tablet module

➤➤ Android Library module

➤➤ Android Wear module

➤➤ Android TV module

➤➤ Glass module

➤➤ Android Auto module

➤➤ Google Cloud module

➤➤ Importing modules

➤➤ Removing modules

Previous chapters dealt with general concepts of application development in Android Studio;
this chapter covers the capabilities of Android Studio to work on multiple modules in your
Android project.

In addition to the core module you created, you will eventually need additional modules
when you want to add support for other Android devices. For example, you might want to
add Wear, TV, or Auto modules in your Android Studio project, or even third-party Android
libraries.

7

160  x  Chapter 7   Multi-Module Projects

This chapter explores the details of adding Phone & Tablet modules, Android and Java libraries,
and Wear, TV, Glass, and Google Cloud modules. Then the chapter covers importing Gradle and
Eclipse projects. AAR and JAR packages are covered as well to help you understand how to include
them in your Android Studio projects.

Android Studio works on a module-based project structure, which means that it can handle multiple
modules in one project. Having multiple modules in an Android Studio project enables you to work
on one project instead of multiple projects so your development team can create a more organized
application.

Prior to Android Studio, Eclipse handled multi-module projects with a workspace concept. Eclipse
projects do not need to reside in the same project folder to be included in the same project setup.
However, this approach relied on Eclipse project dependencies for the build process.

A better organized approach uses Maven. Although Maven is a de facto standard in build and
dependency management in Java projects, it was not always supported in Android projects. The
introduction of Gradle as the default build system for Android solved this huge problem in standard-
ization of dependency management.

Adding Modules to Android Project

In Chapter 3, you learned how to create a new project with multiple modules. In this section, you
learn how to add new modules to an existing Android Project.

We created a new project named ChapterSeven to work on modules. You can recreate that project,
create a new project, or work on a project you previously created.

When your project is ready, find the actions from the Android Studio menu to add a new module.
Either right-click the project pane or open the File menu and select New ➪ Module to start adding a
new module to your project.

After clicking the Module option, the wizard shown in Figure 7-1 opens. Select the type of module
to add to your project.

By default, you will see ten module actions in the window; you can select to either add a new mod-
ule or import an existing module to your project.

After selecting the module, Gradle files will be auto-generated to handle a multiple module build
and release process. The following sections cover the auto-generated files, folders, new Java pack-
ages, and Gradle, manifest, and resource files in more detail for each module type.

Phone & Tablet Module  x  161

Figure 7-1:  New Module selection

Phone & Tablet Module

Most of the time, the Phone & Tablet module (also called the Android module) is the core module in
a project. While it might not be common to add multiple Android modules together, in certain cases
you may require a second or third Android module in addition to your core module to generate mul-
tiple APKs with different properties.

For example, you can develop an Android application that supports multiple screen sizes with
configuration of dimensions and a good design of XML resources, bitmap resources with multiple
resolutions, and support libraries. However, in that case, the APK files get a lot larger and create

162  x  Chapter 7   Multi-Module Projects

significant cost for the user to download and install. To avoid that, you can create multiple modules
to generate individual APKs for specified devices.

Alternatively, when you develop an application with trial, demo, enterprise, consumer, or paid ver-
sions you would need modules with different APKs to distribute in the Google Play Store: one mod-
ule with limited access and another with unlimited access to all resources and activities you have
developed.

You can also develop a tutorial application, managing the new lightweight application within the
project and generating binaries and APKs with a single build system.

There are other situations where you may want to manage multiple Phone & Tablet modules in the
same project, such as when starting the project with the Wear module and adding a new Phone &
Tablet module and so on.

Managing multiple modules in Android Studio gives you the opportunity to configure Gradle for
handling dependencies between modules, use a shared module’s resources or libraries, and generate
multiple APKs at the same time in the same project directory. Using Gradle eases the development
process for multiple teams working on a complex application, and helps the transition to continuous
integration.

If you select the Phone & Tablet module (refer to Figure 7-1), you need to configure module name
and activity type as you would when creating a new Phone & Tablet project. Figure 7-2 shows that
we added a new Phone & Tablet module named chapterseventrial.

Figure 7-2:  Configuring a new Phone & Tablet module

Phone & Tablet Module  x  163

After naming the module, you follow steps that are similar to those for creating a new Android
project. After naming and configuration, the module’s files and folders are generated and the chapter-
seventrial module appears in the Android Project view as a separate module, as shown in Figure 7-3.

Figure 7-3:  Phone & Tablet module in Project view

As shown in Figure 7-3, the new module has its own folder, resources, Java source code, and mani-
fest and Gradle files for configurations. The Build Variants window at the bottom shows the build
type of the modules to configure and generate multiple APKs.

Build configurations can be made in Gradle or from the Project Structure window
(Command+semicolon [;] on Mac, Ctrl+Alt+Shift+S on Windows). From the Project Structure
window, you can configure the module for versions, APK signing properties, build types, and
flavors and their dependency to each other.

You can initiate a project build by selecting Make Project from the Build menu, or you can just build
the module by selecting Make Module <modulename>.

When you select Generate APKs from the Build menu, APKs will be generated under module’s
build/outputs/apk folder. You can navigate to the directory from the folders where you store
the Android Studio project such as /Users/username/AndroidStudioProjects/ChapterSeven/
chapterseventrial/build/outputs/apk on Mac OS X or C:\Users\username\Projects\
AndroidStudioProjects\ChapterSeven\chapterseventrial\build\outputs\apk on Windows.

164  x  Chapter 7   Multi-Module Projects

tip  If you have multiple Android modules for similar applications, you should
configure your Android manifest so that the APKs are identified correctly when
published to Google Play.

Android Libraries

The Android Library module contains the shareable Android source code and resources that can be
referenced by other modules in an Android project.

The Android Library module is useful when you want to reuse and share a code base or XML
resources within your project modules. This can be either a private library developed by yourself, or
a third-party library imported into your project.

To add and develop your own Android Library module, select Android Library from the list shown
in Figure 7-1. When you proceed to configuration, the module wizard asks only the library’s name.

When you finish adding the library, you can see its package, folders, and Gradle file under the proj-
ect folder, as shown in Figure 7-4.

Figure 7-4:  Android Library module

Android Libraries  x  165

Android libraries are useful when you are developing multiple application projects or multiple APKs
and want to use a shared resource to lower implementation time and preserve continuity between
modules and projects.

Working with Android Libraries
An Android library is not a runnable application on its own; it doesn’t generate an installable APK
but generates a shareable AAR package. An Android library acts as a shareable resource that is
loaded and fetched by the apps using the library.

Adding an Android library is not enough to enable you to start using it in other modules. Before
using an Android library in your application module, you should add it from Gradle or from the
module settings window as a dependency to the corresponding module.

Dependencies can be configured through an interface from the Project Structure window, which you
can open from the File menu. Alternatively, you can access the Project Structure window by right-
clicking the module in Project view and selecting Open Module Settings.

Select the module that requires an Android library, and then navigate to the Dependencies tab, as
shown in Figure 7-5.

Figure 7-5:  Module dependencies

166  x  Chapter 7   Multi-Module Projects

Next, click the plus button at the bottom to add the module
dependency (see Figure 7-6). When you finish adding the
module dependency, the expertlibrary module will appear in the list
of dependencies.

You can also add a dependency directly from a module’s build.gradle
file. To do that, add the compile project(':androidlibrary') line to the dependency area and
sync the project to make your module load the library.

We added the expertlibrary module together with auto-generated dependencies to our project’s
Gradle file dependencies section, as shown in Listing 7-1.

Listing 7-1:  Dependencies build.gradle app module

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 testCompile 'junit:junit:4.12'
 compile 'com.android.support:appcompat-v7:23.1.1'
 compile 'com.android.support:design:23.1.1'
 compile project(':expertlibrary')
}

Now you are ready to use shared resources and Java classes in your module. When you start typing
the class name in the editor, autocomplete will list matching item(s). Similarly, when you assign a
resource to your layout view, you will see the shared resource in the list of resources when typing (or
adding from the list).

Note  If the dependency isn’t defined, the Android library classes or resources
are not accessible from the other modules. Gradle sync links the library to the
module.

Using Android Library Java Packages
To start using Java classes from an Android library, add a new Java file to the library package
under the src folder. You can add as many Java classes as you need to create a shareable library
and speed the development process.

When a dependency is set and a Java class is added to your Android Library module, you can use it
in the corresponding module. When you are in the app module, type the name of the class you want
to add and it will be ready for use.

Using Android Library XML Resources
Sharing resources between modules is really practical when you need to use your own defined color
values in both your phone and wear apps. Using resources makes the development of user interface
elements easier because you don’t have to rewrite the same definition repeatedly for each module.

Figure 7-6:  Add a dependency

Java Libraries  x  167

When you’re finished with dependency configurations, add a new XML resource to the library.
We added colors.xml, which was not present when the project was created. This XML file defines
the colors’ names and RGB values to use in all other modules.

Finally, go to your module’s layout file to assign the color resource you want to use. If Gradle sync
worked, you will see the resource in the list or in the XML editor. It will be listed right after you
start typing.

Generating an AAR Package from an Android Library Module
As mentioned earlier in this section, an Android library is not an application but is loaded into the
dependent modules from the provided binary dex file and is stored in the resources folders.

You may want to share your library with other people or make it open source and distribute it. The
easier way to distribute your Android library is to share the output AAR file. The AAR file is similar
to an APK file, which is a compressed file that includes the necessary content of an Android Library
module for easy export and import. Having a standard file extension such as .aar helps developers
recognize that the library is for Android applications, not for Java.

When you select the Build APK option from the Build menu, an AAR file is generated and placed in
the module’s build/outputs/aar directory. When you build our Android Library module, you will
see the expertlibrary-release.aar or expertlibrary-debug.aar file in the output directory, as
determined by the Build Variant configuration.

Java Libraries

The Java Library module includes Java packages to link with your modules and Java classes to reuse
as needed in your projects. Depending on the specific requirements of your project, an Android
Library module can also be used for this, but as stated in the following note, that might not be the
best solution.

Note  The principle of separation of concerns means that it is better to cover
core Java-related work in a Java library and Android API–related work in an
Android library.

Add a new Java library to your project by selecting New Module and then select Java Library from
the list of modules (refer to Figure 7-1). The Create New Module wizard shown in Figure 7-7 will
open.

For this configuration, name the library, which becomes the name of your library and module.
Provide a name for the initial Java class you want to create in the library. You can edit the name of
the package by clicking on the Edit link to the right of the Java package name line. The default name
for the package is com.example, as shown in Figure 7-7.

168  x  Chapter 7   Multi-Module Projects

Figure 7-7:  Java Library module configuration

As shown in Figure 7-8, the new Java Library module is shown
in Project view after you click Finish and when Gradle sync
completes.

Like an Android library, a Java library must be added as a module
dependency for the corresponding module. In order to reference a
library in the module, you can edit the module’s build.gradle file,
as shown in Listing 7-1. You can also add the library from the Project Structure window by selecting
the module and selecting the Dependencies tab as we did in the “Android Libraries” section (refer to
Figure 7-6).

When you are done with dependency configuration, you are ready to use the Java classes in the mod-
ule that the Java Library referenced. Java class names are autocompleted when you start typing them
in the referenced module’s Java source file.

Figure 7-8:  Java Library module
in Project view

Android Wear Module  x  169

Android Wear Module

Wearable technologies are getting better day-by-day and Android is the frontier for wearables, with
multiple devices on the market running Android Wear. As a result, there is a large installable base
online for a wearable Android application developed with the Android Wear API.

Note  Currently, Wear devices refer to smart watches or bracelets.

Note  Although Google Glass is a wearable device, the Android Wear API
doesn’t work for Google Glass. Google Glass uses a separate module with a dif-
ferent API version and packages.

In order to develop a wearable project, you can either start a standalone Android Wear project with
Android Studio or add a new module to your existing Android project.

Having a Wear module in your project makes sense when you want to distribute your application’s
extended features, such as designing a basic user interface with touch or voice recognition for a
Wear application that interacts with your main Android phone or tablet application.

After you select the Android Wear module from the Create New Module window shown in
Figure 7-1, the configuration window asks for the name of the module and the initial wear activity
and its name.

When you finish adding the Android Wear module, it appears as a separate module in the applica-
tion project window.

During UI development, keep in mind that Wear projects use totally new form factors. However,
you can share the color, theme, font, and text resources you generated in your Android library proj-
ect between your Android Phone & Tablet project and Wear project.

After you add the Wear module with an Empty Activity, you will see that three layout files have
been created: two for multiple form factors on wearable devices (round and rectangle), and one for
the main activity (see Figure 7-9). The round and rectangle layouts should be designed according to
their shape.

170  x  Chapter 7   Multi-Module Projects

As shown in Figure 7-9, the module has its own resources, activity class, and Android manifest file.
Although further enhancements and development are similar to Android application development,
you should consider during the design and developing that you will deploy this application to far less
powerful and smaller devices than a smartphone.

Also consider that your application will be running on a very small screen. That means that multi
touch is hard to accomplish, and there is space for only a little information using a small font that
might be hard to read.

Google provides plenty of information about Wear. Visit the following URL for Android Wear
application guidelines and training: http://developer.android.com/wear/index.html.

Figure 7-9:  Wear module preview

Running and Debugging an Android Wear Module
Android Wear devices are not as common as smartphones, but they will be eventually, and they will
be cheap and easy to afford. For now, you can take advantage of virtual devices to run and debug
Android Wear modules.

http://developer.android.com/wear/index.html

Android Wear Module  x  171

Creating an Android Wear virtual device is similar to creating a phone or tablet device. (See
Chapter 2 if you need a refresher on creating a new virtual device.) Instead of selecting Phone, as
in Chapter 2, here you select Wear from the virtual device category as shown in Figure 7-10.

After selecting the hardware profile, select the Android version to run on the Android Wear virtual
device. We selected Android 6.0, Marshmallow, for this example.

Finally, select the device configuration to finish creating a Wear virtual device, as shown in
Figure 7-11.

Figure 7-10:  Wear virtual device selection

Now, you can run the selected module: Go to the Run menu and select the Run action instead
of Run <name of default module>, or press Control+Option+R on Mac, Alt+Shift+F10 for
Windows. This action will list the runnable modules, as shown in Figure 7-12.

172  x  Chapter 7   Multi-Module Projects

Figure 7-11:  Wear virtual device configuration

Figure 7-12:  List of runnable modules

Note  If there isn’t a Wear device connected to your development machine or
an AVD created on your development environment, your Wear module will not
launch. Even if you select the Phone emulator, your Wear module will not be
installed on the device.

Launching the Wear module on a square Wear device will install the generated APK of the Wear
module and show the Wear app, as in Figure 7-13.

Android TV Module  x  173

Figure 7-13:  Wear app in Android Wear AVD

To debug your app, select the Debug action or press Control+Option+D on Mac, Alt+Shift+F9 for
Windows to show the debug windows.

Building APKs with Android Wear Support
After adding a Wear module, you need to make sure the build process handles the APK generation
correctly.

Chapter 4 covered the steps to generate a signed APK. Follow
those steps to assign a signature to a Wear module. Android
Studio handles all modules separately. Select the Build APK option
or the Generate Signed APK option from the Build menu to gener-
ate the APKs. Android Studio will open a notification window
when it is finished, as shown in Figure 7-14. Follow the link at the
bottom to open path in the file browser.

When the build process is finished and you navigate to the project folder, you will see the APK under
the module’s build/outputs/apk directory.

Android TV Module

Although Android TV might seem new in the market, it has a long history. It was first announced as
Google TV at Google I/O 2010. The first available devices were from Logitech and Sony. The first
generation of Google TV devices were all designed on Intel’s x86 platform, although the second gen-
eration of Google TV ran on ARM devices.

Another effort to bring Android to a big screen was Nexus Q, announced at Google I/O 2012.
Nexus Q was a high-quality device with an integrated amplifier, NFC support, and nice design.

Figure 7-14:  APK generation com-
pleted notification	

174  x  Chapter 7   Multi-Module Projects

However, the price tag was three times more than similar devices like Apple TV so it never really
got far from being a prototype device.

Two years later, at Google I/O 2014, a new Android-based device was announced—Android TV.
The first model, labeled ADT-1, was a developer-only device. A few months later, an Intel-based
Nexus Player was announced, followed by several TV manufacturers offering Android TV capabili-
ties integrated in their TV sets.

Android TV is creating its market presence, and developers are becoming more focused on
the Android TV platform, extending their applications for TV use. These applications can be
game or media players offering a “leanback” user experience.

Note  Google has released lots of developer resources for Android TV projects
because its design requires a different approach than small devices like phone or
wear. The following URL provides information about Android TV application
design guidelines and standards: https://www.android.com/tv/.

Adding a new Android TV module is similar to adding a Wear module. You should first name the
module and then select an activity. Android TV has only one template activity to select when you
configure the module. It is not a simple template to manage at the beginning for a simple application
but it is a stable template and can run on an Android TV device immediately.

The activity customization window asks for many additional configurations to add multiple frag-
ments and activities, as shown in Figure 7-15.

When you click Finish without changing the activity and fragment names, the Project view will
show many Java classes and resources generated under the res/drawable folder, as shown in
Figure 7-16. We named our TV module MirrorApp, a common use case for TV applications to mir-
ror the current content of a smartphone or desktop application to a TV screen.

The Android TV activity template is focused on media playback and adds Java classes and resources
to manage video playback seamlessly in the application.

The Android TV manifest is a little different than other applications because of its input method.
Because TVs don’t have a touch input, the launcher Intent uses the LEANBACK_LAUNCHER category
flag to be accessible from the Android TV launcher and signify to the Google Play Store that it’s
compatible with TVs.

The auto-generated Android TV module manifest file is shown in Listing 7-2. It disables the touch
screen input requirement and requires the leanback feature for the application, making this module
a TV-only application.

https://www.android.com/tv/

Android TV Module  x  175

Figure 7-15:  Android TV module activity configuration

Figure 7-16:  Android TV module view in the project window

176  x  Chapter 7   Multi-Module Projects

Listing 7-2:  Android TV module manifest file content

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidexpert.mirrorapp">

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.RECORD_AUDIO" />
 <uses-feature
 android:name="android.hardware.touchscreen"
 android:required="false" />
 <uses-feature
 android:name="android.software.leanback"
 android:required="true" />

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:supportsRtl="true"
 android:theme="@style/Theme.Leanback">
 <activity
 android:name=".MainActivity"
 android:banner="@drawable/app_icon_your_company"
 android:icon="@drawable/app_icon_your_company"
 android:label="@string/app_name"
 android:logo="@drawable/app_icon_your_company"
 android:screenOrientation="landscape">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LEANBACK_LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".DetailsActivity" />
 <activity android:name=".PlaybackOverlayActivity" />
 <activity android:name=".BrowseErrorActivity" />
 </application>
</manifest>

Running and Debugging Android TV Modules
If you already have an Android TV device such as the Nexus Player, you can use it to run and debug
your applications; otherwise, you will need an Android TV emulator to run and debug your TV
module.

Android TV Module  x  177

Let’s create a TV emulator by opening AVD Manager and clicking New Virtual Device to select TV
from the left panel. Then select the resolution (1920 x 1080) and density (xhdpi) of the TV emulator,
as shown in Figure 7-17.

Figure 7-17:  Select TV resolution and density

The next window lists existing Android TV images with the corresponding Android API version.
Figure 7-18 shows that Android 6.0, Marshmallow, has been chosen as the TV emulator.

Right after you select the Android API version, click Next, review the virtual device on the next
screen, click the Finish button, and you are done. Then you are ready to launch sample module mir-
rorapp on the virtual Android TV.

To launch the TV module, follow the same steps as you have for other modules: Select Run from the
Run menu or press Control+Option+R on a Mac, Alt+Shift+F10 on a Windows to select your TV
module from the popup dialog box shown in Figure 7-19.

178  x  Chapter 7   Multi-Module Projects

Figure 7-18:  Android TV image selection

Next, select the recently created virtual device or your Nexus
Player to launch the TV module. When the virtual device
launches, the custom Android TV template application appears
on the TV emulator, as shown in Figure 7-20. We didn’t make
any changes on the Android TV template activity so it will only
show the auto-generated text and layout.

To display the Debug menu shown in Figure 7-21, click Debug from the Run menu, or press
Control+Option+D on a Mac or Alt+Shift+F9 on Windows.

While developing a new TV application, you can follow the standards for Android application devel-
opment, but the user interface is a lot different than the interface for smartphones and wear devices.

The user interface should be designed for a huge screen instead of small screen device. Users interact
with applications with a remote control or a game pad. So, although core application development
adheres to similar principles, the user experience design changes.

Figure 7-19:  TV module selection

Glass Module  x  179

Figure 7-20:  Running Android TV application on AVD

Building APKs for Android TV Modules
Android TV apps and modules are developed to run on Android
TV devices so you need a separate APK file to publish them on
Google Play and distribute your app to users.

In order to build an APK for the TV application, select Build APK
from the Build menu to generate an unsigned APK.

The Project Structure window can be used for configuring the
TV module’s Properties, Signing, Flavors, Build Types, and
Dependencies.

If you’ve configured signing in the Project Structure window, you can populate the signed APK for
the TV module by selecting the Generate Signed APK option from the Build menu. APK files are
stored in the project’s root folder, under the specified TV module’s sub-folder, in build/outputs/apk.

Glass Module

Google Glass is a wearable device first announced at Google I/O 2013. The first batch of devices
was sold to a limited number of developers, called Glass Explorers. The Explorer program was later
extended to more developers and continued until January 2015. The Glass Explorer program was
discontinued, but Google announced that it is committed to newer versions of Glass.

Figure 7-21:  Android TV module
debug selection

180  x  Chapter 7   Multi-Module Projects

Although Google has stopped producing the Google Glass prototype device, that doesn’t mean that
there will be no new devices available on the market. Also, you can still get access to Google Glass
Preview API version 19 to create Glass modules based on the Glass Explorer edition.

Note  You should download the Google Glass Preview API from SDK
Manager. You can find the system image and API under Android 4.4.2 (API 19).

After you select the Glass module shown in Figure 7-1, you will be prompted to name the Glass
Module. As you can see in Figure 7-22, the Glass module for this project is named seefrommyglass.

Figure 7-22:  Glass module naming

After naming the Glass app, you will be prompted to select an activity type. The two selections to
choose from are shown in Figure 7-23.

You can either pick Immersion Activity or Simple Live Card for the application. Immersions are
Google Glass apps with a user interface. Live Cards are like widgets on Android phones, which
appear together with a clock, like a notification on the screen.

Name the activity or card selection in the next window, and the Glass module is ready to build. All
necessary files will be auto-generated by Android Studio right after the activity or live card is named.

Glass Module  x  181

Figure 7-23:  Glass module activity selection

Like all other module types, Glass is also an Android application so development of a Glass module
is done following the standards and guidelines applicable to any Android applications, with some
exceptions. The user experience design is different because user interaction with the Glass device is
different than with other devices. Voice recognition is a dominant factor compared to touch to inter-
act with applications on Glass.

reference  Google provides design and development guidelines for Glass
applications. The following resource can be used to learn more about Google
Glass application development: https://developers.google.com/glass/
design/principles.

Running and Debugging a Glass Module
If you are lucky enough to have a Google Glass device, you can test your module on it. Select Run
or Debug from the Run menu and select the Glass module from the dialog box that opens. Then
select the hardware device on which to run the Glass module.

https://developers.google.com/glass/design/principles
https://developers.google.com/glass/design/principles

182  x  Chapter 7   Multi-Module Projects

WARNING  Unfortunately there is no Google Glass emulator to test your
Google Glass application. You will need a Google Glass device or you can use
the Google Mirror API Playground (which doesn’t support the native API)
for testing: https://developers.google.com/glass/tools-downloads/
playground.

Building APKs for Glass Module
Building APKs for a Glass module is not much different than it is for the other modules. When you
click Build APK or Generate Signed APK from the Build menu, a Glass module APK will be gener-
ated in the Glass modules folder under the project directory in the build/outputs/apk directory.

Android Auto Module

Android Auto is the new kid on the block. There are no cars yet available with Android-equipped
hardware. However, Google is very committed to Android Auto and is working with several car
manufacturers. Google also demonstrated Android Auto simulators at Google I/O 2015.

Although Android Auto applications will be deployed on a separate platform, eventually Auto will
be available as a module in Android Studio and will generate APKs to deploy applications on cars.

There isn’t a defined module for Android Auto yet, but you can enable an Android module to work
with Android Auto by adding a media or messaging Android service on your application after you
create the Android project. Then you need to further configure your app so it works with Android
Auto. You do this configuration in the module’s Android manifest file, beginning with setting per-
missions, as in Listing 7-3.

Listing 7-3:  Android Manifest configuration permissions for Android Auto

<uses-permission android:name="com.google.android.c2dm.permission.RECEIVE" />
<permission
 android:name="com.example.gcm.permission.C2D_MESSAGE"
 android:protectionLevel="signature" />

<uses-permission android:name="com.example.gcm.permission.C2D_MESSAGE" />

In addition to Android Service extending MediaBrowserService and Android Manifest file per-
mission configurations, you should add a new automative_app_desc.xml resource file for Auto
enabling. This file, shown in Listing 7-4 and located in Android Auto’s res/xml folder, allocates
resources for your application. Then you need to configure the Android Manifest file so that your
application uses the resource, as shown in Listing 7-5.

https://developers.google.com/glass/tools-downloads/playground
https://developers.google.com/glass/tools-downloads/playground

Android Auto Module  x  183

Listing 7-4:  automative_app_desc.xml

<?xml version="1.0" encoding="utf-8"?>
<automotiveApp>
 <uses name="media" />
</automotiveApp>

Listing 7-5:  Application metadata for Android Manifest

<meta-data
 android:name="com.google.android.gms.car.application"
 android:resource="@xml/automotive_app_desc" />

All the steps mentioned previously are auto-generated if you are creating a new project with
Android Auto support. There will be two auto activities to select during project creation, as shown
in Figure 7-24.

Figure 7-24:  Android Auto activities

184  x  Chapter 7   Multi-Module Projects

Figure 7-24 shows that Android Auto is enabled for:

➤➤ Media Service—Control media content through the Android Auto interface to play, stop, or
skip media selections.

➤➤ Messaging Service—View and respond through the Android Auto interface.

You can add support for Android Auto but there isn’t a virtual device yet for it. However, you
can work on an Android Auto–enabled application using the Android Auto Desktop Head Unit
Emulator. That can be installed with the Android SDK Manager, under the Extras section.

To test Android Auto features, you need to install the Android Auto app to your smartphone from
the Google Play Store, which emulates an Auto device. Next, you need to configure ADB from a
terminal to communicate with the Android Auto Desktop Head Unit Emulator’s auto executable,
which is found in the AndroidSDKPath/sdk/extras/google folder. There is no direct connection to
Android Studio at this point, but it will certainly come in the future.

reference  More Android Auto resources can be found at http://
developer.android.com/training/auto/start/index.html.

Google Cloud Module

The Google Cloud module, shown previously in Figure 7-1, is not directly related to the Android
API or devices but to the backend or cloud side of the Android application.

The Google Cloud module is used for developing and deploying backend applications to the Google
App Engine and to scale your application so it can handle multiple users, store data, collect analyti-
cal information, and perform all other tasks one can do in the cloud.

Multi-module development capability is a powerful feature of Android Studio that provides more
capability, and not only when dealing with Android and Java applications or libraries but also, with
backend module development, extended features of Android applications with cloud connectivity.
Having this capability helps developers manage the client- and server-side processes within Android
Studio while also managing the build process and the deployment of properties.

Adding a New Google Cloud Module
Add the Google Cloud module by selecting it from the window shown in Figure 7-1. The configura-
tion wizard opens, as shown in Figure 7-25.

Note  To develop the Google Cloud module, make sure you’ve installed the
Google APIs from the Android SDK Manager.

http://developer.android.com/training/auto/start/index.html
http://developer.android.com/training/auto/start/index.html

Google Cloud Module  x  185

Figure 7-25:  Google Cloud module setup wizard

The wizard displays four fields: Module type, Module name, Package name, and Client module.
These fields are described in more detail in this section.

The list of module types consists of three types of Google Cloud module templates that can be
added to a project, as shown in Figure 7-26.

Figure 7-26:  Google Cloud module types

186  x  Chapter 7   Multi-Module Projects

These Google Cloud module types are:

➤➤ App Engine Java Endpoints Module—This is the module used to build the backend Restful
API to handle requests and send data with the REST API.

➤➤ App Engine Backend with Google Cloud Messaging—This module is similar to the Java
Endpoints module but has Google Messaging Service support to enable your app to send
messages to a server and distribute messages to all connected applications.

➤➤ App Engine Java Servlet Module—This module is used by a client application to build
requests and send data using httpClient. The Java Servlet module offers easier or simpler
use cases than the Endpoints module.

Additional information can be accessed by clicking the link (blue text) under the selection boxes.
The links take you to the module templates’ Github home pages so you can see the detailed explana-
tion of each module type and related source code.

In this section, you want to add a messaging service for our Android module, so name the Cloud
module “messaging,” select the App Engine Backend with Google Cloud Messaging Module type,
and select the app module for the client, as shown in Figure 7-27.

Figure 7-27:  Google Cloud module configuration

Google Cloud Module  x  187

After you click Finish and Gradle sync successfully finishes, you can see that the messaging module
is added to Android Project view, as shown in Figure 7-28.

Figure 7-28:  Google Cloud module after module creation

Running and Debugging a Google Cloud Module
Because the Google Cloud module has a different API, it needs to
be handled by Android Studio separately. First build the project
by selecting Make Project from the Build menu.

If the build is successful, you can select Run or Debug from the
Run menu to list runnable modules, as shown in Figure 7-29.

Selecting the messaging module will generate a runnable Cloud
module and start a local App Engine Java Development server to
run and debug the module locally. Before running, a message window shows the output of the pro-
cess and enabled servers, as shown in Figure 7-30.

Figure 7-30 shows the output from the Google Cloud module (http://localhost:8080). There is
a second URL that points to the admin page (http://localhost:8080/_eh/admin) for the server
configuration and module monitoring. Let’s navigate to that page to see that the module is running,
as shown in Figure 7-31.

The links provided on the localhost page take you to additional information where you can learn
more and further develop the module.

Note  Further testing requires a Google Cloud Messaging API key to send and
receive messages. You can follow up with the development and procedures at
https://github.com/GoogleCloudPlatform/gradle-appengine-templates/
tree/master/GcmEndpoints.

Figure 7-29:  Runnable modules
with Google Cloud module

https://github.com/GoogleCloudPlatform/gradle-appengine-templates/tree/master/GcmEndpoints
https://github.com/GoogleCloudPlatform/gradle-appengine-templates/tree/master/GcmEndpoints

188  x  Chapter 7   Multi-Module Projects

Figure 7-30:  Message output for the Google Cloud module run

Figure 7-31:  Google Cloud module launch from browser

Importing Modules  x  189

Importing Modules

This section covers the inclusion of external modules, such as the Gradle project, the Eclipse ADT
roject, and .JAR/.AAR packages. The subsections that follow provide information on each type.

Importing a Gradle Project
Importing a Gradle project means importing a project that already has Gradle build scripts inside.
This can be either a Java project or another Android module already developed with Android
Studio.

It is relatively easy to import a Gradle project. When Import Gradle Project is selected from the New
Module window shown in Figure 7-1, a wizard opens in which you can select the Gradle project
directory to be imported.

If you select the folder where the Gradle project is stored, the Module name text box shown in
Figure 7-32 will appear so you can provide a unique name for the external Gradle project module.

Figure 7-32:  Gradle project module naming

Android Studio automatically imports the project in the background. When that’s done, you can run
or debug the imported module.

The method used for running or debugging imported modules depends on the type of module. If it
is an Android, Wear, or TV module, it can be run as the examples were in previous sections in this
chapter.

When Gradle sync finishes successfully, a new module will appear in Android Project view with the
name you gave it in the Create New Module window (see Figure 7-32). As you saw with the previous
examples in this chapter, when you select Build APK from the Build menu, an APK file will be gen-
erated in the module’s build/outputs/apk folder.

WARNING  If you are importing an Android module that has an Android SDK
version that is not installed on your machine, you should install it to successfully
build the module.

190  x  Chapter 7   Multi-Module Projects

Importing an Eclipse ADT Project
Importing an Eclipse ADT project helps developers migrate Android applications previously devel-
oped in Eclipse with ADT. When you select Import Eclipse ADT Project from the module selection
window shown in Figure 7-1, the import wizard will ask for the path of the Eclipse ADT project.

WARNING  If your Eclipse ADT project folder isn’t missing the
AndroidManifest.xml file or the src/, res/, .project, or .classpath folders,
Gradle sync should work correctly. If any of these folders is missing, opening the
project in Eclipse would create the missing items for you.

Select the project path by clicking the button to the right of the Source directory text box. Another
text field will become active so you can name the module for your project. In Figure 7-33, we
imported a previously implemented application named smartHome.

Figure 7-33:  Module naming for an imported Eclipse ADT project

Next, you need to open the window shown in Figure 7-34. The import wizard will ask you to con-
firm replacing jar and library dependencies, and Gradle module creation.

Figure 7-34:  Dependency replacement confirmation for an imported Eclipse ADT project

Importing Modules  x  191

If the Eclipse project’s Android SDK version is not installed, the setup wizard will prompt you to
install a corresponding version from the Android SDK Manager, as shown in Figure 7-35. You can
still continue to add the module, but Gradle sync will raise an error to make you install the indi-
cated Android SDK version.

Figure 7-35:  Missing Android SDK version warning

If the process is successful, you will see the Eclipse application with the name you gave it as a new
module in the Project view.

The imported Eclipse ADT project is run as in the previous examples in this chapter. You just need
to select the correct device to run or debug the module.

After the Eclipse ADT project has been imported as a module into your Android project, use the
Build APK option to generate the module’s APK file in the module’s new folder, under the Android
Studio project’s root folder, such as ProjectRootFolder/smarthome/build/outputs/apk.

Importing a JAR/AAR Package
Importing a JAR or ARR package is done by including an external Android or Java library in your
existing project. JAR files are legacy Java library containers. When you import a JAR file, you are
also importing the library in your project. An AAR package is an Android library package, which
contains a compressed Android Library module to load into your project.

When you select Import .JAR/.AAR Package from the window shown in Figure 7-1, the window
shown in Figure 7-36 opens. In the File name box, point to the .jar or .aar file to import into your
project. In the Subproject name box, enter a name for the module for the Android project.

Figure 7-36:  Importing a JAR/AAR package

192  x  Chapter 7   Multi-Module Projects

As shown in Figure 7-37, after successful Gradle sync, the
Android Project view shows the packages and their build.gradle
files. Android Project view shows only library packages, so there
won’t be any access to individual files.

You use these libraries the same way you use the Java and
Android libraries that you added in previous sections. You
should define the dependencies for the modules either in the
build.gradle file or in the Project Structure window.

Removing Modules from a Project

To remove a module from a project, open the Project Structure window. Then select the module
from the list and click on the minus (–) button on top of the left panel. Android Studio will then ask
for confirmation, as shown in Figure 7-38.

Figure 7-38:  Module Remove confirmation

Figure 7-37:  Project view of an
imported JAR/AAR module

Summary  x  193

Following your confirmation, Gradle sync will update the project and clean up the related files and
dependencies.

WARNING  Removing an independent module is easy, but if you are removing
a module that is referenced in different modules, such as a library module, you
should be careful to identify and appropriately handle the use of the deleted
module in other modules.

Summary

This chapter covered the details of existing modules in an Android Studio project. We discussed
in detail the processes for adding new Android Phone & Tablet, Wear, Library, Glass, Auto, and
TV modules to a project (including building, running, and debugging configurations). The chapter
explored the procedures for releasing APK and JAR/AAR files, and identifying their locations in the
project folder.

Next, the chapter covered importing external modules into an existing project and discussed the
Google Cloud and Java Library modules.

An understanding of the structure of modules and how they are managed in Android Studio will
enable you to better approach the development of complex Android projects with multiple modules.
We believe you will benefit from understanding when the modules discussed in this chapter are
needed and how they are managed within the project build system.

Debugging and Testing
WHAT’S IN THIS CHAPTER?

➤➤ Debugging Android code

➤➤ Android Monitor

➤➤ Android Device Monitor

➤➤ Android Virtual Device extended controls

➤➤ Android Lint

➤➤ Testing Android code and UI

Wrox.com Code Downloads for this Chapter

The wrox.com code download for this chapter is found at www.wrox.com/go/expertandroid
on the Download Code tab. The code for this chapter is in the Chapter8.zip file.

This chapter covers debugging and testing Android projects using Android Studio and SDK
tools. You will use applications from Google’s Android samples because those provide excel-
lent use cases for debugging and testing.

Debugging helps to detect flaws and solve possible problems with your software and design.
One tricky part of debugging Android applications is that you need to remotely debug a run-
ning virtual machine or Android device, which requires a connection to send and receive data
from the remote device to your development device. That connection is handled with Android
SDK tools.

Android Studio provides a good visual debug console and tools to monitor running applica-
tions on the device. Android Studio tools are not yet robust enough for detailed debugging and
testing, so this chapter also investigates some of the core tools of Android SDK so that readers
can better understand the available debugging options.

8

www.wrox.com/go/expertandroid

196  x  Chapter 8   Debugging and Testing

In addition to debugging, you need to ensure the application is solid, doesn’t crash, and does all
required tasks without any problems, so defining all the possible actions as test packages for code
and the user interface is a good practice to make a great application.

Note  If you have not enabled your Android device for debugging, you should
do so first by navigating to Settings ➪ About Phone (or Tablet, TV) and tap
Build Number seven times to unhide the Developer settings. Then navigate to
Settings ➪ Developer Settings to enable USB debugging.

Debugging Android Code

For this section, import the Universal Music Player sample application. We’ll use that to look at
debugging Android code with Android Studio. When you have loaded the project into Android
Studio, you are ready to debug the application both on hardware and on a virtual device.

As mentioned in this chapter’s introduction, remote connections to Android devices are needed to debug
applications remotely. To communicate with a remote Android device, the Android adb (Android
Debug Bridge) tool is used. It is delivered with Android SDK and is integrated with Android Studio.

Before proceeding, let’s take a look at the details of adb to understand the underlying technology for
remote debugging.

Android Debug Bridge
adb (Android Debug Bridge) is a command-line tool that provides communication between a devel-
opment machine and an Android device. It is delivered with Android SDK and is installed when you
install the Android platform-tools package from Android SDK Manager. The Android platform-
tools and executable can be found by following the <sdk-path>/platform-tools/ Android SDK
installation path.

There are long-running adb services on both the development host and target Android devices to
establish communication.

➤➤ adb-server—adb-server runs on your development machine. It provides the communication
between adb and adb-daemon running on the target device.

➤➤ adb-daemon—adb-daemon runs on target Android devices to respond to incoming debug
connections from remote host machines.

adb communications happen through TCP ports. When an adb client starts, it should connect with
adb-server. If adb-server is not running, the client initiates adb-server to enable connections with the
remote device.

adb is at the heart of Android application development. When you run an application, it is installed
using adb. If you want to install an Android APK manually, you can run the following command
from the terminal if at least one device is already connected to adb-server.

adb install <path_to_project>/app/build/outputs/apk/app.apk

Debugging Android Code  x  197

If more than one device is connected to adb-server, you should modify the command to select a
device. The following command lists the connected devices with their unique serial number.

adb devices
List of devices attached
emulator-5554 device
f2f6c6c5 device

The output shows connected devices so now you can select an emulator to install your apk with the
following command. -s instructs adb to select the specified device.

adb –s emulator-5554 install <path_to_project>/app/build/outputs/apk/app.apk

There are many other commands and options with adb for connecting to Android devices’ shells,
listing files, transferring files between host and target devices, and so on. Basically, adb works with
all IDEs to connect with remote Android devices.

reference  More information about adb commands can be found at http://
developer.android.com/tools/help/adb.html.

The next section discusses how to use adb to wirelessly debug devices.

Wireless Debugging
The preceding section discussed adb and debugging Android code on remote devices, which can be
either an Android emulator or a USB-connected Android device. Wireless debugging can be per-
formed if both devices are in the same local network and can directly connect from a TCP/IP port.
However, the devices need to be set up to enable wireless debugging. Therefore, before unplugging
your device, run the following adb command after you navigate to the <sdk-path>/platform-
tools folder.

$ adb tcpip 5555

If your emulator is also running, get the device’s unique ID from the output of the following com-
mand, and enter it in the command on the last line.

$ adb devices -l
List of devices attached
f2f6c6c5 device usb:336592896X product:gm4g
model:General_Mobile_4G_Dual device:gm4g_sprout
emulator-5554 device product:sdk_google_phone_x86
model:Android_SDK_built_for_x86 device:generic_x86
$./adb –s <device-id> tcpip 5555

The device will reconnect with the configured port, which is enabled to allow a wireless debug
connection.

http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html

198  x  Chapter 8   Debugging and Testing

Now, let’s detach the USB cord from the host machine and find your device’s IP address from
Settings ➪ About Phone (or About Tablet, TV) Status. In this example it is 192.168.1.37.

Next, connect adb to our phone wirelessly with following adb command.

$./adb connect 192.168.1.37
connected to 192.168.1.37:5555
$./adb devices –l
List of devices attached
192.168.1.37:5555 device product:gm4g model:General_Mobile_4G_Dual
device:gm4g_sprout
emulator-5554 device product:sdk_google_phone_x86
model:Android_SDK_built_for_x86 device:generic_x86

You made it. The wireless connection is successful and you can see your phone on the list of devices.
Now, you are ready to run and debug applications using a WiFi connection. When you select Run or
Debug from Android Studio, your device will be listed again.

Start Debugging
Now that you understand how the underlying Android debugging mechanism works, you can start
debugging with Android Studio using the Universal Music Player sample application.

Note  If you have enabled Android Studio ADB Integration, adb should work
with Android Studio. However, it is always good to double check adb integra-
tion from the Tools menu’s Android option, as shown in Figure 8-1.

Figure 8-1:  Android Studio adb integration

Let’s insert some break points, starting with the application’s entry point, the onCreate function.
This will make it easier to explain the steps needed for debugging.

The UniversalMusicPlayer’s launcher activity is in the MusicPlayerActivity.java file under the
java/com.example.android.uamp/ui folder (you can locate the activity declaration in the Android
Manifest file). We inserted a break point in the onCreate function by double-clicking on the left

Debugging Android Code  x  199

pane just next to code text as shown in Figure 8-2, but you can simply press Command+F8 on Mac
or Ctrl+F8 on Windows.

Figure 8-2:  Break point in Android Studio

At this point, connect your device to a development machine. To quickly start debugging, press
Control+d on Mac or Shift+F9 on Windows, or select Debug from the Run menu. Then select the
device you will use to debug the application from the Select Deployment window that opens.

When debugging starts successfully, the Debug window is enabled and it displays the progress of the
apk installation on the device, as shown in Figure 8-3.

Figure 8-3:  Debug window console

200  x  Chapter 8   Debugging and Testing

Let’s dig a little more into the available buttons in the Debug window.
First, let’s investigate the buttons on the left pane of the Debug window,
shown in Figure 8-4.

The first three buttons are used, respectively, to Resume, Pause, and Stop
actions for the currently running application.

➤➤ Resume—This button runs the paused application until it reaches
a breakpoint or the Pause button is clicked.

➤➤ Pause—This button pauses the running application. The cursor
goes to the paused line of the code.

➤➤ Stop—This button stops the debugging process and kills the run-
ning application process.

The next two buttons are used for breakpoint operations.

➤➤ View Breakpoints—This button shows the list of breakpoints, as
shown in Figure 8-5.

Figure 8-5:  Breakpoints window

The Breakpoints window enables you to view and configure the breakpoints for
detailed use during the debug.

➤➤ Mute Breakpoints—Click this button to disable (but not remove) all active breakpoints.

Figure 8-4:  Debug
window left pane actions

Debugging Android Code  x  201

The sixth button dumps the threads’ data, as shown in Figure 8-6.

Figure 8-6:  Thread dump data

➤➤ Get thread dump—A thread dump shows the running threads and stack trace to show the
callbacks and current state of the threads for the running application. This view enables you
to optimize threads and investigate details of the threads used in your application.

The next two buttons are used to restore the user interface layout to its original state if you have
changed some values during debugging.

➤➤ Restore Layout—Restores changes back to original state if you have made any changes to
layout during debugging.

➤➤ Settings—Shows options to show values of variables on code text file, method return values,
sort variables in the Frames section alphabetically.

The last three buttons are for settings and window actions to pin, close, and open the help window.

➤➤ Pin Tab—Pins debug tool window tab on Android Studio.

➤➤ Close—Closes debug window.

➤➤ Help—Opens help window.

The action buttons on the top of the debug window (see Figure 8-7)
give us the power for step-by-step debugging. For efficiency it is a
good idea to make shortcuts of these actions; otherwise, it can be
painful to debug applications.

➤➤ Show Execution Point—The first button from the left takes you to the current execution
point. The shortcut for this action is Option+F10 on Mac and Alt+F10 on Windows.

➤➤ Step Over—The second button from the left debugs the application step by step starting
from the current position of the cursor in the code. The shortcut is F8 on Mac and Windows.
Because Step Over is used repetitively, using your keyboard helps to quickly debug the appli-
cation and skip lines.

Figure 8-7:  Debug window
actions toolbar

202  x  Chapter 8   Debugging and Testing

In this section, we started to debug with the onCreate method’s first line. To continue
debugging, click the Step Over button to step one line. Notice that the cursor advances one
line and the action on the line is completed.

➤➤ Step Into—Use the third button from the left to step into a method while debugging the
application. The shortcut for the Step Into action is F7 on Mac and Windows.

Step Into allows you to get into the method on the current line of the Java code. For exam-
ple, when the cursor is on the line LogHelper.d(TAG, "Activity onCreate");, pressing
the Step Over button completes the action and continues to the next line. But if you
click the Step Into button, you call the LogHelper.d function and continue debugging
in that function.

➤➤ Force Step Into—The next button disables any stepping filters and puts you in the function
you want to get in. The key combination for this action is Option+Shift+F7 on Mac and
Shift+Alt+F7 on Windows.

➤➤ Step Out—The Step Out button takes you out of the method you are currently in during the
debugging.

To run the Step Out action, you can press Shift+F8 on Mac and Windows.

➤➤ Run to Cursor—This button makes the debugger work from its current execution point to
the current location of the cursor. This is useful if you have skipped through a section of code
but decide to go back and debug that section. Click on the line you want to go to and press
the Run to Cursor button to debug the code from that line through to the current location
of the cursor.

You can perform this action using Option+F9 on Mac or Alt+F9 on Windows.

➤➤ Drop Frame—This takes you back to the method that made the call for the current method.
When this button is used, it drops loaded method frames from the stack.

➤➤ Evaluate Expression—The Evaluate Expression action allows you to immediately perform
actions or expressions written in the Java code to evaluate them according to the current con-
text. For example, you can evaluate math expression values used for the user interface, which
you may not be able to test during development.

It is also possible to test a code fragment because most objects’ values would be defined in
the debug context so you would get a result for the object (see Figure 8-8). In Figure 8-8, a
Boolean expression has been evaluated and the result has been inspected.

You can also open the Evaluate Expression window with Option+F8 on Mac or Alt+F8 on
Windows.

Expression evaluation is a powerful tool to quickly test a piece of running code to see
whether the output returns the expected result. If it is not returning the assumed value, this
helps you determine the problem with variables and understand what you need to work on.
This is useful for analyzing sensor values or data read from a server and so on.

To see a result after expression evaluation, make sure you are running an expression that
has a return value. If you run a void function, you will see an undefined result, as shown in
Figure 8-9. However, because a Boolean expression is used, the result is true.

Debugging Android Code  x  203

Figure 8-8:  Evaluate Expression window

Figure 8-9:  Undefined result in the Evaluate Expression window

204  x  Chapter 8   Debugging and Testing

Using the actions available on the Actions toolbar described
previously, you can debug your application by running it step by step
to investigate what happens at each step. It is also possible to access
some of the actions by right-clicking inside the Java class during
debugging.

As shown in Figure 8-10, Evaluate Expression, Run to Cursor, and
Force Run to Cursor are enabled during debugging. Because these
actions are associated with the line of the code and the written
expression in the code, only these items can be accessed by right-
clicking in the code.

However, if you don’t see the details of the threads, navigate to the
Debugger tab in the Debug window, as shown in Figure 8-11.

You can see three panes in this window: Frames, Variables, and
Watches.

➤➤ Frames—This pane lists the threads of the Android applica-
tion. It shows the thread’s call stack, and if you click the
stack element, you see the thread’s variables listed in the Variables pane. Seeing a thread’s
call stack helps you understand the steps, and you can look over the variables and objects in
the threads for a better understanding of how the application runs.

You can switch between threads by clicking on the drop-down box on top of the pane.

➤➤ Variables—This pane shows the list of variables and their values at the current state of the
selected stack element from the Frames pane. In this pane, you can manipulate the variables.
You can see a list of the actions that you can perform by right-clicking a variable, as shown
in Figure 8-12.

Figure 8-11:  Debugger tab in the Debug window

➤➤ Watches—This pane lists the variables you’ve manually selected to watch over the debugging
process.

Figure 8-10:  Actions
accessible inside Java code

Debugging Android Code  x  205

Figure 8-13 shows that in the current state, just at the beginning of
the onCreate function, only the TAG variable is defined; the rest are
null. null is a constant and static variable, so its value is assigned
already. For this example, some of the variables defined in the
MusicPlayerActivity.java class have been randomly inserted.

Figure 8-13:  Watches pane

The Watches property enables you to group a number of variables during debugging to see their
values change during execution. That way, there’s no need to search through the files to try to catch
their values each time. When there has been a change to the variable, you can see it in the Watches
window.

You can add variables to watch by right-clicking and selecting Add to Watches or you can select the
variable and drag it to the window. Another way is to use the + button on the pane, shown at the
bottom of Figure 8-13.

Finally, we should mention that Android Studio tries to help as much as it can to provide all the
information about variables and values during debugging. When you step over any line, it highlights
the variable and object values instantly, as shown in Figure 8-14.

Figure 8-14:  Highlighted variables and values in code

Figure 8-12:  Variable actions

206  x  Chapter 8   Debugging and Testing

It is helpful to see light green highlights on the debug line instead of needing to hover over the
variable, as shown in Figure 8-15. The highlighting saves significant time and practically debugs the
application for you.

Figure 8-15:  Hovering over a variable to reveal its value

This section covered most of the tools and shortcuts required to efficiently debug an Android appli-
cation. During the debugging, you always need to watch the stack and threads to see what is chang-
ing and whether you’re getting the expected behavior or value of the objects. In the next section, you
learn to use Android Monitor to trace memory, CPU, and GPU usage, as well as network activity.

Android Monitor

Android Monitor should be one of your best friends while developing your application in Android
Studio because it includes the useful debugging monitoring tools logcat, Memory, CPU, GPU, and
Network. The tabs for these monitors are available in the Android Monitor window (see Figure 8-16).

Note  You don’t need to be in debug mode to use tools in Android Monitor, as
the goal is to optimize the release builds.

Figure 8-16:  Android Monitor tabs

Android Monitor  x  207

Before we cover the detailed use of these monitoring tools, let’s look at the common actions you can
perform in Android Monitor.

Figure 8-17 shows the three buttons available near the top left of
the Android Monitor window. These are used to capture and dump
data from an Android device. You can take screenshots with the first
button and record screen activity with the second. With the last but-
ton, you can capture to a .txt file the system information listed in
Figure 8-17 .

In addition to these information-capturing buttons, there’s a red but-
ton that is used to terminate selected processes. The following list
describes in detail how to use those actions:

➤➤ Screenshot—This button is used to capture the current screen from the connected device dur-
ing debugging. Right after you click the Screenshot button, a dialog box appears that shows
the progress of capturing and transferring the image to the host machine. Then the window
shown in Figure 8-18 displays a preview of the screenshot. Here you can perform minor edit-
ing with the tools provided at the top of the window.

Figure 8-18:  Screenshot preview window

Figure 8-17:  List of system
information available with
Android Monitor

208  x  Chapter 8   Debugging and Testing

You can save screenshots to your development machine with the Save button. To recapture
a screenshot, click the Recapture button. If you want to view the screenshot as it would
appear on a phone, check the Frame Screenshot option before saving.

➤➤ Screen Recording—This button records a video of the attached Android device’s screen
to your host machine. When you first click the button, a dialog box appears in which
you configure the bitrate and resolution (height and width of video) options, as shown
in Figure 8-19.

Figure 8-19:  Screen Recorder Options dialog box

You can share a screen recording with your team, which is useful when you want to investi-
gate and discuss the behavior of the user interface.

➤➤ Capture System Information—Click this button to get the system information shown in
Figure 8-17. When you click any item from the list, the command is sent to adb and you get
the corresponding data as text. After the data is received, it will be opened and saved in the
Captures\System Information folder under the module’s path. The result is that you can
see all the captured system information in the Captures window, as shown in Figure 8-20.

Figure 8-20:  System information Captures window

Android Monitor  x  209

All the capturing tools are important if you want to share your application’s data with your teams
and peers to help them understand any problems there might be. You can also use this information
to compare different devices’ system information so that you can understand what can be improved.

For example, the dump (system information after the capture action) shown in Figure 8-20 is a
device’s memory usage information provided in a text file. With this information, you can investi-
gate memory usage by system processes.

You are also able to select the connected devices and available processes from lists above the
Android Monitor window, as shown in Figure 8-21. You can see the two connected devices:
a smartphone and a running emulator. Capture outputs will give the selected device’s information
or screenshot.

Figure 8-21:  Device and process selection

The following sections investigate the other tools in Android Monitor.

Using logcat
Logcat is one of the most useful tools for Android application development because Android appli-
cations do not run on a shell with stdin/stderr. It is possible to print output to text files during
debugging or running but it is expensive to implement. A better solution is the Android Log class
and logcat functionality for all applications.

There is an absolute need to follow up with the running code for tracing and getting logs to analyze
code and get exception messages and other warnings, errors, and information.

If you select No Filter instead of Show only selected applications from the list at the top right of the
logcat window, you will see all the log messages from the system and other running applications and
services, as shown in Figure 8-22.

Figure 8-22:  No Filters output in logcat

Log messages are classified as Verbose, Debug, Info, Warn, and Error. The Log class allows you
to write messages according to these levels using v, d, i, w, and e functions respectively. Those

210  x  Chapter 8   Debugging and Testing

functions take two parameters. The first parameter is used to define a tag and the second is a string
with the message you want to print. The message can be an exception message or any other message
you want. Listing 8-1 shows the use of the Log functions.

Listing 8-1:  Log function use

//It is better to define a tag in a static constant field
private static final String TAG = "Class Name";
//Verbose is used to print casual messages according
Log.v(TAG, "Starting");
//Debug is used to print messages in debug mode
Log.d(TAG, object.Length.toString());
//Information to print out general system flow messages
Log.i(TAG, "Starting to Execute ...");
//Warning to print out warning messages especially when exceptions catched
during execution
Log.w(TAG, ex.message);
//Error to print execution errors which is most important messages
Log.e(TAG, "class returned null");

The five types of Log messages help you to filter messages so that you don’t get lost in thousands of
messages on the logcat screen. You can use the log type selection box in the middle of the screen, as
shown in Figure 8-23.

Figure 8-23:  Log type selection

You can also use the Search box with or without regex to filter log messages.

Using Memory Monitor
Memory monitor enables you to watch the memory use of your application’s threads and collections.
This information enables you to analyze memory use. With that information, you can optimize your
application’s memory use and data collection to increase performance and enhance user experience.
Nobody wants an application with heavy memory use or leaks that may impact the system and even
cause a crash.

The Memory tab shows a flow chart for the application running on the target device, as shown in
Figure 8-24.

When you start using Memory monitor the chart changes to reflect memory usage. In the chart, the
vertical (y) axis shows memory in use and the horizontal (x) axis tracks the time. Whenever you per-
form an action, the memory use changes over the duration of the action. However, it is not enough
to analyze memory use just by looking at how it changes over time. You need to go deeper into the
details, so you need to dump the Java Heap to track the allocation of memory.

Android Monitor  x  211

To dump the Java Heap, click the button shown in Figure 8-25.

Figure 8-24:  Memory monitor

The Dump Java Heap button retrieves the threads and the threads’
members’ current memory allocations and writes them to a .hprof
file. In order to analyze this information, Android Studio opens the
dump file, as shown in Figure 8-26.

Figure 8-26:  hprof memory dump

Figure 8-25:  Java Heap dump

212  x  Chapter 8   Debugging and Testing

The .hprof file displays a really detailed memory allocation output for your application and system.
In the Class Name pane, you can navigate to a Java class’s objects and check the Instance pane to
see how its members use memory. The Reference Tree pane shows the hierarchical view of objects
and their values.

The Java Heap dump shows the instantaneous allocation of the application’s Java Heap. However,
you may want to observe and investigate how your application allocates memory while it’s running.
To track memory allocation this way, click the button below the Dump Java Heap button.

When you start allocation tracking, you see an icon on the memory timeline where it starts record-
ing. After you collect enough data for your purposes, click the allocation tracking button again
to stop tracking. When tracking finishes Android Studio opens an .alloc file that contains the
recorded data, as shown in Figure 8-27.

Figure 8-27:  Allocation tracking file

In the top pane, you see threads and their allocations and count during execution. In the bottom
pane, you can group allocators, as shown in Figure 8-28.

In addition to tracking and monitoring, you can also use the button above the Dump Java Heap
button to force the Java Garbage Collector to work. Use the top button to pause memory allocation
tracking.

Android Monitor  x  213

Figure 8-28:  Allocation tracking with allocator grouping

Using CPU Monitor
CPU monitor shows you how much computational power you use during the execution of your
application. With this data, you can analyze the running application for further performance
enhancements and optimized coding.

Figure 8-29 shows a typical display when you monitor an application. The vertical axis shows the
application’s CPU usage by percentage.

Figure 8-29:  CPU monitor

214  x  Chapter 8   Debugging and Testing

There aren’t as many actions in CPU monitor as there are in Memory monitor. CPU monitor has
only a tracker to get CPU usage by threads into a trace file so you can investigate the performance
of the application’s functions and threads. This is a very detailed file so you should zoom in after it’s
opened and then navigate to the methods you are looking for to see their CPU usage and execution
details as shown in Figure 8-30.

Figure 8-30:  CPU track dump

CPU monitor helps you find and resolve computational bottlenecks and optimize execution time.

Using GPU Monitor
GPU monitor shows an Android application’s GPU use with a list of operations and their instant
performance, as shown in Figure 8-31.

The color-coded list at the right of the screen specifies the GPU operations monitored, and the graph
is a timeline showing the color-coded operation details. Using this monitoring tool, you can get only
basic data about what is happening.

To get detailed GPU tracing, you have to modify your application to activate tracer and dump trac-
ing data, and your device needs to be rooted (that is, given root permissions by unlocking the boot-
loader and modifying your device). Some other profiling options can also be found on the Android

Android Monitor  x  215

devices’ developer options menu at http://developer.android.com/tools/performance/
profile-gpu-rendering/index.html.

Figure 8-31:  GPU monitor

GPU debugging and tracing is too large a subject to cover in one section; if you are a game developer
and use Open GL heavily, the following resources are the best guides to learn more about GPU per-
formance analysis:

http://developer.android.com/tools/help/gltracer.html
http://tools.android.com/tech-docs/gpu-profiler

Using Network Monitor
Network monitor is there for you to work on your application’s network optimization. This is
another crucial point to think about while designing the application; you should consider that any
Android application with an Internet connection would eventually be used on 3G/4G network,
which is more costly than your home/office network. Even worse, network usage can greatly affect
the power consumption of your application. Efficient use of mobile networks will encourage users
to run the application without a second thought about consuming a lot of network data and losing
battery life.

Network monitor is a basic monitoring tool compared to other monitors because you can observe
only the incoming (Rx) and outgoing (Tx) bytes in a timeline. The vertical (y) axis shows the
amount of data received or uploaded and changes as the horizontal (x) axis advances. There is no
dump tool, only the timeline shown in Figure 8-32.

Figure 8-32:  Network monitor

http://developer.android.com/tools/performance/profile-gpu-rendering/index.html
http://developer.android.com/tools/performance/profile-gpu-rendering/index.html
http://developer.android.com/tools/help/gltracer.html
http://tools.android.com/tech-docs/gpu-profiler

216  x  Chapter 8   Debugging and Testing

Android Device Monitor

In addition to the Android Monitor tools, you have access to a legacy tool from Android SDK, the
Android Device Monitor. This tool runs as a separate application and can be started from Android
Studio by clicking the Android icon next to the SDK Manager icon on the toolbar. You can also
select it from the Tools menu, under the Android section. Right after you click on the icon, Android
Device Monitor will run, as shown in Figure 8-33.

Figure 8-33:  Android Device Monitor

Note  If you start Android Device Monitor from Android Studio, adb will be
allocated for Android Device Monitor and Android Studio’s connection with the
target device will be lost.

If you were an Eclipse user, you may recognize Android Device Monitor’s user interface. It is simi-
lar to Eclipse’s DDMS perspective view, which was the debug context UI in the Eclipse IDE when
debugging Android applications.

Android Device Monitor  x  217

Android Device Monitor provides some extra debugging outputs for developers in addition to the
tools provided within Android Studio. Following is the list of common monitoring tools in Android
Device Monitor with Android Monitor.

➤➤ Logcat—Logcat appears at the bottom of the window in Figure 8-33. Logcat in Android
Device Monitor prints the same output as in Android Monitor, but the output format is
column-based texts here. The rest of the functions (filtering and searching messages) are the
same.

➤➤ Devices—In this tab, you can manage devices, take screenshots, and stop running processes,
as you did in Android Monitor. You can also initiate heap and memory dump, and you can
see the dumps in tabs at the right of the window. Threads, Heap, Allocation Tracker, and
Network Statistics are available as well. Similar to Android Monitor, it is also possible to
trace GPU usage.

➤➤ Threads—This tab of Android Device Monitor is similar to CPU Monitor in Android Monitor.
You activate thread tracing by clicking Update Threads or Start Method Profiling to get execu-
tion data for an Android application’s threads. When you click Update Threads, you will see
refreshed data about Android threads on the Threads tab, as shown in Figure 8-34.

Figure 8-34:  Threads in Android Device Monitor

If you start tracing an application’s threads and functions by clicking Start Method Profiling
and then stop tracing after a while, you can get a trace file, as in Android Monitor, to ana-
lyze functions and the threads’ performance. The .trace file opens automatically, right
after you stop tracing, as shown in Figure 8-35.

This tool can be used together with Android Monitor’s CPU Monitor, for a little more
detailed analysis.

➤➤ Heap—This feature is similar to the Memory Monitor tool in Android Monitor. It is used
to analyze an Android application’s threads’ memory allocations from the Android heap.

218  x  Chapter 8   Debugging and Testing

You can activate Heap tracing by clicking the Update Heap button on the Devices menu;
then you can navigate to the Heap tab and get the threads’ current allocations, as shown in
Figure 8-36.

Figure 8-35:  Thread trace

Figure 8-36:  Heap tracing in Android Device Monitor

You can also dump the hprof file for further analysis of memory allocations using the Dump
HPROF File button, and can navigate to the Allocation Tracker tab to instantly monitor the
memory allocation of the Android application.

➤➤ Network Statistics—This tool is the same as Network Monitor; you just need to activate
network tracking to see RX and TX bytes.

➤➤ Emulator Control—This tab includes options to help with the debugging process within an
Android virtual device by mocking SMS, phone calls, and sensors. This feature is not active

Android Device Monitor  x  219

in Android Studio; instead, it is activated when you launch a virtual device. The next section,
“Android Virtual Device Extended Controls,” discusses this in more detail.

The following list describes the extensions in Android Device Monitor, which may ease some debug-
ging processes on Android devices.

➤➤ UI XML Dump—This function allows you to dump the XML layout and hierarchy of
the currently running application’s user interface on the Android device. You can start
dumping the XML of the view by clicking the XML dump icon in Device view, as shown
in Figure 8-37.

Figure 8-37:  XML dump icon

As shown in Figure 8-38, when the dump finishes, a new tab opens in the Android Device
Monitor. You can click any view to see all the detailed features of the views.

Figure 8-38:  XML dump view

➤➤ File Explorer—This tool, shown in Figure 8-39, enables you to see files and folders in a tree
view. In this view you can transfer files between the Android device and the host machine as
well as delete files and create folders using the buttons at the top of view.

220  x  Chapter 8   Debugging and Testing

Figure 8-39:  Android Device Monitor File Explorer

➤➤ System Information—This view uses a pie chart to provide quick information about the
device CPU load, Memory usage, and Frame Render Time (see Figure 8-40).

Figure 8-40:  System Information view in Android Device Monitor

➤➤ Hierarchy View—The tools mentioned previously in this list are part of Android Device
Monitor’s DDMS (Dalvik Debug Monitor Server). Android Device Monitor has another use-
ful tool to help you analyze your application’s user interface layouts and see their render time
to optimize the user interface. To display the view hierarchy, click a process from the list and
the corresponding hierarchy view will be generated to the right, as shown in Figure 8-41.

The Hierarchy view contains red, green, and yellow circles that indicate how long it takes to
render that particular view. Double-click an object to zoom in, as shown in Figure 8-42.

By using Hierarchy view, you can investigate the bottlenecks on your user interface and
improve performance for a better user experience.

Android Device Monitor  x  221

Figure 8-41:  Hierarchy view generation

Figure 8-42:  Hierarchy view details

222  x  Chapter 8   Debugging and Testing

Android Virtual Device Extended Controls

Some features of Android smart phones and tablets, such as phone
calls, handling SMS, GPS data, and fingerprint sensors, might be dif-
ficult to virtually emulate on regular personal computers. To make tests
easier on virtual devices, Emulator Controller was used by develop-
ers in Eclipse. Now, we have extended features embedded into virtual
devices that can be accessed from a running virtual device’s toolbar by
clicking the ellipsis (...) button shown at the bottom of Figure 8-43.

When you click the ellipsis button, the Extended controls window,
shown in Figure 8-44, opens.

The extended controls of AVD are as follows:

➤➤ Location—Location helps mock location data on a running
Android emulator to check that your application is getting data
correctly and your algorithms do the location-related calcula-
tions correctly. Trying location simulation is pretty easy. If your
AVD is generated by using a Google API image, you can open
Google Maps in AVD, set the latitude and longitude, press Send,
and press the Locate button in Google Maps, and you are at the location.

In the sample, we pointed to the River Thames in London and Google Maps took us there,
as shown in Figure 8-45.

Figure 8-44:  Extended controls window

Figure 8-43:  Virtual device
toolbar

Android Virtual Device Extended Controls  x  223

Figure 8-45:  GPS location setting

However, one static location is not always enough. It is also possible to load a GPX/KML
data file to simulate a changing location on an emulator by setting the speed. These buttons
and actions can be seen at the bottom of Figure 8-45.

➤➤ Cellular—Cellular allows you to emulate the network status of a phone. You can select
EDGE, GPRS, or None as the network type, and voice and data status as either Roaming or
Home to simulate different types of network statuses. That enables you to see the behavior of
your application. In this way, you can debug and catch unexpected errors.

➤➤ Battery—Battery simulates the battery status on the emulator. The aim is to test how your
application works under low and high power conditions.

➤➤ Phone—This feature allows you to call and send SMS to your emulator. If your application
works with calls or SMS, you can use this feature for better testing. It is pretty straightfor-
ward to call or send SMS. Just type a phone number and press Call or Send Message, and
your emulator will show that it’s receiving a call from the number, as shown in Figure 8-46.

➤➤ Directional Pad—This feature emulates an Android TV remote controller with directions and
playback buttons.

➤➤ Fingerprint—Fingerprint allows you to define a fingerprint template on an emulator and test
how it works in your application.

➤➤ Help—This tab, shown in Figure 8-47, includes the keyboard shortcuts to directly access any
feature mentioned in this list.

Now, you should be aware of the power of AVD and be able to take advantage of all pro-
vided features.

224  x  Chapter 8   Debugging and Testing

Figure 8-46:  Emulator call

Figure 8-47:  Android virtual device keyboard shortcuts

Using Lint  x  225

Using Lint

Previous sections of this chapter discussed the tools that help with debugging and performance
analysis of your Android application. This section visits another tool, Android Lint, which helps you
to detect any kind of error, warning, or suggestions for written code.

To run Android Lint, select the Analyze menu and click Inspect Code. Android Lint gives you
the opportunity to improve your code, detect possible bugs, correct typos, resolve accessibility of
objects, investigate assignment problems, and so on.

It is good practice to run Android Lint before committing code to a version control server when new
patches are added to an application.

Figure 8-48 shows example output of Android Lint analysis. The Inspection window shows all find-
ings of Android Lint.

Figure 4-48:  Android Lint output

Together with Android Studio and Gradle, you can also run Lint during the build and inspect
code. In order to set Lint configurations in the Gradle script inside Android, you should add
lintOptions. In the sample UniversalMusicPlayer’s Gradle script, the following section is provided:

Android {
...
lintOptions{
 abortOnError true
}
...
}

To see other Lint options for Gradle, visit http://google.github.io/android-gradle-dsl/
current/com.android.build.gradle.internal.dsl.LintOptions.html#com.android.build

.gradle.internal.dsl.LintOptions.

http://google.github.io/android-gradle-dsl/current/com.android.build.gradle.internal.dsl.LintOptions.html#com.android.build.gradle.internal.dsl.LintOptions
http://google.github.io/android-gradle-dsl/current/com.android.build.gradle.internal.dsl.LintOptions.html#com.android.build.gradle.internal.dsl.LintOptions
http://google.github.io/android-gradle-dsl/current/com.android.build.gradle.internal.dsl.LintOptions.html#com.android.build.gradle.internal.dsl.LintOptions

226  x  Chapter 8   Debugging and Testing

Testing Android Code and Application UIs

Testing might be the most underestimated topic in the whole software development lifecycle. Every
developer and all projects claim to conduct tests, but few conduct the right tests with proper cover-
age. Tests can help detect bugs and defects before they appear. They greatly help distributed teams
to work in harmony without breaking each other’s code.

Note  Testing is a huge topic that could easily fill an entire book if covered
adequately. This chapter cannot dig into every detail, but it does cover common
requirements and best approaches to making your projects testable.

Most test-related APIs in Android have been available since the first “real” release, version 1.5
(Cupcake), and some were available even with the initial release of Android SDK. Yet this didn’t
make tests appealing to many Android developers. Android Studio, with Gradle, aims to make writ-
ing tests and following test-driven development easier. To create tests for the following sections, you
will use a pre-written simple example. Download the example code for this chapter, named “begin-
ning,” and import the project.

The example is a binary calculator that converts decimal to binary and vice versa via a simple
UI. The project has an interface and four class files, consisting of an activity, two fragments, and a
class to encapsulate logic. Later, we introduce a few more classes and refactor the current classes.
You can run and experiment with the application. Listings 8-2 through 8-6 contain the code for
the application. If you are going to create the classes manually instead of downloading them,
pay attention to the package names.

Listing 8-2:  MainActivity class code

package com.expertandroid.chapter8.binary;

import android.support.design.widget.FloatingActionButton;
import android.support.v7.app.AppCompatActivity;
import android.support.v7.widget.Toolbar;
import android.support.v4.app.Fragment;
import android.support.v4.app.FragmentManager;
import android.support.v4.app.FragmentPagerAdapter;
import android.support.v4.view.ViewPager;
import android.os.Bundle;
import android.view.View;
import com.expertandroid.chapter8.binary.ui.BinaryFragment;
import com.expertandroid.chapter8.binary.ui.CalculatorFragment;
import com.expertandroid.chapter8.binary.ui.DecimalFragment;

public class MainActivity extends AppCompatActivity {

 private SectionsPagerAdapter mSectionsPagerAdapter;
 private ViewPager mViewPager;

Testing Android Code and Application UIs  x  227

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);
 mSectionsPagerAdapter = new
SectionsPagerAdapter(getSupportFragmentManager());

 mViewPager = (ViewPager) findViewById(R.id.container);
 mViewPager.setAdapter(mSectionsPagerAdapter);

 FloatingActionButton fab = (FloatingActionButton) findViewById(R.id.fab);
 fab.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 ((CalculatorFragment)mSectionsPagerAdapter.getItem(mViewPager
.getCurrentItem())).performCalculation();
 }
 });
 }

 public class SectionsPagerAdapter extends FragmentPagerAdapter {
 BinaryFragment bf=BinaryFragment.newInstance();
 DecimalFragment df=DecimalFragment.newInstance();
 public SectionsPagerAdapter(FragmentManager fm) {
 super(fm);
 }

 @Override
 public Fragment getItem(int position) {
 if (position==0)
 return bf;
 else
 return df;
 }

 @Override
 public int getCount() {
 return 2;
 }

 @Override
 public CharSequence getPageTitle(int position) {
 switch (position) {
 case 0:
 return "Binary";
 case 1:
 return "Decimal";
 }
 return null;
 }
 }
}

228  x  Chapter 8   Debugging and Testing

Listing 8-3:  CalculatorFragment class code

package com.expertandroid.chapter8.binary.ui;

public interface CalculatorFragment {
 void performCalculation();
}

Listing 8-4:  DecimalFragment class code

package com.expertandroid.chapter8.binary.ui;

import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.EditText;
import android.widget.TextView;
import com.expertandroid.chapter8.binary.R;
import com.expertandroid.chapter8.binary.logic.Calculator;

public class DecimalFragment extends Fragment implements CalculatorFragment{

 private EditText decimalNumber;
 private TextView binaryResult;
 private Calculator calculator;

 public DecimalFragment() {}

 public static DecimalFragment newInstance() {
 DecimalFragment fragment = new DecimalFragment();
 return fragment;
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View v = inflater.inflate(R.layout.fragment_decimal, container, false);
 decimalNumber= (EditText) v.findViewById(R.id.decimalNumberEditText);
 binaryResult = (TextView) v.findViewById(R.id.binaryResultText);
 calculator=new Calculator();

 return v;
 }

 @Override
 public void performCalculation() {
 binaryResult.setText(calculator.convertToBinary(decimalNumber.getText()
.toString()));
 }
}

Testing Android Code and Application UIs  x  229

Listing 8-5:  BinaryFragment class code

package com.expertandroid.chapter8.binary.ui;

import android.content.Context;
import android.os.Bundle;
import android.support.v4.app.Fragment;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;
import android.widget.EditText;
import android.widget.TextView;
import com.expertandroid.chapter8.binary.R;
import com.expertandroid.chapter8.binary.logic.Calculator;

public class BinaryFragment extends Fragment implements CalculatorFragment{

 private EditText binaryNumber;
 private TextView decimalResult;
 private Calculator calculator;

 public BinaryFragment() {}

 public static BinaryFragment newInstance() {
 BinaryFragment fragment = new BinaryFragment();
 return fragment;
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View v= inflater.inflate(R.layout.fragment_binary, container, false);
 binaryNumber= (EditText) v.findViewById(R.id.binaryNumberEditText);
 decimalResult = (TextView) v.findViewById(R.id.decimalResultText);
 calculator=new Calculator();

 return v;
 }

 @Override
 public void performCalculation() {
 decimalResult.setText(calculator.convertToDecimal(binaryNumber.getText()
.toString()));
 }

}

Listing 8-6:  Calculator class code

package com.expertandroid.chapter8.binary.logic;

public class Calculator {

230  x  Chapter 8   Debugging and Testing

 public String convertToBinary (String decimal){
 try{
 return Long.toBinaryString(Integer.parseInt(decimal));
 }catch (Exception e){
 return "Invalid input";
 }
 }

 public String convertToDecimal(String binary){
 try {
 return String.valueOf(Integer.parseInt(binary, 2));
 }catch (Exception e){
 return "Invalid input";
 }
 }
}

Unit Tests
Unit tests are great for testing the functionality of a method. Good unit tests make bugs visible as
they appear. The idea behind a unit test is to test a method with possible inputs and inspect the out-
put. They are useful not only for typical cases. Unit tests for edge cases and error cases should also
be written to provide good test coverage.

The Calculator class has two logic methods that are great candidates for unit testing. The project
currently has two test folders: tests and androidTests. Right-click tests and create a new class as
shown in Figure 8-49.

Figure 8-49:  Creating a new class in the tests folder

Name the class CalculatorTest. Because you have two methods—one to convert binary to decimal
and another to convert decimal to binary—you will write success and fail cases for both. For the
sake of simplicity, you will write two tests for each method shown in Listing 8-7. (In real life, you
may need to implement more test cases to cover edge cases, null input, extra large or small data sets,
and other error conditions.)

Testing Android Code and Application UIs  x  231

Listing 8-7:  CalculatorTest class code

package com.expertandroid.chapter8.binary;

import com.expertandroid.chapter8.binary.logic.Calculator;
import org.junit.Before;
import org.junit.Test;
import static org.hamcrest.CoreMatchers.is;
import static org.junit.Assert.*;

public class CalculatorTest {

 private Calculator calculator;

 @Before
 public void initializeCalculator(){
 calculator=new Calculator();
 }

 @Test
 public void convertToBinarySuccess() throws Exception {
 assertThat(calculator.convertToBinary("256"), is("100000000"));
 }

 @Test
 public void convertToBinaryFail() throws Exception {
 assertThat(calculator.convertToBinary("12ww11"), is("Invalid input"));
 }

 @Test
 public void convertToDecimaSuccess() throws Exception {
 assertThat(calculator.convertToDecimal("1111"), is("15"));
 }

 @Test
 public void convertToDecimaFail() throws Exception {
 assertThat(calculator.convertToDecimal("121"), is("Invalid input"));
 }
}

Note  Test-driven development works best when the test code is written with-
out solid knowledge of how the method under test is implemented. Otherwise,
the test may be biased and written in a way that makes it succeed. A great
approach is writing the tests before writing the implementation because the
input and output are already determined.

232  x  Chapter 8   Debugging and Testing

Now you can run your test and see whether it succeeds. Right-click on the CalculatorTest class
and select Run. Android Studio will run all tests in the class and display a summary of the sta-
tus. Whether you are confident about your code or not, seeing the green bar shown in Figure 8-50
always feels great.

Figure 8-50:  CalculatorTest results

This example used assertThat with is to test the output with expected values. There are several
other methods that work for the same purpose:

➤➤ assert

➤➤ assertEquals

➤➤ assertNotEquals

➤➤ assertTrue

➤➤ assertSame

➤➤ assertNotSame

➤➤ assertNull

➤➤ assertNotNull

The use of these methods is beyond the scope of this chapter, but most assert methods expect two
inputs: the output of the method under test and the expected value.

Any code that does not have UI interaction can be easily tested with basic unit tests. A good separa-
tion of UI and logic code will enhance testability, and several approaches such as MVC or MVP help
you achieve this goal. Once the UI code is separated, the remaining code can be tested with simple
unit tests.

Integration Tests
The method under test might be using an Android-specific API that needs a full-blown OS for
running, for example, database operations on Android’s SQLite. Starting with version 1.1 of the
Android Gradle plugin, a mockable version of android.jar has been introduced in order to sim-
plify testing. This approach can be used with popular mocking frameworks such as mockito. Our
example will not be making use of powerful mockito features; however, in real life mockito greatly
helps with mocking.

Testing Android Code and Application UIs  x  233

Integration tests do not need to open activities or fragments but can still test platform-specific APIs
and features with the help of android.jar. They can also mock other integration points such as
backend, database, or any other external resource. To run tests on a mockable version of
android.jar, you would need to introduce product flavors, which we covered in Chapter 4.

Let’s change our calculator to implement a sophisticated user history on a remote server based
on social login. For the sake of simplicity, let’s leave the implementation empty, as presented in
Listing 8-8.

Listing 8-8:  History class code

package com.expertandroid.chapter8.binary.logic;

public class History {

 public History() {
 //Perform some fancy sophisticated social login
 }

 public void add(String item) {
 //add to remote cache
 }

 public String get() {
 //get from remote cache
 return null;
 }
}

Because our fancy user cache is ready, let’s integrate it with the Calculator, as shown in Listing 8-9.

Listing 8-9:  Cache integration with Calculator

package com.expertandroid.chapter8.binary.logic;

public class Calculator {

 History history=new History();

 public String convertToBinary (String decimal){
 history.add(decimal);
 try{
 return Long.toBinaryString(Integer.parseInt(decimal));
 }catch (Exception e){
 return "Invalid input";
 }
 }

 public String convertToDecimal (String binary){
 history.add(binary);
 try {

234  x  Chapter 8   Debugging and Testing

 return String.valueOf(Integer.parseInt(binary, 2));
 }catch (Exception e){
 return "Invalid input";
 }
 }

Now, let’s assume you don’t want to go to the backend and make network calls simply to test the
Calculator class. To achieve this goal, you need to mock the History class. Open the build
.gradle file of the app module and add a product flavor for the purpose of mocking, as shown in
Listing 8-10.

Listing 8-10:  Product flavors for mock

productFlavors {
 mock {
 applicationIdSuffix = ".mock"
 }
 prod {

 }
}

Now it is time to create your folder structure for the mock flavor. Navigate to the src folder and
create a mock/java folder. Next, create a package with the same name as the package in which
your History class resides: com.expertandroid.chapter8.binary.logic. Create a class named
History and add the code shown in Listing 8-11.

Listing 8-11:  History mock implementation

package com.expertandroid.chapter8.binary;

import com.expertandroid.chapter8.binary.logic.History;

import java.util.Stack;

public class HistoryImpl implements History{
 private Stack<String> cache=new Stack<>();

 public void add(String item){
 cache.push(item);
 }

 public String get(){
 cache.pop();
 return "";
 }
}

Testing Android Code and Application UIs  x  235

Unlike the original History class, the mock History
class uses an internal stack to keep values in memory
instead of making network calls. Finally, in order to
replace the original History class with the new mock
History class, you need to move it to its own flavor.
You already added prod behavior but you need to
move the History class into a flavor-related directory
structure. Navigate to the src folder and create a prod/
java folder. Next, create a package with the name com
.expertandroid.chapter8.binary.logic and move
the original History class from the main/java folder to
your newly created package. Now you can select either
the prod or mock build variant to change the History
class implementation in use, as shown in Figure 8-51.

UI Tests
Testing the UI is another important step in the software
development lifecycle. Even projects with pretty good
unit test coverage fail to implement automated UI tests most of the time. UI tests provide complete
end-to-end testing and help you figure out if your app is behaving as expected. Good UI test cover-
age would greatly help expose broken code or functionality. If you are coming from a web back-
ground or build HTML5-based apps for Android, you might already be familiar with automated
web UI testing frameworks such WebDriver and Selenium.

Android also has a powerful UI testing framework called “Espresso.” The Espresso UI runs on an
emulator or a device. Espresso can automate user interaction, fill fields, submit actions, and even
analyze outputs and changes to make sure they are as expected. The final example of this chapter
will test your UI by using your binary calculator, checking the output, and then switching to the
decimal calculator and again running a calculation and testing the output.

Let’s start by adding the dependencies needed for Espresso. Open your build.gradle file and add the
dependencies shown in Listing 8-12.

Listing 8-12:  Espresso dependencies definition

apply plugin: 'com.android.application'

android {
 compileSdkVersion 23
 buildToolsVersion "23.0.2"

 defaultConfig {
 applicationId "com.expertandroid.chapter8.binary"
 minSdkVersion 23
 targetSdkVersion 23

Figure 8-51:  Debugging a mock class

236  x  Chapter 8   Debugging and Testing

 versionCode 1
 versionName "1.0"
 testInstrumentationRunner 'android.support.test.runner.AndroidJUnitRunner'
 }
 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
'proguard-rules.pro'
 }
 }
 productFlavors {
 mock {
 applicationIdSuffix = ".mock"
 }
 prod {
 }
 }
}

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile 'com.android.support:design:23.1.1'
 compile "com.android.support.test.espresso:espresso-idling-resource:2.2.1"
 testCompile "org.hamcrest:hamcrest-all:1.3"
 testCompile 'junit:junit:4.12'
 androidTestCompile 'com.android.support:support-annotations:23.1.1'
 androidTestCompile "com.android.support.test:runner:0.4.1"
 androidTestCompile "com.android.support.test:rules:0.4.1"
 androidTestCompile('com.android.support.test.espresso:espresso-core:2.2.1')
 }

The parts highlighted in bold are newly added configurations and dependencies needed for the UI
tests you are about to write.

Because you finished adding your dependencies, it is time to code. Let’s start by listing the steps in
the expected scenario and later turn them into code.

When the user launches your application, the first fragment in focus is the Binary calculator. The
first step will be moving focus to the text field and writing a valid binary number. Next, you need to
access the button and trigger an onClick event. Finally, you need to check that the displayed value is
your expected result.

Now that you’ve decided on your testing scenario, go to the androidTest/java folder and create
the com.expertandroid.chapter8.binary package if it does not already exist. Next, create a new
class named ApplicationTest. Now you are ready to code. Listing 8-13 shows the first test, which
tests the initial fragment.

Testing Android Code and Application UIs  x  237

Listing 8-13:  ApplicationTest code

package com.expertandroid.chapter8.binary;

import android.support.test.espresso.Espresso;
import android.support.test.rule.ActivityTestRule;
import android.support.test.runner.AndroidJUnit4;
import android.test.suitebuilder.annotation.LargeTest;

import org.junit.Rule;
import org.junit.Test;
import org.junit.runner.RunWith;

import static org.hamcrest.Matchers.allOf;
import static android.support.test.espresso.Espresso.onView;
import static android.support.test.espresso.action.ViewActions.click;
import static android.support.test.espresso.action.ViewActions.typeText;
import static android.support.test.espresso.assertion.ViewAssertions.matches;
import static android.support.test.espresso.matcher.ViewMatchers.isDisplayed;
import static android.support.test.espresso.matcher.ViewMatchers.withId;
import static android.support.test.espresso.matcher.ViewMatchers.withText;

@RunWith(AndroidJUnit4.class)
@LargeTest
public class ApplicationTest {

 @Rule
 public ActivityTestRule<MainActivity> mActivity =
 new ActivityTestRule<>(MainActivity.class);

 @Test
 public void calculateBinary() throws Exception {
 // type the number
 onView(allOf(withId(R.id.binaryNumberEditText),
isDisplayed())).perform(typeText("111"));

 Espresso.closeSoftKeyboard();//
 // perform the click
 onView(withId(R.id.fab)).perform(click());

 // check the output
 onView(withText("7")).check(matches(isDisplayed()));
 }
}

The first part of the class file is the ActivityTestRule declaration. A rule provides functional test-
ing of a single activity by launching the activity for each method annotated with @Test.

238  x  Chapter 8   Debugging and Testing

Next you have your test method calculateBinary, which is annotated with @Test. This method
consists of four lines. The first line looks for the field binaryNumberEditText with the field ID on a
view. However, because your fragments are in a view pager, you would need to look for the one you
want by using isDisplayed matcher. Although you field ID is unique, it is in a adapter so there are
no guarantees that there are no other similar instances. Once you find the binaryNumberEditText
field, you perform a type text action to enter the value to test. Now you need to click the button,
but as in real life, the software keyboard is currently covering the button. The Espresso
.closeSoftKeyboard method closes the keyboard. Next, you can click the button by using its ID
and finally search for the expected value in the displayed field.

You have finished your first UI test. Now either launch the emulator or connect a device and run the
test by right-clicking and selecting the Run ApplicationTest option as shown in Figure 8-52.

Figure 8-52:  Running an Espresso test

Testing Android Code and Application UIs  x  239

Now that you have finished testing the binary fragment, you can move on to testing the decimal
fragment. DecimalFragment is almost an identical copy of BinaryFragment. So you will use similar
code but change UI field names and values to test the DecimalFragment. However, you also need to
swipe left and display the DecimalFragment first, as in Listing 8-14.

Listing 8-14:  Swipe test addition to ApplicationTest

package com.expertandroid.chapter8.binary;

import android.support.test.espresso.Espresso;
import android.support.test.espresso.action.GeneralLocation;
import android.support.test.espresso.action.GeneralSwipeAction;
import android.support.test.espresso.action.Press;
import android.support.test.espresso.action.Swipe;
import android.support.test.rule.ActivityTestRule;
import android.support.test.runner.AndroidJUnit4;
import android.test.suitebuilder.annotation.LargeTest;

import org.junit.Rule;
import org.junit.Test;
import org.junit.runner.RunWith;

import static org.hamcrest.Matchers.allOf;
import static android.support.test.espresso.Espresso.onView;
import static android.support.test.espresso.action.ViewActions.click;
import static android.support.test.espresso.action.ViewActions.typeText;
import static android.support.test.espresso.assertion.ViewAssertions.matches;
import static android.support.test.espresso.matcher.ViewMatchers.isDisplayed;
import static android.support.test.espresso.matcher.ViewMatchers.withId;
import static android.support.test.espresso.matcher.ViewMatchers.withText;

@RunWith(AndroidJUnit4.class)
@LargeTest
public class ApplicationTest {

 @Rule
 public ActivityTestRule<MainActivity> mActivity =
 new ActivityTestRule<>(MainActivity.class);

 @Test
 public void calculateBinary() throws Exception {
 //...
 }

 @Test
 public void calculateDecimal() throws Exception {
 onView(withId(R.id.container)).perform(new
GeneralSwipeAction(Swipe.FAST, GeneralLocation.CENTER_RIGHT,
 GeneralLocation.CENTER_LEFT, Press.FINGER));

 // type the number
 onView(allOf(withId(R.id.decimalNumberEditText),

240  x  Chapter 8   Debugging and Testing

isDisplayed())).perform(typeText("7"));

 Espresso.closeSoftKeyboard();//
 // perform the click
 onView(withId(R.id.fab)).perform(click());

 // check the output
 onView(withText("111")).check(matches(isDisplayed()));
 }
}

The first line in the test performs the swipe action by creating a new GeneralSwipeAction object.
GeneralSwipeAction has the following parameters in order: swipe type, start location, end loca-
tion, and input device that triggered the swipe.

Now you have all the pieces you need so you just need to tie them together in order to run them as a
whole large test. JUnit 4 has great utilities to accomplish your goal. Check that you have the annota-
tions in the following code snippet, above your class declaration.

@RunWith(AndroidJUnit4.class)
@LargeTest

Run the application test and watch how the application ran and what interaction occurred on the
device or emulator. Finally, both tests should pass and display something similar to Figure 8-53.

Figure 8-53:  Test output

That’s it—you wrote unit and UI tests and integrated them with your existing code. The next sec-
tion focuses on testing your app’s performance and collecting valuable information and statistics.

Testing Android Code and Application UIs  x  241

Performance Testing
So far, you tested the functionality of your methods and user interaction with the UI, but there is
another important aspect of testing. Performance tests can reveal memory leaks and unnecessary
computation or object initialization, which result in performance problems in applications. Such
problems do not appear in unit, integration, or UI tests.

The first tool you are going to use for testing performance is Systrace, which captures and displays
the application code execution time. To start Systrace, click on the terminal tab in Android Studio
and type the following command, depending on your OS. Listing 8-15 shows the command for
Windows, and Listing 8-16 is for Linux and Unix.

Listing 8-15:  Systrace terminal command on Windows

$ python %ANDROID_HOME%/platform-tools/systrace/systrace.py --time=XX -o
%userprofile%/trace.html gfx view res

Listing 8-16:  Systrace terminal command on Linux and Unix

$ python $ANDROID_HOME/platform-tools/systrace/systrace.py --time=XX -o
~/trace.html gfx view res

Replace XX with the number of seconds you want your app to be traced. Now you can open a
browser and view the trace.html document produced by the Systrace (see Figure 8-54).

Figure 8-54:  Systrace output

242  x  Chapter 8   Debugging and Testing

The Systrace report is interactive and enables users to focus on items to examine details, zoom in or
out, or highlight the timeline. Click on the alerts line to display alerts raised by the app. Most of the
time, alerts can provide very useful clues about performance bottlenecks.

Performance Tests Task
Running Systrace to examine your app performance is an essential method to understand perfor-
mance problems. Watching the performance changes by automating Systrace is crucial. You have
already covered automated UI testing in previous sections; now you will add Systrace to accompany
them.

Google has revealed a set of new test rules with an android-perf-testing codelab. These rules might
become part of a new test support library or dependency in the near future. Until then, it is okay to
check out and copy the classes from https://github.com/googlecodelabs/android-perf-testing/
tree/master/app/src/androidTest/java/com/google/android/perftesting/testrules to your
project. These rules can easily be added to your test projects, as shown in Listing 8-17.

Listing 8-17:  Performance test rules

 @Rule
 public EnableTestTracing mEnableTestTracing = new EnableTestTracing();

 @Rule
 public EnablePostTestDumpsys mEnablePostTestDumpsys = new
EnablePostTestDumpsys();

 @Rule
 public EnableLogcatDump mEnableLogcatDump = new EnableLogcatDump();

 @Rule
 public EnableNetStatsDump mEnableNetStatsDump = new EnableNetStatsDump();

Add the rules in Listing 8-17 to ApplicationTest. You should also add the @PerfTest annotation
to the class to enable it for performance tests. Finally, open the build.gradle file and add the follow-
ing line to apply performance tasks:

apply plugin: PerfTestTaskGeneratorPlugin

Your final code should look like Listing 8-18.

Listing 8-18:  Performance test addition to ApplicationTest

package com.expertandroid.chapter8.binary;

import android.support.test.espresso.Espresso;
import android.support.test.espresso.action.GeneralLocation;
import android.support.test.espresso.action.GeneralSwipeAction;
import android.support.test.espresso.action.Press;
import android.support.test.espresso.action.Swipe;

https://github.com/googlecodelabs/android-perf-testing/tree/master/app/src/androidTest/java/com/google/android/perftesting/testrules
https://github.com/googlecodelabs/android-perf-testing/tree/master/app/src/androidTest/java/com/google/android/perftesting/testrules

Testing Android Code and Application UIs  x  243

import android.support.test.rule.ActivityTestRule;
import android.support.test.runner.AndroidJUnit4;
import android.test.suitebuilder.annotation.LargeTest;

import org.junit.Rule;
import org.junit.Test;
import org.junit.runner.RunWith;

import static org.hamcrest.Matchers.allOf;
import static android.support.test.espresso.Espresso.onView;
import static android.support.test.espresso.action.ViewActions.click;
import static android.support.test.espresso.action.ViewActions.typeText;
import static android.support.test.espresso.assertion.ViewAssertions.matches;
import static android.support.test.espresso.matcher.ViewMatchers.isDisplayed;
import static android.support.test.espresso.matcher.ViewMatchers.withId;
import static android.support.test.espresso.matcher.ViewMatchers.withText;

@RunWith(AndroidJUnit4.class)
@LargeTest
@PerfTest
public class ApplicationTest {

 @Rule
 public EnableTestTracing mEnableTestTracing = new EnableTestTracing();

 @Rule
 public EnablePostTestDumpsys mEnablePostTestDumpsys = new
EnablePostTestDumpsys();

 @Rule
 public EnableLogcatDump mEnableLogcatDump = new EnableLogcatDump();

 @Rule
 public EnableNetStatsDump mEnableNetStatsDump = new EnableNetStatsDump();

 @Rule
 public ActivityTestRule<MainActivity> mActivity =
 new ActivityTestRule<>(MainActivity.class);

 @Test
 public void calculateBinary() throws Exception {
 //...
 }

 @Test
 public void calculateDecimal() throws Exception {
 onView(withId(R.id.container)).perform(new
GeneralSwipeAction(Swipe.FAST, GeneralLocation.CENTER_RIGHT,
 GeneralLocation.CENTER_LEFT, Press.FINGER));

 // type the number
 onView(allOf(withId(R.id.decimalNumberEditText),
isDisplayed())).perform(typeText("7"));

244  x  Chapter 8   Debugging and Testing

 Espresso.closeSoftKeyboard();//
 // perform the click
 onView(withId(R.id.fab)).perform(click());

 // check the output
 onView(withText("111")).check(matches(isDisplayed()));
 }
}

When executed, your test will collect and log more information to help you fix performance
problems.

Summary

This chapter gave you a solid, basic understanding of the full power of Android Studio’s testing
capabilities and debugging tools so you can debug and test your Android code efficiently.

We started by discussing debugging and the underlying technology, adb, which allows you to
remotely debug Android devices. We followed up with Android Monitor in Android Studio, which is
used for better monitoring and system information capturing.

Next, we looked at the Android Device Monitor for further Android device and application moni-
toring, and at legacy tools.

We finished the chapter working on test methods and tools for Android applications using Android
Studio and SDK tools. You learned how to use automated tests of your application’s functionality
and UI as well as how to use performance tests to collect and record valuable runtime information.

Using Source Control: GIT
WHAT’S IN THIS CHAPTER?

➤➤ Sharing your project to source control

➤➤ Using Git on the command line

➤➤ Third-party tools for Git

➤➤ Android Studio Git integration

Whether you are using Git or something else, the source control system is an important part
of the software development lifecycle. Whether you are working in a team or on your own,
source control systems provide a full history of what you have been doing and ease the man-
agement of changes to and versioning of the code.

Popular source control systems, both free or paid and open source or vendor-based, have been
around for quite a while. CVS was one of the early popular source control systems that many
developers have been familiar with since the early 2000s. Later, SVN became a popular and
widely used source control system, mostly replacing CVS thanks to its transactional commits.
Commercial source control systems also emerged, such as IBM’s ClearCase and Microsoft’s
SourceSafe.

However, the search for better source control did not end. Mercurial and Git became available
around the same time, both addressing the same issue: distributed source control. From its
introduction, Git has been widely accepted by many large open source projects, such as Linux
and Eclipse. With the help of GitHub, which hosts many open source projects, Git has been
the de facto standard for source control.

This book covers Git because it is currently the most widely accepted source control system
among Android developers, and it has built-in support for Android Studio.

9

246  x  Chapter 9   Using Source Control: GIT

Introduction to Git

The idea behind source control is simple. Source control
systems save changes as patches (commits). This provides an
easy way to revert to or compare points in the development
timeline. This history of changes not only provides insight
based on what has happened in this project but also pro-
vides a great way to integrate different development efforts.

Changes are performed locally and committed to a central
server, which acts as the version control server. This archi-
tecture does not allow developers to work offline and relies
on a persistent connection between the local source files
and the version control system. However, Git is different; it
is distributed. Unlike other systems that just watch changes
in the file system and commit changes to the version control
server, Git runs on a client computer and changes need to
be committed locally first. This way, a developer can revert
any change/branch or version locally through Git. The local
Git can push the set of changes committed to network Git
servers. All changes are kept both locally and on any num-
ber of servers, as shown in Figure 9-1, which makes Git
very flexible and powerful. You can create any combination
of branches for teams.

Understanding Git
The basic idea of source control is to keep a stable version
of the code, usually called the master branch. Ideally, any development
effort should be performed in a separate branch so you don’t break the
master. Changes are committed in patches to the branch as they are
completed. The commit patches include a bunch of changes, which are
wrapped in an atomic transaction. Therefore, a change is either accepted
or rolled back as a whole. Once the development purpose of the branch is
complete and tested, it is merged with the master. The process is shown in
Figure 9-2.

Ideally, a branch, consisting of a batch of commits, is merged to the mas-
ter smoothly by a triggered pull request. However, in the real world, that
is not the case most of the time. Some other development branch might have been merged before
your branch or a critical bug might have been patched and merged into the master. Because the
entire idea behind version control is to enable teams to work in harmony, this should not be
an issue.

Figure 9-3 shows that branch B has been merged before branch A. Ideally, this merge happens
smoothly without any conflict, provided that the two development branches were different files or
different parts of the same file without creating a conflict. However, once again this is not often the

Developer 2 Developer 3

Origin

Developer 1

Figure 9-1:  Distributed version control
using Git

Figure 9-2:  Git branch

Introduction to Git  x  247

case in the real world. Other developers may need to patch
a critical bug, or they may be developing a feature that
overlaps with the code fragment you are working on, which
creates a conflict. Figure 9-4 shows a conflict scenario.

A conflict happens when there’s a change in a line or the
same segment of code in two or more parallel but different
timelines. When it is time to combine these changes, man-
ual action is required because, although both were mean-
ingful when the branchout occurred, one might become
obsolete or create a need for additional change in the other.
To resolve this conflict, one or more developers who have
an understanding of both braches need to compare both
versions of the code to perform a manual merge of those
and then merge the merged code into the master. Of course,
this is a simplified description of this operation and there
are other process flows you may choose to follow.

You can use Git either while starting the project or at
a later stage in development. This chapter covers both
options, but sharing your project to Git from the start is
definitely the preferred way.

Installing Git
Android Studio comes with Git support. However, you may
still need to install Git to be able to use it through the com-
mand line. You can install Git as follows, depending on
your OS.

➤➤ MacOsX—A binary Git installer for Mac OS X is
available at http://git-scm.com/download/mac.
An alternative way to install Git is to install GitHub
Client for Mac OS X, which also offers a simplified
user interface for Git at http://mac.github.com/
(see Figure 9-5).

➤➤ Linux—Popular package managers all support
binary Git installation. To install Git on Debian-
based systems (such as Ubuntu), use the following
command:

sudo apt-get install git-all

Alternatively, you can install Git via yum with this command:

sudo yum install git-all

➤➤ Windows—Just like Mac OS, there is a binary installer for Windows. It’s available at
http://git-scm.com/download/win. You may prefer to install GitHub client for

Branch A Branch B

Figure 9-3:  Merging a non-conflicting
branch

Branch A Branch B

Figure 9-4:  Merging conflicting branch

http://git-scm.com/download/mac
http://mac.github.com/
http://git-scm.com/download/win

248  x  Chapter 9   Using Source Control: GIT

Windows, which comes with a simplified user interface. It’s available at http://windows
.github.com/.

Once the installation is complete, you need to create your identity. To set your name and email
address, execute the following commands directly from the terminal.

$ git config --global user.name "John Doe"
$ git config --global user.email johndoe@example.com

Figure 9-5:  GitHub page

TIP  On both Mac OS X and Linux, you can just run the Terminal application
to access the shell and run the preceding commands. If you are using Microsoft
Windows, you should run the Git Bash app, which is installed together with Git.

That’s it: You installed Git and are now ready to create a project.

Using Git

Let’s start from scratch by sharing a project to Git via the command line:

	 1.	 Navigate to your target project’s folder from the terminal with the following command.

$ cd /path/to/projectfolder

	 2.	 Create a new folder to hold the source files and share them to Git.

$ mkdir git-project

http://windows.github.com/
http://windows.github.com/
mailto:johndoe@example.com

Using the GitHub Client  x  249

	 3.	 Next, you need to add this folder to Git. Start by initializing Git:

$ git init

Note  If you get an error message, as shown in Figure 9-6, please refer to the
previous section on how to set your Git identity.

Figure 9-6:  Git configuration output

That’s it! This folder is registered as a Git root. Now you can add folders and files. However, do not
forget that Git does not just track the file system. Adding files to this directory does not mean any-
thing unless the files are also added to Git. Create a read.me file for your git-project folder and run
the following command to add that file to Git.

$ git add read.me

The file is added to Git and is being tracked. However, to start versioning, you need to commit
changes to Git. The addition of the file is an initial commit.

$ git commit -m 'initial commit'

That’s it! Edit the file, make some changes, and perform another commit. Use the following com-
mand to check the file’s status. This command will list uncommitted changes if there are any.

$ git status

But wait a minute! You are still performing all the versioning on your local machine, so another
developer cannot access your source file. Worse, what if something happens to your computer? To
push the changes to a remote Git repository, you first need to find a Git host. GitHub is a popular
Git service, and you will use it in this chapter. GitHub offers free unlimited repositories for open
source projects and it has reasonable pricing options if you want private repositories.

If you do not have a GitHub account, visit http://www.github.com and create an account before
proceeding to the next section.

Using the GitHub Client

GitHub is a popular Git-based project-hosting site that offers free hosting for public repositories. One
reason for GitHub’s popularity is the available easy-to-use tools for Git. The tools proved to be so suc-
cessful at being simple and easy to use that some people even organized their weddings with GitHub.

http://www.github.com

250  x  Chapter 9   Using Source Control: GIT

GitHub provides tools for all major operating systems. To get installers or the application binary,
navigate to https://desktop.github.com/. When you are there, it will recognize your operating
system. If you are using Mac OS X, it will download a zip file named GitHub Desktop 220.zip
(220 is the version number).

Mac OS X installation is easy; just extract the zip file and copy GitHub Desktop.app to your appli-
cation’s directory and installation is done.

If you are using Windows, the website recognizes that and will download the GitHubSetup.exe file.
To start installation, launch that file.

When the security notification shown in Figure 9-7 appears, click Install.

Figure 9-7:  GitHub Desktop Application Install – Security Warning window

As shown in Figure 9-8, the installer downloads the GitHub Desktop application files.

Figure 9-8:  GitHub Desktop installation process

When the installation finishes, the Welcome window shown in Figure 9-9 comes up. (This figure
shows the Windows version of this screen.)

https://desktop.github.com/

Using the GitHub Client  x  251

Figure 9-9:  GitHub Desktop start screen

After installing GitHub Desktop on Mac OS X, start the application to see a window with the same
functionality as in Windows. Figure 9-10 shows this screen.

Figure 9-10:  GitHub Desktop welcome screen

252  x  Chapter 9   Using Source Control: GIT

Clicking Skip Setup takes you to the main screen. If you click Continue, you will need to enter
your GitHub username and password, as shown in Figure 9-11. GitHub Desktop can work without
GitHub and even with other Git hosting sites. However, completing your GitHub account setup will
bring up all the GitHub repositories you previously created with that account.

Figure 9-11:  Connecting to GitHub

A typical setup with no repositories will look like Figure 9-12. This screen will differ depending on
the specific local repositories or GitHub repositories added with your setup.

Next, let’s focus on how to add existing repositories or create new ones using GitHub Desktop. Let’s
start with creating a new repository. Select New Repository from the File menu or click the plus (+)
sign in the upper-left corner (see Figure 9-13).

You will be asked for the parent directory where you want your local repository, as shown in Figure
9-14. By default, this directory is the GitHub folder in your home directory. You may continue with
the default selection or enter your desired folder’s name.

Note  The folder structure you use to organize your projects is a personal pref-
erence. If you want to keep all your projects in one place, you can change the
default folder to anything you prefer or even create subfolders based on your
project types or where they are hosted.

GitHub Desktop Client will create and initialize your folder and add it to the Other projects tab
on the left. The project is listed under Other because it is not a GitHub project, as shown in
Figure 9-15.

Using the GitHub Client  x  253

Figure 9-12:  GitHub repositories list

Figure 9-13:  Creating a new repository with GitHub Desktop

254  x  Chapter 9   Using Source Control: GIT

Figure 9-14:  Repository path selection

Figure 9-15:  Other projects list

Using the GitHub Client  x  255

Now that you’ve initialized your project, it is time to make and track some changes. Copy the read
.me file you previously placed in your git-project folder to your new Git repository. The GitHub
Desktop Client will immediately show untracked changes, as shown in Figure 9-16.

Figure 9-16:  Untracked changes shown on the GitHub Client

The tracked and untracked changes to files are listed in the middle section of the github-project win-
dow. As shown in Figure 9-17, if you highlight a file, the change details are shown in the right pane.
Lines that start with a plus (+) sign and are highlighted with green are newly added lines. Lines that
start with the minus (–) sign and are highlighted with red are deleted lines. To commit this change,
type a meaningful description and click the Commit to master button (refer to Figure 9-16). Since
this is the initial commit, as the description, type initial commit.

You’ve created a new project and committed some changes through GitHub Client, but now let’s
work with your existing Git repositories via GitHub Desktop Client. This time, let’s import your
first git-project.

You can add any existing local or remote Git project. Click the + sign in the top-left corner and
select Add, as shown in Figure 9-18.

256  x  Chapter 9   Using Source Control: GIT

Figure 9-17:  List of changes on GitHub Desktop

Figure 9-18:  Importing a project

Next, type the path to your local folder or browse and navigate to the root folder of your Git
project, as shown in Figure 9-19.

Using the GitHub Client  x  257

Figure 9-19:  Git project path

Once the project is added, the whole history as well as all remote repository settings will be shown
inside the GitHub client. You can continue working from the GitHub client or from the command
line, or even switch back and forth.

You have created Git projects from both the command line and the GitHub client, and then made
some changes and committed them, but no Git project is complete without a remote repository.
By adding a remote repository, you enable other developers to work on the same project, and most
importantly, you ensure the project is not saved on a local hard drive. To add a remote repository on
GitHub, click the Publish button at the top-right corner. If you have not yet completed your GitHub
sign-in, the warning shown in Figure 9-20 appears.

Figure 9-20:  Sign-in warning

258  x  Chapter 9   Using Source Control: GIT

Click OK to open a new screen where you enter your GitHub username and password, as displayed
in Figure 9-21.

Figure 9-21:  Sign-in screen

When you have completed the sign-in process, you are asked for the name and description of a
repository. After you’ve entered that information, click the Publish Repository button, as shown in
Figure 9-22.

Figure 9-22:  Entering the repository name and description

Using Git in Android Studio  x  259

It’s done! Your project is shared and hosted in a repository on GitHub. You can confirm that the
project is now listed under GitHub projects in the left pane, as displayed in Figure 9-23.

Figure 9-23:  GitHub project display

We have covered the difference between committing and pushing.
The Sync button, shown in Figure 9-24, pushes local changes while
pulling remote changes, if any, to your remote repository and keeps
the changes synced.

You have seen using Git both from the command line and via
the GitHub client to create and share projects. Now let’s move to
Android Studio and see how it is integrated with Git.

Using Git in Android Studio

This chapter has covered how to create a Git repository, add files to it, and perform commits.
However, you need to know how to do much more than that for daily development tasks, including
branching, merging, resolving conflicts, ignoring untracked files, and so on. This section covers Git
using Android Studio, as well as switching to the command line and using third-party tools when
needed.

You can always choose to use Git via the command line or a third-party tool, but having integrated
support in your IDE may simplify your job. Indeed, Murat’s favorite Git tool during his early days
was e-git, which is actually just a Git integration plugin written for Eclipse. There is nothing wrong
with using whichever tool works best for you.

In this section, you begin by moving an Android project to Git. To do this, you will create a new
project, as shown in Figure 9-25, but you can use any Android project you have worked on as long
as it hasn’t been shared to Git before. The project you are going to follow has phone/tablet and wear
modules with empty default activities.

You will be using the com.expertandroid.git package name. Also, feel free to choose different SDK
versions or a different number of modules (see Figure 9-26) because this chapter focuses only on the
Git flow of the project.

Figure 9-24:  The Sync button
on GitHub

260  x  Chapter 9   Using Source Control: GIT

Figure 9-25:  Creating a new project

Once the project is created, highlight it and select Enable Version Control Integration from the VCS
(version control system) menu, as shown in Figure 9-27.

A popup dialog box will ask which version control system you want to integrate; choose Git.
Android Studio has support for all major VCSs such as CVS, Subversion, and Mercurial, as you can
see in the list in Figure 9-28.

Alternatively, you may use the options shown when you click the Import into Version Control item
from the VCS menu (refer to Figure 9-27) to enable Git or another version tracking system (see
Figure 9-29).

Using Git in Android Studio  x  261

Figure 9-26:  Selecting modules and an SDK version

Figure 9-27:  Enabling version control integration in Android Studio

262  x  Chapter 9   Using Source Control: GIT

Figure 9-28:  List of version control systems available for Android Studio

Figure 9-29:  Import into Version Control options

Now your module is a Git repository. However, this does not mean all your files are tracked.
Android Studio warns about this by marking the untracked filenames with red, as shown in
Figure 9-30.

Figure 9-30:  Untracked changes in Android Studio

Using Git in Android Studio  x  263

As you remember from what you have done previously via the command line or the GitHub client,
initializing a Git repository is only the first step. After the initialization, you need to add the files
you want to track and then perform an initial commit. So now let’s add your files to your repository.
Select the module and right-click to display actions. Select Add from the Git option, as shown in
Figure 9-31. Alternatively, you can press Shift+Command+A (Ctrl+Alt+A on Windows).

Figure 9-31:  Adding items to the Git repository

This operation can be performed on files, packages, modules, or even the whole project. After
they’ve been added (as shown in Figure 9-32), the filenames change from red to bright green in
Android Studio’s Project View.

Figure 9-32:  Added changes to Git in Android Project View

264  x  Chapter 9   Using Source Control: GIT

You are almost there: You’ve initialized your repository, added your files, and now it is time to com-
mit your changes. Once again, highlight your module, then right-click and select Commit Directory
from the Git option, as displayed in Figure 9-33.

Figure 9-33:  Commit action in Android Studio

This should bring up a commit wizard to help you choose multiple files and commit options as well
as the commit message, as shown in Figure 9-34.

Figure 9-34:  Android Studio Commit Changes wizard

Using Git in Android Studio  x  265

This wizard window has three main components. The top-left window displays the file tree and
enables you to choose multiple files to include in the commit. Do not worry about the icons on top
for now; we will cover them in the following section. The bottom-left window has a multiline text
entry field for the commit message. Composing a meaningful and self-explanatory commit message
is not only a good practice but also necessary if you want your Git history to be browseable and
meaningful. Because this is the initial commit, a simple initial commit message should be sufficient.

TIP  In practice, you would need to write self-explanatory commit messages.
If the commit includes development of a new feature, add the task number
and includ a simple explanation of the added feature. Most Task Management
Systems can be linked within Git commits. For example, to link a Jira task num-
bered 208 in a commit, you can type #208.

Similarly, if the commit includes a fix for a bug, the tracking ID, explanation of
the bug, and the resolution should be added to the commit message.

It might be a good idea to include a simplified version of your task/bug explana-
tion text into the commit if your task management system and Git repository do
not support linking to each other.

The right part of the commit wizard offers the following options:

➤➤ Author—The name of the author of the commit.

➤➤ Amend Commit—This option enables you to add changes to your previous commit (if, for
example, you need to fix something in it). Unlike most other VCSs, this option allows you to
change the contents of the previous transaction without rolling back the full commit.

➤➤ Reformat Code—Android Studio offers great code formatting options, which we covered in
Chapter 4. By selecting this checkbox, you are asking Android Studio to reformat each appli-
cable file before the commit.

➤➤ Rearrange Code—Works just like the Reformat Code option. Rearranges code before the
commit.

➤➤ Optimize Imports—Removes unnecessary imports from the source file before the commit.
While the unused imports are harmless and will be removed by the compiler, this option
results in a shorter and relatively easy-to-read source file. On the other hand, this might be
handy only when you read the source code in a simple text editor because Android Studio
already hides imports.

➤➤ Perform Code Analysis—Analyzes the code and runs lint with given options. This option
greatly helps to eliminate poorly written and problematic code, preventing it from being com-
mitted into the written history of the project.

➤➤ Check TODO—Just like the previous option, the Check TODO option helps prevent com-
mitting unfinished code into your repository. Although technically any code that is commit-
ted needs to be complete, that doesn’t mean the code should always be TODO free. One may
have added a TODO for a feature task, which would be the subject of another commit.

266  x  Chapter 9   Using Source Control: GIT

➤➤ Cleanup—Works pretty much like Reformat Code. This option runs cleanup rules before the
commit.

➤➤ Update Copyright—Although it may seem not important, this is a very handy option, espe-
cially if you are working on a corporate or an open source project that relies heavily on prop-
erly placed copyright licenses. This option lets Android Studio update copyright licenses in
each committed file.

Now that you’ve learned about all of the options, let’s try a commit.

Clicking the Commit button reveals the options shown in Figure
9-35. You may choose to Commit, Commit and Push, or Create a
Patch from changes. Click Commit to perform just a commit.

Because the generated code in the project introduces TODOs and
warnings, your commit should pause with a warning, as shown in
Figure 9-36.

Figure 9-36:  Code Analysis warning window

If you select Review, Android Studio will display all warnings, TODOs, and potential problems.
Typically, it is good practice to click Review and go over all items to ensure they will not introduce
any future problems. However, because the project currently contains only generated code, go ahead
and click Commit. That is it; all source files in your project should have turned black from green
when the commit is completed.

That’s it; you have completed your init, change, and commit in your repository. This was simple,
right? Well, of course, in real life you would face conflicts and merge problems. The next section
discusses how to handle those.

Git Flow

During the development lifecycle, developers work on tasks that may or may not target the same
delivery. In addition, multiple developers need to work on the same file or resources and make
changes to the same or different parts. To avoid collisions among those changes and enable only
completed tasks while keeping not completed, ongoing tasks out, you need to implement a strategy.
There are different strategies to solve this problem, but because covering all of them would turn the
rest of this book into a Git book, let’s focus on only the most popular approach, the branch/merge
(pull request) Git flow.

Figure 9-35:  The Commit
button in Android Studio

Git Flow  x  267

Let’s assume you have hired some other developers to work on your project. You are all working on
different changes, but as you have learned so far, you do not want to include unfinished changes in
your master branch. To protect your development environment, let’s start by branching out the cur-
rent master code.

	 1.	 Right click the module and select Git ➪ Repository ➪ Branches, as shown in Figure 9-37.

Figure 9-37:  Branch menu item

This will bring up the Git Branches window. Because you are
on the one and only branch in your project, there is nothing
else to display.

	 2.	 Click New Branch, as in Figure 9-38.

Another popup window will ask the branch name, as shown in Figure 9-39. Although you can enter
any name in this text field, there are generally accepted conventions for naming a branch in Git.

Figure 9-39:  Branch naming

Note  There are several conventions for branch naming that can be accepted
as “Good Development Practices.” As a best practice, you should keep different
branches, such as feature/release/hotfix, instead of directly branching out and
merging the branch into the master. Naming your branches according to your
task/bug and grouping them with a task or developer name are also good strate-
gies for keeping your Git repository clean and organized.

Figure 9-38:  New Branch
selection

268  x  Chapter 9   Using Source Control: GIT

	 1.	 Start with a simple naming convention for this example. Type your name and a feature name
for your new branch, as shown in Figure 9-39.

You have created and moved your workspace to the new branch. Now it is time to make
some changes and commit.

	 2.	 Open the MainActivity class in the mobile module and find the string MyAction in
setAction in the onCreate method.

	 3.	 To keep things simple, let’s make a small change and delete My, leaving the action string as
"Action", as shown in Figure 9-40.

Figure 9-40:  Simple change in code

Once again, MainActivity displays in blue, which indicates that there are some uncommitted
changes, as shown in Figure 9-41.

Figure 9-41:  Uncommitted changes indicated in Android Studio

Git Flow  x  269

	 4.	 Now select Commit File under Git, as shown in Figure 9-42.

Figure 9-42:  Commit the file changes

Now let’s focus on some other properties and options of the commit window shown in Figure 9-43.

The following list describes the eight icons on top of the file tree:

➤➤ Show Diff—This is one of the most important features of the commit window. This option
displays the Diff between the last commit and the current commit candidate. This tool helps
you to review what has changed, as shown in Figure 9-44.

270  x  Chapter 9   Using Source Control: GIT

Figure 9-43:  Commit changes window

➤➤ Move to Another Changelist—Moves current changes into another changelist. Changelists
are a group of files with changes. By default, every change is preserved in the default change-
list; however, with this option, you can move these changes to another changelist for better
and more logical organization, as shown in Figure 9-45.

Git Flow  x  271

Figure 9-44:  Diff tool output

Figure 9-45:  Changelist window

272  x  Chapter 9   Using Source Control: GIT

➤➤ Refresh Changes—Forces a refresh on the contents of the file.

➤➤ Revert—Rolls back the current highlighted change to the previous commit.

➤➤ Jump to Source—Closes the current commit window and focuses on the currently highlighted
change in the IDE.

➤➤ Group by Directory—Groups changed files in packages. If this option is not selected, all
files will be listed in a flat list that is not dependent on where they are located. In most cases,
Group by Directory gives you a better overview of the changed files.

➤➤ Expand All—Expands all packages.

➤➤ Collapse All—Collapses all packages.

That’s it for the icons; now let’s focus on the Commit window’s other features and options.

Click Details on the bottom of Figure 9-43 to expand the rest of the commit window. The Details
pane offers a fast, simple diff preview, which we previously covered under the Show Diff feature.
Similarly, the quick diff highlights differences between the latest version and previous commit side
by side.

Now that we’ve covered every detail in this window, it is time to perform the commit.

	 1.	 Write a commit message and click Commit. Let’s assume this was everything you wanted to
do. Therefore, it is time to merge and bring those changes from the branch to the head.

	 2.	 Right-click the project and select Git ➪ Repository ➪ Merge Changes, as shown in
Figure 9-46.

Figure 9-46:  Merging changes

Next, the Merge Branches window, shown in Figure 9-47, appears. Just under the Git root,
which is the root of your project, the current branch and other available branches for merge
are displayed.

Git Flow  x  273

Figure 9-47:  Branch merge

Because you have only one branch other than the master, it is the only available choice to merge
with the master. Just below the branches is a drop-down box to select your merge strategy.
Because you currently are the only developer who has performed any change, the strategy you
choose is not trivial. However, in real life, you cannot be sure there will not be any conflicts. Go
ahead and click Merge.

Well done—you did it! You branched out from the master branch, made a change, and merged the
change back. But what really happened? To visualize, we will use an open source tool called GitUp.

Note  GitUp is hosted on GitHub. GitUp is a great way to visualize branches,
tags, and other Git concepts. GitUp is free and open source and available to
download from http://gitup.co/.

We started by branching out from the master, as shown in Figure
9-48. We were on our newly created branch when we took this
screenshot. Because it was our focus branch, a red solid line is used.
This graph also shows that we have branched out from the master. As
we performed our commit and moved back to the master, once again
the master has become our focus, as shown in Figure 9-49.

Notice that the dashed branch line is now a solid line, which shows
that it has merged back to that master. Because there were no
changes in the master when we branched out and merged back in,
we merge back at the same location, thus going back and forth on
the same line. Figure 9-48:  Master branch

visualization from GitUp

http://gitup.co/

274  x  Chapter 9   Using Source Control: GIT

The last commit/merge was very smooth. Now it is time to take it
a step further and create some conflicts. Once again, go back to
the beginning of this section and create a new branch. This time,
change the setAction string to "Action" from "My Action" in
MainActivity and perform a commit as you did last time. Switch
back to the master branch but do not merge yet.

Now it is time to simulate an already merged change into the
master after you branched out. Find the line you just changed and
this time change the first string "Replace" to "Replacing". Once
again, perform a commit with a proper commit message.

Note  In real life, you should never ever commit to the master in any circum-
stances. Always branch out, make your commits, test them, and only merge after
proper testing/code review.

You are ready to merge. This time, your branch, which has one new commit, needs to merge into
the master but your branch is missing the last change to the master. Because both the master and
your branch introduce changes, the changes should be merged so that they don’t break or override
each other.

Note  Overriding may be necessary if one of the changes became obsolete when
the other change was committed. Ideally, the obsolete change should have been
reverted by the owner of the branch instead of asking for a merge.

Now select Merge as shown in Figure 9-46. This time, Git will complain about a conflict and
inform you that the file merged with a conflict, as shown in Figure 9-50.

You should see both changes that have been added to MainActivity but identified with the branch
name they belong to.

<<<<<<< HEAD marks the beginning of changes in the target branch on which the merge is per-
formed, which is the master in this case. ======= marks the end of the first change and start of the
second change. Finally, >>>>>>> branchName marks the target branch that was merged into the
master, which is myener/string-changes in this case. The warning window offers three options:

➤➤ Accept Yours—Keeps the first change marked with HEAD and discards the second.

➤➤ Accept Theirs—Keeps the second change and discards the first one.

➤➤ Merge—Gives you the opportunity to merge both changes.

Figure 9-49:  Branch visualiza-
tion from GitUp

Git Flow  x  275

Figure 9-50:  Merge conflict warning

If those two changes occurred in separate lines, you would not need to perform a manual merge.
Instead, Git would automatically bring each new part into the file and create a genuine new version.
However, both changes targeted the same line and they are likely to affect each other. In this case,
Git allows a manual merge. Click Merge to open the new merge window shown in Figure 9-51.

Figure 9-51:  Merge Revisions window

276  x  Chapter 9   Using Source Control: GIT

This window consists of three panes. The left pane shows the current branch you are on, which is
the part marked with HEAD in the commit. The right pane displays the change in the branch, which
you want to merge with the master. Finally, the middle pane shows a proposed merge from both
parties. Git usually does a smart job merging conflicts. There are four buttons at the bottom of the
screen: You can choose to Accept Left and discard the change in right pane, choose to Accept Right
and override the change in the left pane, click Abort to not perform anything now, or click to Accept
the proposed merge in the middle pane.

But wait a minute. What if you are not happy with the proposed change because it doesn’t reflect
both of the changes because of the conflict between them? Well, if conflicts occur, you can
always solve them manually. To help with that, the middle pane is editable. Click the red high-
lighted part and change Replace to Replacing and My Action to Action. You are even free to
add new changes. Let’s add a comment to remind you that you made the manual merge shown in
Figure 9-52.

Figure 9-52:  Manual merge

As you finish typing, a green popup will appear with a link to save changes and finish merging, as
shown in Figure 9-53.

Figure 9-53:  Saving changes notification

Because the result of the merge is actually another change, you need to commit this change in your
current branch. The commit message automatically included the merge and conflict info, as shown
in Figure 9-54. We strongly suggest that you keep this message because it is a standard way to
understand what has happened.

Let’s see what happened. Once again, we use GitUp to visualize what happened, as shown in Figure
9-55. We originally created a new branch from the master named myener/string-changes. Then
we performed a commit on the branch. Meanwhile, a separate change was also committed on the
master, as indicated by a small white dot on the red line after we branched out. Finally, we merged
those two changes, graphically shown as our branch brought back to the master.

Git Flow  x  277

Figure 9-54:  Updated commit message

As a final step, let’s add a remote to our local repository as you previously did from the command
line and GitHub client. This time, select Push from the Git menu. Because you have not yet declared
a remote repository, Android Studio will display the Define Remote option in the Push Commits
window, as shown in Figure 9-56.

278  x  Chapter 9   Using Source Control: GIT

Figure 9-55:  GitUp visualization after conflict resolution

Figure 9-56:  Defining a remote in the Push Commit window

Clicking the Define remote link opens a new window that asks for the URL of your remote reposi-
tory, as shown in Figure 9-57. Because you created a local repository in Android Studio, you need to
register a new repository on GitHub and enter the URL.

Figure 9-57:  Remote repository definition

Once you enter the URL, Android Studio will display all commits included in this push, as shown in
Figure 9-58. Clicking Push will publish all your changes to the remote repository.

Summary  x  279

Figure 9-58:  Push commit summary

Summary

This chapter covered version control systems and focused on the most popular one, Git. You
started by creating a Git repository and performing commits from the command line. Next, the
chapter covered the popular Git repository, GitHub, and showed you how to use GitHub Desktop
Client.

Finally, the chapter moved to Android Studio to create a new Android project. We covered how
to create branches and work on them. We also covered Git flow by branching out and merg-
ing the changes back to the master branch as well as showing you how to manage conflicts and
resolve them.

Continuous Integration
WHAT’S IN THIS CHAPTER?

➤➤ Installing Jenkins

➤➤ Configuring Jenkins plugins

➤➤ Integrating Android projects with Jenkins

➤➤ Release management

The previous chapters covered how to manage dependencies, testing, and the Gradle build
system, which are crucial pieces of the development life cycle. Those pieces are manually used
and triggered. In this chapter, we cover continuous integration (CI) servers, which act as the
cement between all other processes and convert them into an automated life cycle.

In this chapter you will learn more about CI and why you need it. You will also download and
install your own CI server. Finally you learn how to set up a build job from a Git repository,
how to trigger a build cycle on every commit, and how to publish your app automatically to
Google Play.

What Is Continuous Integration?

An important part of any software development process is getting reliable
builds of the software. Despite its importance, we are often surprised
when this isn’t done. We stress a fully automated and reproducible build,
including testing, that runs many times a day. This allows each developer to
integrate daily thus reducing integration problems.

—Martin Fowler and Matthew Foemmel, “Continuous Integration”
(http://martinfowler.com/articles/originalContinuousIntegration.html)

10

http://martinfowler.com/articles/originalContinuousIntegration.html

282  x  Chapter 10   Continuous Integration

Every software project consists of libraries, modules, and classes that need to integrate with each
other. Keeping the integration stable while each piece of integration is subject to change can become
a very expensive and time-consuming task. Each introduced change may break another piece of
coding integrated with the changed component. Having proper test coverage technically helps to
detect such problems. If tests are not consistently and automatically run, the stability of the code
depends on how frequently tests are manually executed by developers.

The cost of fixing defects increases proportionally with the length of time it takes to discover them
because other modules or systems may also start using the buggy code. Having few and late commit
and manual build processes increases the impact of each defect. To have stable projects and builds,
you need to minimize human interaction and error as much as possible and automate every eligible
piece, including tests and builds.

In a CI system, builds can be broken for several reasons: Tests fail, a component works with some
part of the project but fails with the rest, compilation fails, or code quality metrics do not match
standards.

When a continuous build system is in action, email(s) with the error log details will be sent to any-
one involved in a broken build. Because builds fail almost instantly after commits, CI systems imme-
diately reveal problems and make them visible to everyone.

Integrating Android Projects with a Continuous
Integration Server

CI servers are very flexible and easy to integrate and can handle Android projects that use make
files, Maven, or Gradle. You need to choose one of those to fully integrate your project with a CI
server. This chapter focuses on Gradle, but you may prefer to choose make files or Maven.

Version control systems are another crucial part of the CI process. Each code commit triggers a
build process that results in compilation, running tests, and packaging the app on the CI server. We
covered the Git version control system in Chapter 9; in this chapter, we focus on integrating a Git
project with your CI server.

You need a CI server to do the heavy lifting. Available CI alternatives include Hudson, Jenkins, and
Bamboo. Bamboo is a commercial CI server from Atlassian. Hudson and Jenkins are open source,
free CI servers used widely in open source and corporate projects and are derived from the same
code base.

Note  Jenkins is a project built on the original Hudson code base. After Oracle
took control of Hudson, developers decided to continue the project under the
name Jenkins and to move the project to GitHub. Later, Oracle decided to move
the Hudson code base to the Eclipse infrastructure. Both projects are still very
similar and support the same plugins up to version 1.395.

Installing Jenkins  x  283

Throughout this chapter, we focus on Jenkins; however, as we mentioned before, you may prefer to
use Hudson, which is similar. The Jenkins distribution can be downloaded from https://jenkins
.io/index.html. At the time of this writing, the latest stable version of Jenkins is 1.654 and
Jenkins 2.0 is not yet available.

Installing Jenkins

Jenkins can be downloaded either as a plain WAR file or as an application installer that bundles a
web server to run Jenkins. If you already have a Java web server available and running on the target
computer, you may prefer to download the WAR file. This section focuses on installing the bundle,
which is very straightforward, and the bundle installs with no configuration.

	 1.	 Download the Jenkins installer from https://jenkins.io/index.html, as shown in
Figure 10-1.

Figure 10-1:  Jenkins download page

	 2.	 If you are running Debian/Ubuntu, open the terminal and type the following commands:

wget -q -O - http://pkg.jenkins-ci.org/debian-stable/jenkins-ci.org.key |
sudo apt-key add -

https://jenkins.io/index.html
https://jenkins.io/index.html
https://jenkins.io/index.html

284  x  Chapter 10   Continuous Integration

deb http://pkg.jenkins-ci.org/debian-stable binary/
sudo apt-get update
sudo apt-get install Jenkins

If you are using Mac OS X or Windows 10, just click on the installer.

The following steps are identical for each operating system.

	 3.	 Click Continue at the Introduction step, as shown in Figure 10-2.

Figure 10-2:  Jenkins installation window

Jenkins comes with the MIT license.

	 4.	 Click Continue to proceed, as in Figure 10-3.

Figure 10-3:  Jenkins license agreement

Installing Jenkins  x  285

	 5.	 Select the destination folder where you want to install Jenkins, as shown in Figure 10-4.

Figure 10-4:  Jenkins installation directory selection

An information window like the one shown in Figure 10-5 displays when the installation is
complete.

Figure 10-5:  Jenkins installation final window

After you click Close, the installer will open a browser window pointing to localhost:8080, as
shown in Figure 10-6. If you have other applications or servers already using 8080, Jenkins might
use another port.

286  x  Chapter 10   Continuous Integration

Figure 10-6:  Jenkins server URL

You have installed Jenkins and it is up and running.

Jenkins relies on plugins to integrate with different setups, project types, and properties. Because
you will be using Jenkins for Android projects, you need to install several plugins that differentiate
an Android project from a standard Maven-based Java project.

	 1.	 Click Manage Jenkins in the left pane, as shown in Figure 10-7.

	 2.	 Click Manage Plugins to see the list of available and installed plugins for Jenkins, as shown
in Figure 10-8.

	 3.	 Select the Available tab, as shown in Figure 10-9, and select Gradle plugin, Git plugin, and
GitHub plugin from the search results, as shown in Figure 10-10.

Installing Jenkins  x  287

Figure 10-7:  Accessing Jenkins from a browser

Figure 10-8:  Jenkins plugins

288  x  Chapter 10   Continuous Integration

Figure 10-9:  Searching Jenkins plugins

	 4.	 When you are done with the selections, click the Download now and install after restart link
to start downloading, as shown in Figure 10-11. The process will continue when you restart
Jenkins, as shown in Figure 10-12.

Installing Jenkins  x  289

Figure 10-10:  Plugin search results

Now that you have finished installing Gradle and Git plugins, you can set up a build job to start
continuous integration.

290  x  Chapter 10   Continuous Integration

Figure 10-11:  Jenkins plugin download

Figure 10-12:  Jenkins plugin download progress

Creating Build Jobs  x  291

Creating Build Jobs

Because you have a fresh Jenkins installation with no build jobs yet, Jenkins displays a “create new
jobs” option just below the welcome message, as shown in Figure 10-13.

Figure 10-13:  Creating build jobs

To demonstrate a full build by running tests, generating reports, and building APKs, we need a
full project to integrate with our CI server. For this purpose, we will fork the Google I/O 2014
schedule app.

	 1.	 Visit the repository at https://github.com/kevinmcdonagh/iosched and click Fork, as
shown in Figure 10-14.

https://github.com/kevinmcdonagh/iosched

292  x  Chapter 10   Continuous Integration

Figure 10-14:  Sample application fork

GitHub will clone the repository into your GitHub account. Now you are ready to create
your first build job.

	 2.	 Click create new jobs (refer to Figure 10-13) and type a build name, as shown in
Figure 10-15.

Figure 10-15:  Build job for the application fork sample

	 3.	 Next, select the GitHub project option and paste your GitHub project URL. Selecting this
option is not mandatory because Jenkins can integrate into any Git repository. GitHub acts
as a standard GitHub repository, but it lets Jenkins access GitHub-specific metadata and
properties, as shown in Figure 10-16.

Figure 10-16:  Jenkins access to GitHub

Creating Build Jobs  x  293

	 4.	 Select a source code management option (Git in our case). Type in your repository URL, as
shown in Figure 10-17.

Figure 10-17:  Repository initialization

	 5.	 Click the Add button next to Credentials and add your username and password, as shown in
Figure 10-18.

Figure 10-18:  Credentials for Jenkins

294  x  Chapter 10   Continuous Integration

Below the repository properties (refer to Figure 10-17), you can choose which branches to
build. Jenkins allows you to build any branch and helps to oversee any integration and sta-
bility problems from the outset. For our purposes, we will continue with the master branch.

Build Triggers is another useful setting to control builds. The first option, Build after other
projects are built, is used to create a build dependency to another project’s build cycle. This
is a very useful setting when your build system relies on another library or API that is sub-
ject to change. The second option, Build periodically, determines the frequency of periodic
builds, as shown in Figure 10-19.

Figure 10-19:  Build frequency selection

Any desired frequency can be declared in years, months, days, hours, and minutes. Because
nightly builds are strongly encouraged in a CI cycle, add a daily build, which would happen
between 12 p.m. and 7 a.m. For more information on custom schedules, click the blue ques-
tion mark next to schedule box.

As a general rule, you want a build to be triggered immediately after every commit to see
if the change has broken the build, so select the Build when a change is pushed to the
GitHub option.

If your repository does not support Jenkins but pub-
lishes changes, you have to select the Poll SCM option
to make Jenkins continuously check your source control
system.

	 6.	 Scroll down to the Add post build action combo box
and select Email notification from the list, as shown in
Figure 10-20.

	 7.	 Check the options in Figure 10-21 to allow Jenkins to
send an email on every unstable build. The second option makes Jenkins send individual
emails to anyone who broke the build.

Figure 10-20:  Email notification
initialization

Creating Build Jobs  x  295

Figure 10-21:  Email notification to user

	 8.	 Click Apply and go back to the Project View. Click the Build Now option in the left pane, as
shown in Figure 10-22.

Figure 10-22:  Building the project

296  x  Chapter 10   Continuous Integration

Jenkins will schedule a build and will execute the build process when it is idle, as shown in
Figure 10-23.

Figure 10-23:  Schedule for the build

	 9.	 Click the build number to display build properties, as shown in Figure 10-24.

Figure 10-24:  Build properties by build number

	10.	 Click the Console Output option to view the build messages and log shown in Figure 10-25.

Congratulations, you have just completed your first successful build! Go back to the Jenkins dash-
board to view your project status, which should look like Figure 10-26.

Creating Build Jobs  x  297

Figure 10-25:  Console output of the build process

Figure 10-26:  Jenkins dashboard

298  x  Chapter 10   Continuous Integration

The sun icon shown in the W column in Figure 10-27 represents the status of the project. Because
the build is successful and you don’t have a failed build, everything is sunny. You may see cloudy or
even stormy icons depending on the stability of your build.

Figure 10-27:  Status of the build in Jenkins

Release Management

You have integrated your project into Jenkins, created a build schedule, and even had a successful
build. However, you are still not utilizing Jenkins’s Android-specific capabilities.

	 1.	 Go to the Plugin Manager page, select the Available tab, and search for “android,” as shown
in Figure 10-28.

Figure 10-28:  Plugin search

Release Management  x  299

	 2.	 Add the following plugins from search results. These help you to fully utilize your builds.

➤➤ Android Emulator Plugin—Launches an Android emulator in order to run tests.

➤➤ Android Lint Plugin—Generates and displays Lint reports for Android.

➤➤ Google Play Android Publisher Plugin (Optional)—Lets you publish your signed APK
after a successful build.

➤➤ Google Cloud Messaging Notification Plugin (Optional)—Helps test GCM code.

	 3.	 Click Download now and install after restart. Jenkins should start downloading the selected
plugins and display a screen similar to Figure 10-29.

Figure 10-29:  Download selected plugins

Once the download is finished and Jenkins restarts itself, you can start configuring the new
plugins.

	 4.	 Select the build job and click Configure, as in Figure 10-30.

300  x  Chapter 10   Continuous Integration

Figure 10-30:  Configuring a Jenkins build job

	 5.	 Scroll down to the Build Environment group and select the Run an Android emulator during
build option, as shown in Figure 10-31.

Figure 10-31:  Running on Android emulator

Release Management  x  301

Figure 10-32:  Emulator configuration

The emulator has the following properties as shown in Figure 10-32:

➤➤ Android OS version—Version of Android operating system.

➤➤ Screen density—Screen density of the emulator device, such as mdpi, hdpi, and so on.

➤➤ Screen resolution—Resolution of screen in width and height or name, such as
WVGA.

➤➤ Device Locale—Locale for the device. The en_US locale will be used if left empty.

➤➤ SD card size—Size of the SD card in megabytes or gigabytes.

➤➤ Target ABI—Target architecture such as armeabi, x68, and so on.

302  x  Chapter 10   Continuous Integration

➤➤ Custom Hardware Property—Specific hardware properties, such as hw.gps,
hw.touchScreen, and so on.

➤➤ Reset Emulator State at startup—Starts a clean emulator without any leftover infor-
mation from previous runs.

➤➤ Show emulator window—Displays the emulator window.

➤➤ Use emulator snapshots—Uses snapshots for faster startup and initialization of the
emulator.

➤➤ Startup delay—Waits a specific time before starting the emulator.

	 6.	 If you have downloaded the optional Google Play Android Publisher plugin, scroll down to
Build, click Add Build Step, and select Move Android APKs to a different release track. This
option will enable Jenkins to publish new builds to the Play store on your behalf. As you can
see in Figure 10-33, the Google Play account is not yet configured if you have a fresh Jenkins
install.

Figure 10-33:  Google Play account configuration for Jenkins

	 7.	 To configure your Google Play account credentials, click
Credentials from the left pane, as shown in Figure 10-34.

	 8.	 Select the Google Service Account from private key option from
the options shown in Figure 10-35.

	 9.	 Add your project name and JSON key, which you can download
from the Google Developer Console, as shown in Figure 10-36. Figure 10-34:  Google

Play account credentials
configuration

Release Management  x  303

Figure 10-35:  Google Service Account private key

Figure 10-36:  Getting your JSON key from the Google Developer Console

Now you can go back to build job settings to complete the Move Android APKs to a differ-
ent release track option.

	10.	 Select the Google Play account you have just created. Enter the Application ID and Version
code(s). Choose a release track (alpha, beta, or production) and finally the rollout percentage,
as shown in Figure 10-37.

304  x  Chapter 10   Continuous Integration

Figure 10-37:  Release configuration

Note  Although auto deployment to production is a tempting option, it should
be used with caution. When an APK is published to a production track, it is
updated automatically on most devices. Even with very well tested APKs, it is
wise to deploy the APK into a beta track, manually test it, and promote the APK
for the production track by hand.

You have configured your build, so now you can go back and trigger a build and start watching the
console output. Because you haven’t previously used the Android-specific capabilities of Jenkins, the
first build will automatically download and install Android SDK, Android tools, the emulator, and
the emulator images, as shown in Figures 10-38 and 10-39.

Finally, when the SDK, tools, emulator, and emulator images are ready, the Android emulator plugin
will create an emulator, as shown in Figure 10-40, and will continue with launching, as shown in
Figure 10-41.

Release Management  x  305

Figure 10-38:  Build progress to install Android SDK and tools

Figure 10-39:  Build progress to install the emulator

306  x  Chapter 10   Continuous Integration

Figure 10-40:  Jenkins creating the emulator

Figure 10-41:  Jenkins launching the emulator

If the Play account credentials are correct, the Google Play plugin will publish your APK after a
successful build and test process.

Summary

This chapter discussed the importance of stable and reliable software development. Continuous
integration can greatly help minimize bugs and make them visible even in very early stages of appli-
cation development. CI will also automate the building process, letting developers focus on develop-
ment tasks.

Summary  x  307

We covered Jenkins, a widely used and accepted continuous integration server. We focused on how
to make Jenkins work with Gradle and Android by making use of the plugins. We covered how to
build, test, and publish Android projects by pulling the source from version control and publishing
the APK to the Play Store.

Continuous integration servers are the integration point where Gradle and proper test coverage start
to shine and where software projects can succeed.

Using Android NDK
with Android Studio

WHAT’S IN THIS CHAPTER?

➤➤ Introduction to Android NDK

➤➤ Android Studio NDK integration

➤➤ Starting a new NDK application in Android Studio

➤➤ Building NDK applications with Android Studio and Gradle

➤➤ Building NDK projects for multiple platforms

➤➤ Multi vs. fat APK

➤➤ NDK application release and deployment

This chapter focuses on the details of Android NDK and shows you how to build native C/
C++ code in Android Studio. Native code is commonly used in Android projects for games
and applications, which require high performance face recognition, audio processing, and so
on. Although Android NDK is a powerful tool, many Android developers and projects may
not need to use it. This chapter does not aim to teach Android NDK from the ground up but
focuses instead on how to use Android NDK with the new Android Studio and Gradle.

At the time of this writing, Android NDK integration with Android Studio is still experimen-
tal and subject to change. We strongly suggest keeping your tools up-to-date and that you
follow the updates to NDK integration if your application relies on NDK.

11

310  x  Chapter 11   Using Android NDK with Android Studio

If you are an Android NDK newbie looking to learn NDK, we suggest you visit http://
developer.android.com/ndk and follow the tutorials and code samples. NDK might look scary if
you are not familiar with C/C++; however, it can unleash the full potential of your device’s
hardware and native libraries, and is well worth the effort.

Introduction to Android NDK

Android NDK is an essential part of Android development that lets developers use C/C++ code
from Java via JNI. Although the history of Android dates back to 2003, by the time the SDK was
released, iPhone was already the main player in the mobile market with a growing application store.
To compete, Android needed fast adoption in the developer community. Thus, Google’s decision to
promote Java as the main language was wise and worked quite well. Android activities, UI widgets,
and APIs are all designed in a way that can be used through Java. Java and the Dalvik VM did a
great job of lowering the learning curve but that solution lacked the performance that most games
and some apps need more than they need features like garbage collection.

Android NDK, which was actually released several months after Android SDK, addressed such
performance concerns with native code that can be loaded from Java code. When it was released,
Android NDK relied on command-line tools, unlike Android SDK, which can be compiled and run
via Eclipse IDE.

With the release of Android Studio, NDK was once again left out of the official tool set. At Google
I/O 2015, Google finally announced Android NDK support in Android Studio.

Android Studio NDK Integration

NDK integration for Android Studio was announced with version 1.3. At the time of this writ-
ing, NDK integration with Android Studio is still beta and relies on an experimental version of the
Gradle plugin. Before going forward with NDK use cases in Android Studio, let’s see how to install
NDK for Linux, Windows 10, and Mac OS X.

Android NDK packages can be accessed at http://developer.android.com/ndk/downloads/
index.html. There you will see the list of packages for Linux, Windows, and Mac OS X.

Note  There are common steps for NDK installation on all operating systems.
In following sections, if you install NDK using Android Studio, you will be
asked to accept the license agreement, as shown in Figure 11-1.

http://developer.android.com/ndk
http://developer.android.com/ndk
http://developer.android.com/ndk/downloads/index.html
http://developer.android.com/ndk/downloads/index.html

Android Studio NDK Integration  x  311

Figure 11-1:  Android NDK bundle license agreement

Android NDK Installation on Linux
In this section, you install Android NDK on Ubuntu 14.04. Download the Linux 64-bit ver-
sion, android-ndk-r11b-linux-x86_64.zip, from the URL mentioned in the previous section.
Next, extract NDK to the Android SDK installation root. for example /path/to/Android/Sdk/
android-ndk-r11b.

The zip file contains all required binaries to build native Android code.

You can also install Android NDK from Android Studio’s SDK Manager. The easiest way to do this
when you have an open project is to select the Project Structure option from the File menu to open
the Project Structure window. Select SDK Location, as shown in Figure 11-2.

312  x  Chapter 11   Using Android NDK with Android Studio

Figure 11-2:  Project Structure window

You will see that the Android NDK location box is empty. You can give the path to the location
where you extracted the NDK package or click the Download Android NDK link to have Android
Studio install it for you, as shown in Figure 11-3.

Android Studio will install NDK to the ndk-bundle folder in your SDK path.

Android NDK Installation on Windows 10
There are two ways to install Android NDK for Android Studio on Windows 10. You can install it
manually by downloading it from https://developer.android.com/ndk/downloads/index
.html or you can install it from Android Studio’s Project Structure window.

To install Android NDK from Android Studio, open the Project Structure window, select SDK
Location in Android Studio, and click the Download link under Android NDK Location as shown
in Figure 11-4. After you accept the license agreement, the Android NDK binaries and libraries will
be extracted into the Android SDK ndk-bundle folder.

https://developer.android.com/ndk/downloads/index.html
https://developer.android.com/ndk/downloads/index.html

Android Studio NDK Integration  x  313

Figure 11-3:  Android Studio installs Android NDK

No further configuration is needed; you are ready to use Android NDK for your project in Windows 10.

If you want to download Android NDK manually, you can select either the 32-bit or the 64-bit ver-
sion. Choose version that’s appropriate for your Windows 10 machine architecture. In our case we
downloaded android-ndk-r11b-windows-x86_64.zip and extracted it to a folder.

When you finish extracting the zip file, enter the path to the folder in the Android NDK Location
text box as shown in Figure 11-4. Now you are ready to use Android NDK for your Android Studio
project.

Android NDK Installation on Mac OS X
Android NDK installation for Mac OS X can be done either by downloading it from https://
developer.android.com/ndk/downloads/index.html or you can open the Project Structure
window to download and extract NDK.

If you choose to install manually, navigate to the URL just mentioned and click the link for the
android-ndk-r11b-darwin-x86_64.zip file.

https://developer.android.com/ndk/downloads/index.html
https://developer.android.com/ndk/downloads/index.html

314  x  Chapter 11   Using Android NDK with Android Studio

Figure 11-4:  Android Studio Project Structure window in Windows 10

Note  The NDK version can change—it was r11b at the time of this writing.

Extract the zip file to the folder where you want to keep NDK files. Then open the Project Structure
window and enter the folder’s path in the Android NDK Location text box. Now your project is
ready to use Android NDK.

Alternatively, Android Studio can download and extract Android NDK automatically. Open the
Project Structure window and select SDK Location, then click Download in the Android NDK
Location section. After clicking Download, accept the license agreement, then click Next to open
the Component Installer window shown in Figure 11-5.

When the installation finishes, the last line in this windows will read “Installation of NDK com-
plete,” and you can click Finish.

Android NDK with Android Studio Projects  x  315

Figure 11-5:  Android NDK setup completion

Now you can use NDK tools to build native C/C++ code for your application.

Android NDK with Android Studio Projects

Now that NDK is installed, you can create a new project and start adding your native code to it.
(Note that Android Studio does not offer a specific wizard or a template to create NDK projects.)

We first cover some common user preferences, how native applications handle where the native code
should be stored, how to create the Gradle file, and so on.

In legacy native application development, Android make files are used to build native modules.
These make files were used to define the environment variables and the path of the ndk-build binary
to build native C/C++ code. However, when developing in Android Studio, the Gradle build system
is used to build native code instead of Android make files.

Native code is usually stored under the jni folder, which is at the same level as the java folder. The
output of native library code is a shared library, a .so file. You also need to identify the .so file
location according to its compatible architecture. The main folder for libraries should be named

316  x  Chapter 11   Using Android NDK with Android Studio

jniLibs. Subfolders, which also need to be named so as to identify the architectural elements they
hold (such as mips, x86, armeabi, and so on), need to be created under the jniLibs folder.

In the following section, you work on the sample HelloJNI sample.

Importing a Sample NDK Project
Let’s open an existing sample application to understand more about how to use Android NDK and
Gradle to build native code.

As in earlier chapters, we will import an Android code sample. Open the Welcome to Android
Studio window by closing your currently open project; then click Import an Android code sample,
as shown in Figure 11-6.

Figure 11-6:  Importing a sample project from the Welcome to Android Studio window

When the Browse Samples window opens, enter ndk in the Select a sample to import box to filter
NDK projects, as shown in Figure 11-7.

Android NDK with Android Studio Projects  x  317

Figure 11-7:  Sample NDK projects list

Select the Hello JNI project, which you will use to learn the basics of NDK development with
Android Studio. Click Next to open the Configure Sample window shown in Figure 11-8 where you
name the sample application and download source code from GitHub.

318  x  Chapter 11   Using Android NDK with Android Studio

Figure 11-8:  Sample configuration

Google’s code samples for Android Studio are hosted on GitHub; download and import the sample
project, as shown in Figure 11-9.

Figure 11-9:  Downloading the sample project

Android NDK with Android Studio Projects  x  319

Once the import is complete, expand the java and jni folders to locate Java and C code for the proj-
ect, as shown in Figure 11-10.

Figure 11-10:  Project View of the Hello JNI project

Now check the basic integration of the NDK module into the project. Start by expanding the proj-
ect scope in the build.gradle file and locate the experimental Gradle plugin declaration, which may
introduce a different version number than the one used in the previous section.

At the time of this writing, experimental plugin version 0.7.0-alpha1 is used for classpath. The
version name might be different by the time you read this chapter. The project’s Gradle file is shown
in the following snippet.

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle-experimental:0.7.0-alpha1'
 }
}

allprojects {
 repositories {
 jcenter()
 }
}

Next, expand the build.gradle file of the app module. You should notice that the com.android
.model.application plugin is used instead of the regular com.android.application plugin.
You should also see DSL syntax changes such as model and android.ndk moduleName as well as

320  x  Chapter 11   Using Android NDK with Android Studio

different build flavors to target different platforms and architectures. The jni folder contains the
hello-jni.c source file, which has been declared as an NDK module in project scope in the build
.gradle file, as shown in the module’s Gradle code in Listing 11-1.

Listing 11-1:  Hello JNI module Gradle script

apply plugin: 'com.android.model.application'

model {
 android {
 compileSdkVersion = 23
 buildToolsVersion = "23.0.2"

 defaultConfig.with {
 applicationId = "com.example.hellojni"
 minSdkVersion.apiLevel = 4
 targetSdkVersion.apiLevel = 23
 }
 }

 /*
 * native build settings
 */
 android.ndk {
 moduleName = "hello-jni"
 /*
 * Other ndk flags configurable here are
 * cppFlags.add("-fno-rtti")
 * cppFlags.add("-fno-exceptions")
 * ldLibs.addAll(["android", "log"])
 * stl = "system"
 */
 }
 android.buildTypes {
 release {
 minifyEnabled = false
 proguardFiles.add(file('proguard-rules.txt'))
 }
 }

}

The Hello JNI sample is the most basic use of NDK in Android applications. Its C code returns
only a string and will be used in your activity via JNI. Open the Android activity code, shown in
Listing 11-2.

Listing 11-2:  JNI call

public class HelloJni extends Activity {
 static {
 System.loadLibrary("hello-jni");

Android NDK with Android Studio Projects  x  321

 }
 public native String stringFromJNI();

 @Override
 public void onCreate(Bundle savedInstanceState)
 {
 super.onCreate(savedInstanceState);

 TextView tv = new TextView(this);
 tv.setText(stringFromJNI());
 setContentView(tv);
 }
}

This listing demonstrates a simple example but includes all necessary steps to call your C/C++ code
from Java. Because your Java code runs on a VM-managed runtime, you need to manually load
the non-vm managed code. Static blocks serve well for this purpose because they are initiated even
before the constructor and only once for a class.

Java is a type-safe and strongly-typed language, which makes it impossible to see and call the non-
vm code even if it is loaded successfully. To be able to call C/C++ code from Java, you would need
a placeholder method, which acts as a gateway proxy. Methods, which are marked with the native
keyword, do not have a method body but share a special naming convention with their C/C++ coun-
terpart; thus, they know which native code to execute when C/C++ codes are accessed.

In the example here, the stringFromJNI method returns a string and is called when the activity
is created. That’s it. If you run the sample application, the activity will call the C code and display
the returned string. Try changing the string returned from the C code and see how the changes are
reflected to the UI.

Sample NDK Applications
As the list in Figure 11-7 shows, there are multiple sample applications that you can load to learn
more about NDK application development. We will give a quick overview of the samples so you can
pick one to learn more about the relationship between Android Studio and NDK.

Using Android NDK in an application requires high performance graphics processing, image pro-
cessing, and audio processing. The following NDK sample applications are mostly focused on show-
ing basic uses of those features with Android NDK. This list of sample applications follows the
order shown in Figure 11-7:

➤➤ More Teapots—This sample application uses OpenGLES 3.0 and C++ to draw teapots. It
shows the use of the Gradle Experimental Android Plugin and the Android Native Activity.

➤➤ Teapot—This sample application draws a single teapot using the OpenGLES 2.0 API using
C++. Its aim is to show how you can use OpenGLES 2.0 with the Gradle Experimental
Android Plugin in Android Studio.

➤➤ Audio-Echo—This sample application uses OpenSL ES to create an audio player and
recorder. Audio processing can be costly if you require a high-performance, low-power-
consumption application. Using a native library such as OpenSL ES helps to create a better

322  x  Chapter 11   Using Android NDK with Android Studio

sound application. The Audio-Echo sample can be good practice to learn the basics. This
sample application also uses the Gradle Experimental Android plugin.

➤➤ Bitmap Plasma—This sample application shows how to use the Bitmap class inside NDK
to render a plasma effect and open with a JNI interface on an Android device. The Bitmap
Plasma application also uses the Gradle Experimental Plugin to build native code under the
jni folder.

➤➤ Endless Tunnel—This application is a good entry point to show how to develop a game using
the Android native app glue to create native activity. This application is a little more complex
than others because it is literally a game with OpenGL Mathematics library support.

➤➤ Hello GL2—This application offers a basic introduction to the GLES 2.0 API, loading a tri-
angle on the native activity. This is a nice entry point for learning NDK instead of the more
complex samples listed earlier.

➤➤ Hello Third Party—This application shows how you can load native third-party libraries and
include those libraries in your build process using the Gradle Experimental Android plugin.
This is also a good entry point for NDK development; the main purpose of NDK develop-
ment is reusing your previously developed and built native libraries.

➤➤ Native Activity—As the name implies, this application shows how to create a native Android
activity.

➤➤ Native Plasma—This application is similar to Bitmap Plasma, but it doesn’t use a Java activ-
ity. Instead, it uses a native activity to create and show a rendered plasma effect.

➤➤ San Angeles—This sample application might be the most complex because it is a port of an
existing C++ application to Android. The aim of this sample is to show how you should port
any existing native source code to Android and build it in Android Studio using the Gradle
Experimental Android plugin.

➤➤ Sensor Graph—Finally, this sample application shows developers how to access hardware
resources with native code. We know that there are Java libraries that give access to accel-
erometer, gyroscope, and other sensors, but you will definitely need to access hardware
resources to make games playable. This sample only reads the values and prints them on the
screen.

Migrating an Existing NDK Project
The experimental Gradle plugin, which provides support for NDK, introduces some changes in
Gradle DSL. This section teaches you how to use the plugin to migrate an existing NDK project.

	 1.	 Start Android Studio and select New ➪ Import Project from the File menu, as shown in
Figure 11-11. Android Studio will migrate your Eclipse project into a Gradle project.

Figure 11-11:  Importing an NDK project

Android NDK with Android Studio Projects  x  323

Once the import is complete, you can move on to making changes on Gradle files.

	 2.	 Expand the Gradle Scripts group, which consists of a build.gradle file for the project and a
build.gradle file for each module, as shown in Figure 11-12.

Figure 11-12:  Gradle scripts after importing an NDK project

	 3.	 Find the Gradle plugin declaration under the dependencies group. Change this dependency to
the bold one in Listing 11-3. Android Studio doesn’t load the experimental plugin by default,
so you need to change it to the experimental one in order to build native code.

Listing 11-3:  Project Gradle script

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle-experimental:0.7.0-alpha1'
 // NOTE: Do not place your application dependencies here; they belong
 // in the individual module build.gradle files
 }
}

Changing the declaration as shown tells Android
Studio to use the experimental Gradle plugin for
your project. Android Studio will detect the change
and ask you to perform project sync.

	 4.	 Click Sync Now in the upper right, as shown in
Figure 11-13.

The build will fail with a message like the one
shown in Figure 11-14. Don’t worry: You haven’t yet
completed the necessary changes.

Figure 11-13:  Syncing the project
after changing the plugin

324  x  Chapter 11   Using Android NDK with Android Studio

Figure 11-14:  Gradle build failure after changing the plugin

Next, you can update module scope build.gradle file. There are some structural changes you need
to implement, introduced by the experimental Gradle plugin. The most major change is the plugin
name, which should be the first line in the gradle file. Change apply plugin: com.android.appli-
cation to apply plugin: 'com.android.model.application'. Another major change is the
model block, which wraps the android block. As you remember from the sample application, you are
trying to change your imported project to be usable with the experimental plugin.

model {
 android {
 ...
 }
}

The experimental Gradle plugin also introduces some syntactic changes on configurations inside the
Android block. You would need to change the proguard configuration to the following:

proguardFiles.add(file("proguard-rules.pro"))

The full code for the build.gradle module appears in Listing 11-4.

Listing 11-4:  Experimental plugin changes

apply plugin: 'com.android.model.application'

model {
 android {
 compileSdkVersion 23
 buildToolsVersion "23.0.2"

 defaultConfig {
 applicationId "com.expertandroid.ndkapplication"
 minSdkVersion.apiLevel 15
 targetSdkVersion.apiLevel 23
 versionCode 1
 versionName "1.0"
 }
 buildTypes {
 release {
 minifyEnabled false

Android NDK with Android Studio Projects  x  325

 proguardFiles.add(file("proguard-rules.pro"))
 }
 }
 }
}

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
}

You have completed all the necessary modifications for the new Gradle plugin syntax. However, you
are still missing an important artifact—your NDK module name. The NDK module is declared as
shown in Listing 11-5.

Listing 11-5:  NDK module declaration

apply plugin: 'com.android.model.application'

model {
 android {
 compileSdkVersion 23
 buildToolsVersion "23.0.2"

 defaultConfig {
 applicationId "com.expertandroid.ndkapplication"
 minSdkVersion.apiLevel 15
 targetSdkVersion.apiLevel 23
 versionCode 1
 versionName "1.0"
 }
 buildTypes {
 release {
 minifyEnabled false
 proguardFiles.add(file("proguard-rules.pro"))
 }
 }

 ndk {
 moduleName "ndkModule"
 }
 }
}

The experimental Gradle plugin introduces some other syntax changes to Gradle DSL. Although
we covered the most common changes, you may refer to http://tools.android.com/tech-docs
/new-build-system/gradle-experimental for the full set of changes.

In order to see more complex NDK project import samples, refer to Chapter 13, where we work
on the vendor-provided NDK samples and import them to Android Studio using the rules covered
here. Some examples are more complex with external libraries and some are as easy as changing the
Gradle file.

http://tools.android.com/tech-docs/new-build-system/gradle-experimental
http://tools.android.com/tech-docs/new-build-system/gradle-experimental

326  x  Chapter 11   Using Android NDK with Android Studio

Building Android NDK Projects
Building and packaging Android projects is pretty straightforward and does not introduce any more
complexity, provided that your project has already implemented the DSL differences for the experi-
mental Gradle plugin. This section covers some of the Gradle configurations that you may need to
configure your builds.

The first change, which we covered in the previous section, is for configuring ProGuard. Because
ProGuard is needed both for obfuscation and shrinking your APK, this configuration should be
taken as a mandatory one rather than optional.

The experimental Gradle plugin introduces some changes to DSL syntax, which is shown in bold in
the following snippet.

proguardFiles.add(file("proguard-rules.pro"))

Another change we have already seen but not covered in detail is to create and declare productFlavors.
Product flavors are an essential part of working with NDK because native code is sensitive to device
architecture unlike VM managed Java code. Product flavors from our sample project that create differ-
ent products for different platform architectures are listed in Listing 11-6.

Listing 11-6:  Android NDK product flavors

android.productFlavors {
 create("arm") {
 ndk.abiFilters.add("armeabi")
 }
 create("arm7") {
 ndk.abiFilters.add("armeabi-v7a")
 }
 create("arm8") {
 ndk.abiFilters.add("arm64-v8a")
 }
 create("x86") {
 ndk.abiFilters.add("x86")
 }
 create("x86-64") {
 ndk.abiFilters.add("x86_64")
 }
 create("mips") {
 ndk.abiFilters.add("mips")
 }
 create("mips-64") {
 ndk.abiFilters.add("mips64")
 }
 // To include all cpu architectures, leaves abiFilters empty
 create("all")
}

Android NDK with Android Studio Projects  x  327

By default, Android Studio assumes C/C++ code is placed in the src/main/java directory.
However, C/C++ source code can be customized from Gradle, as shown in Listing 11-7.

Listing 11-7:  Native C/C++ code directory declaration in Gradle

model {
 android {
 ...
 sources {
 main {
 jni {
 source {
 srcDir "customSrc"
 }
 }
 }
 }
 }
}

Most tool and compiler-related configuration is performed in the model.android.ndk block. The
following items are some of the options you may choose to configure. Please note that these items
are case sensitive and should be used as they appear.

➤➤ moduleName—Name of NDK module.

➤➤ toolchain—Toolchain used by NDK, llvm, or gcc. If you write "clang" on this parameter,
the NDK build system will use the LLVM compiler.

➤➤ toolChainVersion—Version of the toolchain. There might be versions like 3.7, 2.8, and so
on. You can change the version with this parameter.

➤➤ CFlags.add("...")—Environment variables needed by the C compiler.

➤➤ cppFlags("...")—Environment variables needed by the C++ compiler.

➤➤ ldFlags("...")—Library flags for the linker.

➤➤ stl "..."—Standard Template Library options.

Finally, you can set ABI specific configurations using a model.android.abis block. The following
code snippet shows disabling SSSE3 instructions for x86 architecture.

android.abis {
 create("x86"){
 cppFlags.add("-DENABLE_SSSE3")
 }
}

328  x  Chapter 11   Using Android NDK with Android Studio

Because the Gradle plugin for NDK integration is still experimental, changes to DSL syntax should
be expected with new releases of the plugin.

Android NDK Projects Release and Deployment

Android NDK projects used to rely on Android make files, and today, many Android projects with
NDK modules still use android.mk files for the build process. However, Gradle offers an easier and
single way to manage dependencies, automated tests, and the build/release cycle.

Although Android runs on different architectures, VM managed code, which is usually written in
Java, is abstracted from the hosting platform. This gives the ability to deploy the same code to dif-
ferent architectures and delegates the interpretation problem to the VM. However, C/C++ code built
with NDK is not managed by the VM and may require additional steps to preserve compatibility.

One main problem with NDK builds was integrating shared library (.so) files into your project. The
new Android Studio and Gradle offers a more flexible way to handle .so files.

To include a .so file, create a folder named jniLibs under the src/main folder. Each target platform
architecture is represented with a folder inside jniLibs, as shown in Listing 11-8.

Listing 11-8:  Library folders

- src/main
 - jniLibs
 - amreabi
 - mylib.so
 - mips
 - mylib.so
 - x86
 - mylib.so

The current jniLibs folder is the default location to place platform-dependent code. However, this
location can be changed via Gradle. To declare a custom folder for .so files, add the following line
to your build.gradle.

android {
 sourceSets.main {
 jniLibs.srcDir 'src/main/libs'
 }
}

This declaration will result in the following change to your folder structure:

- src/main
 - libs
 - amreabi
 - mylib.so
 - mips
 - mylib.so
 - x86
 - mylib.so

Android NDK Projects Release and Deployment  x  329

You finished adding your native libs and code to your project, but depending on the size of your
native code, you may have introduced another problem to your project by creating a huge mono-
lithic APK.

Multi vs. Fat Android Application APKs
Packaging all native code for each platform into one APK is not necessarily a bad thing and actu-
ally might help keep your builds and versioning simple. However, if the native code and libraries
included in your APK grow in size, the size of the APK grows with a multiplier of each platform,
which may introduce unnecessary network traffic and disk usage.

By default, Gradle packages all native code and libraries into one fat APK. Basically, if you don’t
worry about the APK size, you may choose to continue with the defaults. However, if you want to
split native code into platform-dependent APKs, you would need to add a product flavor for each
APK, as shown in the following code. Version code has to be dynamically adapted when you have
multiple APKs

def versionCodeBase = 11;
def versionCodePrefixes = ['armeabi': 1, 'armeabi-v7a': 2, 'arm64-v8a': 3,
 'mips: 5, 'mips-64': 6, 'x86: 8, 'x86-64': 9];

android.productFlavors {
 create("arm") {
 ndk.abiFilters.add("armeabi")
 versionCode = versionCodePrefixes.get("armeabi", 0) * 1000000 +
versionCodeBase
 }
 create("arm7") {
 ndk.abiFilters.add("armeabi-v7a")
 versionCode = versionCodePrefixes.get("armeabi- v7a", 0) * 1000000 +
versionCodeBase
 }
 create("arm8") {
 ndk.abiFilters.add("arm64-v8a")
 versionCode = versionCodePrefixes.get("arm64-v8a ", 0) * 1000000 +
versionCodeBase

 }
 create("x86") {
 ndk.abiFilters.add("x86")
 versionCode = versionCodePrefixes.get("x86", 0) * 1000000 + versionCodeBase
 }
 create("x86-64") {
 ndk.abiFilters.add("x86_64")
 versionCode = versionCodePrefixes.get("x86_64", 0) * 1000000 +
versionCodeBase
 }
 create("mips") {
 ndk.abiFilters.add("mips")
 versionCode = versionCodePrefixes.get("mips ", 0) * 1000000 +
versionCodeBase
 }
 create("mips-64") {

330  x  Chapter 11   Using Android NDK with Android Studio

 ndk.abiFilters.add("mips64")
 versionCode = versionCodePrefixes.get("mips64", 0) * 1000000 +
versionCodeBase
 }

Now you can choose any product flavor to build, run, or package platform-specific APKs. If you
still need a fat APK among platform-specific ones, add the following product flavor to include all
native code in one APK.

android.productFlavors {
 create("arm") {
 ndk.abiFilters.add("armeabi")
 }
 create("arm7") {
 ndk.abiFilters.add("armeabi-v7a")
 }
 create("arm8") {
 ndk.abiFilters.add("arm64-v8a")
 }
 create("x86") {
 ndk.abiFilters.add("x86")
 }
 create("x86-64") {
 ndk.abiFilters.add("x86_64")
 }
 create("mips") {
 ndk.abiFilters.add("mips")
 }
 create("mips-64") {
 ndk.abiFilters.add("mips64")
 }
 // To include all cpu architectures, leaves abiFilters empty
 create("fat")

}

Fat APKs can be useful for development and CI builds where platform APKs would help you to have
a smaller footprint in terms of network and storage of your app.

Summary

In this chapter we covered Android NDK, which is an essential tool to unleash the performance
and graphic capabilities of Android. Native code may be needed for deeper hardware integration,
so there is no guarantee that an Android developer would never need to learn the basics of NDK.
You have seen how Android Studio offers NDK integration via the experimental Gradle plugin. We
focused on configuration and differences in Gradle DSL. We also covered how to integrate a piece of
C/C++ code with your project.

Finally, we focused on different packaging options for projects that consist of native code and librar-
ies. You learned how to separate platform-dependent code to minimize network and storage usage
as well as how to package the app into a fat APK.

Writing Your Own Plugin
WHAT’S IN THIS CHAPTER?

➤➤ What are plugins?

➤➤ IntelliJ plugin architecture

➤➤ Writing your own plugin

➤➤ Interacting with UI

➤➤ Integrating with editor

➤➤ Packing and distributing plugins

Wrox.com Code Downloads for this Chapter

The wrox.com code download for this chapter is found at www.wrox.com/go/expertandroid
on the Download Code tab. The code for this chapter is in the Chapter12.zip file.

Because Android Studio is great as is, you might think you would never need to implement a
new feature. But you might need to write a plugin to meet a custom need and unleash your full
development potential.

This chapter focuses on the architecture of IntelliJ plugins and shows you how to write a
plugin that can act without code, resources, a UI, or even a build cycle. The ability to write
your own plugins will enable you to fix missing functionality. You can even share your plugins
with other developers.

12

www.wrox.com/go/expertandroid

332  x  Chapter 12   Writing Your Own Plugin

War Story: Many Ways to Skin a Cat

Murat was the team lead in a banking project that had multi-language support.
The localization files were simple Java property files, each containing a locale. One
supported locale was Turkish, which is known for some nonstandard characters
such as ğ, ş, and ı. Those characters needed to be represented in Unicode to display
correctly. When he joined the project, he was surprised to see that everyone had
their own method of converting Turkish characters to Unicode. One team member
wrote his own desktop app, another used a website, and someone else printed out
the Unicode values and entered them manually. In addition to the Unicode problem,
the language files were large and many items were duplicated.

Murat decided to write his own plugin to add Eclipse-based vendor-specific tools.
The requirements were simple: The plugin needed to listen to keystrokes, convert
Turkish characters into Unicode values, and order them by value so that contribu-
tors could see whether a character was already available so duplicates would be
avoided. After reviewing Eclipse plugin documents, he wrote his first Eclipse plugin,
which did what was needed perfectly. The plugin seamlessly integrated with the
locale file editor and did its job in each entry. Very soon his little plugin became a
standard tool in every development environment. He decided to simplify the code
and wrote a blog post about it, which soon became popular, at https://dzone
.com/articles/real-world-eclipse-plugins-two.

IntelliJ Idea Plugin Architecture

All popular IDEs—Eclipse, NetBeans, and, of course, IntelliJ Idea—support adding functional
extensions and integrating them easily with the platform. Those functional extensions, called
plugins, add new functionality and provide their own extensions for future plugins to introduce new
functionality. The IntelliJ platform acts like a giant Lego platform in which other Lego blocks can
be added by plugging into the right extensions.

All IDEs face the same problems. They need to work on different OSes, which introduce different file
systems, while abstracting projects, runtimes, and even compilers from each other. In addition, they
suffer from a problem that all applications have: an unresponsive UI resulting from time-consuming
computations in the UI thread. This problem can become extreme because compiling and packaging
code can be quite time-consuming when compared to other tasks performed by applications.

IDEs offer their own APIs and approaches to solve those issues. All IDEs, including IntelliJ, intro-
duce their own project/file system, controlling time-consuming tasks, communicating with the UI
when needed, and finding solutions to similar problems.

Actions
Actions are the most basic building blocks for interacting with users. An action is a selectable
item that informs the platform that the user wants to trigger something. Creating new projects

https://dzone.com/articles/real-world-eclipse-plugins-two
https://dzone.com/articles/real-world-eclipse-plugins-two

IntelliJ Idea Plugin Architecture  x  333

or opening existing ones are actions baked into the IDE. IntelliJ offers actions that can be added
easily. Actions can be added though the UI or by adding a declaration to the plugin.xml file.
ActionEvent, which carries data about the action itself (such as a selected file or text), is passed to
the actionPerformed method related to the action.

In this section, you create a simple action. You start by downloading and installing IntelliJ, then
move to adding an action with a declaration in the plugin.xml file, and finally you learn how to
add an action using the wizards.

Creating a Simple IntelliJ Plugin
To start developing plugins for IntelliJ, first you need to download IntelliJ. Both the Community
and Ultimate editions of IntelliJ Idea are capable of building plugins; however, we demonstrate
the process with the Community edition because it is free of charge. From the JetBrains website at
https://www.jetbrains.com/, click the IntelliJ IDEA link. From the page that opens, click the
download link. Then click the Community Download option, as shown in Figure 12-1.

Figure 12-1:  IntelliJ IDEA download page

Installing IntelliJ Idea is identical to installing Android Studio. (Refer to Chapter 1 for information
on how to complete the installation once the download is complete.)

After IntelliJ is installed, follow these steps to add a plugin.

https://www.jetbrains.com/

334  x  Chapter 12   Writing Your Own Plugin

	 1.	 Click the IntelliJ Idea icon to start the IDE. You should already be familiar with IntelliJ Idea
because it is the basis of Android Studio.

	 2.	 Select Create New Project, as shown in Figure 12-2.

Figure 12-2:  IntelliJ IDE Start screen

	 3.	 In the window that opens, select the IntelliJ Platform
Plugin option from the list in the left pane, as shown in
Figure 12-3.

	 4.	 Because building plugins for IntelliJ means you need to
build an IntelliJ within IntelliJ, point to the IntelliJ Idea
folder as the IntelliJ Platform SDK location, as shown
in Figure 12-4. This folder can be the same IntelliJ
instance you have been working with as well as a newer
or older version of IntelliJ to target another version of
the SDK platform. This gives developers the freedom to
develop the next version of an IDE inside the IDE.

Once the SDK is configured, the Plugin option will
appear for running the project, as shown in Figure 12-5.

	 5.	 Click Run. IntelliJ Idea starts a new instance and displays the Welcome to IntelliJ IDEA wiz-
ard shown in Figure 12-6. You may close the new instance for now because it does not yet
offer any new functionality.

Figure 12-3:  List of project types

IntelliJ Idea Plugin Architecture  x  335

Figure 12-4:  IntelliJ SDK location configuration

Figure 12-5:  Plugin option on the IntelliJ toolbar

336  x  Chapter 12   Writing Your Own Plugin

Figure 12-6:  IntelliJ IDEA welcome wizard

Implementing a Simple Action
You have just built an IntelliJ Idea inside IntelliJ Idea, but because you haven’t yet implemented any-
thing, there is no new functionality added to the base platform of the current SDK. So let’s imple-
ment the new, simple action.

	 1.	 Expand the resources folder, open META-INF, and select plugin.xml, as shown in
Figure 12-7.

	 2.	 Because you want to add a new action, you need to declare your action inside <action> tags
as seen in Listing 12-1. Type the following code to declare a simple action.

Listing 12-1:  Action declaration

<actions>
 <!-- Add your actions here -->
 <group id="MyPlugin.ExtendedMenu" text="_Extended Menu"

IntelliJ Idea Plugin Architecture  x  337

description="Extended menu">
 <add-to-group group-id="MainMenu" anchor="last" />
 <action id="Myplugin.ProjectInfo"
class="com.expertandroid.plugin.InfoPopup" text="Popup" description="project
info" />
 </group>
</actions>

Figure 12-7:  Contents of the plugin.xml file

Your declaration starts with a <group> tag, which can be used to group several actions.
This is a good technique, one that is followed by many applications such as Word to group
similar actions such as cut, copy, and paste into the Edit group, for example. Next, you use
the <add-to-group> tag to declare where you want to hook your group. In this example,
your new group will appear as the last item of the MainMenu.

Finally, it is time to declare the action itself. Your new action declares a unique ID, a class
that is delegated to run when the action is clicked, text that will be shown in the menu, and
finally the description of your new action.

The plugin.xml editor is smart enough to analyze and validate the XML file. You may
have noticed that all fields are marked green except for the class field of the action, which is
normal because you don’t have the class yet. When focused on the class name, IntelliJ even
offers a smart fix, as shown in Figure 12-8.

338  x  Chapter 12   Writing Your Own Plugin

Figure 12-8:  Smart fix options

	 3.	 Select the first option to create an action class with the name and package you already
declared in the XML. Android Studio will create a new class in the correct package.

	 4.	 Navigate to the new InfoPopup class and double-
click to open. In order to respond as an action, the
InfoPopup class must extend the AnAction class.

	 5.	 Check whether InfoPopup extends the AnAction class
and, if not, as shown in Figure 12-9, use the smart assis-
tance provided by the editor, as shown in Figure 12-10.

Figure 12-10:  Smart assistance to help class extension

Every class that extends AnAction class needs to implement an actionPerformed method.
This method received an AnActionEvent parameter, which carries all the data related to
the action. Listing 12-2 shows a simple example to get the project object data from the event
and finally display a message dialog box greeting us with the project name.

Listing 12-2:  Example class to get object data from events

package com.expertandroid.plugin;

import com.intellij.openapi.actionSystem.AnAction;
import com.intellij.openapi.actionSystem.AnActionEvent;
import com.intellij.openapi.actionSystem.PlatformDataKeys;
import com.intellij.openapi.project.Project;
import com.intellij.openapi.ui.Messages;

public class InfoPopup extends AnAction {
 public void actionPerformed(AnActionEvent event) {

Figure 12-9:  Class inheritance
control

IntelliJ Idea Plugin Architecture  x  339

 Project project = event.getData(PlatformDataKeys.PROJECT);
 Messages.showMessageDialog(project, "Hi, welcome to "+project.getName(),
"Project Info", Messages.getInformationIcon());
 }
}

	 6.	 Now, it is time to try your plugin. Click Run and start a new IntelliJ instance that consists of
your new plugin. Choose New Project and start the IDE. You are free to choose any project
name but keep in mind that the name you have chosen for the project will be displayed by
your action. Check the top menu bar for the Extended Menu menu, which should be the last
item in the list, as shown in Figure 12-11.

Figure 12-11:  New menu view

	 7.	 Click the Extended Menu to display its item. The list should
display only one item, shown in Figure 12-12, which you
added to the XML file.

	 8.	 Select Popup from the drop-down menu. This action should
trigger your action class, which retrieves project metadata
and displays a popup to greet you with the project name, as
shown in Figure 12-13.

Figure 12-13:  New plugin’s popup greeting

That’s it! You have completed your first plugin and customized the IntelliJ. Your plugin doesn’t per-
form much yet, but this is a gateway to many capabilities to extend the IDE.

Alternatively, you can use the New Action wizard to create your plugin rather than editing the XML
manually. Right-click anywhere on the project and select New ➪ Action, as shown in Figure 12-14.

This option will bring up the New Action dialog box, which offers a GUI editor to tweak all the
available settings related to the action you want to create. You may add a new action and choose the
Extended Menu group you previously created to add a new action, as shown in Figure 12-15.

Figure 12-12:  New menu item

340  x  Chapter 12   Writing Your Own Plugin

Figure 12-14:  New action selection

Figure 12-15:  New Action window

The end product will be no different when using the wizard than when adding a declaration to the
plugins.xml file.

IntelliJ Idea Plugin Architecture  x  341

Threading
IntelliJ does not enforce strict control over what you can’t do on the UI thread, but this does not
mean you should be adventurous. Window managers run a single thread to interact with users,
including collecting the input and presenting the output. As a general rule, to keep an application
responsive, you as a developer should not lock the UI thread by performing lengthy operations.
Ideally anything that is not directly interacting with a user through the UI shouldn’t be performed in
the UI thread.

Plugins should execute tasks by passing a runnable by calling the executeOnPooledThread method
of ApplicationManager, as shown in the following code.

ApplicationManager.getApplication().executeOnPooledThread(new Runnable() {
 @Override
 public void run() {
 //...
 }
});

The runnable this provides will be executed in the background without blocking the UI thread.
But wait a minute—because this code will run in the background thread, how can you return and
perform something on the UI thread? The executeOnPooledThread method returns a Future<T>
reference object, which can be used for asynchronous response. However, constantly checking the
Future object would also lock the UI thread and create a similar problem.

A proper way to return to the UI thread is with an API similar to executeOnPooledThread. Passing
a runnable object to the invokeLater method of ApplicationManager, as shown in the following
code, will delegate the execution of the runnable to UI thread.

ApplicationManager.getApplication().invokeLater(new Runnable() {
 @Override
 public void run() {
 //...
 }
});

As shown in the following code, IntelliJ also offers runReadAction and runWriteAction methods
in ApplicationManager that similarly take a runnable and execute read/write operations without
blocking the UI thread.

ApplicationManager.getApplication().runReadAction(new Runnable() {
 @Override
 public void run() {
 //...
 }
});
ApplicationManager.getApplication().runWriteAction (new Runnable() {
 @Override
 public void run() {
 //...
 }
});

342  x  Chapter 12   Writing Your Own Plugin

File System
Abstracting the project and file structure is crucial to handling different operating systems and file
systems. The IntelliJ platform introduces several concepts to handle file-related operations.

➤➤ Virtual files—IntelliJ offers VFS (Virtual File System) for representing files on a file system in
the com.intellij.openapi.vfs package. Most file operations such as read/write are done via the
VirtualFile class. VFS reference of a file can be gathered from actions, directly from paths
or documents, and from PSI files, which we cover last in this list. Although read/write opera-
tions are the most well-known interactions with files, listening for changes or updates about
the file becomes more important when IDEs are involved. VFS also offers a very simple mech-
anism to be notified about changes in the file system by adding a VirtualFileListener via
addVirtualFileListener. VirtualFiles represent already existing files in the file system, so
they cannot be created programmatically.

➤➤ Documents—Documents represent the contents of VirtualFiles. The contents of the
Document are editable. Document references can be accessed from actions, VirtualFiles,
and PSI files. Documents are weak objects that are dynamically created when contents
of a VirtualFile is accessed, but unlike VirtualFiles, they are eligible for garbage collec-
tion if not referenced. Unlike VFS, new Documents can be created programmatically via
EditorFactory.createDocument(), which will create a new PSI. Changes in the contents
of Documents can be listened for with a DocumentListener by calling addDocument
Listener. Global listeners, which observe changes on all documents, can also be added over
the EditorFactory.getEventMulticaster().addDocumentListener method. Document
contents can be modified with several different methods, such as setText, insertString,
and replaceString.

➤➤ Program Structure Interface (PSI) files—PSI files represent files but with hierarchical elements
based on programming language syntax. There are specific PSI implementations such as
PsiJavaFile, XmlFile, PyFile, and more. Unlike VFS and Documents, which are application
scoped, PSI files are project scoped. This way, each project can work on its own PSI instance
for a file, which is shared among projects. PSIs consist of PSI elements, which form a tree
structure to represent the contents with respect to the programming language.

A PSI document reference can be accessed via a VirtualFile reference, Document refer-
ence, an action, or by a child element belonging to the target PSI. PSI documents can
also be searched in a project’s getFilesByName method from the FileNameIndex
class by passing project reference, search name, and the scope. PSI files can be created
using PSIFactory. Changes can be listened for by adding a PsiTreeChangeListener.
Thanks to the hierarchical structure, it is easy to navigate between PSI elements and
perform modification on elements instead of files. Elements can be iterated using a
PsiRecursiveElementWalkingVisitor object.

Projects and Components
Now that you know about IntelliJ plugin architecture, you can write a more complex plugin. If you
have read the war story sidebar earlier in this chapter, you know about the special Turkish char-
acters that are not compatible with anything but Unicode. Although this example seems to target

IntelliJ Idea Plugin Architecture  x  343

a very specific task that covers a small percentage of the whole world’s app ecosystem, it clearly
demonstrates how to write a plugin that listens for changes in a file, responds to them, and reads or
writes file contents.

Let’s start by designing a plugin and separating tasks. First, you need to listen for changes in files.
You already know that IntelliJ Idea has its own file system API, so you can expect to find something
that suits your needs in the API.

The first step in building a new plugin is to declare it in the plugin.xml, as you did in the
“Implementing a Simple Action” section earlier in this chapter. In that example, you built an action.
This time, your plugin needs to do more than just receive actions. This plugin needs to integrate into
the IDE and check project files for changes. IntelliJ Idea’s plugin architecture offers project compo-
nents that suit this purpose. Each project component implements the ProjectComponent interface,
which introduces the following project and component lifecycle methods as well as the project
instance.

➤➤ void initComponent()—Entry point for component related initialization code.

➤➤ void disposeComponent()—Exit point for component related disposal code.

➤➤ String getComponentName()—Returns component name.

➤➤ void projectOpened()—Project lifecycle method that is called when the project is opened.

➤➤ void projectClosed()—Project lifecycle method that is called when the project is closed.

➤➤ ProjectComponent (Project project)—Constructor for concrete ProjectComponent
implementation. Reference to the project object is passed at the time of initialization.

To listen for file changes, you need to start, register, and unregister your plugin. The initComponent
and disposeComponent methods are the perfect candidates for that purpose. Next, you need to
listen for file changes. You need to target project files, which exist in the OS’s file system, and
because you don’t need to create and work with new files, Virtual File System looks suitable for the
job. VFS offers the VirtualFileListener interface, which can be registered to listen to a variety
of file-related events.

➤➤ void propertyChanged(VirtualFilePropertyEvent)—Called when properties of the file
have changed.

➤➤ void beforePropertyChange(VirtualFilePropertyEvent)—Called before the
property change action takes place. Think of this method as a hook that is executed just
before the change.

➤➤ void contentsChanged(VirtualFileEvent)—Called when contents of the file have
changed. Typically occurs when the file is accessed via an editor.

➤➤ void beforeContentsChange(VirtualFileEvent)—Called before the contents
change action takes place. Think of this method as a hook that is executed just before the
contents change.

➤➤ void fileCreated(VirtualFileEvent)—Called when a new file is created. Typically
occurs when a wizard or another plugin creates or generates a new file.

344  x  Chapter 12   Writing Your Own Plugin

➤➤ void fileDeleted(VirtualFileEvent)—Called when an existing file is deleted. Typically
occurs when the user or another plugin deletes an existing file.

➤➤ void beforeFileDeletion (VirtualFileEvent)—Called before the file deletion action
takes place. Think of this method as a hook that is executed just before the deletion.

➤➤ void fileMoved(VirtualFileEvent)—Called when the location of an existing file has
been changed by moving the file. Typically occurs as a result of refactoring or dragging a file
to another package or folder.

➤➤ void beforeFileMovement (VirtualFileEvent)—Called before the file move action
takes place. Think of this method as a hook that is executed just before the file is moved.

➤➤ void fileCopied(VirtualFileEvent)—Called when a file is copied to another location
while maintaining the original copy in the original location. Typically occurs when the user
copies/pastes a file.

Although there are many different event methods, it is clear that you need to be targeting the
contentsChanged method to listen for changes to a file and take action. The action should be sim-
ple enough to search for specific characters and replace them with specific codes, and because you
know when the contents of the file change, you can easily hook your functionality there. Let’s start
by writing a simple method to go over a string and replace each “special” character with the speci-
fied Unicode value. Listing 12-3 shows a simple but naïve implementation to do the job. (Note that
this string conversion can be done more efficiently with regular expressions, but that is beyond the
scope of this chapter.)

Listing 12-3:  Unicode replace with special characters

 private String convertTr(String nativeText) {
 Map charMap = new HashMap<>();
 charMap.put("s", "\\\\u00e7");
 charMap.put("ç", "\\\\u00e7");
 charMap.put("Ç", "\\\\u00c7");
 charMap.put("ğ", "\\\\u011f");
 charMap.put("Ğ", "\\\\u011e");
 charMap.put("ş", "\\\\u015f");
 charMap.put("Ş", "\\\\u015e");
 charMap.put("ı", "\\\\u0131");
 charMap.put("İ", "\\\\u0130");
 charMap.put("ö", "\\\\u00f6");
 charMap.put("Ö", "\\\\u00d6");
 charMap.put("ü", "\\\\u00fc");
 charMap.put("Ü", "\\\\u00dc");
 String unicodeTxt = "";
 if (nativeText != null) {
 unicodeTxt = new String(nativeText);
 Set keySet = charMap.keySet();
 Iterator it = keySet.iterator();
 while (it.hasNext()) {
 String nativeChar = (String) it.next();

IntelliJ Idea Plugin Architecture  x  345

 String unicodeChar = (String) charMap.get(nativeChar);
 unicodeTxt = unicodeTxt.replaceAll(nativeChar, unicodeChar);
 }
 }
 return unicodeTxt;
 }

Now you can implement the VirtualFileListener to extract the string contents from the file
when a change occurs. As we discussed earlier, the target method is contentsChanged. However,
because the VirtualFileListener interface offers a long list of methods, you need to create the
method bodies even if you don’t plan to do anything when the related event occurs, as shown in
Listing 12-4.

Listing 12-4:  VirtualFileListener implementation

VirtualFileListener listener= new VirtualFileListener() {
 @Override
 public void propertyChanged(@NotNull VirtualFilePropertyEvent
virtualFilePropertyEvent) {

 }

 @Override
 public void contentsChanged(@NotNull VirtualFileEvent virtualFileEvent) {

 try {
InputStream is = virtualFileEvent.getFile().getInputStream();
 BufferedReader reader = new BufferedReader(new
InputStreamReader(is));
 String line = null;
 String finalLine = "";
 while ((line = reader.readLine()) != null) {
 //concanate the lines
 finalLine += line + "\n";
 }
 //we are done with the input stream
 is.close();
 //convert chars
 String toOut = convertTr(finalLine);
 if (!toOut.equals(finalLine)) {
 virtualFileEvent.getFile().setBinaryContent(toOut.getBytes());
 }
 } catch (IOException e) {
 e.printStackTrace();
 } finally {

 }

 }

346  x  Chapter 12   Writing Your Own Plugin

 @Override
 public void fileCreated(@NotNull VirtualFileEvent virtualFileEvent) {

 }

 @Override
 public void fileDeleted(@NotNull VirtualFileEvent virtualFileEvent) {

 }

 @Override
 public void fileMoved(@NotNull VirtualFileMoveEvent virtualFileMoveEvent) {

 }

 @Override
 public void fileCopied(@NotNull VirtualFileCopyEvent virtualFileCopyEvent) {

 }

 @Override
 public void beforePropertyChange(@NotNull VirtualFilePropertyEvent
virtualFilePropertyEvent) {

 }

 @Override
 public void beforeContentsChange(@NotNull VirtualFileEvent
virtualFileEvent) {

 }

 @Override
 public void beforeFileDeletion(@NotNull VirtualFileEvent virtualFileEvent) {

 }

 @Override
 public void beforeFileMovement(@NotNull VirtualFileMoveEvent
virtualFileMoveEvent) {

 }
 };

Each time a change occurs, your contentsChanged implementation will be called. It reads the file
content using the FileChangeEvent and calls your function that converts the characters in the
stream. Finally, you write the file contents back to the file. Although you implemented all the logic
behind your plugin, you haven’t yet hooked your VirtualFileListener to your component. To
achieve that, you need to register the event listener when the component is initialized and unregister
it when the component is disposed of, as shown in Listing 12-5.

IntelliJ Idea Plugin Architecture  x  347

Listing 12-5:  Register and unregister the VirtualFileListener

import com.intellij.openapi.components.ProjectComponent;
import com.intellij.openapi.project.Project;
import com.intellij.openapi.vfs.*;
import org.jetbrains.annotations.NotNull;

import java.io.*;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;

public class MyProjectComponent implements ProjectComponent {
 public MyProjectComponent(Project project) {
 }

 @Override
 public void initComponent() {
 // TODO: insert component initialization logic here

 VirtualFileManager.getInstance().addVirtualFileListener(listener);
 }

 @Override
 public void disposeComponent() {
 // TODO: insert component disposal logic here
 VirtualFileManager.getInstance().removeVirtualFileListener(listener);
 }

 @Override
 @NotNull
 public String getComponentName() {
 return "MyProjectComponent";
 }

 @Override
 public void projectOpened() {
 // called when project is opened
 }

 @Override
 public void projectClosed() {
 // called when project is being closed
 }
}

The plugin code is ready, but you haven’t yet added the description to plugins.xml. Component
declaration is much simpler and more straightforward than an action. Open plugin.xml and add
the declaration in Listing 12-6.

348  x  Chapter 12   Writing Your Own Plugin

Listing 12-6:  Plugin declaration

 <project-components>
 <component>
 <implementation-class>com.expertandroid.plugin.
MyProjectComponent</implementation-class>
 </component>
 </project-components>

Now create the class MyProjectComponent inside the com.expertandroid.plugin package and paste
the code you have written so far. Your plugin is ready to be used. But wait a minute—previously we
said that read and write operations should be done through Runnable with the provided API so as
not to block the UI thread. So let’s refactor the code to make use of runReadAction on reads and
runWriteAction on writes. Listing 12-7 has the complete code listing we have covered in pieces
so far.

Listing 12-7:  Read and write action refactoring

package com.expertandroid.plugin;

import com.intellij.openapi.application.ApplicationManager;
import com.intellij.openapi.components.ProjectComponent;
import com.intellij.openapi.project.Project;
import com.intellij.openapi.vfs.*;
import org.jetbrains.annotations.NotNull;

import java.io.*;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;

public class MyProjectComponent implements ProjectComponent {
 public MyProjectComponent(Project project) {
 }

 @Override
 public void initComponent() {
 // TODO: insert component initialization logic here

 VirtualFileManager.getInstance().addVirtualFileListener(listener);
 }

 @Override
 public void disposeComponent() {
 // TODO: insert component disposal logic here
 VirtualFileManager.getInstance().removeVirtualFileListener(listener);
 }

 @Override
 @NotNull

IntelliJ Idea Plugin Architecture  x  349

 public String getComponentName() {
 return "MyProjectComponent";
 }

 @Override
 public void projectOpened() {
 // called when project is opened
 }

 @Override
 public void projectClosed() {
 // called when project is being closed
 }

 VirtualFileListener listener= new VirtualFileListener() {
 @Override
 public void propertyChanged(@NotNull VirtualFilePropertyEvent
virtualFilePropertyEvent) {

 }

 @Override
 public void contentsChanged(@NotNull VirtualFileEvent virtualFileEvent) {

 ApplicationManager.getApplication().runReadAction(new Runnable() {
 @Override
 public void run() {
 try {
 InputStream is =
virtualFileEvent.getFile().getInputStream();
 BufferedReader reader = new BufferedReader(new
InputStreamReader(is));
 String line = null;
 String finalLine = "";
 while ((line = reader.readLine()) != null) {
 //concanate the lines
 finalLine += line + "\n";
 }
 //we are done with the input stream
 is.close();
 //convert chars
 String toOut = convertTr(finalLine);
 if (!toOut.equals(finalLine)) {
 write(virtualFileEvent, toOut);
 }
 } catch (IOException e) {
 e.printStackTrace();
 } finally {

 }
 }
 });

 }

350  x  Chapter 12   Writing Your Own Plugin

 private void write(VirtualFileEvent virtualFileEvent, String toOut){
 ApplicationManager.getApplication().runWriteAction (new Runnable() {
 @Override
 public void run() {
 try {
 virtualFileEvent.getFile().setBinaryContent(toOut.
getBytes());
 } catch (IOException e) {
 e.printStackTrace();
 } finally {

 }
 }
 });
 }

 private String convertTr(String nativeText) {
 Map charMap = new HashMap<>();
 charMap.put("s", "\\\\u00e7");
 charMap.put("ç", "\\\\u00e7");
 charMap.put("Ç", "\\\\u00c7");
 charMap.put("ğ", "\\\\u011f");
 charMap.put("Ğ", "\\\\u011e");
 charMap.put("ş", "\\\\u015f");
 charMap.put("Ş", "\\\\u015e");
 charMap.put("ı", "\\\\u0131");
 charMap.put("İ", "\\\\u0130");
 charMap.put("ö", "\\\\u00f6");
 charMap.put("Ö", "\\\\u00d6");
 charMap.put("ü", "\\\\u00fc");
 charMap.put("Ü", "\\\\u00dc");
 String asciiText = "";
 if (nativeText != null) {
 asciiText = new String(nativeText);
 Set keySet = charMap.keySet();
 Iterator it = keySet.iterator();
 while (it.hasNext()) {
 String nativeChar = (String) it.next();
 String asciiChar = (String) charMap.get(nativeChar);
 asciiText = asciiText.replaceAll(nativeChar, asciiChar);
 }
 }
 return asciiText;
 }

 @Override
 public void fileCreated(@NotNull VirtualFileEvent virtualFileEvent) {

 }

 @Override
 public void fileDeleted(@NotNull VirtualFileEvent virtualFileEvent) {

IntelliJ Idea Plugin Architecture  x  351

 }

 @Override
 public void fileMoved(@NotNull VirtualFileMoveEvent virtualFileMoveEvent) {

 }

 @Override
 public void fileCopied(@NotNull VirtualFileCopyEvent virtualFileCopyEvent) {

 }

 @Override
 public void beforePropertyChange(@NotNull VirtualFilePropertyEvent
virtualFilePropertyEvent) {

 }

 @Override
 public void beforeContentsChange(@NotNull VirtualFileEvent
virtualFileEvent) {

 }

 @Override
 public void beforeFileDeletion(@NotNull VirtualFileEvent virtualFileEvent) {

 }

 @Override
 public void beforeFileMovement(@NotNull VirtualFileMoveEvent
virtualFileMoveEvent) {

 }
 };

}

Now click Run to fire an IntelliJ with your new plugin to give a test drive. Create a new file or open
an existing file and type one of the special characters that your plugin covers and watch how the file
dynamically updates its contents.

That’s it—you have written your first useful plugin. So far, you have seen how to define actions and
how to respond to file events but you haven’t actually yet interacted with the editor.

Editors
Your plugin currently reads the entire contents of the file and writes back the modified string. This
strategy might suffer as the file size gets larger. Alternatively, you can hook an action into your edi-
tor to run your algorithm on a selection of text and replace it with the Unicode values. This way,

352  x  Chapter 12   Writing Your Own Plugin

you can have better control on what parts of the text are being changed and also run your algorithm
in a more efficient way.

	 1.	 Create a new plugin project as you did in the previous example and choose New Window, as
shown in Figure 12-16.

Figure 12-16:  New plugin creation

	 2.	 Open the plugin.xml file and add the Action declaration using the <action> tag, as shown
in Listing 12-8.

Listing 12-8:  Unicode plugin declaration

<action id="MyPlugin.EditorAction"
class="com.expertandroid.plugin.EditorAction" text="Replace"
 description="Replaces characters with unicode values">
 <add-to-group group-id="EditorPopupMenu" anchor="first"/>
</action>

You have just added a new action labeled "Replace" as the first item in the editor
popup menu. Because you haven’t created the EditorAction class yet, it is marked in red in
Figure 12-17.

Figure 12-17:  Creating the EditorAction class

	 3.	 Click the Create class option from the contextual help to create your action class. You will
use the contextual help to implement the needed methods in your new class.

	 4.	 Select Implement methods, as shown in Figure 12-18.

IntelliJ Idea Plugin Architecture  x  353

	 5.	 Now modify your existing code from the previ-
ous example to work with the editor action.

This time you will use the Document API instead of
VFS. Documents are structural files so you can eas-
ily use the selection made in the editor. To access
the selected text, you need the active instance of the
Project, Editor, and the Document. You will use the
Document for accessing the file contents and the editor
to access the SelectionModel object, which will let us
interact with the editor and the selection.

final Editor editor = anActionEvent.getRequiredData(CommonDataKeys.EDITOR);
final SelectionModel selectionModel = editor.getSelectionModel();
final int start = selectionModel.getSelectionStart();
final int end = selectionModel.getSelectionEnd();

In Listing 12-9, you access the Editor from the action event and get the beginning and ending
indexes of the selection via the SelectionModel object of the editor. Now you can get the document
instance and change the selection by using your previous convertUnicode method. Listing 12-9
shows the complete code of the actionPerformed method.

Listing 12-9:  actionPerformed method implementation

@Override
public void actionPerformed(AnActionEvent anActionEvent) {
 final Editor editor = anActionEvent.getRequiredData(CommonDataKeys.EDITOR);
 final SelectionModel selectionModel = editor.getSelectionModel();
 final int start = selectionModel.getSelectionStart();
 final int end = selectionModel.getSelectionEnd();

 final Project project = anActionEvent.getRequiredData(CommonDataKeys.PROJECT);
 final Document document = editor.getDocument();

 WriteCommandAction.runWriteCommandAction(project, new Runnable() {
 @Override
 public void run() {
 String unicodeText=convertUnicode(selectionModel.getSelectedText());
 document.replaceString(start, end, unicodeText);
 }
 });
 selectionModel.removeSelection();
}

You may have noticed that you used runWriteCommandAction from the WriteCommandAction class
instead of runWriteAction from ApplicationManager. Both methods execute write actions in a

Figure 12-18:  Implement methods selection

354  x  Chapter 12   Writing Your Own Plugin

separate thread, but this time you are executing write from an action instead of an application com-
ponent. Now you can copy the convertUnicode method from the previous example to complete the
missing piece.

Everything looks ready, but what if the selection is empty? Your selection model may not even exist
because the user may not be working with an editor all the time. You need to make your plugin
safe by checking if the editor is open and has a valid selection. To achieve this goal, you need to
implement an update method in your Action class. Listing 12-10 gets the current instance of the
project and the editor and enables the presentation of your action only if there is a selection made
in the editor.

Listing 12-10:  Update action

@Override
public void update(AnActionEvent anActionEvent){
 final Project project = anActionEvent.getData(CommonDataKeys.PROJECT);
 final Editor editor = anActionEvent.getData(CommonDataKeys.EDITOR);

 if (project != null && editor != null){
 anActionEvent.getPresentation().setVisible(editor.getSelectionModel().
hasSelection());
 }else{
 anActionEvent.getPresentation().setVisible(false);
 }
}

Finally, you are ready to test your plugin. Click Run and start a
new project or open an existing one. Open the editor and right-
click after making a text selection, as shown in Figure 12-19.

Once you click Replace, your plugin will kick in and replace the
special characters in the text selection with given Unicode val-
ues. If no selection is made, the Replace action will not appear
on the action menu, as shown in Figure 12-20.

You may use the same strategy to easily generate or edit code,
either by listening for changes in files or waiting for user
action.

Wizards
Wizards are a well-known part of the user experience when
software needs to complete a task that consists of one or more
steps. IntelliJ Idea offers an easy way to create wizards for
your custom tasks.

	 1.	 Declare an extension by adding the extension in Listing 12-11 to your plugin.xml.

Figure 12-19:  The plugin action
with text selected

Figure 12-20:  Right-click actions
when no text is selected

IntelliJ Idea Plugin Architecture  x  355

Listing 12-11: Extension declaration

<extensions defaultExtensionNs="com.intellij">
 <!-- Add your extensions here -->
 <moduleBuilder builderClass="com.expertandroid.CustomWizard"
id="Custom.Wizard" order="first"/>
</extensions>

	 2.	 Use the contextual help to create a CustomWizard class, as shown in Figure 12-21.

Figure 12-21:  CustomWizard class creation

	 3.	 Find and open the newly created CustomWizard
class.

Wizards in IntelliJ Idea extend from the
ModuleBuilder class. Because your class is also
extending the same base class, you need to imple-
ment missing methods.

	 4.	 Use the contextual help as shown in Figure 12-22 to
create the two missing methods in Figure 12-23.

Figure 12-23:  ActionWizard class methods

The first method, setupRootModel, is where project-specific setup such as setting the compiler,
libraries, and default folder and files is done. Let’s leave this module as is because building a
complex custom project is beyond the scope of this chapter. However, if you are interested in

Figure 12-22:  Implementing the
CustomWizard action

356  x  Chapter 12   Writing Your Own Plugin

learning more about what can be done on this method of the JavaModuleBuilder class, which
is responsible for creating Java projects from IntelliJ source code, checking the source can give
you a better understanding (https://upsource.jetbrains.com/idea-ce/file/idea-ce-
1731d054af4ca27aa827c03929e27eeb0e6a8366/java/openapi/src/com/intellij/ide/
util/projectWizard/JavaModuleBuilder.java).

The second method you implemented is getModuleType, which returns the type of the
Module. There are predefined ModuleTypes in IntelliJ, such as StdModuleTypes.JAVA for
common project types.

	 5.	 For now, change the getModuleType method to return ModuleType.EMPTY, as shown in
Listing 12-12.

Listing 12-12:  Set ModuleType return value

public class CustomWizard extends ModuleBuilder {
 @Override
 public void setupRootModel(ModifiableRootModel modifiableRootModel)
throws ConfigurationException {

 }

 @Override
 public ModuleType getModuleType(){
 return ModuleType.EMPTY;
 }
}

	 6.	 Add some content to your wizard by adding steps.

Each step is defined with a ModuleWizardStep object, which will introduce its own UI
elements and will update the data model with user-specified values. Listing 12-13 creates
two ModuleWizardSteps.

Listing 12-13:  Creating ModuleWizardSteps

ModuleWizardStep[] steps = new ModuleWizardStep[]{new ModuleWizardStep() {
 @Override
 public JComponent getComponent() {
 return new JFileChooser();
 }

 @Override
 public void updateDataModel() {

 }
}, new ModuleWizardStep() {
 @Override
 public JComponent getComponent() {
 return new JRadioButton("Enabled?");

https://upsource.jetbrains.com/idea-ce/file/idea-ce-1731d054af4ca27aa827c03929e27eeb0e6a8366/java/openapi/src/com/intellij/ide/util/projectWizard/JavaModuleBuilder.java
https://upsource.jetbrains.com/idea-ce/file/idea-ce-1731d054af4ca27aa827c03929e27eeb0e6a8366/java/openapi/src/com/intellij/ide/util/projectWizard/JavaModuleBuilder.java
https://upsource.jetbrains.com/idea-ce/file/idea-ce-1731d054af4ca27aa827c03929e27eeb0e6a8366/java/openapi/src/com/intellij/ide/util/projectWizard/JavaModuleBuilder.java

IntelliJ Idea Plugin Architecture  x  357

 }

 @Override
 public void updateDataModel() {

 }
}};

The first ModuleWizardStep returns a JFileChooser in the getComponent method. This
method is responsible for building the UI for the wizard step. Because the return type is
JComponent, you can easily create swing composites, which are basic Java UI elements for
Java-based desktop applications. As we mentioned before, updateDataModel is responsible
for reflecting the changes introduced by the user to the data model of the wizard. For the
sake of keeping the example simple, you will leave it empty.

The second ModuleWizardStep returns a JRadioButton, which can also be used to modify
the data model of the wizard.

	 7.	 Now add your wizard steps to your wizard.

The ModuleBuilder base class has a method named createWizardSteps that you need to
override to return your new steps, as shown in Listing 12-14.

Listing 12-14:  CustomWizard step creation

@Override
public ModuleWizardStep[] createWizardSteps(@NotNull WizardContext
wizardContext, @NotNull ModulesProvider modulesProvider) {
 return steps;
}

The complete code for your custom wizard is given in Listing 12-15.

Listing 12-15:  CustomWizard complete implementation

package com.expertandroid;

import com.intellij.ide.util.projectWizard.ModuleBuilder;
import com.intellij.ide.util.projectWizard.ModuleWizardStep;
import com.intellij.ide.util.projectWizard.WizardContext;
import com.intellij.openapi.module.ModuleType;
import com.intellij.openapi.options.ConfigurationException;
import com.intellij.openapi.roots.ModifiableRootModel;
import com.intellij.openapi.roots.ui.configuration.ModulesProvider;
import org.jetbrains.annotations.NotNull;

import javax.swing.*;

/**
 * Created by murat on 2/10/16.
 */
public class CustomWizard extends ModuleBuilder {

358  x  Chapter 12   Writing Your Own Plugin

 @Override
 public void setupRootModel(ModifiableRootModel modifiableRootModel)
throws ConfigurationException {

 }

 @Override
 public ModuleType getModuleType() {
 return ModuleType.EMPTY;
 }

 ModuleWizardStep[] steps = new ModuleWizardStep[]{new ModuleWizardStep() {
 @Override
 public JComponent getComponent() {
 return new JFileChooser();
 }

 @Override
 public void updateDataModel() {

 }
 }, new ModuleWizardStep() {
 @Override
 public JComponent getComponent() {
 return new JRadioButton("Enabled?");
 }

 @Override
 public void updateDataModel() {

 }
 }};

 @Override
 public ModuleWizardStep[] createWizardSteps(@NotNull WizardContext
wizardContext, @NotNull ModulesProvider modulesProvider) {
 return steps;
 }
}

Now it is time to run and test your new wizard. Click Run plugin and select New Project from
the welcome screen. Select Empty Project from the bottom of the list on the left pane, as shown in
Figure 12-24.

Clicking Next will display the custom wizard steps, as shown in Figure 12-25.

IntelliJ Idea Plugin Architecture  x  359

Figure 12-24:  Creating the new wizard

Figure 12-25:  Custom wizard steps

360  x  Chapter 12   Writing Your Own Plugin

Although creating wizards may not seem like something you will use daily, wizards can be very
helpful when you’re creating custom projects and custom settings.

Packaging and Distribution

Packaging and releasing your plugin is very easy and straightforward. IntelliJ packages plugins as
JAR files that can be installed from external repositories or from the local disk. To package your
plugin, right-click the project pane and select the Prepare Plugin Module option with your project
name, as shown in Figure 12-26.

Figure 12-26:  Plugin deployment selection

Packaging and Distribution  x  361

IntelliJ will compile, build, and package your plugin as a jar file and will display a popup dialog
box stating it is ready for deployment, as shown in Figure 12-27. That’s it, you have just finished
building your plugin and you can upload your plugin into a repository or just make it available
publicly as a jar file.

Figure 12-27:  Plugin package info popup dialog box

Now let’s install the plugin to Android Studio and give a test run. First locate the newly packaged
jar file. You may refer to the URI, which was provided in the popup in Figure 12-27.

Open Android Studio and select Preferences. Highlight the Plugins option in the left pane in the
Preferences window. As shown in Figure 12-28, click the Install Plugin from disk option at the bot-
tom of the screen and locate the jar file.

Figure 12-28:  Installing the plugin from disk

362  x  Chapter 12   Writing Your Own Plugin

That’s it. You have just installed your new plugin to Android Studio. Ideally, your plugin should be
uploaded into a repository, which can be installed via the Browse repositories option.

Summary

In this chapter, you learned how to build plugins for the IntelliJ Idea platform to extend Android
Studio for your special needs. IntelliJ Idea offers an easy-to-extend architecture with many APIs to
help you write your own plugin. The chapter started with building basic actions; then you learned
how to listen to files and projects. You integrated a plugin with the editor to interact with its con-
tents. We covered how to create custom wizards for specific tasks and how to customize their steps.

Finally, you learned how to package, load, and release your plugins for other developers’ use.

Third-Party Tools
WHAT’S IN THIS CHAPTER?

➤➤ Android Studio plugins

➤➤ Intel System Studio

➤➤ Intel Integrated Native Developer Experience (INDE)

➤➤ Qualcomm Android software tools

➤➤ NVIDIA Android Software Tools

Throughout this book, we showcased all the fundamental features you would expect to use
for Android application development and to expand the capabilities of Android Studio. In this
chapter, we present some popular Android Studio plugins and chip vendor tools you can use to
expand your development skills and capabilities.

We start by exploring Android Studio plugins and their use cases, and then we follow up with
tools developed by Intel to enhance Android application development together with Android
Studio. Finally, we look into Qualcomm and NVIDIA software tools for Android.

Android Studio Plugins

Android Studio is extensible with plugins that can improve its capabilities and functionality
with custom actions. It is possible to install plugins from plugin repositories online or via a
local jar or zip file, as you did in Chapter 12.

You can navigate between plugins from the Android Studio start or Preferences windows.
Open the Preferences window from Android Studio and navigate to the Plugins section to see
the installed plugins, as shown in Figure 13-1.

13

364  x  Chapter 13   Third-Party Tools

Figure 13-1:  Installed plugins in Android Studio

This initial window shows just the installed plugins. By default, there are many plugins installed
related to core Android application development and some other supporting tools to improve the
development cycle, such as GitHub integration and Google Cloud Tools.

You can look at the available plugins by clicking the Browse repositories button. The window that
opens, shown in Figure 13-2, shows the plugins from the default JetBrains repository.

You can also look at the JetBrains plugin website at https://plugins.jetbrains.com/
?androidstudio to see the popular plugins, as shown in Figure 13-3.

The JetBrains plugins site makes it easier to find popular plugins because it breaks them out into cat-
egories. However, if you want to install them, you should use the Android Studio plugins window.

Installing a new plugin is easy; when you select the plugin from the list of plugins and click the
green Install button, shown in Figure 13-2, Android Studio will download and install the plugin
seamlessly. After the plugin has been installed, you will see the Restart Android Studio button,
shown in Figure 13-4. Restarting is required to make Android Studio ready to use the installed
plugin. After you restart Android Studio, the plugin will be activated. In this example, we
installed the .ignore plugin.

https://plugins.jetbrains.com/?androidstudio
https://plugins.jetbrains.com/?androidstudio

Android Studio Plugins  x  365

Figure 13-2:  Installable Android Studio plugins

Figure 13-3:  JetBrains plugins website

366  x  Chapter 13   Third-Party Tools

Figure 13-4:  After plugin installation

The .ignore plugin’s detailed description is shown in the right pane. .ignore is used to organize files
that are autogenerated by the build system and add them to the .ignore file (.gitignore if you are
using Git) to prevent adding them to the version control system.

As Figure 13-5 shows, the New menu now has an .ignore item that includes options for adding
.gitignore or any other version control system’s ignore file.

Here are some other plugins you may find useful for application development:

➤➤ ADB Idea—This tool enables Android Studio to perform certain ADB commands through
Android Studio. When you install ADB Idea, it will be enabled in the Tools ➪ Android menu,
with the actions shown in Figure 13-6. ADB Idea makes it easy to control the debugging pro-
cess and remote devices without launching the adb tool from the terminal.

Android Studio Plugins  x  367

Figure 13-5:  .ignore plugin

➤➤ ADB WIFI—This plugin helps you debug Android devices
remotely over Wi-Fi. To enable your device for debugging
over Wi-Fi, make sure your device is connected through
USB first, and then navigate to Tools ➪ Android ➪ ADB
WIFI and click ADB USB to WIFI, as shown in Figure 13-7.

When your device is ready, it will display the connection
info with your device’s local IP address, as shown in
Figure 13-8. Both your development machine and Android
device should be on the same network.

Avoiding the messiness of cables is relaxing, so the capabil-
ity to debug your device wirelessly is a great feature. While
it’s easy to debug smartphones with a USB cable, wire-
lessly debugging Android TV is far better.

➤➤ Android Drawable Importer—Managing drawable
resources can be tricky when your application needs mul-
tiple resolutions and colors. Android Drawable Importer

Figure 13-6:  ADB Idea action list

Figure 13-7:  ADB WIFI menu

Figure 13-8:  ADB WIFI connection
information

368  x  Chapter 13   Third-Party Tools

makes it easy to import icons with multiple colors, assets with
multiple resolutions simultaneously, and so on. New actions
(shown in Figure 13-9) are available from the New option,
accessed by right-clicking, or from the File menu.

As an example of how these options work, let’s look at
Icon Pack Drawable Importer. When you click this action,
a window opens where you can select and customize icons for your application.
You can set the color, name, and resolution of the icon, as shown in Figure 13-10.

Figure 13-10:  Icon Pack Drawable Importer

➤➤ Android strings.xml tools—If your applications have too many string resources for localiza-
tions, it might be hard to find one or to add a missing translation string. This basic tool does
two simple actions to sort the strings and add the missing string
resource for your localization files.

➤➤ Android Parcelable Code Generator—In Android, serializa-
tion to pass data between objects is made with the Parcelable
interface, so you should implement the Parcelable interface for
the class you want to serialize. Implementation of the Parcelable
class has a pattern to follow, and the Android Parcelable Code
Generator helps you create the methods and fields to implement
it. When this plugin is installed, you can generate Parcelable
code within a Java class by selecting Generate ➪ Parcelable
from the Generate menu, as shown in Figure 13-11.

Figure 13-9:  Android Drawable
Importer plugin actions

Figure 13-11:  Generate
menu for the Parcelable class

Android Studio Plugins  x  369

Note  Refer to the Android API if you are new to Parcelable or serializa­
tion concepts: http://developer.android.com/reference/android/os/
Parcelable.html.

➤➤ Android Holo Colors—With Android Holo Colors, you can easily create custom XML
resources with a desired color to use in layouts. After Android Holo Colors is installed, a
new “H” button is enabled on the toolbar, as shown in Figure 13-12. When you click on the
H button, the window shown in Figure 13-12 opens so you can configure your new XML
resource with the selected Holo color.

Figure 13-12:  Android Holo Colors configuration page

When the configuration is ready, select the destination resource folder, which is your appli-
cation’s project root folder. According to your configuration, an XML file will be created
under the drawable folders such as apptheme_btn_check_holo_dark.xml.

This plugin also has an online version, which can be found at http://android-holo-
colors.com. On this website, you can generate the required XML resources and download
them as a zip file to add to your project.

http://developer.android.com/reference/android/os/Parcelable.html
http://developer.android.com/reference/android/os/Parcelable.html
http://android-holo-colors.com
http://android-holo-colors.com

370  x  Chapter 13   Third-Party Tools

➤➤ Key Prompter—You might find this tool to be annoying, but it is use-
ful to learn the keyboard shortcuts. It works by displaying a popup like
the one shown in Figure 13-13 when you click an action on an Android
Studio menu that has a shortcut key.

➤➤ jimu Mirror—This plugin allows you to dynamically design and develop
user interfaces for the Android UI. While you are editing XML layouts,
you can see previews instantly. jimu Mirror gives you the ability to immediately see changes
on the emulator and the device.

Right after you install the jimu Mirror plugin and restart Android Studio, you can either
start a 30-day free trial or buy it from http://jimulabs.com.

After installation, jimu Mirror installs a new menu and toolbar buttons, as shown in
Figure 13-14.

Figure 13-14:  jimu Mirror tool menu and action buttons

You can start and stop Mirror from the toolbar or the tool window with the Start button.
The first time you start jimu Mirror, it will both install and start the jimu Mirror app on
your device. When it starts, you will see actions in the jimu Mirror window and the files
that are being generated and sent to the Android device. After all files are generated and

Figure 13-13:  Key
Prompter popup

http://jimulabs.com

Android Studio Plugins  x  371

ready, jimu Mirror will list the layouts on the device so you can easily work on them and
immediately see any changes on the device.

➤➤ Genymotion—Genymotion is a third-party Android emulator to manage testing Android
applications on virtual devices with the provided Java API. Developers and teams can choose
to use Genymotion instead of AVD. Genymotion’s advantage is that it uses a Java API to
test your application on a virtual copy of commercial Android devices from vendors such as
Samsung and HTC.

Genymotion provides multiple pricing and licensing options; you can see them all at
https://www.genymotion.com/pricing-and-licensing/. If you just want to test
Genymotion, the Basic version is free for personal use. To download Genymotion, you first
need to create an account on the site.

After Genymotion is installed, set the Genymotion path to the Android Studio plugin from
the Preferences window, under Other Settings ➪ Genymotion.

Now, when you click the Genymotion button on the toolbar, the Genymotion Device
Manager window opens. This list will be empty initially, but after you create virtual devices
in the Genymotion application, they will be listed as shown in Figure 13-15.

Figure 13-15:  Genymotion Device Manager window

To create your first virtual device, click the New button to start the Genymotion applica-
tion. In the window that opens, you select the new virtual device, as shown in Figure 13-16.

https://www.genymotion.com/pricing-and-licensing/

372  x  Chapter 13   Third-Party Tools

Figure 13-16:  Genymotion Virtual Device List

You can get the real devices’ exact images as virtual devices with Genymotion. AVD
provides only the core Android SDK with the Google API, but because most popular
Android phone producers—Samsung, HTC, Asus, Motorola—have a customized Android
OS on the device, you can get the exact device’s virtual image only with Genymotion.

When you finish creating the selected Android virtual devices, you will see them in the
Genymotion Device Manager window as well as inside the Genymotion application itself, as
shown in Figure 13-17.

When you run the selected virtual device, you will see it in the Genymotion Player window,
as shown in Figure 13-18. Actual performance is really good on Genymotion. You can also
see tools in the player to adjust GPS, use the camera, and so on in the Genymotion Player
window.

Android Studio Plugins  x  373

Figure 13-17:  Genymotion application window

Figure 13-18:  Genymotion Player window

374  x  Chapter 13   Third-Party Tools

There is one more thing to mention: You can use Genymotion’s Java API to test instrumen-
tation. You can find the Java API Guide at https://docs.genymotion.com/pdf/PDF_
Java_API/Java-API-1.0.2-Guide.pdf.

Detailed documentation for the Genymotion Java API can be found at https://cloud
.genymotion.com/static/external/javadoc/index.html. The Java API helps with
instrument testing of the battery, GPS, SMS, and phone calls on the device.

Intel’s Android Software Tools

As one of the chip vendors providing a hardware platform to develop Android devices, Intel provides
tools and software libraries to help device manufacturers and developers. These tools help engineers
tune all aspects of Android performance, from Android device drivers to services and applications.

Intel System Studio
Intel System Studio is a pack of software tools provided for engineers who are going to develop Intel
architecture based devices. Software tools from System Studio can be used to fine tune applications
and the Android OS itself. Native applications can be developed with Intel C compiler. Tools also
include the performance libraries MKL, IPP, and TBB, and analyzer applications for deep perfor-
mance analysis of graphics and threads.

Intel System Studio’s main target is Android device manufacturers, system integrators, and embed-
ded application developers; however, the tools and libraries (see Figure 13-19) can also be used by
application developers to improve performance, especially applications with native code.

Figure 13-19:  Intel System Studio version comparison

Intel System Studio is available on Linux and Windows hosts. From https://software.intel
.com/en-us/intel-system-studio, select Android as the target OS and pick the version of Intel
System Studio (Composer, Professional, or Ultimate) to continue the download. During installation,

https://docs.genymotion.com/pdf/PDF_Java_API/Java-API-1.0.2-Guide.pdf
https://docs.genymotion.com/pdf/PDF_Java_API/Java-API-1.0.2-Guide.pdf
https://cloud.genymotion.com/static/external/javadoc/index.html
https://cloud.genymotion.com/static/external/javadoc/index.html
https://software.intel.com/en-us/intel-system-studio
https://software.intel.com/en-us/intel-system-studio

Intel’s Android Software Tools  x  375

when you are asked for a serial number you must register to be able to download and start a 30-day
evaluation period. That’s covered later in this section.

You can check the Product Brief to see detailed descriptions of tools provided with Intel System
Studio at https://software.intel.com/sites/default/files/managed/18/d8/intel-system-
studio-2016-product-brief_final.pdf.

The features of each version of Intel System Studio are available on the website (refer to
Figure 13-19).

For this example, we downloaded the Ultimate 2016 version for Linux: system_studio_
2016.1.030.tar. Let’s extract the file and start GUI-based installation.

$ tar xvf system_studio_2016.1.030.tar
$ cd system_studio_2016.1.030

To install the required tools, the fxload and gcc-multilib packages should be installed. Our host
machine is running Ubuntu 14.04, so we will use apt-get. If the packages are not installed, installa-
tion will warn you about the missing dependencies:

$ sudo apt-get install fxload gcc-multilib

Start GUI-based installation from the system_studio_2016.1.030 folder:

$./install_GUI

The installer asks about the rights of the tools for root or the current user. We selected the sudo
installer to be on the safe side and installed the system tool for all users in the system. If you select
sudo-based or root installation, you will be asked for the sudo password in the next window.

The list of tools will be shown in the Welcome window, as shown in Figure 13-20.

Figure 13-20:  Intel System Studio components

https://software.intel.com/sites/default/files/managed/18/d8/intel-system-studio-2016-product-brief_final.pdf
https://software.intel.com/sites/default/files/managed/18/d8/intel-system-studio-2016-product-brief_final.pdf

376  x  Chapter 13   Third-Party Tools

If you already have a serial number, you can enter it in the next window, or just select Evaluate this
product. The next screen shows the Installation Summary and is where you configure the installa-
tion directory. The default is s/opt/intel. The opt directory is used by third-party applications in
Linux-based operating systems.

The next window, shown in Figure 13-21, presents the Eclipse IDE integration options because most
Intel System Studio tools are integrated with Eclipse IDE. If you select integration with an existing
Eclipse installation, Eclipse will be configured for use with Intel System Studio. We selected not to
integrate with Eclipse, so we will see Eclipse Luna in the /opt/intel/eclipse directory.

Figure 13-21:  Eclipse Integration selection

When the installation process asks about Wind River integration, skip it. Finally you see
the Android NDK integration screen; we integrated Intel’s compiler with our Android NDK.
If you want to do so, just type the location of ndk-bundle’s toolchain folder path, as shown in
Figure 13-22, and you are done preparing the installation.

If you downloaded the offline version as we did, it won’t take long for the installation to finish.
The online version could take longer because it will download the required files during the installa-
tion (rather than downloading them with the offline installer), and so depends on the speed of your
Internet connection.

The next section discusses some tools provided with Intel System Studio for Android development
use. The Intel C++ Compiler is covered in detail first because it is the main component for optimiz-
ing binaries for Intel devices. Then we briefly discuss the Intel Integrated Performance Primitives
library, Intel Thread Building Blocks library, Intel VTune Amplifier, Energy Profiler, and Graphics
Performance Analyzer so you understand their capabilities and purpose.

Intel’s Android Software Tools  x  377

Intel’s Android tools are targeted primarily at embedded software developers and native game devel-
opers, not developers of basic Android SDK applications.

Figure 13-22:  Intel System Studio Android NDK integration

Intel C++ Compiler
The Intel C++ Compiler (ICC) is included with Intel System Studio for use in Android. Intel’s com-
piler generates only x86 and x86_64 native applications, so the Intel C++ compiler will generate
only x86 and x86_64 binaries.

If you indicated the path correctly during installation, you will see x86-icc (write all folders) under
the ndk-build/toolchains folder. However, you are not yet ready to use ICC to build x86 binaries;
you need to complete the setup to ensure that switching from NDK’s default x86 compiler to the
Intel C++ Compiler happens.

Note  If your NDK integration setup didn’t work, you can navigate to the Intel
System Studio installation directory and run the following command to com­
plete installation:

$./opt/intel/ide_support/android_ndk/ndk_integration.sh /path/to/
ndk-bundle

Finally, you need to make sure compiler variables have been set up:

$ source /opt/intel/compilers_and_libraries_2016.1.150/linux/bin/
compilervars.sh –arch ia32 –platform android

378  x  Chapter 13   Third-Party Tools

Now ICC is ready to build C and C++ code. Android Studio is not ready to work with the Intel C++
Compiler, so for this example you manually build sample C code to see whether a test file you will
load really compiled with Intel’s compiler.

To begin, open the HelloJNI sample application from the NDK sample list (see Chapter 11 for
information about native application samples). After you have loaded the HelloJNI sample, you will
see the hello-jni.c file in the src/main/jni folder. We will add a new line to hello-jni.c to see
whether it has been compiled with the Intel C++ compiler. Change the final return line as shown in
the following code snippet:

#ifdef __INTEL_COMPILER_UPDATE
 return (*env)->NewStringUTF(env, "Hello from Intel C++ !");
#else
 return (*env)->NewStringUTF(env, "Hello from JNI ! Compiled with ABI "
ABI ".");
#endif

Open a terminal in Android Studio and navigate to the jni
folder to create the libhello-jni.so library for x86:

$ cd src/main/jni
$ icc –platform=android –c hello-jni.c
$ icc –platform=android –shared –o libhello-jni.
so hello-jni.o

Now copy the .so file to the jniLibs folder to make sure
the shared library is copied to APK. Create a jniLibs folder
under the src/main folder and an x86 folder under the
jniLibs folder you just created. Then copy the shared library
to jniLibs/x86.

$ cp src/main/jni/libhello-jni.so src/main/
jniLibs/x86

Now, you need to build the project and run the application
on an x86 virtual device or a real device. This should show
that it worked, as shown in Figure 13-23.

Using ICC manually as in this example is not very efficient.
You can use it the “old fashioned” way (using Makefiles and
Android.mk files) until there is support in Android Studio to
select ICC for x86 in the gradle configuration. Until then, you
need to use it this way or continue to use it in the Eclipse IDE.

ICC is also supported in Visual Studio, so you can build
Android code with native libraries using Visual Studio
and ICC.

Intel Integrated Performance Primitives (Intel IPP)
Intel IPP for Android is available only with Intel System Studio; there is no standalone download
for it.

Figure 13-23:  Intel C++ Compiler Hello
JNI sample

Intel’s Android Software Tools  x  379

The Intel IPP library is a very advanced set of code-based functions optimized for Intel’s Streaming
SIMD Extensions and Intel’s Advanced Vector Extension instruction sets. IPP functions are the
fundamental algorithms used in digital media, communications, and scientific, embedded software
applications.

There are many areas in which Intel IPP can help you run complex algorithms and can help software
run better on Android devices having Intel’s SoC (System on Chip). The Intel IPP library uses an
Intel CPU’s advanced instruction sets to make software run faster and more energy efficiently.

Detailed documentation for Intel IPP can be found at https://software.intel.com/en-us/
intel-ipp.

Intel System Studio installation places the Intel IPP libraries, headers, and samples in the /opt/intel/
ipp folder.

Under the bin folder, you can find ippvars.sh to source the Intel IPP library and header files to the
system. The bin folder also holds the examples folder for Android samples.

Intel ICC and IPP tools are not integrated with Android Studio yet so you should use Eclipse or tra-
ditional command-line build tools to create libraries with IPP.

IPP libraries provide the best functions to create good native applications, especially if you are going
to work on audio processing, image recognition, or pattern recognition. IPP can help optimize appli-
cations that use low-level data processing from sensors such as microphones, cameras, and motion
sensors.

Intel Thread Building Blocks (Intel TBB)
Intel TBB is a library to optimize C++ code for highly optimized parallelization. It is provided
with Intel System Studio. Its files and examples are in the /opt/intel/tbb directory. Unlike Intel IPP,
you can also download the open source version of the TBB library. The latest open source versions
can be found at https://www.threadingbuildingblocks.org/.

Like ICC and IPP, TBB has a tbbvars.sh file for include and library directories.

TBB enhances parallelization of C++ code to optimize existing data structures and algorithms. You
can find many samples inside the tbb/examples directory such as a concurrent hash map, priority
queue, graph samples, parallel loop implementations, and a Sudoku solver. All are great examples to
get you ready for parallel programming with TBB.

Intel VTune Amplifier
Intel System Studio delivers Intel’s performance profiler to get detailed CPU and GPU data using
Intel’s VTune Amplifier. Intel VTune Amplifier is provided with Intel System Studio, and is also
available as a standalone application. Visit https://software.intel.com/en-us/intel-vtune-
amplifier-xe to download it for your target OS—currently Android is the only option—and use
on a Linux or Windows host.

In our Intel System Studio installation, you should navigate to /opt/intel/vtune_amplifier_for_sys-
tems. There you will see bin32 and bin64 folders that include the binaries to run the standalone

https://software.intel.com/en-us/intel-ipp
https://software.intel.com/en-us/intel-ipp
https://www.threadingbuildingblocks.org/
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe

380  x  Chapter 13   Third-Party Tools

Intel VTune Amplifier application. We will use the 64-bit version and run it with the following
command:

$./bin64/amplxe-gui

The first time you run it, it will ask whether you want to participate in the developer program; you
can either skip that or participate. Then you will see the window shown in Figure 13-24.

Figure 13-24:  Intel VTune Amplifier

Note  To use Intel VTune Amplifier, you should have an Android device with
Intel SoC. x86 emulators won’t work with Intel VTune Amplifier.

To start profiling an x86 Android system, application, or process, start a new project. Just click
New Project and enter a name for the project. Next, you will see a new tab next to the Welcome tab
named New Amplifier Result where you choose the analysis target, as shown in Figure 13-25.

As Figure 13-25 shows, there are three targets: local, Android Device (ADB), and remote Linux
(SSH). You should select Android Device to analyze your x86 Android device. You can also choose
to analyze the process, system, application, or an Android package by selecting an item from the
drop-down box shown in Figure 13-25, and it is also possible to select a target device just next to
the target process.

Intel’s Android Software Tools  x  381

Figure 13-25:  Intel VTune Amplifier new project view

To start collecting data from the target device, you can just click the arrow button on the toolbar.
When you are finished with data collection, detailed information is displayed and you will be able to
navigate between each part of the analysis data.

Intel GPA
Intel GPA (Graphics Performance Analyzers) is a set of tools like Intel VTune Amplifier but provid-
ing more high-level analysis options on Android devices. Compared to VTune, Intel GPA is less com-
plex and easier to use. Android tools included in Intel GPA are:

➤➤ System Analyzer—This tool shows performance bottlenecks on the CPU or GPU. In order to
run System Analyzer on an Intel System Studio installation, go to /opt/intel/SystemAnalyzer
and run the gpa-system-analyzer-bin binary. When you run the application, you will see the
list of devices available to use with System Analyzer. When you select the appropriate device
and connect to it, you will see the list of compatible applications and the system option to
view the performance timeline.

➤➤ Platform Analyzer—This tool provides an overview of dump data collected over time to
show bottlenecks during application execution. To run Platform Analyzer, run the /opt/intel/
PlatformAnalyzer/bin64/amplxe-gui binary.

➤➤ Graphics Frame Analyzer of OpenGL–Use this tool to get detailed graphics frame analy-
sis for applications such as games that use OpenGL. To run the Graphics Frame Analyzer,

382  x  Chapter 13   Third-Party Tools

go to the Intel System Studio installation path, /opt/intel/FrameAnalyzerOGL, and run the
FrameAnalyzerOGL binary.

Intel GPA is available both with Intel System Studio and for standalone download and use. To
download the standalone version, select Intel Graphics Performance Analyzers at https://
software.intel.com/en-us/gpa and select Intel GPA from the right pane. To download
standalone versions of tools, enter your email address, and you will be sent a link with the URL
to download tools to your host OS.

Intel INDE

Intel INDE refers to Intel Integrated Native Developer Experience with supported tools for Linux,
Windows, and Android platforms for developing high performance applications running on plat-
forms with Intel CPU and GPU. Detailed information about all the tools and libraries provided in
the Intel INDE program is available at https://software.intel.com/en-us/intel-inde.

You must register with your email address to receive a response download links for the tools. For
some tools, the links take you directly to the download URL.

Some tools are listed on the Intel INDE home page, while others such as Intel C++ Compiler are
available only with Intel System Studio. Intel IPP and some others such as Intel GPA and VTune are
provided both as standalone tools and with Intel System Studio. In this section, we discuss only the
tools provided in the Intel INDE program that we haven’t covered in the previous sections of this
chapter.

Some tools in the Intel INDE that we discuss here (such as Intel Tamper Protection Toolkit and
Intel Multi-OS Engine) are in beta phase. This section begins with a brief overview of Intel
Tamper Protection Toolkits. Then we dive into a detailed look at Multi-OS Engine and Context
Sensing SDK.

Intel Tamper Protection Toolkit
The Intel Tamper Protection Toolkit helps developers protect their application with code obfusca-
tion and securing passwords with crypto libraries.

Like INDE tools, Intel Tamper Protection Toolkit also works with Android NDK for better pro-
tection and advanced security. More detailed information and the toolkit can be downloaded at
https://software.intel.com/en-us/tamper-protection.

If you are developing an application with sensitive user information, or using a highly advanced and
private algorithm that you want to protect against reverse engineering, Intel Tamper Toolkit can
help you learn about obfuscating and securing your intellectual property and sensitive data.

Intel Multi-OS Engine
The Intel Multi-OS Engine, also provided in Intel INDE, is a framework to help developers create
Android and iOS applications with Java programming languages. The Multi-OS Engine is inte-
grated with Android Studio and XCode to generate installable binaries for Android and iOS.

https://software.intel.com/en-us/gpa
https://software.intel.com/en-us/gpa
https://software.intel.com/en-us/intel-inde
https://software.intel.com/en-us/tamper-protection

Intel INDE  x  383

The Multi-OS Engine’s modules and related tools make up a single framework for creating iOS
and Android applications, but it is not an easy tool to use. It is not yet a mature product, so you
should expect to get errors during development. In addition, you will need to learn about Nat/J
performance bindings and so on for effective application development. However, if your application
will be a simple one, you are an expert with the framework, and you need to publish an applica-
tion immediately on both platforms, the Multi-OS Engine can be very useful. Otherwise it can be
a waste of time to learn the Multi-OS Engine framework. Continue reading if you want to see the
installation instructions.

The Multi-OS Engine is available for Windows and Mac OS X; it can be downloaded at https://
software.intel.com/en-us/multi-os-engine/.

In this example, we test the Multi-OS Engine on Mac OS X, so you should downloaded the m_
multi_os_engine-1.0.598.dmg file.

To install Multi-OS Engine, open the .dmg file, then run the Multi-OS Engine Installer
1.0.598.app. In the first screen, the installer asks for the system password. Then it follows up
with a screen asking for the direct JDK, Android Studio, and Android SDK locations, as shown in
Figure 13-26.

Figure 13-26:  Multi-OS Engine SDK path selections	

The installer continues with the license agreement and then the installation path selection shown in
Figure 13-27.

https://software.intel.com/en-us/multi-os-engine/
https://software.intel.com/en-us/multi-os-engine/

384  x  Chapter 13   Third-Party Tools

Figure 13-27:  Multi-OS Engine Installation path selection

When the installation is done, the Android Studio plugin is
installed so you can create new projects for both Android and iOS.
If you reopen Android Studio and check the File ➪ New menu,
you will see that two new options are present, as shown in
Figure 13-28.

When you create a new Intel Multi-OS Engine Project or Module,
a new window will ask you to select the type of project or module
template to create.

Intel Context Sensing SDK
The Intel Context Sensing SDK, one of the Intel INDE tools, is a
free library provided by Intel for Android and Windows platforms
to interact with the services and sensors on devices to create con-
text aware applications. Intel’s Context Sensing SDK can be downloaded from https://software
.intel.com/en-us/context-sensing-sdk for Windows and Mac OS X.

Let’s try it on Mac OS X to see how it works. If you download the Mac OS X version, you will get a
file named m_cssdkandroid_1.7.2.852.dmg.

Figure 13-28:  Multi-OS Engine
Android Studio menu items

https://software.intel.com/en-us/context-sensing-sdk
https://software.intel.com/en-us/context-sensing-sdk

Intel INDE  x  385

When you extract the .dmg file and run m_cssdkandroid_1.7.2.852.app, the dialogue boxes that
appear ask you to install the SDK into a given directory with the traditional Intel installer interface
shown in Figure 13-29.

Figure 13-29:  Intel Context Sensing SDK installer

There are multiple samples and a jar file as a library in the installation directory, as shown in
Figure 13-30.

Figure 13-30:  Intel Context Sensing SDK installation content

386  x  Chapter 13   Third-Party Tools

Let’s import PhysicalActivitySensingSample. It would be good to show how the SDK works with
physical sensors. During the import, there shouldn’t be any errors; however, build.gradle’s compile
SdkVersion may be an earlier version than your installed version, so you should change it to the ver-
sion you have. compileSdkVersion imports as version 8 by default.

Now you need to import the library module to your new project. Select New Module from the File
menu or right-click the project. Select Import .JAR/.AAR Package from the Create New Module
window. Finally, select the jar file from the installation directory, as shown in Figure 13-31, by
clicking on the icon button at the right of the file name area.

Figure 13-31:  Importing the Intel Context Sensing SDK library

Next, you need to add the new library module as a dependency to the app module. (You learned
how to add module dependencies in Chapter 7.) Right-click on the app module and select Open
Module Settings. Finally, select the Dependency tab and define the dependency, or add the following
gradle line to the module’s build.gradle file:

dependencies {
 compile project(':intel-context-sensing-1.7.2.852')
}

Now you can run the application and see the five sensor buttons. First press 2) Start Daemon and
then press 3) Enable Sensing to see toast messages on the screen about the context analysis, as
shown in Figure 13-32.

Qualcomm Android Software Tools  x  387

Figure 13-32:  PhysicalActivitySensingSample screenshot

As you can see, the SDK gives lots of information about the state of the user’s physical activity.
Other sample applications can also be run that show the use cases and possible innovative solutions
that you can add to your application without any further algorithm or data analysis.

Qualcomm Android Software Tools

Qualcomm provides various software tools for Android application development for Snapdragon
SoC, which Qualcomm claims is used on one billion Android devices. Like all other chip vendors,
Qualcomm assists developers to enhance the performance and experience of Android applications,
especially native ones, with supporting libraries and tools. Visit https://developer.qualcomm
.com/get-started/android-development to read more about all of the tools in detail.

Note  Qualcomm Software Tools for Android is specifically optimized for the
Snapdragon CPU and GPU, so you may not observe significant improvements
on tools promising performance optimizations if you ran the application on
another vendor’s SoC.

https://developer.qualcomm.com/get-started/android-development
https://developer.qualcomm.com/get-started/android-development

388  x  Chapter 13   Third-Party Tools

Snapdragon LLVM Compiler for Android
LLVM Compiler for Android is available for Linux and Windows development platforms. LLVM
Compiler for Android can be downloaded at https://developer.qualcomm.com/software/
snapdragon-llvm-compiler-android/tools.

For this example, we use Snapdragon LLVM Compiler on a Linux platform to build our test
applications.

Extract snapdragon-llvm-3.7-compiler-linux64.tar into the toolchain folder under the
Android SDK installation’s ndk-bundle folder. Rename the toolchains folder llvm-snapdragon-
clang3.7 with the following commands:

$ tar xvf snapdragon-llvm-3.7-compiler-linux64.tar –C /path/to/androidsdk/
ndk-bundle/toolchains
$ mv llvm-Snapdragon_LLVM_for_Android_3.7 lvm-snapdragonclang3.7

As it extracts, the tar file will populate multiple folders with setup configurations, but the main
build files will be contained in the llvm-Snapdragon_LLVM_for_Android_3.7/prebuilt/linux-
x86_64 folders. You can also find user guide PDF files inside the folder. These provide detailed use
cases and instructions.

We will demonstrate only a basic compile and run with Snapdragon LLVM compiler using a sample
application named Native Plasma.

To build your application with Snapdragon LLVM compiler, you need to add toolchain =
"clang" and toolchainVersion = "snapdragonclang3.7" to the android.ndk definitions in the
app.gradle file, as shown in the following code:

android.ndk {
 moduleName = "native-plasma"
 toolchain = "clang"
 toolchainVersion = "snapdragonclang3.7"
 CFlags.add("-I${file("src/main/jni/native_app_glue")}".toString())
 ldLibs.addAll(["m", "log","android"])
}

Note  The Native Plasma application uses the experimental gradle NDK plug­
in, which allows you to add toolchain and toolchainVersion properties. The
stable gradle plugin will not allow you to use these properties.

Now you are ready to build the Native Plasma application and run it. You can change the compiler
for your current application immediately. For further improvements and detailed optimization
options for your C/C++ code, refer to the Snapdragon LLVM compiler documentation.

Qualcomm Adreno GPU SDK
The Adreno GPU is the Snapdragon SoC’s graphical processor unit. Qualcomm provides the Adreno
GPU SDK to make your 2D and 3D operations better. With it, game developers can take full advan-
tage of the GPU during development to make the final application run on the GPU as efficiently and
as fast as possible.

https://developer.qualcomm.com/software/snapdragon-llvm-compiler-android/tools
https://developer.qualcomm.com/software/snapdragon-llvm-compiler-android/tools

Qualcomm Android Software Tools  x  389

The Adreno GPU SDK can be downloaded at https://developer.qualcomm.com/software/
adreno-gpu-sdk. The Adreno GPU SDK can be used on Windows, Mac OS X, and Linux platforms.

The Adreno SDK download file is large and there is no direct way to use it with Android Studio. It is a
pure graphics development library for developing assets with OpenGL ES 1.0, OpenGL ES 2.0, OpenGL
ES 3.0, OpenCL, and DirectX (Windows phones). All source code is implemented in C and C++.

There are plenty of documents provided with the downloaded file, in the Docs folder. You can also
download the OpenGL ES Developer Guide at https://developer.qualcomm.com/software/
adreno-gpu-sdk/tools.

Qualcomm FastCV Computer Vision SDK
FastCV SDK is an image-processing SDK like OpenCV but provided by Qualcomm and optimized
for Qualcomm Snapdragon SoC, and it runs on ARM-based processors. Using a library like FastCV
gives you the opportunity to create applications with real time image analytics and processing from
a smartphone’s camera, which facilitates creating augmented reality applications with text, face, and
object detection and tracking options. Implementing such operations from un-optimized libraries
would consume all your battery on an Android device and take too much development time to rein-
vent the wheel.

More information and download links can be accessed at https://developer.qualcomm.com/
software/fastcv-sdk. The FastCV SDK can be used on Windows, Mac OS X, and Linux
platforms.

Let’s integrate and test the external SDK on Android Studio for Mac OS X. The file for Mac OS X
is fastcv-installer-android-1-7-0.app. This installer works with the Java 6 Runtime. The OS
will warn you about the Java version and direct you to https://support.apple.com/kb/DL1572
to help you install the required software after you click the More Info button on the warning popup.

Run the downloaded file and follow the instructions to complete the installation. The default instal-
lation path is /Users/username/Android/Development/fastcv-android-1-7-0.

When the installation is finished, the FastCV SDK, files, and libraries will be in the installation
directory, as shown in Figure 13-33.

Figure 13-33:  FastCV SDK directory

https://developer.qualcomm.com/software/adreno-gpu-sdk
https://developer.qualcomm.com/software/adreno-gpu-sdk
https://developer.qualcomm.com/software/adreno-gpu-sdk/tools
https://developer.qualcomm.com/software/adreno-gpu-sdk/tools
https://developer.qualcomm.com/software/fastcv-sdk
https://developer.qualcomm.com/software/fastcv-sdk
https://support.apple.com/kb/DL1572

390  x  Chapter 13   Third-Party Tools

As you can see, there are three sample applications. Before trying to work with samples, you need to
import the fastcv library header and library to Android NDK folders. If you don’t import the mod-
ules to the appropriate Android NDK paths, you need to copy the files into your project folder.

Create a folder named fastcv, as shown in the following code:

$ mkdir /path/to/ndk-bundle/platforms/android-21/arch-arm/usr/include/fastcv

$ cp /Users/username/Android/Development/fastcv-android-1-7-0/inc/fastcv.h /path/
to/ndk-bundle/platforms/android-21/arch-arm/usr/include/fastcv

$ cp /Users/username/Android/Development/fastcv-android-1-7-0/lib/Android/lib32/
libfastcv.a /path/to/ndk-bundle/platforms/android-21/arch-arm/usr/lib

Note  If you want to use the 64-bit version of the fastcv library, you can copy
the header file and 64-bit library to arch-arm64’s includes and lib folders.

Now, import the loadjpeg sample with Android Studio.

As you’ve done in previous chapters, you can use the Import Project option to load the sample.
Android Studio will recognize the sample project as an Eclipse project and will import it. Importing
native projects from Eclipse requires further actions. Because native applications use Android.mk
files, you need to convert mk files to gradle files to make Android Studio build native code.

Importing should work without any problem and create some of the required files, as shown in
Figure 13-34.

Figure 13-34:  FastCV demo application in Android Studio

Qualcomm Android Software Tools  x  391

When you import the loadjpeg application, the stable gradle plugin builds the demo application,
but you need to convert gradle files so they use the gradle experimental plugin to build this complex
application.

Note  If you get an error about deprecated NDK tools, you can create a gra-
dle.properties file and add the line:

android.useDeprecatedNdk = true

Now you can continue to convert existing gradle files to use the gradle experimental plugin by edit-
ing the project’s build.gradle file and changing classpath to the latest experimental plugin, as in
the following snippet. In the current Android Studio, it is the 0.6.0-beta5 version.

dependencies {
 classpath 'com.android.tools.build:gradle-experimental:0.6.0-beta5'
}

Now, you need to edit the module’s gradle file to make the sample application build the native mod-
ule and load the libfastcv.a library.

Your NDK module name will be loadjpeg. Building the module will create the libloadjpeg.so
file as output and a copy of the file inside the apk package during apk generation. You also need to
link libraries to your native library. After that’s all done, the build.gradle file will be as shown in
Listing 13-1.

Listing 13-1:  loadjpeg module’s build.gradle file content

apply plugin: 'com.android.model.application'

model {
 android {
 compileSdkVersion = 23
 buildToolsVersion = "23.0.2"

 defaultConfig.with {
 applicationId "com.qualcomm.loadjpeg"
 minSdkVersion.apiLevel = 9
 targetSdkVersion.apiLevel = 9
 }

 }
 android.ndk {
 moduleName = "loadjpeg"
ldLibs.addAll(["android", "EGL", "GLESv2", "dl", "log", "fastcv"])
 stl = "stlport_static"
 }

 android.sources {
 main {
 jni {

392  x  Chapter 13   Third-Party Tools

 source {
 srcDirs 'src/main/jni'
 }
 }
 }
 }

 android.productFlavors {
 create ("arm7") {
 ndk.abiFilters.add("armeabi-v7a")
 }
 create ("arm8") {
 ndk.abiFilters.add("arm64-v8a")
 }
 create ("x86-32") {
 ndk.abiFilters.add("x86")
 }
 // for detailed abiFilter descriptions, refer to "Supported ABIs" @
 // https://developer.android.com/ndk/guides/abis.html#sa
 // build one including all productFlavors
 create("fat")
 }
}

To correctly test the application, navigate to LoadJpeg.java and write a valid path for a
JPEG file in the onResume() method and a correct RGB color model configuration in the
loadJPEG("jpegFilePath") method.

Finally, you need to make sure the loadjpeg sample’s Android manifest file is working. Currently,
there are some errors in the AndroidManifest.xml file, so we corrected them as shown in
Listing 13-2.

Listing 13-2:  loadjpeg AndroidManifest.xml file, corrected version

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 android:versionCode="1"
 android:versionName="1.0" package="com.qualcomm.loadjpeg">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name="com.qualcomm.loadjpeg.LoadJpeg"
android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="23" android:targetSdkVersion="23"/>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
</manifest>

Qualcomm Android Software Tools  x  393

Now you are ready to build and run the fastcv sample application. Using similar methods, you can
import other samples and create your own sample project.

WARNING  This library works only on ARM architecture, so you should add a
fallback using other libraries for x86 and MIPS devices.

Snapdragon SDK for Android
Snapdragon SDK for Android is built specifically for Android. It can also be used in Java code
together with its native C/C++ support.

Snapdragon SDK for Android helps you develop applications with facial processing and recognition
features. With the help of Snapdragon SDK, you can analyze each camera frame for blink detection,
eye gaze tracking, smile, and position of head.

To start using Snapdragon SDK for Android, download the snapdragon_sdk_2.3.1.zip file at
https://developer.qualcomm.com/software/

snapdragon-sdk-android. Extract the zip file to create the
c_cpp, java, and testapp folders together with the release
and license files.

The c_cpp folder holds the shared library .so file used in
your native application. You can find documentation of the
C/C++ library in the c_cpp/docs folder.

The java folder includes docs and the Java library together
with sample applications. Finally, you have a test applica-
tion APK in the testapp folder.

The Snapdragon SDK test application is used to test that
all promised features are working as required on your
target device. You can install it with following command,
using adb:

$ cd /path/to/android/sdk/platform-tools/
$./adb start-server
$./adb install /path/to/SnapdragonSDK/testapp/
SnapdragonSDKTestApp.apk

This command should install the test application. Run it
on your device and see if all features pass the tests. You
start the Automated Test on the initial screen. The FACIAL
PROCESSING API TESTS and FACIAL RECOGNITION
API TESTS buttons start the tests. When we started the
FACIAL RECOGNITION API TESTS, the results looked
like Figure 13-35.

Figure 13-35:  Facial Recognition API
Tests

https://developer.qualcomm.com/software/snapdragon-sdk-android
https://developer.qualcomm.com/software/snapdragon-sdk-android

394  x  Chapter 13   Third-Party Tools

The test application makes sure that your device is capable of supporting the features it tests. If you
see any failures, it means that you can’t use the failed API feature in your application for the device
you are testing.

For this example you start with a sample face recognition application from the samples directory
and run it to see Snapdragon SDK’s functions. This will be good practice for the techniques you
learned in previous chapters.

First, import a project by clicking New ➪ Import Project. Select the sample application under
the SDK directory: /PathTo/SnapdragonSDK/java/samples/ samples_facial_processing/
FacialRecognitionSample.

After you have imported the sample application, note that it will not build because it is not yet
linked with the library. You will see errors, as shown in Figure 13-36.

Figure 13-36:  Importing FacialRecognitionSample

You need to import the JAR library and its references in the JNI library.

Switch to Project view in Android Studio. Create a new libs folder in the app module and copy the
sd-sdk-facial-processing.jar file to the libs folder. Then right-click the jar file and click Add
As Library, as shown in Figure 13-37.

After you add the jar file, Android Studio creates the gradle dependency entry, as shown in
Figure 13-37. The errors have disappeared but you need a final touch to add the jar file’s dependency
to the so (shared object) file.

Qualcomm Android Software Tools  x  395

Finally, you need to add a JNI library dependency to the project. To do so, create a jniLibs folder
under the src/main/ folder and copy the armeabi folder from the java/libs/libs_facial_processing
folder to the jniLibs folder, as shown in Figure 13-38.

Figure 13-37:  Adding a jar file as a library

Figure 13-38:  JNI library dependency for Snapdragon SDK

396  x  Chapter 13   Third-Party Tools

Now you can run the application on your device, as shown in Figure 13-39. You can capture images.
and the face recognition sample application will recognize the faces and so on.

Figure 13-39:  Snapdragon SDK Face Recognition sample application

WARNING  Snapdragon SDK works only on ARM architecture devices, so it
may not work on devices with x86 or mips processors.

Note  Further documentation and support data can be found by following
the links in the left pane at https://developer.qualcomm.com/software/
snapdragon-sdk-android.

https://developer.qualcomm.com/software/snapdragon-sdk-android
https://developer.qualcomm.com/software/snapdragon-sdk-android

Qualcomm Android Software Tools  x  397

Qualcomm AllPlay Click SDK
Qualcomm AllPlay is a branding for the platforms that are able to play from mobile devices.
AllPlay mainly exists on speakers, TVs, and similar devices to stream audio seamlessly. For devices
with AllPlay enabled, the Qualcomm AllPlay Click SDK lets you integrate your application so you
can stream audio to platforms supporting AllPlay. Information about supporting platforms and
more can be found at https://www.qualcomm.com/products/allplay.

In this example, you will make your Android application compatible with AllPlay devices. Go to
https://www.qualcomm.com/products/allplay/developer-tools and download the SDK
for Android. The allplay-click-sdk-android-v2.1.0.zip file will be downloaded. When
you extract the SDK, you’ll see that the Android library is already there, so there’s not much to
integrating the SDK with your application.

Included with the SDK is a sample demo application together with release and debug Android
libraries for use in either mode, as shown in Figure 13-40.

Figure 13-40:  AllPlay Click download package contents

To run the demo application, import it as you learned in previous chapters. It will be seamless
because it is already an Android Studio project. After importing, you will see the project, as in
Figure 13-41.

When you run the application, you see that it launches without any problem, as shown in
Figure 13-42.

https://www.qualcomm.com/products/allplay
https://www.qualcomm.com/products/allplay/developer-tools

398  x  Chapter 13   Third-Party Tools

Figure 13-41:  AllPlay Click demo project view

Figure 13-42:  AllPlay Click demo application

Qualcomm Android Software Tools  x  399

If you have an AllPlay device at home, you can try it. Make sure you grant storage reading
permission in the Android device by selecting Settings ➪ Apps ➪ Click SDK Demo and enabling
Permissions.

Qualcomm Profilers
Qualcomm provides performance profilers together with supporting software libraries. There are two
profilers you can use for your Android application: Adreno Profiler for GPU profiling and Snapdragon
Profiler for CPU profiling. These profilers run best on Windows machines, but you can try to run them
with Mono, an open source version of the .Net framework for Mac OS X and Linux.

tip  Our tests show that it is not feasible to use Mac OS X or Linux versions of
profilers because the profilers are actually developed for Windows.

Note  The following sections do not cover the details of the profilers, only the
basic installation steps to make profilers ready.

Make sure the Android Debug Bridge executable is defined in the system path and is running before
running profilers. First, add the path for adb.exe to the environment variables. The following steps
are for Windows 10.

	 1.	 Right-click on This PC and then select Properties.

	 2.	 The System window will open. Click the Advanced system settings link on the left.

	 3.	 The System Properties window will launch with the Advanced tab active. Click the
Environment Variables button at the bottom to open the Environment Variables window.

	 4.	 In the Environment Variables window, there will be two sections: One shows the User envi-
ronment variables and the other shows the System environment variables. Select the Path
variable from the System list and click the Edit button near the bottom of the window to
open the list of Path variables, as shown in Figure 13-43.

	 5.	 Click New and enter the path of adb—for example, C:\path\to\androidsdk\platform-
tools\.

When you are done defining the path, you will see the adb command is available at the com-
mand prompt or in Power Shell. To launch adb, attach your device and run the following
command:

$ adb start-service

WARNING  If you selected the Linux or Mac OS X version of adb, make sure
the adb executable is defined in the system PATH variable and your device is
attached to adb.

400  x  Chapter 13   Third-Party Tools

Figure 13-43:  Windows system path variables list

Adreno Profiler
Adreno Profiler is used for GPU profiling of Snapdragon SoC platforms. This profiler can be
downloaded at https://developer.qualcomm.com/software/adreno-gpu-profiler. Select the
version you need: Windows, Max OS X, or Linux.

WARNING  Adreno Profiler only works with devices having Adreno GPU– and
Adreno Profiler–enabled devices, not with any others.

Snapdragon Profiler
Snapdragon Profiler is used for CPU profiling Snapdragron SoCs. For Windows, Mac OS X, and
Linux platforms, the Profiler can be downloaded from https://developer.qualcomm.com/
software/snapdragon-profiler. The example here uses the Windows version, snapdragon
profiler-windows-1-3.zip.

Extract snapdragonprofiler-windows-1-3.zip to the folder of your choice. Before running the
SnapdragonProfilerSetup.exe file, make sure GTK# (the Windows version of Gtk) is installed.

https://developer.qualcomm.com/software/adreno-gpu-profiler
https://developer.qualcomm.com/software/snapdragon-profiler
https://developer.qualcomm.com/software/snapdragon-profiler

NVIDIA Software Tools  x  401

If it is not, the Snapdragon installation will direct you to the following URL to download the GTK#
installer: http://download.xamarin.com/GTKforWindows/Windows/gtk-sharp-2.12.25.msi.

When you finish installing GTK#, run SnapdragonProfilerSetup.exe and complete the
installation.

If you set the adb path and started the adb service, you can navigate to the Snapdragon Profiler path
and run the profiler as shown in the following command.

$ cd C:\Program Files (x86)\Qualcomm\Snapdragon Profiler
$.\SnapdragonProfiler.exe

If nothing happens, select File ➪ Connect and wait for your device to be connected. It usually takes
a couple of seconds and you are ready to use Snapdragon Profiler, as Figure 13-44 shows.

Figure 13-44:  Snapdragon Profiler in use

NVIDIA Software Tools

NVIDIA provides CodeWorks software tools for Android application developers. NVIDIA
CodeWorks is available for all Windows, Mac OS X, and Ubuntu 32- and 64-bit versions. You can
download CodeWorks at https://developer.nvidia.com/codeworks-android.

Click the download link to get an executable to install the required tools and libraries onto
your development machine. (CodeWorksforAndroid-1R4-linux-x64.run for Ubuntu,
CodeWorksforAndroid-1R4-osx.dmg or CodeWorksforAndroid-1R4.windows.exe).

http://download.xamarin.com/GTKforWindows/Windows/gtk-sharp-2.12.25.msi
https://developer.nvidia.com/codeworks-android

402  x  Chapter 13   Third-Party Tools

You can run the Ubuntu version with the following commands:

$ chmod +x CodeWorksforAndroid-1R4-linux-x64.run
$./CodeWorksforAndroid-1R4-linux-x64.run

After the installer starts, select the download directory on the third screen, as shown in
Figure 13-45.

Figure 13-45:  NVIDIA CodeWorks path configuration

When you finish configuring the path, the component configuration window opens, as shown in
Figure 13-46. Here you can select the tools and libraries to download and install on your develop-
ment machine.

Under Android SDK, you can find many SDK versions to select for installation. We selected
only Marshmallow because we want to cover only NVIDIA’s own tools, such as PerfKit, System
Profilers, CUDA, and so on.

NVIDIA’s focus is mostly on the GPU side to enhance use of its Tegra GPUs with CUDA, PhysX,
and OpenCV. These help you make use of the GPU for more than just its normal tasks. To test and
use these libraries, you should get a device with a Tegra GPU on it.

If you are going to support NVIDA Tegra or you just want to make sure your high-end game will
run best on Tegra, you can try the tools as documented.

NVIDIA Software Tools  x  403

Figure 13-46:  NVIDIA CodeWorks components

There is no support for Android Studio yet, only Eclipse as shown in Figure 13-46. The CodeWorks
installer downloads a copy of Eclipse with all installations.

NVIDIA CodeWorks provides the following tools and libraries:

➤➤ CUDA—Nvidia’s famous CUDA development tools are also available for Android platforms.
When installed, CUDA tools and samples will be populated in the installation directory.
More information about CUDA for Android can be found at http://docs.nvidia.com/
gameworks/index.html#technologies/mobile/cuda_android_main.htm%3FTocPath%

3DTechnologies%7CMobile%2520Technologies%7CCUDA%25C2%25A0for%2520Android

%7C_____0.

➤➤ OpenCV for Tegra—The OpenCV library is also provided with the CodeWorks
installation. OpenCV libraries are optimized for Tegra GPUs; CUDA acceleration can
also be used with OpenCV functions. More information about OpenCV on Tegra can be
found at http://docs.nvidia.com/gameworks/index.html#technologies/mobile/

http://docs.nvidia.com/gameworks/index.html#technologies/mobile/cuda_android_main.htm%3FTocPath%3DTechnologies%7CMobile%2520Technologies%7CCUDA%25C2%25A0for%2520Android%7C_____0
http://docs.nvidia.com/gameworks/index.html#technologies/mobile/cuda_android_main.htm%3FTocPath%3DTechnologies%7CMobile%2520Technologies%7CCUDA%25C2%25A0for%2520Android%7C_____0
http://docs.nvidia.com/gameworks/index.html#technologies/mobile/cuda_android_main.htm%3FTocPath%3DTechnologies%7CMobile%2520Technologies%7CCUDA%25C2%25A0for%2520Android%7C_____0
http://docs.nvidia.com/gameworks/index.html#technologies/mobile/cuda_android_main.htm%3FTocPath%3DTechnologies%7CMobile%2520Technologies%7CCUDA%25C2%25A0for%2520Android%7C_____0
http://docs.nvidia.com/gameworks/index.html#technologies/mobile/opencv_main.htm%3FTocPath%3DTechnologies%7CMobile%2520Technologies%7COpenCV%2520for%2520Tegra%7C_____0

404  x  Chapter 13   Third-Party Tools

opencv_main.htm%3FTocPath%3DTechnologies%7CMobile%2520Technologies%7COpenC

V%2520for%2520Tegra%7C_____0.

➤➤ PhysX—PhysX is Nvidia’s game physics solution for game and Android developers. It is a
very complex SDK. More information about Nvidia’s PhysX is available at http://docs
.nvidia.com/gameworks/index.html#gameworkslibrary/physx/physx.htm%3FTocPath

%3DGameWorks%2520Library%7CPhysX%7C_____0.

➤➤ NVIDIA Profilers—Like Intel and Qualcomm, NVIDA also provides its own profilers: Tegra
System Profiler and PerfHUD ES (Profiling OpenGL ES code). These profilers are more use-
ful for embedded developers and high-end game developers. Basic use cases are available
at http://docs.nvidia.com/gameworks/index.html#technologies/mobile/native_
android_profiling.htm%3FTocPath%3DTechnologies%7CMobile%2520Technologies

%7CNative%2520Development%2520on%2520NVIDIA%25C2%25A0Android%2520Devices

%7C_____5.

➤➤ NVIDIA Shield—NVIDIA Shield is a gaming platform for consumers running the Android
operating system. Its main purpose is to show Tegra’s performance and provide a game con-
sole. You can visit following URL to learn more about NVIDIA Shield https://shield
.nvidia.com/

Finally, we want to refer to NVIDIA’s Android TV developer’s site. NVIDIA wants their hardware
in more Android TV devices and to increase their support of Android TV developers. The following
URL provides plenty of information for Android TV developers: https://developer.nvidia.com/
android-tv-developer-guide.

Summary

This chapter covered some useful plugins and third-party tools and software libraries that you can
use with Android Studio and SDK. We also covered supporting tools that work with Android Studio
to power your development process and help you create better applications.

We started with some popular Android plugins and their external extensions. That was followed
by discussion of Android SoC vendor tools and libraries, which can help you optimize your appli-
cations’ power and performance. Those tools and libraries are provided by Intel, Qualcomm, and
NVIDIA.

http://docs.nvidia.com/gameworks/index.html#technologies/mobile/opencv_main.htm%3FTocPath%3DTechnologies%7CMobile%2520Technologies%7COpenCV%2520for%2520Tegra%7C_____0
http://docs.nvidia.com/gameworks/index.html#technologies/mobile/opencv_main.htm%3FTocPath%3DTechnologies%7CMobile%2520Technologies%7COpenCV%2520for%2520Tegra%7C_____0
http://docs.nvidia.com/gameworks/index.html#gameworkslibrary/physx/physx.htm%3FTocPath%3DGameWorks%2520Library%7CPhysX%7C_____0
http://docs.nvidia.com/gameworks/index.html#gameworkslibrary/physx/physx.htm%3FTocPath%3DGameWorks%2520Library%7CPhysX%7C_____0
http://docs.nvidia.com/gameworks/index.html#gameworkslibrary/physx/physx.htm%3FTocPath%3DGameWorks%2520Library%7CPhysX%7C_____0
http://docs.nvidia.com/gameworks/index.html#technologies/mobile/native_android_profiling.htm%3FTocPath%3DTechnologies%7CMobile%2520Technologies%7CNative%2520Development%2520on%2520NVIDIA%25C2%25A0Android%2520Devices%7C_____5
http://docs.nvidia.com/gameworks/index.html#technologies/mobile/native_android_profiling.htm%3FTocPath%3DTechnologies%7CMobile%2520Technologies%7CNative%2520Development%2520on%2520NVIDIA%25C2%25A0Android%2520Devices%7C_____5
http://docs.nvidia.com/gameworks/index.html#technologies/mobile/native_android_profiling.htm%3FTocPath%3DTechnologies%7CMobile%2520Technologies%7CNative%2520Development%2520on%2520NVIDIA%25C2%25A0Android%2520Devices%7C_____5
http://docs.nvidia.com/gameworks/index.html#technologies/mobile/native_android_profiling.htm%3FTocPath%3DTechnologies%7CMobile%2520Technologies%7CNative%2520Development%2520on%2520NVIDIA%25C2%25A0Android%2520Devices%7C_____5
https://shield.nvidia.com/
https://shield.nvidia.com/
https://developer.nvidia.com/android-tv-developer-guide
https://developer.nvidia.com/android-tv-developer-guide

405

Index

A

AAR package, Android Library module, 165
generating, 167

actionPerformed method, 353–354
actions, IntelliJ, 332–333

implementing, 336–340
plugin creation, 333–336

activities, 50
associations, 133–134
blank, 59–62
customization, 51
Empty Activity, 169
fragments, 63
Glass module, 180–181
Java and, 310
lifecycle, 56–57

methods, 57
NextActivityClass, 58
Tabbed Activity, 64–69
template

adding to projects, 58
Android TV, 174

user-defined, 58
Wear Activities, 53

Activity super class, 58
ADB (Android Debug Bridge), 40–41,

196–197
ADB Idea plugins, 366
ADB WIFI, 366
ADB WIFI plugin, 366

ADK (Android Developer Tools), 45
Adreno GPU, 388–389
Adreno Profile for GPU, 399–400
AllPlay Click SDK, 397–399
AnAction class, 338
Analyze menu, 82, 88–89
Android Auto, 182–184
Android Device Monitor, 216

devices, 217
Emulator Control, 218–219
File Explorer, 219
Heap, 217–218
Hierarchy View, 220–221
logcat, 217
Network Statistics, 218
System Information, 220
threads, 217
UI XML Dump, 219

Android Drawable Importer, 366–367
Android Emulator Plugin, 299, 300–302
Android Holo Colors, 368
Android Library module, 164–165

AAR package, 165
generating, 167

Gradle, module dependencies, 165
Java classes, 166
XML resources, 166–167

Android Lint Plugin, 299
Android Model view, 97–98
Android Monitor tool, 96–97

Capture System Information, 208

406

Android NDK – Android Studio

CPU monitor, 213–214
GPU monitor, 214–215
Java Garbage Collector, 213
Java Heap, 211
logcat, 209–210
Memory monitor, 210–213
Network monitor, 215
Screen Recording, 208
Screenshot, 207–208
tabs, 206

Android NDK, 309–310
applications, samples, 321–322
C/C++ and, 310

directory declaration, 327
jniLibs folder, 328–329
license agreement, 311
Linux installation, 311–312
Mac OS X installation, 313–315
modules, declaration, 325
packages, 310
product flavors, 326–327
projects, 315–316

building, 326–328
development, 328–330
Hello JNI, 319
importing sample, 316–322
list, 317
migrating, 322–325
release, 328–330

SDK Manager, 311–312
Windows 10 installation, 312–313

Android Parcelable Code Generator, 368
Android Platform/API Version Distribution

window, 49
Android Plugin for Gradle, 145–146

build configuration, 151
build tasks, 151
configuration, 150
extending, 156–157
flavors, 152–153

ProGuard, 153–155
Android SDK, 47

Default Preferences window, 25
installation, standalone, 18–19
Manager installation window, 25
SDK Manager button, 24

Android Studio
Analyze menu, 82, 88–89
Android NDK integration, 310–315
Android Studio menu, 82
Build menu, 82, 89
Code menu, 82, 88
Commit Changes wizard, 264–266
Complete Installation dialog box, 18
Edit menu, 82

Copy as Plain Text, 85
Copy Path, 84
Copy Reference, 85
Macros, 86
Paste from History, 85
Paste Simple, 85

File menu, 82, 83–84
Project Structure window, 84, 85

Git, 259–260
project creation, 260–266
repository items, 262–263
version control, 261–262

HAXM configuration, 12
Help menu, 82, 90
installation, 9–10

Linux, 16–18
Mac OS X, 12–15
Windows 10, 10–12

launching, 18
Navigate menu, 82, 86–88
Refactor menu, 82, 89
Run menu, 82, 90
SDK Manager, Android NDK, 311–312
SDK Manager button, 24
Setup window, 11

407

Android Studio menu – Asset Studio window

Setup Wizard (Linux), 16
Setup Wizard (Mac OS X), 14
shortcuts, Keymap page (Preferences

window), 91–92
themes

Linux, 17
Windows, 13

tool views, available tools, 93
Tool Windows option, 92–93

Android Model, 92, 97–98
Android Monitor, 92, 96–97
Build Variants, 92
Capture Analysis, 92
Capture Tool, 92
Captures, 92
Debug, 92
Debug window, 99–100
Designer, 92
Event Log, 92
Event Logs, 100
Favorites, 92, 96
Gradle, 92, 98
Gradle Console, 92, 98
Maven Projects, 92
Messages, 92, 93–94
Palette, 92
Project, 92, 94–95
Run, 92
Run window, 98–99
Structure, 92
Structure window, 97
Terminal, 92, 100
TODO, 92
Version Control, 92

Tools menu, 82, 90
VCS menu, 82, 90
View menu, 82, 86

Tool Windows option, 92–100
Welcome window, 47
Window menu, 82, 90

Android Studio menu, 82
Preferences, 83

Android TV module, 173–174
APKs, 179
debugging, 176–179
manifest file, 174, 176
running, 176–179

Android Wear module
APKs, 173
AVD (Android Virtual Device), 172
debugging, 170–173
Empty Activity, 169
running, 170–173

AndroidManifest.xml file, 32–33
android-studio-ide-141.2178183-linux

.zip, 16
APIs (application programming interfaces),

Java and, 310
APKs

Android TV module, 179
Android Wear module, 173
building, 114
Generate APK option, 163
modules, 161–162

AppCompatActivity class, 58
applications

Android NDK, samples, 321–322
launching, 54–56
tutorial, 162

ARR packages, importing, 191–192
asset management, 134–141

Vector Asset Studio, 140–141
Asset Studio window, 135

Additional Padding, 137
Asset Type, 136
Background Color, 138
Foreground, 136
Foreground Scaling, 138
Image File, 137
Resource Name, 139

408

assets – code

Shape, 138
assets, 72

images, 73–74
sound, 74–75
video, 75–76

associations, activities, 133–134
Audio-Echo NDK sample application, 321–

322
AVD (Android Virtual Device) Manager,

36–37
Battery, 223
Cellular, 223
device configuration, 38, 39
devices, list, 40
Directional Pad, 223
emulator call, 224
Fingerprint, 223
hardware, 38
Help, 223
keyboard, 224
Location, 222–223
Phone, 223
System Image, 39
TV emulator, 177
Wear module, 172

B
Bamboo CI server, 282
BinaryFragment class, 229
Bitmap Plasma NDK sample application, 322
blank activities, 59–62
breakpoints, 200
BroadcastReceiver superclass, 87
Browse Samples window, 23
build folder, 30
build jobs, in Jenkins, 291–298
Build menu, 82, 89

Generate APK option, 163

Make Project option, 163
build system

Gradle, build.gradle files,
144–145

NDK and, 143
Build Variant window, 163
build.gradle app module, 166
build.gradle file, 30, 144–145

C
Calculator class, 229–230
CalculatorFragment class, 228
C/C++, Android NDK and, 310
CI (continuous integration), 281

overview, 281–282
servers

Bamboo, 282
Hudson, 282
Jenkins, 282, 283–290
project integration, 282–283

classpath, 145
ClearCase, 245
code

blocks
commenting, 101
moving, 101

completion, 101
debugging

adb (Android Debug Bridge),
196–197

wireless, 197–198
Lint and, 225
refactoring, 107–111
samples

Browse Samples window, 23
importing, 22–23, 24

testing, 226–230
integration tests, 232–235

409

code base – Desktop Client

performance testing, 241–242, 241–
244

UI tests, 235–240
unit tests, 230–232

code base, Android Library module and, 164
Code menu, 82, 88
color resources, 130
commenting code, 101
Commit Changes wizard, 264–266
Commit window (Git)

Collapse All, 272
Details, 272
Expand All, 272
Group by Directory, 272
Jump to Source, 272
Merge Changes, 272
Move to Another Changelist, 270
Refresh Changes, 272
Revert, 272
Show Diff, 269, 271

constants, extracting, 111
CPU monitor, 213–214
Create New Module wizard, 167–168
Create New Project window, 48
CVS, 245

D
Debian, Jenkins and, 283–284
Debug option, 199
Debug window, 99–100

Close, 201
Drop Frame, 202
Evaluate Expression, 202–204
Force Step Into, 202
Frames, 204
Help, 201
Mute Breakpoints, 200
Pause, 200

Pin Tab, 201
Restore Layout, 201
Resume, 200
Run to Cursor, 202
Settings, 201
Show Execution Point,

201
Step Into, 202
Step Out, 202
Step Over, 201
Stop, 200
Variables, 204
View Breakpoints, 200
Watches, 204–205

debugging, 195–196
adb (Android Debug Bridge), 196–197
breakpoints, 200
modules

Android TV, 176–179
Android Wear, 170–173
Glass, 181–182
Google Cloud, 187–188

thread dump data, 201
Universal Music Player sample, 198–206
Watches window, 205
wireless, 197–198

DecimalFragment class, 228
Default Preferences window, 25
dependencies

adding, 166
configuration, Project Structure window,

165
Gradle

external, 147–148
local, 149

Java libraries, 168
Maven references, 149–150

Desktop Client (GitHub), 252–253

410

devices. See also virtual devices – Frame layouts

file changes, 256
importing projects, 256
project path, 257
repositories, 255

devices. See also virtual devices
Android Device Monitor, 217
target devices, 48

multiple, 52–54
dimen resources, 129
distributed version control,

246
Documents (IntelliJ), 342
drawables, 130

E
Eclipse-based ADT, 21

project migration, 41–43
projects, importing, 190–191

Edit menu, 82, 84–86
Macros, 86

editors
code completion, 101
IntelliJ, plugin creation, 351, 352–354
navigating, 101–102
refactoring, 102
Smart Type Completion, 101
Translation Editor, 131–133

Empty Activity option, 50, 169
Empty Activity template, 58
emulators

ADB and, 40–41
HAXM, installation, 35–36

Endless Tunnel NDK sample application,
322

environment paths, Windows 10, 6–7
Evaluation Expression, 202–204
event handlers, Intent, 58
Event Logs, 100

executeOnPooledThread method, 341
expertlibrary module, 166

F
FastCV Computer Vision SDK, 389–393
Favorites tool, 96
File menu, 82, 83–84

Project Structure window, 84, 85
files
AndroidManifest.xml, 32–33
IntelliJ, 342

Documents, 342
PSI (Program Structure Interface) files,

342
VFS (Virtual File System), 342

fingerprint sensor (AVD), 222
folders, projects, 31

build, 30
build.gradle file, 30
hidden folders, 29
java, 30, 31
local.properties file, 30
res, 32
settings.gradle file, 30
src/main, 30
src/test and src/androidTest, 30

fori Live Template, 103–104
Fragment class, 66
fragments

activities, 63
lifecycle, 63–64
onActivityCreated method,

64
onAttach method, 63
onCreateView method, 63
onDestroyView method, 64
onDetach method, 64

Frame layouts, 116–117

411

Generate APK – Google Cloud module

G
Generate APK, 163
Genymotion, 371–373
Genymotion plugin, 371–373
Git, 245

Android projects, 259–260
branches, 246–247, 267

from master, 269–273
master branch, 246
Merge Branches window, 272–273
names, 267–268

Commit window
Collapse All, 272
Details, 272
Expand All, 272
Group by Directory, 272
Jump to Source, 272
Merge Changes, 272
Move to Another Changelist, 270
Refresh Changes, 272
Revert, 272
Show Diff, 269, 271

commits, 246, 268–269
conflicts, 274
distributed version control, 246
flow, 266–279
installation

Linux, 247
MacOsX, 247
Windows, 247–248

Jenkins plugin, 289
manual merge, 276
Merge Revisions window, 275
projects, creating, 248–249, 260–266
repository, adding items, 262–263

Git Branches window, 267–268
GitHub, 248, 249

connecting, 252

Desktop Application Install, Security
Warning, 250

Desktop Client, 252–253
file changes, 256
importing projects,

256
project path, 257
repositories, 255

Desktop installation process, 250
Desktop start screen, 251
files, changes, 255
Jenkins build jobs, 292–293
Mac OS X, 250
read.me file, 255
repositories

creating, 253
Desktop Client and, 255
list, 253
path selection, 254
remote, 257–258

sample projects, 22
setup, skipping, 252
sign-in screen, 258
sign-in warning, 257
Welcome window, 250–251
Windows, 250

GitUp, 276–278
Glass Explorers, 179
Glass module, 179–180

activities, 180
debugging, 181–182
naming, 180
running, 181–182

Google Cloud Messaging Notification Plugin,
299

Google Cloud module, 184–185
debugging, 187–188
messaging, 186–187
running, 187–188

412

Google Developer Console – integration tests

types, 185
App Engine Backend with Google

Cloud Messaging, 186
App Engine Java Endpoints Module,

186
App Engine Java Servlet Module, 186

Google Developer Console, 302
JSON key, 303

.google folder, 29
Google Play account, 302

JSON key, 302, 303
Google Play Android Publisher Plugin, 299
Google Service Account, 303
Google TV, 173
GPS data, AVD and, 222
GPU monitor, 214–215
GPU support, 2
Gradle build system

Android Library module and, 164
Android NDK project migration, 322–325
Android Plugin for Gradle, 145–146

extending, 156–157
build configurations, 163
build.gradle file, 144–145
dependencies

external, 147–148
local, 149
Maven references, 149–150

Gradle plugins, writing, 155–156
Jenkins plugin, 289
model file, 145–146
modules, dependencies, 162, 165
projects, importing modules, 189

Gradle Console tool, 98
.gradle folder, 29
Gradle tool, 98
Graphics Frame Analyzer of OpenGL (Intel

GPA), 381–382
Grid layout, 117

H
HAXM

configuration, 12
Mac OS X, 15

installation, 35–36
Hello GL2 NDK sample application,

322
Hello JNI project, 319
Hello Third Party NDK sample application,

322
Help menu, 82, 90
Hudson CI server, 282

I
.idea folder, 29
images, assets, 73–74
Import Gradle Project option, 189
importing

ARR packages, 191–192
code samples, 22–23

Browse Samples window, 23
Sample Setup window, 24

JAR packages, 191–192
modules

Eclipse ADT projects, 190–191
Gradle projects, 189

installation
Android Studio

Mac OS X, 12–15
Windows 10, 10–12

Git
Linux, 247
MacOsX, 247
Windows, 247–248

HAXM, 35–36
plugins, 364

integration tests, 232–235

413

Intel System Studio – IntelliJ

Calculator class, 233–234
History class, 233
History mock implementation, 234–235

Intel System Studio, 375
Eclipse integration, 376
Intel IPP (Integrated Performance

Primitives), 378–379
VTune Amplifier, 379–381

Intel third-party tools
C++ Compiler (ICC), 377–378
Context Sensing SDK, 384–387
GPA, 381–382
INDE (Integrated Native Developer

Experience), 382
Integrated Performance Primitives (Intel

IPP), 378–379
Multi-OS Engine, 382–384
System Studio, 374–377
Tamper Protection Toolkit, 382
Thread Building Blocks (Intel TBB),

379
VTune Amplifier, 379–381

IntelliJ, 331
actions, 332–333

implementing, 336–340
plugin creation, 333–336
read, 348–351
write, 348–351

AnAction class, 338
Documents, 342
editors, 351–354
executeOnPooledThread method, 341
file system, 342
plugin declaration, 348
plugins

distribution, 360–362
packaging, 360–362

ProjectComponent interface
ProjectComponent() method, 343

String get ComponentName()
method, 343

void disposeComponent() method,
343

void initComponent() method, 343
void projectClosed() method, 343
void projectOpened() method,

343
projects, 342–343
PSI (Program Structure Interface) files,

342
runReadAction method, 341
runWriteAction method, 341
SDK, 334–335
Start screen, 333
threading, 341
Unicode replacement, 344–345
VFS (Virtual File System), 342
VirtualFileListener interface

implemention, 345–346
registering/unregistering, 347
void beforeContentsChange event,

343
void beforeFileDeletion event, 344
void beforeFileMovement event, 344
void beforePropertyChange event,

343
void contentsChanged event, 343
void fileCopied event, 344
void fileCreated event, 343
void fileDeleted event, 344
void fileMoved event, 344
void propertyChanged event, 343

welcome wizard, 336
wizards

CustomWizard, 357–360
extension declaration, 354–356
module type, 356
ModuleWizardSteps, 356–357

414

Intent event handler – layouts

Intent event handler, 58
IntentService class, 71–72
interfaces, extracting, 111

J
JAR packages, importing, 191–192
Java

activities and, 310
APIs and, 310
Linux installation, 8–9
Mac OS X installation, 7–8
modules, 166

Android Library module, 166
UI widgets and, 310
Windows installation, 3–4

environment paths, 6–7
installation setup window, 5
setup wizard, 5

java folder, 30, 31
Java Garbage Collector, 213
Java Heap, 211
Java Library module, 167–168

Create New Module wizard, 167–168
Java SE Development Kit, 3
JDK 7, 2–4
jdk-7u79-windows-x64.exe, 4
Jenkins CI server, 282

access from browser, 287
Android Emulator, 300–302, 305–306
Android SDK installation, 305
builds

frequency, 294
job configuration, 300
job creation, 291–298
process output, 297
progress, 305
properties by number, 296
schedule, 296

dashboard, 297
Google Play account, 302
installation, 283

MIT license, 284
WAR file, 283

plugins, 286–287, 287–288, 290
download progress, 290
downloading, 299–300
Git, 289
Gradle, 289
search, 298

repositories, 292–293
JetBrains

IntelliJ download, 333
plugins, 364, 365

jimu Mirror, 370–371
JNI, 310

Hello JNI project, 319
JRE (Java Runtime Environment), 2, 3

K
Key Prompter, 370
Keymap page, 91–92

L
layout

themes, 122–123
translations, 131–133

Layout XML File option, 116–118
layouts

Design mode, 118–120
Frame, 116–117
Grid, 117
Linear, 116
new file, 116–118
Palette tool, 123

Containers group, 124
Custom group, 124
Date Time group, 124
Expert group, 124
Text Fields group, 124
Widgets group, 124

Palette view, 120

415

lifecycle of activities – modules

Preview window, 120
previewing, SDK versions, 121–122
Relative, 116
rendering options, 120–121
Table, 117
Text mode, 118–119
views and, 115
widgets, 115, 116

Plain TextView, 124–126
XML and, 116

lifecycle of activities, 56–57
methods

onCreate, 57
onDestroy, 57
onPause, 57
onResume, 57
onStart, 57
onStop, 57

lifecycle of fragments, 63–64
Linear layouts, 116
Lint, 225
Linux

Android NDK installation, 311–312
Android SDK configuration, 17–18
Android Studio installation, 16–18
Git, installation, 247
Java installation, 8–9
system requirements, 2

ListActivity class, 58
Live Templates, 102–103

creating, 104–106
surrounding templates, 106–107

fori, 103–104
inserting, 103–104
surrounding templates, 106–107

local.properties file, 30
logcat, 209–210

Android Device Monitor, 217

M
Mac OS X

Android NDK installation, 313–315

Android Studio installation, 12–15
Android Studio Setup Wizard, 14
HAXM, configuration, 15
Java installation, 7–8
menus, 82
system requirements, 2

Macros submenu, 86
manifest file, 76–78

Android TV, 174, 176
Maven references, dependencies and, 149–150
mavenCentral repository, 145
Memory monitor, 210–213
menus

Analyze, 82, 88–89
Android Studio, 82
Build, 82, 89
Code, 82, 88
Edit, 82, 84–86
File, 82, 83–84
Help, 82, 90
Navigate, 82, 86–88
Refactor, 82, 89
Run, 82, 90
Tools, 82, 90
VCS, 82, 90
View, 82, 86
Window, 82, 90

Mercurial, 245
Messages tool, 93–94
messaging, Google Cloud module, 186–187
migration

Android NDK projects, 322–325
projects, from Eclipse, 41–43

modules, 78–79
adding, 160–161
Android Auto, 182–184
Android Library, 164–165
Android TV, 173–174

debugging, 176–179
manifest file, 174, 176
running, 176–179
templates, 174

416

More Teapots NDK sample application – plugins

Android Wear
debugging, 170–173
Empty Activity, 169
running, 170–173

APKs, 161–162
Build Variants window, 163
build.gradle app, 166
Create New Module wizard, 167–168
dependencies

adding, 166
Gradle, 162, 165
Java libraries, 168

expertlibrary, 166
Glass, 179–180

activities, 180–181
debugging, 181–182
naming, 180
running, 181–182

Google Cloud, 184–185
debugging, 187–188
messaging, 186–187
running, 187–188
types, 185–186

importing
Eclipse ADT projects, 190–191
Gradle projects, 189

Java classes, 166
Java Library, 167–168
multiple, 162
NDK, declaration, 325
Phone & Tablet, 161–164
removing, 192–193
shared resources, 166

More Teapots NDK sample application, 321

N
naming, packages, 47
Native Activity NDK sample application, 322
Native Plasma NDK sample application, 322

Navigate menu, 82, 86–88
NDK (Native Development Kit), 143
Network monitor, 215
NextActivityClass activity, 58
Nexus 5X, 37–38
Nexus Q, 173
NVIDIA CodeWorks, 401–404

O
onActivityCreated method, 64
onAttach method, 63
onCreate function, breakpoint for debugging,

198
onCreate method, 57, 66
onCreateView() function, 66
onCreateView method, 63
onDestroy method, 57
onDestroyView method, 64
onDetach method, 64
onPause method, 57
onResume method, 57
onStart method, 57
onStop method, 57
Open Module settings, 165

P
packages, names, 47
performance testing, 241–242

task, 242–244
Phone & Tablet module, 161–164

Project view, 163
Platform Analyzer (Intel GPA), 381
Plugin Manager, search, 298–299
plugins, 363–364

ADB Idea, 366
ADB WIFI, 366
Android Drawable Importer, 366–367
Android Emulator Plugin, 299, 300–302

417

Preferences window – projects

Android Holo Colors, 368
Android Lint Plugin, 299
Android Parcelable Code Generator, 368
creating, editors and, 352–354
Genymotion, 371–373
Google Cloud Messaging Notification

Plugin, 299
Google Play Android Publisher Plugin, 299
installation, 364
installed list, 364, 366
IntelliJ, 331

creating, 333–336
distribution, 360–362
packaging, 360–362

JetBrains, 364, 365
jimu Mirror, 370–371
Key Prompter, 370
strings.xml tools, 368
third-party

ADB WIFI, 366
Android Drawable Importer, 366–367
Android Holo Colors, 368
Android Parcelable Code Generator,

368
Genymotion, 371–373
jimu Mirror, 370–371
Key Prompter, 370
strings.xml tools, 368

Unicode conversion, 332
Preferences window, Keymap page, 91–92
Preview window, layouts, 120
profilers (Qualcomm), 399–401
ProGuard, 153–155
Project Structure window, 84, 85

Android NDK installation, 312–313
build configurations, 163
removing modules, 192–193

Project tool, 94–95
Android Instrumentation Tests option, 95
Android option, 95

Packages option, 95
Problems option, 95
Production option, 95
Project Files option, 95
Project option, 94
Scratches option, 95
Tests option, 95

Project view, 28–29
Phone & Tablet module, 163

ProjectComponent interface, 343
ProjectComponent interface (IntelliJ)
ProjectComponent() method, 343
String get ComponentName() method,

343
void disposeComponent() method, 343
void projectClosed() method, 343
void projectOpened() method, 343

projects
activities, 50

blank, 59–62
customization, 51
templates, 58
Wear Activities, 53

Android NDK, 315–316
building, 326–328
development, 328–330
Hello JNI, 319
importing sample, 316–322
migrating, 322–325
release, 328–330

assets, 72
building, 33–35
CI and, 282–283
Create New Project window, 48
creating, 46–51
folders, 31

build, 30
build.gradle file, 30
hidden, 29
java, 30

418

PSI – Run menu

local.properties file, 30
res, 32
settings.gradle file, 30
src/main, 30
src/test and src/androidTest, 30

Git, creating, 248–249, 260–266
GitHub

importing, 256
path, 257

Gradle, modules, importing, 189
IntelliJ, 342–343
launching application, 54–56
migrating, from Eclipse, 41–43
modules, 78–79

adding, 160–161
Android Auto, 182–184
Android Library, 164–165
Android TV, 173–179
Android Wear, 169–173
APKs, 161–162
Build Variants window, 163
build.gradle app, 166
dependencies, 162, 165, 166
expertlibrary, 166
Glass, 179–182
Google Cloud, 184–188
Java classes, 166
Java Library, 167–168
multiple, 162
Phone & Tablet, 161–164
removing, 192–193
shared resources, 166

package names, 47
Project View, 51
running, 33–35
sample project, 22
structure, 27–33
target device, 48

multiple, 52–54
PSI (Program Structure Interface) files,

IntelliJ, 342

Q
Qualcomm third-party tools, 387

Adreno GPU, 388–389
Adreno Profile for GPU, 399–400
AllPlay Click SDK, 397–399
FastCV Computer Vision SDK, 389–393
profilers, 399–401
Snapdragon LLVM Compiler for Android,

388
Snapdragon Profile for CPU, 399–401,

400–401
Snapdragon SDK for Android, 393–396

R
RAM, system requirements, 2
Refactor menu, 82, 89
refactoring, 102
refactoring code

change signature, 109–110
encapsulation, 109–110
Pull Members Up, 108–109
Push Members Down, 108–109
renaming, 107–108
resource extraction, 111

Relative layouts, 116
repositories

Git, adding items, 262–263
GitHub

creating, 253
Desktop Client, 255
list, 253
path selection, 254
remote, 257–258

res folder, 32
resources

Android Library module, 166–167
extracting, 111
shared, modules, 166

Run menu, 82, 90
Debug option, 199

419

Run window – SVN source control

Run window, 98–99
running, modules, Android Wear, 170–173
runReadAction method, 341
runWriteAction method, 341

S
sample project

GitHub, 22
Welcome screen, 22

Sample Setup window, 24
San Angeles NDK sample application, 322
SDK Manager, Android NDK, 311–312
SDKs, 27

layout previewing, 121–122
Sensor Graph NDK sample application, 322
services, templates, 69–72
settings.gradle file, 30
shared resources, modules, 166
shortcuts

adding, 92
deleting, 92
editing, 92
Preferences window, Keymap page, 91–92

signing key, creating, 112–113
Smart Type Completion, 101
SMS (short messaging service), AVD and, 222
Snapdragon LLVM Compiler for Android,

388
Snapdragon Profile for CPU, 399–401,

400–401
Snapdragon SDK for Android, 393–396
software tools

Intel
C++ Compiler (ICC), 377–378
Context Sensing SDK, 384–387
GPA, 381–382
INDE (Integrated Native Developer

Experience), 382
Integrated Performance Primitives

(Intel IPP), 378–379

Multi-OS Engine, 382–384
System Studio, 374–377
Tamper Protection Toolkit, 382
Thread Building Blocks (Intel TBB),

379
VTune Amplifier, 379–381

Qualcomm, 387
Adreno GPU, 388–389
Adreno Profile for GPU, 399–400
AllPlay Click SDK, 397–399
FastCV Computer Vision SDK, 389–

393
profilers, 399–401
Snapdragon LLVM Compiler for

Android, 388
Snapdragon Profile for CPU, 399–401,

400–401
Snapdragon SDK for Android, 393–

396
sound assets, 74–75
source control systems

ClearCase, 245
CVS, 245
Git, 245

branches, 246–247
commits, 246
installation, 247–248

Mercurial, 245
SourceSafe, 245
SVN source control, 245

SourceSafe, 245
src/main folder, 30
src/test and scr/androidTest folder, 30
strings.xml tools, 368
strings.xml tools plugin, 368
Structure window, 97
superclasses
BroadcastReceiver, 87
extracting, 111

surrounding templates, 106–107
SVN source control, 245

420

System Analyzer – threading

System Analyzer (Intel GPA), 381
system requirements

GPU support, 2
Linux, 2
Mac OS X, 2
RAM, 2
Windows, 1–2

T
Tabbed Activity, 64–69
Table layout, 117
Teapot NDK sample application, 321
templates. See also Live Templates

activities
adding to projects, 58
blank activities, 59–62

Android TV, 174
Code menu, 88
Empty Activity, 50, 58
services, 69–72
surrounding, 106–107

Terminal tool, 100
testing

binary calculator example, 226–227
BinaryFragment class, 229
Calculator class, 229–230
CalculatorFragment class, 228
DecimalFragment class, 228
integration tests, 232–233

Calculator class, 233–234
History class, 233
History mock implementation, 234–

235
performance testing, 241–242

task, 242–244
UI tests, 235–240
unit tests

Calculator class, 230
CalculatorTest class, 230–232

themes, layouts, 122–123
third-party tools

Intel
C++ Compiler (ICC), 377–378
Context Sensing SDK, 384–387
GPA, 381–382
INDE (Integrated Native Developer

Experience), 382
Integrated Performance Primitives

(Intel IPP), 378–379
Multi-OS Engine, 382–384
System Studio, 374–377
Tamper Protection Toolkit, 382
Thread Building Blocks (Intel TBB),

379
VTune Amplifier, 379–381

NVIDIA CodeWorks, 401–404
plugins

ADB WIFI, 366
Android Drawable Importer, 366–367
Android Holo Colors, 368
Android Parcelable Code Generator,

368
Genymotion, 371–373
jimu Mirror, 370–371
Key Prompter, 370
strings.xml tools, 368

Qualcomm, 387
Adreno GPU, 388–389
Adreno Profile for GPU, 399–400
AllPlay Click SDK, 397–399
FastCV Computer Vision SDK, 389–

393
profilers, 399–401
Snapdragon LLVM Compiler for

Android, 388
Snapdragon Profile for CPU, 399–401
Snapdragon SDK for Android,

393–396
threading, IntelliJ, 341

421

Tool Windows option – Unicode conversion plugin

Tool Windows option
Android Model, 92
Android Monitor, 92
Build Variants, 92
Capture Analysis, 92
Capture Tool, 92
Captures, 92
Debug, 92
Designer, 92
Event Log, 92
Favorites, 92
Gradle, 92
Gradle Console, 92
Maven Projects, 92
Messages, 92
Palette, 92
Project, 92
Run, 92
Structure, 92
Terminal, 92
TODO, 92
Version Control, 92

tools, 92–93
Android Model view, 97–98
Android Monitor, 96–97
available, 93
Debug window, 99–100
Event Logs, 100
Favorites, 96
Gradle, 98
Gradle Console, 98
Messages, 93–94
Project, 94–95
Run window, 98–99
Structure window, 97
Terminal, 100

Tools menu, 82
Translation Editor, 131–133
tutorial applications, 162

U
Ubuntu, Jenkins and, 283–284
UI (user interface), 115

activities, associations, 133–134
asset management, 134–141
color resources, 130
dimen resources, 129
drawables, 130
layouts, 115

Design mode, 118–120
Frame, 116–117
Grid, 117
Linear, 116
new file, 116–118
Palette tool, 123
Palette view, 120
previewing, 120, 121–122
Relative, 116
rendering options, 120–121
Table, 117
Text mode, 118–119
themes, 122–123
views and, 115
widgets, 124–126
widgets and, 115, 116
XML and, 116

strings, 127
styles, 127–129
tests, 235–240

ApplicationTest, 237
Translation Editor, 131–133
View class, 115
views, 115
widgets, 115

Java and, 310
XML files, 115

Unicode conversion plugin, 332, 352–353
IntelliJ, 344–345

422

unit tests – windows

unit tests, 230–232
Universal Music Player, debugging, 198–206
user-defined activities, 58

V
variables, extracting, 111
VCS (Version Control System), 90
VCS menu, 82, 90
Vector Asset Studio, 140–141
version control, 245, 261

distributed version control, 246
listing systems, 261–262

VFS (Virtual File System), IntelliJ, 342
video, assets, 75–76
View class, 115
View menu, 82, 86
views

Hierarchy View (Device Monitor), 220–221
virtual devices, previewing, 121, 122

virtual devices
configuration, 38, 39
creating, 36–40
list, 40
TV, 174
views, previewing, 121, 122
Wear, 170–173

VirtualFileListener interface (IntelliJ)
implementation, 345–346
void beforeContentsChange event, 343
void beforeFileDeletion event, 344
void beforeFileMovement event, 344
void beforePropertyChange event, 343
void contentsChanged event, 343
void fileCopied event, 344
void fileCreated event, 343
void fileDeleted event, 344
void fileMoved event, 344
void propertyChanged event, 343

W
WAR files, Jenkins, 283
Watches window, 205
Wear Activities, 53
Welcome screen, sample project, 22
widgets, 116

Java and, 310
View class and, 115

Window menu, 82, 90
Windows

Git, installation, 247
Java installation, 3–4

environment paths, 6–7
installation setup window, 5
setup wizard, 5

system requirements, 1–2
windows

Asset Studio, 135
Additional Padding, 137
Asset Type, 136
Background Color, 138
Foreground, 136
Foreground Scaling, 138
Image File, 137
Resource Name, 139
Shape, 138

Debug, 99–100
Close, 201
Drop Frame, 202
Evaluate Expression, 202–204
Force Step Into, 202
Frames, 204
Help, 201
Mute Breakpoints, 200
Pause, 200
Pin Tab, 201
Restore Layout, 201
Resume, 200

423

Windows 10 – XML

Run to Cursor, 202
Settings, 201
Show Execution Point, 201
Step Into, 202
Step Out, 202
Step Over, 201
Stop, 200
Variables, 204
View Breakpoints, 200
Watches, 204–205

Project Structure, 84, 85
Android NDK installation, 312–313
build configurations, 163
removing modules, 192–193

Windows 10
Android NDK installation, 312–313
Android Studio installation, 10–12
environment paths, 6–7

wireless debugging, 197–198

X‑Y‑Z
XML (eXtensible Markup Language)

Android Library module and, 164,
166–167

files, 76
user interfaces and, 115

layouts, 116

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright
	About the Authors
	About the Technical Editor
	Credits
	Acknowledgments
	Contents
	Foreword
	Introduction
	Chapter 1: Getting Started

	System Requirements for Windows, Mac OS X, and Linux
	Installing Java
	Installing Java for Windows OS
	Install Java
	Setting Paths for Java on Windows 10

	Installing Java for MacOS X
	Installing Java for Linux

	Installing Android Studio
	Installing Android Studio for Microsoft Windows 10
	Installing Android Studio for Mac OS X
	Installing Android Studio for Linux

	Launching Android Studio for the First Time
	Welcome to Android Studio

	Standalone SDK Installation
	Summary

	Chapter 2: Android Studio Basics

	Creating a New Sample Project
	Using Different SDKs
	Android Project Structure
	Building and Running a Project

	Android Emulator
	Installing HAXM
	Creating a New Android Virtual Device
	Using ADB

	Migrating Projects from Eclipse
	Summary

	Chapter 3: Android Application Development With Android Studio

	Android Projects
	Creating a New Android Project
	Creating a Project with Multiple Target Devices
	Launching Android Applications

	Android Activities
	The Intent Event Handler
	Adding Template Activities to Android Projects
	Adding a Blank Activity
	Android Fragments
	Understanding the Fragment Lifecycle

	Adding a Tabbed Activity

	Android Services
	Adding a Service Template with Android Studio

	Add Assets for Android Project
	Adding Images Assets
	Adding Sound Assets
	Adding Video Assets

	Adding XML Files to an Android Project
	Android Manifest File
	Android Modules
	Summary

	Chapter 4: Android Studio In Depth

	Android Studio Menu Items
	Android Studio
	File
	Edit
	View
	Navigate
	Code
	Analyze
	Refactor
	Build
	Run
	Tools
	Version Control System
	Window and Help Menu

	Android Studio Shortcuts
	Android Studio Tool Views
	Messages
	Android Studio Project Structure
	Favorites
	Android Monitor
	Structure
	Android Model
	Gradle and Gradle Console
	Run
	Debug
	Event Logs
	Terminal

	Android Studio Editor
	Code Assist
	Commenting Out Code Blocks
	Moving Code Blocks
	Navigating Inside the Editor
	Refactoring

	Android Studio Live Templates
	Inserting a Live Template
	Creating Live Templates
	Creating a Live Template
	Create a Surrounding Template

	Code Refactoring in Android Studio
	Creating a Signing Key for Android Applications in Android Studio
	Building APKs in Android Studio
	Summary

	Chapter 5: Layouts with Android Studio

	Layouts with Android Studio
	Adding a New Layout File
	Layout Design Structure in Android Studio

	Layout Previews
	Layout Rendering Options
	Previewing Virtual Device Views
	Previewing on Different Android SDK Versions
	Selecting Themes

	Designing Layouts with Android Studio
	Managing Resources
	Using Strings
	Using Styles
	Using Dimens
	Using Colors
	Using Drawables

	Using Layout Tools
	Translation
	Activity Association

	Asset Management
	Summary

	Chapter 6: Android Build System

	Using Gradle
	Anatomy of Gradle

	Dependency Management with Gradle
	External Dependencies
	Local Dependencies
	Legacy Maven Dependencies

	Android Plugin for Gradle
	Configuring Android Plugin for Gradle
	Build Configuration
	Build Tasks
	Flavors
	ProGuard
	Automated Tests

	Gradle Plugins
	Writing Your Own Gradle Plugin
	Extending Android Plugin for Gradle

	Summary

	Chapter 7: Multi-Module Projects

	Adding Modules to Android Project
	Phone & Tablet Module
	Android Libraries
	Working with Android Libraries
	Using Android Library Java Packages
	Using Android Library XML Resources
	Generating an AAR Package from an Android Library Module

	Java Libraries
	Android Wear Module
	Running and Debugging an Android Wear Module
	Building APKs with Android Wear Support

	Android TV Module
	Glass Module
	Android Auto Module
	Google Cloud Module
	Importing Modules
	Importing a Gradle Project
	Importing an Eclipse ADT Project
	Importing a JAR/AAR Package

	Removing Modules from a Project
	Summary

	Chapter 8: Debugging and Testing

	Debugging Android Code
	Android Debug Bridge
	Wireless Debugging
	Start Debugging

	Android Monitor
	Using logcat
	Using Memory Monitor
	Using CPU Monitor
	Using GPU Monitor
	Using Network Monitor

	Android Device Monitor
	Android Virtual Device Extended Controls
	Using Lint
	Testing Android Code and Application UIs
	Unit Tests
	Integration Tests
	UI Tests
	Performance Testing
	Performance Tests Task

	Summary

	Chapter 9: Using Source Control: GIT

	Introduction to Git
	Understanding Git
	Installing Git

	Using Git
	Using the GitHub Client
	Using Git in Android Studio
	Git Flow
	Summary

	Chapter 10: Continuous Integration

	What Is Continuous Integration?
	Integrating Android Projects with a Continuous Integration Server
	Installing Jenkins
	Creating Build Jobs
	Release Management
	Summary

	Chapter 11: Using Android NDK with Android Studio

	Introduction to Android NDK
	Android Studio NDK Integration
	Android NDK Installation on Linux
	Android NDK Installation on Windows 10
	Android NDK Installation on Mac OS X

	Android NDK with Android Studio Projects
	Importing a Sample NDK Project
	Sample NDK Applications

	Migrating an Existing NDK Project
	Building Android NDK Projects

	Android NDK Projects Release and Deployment
	Multi vs. Fat Android Application APKs

	Summary

	Chapter 12: Writing Your Own Plugin

	IntelliJ Idea Plugin Architecture
	Actions
	Creating a Simple IntelliJ Plugin
	Implementing a Simple Action

	Threading
	File System
	Projects and Components
	Editors
	Wizards

	Packaging and Distribution
	Summary

	Chapter 13: Third-Party Tools

	Android Studio Plugins
	Intel’s Android Software Tools
	Intel System Studio
	Intel C++ Compiler
	Intel Integrated Performance Primitives (Intel IPP)
	Intel Thread Building Blocks (Intel TBB)
	Intel VTune Amplifier
	Intel GPA

	Intel INDE
	Intel Tamper Protection Toolkit
	Intel Multi-OS Engine
	Intel Context Sensing SDK

	Qualcomm Android Software Tools
	Snapdragon LLVM Compiler for Android
	Qualcomm Adreno GPU SDK
	Qualcomm FastCV Computer Vision SDK
	Snapdragon SDK for Android
	Qualcomm AllPlay Click SDK
	Qualcomm Profilers

	NVIDIA Software Tools
	Summary

	Index

	EULA

Android Studio
Ot

