
www.allitebooks.com

http://www.allitebooks.org

Expert Oracle Database
11g Administration

■ ■ ■

Sam R. Alapati

www.allitebooks.com

http://www.allitebooks.org

Expert Oracle Database 11g Administration

Copyright © 2009 by Sam R. Alapati

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1015-3

ISBN-13 (electronic): 978-1-4302-1016-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Gennick
Developmental Editor: Douglas Pundick
Technical Reviewer: John Watson
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper,
Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Richard Dal Porto
Copy Editor: Ami Knox
Associate Production Director: Kari Brooks-Copony
Production Editor: Laura Cheu
Compositors: Susan Glinert Stevens, Ellie Fountain
Proofreader: April Eddy
Indexer: John Collin
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

www.allitebooks.com

http://www.allitebooks.org

To my dear wife, Valerie, as a small token for her immense help and support

www.allitebooks.com

http://www.allitebooks.org

iv

Contents at a Glance

About the Author . xxxvii

About the Technical Reviewer .xxxix

Acknowledgments . xli

Introduction . xliii

PART 1 ■ ■ ■ Background, Data Modeling,
UNIX/Linux, and SQL*Plus

■CHAPTER 1 The Oracle DBA’s World . 3

■CHAPTER 2 Relational Database Modeling and Database Design 19

■CHAPTER 3 Essential UNIX (and Linux) for the Oracle DBA 43

■CHAPTER 4 Using SQL*Plus and Oracle Enterprise Manager 97

PART 2 ■ ■ ■ Oracle Database 11g Architecture,
Schema, and Transaction
Management

■CHAPTER 5 Oracle Database 11g Architecture . 165

■CHAPTER 6 Managing Tablespaces . 215

■CHAPTER 7 Schema Management . 261

■CHAPTER 8 Oracle Transaction Management . 337

PART 3 ■ ■ ■ Installing Oracle Database 11g,
Upgrading, and Creating Databases

■CHAPTER 9 Installing and Upgrading to Oracle Database 11g 391

■CHAPTER 10 Creating a Database . 443

www.allitebooks.com

http://www.allitebooks.org

v

PART 4 ■ ■ ■ Connectivity and User Management
■CHAPTER 11 Connectivity and Networking . 511

■CHAPTER 12 User Management and Database Security . 543

PART 5 ■ ■ ■ Data Loading, Backup, and Recovery
■CHAPTER 13 Loading and Transforming Data . 625

■CHAPTER 14 Using Data Pump Export and Import . 677

■CHAPTER 15 Backing Up Databases . 725

■CHAPTER 16 Database Recovery . 801

PART 6 ■ ■ ■ Managing the Database
■CHAPTER 17 Automatic Management and Online Capabilities 877

■CHAPTER 18 Managing and Monitoring the Operational Database 947

PART 7 ■ ■ ■ Performance Tuning
■CHAPTER 19 Improving Database Performance: SQL Query Optimization . . . 1041

■CHAPTER 20 Performance Tuning: Tuning the Instance 1129

■APPENDIX Oracle Database 11g SQL and PL/SQL: A Brief Primer 1221

■INDEX . 1255

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author . xxxvii

About the Technical Reviewer .xxxix

Acknowledgments . xli

Introduction . xliii

PART 1 ■ ■ ■ Background, Data Modeling, UNIX/
Linux, and SQL*Plus

■CHAPTER 1 The Oracle DBA’s World . 3

The Oracle DBA’s Role . 3

The DBA’s Security Role . 4

The DBA’s System Management Role . 5

The DBA’s Database Design Role . 7

DBA Job Classifications . 8

Types of Databases . 9

Online Transaction Processing and Decision-Support
System Databases . 9

Development, Test, and Production Databases. 9

Training and Certification . 10

Training . 10

Certification . 11

Resources and Organizations for Oracle DBAs 13

Oracle by Example . 14

Oracle Database Two-Day DBA Course . 14

Oracle MetaLink . 15

Oracle Web Conference . 15

The Daily Routine of a Typical Oracle DBA . 15

Some General Advice . 16

Know When You Need Help . 16

Remember You Are Not Alone . 16

Think Outside the Box . 17

Primum Non Nocere . 17

www.allitebooks.com

http://www.allitebooks.org

viii ■CO N T E N T S

■CHAPTER 2 Relational Database Modeling and Database Design 19

Relational Databases: A Brief Introduction . 19

The Relational Database Model . 20

Database Schemas . 20

Relational Algebra . 21

Relational Calculus . 22

SQL . 22

Relational Database Life Cycle . 23

Requirements Gathering and Analysis . 23

Logical Database Design . 24

Physical Database Design . 34

Implementing the Physical Design . 37

Reverse-Engineering a Database . 38

Object-Relational and Object Databases . 38

The Relational Model . 38

The Object Model . 39

The Object-Relational Model . 39

Semi-Structured Data Models . 40

■CHAPTER 3 Essential UNIX (and Linux) for the Oracle DBA 43

Overview of UNIX and Linux Operating Systems . 43

UNIX . 43

Linux. 44

Midrange Systems . 45

Understanding the UNIX Shell(s) . 45

Accessing the UNIX System . 46

Overview of Basic UNIX Commands . 48

Getting Help: The man Command . 50

Changing the Prompt . 51

Finding Files and Directories . 52

Controlling the Output of Commands . 52

Showing the Contents of Files. 52

Comparing Files . 53

Understanding Operating-System and Shell Variables 53

Redirecting Input and Output. 56

Protecting Files from Being Overwritten . 57

Navigating Files and Directories in UNIX . 57

Files in the UNIX System . 57

Linking Files . 57

www.allitebooks.com

http://www.allitebooks.org

■C ON TE N TS ix

Managing Files . 58

Permissions: Reading from or Writing to Files in UNIX 59

Directory Management. 62

Editing Files with the vi Editor . 63

Creating and Modifying Files Using vi . 63

Moving Around with the head and tail Commands 65

Extracting and Sorting Text . 65

Using grep to Match Patterns . 65

Cutting, Pasting, and Joining Text . 66

Shell Scripting . 68

What Is a Shell Program?. 68

Using Shell Variables . 69

Evaluating Expressions with the test Command 69

Executing Shell Programs with Command-Line Arguments 70

Analyzing a Shell Script . 70

Flow-Control Structures in Korn Shell Programming 71

Dealing with UNIX Processes . 74

Gathering Process Information with ps . 74

Running Processes after Logging Out . 75

Running Processes in the Background. 75

Terminating Processes with the kill Command 75

UNIX System Administration and the Oracle DBA 76

UNIX Backup and Restore Utilities . 76

The crontab and Automating Scripts . 77

Using Telnet. 78

Remote Login and Remote Copy. 78

Using SSH, the Secure Shell . 79

Using FTP to Send and Receive Files . 79

UNIX System Performance Monitoring Tools 80

Disks and Storage in UNIX . 85

Disk Storage Configuration Choices . 86

Monitoring Disk Usage . 86

Disk Storage, Performance, and Availability 87

RAID Systems . 88

RAID Levels . 89

Choosing the Ideal Disk Configuration . 90

Redundant Disk Controllers . 92

RAID and Backups . 92

RAID and Oracle . 93

www.allitebooks.com

http://www.allitebooks.org

x ■CO N T E N T S

Other Storage Technologies . 93

Storage Area Networks . 93

Networked Attached Storage. 94

InfiniBand . 94

Automatic Storage Management . 94

Oracle and Storage System Compatibility . 95

■CHAPTER 4 Using SQL*Plus and Oracle Enterprise Manager 97

Starting a SQL*Plus Session . 97

Setting the Environment. 98

Starting a SQL*Plus Session from the Command Line 98

Connecting by Using the CONNECT Command 100

Connectionless SQL*Plus Session with /NOLOG 101

Connecting to SQL*Plus Through a Windows GUI 101

Operating in SQL*Plus . 101

Exiting SQL*Plus . 102

SQL*Plus and SQL Commands . 103

SQL*Plus Security . 103

Setting the SQL*Plus Environment with the SET Command 106

Setting Common SQL*Plus Variables . 107

SQL*Plus Error Logging . 111

SQL*Plus Command-Line Options . 113

SQL*Plus Administrative Commands . 115

CLEAR Command . 115

STORE Command . 115

SHOW Command . 116

Key SQL*Plus “Working” Commands . 118

SQLPROMPT Command . 118

DESCRIBE Command . 119

HOST Command . 119

SPOOL Command . 120

ACCEPT and PROMPT Commands . 121

EXECUTE Command . 121

PAUSE Command . 121

Commands for Formatting Output and Reporting 122

BREAK Command . 122

COLUMN Command . 123

COMPUTE Command . 123

REPFOOTER Command . 123

REPHEADER Command . 123

BTITLE and TTITLE Commands . 123

www.allitebooks.com

http://www.allitebooks.org

■C ON TE N TS xi

Creating Command Files in SQL*Plus . 124

Saving the SQL Buffer Contents to a File . 124

Executing SQL Scripts in SQL*Plus . 124

Creating a Windows Batch Script . 126

DEFINE and UNDEFINE Commands. 126

Predefined SQL*Plus Variables . 127

Using Comments in SQL*Plus . 128

Listing SQL Commands . 128

Editing Within SQL*Plus . 129

Inserting and Deleting Lines . 130

Adding to Text . 131

Incorporating Comments with the REMARK Command 132

Copying Tables with the COPY Command . 132

Making DML Changes Permanent with SQL*Plus 133

Creating Web Pages Using SQL*Plus . 134

Key SQL*Plus Database Administration Commands 134

RECOVER Command . 134

STARTUP and SHUTDOWN Commands . 134

ARCHIVE LOG Command . 135

Using SQL to Generate SQL . 135

Oracle SQL Developer . 136

Oracle Enterprise Manager . 136

Benefits of Using OEM to Manage Databases 137

OEM Architecture and Components . 139

Configuring and Using the Database Control 140

Accessing the Database Control . 143

A Brief Tour of the Database Control . 144

Performance . 145

Availability . 146

Server . 146

Schema . 147

Data Movement. 148

Software and Support . 148

Oracle Software Cloning . 148

Configuring Using the Setup Page . 148

The Related Links Section and the Advisor Central Page 150

Creating Database Control Roles . 150

Linking to MetaLink . 150

Policy-Based Configuration Framework . 151

Tracking Database Feature-Usage Statistics. 151

OEM Grid Control . 153

xii ■CO N T E N T S

Managing the Management Agent . 156

The Oracle Management Service . 157

Connecting to the Grid Control . 157

Logging Into the Grid Control. 157

Features of the Grid Control. 158

Using the Grid Control Home Page . 159

Monitoring Your Entire System with the Grid Control 159

PART 2 ■ ■ ■ Oracle Database 11g Architecture,
Schema, and Transaction
Management

■CHAPTER 5 Oracle Database 11g Architecture . 165

Oracle Database Structures . 165

Logical Database Structures . 165

Physical Database Structures . 173

Other Files . 176

Oracle Processes . 179

Interaction Between the User and Oracle Processes 179

The Server Process. 179

The Background Processes . 180

Oracle Memory Structures . 186

Understanding Main Memory . 186

The System Global Area . 187

The Program Global Area . 193

A Simple Oracle Database Transaction . 196

Committing and Rolling Back . 197

Committing a Transaction . 197

Rolling Back a Transaction . 198

Data Consistency and Data Concurrency . 198

The Database Writer and the Write Ahead Protocol 199

The System Change Number. 199

Undo Management . 200

Backup and Recovery Architecture . 201

User-Managed Backup and Recovery . 201

RMAN . 201

Oracle Secure Backup . 202

Flashback Recovery Techniques. 202

■C ON TE N TS xiii

The Oracle Data Dictionary and the Dynamic Performance Views 202

The Oracle Data Dictionary . 203

The Dynamic Performance (V$) Views . 204

The Three Sets of Data Dictionary Views . 204

How Is the Data Dictionary Created? . 204

Using the Static Data Dictionary Views . 204

The Oracle Optimizer . 205

Talking to the Database . 205

Connecting to Oracle . 205

Oracle Enterprise Manager . 206

SQL*Plus . 207

Oracle Utilities . 207

Data Pump Export and Import . 207

SQL*Loader . 207

LogMiner . 207

Automatic Diagnostic Repository Control Interface 208

Scheduling and Resource Management . 208

The Oracle Scheduler . 208

Database Resource Manager . 208

Automatic Database Management . 208

Automatic Database Diagnostic Monitor . 209

Automatic Undo Retention Tuning . 209

Automatic Optimizer Statistics Collection . 209

Automatic Storage Management . 209

Automatic SQL Tuning . 209

Common Manageability Infrastructure . 210

Automatic Workload Repository . 210

Active Session History . 210

Server-Generated Alerts . 211

Automated Tasks Feature . 211

Advisory Framework . 212

Change Management . 212

Efficient Managing and Monitoring . 213

■CHAPTER 6 Managing Tablespaces . 215

Tablespace Extent Sizing and Space Management 216

Allocating the Extent Size: Autoallocate vs. Uniform 216

Automatic vs. Manual Segment Space Management 217

xiv ■CO N T E N T S

Creating Tablespaces . 218

Data Files and Tablespaces . 219

Extent Allocation and Deallocation . 220

Storage Parameters . 220

Storage Allocation to Database Objects . 222

Adding Space to a Tablespace . 223

Removing Tablespaces . 224

Number of User Tablespaces . 225

Tablespace Quotas . 226

Proactive Tablespace Space Alerts. 226

Managing Logging of Redo Data . 227

Renaming Tablespaces . 228

Read-Only Tablespaces . 229

Taking Tablespaces Offline . 229

Temporary Tablespaces . 229

Creating a Temporary Tablespace . 230

Altering a Temporary Tablespace . 231

Shrinking Temporary Tablespaces . 231

Default Temporary Tablespace . 232

Temporary Tablespace Groups . 233

Default Permanent Tablespaces . 235

Bigfile Tablespaces . 236

Restrictions on Using Bigfile Tablespaces . 237

Creating Bigfile Tablespaces . 237

Altering a Bigfile Tablespace . 238

Viewing Bigfile Tablespace Information . 238

Managing the Sysaux Tablespace . 238

Creating the Sysaux Tablespace . 239

Usage Restrictions for the Sysaux Tablespace 240

Encrypting Tablespaces . 240

Why You Need Encrypted Tablespaces . 240

Creating the Oracle Wallet . 241

Creating an Encrypted Tablespace . 242

Data Dictionary Views for Managing Tablespaces 243

DBA_TABLESPACES . 243

DBA_FREE_SPACE . 243

DBA_SEGMENTS. 244

DBA_DATA_FILES . 245

DBA_TABLESPACE_GROUPS . 246

V$DATAFILE . 246

V$FILESTAT . 246

■C ON TE N TS xv

Easy File Management with Oracle Managed Files 247

Benefits of Using OMF . 248

Creating Oracle Managed Files . 248

Different Types of Oracle Managed Files . 250

Copying Files Between Two Databases . 253

COPY_FILE . 253

GET_FILE . 254

PUT_FILE . 254

Finding Out How Much Free Space Is Left . 255

Working with Operating System Files . 256

Using the UTL_FILE Package. 256

Key UTL_FILE Procedures and Functions . 257

Exceptions . 258

A Simple Example Using the UTL_FILE Package. 258

■CHAPTER 7 Schema Management . 261

Types of SQL Statements . 261

System-Control Statements. 262

Session-Control Statements . 262

Embedded SQL Statements . 262

Data Manipulation Language Statements . 263

Transaction-Control Statements . 263

Data Definition Language Statements . 264

Oracle Schemas . 264

Oracle Tables . 265

Estimating the Table Size . 266

Creating a Simple Table . 268

What Is a Null Value? . 269

Default Values for Columns . 270

Virtual Columns . 270

Adding a Column to a Table . 271

Dropping a Column from a Table . 271

Renaming a Table Column. 272

Renaming a Table . 272

Removing All Data from a Table . 272

Creating a New Table with the CTAS Option 273

Placing a Table in Read-Only Mode . 273

Table Compression . 274

Dropping Tables . 276

xvi ■CO N T E N T S

Special Oracle Tables . 277

Temporary Tables . 277

Index-Organized Tables . 278

External Tables . 280

Partitioned Tables . 280

Range Partitioning . 281

Interval Partitioning. 282

Hash Partitioning. 283

List Partitioning . 284

Reference Partitioning . 284

Virtual Column-Based Partitioning . 286

System Partitioning . 287

Composite Partitioning . 287

Partition Maintenance Operations . 290

Data Dictionary Views for Managing Tables . 292

Clusters . 295

Hash Clusters . 296

Oracle Indexes . 296

Guidelines for Creating Indexes . 297

Oracle Index Schemes . 298

Estimating the Size of an Index . 298

Creating an Index . 299

Special Types of Indexes . 300

Bitmap Indexes . 301

Reverse-Key Indexes . 301

Key-Compressed Indexes . 301

Function-Based Indexes. 302

Partitioned Indexes . 302

Invisible Indexes . 303

Monitoring Index Usage . 304

Index Maintenance . 305

Managing Database Integrity Constraints . 306

Primary Key Constraints. 306

Not Null Constraints . 307

Check Constraints. 307

Unique Constraints . 307

Referential Integrity Constraints . 308

Integrity Constraint States . 308

Rely Constraints . 310

Deferrable and Immediate Constraints. 310

■C ON TE N TS xvii

Constraint- and Index-Related Views . 310

DBA_CONSTRAINTS . 310

DBA_CONS_COLUMNS . 311

Using Views . 312

Using Materialized Views . 314

Query Rewriting . 315

The Rewrite_or_Error Hint . 315

Rewrite Integrity . 316

Refreshing Materialized View Data . 316

Using the DBMS_MVIEW Package . 317

Creating Materialized Views . 317

Creating the Materialized View . 318

Using the SQL Access Advisor . 320

Using the OEM Database Control . 320

Using the DBMS_ADVISOR Package. 323

Using the QUICK_TUNE Procedure . 324

Using Synonyms . 324

Creating a Public Synonym . 325

Creating a Private Synonym . 326

Dropping a Synonym . 326

Managing Synonyms . 326

Switching to a Different Schema . 327

Using Sequences . 327

Using Triggers . 328

Viewing Object Information . 329

Views for Managing Database Objects. 329

DBA_OBJECTS . 329

DBA_TABLES . 330

DBA_EXTERNAL_TABLES . 330

DBA_TAB_PARTITIONS . 330

DBA_PART_TABLES . 331

DBA_TAB_MODIFICATIONS . 331

DBA_TAB_COLUMNS . 332

DBA_VIEWS . 332

DBA_MVIEWS . 333

DBA_INDEXES . 333

DBA_IND_COLUMNS . 333

INDEX_STATS . 334

xviii ■CO N T E N T S

■CHAPTER 8 Oracle Transaction Management . 337

Oracle Transactions . 337

COMMIT Statement . 338

ROLLBACK Statement . 339

Transaction Properties . 340

Transaction Concurrency Control . 341

Concurrency Problems . 341

Schedules and Serializability . 342

Isolation Levels and the ISO Transaction Standard 342

Oracle’s Isolation Levels . 344

Transaction- and Statement-Level Consistency 345

Changing the Default Isolation Level . 345

Implementing Oracle’s Concurrency Control . 347

Oracle Locking Methods . 348

Oracle Lock Types . 348

Allowing DDL Locks to Wait for DML Locks. 350

Explicit Table Locking. 350

Explicit Locking in Oracle. 351

Managing Oracle Locks . 353

Using Undo Data to Provide Read Consistency . 356

Automatic Undo Management . 356

Guaranteed Undo Retention . 362

Using the OEM to Manage Undo Data . 365

Flashback Error Correction Using Undo Data . 366

Querying Old Data with Flashback Query . 367

Flashback Using the DBMS_FLASHBACK Package 368

Flashback Versions Query . 369

Flashback Transaction Query . 372

Using Flashback Transaction Query and Flashback
Versions Query Together. 375

The Flashback Table Feature . 376

Transaction Management . 380

Discrete Transactions. 380

Autonomous Transactions . 380

Resumable Space Allocation . 382

Resumable Operations . 383

Common Resumable Errors . 383

Using the Resumable Space Allocation Feature 383

Notification of Suspended Operations . 386

Operation-Suspended Alert . 386

Monitoring Resumable Space Allocation . 386

■C ON TE N TS xix

Managing Long Transactions . 386

Benefits of Using the Workspace Manager 387

Table Versioning and Workspaces . 387

PART 3 ■ ■ ■ Installing Oracle Database 11g,
Upgrading, and Creating Databases

■CHAPTER 9 Installing and Upgrading to Oracle Database 11g 391

Installing Oracle . 391

Reviewing the Documentation . 392

Determining Disk and Memory Requirements. 392

Optimal Flexible Architecture . 393

Mount Points . 394

Directory and File-Naming Conventions. 394

Performing Preinstallation Tasks . 400

Checking the Preinstallation Requirements 400

System Administrator’s Preinstallation Tasks 401

Oracle Owner’s Preinstallation Tasks . 410

A Final Checklist for the Installation . 413

Accessing the Installation Software . 414

Installing the Software . 416

Using Response Files to Install Oracle Software 421

After the Installation . 422

System Administrator’s Post-Installation Tasks 423

Oracle Owner’s Post-Installation Tasks . 424

Uninstalling Oracle . 425

Removing All Oracle Databases Running on Your Server 425

Removing the Oracle Software . 426

Upgrading to Oracle Database 11g . 426

Routes to Oracle Database 11g . 426

Upgrade Methods and Tools . 427

The Manual Upgrade Process . 427

The Database Upgrade Assistant . 428

The Pre-Upgrade Information Tool . 428

The Post-Upgrade Status Tool. 429

Preparing the Database for the Upgrade . 430

xx ■CO N T E N T S

Upgrading with the DBUA . 430

Starting the DBUA . 430

Running the DBUA . 431

Restoring the Pre-Upgrade Database . 433

Upgrading Manually . 434

Upgrade and Downgrade Scripts . 434

Creating a Spool File . 434

Running the Pre-Upgrade Information Tool 435

Backing up the Database . 437

Copying the Parameter File . 437

Starting Up the New Database . 437

Running the Upgrade Script. 438

Running the Upgrade Actions Script . 438

Restarting the Instance . 438

Running the Post Upgrade Actions Script . 439

Checking for Invalid Objects . 439

Recompiling and Validating Objects . 439

Running the Post-Upgrade Status Tool . 440

Ending the Spool File . 441

Restarting the New Database . 441

After the Upgrade . 441

Resetting Passwords for Stronger Password Protection 441

Downgrading to an Old Version . 441

■CHAPTER 10 Creating a Database . 443

Getting Ready to Create the Database . 443

Installing the Oracle Software . 444

Creating the File System for the Database 444

Ensuring Sufficient Memory Allocation. 445

Getting Necessary Authorizations . 446

Setting the OS Environment Variables . 446

Creating the Parameter File . 446

Types of Database Parameter Files . 446

The Initialization Parameter File . 447

Changing the Initialization Parameter Values 448

Important Oracle Database 11g Initialization Parameters 449

Undocumented Initialization Parameters . 473

Viewing the Current Initialization Parameter Values 473

■C ON TE N TS xxi

Creating a New Database . 474

Manual Creation . 474

Using the DBCA to Create a Database . 486

Using a Server Parameter File . 493

Creating a Server Parameter File . 494

Setting the Scope of Dynamic Parameter Changes 496

Creating an SPFILE or PFILE from Memory 497

Starting Up and Shutting Down the Database from SQL*Plus 497

Starting the Database. 497

Automatically Starting Databases . 499

Restricting Database Access . 501

Shutting Down the Database . 502

Quiescing a Database. 505

Suspending a Database . 505

Dropping a Database . 506

Using the Data Dictionary to Monitor Database Status. 507

What Next? . 507

PART 4 ■ ■ ■ Connectivity and User Management

■CHAPTER 11 Connectivity and Networking . 511

Oracle Networking and Database Connectivity . 511

Networking Concepts: How Oracle Networking Works 513

How a Web Application Connects to Oracle 513

Database Instance Names . 514

Global Database Names . 514

Database Service Names . 514

Connect Descriptors . 514

Connect Identifiers . 515

Connect Strings. 515

Establishing Oracle Connectivity . 516

The Oracle Client . 517

Installing the Oracle Client . 518

Using the TWO_TASK Environment Variable 519

The Instant Client . 519

Installing the Instant Client . 519

xxii ■CO N T E N T S

The Listener and Connectivity . 520

Automatic Service Registration . 521

Listener Commands . 522

Listener Management . 523

Naming and Connectivity . 525

The Local Naming Method . 525

The Easy Connect Naming Method . 529

Database Resident Connection Pooling . 531

The External Naming Method . 533

The Directory Naming Method . 534

Oracle and Java Database Connectivity . 537

Establishing Database Connectivity . 538

Working with the Database . 538

A Complete Program . 541

■CHAPTER 12 User Management and Database Security 543

Managing Users . 544

Temporary and Default Tablespaces . 544

Creating a New User. 544

Altering a User. 547

Dropping a User . 547

Creating and Using User Profiles. 548

Managing Resources . 554

The Database Resource Manager . 554

Using the Database Resource Manager . 555

Using OEM to Administer the Database Resource Manager 566

Controlling Database Access . 567

Privileges in an Oracle Database . 567

Roles . 574

Using Views and Stored Procedures to Manage Privileges 577

DBA Views for Managing Users, Roles, and Privileges 577

Fine-Grained Data Access . 578

Auditing Database Usage . 586

Standard Auditing . 587

Fine-Grained Auditing. 593

Authenticating Users . 596

Database Authentication . 596

External Authentication . 601

Proxy Authentication. 602

Centralized User Authorization . 602

■C ON TE N TS xxiii

Enterprise User Security . 603

Shared Schemas. 603

Single Sign-On . 603

Data Encryption . 603

Tablespace Encryption . 608

Oracle Internet Directory . 611

Database Security Dos and Don’ts . 611

Automatic Secure Configuration . 611

User Accounts . 611

Passwords . 611

Operating System Authentication . 612

Database Auditing. 612

Granting Privileges . 612

Dealing with Environments with Multiple DBAs 613

Protecting the Data Dictionary . 613

Setting Permissions . 613

The Network and the Listener . 614

Fine-Grained Network Access Control . 615

Oracle’s Advanced Security Option. 618

Application Security . 618

Useful Techniques for Managing Users . 619

PART 5 ■ ■ ■ Data Loading, Backup,
and Recovery

■CHAPTER 13 Loading and Transforming Data . 625

An Overview of Extraction, Transformation, and Loading 625

Using the SQL*Loader Utility . 627

Exploring the SQL*Loader Control File . 628

Generating Data During the Load . 636

Invoking SQL*Loader . 637

Exploring the Loader Log File . 638

Using Return Codes . 639

Using the Direct-Path Loading Method . 639

Some Useful SQL*Loader Data-Loading Techniques 642

xxiv ■CO N T E N T S

Using External Tables to Load Data . 645

Creating the External Table Layer . 646

Populating External Tables . 649

Using an External Table . 652

Using SQL*Loader to Generate External Table
Creation Statements . 653

Transforming Data . 656

Deriving the Data from Existing Tables . 656

Using SQL to Transform Data . 657

Using the SQL MODEL Clause . 666

Using Oracle Streams for Replication and Information Sharing 670

Exploring the Streams Architecture . 671

Setting Up Oracle Streams. 671

■CHAPTER 14 Using Data Pump Export and Import . 677

Introduction to the Data Pump Technology . 677

Benefits of the Data Pump Technology . 678

Uses for Data Pump Export and Import . 679

Data Pump Components . 680

Data-Access Methods . 680

Data Pump Files . 681

Data Pump Privileges . 685

The Mechanics of a Data Pump Job . 685

Performing Data Pump Exports and Imports . 686

Data Pump Export Methods . 687

Data Pump Export Modes . 688

Data Pump Export Parameters . 689

Data Pump Export Examples . 704

Data Pump Import Types and Modes . 705

Data Pump Import Parameters . 705

Monitoring a Data Pump Job . 713

Viewing Data Pump Jobs . 713

Viewing Data Pump Sessions . 714

Viewing Data Pump Job Progress . 714

Using the Data Pump API . 715
Transportable Tablespaces . 716

Uses for Transportable Tablespaces . 716

Transporting a Tablespace . 716

■C ON TE N TS xxv

Transporting Tablespaces Across Platforms with
Different Endian Formats . 720

■CHAPTER 15 Backing Up Databases . 725

Backing Up Oracle Databases . 725

Important Backup Terms . 726

Backup Guidelines . 728

Testing Your Backups. 730

Maintaining a Redundancy Set . 730

Backup Strategies. 731

The Flash Recovery Area . 734

Benefits of the Flash Recovery Area . 734

Setting the Size of the Flash Recovery Area 736

Ways to Create a Flash Recovery Area. 736

Backing Up the Flash Recovery Area . 739

Working with the Flash Recovery Area. 740

Recovery Manager . 741

Benefits of RMAN . 742

RMAN Architecture . 743

Connecting to RMAN . 745

Scripting with RMAN . 747

Important RMAN Terms . 752

Specifying Backup Tags and Backup Formats 753

Making Copies of RMAN Backups. 754

RMAN Backup Locations . 755

RMAN Commands. 755

RMAN Configuration Parameters . 761

Working with the Recovery Catalog . 766

Maintaining the Recovery Catalog . 769

Virtual Private Catalogs . 772

Examples of RMAN Backups . 774

Restarting an RMAN Backup . 777

Specifying Limits for Backup Duration . 777

Incrementally Updated Backups . 778

Fast Incremental Backups . 779

RMAN Compressed Backups . 780

Archival Backups . 780

Monitoring and Verifying RMAN Jobs . 782

Backing Up the Control File . 784

xxvi ■CO N T E N T S

Oracle Secure Backup . 785

Benefits of Oracle Secure Backup . 786

Oracle Secure Backup Administrative Domain 786

Installing Oracle Secure Backup . 786

Using the Oracle Backup Web Interface Tool 788

Configuring Oracle Secure Backup . 788

Performing Backups with Oracle Secure Backup 789

User-Managed Backups . 790

Making Whole Database Backups . 790

Making Partial Database Backups . 794

Monitoring User-Managed Online Backups 794

Database Corruption Detection . 795

Detecting Media Corruption . 795

Detecting Data Block Corruption . 795

Enhanced Data Protection for Disaster Recovery 798

High-Availability Systems . 798

Oracle Data Guard and Standby Databases 799

■CHAPTER 16 Database Recovery . 801

Types of Database Failures . 801

System Failures . 802

Data Center Disasters . 802

Human Error . 802

Media Failures. 802

Failures and Data Repair . 803

The Oracle Recovery Process . 804

Crash and Instance Recovery . 804

Faster Instance Startup . 805

Media Recovery . 806

Media Recovery vs. Nonmedia Recoveries 808

Performing Recovery with RMAN . 809

RMAN’s Advantages for Recovery . 810

Using VALIDATE BACKUP to Validate RMAN Backups 810

Using the RESTORE . . . VALIDATE Command 811

Using the RESTORE . . . PREVIEW Command 811

Identifying Necessary Files for Recovery . 812

RMAN Recovery Procedures . 812

Recovering with Incrementally Updated Backups 812

■C ON TE N TS xxvii

Monitoring RMAN Jobs. 813

User-Managed Recovery Procedures . 813

Typical Media Recovery Scenarios . 814

Complete Recovery of a Whole Database . 814

Recovering a Tablespace . 817

Recovering a Datafile . 818

Incomplete Recovery . 820

Recovering from the Loss of Control Files . 824

Recovering a Datafile Without a Backup . 828

The Data Recovery Advisor . 829

Working with the Data Recovery Advisor . 830

Cloning a Database . 833

Using RMAN to Clone a Database . 834

Using Database Control to Clone a Database 838

Manually Cloning a Database . 839

Techniques for Granular Recovery . 840

Tablespace Point-in-Time Recovery . 840

Using LogMiner for Precision Recovery . 841

Flashback Techniques and Recovery . 847

Flashback Levels . 848

Flashback vs. Traditional Recovery Techniques 848

Flashback Drop . 849

Flashback Database . 853

Using Restore Points . 861

Guaranteed Restore Points . 862

Viewing Restore Points. 863

Repairing Data Corruption and Trial Recovery . 864

Block Media Recovery . 864

Trial Recovery . 865

Troubleshooting Recovery Errors . 866

The ORA-01194 Error . 866

The ORA-01152 Error . 867

The ORA-00376 Error . 868

The Transaction Backout Feature . 868

Flashback Data Archive . 870

Managing the Flashback Data Archive . 870

Enabling the Flashback Data Archive . 872

Using Flashback Data Archives: Examples 873

xxviii ■CO N T E N T S

PART 6 ■ ■ ■ Managing the Database

■CHAPTER 17 Automatic Management and Online Capabilities 877

The Automatic Database Diagnostic Monitor . 877

The Purpose of the ADDM . 878

Problems That the ADDM Diagnoses . 878

ADDM Findings . 880

ADDM Recommendations . 880

Managing the ADDM . 881

Automatic Memory Management . 894

Different Types of Memory Management . 894

Enabling Automatic Memory Management 895

Tuning Automatic Memory Management . 896

Automatic Memory Parameter Dependency 897

Automatic Optimizer Statistics Collection . 897

Automatically Collecting Optimizer Statistics 898

Manually Collecting Optimizer Statistics . 900

Automatic Storage Management . 900

Benefits of ASM . 901

Examining the ASM Architecture . 901

Installing ASM . 902

ASM and Cluster Synchronization Service . 902

Creating an ASM Instance . 904

The ASM Fast Mirror Resync Feature . 908

ASM Preferred Mirror Read . 909

Changing ASM Disk Group Attributes . 909

The asmcmd Command-Line Tool . 911

Managing ASM Disk Groups . 913

Adding Performance and Redundancy with Disk Groups. 913

Creating a Disk Group . 914

Adding Disks to a Disk Group . 915

Dropping Disks and Disk Groups . 916

Rebalancing Disk Groups . 916

Managing ASM Files . 916

Types of ASM Filenames . 917

Working with ASM Filenames . 918

ASM File Templates . 918

Creating an ASM-Based Database . 919

Migrating Your Database to ASM . 919

■C ON TE N TS xxix

Automatic Space Management . 921

Automatic Undo Management . 921

Easy File Management with OMF . 922

Online Segment Shrinking and the Segment Advisor 927

Manual Segment Shrinking . 928

Using the Segment Advisor to Shrink Segments. 930

Automatic Segment Advisor Job . 931

Automatic Checkpoint Tuning . 932

Online Capabilities of Oracle Database 11g . 933

Online Data Reorganization . 933

Online Data Redefinition . 935

Dynamic Resource Management . 941

Online Database Block-Size Changes . 943

Using Database Quiescing for Online Maintenance 944

Suspending the Database . 945

■CHAPTER 18 Managing and Monitoring the Operational Database . . . 947

Types of Oracle Performance Statistics . 948

Cumulative Statistics . 948

Sample Data . 948

Baseline Data . 948

Database Metrics . 950

Server-Generated Alerts . 952

Default Server-Generated Alerts . 952

Baseline Metrics and Adaptive Thresholds . 953

Managing Alerts . 954

Proactive Tablespace Alerts . 956

Using the Alert Logs and Trace Files for Monitoring 958

Data Dictionary Views Related to Metrics and Alerts 958

The Automatic Workload Repository . 959

Types of Data Collected by the AWR . 960

AWR Data Handling . 960

Managing the AWR . 961

Moving Window Baselines . 965

AWR Baseline Templates . 965

Active Session History . 971

Current Active Session Data . 972

Older Active Session History Data. 972

Producing an ASH Report. 972

xxx ■CO N T E N T S

The Management Advisory Framework . 975

The Management Advisors . 976

Managing the Advisory Framework . 977

Working with the Undo and the MTTR Advisors 980

Using the Undo Advisor . 980

Using the MTTR Advisor . 981

Managing Online Redo Logs . 981

Hardware Mirroring vs. Oracle Multiplexing 982

Online Redo Log Groups . 982

Creating Online Redo Log Groups . 982

Adding Redo Log Groups . 983

Renaming Redo Log Files . 983

Dropping Online Redo Logs . 984

Online Redo Log Corruption . 984

Monitoring the Redo Logs . 984

Managing Database Links . 985

Creating a Private Database Link . 985

Creating a Public Database Link . 986

Using the Database Control to Create Database Links 987

Comparing and Converging Database Objects . 987

Comparing Data . 987

Converging Data . 990

Copying Files with the Database Server . 991

Requirements for the File Copy . 991

Copying Files on a Local System . 991

Transferring a File to a Different Database 992

Mapping Oracle Files to Physical Devices . 993

Architecture of File Mapping . 993

Setting Up File Mapping . 993

Using the Oracle Scheduler . 994

Basic Scheduler Components . 994

Types of Scheduler Jobs . 995

Advanced Scheduler Components . 996

Scheduler Architecture. 997

Scheduler Privileges . 997

Managing the Basic Scheduler Components 998

Managing Lightweight Jobs . 1000

Managing External Jobs. 1002

Managing Advanced Scheduler Components 1011

Managing Scheduler Attributes . 1017

www.allitebooks.com

http://www.allitebooks.org

■C ON TE N TS xxxi

Purging Job Logs . 1019

Default Scheduler Jobs . 1019

Automated Maintenance Tasks . 1019

Predefined Maintenance Windows . 1020

Managing Automated Maintenance Tasks. 1020

Monitoring Automated Maintenance Tasks 1020

Fault Diagnosability . 1022

Automatic Diagnostic Repository . 1023

ADRCI . 1024

Incident Packaging Service . 1026

The Support Workbench . 1028

The Health Monitor . 1032

Repairing SQL Statements with the SQL Repair Advisor 1035

The SQL Test Case Builder . 1038

PART 7 ■ ■ ■ Performance Tuning

■CHAPTER 19 Improving Database Performance:
SQL Query Optimization . 1041

An Approach to Oracle Performance Tuning . 1041

A Systematic Approach to Performance Tuning 1042

Reactive Performance Tuning . 1042

Optimizing Oracle Query Processing . 1043

Parsing . 1043

Optimization . 1043

Query Execution . 1046

Query Optimization and the Oracle CBO . 1047

Choosing Your Optimization Mode . 1047

Providing Statistics to the Optimizer. 1047

Setting the Optimizer Mode . 1049

Setting the Optimizer Level . 1050

What Does the Optimizer Do? . 1051

Drawbacks of the CBO . 1053

Providing Statistics to the CBO . 1053

Deferred Statistics Publishing . 1056

Extended Statistics . 1058

The Cost Model of the Oracle Optimizer . 1060

Collecting System Statistics . 1060

xxxii ■CO N T E N T S

Collecting Statistics on Dictionary Objects 1062

Frequency of Statistics Collection . 1063

What Happens When You Don’t Have Statistics 1063

Using the OEM to Collect Optimizer Statistics 1064

Writing Efficient SQL . 1065

Efficient WHERE Clauses . 1065

Using Hints to Influence the Execution Plan 1067

Selecting the Best Join Method . 1068

Using Bitmap Join Indexes . 1069

Selecting the Best Join Order . 1070

Indexing Strategy . 1070

Monitoring Index Usage . 1073

Removing Unnecessary Indexes . 1073

Using Similar SQL Statements . 1074

Reducing SQL Overhead Via Inline Functions 1074

Using Bind Variables. 1075

Avoiding Improper Use of Views . 1075

Avoiding Unnecessary Full Table Scans . 1075

How the DBA Can Help Improve SQL Processing 1075

Using Partitioned Tables . 1076

Using Compression Techniques . 1076

Using Materialized Views . 1077

Using Stored Outlines to Stabilize the CBO 1077

SQL Plan Management . 1080

SQL Plan Baselines. 1080

Capturing SQL Plan Baselines . 1081

The SQL Management Base . 1085

Using Parallel Execution . 1085

Other DBA Tasks . 1086

Adaptive Cursor Sharing . 1087

How Adaptive Cursor Sharing Works . 1088

Monitoring Adaptive Cursor Sharing . 1089

SQL Performance Tuning Tools . 1090

Using EXPLAIN PLAN . 1090

Using Autotrace . 1095

Using SQL Trace and TKPROF . 1099

End-to-End Tracing . 1105

Using the DBMS_MONITOR Package . 1106

Using the V$SQL View to Find Inefficient SQL 1108

■C ON TE N TS xxxiii

The SQL Tuning Advisor . 1111

Using the SQL Tuning Advisor . 1111

How the SQL Tuning Advisor Works . 1111

The SQL Tuning Advisor in Practice . 1113

The Automatic SQL Tuning Advisor . 1115

Interpreting Automatic SQL Tuning Reports 1119

Using Other GUI Tools. 1120

Using the Result Cache . 1120

Managing the Result Cache . 1120

Setting the RESULT_CACHE_MODE Parameter. 1121

Managing the Result Cache . 1123

The PL/SQL Function Result Cache . 1124

The Client Query Result Cache . 1125

A Simple Approach to Tuning SQL Statements 1126

Identify Problem Statements . 1127

Locate the Source of the Inefficiency . 1127

Tune the Statement . 1127

Compare Performance . 1127

■CHAPTER 20 Performance Tuning: Tuning the Instance 1129

An Introduction to Instance Tuning . 1129

Automatic Performance Tuning vs. Dynamic Performance Views . . . 1131

Tuning Oracle Memory . 1132

Tuning the Shared Pool . 1133

Hard Parsing and Soft Parsing . 1135

Tuning the Buffer Cache . 1144

Tuning the Large Pool, Streams Pool, and Java Pool 1148

Tuning PGA Memory . 1148

Evaluating System Performance . 1152

CPU Performance . 1153

Memory . 1158

Disk I/O . 1158

Measuring I/O Performance . 1159

Is the I/O Optimally Distributed? . 1159

Reducing Disk Contention . 1160

The Oracle SAME Guidelines for Optimal Disk Usage. 1160

Network Performance . 1160

xxxiv ■CO N T E N T S

Measuring Instance Performance . 1161

Database Hit Ratios . 1161

Database Wait Statistics . 1162

Wait Events and Wait Classes . 1163

Analyzing Instance Performance. 1164

Examining System Performance . 1181

Know Your Application . 1182

Using the ADDM to Analyze Performance Problems. 1183

Using AWR Reports for Individual SQL Statements 1184

Operating System Memory Management 1186

Analyzing Recent Session Activity with an ASH Report 1186

When a Database Hangs . 1186

Handling a Stuck Archiver Process . 1187

System Usage Problems . 1188

Excessive Contention for Resources. 1188

Locking Issues . 1189

Abnormal Increase in Process Size. 1190

Delays Due to Shared Pool Problems . 1191

Problems Due to Bad Statistics . 1191

Collecting Information During a Database Hang 1191

Using the Database Control’s Hang Analysis Page 1192

A Simple Approach to Instance Tuning . 1194

What’s Happening in the Database? . 1194

Using the OEM Database Control to Examine
Database Performance . 1195

Are There Any Long-Running Transactions? 1202

Is Oracle the Problem? . 1203

Is the Network Okay? . 1203

Is the System CPU Bound? . 1203

Is the System I/O Bound?. 1204

Is the Database Load Too High? . 1205

Checking Memory-Related Issues . 1205

Are the Redo Logs Sized Correctly? . 1205

Is the System Wait Bound? . 1206

The Compare Periods Report. 1206

Eliminating the Contention. 1208

Real Application Testing . 1209

Database Replay . 1209

SQL Performance Analyzer . 1216

■C ON TE N TS xxxv

■APPENDIX Oracle Database 11g SQL and PL/SQL:
A Brief Primer . 1221

■INDEX . 1255

xxxvii

About the Author

■SAM ALAPATI is currently an independent Oracle consultant, working at
ERCOT (Electric Reliability Council of Texas). Prior to this, Sam was an Oracle
DBA at the Boy Scouts of America, Sabre, Oracle Corporation, NBC, and
AT&T. Sam has previously written Expert Oracle9i Database Administration
and Expert Oracle Database 10g Administration, both for Apress, as well as
three OCP certification books for Oracle Press. Sam has also coauthored
Oracle Database 11g RMAN Recipes and Oracle Database 11g New Features
for DBAs and Developers, both published by Apress. Sam has been working
with relational databases since 1985, starting with the Ingres database.

xxxix

About the Technical Reviewer

■JOHN WATSON has spent 20 years hacking away at the Oracle product set, some of those years
working for Oracle Corporation (in Internal Support and for Oracle University). Now he works for
BPLC Management Consultants, consulting and teaching Oracle server technologies throughout
Europe and Africa. He has written and edited several books for Apress and Oracle Press. He currently
lives in Oxfordshire with his wife, two Chow Chows, six cats, and a parrot.

xli

Acknowledgments

A book is never the product of a single-handed effort by the author. All books, especially technical
books, are the product of intensive effort and care by a number of people, and the author is invari-
ably the beneficiary of the hard work and help of a team of people who labor behind the scenes. So,
let me start from the beginning and acknowledge my debts to all those who contributed to making
this book a reality. First, I must acknowledge the book’s Lead Editor, Jonathan Gennick, well known
to many folks in the Oracle field, for explaining complex new topics to Oracle DBAs and developers
in several articles and best-selling books. Jonathan is unique among editors: he always makes the
author feel like his or her book is the only one he is working with, whereas the truth is that at any
given time, Jonathan is probably grappling with a number of books at various stages of writing. Not
only has Jonathan given freely of this time and counsel over the last year, but his unfailing courtesy
and concern for this author has helped quite a bit. I am forever in the debt of the marvelous technical
editing performed by John Watson, who was the technical reviewer for the book. John, as he has done
before for some of my other books, has saved me from committing several errors—not only has
he pointed out errors, but in most cases, he also pointed out what might work. John’s exceptional
consciousness and his painstaking testing of various features has truly enhanced the quality of the
book. Any errors that have eluded John’s keen eye are, alas, my own, and I must take responsibility
for them.

This is a long book by any standards, and big books test the patience and the stamina of the best
of the people who work on them. I must say that the Apress team came out with flying colors, handling
potential problems with aplomb and moving the production process along through a long and arduous
period lasting about a year. Project Manager Richard Dal Porto made sure none of us dropped the
ball, by gently coaxing us to deliver the chapters on schedule. Richard, thanks for your patience and
the skill with which you have led us over this long course. Douglas Pundick, Developmental Editor,
had to labor through the extra long chapters, a task he performed with great distinction. I’ve bene-
fited from Douglas’s suggestions regarding chapter styling and ordering of topics. Copy Editor Ami
Knox is in a class all by herself. I’ve had the fortune over the years to work with several good copy
editors, but Ami is by far the best. The truly great copy editors don’t merely catch errors in style and
substance and typos—as Ami has shown me for the past several months, they also have an innate
sense of what the author is trying to say and whether the author has managed to convey that message
to the readers. Ami’s brilliant copyediting has helped me produce a final book that is more readable
and, hopefully, contains few errors. I’ve worked with Production Editor Laura Cheu before, and her
crisp professionalism and meticulousness has always enhanced my books and I’m thankful to her.
April Eddy, the proofreader, has, as usual, performed a sterling job, catching some hard-to-find potential
errors, and I thank her for her hard work. Thanks also to the rest of production team as well as the
marketing team for producing this book.

Moving on to friends and colleagues, I gratefully acknowledge the support of David Campbell,
Technical Services Director at Boy Scouts of America (where I’ve worked until recently for many
years). Dave’s confidence in me and his helpful nature has always provided an incentive for me to do
the best job I could at work and on my books. David Jeffress has been a wonderful manager and a
valuable friend over the years and I appreciate all the help David gave me. I’d like to acknowledge
Dan Nelson for his warm friendship and support. Jerry Hasting has always been a great role model,
and I appreciate his support (and his sense of humor) over the years. I’d also like to acknowledge
the following colleagues from the Boy Scouts of America: Nate Langston, Rob Page, Lance Parkes,

xlii ■AC KN O W L E D G M E N TS

Myra Riggs, Debra Kendrick, Carla Wallace, and Carol Barnes, all of whom have helped make my stay
there one I’ll always cherish. My special thanks to my friend Dabir Haider for helping with various
issues time and again. I appreciate the enormous help provided by Letica Salazar over the last year.

As with all my prior books, my friend Mark Potts has helped me immensely by troubleshooting
and fixing problems with my computer as well as helping with several other things. Thanks, Mark, for
all the help! I’d also like to acknowledge the friendship and support of Sabrina Kirkpatrick and Al Wilson
during my tenure at the Boy Scouts.

I’ve been working at ERCOT for only a short period, but I’ve benefited from the warm atmosphere
and the challenging work environment. My thanks to Shawna Jirasek and Bryan Hanley for bringing
me here and for their understanding and support. Thanks to the trio of exceptionally good Oracle
DBAs I’m privileged to work with every day: Sudhir Mahableshwarkar, Ben Groenewald, and Bhavesh
Rathod. Friends Durga Viswanatha Raju Gadiraju, Sankara Krishnaswamy, Jai Kanuri, and and
Nannapaneni Sandeep also have indirectly contributed to the book by helping out in many ways in
settling in at ERCOT, and I thank them for that.

I’d like to take the opportunity to thank, from the bottom of my heart, the selfless help given me
by Peter Ronald, Pamela Kruger, and Angela Shoup.

My father, Appa Rao, and my mother, Swarna Kumari, have always been a source of strength and
joy, and as with all my books, they have provided the inspiration for me to write. I owe my academic
and professional achievements to the support and encouragement my parents have provided me
over the years. My brothers, Hari and Siva Sankar, although they live far me, are close to me in spirit
and inspire me every day. I’m grateful to my sisters-in-law, Aruna and Vanaja, for their support and
affection. I cherish deeply the love and affection of my nephews, Teja and Ashwin, and my nieces,
Aparna and Soumya. Last but not the least, I appreciate the kindness and love shown by Sobbanna
Boppanna, whose well wishes have been a source of support.

Finally, I acknowledge the enormous debt I owe to all the members of my immediate family: my
wife, Valerie, and children, Shannon, Nina, and Nicholas, since it’s really they who have enabled me
to write all of my books, by cheerfully taking care of the numerous things that fall on the wayside
when one embarks on a book-writing endeavor. The children have forgiven my frequent absences
(figuratively) from home as I immersed myself in this book. Without their help, love, and support, I
simply couldn’t have written this book. Yet again, Valerie has supported me by making numerous
sacrifices so I can write. I thank her for practicing the greatest virtue of all—patience—during the
long time I spent working on this book.

xliii

Introduction

GRATIANO: . . . As who should say “I am Sir Oracle, And when I ope my lips, let no dog bark!”

—The Merchant of Venice, act 1, scene 1

Oracle Corporation used to print the preceding quotation from Shakespeare at the beginning of one
of its chapters in the database administrator (DBA) manual for an earlier release of the Oracle data-
base (Oracle version 6). I always thought the quote was interesting. If you proceed a little further in
the play, you’ll find this quotation:

BASSANIO: Gratiano speaks an infinite deal of nothing, more than any man in all Venice.
His reasons are as two grains of wheat hid in two bushels of chaff: you shall seek all day ere
you find them . . .

—The Merchant of Venice, act 1, scene 1

Bassanio counters that, in truth, Gratiano speaks too much: from two bushels of chaff, two grains of
wheat may be recovered. And that’s the raison d’être for this book: to separate the wheat from the chaff.
The second quotation is even more apt when you consider the difficulty of extracting the right database
management procedures from the tons of material available for the Oracle Database 11g database.
Oracle Corporation publishes copious material to help you manage its increasingly complex data-
bases. Oracle Corporation also conducts a variety of in-person and web-based classes to explain the
vast amount of subject matter that you need to understand to effectively work with the Oracle data-
base today. Yet users will have a good deal of difficulty finding the essential material for performing
their jobs if they rely exclusively on Oracle’s voluminous (albeit well-written) material in the form of
manuals, class notes, web-based seminars, and so on.

The goal of this book is to provide you with a single source for most of your day-to-day Oracle
database management tasks. Of course, it isn’t feasible to cover each and every DBA topic in detail.
What I’ve done in this book is focus on the topics that are common to most enterprises, such as installing
the Oracle Database 11g software, creating and upgrading databases, exporting and importing data,
backing up and recovering data, and performance tuning. I place a lot of emphasis in this book on
explaining all of Oracle’s automatic management solutions. Using Oracle’s automatic management
features will keep you from reinventing the wheel each time. It also turns out that after several years
of development, Oracle has finally placed in your hands a set of powerful management advisors and
other tools that make a lot of traditional DBA work obsolete.

xliv ■IN TR O D U CT IO N

How to Become an Oracle DBA
As you start out on your journey to become a proficient Oracle DBA, you have many sources of infor-
mation on the Oracle database:

• Oracle Database 11g database administration classes, which have now been boiled down to a
pair of five-day long classes

• Oracle manuals—an entire library of which are available on the Oracle web sites

• Books from various publishers that impart the various pieces of knowledge you need to become
an accomplished Oracle DBA

You’ll also need to acquire the necessary operating system knowledge. Most of the large Oracle
databases are based on the UNIX (or Linux) operating system, so you’ll need to have a reasonably
good understanding of UNIX. Again, you have many sources of information available. You can attend
a class or two from the leading UNIX system vendors, such as Hewlett-Packard and Sun Microsystems,
you can read the manuals, or you can buy some books. Microsoft Windows is another popular oper-
ating system for Oracle databases, so you need to have a basic understanding of the Windows Server
operating system as well.

As many of the new entrants to the Oracle Database 11g field find out, the Oracle DBA world is
exhilarating, but alas, it’s also exhaustive in its reach and scope. It isn’t uncommon for DBAs to have
an entire shelf full of books, all explaining various facets of the DBA profession—modeling books,
UNIX texts, DBA handbooks, backup and recovery guides, performance-tuning manuals, and
networking and troubleshooting books. The amazing thing is, even after you run through the whole
gauntlet of courses and books, you aren’t really assured of being fully prepared to handle complex,
day-to-day database administration chores. There are many people who have taken all the requisite
classes to become an Oracle DBA who won’t or can’t be competent Oracle DBAs based solely on their
training. The reason? Refer back to that quotation from Shakespeare at the beginning of this intro-
duction: you need to separate the grain from the chaff, and all the coursework and manuals, while
excellent in their content, can serve to muddy the waters further.

The experienced Oracle DBA can find his or her way through this baffling amount of material,
but how’s the neophyte DBA to cope with the overwhelming amount of information? That’s where
this book comes in. This text will not only educate you in the theory and principles involved in
managing relational databases, it will also help you translate that theory into the useful, practical
knowledge that will enable you to manage real-life Oracle Database 11g databases with real-life data
and real-life issues.

Oracle Database 11g
The g in Oracle Database 11g stands for “grid.” The idea is to enable software to access spare processing
power across networks (grids) of inexpensive servers. Traditionally, database systems have been run
on large servers capable of running several very large databases at once. However, there are distinct
disadvantages inherent in the single-server model. For example, resources tied up in the large servers
can’t be redistributed among the various databases and other services to ensure an optimal alloca-
tion of resources. If you need a massive amount of resources to handle your database’s peak needs,
chances are that you’ll run with identical resources throughout the day, thus guaranteeing that you
are going to waste critical resources during low-utilization periods.

Grid computing provides a means of harnessing the power of a large number of cheaper servers
to supply the computing power you need in a flexible manner. This hardware would be servers like
the Intel-based blade servers, and the software would include the free (or almost free) open source
Linux operating system. By choosing small, generic servers, your system will cost much less than a

■I N T R OD U C T I ON xlv

traditional large server system, and because you can dynamically reallocate or provision resources
based on actual needs, you’ll be using resources efficiently.

Grid computing (also referred to as computing on demand and utility computing) isn’t a new
innovation invented solely by Oracle. The idea of grid computing has been around for a while, primarily
in the academic world. In fact, grid computing arose out of the academic community’s need for
extremely fast and scalable computers to perform complex, massive research tasks. Another over-
riding goal of the academic community was to permit the sharing of computing resources among
large numbers of researchers. Of course, the academics also aimed to keep the cost as low as possible.
Grid computing emerged out of these efforts as a viable way to create huge sharable computing envi-
ronments that are dynamically adjustable to changes in the demand for computing power.

When we talk about harnessing the power of a number of commodity servers, realize that the
number of computers may not be limited to just a handful. We are talking about combining the power of
a fairly large number of small servers linked together to form a grid. Obviously, the key idea here is
that the sum is far greater than the individual components. Enterprise grid computing, as envisioned
by Oracle, uses large pools of modular storage and commodity servers. Underutilization of resources
will be cut down, because capacity could be altered from the centralized pool of resources as necessary.

Here is a summary of the key benefits of grid computing:

• Flexibility: Since you are creating a single logical entity from a bunch of small servers, you can,
of course, add or remove individual components as your computing needs dictate.

• Efficiency: The concept of dynamic provisioning underlies grid computing. Dynamic provisioning
means that the allocation of resources for various services is not rigidly fixed, but changes
according to the need for resources and the availability of the resources. Ideally, a well-run
grid will channel resources to where they are needed the most by diverting them from under-
utilized sources.

• Easy manageability: It is far easier to manage a single logical combination of your computing
resources (which may include several databases and application servers), rather than monitoring
each one as a completely independent unit.

• Economy: The total cost of a grid environment could be considerably lower than a traditional
single, big server environment. Oracle strongly recommends the use of Linux-based commodity
servers, which Oracle says offer the best price/performance ratio.

Key Components of Oracle Database 11g
Following are the essential components of Oracle’s grid-based systems:

• Real Application Clusters (RAC)

• Information sharing

• Easy server manageability

• Extensive instrumentation

• The advisory framework

• Automatic performance tuning

• Automatic Storage Management (ASM)

• Automatic memory management

• Scheduling and resource management

• Real Application Testing

xlvi ■IN TR O D U CT IO N

Note that you most certainly don’t have to use a “grid” platform to be able to use the Oracle
Database 11g server. In either case, you can take advantage of all the new features of the database system.

Real Application Clusters
Oracle has had a feature called the Oracle Parallel Server (OPS) for many years, which enabled people
to access the database from more than one instance, thus providing for scalability as well as high
availability. Oracle has refined the parallel server technology considerably over the years, eventually
renaming it Real Application Clusters (RAC) a few years ago.

■Note This book concerns itself exclusively with the “mainstream” Oracle Database 11g DBA concepts and tech-
niques. You’ll not find any discussion of the Oracle Real Application Clusters in this book. If you are interested in RAC,
you may want to take a look at Oracle manuals or refer to one of the many good books devoted to RAC.

Information Sharing
In order to efficiently share information over a grid spanning many heterogeneous systems, you
need to share information efficiently. Data exchange can be occasional (such as when you perform
data loads for a new system), or it could be regular and instantaneous (updating one part of the
system when something changes in another part). In order to facilitate either type of information
sharing, Oracle Database 11g provides transportable tablespaces and Oracle Streams.

Transportable Tablespaces

The transportable tablespaces feature enables high-speed transport of huge amounts of data from
one database to another, even if the databases are running on different operating systems. The ability
to move huge amounts of data across platforms, and even to rename the tablespaces during the process,
makes information exchange far easier.

Oracle Streams

Oracle Streams is a feature that enables you to effortlessly capture changes made in one database
and propagate them to subscriber nodes in the grid. The Oracle Streams feature can keep all the
copies in sync while the changes are being applied.

Easy Server Manageability
Through its Database Control and Grid Control interfaces, Oracle Enterprise Manager enables the
management of either a single database or all databases, application servers, hosts, listeners, HTTP
servers, and web applications as well.

The prevailing view among IT organizations is that Oracle is a complex, difficult-to-manage
database, especially when compared with the Windows server database, SQL Server. Oracle Database
11g makes a conscious effort to simplify management, right from the installation process through to
daily monitoring and performance tuning. There is a new common infrastructure for storing work-
load- and performance-related information. You can now use powerful SQL tuning tools to determine
ways to improve performance.

Oracle Enterprise Manager (OEM), which includes the single database-level Database Control,
and its enterprise-wide counterpart, the Grid Control, provide unsurpassed capabilities for managing
the database. Traditionally, Oracle DBAs relied on complex SQL scripts to monitor the database as
well as diagnose and fix performance problems. OEM now can help you do all those things and a lot

■I N T R OD U C T I ON xlvii

more, without having to spend enormous amounts of time writing lengthy scripts to help manage
the database.

■Note I’ve reduced the use of DBA scripts to the bare minimum in this book. Instead, I show you how to use the
OEM Database Control effectively to perform all your tasks quickly and with far less effort.

Extensive Instrumentation
Oracle Database 11g provides instrumentation of its code base that ranges further than any prior
release of Oracle, providing accurate metrics about database performance that weren’t available
until now. Oracle’s own instrumentation and metrics, since they are embedded in the database
code, provide better information without any measurable performance degradation, compared to
third-party performance-measurement tools.

The Advisory Framework
Oracle Database 11g contains several highly useful advisors to help you optimize the performance of
the various components of the database. Here are some of them:

• The Automatic Database Diagnostic Monitor (ADDM) helps you analyze current and past
instance performance.

• The SQL Tuning Advisor helps you tune SQL statements.

• The SQL Access Advisor tells you whether you should add (or drop) indexes and materialized
views.

• The Segment Advisor helps you figure out the necessary space for new tables and to reclaim
unused space assigned to segments, among other things.

• The Undo Advisor helps you configure the critical undo tablespace.

• The Memory Advisor provides recommendations for memory-related parameters.

Each of these advisors has a similar look and feel, and this consistency will help you learn how
to use them effectively. Using the advisors isn’t mandatory, of course—you can also tune space and
memory by using Oracle-supplied packages and various dynamic performance views—but it’s more
efficient to simply invoke the necessary advisor.

Automatic Performance Tuning
Oracle Database 11g provides you with automatic performance diagnosis and tuning recommendations.
An expert diagnosis tool called the Automatic Database Diagnostic Monitor uses the new Automatic
Workload Repository contents to analyze instance performance. The ADDM’s analysis includes a
summary of database problems ranked according to the amount of database time they’re costing, as
well as a list of recommendations to eliminate these problems. The ADDM’s recommendations may
include modifying configuration settings or running one of the advisors listed in the previous section.

Automatic Storage Management
A significant component of the Oracle’s push toward easier management is the Automatic Storage
Management feature. Traditionally, database administrators relied on third-party vendors, such as
VERITAS and EMC, to provide storage management tools for larger systems. ASM enables the auto-
matic management of disks without resorting to third-party Logical Volume Managers (LVMs).

xlviii ■IN TR O D U CT IO N

You can use Oracle’s storage virtualization layer to automate and simplify the layout and
management of all Oracle database files, when you use ASM. Instead of directly managing numerous
files and disks, you can pay attention to a relatively small number of disk groups. If you need addi-
tional storage, you simply add new physical disks to the logical disk groups.

Automatic Memory Management
The Oracle Database 11g server provides you with an easy way of managing the memory needs of
your databases. Automatic memory management and automatic program global area management
use information collected from the instance to efficiently allocate both the major components of
Oracle’s memory allocation—the system global area (SGA) and the program global area (PGA).

Scheduling and Resource Management
It’s common for enterprise users to share computing resources, and there needs to be a way of
scheduling the users and sharing the enterprise’s resources efficiently. Oracle Database 11g DBAs
can use the Database Resource Manager to control and channel scarce database resources among the
various users of the grid. You can also use the Oracle Scheduler to manage and monitor jobs as well
as prioritize them.

Real Application Testing
Two major features of Oracle Database 11g—Database Replay and the SQL Performance Analyzer—
facilitate change management by letting you replay database activities and SQL workloads, respec-
tively. You can thus test the impact of a potential database or server upgrade, for example, by
invoking the Database Replay and the SQL Performance Analyzer tools.

Why Read This Book?
What sets this book apart from the others on the market is the constant focus on the practical side of
the DBA’s work life. What does a new DBA need to know to begin work? How much and what SQL
does the new DBA need to know? What UNIX, Linux, and Windows commands and utilities does the
new DBA need to know? How does a DBA perform the basic UNIX administration tasks? How does a
DBA install the Oracle software from scratch? How does the DBA use all the powerful new perfor-
mance tuning features of the Oracle Database 11g server?

This book provides the conceptual background and operational details for all the topics a
professional Oracle DBA needs to know. The following sections outline other reasons to choose this
book over its competitors.

Delivers a One-Volume Reference
This book’s specific purpose is to serve as a one-volume handbook for professional Oracle DBAs—as
a book that covers both the theory and practice of the DBA craft. As I mentioned before, most
newcomers to the field are intimidated and bewildered by the sheer amount of material they’re
confronted with and the great number of administrative commands they need to have at their finger-
tips. Well, everything you need to know to run your databases efficiently is right here in this one
book.

How did I manage to achieve the difficult feat of providing comprehensive instruction in just
one book? Well, although there is a lot of terrain to cover if you want to learn all the DBA material, you

■I N T R OD U C T I ON xlix

must learn to separate the critical from the mundane, so you can identify what matters most and
what you merely need to be aware of, at least in the beginning.

I’m definitely not suggesting that this one book will supplant all of the other Oracle material
available. I strongly recommend that inquisitive readers make it a habit to refer to Oracle’s docu-
mentation for the 11g database. You can obtain this documentation on the Web by getting a free
membership to the Oracle Technology Network (OTN), which you can access through the Oracle
web site at http://technet.oracle.com.

It’s extremely important to read the Oracle database manuals and to understand how the data-
base works. However, nothing can replace working on an actual database when it comes to
mastering DBA techniques, so if you have a Windows desktop, you can easily install the freely down-
loadable Oracle Database 11g software. If you want, you can do the same on a Linux system as well.
One of the great things about the Oracle database software is that it runs virtually identically on each
operating system. In fact, your production system will operate exactly the same as the free “toy data-
base” on your desktop machine, so go ahead and practice to your heart’s content on the Oracle
Database 11g database.

READING THE ORACLE MANUALS

Whether you use this or some other DBA handbook, you will still need to refer to the Oracle database manuals
frequently to get the full details of complex database operations. I can’t overemphasize the importance of mastering
the fundamentals of Oracle Database 11g that are presented in the Oracle Concepts manual. Mastering this volume
is critical to understanding many advanced DBA procedures.

The Oracle manuals are invaluable if you need a lot of detail. For example, the chapters on backup and recovery
(Chapters 15 and 16) are good starting points in your attempt to master the Oracle procedures in those areas. Oracle
has several manuals covering the backup and recovery material. Once you finish the two relevant chapters in this
book, you’ll find going through those manuals a pretty easy task, because you’ll already have a good understanding
of all the important concepts. This book provides a foundation on which you can build using the Oracle manuals and
other online help available from Oracle.

In addition to the online manuals, Oracle provides an excellent set of tutorials that contain
systematic instructions on how to perform many useful Oracle Database 11g tasks. You can access
these tutorials, the Oracle by Example series, by going to http://www.oracle.com/technology/obe/
start/index.html.

Emphasizes New Methods and When to Use Them
One of the fundamental difficulties for a neophyte in this field is determining the right strategy for
managing databases. Although the essential tasks of database management are pretty similar in
Oracle Database 11g compared to earlier versions of the software, the database contains several
innovative techniques that make a number of routine tasks easier to perform than in the past. Oracle
Corporation, however, has shied away from firmly recommending the adoption of the new methods
and techniques to manage databases. The reason for this is twofold. First, Oracle rarely discards
existing techniques abruptly between versions; features advertised as being destined for obsoles-
cence are made obsolete only after many years. Thus, old and new ways of performing similar tasks
coexist in the same version. Second, Oracle isn’t very effective in clearly communicating its guide-
lines concerning contending methods. Thus, when more than one method exists for performing a
task, you as a DBA have to exercise caution when you select the appropriate methods to use.

l ■IN TR O D U CT IO N

In this book, I clearly emphasize the newer features of Oracle that have been refined in the last
few years and encourage you to move away from older techniques when the new innovations are
clearly superior. I help you in formulating a solid strategy when multiple choices are offered. A good
example is performance tuning: it was common to employ a traditional SQL-script approach to
guide performance tuning efforts, but this book comes down squarely on the side of using the latest
Oracle Enterprise Manager (OEM) GUI techniques to perform all your performance tuning and other
DBA tasks.

Covers UNIX, SQL, PL/SQL, and Data Modeling
Some people who are motivated to become Oracle DBAs are stymied in their initial efforts to do so by
their lack of training in UNIX/Linux and SQL. Also, sometimes DBAs are confused by the whole set of
data modeling and the “logical DBA” techniques. This book is unique in that it covers all the essential
UNIX, SQL, PL/SQL, and data modeling that a DBA ought to know to perform his or her job well.

As a DBA, you need to be able to use a number of UNIX tools and utilities to administer an
Oracle database. Unfortunately, up until now many books haven’t included coverage of these vital
tools. This book remedies this neglect by covering tools such as telnet, FTP, and the crontab. Many
developers and managers want to have a better understanding of the UNIX system, including the use
of the vi file editor, file manipulation, and basic shell-script writing techniques. This book enables
you to start using the UNIX operating system right away and shows you how to write solid shell
scripts to perform various tasks. Of course, you can take a specialized class or study a separate book
in each of the previous areas, but that’s exactly what you’re trying to avoid by using this book.

In addition to learning all the UNIX you need to start working with the UNIX operating system
right away, you can get a good working knowledge of SQL and PL/SQL from a DBA’s perspective in
this book. Of course, I strongly recommend further study of both UNIX and SQL to strengthen your
skills as an Oracle DBA as you progress in your career.

Offers Hands-On Administrative Experience
Although a number of books have been published in the last decade on the subject of Oracle data-
base administration, there has been a surprising lack of the blending of the concepts of the Oracle
database with the techniques needed to perform several administrative tasks. A glaring example is
the area of backup and recovery, where it’s difficult to find discussions of the conceptual underpin-
nings of Oracle’s backup and recovery process. Consequently, many DBAs end up learning backup
and recovery techniques without having a solid grasp of the underlying principles of backup and
recovery. As you can imagine, this split between theory and practice proves expensive in the middle
of a recovery operation, where fuzziness on the concepts could lead to simple mistakes.

Your success as a professional database administrator is directly related to the amount of
hands-on experience you have, and to your understanding of the concepts behind the operation of
the database. To get this practice, you can experiment with all the commands in this book on a
UNIX- or a Windows-based Oracle Database 11g database. Oracle Database 11g is loaded with
features that make it the cutting-edge database in the relational database market, and this book
covers all the new additions and modifications to database administration contained in the 11g
version. It’s a lot of fun for an experienced DBA to have the opportunity to use all the wonderful
features of the new database, but beginning- and intermediate-level DBAs will have more fun,
because they’re embarking on the great endeavor that is the mastery of Oracle database
management.

■I N T R OD U C T I ON li

Who Should Read This Book?
This book is primarily intended for beginning- and intermediate-level Oracle Database 11g DBAs.
Prior experience with Oracle databases isn’t assumed, so if you’ve never managed databases and
intend to master the management of the new Oracle Database 11g database, you can do so with the
help of this book.

More precisely, the audience for this book will fall into the following categories:

• Oracle DBAs who are just starting out

• Oracle developers and UNIX/Linux or Windows system administrators who intend to learn
Oracle DBA skills

• Managers who want to get a hands-on feel for database management

• Anybody who wants to learn how to become a proficient Oracle DBA on his or her own

A Note About UNIX, Linux, and Windows
I personally like the UNIX operating system and use it at work. I’m familiar with the Windows plat-
form and I think it’s a good operating system for small enterprises, but my favorite operating system
remains UNIX, which stands out for its reliability, scalability, and speed. For medium and large orga-
nizations, the UNIX system offers wonderful features and ease of use. As a result, you’ll find this book
heavily oriented toward the use of Oracle on UNIX systems.

If you happen to admire the Linux operating system, there isn’t a new learning curve involved,
as most of the operating system commands will work the same way in the UNIX and Linux systems.
If you need to find out how to use the Oracle Database 11g database on a Windows platform, here’s
some interesting news for you: the database commands work exactly the same way in both the UNIX
and Windows environments.

How This Book Is Organized
I have organized the contents of this book with the new DBA in mind. My goal is to provide you with
a decent background in data modeling, SQL, and UNIX, while providing a thorough course in the
essentials of Oracle Database 11g database management skills. I know it’s unusual to provide UNIX
and SQL background in an Oracle DBA book, but this inclusion is in line with the goal I set when I
decided to write this book: there ought to be a single book or manual that has all the necessary back-
ground for a reader to start working as an Oracle Database 11g DBA.

I strove to write the chapters to mirror real-life practical training. For example, you should
understand basic database modeling and fundamental UNIX operating system commands before
learning to manage Oracle databases. I therefore start with a discussion of database modeling and
UNIX. You’ll install the Oracle database software before learning how to create an Oracle database.
After you install the software and create a database, you can create users and establish connectivity.
Subsequent chapters deal with the loading and unloading of data, backup and recovery, day-to-day
database management, and performance tuning.

I advise beginning DBAs to start at the beginning of the book and keep going. A more experi-
enced user, on the other hand, can pick the topics in any sequence he or she desires. Throughout the
book, I’ve provided detailed, step-by-step, tested examples to illustrate the use of data concepts and

lii ■IN TR O D U CT IO N

features of Oracle Database 11g. I strongly recommend that you set up an Oracle Database 11g data-
base server on your PC and follow along with these examples. Doing so will teach you the relevant
commands and help you build confidence in your skill level. Moreover, the examples are a whole lot
of fun! The following sections briefly summarize the contents of the book.

Part 1: Background, Data Modeling, UNIX/Linux, and SQL*Plus
Part 1 provides a background on the Oracle DBA profession and offers an introduction to data
modeling and the UNIX operating system as well as SQL*Plus. In Chapter 1 I discuss the role of the
Oracle DBA in the organization, and I offer some advice on improving your skill set as a DBA. I also
discuss the basics of relational databases. Chapter 2 provides an introduction to both logical and
physical database design, including the use of entity-relationship diagrams. You’ll learn about the
Optimal Flexible Architecture (OFA) with regard to disk layout. Chapter 3 provides a quick introduc-
tion to UNIX/Linux operating systems, including the most common commands that you need as an
Oracle DBA, the rudiments of shell scripting, and how to use the vi text-processing commands. You’ll
also explore the essential UNIX system administration tasks for Oracle DBAs. This chapter finishes
with coverage of disks and storage systems, including the popular RAID systems. Chapter 4 provides
a thorough introduction to the use of SQL* Plus, the main interface to the Oracle database. In addi-
tion, Chapter 4 also describes how to use the powerful Oracle Enterprise Manager to monitor and
manage your databases as well as your entire system. You’ll learn how to install and use the Database
Control, which you use for managing a single database, and the Grid Control, through which you can
manage your enterprise, including application servers and hosts.

Part 2: Oracle Database 11g Architecture, Schema, and
Transaction Management
Part 2 is in many ways the heart of the book—it covers the important topics of Oracle Database 11g’s
architecture, schema management, and transaction management. In Chapter 5 you’ll learn about
the important components of the Oracle database architecture, such as how the database processes
and memory work. It also covers the conceptual foundations of the Oracle database. Chapter 6
provides a detailed introduction to the management of tablespaces. Chapter 7 covers schema
management in Oracle Database 11g, and it contains a quick review of the important types of Oracle
objects, such as tables and indexes, and shows you how to manage them. Chapter 8 provides you
with a thorough understanding of how Oracle databases conduct transaction processing.

Part 3: Installing Oracle Database 11g, Upgrading, and
Creating Databases
Part 3 includes two chapters that show you how to install the Oracle Database 11g software, create
Oracle databases, and upgrade databases. Chapter 9, which covers Oracle software installation,
shows how to install the Oracle Database 11g database server. In addition, Chapter 9 also shows you
in detail how to upgrade to Oracle Database 11g. Chapter 10 shows you how to create an Oracle data-
base from scratch, both manually as well as by using the Database Configuration Assistant (DBCA).

Part 4: Connectivity and User Management
Part 4 explains how to establish connectivity to the Oracle database and manage database users.
Chapter 11 covers connecting to Oracle databases, and Chapter 12 shows you how to manage users
and discusses ways of securing your database.

■I N T R OD U C T I ON liii

Part 5: Data Loading, Backup, and Recovery
Part 5 deals with loading data and performing backups and recovery. You’ll learn how to use
SQL*Loader in Chapter 13, and Chapter 14 covers the Data Pump technology, which enables you to
load and unload Oracle data. Chapters 15 and 16 deal with the crucial topics of database backups
and recovery, respectively.

Part 6: Managing the Database
Part 6 covers managing the operational Oracle Database 11g database. Chapter 17 focuses on the
important Oracle Database 11g automatic management features, as well as exploring several
powerful online capabilities of the Oracle database. Chapter 18 shows you how to manage data files,
tablespaces, and Oracle redo logs, and how to perform undo management. The chapter also
provides an introduction to the Oracle storage solution, Automatic Storage Management.

Part 7: Performance Tuning
Part 7 covers Oracle Database 11g performance tuning and troubleshooting issues. Chapter 19
discusses the Cost-Based Optimizer and provides tips on writing efficient SQL queries. You’ll also see
how to use Oracle’s Automatic SQL Tuning Advisor to improve query performance. In Chapter 20,
you’ll learn how to optimize the use of Oracle’s memory, disk I/O, and the operating system. You’ll
also learn about the Oracle wait interface in this chapter. A basic approach to performance analysis
and troubleshooting production databases is explained as well.

Appendix: Oracle Database 11g SQL and PL/SQL: A Brief Primer
In the Appendix, I introduce Oracle SQL and PL/SQL, provide an introduction to Oracle XML DB,
which helps you deal with XML data, and include an introduction to using the Java programming
language with Oracle.

Salud!
I truly enjoy working with the Oracle database, because of its amazing range of capabilities and the
intricate challenges it throws my way as I explore its wide-ranging capabilities. I hope you derive as
much satisfaction and fulfillment from the Oracle database as I do. I leave you with the following
observation, adapted from the introduction to the famous economics textbook by Paul A. Samu-
elson, the great economist and Nobel Laureate:1

I envy you, the beginning Oracle DBA, as you set out to explore the exciting world of Oracle
Database 11g database management for the first time. This is a thrill that, alas, you can
experience only once in a lifetime. So, as you embark, I wish you bon voyage!

1. Paul A. Samuelson and William D. Nordhaus, Economics, Seventeenth Edition (New York:
McGraw-Hill, 1998).

www.allitebooks.com

http://www.allitebooks.org

■ ■ ■

P A R T 1

Background, Data Modeling,
UNIX/Linux, and SQL*Plus

3

■ ■ ■

C H A P T E R 1

The Oracle DBA’s World

There are many types of Oracle databases, and there are many types of Oracle database administra-
tors (DBAs)—this chapter discusses the role of the Oracle DBA as well as the training that Oracle
DBAs typically need to be successful. You’ll look at the daily routine of a typical DBA, which will give
you an idea of what to expect if you’re new to the field. This chapter also covers ways you can improve
your skill level as an Oracle DBA and prepare to keep the databases under your stewardship
performing optimally. Toward the end of the chapter, you’ll find a list of resources and organizations
that will help you in your quest to become a top-notch DBA.

The Oracle DBA’s Role
The main responsibility of a DBA is to make corporate data available to the end users and the deci-
sion makers of an organization. All other DBA tasks are subordinate to that single goal, and almost
everything DBAs do on a day-to-day basis is aimed at meeting that single target. Without access to
data, many companies and organizations would simply cease to function.

■Note Imagine the chaos that would ensue if a company such as Amazon.com no longer had access to its
customer database, even for a short time. The entire company could cease to function. At a minimum, it would
lose perhaps thousands of online orders. As a DBA, your job is to ensure access to your organization’s data. You
are also responsible for protecting that data from unauthorized access—just think of the commotion caused by
well-publicized security lapses at well-known consumer data–based organizations.

That’s not to say that availability of data is the only thing DBAs have to worry about. DBAs are
also responsible for other areas, including the following, all of which further the key goal of making
data available to users:

• Security: Ensuring that the data and access to the data are secure

• Backup: Ensuring that the database can be restored in the event of either human or
systems failure

• Performance: Ensuring that the database and its subsystems are optimized for performance

• Design: Ensuring that the design of the database meets the needs of the organization

• Implementation: Ensuring proper implementation of new database systems and applications

4 CH AP T E R 1 ■ T HE OR A CL E DB A ’ S WO R L D

In a small organization, a DBA could be managing the entire information technology (IT) infra-
structure, including the databases, whereas in a large organization there could be a number of DBAs,
each charged with managing a particular area of the system.

You can put the tasks you’ll perform as an Oracle DBA in the following three categories:

• Security

• System management

• Database design

I discuss each of these broad roles in more detail in the following sections, outlining what you
could consider the bare minimum level of performance expected of a DBA. Although the lists in each
section may seem long and daunting, the tasks are really not that difficult in practice if you follow
certain guidelines. Proper planning and testing, as well as automating most of the routine tasks, keep
the drudgery to a minimum. All you’re left with to do on a daily basis are the really enjoyable things,
such as performance tuning or whatever else may appeal to you.

The DBA’s Security Role
As a DBA, you’ll be involved in many different areas of system security, mainly focusing on the database
and its data. Several potential security holes are possible when you implement a new Oracle system
out of the box, and you need to know how to plug these security holes thoroughly before the data-
bases go live in a production environment. In Chapter 12, which deals with user management, you’ll
find a fuller discussion of standard Oracle security guidelines and other Oracle security-related issues.

Protecting the Database

For an Oracle DBA, no task is more fundamental and critical than protecting the database itself. The
Oracle DBA is the person the information departments entrust with safeguarding the organization’s
data, and this involves preventing unauthorized use of and access to the database. The DBA has
several means to ensure the database’s security, and based on the company’s security guidelines, he
or she needs to maintain the database security policy (and to create the policy if it doesn’t already
exist). A more complex issue is the authorization of users’ actions within the database itself, after
access has already been granted. I address this topic in depth in Chapter 12.

■Note Some organizations don’t have a general security policy in place. This is particularly true of smaller
companies. In that case, it’s usually up to the DBA to come up with the security policy and then enforce it within the
database.

Creating and Managing Users

Every database has users, and it’s the DBA’s job to create them based on requests from the appro-
priate people. A DBA is expected to guide the users’ use of the database and ensure the database’s
security by using proper authorization schemes, roles, and privileges. Of course, when users are
locked out of the database because of password expiration and related issues, the DBA needs to take
care of them. It’s also the responsibility of the DBA to monitor the resource usage by individual users
and to flag the heavy resource users.

CH AP T E R 1 ■ TH E O R A CL E D B A ’ S W O R L D 5

The DBA’s System Management Role
Another of the DBA’s major roles is the day-to-day management of the database and its subsystems.
This daily monitoring is not limited to the database itself. As a DBA, you need to be aware of how the
system as a whole is performing. You need to monitor the performance of the servers that host the
database and of the network that enables connections to the database. The following sections describe
the various facets of the system management part of the Oracle DBA’s job.

Troubleshooting

One of the Oracle DBA’s main job responsibilities is troubleshooting the database to fix problems.
Troubleshooting is a catchall term, and it can involve several of the tasks I discuss in the following
sections. Two important aspects of troubleshooting are knowing how to get the right kind of help
from Oracle support personnel, and how to use other Oracle resources to fix problems quickly.

Performance Tuning

Performance tuning is an omnipresent issue. It’s a part of the design stage, the implementation
stage, the testing stage, and the production stage of a database. In fact, performance tuning is an
ongoing task that constantly requires the attention of a good Oracle DBA. Depending on the organi-
zational setup, the DBA may need to perform database tuning, or application tuning, or both. Generally,
the DBA performs the database tuning and assists in the testing and implementation stages of the
application tuning performed by the application developers.

Performance requirements for a living database change constantly, and the DBA needs to
continually monitor the database performance by applying the right indicators. For example, after
migrating to a newer release of the Oracle database, I found that several large batch programs weren’t
completing within the allotted time. After much frustration, I realized that this was because some of
the code was using cost-based optimizer hints that were no longer optimal under the new Oracle
version. A quick revision of those hints improved the performance of the programs dramatically. The
moral of the story: make sure you test all the code under the new Oracle version before you switch
over to it.

You can say that all database tuning efforts can be grouped into two classes—proactive and
reactive tuning. Proactive tuning, as the name indicates, means that the DBA heads off potential
trouble by careful monitoring of necessary performance indices. As we all know, prevention is
always better than any cure, so proactive tuning will always trump reactive tuning efforts. However,
most Oracle DBAs in charge of production databases don’t have the luxury of proactively tuning—
they are too busy reacting to complaints about a slow-performing database or some similar problem.
You are likely to encounter both kinds of database tuning efforts in your day-to-day life as an Oracle DBA.

Monitoring the System

Once a database is actually in production, the DBA is expected to monitor the system to ensure
uninterrupted service. The tasks involved in monitoring the system include the following:

• Monitoring space in the database to ensure it is sufficient for the system

• Checking to ensure that batch jobs are finishing as expected

• Monitoring log files on a daily basis for evidence of unauthorized attempts to log in (some-
thing DBAs want to keep close tabs on)

6 CH AP T E R 1 ■ T HE OR A CL E DB A ’ S WO R L D

Minimizing Downtime

Providing uninterrupted service by eliminating (or at least minimizing) downtime is an important
criterion by which you can judge a DBA’s performance. Of course, if the downtime is the result of a
faulty disk, the company’s service-level agreements (SLAs), if any, will determine how quickly the
disk is replaced. DBAs may or may not have control over the maximum time for service provided in
the SLAs. For their part, however, DBAs are expected to be proactive and prevent avoidable down-
time (such as downtime due to a process running out of space).

Estimating Requirements

Only the DBA can estimate the operating system, disk, and memory requirements for a new project.
The DBA is also responsible for coming up with growth estimates for the databases he or she is managing
and the consequent increase in resource requirements. Although some of the decisions regarding
physical equipment, such as the number of CPUs per machine and the type of UNIX server, may be
made independently by system administrators and managers, the DBA can help during the process
by providing good estimates of the database requirements.

In addition to estimating initial requirements, the DBA is responsible for planning for future
growth and potential changes in the applications. This is known as capacity planning, and the DBA’s
estimates will be the basis for funding requests by department managers.

Developing Backup and Recovery Strategies

Adequate backups can prevent the catastrophic loss of an organization’s vital business data. The
Oracle DBA needs to come up with a proper backup strategy and test the backups for corruption.
The DBA also needs to have recovery plans in place, and the best way to do this is to simulate several
types of data loss. Proper testing of backup and recovery plans is sorely neglected in many compa-
nies, in spite of its critical importance for the company.

Loss of business data not only leads to immediate monetary damage in the form of lost revenue,
but also costs customer goodwill in the long run. Unplanned database downtime reflects poorly on
the firm’s technical prowess and the competency of the management.

When disasters or technical malfunctions keep the database from functioning, the DBA can fall
back on backed-up copies of the database to resume functioning at peak efficiency. The DBA is
responsible for the formulation, implementation, and testing of fail-safe backup and restoration
policies for the organization. In fact, no other facet of the DBA’s job is as critical as the successful and
speedy restoration of the company’s database in an emergency. I’ve personally seen careers made or
broken based on one backup- and recovery-related emergency; an emergency can test the true mettle
of an Oracle DBA like no other job requirement can.

During those times when disaster strikes, the seasoned DBA is the one who is confident that he
or she has the necessary technical skills and can remain calm in an emergency. This calmness is
really the outcome of years of painstaking study and testing of the theoretical principles and the
operational commands necessary to perform sensitive tasks, such as the restoration and recovery of
damaged databases.

Loading Data

After the DBA has created database objects, schemas, and users, he or she needs to load the data,
usually from older legacy systems or sometimes from a data warehouse. If the data loads need to be
done on a periodic basis, the DBA needs to design, test, and implement the appropriate loading
programs.

CH AP T E R 1 ■ TH E O R A CL E D B A ’ S W O R L D 7

Overseeing Change Management

Every application goes through changes over time to improve features and fix bugs in the software.
There is a constant cycle of development, testing, and implementation, and the DBA plays an impor-
tant role in that cycle. Change management is the process of properly migrating new code, and the
Oracle DBA needs to understand the process that’s in place in his or her organization.

In addition to updating application code, the Oracle DBA is also responsible for ensuring that
all the latest changes to the database software are also evaluated and adopted. These so-called soft-
ware patches are usually made available through Oracle’s MetaLink service. In fact, the latest Oracle
Enterprise Manager (OEM) enables you to connect directly to MetaLink and download and apply
software patches.

In Oracle Database 11g, you can use two new change management features, Database Replay
and SQL Performance Analyzer, to find out ahead of time the impact of system changes, including a
database or server upgrade, on SQL and database performance. I discuss both of these important
features in Chapter 20.

The DBA’s Database Design Role
Many Oracle DBAs spend at least part of their time helping design new databases. The DBA’s role
may include helping create entity-relationship diagrams and suggesting dependencies and candi-
dates for primary keys. In fact, having the DBA actively involved in designing new databases will
improve the performance of the databases down the road. It’s a well-known fact that an improperly
designed database thwarts all attempts to tune its performance.

Designing the Database

Although designing databases is probably not the first thing that comes to mind when you think of a
DBA’s responsibilities, design issues (whether concerning the initial design or design change) are a
fundamental part of the Oracle DBA’s job. Administrators who are particularly skilled in the logical
design of databases can be crucial members of a team that’s designing and building brand-new data-
bases. A talented DBA can keep the design team from making poor choices during the design process.

Installing and Upgrading Software

The Oracle DBA plays an important role in evaluating the features of alternative products. The DBA
is the person who installs the Oracle database server software in most organizations; the UNIX system
administrator may also handle part of the installation process. Prior to actual installation, the DBA
is responsible for listing all the memory and disk requirements so that the Oracle software and data-
bases, as well as the system itself, can perform adequately. If the DBA wants the system administrator
to reconfigure the UNIX kernel so it can support the Oracle installation, the DBA is responsible for
providing the necessary information. Besides installing the Oracle database server software, the
DBA is also called upon to install any middleware, such as the Oracle Application Server and Oracle
client software on client machines.

Creating Databases

The DBA is responsible for the creation of databases. Initially he or she may create a test database
and later, after satisfactory testing, move the database to a production version. The DBA plans the
logical design of the database structures, such as tablespaces, and implements the design by creating the
structures after the database is created. As the DBA plays a part in creating the new database, he or
she needs to work with the application team closely to come up with proper estimates of the data-
base objects, such as tables and indexes.

8 CH AP T E R 1 ■ T HE OR A CL E DB A ’ S WO R L D

Creating Database Objects

An empty database doesn’t do anyone a whole lot of good, so the DBA needs to create the various
objects of the database, such as tables, indexes, and so on. Here, the developers and the DBA work
together closely, with the developers providing the tables and indexes to be created and the DBA
making sure that the objects are designed soundly. The DBA may also make suggestions and modi-
fications to the objects to improve their performance. Through proper evaluation, the DBA can
come up with alternative access methods for selecting data, which can improve performance.

■Note As a DBA, you can contribute significantly to your organization by explaining the alternatives available to
your application team in designing an efficient database. For example, if you explain to the application team the
Oracle partitioning option, including the various partitioning schemes and strategies, the team can make smarter
choices at the design stage. You can’t expect the application team to know all the intricacies of many Oracle options
and features.

Finally, remember that the organization will look to the DBA for many aspects of information
management. The DBA may be called upon not only to assist in the design of the databases, but also
to provide strategic guidance as to the right types of databases (OLTP, DSS, and so forth) and the
appropriate architecture for implementing the organization’s database-driven applications.

DBA Job Classifications
Given the diverse nature of business, a DBA’s job description is not exactly the same in all organiza-
tions. There are several variations in the job’s classification and duties across organizations. In a
small firm, a single DBA might be the UNIX or Windows administrator and the network adminis-
trator as well as the Oracle DBA, with all job functions rolled into one. A large company might have
a dozen or more Oracle DBAs, each in charge of a certain database or a certain set of tasks.

Sometimes you’ll hear the terms “production DBA” and “development” (or “logical”) DBA.
Production DBA refers to database administrators in charge of production databases. Because a
production database is already in production (meaning it is already serving the business functions),
such DBAs aren’t required to have design or other such developmental skills. DBAs who are involved
in the preproduction design and development of databases are usually called development or logical
DBAs. Ideally, you should strive to acquire the relevant skill sets for both development and produc-
tion administration, but reality demands that you usually are doing more of one thing than the other
at any given time. In general, large establishments usually have a number of DBAs and can afford to
assign specialized tasks to their personnel. If you work for a small organization, chances are you’ll be
doing a little bit of everything.

Individual preference, the availability of financial and technical resources, and the necessary
skill sets determine whether a DBA is doing production or development work. A DBA who comes up
from the developer ranks or who’s happiest coding is usually more likely to be a development or
logical DBA. This same person also may not really want to carry a pager day and night and be woken
up in the dead of night to perform a database recovery. On the other hand, a person who likes to do
production work and to work with business analysts to understand their needs is less likely to enjoy
programming in SQL or in any other language.

Although all of the preceding is true, both development and production DBAs are well advised
to cross-train and learn aspects of the “other” side of Oracle database administration. Too often,
people who characterize themselves as production DBAs do not do much beyond performing backups
and restores and implementing the physical layout of databases. Similarly, development DBAs, due
to their preference for the programming and design aspects of the job, may not be fully cognizant of
the operational aspects of database management, such as storage and memory requirements.

CH AP T E R 1 ■ TH E O R A CL E D B A ’ S W O R L D 9

Types of Databases
In many organizations, you will be working with different types of databases daily, and thus with
different types of data and management requirements. You may find yourself working on simple
SQL queries with users and simultaneously wrestling with decision-support systems for management.

Databases perform a variety of functions, but you can group all of those functions into two
broad categories: online transaction processing (OLTP) and decision-support systems (DSSs; some-
times also called online analytical processing, or OLAP). Let’s take a quick look at some of the basic
classifications of Oracle databases.

Online Transaction Processing and Decision-Support
System Databases
Online transaction processing databases are the bread and butter of most consumer- and supplier-
oriented databases. This category includes order entry, billing, customer, supplier, and supply-chain
databases. These databases are characterized by heavy transaction volume and a need to be online
continuously, which today (given the use of the Internet to access such systems) means 24/7/365
availability, short maintenance intervals, and low tolerance for breakdowns in the system.

Decision-support systems range from small databases to large data warehouses. These are
typically not 24/7 operations, and they can easily manage with regularly scheduled downtime and
maintenance windows. The extremely large size of some of these data warehouses necessitates the
use of special techniques both to load and to use the data.

There isn’t a whole lot of difference between the administration of a DSS-oriented data ware-
house and a transaction-oriented OLTP system from the DBA’s perspective. The backup and recovery
methodology is essentially the same, and database security and other related issues are also very
similar. The big difference between the two types of databases occurs at the design and implemen-
tation stages. DSS systems usually involve a different optimization strategy for queries and different
physical storage strategies. Oracle Database 11g provides you with the choice of implementing an
OLTP database or a DSS database using the same database server software.

Performance design considerations that may work well with one type of database may be
entirely inappropriate for another type of database. For example, a large number of indexes can help
you query a typical data warehouse efficiently while you are getting some reports out of that data-
base. If you have the same number of indexes on a live OLTP system with a large number of concurrent
users, you may see a substantial slowing down of the database, because the many updates, inserts,
and deletes on the OLTP system require more work on the part of the database.

Development, Test, and Production Databases
Applications are developed, tested, and then put into production. A firm usually has development,
test, and production versions of the same database in use at any given time, although for smaller
companies the test and development versions of the database may be integrated in one database.

Development databases are usually owned by the development team, which has full privileges
to access and modify data and objects in those databases. The test databases are designed to simulate
actual production databases and are used to test the functionality of code after it comes out of the
development databases. No new code is usually implemented in the “real” production databases of
the company unless it has been successfully tested in the test databases.

When a new application is developed, tested, and put into actual business use (production), the
development and production cycle does not end. Application software is always being modified for
two reasons: to fix bugs and to improve the functionality of the application. Although most applica-
tions go through several layers of testing before they move into production, coding errors and the
pressure to meet deadlines contribute to actual errors in software, which are sometimes not caught

10 CH AP T E R 1 ■ T HE OR A CL E DB A ’ S WO R L D

until the application is already in use. In addition, users continually request (or, more appropriately,
demand) modifications in the software to improve the application’s functionality. Consequently,
application code does not remain static; rather, developers and testers are always working on it.

Training and Certification
Your strength as an Oracle DBA is directly related to the amount of effort you put into understanding
the conceptual underpinnings of Oracle Database 11g. As you’re assimilating the database concepts,
it’s vital that you implement the various techniques to see if they work as advertised and whether a
particular technique is suitable for your organization.

■Tip There’s no substitute for hands-on playing with the database. Download the most recent Oracle Database
11g server software, install it, buy some good Oracle DBA books, access the Oracle manuals on Internet sites, and
just start experimenting. Create your own small test databases. Destroy them, bring them back to life, but above all
have fun. I had great trainers who lived and breathed databases; they made it fun to learn and always had the time
to show me new techniques and correct my errors. You’ll find database experts willing to share knowledge and
skills freely both in the workplace and on the Internet.

In this section, I discuss the help and services that professional organizations and other resources
can provide to enhance your credentials.

Training
There’s no ideal background for an Oracle DBA, but it’s highly desirable that one have a real interest
in the hardware side of databases, and also have a decent knowledge of operating systems, UNIX
and NT servers, and disk and memory issues. It also helps tremendously to have a programming or
development background, because you’ll be working with developers frequently. The most common
operating system for the Oracle database is UNIX, with the Hewlett-Packard (HP) and Sun Microsystems
(Sun) versions being the ones commonly adopted. IBM supplies the AIX variant of the UNIX oper-
ating system, but it has its own proprietary database, the DB2 Universal Database.

If you want to study to become a full-fledged Oracle Database 11g DBA, you need to take these
two classes from Oracle or another provider:

• Oracle Database 11g: Administration Workshop I

• Oracle Database 11g: Administration Workshop II

There are three levels of Oracle certification for DBAs. You must start with the Oracle Certified
Associate (OCA) certification first, followed by the Oracle Certified Professional (OCP) certification,
which is the most common certification sought by Oracle professionals. The final certification level
is the Oracle Certified Master (OCM) certification, which involves a lengthy practical exam over two
days. All Oracle Database 11g DBA certification candidates are required to take one in-class or online
class from an approved list of courses, in order to meet the new hands-on course requirement. If
your firm uses Oracle Real Application Clusters (RAC) or distributed databases, you need to take
additional, specialized courses. If your firm uses the UNIX operating system and you don’t have
experience using it, you may be better off taking a basic class in UNIX (or Linux) from HP, Sun, Red
Hat, or another vendor. You don’t need to take such a course for Oracle DBA certification purposes,
but it sure will help you if you’re new to the UNIX or Linux environment. Oracle itself provides
several courses in Linux administration and even a certification path for managing Oracle under
Linux, under the Oracle Certified Expert Program. Of course, if your databases are going to use the
Windows environment, you may get away with not taking a long and formal course in managing

CH AP T E R 1 ■ TH E O R A CL E D B A ’ S W O R L D 11

Windows, assuming you are relatively familiar with the Windows operating system, unless you also
happen to be a Windows system administrator.

■Note Remember that Oracle Corporation is not the only source of Oracle classes. Although Oracle University is
a large entity with fine courses, other private vendors offer courses that are just as good or better than those that
Oracle University offers. As is true of all courses, the quality of the teaching depends directly on the teacher’s expe-
rience and communication skills. And remember that you really don’t have to go anywhere to take a class; you can
purchase self-study CD-ROMs and learn by yourself, at a fraction (one-fifth) of the cost for the instructor-led in-class
training.

An even better strategy might be to subscribe to Oracle’s online learning program, known as Oracle iLearning
(http://ilearning.oracle.com). It’s cheaper than buying the DVDs, and you get access to hundreds of Oracle
University courses. If you’re planning to take the Oracle courses, make sure you’re also working on a server with an
actual database. Oracle supplies very well-designed sample schemas that you can use to sharpen your SQL skills,
whether your database is a development version on a UNIX server or a free downloaded Windows version of Oracle
Database 11g Enterprise Edition on your desktop computer. You’ll go further in a shorter time with this approach.

Once you get started as an Oracle Database 11g DBA, you will find that the real world of Oracle
databases is much wider and a lot more complex than that shown to you in the various courses you
attend. As each new facet of the database is revealed, you may find that you are digging more and
more into the heart of the software, why it works, and sometimes why it doesn’t work. It is at that
point that you will learn the most about the database and the software used to manage it. If you really
have read everything that Oracle and other private parties have to offer, do not worry—there are
always new versions coming out, with new features and new approaches, practically guaranteeing
an endless supply of interesting new information.

After the first year or two of your DBA journey, you’ll know enough to competently administrate
the databases and troubleshoot typical problems that occur. If you’ve also worked on your program-
ming skills during this time (mainly UNIX shell scripting and PL/SQL), you should be able to write
sophisticated scripts to monitor and tune your databases. At this stage, if you dig deeper, you’ll find
out a lot more about your database software that can enhance your knowledge and thereby your
contribution to your organization.

Oracle is constantly coming up with new features that you can adopt to improve the performance
of your production databases. Although the developers, testers, and administrators are also striving
mightily in the organization’s cause, it is you, the Oracle DBA, who will ultimately lead the way to
new and efficient uses of the new features of the database.

Certification
In many IT fields, certification by approved authorities is a required credential for advancement and
sometimes even for initial hiring. Oracle has had the Oracle Certification Program in effect for a
number of years now. The OCP is divided into three levels: Associate, Professional, and Master (the
Master level requires a lab test in addition to the other requirements). Traditionally, certification
was not a big issue with most organizations, especially in the face of the severe shortages of certified
DBAs in the field for many years. In today’s environment, though, that certification will help tremen-
dously in underlining your qualifications for the job.

Oracle provides DBA certification at the following levels—Oracle Database 11g Administrator
Certified Associate, Oracle Database 11g Administrator Certified Professional, and Oracle Database
11g Administrator Certified Master (OCM). Oracle provides the following descriptions of their certi-
fication programs:

12 CH AP T E R 1 ■ T HE OR A CL E DB A ’ S WO R L D

• OCA: The Oracle Certification Program begins with the Associate level. At this apprentice skill
level, Oracle Associates have a foundation knowledge that will allow them to act as junior
team members working with database administrators or application developers. The two
exams you are required to take expect knowledge of basic database administration tasks and
an understanding of the Oracle database architecture and how its components work and
interact with one another. The OCA is also a prerequisite to becoming an OCP.

• OCP: The exam ensures that the OCP with the 11g credential can competently address critical
database functions, such as manageability, performance, reliability, security, and availability
using the latest Oracle technology. The OCP is a prerequisite to becoming an Oracle Certified
Master.

■Note New Oracle Database 11g OCP candidates who wish to obtain the Oracle Database 11g DBA OCP credential
must attend one instructor-led course, either in-class or online, from the approved list of Oracle University courses.

• OCM: The Oracle Database 11 OCM credential is for the Oracle database guru—the senior
database professional with both classroom and on-the-job experience. The prerequisites are
that candidates earn an Oracle Database 11g OCP credential and complete advanced-level
coursework. The final stage requires that candidates prove their skills through an intensive
two-day hands-on practical examination.

My views on certification are really very practical. Preparing for certification will force you to
learn all the little details that you’ve been ignoring for some reason or another, and it will clarify your
thinking regarding many concepts. Also, the need to certify will compel you to learn some aspects
of database administration that you either don’t like for some reason or currently don’t use in your
organization. So if you’re not already certified, by all means start on that path. You can get all
the information you need by going to Oracle’s certification web site at http://www.oracle.com/
education/certification. Believe me, that certificate does look nice hanging in your cubicle, and it’s
a symbol of the vast amount of knowledge you’ve acquired in the field over time. You can rightfully
take pride in obtaining OCP-certified DBA status!

SYSTEM ADMINISTRATION AND THE ORACLE DBA

There’s a clear and vital connection between the Oracle DBA’s functions and those of the UNIX (or Windows) admin-
istrator in your organization. Your database and the database software will be running on a physical UNIX (or Windows
or Linux) server and a UNIX (or Windows or Linux) operating system. Depending on the size of your organization and
your role within it, you may need anything from a basic to a thorough understanding of operating system administra-
tion. In small firms where there’s no separate UNIX system administrator position, you may need to know how to
configure the UNIX server itself before you actually install and manage an Oracle server and the data on it. Fortunately,
this situation is very rare, and most organizations have one or more UNIX administrators in charge of managing the
UNIX servers and the data storage systems. Some small entities adopt Windows as an operating system, as it isn’t
quite as complex to manage as the UNIX operating system.

Although the system administrators usually are very helpful, it’s in your best interest to acquire as much skill in this
field as you can. This will help you in more ways than you can imagine. It will help you in working effectively with the
UNIX administrator, because you can both speak the same language when it comes to fancy topics such as the
logical volume manager and subnet masks. More important, a good understanding of the UNIX disk structure will
help you make the proper choice of disks when you design the physical layout of your database. By understanding
concepts such as UNIX disk volumes and the usage of system memory, you can improve the performance of your
databases and avoid bottlenecks that slow databases down. You can also write excellent monitoring scripts by being
well steeped in the UNIX shell scripting and the related awk and sed programming languages.

CH AP T E R 1 ■ TH E O R A CL E D B A ’ S W O R L D 13

You’ll find that UNIX is a fun operating system, with interesting commands and scripting languages that can contribute
to your being a highly effective Oracle DBA. One of the marks of an accomplished Oracle DBA is his or her expertise
in the way the operating system works. By acquiring system administration skills, you’ll become a well-rounded
professional who can contribute significantly to your organization’s IT needs. There are several web UNIX (and Linux)
shell accounts available. Get one of these free accounts and start practicing common UNIX commands, if you think
you need to practice your skills in this area.

Resources and Organizations for Oracle DBAs
As you progress in your career as an Oracle DBA, you’ll need to refer to various sources for trouble-
shooting information and general Oracle and database knowledge. I have a couple of recommendations
for organizations you may want to make a part of your professional DBA practice:

• The Oracle Technology Network (OTN) at http://otn.oracle.com or http://technet.oracle.com
is highly useful for DBAs and Oracle developers, and even better, it’s free! You’ll find every-
thing from online documentation to copies of all Oracle software available freely for download on
the OTN. The site offers a complete set of Oracle documentation.

• The International Oracle Users Group (IOUG), which you can find on the Web at http://
www.ioug.org/. Membership to this organization will set you back $125 currently, an expenditure
that most organizations will reimburse their DBAs for. The IOUG holds annual conventions
where practitioners in the field present literally hundreds of extremely useful papers. IOUG
makes these articles available to its members, and the organization also publishes a monthly
magazine. In addition to the international group, there are several regional Oracle user groups,
where users meet in their hometowns and discuss relevant DBA topics. For example, the group
located in Dallas, Texas, is known as the Dallas Oracle Users Group (http://www.doug.org/).
Oracle Corporation also holds an annual Oracle OpenWorld conference, where several inter-
esting and useful papers are presented. You can find session papers from recent OpenWorld
conferences by going to the Oracle OpenWorld Archives web site at http://www.oracle.com/
openworld/archive.

There are also dozens of sites on the Web today where you can find all kinds of useful informa-
tion and scripts for managing your databases, as well as help in certifying yourself as an OCP DBA.
Just go to your favorite search engine, type in the relevant keywords, and you’ll be amazed at the
amount of help you can get online in seconds. Before the proliferation of DBA-related web sites,
DBAs had to rely on printed materials or telephone conversations with experts for resolving several
day-to-day issues, but that’s not the case anymore.

A great way to enhance your knowledge is to maintain a network of other practicing Oracle
DBAs. It’s amazing how useful these contacts can be in the long run, as they provide a good way to
compare notes on new releases and difficult troubleshooting issues that crop up from time to time.
There’s really no need to reinvent the wheel every time you encounter a problem, and chances are
that most of the problems you face have already been fixed by someone else. Especially when you’re
starting out, your friendly Oracle DBA contacts will help you avoid disasters and get you (and your
databases) out of harm’s way.

You can find many excellent resources on the Internet to help you when you’re stuck or when
you need to learn about new features and new concepts. The Oracle DBA community has always
been a very helpful and cooperative group, and you’ll probably learn over time that you can resolve
many troublesome issues by getting on the Internet and visiting DBA-related sites. You can find
hundreds of useful scripts on the Internet, and you’re invited to use them. The following is a brief list
of excellent sites for Oracle DBAs. Of course, any omissions from this list are purely unintentional—
my sincere apologies to any other great sites that I either don’t know about yet or have just plain
forgotten about. These sites just happen to be some of the ones that I visit often:

14 CH AP T E R 1 ■ T HE OR A CL E DB A ’ S WO R L D

• Hotsos (http://www.hotsos.com/): The redoubtable Cary Millsap, well-known creator of the
Optimal Flexible Architecture (OFA) guidelines and the main author of the best-selling Oracle
performance book Optimizing Oracle Performance (O’Reilly, 2003), is the person behind the
Hotsos site. Visit this site for sophisticated, cutting-edge discussions of performance tuning
and other issues.

• Oracle-Base (http://oracle-base.com/): This site contains extremely useful and very well
written Oracle DBA articles. The site provides free help for preparing for the Oracle DBA certi-
fication exams.

• Ixora (http://www.ixora.com.au): Oracle internals expert Steve Adams is the main force
behind this site. Ixora offers first-rate discussions about many Oracle and UNIX performance
issues, although not much new material has been put up on this web site in recent years.

• OraPub (http://www.orapub.com/): This is another top-notch site led by an ex-Oracle employee.
It provides consistently high-grade white papers on key database administration topics.

• DBAsupport.com (http://www.dbasupport.com/): This is another useful site that offers many
scripts and a “how-to” series of articles on a variety of topics.

• Burleson Consulting (http://www.dba-oracle.com/): Popular Oracle writer and editor Don
Burleson runs this web site (and well-known author Mike Ault is a regular contributor). This
site is packed with terrific articles covering a broad range of DBA topics.

• Oracle FAQ (http://www.orafaq.com/): The Oracle FAQ site, run by Frank Naude of South
Africa, provides a lot of question-and-answer–type discussions of relevant topics.

There are several other sites that are useful, including dbazine.com (http://dbazine.com/),
Mark Rittman’s Oracle Weblog (http://rittman.net/), and Database Journal (http://
www.databasejournal.com), whose authors, Steve Callum, Jim Czuprinski, and James Koopmann,
present solid articles on various Oracle features. Also, Tom Kyte, the well-known Oracle expert,
maintains an extremely popular web site at http://asktom.oracle.com.

Oracle by Example
Oracle Corporation has been providing a highly useful (and absolutely free) set of step-by-step
implementations for many of the important features of the Oracle server software. I’m referring to
the Oracle Corporation’s Oracle by Example (OBE) series (http://www.oracle.com/technology/obe/
start/index.html), which provides authoritative hands-on experience with many features of the
Oracle database, including installation. I strongly recommend that you go through the OBE series
carefully and save yourself quite a bit of frustration when installing and using the database software.
Check it out!

Oracle Database Two-Day DBA Course
One of the most useful, if not the most useful, of the Oracle manuals for a beginning DBA is Oracle
Database 2 Day DBA (Oracle, 2008). The Oracle Database 2 Day DBA book is designed to provide new
DBAs with sufficient information to manage small to medium-sized databases. So, you if ever wanted an
online, self-paced, complete DBA program that’s free, you don’t have to look any further!

Oracle By Example has a complete series dedicated to the Oracle Database 2 Day DBA book. You
can go right from the installation of the database to performance turning using the Enterprise Manager
rather than the command line as the administrative interface. The Oracle by Example series covering
the course content of the Oracle Database 2 Day DBA manual, providing an unsurpassed introduc-
tion to DBA hands-on tasks. In fact, Oracle refers to the Oracle Database 2 Day DBA manual as
“actionable documentation” because of its emphasis on practice rather than concepts and theory.

CH AP T E R 1 ■ TH E O R A CL E D B A ’ S W O R L D 15

Oracle MetaLink
When you buy the Oracle server software and licenses from Oracle, you can choose from various
levels of service support. Support that requires a quick response and round-the-clock attention
costs more. Years ago, the only way to get Oracle to help you was by calling and talking to an analyst
by phone. Once an analyst was assigned to your technical assistance request (TAR), you and the
analyst would try to resolve the issue over the phone. If the analyst couldn’t fix the problem right
away, there would be a delay until the analyst found a solution to the problem.

For the last several years, Oracle has emphasized the use of a Web-based service called MetaLink
to help resolve TARs from customers. The MetaLink service is of enormous importance to the working
DBA, as it not only facilitates the exchange of important files and other troubleshooting information
through the File Transfer Protocol (FTP), but it also provides access to the actual database of previous
customer issues and the solutions provided by Oracle for similar problems. Thus, in many cases,
when you are dealing with problems of a small to medium degree of complexity, you can just log
onto the MetaLink web site (http://metalink.oracle.com/) and resolve your problem in minutes by
typing in keywords or the Oracle error number.

If you have a real problem and need Oracle troubleshooters to help you out, MetaLink is the
usual way to get that help. In most cases, the Oracle troubleshooters will ask you to upload several
files that’ll help diagnose the problem. In some cases, they may ask you to send in quite a lot of infor-
mation using a tool they call the RDA (remote diagnostic assistant), which helps the professionals
understand your system well. All this, of course, saves a bundle of money for Oracle, but more impor-
tant from the DBA’s point of view, it saves a tremendous amount of time that the DBA would otherwise
have to spend resolving garden-variety troubleshooting issues.

Oracle Web Conference
Oracle Web Conference (OWC), the latest means of support from Oracle, provides for collaboration
between you and Oracle Support. OWC allows the Oracle Support engineers to monitor the issues
and problems within your own environment using both telephone and the Web to troubleshoot.
You can download the archives of the web conference afterward.

■Note You can also look into Oracle Advanced Customer Services, which focuses on providing continual opera-
tional improvement of the Oracle environment in your organization.

The Daily Routine of a Typical Oracle DBA
Many of the daily tasks DBAs perform on a database involve monitoring for problems. This can
mean running monitoring scripts or using the Oracle built-in tools, such as Enterprise Manager, to
keep track of what’s actually happening with the database.

A good example of something you’ll want to monitor closely is space in the database. If you run
out of space on a disk where a database table resides, you can’t insert any more new data into the
table, and the transactions will fail. Of course, you can fix the problem by adding the requisite amount
of space and rerunning the transaction. But if you were properly monitoring the database, you would
have been alerted through a page or an e-mail that the particular table was in danger of running out
of space, and you could have easily avoided the subsequent Oracle errors.

You’ll normally check the reports generated by your monitoring scripts on a daily basis to make
sure no problems are developing with regard to disk space, memory allocation, or disk input and
output. Enterprise Manager is a handy tool for getting a quick, visual idea about various issues, such
as memory allocation and other resource usage. The monitoring scripts, on the other hand, can provide

16 CH AP T E R 1 ■ T HE OR A CL E DB A ’ S WO R L D

summarized information over a lengthy period of time; for example, they can provide interval-based
information for an entire night.

It’s also worthwhile to study the alert log (the log that Oracle databases maintain to capture
significant information about database activity) on a regular basis to see if it’s trapping any errors
reported by Oracle. You may do this alert log monitoring directly, by perusing the log itself, or you
could put a script in place that monitors and reports any errors soon after their occurrence in the
alert log.

You will need to take some action to fix the Oracle errors reported in the alert log. Based on the
nature of the error, you may change some parameters, add some space, or perform an administrative
task to fix the problem. If the problem has no fix that you are aware of, you may search the MetaLink
database and then open a new TAR with Oracle to get help as soon as you can.

Oracle, like every other software company, is constantly improving its software by releasing
upgraded versions, which usually have newer and more sophisticated features. It’s your responsi-
bility as a DBA to be on top of these changes and to plan the appropriate time for switching over to
new versions. Some of these switches might be to completely upgraded versions of software and may
require changes in both the applications and the DBA’s configuration parameters. Again, the right
approach is to allow plenty of time for testing the new software to avoid major interruptions in serving
your customers.

Some General Advice
As you progress in your journey as an Oracle DBA, you’ll have many satisfying experiences as well as
some very frustrating and nerve-racking moments. In the following sections, I make three important
suggestions that will help you when you are going through the latter.

Know When You Need Help
Although it’s always nice to figure out how to improve performance or recover an almost lost production
database on your own, know when to call for help. It doesn’t matter how much experience you gain,
there will always be times when you’re better off seeking advice and help from someone else. I’ve
seen people lose data as well as prolong their service disruption when they didn’t know what they
didn’t know. You can’t successfully manage production databases by basing your decisions on
incomplete knowledge or insufficient information.

Remember You Are Not Alone
I don’t mean this in any philosophical way—I just want to remind you that as an Oracle DBA, you’re
but one of the people who have the responsibility for supporting the applications that run on your
databases. You usually work within a group that may consist of UNIX and Windows administrators,
network administrators, storage experts, and application developers. Sometimes the solution to a
problem may lie in your domain, and other times it may not. You can’t take all the credit for your
application running well, just as you don’t deserve all the blame every time database performance
tanks. Today’s enterprises use very sophisticated servers, storage systems, and networks, and you
need the help of experts in all these areas to make your database deliver the goods. Oracle isn’t always the
cause of your problems—sometimes the system administrator or the network expert can fix your
problems in a hurry for you.

CH AP T E R 1 ■ TH E O R A CL E D B A ’ S W O R L D 17

Think Outside the Box
Good DBAs constantly seek ways to improve performance, especially when users perceive that the
database response may be slow. Sometimes tinkering with your initialization parameters won’t help
you, no matter how long you try. You have to step back at times like this and ask yourself the following
question: Am I trying to fix today’s problems with yesterday’s solutions? There’s no guarantee that
things that worked well for you once upon a time will serve you equally well now. Databases aren’t
static—data changes over time, users’ expectations change, load factors increase with time, and so
on. As a DBA, it pays not to rest on your laurels when things are going fine; rather, you should always
be looking at new database features that you can take advantage of. You can’t constantly increase
memory or CPU in order to fix a performance problem. For example, you may have a situation where
memory usage is very high, response times are slow, and the user count is going up steadily. Maybe
you should rethink your architectural strategies at times like this—how about replacing the dedi-
cated server approach with the Oracle multithreaded server? It’s a big switch in terms of the way
clients connect to your database, but if the new strategy has great potential, the effort will pay off big.

Primum Non Nocere
The ancient medical admonition primum non nocere (first, do no harm) could also serve for us
DBAs, when we are confronted with a database that needs recovery or some such critical operation.

In critical situations, it’s better to gather vital facts and clarify the conceptual basis of your
impending changes before actually typing commands in a hurry. Your goal is to resolve the issue at
hand, of course, but at a minimum, you shouldn’t do any further harm! Slow down, make sure you
really understand what’s at stake, and then proceed further or call for additional help.

19

■ ■ ■

C H A P T E R 2

Relational Database Modeling
and Database Design

Aside from dealing with tables and the queries that are based on them, many DBAs don’t have a
detailed understanding of database topics, such as normalization, functional dependency, and
entity-relationship modeling. However, a good database is the bedrock on which you can create a
good application. The ability to design a database is particularly useful to DBAs working in smaller
organizations, where they’ll need to know how to do everything from working with the UNIX file
system to resolving networking issues. Even if designing databases isn’t a part of your job descrip-
tion, however, understanding database design will help you when performance tuning the database.

Because the needs of organizations differ, you can’t take a “one size fits all” approach to data-
bases. This makes database design one of the most interesting and challenging areas available to you
when working with databases, and large corporate database systems in particular. Someone in the
organization needs to first model the needs of the organization on a conceptual level and then use
this conceptual design to physically design and build the database. Even though it’s not absolutely
necessary that you, as a DBA, be an expert in database design, your knowledge as a competent Oracle
DBA isn’t complete until you learn at least the rudiments of database modeling and design.

In this chapter, you’ll first learn the conceptual basis of a relational database, which is what an
Oracle Database 11g database is. After you explore the basic elements of the relational database life
cycle, you’ll learn how to perform conceptual or logical data modeling. Data normalization is very
important when dealing with relational databases, and this chapter discusses this topic in detail.
Finally, you’ll learn how to translate the logical data model into a design you can physically imple-
ment. Oracle Corporation refers to its databases as “object-relational” databases, so the chapter
concludes with a brief discussion of object-relational databases.

Relational Databases: A Brief Introduction
Oracle Database 11g is a leading example of a relational database management system (RDBMS),
although Oracle prefers to call its database an object-relational database management system
(ORDBMS). (As you’ll see toward the end of this chapter, you derive the object-relational model by
combining object-oriented design with the traditional relational model.) Relational databases have
become the pervasive model of organizing data in the last three decades, and they have revolution-
ized how companies manage their data. Relational database management systems use relationships
among data to answer complex queries.

20 CH AP T E R 2 ■ R E L A T I ON AL D A TA B AS E M O DE L IN G AN D D AT A B ASE D E S I G N

■Note Thanks to the many RDBMS wizards that walk users through the database creation process step by step,
even novices can set up a database; the very ease with which you can create a database sometimes contributes to
poorly designed databases. My own general rule of thumb is that if database design isn’t your forte, find a person who
is good at database design to help you. Putting some effort into good design up front will pay rich dividends later on.

The relational model’s domination of the database market is expected to continue into the foresee-
able future, given the massive investment many large organizations have made in both the databases
themselves and the staff required to manage them. The powerful and easy-to-understand relational
databases are indeed the mainstay of a vast majority of organizations in today’s world economy.

Relational databases are based on the precepts laid down by E. F. Codd in the 1970s, when he
was working for IBM. Codd’s paper, which outlined the model, “A Relational Model of Data for Large
Shared Data Banks,” was published in June 1970 in the Association of Computer Machinery (ACM)
journal, Communications of the ACM, and Codd’s model is accepted as the model for RDBMSs. D. L.
Childs presented a similar set-oriented relational model in 1968, but it is Codd’s exposition that
made relational databases popular.

There were (and still are) nonrelational database models that preceded the relational model—
specifically, the hierarchical and the network models. Both the network model and the hierarchical
model use actual data links called pointers to process queries issued by users. These models, although
powerful as far as performance goes, lead to a very complex database, and they are no longer adopted
by most organizations. You can call relational databases second-generation database management
systems.

The Relational Database Model
Three key terms are used extensively in relational database models: relations, attributes, and domains.
A relation is a table with columns and rows. The named columns of the relation are called the attributes,
and the domain is the set of values the attributes are allowed to take.

The basic data structure of the relational model is the table, where information about the partic-
ular entity (say, an employee) is represented in columns and rows (also called tuples). Thus, the
“relation” in “relational database” refers to the various tables in the database; a relation is a set of
tuples. The columns enumerate the various attributes of the entity (the employee’s address or phone
number, for example), and the rows are actual instances of the entity (specific employees) that is
represented by the relation. As a result, each tuple of the employee table represents various attributes
of a single employee.

All relations (and thus tables) in a relational database have to adhere to some basic rules to
qualify as relations. First, the ordering of the columns is immaterial in a table. Second, there can’t be
identical tuples or rows in a table. And third, each tuple will contain a single value for each of its attri-
butes. (Remember that you can order the tuples and columns in any way you wish.)

Tables can have a single attribute or a set of attributes that can act as a “key,” which you can then
use to uniquely identify each tuple in the table. Keys serve many important functions. They are
commonly used to join or combine data from two or more tables. Keys are also critical in the creation
of indexes, which facilitate fast retrieval of data from large tables. Although you can use as many
columns as you wish as part of the key, it is easier to handle small keys that are (ideally) based on just
one or two attributes.

Database Schemas
The database schema, a set of related tables and other database objects, is a fundamental concept in
relational databases, and it is part of the logical database structure of an Oracle database. A schema

C HA P TE R 2 ■ R E L AT IO N A L D AT AB A SE M OD E L I N G A N D D AT AB A SE D E S IG N 21

is always associated with a user, and it can be defined as a named collection of objects owned by a
user. That is why the terms “user” and “schema” are used almost synonymously in Oracle databases.

A relational database schema consists of the definition of all relations with their specific attri-
bute names, as well as a primary key. The schema further includes the definition of all the domains,
which are the ranges of values the attributes can take.

All work on a relational database is essentially performed through the use of a database language
called Structured Query Language (SQL).

Relational Algebra
Relational databases are founded on basic mathematical principles (set theory). The very first line of
E. F. Codd’s seminal paper that outlined the relational database model makes this clear:

This paper is concerned with the application of elementary relation theory to systems which
provide shared access to large banks of formatted data.1

Relational algebra consists of a set of operations for manipulating one or more relations without
changing the originals. The following are the basic operations that you can perform on a relational
database using relational algebra; these are called unary operations, because they involve the manipula-
tion of tuples in a single relation.

• Selection: A selection operation extracts (or eliminates) a set of tuples from a relation based
on the values of the attributes of the relation.

• Projection: A projection operation extracts (or eliminates) a specified set of columns of a relation.

Besides these unary operations, relational algebra supports binary or set operations to manipu-
late the relations themselves. (Remember that a relation is a set of tuples.) Binary operations merge
elements from two relations into a new relation. The set operations are as follows:

• Union: A union combines two relations to produce a new, larger relation.

• Intersection: Intersection creates a new relation that has only the common tuples in two relations.

• Difference: Difference creates a new relation that has only the noncommon tuples in
two relations.

• Cartesian product: The Cartesian product creates a new relation that concatenates every
tuple in relation A with every tuple in relation B. The Cartesian product is just one example of
a join operation.

■Note Join operations combine two or more relations to derive a new relation based on identical values in the
columns (join columns) on the basis they are joined. The resulting relation would be a Cartesian product if you
include all the tuples in both relations. However, you usually need only a part of this Cartesian product, based on all
tuples in both relations that share a common value for the join column. A natural join is where you combine tuples
from two relations, A and B, by combining all rows in A and B that have identical values for all common attributes.
A theta-join, on the other hand, pairs tuples in two relations, based on an arbitrary condition.

1. E. F. Codd, “A Relational Model of Data for Large Shared Data Banks,” Communications of the ACM, vol. 13, no. 6
(June 1970): 377–87.

22 CH AP T E R 2 ■ R E L A T I ON AL D A TA B AS E M O DE L IN G AN D D AT A B ASE D E S I G N

It looks as if relational algebra, which is based on set theory principles, should be sufficient to
retrieve information from relational databases, which are also based on set theory. The problem with
relational algebra is that though it’s based on correct mathematical principles, it relies on a mathe-
matical procedural language. So if you want to use it for anything but the simplest database queries,
you’re apt to run into quite complex, messy mathematical operations. Only highly skilled profes-
sional programmers can use such a database. To avoid the complexity of relational algebra and to
focus on the queries without worrying about the procedural techniques, you use relational calculus.

Relational Calculus
Relational calculus does not involve the mathematical complexity of relational algebra; it focuses
only on what the database is being queried for, rather than how to conduct the query. In other words,
it is a declarative language. You focus on the results you expect and the conditions to be satisfied in
the process, and you ignore the sequencing of the relational algebra concepts. Relational calculus is
based on a part of mathematical logic called propositional calculus or, more precisely, first-order
predicate calculus. Relational calculus involves the use of operators such as AND and OR to manipulate
relations in logical expressions.

SQL
Relational calculus is far easier to use than relational algebra, but it still is based on the principles of
logic and it is not easy for most people to use. You thus need an easy-to-use implementation of rela-
tional calculus. Structured Query Language (SQL) is one such implementation, and it has become
hugely popular as the predominant language for the relational database model. SQL is considered a
“relationally complete” language, in the sense that it can express any query that is supported by rela-
tional calculus.

Structured English Query Language (SEQUEL), the precursor of SQL, was developed by IBM to
use Codd’s relational database model. Oracle introduced the first commercially available implemen-
tation of SQL in 1979 (when Oracle was known as Relational Software), and SQL has since become
the standard language for RDBMSs, although not all implementations adhere completely to the offi-
cial standards. Oracle has its own implementation of SQL, which is very close to the American
National Standards Institute (ANSI) standard (visit http://www.ansi.org/ for more information).

SQL is an English-like language that enables you to manipulate data in a database. Using SQL,
you can derive any relation that can be derived using relational calculus. You can formulate queries
in easy-to-format structures, which are then processed by sophisticated database servers into
complex forms to get the queried data. Its intuitive appeal, ease of use, and tremendous power and
sophistication have made SQL the language of choice when working with any relational database.

You can divide SQL statements into two major categories: data definition language (DDL) and
data manipulation language (DML). DDL statements are used to build and alter database structures,
such as tables, and to define and construct database schemas. DML statements are used to manip-
ulate data in the database tables; with DML statements, you can delete, update, and insert tuples that
are part of a relation.

The Appendix provides a quick introduction to the Oracle Database 11g SQL language as well as
to PL/SQL, Oracle’s procedural extension to standard SQL that provides the power of traditional
programming languages along with SQL’s ease of use.

C HA P TE R 2 ■ R E L AT IO N A L D AT AB A SE M OD E L I N G A N D D AT AB A SE D E S IG N 23

Relational Database Life Cycle
The essential steps of a typical relational database life cycle are as follows:

1. Requirements gathering and analysis

2. Logical database design

3. Physical database design

4. Production implementation

I will examine each of these stages in detail in the rest of this chapter. You could, of course, forget
about using any methodology, and just design your database any way you want, create the struc-
tures, load the data, and be in business. However, improper database design has serious long-term
performance implications, and you risk ending up with an inadequate database or simply with one
that is wrong for your company’s information and analysis needs.

One thing to bear in mind is that databases tend to grow, and the better the database, the bigger
it tends to get as more and more users rely on it. In addition, it won’t take long for your application
developers to begin to expand upon the core data, especially with today’s requirements to make as
much data as possible available on the Web.

Requirements Gathering and Analysis
The requirements-gathering stage is the first step in designing a new database. You must first find
out, through an iterative process, the requirements of the organization for the database. The prelim-
inary stage of the database life cycle addresses questions of this nature:

• Why is this new database necessary?

• What objective is this database going to help achieve?

• What current systems is the database going to replace?

• What systems (if any) will the database have to interact with?

• Who are the target users of the database?

This stage should yield a clear idea of the expectations of all concerned parties regarding the
new system to be supported by the yet-to-be-created database. Requirements analysis for the firm
involves extensive interviewing of users and management. The design team should also evaluate
both the data that will go into the database and the expected output of the database.

It’s common practice to use graphical representations of the application systems to better
understand the flow of data through the system. Data-flow diagrams (DFDs) or process models are
commonly used at this stage to capture the data processes within and outside the application.

Let’s use an educational institution as an example to identify the processes. Say that a college
has four processes: Manage Student Records, Manage Course Information, Manage Enrollment,
and Manage Class Schedules. The Manage Student Records process maintains all student records, and
it updates that information as necessary. The Manage Course Information process takes care of
collecting all future course information from the various departments of the college. It is also respon-
sible for making changes in the course list when departments add or drop courses for any reason.

24 CH AP T E R 2 ■ R E L A T I ON AL D A TA B AS E M O DE L IN G AN D D AT A B ASE D E S I G N

The Manage Enrollment process is more complex than others because it receives inputs from
several processes. For example, when a student attempts to enroll in a new course, the Manage
Enrollment process needs to first verify from the Manage Student Records process whether the
student is in good standing. Next, it has to find out from the Manage Course Information process
whether the course is indeed being offered. Then the Manage Enrollment process will enter this new
student and course information in its part of the data flow. Only after the successful completion of
all these processes can the Manage Class Schedules process send the new schedule out to the student.

As complex as the brief description of data flows and business processes sounds, the use of
sophisticated tools such as ERWin Data Modeler or PowerDesigner makes it easy to come up with
fancy DFDs and process models with a minimum of frustration. You can find a list of data modeling
tools, including all the popular ones as well as some free ones, at http://www.databaseanswers.com/
modelling_tools.htm.

Logical Database Design
Database design is both an art and a science. The science part comes in the form of adherence to
certain rules and conditions, such as normalization (more about this later in the chapter). Database
design is also an art, because you need to model relationships using your understanding of the real-
world functioning of the organization.

You can formally define logical database design as the process of creating a model of the real
world for the database, independent of an actual database system or other physical considerations.
Accuracy and completeness are the keys to this activity. One of the best things about this stage is that
it’s easy to take a draft design, throw it away, and start again, or simply amend it. It’s a whole lot easier
to tinker at the design stage than to deal with the production headaches of an already implemented
database that isn’t designed well.

The logical design stage is sometimes broken up into a conceptual part and a logical part, but
that’s merely a distinction based on nomenclature. The conceptual database design is usually a
precursor for the logical design phase and involves the modeling of the information without refer-
ence to any underlying data model. The logical design phase explicitly uses a specific data model, like
the relational data model, for example—you focus on the logical relationships involved in your
conceptual design at this stage. Logical design involves conceptually modeling the database and
ensuring that data in the tables passes integrity checks and isn’t redundant. To satisfy these require-
ments, you need to implement data normalization principles, as you’ll see shortly.

Entity-relationship modeling (ER modeling) is a widely used methodology for logically repre-
senting and analyzing the components of the business system, and it is commonly used to model the
enterprise after the requirements analysis is completed. The entity-relationship models are easy to
construct, and their graphical emphasis makes them very easy to understand. However, you can’t
build a real-life RDBMS using the entity-relationship model of an enterprise. ER modeling’s utility
lies in designing databases, not implementing databases. ER modeling can’t form the basis of a high-
level data-manipulation language like SQL, so the model that designers build using the ER modeling
approach is translated to the relational model for implementation. By converting the abstract entity-
relationship design into a relational database schema, the relational model helps convert the entity-
relationship design into a relational DBMS.

Entity-Relationship Modeling

Before you can proceed to actually create databases, you need to conceptually model the organiza-
tion’s information system so you can easily see the interrelationships among the various components of
the system. Data models are simple representations of complex real-world data structures, and the
models help you depict not only the data structures, but also the relationships among the components
and any constraints that exist. Conceptual modeling of the enterprise leads to clear indications

C HA P TE R 2 ■ R E L AT IO N A L D AT AB A SE M OD E L I N G A N D D AT AB A SE D E S IG N 25

regarding the tables to be built later on and the relationships that should exist among those tables. ER
modeling involves the creation of valid models of the business, using standard entity-relationship
diagrams (ERDs). Note that the conceptual model is always independent of both software and hard-
ware considerations.

ER modeling was originally proposed by Peter Chen in 1976, and it is now the most widely used
technique for database design. (You can download Chen’s original proposal document as a PDF file
at http://citeseer.ist.psu.edu/519283.html.) Nevertheless, there are several design methodologies
other than ER modeling available for you to use. For several years, researchers have struggled to
model the real world more realistically by using semantic data models, which try to go beyond the
traditional ER modeling methodology.

■Note The World Wide Web Consortium (W3C) is leading a collaborative effort called the Semantic Web, which
provides a common framework to share data and reuse it across applications as well as community boundaries. The
Semantic Web is based on the Resource Description Framework (RDF), which allows it to use common formats for
integrating data drawn from diverse sources. The Semantic Web also is a unified language that helps you record
how data relates to real-world objects. The general idea is to try to bring some meaning to the massive amount
of data and information available. Information on the Web is designed for and presented to humans, but on the
Semantic Web, data and information will be designed so that it can be understood and manipulated by computers
as well as humans. On the Semantic Web, you will use software agents to go off in search of data and information
on your behalf. Please go to http://www.w3.org/2001/sw/ for more about the Semantic Web initiative. An
excellent article on this exciting approach is “The Semantic Web,” by Tim Berners-Lee, James Hendler, and Ora
Lassila, available at http://www.scientificamerican.com/article.cfm?articleID=00048144-
10D2-1C70-84A9809EC588EF21&catID=2.

You can use the conceptual model of your organization as a communications tool to facilitate
cooperative work among your database designers, application programmers, and end users. Good
conceptual models can help resolve the differing conceptions of data among these groups. Concep-
tual models help define the constraints that your organization imposes on the data and help clarify
data processing needs, thus aiding in the creation of sound databases.

ER modeling views all objects of the business area being modeled as entities that have certain
attributes. An entity is anything of interest to the system that exists in the business world. An entity
can be real (for example, a student) or it can be conceptual (a student enrollment, which does not
actually exist until the entity’s student and course are combined when the student signs up for a
particular course). Conceptual entities are generally the hardest to discover, but ER modeling, as you
shall see, assists in their discovery.

Attributes of entities are simply properties of the entities that are of interest to you. For example,
a student entity may have attributes such as Student ID, Address, Phone Number, and so on.

ER modeling further describes the relationships among these business entities. Relationships
describe how the different entities are connected (or related) to one another. For example, an
employee is an entity that possesses attributes such as Name and Address, and he or she is, or may
be, related to another entity in the model called Department through the fact that the employee
works in that department. In this case, “works” is the relationship between the employee and the
department.

Types of Relationships

You can depict two or more entities in a relationship, and depending on the number of entities, you
may describe the degree of relationship as binary, ternary, quaternary, etc. The most common
degree of relationship in real life cases is binary, so let’s examine a binary relationship in more detail.

26 CH AP T E R 2 ■ R E L A T I ON AL D A TA B AS E M O DE L IN G AN D D AT A B ASE D E S I G N

The cardinality of a relationship indicates how many instances of one entity can be related to an
instance of another entity. Just because a binary relationship reflects a relationship between two
entities doesn’t mean that there is always a one-to-one relationship between them—cardinality in
ER modeling expresses the number of occurrences of one entity in relation to another entity. Entity
relationships can be one-to-one, one-to-many, many-to-many, or some other type. The most
common relationships are the following (assume there are two entities, A and B):

• One-to-many (1:M) relationship: In this case, each instance of an entity A is related to several
members of another entity, B. For example, an entity called Customer can check out many
books from a library, but one and only one Customer can borrow each book at a time. Thus,
the entity Customer and the entity Book have a one-to-many relationship. Of course, the rela-
tionship may not exist if you have a Customer who has not yet borrowed a Book. So the relation is
actually “one Customer may borrow none, one, or many Books.”

• One-to-one (1:1) relationship: This relationship is a situation where only one instance of
either entity can be related to an instance of the other entity. For example, a person could have
only one legal social security number (SSN), and each SSN should refer to just one person.

• Many-to-many (M:M) relationship: In this situation, each instance of entity A is related to one
or more instances of entity B, and an instance of entity B is related to one or more instances
of entity A. As an example, let’s take an entity called Movie Star and an entity called Movie.
Each Movie Star can star in several Movies, and each Movie may have several Movie Stars. In
real life, a many-to-many relationship is usually broken down into a simpler one-to-many
relationship, which happens to be the predominant form of “cardinality” in the relationships
among entities.

Accurately determining cardinalities of relationships is the key to a well-designed relational
database. Duplicated data, redundancy, and data anomalies are some of the problems that arise
when you don’t model relationship cardinalities correctly.

Candidate Keys and Unique Identifiers

Candidate keys are those attributes that can uniquely identify a row in a table, and a table can have
more than one candidate key. For example, it’s fairly common for an employee table to have both a
uniquely generated sequence number as well as another identifier, like an employee number (or
social security number). (Of course, any whole row, itself, could serve as a candidate key, because by
definition a relational model can’t have any duplicate tuples. However, a whole row is rarely used as
the key, since the point of a key is to easily access the row.)

The primary key is the candidate key that’s chosen to uniquely identify each row in a table. You
should always strive to select a key based on a single attribute rather than on multiple attributes, for
simplicity and efficiency.

Keys are vital when you come to the point of physically building the entity-relationship models.
A natural primary key is one that consists of data items or entity attributes. Almost all modern rela-
tional databases, including Oracle databases, also offer simple system numbers or sequenced numbers
that are generated and maintained by the RDBMS as an alternative to a natural primary key (such as
a sequence number to identify orders). Such keys are often referred to as surrogate or artificial
primary keys.

Whatever method you choose—a natural key or a surrogate key—certain rules apply:

• The primary key value must be unique.

• The primary key can’t be null (blank).

• The primary key can’t be changed (it must remain stable over the life of the entity).

• The primary key must be as concise as possible.

C HA P TE R 2 ■ R E L AT IO N A L D AT AB A SE M OD E L I N G A N D D AT AB A SE D E S IG N 27

■Note Later in this chapter, I provide some guidelines about selecting keys (primary keys in particular).

Step-by-Step: Building an Entity-Relationship Diagram

You can build logical diagrams by using tools such as the Oracle Designer, or the Oracle Warehouse
Builder if you are building a data warehouse. If you wish, you can create rudimentary logical diagrams
with nothing more than a pencil and paper. In this section, you’ll build a simple entity-relationship
diagram describing a university, using entities called Student, Class, and Professor. You’ll use a rect-
angle to depict an entity, and a diamond shape to show relationships (as is common practice),
although you could use different notations.

Let’s assume the following relationship between two entities, Student and Class:

• A Student can enroll in one or more Classes.

• A Class has one or more Students enrolled.

Data modeling starts out easy and then rapidly gets complex as you begin to ask questions and
discover the various rules and constraints in force on the data.

Here are the steps you need to follow to create the entity-relationship diagram:

1. Define your entities—Student, Class, and Professor.

2. Draw the entities using a rectangle to represent each one.

3. For each of the entities in turn, look at its relationship with the others. It doesn’t matter
which entity you begin with. For example, look at the Student and the Professor. Is there a
relationship between these entities? Well, a Professor teaches a class, and a student attends
one or more classes, so at first glance there is a relationship between these entities. But in
this case it is an indirect relationship via the Class entity.

4. Examine the Student and Class entities. Is there a relationship? Yes, a Student may attend
one or more Classes. One or more Students may attend a Class. This is a many-to-many
relationship.

5. Now look at the Class and Professor entities. One Professor teaches each Class and each
Professor can teach many Classes. However, if a Professor is absent (due to illness, for example),
do you need to record the fact that a different Professor taught his or her Class on that occasion?
What if two Professors teach the same Class? Do you need to record that information? As a
modeler, you need to address all questions of this nature so that your model is realistic and
will serve you well.

6. Assign the following attributes to the various entities:

• Student: Student ID, First Name, Last Name, Address, Year

• Professor: Staff ID, Social Security Number, First Name, Last Name, Office Address,
Phone Number

• Class: Class ID, Classroom, Textbook, Credit Hours, Class Fee

Look at the Textbook attribute in the Class entity. You can use this attribute to illustrate an
important point. As the entity stands right now, you could assign only one Textbook per Class.
This could be the case, depending on the business rules involved, but what do you do if you need
to record the fact that there are several textbooks recommended for each Class? The current
model would not permit you to do this unless you stored multiple data items in a single field. To
resolve this, you could add a new entity called Textbooks, which could then be related to the
Class entity. This way, you could associate many different Textbooks with each Class.

28 CH AP T E R 2 ■ R E L A T I ON AL D A TA B AS E M O DE L IN G AN D D AT A B ASE D E S I G N

7. The cardinality of a relationship, as you saw earlier, dictates whether a relationship is one-to-
one, one-to-many, many-to-many, or something else. Define the cardinality of the system at
this point. Assign the one-to-many or many-to-one cardinality indicators. Break down any
many-to-many relationships to simpler relationships (such as two one-to-many relation-
ships). For example:

• A Student can enroll in one or more Classes.

• Each Class can have many Students enrolled.

This is a many-to-many relationship, which you must break down by using a link table. In
this case, the link table turns out to be an entity in its own right. This new entity contains the
individual enrollment record for each Class attended by a single Student.

8. Translate the relationships into an actual entity-relationship diagram by using rectangles for
entities, diamonds for relationships, and ovals for the attributes of the entities.

Your entity-relationship diagram should be able to address all the functional requirements of
the database in order for it to be adopted as a valid model. In the preceding example, I used some
straightforward relationships among the various entities, but in real life, you may encounter more
complex relationships like the recursive relationship, when data within an entity has a relationship
to itself. For example, in a Staff table, a member of the staff may report to a higher level member of
the staff. If this is the case, then the table is said to have a recursive relationship with itself.

I have barely scratched the surface of ER modeling, which is an art in itself—one at which you
will improve with practice. As with anything else, the more time you spend actually practicing data
modeling, the more proficient you will get at it.

■Tip The Internet is a great source for both simple and complex case studies you can use to try out your modeling
skills. You can find anything from simple order processing databases to full-fledged personnel systems on the Web.
One of the best resources I’ve found is the web sites of major universities. Find the descriptions of computer science
courses and pay special attention to the contents of database design courses, many of which have tutorials on
creating entity-relationship diagrams.

Normalization

Normalization is the procedure through which you break down and simplify the relations (tables) in
a database to achieve efficiency in retrieving and maintaining data. The most common reason for
normalizing table data is to avoid redundancy, which reduces data storage requirements and leads
to more efficient queries. Another reason to normalize data is to avoid data anomalies.

Why Normalize?

You’ve probably heard discussions about normalization that range from treating it like the Holy
Grail to viewing it as a feature that adversely affects performance. What is it about normalization
that gets people going so? You can put all your data somewhere in a table, and as long as you can
write SQL code to retrieve the necessary data, and you have a good RDBMS running on a machine
with plenty of fast processors, you shouldn’t have a slow-performing database, right? The truth is
that poorly designed relations and tables in a database can have serious effects, not only on the effi-
cacy of your database, but also on the validity of the data itself.

Let’s look at an example of an ordering system in a warehouse. Imagine a simple table with
each customer’s information contained in a single tuple or row. What happens if customer A has
1,000 transactions and customer B has only one or two transactions? Either customer A’s transac-
tions will not all fit in the row, or customer B’s row will be mostly empty. Either you will not be able

C HA P TE R 2 ■ R E L AT IO N A L D AT AB A SE M OD E L I N G A N D D AT AB A SE D E S IG N 29

to cater to the customer, or you will waste a tremendous amount of space in the database. Simple
queries turn into terrible resource wasters under this design.

You can try another variation on the previous design by creating a much more compact table by
allowing repeatable values of the attributes. That is, for each transaction, each customer’s complete
information would be repeated. Now you have just traded one set of problems for another. If
customer A’s information changes, each of that customer’s rows in the table would need to be updated.
For such repeated groups, when you perform updates, you have to make sure to update all occur-
rences of the particular customer’s data, or you will end up with an inconsistent set of data.

Data Anomalies

You can see on an intuitive level that designing without a solid design strategy, based on sound
mathematical principles, will lead to several problems. Although it is easy to see the inefficiency
involved in the unnecessary consumption of storage space and longer query-execution times, other,
more serious problems occur with off-the-cuff design of tables in a database—these are the so-
called data anomaly problems.

Three types of data anomalies can result from improperly designed databases:

• The update anomaly: In this well-known anomaly, you could fail to update all the occurrences
of a certain attribute because of the repeating values problem.

• The insertion anomaly: In this anomaly, you are prevented from inserting certain data because
you are missing other pieces of information. For example, you cannot insert a customer’s data
because that customer has not bought a product from your warehouse yet.

• The deletion anomaly: In this anomaly, you could end up losing data inadvertently because
you are trying to remove some duplicate attributes from a customer’s data.

■Note The debate between database developers and designers continues over denormalization. Many believe
it’s okay to break almost all design rules and denormalize for performance gains. However, others believe that this
isn’t correct and that the act of denormalization reduces the integrity of the database by removing the controls that
lie at the heart of RDBMS design.

The Normal Forms

Before you embark on the normalization process, it’s a good idea to understand the concept of
functional dependence, which is defined as follows:

Given a relation (table) R, a set of attributes, B, is functionally dependent on attribute A if at
any given time each value of attribute A is associated with a given value of B.

In simple terms, functional dependency is denoted symbolically as A ➤ B (meaning that entity
A determines the value of entity B), and it turns out to be crucial in understanding the normalization
process.

Normalization is nothing more than the simplification of tables into progressively simpler
forms to get rid of undesirable properties, such as data anomalies and data redundancy, without
sacrificing any information in the process. E. F. Codd laid out the normalization requirements
succinctly by requiring the elimination of nonsimple domains and then the removal of partial and
indirect dependencies. As the tables are taken through simpler normal forms, the preceding prob-
lems are eliminated.

30 CH AP T E R 2 ■ R E L A T I ON AL D A TA B AS E M O DE L IN G AN D D AT A B ASE D E S I G N

You can take a table through several levels of simplification, called the first normal form (1NF),
second normal form (2NF), third normal form (3NF), Boyce-Codd normal form (BCNF), fourth
normal form (4NF), and fifth normal form (5NF). Each successively higher stage of the normalization
process eliminates a particular type of undesirable dependency that you saw earlier.

Non-Normalized Data

In this and the following sections, I’ll show you a set of data that is non-normalized and then show
you how you can make it conform to various normal forms.

In the initial list of data shown in Table 2-1, each employee’s information is accompanied by the
skills that the employee has. Some employees may have a single skill, and some may have several. In
order to answer a simple question, such as “Does John Thomas have accounting skills?” you have to
first find John Thomas’s record and then scan the list of skills associated with that employee. Obvi-
ously, this is inefficient and leads to the maintenance of redundant data.

First Normal Form (1NF)

A table is said to be in 1NF if it doesn’t contain any repeating groups; that is, no column should have
multiple values for any given row. This definition, of course, implies that a non-normalized table
contains one or more repeating groups. A repeating group occurs when there are multiple values for
a single occurrence of an attribute in a table.

To summarize, a table (relation) is in 1NF if

1. There are no duplicated rows in the table.

2. Each cell is single-valued (that is, there are no repeating groups or arrays).

3. Entries in a column (attribute, field) are of the same kind.

■Note The order of the rows and columns doesn’t matter. The requirement that there be no duplicated rows in
the table means that the table has a key (on one column or a combination of columns).

Thus, to put your tables in 1NF, you must first eliminate repeating groups, which can generally
be identified by multiple values being stored at the intersection of a row and column. For example,
if an employee has several skills, you might have to specify multiple values in the Skill ID column for

Table 2-1. Non-Normalized Table

Employee Number

Employee Name

Department Number

Department Name

Department Location

Skill ID

Skill Name

Skill Level

C HA P TE R 2 ■ R E L AT IO N A L D AT AB A SE M OD E L I N G A N D D AT AB A SE D E S IG N 31

that employee. Or you may be using several rows for the same employee, one for each skill. Neither
is an attractive option. The way to simplify this table into a 1NF table is to break it down so there are
only single, atomic values for each attribute or column. Create a separate table for each set of related
attributes, and give each table a primary key.

In our example, moving the skills attribute into a separate table helps considerably. Separating
the repeating groups of skills from the employee data results in two tables in first normal form. The
Employee Number in the Skills table matches the primary key in the Employees table, providing a
foreign key for relating the two tables with a join operation (see Tables 2-2 and 2-3).

Now we can answer our question about whether John Thomas has accounting skills with a
direct retrieval: look to see if John Thomas’s Employee Number and the Skill ID for accounting
appear together in the Skills table. Note that in the Skills table, the primary key is a multivalued, or
composite, key, consisting of both Employee Number and Skill ID.

Second Normal Form (2NF)

A table is said to be in 2NF if it is already in 1NF and every non-key attribute is fully functionally
dependent on the primary key. Since a partial dependency occurs when a non-key attribute is
dependent on only a part of the (composite) key, the definition of 2NF is sometimes phrased as
follows:

A table is in 2NF if it is in 1NF and it has no partial dependencies.

First, let’s look at a case where a table is in 1NF but not in 2NF. Table 2-4 satisfies 1NF, since it
contains no repeating groups. However, there is redundancy in the data, since the same Skill Name
(accounting, for example) appears for every employee who possesses that skill. Just the Skill ID
column by itself will suffice to indicate the skill in this table. Recall from the previous section that in
the Skills table the primary key is a multivalued (composite) key that consists of both Employee
Number and Skill ID. However, Skill Name depends on only a part of the composite key (the Skill ID).

Table 2-2. Employees Table in First Normal Form

Employee Number

Employee Name

Department Name

Department Location

Table 2-3. Skills Table in First Normal Form

Employee Number

Skill ID

Skill Name

Skill Level

32 CH AP T E R 2 ■ R E L A T I ON AL D A TA B AS E M O DE L IN G AN D D AT A B ASE D E S I G N

In the Skills table in the previous section, the primary key is made up of the Employee Number
and the Skill ID. This makes sense for the Skill Level attribute, since it’ll be different for every employee-
skill combination. But the Skill Name depends only on the Skill ID. A partial dependency is said to
exist when a column depends on only a part of the primary key. Skill Name reflects a partial depen-
dency, because you can identify it with just the Skill ID, which is only a part of the primary key—Skill
Name doesn’t depend on the Employee Number, which is the other part of the primary key. There-
fore, the same Skill Name will appear redundantly every time its associated Skill ID appears in the
Skills table. This redundancy would lead to update and delete anomalies.

For example, suppose you want to reclassify a skill by giving it a different Skill ID. In this case,
you have the headache of ensuring that you make the change for every employee who has this skill.
If you miss some of the employees, you’ll end up with several employees having the same skill under
different IDs—this is an update anomaly. If only one employee has a certain skill, and this employee
happens to leave the organization, that employee’s data will be removed from the database, and the
skill will disappear entirely from your database—this is a delete anomaly.

To avoid problems such as these, you must put your tables in 2NF. Break down the table into
simpler versions to get rid of any partial key dependencies. That is, all non-key attributes should be
fully functionally dependent on the primary key. In order to do this, you must separate the attributes
that depend on both parts of the key from those that depend only on the Skill ID. This results in two
tables: the Skills table, which lists the name for each Skill ID, and the Employee Skills table, which
lists the skills actually learned by each employee (see Tables 2-5 and 2-6). In the Employee Skills
table, the Skill Level attribute is clearly dependent on both parts of the key, since the attribute is
based not only on which particular skill is being referred to, but also on the particular employee’s
level in that skill.

Now skills can exist in your database without any corresponding employees having that skill,
and you can reclassify a skill in a single operation—just look up the Skill ID in the Skills table and

Table 2-4. Table in 1NF but Not in 2NF

Employee Number Skill ID Skill Name Skill Level

22 130 Accounting 9

23 140 Marketing 9

24 130 Accounting 7

Table 2-5. Skills Table in Second Normal Form

Skill ID

Skill Name

Table 2-6. Employee Skills Table in Second Normal Form

Employee Number

Skill ID

Skill Level

C HA P TE R 2 ■ R E L AT IO N A L D AT AB A SE M OD E L I N G A N D D AT AB A SE D E S IG N 33

change its name. You can also delete any information about employees without losing information
about the skills themselves.

Third Normal Form (3NF)

A table is said to be in 3NF if it is already in 2NF and every non-key attribute is fully and directly
dependent on the primary key. To enforce 3NF, you must eliminate the columns that aren’t depen-
dent on the key. If an attribute doesn’t contribute to a description of the key, remove it to a separate
table.

The Employees table (Table 2-2) satisfies 1NF, since it contains no repeating groups. It satisfies
2NF, since it doesn’t have a composite key. However, the table’s key is Employee Number, and you
can see that the Department Name and Department Location columns aren’t dependent on the
Employee Number (the primary key for the table)—they are dependent on Department Number
column values. To achieve 3NF, you must now move the department information into a separate
table. You can make Department Number the key for your new Departments table.

The motivation for the decomposition of the Employees table is straightforward—you want to
avoid delete and update anomalies. Suppose there is no employee hired for a new department yet.
Under the present setup, you can’t have a record of the department in the Employees table. Table 2-7
shows your tables in the third normal form.

If all of the preceding information seems a bit confusing to you initially, don’t lose heart. The
following is an easier way to remember and understand this whole process of putting a relation in 3NF:

A relation is said to be in the third normal form if all the non-key attributes are fully depen-
dent on the primary key, the whole primary key, and nothing but the primary key.

Although there are more advanced forms of normalization, it is commonly accepted that
normalization up to the 3NF is adequate for most business needs. For completeness, though, the
other popular normal forms are outlined briefly in the next sections.

Boyce-Codd Normal Form (BCNF)

The Boyce-Codd normal form (BCNF) is based on the functional dependencies that exist in the rela-
tion. The BCNF is based on candidate keys.

A relation is said to be in BCNF if, and only if, every determinant is a primary key.

BCNF is a more strongly defined relationship than the 3NF. BCNF requires that if A determines
B, then A must be a candidate key.

Table 2-7. Tables in the Third Normal Form

Employees Table Departments Table Skills Table Employee Skills Table

Employee Number Department Number Skill ID Employee Number

Employee Name Department Name Skill Name Skill ID

Department Number Department Location Skill Level

34 CH AP T E R 2 ■ R E L A T I ON AL D A TA B AS E M O DE L IN G AN D D AT A B ASE D E S I G N

Fourth Normal Form (4NF)

The 4NF is designed to take care of a special type of dependency called the multivalued dependency.
A multivalued dependency exists among attributes X, Y, and Z if X determines more than one value
of both Y and Z, and the values of Y and Z are independent of each other.

A relationship is defined as being in the 4NF if it is in the BCNF and contains no nontrivial,
multivalued dependencies.

Fifth Normal Form (5NF)

When a relation is decomposed into several relations, and then the subrelations are joined back
again, you are not supposed to lose any tuples. This property is defined as a lossless-join dependency.

5NF is defined as a relation that has no join dependency.

Even if you don’t know much about the concept of normalizing data, by following a set of simple
rules, and with the help of ER modeling tools, you can design sound databases.

ER Modeling Tools

Although you can design the basics of a system without the help of any tools per se, for most real-
world systems it is better to use a modeling and designing tool. There are several excellent tools that
can help you in your data-modeling efforts. Oracle provides the Oracle Designer as part of the Oracle
Developer Suite. ERWin, PowerDesigner, and ER/Studio (from Embarcadero Technologies) are well-
known ER modeling tools. Quest Software (http://www.quest.com/) produces many useful tools,
including the well-known TOAD software, both for Oracle developers and DBAs.

Physical Database Design
After you finalize the logical model, you can get down to designing the database itself. You first
review the logical data model and decide which data elements you’ll need for your physical data-
base. Next, you create a first-cut physical data model from your logical data model using a tool such
as ERWin Data Modeler or Oracle Designer. In the physical database design stage, your concern is
about specifying how you store the data and what methods you’ll use to access the data. You can
work on tuning this initial physical model for better performance later on. Remember that physical
database design is based on a specific DBMS (for example, Oracle Database 11g).

DENORMALIZATION

Should you always work toward normalizing all your tables to reduce redundancy and avoid data anomalies? Well,
theoretically yes, but in reality you don’t always have to be obsessed with the normalization process. When it comes
to actual practice, you’ll find that larger databases can easily deal with redundancy. In fact, the normalization
process can lead to inefficient query processing in very large databases, such as data warehouses, because there
will be more tables that need to be joined in order to retrieve information. Also, operations such as updates take more
time when you have a completely normalized table structure. Thus, you end up having to decide between potential
data anomalies and performance criteria.

C HA P TE R 2 ■ R E L AT IO N A L D AT AB A SE M OD E L I N G A N D D AT AB A SE D E S IG N 35

The purpose of physical database design is to implement your logical design. Following are
some of the key tasks in the physical design stage:

• Translating the logical database model to fit your specific DBMS

• Choosing the storage setup with an eye on maximizing efficiency

• Creating tables (by transforming entities into tables) and the columns for each of the tables

• Creating primary keys, foreign keys, and constraints (thus formalizing the relationships
among the objects)

Transforming Entities and Relationships

In the first stage of the physical design process, you transform the entity-relationship diagrams into
relational tables. You create the tables based on the different groups or types of information that you
have in the database. For example, you may create a table called People to hold information about
the members of an organization, a table called Payments to track membership payments, and so on.

What if you want to ensure that the data in your tables is unique, which is a basic assumption in
most cases? How about establishing relationships among tables that hold related information? You
can use primary keys and foreign keys to ensure uniqueness and valid relationships in your database.
You’ll examine these two types of keys in detail in the following sections.

Primary Keys

A primary key is a column or a combination of columns that uniquely identifies each record (or row) in a
table. In tables that have records for different people, it is common to use social security numbers as
primary keys because it’s obvious that every person has a unique social security number. If there is
no appropriate column you can choose as a primary key, you can use system-generated numbers to
uniquely identify your rows. A primary key must be unique and present in every row of the table to
maintain the validity of the data.

You must select the primary keys from among the list of candidate keys for all the tables in your
database. If you are using software to model the data, it is likely that you will already have defined
and created all the keys for each entity. The application team determines the best candidates for the
primary keys.

Foreign Keys

Suppose you have two tables, Employees and Departments, with the simple requirement that every
employee must be a member of a department. The way to ensure this is to check that all employees
have a Department column in the Employees table. Let’s say the Departments table has a primary
key named Department ID—you need to have this primary key column in the Employees table.
Remember that the Employees table will have its own primary key, such as SSN. However, the values
of the Department ID column in the Employees table must all be present in the Departments table.

This Department ID column in the Employees table is the primary key in the Departments table,
and you refer to it as a foreign key in the Employees table. Foreign keys ensure that only valid data is
entered in your tables.

Designing Different Types of Tables

You should determine which of your tables are going to be your main data tables and which will be
your lookup tables. A lookup table generally contains static data, such as the Departments table
discussed in the previous section. Usually when you have a foreign key in a table, the table from
which the foreign key comes will be your lookup table.

36 CH AP T E R 2 ■ R E L A T I ON AL D A TA B AS E M O DE L IN G AN D D AT A B ASE D E S I G N

One of the ways to ensure good performance later on is to spend a lot of time at the design stage
thinking about how your users are going to use the database. For example, whereas normalization
may be a technically correct way to design a database, it may require reading more tables for a single
query. The more tables you need to join for any query, the higher the CPU and memory usage, which
may hurt database performance.

If you perform the appropriate amount of due diligence at the design stage, you can depict your
organization’s process flow accurately while you design your tables. When you consider the cost and
frustration involved in tuning poorly written SQL later on, it’s clear that it’s worth putting some effort
into carefully designing tables and fields.

Table Structures and Naming Conventions

The table structures and naming conventions for your database should be finalized during the phys-
ical design stage. However, in many organizations, these elements are predetermined and you may
need to use a standard convention. It is important to give tables short, meaningful names—this will
save you a lot of grief later when you need to maintain the tables.

Column Specifications and Choosing Data Types

You should now have a good idea about the exact nature of the columns in all your tables. You
should also now determine which data types you’ll use for your column specifications. For example,
you need to specify whether the data in each column is going to be integers, characters, or some-
thing else.

The nature of your application will dictate the data types. For example, if you’re creating a
hospital visitor’s database, the number of visitors will always be an integer rather than a floating-
point number, since you can’t have a person visiting a hospital 2.5 times a year.

Business Rules and Data Integrity

Good database design should adhere faithfully to the company’s business rules. Your data design
must satisfy any business rules that will be enforced by your application, and incorporating these
rules into the design will help you model information that is usually not captured by database models.

When you enforce data integrity, you are essentially ensuring that the data in the tables is correct,
and that it doesn’t involve any inconsistencies, which can occur either during the data entry process
itself, or later, through modifications. The design should also ensure data integrity through the proper
use of constraints provided by the RDBMS. The entity-relationship model provides you with an
opportunity to note necessary constraints and plan ahead.

The following four methods are commonly used to enforce data integrity and business rules in
the entity-relationship model:

• You can use the primary keys to enforce uniqueness of data in the tables. Note that the primary
key values should be unique as well as non-null. The primary key should also not change its
value over the life of the entity instance.

• You can use foreign keys to enforce referential integrity, thus guaranteeing the integrity and
consistency of data. Referential integrity refers to maintaining correct dependency relation-
ships between two tables. Declarative referential integrity refers to ensuring data integrity by
defining the relationship between two different tables.

C HA P TE R 2 ■ R E L AT IO N A L D AT AB A SE M OD E L I N G A N D D AT AB A SE D E S IG N 37

• You can ensure the validity and meaningfulness of data by enforcing domain constraints,
such as check constraints. Domain constraints ensure valid values for certain entities. For
example, in a banking-related database, you could have a constraint that states that the with-
drawal amount in any transaction is always less than or equal to the total balance of the
account holder.

• You can use database triggers, which will perform certain operations automatically when
predetermined actions occur, to ensure the validity of data.

A fifth way to enforce business rules is programmatically, through the use of built-in database
constraints. For example, a simple line of code could be used to require that an insert actually complete
a data field, rather than adding a not-null constraint on the column. You’ll learn details about the
various types of constraints in an Oracle database in Chapter 5.

Implementing the Physical Design
Implementation of the physical design involves creating the new database and allocating proper
space for it. It also involves creating all the tables, indexes, and stored program code (such as trig-
gers, procedures, and packages) to be stored on the server.

Database Sizing and Database Storage

You need to estimate the size of your tables, indexes, and other database objects at this stage so you
can allocate the proper space for them. You can follow some basic rules of thumb or use some fairly
elaborate sizing algorithms to size your database.

You also have to choose the type of storage. Although most systems today are based on hard
disks, you have several choices to make with regard to disk configuration and other issues, all of
which could have a significant impact on the database’s performance down the road. Chapter 3
discusses details of disk configuration and related issues.

Implementing Database Security

Before you actually implement your new system, you need to make sure you have a security policy
in place. There are several possible layers and levels of security, and you should ultimately ensure
that the system is indeed secure at all these levels.

Normally, you need to worry about security at the system and network levels, and you will
usually entrust the system and network administrators with this type of security. You also need to
ensure security at the database level, which includes locking up passwords and so forth. Finally, in
consultation with the application designers, you also have to come up with the right application
security scheme. This involves controlling the privileges and roles of the users of the database.
Chapter 12 discusses user management and database security in detail.

Moving to the New System

During this final implementation stage, you establish exact timings for the actual switch to the new
business system. You may be replacing an older system, or you may be implementing a brand-new
business system.

In either case, you need a checklist of the detailed steps to be undertaken to ensure a smooth
transition to the new system. This checklist should also include fallback options if things don’t go
quite as planned. Chapter 16 discusses recovery techniques that help you restore an older database
in case you need to scrap the new one for some reason. You can also run ad hoc queries at this stage
to fine-tune your system and find out where any bottlenecks lie.

38 CH AP T E R 2 ■ R E L A T I ON AL D A TA B AS E M O DE L IN G AN D D AT A B ASE D E S I G N

Reverse-Engineering a Database
This chapter has provided you with an introduction to the art of database design and normalization,
and this information will help you when you are designing and implementing a database from scratch.
However, what do you do when you walk into a company to manage its databases and you have no
idea of the underlying physical data model or entity-relationship diagrams? Not to worry; you can
use any of the data-modeling tools discussed earlier in the chapter to reverse-engineer the under-
lying database model.

The process of generating a logical model from an actual physical database is called reverse
engineering. By using the reverse-engineering feature in a database design tool, you can quickly
generate the physical model or the entity-relationship model of your database. Reverse-engineering
a database can help you understand the underlying model. It can also serve to provide documenta-
tion that may be missing in situations where the DBA or the lead developer has left and nobody can
find the entity-relationship diagram.

Reverse-engineering diagrams can be crucial in tracking the foreign key relationships in the
data model. Developers can also make good use of entity-relationship diagrams when making
improvements to the application.

Object-Relational and Object Databases
This chapter has dealt with the relational database model, where all the data is stored in the form of
tables. Relational databases have been accepted as the superior model for storing most kinds of
“simple” data, such as ordinary accounting data. For modeling complex data relationships, however, the
object database management system (ODBMS) has been put forward as being more appropriate.
ODBMSs are still not at the point where they can seriously compete with traditional relational databases.

The relational model and the object model can be seen as two different extremes in data modeling,
and a newer extension of the relational model has come forth to bridge the gap between the two. This
new model is the object-relational database management system, and Oracle has adopted this
ORDBMS model since the Oracle8 version of its server software. Oracle defines the 11g version of its
database server as an ORDBMS.

The following sections compare and contrast the three database management system categories:
relational, object, and object-relational.

The Relational Model
The relational model has several limitations. One of its biggest problems is its limited capability to
represent real-world entities, which are much more complex than what can be represented in tuples
and relations. The model is especially weak when it comes to distinguishing among different kinds
of relationships between entities. You can’t represent and manipulate complex data in traditional
relational databases—the set of operations you can perform in relational models isn’t adequate for
many real-world applications that include objects with non-numerical attributes.

The limitations of the traditional relational model in modeling several real-world entities led to
research into semantic data models and the so-called extended relational data models. Two data
models now compete for the mantle of successor to the relational model: the object-oriented data
model and the object-relational data model. Databases based on the first model are called object-
oriented database management systems, or OODBMSs, and databases based on the second model
are called object-relational database management systems.

C HA P TE R 2 ■ R E L AT IO N A L D AT AB A SE M OD E L I N G A N D D AT AB A SE D E S IG N 39

The Object Model
Object (or object-oriented) databases are based primarily on object-oriented programming languages
such as C++, Java, and Smalltalk. ODBMSs are created by combining database capabilities with the
functionality of object-oriented programming languages. In this sense, you can view an ODBMS as
an extension of the object-oriented language with data-concurrency and data-recovery capabilities
added on to it. The object-oriented language is used both for application development and data
storage. Object-oriented languages are used to create objects, which are the basic components of
the ODBMS.

Several terms have special meanings in object-oriented environments:

• Objects are defined as entities containing the attributes of a real-world object and its associ-
ated actions.

• Properties are the various attributes of an object.

• Methods are functions in the object world, and they define the behavior of the object.

• Objects communicate by means of messages.

• A class is a grouping of objects that have the same attributes.

• Instances are the actual incarnations of objects in the class.

• Classes can be divided into subclasses, with the parent class being called the superclass.

The following three concepts are fundamental to understanding object-oriented systems:

• Polymorphism: Polymorphism is the ability of objects to react differently when presented
with different sets of information (in the form of parameters). Object-oriented languages
allow different methods to be run depending on the set of parameters that you specify. In a
non-object-oriented programming language, the only way to complete two different tasks is
to have two functions with different names.

• Encapsulation: This term refers to objects including information about both what they are
(their properties) and what they can do (their methods). Thus, code and data are packaged
together. For example, if a person were an object in the model and there were a method to
calculate the person’s annual salary, the code (or method) for calculating the salary would be
“encapsulated” with the instance object, which is the person.

• Inheritance: Inheritance allows one class to extend another—to inherit some characteristics
from another class and to add more characteristics of its own. For example, a Student object
could be a subclass of a Person class.

The Object-Relational Model
Although pure object methodology is appealing, in actual practice it is quite difficult to implement.
ORDBMSs strive to combine the best that relational models have to offer while adding as much of
the object-oriented methodology as possible. Oracle says that its ORDBMS model seeks to put complex
business data in the basic relational database; the fundamental tabular form of the relational model
is retained. The basis for Oracle’s (and other vendors’) ORDBMS offerings is the SQL standard named
ANSI/ISO/IEC 9075:2003 (also called the SQL:2003 standard).

The ORDBMS is somewhat of a hybrid between the traditional relational and the pure object-
oriented databases. It doesn’t quite achieve the implementation of all the key precepts of an
object-oriented database, such as encapsulation. The ORDBMS is really the relational model with a
few object-oriented features added on. You can choose to ignore the object-oriented features completely
and use the database as a purely traditional relational database. All the database information is still
in the form of tables.

40 CH AP T E R 2 ■ R E L A T I ON AL D A TA B AS E M O DE L IN G AN D D AT A B ASE D E S I G N

ORDBMSs mainly depend on abstract types to bring object-oriented methodology to relational
databases. Objects are simplified abstractions of real-world objects, and they encompass both the
structure of the data and the methods of operating on data. An object type consists of its name, attributes,
and methods, which can be stored within the database or outside of it. Two more object-oriented
features, type inheritance and polymorphism, are also enabled in the new Oracle Database 11g
ORDBMS.

Certain database vendors have maintained for a while now that they have really merged the
relational and object-oriented databases and come up with an integral ORDBMS. This claim is moti-
vated mostly by marketing concerns and isn’t based on true technical criteria. Real object-oriented
databases are still far from becoming commercially viable on a large scale. For the foreseeable future,
the relational or the object-enhanced relational model (such as Oracle’s ORDBMS) will hold sway as
efficient, well-developed, and proven products. You can also expect more and more object-oriented
features to be gradually added to databases.

There is an ongoing debate over the merits of the relational database system versus the object-
oriented database system. It is accepted by all parties that relational databases do certain chores
extremely well, such as those required by business applications, for which they are currently used.
Object-oriented databases, though they are more realistic than relational databases, are quite diffi-
cult to implement and are many years away from being as mature and sophisticated, operationally
speaking, as relational databases. Although object-oriented databases have been increasing in
popularity over the years, their market share is still miniscule. The real question is whether object-
oriented databases can supplant relational databases.

It seems unlikely, in the near future, that object-oriented databases can become as powerful as
well-established RDBMSs in performing most business operations. It seems more practical for rela-
tional databases to be extended to make them more closely model the real world. ORDBMSs attempt
to bridge the gap between the relational and pure object-oriented systems by incorporating object-
oriented features such as encapsulation, inheritance, user-defined data types, and polymorphism
into the relational model. Business processing involves a lot of data processing, and the new hybrid
will continue to support these activities while also serving the more complex data-modeling needs.
ORDBMSs seem like a smart way to progress into the object-oriented world, because their adoption
doesn’t involve abandoning the tremendous amount of RDBMS know-how developed over the last
25 years or so. All that knowledge can be enhanced to incorporate more of the object-oriented data
model. In other words, you can get both higher operational efficiency and the benefits of realistic
object type modeling by using ORDBMSs.

Oracle Database 11g is an ORDBMS. It evolved over the years from a traditional pure relational
system to one with an increasing number of object-oriented features, such as these:

• User-defined data types: Oracle supports both object types and collections. Oracle provides
a built-in data type called REF to model relationships between row objects belonging to the
same type.

• Methods: Oracle implements methods in PL/SQL or Java.

• Collection types: The collection types include array types known as varrays and table types
known as nested tables.

• Large objects: Oracle supports the use of binary large objects (BLOBs and character large
objects (CLOBs).

Semi-Structured Data Models
The newest frontier in data models is the emphasis on “semi-structured” data models. Semi-struc-
tured data models are much more flexible than traditional relational and object-relational models.
This inherent flexibility ensures a more realistic representation of the complex real-world phenomena
that DBAs deal with every day. Semi-structured data modeling looks at schemas from a different

C HA P TE R 2 ■ R E L AT IO N A L D AT AB A SE M OD E L I N G A N D D AT AB A SE D E S IG N 41

point of view than the relational and other models you saw earlier in the chapter. Semi-structured
data models really aren’t based on any strict notions of traditional database schemas—rather, the
data in these models is self-describing. This type of data model is useful mainly for document-based
information systems. If you are trying to integrate data in several databases, each with its own
unique schema, you’ll appreciate the use of semi-structured data modeling.

The use of Extensible Markup Language (XML) is but one of the new implementations of the
semi-structured data models—XML implements semi-structured data in document form. Oracle
Database 11g includes excellent XML capabilities that are better than those of any other commercial
database. XML uses tags to mark up documents, somewhat like the HTML pages we are all familiar
with now. However, XML tags are more critical from a semantic point of view than HTML tags, which
merely control the format and layout of a web page—XML tags tell the document what the contents
of the document mean. XML documents use Document Type Definitions (DTDs) to find out what
tags can be used and how.

Oracle Database 11g has powerful XML capabilities, which enable it to manage large amounts
of XML data. Of course, you can use all of Oracle’s features, including high performance and scalability,
while using the XML data stored within the database.

43

■ ■ ■

C H A P T E R 3

Essential UNIX (and Linux)
for the Oracle DBA

If the only thing you needed to learn about were Oracle database administration, your life would
be so much easier. However, to ensure that your database performs efficiently, you’ll also need to
understand the operating system. In this chapter, you’ll examine UNIX.

The first part of the chapter covers the most important UNIX/Linux commands for you to know.
Most of the UNIX and Linux operating system commands are identical, but I’ll show you the differ-
ences where they exist. You’ll learn about files and directories and how to manage them, as well as
UNIX processes and how to monitor them. You’ll then learn how to edit files using the vi text editor
and how to write shell scripts.

As an Oracle DBA, you’ll need to know how to use UNIX services such as the File Transfer
Protocol (FTP), which enables you to easily exchange files between computers; telnet, a program that
lets you enter commands on a remote computer from a local computer; and the remote login and
remote copy services. This chapter provides you with an introduction to these useful features. You’ll
also learn the key UNIX administrative tools for performing system backups and monitoring system
performance. There’s also some discussion of the basics of RAID systems and the use of the Logical
Volume Manager (LVM) to manage disk systems. Toward the end of the chapter, you’ll find some
coverage of data storage arrays and new techniques to enhance availability and performance.

Overview of UNIX and Linux Operating Systems
The UNIX and Linux operating systems are similar in many ways, and users can transition easily
from one to the other. From the DBA’s point of view, there are few differences in commands and util-
ities when you migrate from one variant of the Linux/UNIX operating system to the other, since they
all share common roots.

UNIX
UNIX became the leading operating system for commercial enterprises during the 1980s and 1990s.
Although IBM mainframes still perform well for extremely large (multiterabyte and multipetrabyte)
databases, most medium to large firms have moved to UNIX for its economy, versatility, power, and
stability. IBM itself has made a successful transition to the new computer market, by dramatically
reducing the size and cost of its mainframes. The IBM System z series can run Linux software and
multiple virtual servers.

44 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

UNIX has a rich history, progressing through several versions before reaching its current
popular place in the operating system market. I could spend quite a bit of time discussing the history
and variants of the UNIX system, but I’ll simplify the discussion by stating that, in reality, the partic-
ular UNIX system variant that a DBA uses doesn’t make much difference. UNIX has become well
known as a multitasking, multiuser system, and it is currently the most popular platform for major
Oracle implementations. The most popular UNIX flavors on the market are Sun Solaris, HP-UX, and
the IBM AIX versions. The basic commands don’t vary much between the UNIX variants, and the
different flavors mainly distinguish themselves on the basis of the utilities that come packaged with them.

Contrary to what newcomers to the field might imagine, UNIX is an easy operating system to
learn and use. What might put off many developers and others who were weaned on the graphical
Windows framework are the terse and cryptic commands commonly associated with the UNIX oper-
ating system. Take heart, though, in the knowledge that the essential commands are limited in number,
and you can become proficient in a very short time.

Sun Microsystems (Sun), Hewlett-Packard (HP), and IBM sell the leading UNIX servers—the
machines that run each firm’s variation of the Berkeley UNIX system V. IBM is also a big UNIX
supplier with its AIX server. Sun and HP currently run the vast majority of UNIX-based Oracle
installations.

Linux
Developed by Linus Torvalds, Linux is constantly under development because it is released under an
open source license and is freely available for download from the Internet. Many users prefer to use
Linux because more programs and drivers are available, it’s free (or close to free, as the commercial
versions are fairly cheap), and bug fixes are released very quickly. Oracle Database 11g was devel-
oped on the Linux platform, and that’s why the Linux-based version was the first to be released for
production use. Oracle has certified and supports Red Hat Enterprise Linux AS and ES (either the 4.0
or the 5.0 version), SUSE LINUX Enterprise Server 10, Asianux 2 and 3, and the Enterprise Linux,
versions 4 and 5.

■Note I used a Linux 4.0 distribution from Red Hat to run Oracle Database 11g on my Windows XP desktop for
the purposes of this book. I used the VMware virtual operating system tool (http://www.vmware.com) to run the
Linux operating system alongside Windows.

Oracle was the first company to offer a commercially available database for the Linux operating
system. Oracle even offers a full suite of clusterware for Linux, which makes it possible to use Oracle’s
Real Application Clusters (RAC) on Linux without the more costly and complex raw file systems.

Do all these moves toward the Linux operating system foreshadow the demise of the UNIX oper-
ating system? Although the market for UNIX systems has dropped in recent years, you have to interpret
this fact cautiously; most of the movement toward the Linux operating system is intended for low-
end machines that serve network and other desktop applications. For the foreseeable future, UNIX-
based systems will continue to rule the roost when it comes to large, company-wide servers that run
large and complex databases such as Oracle Database 11g.

IT organizations are moving to Linux and open source software to solve a wide variety of busi-
ness problems. The Linux platform often plays the central role in establishing a low-cost computing
infrastructure. Oracle’s grid initiative relies on using massive numbers of cheap commodity servers
based on the Linux platform. Although Linux is growing very fast as a viable operating system for
Oracle databases, the consensus among the IT industry is still that Linux is mainly useful for services,
and not for mission-critical databases. This leaves UNIX and Windows as the two leading operating
systems for Oracle databases. Oracle provides support to the Linux community by offering code for

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 45

key products and itself uses the Linux platform extensively. Oracle’s suite of clusterware links a
number of separate servers into a single system, and low-cost Linux servers are an inexpensive
choice for these file systems.

Midrange Systems
Just a few years ago, you had to invest in behemoths like the Sun E10K, with its hard partitions and
multiple processors, if you wanted a system to support heavy workloads. Today, much smaller
midrange UNIX servers come with features like soft partitioning, high amounts of memory, hot-
spare processors, and capacity-on-demand features that were once the exclusive preserve of the
high-end systems.

The main competition among the midrange servers is between Intel-based servers and RISC-
based (reduced instructor set computer–based) servers using the UNIX or the Linux operating
systems. The choice of the particular operating system will depend on the workload you plan on
supporting as well as on the availability, reliability, and response time requirements.

The rest of the chapter, while formally oriented toward UNIX-based systems, applies almost
verbatim to any Linux-based operating system as well.

Understanding the UNIX Shell(s)
In UNIX systems, any commands you issue to the operating system are passed through a command
interpreter layer around the kernel called the shell. When you initially log in, you are communicating
with this shell. The kernel is the part of UNIX that actually interacts with the hardware to complete
tasks such as writing data to disk or printing to a printer. The shell translates your simple commands
into a form the kernel can understand and returns the results to you. Therefore, any commands you
issue as a user are shell commands, and any scripts (small programs of grouped commands) that you
write are shell scripts.

The UNIX shell has many variants, but they are fundamentally the same, and you can easily
migrate from one to another. Here’s a list of the main UNIX and Linux shell commands and the shells
they run:

• sh: The Bourne shell, which was written by Steven Bourne. It is the original UNIX shell, and is
quite simple in the range of its features.

• csh: The C shell, which uses syntax somewhat similar to the C programming language. It
contains advanced job control, aliasing, and file-naming features.

• ksh: The Korn shell, which is considered a superset of the Bourne shell. It adds several sophis-
ticated capabilities to the basic Bourne shell.

• bash: The “Bourne Again Shell,” which includes features of both the Bourne and the C shell.

For the sake of consistency, I use the Korn shell throughout this book, although I show a couple
of important C shell variations. Most UNIX systems can run several shells; that is, you can choose to
run your session or your programs in a particular shell, and you can easily switch among the shells.

The Linux default shell is BASH, the Bourne Again Shell, which includes features of the Bourne
shell as well as the Korn, C, and TCSH shells.

■Note Most of the basic commands I discuss in the following sections are the same in all the shells, but some
commands may not work, or may work differently, in different shells. You need to remember this when you switch
among shells.

46 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

Shells act as both command interpreters and high-level UNIX programming languages. As a
command interpreter, the Korn shell processes interactive user commands; as a programming
language, the Korn shell processes commands in shell scripts.

It is possible to invoke any available shell from within another shell. To start a new shell, you
simply type the name of the shell you want to run, ksh, csh, or sh. It is also possible to set the default
startup shell for all your future sessions. The default shell for your account is stored in the /etc/
passwd file, along with related information about your account. To change your default shell, use the
chsh command.

Accessing the UNIX System
You can manage the Oracle databases that run on UNIX systems in several ways:

• Directly from the server hosting the database

• Via a UNIX workstation

• Through a Windows Server

Most DBAs use the last approach, preferring to use their regular PCs to manage their databases.
If that’s what you choose, you again have several choices as to how exactly you interact with the data-
bases running on the remote server:

• Log directly into the server through the telnet or Secure Shell client.

• Log into the server through a display framework such as Virtual Network Computing (VNC),
which enables you to interact with a server using a simple client program on another desktop
anywhere on the Internet; or a Reflections X-Client, which provides an X Window System that
emulates the look and feel of a UNIX workstation.

• Connect through a GUI-based management console, such as the Oracle-supplied Oracle
Enterprise Manager (OEM) or through a tool from a third-party supplier, such as BMC Soft-
ware (http://www.bmc.com/) or Quest Software (http://www.quest.com/).

Regardless of whether you choose to log into the UNIX box through the server or another inter-
face, the first thing you will need is an account and the appropriate privileges to enable you to log in
and actually get something done. The UNIX system administrator, with whom you should become
very friendly, is the person who will perform this task and give you your password. The system
administrator will also assign you a home directory, which is where you will land inside the UNIX file
system when you initially log in.

You can log into a UNIX machine in several ways. You can always log into the server directly by
using the terminal attached to the machine itself. However, this is not a commonly used option for
day-to-day work. You can also use telnet to connect to the UNIX server, and you’ll learn about this
in the “Using Telnet” section later in this chapter. One of the most common ways to work with UNIX,
though, is through your own PC by using what’s called a terminal emulator—a program that will
enable your PC to mimic a UNIX terminal. Several vendors produce emulators, including Humming-
bird (http://www.hummingbird.com/) and WRQ (http://www.attachmate.com/), which produce the
popular Hummingbird and Reflections emulators, respectively. These emulators, also called X Window
emulators, emulate the X Window System, which is the standard graphical user interface (GUI) for
UNIX systems. The emulators use special display protocols that will let you use your Windows terminal
as an X terminal to access a UNIX server.

The general idea behind many of these interfaces is to try and make working with UNIX as easy
as possible by providing a familiar GUI. Figure 3-1 shows a basic X session connected to the UNIX
operating system.

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 47

Figure 3-1. An X session

For now, let’s assume you are equipped with a terminal emulator. You need to know a couple of
things before you can log in and use the system. First, you need to know the machine name, which
can be in either symbolic or numerical form.

■Note All UNIX machines (also called UNIX boxes or UNIX servers) have an Internet Protocol (IP) address, usually
in a form like this: 162.15.155.17. Each IP address is guaranteed to be unique. By using a special system file
(/etc/hosts), the UNIX administrator can give what’s called a symbolic name to the machine. For example, the
machine with the IP address 162.15.155.17 can be called prod1, for simplicity. In this case, you can connect by
using either the IP address or the symbolic name.

Next, the system will ask you for your password. A shell prompt indicates a successful login, as
shown here:

$

The shell prompt will be a dollar sign ($) if you are using the Bourne shell or the Korn shell. The
C shell uses the percent sign (%) as its command prompt.

Once you log into the system, you are said to be working in a UNIX session; you are automatically
working in what’s known as your home directory (more on this later on). You type your commands
at the shell prompt, and the shell interprets these commands and hands them over to the underlying
operating system.

The UNIX directory structure is hierarchical, starting with the root directory at the top, which is
owned by the UNIX system administrator. From the root directory, the other directories branch out,
and the files are underneath them. Let’s say you are in the /u01/app/oracle directory when you log
in, and you want to refer to or execute a program file located in the directory /u01/app/oracle/admin/
dba/script. To specify this location in the hierarchy to the UNIX system, you must give it a path. If
you want, you can give the complete path from the root directory: /u01/app/oracle/admin/dba/
script. This is called the absolute path, because it starts with the root directory itself. You can also
specify a relative path, which is a path that starts from your current location. In this example, the
relative path for the file you need is admin/dba/script.

48 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

■Note Included among these directories and files are the system files, which are static, and user files. As a DBA,
your main concern will be the Oracle software files and database files.

You end your UNIX or Linux session by typing the word exit at the prompt, as follows:

$ exit

Overview of Basic UNIX Commands
You can execute hundreds of commands at the command prompt. Don’t get overwhelmed just yet,
though: of the many commands available to you, you’ll find that you’ll only use a handful on a day-
to-day basis. This section covers the basic commands you’ll need to operate in the UNIX environment.

■Note If you need help using a command, you can type man at the command prompt, along with the name of
the topic you’re trying to get help with. For example, if you type in the expression man date, you’ll receive informa-
tion about the date command, examples of its use, and a lot of other good stuff. For more details, see the “Getting
Help: The man Command” section later in this chapter.

The UNIX shell has a few simple, built-in commands. The other commands are all in the form
of executable files that are stored in a special directory called bin (short for “binary”). Table 3-1 presents
some of the more important UNIX commands that you’ll need to know. The UNIX commands tend
to be cryptic, but some should be familiar to Windows users. The commands cd and mkdir in Windows,
for example, have the same meaning in UNIX. Many UNIX commands have additional options or
switches (just like their MS-DOS counterparts) that extend the basic functionality of the command,
and Table 3-1 shows the most useful command switches.

Table 3-1. Basic UNIX Commands

Command Description Example

cd The cd command enables you to change
directories. The format is cd new-location.
The example shown here takes you to the /tmp
directory from your current working directory.

$ cd /tmp
$

date The date command gives you the time and date. $ date
Sat Mar 26 16:08:54 CST 2005
$

echo With the echo command, you can display text
on your screen.

$ echo Buenos Dias
Buenos Dias
$

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 49

grep The grep command is a pattern-recognition
command. It enables you to see if a certain
word or set of words occurs in a file or the output
of any other command. In the example shown
here, the grep command is checking whether
the word “alapati” occurs anywhere in the file
test.txt. (The answer is yes.) The grep command
is very useful when you need to search large file
structures to see if they contain specific informa-
tion. If the grepped word or words aren’t in the
file, you’ll simply get the UNIX prompt back, as
shown in the second example.

$ grep alapati test.txt
alapati

history The history command gives you the commands
entered previously by you or other users. To see
the last three commands, type history -3. The
default number of commands shown depends
on the specific operating system, but it is usually
between 15 and 20. Each command is preceded
in the output by a number, indicating how far
back it was used.

$ history -3
4 vi trig.txt
5 grep alapati
test.txt
6 date
7 history -3
[pasx] $

passwd When you are first assigned an account, you’ll
get a username and password combination.
You are free to change your password by using
the passwd command.

$ passwd
Changing password for
salapati
Old password:
New password:

pwd Use the pwd command to find out your present
working directory or to simply confirm your
current location in the file system.

$ pwd $/u01/app/oracle

uname In the example shown here, the uname command
tells you that the machine’s symbolic name is
prod5 and it’s an HP-UX machine. The -a option
tells UNIX to give all the details of the system. If
you omit the -a option, UNIX will just respond
with HP-UX.

$ uname -a
HP-UX prod5 B.11.00 A
9000/800 190 two-user
license
$

whereis As the name of this command suggests, whereis
will give you the exact location of the executable
file for the utility in question.

$ whereis who
who: /usr/bin/who
/usr/share/man/man1.z/who.1
$

which The which command enables you to find out
which version (of possibly multiple versions) of
a command the shell is using. You should run this
command when you run a common command,
such as cat, and receive somewhat different results
than you expect. The which command helps you
verify whether you are indeed using the correct
version of the command.

$ which cat
/usr/bin/cat

Table 3-1. Basic UNIX Commands (Continued)

Command Description Example

50 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

■Tip It is always worthwhile to check that you are at the right place in the file structure before you press the Enter
key, to avoid running any destructive commands. The following commands will help you control your input at the
command line. Under the Korn shell, to retrieve the previous command, all you have to do is press the Esc key
followed by typing k. If you want an older command, continue typing k, and you’ll keep going back in the command
sequence. If you have typed a long sequence of commands and wish to edit it, press the Esc key followed by typing
h to go back, or type l to go forward on the typed command line.

Getting Help: The man Command
There are many operating system commands, most with several options. Therefore, it’s convenient
to have a sort of help system embedded right within the operating system so you have the necessary
information at your fingertips. UNIX and Linux systems both come with a built-in feature called the
man pages, which provide copious information about all the operating system commands. You can
look up any command in more detail by typing man followed by the command you want informa-
tion on, as follows:

$ man who

This command will then display a great deal of information about the who command and all its
options, as well as several examples (see Figure 3-2).

who If you are curious about who else besides you is
slogging away on the system, you can find out
with the who command. This command provides
you with a list of all the users currently logged
into the system.

$ who
salapati pts/0 Nov
8 08:31
rhudson pts/1 Nov
8 09:04
lthomas pts/3 Nov
9 15:54
dcampbel pts/7 Nov
8 16:27
dfarrell pts/16 Nov
5 07:00

whoami The whoami command indicates who you are
logged in as. This may seem trivial, but as a DBA,
there will be times when you could be logged into
the system using any one of several usernames.
It’s good to know who exactly you are at a given
point in time, in order to prevent the execution of
commands that may not be appropriate, such as
deleting files or directories. The example shown
here indicates that you are logged in as user Oracle,
who is the owner of Oracle software running on
the UNIX system.

$ whoami
oracle
$

Table 3-1. Basic UNIX Commands (Continued)

Command Description Example

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 51

Figure 3-2. Output of the man command

In Linux-based systems, you can also use the nifty whatis command to find out what a certain
command does. Like the man command, the whatis command is followed by the name of the command
you want information about. Here’s a simple example:

$ whatis whereis (1) -locate the binary, source, and manual page files
for a command

As you can see, the whatis command offers a quicker and easier way to locate summary infor-
mation about any command than the more elaborate man pages.

Changing the Prompt
Every shell has its own default prompt. The default prompt for the Korn shell is the dollar sign ($).
You can easily change it to something else by changing the value of the PS1 shell variable.

In the following example, I first check the value of the PS1 variable by issuing the command echo
$PS1. I then use the export command to set the value of the ORACLE_SID environment variable to my
database name, finance. Using the export command again, I set the value of the PS1 environment
variable to be the same as the value of the environment variable ORACLE_SID ($ORACLE_SID). Now the
shell prompt is changed to my database name, finance. Since I only exported the ORACLE_SID variable
value but didn’t place it in my environment files, the value I exported is good only for the duration of
the current session.

$ echo $PS1
$
$ export ORACLE_SID=finance
$ export PS1=[$ORACLE_SID]
[finance]

■Note If you add the PS1 variable to your .cshrc file (I explain how to do this later in the “Customizing Your
Environment” section), every time you open a new shell, it’ll have your customized prompt. The ability to change the
prompt is useful if you’re managing many different databases via UNIX. You can amend the prompt to reflect the
database you’re working on at any given time. For example, when you’re working in an inventory system, the
prompt can display invent>. That way, you won’t accidentally execute a command in the wrong database.

52 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

Finding Files and Directories
Sometimes you want to locate a file, but you aren’t sure where it might be located in the file system.
The whereis command, of course, is of help only if you are locating commands, not files. To find out
where a file or a directory is, you can use the find command, as shown here:

$ pwd
/u01/app/oracle
$ find . -name bill.sql -print
./dba/bill.sql
$

In this example, the find command informs you that the bill.sql file is located in the /u01/app/
oracle/dba directory. Note that there is a dot after the find keyword, indicating that a recursive
search is made from the present directory—every directory and subdirectory under the present
directory will be searched. If you want to search from a specific directory, you need to specify that in
the command. In the following example, the find command starts its search from the root (/) file
system and prints the location of the test.txt file to the screen, if it finds it:

$ find / -name test.txt -print

Controlling the Output of Commands
Sometimes a command will produce more output than can fit on the screen. You can control the
output of a command in a couple of ways.

The more command will show you the contents of a file, one screen at a time. Just press Enter to
see the next screen of the file:

$ more test.txt

The pipe command (|) enables you to pass the output of one command as input to another
command. In the following example, the | operator takes the ps -ef command’s output (which is the
list of all processes that are currently running on your system) and passes it to the grep command as
a list, to search for all processes that contain the word “Oracle”:

$ ps -ef | grep Oracle

This example also demonstrates the use of multiple commands at once.

Showing the Contents of Files
As you know, you can use the vi editor to read a file as well as write to it. However, in some cases you
may want to just read the contents of a file. The cat command lets you do so, as shown here:

$ cat test.ksh
#!/bin/ksh
VAR1=1
while [$VAR1 -lt 100]
do
 echo "value of VAR1 is : $VAR1"
 ((VAR1=VAR1+1))
done
$

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 53

■Note You can also use the page command to peruse files.

Comparing Files
The diff command compares two files, returns the line(s) that are different, and tells you how to
make the files the same. Here’s an example:

$ diff test.one test.two
0a1
> New Test.

This diff command output tells you that if you add the line New Test. to the test.one file,
you can make it identical to the test.two file. The first character, “0,” is the line number to edit in
test.one; the “a” indicates that the line should be added to test.one to match the first line, “1,” of
test.two.

Understanding Operating-System and Shell Variables
There are two main types of variables in a UNIX or Linux system: user-created variables and shell
variables. Let’s briefly look at how you use both kinds of variables.

User-Created Variables

A user can create a variable and initialize it by providing a value for it. The variable name must
consist of letters and numbers, and it must start with a letter. You can also use the export command
to export variables, so that any shell you create in your current session can make use of your variables.

Here’s an example of a user-created variable (note how echoing the variable itself prints just the
variable, not its value—to show the variable’s value, you must precede the variable’s name with the
$ sign in your echo command):

$ database=nicko
$ echo database
database
$ echo $database
nicko
$

In this example, I first created a new variable called database and assigned it the value of nicko.
I then used the echo command to print the value of the database variable, and the echo command just
prints the string “database”. The second time I used the echo command, I added the dollar sign ($) in
front of the name of the variable ($database). When I did this, the value of the variable database was
shown as nicko.

To remove the value of the database variable, simply set it to null, as shown here:

$ database=
$ echo $database
$

Shell Variables

Shell variables are variables whose values are set by the shell itself, instead of by a user. Shell vari-
ables are also called keyword variables, since short keywords are used to represent some of these
variables. When you first log into a UNIX system, you must make several bits of information available to

www.allitebooks.com

http://www.allitebooks.org

54 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

the shell, such as the name of your home directory, the type of editor you prefer to use for editing
text, and the type of prompt you want the system to display while your session is active. Each of these
is determined by values assigned to shell variables. These are some common shell variables:

• HOME: Identifies a user’s home directory.

• PATH: Specifies the directories in which the shell should look when it tries to execute any
command. It’s common to include both the binary (bin) directories for UNIX and Oracle soft-
ware as part of the PATH variable.

Fortunately, you don’t have to manually set up the environment every time you log into the
system. There is a file, named .profile or .login, depending on the type of UNIX shell you are using,
that automatically sets the environment variables for all users at login time. When you log in, the
shell will look in the appropriate file and establish the environment by setting the values of all shell
variables.

Using the export and setenv Commands

Both user-defined and shell variables are local to the process that declares them first. If you want
these variables to be accessible to a shell script that you want to execute from your login shell, you
need to explicitly make the variables available to the calling environment of the child process.

You can make a variable’s value available to child processes by using the export command in
the Korn and BASH shells. In the C shell, you use the setenv command to do the same thing. Here’s
an example that shows how to use the export command to make the value of a variable available to
a child process:

$ export ORACLE_HOME =/u03/app/oracle/product/11.1.0/orcl

The following sequence would achieve the same results as the preceding export command:

$ ORACLE_HOME =/u03/app/oracle/product/11.1.0/orcl
$ export ORACLE_HOME

In the C shell, you use the setenv command to set a variable’s value, as shown here:

$ setenv ORACLE_HOME= /u03/app/oracle/product/10.2.0/orcl

■Note UNIX programs and commands can be run in two entirely different ways: interactive mode is when you log
in and type your commands directly to the screen; batch mode is when you run your commands or an entire program at
once, usually by using executable shell scripts in the form of UNIX text files.

Displaying the Environment

Type env at the system prompt, and your entire set of environment variables will scroll by on the
screen. Here’s an example:

$ env
 PATH=/usr/bin:/usr/ccs/bin:/user/config/bin
 ORACLE_PATH=/u01/app/oracle/admin/dba/sql
 ORACLE_HOME=/u01/app/oracle/product/11.1.0/db_1
 ORACLE_SID=prod1
 TNS_ADMIN=/u01/app/oracle/product/network
 TERM=vt100
$

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 55

To see the value of one specific environment variable, rather than the entire set (which can be a
fairly long list in a real-world production system), you can ask the shell to print the variable’s value
to the screen by using the echo command:

$ echo $ORACLE_HOME
 /u01/app/oracle/product/11.1.0/db_1
$

Note that in the echo command, the $ precedes the environment name so that the command
will print the value of the variable, not the name of the variable itself.

Customizing Your Environment

Both the Bourne shell and the Korn shell use the .profile file to set the values for all shell variables.
The .profile file executes when you first log into the UNIX or Linux system.

The C shell executes the .cshrc file every time you invoke a new C shell. The .cshrc file is a short
file with generic C shell commands that should work with any flavor of UNIX with only minor modi-
fications. This means that you could have essentially the same .cshrc file on all UNIX systems you
use. The operating system executes the .cshrc file whenever you open a terminal window in a UNIX
or Linux environment, or when you execute a script. You can add commands in the .cshrc file (using
a text editor like vi) that will make your work in UNIX more productive. The C shell also executes the
contents of the .login file when you log in and start a new session. The .login file is located a user’s
home directory; for example, /home/oracle for the Oracle user on most UNIX systems.

Here’s a list of the various scripts executed under each of the main UNIX and Linux shells, to set
the shell’s environment:

• Bourne shell (sh): The operating system executes only the .profile file when a user logs in.
The .profile file is located in the user’s home directory.

• C shell (cshrc): The shell executes the .login file after it first executes the .cshrc file. When
you create a new shell after logging in, the .cshrc script is executed, but not the .login file.

• Korn shell (ksh): The .profile file in your home directory is executed.

• BASH shell (bash): The .bash_profile is executed at login time, and the .bashrc file is
executed when you start a new shell.

To change an environment variable permanently, you can edit the .profile or .login file and
insert the necessary values for a variable. For example, for the .login file you would add a line like this:

setenv VARIABLENAME value_of_variable

For the .profile file, you could add lines like the following:

VARIABLE=value_of_variable
EXPORT VARIABLE

The changes will come into effect the next time you log in or invoke an instance of the C shell.
You can change your environment immediately in the Bourne and Korn shells in order to effect
immediate environmental changes, by using the following command:

$. .profile

Similarly, you can use the source command in the C shell, to put the environment variable
changes into immediate effect:

$ source .cshrc

56 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

Redirecting Input and Output
When using a UNIX window on your PC or a UNIX workstation, the keyboard is the standard way to
input a command to the shell, and the terminal is the standard location for the output of the commands.
Any resulting errors are called standard errors and are usually displayed on the screen.

■Note It’s common to use the terms standard input, standard output, and standard error to refer to the standard
input and output locations in the UNIX shell.

However, you can also use a previously written file as input, or you can have UNIX send output
to a file instead of the screen. This process of routing your input and output through files is called
input and output redirection.

You can redirect output to a special location called /dev/null when you want to get rid of the
output. When you use /dev/null as the output location, all messages issued during the execution of
a program are simply discarded and not recorded anywhere on the file system. The following example
shows how redirecting a file’s output to /dev/null make its contents disappear.

$ cat testfile1
$ This is the first line of testfile1
$ cat testfile1 > /dev/null
$ cat /dev/null

In this example, the first cat command shows you the output of testfile1. However, after redi-
recting the cat command’s output to /dev/null, the output of the cat command disappears.

■Note Redirecting the output of the cat command tends to defeat the purpose of running the command in the
first place, but there will be other situations, such as when running a script, when you don’t want to see the output
of all the commands.

Table 3-2 summarizes the key redirection operators in most versions of UNIX.

In the following example, the date command’s output is stored in file1, and file2 in turn gets
the output of file1:

$ date > file1
$ file1 < file2

Table 3-2. Input/Output Redirection in UNIX

Redirection Operator Description

< Redirects standard input to a command

> Redirects standard output to a file

>> Appends standard output to a file

<< Appends standard input to a file

2 > Redirects standard error

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 57

You can achieve the same result with the use of the UNIX pipe (|):

$ date | file2

The pipe command, which uses the pipe symbol (|), indicates that the shell takes the output of
the command before the | symbol and makes it the input for the command after the | symbol.

Protecting Files from Being Overwritten
You can use the noclobber shell variable to avoid accidentally overwriting an existing file. It’s a good
idea to include this variable in your shell startup file, such as the .cshrc file, as shown here:

set noclobber

The noclobber command is very handy when you’re redirecting output to a file.

Navigating Files and Directories in UNIX
As you might have inferred, files and directories in UNIX are pretty much the same as in the Windows
system. In this section, you’ll learn all about the UNIX file system and directory structure, and you’ll
learn about the important UNIX directories. You’ll also learn some important file-handling
commands.

Files in the UNIX System
Files are the basic data storage unit on most computer systems, used to store user lists, shell scripts,
and so on. Everything in UNIX/Linux, including hardware devices, is treated as a file. The UNIX file
system is hierarchical, with the root directory, denoted by a forward slash (/), as the starting point at
the top.

■Tip In Oracle, everything is in a table somewhere; in UNIX, everything is in a file somewhere.

Files in a typical UNIX system can be one of the following three types:

• Ordinary files: These files can contain text, data, or programs. A file cannot contain another file.

• Directories: Directories contain files. Directories can also contain other directories because of
the UNIX tree directory structure.

• Special files: These files are not used by ordinary users to input their data or text; rather, they
are for the use of input/output devices, such as printers and terminals. The special files are
called character special files if they contain streams of characters, and they are called block
special files if they work with large blocks of data.

Linking Files
You can use the link command to create a pointer to an existing file. When you do this, you aren’t
actually creating a new file as such; you are creating a virtual copy of the original by pointing a new
filename to an existing file. You use symbolic links when you want to conveniently refer to files from
a different directory, without having to provide their complete path. There are two types of links:
hard links and symbolic links. You can create hard links between files in the same directory, whereas

58 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

you can create symbolic links for any file residing in any directory. The previous example shows a
symbolic link. A hard link is usually employed to make a copy of a file, while a symbolic link merely
points to another file (or directory). When you manage Oracle databases, you often create symbolic
links for parameter files, so you can refer to them easily, without having to specify their complete
paths.

You use the following syntax when creating a symbolic link:

$ ln –s <current_filename> <link_name>

The following command creates a symbolic link called test.sql, which refers to the original file
called monitor.sql:

$ ln -s /u01/app/oracle/admin/dba/sql/monitor.sql /u01/app/oracle/test.sql

Once the test.sql symbolic link is created, the status of the new file can be checked from the
/u01/app/oracle directory, as shown here:

$ cd /u01/app/oracle
$ ls -altr test.sql
lrwxr-xr-x 1 oracle dba 41 Mar 30 10:13 test.sql -> /u01/app/oracle/
admin/dba/sql/monitor.sql
$

Managing Files
You can list files in a directory with the ls command. The command ls -al provides a long listing of
all the files, with permissions and other information. The command ls -altr gives you an ordered
list of all the files, with the newest or most recently edited files at the bottom. Here are some examples:

$ ls
catalog.dbf1 tokill.ksh consumer
$ ll
total 204818
-rw-rw-r--- 1 oracle dba 104867572 Nov 19 13:23 catalog.dbf1
-rw-r------ 1 oracle dba 279 Jan 04 2008 tokill.ksh
drwrxr-xr-x 1 oracle dba 1024 Sep 17 11:29 consumer
$ ls -altr
-rw-r------ 1 oracle dba 279 Jan 04 2008 tokill.ksh
drwrxr-xr-x 1 oracle dba 1024 Sep 17 11:29 consumer
-rw-rw-r--- 1 oracle dba 104867572 Nov 19 13:23 catalog.dbf1
$

You can view the contents of a file by using the cat command, as shown in the following code
snippet. Later on, you’ll learn how to use the vi editor to view and modify files.

$ cat test.txt
This is a test file.
This file shows how to use the cat command.
Bye!
$

But what if the file you want to view is very large? The contents would fly by on the screen in an
instant. You can use the more command to see the contents of a long file, one page at a time. To advance
to the next page, simply press the spacebar.

$ cat abc.txt | more

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 59

You can copy a file to a different location by using the cp command. Note that the cp command,
when used with the -I option, will prompt you before it overwrites a previously existing file of the
same name.

$ pwd
$ /u10/oradata
$ cp test.txt /u09/app/oracle/data
$ cp -i sqlnet.log output.txt
overwrite output.txt? (y/n) y

The mv command enables you to move the original file to a different location, change the file’s
name, or both. The following example uses the mv command to change the name of the test.txt file
to abc.txt:

$ ls
$ test.txt
$ mv test.txt abc.txt
$ ls
abc.txt

If you want to get rid of a file for whatever reason, you can use the rm command. Watch out,
though—the rm command will completely delete a file. To stay on the safe side, you may want to use
the rm command with the -i option, which gives you a warning before the file is permanently oblit-
erated. Be careful with the rm command, as it’s easy to inadvertently remove your entire file system
with it!

$ ls
abc.txt careful.txt catalog.txt sysinfo.txt
$ rm abc.txt
$ rm -i careful.txt
careful.txt: ? (y/n) y
$ ls
$ catalog.txt sysinfo.txt

Permissions: Reading from or Writing to Files in UNIX
A user’s ability to read from or write to files on a UNIX system depends on the permissions that have
been granted for that file by the owner of the file or directory—the user who creates a file is the owner of
that file.

Every file and directory comes with three types of permissions:

• Read: Lets you view the contents of the file only.

• Write: Lets you change the contents of the file. Write permission on a directory will let you
create, modify, or delete files in that directory.

• Execute: Lets you execute (run) the file if the file contains an executable program (script).

Read permission is the most basic permission. Having the execute permission without the read
permission is of no use—you can’t execute a file if you can’t read it in the first place.

Determining File Permissions

Use the ls -al command to list the file permissions along with the filenames in a directory. For
example, look at the (partial) output of the following command:

60 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

$ ls -al
-rwxrwxrwx 1 oracle dba 320 Jan 23 09:00 test.ksh
-rw-r---r- 1 oracle dba 152 Jul 18 13:38 updown.ksh
-rw-r---r- 1 oracle dba 70 Nov 22 01:30 tokill.ksh
$

You’ll notice that at the beginning of each line, each file has a combination of ten different
letters and the blank sign (-).

The first letter could be a blank or the letter d. If it is the letter d, it’s a directory. If it’s a blank, it’s
a regular file.

The next nine spaces are grouped into three sets of the letters rwx. The rwx group refers to the
read, write, and execute permissions on that file. The first set of rwx indicates the permissions assigned to
the owner of the file. The second set lists the permissions assigned to the group the user belongs to.
The last set lists the permissions on that file granted to all the other users of the system.

For example, consider the access permissions on the following file:

$ -rwxr-x--x 1 oracle dba Nov 11 2001 test.ksh

Because the first character is a hyphen (-), this is a file, not a directory. The next three characters,
rwx, indicate that the owner of the file test.ksh has all three permissions (read, write, and execute)
on the file. The next three characters, r-x, show that all the users who are in the same group as the
owner have read and execute permissions, but not write permissions. In other words, they cannot
change the contents of the file. The last set of characters, --x, indicates that all other users on the
system can execute the file, but they cannot modify it.

Setting and Modifying File Permissions

Any file that you create will first have the permissions set to -rw-r--r--. That is, everybody has read
permissions, and no user has permission to execute the file. If you put an executable program inside
the file, you’ll want to grant someone permission to execute the file. You can set the permissions on
the file by using the chmod command in one of two ways.

First, you can use the symbolic notation, with the letter o standing for owner, g for group, and u
for other users on the system. You grant a group or users specific permissions by first specifying the
entity along with a plus sign (+) followed by the appropriate symbol for the permission. In the
following example, the notation go+x means that both the group and others are assigned the execute
(x) permission on the test.ksh shell script:

$ chmod go+x test.ksh

The next example shows how you can use symbolic notation to remove read and write permis-
sions on a file from the group:

$ chmod g-rw test.ksh

Second, you can use the octal numbers method to change file permissions. Each permission
carries different numeric “weights”: read carries a weight of 4, write a weight of 2, and execute a
weight of 1. To determine a permission setting, just add the weights for the permissions you want to
assign. The highest number that can be associated with each of the three different entities—owner,
group, and all others—is 7, which is the same as having read, write, and execute permissions on the
file. For example, consider the following:

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 61

$ ls
$ -rw-r--r-- 1 oracle dba 102 Nov 11 15:20 test.txt
$ chmod 777 test.txt
$ ls
$ -rwxrwxrwx 1 oracle dba 102 Nov 11 15:20 test.txt

The file test.txt initially had its file permissions set to 644 (rw, r, r.) The command chmod 777
assigned full permissions (read, write, and execute) to all three entities: owner, group, and all others.
If you want to change this so that only the owner has complete rights and the others have no permis-
sions at all, set the octal number to 700 (read, write, and execute permissions for the owner, and no
permissions at all for the group or others) and use the chmod command as follows:

$ chmod 700 test.txt
$ ls -altr test.txt
-rwx------ 1 oracle dba 0 Mar 28 11:23 test.txt
$

Table 3-3 provides a short summary of the commands you can use to change file permissions.
By default, all files come with read and write privileges assigned, and directories come with read,
write, and execute privileges turned on.

The UMASK environment variable determines the default file and directory permissions. Issue the
following command to see the current defaults on your server:

$ umask
022

When you create a new file, it’ll have the default permissions allowed by the UMASK variable. In
the preceding example, the UMASK is shown to be 022, meaning that the group and others don’t have
write permissions by default on any new file that you create.

Table 3-3. UNIX Permissions in Symbolic Notation and Octal Numbers

Symbolic Notation Octal Number Privilege Description

--- 0 No privileges

--x 1 Execute only

-w- 2 Write only

-wx 3 Write and execute, no read

r-- 4 Read only

r-x 5 Read and execute, no write

rw- 6 Read and write, no execute

rwx 7 Read, write, and execute (full privileges)

62 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

Changing the Group

You can change the group a file belongs to by using the chgrp command. You must be the owner of
the file to change the group, and you can change the file’s group only to a group that you belong to.
Here’s how you use the chgrp command:

$ chgrp groupname filename

Directory Management
There are two facets to directory management. One is that you simply need to know the commands
involved in creating, moving, and deleting directories. The other is that you need to know about
certain standard directories that you tend to find on just about every UNIX and Linux system that
you will encounter.

Manipulating Directories

There are several important directory commands that enable you to create, move, and delete directories.
The mkdir command lets you create a new directory:

$ mkdir newdir

You can use the mkdir command with the -p option to create any necessary intermediate direc-
tories if they don’t already exist. The following example creates the directory /u01/, the directory
/u01/app, and the directory /u01/app/oracle, all with a single command:

$ mkdir -p /u01/app/oracle

The command for removing directories is not the same as the command for removing files. To
remove a directory, you can use the rmdir command, as in the following example (but first make sure
you have removed all the files in the directory using the rm command):

$ rmdir testdir

The rmdir command only removes empty directories. To remove a directory that contains files,
use the rm command with the -R (or -r) option. This command will recursively delete the entire
contents of a directory before removing the directory itself:

$ rmdir -r newdir

To move around the UNIX hierarchical directory structure, use the cd command (which stands
for “change directory”).

$ pwd
/u01/app/oracle
$ cd /u01/app/oracle/admin
$ cd /u01/app/oracle
$ cd admin
$ pwd
/u01/app/oracle/admin
$

Notice that you can use the cd command with the complete absolute path or with the shorter
relative path. You can also use it to change to a directory that is indicated by an environment vari-
able. For example, cd $ORACLE_HOME will change your current directory to the directory that happens
to be the location for ORACLE_HOME.

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 63

Important UNIX Directories

There are several directories that you’ll regularly come across when you’re using the UNIX system as
a DBA:

• /etc: The /etc directory is where the system administrator keeps the system configuration
files. Important files here pertain to passwords (etc/passwd) and information concerning
hosts (etc/hosts).

• /dev: The /dev directory contains device files, such as printer configuration files.

• /tmp: The /tmp directory is where the system keeps temporary files, possibly including the log
files of your programs. Usually you’ll have access to write to this directory.

• home: The home directory is the directory assigned to you by your UNIX administrator when he
or she creates your initial account. This is where you’ll land first when you log in. You own this
directory and have the right to create any files you want here. To create files in other directo-
ries, or even to read files in other directories, you have to be given permission by the owners
of those directories.

• Root: The root directory, denoted simply by a forward slash (/), is owned by the system
administrator and is at the very top level of the treelike directory structure.

Editing Files with the vi Editor
The vi editor is commonly used to write and edit files in the UNIX system. To the novice, the vi editor
looks very cryptic and intimidating, but it need not be intimidating. In this section, you’ll learn how
to use the vi editor to create and save files. You’ll find that vi really is a simple text editor, with many
interesting and powerful features.

Creating and Modifying Files Using vi
You start vi by typing vi or, better yet, by typing vi filename to start up the vi editor and show the
contents of the filename file on the screen. If the file doesn’t exist, vi allocates a memory buffer for
the file, and you can later save the contents into a new file.

Let’s assume you want to create and edit a new file called test.txt. When you type the command
vi test.txt, the file will be created and the cursor will blink, but you can’t start to enter any text yet
because you aren’t in the input mode. All you have to do to switch to input mode is type the letter i,
which denotes the “insert” or “input” mode. You can start typing now just as you would in a normal
text processor.

■Note If you need to create a file but don’t want to enter any data into it, you can simply create a file with the
touch command. If you use the touch command with a new filename as the argument, touch simply creates an
empty file where none previously existed (unless you specify the -c flag). If you use an existing filename as the
argument to the touch command, the last-accessed time of the file is changed to the time when the touch command
was run. Here’s an example: touch program.one

This command sets the last access and modification times of the program.one file to the current date and time.
If the program.one file does not exist, the touch command will create a file with that name.

Table 3-4 shows some of the most basic vi navigation commands, which enable you to move
around within files.

64 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

In addition to the cursor-movement commands, there are numerous vi text-manipulation
commands, but unless you are a full-time system administrator or a UNIX developer, the average
DBA can get by nicely with the few text commands summarized in Table 3-5.

Table 3-4. Basic vi Navigation Commands

Command Description

h Move a character to the left.

l Move a character to the right.

j Move a line down.

k Move a line up.

w Go to the beginning of the next word.

b Go to the beginning of the previous word.

$ Go to the end of the current line.

^ Go to the start of the current line.

:G Go to the end of the file.

:1 Go to the top of the file.

Table 3-5. Important vi Text-Manipulation Commands

Command Description

i Start inserting from the current character.

a Start inserting from the next character.

o Start inserting from a new line below.

O Start inserting from a new line above.

x Delete the character where the cursor is.

dd Delete the line where the cursor is.

r Replace the character where the cursor is.

/text Search for a text string.

:s/old/new/g Replace (substitute) a text string with a new string.

yy Yank or move a line.

p Paste a copied line after the current cursor.

P Paste a copied line above the current cursor.

:wq Save and quit.

:q Exit and discard changes.

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 65

For further information on vi navigation and text manipulation commands, you can always look
up a good reference, such as A Practical Guide to the UNIX System by Mark Sobell (Addison Wesley).

Moving Around with the head and tail Commands
The head and tail UNIX file commands help you get to the top or bottom of a file. By default, they
will show you the first or last ten lines of the file, but you can specify a different number of lines in
the output, by specifying a number next to the head or tail command. The following example shows
how you can get the first five lines of a file (the /etc/group file, which shows all the groups on the
UNIX server):

$ head -5 /etc/group
root::0:root
other::1:root,hpdb
bin::2:root,bin
sys::3:root,uucp
adm::4:root
$

The tail command works in the same way, but it displays the last few lines of the file. The tail
command is very useful when you are performing a task like a database software installation, because
you can use it to display the progress of the installation process and see what’s actually happening.

OTHER EDITORS

In addition to the UNIX vi editor, there are several other alternatives you can use, including pico, sed, and Emacs.
Most are simple text editors that you can use in addition to the more popular vi editor. It’s worth noting that Emacs
works well in graphical mode when you use the X Window System, and there are also specific editors for X, such as
dtpad. For useful information on the various UNIX editors such as the Emacs, pico, and the vi editors, please go to
http://www.helpdesk.umd.edu/systems/wam/general/1235/.

Vim (or Vi improved) is an enhanced clone, if you will, of vi, and it is one of the most popular text editors among Linux
administrators. You can download Vim from http://www.vim.org/download.php. For an excellent introduction
to the Vim editor and its use with SQL*Plus, see David Kalosi’s article “Vimming With SQL*Plus” at http://
www.oracle.com/technology/pub/articles/kalosi_vim.html.

Extracting and Sorting Text
The cat and more utilities, which you’ve seen earlier in the “Overview of Basic UNIX Commands”
section, dump the entire contents of a text file onto the screen. If you want to see only certain parts
of a file, however, you can use text-extraction utilities. Let’s look at how you can use some of the
important text-extraction tools.

Using grep to Match Patterns
I described the grep command briefly earlier in the chapter—you use the grep command to find
matches for certain patterns in a string, using regular expressions. (For a good introduction to
regular expressions, see the tutorial at http://www.regular-expressions.info/tutorial.html.) The
word “grep” is an acronym for “global regular expression print,” and it is derived from the following
vi command, which prints all lines matching the regular expression re:

g/re/p

66 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

You can think of regular expressions as the search criteria used for locating text in a file; grep is
thus similar to the find command in other operating systems. grep searches through each line of the
file (or files) for the first occurrence of the given string, and if it finds that string, it prints the line. For
example, to output all the lines that contain the expression “oracle database” in the file test.txt, you
use the grep command in the following way:

$ grep 'oracle database' test.txt

In order to output all lines in the test.txt file that don’t contain the expression “oracle data-
base”, you use the grep command with the -v option, as shown here:

$ grep -v 'oracle database' test.txt

In addition to the -v option, you can use the grep command with several other options:

-c: Prints a count of matching lines for each input file

-l: Prints the name of each input file

-n: Supplies the line number for each line of output

-i: Ignores the case of the letters in the expression

In addition to grep, you can use fgrep (fixed grep) to search files. The fgrep command doesn’t
use regular expressions. The command performs direct string comparisons, to find matches for a
fixed string, instead of a regular expression.

The egrep version of grep helps deal with complex regular expressions, and is faster than the
regular grep command.

Cutting, Pasting, and Joining Text
Often, you need to strip part of a file’s text or join text from more than one file. UNIX provides great
commands for performing these tasks, as I show in the following sections.

Outputting Columns with the cut Command

The cut command will output specified columns from a text file. Let’s say you have a file named
example.txt with the following text:

one two three
four five six
seven eight nine
ten eleven twelve

You can specify the fields you want to extract with the -f option. The following command will
return just the second column in the example.txt file:

$ cut -f2 example.txt
two
five
eight
eleven

You use the -c option with the cut command to specify the specific characters you want to
extract from a file. The following two commands extract the tenth character and then characters 10–12
from the password.txt file:

$ password.txt | cut -c10
$ password.txt | cut -c10-12

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 67

You can use the -d option in tandem with the -f option to extract characters up to a specified
delimiter. The following example specifies that the cut command extract the first field (f1) of the
passwd file, with the -d option specifying that the field is delimited by a colon (:). (The passwd file,
located in the /etc directory, is where UNIX and Linux systems keep their user account information.)

$ cut -d":" -f1 /etc/passwd
root
daemon
bin
sys
adm
uucp
mail

Joining Files with the paste Command

The paste command takes one line from one source and combines it with another line from another
source. Let’s say you have two files: test1.txt contains the string “one two three” and test2.txt
contains “one four five six”. You can use the paste command to combine the two files as shown here:

$ paste test1.txt test2.txt
one two three one four five six

Joining Files with the join Command

The join command will also combine the contents of two files, but it will work only if there is a
common field between the files you are joining. In the previous section, test1.txt and test2.txt
don’t have a common column, so using the join command with those two files won’t produce any
output. However, suppose you have two files, test.one and test.two, with their contents as follows:

test.one test.two
11111 Dallas 11111 High Tech
22222 Houston 22222 Oil and Energy

By default the join command looks only at the first fields for matches, so it will give you the
following result, based on the common (first) column:

$ join test.one test.two
11111 Dallas High Tech
22222 Houston Oil and Energy

The -1 option lets you specify which field to use as the matching field in the first file, and the
-2 option lets you specify which field to use as the matching field in the second file. For example,
if the second field of the first file matches the third field of the second file, you would use the join
command as follows:

$ join -1 2 -2 3 test.one test.two

You use the -o option to specify output fields in the following format: file.field. Thus, to print the
second field of the first file and the third field of the second file on matching lines, you would use the
join command with the following options:

$ join -o 1.2 2.3 test.one test.two

68 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

Sorting Text with the sort Command

You can sort lines of text files, whether from a pipe or from a file, using the sort command. If you use
the -m option, sort simply merges the files without sorting them. Let’s say you have a file called
test.txt with the following contents:

$ cat test.txt
yyyy
bbbb
aaaa
nnnn

By using the sort command, you can output the contents of the test.txt file in alphabetical
order:

$ sort test.txt
aaaa
bbbb
nnnn
yyyy

By default, sort operates on the first column of the text.

Removing Duplicate Lines with the uniq Command

The uniq command removes duplicate lines from a sorted file. This command often follows the sort
command in a pipe. By using the -c option, it can be used to count the number of occurrences of a
line, or by using the -d option, it can report only the duplicate lines.

$ sort -m test.one test.two | uniq -c
 1 New test.
 2 Now testing
 1 Only a test.

In the preceding example, the sort command merges the two files, test.one and test.two,
using the -m option. The output is piped to the uniq command with the -c option. What you get is an
alphabetized list, with all duplicate lines removed. You also get the frequency of occurrence of each
line.

Shell Scripting
Although the preceding commands and features are useful for day-to-day work with UNIX, the real
power of this operating system comes from the user’s ability to create shell scripts. In this section,
you’ll start slowly by building a simple shell program, and you’ll proceed to build up your confidence
and skill level as you move along into branching, looping, and all that good stuff.

What Is a Shell Program?
A shell script (or shell program) is simply a file containing a set of commands. The shell script looks
just like any regular UNIX file, but it contains commands that can be executed by the shell. Although
you’ll learn mostly about Korn shell programming here, Bourne and C shell programming are similar in
many ways. If you want to make the Korn shell your default shell, ask your system administrator to
set it up by changing the shell entry for your username in the /etc/passwd file.

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 69

Before you begin creating a shell program, you should understand that shell programs don’t
contain any special commands that you can’t use at the command prompt. In fact, you can type any
command in any shell script at the command prompt to achieve the same result. All the shell program
does is eliminate the drudgery involved in retyping the same commands every time you need to
perform a set of commands together. Shell programs are also easy to schedule on a regular basis.

Using Shell Variables
You learned earlier in this chapter how shell variables are used to set up your UNIX environment. It’s
common to set variables within shell programs, so that these variables will hold their values for as
long as the shell program executes.

If you’re running the shell program manually, you can set the shell variables in the session
you’re using, and there’s really no need for separate specification of shell variables in the shell
program. However, you won’t always run a shell program manually—that defeats the whole purpose
of using shell programs in the first place. Shell programs are often run as part of the cron job, and
they could be run from a session that doesn’t have all the environmental variables set correctly. By
setting shell variables in the program, you can make sure you’re using the right values for key vari-
ables such as PATH, ORACLE_SID, and ORACLE_HOME.

Evaluating Expressions with the test Command
In order to write good shell scripts, you must understand how to use the test command. Most
scripts involve conditional (if-then, while-do, until-do) statements. The test command helps in
determining whether a certain condition is satisfied or not.

The test command evaluates an expression and returns a 0 value if the condition is true; other-
wise it returns a value greater than 0, usually 1.

The syntax for the test command is as follows:

test expression

You can use the test command in conjunction with the if, while, or until constructs or use it
by itself to evaluate any expression you like. Here is an example:

$ test "ONE" = "one"

This statement asks the test command to determine whether the string “ONE” is the same as
the string “one”.

You can use the test command in the implicit form (with an alias), by using square brackets
instead of the test command, as shown here:

$ ["ONE" = "one"]

To find out whether the test command (or its equivalent, the square brackets) evaluated the
expression "ONE" = "one" to be true or false, remember that if the result code (same as exit code) is
0, the expression is true, and otherwise it is false. To find the result code, all you have to do is use the
special variable ?$, which will show you the exit code for any UNIX or Linux command. In our case,
here is the exit code:

$ test "ONE" = "one"
$ echo $?
0

You can use exit codes in your shell scripts to check the execution status of any commands you
use in the script.

70 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

You can use the following relations with the test command while comparing integers:

-ne: Not equal

-eq: Equal

-lt: Less than

-gt: Greater than

-ge: Greater than or equal to

-le: Less than or equal to

Executing Shell Programs with Command-Line Arguments
It’s common to use arguments to specify parameters to shell programs. For example, you can run
the shell program example.ksh as follows:

$ example.ksh prod1 system

In this case, example.ksh is your shell script, and the command-line arguments are prod1, the
database name, and system, the username in the database. There are two arguments inside the shell
script referred to as $1 and $2, and these arguments correspond to prod1 and system.

UNIX uses a positional system, meaning that the first argument after the shell script’s name is
the variable $1, the second argument is the value of the variable $2, and so on. Thus, whenever there’s
a reference to $1 inside the shell script, you know the variable is referring to the first argument (prod1,
the database name, in this example).

By using command-line arguments, the script can be reused for several database and username
combinations—you don’t have to change the script.

Analyzing a Shell Script
Let’s look at a simple database-monitoring shell script, example.ksh. This script looks for a certain
file and lets you know if it fails to find it. The script uses one command-line argument to specify the
name of the database. You therefore will expect to find a $1 variable in the script.

When the shell program is created, UNIX has no way of knowing it’s an executable program. You
make your little program an executable shell script by using the chmod command:

$ ll example.ksh
-rw-rw-rw- 1 salapati dba 439 feb 02 16:51 example.ksh
$ chmod 766 example.ksh
$ ll example.ksh
4-rwxrw-rw- 1 salapati dba 439 feb 02 16:52 example.ksh
$

You can see that when the script was first created, it wasn’t executable, because it didn’t have
the execution permissions set for anyone. By using the chmod command, the execution permission is
granted to the owner of the program, salapati, and now the program is an executable shell script.

Here are the contents of the example.ksh shell script, which looks for a certain file in a directory
and sends out an e-mail to the DBA if the file is not found there:

#!/bin/ksh
ORACLE_SID=$1 export ORACLE_SID
PATH=/usr/bin:/usr/local/bin:/usr/contrib./bin:$PATH
export PATH
ORACLE_BASE=${ORACLE_HOME}/../..;

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 71

export ORACLE_BASE
export CURRDATE='date +%m%dY_%H%M'
export LOGFILE=/tmp/dba/dba.log
test -s $ORACLE_HOME/dbs/test${ORACLE_SID}.dbf
if ['echo $?' -ne 0]
then
 echo "File not found!"
mailx -s "Critical: Test file not found!" dba@bankone.com < $LOGFILE
fi

Let’s analyze the example.ksh shell script briefly. The first line in the program announces that
this is a program that will use the Korn shell—that’s what #!/bin/ksh at the top of the script indicates.
This is a standard line in all Korn shell programs (and programs for other shells have equivalent lines).

In the next line, you see ORACLE_SID being assigned the value of the $1 variable. Thus, $1 will be
assigned the value of the first parameter you pass with the shell program at the time of execution,
and that value will be given to ORACLE_SID. The script also exports the value for the ORACLE_BASE envi-
ronment variable.

Next, the program exports the values of three environmental variables: PATH, CURRDATE, and LOGFILE.
Then the script uses the file-testing command, test, to check for the existence of the file

testprod1.dbf (where prod1 is the value of ORACLE_SID) in a specific location. In UNIX, the success
of a command is indicated by a value of 0 and failure is indicated by 1; you’ll also recall that echo
$?variable_name will print the value of the variable on the screen. Therefore, the next line, if ['echo
$? ' -ne 0], literally means “if the result of the test command is negative” (which is the same as
saying, “if the file doesn’t exist”). If that’s the case, the then statement will write “File not found” in
the log file.

The then statement also uses the mail program to e-mail a message to the DBA saying that the
required file is missing. The mail program lets you send mail to user accounts on another UNIX
server or to a person’s e-mail address.

All you have to do to run or execute this shell script is simply type the name of the script at the
command prompt, followed by the name of the database. For this simple method to work, however,
you must be in the Korn shell when you run the script.

Now that you’ve learned the basics of creating shell scripts, let’s move on to some powerful but
still easy techniques that will help you write more powerful shell programs.

Flow-Control Structures in Korn Shell Programming
The Korn shell provides several flow-control structures similar to the ones found in regular programming
languages, such as C or Java. These include the conditional structures that use if statements and the
iterative structures that use while and for statements to loop through several steps based on certain
conditions being satisfied. Besides these flow-control structures, you can use special commands to
interrupt or get out of loops when necessary.

Conditional Branching

Branching constructs let you instruct the shell program to perform alternative tasks based on whether a
certain condition is true or not. For example, you can tell the program to execute a particular command
if a certain file exists and to issue an error message if it doesn’t.

The most common form of conditional branching in all types of programming is the if-then-
else conditional structure. In UNIX and Linux programming, this conditional structure has the
syntax if-then-else-fi. This conditional structure will perform one of two or more actions, depending
on the results of a test.

72 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

The syntax for the if-then-else-fi structure is as follows:

if condition
then
 Action a
else
 Action b
fi

Make sure that the then is on the second line. Also, notice that the control structure ends in fi
(which is if spelled backwards).

Here’s an example of the if-then-else-fi structure:

#!/usr/bin/sh
LOGFILE= /tmp/dba/error.log
export LOGFILE
grep ORA- $LOGFILE > job.err
 if [`cat job.err|wc -l` -gt 0]
 then
 mailx -s "Backup Job Errors" salapati@netbsa.org < job.err
 else mailx -s " Backup Job Completed Successfully" salapati@netbsa.org
 fi

This script checks to see whether there are any errors in an Oracle backup job log. The script
uses the mailx program, a UNIX-based mail utility, to send mail to the DBA. The -s option of the
mailx utility specifies the subject line for the e-mail. The contents of the job.err file will be sent as
the output of the e-mail.

Looping

In real-world programming, you may want to execute a command several times based on some
condition. UNIX provides several loop constructs to enable this, the main ones being the while-do-
done loop, which executes a command while a condition is true; the for-do-done loop, which executes a
command a set number of times; and the until-do-done loop, which performs the same command
until some condition becomes true.

The next sections examine these three loop structures in more detail.

A while-do-done Loop

The while-do-done loop tests a condition each time before executing the commands within the loop.
If the test is successful, the commands are executed. If the test is never successful, the commands
aren’t executed even once. Thus, the loop ensures that the commands inside the loop get executed
“while” a certain condition remains true.

Here’s the syntax for the while-do-done loop:

while condition
do
 commands
done

In the following example of the while-do-done loop, note that the command inside the loop
executes 99 times (the lt relation ensures that as long as the value of the variable VAR1 is less than 100,
the script will echo the value of the variable):

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 73

#!/usr/bin/ksh
VAR1=1
while [$VAR1 -lt 100]
do
 echo "value of VAR1 is: $VAR1"
 ((VAR1 =VAR1+1))
done

A for-do-done Loop

You can use the for-do-done loop when you have to process a list of items. For each item in the
list, the loop executes the commands within it. Processing will continue until the list elements
are exhausted.

The syntax of the for-do-done loop is as follows:

for var in list
do
 commands
done

Here’s an example of a for-do-done loop (the for command uses the letter F as a variable to
process the list of files in a directory):

#!/usr/bin/sh
this loop gives you a list of all files (not directories)
in a specified directory.
for F in /u01/app/oracle
do
 if [-f $F]
 then
 ls $F
 fi
done

An until-do-done Loop

An until-do-done loop executes the commands inside the loop until a certain condition becomes
true. The loop executes as long as the condition remains false.

Here’s the general syntax for the until-do-done loop:

until condition
do
 commands
done

The following is a simple example that shows how to use the until-do-done loop. The print
command outputs the sentence within the quotes on the screen. The -n option specifies that the
output should be placed on a new line. The UNIX command read will read a user’s input and place
it in the answer variable. The script then will continue to run until the user inputs the answer “YES”:

until [[$answer = "yes"]];do
 print -n "Please accept by entering \"YES\": "
 read answer
 print ""
done

74 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

Branching with the case Command

The case structure is quite different from all the other conditional statements. This structure lets the
program branch to a segment of the program based on the value of a certain variable. The variable’s
value is checked against several patterns, and when the patterns match, the commands associated
with that pattern will be executed.

Here’s the general syntax of the case command:

case var in
pattern1)
 commands
 ;;
pattern2)
 commands
 ;;
...
patternn)
 commands
 ;;
esac

Note that the end of the case statement is marked by esac (which is case spelled backwards).
Here’s a simple example that illustrates the use of the case command:

#!/usr/bin/sh
echo " Enter b to see the list of books"
echo " Enter t to see the library timings"
echo " Enter e to exit the menu"
echo
echo "Please enter a choice": \c"
read VAR
case $VAR in
b/B) book.sh
 ;;
t/T) times.sh
 ;;
e/E) logout.sh
 ;;
*) echo " "wrong Key entry: Please choose again"
esac

Dealing with UNIX Processes
When you execute your shell program, UNIX creates an active instance of your program, called the
process. UNIX also assigns your process a unique identification number, called the process ID (PID).
As a DBA, you need to know how to track the processes that pertain to your programs and the data-
base instance that you are managing.

Gathering Process Information with ps
The ps command, with its many options, is what you’ll use to gather information about the currently
running processes on your system. The ps -ef command will let you know the process ID, the user,
the program the user is executing, and the length of the program’s execution.

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 75

In the following example, the ps -ef command is issued to display the list of processes, but
because the list is going to be very long, the pipe command is used to filter the results. The grep
command ensures that the list displays only those processes that contain the word “pmon”. The
pmon process is an essential Oracle background process, and I explain it in Chapter 5. The output
indicates that three different Oracle databases are currently running:

$ ps -ef | grep pmon
oracle 10703 1 0 09:05:39 ? 0.00 ora_pmon_test
oracle 18655 1 0 09:24:00 ? 0.00 ora_pmon_prod1
oracle 10984 1 0 09:17:50 ? 0.00 ora_pmon_finance
$

Running Processes after Logging Out
Sometimes, you may want to run a program from a terminal, but you then need to log out from it
after a while. When you log out, a “hangup” signal is sent to all the processes you started in that
session. To keep the programs you are executing from terminating abruptly when you disconnect,
you can run your shell programs with the nohup option, which means “no hangup.” You can then
disconnect, but your (long) program will continue to run.

Here’s how you specify the nohup option for a process:

$ nohup test.ksh

Running Processes in the Background
You can start a job and then run it in the background, returning control to the terminal. The way to
do this is to specify the & parameter after the program name, as shown in the following example (you
can use the ps command to see if your process is still running, by issuing either the ps -ef or ps -aux
command):

$ test.ksh &
[1] 27149
$

You can also put a currently running job in the background, by using the Ctrl+Z sequence. This
will suspend the job and run it in the background. You can then use the command fg%jobnumber to
move the job that’s running in the background back to the foreground.

Terminating Processes with the kill Command
Sometimes you’ll need to terminate a process because it’s a runaway or because you ran the wrong
program. In UNIX, signals are used to communicate with processes and to handle exceptions. To
bring a UNIX process to an abrupt stop, you can use the kill command to signal the shell to termi-
nate the session before its conclusion. Needless to say, mistakes in the use of the kill command can
prove disastrous.

■Note Although you can always kill an unwanted Oracle user session or a process directly from UNIX itself, you’re
better off always using Oracle’s methods for terminating database sessions. There are a couple of reasons for this.
First, you may accidentally wipe out the wrong session. Second, when you’re using the Oracle shared server method, a
process may have spawned several other processes, and killing the dispatcher session could end up wiping out
more sessions than you had intended.

76 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

There is more than one kill signal that you can issue to terminate any particular process. The
general format of the kill command is as follows:

kill -[signal] PID

The signal option after the kill command specifies the particular signal the kill command will
send to a process, and PID is the process ID of the process to be killed. To kill a process gracefully,
you send a SIGTERM signal to the process, using either the signal’s name or number. Either of the
following commands will kill the process with a PID of 21427:

$ Kill -SIGTERM 21427
$ Kill -15 21427

If your SIGTERM signal, which is intended to terminate a process gracefully, doesn’t succeed in
terminating the session, you can send a signal that will force the process to die. To do this, use the
kill -9 signal:

$ kill -9 21427

UNIX System Administration and the Oracle DBA
It isn’t necessary for you to be an accomplished system administrator to manage your database, but
it doesn’t hurt to know as much as possible about what system administration entails. Most organi-
zations hire UNIX system administrators to manage their systems, and as an Oracle DBA, you’ll need
to interact closely with those UNIX system administrators. Although the networking and other aspects of
the system administrator’s job may not be your cup of tea, you do need to know quite a bit about
disk management, process control, and backup operations. UNIX system administrators are your
best source of information and guidance regarding these issues.

UNIX Backup and Restore Utilities
Several utilities in UNIX make copies or restore files from copies. Of these, the dd command pertains
mainly to the so-called raw files. Most of the time, you’ll be dealing with UNIX file systems, and you’ll
need to be familiar with two important archiving facilities—tar and cpio—to perform backups and
restores. The command tar is an abbreviation for “tape file archiver,” and was originally designed
to write to tapes. The command cpio stands for “copy input and output.” Other operating system–
specific backup and recovery techniques such as fbackup/frecover, dump/restore, and xdump/
vxrestore exist, but they are mainly of interest to UNIX administrators. You most likely will use the
tar and cpio commands to perform backups. The tar command can copy and restore archives of
files using a tape system or a disk drive. By default, tar output is placed on /dev/rmt/Om, which refers
to a tape drive.

The following tar command will copy the data01.dbf file to a tape, with the format /dev/rmt/0m.
The -cvf option creates a new archive (the hyphen is optional). The c option asks tar to create a new
archive file, and the v option stands for verbose, which specifies that the files be listed as they are
being archived:

$ tar -cvf /dev/rmt/0m /u10/oradata/data/data01.dbf

The following tar command will extract the backed-up files from the tape to the specified
directory:

$ tar -xvf/dev/rmt/0m /u20/oradata/data/data01.dbf

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 77

The x option asks tar to extract the contents of the specified file. The v and f options have the
same meanings as in the previous example.

The cpio command with the -o (copy out) option copies files to standard output, such as disk or
tape. The following command will copy the contents of the entire current directory (all the files) to
the /dev/rmt/0m tape:

$ ls | cpio -0 > /dev/rmt/0m

The cpio command with the -i (copy in) option extracts files from standard input. The following
command restores all the contents of the specified tape to the current directory:

$ cpio -i < /dev/rmt/0m

The crontab and Automating Scripts
Most DBAs will have to schedule their shell programs and other data-loading programs for regular
execution by the UNIX system. UNIX provides the cron table, or crontab, to schedule database tasks.
In this section, you’ll learn how to schedule jobs with this wonderful, easy-to-use utility.

You can invoke the crontab by typing in crontab -l. This will give you a listing of the contents of
crontab. To add programs to the schedule or change existing schedules, you need to invoke crontab
in the edit mode, as shown here:

$ crontab -e

Each line in the crontab is an entry for a regularly scheduled job or program, and you edit the
crontab the same way you edit any normal vi-based file. Each line in the /etc/crontab file represents
a job that you want to execute, and it has the following format:

minute hour day month day of week command

The items in the crontab line can have the following values:

• minute: Any integer from 0 to 59

• hour: Any integer from 0 to 23

• day: Any integer from 1 to 31 (this must be a valid date if a month is specified)

• month: Any integer from 1 to 12 (or the short name of the month, such as jan or feb)

• day of week: Any integer from 0 to 7, where 0 and 7 represent Sunday, 1 is Saturday, and so on

• command: The command you want to execute (this is usually a shell script)

Here’s a simple example of a crontab line:

#--
minute hour date month day of week command
30 18 * * 1-6 analyze.ksh
#---

The preceding code indicates that the program analyze.ksh will be run Monday through Saturday at
6:30 p.m. Once you edit the crontab and input the lines you need to run your commands, you can exit
out of cron by pressing Shift+WQ, just as you would in a regular vi file. You now have “cronned” your
job, and it will run without any manual intervention at the scheduled time.

It’s common practice for DBAs to put most of their monitoring and daily data-load jobs in the
crontab for automatic execution. If crontab comes back with an error when you first try to edit it, you
need to talk to your UNIX system administrator and have appropriate permissions granted.

78 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

■Note You’ll use crontab for all your regularly scheduled database or operating system jobs, but if you want to
schedule a task for a single execution, you can use the at or batch command instead. Look up the man pages for
more information on these two scheduling commands.

Using Telnet
Telnet is an Internet protocol for accessing remote computers from your PC or from another UNIX
server or workstation. Your machine simply needs to be connected to the target machine through a
network, and you must have a valid user account on the computer you are connecting to. To use
telnet on your PC, for example, go to the DOS prompt and type telnet. At the telnet prompt, type in
either the UNIX server’s IP address or its symbolic name, and your PC will connect to the server.
Unless you are doing a lot of file editing, telnet is usually all you need to connect and work with a
UNIX server, in the absence of a terminal emulator.

The following example session shows a connection to and disconnection from a server named
hp50. Of course, what you can do on the server will depend on the privileges you have on that machine.

$ telnet hp5
Trying...
Connected to hp5.netbsa.org.
Escape character is '^]'.
Local flow control on
Telnet TERMINAL-SPEED option ON
login: oracle
Password:
Last successful login for oracle: Tue Nov 5 09:39:45
CST6CDT 2002 on tty
Last unsuccessful login for oracle: Thu Oct 24 09:31:17
CST6CDT 2002 on tty
Please wait...checking for disk quotas
...
You have mail.
TERM = (dtterm)
oracle@hp5[/u01/app/oracle]
$

Once you log in, you can do everything you are able to do when you log directly into the server
without using telnet.

You log out from your telnet session in the following way:

$ exit
logout
Connection closed by foreign host.
$

Remote Login and Remote Copy
Rlogin is a UNIX service that’s very similar to telnet. Using the rlogin command, you can log into a
remote system just as you would using the telnet utility. Here is how you can use the rlogin command to
remotely log into the server hp5:

$ rlogin hp5

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 79

You’ll be prompted for a password after you issue the preceding command, and upon the vali-
dation of the password, you’ll be logged into the remote server.

To copy files from a server on the network, you don’t necessarily have to log into that machine
or even use the FTP service. You can simply use the rcp command to copy the files. For example, to
copy a file named /etc/oratab from the server hp5 to your client machine (or to a different server),
you would use the rcp command as follows:

$ rcp hp5:/etc/oratab/ .

The dot in the command indicates that the copy should be placed in your current location.
To copy a file called test.txt from your current server to the /tmp directory of the server hp5,

you would use the rcp command as follows:

$ rcp /test/txt hp5:/tmp

Using SSH, the Secure Shell
The Secure Shell, SSH, is a UNIX based command interface and a protocol that enables secure remote
logins to a system. Net administrators use SSH widely to control web servers as well as other servers
remotely. The big difference between the ssh command (which uses the SSH protocol) and rlogin is
that SSH is a secure way to communicate with remote servers—SSH uses encrypted communica-
tions to connect two untrusted hosts over an insecure network and also encrypts the passwords.

Here’s an example of using the ssh command to connect to the hp5 server:

$ ssh prod5
Password:
Last successful login for oracle: Thu Apr 7 09:46:52 CST6CDT 2005 on tty
Last unsuccessful login for oracle: Fri Apr 1 09:02:00 CST6CDT 2005
oracle@prod5 [/u01/app/oracle]
$

Just as SSH is a secure alternative to traditional telnet, the scp service is a secure alternative to
rcp, for transferring files between servers. The syntax for the scp command is similar to that of the rcp
command:

scp [-r] [[user@]host1:]file1 [...] [[user@]host2:]file2

The –r option copies files recursively.

Using FTP to Send and Receive Files
FTP, the File Transfer Protocol, is a popular way to transmit files between UNIX servers or between
a UNIX server and a PC. It’s a simple and fast way to send files back and forth.

The following is a sample FTP session between my PC and a UNIX server on my network. I am
getting a file from the UNIX server called prod5 using the ftp get command.

$ ftp prod5
connected to prod5
ready.
User (prod5:-(none)): oracle
331 Password required for oracle.
Password:
User oracle logged in.
ftp> pwd
'/u01/app/oracle" is the current directory.
ftp> cd admin/dba/test

80 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

CWD command successful.
ftp> get analyze.ksh
200 PORT command successful.
150 Opening ASCII mode data connection for analyze.ksh
 (3299 bytes).
226 Transfer complete.
ftp: 3440 bytes received in 0.00Seconds 3440000.00Lbytes/sec.
ftp> bye
221 Goodbye.
$

If, instead of getting a file, I wanted to place a file from my PC onto the UNIX server I connected
to, I would use the put command, as in put analyze.ksh. The default mode of data transmission is
the ASCII character text mode; if you want binary data transmission, just type in the word binary
before you use the get or put command.

Of course, GUI-based FTP clients are an increasingly popular choice. If you have access to one
of those, transferring files is usually simply a matter of dragging and dropping files from the server to
the client, much like moving files in Windows Explorer.

UNIX System Performance Monitoring Tools
Several tools are available for monitoring the performance of the UNIX system. These tools check
on the memory and disk utilization of the host system and let you know of any performance bottle-
necks. In this section, you’ll explore the main UNIX-based monitoring tools and see how these tools
can help you monitor the performance of your system.

The Basics of Monitoring a UNIX System

A slow system could be the result of a bottleneck in processing (CPU), memory, disk, or bandwidth.
System monitoring tools help you to clearly identify the bottlenecks causing poor performance. Let’s
briefly examine what’s involved in the monitoring of each of these resources on your system.

Monitoring CPU Usage

As long as you are not utilizing 100 percent of the CPU capacity, you still have juice left in the system
to support more activity. Spikes in CPU usage are common, but your goal is to track down what, if
any, processes are contributing excessively to CPU usage. These are some of the key factors to
remember while examining CPU usage:

• User versus system usage: You can identify the percentage of time the CPU power is being used
for users’ applications as compared with time spent servicing the operating system’s over-
head. Obviously, if the system overhead accounts for an overwhelming proportion of CPU
usage, you may have to examine this in more detail.

• Runnable processes: At any given time, a process is either running or waiting for resources to
be freed up. A process that is waiting for the allocation of resources is called a runnable
process. The presence of a large number of runnable processes indicates that your system
may be facing a power crunch—it is CPU-bound.

• Context switches and interrupts: When the operating system switches between processes, it
incurs some overhead due to the so-called context switches. If you have too many context
switches, you’ll see deterioration in CPU usage. You’ll incur similar overhead when you have
too many interrupts, caused by the operating system when it finishes certain hardware- or
software-related tasks.

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 81

Managing Memory

Memory is one of the first places you should look when you have performance problems. If you have
inadequate memory (RAM), your system may slow down due to excessive swapping. Here are some
of the main factors to focus on when you are checking system memory usage:

• Page ins and page outs: If you have a high number of page ins and page outs in your memory
statistics, it means that your system is doing an excessive amount of paging, the moving of
pages from memory to the disk system due to inadequate available memory. Excessive paging
could lead to a condition called thrashing, which just means you are using critical system
resources to move pages back and forth between memory and disk.

• Swap ins and swap outs: The swapping statistics also indicate how adequate your current
memory allocation is for your system.

• Active and inactive pages: If you have too few inactive memory pages, it may mean that your
physical memory is inadequate.

Monitoring Disk Storage

When it comes to monitoring disks, you should look for two things. First, check to make sure you
aren’t running out of room—applications add more data on a continuous basis, and it is inevitable
that you will have to constantly add more storage space. Second, watch your disk performance—are
there any bottlenecks due to slow disk input/output performance?

Here are the basic things to look for:

• Check for free space: Using simple commands, a system administrator or a DBA can check the
amount of free space left on the system. It’s good, of course, to do this on a regular basis so
you can head off a resource crunch before it’s too late. Later in this chapter, I’ll show you how
to use the df and the du commands to check the free space on your system.

• Reads and writes: The read/write figures give you a good picture of how hot your disks are
running. You can tell whether your system is handling its workload well, or if it’s experiencing
an extraordinary I/O load at any given time.

Monitoring Bandwidth

By measuring bandwidth use, you can measure the efficiency of the transfer of data between devices.
Bandwidth is harder to measure than simple I/O or memory usage patterns, but it can still be
immensely useful to collect bandwidth-related statistics.

Your network is an important component of your system—if the network connections are slow,
the whole application may appear to run very slowly. Simple network statistics like the number of
bytes received and sent will help you identify network problems.

High network packet collision rates, as well as excessive data transmission errors, will lead to
bottlenecks. You need to examine the network using tools like netstat (discussed later) to see if the
network has any bottlenecks.

Monitoring Tools for UNIX Systems

In order to find out what processes are running, you’ll most commonly use the process command,
ps. For example, the following example checks for the existence of the essential pmon process, to see
if the database is up:

$ ps -ef | grep pmon

82 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

Of course, to monitor system performance, you’ll need more sophisticated tools than the
elementary ps command. The following sections cover some of the important tools available for
monitoring your system’s performance.

Monitoring Memory Use with vmstat

The vmstat utility helps you monitor memory usage, page faults, processes, and CPU activity. The
vmstat utility’s output is divided into two parts: virtual memory (VM) and CPU. The VM section is
divided into three parts: memory, page, and faults. In the memory section, avm stands for “active
virtual memory” and free is short for “free memory.” The page and faults items provide detailed
information on page reclaims, pages paged in and out, and device interrupt rates.

The output gives you an idea about whether the memory on the system is a bottleneck during
peak times. The po (page outs) variable under the page heading should ideally be 0, indicating that
there is no swapping—that the system is not transferring memory pages to swap disk devices to free
up memory for other processes.

Here is some sample output from vmstat (note that I use the -n option to improve the formatting
of the output):

$ vmstat -n
VM
 memory page faults
 avm free re at pi po fr de sr in sy cs
1822671 8443043 1052 113 2 0 0 0 0 8554 89158 5272
CPU
 cpu procs
 us sy id r b w
 23 7 69 8 23 0
 22 8 70
 21 7 72
 22 7 71
$

Under the procs subheading in the CPU part of the output, the first column, r, refers to the run
queue. If your system has 24 CPUs and your run queue shows 20, that means 20 processes are waiting
in the queue for a turn on the CPUs, and it is definitely not a bad thing. If the same r value of 24 occurs
on a machine with 2 CPUs, it indicates the system is CPU-bound—a large number of processes are
waiting for CPU time.

In the CPU part of vmstat’s output, us stands for the amount of CPU usage attributable to the
users of the system, including your database processes. The sy part shows the system usage of the
CPU, and id stands for the amount of CPU that is idle. In our example, roughly 70 percent of the CPU
is idle for each of the four processors, on average.

Viewing I/O Statistics with iostat

The iostat utility gives you input/output statistics for all the disks on your system. The output is
displayed in four columns:

• device: The disk device whose performance iostat is measuring

• bps: The number of kilobytes transferred from the device per second

• sps: The number of disk seeks per second

• msps: The time in milliseconds per average seek

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 83

The iostat command takes two parameters: the number of seconds before the information
should be updated on the screen, and the number of times the information should be updated. Here
is an example of the iostat output:

$ iostat 4 5
 device bps sps msps
 c2t6d0 234 54.9 1.0
 c5t6d0 198 42.6 1.0
 c0t1d1 708 27.7 1.0
 c4t3d1 608 19.0 1.0
 c0t1d2 961 46.6 1.0
 c4t3d2 962 46.1 1.0
 c0t1d3 731 91.3 1.0
 c4t3d3 760 93.5 1.0
 c0t1d4 37 7.0 1.0
$

In the preceding output, you can see that the disks c0t1d2 and c4t3d2 are the most heavily used
disks on the system.

Analyzing Read/Write Operations with sar

The UNIX sar (system activity reporter) utility offers a very powerful way to analyze how the read/
write operations are occurring from disk to buffer cache and from buffer cache to disk. By using the
various options of the sar command, you can monitor disk and CPU activity, in addition to buffer
cache activity.

The output for the sar command has the following columns:

• bread/s: The number of read operations per second from disk to the buffer cache

• lread/s: The number of read operations per second from the buffer cache

• %rcache: The cache hit ratio for read requests

• bwrit/s: The number of write operations per second from disk to the buffer cache

• lwrit/s: The number of write operations per second to the buffer cache

• %wcache: The cache hit ratio for write requests

Here’s the output of a typical sar command, which monitors your server’s CPU activity, using the
-u option (the 1 10 tells sar to refresh the output on the screen every second for a total of ten times):

$ sar -u 1 10
HP-UX prod5 B.11.11 U 9000/800 04/07/08

16:11:21 %usr %sys %wio %idle
16:11:22 34 6 56 4
16:11:23 31 7 55 7
16:11:24 45 9 43 4
16:11:25 45 9 44 2
16:11:26 45 11 40 3
16:11:27 46 11 40 4
16:11:28 48 10 40 3
16:11:29 56 11 31 2
16:11:30 50 12 36 3
16:11:31 45 12 39 4

84 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

Average 44 10 42 4

$

In the preceding sar report, %usr shows the percentage of CPU time spent in the user mode,
%sys shows the percentage of CPU time spent in the system mode, %wio shows the percentage of
time the CPU is idle with some process waiting for I/O, and %idle shows the idle percentage of the
CPU. You can see that the percentage of CPU due to processes waiting for I/O is quite high in this
example.

Monitoring Performance with top

The top command is another commonly used performance-monitoring tool. Unlike some of the
other tools, the top command shows you a little bit of everything, such as the top CPU and memory
utilization processes, the percentage of CPU time used by the top processes, and the memory utilization.

The top command displays information in the following columns:

• CPU: Specifies the processor

• PID: Specifies the process ID

• USER: Specifies the owner of the process

• PRI: Specifies the priority value of the process

• NI: Specifies the nice value (nice invokes a command with an altered scheduling priority)

• SIZE: Specifies the total size of the process in memory

• RES: Specifies the resident size of the process

• TIME: Specifies the CPU time used by the process

• %CPU: Specifies the CPU usage as a percentage of total CPU

• COMMAND: Specifies the command that started the process

To invoke the top utility, you simply type the word top at the command prompt. To end the top
display, just use the Ctrl+C key combination.

Here’s an example of typical output of the top command on a four-processor UNIX machine.
The first part of the output (not shown here) shows the resource usage for each processor in the
system. The second part of the output, shown in the following snippet, gives you information about
the heaviest users of your system.

$ top
CPU PID USER PRI NI SIZE RES TIME %CPU COMMAND
21 2713 nsuser 134 0 118M 104M 173:31 49.90 ns-httpd
23 28611 oracle 241 20 40128K 9300K 2:20 46.60 oraclepasprod
20 6951 oracle 241 20 25172K 19344K 3:45 44.62 rwrun60
13 9334 oracle 154 20 40128K 9300K 1:31 37.62 oraclepasprod
22 24517 oracle 68 20 36032K 5204K 0:55 36.48 oraclepasprod
22 13166 oracle 241 20 40128K 9300K 0:41 35.19 oraclepasprod
12 14097 oracle 241 20 40128K 9300K 0:29 33.75 oraclepasprod
$

Monitoring the System with GlancePlus

Several UNIX operating systems have their own system-monitoring tools. For example, on the HP-UX
operating system, GlancePlus is a package that is commonly used by system administrators and
DBAs to monitor memory, disk I/O, and CPU performance.

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 85

Figure 3-3 shows a typical GlancePlus session in text mode, invoked with the following command:

$ glance -m

The CPU, memory, disk, and swap usage is summarized in the top section. The middle of the display
gives you a detailed memory report, and at the bottom of the screen you can see a short summary of
memory usage again.

Figure 3-3. A typical GlancePlus session in text mode

Note that this session shows memory usage in detail because GlancePlus was invoked with the
-m option (glance -c would give you a report on CPU usage, and glance -d would give you a disk
usage report).

GlancePlus also has an attractive and highly useful GUI interface, which you can invoke by
using the command gpm.

Monitoring the Network with netstat

Besides monitoring the CPU and memory on the system, you need to monitor the network to make
sure there are no serious traffic bottlenecks. The netstat utility comes in handy for this purpose, and
it works the same way on UNIX as it does on the Windows servers.

Disks and Storage in UNIX
The topic of physical storage and using the disk system in UNIX is extremely important for the DBA—the
choice of disk configuration has a profound impact on the availability and the performance of the
database. Some Oracle databases benefit by using “raw” disk storage instead of disks controlled by
the UNIX operating system. The Oracle Real Application Clusters (RACs) can only use the raw devices;
they can’t use the regular UNIX-formatted disks.

All the UNIX files on a system make up its file system, and this file system is created on a disk
partition, which is a “slice” of a disk, the basic storage device.

86 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

Disk Storage Configuration Choices
The choices you make about how you configure your disk storage will have a major impact on the
performance and the uptime of your database. It’s not a good idea to make storage device decisions
in a vacuum; rather, you should consider your database applications and the type of database that is
going to be located on the storage systems when making these decisions.

For example, if you have a data warehouse, you may want your system administrator to use
larger striping sizes for the disks. If you are going to have large numbers of writes to or reads from the
database, you need to choose the appropriate disk configuration. Compared to the technologies of
only a few years ago, today’s ultra-sophisticated storage technologies make it possible to have both
a high level of performance and high availability of data simultaneously.

Still, you have plenty of choices to make that will have an impact on performance and availability.
The nature of the I/Os, database caches, read/write ratios, and other issues are fundamentally
different in OLTP and DSS systems. Also, response-time expectations are significantly different
between OLTP and DSS systems. Thus, a storage design that is excellent for one type of database may
be a terrible choice for another type, so you need to learn more about the operational needs of your
application at the physical design stage to make smart choices in this extremely critical area.

Monitoring Disk Usage
When setting up an Oracle system, you will typically make a formal request to the system adminis-
trator for physical disk space based on your sizing estimates and growth expectations for the database.
Once the general space request is approved by the system administrator, he or she will give you the
location of the mount points where your space is located. Mount points are directories on the system
to which the file systems are mounted. You can then create all the necessary directories prior to the
installation of the Oracle software and the creation of the database itself.

Once space is assigned for your software and databases, it’s your responsibility to keep track of
its usage. If you seem to be running out of space, you will need to request more space from the system
administrator. Ideally, you should always have some extra free disk space on the mount points assigned
to you so you can allocate space to your database files if the need arises. There are a couple of very
useful commands for checking your disk space and seeing what has been used and what is still free
for future use.

The df (disk free) command indicates the total allocation in bytes for any mount point and how
much of it is currently being used. The df -k option gives you the same information in kilobytes,
which is generally more useful. The following example shows the use of the df command with the
-k option:

$df -k /finance09
/finance09 (/dev/vgxp1_0f038/lvol1) :
7093226 total allocated Kb
1740427 free allocated Kb
5352799 used allocated Kb
75% allocation used
$

The preceding output shows that out of a total of 7.09GB allocated to the /finance09 mount
point, about 5.35GB is currently allocated to various files and about 1.74GB of space is still free.

Another command that displays how the disks are being used is the du command, which indi-
cates, in bytes, the amount of space being used by the mount point.

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 87

$ du -k /finance09
 /finance09/lost+found
 /finance09/ffacts/home
. . .
5348701 /finance09
$

As you can see in the preceding example, the du command indicates the actual space used by the
various files and directories of the mount point (/finance09 in this case) and the total space used up
by it.

I prefer the df command over the du command, because I can see at a glance the percentages of
free space and used space.

Disk Storage, Performance, and Availability
Availability and performance lie at the heart of all disk configuration strategies. The one thing you
can be sure of when you use disk-based storage systems is that a disk will fail at some point. All disks
come with a mean time between failures (MTBF) rating, which could run into hundreds of thou-
sands of hours, and you can expect an average disk with a high rating to last for many years. As we all
know, though, averages can be dangerous in situations like this because an individual disk can fail at
any time, regardless of its MTBF rating. Disk controllers manage the disks, and a controller failure
can doom your system operations. It is common now to build redundancy into your disk systems
(and other key components of the entire system) to provide continuous availability.

Performance is also an issue when you are considering the configuration of your storage devices.
In systems with highly intensive simultaneous reads and writes, you can quickly end up with disk
bottlenecks unless you plan the disk configuration intelligently from the beginning.

To improve performance, the common strategy employed is disk striping, which enables you to
create a single logical unit out of several physical disks. The single logical unit is composed of alter-
nating stripes from each disk in the set, and data is divided into equally sized blocks and written in
stripes to each disk at the same time. Reads are done in the same way, with the simultaneous use
of all the disks. Thus, you can enhance I/O operations dramatically, because you are now using the
I/O capacity of a set of disks rather than just one.

Disk Partitioning

Raw disks aren’t amenable to easy data access—you need to impose a structure on these disks. The
first thing you need to do before using a hard disk is to partition, or slice, the disk. Partitioning enables
you to store system and application data in separate sections of the disk, as well as manage space
issues easily. Sometimes these partitions themselves are called disks, but they are all really parts of a
single physical disk. Once you partition a disk, you can create operating system file systems on it.

Creating File Systems

Even after partitioning the whole disk, you still don’t have a convenient way to access data or to store
it. You can further refine your access methods by using file systems. File systems provide you with
the following benefits:

• Individual ownership of files and directories

• Tracking of creation and modification times

• Data access control

• Accounting of space allocation and usage

88 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

Disk Striping

It’s important to realize that you can place the file system on a single physical disk or you can put it
across several “striped” physical disks. In the latter case, although the file system is on several disks,
the user will see the files as being on one so-called logical volume. UNIX systems offer several ways
of combining multiple disks into single logical volumes.

One way to create a logical device on many UNIX systems is to use a utility known as the Logical
Volume Manager. Using an LVM, you can combine ten 72GB disks into a single 720GB logical disk.
Thus, disk striping can also enable you to create a much larger logical disk that can handle a larger
file system. File systems can’t traverse disks, so logical disks offer an easy way to create large volumes.

Logical Volumes and the Logical Volume Manager

Let’s briefly look at the two basic methods of configuring physical disks. Although you may never
have to do this yourself, it’s a good idea to have a basic understanding of how disks are managed by
system administrators. You can configure disks as whole disks or as logical volumes.

Whole disks are exactly what their name implies: each physical disk is taken as a whole, and a
single file system is created on each disk. You can neither extend nor shrink the file system at a later
stage.

Logical volumes, on the other hand, are created by combining several hard disks or disk parti-
tions. System administrators usually employ the sophisticated LVM to combine physical disks. A set
of physical disks is combined into a volume group, which is then sliced up by the LVM into smaller
logical volumes. Most modern systems use the LVM approach because it is an extremely flexible and
easy way to manage disk space. For example, it’s no problem at all to add space and modify partitions
on a running system by using the LVM tool.

Once you create logical volumes, you can designate disk volumes as mount points, and individual
files can then be created on these mount points.

RAID Systems
A redundant array of inexpensive (sometimes also referred to as independent) disk (RAID) device is
a popular way to configure large logical (or virtual) disks from a set of smaller disks. The idea is
simply to combine several small, inexpensive disks into an array in order to gain higher performance
and data security. This allows you to replace one very expensive large disk with several much cheaper
small disks. Data is broken up into equal-sized chunks (called the stripe size), usually 32KB or 64KB,
and a chunk is written on each disk, the exact distribution of data being determined by the RAID
level adopted. When the data is read back, the process is reversed, giving the appearance that one
large disk, instead of several small disks, is being used.

RAID devices provide you with redundancy—if a disk in a RAID system fails, you can immedi-
ately and automatically reconstruct the data on the failed disk from the data on the rest of the devices.
RAID systems are ubiquitous, and most Oracle databases employ them for the several performance
and redundancy benefits they provide.

When it comes to the performance of disk systems, two factors are of interest: the transfer rate
and the number of I/O operations per second. The transfer rate refers to the efficiency with which
data can move through the disk system’s controller. As for I/O operations, the more a disk system can
handle in a specified period, the better.

Compared to traditional disks, which have an MTBF of tens of thousands of hours, disk arrays
have an MTBF of millions of hours. Even when a disk in a RAID system fails, the array itself continues
to operate successfully. Most modern arrays automatically start using one of the spare disks, called
hot spares, to which the data from the failed drive is transferred. Most disk arrays also permit the
replacement of failed disks without bringing the system itself down (this is known as hot swapping).

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 89

RAID Levels
The inherent trade-off in RAID systems is between performance and reliability. You can employ two
fundamental techniques, striping and mirroring the disk arrays, to improve disk performance and
enhance reliability.

Mirroring schemes involve complete duplication of the data, and while most of the nonmirrored
RAID systems also involve redundancy, it is not as high as in the mirrored systems. The redundancy
in nonmirrored RAID systems is due to the fact that they store the parity information needed for
reconstructing disks in case there is a malfunction in the array.

The following sections describe the most commonly used RAID classifications. Except for RAID
0, all the levels offer redundancy in your disk storage system.

RAID 0: Striping

Strictly speaking, this isn’t really a RAID level, since the striping doesn’t provide you with any data
protection whatsoever. The data is broken into chunks and placed across several disks that make up
the disk array. The stripe here refers to the set of all the chunks.

Let’s say the chunk or stripe size is 8KB. If we have three disks in our RAID and 24KB of data to
write to the RAID system, the first 8KB would be written to the first disk, the second 8KB would be
written to the second disk, and the final 8KB would be written to the last disk. All writing to the disks
is done simultaneously.

Because input and output are spread across multiple disks and disk controllers, the throughput
of RAID 0 systems is quite high. For example, you could write an 800KB file over a RAID set of eight
disks with a stripe size of 100KB in roughly an eighth of the time it would take to do the same opera-
tion on a single disk. However, because there is no built-in redundancy, the loss of a single drive
could result in the loss of all the data, as data is stored sequentially on the chunks. RAID 0 is all about
performance, with little attention paid to protection. Remember that RAID 0 provides you with zero
redundancy. RAID 0 may be a good solution in a lot of test environments, where performance is
more critical than the safety of the data, and provides the great advantage of making the entire disk
array capacity available for storage.

RAID 1: Mirroring

In RAID 1, all the data is duplicated, or mirrored, on one or more disks. The performance of a RAID
1 system is slower than a RAID 0 system because input transactions are completed only when all the
mirrored disks are successfully written to. The reliability of mirrored arrays is high, though, because
the failure of one disk in the set doesn’t lead to any data loss. The system continues operation under
such circumstances, and you have time to regenerate the contents of the lost disks by copying data
from the surviving disks. RAID 1 is geared toward protecting the data, with performance taking a
back seat. Nevertheless, of all the redundant RAID arrays, RAID 1 still offers the best performance.

It is important to note that RAID 1 means that you will pay for n number of disks, but you get to
allocate only n/2 disks for your system, because all the disks are duplicated.

Read performance improves under a RAID 1 system, because the data is scanned in parallel.
However, there is slower write performance, amounting to anywhere from 10 to 20 percent, since the
operating system has to write to both disks each time. You use RAID 1 when the value of your data is
more critical than the performance, which is the case in most production environments.

RAID 2: Striping with Error Detection and Correction

RAID 2 uses striping with additional error detection and correction capabilities built in. The striping
guarantees high performance, and error-correction methods are supposed to ensure reliability.
However, the mechanism used to correct errors is bulky and takes up a lot of the disk space itself.
This is a costly and inefficient storage system.

90 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

RAID 3: Striping with Dedicated Parity

RAID 3 systems are also striped systems, with an additional parity disk that holds the necessary
information for correcting errors for the stripe. Parity involves the use of algorithms to derive values
that allow the lost data on a disk to be reconstructed on other disks.

Input and output are slower on RAID 3 systems than on pure striped systems, such as RAID 0,
because information also has to be written to the parity disk. RAID 3 systems can also only process
one I/O request at a time.

Nevertheless, RAID 3 is a more sophisticated system than RAID 2, and it involves less overhead
than RAID 2. You’ll only need one extra disk drive in addition to the drives that hold the data. If a
single disk fails, the array continues to operate successfully, with the failed drive being reconstructed
with the help of the stored error-correcting parity information on the extra parity drive. Streaming
large files and video applications make use of RAID 3, although it remains a rare configuration in general.

RAID 5 arrays with small stripes can provide better performance than RAID 3 disk arrays.

RAID 4: Modified Striping with Dedicated Parity

The stripes on RAID 4 systems are done in much larger chunks than in RAID 3 systems, which allows
the system to process multiple I/O requests simultaneously. In RAID 4 systems, the individual disks
can be independently accessed, unlike in RAID 3 systems, which leads to much higher performance
when reading data from the disks.

Writes are a different story, however, under this setup. Every time you need to perform a write
operation, the parity data for the relevant disk must be updated before the new data can be written.
Thus, writes are very slow, and the parity disk could become a bottleneck.

RAID 5: Modified Striping with Interleaved Parity

Under this disk array setup, both the data and the parity information are interleaved across the disk
array. Writes under RAID 5 tend to be slower, but not as slow as under RAID 4 systems, because it can
handle multiple concurrent write requests. Several vendors have improved the write performance
by using special techniques, such as using nonvolatile memory for logging the writes.

RAID 5 gives you virtually all the benefits of striping (high read rates), while providing the redun-
dancy needed for reliability, which RAID 0 striping does not offer.

RAID 0+1: Striping and Mirroring

These RAID systems provide the benefits of striped and mirrored disks. They tend to achieve a high
degree of performance because of the striping, while offering high reliability due to the fact that all
disks are mirrored (duplicated). You just have to be prepared to request double the number of disks
you actually need for your data, because you are mirroring all the disks.

Choosing the Ideal Disk Configuration
Table 3-6 outlines the basic conclusions you can draw about the various RAID systems described in
the preceding sections.

What’s the best strategy in terms of disk configuration? You, the DBA, and your system admin-
istrator should discuss your data needs, management’s business objectives, the impact and cost of
downtime, and available resources. The more complex the configuration, the more you need to
spend on hardware, software, and training.

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 91

The choice essentially depends upon the needs of your organization. If your database needs
the very highest possible performance and reliability at the same time, you may want to go first class
and adopt the RAID 0+1 system. This is an expensive way to go, but several companies in critical
data-processing areas, such as airline reservations systems, have adopted this as a company stan-
dard for data storage.

If data protection is your primary concern, however, and you can live with a moderate throughput
performance, you can go with the RAID 5 configuration and save a lot of money in the process. This
is especially true if read operations constitute the bulk of the work done by your database.

If you want complete redundancy and the resulting data protection, you can choose to use the
RAID 1 configuration, and if you are concerned purely with performance and your data can be repro-
duced easily, you’ll be better off just using a plain vanilla RAID 0 configuration.

To make the right choice, find out the exact response-time expectations for your databases,
your finances, the nature of your applications, availability requirements, performance expectations,
and growth patterns.

■Caution Once you configure a certain RAID level on your disk, you can’t easily switch to a different configura-
tion. You have to completely reload all your applications and the databases if you decide to change configurations.

In general, the following guidelines will serve you well when you are considering the RAID
configuration for your disks:

Table 3-6. Benefits and Disadvantages of Different RAID Systems

System Benefits Disadvantages

RAID 0 Offers high read and write performance
and is cheap

Not very reliable (no redundancy).

RAID 1 Provides 100 percent redundancy Expensive, and all writes must
be duplicated.

RAID 2 Expensive and wastes a lot of space
for overhead; it is not commercially
viable because of special disk
requirements.

RAID 3 Provides the ability to reconstruct data
when only one disk fails (if two disks fail
at the same time, there will be data loss)

Expensive and has poor random
access performance.

RAID 4 Provides the ability to reconstruct data
when only one disk fails (if two disks fail
at the same time, there will be data loss)

Expensive and leads to degraded
write performance as well as a poten-
tial parity bottleneck.

RAID 5 Offers high reliability and provides the
ability to reconstruct data when only one
disk fails (if two disks fail at the same
time, there will be data loss)

Involves a write penalty, though it is
smaller than in RAID 4 systems.

RAID 0+1 Offers great random access performance
as well as high transfer rates

Expensive (due to the mirroring of
the disks).

92 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

• RAID 5 offers many advantages over the other levels of RAID. The traditional complaint about
the “write penalty” should be discounted because of sophisticated advances in write caches
and other strategies that make RAID 5 much more efficient than in the past. The RAID 5
implementations using specialized controllers are far more efficient than software-based
RAID or RAID 5 implementations based on the server itself. Using write caches in RAID 5
systems improves the overall write performance significantly.

• Allow for a lot more raw disk space than you figure you’ll need. This includes your expansion
estimates for storage space. Fault tolerance requires more disks under RAID systems than
other systems. If you need 400GB of disk space, and you are using a RAID 5 configuration, you
will need seven disks, each with 72GB storage capacity. One of the seven drives is needed for
writing parity information. If you want to have a hot spare on the system, you would need a
total of eight disks.

• Stripe widths depend on your database applications. If you are using OLTP applications, you
need smaller stripe sizes, such as 128KB per stripe. Data warehouses benefit from much larger
stripe sizes.

• Know your application. Having a good idea about what you are trying to achieve with the
databases you are managing will help you decide among competing RAID alternatives.

• Always have at least one or two hot spares ready on the storage systems.

Redundant Disk Controllers
If you have a RAID 5 configuration, you are still vulnerable to a malfunction of the disk controllers.
To avoid this, you can configure your systems in a couple of different ways. First, you can mirror the
disks on different controllers. Alternatively, you can use redundant pairs of disk controllers, where
the second controller takes over automatically by using an alternative path if the first controller fails
for some reason.

IMPLEMENTING RAID

You can implement RAID in a number of ways. You could make a fundamental distinction between software-based
and hardware-based RAID arrays.

Software RAID implementation uses the host server’s CPU and memory to send RAID instructions and I/O commands
to the arrays. Software RAID implementations impose an extra burden on the host CPU, and when disks fail, the disks
with the operating system may not be able to boot if you are using a software-based RAID system.

Hardware RAID uses a special RAID controller, which is usually external to the server—host-based controllers can
also be used to provide RAID functionality to a group of disks, but they are not as efficient as external RAID controllers.

RAID and Backups
Suppose you have a RAID 0+1 or a RAID 5 data storage array, which more or less ensures that you are
protected adequately against disk failure. Do you still need database backups? Of course you do!

RAID systems mainly protect against one kind of failure involving disks or their controllers. But
what about human error? If you or your developers wipe out data accidentally, no amount of disk
mirroring is going to help you—you need those backups with the good data on them. Similarly, when
a disaster such as a fire destroys your entire computer room, you need to fall back upon reliable and
up-to-date offsite backups. Do not neglect the correct and timely backing up of data, even though
you may be using the latest disk storage array solution.

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 93

RAID systems, it must be understood, do not guarantee nonstop access to your mission-critical
data. The way to ensure that is to go beyond the basic RAID architecture and build a system that is
disaster-tolerant.

RAID and Oracle
Oracle uses several different kinds of files as part of its database. You may need a combination of
several of the RAID configurations to optimize the performance of your database while keeping the
total cost of the disk arrays reasonable. An important thing to remember here is that when you use a
RAID 3 or RAID 5 system, there is no one-to-one correspondence between the physical disks in the
array and the logical disks, or logical unit numbers (LUNs), that are used by your system adminis-
trator to create logical volumes, which are in turn mounted for your file systems. Advise your system
administrator to try and create as many logical volumes on each LUN as there are physical drives in
the LUN. This way, the Oracle optimizer will have a more realistic idea about the physical disk setup
that the database is using. Logical volumes are deceptive and could mislead the optimizer.

Other Storage Technologies
Today’s storage technologies are vastly superior to the technologies of even five years ago. Disk drives
themselves have gotten faster—it is not difficult to find disks with 10,000 RPM and 15,000 RPM
spindle speeds today. These disks have seek speeds of about 3.5 milliseconds.

In addition, advanced SCSI interfaces and the increasing use of fiber channel interfaces between
servers and storage devices have increased data transfer rates to 100MB per second and faster. The
capacity of individual disks has also risen considerably, with 180GB disks being fairly common
today. The average MTBF for these new-generation disks is also very high—sometimes more than a
million hours.

New technological architectures for data storage take advantage of all the previous factors to
provide excellent storage support to today’s Oracle databases. Two such storage architectures are
Storage Area Networks (SANs) and Network Attached Storage (NAS) systems. Let’s take a closer look
at these storage architectures.

Storage Area Networks
Today, large databases are ubiquitous, with terabyte (1,000GB) databases no longer a rarity. Organi-
zations tend to not only have several large databases for their OLTP work, but also use huge data
warehouses and data marts for supporting management decision making. SANs use high-performance
connections and RAID storage techniques to achieve the high performance and reliability that today’s
information organizations demand.

Modern data centers use SANs to optimize performance and reliability. SANs can be very small
or extremely large, and they lend themselves to the latest technologies in disk storage and network
communications. Traditionally, storage devices were hooked up to the host computer through a
SCSI device. SANs can be connected to servers via high-speed fiber channel technology with the help
of switches and hubs. You can adapt legacy SCSI-based devices for use with a SAN, or you can use
entirely new devices specially designed for the SAN. A SAN is enabled by the use of fiber channel
switches called brocade switches. By using hubs, you can use SANs that are several miles away from
your host servers.

The chances are that if you are not using one already, you’ll be using a SAN in the very near
future. SANs offer many benefits to an organization. They allow data to be stored independently of
the servers that run the databases and other applications. They enable backups that do not affect the
performance of the network. They facilitate data sharing among applications.

94 CH AP T E R 3 ■ E S SE N T I AL U N IX (AN D L IN U X) F O R TH E O R A CL E D B A

SANs are usually preconfigured, and depending on your company’s policy, they could come
mirrored or as a RAID 5 configuration. The individual disks in the SANs are not directly controllable
by the UNIX system administrator, who will see the LUN as a single disk—the storage array’s control-
lers map the LUNs to the underlying physical disks. The administrator can use LVMs to create file
systems on these LUNs after incorporating them into volume groups first.

When you use RAID-based storage arrays, the RAID controllers on the SAN will send the server
I/O requests to the various physical drives, depending on the mirroring and parity level chosen.

Networked Attached Storage
Put simply, NAS is a black box connected to your network, and it provides additional storage. The
size of a NAS box can range from as small as 2GB up to terabytes of storage capacity.

The main difference between a NAS and a SAN is that it is usually easier to scale up a SAN’s base
storage system using the software provided by your supplier. For example, you can easily combine
several disks into a single volume in a SAN. A NAS is set up with its own address, thus moving the
storage devices away from the servers onto the NAS box. The NAS communicates with and transfers
data to client servers using protocols such as the Network File System (NFS).

The NAS architecture is really not very suitable for large OLTP databases. One of the approaches
now being recommended by many large storage vendors for general storage as well as for some data-
bases is to combine the SAN and NAS technologies to have the best of both worlds.

InfiniBand
One of the latest network technologies is InfiniBand, a standards-based alternative to Ethernet that
seeks to overcome the limitations of TCP/IP-based networks. One of the driving forces behind
network storage is to reduce the I/O bottlenecks between the CPU and the disks. InfiniBand
takes another approach and works between a host channel controller on the server and a special
adapter on the storage machines or device, thereby not requiring an I/O bus. A single link can
operate at 2.5GB per second. InfiniBand provides higher throughput and lower latency and CPU
usage than normal TCP/IP and Ethernet solutions. You can find a full discussion of this new tech-
nology at http://www.infinibandta.org/ibta/.

Given the high-profile companies involved in developing this concept (Microsoft, IBM, Sun,
HP, and some of the main storage vendors), you can expect to see considerable push in the storage
area. InfiniBand supports its own protocol, called Sockets Direct Protocol (SDP).

Automatic Storage Management
Remember that whatever RAID configuration you use, or however you use the Logical Volume
Manager tools to stripe or mirror your disks, it’s the operating system that’s ultimately in charge of
managing your datafiles. Whenever you need to add or move your datafiles, you have to rely on
operating system file-manipulation commands. Oracle overcomes the raw device limits and parti-
tion limits by using the OCFS (Oracle Cluster File System), which is a shared storage system released
under the GNU General Public License. OCFS also avoids the performance hits associated with SANs.

Oracle Database 10g introduced the innovative Automatic Storage Management (ASM) feature,
which provides the DBA with the option (option, because you don’t have to use ASM) of managing
the database datafiles directly, bypassing the underlying operating system. When you use ASM, you
don’t have to manage disks and datafiles directly. You deal with disk groups instead, which consist
of several disk drives. Disk groups make it possible for you to avoid having to deal with filenames
when you manage the database.

CH AP T E R 3 ■ E S SE N T I AL U N IX (A N D L IN U X) F O R TH E O R A CL E D B A 95

Using ASM is like having Oracle’s own built-in logical manager manage your disks and file
systems. ASM lets you dynamically reorganize your disk storage and perform rebalancing operations
to avoid I/O contention. If you’re spending a significant proportion of your time managing disks and
file systems, it’s time to switch to the far more efficient ASM system.

Chapter 15 shows you how to use the powerful ASM feature.

Oracle and Storage System Compatibility
Oracle Corporation actively works with vendors to ensure that storage arrays and other technologies
are compatible with its own architectural requirements. Oracle manages a vendor-oriented certifi-
cation program called the Oracle Storage Compatibility Program (OSCP). As part of the OSCP, Oracle
provides test suites for vendors to ensure their products are compatible with Oracle Database 11g. In
this certification program, vendors normally test their storage systems on several platforms, including
several variants of the UNIX operating system, Linux, and Windows.

Oracle has also been responsible for the Hardware Assisted Resilient Data (HARD) initiative.
HARD’s primary goal is to prevent data corruption and thus ensure data integrity. The program
includes measures to prevent the loss of data by validating the data in the storage devices. RAID
devices do help protect the physical data, but the HARD initiative seeks to protect the data further by
ensuring that it is valid and is not saved in a corrupted format. Availability and protection of data are
enhanced because data integrity is ensured through the entire pipeline, from the database to the
hardware. Oracle databases do have their own corruption-detecting mechanisms, but the HARD
initiative is designed to prevent data corruption that could occur as you move data between various
operating system and storage layers. For example, EMC Corporation’s solution to comply with the
HARD initiative involves checking the checksums of data when they reach their storage devices and
comparing them with the Oracle checksums. Data will be written to disk only if the two checksums
are identical.

■Note New technologies have come to the fore in recent years that enable businesses to operate on a 24/7 basis
as well as to provide data protection. Backup windows are considerably reduced by the use of these new technol-
ogies, which enable nondisruptive backup operations. These backup technologies include the clone or snapshot
techniques, which enable a quick copy to be made of the production data onto a different server. Compaq’s SANworks
Enterprise Volume Manager, Hewlett-Packard’s Business Copy, Fujitsu’s Remote Equivalent Copy, and Sun’s
StorEdge Instant Image all allow data copying between Oracle databases at a primary site to databases at remote
locations. The key thing to remember is that these techniques take snapshots of live data in very short time periods,
so these techniques can be used for backup purposes as well as for disaster recovery.

97

■ ■ ■

C H A P T E R 4

Using SQL*Plus and
Oracle Enterprise Manager

You can connect to and work with Oracle databases in many ways. Chances are, though, that you’ll
spend a lot of time using the Oracle SQL*Plus interface and a set of commands known as SQL*Plus
commands. The SQL*Plus interface provides you with a window into the Oracle database, and Oracle
developers use the interface extensively to create SQL and PL/SQL program units. The interface is a
valuable tool for Oracle DBAs for several reasons:

• You can use it to run SQL queries and PL/SQL (Oracle’s procedural language extension to
SQL) code blocks and to receive the results.

• You can issue DBA commands and automate jobs.

• It enables you to start up and shut down the database.

• It provides you with a convenient way to create database administration reports.

This chapter covers the use of SQL*Plus to perform typical database administration tasks, and
you’ll get a chance to learn the important SQL*Plus commands, if you aren’t already familiar with
them. There is also a brief discussion of building reports using SQL*Plus. Although you probably
won’t use the SQL*Plus interface to produce a lot of reports, it’s nice to know how to work with its
many report-building features.

Starting a SQL*Plus Session
SQL*Plus is the utility most commonly used to connect to and work with an Oracle database. SQL*Plus is
included with your Oracle Database 11g server software, and the Oracle Client software also contains the
SQL*Plus executables. You can also use the new Oracle Instant Client (discussed in Chapter 11) to
connect to a database using SQL*Plus.

Once you ascertain that the SQL*Plus software is installed on your server or client machine, it’s
a straightforward process to log into the server or client and start a SQL*Plus session. Since every
SQL*Plus session involves a connection with a database (unless it’s a NOLOG connection, as explained
in the “Connectionless SQL*Plus Session with /NOLOG” section of this chapter), all you’ll need is a
valid username/password combination to start a SQL*Plus session and connect to a database.

98 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

Setting the Environment
Before you can invoke SQL*Plus, you must first set your Oracle environment correctly. You must set
the ORACLE_SID, ORACLE_HOME, and LD_LIBRARY_PATH environment variables. In addition, sometimes
you may have to set the NLS_LANG and ORA_NLS11 environment variables as well.

If you don’t have the correct environment variables set, you’ll see an error. For example, not
setting the ORACLE_HOME variable correctly before starting SQL*Plus will lead to the following error:

$ sqlplus
Error 6 initializing SQL*Plus
Message file sp1<lang>.msb not found
SP2-0750: You may need to set ORACLE_HOME to your Oracle software directory

If you get the preceding error, simply set the value of the ORACLE_HOME environment variable, as
shown here:

$ export ORACLE_HOME= /u01/app/oracle/product/11.1.0/db_1

SQL*Plus Instant Client

You don’t always have to install the entire Oracle Database server software in order to use SQL*Plus.
If you just want to interact with an Oracle database that’s running on a different server through the
SQL*Plus interface, all you need is the SQL*Plus Instant Client. Using this software, you can remotely
connect to any Oracle database running on any type of operating system platform. You simply specify
the name of the remote database using an Oracle net connection identifier. The only requirement
for connecting to a remote database is to specify the remote database in your tnsnames.ora file.
That’s why you must specify the ORACLE_HOME environment variable for the SQL*Plus Instant Client.
There is also a method to connect that doesn’t require you to ever use the tnsnames.ora file on the
client server. This method is called the easy connect method. Using an easy connection identifier,
you can connect as a user OE to the database testdb running on the server named myserver by using
the following command:

$ sqlplus oe/oe@//myserver.mydomain:1521/testdb

In this example, 1521 is the port being used by the listener for incoming connections. Chapter 11
explains all the connection methods in detail.

Starting a SQL*Plus Session from the Command Line
Before you can connect to a SQL*Plus session, you first need to set up the environment correctly so
you can connect to the default database on a server. You can do this by using the environmental
variable ORACLE_SID. Here’s an example:

$ ORACLE_SID=orcl
$ export ORACLE_SID

Once you set up the default database (orcl in our case) using the ORACLE_SID environmental vari-
able, you can access SQL*Plus from the command-line prompt by typing sqlplus without providing
either the username or the password. SQL*Plus will then prompt you for your username and pass-
word. If you provide the username with the command (for example, sqlplus salapati), SQL*Plus
will prompt you for the password. As a DBA, you should log in with one of your administrative accounts.

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 99

■Note On UNIX servers, be sure to type in lowercase letters. On Windows, the interface is not case sensitive.
Other than this minor detail, the SQL*Plus command-line interface works the same way on Windows and all variants
of the UNIX and Linux platforms.

You can also type in the username/password combination when you invoke SQL*Plus, but your
password will be visible to others when you do this. Here’s an example:

$ sqlplus salapati/sammyy1
SQL>

The SQL prompt (SQL>) indicates that the SQL*Plus connection is initiated, and you can start
entering your SQL, PL/SQL, and SQL*Plus commands and statements.

In order to connect to a database other than the default database, you must enter the following
at the operating system command line:

$ sqlplus username@connect_identifier

Certain operations, such as startup and shutdown, are permitted only if you log into SQL*Plus
with SYSDBA or SYSOPER credentials. If you have the SYSDBA (or the SYSOPER) privilege, you can
log into SQL*Plus as follows:

$ sqlplus sys/sammyy1 AS SYSDBA
SQL> SHO USER
USER is "SYS"
SQL>

The AS clause allows privileged connections by users who have been granted the SYSDBA or
SYSOPER system privilege.

If you’ve created an operating system authenticated user account (previously known as the
OPS$name login; see Chapter 12) in your database, you can connect by simply using a slash (/), as
shown here:

$ sqlplus /
SQL> SHO USER
USER is "OPS$ORACLE"
SQL>

You can also connect through the operating system authentication method, by including the
Oracle software owner as part of the DBA group, as follows:

$ sqlplus / AS SYSDBA
SQL> SHO USER
USER is "SYS"
SQL>

Notice that in all the preceding cases, we didn’t have to use the database name when connecting
through SQL*Plus. That’s because we were connecting to the default instance—the database indi-
cated by the value of the ORACLE_SID environment variable. You don’t have to specify the database
name when you use SQL*Plus to log into the default database. If you wish to connect to a nondefault
database that’s accessible through your network, however, you must use a connection identifier (net
service name).

100 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

■Note The instance name, database name, and service name could be either the same or different. I explain the
relationship among the three entities in Chapter 11.

Theoretically speaking, you can connect to a database using the complete connection identifier
syntax, as shown here, where you use the complete address for the database named orcl:

$ sqlplus salapati/sammyy1@(DESCRIPTION =
(ADDRESS=(PROTOCOL=tcp)(HOST=sales-server)(PORT=1521)
(CONNECT_DATA= (SERVICE_NAME=orcl.mycompany.com)))

However, by using a net service name defined in the network file tnsnames.ora, you can use a
simpler way to connect to the orcl database, as shown here:

$ sqlplus salapati/sammyy1@orcl

You can also use the easy connect method to connect to a database. The easy connect method
has the following syntax:

$ [//]host[:port][/[service_name]]

For our database, orcl, using the easy connect method, you can connect as follows:

$ sqlplus hr/hr_passwd@sales-server:1521/orcl.mycompany.com

Note that you don’t need a network file (tnsnames.ora) if you’re using the easy connect method.
No matter which of these methods you use, you’ll open a successful SQL*Plus session to either

the default database or the database specified in your connection identifier.

Connecting by Using the CONNECT Command
The SQL*Plus CONNECT command helps you connect as a different user, once you’re logged into SQL*Plus.
You can also log into a different database after you’re connected to one database by using the CONNECT
command. In the following example, I use the CONNECT command to connect as a different user:

SQL> CONNECT newuser/newuser_passwd
Connected.
SQL>

In the following example, I connect to a different database from within SQL*Plus by providing
the connect identifier as part of the CONNECT command:

SQL> CONNECT salapati/sammyy1@orcl
Connected.
SQL>

Just make sure that you have the remote database connection information in your tnsnames.ora
file before connecting to the different database.

You can use the CONNECT command from within SQL*Plus with the / AS SYSDBA and / AS SYSOPER
syntax, as shown here:

CONNECT sys/sammy1@prod1 as sysdba
CONNECT / AS SYSDBA
CONNECT username/password AS SYSDBA
CONNECT / AS SYSOPER
CONNECT username/password AS SYSOPER

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 101

Connectionless SQL*Plus Session with /NOLOG
You can also start a SQL*Plus session without connecting to a database by using the /NOLOG option
with the sqlplus command when starting a new SQL*Plus session. You may do this, for example,
when you’re starting the database, or if you just want to use SQL*Plus editing commands to write
or edit scripts. Once the SQL*Plus session starts, you can connect to a database using the CONNECT
command.

Here’s an example using the NOLOG option:

$ sqlplus /NOLOG

SQL*Plus: Release 11.1.0.6.0 - Production on Wed Jan 2 18:35:25 2008
Copyright (c) 1982, 2007, Oracle. All rights reserved.
SQL> SHO USER
USER is "
"
SQL> SHO SGA
SP2-0640: Not connected

SQL> CONNECT salapati/sammyy1
Connected.
SQL>

Connecting to SQL*Plus Through a Windows GUI
If you are using the SQL*Plus GUI on a Windows machine, click the SQL*Plus icon, and the interface
will prompt you for your username. As long as your connection to the database is established through
the proper entries in the tnsnames.ora file (see Chapter 11 for more information on this file), you are
all set to use the SQL*Plus interface.

You can use the SQL*Plus utility in both manual and scripted noninteractive modes. It stands to
reason that you would want to perform sensitive administration tasks, such as database recovery, in
an interactive mode. On the other hand, you can automate routine processing of SQL with scripts,
and your SQL commands will then run noninteractively. In either case, the commands are the same—it
is just the mode in which you issue the commands that is different.

The SQL*Plus connect command has the following syntax:

CONN[ECT] [{ logon | / } [AS {SYSOPER | SYSDBA | SYSASM}]]

■Note In Oracle Database 11g, the SQLPLUS command has a new -F argument to enable SQL*Plus to receive
Fast Application Notification (FAN) events from a RAC database.

You can connect as a user with the SYSOPER, SYSDBA, or SYSASM privileges to perform privi-
leged operations such as shutting down the database and starting it or backing up and recovering the
database. The SYSASM privilege is new in Oracle Database 11g and is meant as a device to separate
normal database administration and Automatic Storage Management (ASM) tasks. You’ll learn more
about the SYSASM system privilege in Chapter 17, which discusses ASM.

Operating in SQL*Plus
Once you’re logged into the SQL*Plus interface, you can type in any SQL*Plus, SQL, or PL/SQL
commands. As explained later in this chapter, a SQL statement is terminated by a semicolon (;) or a

102 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

slash (/), and a PL/SQL code block is terminated by a slash (/). You can see the output on the screen,
and you can also spool it to a file if you wish. A SQL*Plus command is always terminated by a newline
character. If you enter a SQL*Plus command, the SQL*Plus client program will handle it, and if it’s a
SQL or a PL/SQL statement, it’s sent on to the database server for processing.

You can use the hyphen (-) as a continuation character, although it’s not necessary to use a
continuation character when you finish the first line. You can type an arbitrary number of characters
or words in each SQL line and just press the Enter key to continue on the next line. SQL*Plus will
automatically number each line.

In some cases, however, the continuation character (-) comes in handy. In the next example,
I’m trying to enter the SQL statement, SELECT 200 - 100 FROM dual:

SQL> SELECT 200 -
 > 100 from dual;

select 200 100 from dual
 *
ERROR at line 1:
ORA-00923: FROM keyword not found where expected
SQL>

In the preceding example, when I started the second line after the hyphen (-), which is also the
minus sign, SQL*Plus automatically interpreted it as the continuation character and issued an error
because the statement was syntactically incorrect (select 200 100 from dual). You can avoid this
problem by using a second hyphen (minus sign) at the end of the first line as a continuation character.

SQL> SELECT 200 - -
 > 100 FROM dual;

 200-100

 100
SQL>

The dual table is necessary in Oracle so as to enable certain queries, since in Oracle’s SQL, you
must use the FROM clause in a SELECT statement (for example, SELECT sysdate FROM dual;). Microsoft
SQL Server database, on the other hand, doesn’t use a dual table because you can have a SELECT
statement without a FROM clause in SQL Server.

Exiting SQL*Plus
You exit a SQL*Plus session by simply typing EXIT in either lowercase or uppercase letters. You can
also type QUIT to exit to the operating system. Again, case doesn’t matter.

■Caution If you make a graceful exit from SQL*Plus by entering the EXIT (or QUIT) command, your transactions
will all be committed immediately. If you don’t intend to commit the transactions, make sure you issue the rollback
command before you exit.

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 103

SQL*Plus and SQL Commands
Remember that the SQL*Plus interface lets you interact with the Oracle database. You can use two
basic types of commands in SQL*Plus:

• Local commands: These are executed locally with SQL*Plus and are usually not sent to the
server. They include commands such as COPY, COMPUTE, REM, and SET LINESIZE. These SQL*Plus
commands all end with a new line, and they don’t need a command terminator as such.

• Server-executed commands: Server-executed commands aren’t locally executed in SQL*Plus,
but are processed by the server instead. This group includes all other commands, including
the CREATE TABLE and INSERT SQL commands, and PL/SQL code that is enclosed in BEGIN and
END statements. All SQL-type commands end in a semicolon (;) or a slash (/). All PL/SQL-type
commands end with a slash (/).

SQL*Plus Security
Beyond the mandatory username/password requirement for using the SQL*Plus interface, Oracle
provides an additional security mechanism that involves the use of a special table called product_
user_profile. This table is owned by the System user, one of the two super users of the Oracle data-
base. By using the product_user_profile table, you can limit access to SQL*Plus and SQL commands,
and to PL/SQL statements as well.

When a user logs into the SQL*Plus session, SQL*Plus checks this table to see what restrictions
are supposed to be applied to the user in the SQL*Plus session. How Oracle administers this security
layer is a little bit tricky. The user may have an insert or a delete privilege in the database, but because
the SQL*Plus privileges override this privilege, Oracle may deny the user the right to exercise the
privilege.

After you create a database, you should execute a special script, pupbld.sql, which is used to
support SQL*Plus security. This script is located in the $ORACLE_HOME/sql/admin directory, and it
should be run as the System user. This script will build the product_user_profile table, which is actu-
ally a synonym for the sqlplus_product_user_profile table. Listing 4-1 shows the format of this table.

Listing 4-1. The product_user_profile Table

SQL> DESC product_user_profile
Name Null? Type
------------------------------ -------- ----------------------
PRODUCT NOT NULL VARCHAR2(30)
USERID VARCHAR2(30)
ATTRIBUTE VARCHAR2(240)
SCOPE VARCHAR2(240)
NUMERIC_VALUE NUMBER(15,2)
CHAR_VALUE VARCHAR2(240)
DATE_VALUE DATE
LONG_VALUE LONG
SQL>

104 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

■Note By default, SQL*Plus imposes no usage restrictions on any users, so when the product_user_profile table
is first created, there are no rows in it. The System user has to explicitly insert rows into the product_user_profile
table if some users need to be restricted in SQL*Plus. You can choose to restrict a user from executing the following
commands: ALTER, BEGIN, CONNECT, DECLARE, EXEC, EXECUTE, GRANT, HOST, INSERT, SELECT, and UPDATE.
If you get errors stating “INVALID COMMAND” when a user issues one of these statements, even though your
product_user_profile table is empty, run the pupbld.sql script as the System user.

Listing 4-2 shows how you can use the product_user_profile table to prevent the user OE from
deleting, inserting, or updating any data in the database.

Listing 4-2. Using the product_user_profile Table

SQL> INSERT INTO product_user_profile
 VALUES
 ('SQL*PLUS','OE','INSERT',NULL,NULL,NULL,NULL,NULL);
1 row created.
SQL> INSERT INTO product_user_profile
 VALUES
 ('SQL*PLUS','OE','DELETE',NULL,NULL,NULL,NULL,NULL);
1 row created.
SQL> INSERT INTO product_user_profile
 VALUES
 ('SQL*PLUS','OE','UPDATE',NULL,NULL,NULL,NULL,NULL);
1 row created.
SQL> COMMIT;
Commit complete.
SQL>

You can see the entries pertaining to user OE by querying the product_user_profile table as
follows:

SQL> SELECT product, attribute FROM
 product_user_profile WHERE userid='OE';

PRODUCT ATTRIBUTE

SQL*PLUS INSERT
SQL*PLUS DELETE
SQL*PLUS UPDATE
SQL>

If the user OE tries to delete data from a table, the result would be the following error, even
though the orders table belongs to the OE schema:

SQL> CONNECT oe/oe
Connected.
SQL> DELETE FROM oe.orders;
SP2-0544: invalid command: delete
SQL>

If you want to grant to user OE the right to delete data through SQL*Plus, you can do so by deleting
the relevant line from the product_user_profile table, as follows:

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 105

SQL> DELETE FROM product_user_profile
 WHERE userid='OE' and attribute = 'DELETE';

1 row deleted.
SQL> COMMIT;
Commit complete.
SQL>

The ALTER, BEGIN, DECLARE, EXECUTE, and GRANT commands are data definition language (DDL)
and PL/SQL commands. The INSERT, SELECT, and UPDATE commands are, of course, data manipula-
tion language (DML) commands. The HOST command is used in SQL*Plus to access the operating
system and issue operating system commands. You really don’t want your users to be able to issue
operating system commands by simply using the HOST command, so if you want to deny user salapati
this dangerous privilege, this is what you have to do to the product_user_profile table:

SQL> INSERT INTO product_user_profile
 (product,userid,attribute)
 VALUES
 ('SQL*Plus','salapati','HOST');

 1 row created.
SQL>

If you want to restore to user salapati the right to use the HOST command, you can do so by deleting
the row you just inserted. For example, you would need to issue the following command to restore
the HOST privilege to user salapati:

SQL> DELETE FROM product_user_profile WHERE userid='SALAPATI';

■Note Remember that users will retain any privileges you grant them, even though they can’t exercise the priv-
ileges in the SQL*Plus session. This means you can grant application owners privileges on the data objects when
they are using packages and procedures that are stored and executed in the database, while at the same time
denying them these same privileges when they log into SQL*Plus.

Controlling Security Through the set role Command

As you probably know, it is better to grant and revoke database privileges through the use of roles,
rather than granting the privileges directly, for several reasons. The use of roles, however, carries
with it a potential security problem, because any user can change his or her role by simply using the
set role command in SQL*Plus. You can shut down this security loophole by using the product_
user_profile table to disable any user’s ability to use the set role command.

Using the RESTRICT Command to Disable Commands

As an alternative to using the product_user_profile table, you can use the RESTRICT command to
prevent users from using certain operating system commands. The net effect is the same as using
the product_user_profile table, except that the RESTRICT command disables the commands even
where there are no connections to the server.

You can use the RESTRICT command at three levels—Level 1, Level 2, and Level 3. The following
example illustrates the use of the command at Level 1:

$ sqlplus -RESTRICT 1

106 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

Table 4-1 shows the commands that are disabled by using th RESTRICT command and the differ-
ences among the three restriction levels.

If you issue the RESTRICT -3 command, Oracle doesn’t read the login.sql script. It reads the
glogin.sql script, and any restricted commands that are used will not work.

Setting the SQL*Plus Environment with the SET Command
Of all the commands that you can use in SQL*Plus, the SET command is probably the most funda-
mental, because it enables you to set the all-important environment for your SQL*Plus sessions.
Environment settings include the number of lines per page of output, the width of the numeric data
in the output, the titles for reports, and the HTML formatting, all of which are enabled, disabled, or
modified with the SET command.

The SET command is but one of the commands that you can use in SQL*Plus, and you can see
the entire list of available commands by typing help index at the SQL prompt, as shown in Listing 4-3.

Listing 4-3. Using the HELP INDEX Command to Show Help Topics

SQL> HELP INDEX
Enter Help [topic] for help.
 @ COPY PAUSE SHUTDOWN
 @@ DEFINE PRINT SPOOL
 / DEL PROMPT SQLPLUS
 ACCEPT DESCRIBE QUIT START
 APPEND DISCONNECT RECOVER STARTUP
 ARCHIVE LOG EDIT REMARK STORE
 ATTRIBUTE EXECUTE REPFOOTER TIMING
 BREAK EXIT REPHEADER TTITLE
 BTITLE GET RESERVED WORDS(SQL) UNDEFINE
 CHANGE HELP RESERVED WORDS(PL/SQL) VARIABLE
 CLEAR HOST RUN WHENEVER OS_ERROR
 COLUMN INPUT SAVE WHENEVER SQLERROR
 COMPUTE LIST SET
 CONNECT PASSWORD SHOW

Table 4-1. The Three Restriction Levels for SQL*Plus

Command Level 1 Level 2 Level 3

EDIT Disabled Disabled Disabled

GET Disabled

HOST Disabled Disabled Disabled

SAVE Disabled Disabled

SPOOL Disabled Disabled

START Disabled

STORE Disabled Disabled

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 107

If you want to see the entire set of environment variables that you can control with the SET
command, type help set. For performing your day-to-day tasks in SQL*Plus, you need to be familiar
with several of these commands, and I will explain them briefly in the next section.

Setting Common SQL*Plus Variables
Variables are key attributes whose values you can change while using SQL*Plus. Table 4-2 summa-
rizes the most common variables you will need to know. Practice with the variables will enhance
your comfort level and help you become a skilled practitioner of SQL*Plus in a relatively short time.

Beyond what is shown in the table, I haven’t provided examples of the use of these variables, so
it’s important you actually try them out in your SQL*Plus session. Refer to the Oracle SQL*Plus manuals
for usage guidelines for all the variables, including many variables that aren’t listed in Table 4-2.

■Note In Table 4-2, the options inside square brackets show the alternative full name of the command. You can
specify either the shortened version of a command or its long version. The options inside the curly brackets, {},
show the possible options you can choose and the default values. The value listed first inside the curly brackets is
the default value. You can either leave it as is by not doing anything or change it to the other possible values by using
the SET variable value notation.

Table 4-2. Common SQL*Plus Environment Variables

Variable Function Usage

ARRAY[SIZE] Determines the number of rows
fetched from database at one
time.

SET ARRAY 50

AUTO[COMMIT] Specifies whether commits of
transactions are automatic or
manual.

SET AUTO ON

COLSEP Specifies the text that you want
printed in between column
values.

SET COLSEP

COPY[COMMIT] Sets the frequency of commits
when using the COPY command.

SET COPY 10000

DEF[INE]{&/C/ON/OFF} Sets the prefix character used
during variable substitutions.

SET DEFINE ON

ECHO {OFF/ON} Specifies whether echo is on or
off. If you have ECHO ON, each
command will be displayed before
its output onscreen.

SET ECHO ON

EDITF[ILE] Sets the default filename when
you use your default editor.

SET EDITFILE draft.sql

FEED[BACK] {OFF/ON} Specifies whether SQL*Plus shows
the number of records returned by
your query.

SET FEEDBACK OFF

108 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

■Tip If you don’t want the “X rows selected” and “PL/SQL procedure successfully completed” messages after
you execute code in SQL*Plus, use the following command:

SET FEEDBACK OFF

You can have all your preferred session settings stored in a file, which you can execute like any
other SQL file whenever you want to change a bunch of variable values at once. You can also have
several of these files saved for different tasks, if your job involves a lot of reporting using the SQL*Plus
interface.

FLUSH {OFF/ON} Determines whether output
is buffered or flushed to the
screen.

SET FLUSH OFF

HEA[DING] {OFF/ON} Specifies whether the column
headers are printed or not.

SET HEAD OFF

LIN[ESIZE] {80|n} Specifies the number of
characters displayed per line.

SET LINESIZE 40

LONG {80/n} Specifies the maximum width
of the LONG, CLOB, NCLOB, and
XMLType values.

SET LONG 100000

NEWP[AGE] {1/n/none} Specifies the number of
blank lines at the top of each
new page.

SET NEWPAGE 0

NUM[WIDTH] {10/n} Specifies the format for displaying
numbers.

SET NUM

PAGES[IZE] {24/n} Specifies the number of lines in
each page.

SET PAGESIZE 60

PAU[SE] {OFF/ON/TEXT} Specifies the amount of output
that is printed to the screen.

SET PAUSE ON

SERVEROUT[PUT] Specifies whether output of
PL/SQL code is shown.

SET SERVEROUTPUT
ON{OFF/ON}[SIZE n]

SQLP[ROMPT] {SQL> |TEXT} Specifies the command prompt
for SQL*Plus sessions.

SET SQLPROMPT 'salapati >'

TERM[OUT] {OFF/ON} Specifies whether command
file output is displayed or not.

SET TERMOUT OFF

TI[ME] {OFF/ON} Displays time if set to on. SET TIME OFF

TIMI[NG] {OFF/ON} Controls the display of timing
for SQL commands.

SET TIMING OFF

VER[IFY] {OFF/ON} Specifies whether SQL text
is displayed after variable
substitution.

SET VERIFY OFF

Table 4-2. Common SQL*Plus Environment Variables (Continued)

Variable Function Usage

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 109

If you are using the Oracle SQL*Plus interface on Windows, you can change the environment
variables for your session by using the Options menu and choosing Environment. You are shown all
the current environment variables for your session, and you can modify them as long as you stay
within the limits. If you are logged into SQL*Plus through a UNIX server’s X Window Session, you lose
this easy way to change the values of your environment variables.

SET SERVEROUTPUT Command

One of the most important commands that you’ll use is the SET SERVEROUTPUT command, which
determines whether the output of a PL/SQL code segment or a stored procedure is displayed on
screen. If you set SERVEROUTPUT ON, you’ll see the output. By default, the SERVEROUTPUT variable is set
to OFF, and you may be caught by surprise when you run a PL/SQL block that should output some-
thing on the screen, but you don’t see anything there.

Here’s an example that shows how you can use the SERVEROUTPUT variable to display the output
from the DBMS_OUTPUT package. This package contains a procedure named PUT_LINE, which
outputs a line. By setting SERVEROUTPUT ON, you can see the output printed by the PUT_LINE procedure:

SET SERVEROUTPUT ON
BEGIN
dbms_output.put_line('This is the first line');
dbms_output.put_line('This is the second line');
dbms_output.put_line('This is the last line');
END;
SQL> /
This is the first line
This is the second line
This is the last line
PL/SQL procedure successfully completed.
SQL>

If you hadn’t set the SERVEROUTPUT variable to the value of ON in the preceding example, you
wouldn’t have seen any of the output of the PUT_LINE procedure.

You can use the FORMAT clauses of the SERVEROUTPUT command to determine how the output is
formatted. The FORMAT clause can take the values WRAPPED, WORD_WRAPPED, or TRUNCATED. The default is
WRAPPED, meaning that the output is wrapped within the length specified by LINESIZE, and new lines are
started as required. Let’s look at a short example for each of the other two FORMAT clauses, WORD_WRAPPED
and TRUNCATED.

The WORD_WRAPPED option for FORMAT wraps each line to the length specified by the value of the
LINESIZE variable, and if an entire word won’t fit at the end of a line, the line ends before the word.

SQL> SET SERVEROUTPUT ON FORMAT WORD_WRAPPED
SQL> SET LINESIZE 20
SQL> BEGIN
2 > dbms_output.put_line('After the first 20 characters please');
3 > dbms_output.put_line('continue on the second line');
4 > END;
5 > /
After the first 20
characters please
continue on the
second line

When you use the TRUNCATED formatting option, each line of the displayed output is truncated
exactly at the length specified by the LINESIZE variable.

110 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

SQL> SET SERVEROUTPUT ON FORMAT TRUNCATED
SQL> SET LINESIZE 20
SQL> BEGIN
2 > DBMS_OUTPUT.PUT_LINE('After the first 20 characters please');
3 > DBMS_OUTPUT.PUT_LINE('continue on the second line');
4 > END;
5 > /
After the first 20 c
continue on the seco

Specifying Global Preferences with the glogin.sql File

Users don’t have to manually set their SQL*Plus environment each time they log into SQL*Plus—
Oracle allows you to specify your variable preferences in a site profile file, called glogin.sql. You can
use the glogin.sql file to configure identical environment settings for all users.

■Note The glogin.sql file applies to all the users of the system, and therefore it is called a site profile. If you
want all SQL*Plus sessions to have a specific set of environment variable values upon logging in, all you have to do
is edit the glogin.sql file. Only DBAs, not individual users, can access the glogin.sql file.

The site profile is created during installation, and the file is placed in the $ORACLE_HOME/sqlplus/
admin directory. Listing 4-4 shows the default glogin.sql file, which is read by Oracle every time you
log into SQL*Plus. You can add various settings to the glogin.sql file to suit your needs.

In previous versions of the Oracle database, the glogin.sql file contained various formatting
commands for the SQL*Plus interface that automatically configured environmental variables for any
user who logged into SQL*Plus. The database would run the glogin.sql file first when you logged
into SQL*Plus, followed by the running of the login.sql file. In Oracle Database 11g, the glogin.sql
site profile file is invoked automatically as before, when you log into SQL*Plus. However, the file is
blank now, as shown in Listing 4-4.

Listing 4-4. The Default glogin.sql File

-- Copyright (c) 1988, 2005, Oracle. All Rights Reserved.
--
-- NAME
-- glogin.sql
--
-- DESCRIPTION
-- SQL*Plus global login "site profile" file
--
-- Add any SQL*Plus commands here that are to be executed when a
-- user starts SQL*Plus, or uses the SQL*Plus CONNECT command.
--
-- USAGE
-- This script is automatically run

Specifying Individual Preferences with the login.sql File

Users can set their own particular preferences for variables for their sessions, by specifying the pref-
erences in the login.sql file, another file checked by Oracle, to set their own customized SQL*Plus

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 111

environment. Because the login.sql file lets you set individual user variables, it is also known as the
user profile file. The commands in the login.sql file are executed automatically when you connect
to SQL*Plus.

SQL*Plus will look for login.sql in your current directory. The file is usually located in your
home directory. You can use the login.sql file for both SQL*Plus command-line and Windows GUI
connections. Listing 4-5 shows a sample login.sql file.

Listing 4-5. A Sample login.sql File

-- login.sql
-- SQL*Plus user login startup file.
-- This script is automatically run after glogin.sql
-- To change the SQL*Plus prompt to display the current user,
-- connection identifier and current time.
-- First set the database date format to show the time.
ALTER SESSION SET nls_date_format = 'HH:MI:SS';
-- SET the SQLPROMPT to include the _USER, _CONNECT_IDENTIFIER
-- and _DATE variables.
SET SQLPROMPT "_USER'@'_CONNECT_IDENTIFIER _DATE> "
-- To set the number of lines to display in a report page to 24.
SET PAGESIZE 24
-- To set the number of characters to display on each report line to 78.
SET LINESIZE 78
-- To set the number format used in a report to $99,999.
SET NUMFORMAT $99,999

■Note When you connect to the database using SQL*Plus, the site profile file, glogin.sql, is executed first,
followed by the user profile script, the login.sql file. All SQL*Plus variable values you specify in the login.sql
file will override the settings in the glogin.sql file. Any changes you make in the session itself will override every-
thing else and last for the duration of that session only.

When Do the Login Files Take Effect?

The glogin.sql file, which contains systemwide settings, takes effect after you log in successfully
through a SQLPLUS or CONNECT command. It also comes into effect when you use the /NOLOG option
when you connect to SQL*Plus.

The login.sql file, which is applicable only to the individual user’s session, is automatically run
right after the site profile file, glogin.sql, is run.

SQL*Plus Error Logging
You can execute the show errors command in SQL*Plus to view the errors that might occur when
you execute a PL/SQL statement. However, these errors aren’t logged by the database. In Oracle
Database 11g, you can use the new SQL*Plus command-set error logging to store SQL, PL/SQL, and
SQL*Plus errors in a special error logging table. When you issue the SET ERRORLOGGING ON command,
the database writes all subsequent errors resulting from a SQL or PL/SQL statement to a table called
sperrorlog. You can specify your own table name for storing the errors, instead of using the default
table sperrorlog.

112 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

The error logging table contains the following information about errors that it logs:

• Username

• Time of the error

• Name of the script, if there is one

• An identifier defined by the user

• The error message

• The statement that resulted in the error

Error logging isn’t enabled by default, as shown here:

SQL> show errorlogging
errorlogging is OFF
SQL>

To set error logging on, issue the following command in SQL*Plus:

SQL> set errorlogging on;

Once you turn error logging on, confirm that by issuing the following command:

SQ> connect hr/hr
Connected.
SQL> show errorlogging
errorlogging is ON TABLE HR.SPERRORLOG
SQL>

Notice that the database not only confirms that error logging is turned on, but also shows the
table (hr.sperrorlog) that’ll store the error messages. The database grants ownership of the error
logging table to the user who turns error logging on. In this case, the user is HR.

Once you turn error logging on as shown here, you can query the error logging table to check the
error messages and other information connected to an erroneous SQL or PL/SQL statement. Here’s
an example:

SQL> select username,statement,message
 from sperrorlog;

USERNAME STATEMENT MESSAGE
--------- --------------------------- --------------------------
HR create table employees as ORA-00955: name is already
 select * from employees used by an existing object
HR select names from employees ORA-00904: "NAMES":
 invalid identifier

SQL>

The first error message shows that the create table statement issued by the user HR failed
because there’s already a table with the name EMPLOYEES. The second error message shows that a
SELECT statement errored out because it was referring to a nonexistent column in the EMPLOYEES
table. As you can see, the error logging table can be very useful when you’re troubleshooting SQL and
PL/SQL code errors.

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 113

SQL*Plus Command-Line Options
As you saw earlier in this chapter, you can start a new SQL*Plus session by merely typing sqlplus at
the command prompt. However, you can specify several command-line options to customize the
SQL*Plus session. Listing 4-6 shows how you can find all the command-line options available to you
in SQL*Plus.

Listing 4-6. SQL*Plus Command-Line Options

$ sqlplus –help
SQL*Plus: Release 11.1.0.6.0 - Production

Copyright (c) 1982, 2007, Oracle. All rights reserved.

Use SQL*Plus to execute SQL, PL/SQL and SQL*Plus statements.

Usage 1: sqlplus -H | -V

 -H Displays the SQL*Plus version and the
 usage help.
 -V Displays the SQL*Plus version.

Usage 2: sqlplus [[<option>] [<logon>] [<start>]]

 <option> is: [-C <version>] [-L] [-M "<options>"] [-R <level>] [-S]

 -C <version> Sets the compatibility of affected commands to the
 version specified by <version>. The version has
 the form "x.y[.z]". For example, -C 10.2.0
 -F Enables the failover mode for a RAC environment.
 -L Attempts to log on just once, instead of
 reprompting on error.
 -M "<options>" Sets automatic HTML markup of output. The options
 have the form:
 HTML [ON|OFF] [HEAD text] [BODY text] [TABLE text]
 [ENTMAP {ON|OFF}] [SPOOL {ON|OFF}] [PRE[FORMAT] {ON|OFF}]
 -R <level> Sets restricted mode to disable SQL*Plus commands
 that interact with the file system. The level can
 be 1, 2 or 3. The most restrictive is -R 3 which
 disables all user commands interacting with the
 file system.
 -S Sets silent mode which suppresses the display of
 the SQL*Plus banner, prompts, and echoing of
 commands.

 <logon> is: (<username>[/<password>][@<connect_identifier>] | /)
 [AS SYSDBA | AS SYSOPER | AS SYSASM] | /NOLOG | [EDITION=value]

 Specifies the database account username, password and connect
 identifier for the database connection. Without a connect
 identifier, SQL*Plus connects to the default database.

 The AS SYSDBA, AS SYSOPER and AS SYSASM options are database
 administration privileges.

114 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

 <connect_identifier> can be in the form of Net Service Name
 or Easy Connect.

 @[<net_service_name> | [//]Host[:Port]/<service_name>]

 <net_service_name> is a simple name for a service that resolves
 to a connect descriptor.

 Example: Connect to database using Net Service Name and the
 database net service name is ORCL.

 sqlplus myusername/mypassword@ORCL

 Host specifies the host name or IP address of the database
server computer.

 Port specifies the listening port on the database server.

 <service_name> specifies the service name of the database you
 want to access.

 Example: Connect to database using Easy Connect and the
 Service name is ORCL.

 sqlplus myusername/mypassword@Host/ORCL

 The /NOLOG option starts SQL*Plus without connecting to a
 database.

 The EDITION specifies the value for Application
 Edition

 <start> is: @<URL>|<filename>[.<ext>] [<parameter> ...]

 Runs the specified SQL*Plus script from a web server (URL) or the
 local file system (filename.ext) with specified parameters that
 will be assigned to substitution variables in the script.

When SQL*Plus starts, and after CONNECT commands, the site profile
(e.g. $ORACLE_HOME/sqlplus/admin/glogin.sql) and the user profile
(e.g. login.sql in the working directory) are run. The files may
contain SQL*Plus commands.

Refer to the SQL*Plus User's Guide and Reference for more information.
$

■Tip In Oracle Database 11g, the login.sql file is executed at SQL*Plus startup time as well as when you use
the CONNECT command to connect from within the SQL*Plus session.

Here are brief explanations of the most important command-line options you can use when you
start a SQL*Plus session:

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 115

• The silent option (-S): If you invoke SQL*Plus with the -S option, the session will run silently;
there won’t be any output on the screen. When you’re running batch jobs and you have no
need to see the output of the SQL*Plus session, you can start the session in silent mode. The
silent mode is very useful when you’re producing reports, because the banner, version, and
other information is suppressed.

• The no-prompt logon option (-L): If you invoke SQL*Plus with the -L option, it won’t prompt
you for a new username and password if you fail to log in the first time. Again, this is an option
that’s handy during the execution of SQL batch jobs through the operating system.

• The restrict option (-R): You’ve already seen how you can use the SQL*Plus -R option (at three
different levels) to disable certain operating system commands in SQL*Plus. Refer to the
“Using the RESTRICT Command to Disable Commands” section, earlier in this chapter, for
more information.

• The markup option (-M): You can generate complete web pages from your SQL*Plus sessions
by invoking SQL*Plus with the -M option. There is more on the markup command in the “Creating
Web Pages Using SQL*Plus” section of this chapter.

SQL*Plus Administrative Commands
SQL*Plus offers a set of database administration and management commands that help you perform
administrative chores. I briefly explain these commands in the following sections.

CLEAR Command
The CLEAR command removes several current settings, including settings for columns and the
SQL*Plus buffer. You use the CLEAR command to make sure that settings no longer needed are not in
force in the current session of SQL*Plus. Listing 4-7 shows sample output of the CLEAR command.

Listing 4-7. Using the CLEAR Command

SQL> CLEAR BREAKS
breaks cleared
SQL> CLEAR BUFFER
buffer cleared
SQL> CLEAR COLUMNS
columns cleared
SQL> CLEAR SQL
sql cleared
SQL> CLEAR TIMING
SQL> CLEAR SCREEN

The CLEAR command by itself clears your screen without affecting any of the settings of SQL*Plus.
The CLEAR BUFFER and CLEAR SQL commands achieve the same effect: they remove the SQL in the
memory buffer of SQL*Plus. The CLEAR COLUMNS and the CLEAR BREAKS commands remove any column
definitions and breaks. The CLEAR TIMING command deactivates all timers. You use the CLEAR SCR (or
CLEAR SCREEN) command to clear the screen.

STORE Command
During a given SQL*Plus session, it’s likely that you’ll need to change your environment settings in
order to run a specific SQL script or command. If you want to preserve these settings for future use,
you can do so with the help of the STORE command. Once you store the values in a script, you can run

116 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

that script anytime to restore the original values of all variables. Thus, if you run a report that requires
changing some variable values, just run the script that contains the original values after you finish the
report to restore the original values of the variables.

The following example shows how to use the STORE command to save your SQL*Plus environ-
ment settings:

SQL> STORE SET mysqlplus.sql
Created file mysqlplus.sql
SQL>

Executing the previous command will result in the storing of all the current environmental
values in the file named sqlplus.sql. Once you store your favorite environment variables in a file,
you can easily reuse them anytime you want by simply executing the script. (I explain the execution
of SQL scripts in the following sections.) In order to restore the stored values of all system variables,
enter

SQL> START mysqlplus.sql

If you wish, you can just enter @mysqlplus.sql or @@mysqlplus.sql to run the script. You can also
add the script to the user profile script so each time you start SQL*Plus, all variables will have the
desired values. The STORE command can be used with three options: CREATE, REPLACE, or APPEND. The
default is CREATE, which creates a new file. If you wish to replace an existing file and store your SQL*Plus
commands there, use the REPLACE option. If you wish to add the commands to an existing file, use the
APPEND option.

SHOW Command
You can use the SHOW command to display variable values. To find out the individual values, you type
in the specific variable’s name, as shown in the following example:

SQL> SHOW TTITLE
ttitle ON and is the following 49 characters:
Annual Financial Report for the Women's Club, 2005
SQL>

The SHOW ALL command will show you the current settings for all the SQL*Plus environment
variables. I briefly explain some of the most important options for the SHOW command in the
following sections.

SHOW RECYCLEBIN Command

One of the most useful SQL*Plus commands is the SHOW RECYCLEBIN command. This command will
let you see if there are any tables that are eligible for a recovery using the FLASHBACK TO BEFORE DROP
command. If you drop a table, that table doesn’t go away immediately—it stays in the Recycle Bin
until you either get rid of it permanently with the DROP TABLE PURGE command or the database faces
space pressure.

I discuss the Flashback Table feature in detail in Chapter 8, but here’s what you’ll see if there is
an eligible table stored in the Recycle Bin:

SQL> CREATE TABLE test (name varchar2(30));
Table created.

SQL> DROP TABLE test;
Table dropped.

SQL> SHOW RECYCLEBIN

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 117

ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME
--
TEST BIN$oGZbms6pRa6xlbFglGjgUw==$0 TABLE 2008-06-27:13:13:58

SQL>

As you can see, the TEST table, after it’s dropped with the DROP TABLE command, is automati-
cally renamed by the database and stored in the Recycle Bin.

SHOW USER Command

The SHOW USER command shows the currently logged in username.

SQL> SHO USER
USER is "SYSTEM"
SQL>

SHOW SGA Command

The SHOW SGA command shows the current allocations of the SGA memory.

SQL> SHO SGA

Total System Global Area 452984832 bytes
Fixed Size 1309568 bytes
Variable Size 237765760 bytes
Database Buffers 209715200 bytes
Redo Buffers 4194304 bytes
SQL>

SHOW PARAMETERS Command

The SHOW PARAMETERS command lists all the current default and nondefault values of the initialization
parameters.

SQL> SHO PARAMETERS

NAME TYPE VALUE
--------------------------- -------- ------
O7_DICTIONARY_ACCESSIBILITY boolean FALSE
. . .
SQL>

You can also issue the SHOW PARAMETERS command to view a specific type of initialization parameter,
as shown here:

SQL> SHOW PARAMETERS MEMORY

NAME TYPE VALUE
------------------------------------ ----------- ------
hi_shared_memory_address integer 0
memory_max_target big integer 820M
memory_target big integer 820M
shared_memory_address integer 0
SQL>

You can use the SHOW SPPARAMETER command to view all initialization parameters listed in the
SPFILE, as shown in the following example:

118 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

SQL> SHOW SPPARAMETER db_name

SID NAME TYPE VALUE
-------- ----------------------------- ----------- -----------
* db_name string orcl
SQL>

SHOW ERRORS Command

The SHOW ERRORS command is useful for seeing the compilation errors associated with a procedure
or function. You run the command immediately after you compile the PL/SQL unit. If there are no
errors, you’ll see the following:

SQL> SHO ERRORS PROCEDURE TEST_PROC

NO ERRORS.
SQL>

Key SQL*Plus “Working” Commands
All the work you do in SQL*Plus, whether you are issuing simple commands or elaborate scripts to
gather information from the database, involves knowing how to use two basic kinds of SQL*Plus
commands. The commands in the first group are those that actually do something and can be called
the group of “working” commands—for example, the RECOVER command recovers a database. The
commands in the second group are formatting commands, and they will help you get clean output
from your queries.

You’ll learn about the most important of both kinds of commands in this chapter. In this section
you’ll look at the commands that do something, and the formatting commands will be covered in the
“Commands for Formatting Output and Reporting” section, later in the chapter.

SQLPROMPT Command
As a DBA, you’ll more than likely be working on several databases. When you’re performing multiple
tasks during the day, it’s very easy to forget which database you’re connected to from a particular
SQL*Plus session. To avoid committing blunders (such as dropping production tables instead of
development or testing tables), you should always set your environment so that the instance name
shows up on your prompt every time, reminding you exactly where you are.

You can use the following command, which uses the special CONNECT_IDENTIFIER predefined
variable to help you set your SQL*Plus prompt to show the database name (predefined variables are
discussed in the “Predefined SQL*Plus Variables” section, later in this chapter):

SQL> SET SQLPROMPT '_CONNECT_IDENTIFIER > '
nick >

Notice how the SET command changes your prompt immediately in the SQL*Plus interface.
When you use this command, your prompt will no longer be the generic SQL> prompt—it will instead
be the more meaningful DBNAME > prompt, which will always remind you which database you are in
without you having to make any dangerous guesses. In this example, the database name is nick.

You can use other special predefined variables to set your SQL*Plus prompt. For example, you
can make the prompt display the username, as shown here:

SQL> SET SQLPROMPT "_USER > "
APPOWNER >

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 119

If you wish to see both the database name as well as the current user’s name, you can do so with
the following command, which uses the _USER and _CONNECT_IDENTIFIER variables:

SQL> SET SQLPROMPT "_USER'@'_CONNECT_IDENTIFIER > "
APPOWNER@nick >

The following prompt uses the _PRIVILEGE and _USER predefined variables to show the current
user’s name and the privilege the user logged in with:

SQL> SET SQLPROMPT "_USER _PRIVILEGE> "
SYS AS SYSDBA>

The following formulation shows the username, current date, and the database name (nick),
using the three predefined variables _USER, _DATE, and _CONNECT_IDENTIFIER, respectively:

SQL> SET SQLPROMPT "_USER 'on' _DATE 'at' _CONNECT_IDENTIFIER > "
SYS on 20-JUN-05 at nick>

If you wish, you can incorporate the preceding line in your login.sql file, which will set your
session values every time you log in, instead of having to reset them manually each time.

DESCRIBE Command
The DESCRIBE command describes or lists the columns and the column specifications of a table. It
also enables you to describe an Oracle package or procedure. The DESCRIBE command is immensely
useful when you’re performing routine DBA activities. If, for example, you aren’t sure what column
to select in a particular table, but you’re sure what table you should be querying, the DESCRIBE command
helps out by giving you all the column names. Because you can describe even the metadata (the data
dictionary), it’s very easy to get familiar with and use table and column information that is critical for
the database.

Listing 4-8 shows how the DESCRIBE command enables you to display the columns and column
types for a table.

Listing 4-8. Using the DESCRIBE Command

SQL> DESCRIBE employees
 Name Null? Type
 -------------------------------- -------- ---------------------
 EMPLOYEE_ID NOT NULL NUMBER(6)
 FIRST_NAME VARCHAR2(20)
 LAST_NAME NOT NULL VARCHAR2(25)
 EMAIL NOT NULL VARCHAR2(25)
 PHONE_NUMBER VARCHAR2(20)
 HIRE_DATE NOT NULL DATE
 JOB_ID NOT NULL VARCHAR2(10)
 SALARY NUMBER(8,2)
 COMMISSION_PCT NUMBER(2,2)
 MANAGER_ID NUMBER(6)
 DEPARTMENT_ID NUMBER(4)
SQL>

HOST Command
The HOST command enables you to use operating system commands from within SQL*Plus. You
may, for example, want to see if a file exists in a certain directory, or you may want to use the cp or
tar commands at the UNIX level and return to your SQL*Plus session to resume interacting with the
Oracle database.

120 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

Here is an example showing how to use the HOST command:

SQL> HOST cp /u01/app/oracle/new.sql /tmp

The HOST command in the preceding example will help you copy the new.sql file from the spec-
ified directory to the tmp directory.

Just about any command you can use at the operating system level can be executed using the
HOST command. You can replace the HOST command with ! (bang, or exclamation point) to run oper-
ating system commands from within SQL*Plus, as in the following example:

SQL> ! cp /u01/app/oracle/new.sql /tmp

■Note If you just type the command by itself, as in HOST or !, you’ll be transported to the operating system directory
from which you logged into the SQL*Plus session.

When you’re done with your operating system task, just type exit on the command line, and
you’ll return to the SQL*Plus session you just left. Here’s an example:

SQL> HOST
$ exit
SQL>

SPOOL Command
The SPOOL command enables you to save the output of one or more SQL statements to an operating
system file in both UNIX and Windows:

SQL> SET LINESIZE 180
SQL> SPOOL employee.lst
SQL> SELECT emp_id, last_name, salary, manager FROM employee;
SQL> SPOOL OFF;

By default, spooled text files are saved as filename.lst. Although the default behavior is to save
the output in a file, you can also send the output to a printer. Spooling files is very useful when you
use SQL to help write SQL scripts, and you can see examples in the Appendix of this book.

You can append to, or replace, an existing spool file (replacing is the default). Here is the full
syntax of the command:

SPOOL { file_name[.ext] [CRE[ATE]|REP[LACE]|APP[END]]| OFF | OUT }

This is what the various options stand for:

• FILE_NAME: Specifies the name of the spool file. The file extension is optional, and .lst is the
default extension in most cases.

• CREATE: Creates a new file.

• REPLACE: Replaces the contents of an existing file and creates a new file if the file doesn’t exist.
This is the default behavior.

• APPEND: Adds the contents of the buffer to the end of a file you specify.

• OFF: Stops spooling.

• OUT: Stops spooling and sends the file to your default printer. This option is not available on
some operating systems.

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 121

The SPOOL command can be put to a lot of uses. For example, you can easily export the SPOOL
command to capture the results of a SELECT statement. First, control the output format by specifying
the HEADING, FEEDBACK, and LINESIZE variables. Here’s an example:

SQL> SPOOL /u01/app/oracle/data/employees.txt;
SQL> SELECT * FROM hr.employees;
SQL> SPOOL OFF;

The employees.txt file captures all the data in the HR.EMPLOYEES table. You can then employ
the SQL*Loader utility to load the data into a different table.

ACCEPT and PROMPT Commands
The ACCEPT command is used to read user input from the screen and save it in a variable. You can
either specify the variable or let SQL*Plus create one. The ACCEPT command is typically used to read
user input in response to prompts from the SQL*Plus interface.

The PROMPT command comes in handy when you’re creating interactive scripts. The command
sends a message or just a blank line from SQL*Plus to the screen, and it’s commonly used to elicit
user input or to display comments. For example, including the line PROMPT "Testing" in a script will
result in the following output:

SQL> "Testing"

The ACCEPT and PROMPT commands are usually used together in a SQL script, typically to request
user input and save the input in variables that can be used later in the program. The following example
illustrates the use of these commands:

SQL> PROMPT 'Please enter your last name'
SQL> ACCEPT lastname CHAR FORMAT a20 alapati

EXECUTE Command
When you use scripts that invoke PL/SQL code in the form of procedures and packages, you need to
use the EXECUTE command to actually fire off the individual procedures in a package. Here is an example
of using this command:

SQL> EXECUTE add_data

PL/SQL procedure successfully completed
SQL>

Note that you can specify either the keyword EXEC or EXECUTE to execute a procedure or function.

PAUSE Command
Often, you’ll be executing scripts that generate output that doesn’t fit on one screen. The output just
zips past you on the screen, and it’s gone before you can actually read it. You can use the SPOOL command
to capture the entire output, but it’s a waste to do this constantly, because you’ll be creating files all
day long just so you can look at the output of your scripts. SQL*Plus provides the PAUSE command so
you can pause after every full screen of output. You just press the Enter key to see the next full screen.

The following example shows how to use the PAUSE command to slow down the output displayed on
your terminal:

122 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

SQL> SHOW PAUSE
PAUSE is OFF
SQL> SET PAUSE ON
SQL> SHOW PAUSE
PAUSE is ON and set to ""

After you set the PAUSE command, the output won’t flash by on the screen whenever you issue a
SQL command. SQL*Plus will display a screen of output and wait for you to press Enter. When you
run your queries with the PAUSE command set on, you need to press the Enter key in order to view the
first screen of output.

Commands for Formatting Output and Reporting
Using the regular SQL*Plus commands, coupled with some formatting commands, you can add
structure to the output of your queries and create rudimentary reports. Although your firm may have
sophisticated software that will keep you from having to use SQL*Plus’s formatting and reporting
capabilities much of the time, chances are that you’ll sometimes want to use SQL*Plus’s formatting
features to make your output pretty, or perhaps just legible! The formatting capabilities are some-
what primitive, but they get the job done in most cases, because most of your reports will be for
database-management purposes.

BREAK Command
The BREAK command specifies where a formatting change occurs, as well as specifying the type of
change. You can use the BREAK command on a column, a row, an action, or the whole report. For
example, you can use the BREAK command to skip a line each time a specified column’s value changes. Or
you can specify that certain computed figures be printed at the end of a report.

Here’s an example of the BREAK command:

BREAK ON DEPT_ID SKIP PAGE ON JOB_ID SKIP 1 ON SALARY SKIP 1

In the preceding example, there are three break columns, since each ON clause specifies a break—
there is a break on the DEPT_ID, JOB_ID, and SALARY columns. Thus, each time there is a value in
any one of these three break columns, SQL*Plus will perform the action specified by the particular
break on that column. The actions are executed by SQL*Plus starting from the innermost break (on
SALARY) and moving to the outermost break (on DEPT_ID).

When you use the ON clause in a BREAK command, it should be accompanied by an ORDER BY
clause in the SQL statement that follows the formatting commands. In the following example, the
BREAK command (the same one as in the previous example) is used along with a SQL statement, to
produce meaningful output.

SQL> BREAK ON DEPT_ID SKIP PAGE ON JOB_ID SKIP 1 ON SALARY SKIP 1
SQL> SELECT dept_id, job_id, salary, emp_name
 FROM employees
 WHERE salary > 50000
 ORDER BY dept_id, job_id, salary, emp_name;

Using this BREAK command on the three columns will give us output in the following format:

• All rows with identical DEPT_ID values will be printed on the same page, and all rows with
identical JOB_ID values will be printed in groups.

• In each group of jobs, jobs with identical SALARY values will be printed as separate groups.

• Changes in the emp_name column don’t matter, since there is no break on the emp_name
column.

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 123

COLUMN Command
The COLUMN command shows various properties of any specified column in a table. Once this command
is issued, the settings for column format put in place by this command can be used by all the SQL
commands in this session. Therefore, if you’re running similar reports all the time, you may find it
beneficial to include the COLUMN command specifications in a file using the STORE SET command.

You can use a number of options for the COLUMN command, but here’s a simple example of how
to use it:

SQL> COLUMN dept FORMAT a15 HEADING 'Department'
SQL> COLUMN cost FORMAT $9999

In the first COLUMN command, the DEPT column is specified to be up to 15 characters in length.
Longer names will be truncated. It further specifies a meaningful heading under which the depart-
ment names should be listed. The second COLUMN command specifies that the cost column will display a
leading dollar sign.

COMPUTE Command
As its name indicates, the COMPUTE command is used for several types of computations, including
averages, standard deviations, and so on. Here’s an example of how to use this command. The
SELECT collates the data for the COMPUTE command to work on:

SQL> COMPUTE AVG OF sales ON district
SQL> SELECT region, district, sales
 FROM total_sales
 WHERE district = 'NORTH';
SQL>

REPFOOTER Command
The REPFOOTER command prints specified footer text at the bottom of a report. Here’s an example:

SQL> REPFOOTER PAGE RIGHT 'END OF THE 1st QUARTER RESULTS REPORT'

REPHEADER Command
The REPHEADER command is similar to the REPFOOTER command, but instead of placing a footer at the
bottom of your report, it places a header at the top of your report, formatted as you specify. The
following example prints the report header in the top center of the first page of the report:

SQL> REPHEADER PAGE CENTER '1st QUARTER RESULTS REPORT FOR 2008'

BTITLE and TTITLE Commands
The TTITLE command places a title at the top of each page of your report, and the BTITLE command
does the same at the bottom of each page. Here are some examples to illustrate their use:

SQL> TTITLE 'Annual Financial Report for the Women's Club, 2008'
SQL> BTITLE '2005 Report'

124 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

■Caution After you use the BTITLE and TTITLE commands, as well as many other SQL*Plus commands,
you have to manually turn them off to prevent all the ensuing SQL commands in that session from inheriting those
settings. For example, if you don’t turn the title off after you create a report, all the subsequent output for any
command will be printed with the same title.

Creating Command Files in SQL*Plus
Instead of using a single command each time, you can use a set of commands together by writing
them to a file and then running the file. When you do this, all the SQL commands included in the file
will be executed sequentially.

Typing edit (or ed) at the SQL prompt will bring up your default editor (generally vi in UNIX and
Notepad in Windows). Then you can type your commands, and name and save your file so you can
execute the commands later on.

You can set the default editor’s name in either your glogin.sql or login.sql file. Of course, you
can also set the default editor after you log into SQL*Plus.

Saving the SQL Buffer Contents to a File
Often when you’re writing fairly complex scripts, it is useful to take the contents of the SQL buffer
and save them to a file. You can then retrieve the file for use later or use it for an automated execu-
tion. The SAVE command helps you save the SQL buffer contents. Here’s a simple example:

SQL> SELECT username,process,sid,serial#
 FROM v$session
 WHERE status = 'ACTIVE'
 .
SQL> SAVE status.sql
Created file status.sql
SQL>

After you’ve typed some SQL, you can just type the dot (.) character on a new line. This indicates
that you’re finished writing the block of SQL. When you type the SAVE filename command, the
contents stored in the SQL memory buffer are saved as a file with the specified filename—in this
case, status.sql.

Note that the SAVE command, as shown in the preceding example, uses the default CREATE option,
meaning it will create a new file called status.sql. However, if you already have a file called status.sql,
you must use the SAVE command with the REPLACE option. If you wish to add on to an existing file,
specify the APPEND option with the SAVE command. Here are some examples:

SQL> SAVE REPLACE status.sql
SQL> SAVE APPEND status.sql

Executing SQL Scripts in SQL*Plus
If you want to execute a SQL script, you have two choices:

• If you don’t intend to make any changes before execution, just invoke the script by using the
at sign (@).

• If the file containing the script is in the directory from which you started SQL*Plus, all you
have to do is type the name of the file. If the command file is in a different directory, you have
to give the full path for the file in order to run it in SQL*Plus.

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 125

On UNIX systems, you can configure an environment variable called ORACLE_PATH to tell SQL*Plus
where to look for a script. This way, you can put all your routine SQL scripts in one location, and you
don’t need to specify the complete path for the file each time you want to execute an existing script.
On my UNIX servers, for example, this is how I set the variable:

$ export $ORACLE_PATH=/u01/app/oracle/admin/dba/sql

On Windows systems, you can edit the Windows registry to specify the ORACLE_PATH variable.
Listing 4-9 shows a script called status.sql being run—it is in the directory from which SQL*Plus

was invoked.

Listing 4-9. Using the at (@) Command to Execute a Script

SQL> @status.sql
USERNAME STATUS PROCESS SID SERIAL#
--
 ACTIVE 2076 1 1
 ACTIVE 2080 2 1
 ACTIVE 2084 3 1
 ACTIVE 2088 4 1
 ACTIVE 2092 5 1
 ACTIVE 2096 6 1
SYSTEM ACTIVE 1856:444 8 58
7 rows selected.
SQL>

The status.sql script is run in Listing 4-9 without any path information, because it is located in
the same directory from which you logged into SQL*Plus. You can run a script located in a different
directory by entering the complete path of the script’s location, as in @/u01/app/oracle/admin/dba/
sql/status.sql.

You can also execute the status.sql script by just typing the command run status.sql. The RUN
command will execute the contents of the specified file. Or, if your SQL commands are actually listed
on the screen (that is, stored in the SQL*Plus buffer), you can use the / command to execute the SQL
code. Listing 4-10 shows the use of the / command. Note that when you use the / command to execute
a script, the commands aren’t listed again. Instead, the / command executes the contents of the
SQL*Plus buffer.

Listing 4-10. Using the / Command to Execute a Script

SQL> /
USERNAME STATUS PROCESS SID SERIAL#
--
 ACTIVE 2076 1 1
. . .
7 rows selected.
SQL>

You could also have used the RUN command instead of the / command, and your SQL would
have been executed the same way. The RUN command lists the contents of the script it just executed,
unlike the / command, which doesn’t show the code in the SQL*Plus buffer that it’s executing. The
RUN command is shown in Listing 4-11.

126 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

Listing 4-11. Using the RUN Command to Execute a Script

SQL> RUN status.sql
 1 SELECT username,status
 2* FROM v$session
USERNAME STATUS
------------------------------ --------
 ACTIVE
 ACTIVE
 ACTIVE
 ACTIVE
 ACTIVE
 ACTIVE
SYSTEM ACTIVE
7 rows selected.
SQL>

■Caution When you invoke a script with the RUN command, the SQL is shown on the screen before it’s executed.
The / command won’t show the SQL, but executes it right away. Because of this, you have to exercise extreme
caution when you use the / command. The script in the buffer might not be what you intended to run.

Creating a Windows Batch Script
You can easily create a batch script in a Windows system to run your SQL*Plus commands. For instance,
say you have a script file called testscript.sql that provides information about the users in your
database. If you want to schedule this script to run at a specified time, you must first create a Windows
batch file that invokes the testscript.sql script file. You can then use the Windows at scheduling
utility, if you wish, to schedule the batch script.

Here’s a simple example. First create a batch file, named testbatch.bat, containing the following
(the testscript.sql script writes its output to the output.txt file):

sqlplus username/password@connect_identifier @C:\temp\testscript.sql
notepad.exe C:\temp\output.txt

The preceding batch file will start a SQL*Plus session, run the testscript.sql script, and output
the results of the testscript.sql file into the output.txt file using the notepad executable.

DEFINE and UNDEFINE Commands
During the course of writing and using SQL scripts, you sometimes need to specify variables and
their values. The DEFINE command enables you to create your own variables (user variables) that
continue to hold the values you specify for the duration of the SQL*Plus session or until you use the
UNDEFINE command and unset the variables. Here is an example demonstrating the use of the DEFINE
and UNDEFINE commands:

SQL> DEFINE dept = finance
SQL> UNDEFINE dept

The preceding example is straightforward. In SQL*Plus, however, you’ll often use the DEFINE
command in scripts to substitute values for variables. You typically do this by using the DEFINE command
with a substitution variable instead of a user variable. A substitution variable is specified by adding
an ampersand (&) to the user variable, as in &VARIABLE.

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 127

Listing 4-12 presents a simple example of the use of the DEFINE command with a substitution
variable.

Listing 4-12. Using the DEFINE Command

SQL> col segment_name for a27
DEFINE owner = '&1'
SELECT segment_name,segment_type,extents
FROM dba_segments
WHERE owner = upper ('&owner')
AND extents > 10
AND segment_name NOT LIKE 'TMP%'
ORDER BY segment_type,extents desc
SQL> @extents.sql
Enter value for 1: system
SEGMENT_NAME SEGMENT_TYPE EXTENTS
HELP_TOPIC_SEQ INDEX 18
PRODUCT_PROFILE TABLE 22
SQL>

In the extents.sql script in Listing 4-12, the owner variable was defined, but instead of it being
given a hard-coded single value, it takes on any substituted value provided by the user. Thus, this
same script can be run for any user in the database. All you need to do is plug in a different name for
the schema owner each time you run the script.

Predefined SQL*Plus Variables
SQL*Plus provides a set of predefined variables, which you can use in the same way as the other
substitution variables that you may create. Listing 4-13 shows the list of the predefined SQL*Plus
variables, which you can see by using the DEFINE command without any arguments.

Listing 4-13. Predefined SQL*Plus Variables Shown by the DEFINE Command

SQL> DEFINE
DEFINE _DATE = "23-DEC-07" (CHAR)
DEFINE _CONNECT_IDENTIFIER = "orcl2" (CHAR)
DEFINE _USER = "SYS" (CHAR)
DEFINE _PRIVILEGE = "AS SYSDBA" (CHAR)
DEFINE _SQLPLUS_RELEASE = "1101000600" (CHAR)
DEFINE _EDITOR = "ed" (CHAR)
DEFINE _O_VERSION = "Oracle Database 11g Enterprise Edition Release
11.1.0.6.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options"
(CHAR)
DEFINE _O_RELEASE = "1101000600" (CHAR)
SQL> exit
SQL>

Here’s what the variables stand for:

• DATE: Contains the current date or a user-defined fixed string

• CONNECT_IDENTIFIER: Contains the name of the database you are connected to

• USER: Contains the username as supplied by the user to make the current connection (this is
the same as the output from the SHOW USER command)

128 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

• PRIVILEGE: Contains the privilege level of the current connect (can be AS SYSDBA, AS SYSOPER,
or blank to indicate a normal connection)

• SQLPLUS_RELEASE: Shows the SQL*Plus release number

• EDITOR: Shows the editor that is being used

• O_VERSION: Shows the Oracle Database version (Enterprise Edition, for example), along with
the database options

• O_RELEASE: Shows the Oracle Database release number

Using Comments in SQL*Plus
Often, you’ll need to use nonexecutable comments in your SQL*Plus scripts and reports. Here’s a
brief description of the commenting features available in SQL*Plus:

• The /* . . . */ delimiters: You can enclose one or more lines in your script with these delimiters
to indicate that those lines are comments.

• The -- notation: You can preface the lines you want commented by a pair of hyphens. Devel-
opers often use these at the end of a code line to place comments.

• The REMARK (or just REM) command: The REMARK command before the beginning of a line indicates
that the line is not to be executed.

Listing SQL Commands
SQL*Plus stores your most recently issued SQL statement in an area of memory called the SQL
buffer. Unfortunately, SQL*Plus lets you save only the last command you issued in the buffer. Every
new statement that you enter replaces the previous statement in the buffer. If you want to see the
previous command you issued, type the word LIST or just the letter l.

SQL> l
 1 SELECT username, status, process, sid, serial#
 2 FROM v$session
 3* WHERE status = 'ACTIVE'
SQL>

If you want to see what’s in your SQL script before you execute it, load it from the operating
system into the SQL buffer by using the GET command, as follows:

SQL> GET status.sql
 1 SELECT username,status,process,sid,serial#
 2 FROM v$session
 3* WHERE status = 'ACTIVE'
SQL>

■Caution If you just enter the slash (/) command in your SQL*Plus session, you’ll execute the last command
you entered, which is always stored in the SQL buffer. It’s a very good idea to always use the LIST command to
first see what you’re actually executing.

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 129

Sometimes you may want to execute several SQL command scripts consecutively. You can specify
all the scripts you want to run in one main script and just run that main script—all the included scripts
will run consecutively. Here’s an example of how you can embed several SQL scripts into one main file:

SQL> GET one_script.sql
 1 @check.sql
 2 @create_table.sql
 3 @insert_table.sql
 4* @create_constraint.sql
SQL>

When you run the one_script.sql script, its four constituent scripts will run one after the other.
This is an efficient way to execute scripts, especially when you’re creating and populating a new
database, provided you have already tested the individual scripts.

■Note You can also use the @@commandfile notation, as in @@one_script.sql, to run command files that
include several command files. The use of the @@ notation ensures that Oracle looks for the individual files in the
same path as the command file.

Editing Within SQL*Plus
Often you’ll want to make minor changes in the SQL code you’re using. It isn’t necessary to resort to
your editor for minor changes, though, because SQL*Plus comes with its own change command,
aptly called CHANGE. Simple pattern-matching techniques are used to modify SQL*Plus command
lines. Therefore, you can add or modify a word or a part of a word by just replacing an existing
pattern in a word with a new one.

The general pattern for changing SQL text is C/OLD/NEW, where C is the shortened form of the
CHANGE command, which lets you change the first occurrence of the specified text on the current line,
OLD stands for the actual SQL you intend to change, and NEW stands for the SQL text that is replacing
the old text. Listing 4-14 shows how to use pattern matching to replace text in a SQL*Plus session.

Listing 4-14. Changing Text Using Pattern Matching

 SQL> SELECT username,status,process,sid,serial
 2 FROM v$session
 3* WHERE status = 'ACTIVE';
select username,status,process,sid,serial
 *
ERROR at line 1:
ORA-00904: invalid column name
SQL> 1
 1* SELECT username,status,process,sid,serial
SQL> c/serial/serial#
 1* SELECT username,status,process,sid,serial#
SQL> l
 1 SELECT username,status,process,sid,serial#
 2 FROM v$session
 3* WHERE status = 'ACTIVE'
SQL> /

130 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

USERNAME STATUS PROCESS SID SERIAL#
----------------- ------- ------- --- --------
 ACTIVE 2076 1 1
 ACTIVE 2080 2 1
 ACTIVE 2084 3 1
 ACTIVE 2088 4 1
 ACTIVE 2092 5 1
 ACTIVE 2096 6 1
SYSTEM ACTIVE 1856:444 8 58
7 rows selected.
SQL>

If you have a complicated script, making changes using pattern matching as shown in Listing 4-14
can quickly get hairy! Use the runtime editor instead to make your changes conveniently. Saving the
changes will bring you into the SQL*Plus interface automatically, and you can execute your edited
SQL there.

■Note In UNIX, the usual editor is the vi editor, and in Windows, the usual editor is Notepad. You invoke them by
typing ed at the SQL*Plus command line.

Inserting and Deleting Lines
You can always remove a line from or add one to your SQL text by merely invoking the editor and
making the changes there. The SQL*Plus interface also offers you easy ways to add and delete lines.
Using the INPUT command, you can easily add one or more lines to the SQL text already in the SQL
buffer.

To use the INPUT command, just type the letter i. Listing 4-15 shows how you can insert text on
a new line at the end of a SQL script. When you’re done inserting new lines, you can type a period (.)
to get the SQL prompt back.

■Note The semicolon (;) normally acts as the terminator for SQL statements. The period (.) is the default value
for the BLOCKTERMINATOR variable, and it indicates the end of the statement inputting.

Listing 4-15. Using the INPUT Command (i) to Insert a New Line at the End of a Script

SQL> SELECT username, status, process, sid, serial#
 2 FROM v$session
 3* WHERE status = 'ACTIVE'

SQL> i
 4 and username = 'HR';

USERNAME STATUS PROCESS SID SERIAL#
--------- ------- -------- ---- --------
HR ACTIVE 1856:444 8 64
SQL>

Listing 4-16 shows how to insert a line in the middle of a SQL script. You just print the line on
the screen by using the LIST command and then add the new line afterward using the INPUT command.

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 131

Listing 4-16. Using the INPUT Command to Insert a Line in the Middle of a Script

SQL> SELECT username, status, process, sid, serial#
 2 FROM v$session
 3 WHERE status='ACTIVE'

 SQL> 1
 1* SELECT username, status, process, sid, serial#
SQL> i
 2i ,logon_time,terminal
 3i .

SQL> l
 1 SELECT username, status, process, sid, serial#,
 2 logon_time,terminal
 3 FROM v$session
 4* WHERE status='ACTIVE'
SQL>

Similarly, you can delete one or more lines of the SQL buffer by using the delete command DEL
(or just D), accompanied by the line number, as shown in Listing 4-17.

Listing 4-17. Deleting Text in SQL*Plus

SQL> SELECT username, status, process, sid, serial#
 2 FROM v$session
 3 WHERE status = 'ACTIVE'
 4* AND username='HR'
SQL> del4
SQL> l
 1 SELECT username, status, process, sid, serial#
 2 FROM v$session
 3* WHERE status = 'ACTIVE'
SQL>

The DEL command will delete the specified line. Using the DEL command without a line number
will remove the last line of the SQL you have in the buffer.

Adding to Text
Sometimes you need to add a word or two to a particular line. Instead of invoking the editor, you can
just use the APPEND command to accomplish this, as shown in Listing 4-18.

Listing 4-18. Using the APPEND Command

SQL> SELECT username, profile
 2 FROM dba_users
 3 .
SQL> 1
 1* SELECT username, profile
SQL> APPEND , created_date
 1* select username, profile, created_date
SQL> l
 1 SELECT username, profile, created_date
 2* FROM dba_users
SQL>

132 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

Sometimes, you may have a semicolon inside one of your statements, which will be interpreted
as a statement terminator by SQL*Plus, leading to an error. Here’s an example:

SQL> INSERT INTO EMPLOYEES VALUES ('BEGIN
 2 LOAD_PROCEDURE);
 3* END');

The semicolon in line 2 is not the end of the statement, and therefore you’ll get the following
error when you enter the preceding statement:

ERROR:
 ORA-01756: quoted string not properly terminated

The default value of the SQLTERMINATOR variable is a semicolon (;). You can resolve the problem
here by simply turning off the use of the semicolon as a statement terminator, by using the
SQLTERMINATOR variable, as shown here:

SET SQLTERMINATOR OFF
SQL> INSERT INTO EMPLOYEES VALUES ('BEGIN
 2 LOAD_PROCEDURE);
 3* END')
 /

Note that since you turned off the use of the semicolon as a statement terminator, you should
use the slash (/) to execute the statement. You can also use the BLOCKTERMINATOR variable, whose
default value is a period (.), to signify the end of the statement.

Incorporating Comments with the REMARK Command
The REMARK command is straightforward. It enables you to incorporate comments in your SQL scripts.
Here it’s shortened to REM.

SQL> GET user_report.sql
1 REM This script gives you the usernames and their profiles
2 REM Author: sam alapati
3 REM Date: JUNE 20,2005
4 SELECT username, profile FROM dba_users;
SQL>

Copying Tables with the COPY Command
On large tables, you tend to get into trouble using the CREATE TABLE AS SELECT (CTAS) technique
because Oracle does not commit between the inserts, and in the meantime, the undo segments may
run out of space. You are also limited to non-LONG data types when you use this technique. By using
the COPY command, you can copy data from a query into a table in the same or a remote database.
The COPY command gives you a way to easily copy all types of tables, and it avoids many of the prob-
lems of using the CTAS technique, because it does commit while it’s copying the data from the source
table.

Here’s the syntax of the SQL COPY command:

SQL> COPY
usage: COPY FROM <db> TO <db> <opt> <table> { (<cols>) } USING <sel>
 <db> : database string, e.g., hr/your_password@d:chicago-mktg
 <opt> : ONE of the keywords: APPEND, CREATE, INSERT or REPLACE
 <table>: name of the destination table
 <cols> : a comma-separated list of destination column aliases
 <sel> : any valid SQL SELECT statement
SQL>

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 133

If the FROM or TO clause is missing, the current SQL*Plus connection is used. The key parameter
is opt, which lets you specify one of the following:

• APPEND: Inserts records into the target table and creates the table if it doesn’t exist

• CREATE: Creates the target table and inserts rows into it

• INSERT: Inserts rows into an existing table

• REPLACE: Drops the existing table, re-creates it, and loads data into it

The USING <sel> clause lets you specify the query that determines the rows and columns you
want to copy from the target table.

■Tip If a table consists of a LONG column, you can’t use the CTAS method to make a copy of the table. You can,
however, use the COPY command to copy this table.

Listing 4-19 shows how to use the COPY command. Note that the hyphen (-) is the “continue”
character, and it lets you break up long SQL statements over multiple lines. Make sure you use the
continue character and don’t hit Enter after the first line!

Listing 4-19. Using the COPY Command

SQL> COPY FROM sysadm/sysadm1@finance1-
 > CREATE test01 -
 > USING SELECT * FROM employee;

Array fetch/bind size is 15. (arraysize is 15)
Will commit when done. (copycommit is 0)
Maximum long size is 80. (long is 80)
Table TEST01 created.

 4954 rows selected from sysadm@finance1
 4954 rows inserted into TEST01.
 4954 rows committed into TEST01 at DEFAULT HOST connection.
SQL>

You can make the COPY command’s execution faster by increasing the size of the SQL*Plus
parameters ARRAYSIZE, COPYCOMMIT, and LONG, if necessary.

Using the CREATE TABLE AS SELECT method is usually faster than using the COPY command when
you’re copying data from one table to another on the same server—using the COPY command involves
copying data from the server to the client SQL*Plus interface before copying it back to the database
again. Obviously this will increase the overhead and take longer to process than directly copying
from the server to the same server.

Making DML Changes Permanent with SQL*Plus
When you use SQL*Plus, you can enter DML statements either separately or as part of a named or an
anonymous block of PL/SQL code. Here are the different ways in which DML changes are made
permanent:

• You can commit the results of a transaction by using the COMMIT keyword at the end of the
transaction.

• You can set the AUTOCOMMIT setting to ON in your SQL*Plus session, which results in an auto-
matic COMMIT statement being appended to every SQL statement you issue in that session.

134 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

• You can issue a DDL command, such as DROP INDEX, that will also automatically ensure that
any pending transaction is followed with either a COMMIT or ROLLBACK statement.

• You can exit gracefully from SQL*Plus by typing in EXIT or QUIT, which are identical in their
effects. When you issue the EXIT command, Oracle will automatically commit all changes you
made in that session, even if you never issued a commit request, or even if the AUTOCOMMIT
setting has been set to OFF. When you use either the EXIT or QUIT command, the following will
happen:

• All pending changes are rolled back or committed.

• The user is logged out of Oracle.

• The SQL*Plus session is terminated.

• Control is returned to the operating system.

Creating Web Pages Using SQL*Plus
When you embed SQL*Plus in program scripts, you can use the MARKUP command in the following
way to produce HTML output:

SQLPLUS -MARKUP "HTML ON"

Before executing any SQL commands, this command outputs the HTML and BODY tags.
If you want to output an HTML page that can be embedded in an existing web page, you can use

the MARKUP command as follows:

SQL> SET MARKUP HTML ON SPOOL ON
SQL> commands here . . .
SQL> SET MARKUP HTML OFF SPOOL OFF

Key SQL*Plus Database Administration Commands
Although you may use every SQL*Plus command in the course of database administration, some
specific commands in SQL*Plus exist for the sole use of the Oracle DBA. There are four powerful
database administration commands that you can use from SQL*Plus—the RECOVER command, the
STARTUP and SHUTDOWN commands, and the ARCHIVE LOG command.

RECOVER Command
The RECOVER command, as you can imagine, is used to recover a database or one of its files or tablespaces
after a database failure. To be able to run this command, you need to have the OSOPER or the OSDBA
role. You can perform manual or automatic recovery, and in either case, you’re responsible for first
restoring all the necessary datafiles so you can recover your database.

The RECOVER command is complex and critical, and you’ll examine it in great detail in Chapter 16,
which deals with database recovery.

STARTUP and SHUTDOWN Commands
The STARTUP and SHUTDOWN commands are used to start up and shut down your Oracle instance. For
details about both of these commands, see Chapter 10.

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 135

ARCHIVE LOG Command
Archive logs are the archived or stored redo logs, and they play a critical role in database recovery.
Any user with the OSDBA or OSOPER privilege can issue the ARCHIVE LOG command. It enables you
to start and stop the archiving of redo log files, as shown here:

SQL> ARCHIVE LOG START
Statement processed.
SQL> ARCHIVE LOG STOP
Statement processed.
SQL>

You can use the ARCHIVE LOG LIST command to view details about the archive logs being archived,
as shown here:

SQL> ARCHIVE LOG LIST
Database log mode Archive Mode
Automatic archival Enabled
Archive destination /a03/app/oracle/admin/NICKO/arch/
Oldest online log sequence 933
Next log sequence to archive 937
Current log sequence 937
SQL>

The preceding command shows that the database is in the archive mode and also that auto-
matic archiving is enabled.

Using SQL to Generate SQL
There will be occasions when you have to write a SQL script that involves a number of similar lines.
A good example would be a script in which you are assigning a set of privileges to several users. You
can, of course, execute separate SQL statements for each user, but it is a waste of time to do so, besides
being a mind-numbing exercise. Fortunately, you can use SQL to generate a script with all the SQL
statements that need to be executed. Using SQL to generate SQL essentially involves using the
output of one SQL statement as input for another SQL statement.

It is very easy to write SQL code that generates more SQL code as output. First, you write the SQL
to generate the SQL. Next, you start spooling a file, where the output of the first SQL script will be
captured. Then you execute the SQL code that will actually generate SQL code as its output. The
spooled script will contain the final set of commands you are interested in. Finally, you execute this
spooled script that contains the generated SQL code.

■Caution Always make sure you set the heading off, echo off, and feedback off. This will give you a clean,
spooled output script, which you can execute directly without any changes.

Here is an example that you are likely to be familiar with:

1. Set the environment variables:

SQL> SET ECHO OFF HEADING OFF FEEDBACK OFF

2. Name a spool file, to which the output of the first script will be written:

SQL> SPOOL test.txt

136 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

3. Execute the SQL that creates more SQL:

SQL> SELECT 'grant connect, resource to '||username||';' FROM dba_users;

This is part of the output of the preceding command:

GRANT CONNECT, RESOURCE TO DBA1;
GRANT CONNECT, RESOURCE TO MAMIDI;
GRANT CONNECT, RESOURCE TO JEFFRESS;
GRANT CONNECT, RESOURCE TO CAMPBELL;
GRANT CONNECT, RESOURCE TO ALAPATI;
GRANT CONNECT, RESOURCE TO BOLLU;
GRANT CONNECT, RESOURCE TO BOGAVELLI;
SQL> SPOOL OFF

4. The spooled script will have captured the preceding commands. Now run that script
(test.txt in this example):

SQL> @test.txt
Grant succeeded.
Grant succeeded.
Grant succeeded.
Grant succeeded.
Grant succeeded.
Grant succeeded.
Grant succeeded.
SQL>

As you can see, if you had to run this GRANT command for a hundred users, the effort would be
the same as for one user. You can easily adapt the preceding technique when you are performing a
task that applies to a number of objects or users in your database at the same time. This is a very
useful little technique to have in your arsenal. You’ll find many uses for it in performing your routine
administrative tasks.

Oracle SQL Developer
Oracle offers a free graphical tool called Oracle SQL Developer for use in database development. You
can use Oracle SQL Developer to run SQL statements and scripts, and create and modify PL/SQL
programs; the tool comes with built-in versioning and source control system capabilities, as well as
reporting capabilities. You can use this tool on Windows, Linux, and Mac OS X. You can use Oracle
SQL Developer’s Migration Workbench to browse objects and data in third-party databases and
migrate to Oracle from these databases. This tool is well integrated with Oracle Application Express.

Oracle Enterprise Manager
Oracle Enterprise Manager (OEM), Oracle’s GUI-based comprehensive database-management
toolset, has been a part of the Oracle server software for many years, and Oracle has substantially
improved it over time. It provides a wide array of services, including reporting features and event
notification through e-mail and pagers.

It’s possible to manage a database with homegrown SQL and PL/SQL scripts, but OEM provides
an attractive console-based client framework to help you perform almost all of your day-to-day
management activities, including tasks such as backup, recovery, export, import, and data loading.
Although you can use Oracle-supplied packages to perform these tasks, OEM makes it a lot easier to
use new Oracle Database 11g DBA tools like the Segment Advisor, SQL Access Advisor, and SQL

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 137

Tuning Advisor. While the installation of various OEM components was substantially more complex
in previous versions, the latest versions of OEM are quite user friendly.

Starting with the Oracle Database 10g release, there are two versions of the OEM—a single-data-
base version called the Database Control, and a systemwide version that lets you manage your entire
system, called the Grid Control. With the Grid Control, you can manage your enterprise-wide data-
base, application servers, hosts, and other services. This section shows you how to configure and use
both versions of the OEM. If you aren’t comfortable writing scripts, OEM is ideal for you because it
comes with all the essential scripts to manage a database and other services. Modern Oracle DBAs
should strive to master the OEM and use its powerful functionality to enhance the depth and breadth
of their database management.

■Note If you’re using Oracle Application Server 10g, you can use the Application Server Control to manage the
application server instance.

Traditionally, Oracle DBAs have used a variety of scripts to manage their databases. You can
either write a script yourself or obtain just about any script you want at one of the many fine Oracle
DBA sites on the Internet (I listed some of these sites in the Introduction). Scripts are either SQL-
based or a combination of SQL*Plus and UNIX shell scripts. You can manually monitor the system
or schedule the scripts to provide automated monitoring and notification through pagers or e-mail.
Most DBAs also use operating system–based tools, such as HP’s GlancePlus, sar, vmstat, and iostat.

If you have a single database with few users, you can probably manage it with a few automated
scripts and some occasional manual monitoring. However, using the single-instance Database
Control tool makes day-to-day management a snap. If you have to manage several databases, you’ll
need a tool to help you perform such tasks as object creation, security maintenance, database moni-
toring and notification, event management, backing up, recovering, and data loading. A number
of excellent management tools are also available from third-party sources such as Quest Software
(http://www.quest.com) and Embarcadero Technologies (http://www.embarcadero.com). However,
you get the Database Control tool as part of your Oracle Server software, so it’s the logical choice for
managing your Oracle database.

Monitoring database performance is not the only benefit of using OEM. Proactive event manage-
ment lets you set thresholds for various database parameters for event notification. Job scheduling
makes the traditional crontab seem antiquated. You can even perform application tuning and some
reverse-engineering of the schema with OEM. Finally, you can perform many DBA tasks, such as
backup, recovery, data loading, and online table reorganization, much more easily using OEM. You
can even publish trend charts about the database performance, uptime, and capacity planning.

Your DBA skill level will increase as you explore the various areas of OEM. You’ll be much
more effective as a DBA, and you’ll significantly reduce the time you need to complete important but
tedious tasks such as checking logs and monitoring various components of the database.

Benefits of Using OEM to Manage Databases
OEM offers several features that make it an attractive tool for managing Oracle databases. The complete
toolset of OEM allows you to monitor databases, manage physical storage and the various database
objects, and analyze database performance. Let’s look at the various benefits OEM provides.

Out-of-the-Box Management

OEM offers a true out-of-the-box solution for complete systems monitoring and management.
While I do cover the configuration of the various components of OEM in the section “Configuring

138 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

and Using the Database Control” later in this chapter, but there really isn’t any heavy-duty configu-
ration necessary to get started with OEM, even for the Grid Control version. In fact, the OEM Database
Control doesn’t need any configuration at all, if you create a new Oracle database with the Database
Configuration Assistant (DBCA), or you choose to create a new database when you install Oracle
Database Server software.

Web-Based Management

You can view the OEM console on your workstation or access it through your web server. OEM uses
Secure Sockets Layer (SSL), so database security isn’t compromised when you access your databases
through the Internet. All tiers of OEM communicate via HTTP, so they can go through any firewall
that HTTP communications are allowed to go through. In some situations, the management server
has to make a direct Oracle net connection to the managed instance. The web-based OEM console
has all the features of the regular console, so all you need is a web browser to access your databases
from anywhere, at any time.

Real-Time Monitoring

OEM provides excellent real-time monitoring in addition to its capability to provide reports on the
database. Without OEM, you’re forced to use SQL scripts, and the information isn’t always quick in
coming. For example, SQL scripts that can detect users locking an object are notoriously slow in
finishing. By using OEM, on the other hand, you can immediately see all the locks in the database.
Similarly, OEM helps you identify the waits in the system and find out what’s causing them while
they’re occurring.

Complete Environment Monitoring

As you already know, a poorly performing (or unavailable) database could be the result of a problem
anywhere in the application stack—in the database, in the web servers, or in the server that’s hosting
any of the components of the application. OEM monitors the performance of all the components of
this stack, not just the Oracle database. As a result, you can quickly figure out why the database is
performing poorly all of a sudden. Maybe you have a web server that isn’t able to process the connect
requests efficiently for some reason, while your database is performing just fine.

This is a sampling of the items that OEM can monitor and report on:

• The entire platform

• End-user experience

• Systems and web application availability

• The extended network components

• Business transactions

• Historical data analysis and change tracking

Application Performance Monitoring

OEM provides Application Performance Monitoring (APM) tools, which provide you with an easy
way to diagnose system problems and monitor database performance. APM tools gather and report
not only on the status, but also the response times of all the databases in your system. This informa-
tion helps you proactively manage your databases and prevent problems from happening.

When DBAs use OEM’s alert systems and notifications, they can quickly inform managers about
poorly performing system components. These alerts thus help you resolve bottlenecks before the
database becomes completely unavailable to users.

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 139

APM performs the following functions:

• Monitors the performance and availability of the system

• Indicates outages and bottlenecks throughout the application system

• Analyzes the root causes of performance problems

• Diagnoses performance with drill-downs

• Minimizes application downtime through the use of efficient problem-resolution tools

Scalable Management Capability

OEM is a highly scalable tool, and you don’t need additional resources to monitor an ever-growing
enterprise. To add new servers to your system, all you need to do is start up a Management Agent on
the new node. The agent will help you gather all pertinent information about servers and databases.

Consolidated Database Management

OEM provides you with a quick top-level view of the entire environment—servers, databases, appli-
cation servers, and so forth—through its home pages. Each managed target has a home page that
provides a concise overall view of system health and performance. By summarizing key information
on the home pages, OEM helps you quickly identify the root cause of any system problems.

OEM also enables you to efficiently query for the latest code patches for all the Oracle products
installed in your enterprise. If new patches are available, you can download and install them easily
with OEM.

Integrated Systems Management

You can easily integrate OEM with a systemwide monitoring tool such as HP OpenView. This inte-
gration of the database and server management tools lets you view both the database and system
events from a single browser. The two products essentially act like a single integrated management
suite. OEM uses the Smart Plug-In (SPI) to provide the integration of OEM and OpenView operations.

OEM Architecture and Components
Oracle Enterprise Manager comes in two flavors—Database Control and Grid Control. To monitor
and manage just a single database, OEM Database Control is all you need. You don’t have to configure
anything to use the OEM Database Control—it’s ready to use the moment you create a new Oracle
Database 11g database, if you do so using the DBCA or the Oracle Universal Installer. If you create a
database from scratch using the CREATE DATABASE statement, on the other hand, you have to configure
Database Control using the emca (Enterprise Manager Configuration Assistant) utility.

To manage large-scale, complex environments, you must use the OEM Grid Control, which you
install separately from the Oracle database.

You can consider the Database Control to be a subset of the Grid Control, since the Grid Control
can do everything that the Database Control can do, besides helping you manage systemwide
nondatabase targets as well.

■Note In addition to the Database Control and Grid Control, the OEM product also includes the Oracle Enterprise
Manager Application Server Control, which helps you manage individual Oracle Application Server instances. An
Oracle Application Server instance is automatically installed as part of the Grid Control installation. The Grid Control
Management Server is run by this Oracle Application Server.

140 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

Configuring and Using the Database Control
Database Control can come already configured for your use if you choose to use the DBCA to create
a new database. For a database you create with manual commands, however, you must configure
the Database Control using a special utility. In this section, I explain both the automatic and manual
configuration of the Database Control. The OEM Database Control uses an HTTP server, and you can
view the Database Control console with an Internet browser. The default URL for the Database Control
is http://hostname:portnumber/em. For example, on my Linux server, I access the Database Control using
the following URL:

http://localhost:5500/em

■Note If the default port for OEM is already in use, Database Control will use a different port number. To see
which port your database is using, examine the $ORACLE_HOME/install/portlist.ini file.

Automatically Configuring the Database Control

If you select the option of creating a new database when you install the Oracle Database Server software,
or if you use the DBCA to create a new database, then Database Control is automatically installed and
configured for you. When you choose the option of creating a new database during Oracle Server
software installation, you are given a choice between the Database Control and Grid Control, as
shown in Figure 4-1.

Figure 4-1. Selecting the database management option

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 141

■Note If you choose to create your database manually or to upgrade your database to Oracle Database 11g, you
must configure the Database Control using the dbconsole build script ($ORACLE_HOME/bin/emca for UNIX/Linux
systems and $ORACLE_HOME\bin\emca.bat for Windows). This script configures the Database Control and starts
up the dbconsole process. This is discussed next in the “Manually Configuring the Database Control” section of this
chapter.

Manually Configuring the Database Control

If you manually create a new Oracle Database 11g database or upgrade one to Oracle Database 11g,
you must configure the Database Control using the emca utility, found in the $ORACLE_HOME/bin
directory in UNIX/Linux and Windows systems. You can use the emca utility for several purposes
besides configuring the Database Control, and it can be run with the options shown here:

$ emca [operation] [mode] [dbType] [flags] [parameters]

To configure the Database Control for your database, issue the emca command and provide
values for things such as the port number and the database name, when the emca utility prompts
you to do. Listing 4-20 shows the output from the emca configuration command that I ran on my
server.

Listing 4-20. Running emca to Configure the Database Control

$ emca -config dbcontrol db

STARTED EMCA at Dec 3, 2007 3:02:48 PM
EM Configuration Assistant, Version 11.1.0.5.0 Production
Copyright (c) 2003, 2005, Oracle. All rights reserved.

Enter the following information:
Database SID: orcl
Database Control is already configured for the database orcl
You have chosen to configure Database Control for managing the database orcl
This will remove the existing configuration and the default settings and perform a
fresh configuration
Do you wish to continue? [yes(Y)/no(N)]: y
Listener port number: 1521

Password for SYS user:
Password for DBSNMP user:
Password for SYSMAN user:
Password for SYS user:
Email address for notifications (optional): salapati@netbsa.org
Outgoing Mail (SMTP) server for notifications (optional): netbsa.org

You have specified the following settings

Database ORACLE_HOME /u01/app/oracle/product/11.1.0.6/db_1

Local hostname localhost.localdomain
Listener port number 1521
Database SID orcl2

142 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

Email address for notifications salapati@netbsa.org
Outgoing Mail (SMTP) server for notifications netbsa.org

Do you wish to continue? [yes(Y)/no(N)]: y
Dec 3, 2007 3:08:58 PM oracle.sysman.emcp.EMConfig perform
INFO: This operation is being logged at
/u01/app/oracle/cfgtoollogs/emca/orcl2/emca_2007_12_03_15_08_28.log.
Dec 3, 2007 3:08:59 PM oracle.sysman.emcp.util.DBControlUtil stopOMS
INFO: Stopping Database Control (this may take a while) ...
Dec 3, 2007 3:09:06 PM oracle.sysman.emcp.EMReposConfig uploadConfigDataToRepository
INFO: Uploading configuration data to EM repository (this may take a while) ...
Dec 3, 2007 3:12:13 PM oracle.sysman.emcp.EMReposConfig invoke
INFO: Uploaded configuration data successfully
Dec 3, 2007 3:12:42 PM oracle.sysman.emcp.util.DBControlUtil configureSoftwareLib
INFO: Software library is already configured.
Dec 3, 2007 3:12:42 PM oracle.sysman.emcp.util.DBControlUtil configureSoftwareLib
INFO: EM_SWLIB_STAGE_LOC (value) will be ignored.
Dec 3, 2007 3:12:42 PM oracle.sysman.emcp.util.DBControlUtil secureDBConsole
INFO: Securing Database Control (this may take a while) ...
Dec 3, 2007 3:13:00 PM oracle.sysman.emcp.util.DBControlUtil secureDBConsole
INFO: Database Control secured successfully.
Dec 3, 2007 3:13:01 PM oracle.sysman.emcp.util.DBControlUtil startOMS
INFO: Starting Database Control (this may take a while) ...
Dec 3, 2007 3:17:20 PM oracle.sysman.emcp.EMDBPostConfig performConfiguration
INFO: Database Control started successfully
Dec 3, 2007 3:17:21 PM oracle.sysman.emcp.EMDBPostConfig performConfiguration
INFO: >>>>>>>>>>> The Database Control URL is https://localhost.localdomain:5502/em
<<<<<<<<<<<
Dec 3, 2007 3:18:41 PM oracle.sysman.emcp.EMDBPostConfig invoke
WARNING:
************************ WARNING ************************

Management Repository has been placed in secure mode wherein Enterprise Manager
data will be encrypted. The encryption key has been placed in the file:
/u01/app/oracle/product/11.1.0.6/db_1/localhost.localdomain_orcl2/sysman/config
/emkey.ora. Please ensure this file is backed up as the encrypted data will
become unusable if this file is lost.

Enterprise Manager configuration completed successfully
FINISHED EMCA at Dec 3, 2007 3:18:41 PM
$

You can test the new Database Control connection by using the URL shown in the Database
Control configuration output (toward the end of Listing 4-20). Here is the URL from Listing 4-20:

http://localhost:localdomain:1158/em

Make sure you specify em after the last slash—otherwise, you’ll merely succeed in getting to the
Oracle Containers for J2EE home page!

The Database Control login screen in Figure 4-2 shows that the Database Control configuration
was successful.

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 143

Figure 4-2. The Database Control login screen

Accessing the Database Control
Before you can manage a database with the help of the Database Control, you must first make sure
that the target database is running. In addition, you must make sure the Oracle listener service is
running. If the listener service hasn’t been started, and you try connecting to the Database Control,
you may see errors like the following:

The Network Adapter could not establish connection
ORA-12541:TNS:no listener

Once you’ve made sure that the database and the listener service are running, you have to make
sure that the dbconsole process is running on your system—it is needed in order to access the Data-
base Control as a web application. You can use the START, STOP, and STATUS options of the emctl utility
to work with dbconsole, and you can also use the SETPASSWD option (EMCTL SETPASSWD DBCONSOLE) to
establish a password for dbconsole.

To check the status of dbconsole, use the emctl status dbconsole command as shown here:

$ emctl status dbconsole
Oracle Enterprise Manager 11g Database Control Release 11.1.0.6.0
Copyright (c) 1996, 2007 Oracle Corporation. All rights reserved.
https://localhost.localdomain:5502/em/console/aboutApplication
Oracle Enterprise Manager 11g is not running.
--
Logs are generated in directory
/u01/app/oracle/product/11.1.0.6/db_1/localhost.localdomain
_orcl2/sysman/log
$

144 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

You start the dbconsole process with the emctl start dbconsole command:

$ emctl start dbconsole
Oracle Enterprise Manager 11g Database Control Release 11.1.0.6.0
Copyright (c) 1996, 2007 Oracle Corporation. All rights reserved.
https://localhost.localdomain:5502/em/console/aboutApplication
Starting Oracle Enterprise Manager 11g Database Control started.
--
Logs are generated in directory
/u01/app/oracle/product/11.1.0.6/db_1/localhost.local
domain_orcl2/sysman/log
$

You can stop the dbconsole process by using the emctl stop dbconsole command:

$ emctl stop dbconsole

Once dbconsole is up and running, you can access Database Control through your web browser
using the following URL: http://host.domain:port/em. As shown earlier in the chapter, a typical URL
would look like this:

http://localhost:5500/em

A Brief Tour of the Database Control
The Database Control interface is very intuitive, so I won’t spend a whole lot of time walking you
through the various Database Control links or list all of its capabilities. You don’t need a special user
account (like SYSMAN, which you use for the Grid Control) to log into the Database Control console.
Use one of the privileged database accounts like SYS so you can log in with the SYSDBA privileges.
When you log in, you’ll be in the Database Control home page, shown in Figure 4-3. The Oracle
Database Control home page provides a launching point for performance tuning and other manage-
ment activities.

The Database Control home page allows you to do the following:

• Start up and shut down your database.

• Assess the current health of the database by checking the alerts.

• Drill down into various management tasks via the Performance, Availability, Server, Schema,
Data Movement, and Software and Support tabs (discussed in the following sections).

The database refreshes the home page every minute by default, and it contains the following
sections:

• Performance

• Availability

• Server

• Schema

• Data Movement

• Software and Support

Let’s quickly review each of the main sections or pages of Database Control in the following
sections.

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 145

Figure 4-3. The Database Control home page

Performance
The Performance page shows you the overall status of the database and helps you quickly identify
causes of performance bottlenecks. Figure 4-4 shows the top part of the Performance page, which
contains three important charts that tell you at a quick glance how the instance is performing currently:
Host CPU, Active Sessions, and SQL Response Time. The middle of the home page contains a Diag-
nostic Summary section that shows any current problems in the database alert log. The Space
Summary section shows any tablespaces or segments under space pressure. The High Availability
section shows the usable free space in the flash recovery area.

The bottom of the Performance page is probably more important on a day-to-day basis for you,
since it contains a useful alert table. The table shows the various alerts issued recently by the data-
base. You can view the brief message for the various errors and drill down to an alert that’s critical,
to get the details about that alert.

■Tip Oracle recommends that you start investigating waits if the level of waits is at twice the Maximum CPU line
in the sessions graph. If your instance throughput is decreasing, and there is an increasing amount of contention
within the database, you should start looking into tuning your database.

146 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

Figure 4-4. The Database Control Performance page

Using the Performance page, you can do the following:

• View instance performance.

• Identify the SQL statements, sessions, and users that are using the most resources in the data-
base (top SQL, top sessions, and top users).

• Run the Automatic Database Diagnostic Monitor (ADDM).

Availability
The Availability page contains the Backup/Recovery and the Oracle Secure Backup sections. You
can manage RMAN and its recovery catalog from the Backup/Recovery link.

Server
The Server page is your jumping off point for several key Oracle database management activities:

• Storage: Lets you manage tablespaces, datafiles, and control files, redo log groups, and
archive logs. You can also migrate to ASM from this section.

• Database Configuration: Lets you access the various memory advisors and view the database
feature usage charts. You can also manage automatic undo management from here. You can
check the current initialization parameters in use and modify them.

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 147

• Oracle Scheduler: Helps you manage all aspects of the Oracle Scheduler, as well as the auto-
mated maintenance tasks.

• Statistics Management: Lets you manage the Automatic Workload Repository (AWR) and the
AWR baselines.

• Resource Manager: Helps you manage the Oracle Resource Manager.

• Security: Helps manage users, roles, and privileges. You can also configure audit policies,
implement the Transparent Data Encryption (TDE) feature, and create virtual private data-
base policies from this section.

Figure 4-5 shows the Database Control Server page.

Figure 4-5. The Database Control Server page

Schema
The Schema page lets you manage various database objects such as tables, indexes, views, synonyms,
database links, and materialized views. You can also manage stored code such as functions, proce-
dures, and packages from here, in addition to triggers. Under the Change Management section,
there’s an interesting link to the Dictionary Comparisons page. Here, you can perform a comparison
of database objects in different databases.

148 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

Data Movement
The Data Movement page has links that let you perform an export and import of data and transport
tablespaces. You can also clone databases by clicking the Clone Database link under the Move Data-
base Fields section. You can set up and manage both Oracle Streams and Replication from the Data
Movement page.

Software and Support
The Software and Support page lets you access several important database tools and features, as I
summarize here:

• Configuration: Lets you clone Oracle homes

• Database Software Patching: Lets you access the Patch Advisor and stage and apply code patches

• Deployment Procedure Manager: Provides access to the Deployment Procedure Manager and
the Deployment and Provisioning Software Library

• Real Application Testing: Lets you work with the Database Replay feature and the SQL Perfor-
mance Analyzer

Oracle Software Cloning
The Database Control enables you to clone an Oracle home. You can also clone Oracle homes from
a master installation to one or more servers using the Grid Control. The Grid Control will automati-
cally adjust host names, IP addresses, and other related settings. If you want to create multiple new
installations at once, you can do so. In addition, you can also save a selection of master installations
to use repeatedly in cloning operations.

Configuring Using the Setup Page
You can gain access to the Database Control Setup page by clicking the Setup link at the top of the
Database Control home page. On the Setup page, there are options for configuring the following
things:

• Administrators: By default, a super-administrator account with the name SYSMAN is created
during the installation of the OEM Database Control. The super administrator can create
other administrators as well as create roles in the system. You should use the SYSMAN account
only to perform general configuration tasks and to create other administrative accounts for
your daily database administration.

• Notification Methods: You can use this page to set up e-mail notifications from the Database
Control. You need to provide your SMTP mail server information and your e-mail address to
do this. Figure 4-6 shows the Notification Methods page.

• Patching Setup: You can directly download various patches for your Oracle software from
MetaLink using the Database Control. From the Patching Setup page, you can enter your
MetaLink credentials to search for new patches in Oracle MetaLink and download them.

• Blackouts: You can suspend monitoring for a specified target for any reason, including main-
tenance activity on that target. This way, you don’t get notifications indicating false problems
in the database.

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 149

Figure 4-6. The Database Control Notification Methods page

• Management Pack Access: Premium functionality is included in four Management Packs—the
Oracle Diagnostics Pack, the Oracle Tuning Pack, the Oracle Configuration Management
Pack, and the Oracle Change Management Pack—and they are subject to additional Oracle
licensing. The Management Pack Access page lets you grant or remove access to these pack-
ages, based on your Oracle licensing agreement. Here’s what they offer:

• The Oracle Diagnostics Pack includes performance-monitoring abilities (database and
host), the ADDM, the AWR, a system for event notification and notification blackouts, and
a history of events and metrics (database and host).

• The Oracle Tuning Pack includes SQL Access Advisor, SQL Tuning Advisor, SQL Tuning
Sets, and database-object reorganization help.

• The Oracle Configuration Management Pack facilitates database and host configuration,
management of deployments, cloning of databases and Oracle homes, and searching and
comparing of configuration policies.

• The Oracle Change Management Pack allows you to make changes in database schemas.
You can track changes, compare and synchronize objects and schemas, modify schema
objects, and evaluate and undo the changes, should this be necessary.

■Caution You will violate your Oracle license if you use the four Management Packs described here without
additional licensing from Oracle Corporation.

150 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

The Related Links Section and the Advisor Central Page
At the bottom of the Database Control home page and also at the bottom of every page such as the
Performance page, for example, you’ll find the Related Links section, which contains links to several
management tools, including jobs, Oracle Scheduler, and alert history. The Advisor Central link is
part of the Related Links section as well, and it takes you to the Advisor Central page. The Advisor
Central page consists of two tabs: Advisors and Checkers. The Advisors tab is the launch pad for
using the various specialized tools for the management advisory framework. Each of these impor-
tant management advisors are discussed elsewhere in the book:

• ADDM (see Chapter 17)

• SQL Performance Analyzer

• SQL Tuning Advisor (see Chapter 18)

• Segment Advisor (see Chapter 17)

• Data Recovery Advisor (see Chapter 16)

• Memory Advisors (see Chapter 17)

• Automatic Undo Management (see Chapter 8)

• MTTR Advisor (see Chapter 18)

The Checkers tab on the Advisor Central page takes you to the Checkers page, where you can see
the results of various checks performed by the database, such as a DB Structure Integrity Check, for
example. Chapter 18 explains the concept of checkers in the Oracle Database 11g release.

Creating Database Control Roles
A role is a collection of predefined target privileges created by the privileged administrators. By
default, only the SYS, SYSTEM, and SYSMAN users can log into the Database Control console. After
logging in as one of these three users, you can assign management privileges to other user accounts
in the database. Here’s how you create roles:

1. Log into the Database Control as SYS, SYSTEM, or SYSMAN.

2. Click the Setup link and click the Create button.

3. In the Create Role Properties page, enter a name for the role and enter a description. Click
Next.

4. In the System Privileges page, select View Any Target and click Next.

5. Under Available Targets, select the Database type. Choose the databases you want from the
drop-down list. Click Next.

6. Under Available Targets, choose Listener and select the appropriate listener. Click Next.

7. Under Target Privileges, choose Full (under Batch Assignment). Click Next.

8. Click the Administrators button to get to the Create Role Administrators page. Here, you’ll
see the list of available administrators to whom you can grant the newly created OEM role.
Select the administrators and click Finish.

Linking to MetaLink
Oracle Database 11g allows you to link directly from the OEM to the Oracle MetaLink service, which
means that OEM can automatically track patches. If you want to receive an alert when the OEM

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 151

detects a new patch, you can easily set it up. If you’d like, the OEM can even notify you when a system
needs one of the new patches. Once you have applied a patch, Oracle will update the Oracle Universal
Installer inventory to ensure that it knows your latest patch level.

Here’s how to download and apply software patches manually:

1. Click Setup on the Database Control home page.

2. Click the Patching Setup link on the Setup page.

3. In the Patching Setup page, specify the MetaLink username and password. The Patch Search
URL has the default MetaLink login page address (http://updates.oracle.com).

Oracle will use the MetaLink credentials you specified to run the RefreshFromMetalink job at
regular intervals. This job will collect the Oracle critical-path information and the latest patch collec-
tion criteria from MetaLink, and it will update the OEM repository with the data.

■Note Alternatively, you can access Oracle MetaLink by going to http://metalink.oracle.com. Once you
have logged in, you can search for and download patches.

Policy-Based Configuration Framework
Oracle Database 11g contains a policy-based framework to help you easily track targets that may
be violating established configuration policies. OEM provides a set of policies based on Oracle’s
best-practice configuration to ensure that your database performs at an optimal level, and Oracle
Database 11g enables you to monitor all of your databases to see if there are any violations of the
predetermined configuration policies. Oracle collects these configuration metrics for databases,
host machines, and listener services.

On the Database Control home page, there is a section called Diagnostic Summary, which
shows you whether there are any policy violations anywhere. If you drill down, using the All Policy
Violations button, you can get to the Policy Violations page, which summarizes all policy violations
in your databases and hosts. If you wish, you can disable a policy by going to the Manage Policy
Library page.

Here are some typical policy rules:

• The “critical patch advisories for Oracle Homes” policy rule checks for missing Oracle
patches.

• The “insufficient number of control files” policy rule checks for the use of a single control file.

• The “listener password” policy rule checks for password-protected listeners.

Tracking Database Feature-Usage Statistics
In Oracle Database 11g, you can track database usage metrics, which enable you to understand two
important phenomena:

• How you are using the various features of your Oracle database, including whether the data-
base is currently using a given feature, and the first and last times a given feature was used.

• The high-water mark (HWM) statistics for important database attributes. The HWM is simply
the highest usage point a feature has attained to that time.

The database features that you can track include advanced replication, Oracle Streams, virtual
private database (VPD), and various auditing features.

152 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

The database collects HWM statistics for items such as the following:

• Maximum size of tables

• Maximum number of Oracle datafiles

• Maximum number of user sessions

• Size of the largest data and index segments

Examining Database Feature-Usage Statistics

To view database usage statistics in the Database Control, follow these steps:

1. On the Database Control home page, click the Administration link and go to the Database
Configuration group. Click the Database Feature Usage link.

2. You’ll now be in the Database Usage Statistics property sheet, which shows the database
feature-usage statistics in the form of a table. The table lists all the available database features by
name and lets you see if the database is currently using each one, as well as providing the first
usage and last usage times. To view details about the usage statistics of any feature, just click
the associated link. Figure 4-7 shows the Feature Usage portion of the Database Usage Sta-
tistics property sheet.

Figure 4-7. The Feature Usage portion of the Database Usage Statistics property sheet

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 153

3. To view the database HWMs, click the High Water Marks tab in the Database Usage Statistics
property sheet. In the High Water Marks page, you can see the HWMs for all database objects,
as well as the last sampled value for each feature, and the version of the database feature.
Figure 4-8 shows the High Water Marks page.

Figure 4-8. The High Water Marks page of the Database Usage Statistics property sheet

OEM Grid Control
The purpose of the OEM Grid Control is to facilitate the management of entire systems, including
hosts, databases, web servers, listeners, and other services. It provides you with a powerful and
convenient centralized means of managing your entire infrastructure, not just your Oracle data-
bases. You can manage your systems from just about anywhere, including from mobile devices.

When you click the Databases tab on the Grid Control home page, you’ll see a list of all the data-
bases that are under the purview of the Grid Control. Just click the database you want to examine in
detail. The Grid Control Database page provides the same functionality as the single-instance Data-
base Control console.

154 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

The Grid Control Framework Components

The Grid Control consists of the following four components:

• OEM Grid Control: This is the main OEM web-based interface for monitoring your enterprise.
You can manage hosts, databases, listeners, application servers, HTTP servers, and web
applications from this centralized Grid Control.

• OEM Management Agent: You install an OEM Management Agent on every host that you wish
to manage. It’s the agent’s job to monitor the host, databases, and other services and to send
the information to the OEM Management Service.

• Oracle Management Service (OMS): This is the middle tier of the Grid Control stack. The
Management Service provides the user interface for the Grid Control and interacts with the
Management Agent and the Management Repository, which contains the data for the OEM
Grid Control. The Management Service receives all data from the Management Agents, and it
then sends the data to be stored in the Management Repository.

■Note In order to install the Management Service, the Grid Control installation process first installs the Oracle
Application Server on your system, which includes an HTTP server.

• Management Repository: The Management Repository contains all pertinent information
about hosts, databases, and other targets that the OEM Grid Control needs. The repository
consists of two tablespaces in the database hosting the OEM Grid Control. Note that the Database
Control doesn’t require the creation of any extra tablespaces for hosting the Management Repos-
itory—only the Grid Control version of OEM needs the repository.

Installing the Grid Control

As you know, the Database Control doesn’t need any additional software, since it’s a part of the
Oracle database software. You must, however, install the OEM Grid Control separately, either by
downloading the software from Oracle’s web site or by using the appropriate CD. Installing Grid
Control consists of two steps: installing the OEM Grid Control software on the host from which you
intend to use the Grid Control console, and installing a Management Agent on each of the hosts you
want to monitor.

In the following sections, I first show how to install the Grid Control software and then the
Management Agent. Here are the steps in the installation process:

1. Log into the host as the Oracle software owner and mount the Oracle Database 11g CD.
Change the directory to the CD, and execute the runInstaller script:

$./runInstaller

2. At the Welcome window, click Next.

3. Accept the default Operating System Group Name and click Next.

4. A separate window asking you to run the root.sh UNIX script will appear. Leave this window
open, and open a new terminal window.

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 155

5. Execute orainstRoot.sh as the root user in the terminal window, as shown here:

$ cd $ORACLE_BASE/oraInventory
$ su
$ <rootpassword>
$./orainstRoot.sh
$ exit

6. Once you run the orainstRoot.sh script, go back to the Oracle Universal Installer window
and click Continue.

7. In the Specify File Locations window, choose the directory for the OEM files, and click Next.

8. In the Select a Product to Install window, you can install the OEM Grid Control in an existing
Oracle database or you can create a new database. You can also choose to install a Management
Service or Management Agent from this window. In this example, I chose the option that
creates a new Oracle database. Click Next.

■Note When you choose to install the Grid Control using a new database, Oracle will create a new Oracle Data-
base 11g database on your server. If you want to install using an existing Oracle database, your database must be
version 9.2 or higher.

9. The Oracle Universal Installer will make the necessary prerequisite checks, after which you
click Next.

10. Choose a password for the default SYSMAN user, and click Next.

11. Select passwords for the SYS, SYSTEM, and DBSMNP users in the new database, and click Next.

12. In the next window, you have the option of setting up MetaLink and Proxy information.
These are optional and have no bearing on the functioning of the Grid Control. Once you
make your choice, click Next.

13. In the Database Identification window that appears next, choose the SID and the Global
Database Name for the database. Click Next.

14. In the Database File Location window, specify the location for all the database files, and
click Next.

15. Review the list of components that are going to be installed in the Summary screen that
appears, and click Install.

16. You’ll now see a series of windows indicating the progress of the installation. You’ll be asked
to run the root.sh script again as the root user. Log in as the root user in a separate window
and run the root.sh script. Then go back to the installation window, and click OK.

17. The Configuration Assistants window will show the status of the various configuration
assistants, such as the Oracle Database Configuration Assistant. On my system, there were
16 configuration assistants. After the new Oracle database is created, you’ll see the following
message:

The Oracle Agent will now be installed on the same machine as the database
that was just created. This database will then be available through
Grid Control to manage its environment.

Click OK.

156 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

18. When the Setup Privileges window appears, open a new terminal window and run the
orainstRoot.sh script yet again. Once the script completes, go back to the installer window,
and click Next. The Configuration Assistants window will appear again and the Agent
Configuration Assistant will install the Oracle Agent.

19. You’ll see an End of Installation message from the installer, along with a list of the port numbers
you can use to access the Grid Control, the Oracle Application Server that’s installed as part
of the Grid Control installation, and the Oracle database that was created to host the Grid
Control.

20. Click Exit to end the installation.

Installing and Deploying the OEM Management Agent

Use the following steps to install the OEM Management Agent on each server you want to monitor:

1. Start the Oracle Universal Installer and perform the first seven steps in the preceding “Installing
the Grid Control” section.

2. In the Select a Product window, choose the Additional Management Agent installation type,
and click Next.

3. Specify the name of your host server in the next page, and click Next.

4. Click Next after reading the security warning (regarding secure HTTP mode), and then click OK.

5. Review the Summary window, and click Next to start the actual agent installation process.

6. Once your installation completes, click Yes to exit the Oracle Universal Installer.

7. Verify that your databases and hosts can be seen by the newly installed Management Agent.
You can do this by logging into the Grid Control and clicking the Targets tab. You will see
all the discovered hosts. Click any host and then click Databases. You should now be able
to view all the Oracle databases that are running on that host.

Once you successfully install the agents on your servers, you can use the information they collect to
monitor all your Oracle databases, hosts, web servers, and listeners.

Managing the Management Agent
The emctl utility is used to configure agents and consoles for not only the Grid Control, but also the
Database Control and Oracle Application Server. You can check the status of the agent and stop and
start the agent service with the following commands:

• emctl status agent

• emctl start agent

• emctl stop agent

■Tip The emctl executable is common to both UNIX/Linux and Windows systems. However, remember that there
is a separate emctl executable for the Database Control and the Management Agent. You’ll find the appropriate
emctl executable by using the full path for it, under the right home directory. In this case, since we’re using the
emctl executable to manage the OEM agent, we’d go to the directory where the agent software was installed. If you
just type in emctl, you may be looking at the wrong executable.

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 157

The Oracle Management Service
Before you can start using the Grid Control interface, you must first make sure that the middle tier,
the Oracle Management Service, is running. At the end of the Grid Control software installation, the
OMS should be automatically started by the installer. You can use the following command to check
whether the OMS is running:

$ emctl status oms
Oracle Enterprise Manager 10g Release 10.1.0.3.0.
Copyright (c) 1996, 2004 Oracle Corporation. All rights reserved.
Oracle Management Server is Up
$

If the OMS isn’t running, start it up this way:

$ emctl start oms
Oracle Enterprise Manager 10g Release 10.1.0.3.0.
Copyright (c) 1996, 2004 Oracle Corporation. All rights reserved.
Starting HTTP Server ...
Starting Oracle Management Server ...
Checking Oracle Management Server Status ...
Oracle Management Server is Up
$

Connecting to the Grid Control
Once you know OMS is running, as discussed in the previous section, you’re ready to log into the
Grid Control console. In order to do this, you must know the port number for the Grid Control, which you
can get from the portlist.ini file, located in the $ORACLE_HOME/install directory.

The first item in the setupinfo file shows the port number of the Grid Control. You connect to
the Grid Control interface by typing a URL with the following format into your web browser:

http://your_servername:port_number/em

The Grid Control installation includes an Oracle Application Server instance, which is adminis-
tered using a special ias_admin user account. This is the default information for the embedded
Application Server instance on my server:

Instance Name: EnterpriseManager0.ntl-alapatisam.netbsa.org
ias_admin password: This password is the same the SYSMAN account.

These are the connection details for the Management Repository on my server:

Host: ntl-alapatisam.netbsa.org
Port: 1521
SID: emrep

Logging Into the Grid Control
When you install the Grid Control, a super-administrator account, SYSMAN, is automatically installed,
and you provide the password for it at that time. You use this SYSMAN account to log into OEM for
the first time.

You can’t rename or delete this account, but you can later set up administrator accounts for
various users who need to use the Grid Control to manage databases. You can limit the privileges of
each administrator to control which databases they can access, and you can set up customized noti-
fication rules for them.

158 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

■Note You must log into the Grid Control using the SYSMAN account, not your database accounts like sys or system.

Once you successfully log into the Grid Control, you’ll be in its home page. From the home page,
you can manage databases either by choosing Databases from the drop-down list of targets or by
clicking the Targets tab and clicking the Databases link.

Features of the Grid Control
The Grid Control is an enormously powerful monitoring and management tool. I devote the following
sections to explaining the important features, but I make no attempt to cover the various database
management features, which are identical to those in the Database Control.

Enterprise Configuration Management

You can perform the following two enterprise-wide configuration-related tasks through the Grid
Control:

• Obtaining host and database configuration information

• Changing the configuration

Obtaining Host and Database Configuration Information

Management Agents, which run on the database hosts, collect configuration information about their
hosts and send it back to the OEM’s Management Repository every 24 hours. Here’s what they send:

• Memory, CPU, and I/O configuration on the host

• Details about the operating system, such as vendor, version, installed software components,
patches, and database patch information

• Properties associated with the database and its instances

• Information about tablespaces and datafiles

• Information about control files and redo logs

Monitoring and Managing Enterprise Configuration

You can use the Grid Control to monitor and manage the configuration once it has the relevant
details. Here’s what the Grid Control allows you to do with respect to managing your configuration:

• Look at and contrast the hardware and software configurations of different hosts and
databases.

• Monitor any changes to host configurations.

• Summarize your configuration.

• Search for configurations.

• Carry out cloning operations on Oracle homes and database instances.

• Look at violations of host and database policies.

• Patch Oracle and manage warnings about critical patches.

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 159

Grouping Targets

To facilitate the management of a large number of targets, the Grid Control lets you organize large
numbers of systems into groups. For example, you can grant a Grid Control user access only to certain
groups. You can group targets into homogeneous groups (databases only, for example) or heteroge-
neous groups (such as a database, listener, application server, and host server).

Using the Grid Control Home Page
The Grid Control home page provides an overall view of the entire enterprise. Use this as your
starting point when you’re evaluating the health of your database, since it provides information
about the entire Oracle environment, not just the database.

The home page shows you the following things:

• Status: Provides the status of the monitored Oracle targets, including the availability and
open alerts for each target. Targets include hosts, databases, web servers, and listeners.

• Critical Patch Advisories: Displays a visual summary of any patch advisories and the affected
Oracle homes.

• Deployments Summary: Provides a summary of your entire system configuration, including
hardware and software.

• Resource Center: Provides links to Oracle documentation, release notes, support, and the
Oracle Technology Network (OTN).

The Grid Control home page contains tabs that offer links to the following entities:

• Targets: Targets include the host servers, databases, application servers, web applications,
and groups.

• Deployments: The Deployments home page has sections for critical patch advisories, deploy-
ments, configuration, patching, cloning, and policies (managing policy violations).

• Alerts: This page will tell you if any of your targets are down.

• Jobs: The Job Activity page contains information on all scheduled, running, and finished jobs
in your database.

• Management System: This page contains information about the Management Service and the
Management Repository. It provides details about the general health of OEM, availability,
backlogs, and alerts about the OEM itself and all the targets.

At the top (and the bottom) of the Grid Control home page, you’ll find additional links to the
following pages:

• Setup: The Setup page is similar to the Setup page in the Database Control.

• Preferences: The Preferences page is where you can change preferred credentials, including
the password of the SYSMAN account.

• Help: This page provides details about each of the pages in the Grid Control.

• Logout: This link will log you out of the Grid Control.

Monitoring Your Entire System with the Grid Control
You can use the Grid Control to monitor not only Oracle databases, but also web applications, host
performance, application servers, and database groups. In the following sections, I briefly summa-
rize the Grid Control capabilities in the nondatabase areas. The Grid Control has all the features of

160 CH AP T E R 4 ■ U S I N G SQ L *P L U S AN D O R AC L E E N TE R PR I SE M AN AG E R

the Database Control, as regards the management of databases; in addition, you can manage all the
other parts of your system.

Monitoring Web Applications

In order to view your web applications through the Grid Control, select Web Applications from the
View drop-down list on the home page. You can perform the following tasks from the Web Applica-
tions home page:

• Review web application alerts: You can use the Grid Control to view alerts regarding your web
applications. Whenever an application fails to perform according to a preset performance-
policy threshold, Grid Control will alert you. You specify the alerts when you create your web
applications. In order for the Grid Control to monitor the application, you must, of course,
add the target to OEM.

• Monitor transaction performance: The Grid Control will monitor your web applications to see
if they are conforming to availability and service-level requirements. You can monitor and
track key transaction-performance indicators like average page response, slowest page, and
the response time (in milliseconds).

You can go to the Transaction Playback page and view the summary and breakdown of the
time spent on each web page in your application.

• Analyze page performance: Using the Grid Control, you can track the web server response
time and correlate this information with the response times of URLs from various users. You
can also perform end-user performance review of the slow URLs.

Monitoring Host Performance

You can monitor the performance of your hosts and track configuration changes through the Grid
Control. You can reach the Host home page by clicking the Targets tab and then selecting the host
you want to investigate. The Host home page summarizes the availability and status of the host.
From the Host home page, you can navigate to the performance and configuration areas:

• Performance: You can use the Grid Control to view host performance, including CPU usage,
memory, disk I/O, etc. You can view current CPU load and swap utilization on your system
without using operating system tools like sar and top.

• Configuration: You can view the hardware and software configuration on the host. If you
wish, you can perform a side-by-side comparison of any two hosts on your system. This
enables you to identify the differences between a development and production server, for
example. You will see the differences in operating system patches, packages, and Oracle soft-
ware versions.

Monitoring Application Servers

You can monitor the application servers in your environment by clicking the Targets tab and then
clicking the Web Applications link. You’ll see a list of all the web applications in your system here,
and you can click a specific application to examine its performance. In addition to monitoring your
web applications, you can also monitor the web servers used by your applications, including the
Oracle Application Server instances.

CH AP T E R 4 ■ U S IN G SQ L *P L U S AN D O R A CL E E N TE R PR IS E M A N AG E R 161

Managing Groups

The Groups subtab under the Targets tab lists all the groups defined in the Grid Control. The Grid
Control’s Groups capability lets you organize your databases and hosts into related groups. For
example, you can collect all your production databases into a group called Production Databases.
Groups let you run a job in all related targets with a single command. In addition, you can view all
alerts and configuration policy violations in your production databases separately from the develop-
ment and test databases.

You can perform the following tasks from the Groups page:

• Add, remove, and configure groups.

• Access a group’s home page.

• View alerts and policy violations for a group.

■ ■ ■

P A R T 2

Oracle Database 11g
Architecture, Schema, and
Transaction Management

165

■ ■ ■

C H A P T E R 5

Oracle Database 11g Architecture

In the first four chapters, I set the stage for working with Oracle. It’s time now to learn about the
fundamental structures of Oracle Database 11g. Oracle uses a set of logical structures called data
blocks, extents, segments, and tablespaces as its building blocks. Oracle’s physical database structure
consists of datafiles and related files. Oracle memory structures and a set of database processes
constitute the Oracle instance, and are responsible for actually performing all the work for you in
the database.

To understand how the Oracle database works, you need to understand several concepts, including
transaction processing, backup and recovery, undo and redo data, the optimization of SQL queries,
and the importance of the data dictionary. This chapter provides an outline of the important Oracle
automatic management features, as well as the sophisticated built-in performance tuning features,
including the Automatic Workload Repository (AWR) and the Automatic Database Diagnostic Monitor
(ADDM); a brand new diagnostic framework introduced in this release; and the new Data Recovery
Advisor, which helps you easily recover from several types of data disasters and errors. I also outline
Oracle’s advisor-based Management Framework.

Oracle Database Structures
In discussing the Oracle database architecture, you can make a distinction between the physical and
logical structures. You don’t take all the data from the tables of an Oracle database and just put it on
disk somewhere on the operating system storage system. Oracle uses a sophisticated logical view of
the internal database structures that helps in storing and managing data properly in the physical
datafiles. By organizing space into logical structures and assigning these logical entities to users of
the database, Oracle databases logically separate the database users (who own the database objects,
such as tables) from the physical manifestations of the database (datafiles and so forth).

The following sections discuss the various logical and physical data structures.

Logical Database Structures
Oracle databases use a set of logical database storage structures in order to manage the physical
storage that is allocated in the form of operating system files. These logical structures, which primarily
include tablespaces, segments, extents, and blocks, allow Oracle to control the use of the physical
space allocated to the Oracle database.

Taken together, a set of related logical objects in a database is called a schema. Remember that
Oracle database objects, such as tables, indexes, and packaged SQL code, are actually logical entities.
Dividing a database’s objects among various schemas promotes ease of management and a higher
level of security.

166 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

Let’s look at the logical composition of an Oracle database from the bottom up, starting with the
smallest logical components and moving up to the largest entities:

• Data blocks: A data block is the smallest building block of the Oracle database and consists of
a specific number of bytes on the disk.

• Extents: An extent is two or more consecutive Oracle data blocks, and this is the unit of space
allocation.

• Segments: A segment is a set of extents that you allocate to a logical structure like a table or an
index (or some other object).

• Tablespaces: A tablespace is a set of one or more datafiles, and usually consists of related
segments. The datafiles contain the data of all the logical structures that are part of a tablespace,
like tables and indexes.

The following sections explore each of these logical database structures in detail.

Data Blocks

The Oracle data block is at the foundation of the database storage hierarchy and is the basis of all
database storage in an Oracle database. A data block consists of a specific number of bytes of disk
space in the operating system’s storage system. An Oracle database allocates free database space in
terms of Oracle data blocks.

A data block is the smallest logical component of an Oracle database. For example, you can size
an Oracle data block in units of 2KB, 4KB, 8KB, 16KB, or 32KB (or even larger chunks), and it is common
to refer to the data blocks as Oracle blocks. The storage disks on which the Oracle blocks reside are
themselves divided into disk blocks, which are areas of contiguous storage containing a certain
number of bytes—for example, 4,096 or 32,768 bytes (4KB or 32KB; each kilobyte has 1,024 bytes).

How Big Should the Oracle Block Size Be?

You, as the DBA, have to decide how big your Oracle blocks should be and set the DB_BLOCK_SIZE
parameter in your Oracle initialization file (the init.ora file). Think of the block size as the minimum
unit for conducting Oracle’s business of updating, selecting, or inserting data. When a user selects
data from a table, the select operation will “read,” or fetch, data from the database files in units of
Oracle blocks.

If you choose the common Oracle block size of 8KB, your data block will have exactly 8,192 bytes. If
you use an Oracle block size of 64KB (65,536 bytes), even if you just want to retrieve a name that’s
only four characters long, you’ll have to read in the entire block of 64KB that happens to contain the
four characters you’re interested in.

■Tip If you’re coming to Oracle from SQL Server, you can think of the Oracle block size as being the same as the
SQL Server page size.

As was mentioned earlier, the operating system also has a disk block size, and the operating system
reads and writes information in whole blocks. Ideally, the Oracle block size should be a multiple of
the disk block size; if not, you may be wasting time reading and writing whole disk blocks while only
making use of part of the data on each I/O. On an HP-UX system, for example, if you set your Oracle
block size to a multiple of the operating system block size, you gain 5 percent in performance.

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 167

Oracle offers the following guidelines for choosing the database block size:

• Choose a smaller block size if your rows are small and access is predominantly random.

• Choose a larger block size if the rows are small and access is mostly sequential (or random
and sequential), or if you have large rows.

In Chapter 10, which discusses the creation of Oracle databases, you’ll learn a lot more about
Oracle database block size and the criteria for choosing an appropriate block size.

■Note The Oracle block size that you should choose depends on what you’re going to do with your database.
For example, a small block size is useful if you’re working with small rows and you’re doing a lot of index lookups.
Larger block sizes are useful in report applications when you’re doing large table scans. If you are unsure about
what block size to use, remember that Oracle recommends that you choose a block size of 8KB for systems that
process a large number of transactions.

Multiple Oracle Data Block Sizes

The DB_BLOCK_SIZE initialization parameter determines the standard block size in your Oracle data-
base, and it can range from 2KB to 32KB. The system tablespace is always created with the standard
block size, and Oracle lets you specify up to four additional nonstandard block sizes. For example,
you can have 2KB, 4KB, 8KB, 16KB, and 32KB block sizes all within the same database—I discuss the
reasons you might wish to do this shortly, in the “Tablespaces” section. If you choose to configure
multiple Oracle block sizes, you must also configure corresponding subcaches in the buffer cache of
the system global area (SGA), which is Oracle’s memory allocation, as you’ll learn in the “Understanding
Main Memory” section of this chapter.

Multiple data block sizes aren’t always necessary, and you’ll do just fine in most cases with one
standard Oracle block size. Multiple block sizes are useful primarily when transporting tablespaces
between databases with different database block sizes.

What’s Inside a Data Block?

All data blocks can be divided into two main parts: the row data portion and the free space portion.
(There are also other smaller areas, such as overhead and header space for maintenance purposes.)
The row data section of data blocks contains the data stored in the tables or their indexes. The free
space section is the space left in the Oracle block for new data to be inserted or for existing rows in
the block to be extended.

Sometimes it may be useful to find out exactly what data is in a particular block or to find out
which block contains a particular piece of data. You can actually “see” what’s inside a data block by
“dumping” the block contents. Oracle blocks can be dumped at the operating system level (referred
to as binary dumps), and you can also perform Oracle-formatted block dumps.

The most common reason for performing a block dump is to investigate block corruption, which
may be caused by operating system or Oracle software errors, hardware defects, or memory or I/O
caching problems. The Recovery Manager (RMAN) provides ways to recover from block corruption,
and you can also use the Data Recovery Advisor to adopt other strategies to recover from data block
corruption, as I explain in Chapter 16.

Let’s look at what’s actually in an Oracle data block. First, before you do a data dump, you need
to find out which datafile and data block you want to dump. Listing 5-1 shows a query that enables
you to determine the file and block IDs.

168 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

Listing 5-1. Query to Identify File and Block IDs

SQL> SELECT segment_name,
 file_id,
 block_id
 FROM dba_extents
 WHERE owner = 'OE'
 AND segment_name LIKE 'ORDERS%';

SEGMENT_NAME FILE_ID BLOCK_ID
------------------- -------- ---------
ORDERS 397 32811
SQL>

You can alternatively use the following query to get the same information:

SQL> SELECT header_file,header_block FROM dba_segments
 WHERE segment_name = 'PERSONS';

HEADER_FILE HEADER_BLOCK
----------- ------------
 397 32811
SQL>

Next, you issue the following command, using the appropriate file and block numbers, to get a
dump of the block you need:

SQL> ALTER SYSTEM DUMP DATAFILE 397 BLOCK 32811;

System altered.
SQL>

The preceding command will produce a block dump in the default trace directory (UDUMP) of the
Oracle database. Listing 5-2 shows part of the output of this command.

Listing 5-2. A Sample Block Dump

Dump file /a03/app/oracle/admin/pasu/udump/pasu_ora_29673.trc
...
Start dump data blocks tsn: 110 file#: 397 minblk 32811 maxblk 32811
buffer tsn: 110 rdba: 0x6340802b (397/32811)
scn: 0x0001.610ac43d seq: 0x01 flg: 0x04 tail: 0xc43d2301
frmt: 0x02 chkval: 0x882e type: 0x23=PAGETABLE SEGMENT HEADER
 Extent Control Header
 --
Extent Header:: spare1: 0 spare2: 0 #extents: 59 #blocks: 483328
 last map 0x00000000 #maps: 0 offset: 2720
Highwater:: 0x63826009 ext#: 58 blk#: 8192 ext size: 8192
#blocks in seg. hdr's freelists: 0
 #blocks below: 479093
 mapblk 0x00000000 offset: 58
 Unlocked

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 169

 --
Low HighWater Mark :
Highwater:: 0x6381ef7e ext#: 4 blk#: 3957 ext size: 8192
 #blocks in seg. hdr's freelists: 0
 #blocks below: 36725
 mapblk 0x00000000 offset: 4
 Level 1 BMB for High HWM block: 0x63824028
 Level 1 BMB for Low HWM block: 0x6381e018
 --
 Segment Type: 1 nl2: 0 blksz: 8192 fbsz: 0
 L2 Array start offset: 0x00001438
 First Level 3 BMB: 0x6340802a
 L2 Hint for inserts: 0x63408029
 Last Level 1 BMB: 0x63824028
 Last Level II BMB: 0x63412029
 Last Level III BMB: 0x6341202a
Map Header:: next 0x00000000 #extents:59 obj#:4916681 flag: 0x10000000
. . .
End dump data blocks tsn: 110 file#: 397 minblk 32811 maxblk 32811

It is possible to interpret and read dump data to find details about the information in a table or
an index. Let’s look at a simple example that shows how you can get the table name from the preceding
block dump information. Take the obj# shown in second-to-last line, and run the following query:

SQL> SELECT name
 2 FROM sys.obj$
 3*WHERE obj#='4916681';

NAME

PERSONS
SQL>

The previous example is trivial, but it demonstrates how you can derive information straight
from a database block dump. Of course, if you need more significant data from the dumps, you’d
have to employ more rigorous techniques.

Extents

When several contiguous data blocks are combined, they are called an extent. When you create a
database object like a table or an index, you allocate it an initial amount of space, called the initial
extent, and you also specify the size of the next extent. Once allocated to a table or an index, the
extents remain allocated to that particular object, unless you drop the object from the database,
in which case the space will revert to the pool of allocatable free space in the database.

Segments

A set of extents forms the next higher unit of data storage, the segment. Oracle calls all the space allo-
cated to any particular database object a segment. So if you have a table called Customer, you simply
refer to the space allocated to it as the “Customer segment.” When you create an index, it will have
its own segment named after the index name. Data and index segments are the most common type
of Oracle segments. There are also temporary segments that the database uses for transactions involving
sorting, for example, and undo segments, which the database uses to store undo information.

170 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

When all extents of a segment fill up, Oracle automatically allocates additional extents as neces-
sary, and these extents may not be contiguous.

Tablespaces

Oracle databases are logically divided into one or more tablespaces. An Oracle tablespace is a logical
entity that contains the physical datafiles. Tablespaces store all the usable data of the database, and
the data in the tablespaces is physically stored in one or more datafiles. Datafiles are Oracle-formatted
operating system files. The tablespace is a purely logical construct and is the primary logical storage
structure of an Oracle database. You usually should keep related tables together in the same tablespace,
since the tablespace also acts as the logical container for logical segments such as tables.

How big you make your tablespaces depends on the size of your tables and indexes and the total
amount of data in the database—there are no rules about the minimum or maximum size of table-
spaces (the maximum size is too large to be of any practical consequence). It is quite common to
have tablespaces that are 100GB in size coexisting in the same database with tablespaces as small as
1GB or even much smaller.

The datafiles that contain the data for the tablespaces in a database together constitute the total
amount of physical space assigned to a particular database. (The size of a tablespace is the sum of the
sizes of the datafiles that contain its data, and if you add up the sizes of the tablespaces or the sizes
of all the datafiles, you will get the size of the database itself.) If you’re running out of space in your
database because you’re adding new data, you need to create more tablespaces with new datafiles,
add new datafiles to existing tablespaces, or make the existing datafiles of a tablespace larger. You’ll
learn how to perform each of these tasks in Chapter 6.

There is no hard and fast rule regarding the number of tablespaces you can have in an Oracle
database. The following five tablespaces are generally the default tablespaces that all databases must
have, even though it’s possible to create and use a database with just the first two:

• System tablespace

• Sysaux tablespace

• Undo tablespace

• Temporary tablespace

• Default permanent tablespace

Traditionally, Oracle DBAs have used dozens and sometimes even hundreds of tablespaces to
store all their application tables and indexes, and if you really think you need a large number of
tablespaces to group all related application tables and indexes together, that’s okay. However, you
aren’t required to use a large number of tablespaces. Today, most organizations use Logical Volume
Managers (which were discussed in Chapter 3) to stripe the logical volumes and the datafiles over a
number of physical disks. Thus, a large tablespace could span several physical disks. Previously, it
was necessary to create tablespaces on different physical disks to avoid I/O contention, but with
today’s disk organization structures you don’t have that problem, and you can make do with fewer
tablespaces if you wish. You can use just one tablespace for all your application data if you wish, since
the datafiles that are part of the tablespace are going to be spread out over several disks anyway. This is
also why the traditional requirement to separate tables and index data in different tablespaces isn’t
really valid anymore.

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 171

WHY TABLESPACES?

Tablespaces perform a number of key functions in an Oracle database, but the concept of a tablespace is not
common to all relational databases. For instance, the Microsoft SQL Server database doesn’t use this concept at all.
Here’s a brief list of the benefits of using tablespaces:

• Tablespaces make it easier to allocate space quotas to various users in the database.

• Tablespaces enable you to perform partial backups and recoveries based on the tablespace as a unit.

• Because a large object like a data warehouse partitioned table can be spread over several tablespaces, you
can increase performance by spanning the tablespace over several disks and controllers.

• You can take a tablespace offline without having to bring down the entire database.

• Tablespaces are an easy way to allocate database space.

• You can import or export specific application data by using the import and export utilities at the tablespace level.

Tablespaces are now used mainly to separate related groups of tables and indexes. This may
be important for you if you need to transport tablespaces across different databases and platforms
using the Oracle Data Pump utility, or if you use different database block sizes for different tablespaces.
If you don’t think you’ll be performing these administrative tasks using tablespaces, you can conceivably
use just a couple of tablespaces to store all the data in your database.

Block Sizes and Tablespaces

Each tablespace uses the default block size for the database, unless you create a tablespace with a
different nonstandard block size. As you’ve already seen, Oracle lets you have multiple block sizes in
addition to the default block size. Because tablespaces ultimately consist of Oracle data blocks, this
means that you can have tablespaces with different Oracle block sizes in the same database. This is
a great feature, and it gives you the opportunity to pick the right block size for a tablespace based on
the data structure of the tables it contains.

The customization of the block size for a tablespace provides several benefits:

• Optimal disk I/O: Remember that the Oracle server has to read the table data from mechan-
ical disks into the buffer cache area for processing. One of your primary goals as a DBA is to
optimize the expensive I/O involved in reading from and writing to disk. If you have tables
with very long rows, you are better off with a larger block size—each read will fetch more data
than you’d get with a smaller block size, and you’ll need fewer read operations to get the same
amount of data. Tables with large object (LOB) data will also benefit from a very large block
size. On the other hand, tables with small row lengths can use a small block size as the building
block for the tablespace. If you have large indexes in your database, you will need a large
block size for their tablespace, so that each read will fetch a larger number of index pointers.

• Optimal caching of data: Oracle provides separate pools for the various block sizes, and this
leads to a better use of Oracle’s memory. I discuss this in the following sections.

• Easier transport of tablespaces: If you have tablespaces with multiple block sizes, it’s easier to
use Oracle’s “transport tablespaces” feature. In Chapter 13, you’ll find examples showing you
how to transport tablespaces between databases.

172 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

■Note Each Oracle tablespace consists of one or more operating system datafiles, and a datafile can only belong
to one tablespace. At database creation time, the only two tablespaces you must have are the System tablespace
(the key Oracle tablespace, which contains Oracle’s data dictionary), and the Sysaux tablespace (which is auxiliary
to the System tablespace and contains data used by various Oracle products and features). Oracle will automatically
create the System tablespace first, followed by the Sysaux tablespace, but you provide a datafile for each. Later on,
you can add and drop tablespaces as you wish, but you can’t drop or rename the System and Sysaux tablespaces.

Of course, you must ultimately also create separate application tablespaces to store your data
and indexes. It is these tablespaces that will constitute the bulk of the total database size.

Locally managed tablespaces keep the space-management information in the datafiles them-
selves, and the tablespaces automatically track the free or used status of blocks in each datafile. The
information about the free and used space in the datafiles is kept in bitmaps within the datafile
headers—bitmaps are maps that use bits to keep track of the space in a block or a group of blocks.
Remember that when an object needs to grow, Oracle will assign new space in units of extents, not
in terms of individual data blocks. So when a new extent needs to be allocated to an object, Oracle
will select the first free datafile and look up its bitmap to see if it has enough free contiguous data
blocks. If so, Oracle will allocate the extent and then change the bitmap in that datafile to show the
new used status of the blocks in the extent.

During this process, the data dictionary isn’t used in any way, so recursive SQL operations are
significantly reduced. Rollback information is not generated during this updating of the bitmaps in
the datafiles. The benefits are especially significant if your database is an OLTP database with
numerous inserts, deletes, and updates taking place on a continuous basis.

Types of Tablespaces

Besides the System and Sysaux tablespaces, you’ll most likely also have undo and temporary tablespaces.
You’ll also use several other “permanent” tablespaces to hold your data and indexes.

Here’s a summary of the key types of tablespaces you’re likely to encounter:

• Bigfile tablespaces are tablespaces with a single large datafile, whose maximum size can
range from 8 to 128 terabytes, depending on the database block size. Thus, your database
could conceivably be stored in just one bigfile tablespace.

• Smallfile tablespaces can contain multiple datafiles, but the files cannot be as large as a bigfile
datafile. Smallfile tablespaces, which are the traditional tablespaces, are the default in Oracle
Database 11g, and Oracle creates both System and Sysaux tablespaces as smallfile tablespaces.

• Temporary tablespaces contain data that persists only for the duration of a user’s session.
Usually Oracle uses these tablespaces for sorting and similar activities for users.

• Permanent tablespaces include all the tablespaces that aren’t designated as temporary
tablespaces.

• Undo tablespaces contain undo records, which Oracle uses to roll back, or undo, changes to
the database.

• Read-only tablespaces don’t allow write operations on the datafiles in the tablespace. You
can convert any normal (read/write) tablespace to a read-only tablespace in order to protect
data or to eliminate the need to perform backup and recovery of large datafiles that don’t
change.

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 173

DATABASE VS. INSTANCE

Before you delve deeply into the logical and physical structures that make up an Oracle database, you need to be
clear about a fundamental concept—the difference between an Oracle instance and an Oracle database. It is very
common for people to use the terms interchangeably, but they refer to different things altogether.

An Oracle database consists of files, both datafiles and Oracle system files. These files by themselves are useless
unless you can interact with them somehow, and this requires the help of the operating system, which provides
processing capabilities and resources, such as memory, to enable you to manipulate the data on the disk drives.
When you combine the specific set of processes created by Oracle on the server with the memory allocated to it by
the operating system, you get the Oracle instance.

You’ll often hear people remarking that the “database is up,” though what they really mean is that the “instance is
up.” The database itself, in the form of the set of physical files it’s composed of, is of no use if the instance is not up
and running. The instance performs all the necessary work for the database. Normally, there is a one-to-one relationship
between a database and an instance, unlike in Microsoft SQL Server, where each instance could support multiple
databases. However, multiple computers can share access to data by setting up clusters known as Oracle Real Appli-
cation Clusters (Oracle RAC). Oracle RAC consists of multiple instances running on multiple clustered computers that
communicate with each other through an interconnect. The cluster setup uses Oracle Clusterware to access the
database that runs on a shared disk system.

By harnessing the computing power of multiple servers, Oracle RAC provides redundancy, scalability, and high avail-
ability. You can easily handle increasing data processing demands by simply adding additional nodes to access the
database.

Physical Database Structures
Physical database structures refer to the actual Oracle database files at the operating system level.
The Oracle database consists of the following three main types of files:

• Datafiles: These files store the table and index data.

• Control files: These files record changes to all database structures.

• Redo log files: These online files contain the changes made to table data.

In addition to these three types of files, an Oracle database makes use of several other operating
system files to manage its operations. These include initialization files (like init.ora and the server
parameter file [SPFILE]), network administration files (like tnsnames.ora and listener.ora), alert log
files, trace files, and the password file. In addition, you also have backup files, which you must restore
in case of a media failure.

Datafiles

Oracle datafiles make up the largest part of the physical storage of your database. A datafile can belong to
only one database, and one or more datafiles constitute the logical entity called the tablespace, which I
described earlier in this chapter. Oracle datafiles constitute most of a database’s total space.

When the database instance needs to read table or index data, it reads that from the datafiles on
disk, unless that data is already cached in Oracle’s memory. Similarly, the database writes new table
or index data or updates to existing data to the datafiles on disk for permanent storage.

To be able to use the disk for storing your data, directories and a file system must be created for
you by the system administrator. You also need all the proper rights to read from and write to these
directories and files. Then, when you create a tablespace, you assign it these datafiles. Before you

174 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

create a database, your system administrator will assign a certain amount of disk space for the data-
base based on your initial sizing estimates. All the administrator gives you are the assigned mount
points for the various disks (for example, /prod01, /prod02, /prod03, and so on). You then need to
create your directory structure under the mount points. After you install your software and create the
Oracle administrative directories, you can use the remaining file system space for storing database
objects, such as tables and indexes.

Oracle-managed files, which were introduced in Oracle8i (and which we’ll discuss shortly),
simplify the administration of Oracle databases. The Oracle Managed Files (OMF) feature eliminates
the need for you to manage operating system files. You simply specify your database operations in
terms of database objects, without using filenames.

The OMF feature aims at relieving DBAs of their traditional file-management tasks. When you
use the OMF feature, you don’t have to worry about the names and locations of the physical files.
Instead, you can focus on the objects you’re creating. Oracle will automatically create and delete files
on the operating system as needed.

The OMF-based files are ideal for test and small databases, but if you have a terabyte-sized data-
base with a large number of archived logs and redo logs, you need flexibility, which the OMF file
system can’t provide.

OMF drastically simplifies both the initial database creation as well as the management tasks. If
you want to use OMF with your database, read the discussion of OMF in Chapter 17, where you’ll
learn how to create and manage OMF-based files.

For example, suppose you create a tablespace called customer01 with a 500MB datafile. As you
load more data into your database, Oracle will allocate new extents to the database tables by allo-
cating space from the datafile. When the table uses up almost all of the initial 500MB space allocation,
you need to enlarge the tablespace by adding a new datafile to it. You may alternatively increase the
size of the existing datafile by resizing it as well. If you don’t, the table can’t increase in size, and any
attempts to add data to it will result in an error.

Although the database places the data in actual datafiles, there is no direct link between the
tables and indexes and the datafiles they are placed in. These objects are only linked to the logical
tablespace; it is the tablespace that is linked to the datafiles. Thus, Oracle maintains a separation
between the logical objects (such as tables) and the physical datafiles. In other words, there is no
direct connection during object creation or growth between the object and the datafiles it resides in.
You can create or move an existing table or index by specifically declaring the tablespace, but you
can’t specify a datafile directly.

The Control File

The control file is a file that the Oracle DBMS maintains to manage the state of the database, and it is
probably the single most important file in the Oracle database. Every database has one control file,
but due to the file’s importance, multiple identical copies (usually three) are maintained—when the
database writes to the control file, all copies of the file get written to. The control file is critical to the
functioning of the database, and recovery is difficult without access to an up-to-date control file.
Oracle creates the control file (and the copies) during the initial database creation process.

The control file contains the names and locations of the datafiles, redo log files, current log
sequence numbers, backup set details, and the all-important system change number (SCN), which
indicates the most recent version of committed changes in the database—information that is not
accessible by users even for reading purposes. Only Oracle can write information to the control file,
and the Oracle server process continually updates the control file during the operation of the database.

Control files are vital when the Oracle instance is operating. When you turn the instance on,
Oracle reads the control file for the location of the data and log files. During the normal operation of
the database, the database consults the control file periodically for necessary information regarding
virtually every structure of the database.

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 175

The control file is also important in verifying the integrity of the database and when recovering
the database. The checkpoint process instructs the database writer to write data to the disk when
some specific conditions are met, and the control file notes all checkpoint information from the
online redo log files. This information comes in handy during a recovery—the checkpoint informa-
tion in the control file enables Oracle to decide how far back it needs to go in recovering data from
the online redo log files. The checkpoint indicates the SCN up to which the datafiles are already
written to the datafiles, so the recovery process will disregard all the information in the online redo
log files before the checkpoint noted in the control file.

When you start an Oracle instance, it consults the control file first, to identify all the datafiles
and the redo log files that must be opened for database operations.

■Note The checkpoint process is discussed in more detail in the “Checkpoint” section later in this chapter.

Due to its obvious importance, Oracle recommends that you keep multiple copies of the control file.
The V$CONTROLFILE dynamic view gives you the names of all the control files. The STATUS

column will be NULL if the name can be determined, which is the case always. If the name can’t be
determined (which shouldn’t happen), you’ll see the value INVALID in the STATUS column. The
IS_RECOVER_DEST_FILE column shows YES if the control file was created in the flash recovery area
and a value of NO otherwise. Here’s the output of a query on the V$CONTROLFILE view:

SQL> SELECT status, name, is_recovery_dest_file FROM V$CONTROLFILE;

STATUS NAME IS_RECOVERY_DEST
----------- ------------------------------------- ----------------
 C:\ORACLE\ORADATA\MARK1\CONTROL01.CTL NO
 C:\ORACLE\ORADATA\MARK1\CONTROL02.CTL NO
 C:\ORACLE\ORADATA\MARK1\CONTROL03.CTL NO
SQL>

Redo Log Files

The redo log files record all the changes made to the database, and they are vital during the recovery
of a database. If you need to restore your database from a backup, you can recover the latest changes
made to the database from the redo log files. The set of redo log files that are currently being used to
record the changes to the database are called online redo log files. These logs can be archived (copied) to
a different location before being reused, and the saved logs are called archived redo logs.

Oracle writes all final changes made to data (committed data) first to the redo log files, before
applying those changes to the actual datafiles themselves. Thus, if a system failure prevents these
data changes from being written to the permanent datafiles, Oracle will use the redo logs to recover
all transactions that committed but couldn’t be applied to the datafiles. Thus, redo log files guarantee
that no committed data is ever lost. If you have all the archived redo logs since the last database
backup, and a set of the current redo logs as well, you can always bring a database up to date.

■Note Current redo log files are often referred to as online redo logs to distinguish them from the older saved or
archived redo log files.

176 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

Redo log files consist of redo records, which are groups of change vectors, each referring to a
specific change made to a data block in the Oracle database. A single transaction may involve multiple
changes to data blocks, so it may have more than one redo record. Initially, the contents of the log
are kept in the redo log buffer (a memory area), but they are transferred to disk very quickly. If your
database comes down without warning, the redo log can help you determine whether all transac-
tions were committed before the crash or if some were still incomplete.

Oracle redo log files contain the following information about database changes made by
transactions:

• Indicators specifying when the transaction started

• The name of the transaction

• The name of the data object that was being updated (e.g., an application table)

• The “before image” of the transaction (the data as it was before the changes were made)

• The “after image” of the transaction (the data as it was after the transaction made the changes)

• Commit indicators that indicate whether and when the transaction completed

When a database crashes, all transactions, both uncommitted as well as committed, have to be
applied to the datafiles on disk, using the information in the redo log files. All redo log transactions
that have both a begin and a commit entry must be redone, and all transactions that have a begin
entry but no commit entry must be undone. (Redoing a transaction in this context simply means that
you apply the information in the redo log files to the database; you do not rerun the transaction
itself.) Committed transactions are thus re-created by applying the “after image” records in the redo
log files to the database, and incomplete transactions are undone by using the “before image” records
in the undo tablespace. Redo log files are an essential part of database management, and they are one
of the main ways you enforce database consistency.

Oracle requires that every database have at least two redo log groups, each group consisting of
at least one individual log file member. Oracle writes to one redo log file until it gets to the end of the
redo log file, at which point it performs a log switch and starts writing to the second log file (and then
to the third, if it exists).

By default, Oracle will write over the contents of a redo log file, unless you choose to archive
your redo files. Oracle recommends that you archive the filled-up redo log files, so you can maintain
a complete record of all the changes made to the database since the last backup. If you archive your
redo log files, you are said to be running your database in the archivelog mode. Otherwise, you’re
running in the noarchivelog mode.

Because of the critical importance of the redo log files in helping recover from database crashes,
Oracle recommends multiplexing (maintaining multiple copies of) the redo log files. Multiplexing
the online redo log files by placing two or more copies of the redo logs on different disk drives will
ensure that you won’t easily lose data changes that haven’t been recorded in your datafiles.

Other Files
Although an Oracle database consists of datafiles, redo log files, and the control files, the database
also requires other files in order to operate. These files include the SPFILE, the password file, the alert
log file, as well as various trace file and the backup files. I explain these other files briefly in the
following sections.

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 177

The SPFILE

When you create a new database, you specify the initialization parameters for the Oracle instance in
a special configuration file called the server parameter file, or SPFILE. You can also use an older version of
the configuration file called the init.ora file, but Oracle recommends the use of the more sophisti-
cated SPFILE. In the SPFILE, you specify the memory limits for the instance, the locations of the
control files, whether and where the archived logs are stored, and other settings that determine the
behavior of the Oracle database server. You can’t, however, edit the SPFILE manually, as you could
the init.ora file, since the SPFILE is a binary file.

The SPFILE is always stored on the database server, thus preventing the proliferation of parameter
files that sometimes occurs with the use of the init.ora file. By default, the SPFILE (and the init.ora file)
is placed in the ORACLE_HOME/dbs directory in UNIX systems and the ORACLE_HOME\database directory in
Windows systems. The ORACLE_HOME directory is the standard location for the Oracle executables.

■Note You’ll find a detailed discussion of the SPFILE, including how to create one from your init.ora file, in
Chapter 10, where you will learn about creating Oracle databases.

Oracle allows you to change a number of the initialization parameters after you start up the
instance; these are called dynamic initialization parameters. Unlike the traditional init.ora initial-
ization file, the SPFILE can automatically and dynamically record the new values of dynamic parameters
after you change them, ensuring that you don’t forget to incorporate the changes. You can’t change
the rest of the parameters, referred to as static initialization parameters, dynamically. That is, you
must restart your instance if you need to modify any of those parameters.

You can use the V$SPPARAMETER data dictionary view to look at the initialization parameter
values you have explicitly set in the SPFILE for your database. (The analogous view, if you are using
the init.ora file, is the V$PARAMETER view.) In addition to the parameter values you set explicitly
in the SPFILE, the V$SPPARAMETER view shows all the default values for all database configuration
parameters (the values in effect in the instance right now).

■Caution Sometimes you’ll see references to undocumented or hidden Oracle parameters. These parameters
usually have an underscore (_) prefix. Don’t use them unless you’re requested to do so by Oracle support experts or
other trustworthy sources.

The Password File

The password file is an optional file in which you can specify the names of database users who were
granted the special SYSDBA or SYSOPER administrative privileges, which enable them to perform
privileged operations, such as starting, stopping, backing up, and recovering databases. Chapter 12
shows you how to create and maintain the password file.

The Alert Log File

Every Oracle database has an alert log named alertdb_name.log (where db_name is the name of the
database). The alert log captures major changes and events that occur during the running of the
Oracle instance, including log switches, any Oracle-related errors, warnings, and other messages. In
addition, every time you start up the Oracle instance, Oracle will list all your initialization parameters in
the alert log, along with the complete sequence of the startup process. You can also use the alert log to
automatically keep track of tablespaces that are created and datafiles that are added or resized.

178 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

The alert log can come in handy during troubleshooting—it is usually the first place you should
check to get an idea about what was happening inside the database when a problem occurred. In
fact, Oracle support may ask you for a copy of the pertinent sections of the alert log during their anal-
ysis of database problems.

In Oracle Database 11g, the recommended procedure is to create a diagnostic repository called
the Automatic Diagnostic Repository (ADR), which is a one-stop location for storing all database-
related errors, trace files, and dump files. If you set up the ADR by specifying the new initialization
parameter DIAGNOSTIC_DEST, Oracle will create and maintain two alert log files, one in text format and
the other in an XML format. Otherwise, Oracle puts the alert log in the location specified for the
BACKGROUND_DUMP_DEST initialization parameter. If you don’t specify a value for this parameter, Oracle
places the alert log in a default location.

To see if there are any Oracle-related errors in your alert log, simply issue the following
command (finance is the database name in this example):

$ grep ORA- alert_finance.log
ORA-1503 signalled during: CREATE CONTROLFILE SET DATABASE "FINANCE" RESETLOGS...
ORA-1109 signalled during: ALTER DATABASE CLOSE NORMAL...
ORA-00600: internal error code, arguments:[12333], [0], [0], [0], [], [], [], []

As you can see, several Oracle errors are listed in the alert log for the database finance. A regular
scan of your database for all kinds of Oracle errors should be one of your daily database management
tasks. You can easily schedule a script to scan the alert log and then e-mail you the results. You can
also use the Oracle Enterprise Manager (OEM) Database Control (or the Grid Control) interface to
quickly review any errors in your alert log files.

Trace Files

All diagnostic files, including the trace files, are stored under the directory you specify for the
DIAGNOSTIC_DEST initialization parameter. The trace directory under the ADR home directory holds
the various trace files such as the debugging trace files for the background processes (log writer, data-
base writer, and so on) that Oracle writes during instance operation. The alert directory under the ADR
home directory contains the alert log file for the database instance (discussed in the previous section).

The core directory under the ADR home directory holds any core files generated during major
errors such as the ORA-600 internal Oracle software errors.

The Oracle server will write all debugging trace files on behalf of a user process to the trace
directory. All trace files you generate using Oracle’s SQL tracing features (explained in Chapters 19
and 20) will show up here.

Backup Files

You can use backup files made either by yourself or by the RMAN backup and recovery tool to restore
database files following a media failure or user error. The media failure may consist of an errone-
ously deleted database file or a damaged datafile. Regardless of the reason, the backup files help you
restore the database and recover it to the present time with the help of the archived redo logs.

■Note An Oracle directory object is an alias for a file system directory. You use directory objects mainly when
you use the external tables feature, which I explain in Chapter 14. Directory objects offer management flexibility by
letting you reference operating system directories through a database object name. Directories aren’t owned by any
particular schema. You must grant users privileges on a particular directory before they can use it.

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 179

Oracle Processes
Oracle server processes running under the operating system perform all the database operations,
such as inserting and deleting data. These Oracle processes, together with the memory structures
allocated to Oracle by the operating system, form the working Oracle instance. There is a set of
mandatory Oracle processes that need to be up and running for the database to function at all. Other
Oracle processes are necessary only if you are using certain specialized features of Oracle (such as
replicated databases).

A process is essentially a connection or thread to the operating system that performs a task or
job. The Oracle processes you’ll encounter in this section are continuous, which means that they
come up when the instance starts, and they stay up for the duration of the instance’s life. Thus, they
act like Oracle’s hooks into the operating system’s resources. A process on a UNIX system is analo-
gous to a thread on a Windows system.

Oracle processes are divided into two general types both for efficiency and to keep client processes
separate from the database server’s tasks:

• User processes: These processes are responsible for running the application that connects the
user to the database instance.

• Oracle processes: These processes perform the Oracle server’s tasks, and you can divide them
into two major categories: server processes and background processes. Together, these processes
perform all the actual work of the database, from managing connections to writing to log files
and datafiles to monitoring the user processes.

Interaction Between the User and Oracle Processes
User processes run application programs and Oracle tools, such as SQL*Plus. The user processes
communicate with the server processes through the user interface and request that the Oracle server
processes perform work on their behalf. Oracle responds by having its server processes service the
user processes’ requests. It’s the job of the server processes to monitor user connections, accept
requests for data, and return the results to the users. All SELECT requests, for example, involve
reading data from the database, and it’s the server processes that return the output of the SELECT
statement back to the users.

You’ll examine the two types of Oracle processes—the server processes and the background
processes—in detail in the following sections.

The Server Process
When you run an Oracle tool, such as the OEM Database Control or the SQL*Plus interface, you do
so through a user process. An Oracle session is a specific connection of a user to the Oracle instance
through the Oracle user process. The session duration lasts from the time you connect to the data-
base by providing a username/password combination until you log out.

The server process is the process that services an individual user process. Each user connected
to the database has a separate server process created for the duration of the session. The server
process is created to service the user’s process and is used by the user process to communicate with
the Oracle database server. When the user submits a request to select data, for example, the server
process created for that user’s application checks the syntax of the code and executes the SQL code.
It then reads the data from the datafiles into the memory blocks. (If another user intends to read the
same data, the second user’s server process will read it not from disk again, but from Oracle’s memory,
where the data usually remains for a while.) Finally, the server process returns the requested data to
the user process.

180 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

The number of user processes for each server process depends on the type of server configura-
tion. You can have three types of server configuration, as explained here:

Dedicated server configuration: The most common configuration for the server process is to
assign each user a dedicated server process. Under the dedicated server process approach, each
user has a one-to-one connection to the database through a dedicated server process.

Shared server configuration: Multiple user processes share a server process. When you use the
shared server architecture, several users connect through a dispatcher and use a shared server
process. Even though the dedicated server approach is most commonly used, is easier to set up
and tune, and is fine in most cases, it’s better under some circumstances to use a shared server
process, which helps conserve critical system resources, such as memory. When you use a
shared server configuration, you can also configure shared server connection pooling. Connec-
tion pooling lets you reuse existing timed-out connections to service other active sessions. You
can also configure shared server session multiplexing, which combines multiple sessions for
transmission over the same network connection.

Database resident connection pooling (DRCP): This connection method, introduced in the
Oracle Database 11g release, is useful for applications that must maintain persistent connec-
tion to the database, which leads to an increased demand on server resources. DRCP lets you
set up pooled dedicated connections across applications and processes. When a client requires
a connection to the database, a connection broker, instead of the dedicated server, will connect
the client to the database. The connection broker is in charge of managing client connections,
by allocating servers from a pool of dedicated servers. The connection broker hooks up the
client connection to a dedicated server, and once the client’s request is fulfilled, the dedicated
server is returned to the pool of available servers.

I explain the important Oracle connection methods, including the new DRCP method, in
Chapter 11.

The Background Processes
The background processes are the real workhorses of the Oracle instance—they enable large numbers of
users to concurrently and efficiently use information stored in database files. Oracle creates these
processes automatically when you start an instance, and by being continuously hooked into the
operating system, these processes relieve the Oracle software from having to repeatedly start numerous,
separate processes for the various tasks that need to be done on the operating system’s server. Each
of the Oracle background processes is in charge of a separate task, thus increasing the efficiency of
the database instance. These processes are automatically created by Oracle when you start the data-
base instance, and they terminate when the database is shut down.

Table 5-1 lists the key Oracle background processes. There are other specialized background
processes that you’ll need to use only if you’re implementing certain advanced Oracle features.

Table 5-1. Key Oracle Background Processes

Background Process Function

Database writer (DBWn) Writes modified data from the buffer cache to
disk (datafiles)

Log writer (LGWR) Writes redo log buffer contents to the online redo
log files

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 181

I briefly discuss the main Oracle background processes in the following sections.

Database Writer

Oracle doesn’t modify data directly on the disks—all modifications of data take place in Oracle
memory. The database writer process is then responsible for writing the “dirty” (modified) data from
the memory areas known as database buffers to the actual datafiles on disk.

It is the DBWn process’s job to monitor the use of the database buffer cache, and if the free space
in the database buffers is getting low, the database writer process makes room available by writing
some of the data in the buffers to the disk files. The database writer process uses the least recently
used (LRU) algorithm (or a modified version of it), which retains data in the memory buffers based
on how long it has been since someone asked for that data. If a piece of data has been requested very
recently, it’s more likely to be retained in the memory buffers.

The database writer process writes dirty buffers to disk under the following conditions:

1. When the database issues a checkpoint

2. When a server process can’t find a clean reusable buffer after checking a threshold number
of buffers

3. Every 3 seconds

■Note When a user commits a transaction, it is not immediately made permanent by the database writer process
with an immediate write to the database files. Oracle conserves physical I/O by waiting to perform a more efficient
write of batches of committed transactions at once.

For very large databases or for databases performing intensive operations, a single database
writer process may be inadequate to perform all the writing to the database files. Oracle provides for
the use of multiple database writer processes to share heavy data modification workloads. You can
have a maximum of 20 database writer processes (DBW0 through DBW9, and DBWa through DBWj).
Oracle recommends using multiple database writer processes, provided you have multiple processors.

Checkpoint (CKPT) Updates the headers of all datafiles to record the
checkpoint details

Process monitor (PMON) Cleans up after finished and failed processes

System monitor (SMON) Performs crash recovery and coalesces extents

Archiver (ARCn) Archives filled online redo log files

Manageability monitor (MMON) Performs database-manageability-related tasks

Manageability monitor light (MMNL) Performs tasks like capturing session history
and metrics

Memory manager (MMAN) Coordinates the sizing of the SGA components

Job queue coordination process (CJQO) Coordinates job queues to expedite job processes

Table 5-1. Key Oracle Background Processes

Background Process Function

182 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

You can specify the additional database writer processes by using the DB_WRITER_PROCESSES
initialization parameter in the SPFILE Oracle configuration file. If you don’t specify this parameter,
Oracle allocates the number of database writer processes based on the number of CPUs and
processor groups on your server. For example, on my 32-processor HP-UX server, the default is four
database writers (one database writer per eight processors), and in another 16-processor server, the
default is two database writers.

Oracle further recommends that you first ensure that your system is using asynchronous I/O
before deploying additional database writer processes beyond the default number—you may not
need multiple database writer processes if so. (Even when a system is capable of asynchronous I/O,
that feature may not be enabled.) If your database writer can’t keep up with the amount of work even
after asynchronous I/O is enabled, you should consider increasing the number of database writers.

Log Writer

The job of the log writer process is to transfer the contents of the redo log buffer to disk. Whenever
you make a change to a database table (whether an insertion, update, or deletion), Oracle writes the
committed and uncommitted changes to a redo log buffer (memory buffer). The LGWR process then
transfers these changes from the redo log buffer to the redo log files on disk. The log writer writes a
commit record to the redo log buffer and writes it to the redo log on disk immediately, whenever a
user commits a transaction.

If you’ve multiplexed the redo log (as you’re supposed to!), the log writer will write the contents
of the redo log buffer to all members of the redo log group. If one or more members are damaged or
otherwise unavailable, the log writer will just write to the available members of a group. If it can’t
write to even one member of a redo log group, the log writer signals an error. Each time the log writer
writes to the redo log on disk, it transfers all the new redo log entries that arrived in the buffer since
the log writer last copied the buffer contents to the redo log.

The log writer writes all redo log buffer entries to the redo logs under the following
circumstances:

• Every 3 seconds.

• When the redo log buffer is one-third full.

• When the database writer signals that redo records need to be written to disk. Under Oracle’s
write-ahead protocol, all redo records associated with changes in the block buffers must be
written to disk (that is, to the redo log files on disk) before the datafiles on disk can be modi-
fied. While writing dirty buffers from the buffer cache to the storage disks, if the database
writer discovers that certain redo information has not been written to the redo log files, it
signals the log writer to first write that information, so it can write its own data to disk.

• In addition, as mentioned earlier, the log writer writes a commit record to the redo log
following the committing of each transaction. The redo log files, as you learned earlier, are
vital during the recovery of an Oracle database from a lost or damaged disk.

Before the database writer writes the changed data to disk, it ensures that the log writer has
already completed writing all redo records for the changed data from the log buffer to the redo logs
on disk. This is called the write-ahead protocol.

When you issue a commit statement to make your changes permanent, the log writer first places
a commit record in the redo log buffer and immediately writes that record to the redo log, along with
the redo entries pertaining to the committed transaction. The writing of the transaction’s commit
record to the redo log is the critical event that marks the committing of the transaction. Each
committed transaction is assigned a system change number, which the log writer records in the redo

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 183

log. The database makes use of these SCNs during a database recovery. The database waits to change
the data blocks on disk until a more opportune time and returns a success code indicating the
successful committing of the transaction, although the changed data buffers haven’t yet been copied
to the datafiles on disk. This technique of indicating a successful commit ahead of the actual writing
of the changed data blocks to disk is called the fast commit mechanism.

The redo log files may contain both committed as well as uncommitted transaction records,
because of the way the log writer records redo records in the redo logs on disk. If the database needs
buffer space, the log writer may also write the redo log entries to the redo log files from the redo log
buffer even before it commits a transaction. Of course, the database ensures that these entries are
written to the datafiles only if the transaction is committed later on.

Checkpoint

The checkpoint process is charged with telling the database writer process when to write the dirty
data in the memory buffers to disk. After telling the database writer process to write the changed
data, the CKPT process updates the datafile headers and the control file to record the checkpoint
details, including the time when the checkpoint was performed. The purpose of the checkpoint
process is to synchronize the buffer cache information with the information on the database disks.

Each checkpoint record consists of a list of all active transactions and the address of the most
recent log record for those transactions. A checkpointing process involves the following steps:

1. Flushing the contents of the redo log buffers to the redo log files

2. Writing a checkpoint record to the redo log file

3. Flushing the contents of the database buffer cache to disk

4. Updating the datafile headers and the control files after the checkpoint completes

There is a close connection between how often Oracle performs the checkpointing operation
and the recovery time after a database crash. Because database writer processes write all modified
blocks to disk at checkpoints, the more frequent the checkpoints, the less data will need to be recov-
ered when the instance crashes. However, checkpointing involves an overhead cost. Oracle lets you
configure the database for automatic checkpoint tuning, whereby the database server tries to write
out the dirty buffers in the most efficient way possible, with the least amount of adverse impact on
throughput and performance. If you use automatic checkpoint tuning, you don’t have to set any
checkpoint-related parameters.

Process Monitor

When user processes fail, the process monitor process cleans up after them, ensuring that the data-
base frees up the resources that the dead processes were using. For example, when a user process
dies while holding certain table locks, the PMON process releases those locks so other users can use
the tables without any interference from the dead process. In addition, the PMON process restarts
failed server processes (in a shared server architecture) and dispatcher processes. The PMON process
sleeps most of the time, waking up at regular intervals to see if it is needed. Other processes will also
wake up the PMON process if necessary.

The PMON process automatically performs dynamic service registration. When you create a
new database instance, the PMON process registers the instance information with the listener, which
is the entity that manages requests for database connections (Chapter 11 discusses the listener in
detail). This dynamic service registration eliminates the need to register the new service information
in the listener.ora file, which is the configuration file for the listener.

184 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

System Monitor

The system monitor process, as its name indicates, performs system-monitoring tasks for the Oracle
instance, such as these:

• Upon restarting an instance that crashed, SMON determines whether the database is consistent.

• SMON coalesces free extents if you use locally managed tablespaces, which enables you to
assign larger contiguous free areas on disk to your database objects.

• SMON cleans up unnecessary temporary segments.

Like the PMON process, the SMON process sleeps most of the time, waking up to see if it is
needed. Other processes will also wake up the SMON process if they detect a need for it.

Archiver

The archiver process is used when the system is being operated in an archivelog mode—that is, the
changes logged to the redo log files are being saved and not being overwritten by new changes. If you
run your database in the no archivelog mode, Oracle will overwrite the redo log files with new redo
log records. When you choose to run the instance in an archivelog mode, no such overwriting can
take place—each filled log will be saved or archived in a special location.

The database makes available a filled redo log group for archiving as soon as it completes a redo
log switch. The ARCn process’s job is to copy one of the filled members of a redo log group to an
archived redo log file. Thus, if you’ve multiplexed the redo log, and if group 1 contains the members
a_log1 and b_log1, the archiver background process will copy either of the two members. This archived
redo log file will include the redo entries from the redo log group member.

The archiver process will archive the redo log files to the location you specify in the SPFILE or the
init.ora file. The archived redo log encompasses all the copies of every group created since you
enabled archiving for a database. You usually copy these archived logs to tape and send them to an
offsite storage location to ensure you have a complete set of backups and archived redo logs so that
you can perform a database recovery if the need arises. Archived redo logs are also useful for
updating a standby database as well as for mining old data using the LogMiner utility.

If a huge number of changes are being made to your database, and your logs are consequently
filling up very quickly, you can use multiple archiver processes up to a maximum of 30 (ARC0 through
ARCn). The LOG_ARCHIVE_MAX_PROCESSES parameter in the initialization file will determine how many
archiver processes Oracle will initially start. If the log writer process is writing logs faster than the
default single archiver process can archive them, the LGWR process automatically starts a new ARCn
process, thus raising the number of processes from the default of 2. Since the database automatically
starts additional processes to make sure that it keeps up with the storing of the redo logs being gener-
ated, you don’t really need to set the LOG_ARCHIVE_MAX_PROCESSES parameter. Since it is a dynamic
parameter, you can alter the number of archiver processes while the database is running, as shown here:

SQL> ALTER SYSTEM SET LOG_ARCHIVE_MAX_PROCESSES=8;

■Tip If you aren’t sure what new background processes are actually running in your database, just check the
processes by issuing the ps –eaf | grep ora command in UNIX and Linux systems. For each active process,
the process name and database name will be listed. For example, the log writer process will show up as ora_lgwr_
pasprod, where pasprod is the name of the database. You can get a complete list of all the background processes
(running and not running) by querying the V$BGPROCESS view.

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 185

ASM-Related Processes

A few background processes are present only if you’re using an Automatic Storage Management
(ASM) storage system. Here’s a summary of the ASM-related background processes:

• The rebalance master (RBAL) process coordinates disk rebalancing activity when you use an
ASM-based storage system.

• The ASM rebalance (ARBn) processes perform the disk rebalancing activity in an ASM instance.

• The ASM background (ASMB) process is present in all Oracle databases that use an ASM
storage system. The ASMB process communicates with the ASM instance by logging into the
ASM instance as a foreground process.

■Note The RBAL and ARBn processes are used only if you use Oracle’s Automatic Storage Management. When
you use ASM, you must create an ASM instance, and that instance will use these processes to perform disk storage
management. The ASMB process acts as the mediator between your database (when you’re using ASM-based disk
storage) and the ASM instance. I discuss ASM in detail in Chapter 17.

Miscellaneous Background Processes

The database writer, log writer, archiver, and checkpoint background processes are the most commonly
referenced background processes. However, Oracle Database 11g can have many more background
processes running to support an instance. I describe the most important of these background
processes briefly here.

• The manageability monitor process collects several types of statistics to help the database
manage itself, such as, for example, the AWR snapshot information, which is the basis for the
performance diagnostics capability of the database. In addition, MMON issues alerts when
database metrics violate their threshold values.

• The manageability monitor light process shows up as Manageability Monitor Process 2 when
you query the V$BGPROCESS view. The process flushes data from the Active Session History
(ASH) to disk whenever the buffer is full. The MMNL process also performs other manage-
ability-related tasks, such as capturing session history data and computing database metrics.

• The memory manager process coordinates the sizing of the memory components.

• Oracle uses the job queue coordination process to schedule and run user jobs. The CJQO
process dynamically spawns job queue slave processes (J000 through J999), which run the
user jobs. When you enable the flashback database feature (which I explain in Chapter 16),
Oracle starts the recovery writer (RVWR) process to write the flashback data from the flash-
back buffer to the flashback logs. In a sense, the RVWR’S job is analogous to that of the LGWR
background process.

• Oracle tracks the physical location of database changes in a new file called the change-tracking
file. Oracle’s backup utility, the Recovery Manager, uses the change-tracking file to determine
which data blocks to read during an incremental backup, making the incremental backups
faster by avoiding reading entire datafiles. The change-tracking writer (CTWR) process is the
new Oracle background process that writes change information to the change-tracking file.
You’ll learn more about the CTWR process in Chapter 15, which discusses database backups.

• The recoverer (RECO) process is used to coordinate distributed databases and other special-
ized processes.

186 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

■Note Besides the processes discussed here, other Oracle background processes that perform specialized tasks
may be running in your system. For example, if you use Oracle Real Application Clusters, you’ll see a background
process called the lock (LCKn) process, which is responsible for performing interinstance locking.

• The flashback data archiver (FBDA) process is in charge of writing changes to tables that are
enabled for the flashback data archive into the history tables.

• The result cache background (RCBG) process is in charge of the result cache management.

You can view all available Oracle background processes by querying the V$BGPROCESS view.

Oracle Memory Structures
Oracle uses a part of its memory allocation to hold both program code and data, which makes
processing much faster than if it had to fetch data from the disks constantly. These memory struc-
tures enable Oracle to share executable code among several users without having to go through all
the preexecution processing every time a user invokes a piece of code.

The Oracle server doesn’t always write changes to disk directly. It writes database changes to the
memory area, and when it’s convenient, it writes the changes to disk. Because accessing memory is
many times faster than accessing physical disks (memory access is measured in nanoseconds,
whereas disk access is measured in milliseconds), Oracle is able to overcome the I/O limitations of
the disk system. The more your database performs its work in memory rather than in the physical
disk storage system, the faster the response will be. Of course, as physical I/O decreases, CPU usage
will also decrease, thus leading to a more efficient system.

THE HIGH COST OF DISK I/O

Although secondary storage (usually magnetic disks) is significantly larger than main memory, it’s also significantly
slower. A disk I/O involves either moving a data block from disk to memory (a disk read) or writing a data block to
disk from memory (a disk write). Typically, it takes about 10–40 milliseconds (0.01–0.04 seconds) to perform a
single disk I/O.

Suppose your update transaction involves 25 I/Os—you could spend up to 1 second just waiting to read or write
data. In that same second, your CPUs could have performed millions of instructions—the update takes a negligible
amount of time compared to the disk reads and disk writes. If you already have the necessary data in Oracle’s memory,
the retrieval time would be much faster, as memory read/writes take only a few nanoseconds. This is why avoiding
or minimizing disk I/Os plays such a big role in providing high performance in Oracle databases.

Understanding Main Memory
All computers use memory, which actually consists of a hierarchy of different levels of memory. The
heart of this hierarchy is main memory, which contains all the instruction executions and data
manipulations. All main memories are random access memory (RAM), which means that you can
read any byte in memory in the same amount of time. Typically, you can access main memory data
in the 10–100 nanosecond range.

An important part of the information Oracle stores in the RAM allocated to it is the program
code that is executing currently or that has been executed recently. If a new user process needs to use
the same code, it’s available in memory in a compiled form, making the processing time a whole lot

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 187

faster. The memory areas also hold information about which users are locking a certain table, thereby
helping different sessions communicate effectively. Most important, perhaps, the memory areas
help in processing data that’s stored in permanent disk storage. Oracle doesn’t make changes directly to
the data on disk: data is always read from the disks, held in memory, and changed there before being
transferred back to disk.

It’s common to use the term buffers to refer to units of memory. Memory buffers are page-sized
areas of memory into which Oracle transfers the contents of the disk blocks. If the database wants to
read (select) or update data, it copies the relevant blocks from disk to the memory buffers. After it
makes any necessary changes, Oracle transfers the contents of the memory buffers to disk.

Oracle uses two kinds of memory structures, one shared and the other process-specific. The system
global area is the part of total memory that all server processes (including background processes) share.
The process-specific part of the memory is known as the program global area (PGA), or process-private
memory. The following sections examine these two components of Oracle’s memory in more detail.

The System Global Area
The SGA is the most important memory component in an Oracle instance. In large OLTP databases,
especially, the SGA is a much larger and more important memory area than the PGA. In data ware-
housing environments, on the other hand, the PGA can be the more important Oracle memory area,
because it critically influences the efficiency of large data sorts and hashes, which are commonly
part of analytic computations in data warehouses.

The SGA’s purpose is to speed up query performance and to enable a high amount of concur-
rent database activity. Because processing in memory is much faster than disk I/O, the size of the
SGA is one of the more important configuration issues when you’re tuning the database for optimal
performance. When you start an instance in Oracle, the instance takes a certain amount of memory
from the operating system’s RAM—the amount is based on the size of the SGA component in the
initialization file. When the instance is shut down, the memory used by the SGA goes back to the
host system.

The SGA isn’t a homogeneous entity; rather, it’s a combination of several memory structures.
The following are the main components of the SGA:

• Database buffer cache: Holds copies of data blocks read from datafiles.

• Shared pool: Contains the library cache for storing SQL and PL/SQL parsed code in order to
share it among users. It also contains the data dictionary cache, which holds key data dictionary
information.

• Redo log buffer: Contains the information necessary to reconstruct changes made to the data-
base by DML operations. This information is then recorded in the redo logs by the log writer.

• Java pool: Represents the heap space for instantiating your java objects.

• Large pool: Stores large memory allocations, such as RMAN backup buffers.

• Streams pool: Supports the Oracle Streams feature.

When you start the Oracle instance, Oracle allocates memory as needed until it reaches the size
set in the MEMORY_TARGET initialization parameter, which sets the limit for the total memory alloca-
tion. If your total memory allocation is already at the MEMORY_TARGET limit, you can’t dynamically
increase memory to any memory component without decreasing some other component’s memory
allocation. Oracle does allow you to exchange the memory from one dynamically sizable memory
component to another.

For example, you can increase the memory assigned to the buffer cache by taking it from the
shared pool. If you have certain jobs run only at specified times of the day, you can write a simple
script that runs before the job executes and modifies the allocation of memory among the various

188 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

components. After the job completes, you can have another script run that changes the memory
allocation back to the original settings.

The next few sections discuss the various components of the SGA. You can manage the SGA
yourself, by calibrating the memory you make available to the Oracle instance with the changing
memory requirements of the running instance. However, the best way to manage the SGA (as well as
the PGA) is simply by adopting automatic memory management, which I explain later in this chapter,
in the section titled “Automatic Memory Management.”

The Database Buffer Cache

The database buffer cache consists of the memory buffers that Oracle uses to hold the data read by
the server process from datafiles on disk in response to user requests. Buffer cache access is, of
course, much faster than reading the data from disk storage. When the users modify data, those
changes are made in the database buffer cache as well. The buffer cache thus contains both the orig-
inal blocks read from disk and the changed blocks that have to be written back to disk.

You can group the memory buffers in the database buffer cache into three components:

• Free buffers: These are buffers that do not contain any useful data, and, thus, the database can
reuse them to hold new data it reads from disk.

• Dirty buffers: These contain data that was read from disk and then modified, but hasn’t yet
been written to the datafiles on disk.

• Pinned buffers: These are data buffers that are currently in active use by user sessions.

When a user process requests data, Oracle will first check whether the data is already available
in the buffer cache. If it is, the server process will read the data from the SGA directly and send it to
the user. If the data isn’t found in the buffer cache, the server process will read the relevant data from
the datafiles on disk and cache it in the database buffer cache. Of course, there must be free buffers
available in the buffer cache for the data to be read into them. If the server process can’t find a free
buffer after searching through a threshold number of buffers, it asks the database writer process to
write some of the dirty buffers to disk, thus freeing them up for writing the new data it wants to read
into the buffer cache.

Oracle maintains an LRU list of all free, pinned, and dirty buffers in memory. It’s the database
writer process’s job to write the dirty buffers back to disk to make sure there are free buffers available
in the database buffer cache at all times. To determine which dirty blocks get written to disk, Oracle
uses a modified LRU algorithm, which ensures that only the most recently accessed data is retained
in the buffer cache. Writing data that isn’t being currently requested to disk enhances the perfor-
mance of the database.

The larger the buffer cache, the fewer the disk reads and writes needed and the better the perfor-
mance of the database. Therefore, properly sizing the buffer cache is very important for the proper
performance of your database. Of course, simply assigning an extremely large buffer cache can hurt
performance, because you may end up taking more memory than necessary and causing paging and
swapping on your server.

Using Multiple Database Buffer Cache Pools

Generally, a single default buffer cache is sufficient to serve the instance’s memory needs. Assigning
the same database buffer cache for all the database objects may not be very efficient at times, because
different objects and various types of data may have different requirements as to how long they
should be retained in the data cache. For example, table A may be accessed a hundred thousand
times during a day, whereas table B may be accessed only twice during the same day. Clearly, it
makes sense here to retain table A in the buffer cache throughout the day, so as to increase the speed
of access, while table B can be removed after each use, to conserve space in the cache.

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 189

Oracle gives you flexibility in the use of the buffer cache by allowing you to configure the data-
base buffer cache into multiple buffer pools. A buffer pool in this context is simply a part of the total
buffer cache that is subject to different retention criteria for database objects like tables. For example, you
can take a total buffer cache of 500MB and divide it into three pools, with 200MB in the first two pools
and 100MB in the third. Once you have created separate buffer pools, you can assign a table exclu-
sively to that buffer pool when you create that table. You can also use the ALTER TABLE or ALTER INDEX
command to modify the type of buffer pool that a table or an index should use. Table 5-2 lists the
main types of buffer pools that you can configure.

Note that any database objects that you haven’t assigned to the keep or the recycle buffer pool
will be assigned to the default buffer pool, which is sized according to the value you provide for the
DB_CACHE_SIZE initialization parameter. The keep and the recycle buffer pools are purely optional,
while the default buffer pool is mandatory.

Remember that the main goal in assigning objects to multiple buffer pools is to minimize the
misses in the data cache and thus minimize your disk I/O. In fact, all buffer-caching strategies have
this as their main goal. If you aren’t sure which objects in your database belong to the different types
of buffer caches, just let the database run for a while with some best-guess multiple cache sizes and
query the data dictionary view V$DB_CACHE_ADVICE to get some advice from Oracle itself.

Multiple Database Block Sizes and the Buffer Cache

As was mentioned earlier, you can have multiple block sizes for your database. You have to choose a
standard block size first, and then you can choose up to four other nonstandard cache sizes.

The DB_BLOCK_SIZE parameter in your initialization parameter file determines your standard block
size in the database and frequently is the only block size for the entire database. The DB_CACHE_SIZE
parameter in your initialization parameter file specifies the size (in bytes) of the cache of the standard
block sized buffers. Notice that you don’t set the number of database buffers; rather, you specify the
size of the buffer cache itself in the DB_CACHE_SIZE parameter.

Table 5-2. Main Buffer Pool Types

Buffer Pool Initialization Parameter Description

Keep buffer pool DB_KEEP_CACHE_SIZE Keeps the data blocks always in memory.
You may have small tables that are
frequently accessed, so to prevent them
from being aged out of the database buffer
cache, you can assign the tables to the
keep buffer cache when they are created.

Recycle buffer pool DB_RECYCLE_CACHE_SIZE Removes the data from the cache
immediately after use. You need to use
this buffer pool carefully, if you decide
to use it at all. The recycle buffer pool
will cycle out the object from the cache
as soon as the transaction is over. Obvi-
ously, you would use the recycle buffer
pool only for large tables that are infre-
quently accessed and that do not need
to be retained in the buffer cache
indefinitely.

Default buffer pool DB_CACHE_SIZE Contains all data and objects that are
not assigned to the keep and recycle
buffer pools.

190 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

You can have up to five different database block sizes in your databases. That is, you can create
your tablespaces with any one of the five allowable database block sizes. Although most databases
use only a single standard block size (such as 4KB, 8KB, or 16KB), you can choose to use some or all
of the four nonstandard block sizes as well. For example, you may have some data warehouse–type
tables that will benefit from a high database block size, such as 32KB. However, most of the other
tables in the database may serve online processing needs, and should use the standard block size of
4KB. If you happen to be using all four of the allowable nonstandard block sizes besides the standard
block size buffers, you can create tablespaces with all five block sizes. However, before you can create
these nonstandard block size tablespaces, you must configure nonstandard subcaches in the buffer
caches for each nonstandard block size you wish to use. You can specify the nonstandard buffer cache
subcaches by using the DB_nK_CACHE_SIZE initialization parameter, where n is the block size in
kilobytes—it can take a value of 2, 4, 8, 16, or 32.

As you’ve seen, the database buffer cache can be divided into three pools: the default, keep, and
recycle buffer pools. The total size of the buffer cache is the sum of memory blocks assigned to all the
components of the database buffer cache. The keep and recycle buffer pools can only be created with the
standard block size, but you can use up to five different block sizes to configure the default buffer pool.

Here’s an example that shows how you can specify different values for each of the buffer cache’s
subcaches in your initialization parameter file. In the example, the numbers on the right show the
memory allocated to a particular type of buffer cache.

DB_KEEP_CACHE_SIZE = 48MB
DB_RECYCLE_CACHE_SIZE = 24MB
DB_CACHE_SIZE = 128MB /* standard 4KB block size */
DB_2k_CACHE_SIZE =48MB /* 2KB nonstandard block size */
DB_8k_CACHE_SIZE =192MB /* 8KB nonstandard block size */
DB_16k_CACHE_SIZE = 384MB /* 16KB nonstandard block size */

The total buffer cache size in this example will be the sum of all the preceding subcaches, which
comes to about 824MB.

The Buffer Cache Hit Ratio

Buffer reads are much faster than reads from disk. The all-important principle in appropriately
sizing the buffer cache is summarized in the phrase “touch as few blocks as possible,” since disk I/Os
necessary for reading data from Oracle blocks on disk are more time consuming than reading the
data from the SGA. This is why the buffer cache hit ratio, which measures the percentage of time
users accessed the data they needed from the buffer cache (rather than requiring a disk read), is such
an important indicator of performance of the Oracle instance.

You derive the buffer cache hit ratio as follows:

hit rate = (1 – (physical reads)/(logical reads)) * 100

In this calculation, the physical and logical reads (reads from disk and from memory, respec-
tively) are accumulated from the start of the Oracle instance. So if you calculate the ratio on Monday
morning after a restart on Sunday night, it will show a very low hit ratio. As the week progresses, the
hit ratio could increase dramatically, because as more read requests come in, Oracle satisfies them
with the data that is already in memory.

Unfortunately, Oracle does not give you any reliable rules or guidelines to indicate how much
memory you should allocate for your buffer cache ratio or the SGA. Some trial and error with data
loads should give you a good idea about the right size.

In Chapter 20, I present much more information on the tuning of the database buffer cache. A
high buffer cache hit ratio doesn’t always correlate with superior database performance. It is entirely
possible for your database to have a very high hit ratio—say, in the high 90s—and still have a perfor-
mance problem. For example, even if your total logical reads and hit ratio are high, your SQL queries
could still be inefficient.

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 191

The Shared Pool

The shared pool is a very important part of the Oracle SGA, and sizing it appropriately for your instance
will help avoid several types of Oracle instance bottlenecks. Unlike the database buffer cache, which
holds actual data blocks, the shared pool holds executable PL/SQL code and SQL statements, as well
as information regarding the data dictionary tables. The data dictionary is a set of key tables that
Oracle maintains, and it contains crucial metadata about the database tables, users, privileges, and
so forth.

Proper sizing of the shared pool area benefits you in a couple of ways. First, your response times
will be better because you’re reducing processing time—if you don’t have to recompile the same
Oracle code each time a user executes a query, you save time. Oracle will reuse the previously compiled
code if it encounters the same code again. Second, more users can use the system because the reuse
of code makes it possible for the database to serve more users with the same resources. Both the I/O
rates and the CPU usage will diminish when your database uses its shared pool memory effectively.

The following sections discuss the library cache and the data dictionary cache, both of which are
components of the shared pool.

The Library Cache

All application code, whether it is pure SQL code or code embedded in the form of PL/SQL program
units, such as procedures and packages, is parsed first and executed later. Oracle stores all compiled
SQL statements in the library cache component of the shared pool. The library cache component of
the shared pool memory is shared by all users of the database. Each time you issue a SQL statement,
Oracle first checks the library cache to see if there is an already parsed and ready-to-execute form of
the statement in there. If there is, Oracle uses the library cache version, reducing the processing time
considerably—this is called a soft parse.

If Oracle doesn’t find an execution-ready version of the SQL code in the library cache, the
executable has to be built fresh—this is called a hard parse. Oracle uses the library cache part of the
shared pool memory for storing newly parsed code. If there isn’t enough free memory in the shared
pool, Oracle will jettison older code from the shared pool to make room for your new code.

All hard parses involve the use of critical system resources, such as processing power, and
internal Oracle structures, such as latches; you must make every attempt to reduce their occurrence.
High hard-parse counts will lead to resource contention and a consequent slowdown of the database
when responding to user requests.

You should make decisions about the library cache size based on hit and miss ratios on the
library cache as I explain in Chapter 20. If your system is showing more than the normal amount of
misses (meaning that code is being reparsed or reexecuted often), it is time to increase the library
cache memory. The way to do this is to increase the total memory allocated to the shared pool.

The Data Dictionary Cache

The data dictionary cache component of the shared pool primarily contains object definitions, user-
names, roles, privileges, and other such information. When you run a segment of SQL code, Oracle
first has to ascertain whether you have the privileges to perform the planned operation. It checks the
data dictionary cache to see whether the pertinent information is there, and if not, Oracle has to read
the information from the data dictionary into the data dictionary cache. Obviously, the more often
you find the necessary information in the cache, the shorter the processing time. In general, a data
dictionary cache miss, which occurs when Oracle doesn’t find the information it needs in the cache,
tends to be more expensive than a library cache miss.

There is no direct way to adjust the data dictionary cache size. You can only increase or decrease
the entire shared pool size. Therefore, the solution to a low data dictionary cache hit ratio or a low
library cache hit ratio is the same: increase the shared pool size.

192 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

■Tip A cache miss on either the data dictionary cache or the library cache component of the shared pool has more
impact on database performance than a miss on the buffer pool cache. For example, a decrease in the data dictionary
cache hit ratio from 99 percent to 89 percent leads to a much more substantial deterioration in performance than a
similar drop in the buffer cache hit ratio.

Result Cache

In Oracle Database 11g, there is a brand new component of the SGA called the result cache. The result
cache is an area of the SGA where the database stores the results of both SQL queries and PL/SQL func-
tions, so long as you enable these caches. You can cache the results of queries and query fragments
in memory in the SQL query result cache. When the database executes the same SQL query again, it
can simply retrieve the results from the result cache instead of reexecuting the query, thus enhancing
performance significantly. PL/SQL function result caching works very similarly to the SQL query
result cache. When a cached function is reexecuted, the database doesn’t execute the function body,
merely returning the cached result immediately instead.

You use the RESULT_CACHE_MODE initialization parameter to control whether the database caches
a SQL query or a PL/SQL function’s results. You can also utilize the new result cache hint to override
the settings of the RESULT_CACHE_MODE parameter. You manage both caches through the PL/SQL
package DBMS_RESULT_CACHE or through the Enterprise Manager. Chapter 20 discusses the SQL
query result cache and the PL/SQL function result cache.

The Redo Log Buffer

The redo log buffer, usually less than a couple of megabytes in size, and thus nowhere near the size
of the database buffer cache and the shared pool cache, is nonetheless a crucial component of the
SGA. When a server process changes data in the data buffer cache (via an insert, a delete, or an
update), it generates redo data, which is recorded in the redo log buffer. The log writer process writes
redo information from the redo log buffer in memory to the redo log files on disk.

You use the LOG_BUFFER initialization parameter to set the size of the redo log buffer, and it stays
fixed for the duration of the instance. That is, you can’t adjust the redo log buffer size dynamically,
unlike the other components of the SGA.

The log writer process writes the contents of the redo log buffer to disk under any of the following
circumstances:

• The redo log buffer is one-third full.

• Users commit a transaction.

• The database buffer cache is running low on free space and needs to write changed data
to the redo log. The database writer instructs the log writer process to flush the log buffer’s
contents to disk to make room for the new data.

The redo log buffer is a circular buffer—the log writer process writes the redo entries from the
redo log buffer to the redo log files, and server processes write new redo log entries over the entries
that have been written to the redo log files. The database allocates a small amount of memory, such
as 5MB or so, for the redo log buffer. In most cases, you can leave the size of this buffer at its default
value allocated by the database. Large redo log buffers will reduce your log file I/O (especially if you
have large or many transactions), but your commits will take longer as well.

The log writer process usually writes to the redo log files very quickly, even when its workload is
quite heavy. You’ll run into more problems if your redo log buffer size is too small than if it is too
large. A redo log buffer that is too small will keep the log writer process excessively busy—it will be

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 193

constantly writing to disk. Furthermore, if the log buffer is too small, it will frequently run out of
space to accommodate new redo entries.

Oracle provides an option called nologging that lets you bypass the redo logs almost completely
and thus avoid contention during certain operations (such as a large data load). You can also batch
the commits in a long job, thus enabling the log writer process to more efficiently write the redo log
entries.

The Large Pool and the Java Pool

The large pool is a purely optional memory pool, and Oracle manages it quite differently from the
shared pool. You only need to configure the large pool if you’re using parallel queries in your data-
base. Oracle also recommends configuring this pool if you’re using RMAN or the shared server
configuration instead of the default dedicated server configuration. You set the size of this pool in
the initialization file by using the LARGE_POOL_SIZE parameter. The large pool memory component is
important if you’re using the shared server architecture.

The Java pool (set by using the JAVA_POOL_SIZE parameter) is designed for databases that contain a
lot of Java code, so that the regular SGA doesn’t have to be allocated to components using Java-based
objects. Java pool memory is reserved for the Java Virtual Machine (JVM) and for your Java-based
applications. If you’re deploying Enterprise JavaBeans or using CORBA, you could potentially need
a Java pool size greater than 1GB.

The Streams Pool

Oracle Streams is a technology for enabling data sharing among different databases and among
different application environments. The Streams pool is the memory allocated to support Streams
activity in your instance. If you manually set the Streams pool component by using the STREAMS_POOL_
SIZE initialization parameter, memory for this pool is transferred from the buffer cache after the first
use of Streams. If you use automatic shared memory management (discussed next), the memory for
the Streams pool comes from the global SGA pool. The amount transferred is up to 10 percent of the
shared pool size.

The Program Global Area
Oracle creates a program global area for each user when the user starts a session. This area holds
data and control information for the dedicated server process that Oracle creates for each individual
user. Unlike the SGA, the PGA is for the exclusive use of each server process and can’t be shared by
multiple processes. A session’s logon information and persistent information, such as bind variable
information and data type conversions, are still a part of the SGA, unless you’re using a shared server
configuration, but the runtime area used while SQL statements are executing is located in the PGA.

For example, a user’s process may have some cursors (which are handles to memory areas
where you store the values for variables) associated with it. Because these are the user’s cursors, they
are not automatically shared with other users and so the PGA is a good place to save those private
values. Another major use of the PGA is for performing memory-intensive SQL operations that involve
sorting, such as queries involving ORDER BY and GROUP BY clauses. These sort operations need a working
area, and the PGA provides that memory area.

■Note For most OLTP databases, where transactions are very short, the PGA use is quite low. On the other hand,
complex, long-running queries, which are more typical of DSS environments, require larger amounts of PGA memory.

194 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

You can classify the PGA memory into the following types:

• Private SQL area: This area of memory holds SQL variable bind information and runtime
memory structures. Each session that executes a SQL statement will have its own private SQL
area.

• Runtime area: The runtime area is created for a user session when the session issues a SELECT,
INSERT, UPDATE, or DELETE statement. After an INSERT, DELETE, or UPDATE statement is run, or
after the output of a SELECT statement is fetched, the runtime area is freed by Oracle.

If a user’s session uses complex joins or heavy sorting (grouping and ordering) operations, the
session uses the runtime area to perform all those memory-intensive operations.

■Note A cursor is a handle to a private SQL area in memory, and the OPEN_CURSORS initialization parameter
determines the maximum number of cursors in a session.

To reduce response time, all the sorts that are performed in the PGA should be performed
completely in the cache of the work area—this is known as an optimal mode operation, since all work
is done in memory, with no disk I/O whatsoever. If the sort operation spills onto the disk because the
memory areas aren’t adequate, that will slow down the sort operation. A SQL operation that is forced
to use the disk area in a limited fashion is a single-pass operation, and it leads to slower performance
than when the operation executes entirely in the memory cache. However, if your runtime memory
area is too small relative to the sort operation, Oracle will have to conduct multiple passes over the
data being sorted, which is very disk intensive, and will result in extremely slow response times for
the user. Thus, there is a direct correlation between the PGA size and query performance.

■Caution Many Oracle manuals suggest that you can allocate up to half of the total system memory for the
Oracle SGA. This guideline assumes that the PGA memory will be fairly small. However, if the number of users is
very large and the queries are complex, your PGA component may end up being even larger than the SGA. You
should estimate the total memory requirements by projecting both SGA and PGA needs.

You can tune the size of these private work areas, but this is a hit-or-miss approach that involves
weighing a number of complex Oracle configuration parameters related to the work areas. The
parameters that you need to manually configure include the SORT_AREA_SIZE, HASH_AREA_SIZE, and
BITMAP_AREA_SIZE parameters.

The sum of all the PGA memory used by all sessions makes up the PGA used by the instance.
Oracle recommends that you use automatic PGA management, which automates the allocation of
PGA memory. This helps you use the memory allocated to your database more efficiently. The feature
performs especially well when you have varying workloads, because it dynamically adjusts its avail-
able memory bounds and the work profiles on a continuous basis. Manual management of PGA
could easily lead to either too little or too much memory being allocated, which causes severe perfor-
mance problems.

You automate PGA memory allocation by ensuring that the WORKAREA_SIZE_POLICY initialization
parameter is set to its default value of auto. If you set the parameter value to manual, you’ll have to
specify all the PGA work area–related parameters mentioned previously. The WORKAREA_SIZE_POLICY
parameter ensures the automation of PGA memory. However, you must also set the size of the total
PGA memory allocation by specifying a value for the PGA_AGGREGATE_TARGET initialization parameter.
For example, if you set PGA_AGGREGATE_TARGET=5000000000 in your initialization parameter file, Oracle

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 195

uses the 5GB PGA allocation as a global target for the instance. Oracle will try to keep the total PGA
memory used by all server processes attached to the instance under this target value.

If you don’t set a value for the PGA_AGGREGATE_TARGET parameter, you’ll be using the manual
mode to manage the work areas. Alternatively, you can activate the manual mode by setting the
WORKAREA_SIZE_POLICY parameter to manual. Oracle strongly recommends using automatic PGA
management because it enables much more efficient use of memory. For users, this means better
throughput and faster response time for queries in general.

■Note In a manual management mode, any PGA memory that isn’t being used isn’t automatically returned to the
system. Every session that logs into the database is allocated a specific amount of PGA memory, which it holds until
it logs off, no matter whether it’s performing SQL operations or not. Under automatic PGA management, the Oracle
server returns all unused PGA memory to the operating system. On a busy system, this makes a huge difference in
database and system performance. Suppose you set the PGA_AGGREGATE_TARGET parameter to 5GB. Oracle will
not immediately grab all of the 5GB when you start the instance, as it does in the case of the SGA_TARGET param-
eter. It will only take the memory as necessary from the system, subject to the limit of 5GB. As soon as a session
releases the run-area memory, the memory is automatically released to the operating system.

When you use automatic PGA memory management by setting the PGA_AGGREGATE_TARGET
parameter, Oracle will do its best to assign enough memory to all work areas so they work in an
optimal manner, executing all memory-intensive SQL operations in the cache memory. At worst,
some work areas will use the disk areas in a single-pass mode. However, if you set the PGA_AGGREGATE_
TARGET parameter too low relative to the work area needs of your instance, Oracle will be forced to
conduct multipass executions of the sort- or hash-intensive SQL operations, with disastrous results
for your instance performance.

Automatic Memory Management

In previous versions of Oracle, DBAs spent quite a bit of time pondering the sizing of the SGA. It
wasn’t uncommon for them to recalibrate the SGA size quite often as part of their instance-tuning
efforts. In Oracle Database 11g, you can configure automatic memory management by using the new
MEMORY_TARGET initialization parameter. All you need to do is assign a certain value for the MEMORY_TARGET
parameter, and Oracle will automatically manage the distribution of this memory between the SGA
and the PGA components. Oracle’s allocation of the SGA memory to the various components isn’t
static, but changes with the changing workload of the database. Oracle can automatically manage
the following five components of the SGA (the relevant Oracle initialization parameter is in parentheses):

• Database buffer cache (DB_CACHE_SIZE)

• Shared pool (SHARED_POOL_SIZE)

• Large pool (LARGE_POOL_SIZE)

• Java pool (JAVA_POOL_SIZE)

• Streams pool (STREAMS_POOL_SIZE)

As you can see, Oracle automatically tunes five components of the SGA, which are referred to
as the automatically sized SGA parameters. You must still manage the rest of the SGA components
yourself, even under automatic shared memory management. The following are the manually
tunable components of the SGA:

• Keep buffer cache (DB_KEEP_CACHE_SIZE)

• Recycle buffer cache (DB_RECYCLE_CACHE_SIZE)

196 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

• Any nonstandard block size buffer caches (DB_nK_CACHE_SIZE)

• Redo log buffer (LOG_BUFFER)

Note that the first three components in this list are optional. As the DBA, you must set the value
for each of the manual SGA components.

Memory Management Options and Defaults for Database Installation

When you create a database with the Database Configuration Assistant (DBCA), if you choose the
basic installation option, automatic memory management is enabled by default. If you choose the
advanced installation option instead, you’ll get to choose from the following three memory manage-
ment configurations:

• Automatic memory management

• Automatic shared memory management + automatic PGA memory management

• Manual shared memory management + automatic PGA memory management

If you create a database with the CREATE DATABASE statement and don’t provide any memory
management–related initialization parameters, manual shared memory management is the default.
For the PGA, automatic PGA memory management will be the default configuration.

■Note If the SGA_TARGET parameter is set to zero (the default), the auto-tuned SGA parameters behave as in
previous versions of Oracle.

You can learn more about automatic memory management configuration in Chapter 17.

A Simple Oracle Database Transaction
So far in this chapter, you’ve seen the components of the Oracle database system: the necessary files
and memory allocations and how you can adjust them. It’s time now to look into how Oracle processes
users’ queries and how it makes changes to data. It’s important to understand the mechanics of SQL
transaction processing because all interaction with an Oracle database occurs either in the form of
SQL queries that read data or SQL (or PL/SQL) operations that modify, insert, or delete data.

A transaction is a logical unit of work in an Oracle database, and consists of one or more SQL
statements. A transaction begins with the first executable SQL statement and terminates when you
commit or roll back the transaction. Committing a transaction will make your changes permanent,
and rolling back the changes will, of course, undo them. Once you commit the transaction, all other
users’ transactions that start subsequently will be able to see the changes made by your transactions.

When a transaction fails to execute completely (say, due to a power failure), the entire transac-
tion must be undone. Oracle will roll back any changes made by earlier SQL statements in the
transaction, leaving the data in its original (pretransaction) state. The whole process is designed to
maintain data consistency—a transaction is an all-or-nothing concept.

The following simple example of a row being inserted outlines how Oracle processes transactions:

1. A user requests a connection to the Oracle server through a 3-tier or an n-tier web-based
client using Oracle Net Services.

2. Upon validating the request, the server starts a new dedicated server process for that user.

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 197

3. The user executes a statement to insert a new row into a table.

4. Oracle checks the user’s privileges to make sure the user has the necessary rights to perform
the insertion. If the user’s privilege information isn’t already in the library cache, it will have
to be read from disk into that cache.

5. If the user has the requisite privileges, Oracle checks whether a previously executed SQL
statement that’s similar to the one the user just issued is already in the shared pool. If there
is, Oracle executes this version of the SQL; otherwise Oracle parses and executes the user’s
SQL statement. Oracle then creates a private SQL area in the user session’s PGA.

6. Oracle first checks whether the necessary data is already in the data buffer cache. If not, the
server process reads the necessary table data from the datafiles on disk.

7. Oracle immediately applies row-level locks, where needed, to prevent other processes from
trying to change the same data simultaneously.

8. The server writes the change vectors to the redo log buffer.

9. The server modifies the table data (inserts the new row) in the data buffer cache.

10. The user commits the transaction, making the insertion permanent. Oracle releases the row
locks after the commit is issued.

11. The log writer process immediately writes out the changed data in the redo log buffers to the
online redo log file.

12. The server process sends a message to the client process to indicate the successful com-
pletion of the INSERT operation. The message would be “COMMIT COMPLETE” in this case.
(If it couldn’t complete the request successfully, it sends a message indicating the failure of
the operation.)

13. Changes made to the table by the insertion may not be written to disk right away. The database
writer process writes the changes in batches, so it may be some time before the inserted
information is actually written permanently to the database files on disk.

■Note In the previous example, since a new row is being inserted, there’s no undo information to record in the
undo tablespace. (The ROWID of the new row goes to the undo segment, so you can use a DELETE...WHERE
ROWID=... statement to roll back the insert if necessary. If the user had updated a row instead, Oracle would have
had to record the before-update row in the undo records. Until the original transaction commits the update, all other
users will see the original data values of the row.

Committing and Rolling Back
You must be clear about two fundamental transaction-related terms: committing and rolling back
transactions. I briefly explain these terms here. Chapter 8 contains additional discussion of these
two key concepts.

Committing a Transaction
When you commit a transaction, say by issuing the COMMIT statement, Oracle makes all the changes
performed by all the SQL statements in that transaction a permanent part of the database. Before
Oracle commits the results of a transaction, it does the following:

198 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

• It generates undo information that essentially consists of the before-change values of the data
that are going to be modified. The undo data is stored in the undo segments, which are located in
the undo tablespace.

• It also generates redo log data containing changes to the data blocks and to the rollback
blocks, in the redo log buffer. The database may write the redo log buffer contents to disk
before it commits the transaction.

• It makes changes to the database buffers in the SGA. The database may write the modified
buffers to disk before it commits the transaction.

The database may write the transaction changes that are made first in the database buffers in
the SGA to the datafiles immediately or sometime after the transaction commits or even before the
transaction commits. Once the database commits a transaction, it does the following things:

• The database assigns and records an SCN for the committed transaction.

• The log writer writes the redo log entries to the redo log on disk, from the redo log buffer in the
SGA; the log writer also records the transaction SCN in the redo log file, marking the official
committing of the transaction.

• The database releases all table and row locks.

• The database marks the transaction as being completed.

Rolling Back a Transaction
You can undo changes made by a transaction that hasn’t yet been committed, by issuing the ROLLBACK
command. While a redo log contains all changes made to the transaction, the undo segments contain all
the old values that existed before you made the changes. You can either roll back the changes made
by the entire transaction or just go back to a marker you placed in the transaction, called a savepoint.
There are many types of rollbacks, such as the following:

• A rollback requested by a user

• A rollback due to a process or an instance terminating in an abnormal fashion

• A rollback of an uncommitted transaction during a recovery

• A statement-level rollback due to a statement execution error

Regardless of the reason for the rollback, the procedure is the same:

• The database uses the before-change data in the undo tablespace to undo all changes made
during the transaction.

• The database releases all the transaction and table locks.

• The database ends the transaction.

Data Consistency and Data Concurrency
Databases aren’t very useful if a large number of users can’t access and modify data simultaneously.
Data concurrency refers to the capability of the database to handle this concurrent use by many
users. To provide consistent results, the database also needs a mechanism within it that ensures
users don’t step on each other’s changes. Data consistency refers to the ability of a user to get a
meaningful and consistent view of the data, including all the changes made to it by other users.

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 199

Oracle uses special structures called undo segments to ensure data consistency. For example,
when you’re reading a set of data for a transaction, Oracle ensures that the data you read is transac-
tion-set consistent; that is, it guarantees that the data you see reflects a single set of committed
transactions. Oracle also provides read consistency of data, meaning that all the data selected by your
queries comes from a single point in time. Oracle’s undo segments are part of the undo tablespace
mentioned earlier in this chapter.

Oracle uses locking mechanisms to ensure data concurrency. By allowing one user to lock indi-
vidual rows or entire tables, that user is guaranteed exclusive use of the table for updating purposes.
An important feature of the Oracle locking mechanisms is that they are, for the most part, automatic.
You don’t need to concern yourself with the details of how to lock the objects you want to modify—
Oracle will take care of it for you behind the scenes.

Oracle uses two basic modes of locking. The exclusive lock mode is used for updates, and the
share lock mode is used for SELECT operations on tables. The share lock mode enables several users
to simultaneously read the same rows in a table. The exclusive lock mode, because it involves updates to
the table, can only be used by one user at any given time. Exclusive locks are almost always applied to the
specific rows being updated, permitting simultaneous use of the database by several users. Oracle
releases the locks it holds on the tables and other internal resources automatically after the issue of
a COMMIT or ROLLBACK command.

Oracle locking is complex, and you’ll learn about it in detail in Chapter 8, along with how Oracle
ensures data consistency and concurrency.

The Database Writer and the Write Ahead Protocol
The database writer, as you saw earlier, is responsible for writing all modified buffers in the database
buffer cache to the datafiles. Further, it has the responsibility of ensuring there is free space in
the buffer cache so the server process can read in new data from the datafiles when necessary. The
(log) write ahead protocol also requires that the redo records in the redo log buffer associated with
the changed data in the data buffer cache are written to the redo logs before the changes are recorded
in the datafiles. The importance of the redo log contents makes it imperative that Oracle write the
contents of the redo log file to permanent storage before it writes the changes to the datafiles on disk.

When users commit their transactions, the log writer process immediately writes only a single
commit record to the redo log files. The entire set of records affected by the committed transaction
may not be written simultaneously to the datafiles. This fast commit mechanism, along with the write
ahead protocol, ensures that the database is not kept waiting for all the physical writes to be completed
after each transaction. As you can well imagine, a huge OLTP database with numerous changes
throughout the day cannot function optimally if it has to write to disk after every committed data change.

■Note If there are a large number of transactions and, therefore, a large number of commit requests, the log
writer process may not write each committed transaction’s redo entries to the redo log immediately. It may batch
multiple commit requests if it is busy writing previously issued commit records. This batched writing of redo entries
from multiple committed transactions is known as group commits.

The System Change Number
The system change number, or SCN, is an important quantifier that the Oracle database uses to keep
track of its state at any given point in time. When you read (SELECT) the data in the tables, you don’t
affect the state of the database, but when you modify, insert, or delete a row, the state of the database
is different from what it was before. Oracle uses the SCN to keep track of all the changes made to the
database over time. The SCN is a logical time stamp that is used by Oracle to order events that occur

200 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

within the database. The SCN is very important for several reasons, not the least of which is the
recovery of the database after a crash.

SCNs are like increasing sequence numbers, and Oracle increments them in the SGA. When a
transaction modifies or inserts data, Oracle first writes a new SCN to the rollback segment. The log
writer process then writes the commit record of the transaction immediately to the redo log, and this
commit record will have the unique SCN of the new transaction. In fact, the writing of this SCN to the
redo log file denotes a committed transaction in an Oracle database.

The SCN helps Oracle determine whether crash recovery is needed after a sudden termination
of the database instance or after a SHUTDOWN ABORT command is issued. Every time the database
performs a checkpoint operation, Oracle writes a START SCN command to the datafile headers. The
control file maintains an SCN value for each datafile, called the STOP SCN, which is usually set to
infinity, and every time the instance is stopped normally (with the SHUTDOWN NORMAL or SHUTDOWN
IMMEDIATE command), Oracle copies the START SCN number in the datafile headers to the STOP SCN
numbers for the datafiles in the control file. When you restart the database after a graceful shutdown,
there is no need for any kind of recovery because the SCNs in the datafiles and the control files
match. On the other hand, abrupt instance termination does not leave time for this matching of
SCNs, and Oracle recognizes that instance recovery is required because of the varying SCN numbers
in the datafiles on the one hand and the control file on the other. As you’ll learn in Chapter 16, they
play a critical role during database recovery. Oracle determines how far back you should apply the
archived redo logs during a recovery based on the SCN.

Undo Management
When you make a change to a table, you should be able to undo or roll back the change if necessary.
The information needed to undo or roll back changes in transactions, which mostly consists of the
prechange table row information, is called undo data (the change vectors), and it is stored in undo
records. When you issue a ROLLBACK command, Oracle uses these undo records to replace the changed
data with the original versions. As Chapter 8 explains, the undo records are vital during database
recovery when all unfinished or uncommitted transactions must be discarded to make the database
consistent.

Oracle strongly recommends the use of the Automatic Undo Management (AUM) feature, where
the Oracle server itself will maintain and manage the undo (rollback) segments. All you need to do is
provide a dedicated undo tablespace and set the initialization parameter UNDO_MANAGEMENT to auto.
Oracle will create the necessary number of undo segments, which are structurally similar to the
traditional rollback segments, and it’ll size and extend them as necessary. It’s not uncommon for
new undo segments to be created and old ones to be deactivated based on the number of transac-
tions going on in the database. Chapter 8 provides further information about the AUM feature.

Because Oracle will do the sizing of the individual undo segments for you, the two decisions you
have to make are the size of the undo tablespace and the setting for the UNDO_RETENTION initialization
parameter (which determines how long Oracle will try to retain undo records in the undo tablespace).
Remember that your undo tablespace should not only be able to accommodate all the long-running
transactions, but also has to be big enough to accommodate any flashback features you may imple-
ment in your database—Oracle’s flashback features let you undo changes to data at various levels.
Several flashback features, such as Flashback Query, Flashback Versions Query, and Flashback
Table, utilize undo data. I discuss the undo-related Flashback features in Chapter 8.

You can use Oracle’s Undo Advisor through the OEM to figure out the ideal size for your undo
tablespaces and the ideal duration to specify for the UNDO_RETENTION parameter. Using the current
undo space consumption statistics, you can estimate future undo generation rates for the instance.

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 201

Backup and Recovery Architecture
You must perform regular backups of any database that contains useful information. All databases
depend on mechanical components like disk drives, and they are also subject to unexpected events
like power failures and natural catastrophes. Programmatic and user errors also necessitate protecting
data through a strong backup system. Recovery involves two main objectives: first, you must return
the database to a normal operating state with as little downtime as possible. Second, you mustn’t
lose any useful data.

It’s important to understand the basics of how Oracle manages its backup and recovery opera-
tions. You’ve seen some of the components previously, but I put it all together here. The following
Oracle structures ensure that you can recover your databases after a problem:

• The control file: The control file contains datafile and redo log information, as well as the
latest system change number, which is key to the recovery process.

• Database backups: These are file or tape backups of the database datafiles. Since these
backups are made periodically, they most likely won’t contain all the data needed to bring the
database up to date. The backup files include both backups of the datafiles as well as the
archived redo log files.

• The redo logs: The redo logs, as you’ve seen earlier in this chapter, contain all changes made
to the database, including uncommitted and committed changes.

• The undo records: These records contain the before images of blocks changed in uncom-
mitted transactions.

Recovery involves restoring all backups first. Since the backups can’t bring you up to date, you
apply the redo logs next, to bring the database up to date. Since the redo logs may contain some
uncommitted data that shouldn’t really be in the database, however, Oracle uses the undo records
to roll back all the uncommitted changes. When the recovery process is complete, your database will
not have lost any committed or permanent data.

User-Managed Backup and Recovery
You can perform all backup and recovery procedures by issuing direct commands through SQL*Plus
and operating system commands. However, Oracle strongly recommends that you use the Oracle-
provided Recovery Manager to perform your backup and restore work.

RMAN
RMAN is Oracle’s main backup and recovery tool. You can use RMAN from the command line as well
as through a GUI interface. RMAN enables various types of backup and recovery techniques, and
several of these techniques are unique to the tool. For example, a big benefit of using RMAN is that
it automatically maintains all records of existing database backups, without you having to maintain
that information somewhere.

The Automatic Disk-Based Backup and Recovery feature uses a flash recovery area to help you
automate the management of backup-related files. Oracle recommends that you use such a flash
recovery area, which is a location on disk where the database stores and manages all recovery-related
files, like archived redo logs and other files for your database. Files no longer needed in the flash
recovery area are deleted automatically when RMAN needs to reclaim space for new files. If you
don’t use a flash recovery area, you must manually manage disk space for your backup-related files.

202 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

Oracle Secure Backup
RMAN can’t back up files directly to tape devices, and therefore, you need to use another tool to
perform tape backups when working with RMAN. There are several excellent third-party tools for
this purpose, but you can also use Oracle’s own Oracle Secure Backup feature, which is an out-of-
the-box backup and recovery solution for Oracle customers. Oracle Secure Backup copies datafiles
directly to tape and manages the archiving of those tapes as well. Chapter 15 provides an introduc-
tion to Oracle Secure Backup.

You can easily configure the Backup Manager through OEM. By using OEM and Oracle Secure
Backup together, you can easily back up and recover databases enterprise-wide.

Flashback Recovery Techniques
Quite often, you may be called upon to help recover from a logical corruption of the database, rather
than from a hardware failure. You can use the following flashback techniques in Oracle Database 11g
to recover from logical errors:

• Flashback Database: Takes the entire database back to a specific point in time

• Flashback Table: Returns individual tables to a past state

• Flashback Drop: Undoes a DROP TABLE command and recovers the dropped table

• Flashback Query, Flashback Version Query, and Flashback Transaction Query: Retrieve data
from a time (or an interval) in the past

• Flashback Transaction Backout: Lets you undo a transaction, together with all its dependent
transactions as well, with just a single click in the Database Control

• Flashback Data Archive: Stores history of the changes made to a table, which you can use to
make queries using older versions of data and for auditing purposes as well

I discuss the Flashback Database, Flashback Drop, and the Flashback Data Archive features in
Chapter 16, which deals with recovery techniques. I discuss the Flashback Table, Flashback Query,
Flashback Version Query, Flashback Transaction Query, and the new Flashback Transaction Backout
features that rely on undo data, and are discussed in Chapter 8.

■Note The new Oracle Database 11g feature, Flashback Data Archive, lets you automatically store, retrieve, and
purge historical data for any length of time you wish. I discuss this exciting feature in Chapter 16.

The Oracle Data Dictionary and the Dynamic
Performance Views
Oracle provides a huge number of internal tables to aid you in tracking changes to database objects
and to fix problems that will occur from time to time. Mastering these key internal tables is vital if
you want to become a savvy Oracle DBA. All the GUI tools, such as OEM, depend on these key internal
tables (and views) to gather information for monitoring Oracle databases. Although you may want to
rely on GUI tools to perform your database administration tasks, it is important to learn as much as
you can about these internal tables. Knowledge of these tables helps you understand what is actually
happening within the database.

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 203

You can divide the internal tables into two broad types: the static data dictionary tables and the
dynamic performance tables. You won’t access these tables directly; rather, you’ll access the infor-
mation through views based on these tables. Chapter 23 is dedicated to a discussion of these views,
and you can get a complete list of all the data dictionary views by issuing the following simple query:

SQL> SELECT * FROM dict;

The following sections examine the role of these two important types of tables (and views).

The Oracle Data Dictionary
Every Oracle database contains a set of read-only tables, known as the data dictionary, which contain
metadata (information about the various components of the database). The Oracle data dictionary
is the heart of the database management system, and mastery of it will take you far in your quest to
become an expert DBA. If you understand the data dictionary well, you can easily perform database
management tasks. You access the read-only data dictionary tables through views built on them.
Views are like logical tables built on underlying Oracle tables, and I discuss them in detail in Chapter 7.
DBAs and developers depend heavily on the data dictionary for information about the various compo-
nents of the database—these tables contain information such as the list of tables, table columns,
users, user privileges, file and tablespace names, and so on. A simple query, such as the following,
necessitates several calls to the data dictionary before Oracle can execute it:

SQL> SELECT employee_name
 FROM emp
 WHERE city = 'NEW YORK';

It’s important to note that the data dictionary tables don’t report on aspects of the running
instance. The data dictionary holds only information about the database, such as the database files,
tables, functions, and procedures, as well as user-related information. Another set of views, called
the dynamic performance views, records information about the currently running instance.

■Tip The data dictionary tables describe the entire database: its logical and physical structure, its space usage,
its objects and their constraints, and user information. You can’t access the data dictionary tables directly; instead,
you’re given access to views built on them. You also can’t change any of the information in the data dictionary tables
yourself. Only Oracle has the capability to change data in the data dictionary tables. When you issue a query involving
the CITIES column in a table named EMPLOYEES, for example, the database will consult various data dictionary
tables to verify that the table and the column exist, and to confirm that the user has the rights to execute that state-
ment. As you can imagine, a heavily used OLTP database will require numerous queries on its data dictionary tables
during the course of a day.

The Oracle super user SYS owns most of the data dictionary tables (though some are created
under the system username), and they are stored in the System tablespace.

■Tip Oracle recommends that you analyze both the data dictionary and the dynamic performance tables (also
referred to as fixed tables) on a regular basis to improve performance. Chapter 19 shows you how to analyze
these tables.

204 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

The Dynamic Performance (V$) Views
In addition to the data dictionary, Oracle maintains an important set of dynamic performance tables.
These tables maintain information about the current instance, and Oracle continuously updates
these tables.

The set of virtual dynamic tables is referred to as the X$ tables. Oracle doesn’t allow you to access
the X$ tables directly; rather, Oracle creates views on all these tables and then creates synonyms for
these views. You’ll be accessing these views, called the V$ views, to get information about various
aspects of a running instance. The V$ views are the foundation of all Oracle database performance
tuning. If you wish to master the Oracle database, you must master the V$ dynamic views, because
they are the wellspring of so much knowledge about the Oracle instance.

The dynamic performance views, like the data dictionary views, are based on read-only tables
that only Oracle can update. Some of the tables capture sessionwide information, and some of them
capture systemwide information. You’ll find the dynamic views extremely useful in session manage-
ment, backup operations, and, most important, performance tuning. Remember, though, that the
dynamic performance tables are only populated for the duration of the instance and are cleaned out
when you shut down the instance.

The Three Sets of Data Dictionary Views
Oracle doesn’t allow you to access the internal data dictionary tables directly. It creates views on the
base dictionary tables and creates public synonyms for these views so users can access them. There
are three sets of data dictionary views—USER, ALL, and DBA—with each set of views pertaining to a
similar item containing similar columns. The views in each category are prefixed by the keywords
USER, ALL, or DBA. Each of these sets of views shows only the information the user is granted privi-
leges to access, as follows:

• USER: The USER views show a user only those objects that the user owns. These views are
useful to users, especially developers, for viewing the owner’s objects, grants, and so on.

• ALL: The ALL views show you information about objects for which you have been granted
privileges. The views with the prefix ALL include information on the user’s objects, and all
other objects on which privileges have been granted, directly or through a role.

• DBA: The DBA views are the most powerful in their range. Users who have been assigned the
DBA role can access information about any object or any user in the database. The DBA-
prefixed dictionary views are the ones you use to monitor and administer the database.

How Is the Data Dictionary Created?
The data dictionary is created automatically when you create the database. Well, almost automati-
cally, because you do have to run the catalog.sql script manually (located in the $ORACLE_HOME/
rdbms/admin directory) if you aren’t using the Database Configuration Assistant. The catalog.sql
script creates the data dictionary tables, views, and synonyms, and they’re the first set of objects to
populate the database. The data dictionary, once created, has to remain in the System tablespace.

In the rest of the chapter, you’ll see detailed references to the DBA data dictionary tables only,
because the focus here is on database management. There are many data dictionary tables and
views. You’ll examine the most useful of the data dictionary views in the next few sections.

Using the Static Data Dictionary Views
The data dictionary contains metadata about your database. The data dictionary tables and the
views based on them are called static, because the running database instance doesn’t modify data in

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 205

these tables and views. The tables and views are modified only if you make a change to the data
dictionary itself, for example, by creating a table or a new user. No matter whether you manage the
database manually or use sophisticated GUI-based management tools, the data dictionary (along
with the dynamic performance tables) is the source for all information about the database.

The Oracle Optimizer
In most cases, when users issue a query against the database, there’s more than one way to access
the tables and retrieve the data. Because there are many ways to execute the same statement, Oracle
uses a Cost-Based Optimizer (CBO) to choose the best execution plan for queries, based on the cost
of the query in terms of resource use.

Query optimizing is at the heart of modern relational databases and is an essential part of how
Oracle conducts its operations. The query optimizer is transparent to users, and Oracle will automat-
ically apply the best access and join methods to your queries before it starts processing.

■Note To choose the best execution plans, Oracle uses statistics on tables and indexes, which include counts of
the number of rows and the data distribution of “data skew” in the tables within the database. (The physical storage
statistics and the data distribution statistics for all database tables and indexes, columns, and partitions are stored
in various data dictionary tables.) Armed with this information, the optimizer usually succeeds in finding the best
path to access the necessary data for executing a SQL statement. Oracle also lets you use hints to override the opti-
mizer’s choice of an execution path. This is because in some instances the application developer’s knowledge of
the data enables the use of more efficient execution plans than the optimizer can come up.

I discuss the Oracle optimizer in detail in Chapter 19, in the context of performance tuning.

■Tip You can also use the Oracle optimizer in an enhanced tuning mode, as shown in Chapter 19. The Oracle
optimizer in the tuning mode is the basis of the SQL Tuning Advisor feature, also explained in Chapter 19.

Talking to the Database
In order for a user to communicate with the database, he or she must first connect to the database
by creating a user session. The user communication with the database is done through one of several
interfaces. This section will quickly review Oracle database connectivity aspects and the main communi-
cation interfaces, including SQL*Plus, SQL Developer, and the OEM Database Control and Grid Control
interfaces, which serve as the main DBA management consoles.

Connecting to Oracle
You can connect to the Oracle database from the server on which the Oracle RDBMS is running.
However, DBAs as well as application developers and users generally connect to the database
through the network using Oracle Net, a component of Oracle Net Services. Oracle Net enables
network sessions from a client application to an Oracle database server. It acts as the data courier for
the clients and the database server, and it is in charge of establishing and maintaining the connec-
tion as well as transmitting messages between client and server. Oracle Net is installed on each
computer in the network.

206 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

■Note Oracle Net Services is Oracle’s mechanism for interfacing with the communication protocols (TCP/IP for
example) that define the way data is transmitted on a network.

Since a connection to a database and a user session are closely related to a user process but are
actually quite different from each other, let me take a minute to explain the differences between a
connection and a session.

An Oracle connection represents a communication link between a user’s process and an Oracle
Database instance. This communication link, or pathway, can be located on the same server as both
the user process and the database server process run. The communication pathway can also be
established using network software, as is the case when the client runs on one computer and the
Oracle database on another, with both of them communicating via the network.

A session represents a specific user connection to a running Oracle instance via a user process.
A session starts when, for example, you start SQL*Plus and log into the database, and it lasts until you
disconnect or exit. You can create multiple simultaneous sessions under the same Oracle username
and password credentials. Under the common dedicated server approach, as you saw earlier, the
database creates a dedicated server process to serve each user session. When you use a shared server
approach, multiple user sessions share a single server process.

For a connection to succeed, the client application must specify the location of the database. On
the database side, the Oracle Net listener, known simply as the listener, is the process that listens for
incoming client connection requests. You configure the listener in the listener.ora file, where you
provide the database address. The listener.ora file also defines the protocol the listener is listening
on and related information. On the client side, you can either use the tnsnames.ora file to list the
database server connection details, which include the database name, server name, and connection
protocol, or use the much simpler easy connect method.

Oracle Enterprise Manager
Oracle Enterprise Manager is Oracle’s GUI-based management tool that lets you manage one or
more databases efficiently. OEM enables security management, backups, and routine user and
object management. Because OEM is GUI-based, you don’t have to know a lot of SQL to use the tool.
However, understanding the V$ and dynamic performance views will enhance your knowledge of
how the database works—OEM will be an even more powerful tool in your hands after you master
the management of the database using the data dictionary–based and dynamic performance table–
based SQL queries. Oracle has really improved OEM in its most recent versions, and all serious prac-
titioners of the trade should master the use of the tool for both daily database management and
scheduling routine database administration tasks and troubleshooting. Chapter 4 explains the
configuration and use of the OEM tool set.

In Oracle Database 11g, you have the option of using either the Database Control or Grid
Control version of Enterprise Manager. The Enterprise Manager Database Control is automatically
installed along with the Oracle software and is designed to run as a stand-alone application. In order
to manage several databases, however, you need to separately install the Enterprise Manager Grid
Control software on your server and the OEM Agent software on all the targets you wish to monitor.

The Oracle Enterprise Manager tool always looked promising in previous versions, but it deliv-
ered inconsistent performance. This hard reality, plus the fact that many DBAs are comfortable with
manual commands and scripts based on the database dictionary and the dynamic (V$) views, led
to a low acceptance rate of the tool. Since the Oracle Database 10g release, the OEM tool has gone
through a sea change and delivers high-level performance. I strongly recommend using the Data-
base Control or the Grid Control tool to monitor and manage your databases. You can invoke all the
new management advisors and tools, like the ADDM from the OEM toolset, without having to use
complex Oracle PL/SQL packages. I show OEM examples throughout this book.

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 207

■Note Traditionally, all GUI tools relied on the same V$ performance views that are used in database queries.
However, OEM can access key performance data directly from the SGA, without making any SQL queries. This is
done by attaching directly to the SGA and reading the statistics from the shared memory. When your database is
performing extremely slowly or hangs, you can’t rely on the dynamic V$ views to troubleshoot the problem—doing
so may actually end up making matters worse! This is one more reason why you should make the OEM your main
means of monitoring and managing the Oracle instance.

SQL*Plus
SQL*Plus is an Oracle tool that lets you enter and run SQL statements and PL/SQL (a procedural
extension to the Oracle SQL language) blocks. As a DBA, you can perform all your tasks right from
the SQL*Plus interface itself. However, as I explain in the previous section, you may want to make
the SQL*Plus interface your secondary, rather than primary, tool for accessing the Oracle RDBMS. I
discuss SQL*Plus in detail in Chapter 4.

Oracle Utilities
Oracle provides several powerful tools to help with loading and unloading of data and similar activ-
ities. The following sections describe the main ones.

Data Pump Export and Import
The Data Pump Export and Import utilities are the successors to the traditional export and import
utilities; they help with fast data loading and unloading operations. The original export and import
utilities are still available, but Oracle recommends the use of the newer and more sophisticated
tools. Chapter 13 discusses the Data Pump utilities in detail.

SQL*Loader
The SQL*Loader is a powerful and fast utility that loads data from external files into tables of an
Oracle database. Chapter 14 discusses SQL*Loader in detail.

■Note You use the SQL*Loader to load external data into an Oracle table. Sometimes, though, you need to use
some external data but don’t want to go to the trouble of loading the data into a table. The external tables feature
offers some of the SQL*Loader utility’s functionality.

External tables let you use data that resides in external text files as if it were in a table in an Oracle
database. You can write to external tables as well as read from them. I describe the external tables in
detail in Chapter 13.

LogMiner
The LogMiner utility lets you query online and archived redo log files through a SQL interface. As you
know, redo log files hold the history of all changes made to the database. Thus, you can use the
LogMiner to see exactly which transaction and what SQL statement caused a change, and if neces-
sary, undo it. Chapter 16 shows you how to use the LogMiner tool for precision recovery.

208 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

Automatic Diagnostic Repository Control Interface
The automatic diagnostic repository control interface (ADRCI) is a command-line tool that helps
you manage the brand-new Oracle Database 11g diagnosability infrastructure. Through the ADRCI,
you can view diagnostic data and health monitor reports besides managing incident packaging and
transmission (to Oracle Support). You can access all types of diagnostic data, including incident
descriptions, trace and dump files, alert log contents, and the new health monitor reports through
the ADRCI interface.

Scheduling and Resource Management
Oracle Database 11g provides several utilitarian tools for scheduling jobs and managing database
and server resource usage, and they’re outlined in the following sections.

The Oracle Scheduler
The Oracle Scheduler facility lets DBAs schedule tasks from within the Oracle database, without
having to write shell scripts and scheduling them through the operating system. You can even schedule
operating system jobs on remote servers, without installing Oracle software on the remote server.

The basic components of the Oracle Scheduler are jobs, programs, and schedules. The Oracle
Scheduler offers much more functionality than using the old DBMS_JOBS package. You can now
create common jobs and schedules that you can share across users. You can also group similar jobs
into job classes and use resource plans to prioritize resources among resource consumer groups.
You can schedule PL/SQL and Java programs as well as operating system shell scripts through the
Scheduler.

You’ll find a complete treatment of the Oracle Scheduler in Chapter 18.

Database Resource Manager
The Database Resource Manager lets you exercise control over how the server resources, especially
CPU resources, are allocated among your users. You first group the users according to common
resource requirements, and you then create directives that dictate how resources are to be allocated
to these groups. The Database Resource Manager controls how long the sessions run, thus ensuring
that resource usage matches the stated objectives. I discuss the Database Resource Manager in
detail in Chapter 12.

Automatic Database Management
Traditionally, Oracle DBAs had to exercise great care in setting numerous initialization parameters,
and they would spend quite a bit of their time tweaking those parameters, trying to achieve an ideal
database configuration. Oracle started a major push toward a self-managing database with the 9i
version, and in Oracle Database 10g and Oracle Database 11g, Oracle has taken that effort further,
offering a more complete set of self-managing features, especially in the performance-tuning area.
In the long run, the goal is to automate all routine tasks and free up the DBAs and other professionals
to use their time to further the strategic interests of their businesses.

The following sections summarize the main automatic management features in Oracle Data-
base 11g.

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 209

Automatic Database Diagnostic Monitor
The Automatic Database Diagnostic Monitor, or ADDM, is probably the most revolutionary aspect
of the new self-managing Oracle database. The ADDM is a diagnostic engine built right into the data-
base kernel—it is a rule-based expert system that encapsulates decades of Oracle’s performance-tuning
expertise. It analyzes performance data frequently and either makes a recommendation by itself or
suggests that you invoke one of the other Oracle advisory components, such as the SQL Tuning Advisor.

The ADDM proactively performs automatic monitoring of the database at regular intervals
throughout the day, performs a top-down analysis of performance data and bottlenecks, and pres-
ents a set of findings that include the root causes of problems and the recommendations to fix them.
In addition, it provides the rationale behind its recommendations. Because the ADDM quantifies the
identified problems in terms of their impact on overall performance, you can focus on fixing prob-
lems that will give you the biggest performance gains.

You can also run the ADDM manually through the Enterprise Manager or the command line.
The ADDM’s diagnostic abilities can be used during the development phase of applications, reducing
potential problems in production. The ADDM will enable developers to perform “what-if” tests very
easily.

Chapter 17 explains the ADDM in detail.

Automatic Undo Retention Tuning
Setting the UNDO_RETENTION parameter to zero or just leaving it out of your SPFILE will instruct Oracle
to perform proactive automatic undo retention tuning, thus reducing the occurrence of the well-
known “snapshot too old” errors that lead to the failure of many an overnight production batch job.
Under automatic undo retention tuning, Oracle will figure out the ideal retention period for undo
data, based on the length of the transactions and other related factors. I discuss automatic undo
retention tuning in Chapter 8.

Automatic Optimizer Statistics Collection
Oracle Database 11g a automatically gathers statistics for the cost-based optimizer through a regu-
larly scheduled job. The job gathers statistics on all objects in the database that have missing or stale
statistics. Oracle creates this job automatically at database creation time, and the Scheduler auto-
matically manages it. Chapter 19 discusses the automatic collection of optimizer statistics.

Automatic Storage Management
Automatic Storage Management is a way of organizing your storage that integrates your file system
with a volume manager that’s designed for Oracle files. ASM divides Oracle datafiles into extents,
which it distributes evenly across the disk system. ASM automatically redistributes I/O load across
all available disks whenever storage configuration changes, avoiding manual disk tuning. ASM also
provides mirroring and striping, thus enhancing protection and performance, as in RAID systems. I
discuss ASM in detail in Chapter 17.

Automatic SQL Tuning
In Oracle Database 11g, the database runs the SQL Tuning Advisor as part of its nightly maintenance
tasks. The Automatic SQL Tuning Advisor makes recommendations to improve poorly performing
SQL queries. I discuss automatic SQL tuning in Chapter 19.

210 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

Common Manageability Infrastructure
In order to be self-tuning and self-managing, a database must have the ability to automatically
“learn” how it is being used. To this end, Oracle provides a common manageability infrastructure,
which captures workload information and uses it to make sophisticated self-management deci-
sions. The heart of the manageability infrastructure is the new Automatic Workload Repository, or
AWR, which serves as a repository for all the other server components that aid automatic manage-
ment of the database.

Oracle has built instrumentation into the various layers of its technology stack to capture the
metadata that helps in diagnosing performance. It stores this data in the AWR and utilizes a compre-
hensive suite of management advisors to provide guidance on optimizing database operations. In
the following sections, I briefly explain the various components of the common manageability infra-
structure of Oracle Database 10g. You’ll fully explore all of these in later chapters.

Automatic Workload Repository
The AWR plays the role of the “data warehouse of the database,” and it is the basis for most of Oracle’s
self-management functionality. The AWR collects and maintains performance statistics for problem-
detection and self-tuning purposes. By default, every 60 minutes the database collects statistical
information from the SGA and stores it in the AWR, in the form of snapshots.

Several database components, such as the ADDM and other management advisors, use the
AWR data to detect problems and for tuning the database. Like the ADDM, the AWR is automatically
active upon starting the instance. You’ll learn more about the AWR in Chapter 17.

Active Session History
The database samples all active sessions every second, and the session information is stored in a
circular buffer in SGA. A session that’s either waiting for a nonidle event or was on the CPU is consid-
ered an active session.

Even though the ADDM provides you with detailed instance information by periodically analyzing
the AWR data, you are at a loss if you want to know what’s happened in the database in a recent time
period (such as in the past five minutes). Active Session History and its related historical views
provide you with insight into current activity in the database. Chapter 19 discusses ASH in detail.

Fault Diagnosability Infrastructure

Occasionally, a database might encounter problems due to database code bugs or data corruption
of some kind. Oracle Database 11g contains a fault diagnosability infrastructure for detecting, diag-
nosing, and resolving problems. The infrastructure may even help you prevent some types of problems
by detecting them before they can do any damage to your database. You reap the following benefits
from the advanced fault diagnosability infrastructure:

• Proactive detection of database problems

• Containment of the damage that could be caused by problems, by detecting them early and
fixing them

• Reduction in problem diagnosis and resolution time

• Simplification of your communications with Oracle Support in the resolution of major problems,
by enabling the easy transmission of problem data to the support personnel

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 211

The fault diagnosability infrastructure makes use of the following components to help the
proactive monitoring, diagnosis, and resolution of problems and errors in the database:

• The health monitor performs proactive health checks to scope out problems in the database.
When a critical error first occurs, the health monitor automatically captures what is called
first-failure data and analyzes it. It creates a health check report and makes it part of the diag-
nostic data for that error. You can also manually invoke a health check if you suspect there
might be a problem of some type in the database.

• Incident packaging service (IPS) lets you automatically package all diagnostic data concerning a
critical error into a zipped file for transmitting to Oracle Support. Oracle Database 11g tags
every trace file and other diagnostic data with the error’s incident number. Thus, you don’t
have to go rummaging through various diagnostic directories for the relevant files for a data-
base incident. IPS automatically gathers necessary files and adds them to the incident package for
transmitting to Oracle.

• The Data Recovery Advisor shows you problems such as data corruption or a missing datafile
and recommends repair options. You can accept the Data Recovery Advisor’s recommenda-
tions or use the scripts it creates to manually repair the problem yourself.

• The Support Workbench lets you capture critical error diagnostics and transmit them to
Oracle Support. You can set up things so you can directly transmit the incident file to Oracle
Support from the Support Workbench, which you can access through the Enterprise Manager.

• The SQL Test Case Builder can reproduce problems caused by a SQL statement failure, so
Oracle Support can resolve the problem for you.

• The Automatic Diagnostic Repository is a file-based repository for storing database diag-
nostic data such as the alert log, trace files, health monitor reports, and so on. This is a new
feature of Oracle Database 11g. There is an ADR base under which each database instance as
well as other Oracle product instances store their diagnostic data in a separate dedicated ADR
home directory. The use of a consistent directory structure and diagnostic data format across
products and instances lets Oracle Support easily analyze diagnostic data across instances.

• ADRCI is a command-line tool new in Oracle Database 11g that helps you view diagnostic
data as well as package incident and problem information into zip files for transmission to
Oracle Support. You can also incorporate ADRCI commands in script files.

Server-Generated Alerts
Oracle now sends out proactive server-generated alerts to warn you about problems like a tablespace
running out of space. You can configure server-generated alerts by setting warning and critical
thresholds on database metrics. The Oracle server automatically alerts you, for example, when the
physical database reads per second cross a preset threshold value, or when a tablespace is low on
free space. I discuss server-generated alerts in Chapter 18.

Automated Tasks Feature
Oracle automatically performs certain maintenance tasks, such as collecting optimizer statistics, by
scheduling these jobs through the Oracle Scheduler. Oracle keeps track of which database objects
don’t have statistics or have stale statistics, and automatically refreshes statistics for these objects. In
previous versions of Oracle, the DBA was responsible for collecting up-to-date statistics on all objects in
the database. Now the database itself manages the collection of these statistics. I discuss automated
tasks in Chapter 18.

212 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

Following are the three automated maintenance tasks that are run in the database on a nightly
basis, during the maintenance window:

• Automatic Optimizer Statistics Collection: Collects statistics for the cost optimizer

• Automatic Segment Advisor: Identifies segments that have space you can reclaim

• Automatic SQL Tuning Advisor: Examines high-load SQL statements and makes recommen-
dations for tuning them

You can, if you want, disable these jobs or modify the times when the database runs them.

■Note The manageability infrastructure, as well as all the automatic management features, are installed when
you install the Oracle Database 11g software.

Advisory Framework
Oracle Database 11g comes with several management advisors, which help tune your SQL queries,
size your memory and undo configuration parameters, and figure out the right indexes and materi-
alized views for your database. The advisors use a uniform interface—the Advisor Central in the OEM,
or the DBMS_ADVISOR package, when you invoke them manually. All the advisors use the Automatic
Workload Repository as the source of their data and as a repository for their reports. Chapter 18 intro-
duces the advisory framework in detail. Here’s a brief description of the main management advisors,
which you’ll see in detail in later chapters.

SQL Tuning Advisor

The SQL Tuning Advisor provides recommendations for running SQL statements faster, by replacing
manual tuning with tuning suggested by the Automatic Tuning Optimizer , which is the Cost-Based
Optimizer in a tuning mode. The SQL Tuning Advisor calls the Automatic Tuning Optimizer to
perform optimizer statistics analysis, SQL profiling, access-path analysis, and SQL structure anal-
ysis. I discuss the SQL Tuning Advisor in Chapter 19.

SQL Access Advisor

The SQL Access Advisor provides advice on materialized views, indexes, and materialized view logs,
in order to design the most appropriate access structures to optimize SQL queries. Chapter 7 shows
you how to use the SQL Access Advisor.

Segment Advisor

Often, table segments become fragmented over time. The Segment Advisor checks database object
space usage and helps you regain excess space in segments by performing segment-shrinking oper-
ations. The Segment Advisor also helps in predicting the size of new tables and indexes and analyzing
database-object growth trends. Chapter 17 shows you how to use the Segment Advisor.

Change Management
When you’re making system changes such as upgrading your database to a new release or modifying
the server configuration, you ideally would test and validate before making the changes in the
production system. The difficulty, however, lies in the fact that it’s not easy to simulate the production

CH A PT E R 5 ■ O R AC L E D AT AB A SE 1 1 G A R CH I TE C TU R E 213

system on a test system, thus introducing a serious element of uncertainly when undertaking major
system changes.

Oracle Database 11g has introduced two key features, called Database Replay and SQL Perfor-
mance Analyzer, to help you manage change confidently. I briefly review these two interesting
features in the following sections. Chapter 20 contains a detailed discussion of these two change
management features.

Database Replay

Database Replay lets you test the impact of system changes by replaying and testing a production
workload on a test system first. You first capture the production workload of the production data-
base over a representative period of time such as a peak period. You then move this captured data
over to a test system and replay the workload on that system, which you configure in an identical
fashion to the production system. The replay of the production workload on the test system shows
you the errors, data and performance divergence, and other statistics that help you determine
whether you can safely make the change on the production system.

SQL Performance Analyzer

The SQL Performance Analyzer helps you assess the impact of a system change on the SQL state-
ments that are part of your database workload. This analyzer gives you detailed information about
the performance of the SQL statements, including before- and after-change exertion statistics. You
can use the analysis to make a decision as to whether the system changes (such as a database
upgrade) that you’re planning will lead to an improvement in performance.

Efficient Managing and Monitoring
You’ve seen a bewildering number of tools and components of management infrastructure for
monitoring and managing your Oracle databases. Traditionally, DBAs used a variety of methods to
manage and monitor their databases, and complaints about frequent midnight pages and weekend
work were common. You can avoid all that by taking a proactive approach and by automating
management as much as you can—and with Oracle Database 11g, you can automate quite a bit!

My advice is not to reinvent the wheel by using outmoded monitoring scripts and management
techniques. Here’s a suggested way to use Oracle’s variety of tools to maximum benefit:

• Make the OEM Database Control or Grid Control your main DBA tool. You can access all the
monitoring and performance tools through the OEM. Configure the OEM to send you event-
based pages or e-mails.

• Use RMAN as your main database backup and recovery solution.

• Configure the flash recovery area so you can automate backup and recovery.

• Use the Scheduler to automate your job system.

• Change your export and import scripts to the new Data Pump technology, both to save time
and to take advantage of the new features.

• Wherever possible, use the Database Configuration Assistant to create new databases and the
Database Upgrade Assistant (DBUA) to upgrade to Oracle Database 11g from earlier versions.

• Let Oracle automatically collect statistics—don’t bother using the DBMS_STATS package or
the ANALYZE command to manually collect optimizer statistics.

• Make sure you collect system statistics in addition to the automatic optimizer statistics
collected by Oracle.

214 CH AP T E R 5 ■ O R AC L E D AT AB A SE 1 1 G AR CH IT E CT U R E

• Let Oracle manage the SGA and the PGA automatically with the new automatic memory
management feature using the MEMORY_TARGET initialization parameter.

• Use Oracle’s alert system to prevent space-related problems.

• Make use of the SQL Access Advisor to recommend new indexes, materialized views, and
table and index partitioning.

• Let the Segment Advisor, which runs automatically, recommend objects to shrink. Shrinking
objects will reclaim unused and fragmented space, as well as decrease query response time.

• Use the SQL Tuning Advisor to proactively tune problem SQL code.

I explain each of these topics in detail in this book.

215

■ ■ ■

C H A P T E R 6

Managing Tablespaces

In the next chapter, you’ll learn how Oracle DBAs create and manage the schema objects, which
include tables, indexes, views, materialized views, synonyms, triggers, database links, and so on.
Before we look at the various schema objects, though, you need to learn how to manage the all-
important Oracle tablespaces. As you learned in Chapter 5, tablespaces are logical entities—each of
an application’s tables and indexes are stored as a segment, and the segments are stored in the data-
files that are parts of tablespaces. A tablespace is thus a logical allocation of space for Oracle schema
objects. There is, however, no one-to-one correspondence between a schema object like a table or
index and a tablespace.

When you use the word tablespace, you’re actually referring to a permanent tablespace, which
is where you store your schema objects. (If you’re migrating from a pre–Oracle Database 10g release
database, you must first create the Sysaux tablespace before upgrading.) All permanent tablespaces
are created by using Oracle datafiles. In addition to permanent tablespaces, you have the following
important types of Oracle tablespaces:

• Temporary tablespaces are used to store objects for the duration of a user’s session only. You
use tempfiles to create a temporary tablespace, instead of datafiles.

• Undo tablespaces are a type of permanent tablespace that are used to store undo data, which
is used to undo changes to data.

Every Oracle tablespace must have the mandatory System and Sysaux tablespaces. The System
tablespace is permanent and contains vital data dictionary information that helps the database
function. The System tablespace is the first tablespace you create when you create a new database.
The Sysaux tablespace is auxiliary to the System tablespace, and it stores the metadata for various
Oracle applications, as well as operational data for internal performance tools like the Automatic
Workload Repository. Both the System and Sysaux tablespaces are treated differently from the other
tablespaces. You can’t rename or drop either of these tablespaces.

Before you can create tables or indexes, you should create the tablespaces to hold the data.
Tablespaces consist of one or more datafiles (or tempfiles, if you are creating a temporary tablespace).
Although your data and objects reside in operating system files, the organization of these files into
Oracle tablespaces makes it easy for you to group related information.

You must first ensure that you have the necessary directory structure created on the host
system, so you can create datafiles. Oracle will format the operating system files and allocate them
to the tablespaces when you specify a datafile size and a fully specified filename during tablespace
creation.

■Note Tablespaces are not unique to Oracle. DB2 databases also have tablespaces, although Microsoft SQL
Server databases don’t use them. The tempdb database in a SQL Server database corresponds to the temporary
tablespace in an Oracle database.

216 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

Tablespace Extent Sizing and Space Management
Before you actually create a tablespace, you must be aware of two other important concepts: extent
sizing and segment space management. I discuss these concepts in the two subsequent sections.

Allocating the Extent Size: Autoallocate vs. Uniform
Any time an Oracle object needs to grow in size, space is added to the object in terms of extents.
When you create locally managed tablespaces, you have two options for managing the extent sizes:
you can let the database automatically choose the extent size (by selecting the AUTOALLOCATE option)
or you can specify that the tablespace be managed with uniform-sized extents (the UNIFORM option).

If you choose the UNIFORM option, you specify the actual size of the extents by using the SIZE
clause. If you omit the SIZE clause, Oracle will create all extents with a uniform size of 1MB, but you
can choose a much larger uniform extent size if you wish.

You can’t change the extent size once you create the tablespace. If you think that all the
segments in a tablespace are approximately of the same size, and that they’ll grow in a similar
fashion, you can choose the UNIFORM extent size option. If you do this, you can select a few extent
sizes, create all your tablespaces with one of these uniform extent sizes, and allocate objects to the
tablespaces based on their size.

Traditionally, Oracle DBAs worried about the number of extents in a segment. You should be
more concerned about the size of the extents, though, since extent size has a bearing on the read and
write performance of a segment. For example, if you choose a very small UNIFORM extent size, the
database can’t prefetch data or do multiblock reads, thus adversely impacting performance. Oracle
suggests the following extent size guidelines, if you wish to set the extent sizes yourself:

• 64KB for small segments

• 1MB or medium segments

• 64MB for large segments

Under the AUTOALLOCATE option, Oracle will manage the extent size automatically. The extent
size starts at 64KB and is progressively increased to 64MB by the database. The database automati-
cally decides what size the new extent for an object should be, based on the segment’s growth
pattern. Interestingly, Oracle will increase the extent size for an object automatically as the object
grows! Autoallocate is especially useful if you aren’t sure about the growth rate of an object and you
would like Oracle to deal with it.

■Note The default for tablespace extent management is the AUTOALLOCATE option.

If you know the exact space requirements for your objects, you can choose the UNIFORM extents
option, which leads to efficient use of all available space. For example, say you know that your largest
tables will consume a lot of space and will therefore need a very high extent size. Create a tablespace
with a very large uniform size for such tables.

If you aren’t sure what extent size will be best, AUTOALLOCATE will let the database determine the
extent size but it may waste some space due to the varying size of extents.

■Tip Oracle recommends that unless all the objects in a tablespace are of the same size, you should use the
AUTOALLOCATE feature. In addition to the simplicity of management, the AUTOALLOCATE option for extent sizing can
potentially save you a significant amount of disk space, compared to the UNIFORM extent size option.

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 217

Automatic vs. Manual Segment Space Management
You can use the space in an Oracle block for two purposes: inserting fresh data or updating existing
data in the blocks. When you delete data from a block, or an update statement changes the existing
data length to a smaller size, there will be an increase in free space in the block. Segment space
management is how Oracle manages this free space within the individual Oracle data blocks.

If you specify manual segment space management (by using the keyword MANUAL), the database
manages the free space of segments in the tablespace using entities known as freelists and a pair of
storage parameters, PCTFREE and PCTUSED. Oracle keeps track of how much free space is in its data
blocks by maintaining freelists. Every table and index maintains a list of all its data blocks with free
space greater than PCTUSED. That is, freelists contain the list of all blocks eligible for data insertion.
Oracle first checks the appropriate freelist before making any insertions into tables or indexes. The
Oracle database has to do a lot of work to maintain the freelists, as blocks reach their PCTUSED
threshold after insertions and fall below the threshold due to deletions.

The PCTFREE parameter lets you reserve a percentage of space in each data block for future
updates to existing data. For example, you may have some data on a person’s address in a certain
block. If you update that address later, so that it is larger, there should ideally be room in the existing
block for the enlarged address. This is exactly what the PCTFREE parameter provides: room for the
existing rows to grow. The PCTUSED parameter, on the other hand, deals with the threshold below
which the used space must fall before new data can be placed in the blocks. For example, if the
PCTUSED parameter is set at 40 percent, Oracle can’t insert new data into the block until the amount
of used space falls below this threshold level.

You can see easily how the PCTFREE and PCTUSED parameters together optimize the use of space
within an Oracle block. Suppose 80 percent of the space in a block is filled with data. This will be the
maximum amount of data that you can insert inside the block if the PCTFREE parameter is set to 20
percent. If some deletes take place in this block, there will be potential room to insert new rows, but
Oracle uses the PCTUSED parameter in a clever way to keep any newly available free space from auto-
matically being used for new inserts. Oracle incurs an overhead when it tries to use newly available
free space in data blocks, so Oracle waits until the used space falls below the PCTUSED setting before
using that free space. Until then, although there may be free spaces in partially used blocks, Oracle
ignores them and goes to new data blocks to insert data.

The PCTFREE and PCTUSED parameters and the freelists comprise a manual way of checking for
space, because you are making Oracle continually check for blocks with the right amount of free
space. In a database with heavy updates, inserts, and deletes, this could lead to a slowdown of your
transactions.

If you choose automatic segment space management when creating a tablespace (by specifying
AUTO), the database will use bitmaps to track free space availability in a segment. A bitmap, which is
contained in a bitmap block, indicates whether free space in a data block is below 25 percent, between
25 and 50 percent, between 50 and 75 percent, or above 75 percent. For an index block, the bitmaps
can tell you whether the blocks are empty or formatted.

MIGRATING FROM DICTIONARY-MANAGED TO LOCALLY MANAGED TABLESPACES

Although locally managed tablespaces are the default in the Oracle Database 11g release, if you are upgrading an
older database to the Oracle Database 11g release, you may want to migrate your tablespaces from being dictionary
managed to locally managed. You can simply create new tablespaces, which will be locally managed by default, and
then migrate all your tables to the new tablespaces using the ALTER TABLE command, as shown here:

SQL> ALTER TABLE emp MOVE TABLESPACE tbsp_new;

In order to move your indexes, use the ALTER INDEX REBUILD command, as shown here:

SQL> ALTER INDEX emp_pk_idx REBUILD
 TABLESPACE tbsp_idx_new

218 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

Once you finish migrating all your objects to the new locally managed tablespaces, drop your old tablespaces to
reclaim the space.

If you don’t want to create new tablespaces and go through the trouble of migrating all tables and indexes, you can
use the PL/SQL package DBMS_SPACE_ADMIN, which enables you to perform the tablespace migration. You first
need to migrate all the other tablespaces to a local management mode before you migrate the System tablespace. If
you migrate your System tablespace from dictionary managed to locally managed first, all other tablespaces become
read-only. Make sure that you first take a cold backup of the database before performing the tablespace migration.
Here’s an example of how you can migrate a dictionary-managed tablespace (USERS) to a locally managed
tablespace:

SQL> EXECUTE dbms_space_admin.tablespace_migrate_to_local ('USERS');

The TABLESPACE_MIGRATE_TO_LOCAL procedure can be used online, while users are selecting and modifying
data. However, if the DML operations need a new extent to be allocated, the operations will be blocked until the
migration is completed.

Once you’ve migrated all your other tablespaces to locally managed tablespaces, you can move the System table-
space. Here’s the command (you’ll have to perform a few housekeeping chores beforehand, like making other
tablespaces read only, etc.):

SQL> EXECUTE dbms_space_admin.tablespace_migrate_to_local ('SYSTEM');

Note that if you use the DBMS_SPACE_ADMIN package to migrate from dictionary-managed to locally managed
tablespaces, you won’t have the option of switching to the new Automatic Segment Space Management feature. All
dictionary-managed tablespaces use the older manual segment space management by default, and you can’t
change to Automatic Segment Space Management when you migrate to locally managed tablespaces. Since Auto-
matic Segment Space Management offers so many benefits (such as the ability to use the Online Segment Shrink
capability of the Segment Advisor), you probably are better off biting the bullet and planning the migration of all your
objects to newly created locally managed tablespaces. By default, Oracle creates all new tablespaces as locally
managed with automatic segment space management.

In addition, if your current dictionary-managed tablespaces have a space fragmentation problem, the problem won’t
disappear when you convert to locally managed tablespaces by using an in-place migration with the DBMS_SPACE_
ADMIN package. Again, you’re better off creating a new locally managed tablespace and moving your objects into it.
Chapter 17 shows how to perform such migrations easily, using Oracle’s online table reorganization features.

Oracle recommends using automatic segment management and notes that it is scalable as well
as efficient when it comes to space management. The performance gains are particularly striking if
the database objects have varying row sizes. Maintenance of these bitmaps will consume space, but
it is less than 1 percent for most large objects.

■Note The segment space management that you specify at tablespace creation time applies to all segments you
later create in the tablespace.

Creating Tablespaces
You create tablespaces by using the CREATE TABLESPACE statement. To create a temporary tablespace,
you must use the CREATE TEMPORARY TABLESPACE statement, and to create an undo tablespace, the
CREATE UNDO TABLESPACE statement. The first step in creating a tablespace is to create a directory

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 219

structure to which the database allocates the datafiles in the tablespace. Let’s therefore look at data-
files first in the following section.

Data Files and Tablespaces
A tablespace can have one or more datafiles, and a datafile can belong to only one tablespace. Oracle
creates a datafile for a tablespace when you specify the keyword DATAFILE during tablespace
creation. The datafile that is created will be allocated a certain amount of physical disk space from
the operating system disks. When Oracle first creates a datafile, it’s empty but is allocated exclusively
for Oracle’s use, and the free space shown by the df -k command shows it as used space from the
operating system’s point of view.

As a segment grows in size, Oracle allocates extents to it from the free space in its datafiles.
When the tablespace starts to fill up, you can either add new datafiles to it or extend the size of the
existing datafiles by using the RESIZE command.

In light of the benefits they offer, you should always create locally managed tablespaces with the
default AUTOALLOCATE option, unless you expect the tablespace to contain objects of the same size
requiring same-sized extents. Similarly, choose the default automatic segment space management
(by specifying SEGMENT SPACE MANAGEMENT AUTO when creating a tablespace) for managing segments,
because it gives better performance and space utilization than manual segment space management.
As mentioned previously, AUTOALLOCATE is the default for extent management, and automatic
segment space management is the default for segment space management.

Let’s create a (permanent) tablespace by using the CREATE TABLESPACE command. Note that you
must use a DATAFILE clause before the file specification, since this is a permanent tablespace. For a
temporary tablespace, you must use the clause TEMPFILE instead.

SQL> CREATE TABLESPACE test01
 2 DATAFILE '/pasx02/oradata/pasx/test01.dbf'
 3* SIZE 500M;
Tablespace created.
SQL>

■Note Non-DBA users must have the CREATE TABLESPACE system privilege granted in order to be able to create
a tablespace.

In the previous tablespace creation statement, I didn’t specify any choices for extent manage-
ment (local or dictionary), extent size (uniform or autoallocate), or segment space management
(auto or manual).

Now, let’s execute the following query to determine the defaults for extent management, extent
allocation type, and segment space management:

SQL> SELECT extent_management,
 2 allocation_type,
 3 segment_space_management
 4 FROM dba_tablespaces
 5* WHERE tablespace_name='TEST01';

EXTENT_MAN ALLOCATIO SEGMEN
---------- --------- -------
LOCAL SYSTEM AUTO
SQL>

Note the defaults in Oracle Database 11g Release 1:

220 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

• Extent management: LOCAL

• Allocation of extent sizes: AUTOALLOCATE (shows up as SYSTEM in the preceding output)

• Segment space management: AUTO

I could create an identical tablespace by explicitly specifying all of these choices, as shown here:

SQL> CREATE TABLESPACE test02
 2 DATAFILE '/pasx02/oradata/pasx/test02.dbf' size 500M
 3 EXTENT MANAGEMENT local
 4 AUTOALLOCATE 500M
 5* SEGMENT SPACE MANAGEMENT auto;

Tablespace created.
SQL>

Although by default extent management is local for all permanent tablespaces, you specify the
EXTENT MANAGEMENT LOCAL clause in the CREATE TABLESPACE statement if you want to specify the
autoallocate or the uniform clause for extent allocation. You can use the same query that I used in
the case of the test01 tablespace to verify that the two tablespaces, test01 and test02, have identical
extent management (LOCAL), allocation type (AUTOALLOCATE), and segment space management (AUTO).

■Note By default, Oracle Database 11g tablespaces are locally managed, with automatic segment space
management. When you create this type of tablespace, you can specify default storage parameters, like INITIAL,
NEXT, PCTINCREASE, MINEXTENTS, or MAXEXTENTS, but the database will ignore the settings.

Extent Allocation and Deallocation
An Oracle extent consists of a set of contiguous data blocks, which are the smallest unit of space allo-
cation in Oracle. Each Oracle data block corresponds to a specific number of bytes of disk space.
Each of your database tables and indexes is called a segment, which is a set of extents allocated for a
specific data structure. Note that extents are always contiguous in an operating system file, but not
necessarily so on the disk itself. Extents help performance by enhancing Oracle’s ability to prefetch
data required for queries. Each partition of a table or index has its own segment (and besides table
and index segments, you also have rollback, temporary, and undo segments in an Oracle database).

When Oracle needs to allocate an extent to a segment, it first selects a candidate datafile and
searches the datafile’s bitmap for the required number of adjacent free blocks. If it can’t find the
necessary free space in that datafile, Oracle will look in another datafile, or if there are no more, it will
issue an error stating that it is out of free space.

Once Oracle allocates space to a segment by allocating a certain number of extents to it, that
space will remain with the extent unless you make an effort to deallocate it. If you truncate a table
with the DROP STORAGE option (TRUNCATE TABLE table_name DROP STORAGE), for example, Oracle deal-
locates the allocated extents. You can also manually deallocate unused extents using the following
command:

SQL> ALTER TABLE table_name DEALLOCATE UNUSED;

When Oracle frees extents, it automatically modifies the bitmap in the datafile where the extents
are located, to indicate that they are free and available again.

Storage Parameters
Remember that extents are the units of space allocation when you create tables and indexes in table-
spaces. Here is how Oracle determines extent sizing and extent allocation when you create tablespaces:

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 221

• The default number of extents is 1. You can override it by specifying MINEXTENTS during
tablespace creation.

• You don’t have to provide a value to the MAXEXTENTS parameter when you use locally managed
tablespaces. Under locally managed tablespaces, the MAXEXTENTS parameter is set to UNLIM-
ITED, and you don’t have to configure it at all.

• If you choose UNIFORM extent size, the size of all extents, including the first, will be determined
by the extent size you choose.

Three examples of tablespace creation with various specifications for extent management are
shown in Listings 6-1 through 6-3, and in the queries that follow the creation statements, you’ll see
the following headings:

• Initial extent: This storage parameter determines the initial amount of space that is allocated
to any object you create in this tablespace. For example, if you specify a UNIFORM extent size of
10MB and specify an INITIAL_EXTENT value of 20MB, Oracle will create two 10MB-sized
extents, to start with, for a new object. The example in Listing 6-1 shows an initial extent size
of 5,242,880 bytes, based on the UNIFORM SIZE value, which is 5MB for this tablespace.

• Next extent: The NEXT_EXTENT storage parameter determines the size of the subsequent
extents after the initial extent is created.

• Extent management: This column can show a value of LOCAL or DICTIONARY, for locally
managed and dictionary-managed tablespaces, respectively.

• Allocation type: This column refers to the extent allocation, which can have a value of
UNIFORM for uniform extent allocation, or SYSTEM for the AUTOALLOCATE option for sizing
extents.

• Segment space management: This column shows the segment space management for the
tablespace, which can be AUTO (the default) or MANUAL.

Listing 6-1. Creating a Tablespace with Uniform Extents Using the UNIFORM SIZE Clause

SQL> CREATE TABLESPACE test01
 DATAFILE '/pasx02/oradata/pasx/test01_01.dbf' SIZE 100M
 UNIFORM SIZE 5M;

Tablespace created.
SQL>

SQL> SELECT initial_extent,next_extent,
 extent_management, allocation_type,segment_space_management
 FROM dba_tablespaces;

INITIAL_EXTENT NEXT_EXTENT EXTENT_MAN ALLOCATION_TYPE SEGMENT_MAN
-------------- ----------- ---------- --------------- ------------
 5242880 5242880 LOCAL UNIFORM AUTO
SQL>

If you choose to use the UNIFORM option for extent allocation but don’t specify the additional
SIZE clause, Oracle will create uniform extents of size 1MB by default, as shown in Listing 6-2.

Listing 6-2. Creating a Tablespace with Uniform Extents

SQL> CREATE TABLESPACE test01
 DATAFILE '/u09/oradata/test/test01.dbf' SIZE 100M
 UNIFORM;

222 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

Tablespace created.
SQL>

SQL> SELECT initial_extent,next_extent,
 extent_management,allocation_type,segment_space_management
 FROM dba_tablespaces;

INITIAL_EXTENT NEXT_EXTENT EXTENT_MAN ALLOCATION_TYPE SEGMENT_MAN
-------------- ----------- ---------- --------------- ------------
1048576 1048576 LOCAL UNIFORM AUTO
SQL>

If you choose the AUTOALLOCATE method of sizing extents, Oracle will size the extents starting with
a 64KB (65536 bytes) minimum extent size. Note that you can specify the autoallocate method for
extent sizing either by explicitly specifying it with the AUTOALLOCATE keyword, or by simply leaving out
the keyword altogether, since by default, Oracle uses the AUTOALLOCATE method anyway. Listing 6-3
shows an example that creates a tablespace with system-managed (automatically allocated) extents.

Listing 6-3. Creating a Tablespace with Automatically Allocated Extents

SQL> CREATE TABLESPACE test01
 DATAFILE '/pasx02/oradata/pasx/test01_01.dbf' SIZE 100M;

Tablespace created.
SQL>

SQL> SELECT initial_extent,next_extent,
 extent_management,allocation_type,segment_space_management
 FROM dba_tablespaces;

INITIAL_EXTENT NEXT_EXTENT EXTENT_MAN ALLOCATION_TYPE SEGMENT_MAN
-------------- ----------- ---------- --------------- ----------
65536 LOCAL SYSTEM AUTO
SQL>

Note that there is no value for the autoallocated tablespace for NEXT_EXTENT in Listing 6-3. When
you choose the AUTOALLOCATE option (here it is chosen by default) rather than UNIFORM, Oracle allo-
cates extent sizes starting with 64KB for the first extent. The next extent size will depend entirely
upon the requirements of the segment (table, index, etc.) that you create in this tablespace.

Storage Allocation to Database Objects
You create tablespaces so that you can create various types of objects, such as tables and indexes, in
them. When you create a new table or index segment, Oracle will use certain storage parameters to
allocate the initial space and to alter allocations of space as the object grows in size.

 You can omit the specification of storage parameters, such as INITIAL, NEXT, MINEXTENTS, MAXEX-
TENTS, and PCTINCREASE, when you create objects like tables and indexes in the tablespaces. For
locally managed tablespaces, Oracle will manage the storage extents, so there is very little for you to
specify in terms of storage allocation parameters. Oracle retains the storage parameters for back-
ward compatibility only.

You don’t have to set the PCTUSED parameter if you’re using locally managed tablespaces. If you
set it, your object creation statement won’t error out, but Oracle ignores the parameter. However,
you can use the PCTFREE parameter to specify how much free space Oracle should leave in each block
for future updates to data. The default is 10, which is okay if you don’t expect the existing rows to get
longer with time. If you do, you can change the PCTFREE parameter upward, say to 20 or 30 percent.

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 223

Of course, there is a price to pay for this—the higher the PCTFREE parameter, the more space you will
“waste” in your database.

CREATING TABLESPACES WITH NONSTANDARD BLOCK SIZES

The default block size for all tablespaces is determined by the DB_BLOCK_SIZE initialization parameter for your
database. You have the option of creating tablespaces with block sizes that are different from the standard database
block size. In order to create a tablespace with a nonstandard block size, you must have already set the
DB_CACHE_SIZE initialization parameter, and at least one DB_nK_CACHE_SIZE initialization parameter. For
example, you must set the DB_16K_CACHE_SIZE parameter, if you wish to create tablespaces with a 16KB block
size.

By using a nonstandard block size, you can customize a tablespace for the types of objects it contains. For example,
you can allocate a large table that requires a large number of reads and writes to a tablespace with a large block
size. Similarly, you can place smaller tables in tablespaces with a smaller block size.

Here are some points to keep in mind if you’re considering using the multiple block size feature for tablespaces:

• Multiple buffer pools enable you to configure up to a total of five different pools in the buffer cache, each with
a different block size. (This is discussed in Chapter 4.)

• The System tablespace always has to be created with the standard block size specified by the
DB_BLOCK_SIZE parameter in the init.ora file.

• You can have up to four nonstandard block sizes.

• You specify the block size for tablespaces in the CREATE TABLESPACE statement by using the BLOCKSIZE
clause.

• The nonstandard block sizes must be 2KB, 4KB, 8KB, 16KB, or 32KB. One of these sizes, of course, will have
to be chosen as the standard block size by using the DB_BLOCK_SIZE parameter in the init.ora file.

• If you’re transporting tablespaces between databases, using tablespaces with multiple block sizes makes it
easier to transport tablespaces of different block sizes.

You use the BLOCKSIZE keyword when you create a tablespace, to specify a nonstandard block size. The following
statement creates a tablespace with a nonstandard block size of 16KB (the standard block size, which is determined
by the value you specify for the DB_BLOCK_SIZE initialization parameter, is 8 KB):

SQL> CREATE TABLESPACE test01 datafile '/u09/oradata/testdb/test01.dbf'
 BLOCKSIZE 16K;

Adding Space to a Tablespace
When your tablespace is filling up with table and index data, you need to expand its size. You do this
by adding more physical file space with the ALTER TABLESPACE command:

SQL> ALTER TABLESPACE test01
 ADD DATAFILE '/finance10/app/oracle/finance/test01.dbf'
 SIZE 1000M;

You can also increase or decrease the size of the tablespace by increasing or decreasing the size
of the tablespace’s datafiles with the RESIZE option. You usually use the RESIZE option to correct
data-file sizing errors. Note that you can’t decrease a datafile’s size beyond the space that is already
occupied by objects in the datafile.

224 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

The following example shows how you can manually resize a datafile. Originally, the file was
250MB, and the following command doubles the size of the file to 500MB. Note that you need to use
the ALTER DATABASE command, not the ALTER TABLESPACE command, to resize a datafile.

SQL> ALTER DATABASE DATAFILE '/finance10/oradata/data_09.dbf'
 RESIZE 500m;

You can use the AUTOEXTEND provision when you create a tablespace or when you add datafiles
to a tablespace to tell Oracle to automatically extend the size of the datafiles in the tablespace to a
specified maximum. Here’s the syntax for using the AUTOEXTEND feature:

SQL> ALTER TABLESPACE data01
 ADD DATAFILE '/finance10/oradata/data01.dbf' SIZE 200M
 AUTOEXTEND ON
 NEXT 10M
 MAXSIZE 1000M;
SQL>

In the preceding example, 10MB extents will be added to the tablespace when space is required,
as specified by the AUTOEXTEND parameter. The MAXSIZE parameter limits the tablespace to 1,000MB.
If you wish, you can also specify MAXSIZE UNLIMITED, in which case there is no set maximum size for
this datafile and hence for the tablespace. However, you must ensure that you have enough oper-
ating system disk space to accommodate this.

Oracle also offers the Resumable Space Allocation feature, which temporarily suspends opera-
tions that might otherwise fail for lack of space, and then resumes the operations after you add space
to the database object. This makes the use of the AUTOEXTEND feature less attractive. The Resumable
Space Allocation feature is discussed in detail in Chapter 8.

Removing Tablespaces
Sometimes you may want to get rid of a tablespace. You can remove a tablespace from the database
by issuing this simple command:

SQL> DROP TABLESPACE test01;

If the test01 tablespace includes tables or indexes when you issue a DROP TABLESPACE command,
you’ll get an error. You can either move the objects to a different tablespace or, if the objects are
dispensable, you can use the following command, which will drop the tablespace and all the objects
that are part of the tablespace:

SQL> DROP TABLESPACE test01 INCLUDING CONTENTS;

■Caution In Oracle Database 10g, database objects such as tables aren’t dropped right away when you issue a
DROP TABLE command. Instead, they go to the Recycle Bin (discussed in Chapter 16), from which you can reclaim
the table you “dropped.”

When you use the DROP TABLESPACE . . . INCLUDING CONTENTS command, the objects in the tablespace are
dropped right away, bypassing the Recycle Bin! Any objects belonging to this tablespace that are in the Recycle Bin
are also purged permanently when you issue this command. If you omit the INCLUDING CONTENTS clause and the
tablespace contains objects, the statement will fail, but any objects in the Recycle Bin will be dropped.

The DROP TABLESPACE . . . INCLUDING CONTENTS statement will not release the datafiles back to
the operating system’s file system. To do so, you have to either manually remove the datafiles that

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 225

were a part of the tablespace or issue the following command to remove both the objects and the
physical datafiles at once:

SQL> DROP TABLESPACE test01 INCLUDING CONTENTS AND DATAFILES;

The preceding statement will automatically drop the datafiles along with the tablespace.
If there are referential integrity constraints in other tables that refer to the tables in the

tablespace you intend to drop, you need to use the following command:

SQL> DROP TABLESPACE test01 CASCADE CONSTRAINTS;

The one tablespace you can’t drop, of course, is the System tablespace. You also can’t drop the
Sysaux tablespace during normal database operation. However, provided you have the SYSDBA priv-
ilege and you have started the database in the MIGRATE mode, you’ll be able to drop the Sysaux
tablespace.

Of course, there aren’t many reasons why you would want to drop your Sysaux tablespace. If you
simply want to move certain users out of this tablespace, you can always use the appropriate move
procedure specified in the V$SYSAUX_OCCUPANTS view.

The V$SYSAUX_OCCUPANTS view shows you details about the space usage by each occupant
of the Sysaux tablespace. It also provides you with the move procedure to use for a given occupant,
if you want to move the occupant to a different tablespace. Here’s a sample query using this view:

SQL> SELECT occupant_name, schema_name, space_usage_kbytes,
 2* move_procedureFROM V$SYSAUX_OCCUPANTS;

OCCUPANT_NAME SCHEMA_NAME SPACE_USG_KB MOVE_PROCEDURE
------------- ----------- ------------ --------------------------------
LOGMNR SYSTEM 7488 SYS.DBMS_LOGMNR_D.SET_TABLESPACE
. . .
ULTRASEARCH WKSYS 7296 MOVE_WK
20 rows selected.
SQL>

If you wish to move the Sysaux occupant ULTRASEARCH to a new tablespace called ULTRA1,
you can do so using the MOVE_WK procedure owned by the WKSYS schema, as shown here:

SQL> EXECUTE WKSYS.MOVE_WK('ULTRA1');

This section introduced you to several useful data dictionary views that help you manage the
database. Although using the OEM Database Control reduces the need to use most of these views on
a frequent basis, it’s important to master the contents of these views, so you know where the data-
base stores important information.

Number of User Tablespaces
Oracle DBAs have traditionally used a large number of tablespaces for managing database objects.
Unfortunately, the larger the number of tablespaces in your database, the more time you’ll have to
spend on mundane tasks, such as monitoring space and allocating space to the tablespaces. Disk
contention between indexes and tables and other objects were pointed out as the reason for
creating large numbers of tablespaces, but with the types of disk management used today in most
places, where Logical Volume Managers stripe operating system files over several disk spindles,
traditional tablespace-creation rules don’t apply. You’re better off using a very small number of
tablespaces—perhaps just four or five—to hold all your data.

226 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

Tablespace Quotas
You can assign a user a tablespace quota, thus limiting the user to a certain amount of storage space
in the tablespace. You can do this when you create the user, or by using the ALTER USER statement at
a later time. Chapter 11 shows you how to assign tablespace quotas to users.

In Chapter 9, I discuss Oracle’s Resumable Space Allocation feature. User-quota-exceeded
errors are an important type of resumable statement. When a user exceeds the assigned quota,
Oracle will automatically raise a space-quota-exceeded error.

Proactive Tablespace Space Alerts
If a segment needs to be extended to accommodate the insertion of new data, there must be free
space available in the tablespace that the segment belongs to. If not, the new data can’t be inserted,
and you’ll get an Oracle error indicating that the operation failed due to the lack of space in the
tablespace.

You can write scripts to alert you that a tablespace is about to run out of space, but the database
itself can send you proactive space alerts for all locally managed tablespaces, including the undo
tablespace. The Oracle database stores information on tablespace space usage in its system global
area (SGA). The new Oracle background process MMON checks tablespace usage every ten minutes
and raises alerts when necessary.

The database will send out two types of tablespace out-of-space alerts: a warning alert and
a critical alert. The warning alert cautions you that a tablespace’s free space is running low, and the
critical alert tells you that you should immediately take care of the free space problem so the data-
base doesn’t issue “out of space” errors. Both of these alerts are based on threshold values called
warning and critical thresholds, which you can modify.

■Tip When you upgrade to Oracle Database 11g, by default, both the percent full and the bytes remaining alerts
are disabled. You must explicitly set both alerts yourself. For a given tablespace, you can use either or both types
of alerts.

Types of Alert Thresholds

There are two ways to set alert thresholds: you can specify that the database alert be based on the
percent of space used or on the number of free bytes left in the tablespace:

• Percent full: The database issues an alert when the space used in a tablespace reaches or
crosses a preset percentage of total space. For a new database, 85 percent full is the threshold
for the warning alerts, and 97 percent full is the threshold for the critical alerts. You can, if you
wish, change these values and set, for example, 90 and 98 percent as the warning and critical
thresholds.

• Bytes remaining: When the free space falls below a certain amount (specified in KB), Oracle
issues an alert. For example, you can use a warning threshold of 10,240KB and a critical
threshold of 4,096KB for a tablespace. By default, the “bytes remaining alerts” (both warning
and critical) in a new database are disabled, since the defaults for both types of bytes-
remaining thresholds are set to zero. You can set them to a size you consider appropriate for
each tablespace.

■Tip You can disable the warning or critical threshold tablespace alerts by setting the threshold values to zero.

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 227

Setting the Alert Thresholds

The easiest way to set and modify tablespace space alerts is by using the Oracle Enterprise Manager
(OEM). Just go to the OEM Home Page and select Administration ➤ Related Links ➤ Manage
Metrics ➤ Edit Thresholds. From the Edit Thresholds page, you can set warning and critical thresh-
olds for your tablespaces. You can also specify a response action when an alert is received, in the
form of a command or script that is made accessible to the Management Agent.

You can also use the Oracle-provided PL/SQL package DBMS_SERVER_ALERT to set warning
and critical space alerts. Listing 6-4 shows how you can set a “bytes remaining” alert threshold using
the warning value and the critical value attributes.

Listing 6-4. Setting a Tablespace Alert Threshold

SQL> BEGIN
 DBMS_SERVER_ALERT.SET_THRESHOLD(
 metrics_id => DBMS_SERVER_ALERT.TABLESPACE_BYT_FREE,
 warning_operator => DBMS_SERVER_ALERT.OPERATOR_LE,
 warning_value => '10240',
 critical_operator => DBMS_SERVER_ALERT.OPERATOR_LE,
 critical_value => '2048',
 observation_period => 1,
 consecutive_occurrences => 1,
 instance_name => NULL,
 object_type => DBMS_SERVER_ALERT.OBJECT_TYPE_TABLESPACE,
 object_name => 'USERS');
 END;
SQL>

In Listing 6-4, note that the warning_value attribute sets the bytes-remaining alert warning
threshold at 10MB and the critical_value attribute sets the critical threshold at 2MB.

You can always add a datafile to a tablespace to get it out of the low-free-space situation.
However, one easy way to avoid this problem altogether, in most cases, is to use autoextensible
tablespaces. Autoextensible tablespaces will automatically grow in size when table or index data
grows over time. For a new database, this may prove to be an excellent solution, saving you from out-
of-space errors if you create tablespaces that are too small and from wasting space if you create too
large a tablespace. It’s very easy to create an autoextensible tablespace—all you have to do is include
the AUTOEXTEND clause for the datafile when you create or alter a tablespace. Just make sure that you
have enough free storage to accommodate the autoextensible datafile.

Managing Logging of Redo Data
When you perform an insert, update, or delete operation, the database produces redo records to
protect the changed data. The database makes use of the redo records when it has to recover a data-
base following a media or an instance failure. However, the recording of the redo data creates an
overhead. When you perform an operation such as a create table as select . . . (CTAS) opera-
tion, you really don’t need the redo data, because you can rerun the statement if it fails midway. You
can’t switch off the production of redo data for normal DML activity in your database. However, you
can do so for a direct load operation, as I explain in Chapter 14.

You can specify the NOLOGGING clause when you create a tablespace, so the database doesn’t
produce any redo records for any of the objects in that tablespace. When you specify the NOLOGGGING
option in a CREATE TABLESPACE statement, all database objects that you create in that tablespace will
inherit that attribute. However, you can specify the LOGGING clause in a CREATE TABLE or ALTER TABLE
statement to override the NOLOGGING clause that you specified for the tablespace.

228 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

Managing the Availability of a Tablespace

You can change the status of a tablespace to offline, to make a tablespace or a set of tablespaces
unavailable to the users of the database. When you make a tablespace offline, all tables and indexes
in that tablespace become out of reach of the users. You normally take tablespaces offline when you
want to make an application unavailable to users by or when you want to perform management
operations such as renaming or relocation the datafiles that are part of a tablespace. When you take
a tablespace offline, the database automatically takes all datafiles that are part of that tablespace
offline.

You can’t take the System or the temporary tablespaces offline. You can specify either the
NORMALl, TEMPORARY, or IMMEDIATE parameters as options to the tablespace offline statement. Here’s
how you choose among the three options:

• If there are no error conditions for any of the datafiles of tablespace, use the OFFLINE NORMAL
clause, which is the default when you offline a tablespace.

• Using the OFFLINE NORMAL clause is considered taking a tablespace offline cleanly, which
means the database won’t have to perform a media recovery on the tablespace before
bringing it back online. If you can’t take the tablespace offline with the OFFLINE NORMAL clause,
specify the OFFLINE TEMPORARY clause. If the NORMAL and TEMPORARY settings don’t work, specify
the OFFLINE IMMEDIATE clause, as shown here:

SQL> ALTER TABLESPACE users OFFLINE IMMEDIATE;

When you specify the OFFLINE IMMEDIATE clause, the database requires media recovery of the
tablespace before it can bring the tablespace online.

When you are ready to bring a tablespace online, issue the following statement:

SQL> ALTER TABLESPACE <tablespace_name> ONLINE;

Renaming Tablespaces
You can rename tablespaces by using the ALTER TABLESPACE statement, as shown here:

SQL> ALTER TABLESPACE test01 RENAME TO test02;

Tablespace altered.
SQL>

You can rename both permanent and temporary tablespaces, but there are a few restrictions:

• You can’t rename the System and Sysaux tablespaces.

• The tablespace being renamed must have all its datafiles online.

• If the tablespace is read-only, renaming it doesn’t update the file headers of its datafiles.

Sometimes, you may need to rename a datafile. The process for this is straightforward:

1. Take the datafile offline by taking its tablespace offline. Use the following command:

SQL> ALTER TABLESPACE test01 OFFLINE NORMAL;

 Tablespace altered.
SQL>

2. Rename the file using an operating system utility such as cp or mv in UNIX, or copy in
Windows.

$ cp /u01/app/oracle/test01.dbf /u02/app/oracle/test01.dbf

3. Rename the datafile before bringing it online by using the following command:

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 229

SQL> ALTER TABLESPACE test01
 2 RENAME DATAFILE
 3 '/u01/app/oracle/test01.dbf'
 4 TO
 5* '/u02/app/oracle/test01.dbf';

Tablespace altered.
SQL>

Read-Only Tablespaces
By default, all Oracle tablespaces are both readable and writable when created. However, you can
specify that a tablespace cannot be written to by making it a read-only tablespace. The command to
do so is simple:

SQL> ALTER TABLESPACE test01 READ ONLY;

If you want to make this read-only tablespace writable again, you can use the following
command:

SQL> ALTER TABLESPACE test01 READ WRITE;

Taking Tablespaces Offline
Except for the System tablespace, you can take any or all of the tablespaces offline—that is, you can
make them temporarily unavailable to users. You usually need to take tablespaces offline when a
datafile within a tablespace contains errors or you are changing code in an application that accesses
one of the tablespaces being taken offline.

Four modes of offlining are possible with Oracle tablespaces: normal, temporary, immediate,
and for recovery. Except for the normal mode, which is the default mode of taking tablespaces offline,
all the other modes can involve recovery of the included datafiles or the tablespace itself. You can
take any tablespace offline with no harm by using the following command:

SQL> ALTER TABLESPACE index_01 OFFLINE NORMAL;

Oracle will ensure the checkpointing of all the datafiles in the tablespace (index_01 in this
example) before it takes the tablespace offline. Thus, there is no need for recovery when you later
bring the tablespace back online.

To bring the tablespace online, use the following command:

SQL> ALTER TABLESPACE index_01 ONLINE;

Temporary Tablespaces
A temporary tablespace, contrary to what the name might indicate, does exist on a permanent basis
as do other tablespaces, such as the System and Sysaux tablespaces. However, the data in a tempo-
rary tablespace is of a temporary nature, which persists only for the length of a user session. Oracle
uses temporary tablespaces as work areas for tasks such as sort operations for users and sorting
during index creation. Oracle doesn’t allow users to create objects in a temporary tablespace. By
definition, the temporary tablespace holds data only for the duration of a user’s session, and the
data can be shared by all users. The performance of temporary tablespaces is extremely critical
when your application uses sort- and hash-intensive queries, which need to store transient data in
the temporary tablespace.

230 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

■Note Oracle writes data in the program global area (PGA) in 64KB chunks. Therefore, Oracle advises you to
create temporary tablespaces with extent sizes that are multiples of 64KB. For large data warehousing and deci-
sion-support system databases, which make extensive use of temporary tablespaces, the recommended extent size
is 1MB.

The very first statement after starting up an instance that uses the temporary tablespace creates
a sort segment, which is shared by all sort operations in the instance. When you shut down the data-
base, the database releases this sort segment. You can query the V$SORT_SEGMENT view to review
the allocation and deallocation of space to this sort segment. You can see who’s currently using the
sort segment by querying the V$SORT_USAGE view. Use the V$TEMPFILE and DBA_TEMP_FILES
views to find out details about the tempfiles currently allocated to a temporary tablespace.

As mentioned earlier, you must use the TEMPFILE clause when specifying the files that are part of
any temporary tablespace. There is really no difference, as far as you are concerned, between a DATA-
FILE clause that you specify for permanent tablespaces and the TEMPFILE clause you specify for
temporary tablespaces. However, Oracle distinguishes between the two types of files. Tempfiles
have little or no redo data associated with them.

Creating a Temporary Tablespace
You create a temporary tablespace the same way as you do a permanent tablespace, with the differ-
ence being that you specify the TEMPORARY clause in the CREATE TABLESPACE statement and substitute
the TEMPFILE clause for the DATAFILE clause. Here’s an example:

SQL> CREATE TEMPORARY TABLESPACE temp_demo
 TEMPFILE 'temp01.dbf' SIZE 500M
 AUTOEXTEND ON;

The SIZE clause in the second line specifies the size of the datafile and hence the size of the
temporary tablespace, as 500MB. In the preceding statement, the AUTOEXTEND ON clause will automat-
ically extend the size of the temporary file, and thus the size of the temporary tablespace. By default,
all temporary tablespaces are created with uniformly sized extents, with each extent sized at 1MB.
You can, however, specify the UNIFORM SIZE clause to specify a nondefault extent size, as shown in
the following statement:

SQL> CREATE TEMPORARY TABLESPACE temp_demo
 TEMPFILE 'temp01.dbf' SIZE 500M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 16M;

In the previous statement, the EXTENT MANAGEMENT clause is optional. The UNIFORM SIZE clause
specifies a custom extent size of 16MB instead of the default extent size of 1MB.

■Tip You use the TEMPFILE clause, not the DATAFILE clause, when you allocate space to a temporary
tablespace.

It’s common to create a single temporary tablespace (usually named Temp) for each database,
but you can have multiple temporary tablespaces, which are part of a temporary tablespace group,
if your database needs them to support heavy sorting operations.

In order to drop a default temporary tablespace, you must first use the ALTER TABLESPACE
command to create a new default tablespace for the database. You can then drop the previous
default temporary tablespace like any other tablespace.

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 231

■Note Oracle recommends that you use a locally managed temporary tablespace with a 1MB uniform extent size
as your default temporary tablespace.

Altering a Temporary Tablespace
You can issue the ALTER TEMPORARY TABLESPACE statement to perform various temporary tablespace
management tasks, including adding a tempfile to grow a temporary tablespace. Here’s an example
showing how you can make the temporary tablespace larger:

SQL> ALTER TABLESPACE temp
 ADD TEMPFILE '/u01/app/oracle/tempfile/tempo3.dbf' size 1000M reuse;

You can similarly use the following ALTER TABLESPACE command to resize a tempfile:

SQL> ALTER DATABASE TEMPFILE '/u01/app/oracle/tempfile/temp03.dbf'
 RESIZE 200M;

And you can use the following statement to drop a tempfile and remove the operating system
file:

SQL> ALTER DATABASE TEMPFILE '/u01/app/oracle/tempfile/temp03.dbf'
 DROP INCLUDING DATAFILES;

When you drop a tempfile belonging to a temporary tablespace, the tablespace itself will remain
in use.

You can shrink a temporary tablespace, just as you can a normal tablespace. The following
example shows how to issue the ALTER TABLESPACE statement to shrink a temporary tablespace:

SQL> ALTER TABLESPACE temp SHRINK SPACE KEEP 500m;

Shrinking Temporary Tablespaces
You may have to increase the size of a temporary tablespace to accommodate an unusually large job
that makes use of the temporary tablespace. After the completion of the job, you can shrink the
temporary tablespace using the clause SHRINK SPACE in an ALTER TABLESPACE statement. Here’s an
example:

SQL> ALTER TABLESPACE temp SHRINK SPACE;

Tablespace altered.
SQL>

The SHRINK SPACE clause will shrink all tempfiles to a minimum size, which is about 1MB. You
can employ the KEEP clause to specify a minimum size for the tempfiles, as shown here:

SQL> ALTER tablespace temp SHRINK SPACE
 KEEP 250m;

Oracle uses a peculiar logic when shrinking tempfiles in a temporary tablespace. Let’s say you
have a temporary tablespace that contains two 1GB tempfiles. You issue a command to shrink the
tablespace to 1GB, a shown here:

SQL> ALTER TABLESPACE temp SHRINK SPACE KEEP 1000M;

Tablespace altered.
SQL>

If you query the V$TEMPFILE view, you’ll see this:

232 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

SQL> SELECT file#, name, bytes/1024/1024 mb FROM v$tempfile;

FILE# NAME MB
----- ------------------------------------ ---------
1 /u01/app/oracle/tempfile/temp01.dbf 999.9375
2 /u01/app/oracle/tempfile/temp02.dbf' 1.0625

The database shrinks one of the two tempfiles all the way down to 1MB and the other only by
1MB, leaving 999MB of space intact in that tempfile. If your goal is to shrink a particular tempfile
down to a certain minimum, you can do so by specifying the name of the particular tempfile you
want to shrink, as shown here:

SQL> ALTER TABLESPACE temp SHRINK SPACE
 TEMPFILE tempfile '/u01/app/oracle/oradata/prod1/temp02.dbf'
 KEEP 100m;

Tablespace altered.
SQL>

The ALTER TABLESPACE statement shown here shrinks just the tempfile you list by the amount
you specify with the KEEP clause. It leaves the other tempfiles in the TEMP tablespace alone. The KEEP
clause in the previous statement ensures that the tempfile I specify retains 500MB of space. The
following example shows how to shrink a single tempfile without any specific retained space:

SQL> ALTER TABLESPACE temp
 SHRINK tempfile '/u01/app/oracle/tempfile/temp03.dbf';

Since I didn’t specify the KEEP clause in the previous statement, the database shrinks the temp-
file I specified to the minimum possible size, which is about 1MB.

Default Temporary Tablespace
When you create database users, you must assign a default temporary tablespace in which they can
perform their temporary work, such as sorting. If you neglect to explicitly assign a temporary
tablespace, the users will use the critical System tablespace as their temporary tablespace, which
could lead to fragmentation of that tablespace, besides filling it up and freezing database activity.
You can avoid these undesirable situations by creating a default temporary tablespace for the data-
base when creating a database by using the DEFAULT TEMPORARY TABLESPACE clause. Oracle will then
use this as the temporary tablespace for all users for whom you don’t explicitly assign a temporary
tablespace. I show the creation of the default temporary tablespace in Chapter 10, where I explain
how to create a new Oracle database.

Note that if you didn’t create a default temporary tablespace while creating your database, it
isn’t too late to do so later. You can just create a temporary tablespace, as shown in the preceding
example, and make it the default temporary tablespace for the database, with a statement like this:

SQL> ALTER DATABASE DEFAULT TEMPORARY TABLESPACE temptbs02;

You can find out the name of the current default temporary tablespace for your database by
executing the following query:

SQL> SELECT PROPERTY_NAME, PROPERTY_VALUE
 FROM database_properties
 WHERE property_name='DEFAULT_TEMP_TABLESPACE';

PROPERTY_NAME PROPERTY_VALUE
----------------------- -----------------
DEFAULT_TEMP_TABLESPACE TEMP

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 233

■Note You can’t use the AUTOALLOCATE clause for temporary tablespaces. By default, all temporary tablespaces
are created with locally managed extents of a uniform size. The default extent size is 1MB, as for all other tablespaces,
but you can use a different extent size if you wish when creating the temporary tablespace.

Temporary Tablespace Groups
Large transactions can sometimes run out of temporary space. Large sort jobs, especially those
involving tables with many partitions, lead to heavy use of the temporary tablespaces, thus poten-
tially leading to a performance hit. Oracle Database 10g introduced the concept of a temporary
tablespace group, which allows a user to utilize multiple temporary tablespaces simultaneously in
different sessions.

Here are some of the main characteristics of a temporary tablespace group:

• A temporary tablespace group must consist of at least one tablespace. There is no explicit
maximum number of tablespaces.

• If you delete all members from a temporary tablespace group, the group is automatically
deleted as well.

• A temporary tablespace group has the same namespace as the temporary tablespaces that are
part of the group.

• The name of a temporary tablespace cannot be the same as the name of any tablespace
group.

• When you assign a temporary tablespace to a user, you can use the temporary tablespace
group name instead of the actual temporary tablespace name. You can also use the tempo-
rary tablespace group name when you assign the default temporary tablespace for the
database.

Benefits of Temporary Tablespace Groups

Using a temporary tablespace group, rather than the usual single temporary tablespace, provides
several benefits:

• SQL queries are less likely to run out of sort space because the query can now simultaneously
use several temporary tablespaces for sorting.

• You can specify multiple default temporary tablespaces at the database level.

• Parallel execution servers in a parallel operation will efficiently utilize multiple temporary
tablespaces.

• A single user can simultaneously use multiple temporary tablespaces in different sessions.

Creating a Temporary Tablespace Group

When you assign the first temporary tablespace to a tablespace group, you automatically create the
temporary tablespace group. To create a tablespace group, simply specify the TABLESPACE GROUP
clause in the CREATE TABLESPACE statement, as shown here:

SQL> CREATE TEMPORARY TABLESPACE temp01
 TEMPFILE '/u01/oracle/oradata/temp01_01.dbf'
 SIZE 500M TABLESPACE GROUP tmpgrp1;

The preceding SQL statement will create a new temporary tablespace, temp01, along with the
new tablespace group named tmpgrp1. Oracle creates the new tablespace group because the key
clause TABLESPACE GROUP was used while creating the new temporary tablespace.

234 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

You can also create a temporary tablespace group by specifying the same TABLESPACE GROUP
clause in an ALTER TABLESPACE command, as shown here:

SQL> ALTER TABLESPACE temp02
 TABLESPACE GROUP tmpgrp1

Tablespace altered.
SQL>

The preceding statement will cause Oracle to create a new group named tmpgrp1, since there
wasn’t a prior temporary tablespace group with that name.

If you specify a pair of quotes ('') for the tablespace group name, you are implicitly telling
Oracle not to allocate that temporary tablespace to a tablespace group. Here’s an example:

SQL> CREATE TEMPORARY TABLESPACE temp02
 TEMPFILE '/u01/oracle/oradata/temp02_01.dbf' SIZE 500M
 TABLESPACE GROUP '';

The preceding statement creates a temporary tablespace called temp02, which is a regular
temporary tablespace and doesn’t belong to a temporary tablespace group.

If you completely omit the TABLESPACE GROUP clause, you’ll create a regular temporary
tablespace, which is not part of any temporary tablespace group:

SQL> CREATE TEMPORARY TABLESPACE temp03
 TEMPFILE '/u01/oracle/oradata/temp03_01.dbf' SIZE 500M;
 Tablespace created.
SQL>

Adding a Tablespace to a Temporary Tablespace Group

As shown in the preceding section, you can add a temporary tablespace to a group by using the ALTER
TABLESPACE command. You can also change which group a temporary tablespace belongs to by using
the ALTER TABLESPACE command. For example, you can specify that the tablespace temp02 belongs
to the tmpgrp2 group by issuing the following statement:

SQL> ALTER TABLESPACE temp02 TABLESPACE GROUP tmpgrp2;

The database will create a new group with the name tmpgrp2 if there is no such group already.

Setting a Group as the Default Temporary Tablespace for the Database

You can use a temporary tablespace group as your default temporary tablespace for the database. If
you issue the following statement, all users without a default tablespace can use any temporary
tablespace in the tmpgrp1 group as their default temporary tablespaces:

SQL> ALTER DATABASE DEFAULT TEMPORARY TABLESPACE tmpgrp1;

The preceding ALTER DATABASE statement assigns all the tablespaces in tmpgrp1 as the default
temporary tablespaces for the database.

Assigning Temporary Tablespace Groups When Creating and Altering Users

When you create new users, you can assign them to a temporary tablespace group instead of to the
usual single temporary tablespace. Here’s an example:

SQL> CREATE USER salapati IDENTIFIED BY sammyy1
 DEFAULT TABLESPACE users
 TEMPORARY TABLESPACE tmpgrp1;
User created.

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 235

SQL>

Once you create a user, you can also use the ALTER USER statement to change the temporary
tablespace group of the user. Here’s a SQL statement that does this:

SQL> ALTER USER salapati TEMPORARY TABLESPACE tmpgrp2;

Viewing Temporary Tablespace Group Information

You can use the new DBA_TABLESPACE_GROUPS data dictionary view to manage the temporary
tablespace groups in your database. Here is a simple query on the view that shows the names of all
tablespace groups:

SQL> SELECT group_name, tablespace_name
 FROM dba_tablespace_groups;

GROUP_NAME TABLESPACE_NAME
---------- ---------------
TMPGRP1 TEMP01
SQL>

You can also use the DBA_USERS view to find out which temporary tablespaces or temporary
tablespace groups are assigned to each user. Here’s an example:

SQL> SELECT username, temporary_tablespace
 FROM dba_users;

USERNAME TEMPORARY_TABLESPACE
-------- ---------------------
SYS TEMP
SYSTEM TEMP
SAM TMPGRP1
SCOTT TEMP
. . .
SQL>

Default Permanent Tablespaces
Prior to the Oracle Database 10g release, the System tablespace was the default permanent
tablespace for any users you created if you neglected to assign the user to a default tablespace. As of
Oracle Database 10g, you can create a default permanent tablespace to which a new user will be
assigned if you don’t assign a specific default tablespace when you create the user.

■Note You can’t drop a default permanent tablespace without first creating and assigning another tablespace as
the new default tablespace.

To find out what the current permanent tablespace for your database is, use the following
query:

SQL> SELECT property_value FROM database_properties
 WHERE property_name='DEFAULT_PERMANENT_TABLESPACE';

PROPERTY_VALUE

236 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

USERS
SQL>

You can create a default permanent tablespace when you first create a database, as shown here:

CREATE DATABASE
DATAFILE '/u01/app/oracle/test/system01.dbf' SIZE 500M
SYSAUX DATAFILE '/u01/app/oracle/syaux01.dbf' SIZE 500M
DEFAULT TABLESPACE users
DATAFILE '/u01/app/oracle/users01.dbf' SIZE 250M
. . .

The previous CREATE DATABASE statement results in the creation of a default permanent
tablespace named users, created by using the DEFAULT TABLESPACE clause (shown in the last two lines
of the statement).

■Note The database creation process is explained in detail in Chapter 10.

You can also create or reassign a default permanent tablespace after database creation, by using
the ALTER DATABASE statement, as shown here:

SQL> ALTER DATABASE DEFAULT TABLESPACE users;

Bigfile Tablespaces
Oracle Database 11g can contain up to 8 exabytes (8 million terabytes) of data. Don’t panic, however,
thinking how many millions of datafiles you’d need to manage in order to hold this much data.
You have the option of creating really big tablespaces called, appropriately, bigfile tablespaces. A
bigfile tablespace (BFT) contains only one very large datafile. If you’re creating a bigfile-based
permanent tablespace, it’ll be a single datafile, and if it’s a temporary tablespace, it will be a single
temporary file. The maximum number of datafiles in Oracle is limited to 64,000 files. So, if you’re
dealing with an extremely large database, using bigfile tablespaces ensures you don’t bump against
the ceiling for the number of datafiles in your database.

Depending on the block size, a bigfile tablespace can be as large as 128 terabytes. In previous
versions of Oracle, you always had to keep in mind the distinction between datafiles and tablespaces.
Now, using the bigfile concept, Oracle has made a tablespace logically equal to a datafile by creating
the new one-to-one relationship between tablespaces and datafiles. With Oracle Managed Files
(OMF), datafiles are completely transparent to you when you use a BFT, and you can directly deal
with the tablespace in many kinds of operations.

■Note The traditional tablespaces are now referred to as smallfile tablespaces. Smallfile tablespaces are the
default tablespaces in Oracle Database 11g. You can have both smallfile and bigfile tablespaces in the same
database.

Here’s a summary of the benefits offered by using BFTs:

• You only need to create as many datafiles as there are tablespaces.

• You don’t have to constantly add datafiles to your tablespaces.

• Datafile management in large databases is simplified—you deal with a few tablespaces
directly, not many datafiles.

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 237

• Storage capacity is significantly increased because you don’t reach the maximum-files limita-
tion quickly when you use BFTs.

Restrictions on Using Bigfile Tablespaces
There are few restrictions on using BFTs. You can use them only if you use a locally managed
tablespace with automatic segment space management. By now, you know that locally managed
tablespaces with automatic segment space management are the default in Oracle Database 11g
Release 1. Oracle also recommends that you use BFTs along with a Logical Volume Manager or Auto-
mated Storage Management feature that supports striping and mirroring. Otherwise, you can’t
really support the massive datafiles that underlie the BFT concept. Both parallel query execution
and RMAN backup parallelization would be adversely impacted if you used BFTs without striping.

To avoid creating millions of extents when you use a BFT in a very large (greater than one tera-
byte) database, Oracle recommends that you change the extent allocation policy from AUTOALLOCATE,
which is the default, to UNIFORM and set a very high extent size. In databases that aren’t very large,
Oracle recommends that you stick to the default AUTOALLOCATE policy and simply let Oracle take care
of the extent sizing.

Creating Bigfile Tablespaces
You can create bigfile tablespaces in three different ways: you can specify them at database creation
time and thus make them the default tablespace type, you can use the CREATE BIGFILE statement, or
you can use the ALTER DATABASE statement to set the default type to a BFT tablespace. Let’s look into
each of these methods in the following sections.

You can specify BFTs as the default tablespace type during database creation. If you don’t
explicitly specify BFT as your default tablespace type, your database will have the traditional small-
file tablespace as the default.

Here’s a portion of the CREATE DATABASE statement, showing how you specify a BFT:

SQL> CREATE DATABASE
 SET DEFAULT BIGFILE tablespace
 . . .

Once you set the default tablespace type to bigfile tablespaces, all tablespaces you create subse-
quently will be BFTs unless you manually override the default setting, as shown shortly.

Irrespective of which default tablespace type you choose—bigfile or smallfile—you can always
create a bigfile tablespace by specifying the type explicitly in the CREATE TABLESPACE statement, as
shown here:

SQL> CREATE BIGFILE TABLESPACE bigtbs_01
 DATAFILE '/u01/oracle/data/bigtbs_01.dbf' SIZE 100G
 . . .

In the preceding statement, the explicit specification of the BIGFILE clause will override the
default tablespace type, if it was a smallfile type. Conversely, if your default tablespace type is
BIGFILE, you can use the SMALLFILE keyword to override the default type when you create a
tablespace.

When you specify the CREATE BIGFILE TABLESPACE clause, Oracle will automatically create a
locally managed tablespace with automatic segment space management. You can specify the data-
file size in kilobytes, megabytes, gigabytes, or terabytes.

■Tip On operating systems that don’t support large files, the bigfile size will be limited by the maximum file size
that the operating system can support.

238 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

You can dynamically change the default tablespace type to bigfile or smallfile, thus making all
tablespaces you subsequently create either bigfile or smallfile type tablespaces. Here’s an example
that shows how to set the default tablespace type in your database to bigfile:

SQL> ALTER TABLESPACE SET DEFAULT BIGFILE TABLESPACE;

You can also migrate database objects from a smallfile tablespace to a bigfile tablespace, or vice
versa, after changing a tablespace’s type. You can migrate the objects using the ALTER TABLE . . .
MOVE or the CREATE TABLE AS SELECT commands. Or you can use the Data Pump Export and Import
tools to move the objects between the two types of tablespaces.

Altering a Bigfile Tablespace
You can use the RESIZE and AUTOEXTEND clauses in the ALTER TABLESPACE statement to modify the size
of a BFT. Note that both these space-extension clauses can be used directly at the tablespace, not the
file, level. Thus, both of these clauses provide datafile transparency—you deal directly with the
tablespaces and ignore the underlying datafiles.

Here are more details about the two clauses:

• RESIZE: The RESIZE clause lets you resize a BFT directly, without using the DATAFILE clause, as
shown here:

SQL> ALTER TABLESPACE bigtbs RESIZE 120G;

• AUTOEXTEND: The AUTOEXTEND clause enables automatic file extension, again without referring
to the datafile. Here’s an example:

SQL> ALTER TABLESPACE bigtbs AUTOEXTEND ON NEXT 20G;

Viewing Bigfile Tablespace Information
You can gather information about the BFTs in your database by using the following data dictionary
views:

• DBA_TABLESPACES

• USER_TABLESPACES

• V$TABLESPACE

All three views have the new BIGFILE column, whose value indicates whether a tablespace is of
the BFT type (YES) or smallfile type (NO).

You can also use the DATABASE_PROPERTIES data dictionary view, as shown in the following
query, to find out what the default tablespace type for your database is:

SQL> SELECT property_value
 FROM database_properties
 WHERE property_name='DEFAULT_TBS_TYPE';

PROPERTY_VALUE

SMALLFILE
SQL>

Managing the Sysaux Tablespace
Oracle Database 10g mandates the creation of the Sysaux tablespace, which serves as an auxiliary
tablespace to the System tablespace. Until now, the System tablespace was the default location for

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 239

storing objects belonging to components like the Workspace Manager, Logical Standby, Oracle
Spatial, LogMiner, and so on. The more features the database offered, the greater was the demand
for space in the System tablespace. In addition, several features had to be accommodated in their
own repositories, like the Enterprise Manager and its Repository. On top of all this, you had to create
a special tablespace for the Statspack Repository.

To alleviate this pressure on the System tablespace and to consolidate all the repositories for the
various Oracle features, Oracle Database 10g offers the Sysaux tablespace as a centralized single
storage location for various database components. Using the Sysaux tablespace offers the following
benefits:

• There are fewer tablespaces to manage because you don’t have to create a separate
tablespace for many database components. You just assign the Sysaux tablespace as the
default location for all the components.

• There is reduced pressure on the System tablespace.

The size of the Sysaux tablespace depends on the size of the database components that you’ll
store in it. Therefore, you should base your Sysaux tablespace sizing on the components and features
that your database will use. Oracle recommends that you create the Sysaux tablespace with a
minimum size of 240MB. Generally, the OEM repository tends to be the largest user of the Sysaux
tablespace.

Creating the Sysaux Tablespace
If you use the Oracle Database Configuration Assistant (DBCA), you can automatically create the
Sysaux tablespace when you create a new database, whether it is based on the seed database or a
completely new, built-from-scratch, user-defined database. During the course of creating a data-
base, the DBCA asks you to select the file location for the Sysaux tablespace. When you upgrade a
database to Oracle Database 10g, the Database Upgrade Assistant will similarly prompt you for the
file information for creating the new Sysaux tablespace.

■Tip The Sysaux tablespace is mandatory, whether you create a new Oracle Database or migrate from a release
prior to Oracle Database 10g.

You can create the Sysaux tablespace manually at database creation time. Here is the syntax for
creating the Sysaux tablespace:

CREATE DATABASE mydb
USER sys IDENTIFIED BY abc1def
USER system IDENTIFIED BY uvw2xyz
. . .
SYSAUX DATAFILE '/u01/oracle/oradata/mydb/sysaux01.dbf' SIZE 500M REUSE
. . .

If you omit the SYSAUX creation clause from the CREATE DATABASE statement, Oracle will create
both the System and Sysaux tablespaces automatically, with their datafiles being placed in system-
determined default locations. If you are using Oracle Managed Files, the datafile location will be
dependent on the OMF initialization parameters. If you include the DATAFILE clause for the System
tablespace, you must use the DATAFILE clause for the Sysaux tablespace as well, unless you are using
OMF.

You can only set the datafile location when you create the Sysaux tablespace during database
creation, as shown in the preceding example. Oracle sets all the other attributes, which are manda-
tory and not changeable, with the ALTER TABLESPACE command. Once you provide the datafile
location and size, Oracle creates the Sysaux tablespace with the following attributes:

240 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

• Permanent

• Read/write

• Locally managed

• Automatic segment space management

You can alter the Sysaux tablespace using the same ALTER TABLESPACE command that you use for
other tablespaces. Here’s an example:

SQL> ALTER TABLESPACE sysaux ADD DATAFILE
 '/u01/app/oracle/prod1/oradata/sysaux02.dbf' SIZE 500M;

Usage Restrictions for the Sysaux Tablespace
Although using the ALTER TABLESPACE command to change the Sysaux tablespace may make it seem
as if the Sysaux tablespace is similar to the other tablespaces in your database, several usage features
set the Sysaux tablespace apart. Here are the restrictions:

• You can’t drop the Sysaux tablespace by using the DROP TABLESPACE command during normal
database operation.

• You can’t rename the Sysaux tablespace during normal database operation.

• You can’t transport a Sysaux tablespace like other tablespaces.

Encrypting Tablespaces
Oracle has been gradually improving its encryption capabilities over the years. In Oracle8i, Oracle
introduced the DBMS_OBFUSCATION_TOOLKIT package, and in the Oracle 10.1 release, Oracle
introduced the DBMS_CRYPTO package to facilitate encryption. Both the toolkit and the
DBMS_CRYPTO package required the application to manage the encryption keys and call the API to
perform the necessary encryption/decryption operations.

Why You Need Encrypted Tablespaces
In Oracle Database, Oracle introduced the new Transparent Data Encryption (TDE) feature, which
let you easily encrypt a column’s data in a table. The encryption is called transparent because the
Oracle database takes care of all the encryption and decryption details, with no need for you to
manage any tables or triggers to decrypt data. Now, in Oracle Database 11g, you can encrypt an
entire tablespace by simply using a pair of special clauses during tablespace creation. Encrypting a
tablespace keeps the data in the tablespaces from being accessed by unauthorized users directly
from the operating system file system. Encryption lets you safely send backup media to offsite
storage or other locations.

When you encrypt a column(s) for a table, there are limitations on certain queries. By
encrypting the entire tablespace, some of these restrictions are removed. For example, in Oracle
Database 10g, you can’t encrypt a column if that column is part of a foreign key or used in another
database constraint. By encrypting the tablespace, this restriction is lifted. Following are additional
considerations to using tablespace-level encryption:

• Function-based indexes

• Index range scans

• Data type restrictions

• Partitioned/subpartitioned tables

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 241

Tablespace encryption depends on the transparent data encryption feature of the Oracle data-
base, which requires you to create and maintain a secure credentials repository called an Oracle
Wallet to store the master encryption key for the database.

Creating the Oracle Wallet
An Oracle Wallet is a container to store authentication and signing credentials. The tablespace
encryption feature relies on the Oracle Wallet to store and protect the master key used in the encryp-
tion. There are two kinds of Oracle Wallets—encryption wallets and auto-open wallets. You must
manually open an encryption wallet after database startup, whereas the auto-open wallet automat-
ically opens upon database startup. The encryption wallet is commonly recommended for table-
space encryption, unless you’re dealing with unattended Oracle Data Guard environments, in which
case the automatic opening of the wallet comes in handy.

■Note Although you can’t create an encrypted undo tablespace or temporary tablespace, when the database
writes data from any encrypted tablespace to the undo tablespace or the temporary tablespace (or the redo log
files), it automatically encrypts the data. Thus, you don’t have to encrypt the undo or the temporary tablespace.

The Oracle Wallet, which is actually a file in your directory system, is named ewallet.p12 under
both Windows and UNIX/Linux based systems. The location where Oracle stores this file is operating
system specific. However, you can specify a nondefault location by using the parameter
ENCRYPTION_WALLET_LOCATION in the sqlnet.ora file, as shown here:

ENCRYPTION_WALLET_LOCATION =
 (SOURCE=
 (METHOD=file)
 (METHOD_DATA=
 (DIRECTORY=/apps/oracle/general/wallet)))

In order to use TDE, you must have the ALTER SYSTEM privilege as well as have a password for an
Oracle Wallet. If you don’t have an Oracle Wallet, you must create one and then add a master key to
it. You can create the Oracle Wallet in several ways:

• By invoking the Oracle Wallet Manager through a GUI interface

• By invoking the Oracle Wallet Manager by issuing the command owm at the command line

• By using the mkstore command from the operating system command line

■Tip Use the following syntax to create a wallet from the OS:

mkstore -wrl $ORACLE_BASE/admin/$ORACLE_SID/wallet –create
Enter password:
Enter

However, the simplest way to create the Oracle Wallet is by using a SQL statement, which is the
method we use here. Before you create the Oracle Wallet, you must first create a directory named
wallet under the directory $ORACLE_BASE/admin/$ORACLE_SID. If you don’t do this, you’ll get the error
ORA-28368: “Cannot auto-create wallet.” The most straightforward way to create the wallet is to use
the following command in SQL*Plus:

 SQL> ALTER SYSTEM SET ENCRYPTION KEY IDENTIFIED BY "password"

242 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

System altered.

SQL>

The ALTER SYSTEM statement shown here both creates the wallet, if it doesn’t already exist, and
adds a master key to it. You must, of course, replace the word “password” with your own password
for the wallet.

The ALTER SYSTEM statement you issued in the previous example works in the following way:

• If you already have an Oracle Wallet, it opens that wallet and creates (or re-creates) the master
encryption key.

• If you don’t have an Oracle Wallet already, it creates a new wallet, opens the wallet, and
creates a new master encryption key.

Now that you’ve successfully created the Oracle Wallet, you’re ready to encrypt tablespaces
using the new tablespace encryption feature.

Creating an Encrypted Tablespace
Once you create the Oracle Wallet, creating an encrypted tablespace is a breeze. The tablespace
creation statement for an encrypted tablespace has the following syntax:

SQL> CREATE TABLESPACE <tbsp_name>
 ENCRYPTION
 DEFAULT STORAGE(encrypt)

The ENCRYPTION clause in the second line doesn’t actually encrypt the tablespace. You merely
provide the encryption properties by setting values for the keyword ENCRYPTION. You may specify the
USING clause to specify the name of the encryption algorithm you want to use, such as 3DES168,
AES128, AES192, and AES256, unless you want to use the default algorithm of AES128, in which case
you can omit the USING clause altogether.

It’s the ENCRYPT keyword passed to the STORAGE clause in the third line that performs the actual
encryption of the tablespace. In the following text, let’s review how to encrypt a tablespace.

Following is an example showing how to create a simple encrypted tablespace that uses the
default DES128 encryption. Since you don’t have to specify the default encryption level, you don’t
specify the USING clause for the encryption clause in line 3.

SQL> CREATE TABLESPACE encrypt1
 2 DATAFILE 'c:\orcl11\app\oracle\oradata\eleven\encrypt_01.dbf'
 3 SIZE 100m
 4 ENCRYPTION
 5* DEFAULT STORAGE (encrypt);

Tablespace created.
SQL>

The new column encrypted in the DBA_TABLESPACES table lets you check the encryption
status of a tablespace:

SQL> SELECT tablespace_name,encrypted
 FROM dba_tablespaces;

TABLESPACE_NAME ENC
--------------- ------
SYSTEM NO
SYSAUX NO
UNDOTBS1 NO
TEMP NO

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 243

USERS NO
ENCRYPT1 YES

6 rows selected.

SQL>

The query reveals that the encrypt1 tablespace is encrypted.
You can query the V$ENCRYPTED_TABLESPACES view to see the name and encryption algo-

rithm of all encrypted tablespaces in the database, as shown here:

SQL> SELECT t.name, e.encryptionalg_algorithm
 FROM v$tablespace t, v$encrypted_tablespace e
 WHERE t.ts# = e.ts#;

Data Dictionary Views for Managing Tablespaces
In order to manage tablespaces in an Oracle database, you’ll want to get familiar with a few key
dictionary views:

• DBA_TABLESPACES

• DBA_FREE_SPACE

• DBA_SEGMENTS

• DBA_DATA_FILES

• DBA_TABLESPACE_GROUPS

In addition to these views, the dynamic performance views V$DATAFILE and V$FILESTAT are
also very useful in managing and monitoring the use of tablespaces in your database. I explain the
key dictionary views briefly in the following sections.

DBA_TABLESPACES
The DBA_TABLESPACES view is a very important dictionary view for managing tablespaces. Using
this view, you can find out various things about tablespaces, such as whether they are offline or
online; whether they are undo, permanent, or temporary; what the extent management type, the
allocation type, and the segment space management type are; and whether they are made up of
smallfiles or a bigfile. You’ve already seen how to use this view in the “Creating Tablespaces” section
of this chapter. You can use the DBA_TABLESPACES dictionary view to find out important informa-
tion about a tablespace, including the following:

• Initial extent size

• Next extent size

• Default maximum number of extents

• Status (online, offline, or read-only)

• Contents (permanent, temporary, or undo)

• Type of extent management (DICTIONARY or LOCAL)

• Segment space management (AUTO or MANUAL)

DBA_FREE_SPACE
The DBA_FREE_SPACE view tells you how much free space you have in the database at any given
moment. You can use the query in Listing 6-5 to find out how much free space you have in your

244 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

tablespaces. Note that space belonging to a table that you dropped and is in the Recycle Bin shows
up as free space in this view. However, you can’t use it for any other object. You get the space back
only after you permanently remove the item with the ALTER TABLE . . . PURGE statement.

Listing 6-5. Querying the DBA_FREE_SPACE View

SQL> SELECT tablespace_name, SUM(bytes)
 2 FROM DBA_FREE_SPACE
 3* GROUP BY tablespace_name;

TABLESPACE_NAME SUM(BYTES)
--------------- ----------
CWMLITE 11141120
DRSYS 10813440
EXAMPLE 262144
INDX 26148864
ODM 11206656
SYSTEM 4325376
TOOLS 4128768
UNDOTBS1 202047488
USERS 26148864
XDB 196608
10 rows selected.
SQL>

DBA_SEGMENTS
As you’re aware, the Oracle database contains several kinds of segments: table, index, undo, and so
on. The DBA_SEGMENTS data dictionary view shows the segment name and type and the tablespace
the segment belongs to, among other things. The view provides you with detailed information on the
various segments in the database, as seen in the example in Listing 6-6.

Listing 6-6. Querying the DBA_SEGMENTS View

SQL> SELECT
 2 tablespace_name,
 3 segment_name,
 4 segment_type,
 5 extents, /*Number of extents in the segment*/
 6 blocks, /*Number of db blocks in the segment*/
 7 bytes /*Number of bytes in the segment*/
 8 FROM dba_segments
 9* WHERE owner = 'HR';

TABLESPACE_NAME SEGMENT_NAME SEGMENT_TYPE EXTENTS BLOCKS BYTES
--------------- ------------ ------------ ------- ------ ------
EXAMPLE REGIONS TABLE 1 8 65,536
EXAMPLE LOCATIONS TABLE 1 8 65,536
EXAMPLE DEPARTMENTS TABLE 1 8 65,536
EXAMPLE JOBS TABLE 1 8 65,536
EXAMPLE EMPLOYEES TABLE 1 8 65,536
EXAMPLE JOB_HISTORY TABLE 1 8 65,536
EXAMPLE REG_ID_PK INDEX 1 8 65,536
EXAMPLE COUNTRY_PK INDEX 1 8 65,536

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 245

EXAMPLE LOC_ID_PK INDEX 1 8 65,536
EXAMPLE DEPT_ID_PK INDEX 1 8 65,536
EXAMPLE DEPT_LOC_IX INDEX 1 8 65,536
. . .
25 rows selected.
SQL>

DBA_DATA_FILES
The DBA_DATA_FILES data dictionary view is yet another extremely useful view that you’ll refer to
often while managing the space in your database. You can query the view to find out the names of all
the datafiles, the tablespaces they belong to, and datafile information such as the number of bytes
and blocks and the relative file number. A simple query on the DBA_DATA_FILES view shows all
your datafiles, as shown in Listing 6-7.

Listing 6-7. Querying the DBA_DATA_FILES View

SQL> SELECT file_name, tablespace_name FROM DBA_DATA_FILES;

FILE_NAME TABLESPACE_NAME
-- -------------
C:\ORACLENT\ORADATA\MANAGER\SYSTEM01.DBF SYSTEM
C:\ORACLENT\ORADATA\MANAGER\UNDOTBS01.DBF UNDOTBS
C:\ORACLENT\ORADATA\MANAGER\CWMLITE01.DBF CWMLITE
C:\ORACLENT\ORADATA\MANAGER\DRSYS01.DBF DRSYS
C:\ORACLENT\ORADATA\MANAGER\EXAMPLE01.DBF EXAMPLE
C:\ORACLENT\ORADATA\MANAGER\INDX01.DBF INDX
C:\ORACLENT\ORADATA\MANAGER\TOOLS01.DBF TOOLS
C:\ORACLENT\ORADATA\MANAGER\USERS01.DBF USERS
8 rows selected.
SQL>

The DBA_DATA_FILES view is especially useful when you join it with another data dictionary
view, as the example in Listing 6-8 illustrates. The query produces a report showing you the
tablespace sizes, free and used space, and the percentage of used space in each tablespace. At the
end, you also get the sum of total space allocated to all the tablespaces, and the breakdown of free
and used space in the database.

Listing 6-8. Joining Multiple Data Dictionary Views

BREAK ON REPORT
COMPUTE SUM OF tbsp_size ON REPORT
compute SUM OF used ON REPORT
compute SUM OF free ON REPORT

COL tbspname FORMAT a20 HEADING 'Tablespace Name'
COL tbsp_size FORMAT 999,999 HEADING 'Size|(MB)'
COL used FORMAT 999,999 HEADING 'Used|(MB)'
COL free FORMAT 999,999 HEADING 'Free|(MB)'
COL pct_used FORMAT 999 HEADING'% Used'

SQL> SELECT df.tablespace_name tbspname
 2 sum(df.bytes)/1024/1024 tbsp_size,
 3 nvl(sum(e.used_bytes)/1024/1024,0) used,
 4 nvl(sum(f.free_bytes)/1024/1024,0) free,

246 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

 5 nvl((sum(e.used_bytes)*100)/sum(df.bytes),0) pct_used,
 6 FROM DBA_DATA_FILES df
 7 (SELECT file_id
 8 SUM(nvl(bytes,0)) used_bytes
 9 FROM dba_extents
 10 GROUP BY file_id) e,
 11 (SELECT MAX(bytes) free_bytes, file_id
 12 FROM dba_free_space
 14 GROUP BY file_id) f
 15 WHERE e.file_id(+) = df.file_id
 16 AND df.file_id = f.file_id(+)
 17 GROUP BY df.tablespace_name
 18* ORDER BY 5 DESC

 Size Used Free
Tablespace Name (MB) (MB) (MB) % Used
--------------- ------ ------ ----- -------
PERSON_INFO_I 2,299 2,245 54 98
PERSONS_I 26348 6,185 162 97
LABELS_I 2,038 1,980 58 97
. . .
CBC_I 501 7 490 1
QUEST 10 0 10 1
TEST2 10 0 1 0
 -------- ------- -------
Grand Total 291,528 224,473 43,602
SQL>

The DBA_TEMP_FILES view is analogous to the DBA_DATA_FILES view, and shows the tempo-
rary tablespace temp file information.

DBA_TABLESPACE_GROUPS
You can group a set of temporary tablespaces together into a temporary tablespace group. The
DBA_TABLESPACE_GROUPS view shows you all the tablespace groups in your database. You can
also find out the individual tablespace name in each group by using this view.

V$DATAFILE
The V$DATAFILE view contains information about the datafile name, the tablespace number, the
status, the time stamp of the last change, and so on. The V$TEMPFILE view shows you particulars
about the temporary tablespace files. The V$DATAFILE view provides important information when
you join it to the V$FILESTAT view.

V$FILESTAT
The V$FILESTAT view provides you with detailed data on file read/write statistics, including the
number of physical reads and writes, the time taken for that I/O, and the average read and write
times in milliseconds. The V$TABLESPACE view provides information about the tablespaces.
Listing 6-9 shows how you can join the V$DATAFILE, V$TABLESPACE, and V$FILESTAT views to
obtain useful disk I/O information.

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 247

Listing 6-9. Getting Disk I/O Information

SQL> SELECT d.name, t.name, f.phyrds, f.phywrts,
 2 f.readtim, f.writetim
 3 FROM V$DATAFILE d,
 4 V$FILESTAT f,
 5 V$TABLESPACE t
 6 WHERE f.file# = d.file#
 7* AND d.ts# = t.ts#;

NAME T.NAME PHYRDS PHYWRTS READTIM WRITETIM
---------- ------ ------ ------- ------- ---------
C:\ORACLEN SYSTEM 46180 98697 29637 473716
T\ORADATA\
MANAGER\SY
STEM01.DBF
C:\ORACLEN UNDOTBS 330 140887 801 165629
T\ORADATA\
MANAGER\UN
DOTBS01.DBF
C:\ORACLEN DRSYS 649 23 515 0
T\ORADATA\
MANAGER\DR
SYS01.DBF
C:\ORACLEN INDX 34 23 4 0
T\ORADATA\
MANAGER\IN
DX01.DBF
SQL>

Easy File Management with Oracle Managed Files
The previous sections have dealt with operating system file management, where you, the DBA,
manually create, delete, and manage the datafiles. Oracle Managed Files enable you to bypass
dealing with operating system files directly.

As you learned in Chapter 5, in an Oracle database, you deal with various types of database files,
including datafiles, control files, and online redo log files. In addition, you also have to manage
tempfiles for use with temporary tablespaces, archived redo logs, RMAN backup files, and files for
storing flashback logs. Normally, you’d have to set the complete file specification for each of these
files when you create one of them. Under an OMF setup, however, you specify the file system direc-
tory for all the previously mentioned types of Oracle files by specifying three initialization
parameters: DB_CREATE_FILE_DEST, DB_CREATE_ONLINE_LOG_DEST_n, and DB_RECOVERY_FILE_DEST.
Oracle will then automatically create the files in the specified locations without your having to
provide the actual location for it.

OMF offers a simpler way of managing the file system—you don’t have to worry about speci-
fying long file specifications when you’re creating tablespaces or redo log groups or control files.
When you want to create a tablespace or add datafiles when using OMF, you don’t have to give a
location for the datafiles. Oracle will automatically create the file or add the datafile in the location
you specified in the init.ora file for datafiles. Note that you don’t have to use a DATAFILE or TEMPFILE
clause when creating a tablespace when you use the OMF-based file system.

Here are a couple of examples showing how simple it is to create a tablespace and add space to
it under an OMF system:

SQL> CREATE TABLESPACE finance01;
SQL> ALTER TABLESPACE finance01 ADD DATAFILE 500M;

248 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

Similarly, when you want to drop a tablespace, you just need to issue the DROP TABLESPACE
command and the OMF datafiles are automatically removed by Oracle, along with the tablespace
definition:

SQL> DROP TABLESPACE finance01;

OMF files are definitely easier to manage than the traditional manually created operating
system files. However, there are some limitations:

• OMF files can’t be used on raw devices, which offer superior performance to operating
system files for certain applications (such as Oracle Real Application Clusters).

• All the OMF datafiles have to be created in one directory. It’s hard to envision a large database
fitting into this one file system.

• You can’t choose your own names for the datafiles created under OMF. Oracle will use a
naming convention that includes the database name and unique character strings to name
the datafiles.

Oracle recommends using OMF for small and test databases. Normally, if you drop a datafile,
the database won’t have any references to the datafile, but the physical file still exists in the old loca-
tion—you have to explicitly remove the physical file yourself. If you use OMF, Oracle will remove the
file for you when you drop it from the database. According to Oracle, OMF file systems are most
useful for databases using Logical Volume Managers that support RAID and extensible file systems.
Smaller databases benefit the most from OMF, because of the reduced file-management tasks. Test
databases are another area where an OMF file system will cut down on management time.

You have to use operating system–based files if you want to use the OMF feature; you can’t use
raw files. You do lose some control over the placement of data in your storage system when you use
OMF files, but even with these limitations, the benefits of OMF file management can outweigh its
limitations in some circumstances.

Benefits of Using OMF
You can create tablespaces with OMF-based files. You can also specify that your online redo log files
and your control files are in the OMF format. OMF files offer several advantages over user-managed
files:

• Oracle automatically creates and deletes OMF files.

• You don’t have to worry about coming up with a naming convention for the files.

• It’s easy to drop datafiles by mistake when you’re managing them. With OMF files, you don’t
run the risk of accidentally deleting database files.

• Oracle automatically deletes a file when it’s no longer needed.

• You can have a mix of traditional files and OMF files in the same database.

In the following sections, we’ll look at the OMF feature in some detail.

Creating Oracle Managed Files
You can create OMF files when you create the database, or you can add them to a database that you
created with traditional datafiles later on. Either way, you need to set some initialization parameters
to enable OMF file creation.

Initialization Parameters for OMF

You need to set three initialization parameters to enable the use of OMF files. You can set these four
parameters in your parameter file, and you can change them online with the ALTER SYSTEM or ALTER

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 249

SESSION statement. You can use each of these parameters to specify the file destination for different
types of OMF files, such as datafiles, control files, and online redo log files:

• DB_CREATE_FILE_DEST: This parameter specifies the default location of datafiles, online redo
log files, control files, block-change tracking files, and tempfiles. You can also specify a
control file location if you wish. Unfortunately, the DB_CREATE_FILE_DEST parameter can take
only a single directory as its value; you can’t specify multiple file systems for the parameter. If
the assigned directory for file creation fills up, you can always specify a new directory,
because the DB_CREATE_FILE_DEST parameter is dynamic. This enables you to place Oracle
datafiles anywhere in the file system without any limits whatsoever.

• DB_CREATE_ONLINE_LOG_DEST_n: You can use this parameter to specify the default location of
online redo log files and control files. In this parameter, n refers to the number of redo log files
or control files that you want Oracle to create. If you want to multiplex your online redo log
files as Oracle recommends, you should set n to 2.

• DB_RECOVERY_FILE_DEST: This parameter defines the default location for control files, archived
redo log files, RMAN backups, and flashback logs. If you omit the
DB_CREATE_ONLINE_LOG_DEST_n parameter, this parameter will determine the location of the
online redo log files and control files. The directory location you specify using this parameter
is also known as the flash recovery area, which I explain it in detail in Chapter 10.

In addition to the preceding three initialization parameters, the DB_RECOVERY_FILE_DEST_SIZE
parameter specifies the size of your flash recovery area.

If you don’t specify any of these initialization parameters in your init.ora file or SPFILE, you can
still use the ALTER SYSTEM command to dynamically enable the creation of OMF files, as shown in the
following example:

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST =
 2 '/test01/app/oracle/oradata/finance1';
System altered.
SQL>

As long as you specify the DB_CREATE_FILE_DEST parameter, you can have Oracle create OMF files
for you, and you can use both the user-managed and OMF files simultaneously without a problem.

File-Naming Conventions

Oracle uses the OFA standards in creating filenames, so filenames are unique and datafiles are easily
identifiable as belonging to a certain tablespace. Table 6-1 shows the naming conventions for
various kinds of OMF files and an example of each type. Note that the letter t stands for a unique
tablespace name, g stands for an online redo group, and u is an 8-character string.

Table 6-1. OMF File-Naming Conventions

OMF File Type Naming Convention Example

Datafile ora_t%_u.dbf ora_data_Y2ZV8P00.dbf

Temp file (default size is
100MB)

ora_%t_u.tmp ora_temp_Y2ZWGD00.tmp

Online redo log file (default
size is 100MB)

ora_%g_%u.log ora_4_Y2ZSQK00.log

Control file ora_u%.ctl ora_Y2ZROW00.ctl

250 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

Different Types of Oracle Managed Files
You can use OMF to create all three types of files that the Oracle database requires: control files, redo
log files, and, of course, datafiles. However, there are interesting differences in the way OMF requires
you to specify (or not specify) each of these types of files. The following sections cover how Oracle
creates different types of files.

Control Files

As you have probably noticed already, there is no specific parameter that you need to include in your
init.ora file to specify the OMF format. If you specify the CONTROL_FILES initialization parameter,
you will, of course, have to specify a complete file location for those files, and obviously they will not
be OMF files—they are managed by you. If you don’t specify the CONTROL_FILES parameter, and you
use the DB_CREATE_FILE_DEST or the DB_CREATE_ONLINE_LOG_DEST_n parameter, your control files will
be OMF files.

If you are using a traditional init.ora file, you need to add the control file locations to it. If you
are using an SPFILE, Oracle automatically adds the control file information to it.

Redo Log Files

OMF redo log file creation is similar to control file creation. If you don’t specify a location for the
redo log files, and you set either the DB_CREATE_FILE_DEST or the DB_CREATE_ONLINE_LOG_DEST_n
parameter in the init.ora file, Oracle automatically creates OMF-based redo log files.

Datafiles

If you don’t specify a datafile location in the CREATE or ALTER statements for a regular datafile, or a
tempfile for a temporary tablespace, tempfile, or an undo tablespace datafile, but instead specify the
DB_CREATE_FILE_DEST parameter, all these files will be OMF files.

Simple Database Creation Using OMF

Let’s look at a small example to see how OMF files can really simplify database creation. When you
create a new database, you need to provide the control file, redo log file, and datafile locations to
Oracle. You specify some file locations in the initialization file (control file locations) and some file
locations at database creation (such as redo log locations). However, if you use OMF-based files,
database creation can be a snap, as you’ll see in the sections that follow.

Setting Up File Location Parameters

For the new OMF-based database, named nicko, let’s use the following initialization parameters:

db_name=nicko
DB_CREATE_FILE_DEST = '/u01/app/oracle/oradata'
DB_RECOVERY_FILE_DEST_SIZE = 100M
DB_RECOVERY_FILE_DEST = '/u04/app/oracle/oradata'
LOG_ARCHIVE_DEST_1 = 'LOCATION = USE_DB_RECOVERY_FILE_DEST'

Note that of the four OMF-related initialization parameters, I chose to use only the
DB_CREATE_FILE_DEST, DB_RECOVERY_FILE_DEST_SIZE, and DB_RECOVERY_FILE_DEST parameters. I
didn’t have to use the fourth parameter, DB_CREATE_ONLINE_LOG_DEST_n, in this example. When this
parameter is left out, Oracle creates a copy of the log file and the redo log file in the locations speci-
fied for the DB_CREATE_FILE_DEST and the DB_RECOVERY_FILE_DEST parameters. I thus have two copies
of the control file and the online redo log files.

The setting for the last parameter, LOG_ARCHIVE_DEST_1, tells Oracle to send the archived redo
logs for storage in the flash recovery area specified by the DB_RECOVERY_FILE_DEST parameter.

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 251

Starting the Instance

Using the simple init.ora file shown in the preceding section, you can start an instance as shown in
Listing 6-10.

Listing 6-10. Creating the OMF-Based Instance

SQL> connect sys/sys_passwd as sysdba
Connected to an idle instance.
SQL> STARTUP NOMOUNT PFILE='initnicko.ora';
ORACLE instance started.
Total System Global Area 188743680 bytes
Fixed Size 1308048 bytes
Variable Size 116132464 bytes
Database Buffers 67108864 bytes
Redo Buffers 4194304 bytes
SQL>

Creating the Database

Now that you’ve successfully created the new Oracle instance, you can create the new database
nicko with this simple command:

SQL> CREATE DATABASE nicko;

 Database created.
SQL>

That’s it! Just those two simple lines are all you need to create a functional database with the
following structures:

• A System tablespace created in the default file system specified by the DB_CREATE_FILE_DEST
parameter (/u01/app/oracle/oradata)

• A Sysaux tablespace created in the default file system (/u01/app/oracle/oradata)

• Two duplexed redo log groups

• Two copies of the control file

• A default temporary tablespace

• An undo tablespace automatically managed by the Oracle database

Where Are the OMF Files?

You can see the various files within the database by looking in the alert log for the new database,
alert_nicko.log, which you’ll find in the $ORACLE_HOME/rdbms/log directory, since we didn’t specify
the BACKGROUND_DUMP_DIR directory in the init.ora file.

In the following segment from the alert log file for the database, you can see how the various files
necessary for the new database were created. First, Oracle creates the control files and places them
in the location you specified for the DB_CREATE_ONLINE_LOG_DEST_n parameter.

Sun Jan 13 17:44:51 2008
create database nicko
default temporary tablespace temp
Sun Jan 13 17:44:51 2008
WARNING: Default passwords for SYS and SYSTEM will be used.
 Please change the passwords.
Created Oracle managed file /u01/app/oracle/oradata/NICKO/controlfile/o1_mf_150w
. . .

252 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

Sun Jan 13 17:46:37 2008
Completed: create database nicko
default temporary tablespace
MMNL started with pid=13, OS id=28939

Here’s what the alert log shows regarding the creation of the control files:

Created Oracle managed file /u01/app/oracle/oradata/NICKO/controlfile/o1_mf_150w
h3r1_.ctl
Created Oracle managed file /u04/app/oracle/oradata/NICKO/controlfile/o1_mf_150w
h3_.ctl

Next, the Oracle server creates the duplexed online redo log files. Oracle creates the minimum
number of groups necessary and duplexes them by creating a set of online log files (two) in the loca-
tions specified by the DB_CREATE_ONLINE_LOG_DEST and the DB_RECOVERY_FILE_DEST parameters:

Created Oracle managed file /u01/app/oracle/oradata/NICKO/onlinelog/o1_mf_1_150w
h48m_.log
Created Oracle managed file /u04/app/oracle/oradata/NICKO/onlinelog/o1_mf_1_150w
hf07_.log
Created Oracle managed file /u01/app/oracle/oradata/NICKO/onlinelog/o1_mf_2_150w
honc_.log
Created Oracle managed file /u04/app/oracle/oradata/NICKO/onlinelog/o1_mf_2_150w
hwh0_.log

The System tablespace is created next, in the location you specified for the DB_CREATE_FILE_DEST
parameter:

create tablespace SYSTEM datafile /* OMF datafile */
 default storage (initial 10K next 10K) EXTENT MANAGEMENT DICTIONARY online
Created Oracle managed file /u01/app/oracle/oradata/NICKO/datafile/o1_mf_system_
150wj4c3_.dbf
Completed: create tablespace SYSTEM datafile /* OMF datafile

The default Sysaux tablespace is created next, as shown here:

create tablespace SYSAUX datafile /* OMF datafile */
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO online
Sun Jan 33 17:46:16 2008
Created Oracle managed file /u01/app/oracle/oradata/NICKO/datafile/o1_mf_sysaux_
150wkk9n_.dbf
Completed: create tablespace SYSAUX datafile /* OMF datafile

The undo tablespace is created next, with the default name of SYS_UNDOTS in the location
specified by the DB_CREATE_FILE_DEST parameter. A temporary tablespace named TEMP is also
created in the same directory:

CREATE UNDO TABLESPACE SYS_UNDOTS DATAFILE SIZE 10M AUTOEXTEND ON
Created Oracle managed file
/test01/app/oracle/oradata/ora_omf/finDATA/ora_sys_undo_yj5mg123.dbf
...
Successfully onlined Undo Tablespace 1.
Completed: CREATE UNDO TABLESPACE SYS_UNDOTS DATAFILE SIZE 1
CREATE TEMPORARY TABLESPACE TEMP TEMPFILE
Created Oracle managed file
/test01/app/oracle/oradata/ora_omf/finDATA/ora_temp_yj5mg592.tmp
Completed: CREATE TEMPORARY TABLESPACE TEMP TEMPFILE

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 253

Adding Tablespaces

Adding other tablespaces and datafiles within an OMF file system is easy. All you have to do is invoke
the CREATE TABLESPACE command without the DATAFILE keyword. Oracle will automatically create the
datafiles for the tablespace in the location specified in the DB_CREATE_FILE_DEST parameter. The
example that follows shows how to create the tablespace:

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST =
 2 '/test01/app/oracle/ora_omf/finance1';
System altered.
SQL> CREATE TABLESPACE omftest;
Tablespace created.
SQL> SELECT file_name FROM dba_data_files
 2 WHERE tablespace_name='OMFTEST';
FILE_NAME

/test01/app/oracle/oradata/ora_omf/ora_omftest_yj7590bm.dbf
SQL>

Compare the OMF tablespace-creation statement shown previously with the typical tablespace-
creation statement, and you’ll see how OMF simplifies database administration. Adding datafiles is
also simple with OMF, as shown by the following example:

SQL> ALTER TABLESPACE omftest ADD DATAFILE;

OMF files, as you can see, simplify file administration chores and let you create and manage
databases with a small number of initialization parameters. You can easily set up the necessary
number of locations for your online redo log files, control files, and archive log files by specifying the
appropriate value for the various OMF parameters. Oracle’s ASM-based file system relies on the
OMF file system.

Copying Files Between Two Databases
You can copy files directly between databases over Oracle Net, without using either OS commands or
utilities such as the FTP protocol. You can use the DBMS_FILE_TRANSFER package to copy binary
files within the same server or to transfer a binary file between servers. You use the COPY_FILE
procedure to copy files on the local system, The GET_FILE procedure to copy files from a remote
server to the local server and the PUT_FILE procedure to read and copy a local file to a remote file
system. Here’s a brief explanation of the key procedures of this new package.

COPY_FILE
The COPY_FILE procedure enables you to copy binary files from one location to another on the
same or different servers. Before you can copy the files, you must first create the source and destina-
tion directory objects, as follows:

SQL> CREATE OR REPLACE DIRECTORY source_dir as '/u01/app/oracle/source';
SQL> CREATE OR REPLACE DIRECTORY dest_dir as '/u01/app/oracle/dest';

Once you create your source and destination directories, you can use the COPY_FILE procedure
to copy files, as shown here:

SQL> BEGIN
 DBMS_FILE_TRANSFER.COPY_FILE(
 source_directory_object => 'SOURCE_DIR',
 source_file_name => 'test01.dbf',
 destination_directory_object => 'DEST_DIR',

254 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

 destination_file_name => 'test01_copy.dbf');
 END;
 /
SQL>

Ensure that the copy was correctly copied by checking the destination directory.

GET_FILE
You use the GET_FILE procedure to copy binary files from a remote server to the local server. First,
log into the remote server and create the source directory object, as shown here:

SQL> CONNECT system/system_passwd@remote_db
Connected.
SQL> CREATE OR REPLACE DIRECTORY source_dir as '/u01/app/oracle/source';

Next, you log into the local server and create a destination directory object, as shown here:

SQL> CONNECT system/system_passwd@local_db
Connected.
SQL> CREATE OR REPLACE DIRECTORY dest_dir as /'u01/app/oracle/dest';

Once you create the source and destination directories, ensure that you have a database link
between the two databases, or create one if one doesn’t exist:

SQL> CREATE DATABASE LINK prod1
 CONNECT TO system IDENTIFIED BY system_passwd
 USING 'prod1';
SQL>

You must make sure that you’ve set up the connection to the prod1 database using a
tnsnames.ora file, for example, before you can create the database link.

Now you execute the GET_FILE procedure to transfer the file from the remote server to the local
server, as shown here:

SQL> BEGIN
 DBMS_FILE_TRANSFER.GET_FILE(
 source_directory_object => 'SOURCE_DIR',
 source_file_name => 'test01.dbf',
 source_database => 'remote_db',
 destination_directory_object => 'DEST_DIR',
 destination_file_name => 'test01.dbf');
 END;
 /
SQL>

Note that for the SOURCE_DATABASE attribute, you provide the name of the database link to the
remote database.

PUT_FILE
You use the PUT_FILE procedure to transfer a binary file from the local server to a remote server. As
in the case of the previous two procedures, you must first create the source and destination directory
objects, as shown here (in addition, you must ensure the existence of a database link from the local
to the remote database):

SQL> CONNECT system/system_passwd@remote_db
Connected.
SQL> CREATE OR REPLACE DIRECTORY source_dir as '/u01/app/oracle/source';

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 255

SQL> connect system/system_passwd@local_db
Connected.
SQL> CREATE OR REPLACE DIRECTORY dest_dir as /'u01/app/oracle/dest';

You can now use the PUT_FILE procedure to put a local file on the remote server, as shown here:

SQL> BEGIN
 DBMS_FILE_TRANSFER.PUT_FILE(
 source_directory_object => 'SOURCE_DIR',
 source_file_name => 'test01.dbf',
 destination_directory_object => 'DEST_DIR',
 destination_file_name => 'test01.dbf',
 destination_database => 'remote_db');
 END;
 /
SQL>

Finding Out How Much Free Space Is Left
The DBMS_SPACE package is useful for finding out how much space is used and how much free
space is left in various segments such as table, index, and cluster segments. Recall that the DBA_
FREE_SPACE dictionary view lets you find out free space information in tablespaces and datafiles,
but not in the database objects. Unless you use the DBMS_SPACE package, it’s hard to find out how
much free space is in the segments allocated to various objects in the database. The DBMS_SPACE
package enables you to answer questions such as the following:

• How much free space can I use before a new extent is thrown?

• How many data blocks are above the high-water mark (HWM)?

The DBA_EXTENTS and the DBA_SEGMENTS dictionary views do give you a lot of information
about the size allocated to objects such as tables and indexes, but you can’t tell what the used and
free space usage is from looking at those views. If you’ve been analyzing the tables, the BLOCKS
column will give you the HWM—the highest point in terms of size that the table has ever reached.
However, if your tables are undergoing a large number of inserts and deletes, the HWM isn’t an accu-
rate indictor of the real space used by the tables. The DBMS_SPACE package is ideal for finding out
the used and free space left in objects.

The DBMS_SPACE package has three main procedures: the UNUSED_SPACE procedure gives you
information about the unused space in an object segment, the FREE_BLOCKS procedure gives you
information about the number of free blocks in a segment, and the SPACE_USAGE procedure gives you
details about space usage in the blocks.

Let’s look at the UNUSED_SPACE procedure closely and see how you can use it to get detailed
unused space information. The procedure has three IN parameters (a fourth one is a default param-
eter) and seven OUT parameters. Listing 6-11 shows the output from the execution of the
UNUSED_SPACE procedure.

Listing 6-11. Using the DBMS_SPACE.FREE_SPACE Procedure

SQL> DECLARE
 2 v_total_blocks NUMBER;
 3 v_total_bytes NUMBER;
 4 v_unused_blocks NUMBER;
 5 v_unused_bytes NUMBER;
 6 v_last_used_extent_file_id NUMBER;
 7 v_last_used_extent_block_id NUMBER;
 8 v_last_used_block NUMBER;

256 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

 9 BEGIN
 10 dbms_space.unused_space (segment_owner => 'OE',
 11 segment_name => 'PRODUCT_DESCRIPTIONS',
 12 segment_type => 'TABLE',
 13 total_blocks => v_total_blocks,
 14 total_bytes => v_total_bytes,
 15 unused_blocks => v_unused_blocks,
 16 unused_bytes => v_unused_bytes,
 17 last_used_extent_file_id => v_last_used_extent_file_id,
 18 last_used_extent_block_id => v_last_used_extent_block_id,
 19 last_used_block => v_last_used_block,
 20 partition_name => NULL);
 21 dbms_output.put_line ('Number of Total Blocks :
 '||v_total_blocks);
 22 dbms_output.put_line ('Number of Bytes :
 '||v_total_bytes);
 23 dbms_output.put_line ('Number of Unused Blocks :
 '||v_unused_blocks);
 24 dbms_output.put_line ('Number of unused Bytes :
 '||v_unused_bytes);
 25 END;
Number of Total Blocks : 384
Number of Bytes : 3145728
Number of Unused Blocks : 0
Number of unused Bytes : 0
PL/SQL procedure successfully completed.
SQL>

Working with Operating System Files
The wonderful UTL_FILE package enables you to write to and read from operating system files
easily. The UTL_FILE package provides you with a restricted version of standard operating-system
stream file I/O. The procedures and functions in the UTL_FILE package let you open, read from,
write to, and close the operating system files. Oracle also uses a client-side text I/O package, the
TEXT_IO package, as part of the Oracle Procedure Builder.

Using the UTL_FILE Package
It’s easy to use the UTL_FILE package to read from and write to the operating system files. In many
cases, when you need to create reports, the UTL_FILE package is ideal for creating the file, which you
can then send to external sources using the FTP utility. The following sections take you through a
simple example that illustrates the use of this package.

Creating the File Directory

The first step in using the UTL_FILE package is to create the directory where you want to place the
operating system files. You need to create a special directory for this purpose, using the following
command:

SQL> CREATE DIRECTORY utl_dir AS '/u50/oradata/archive_data';
 /*the directory could be named anything you want - utl_dir
 is just an example*/

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 257

Directory created.
SQL>

■Tip The UTL_FILE_DIR initialization parameter is still valid, but Oracle doesn’t recommend using it anymore.

Oracle recommends that you use the new CREATE DIRECTORY command instead. Using the CREATE DIRECTORY
approach is better because you don’t have to restart the database (when you want to add the UTL_FILE_DIR
parameter).

Granting Privileges to Users

You must grant your users privileges to read and write files in the utl_dir directory that you just
created. You can do this by executing the following command:

SQL> GRANT READ, WRITE ON DIRECTORY utl_dir to public;

Grant succeeded.
SQL>

Key UTL_FILE Procedures and Functions
The UTL_FILE package uses its many procedures and functions to perform file manipulation and
text writing and reading activities. The next sections briefly cover the key procedures and functions
in the UTL_FILE package.

■Note UTL_FILE.FILE_TYPE is a file-handling data type, and you use it for all the procedures and functions of
the UTL_FILE package. Any time you use the UTL_FILE package within a PL/SQL anonymous code block or a proce-
dure, you must first declare a file handle of UTL_FILE.FILE_TYPE, as you’ll see later.

Opening an Operating System File

You use the FOPEN function to open an operating system file for input and output. You can open a file
in three modes: read (r), write (w), or append (a).

Reading from a File

To read from a file, you first specify the read (r) mode when you open a file using the FOPEN function.
The GET_LINE procedure enables you to read one line of text at a time from the specified operating
system file.

Writing to a File

To write to a file, you must open the file in the write (w) or append (a) mode. The append (a) mode
just adds to the file, and the write (w) mode overwrites the file if it already exists. If the file doesn’t
already exist in the UTL_FILE directory, the UTL_FILE utility will first create the file and then write
to it. Note that you don’t have to create the file manually—the FOPEN function takes care of that for
you.

When you want to write a line to the file, you can use the PUT procedure. After the package writes
a line, you can ask it to go to a new line by using the NEW_LINE procedure. Better yet, you can just use

258 CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S

the PUT_LINE procedure, which is like a combination of the PUT and NEW_LINE procedures, to write to
the text file.

Closing a File

When you finish reading from or writing to the file, you need to use the FCLOSE procedure to close the
operating system file. If you have more than one file open, you may use the FCLOSE_ALL procedure to
close all the open files at once.

Exceptions
Whenever you use the UTL_FILE package in a PL/SQL procedure or block, make sure you have an
exception block at the end to account for all the possible errors that may occur while you’re using the
package. For example, your directory location may be wrong, or a “no data found” error may be
raised within the procedure. You may have a read or write error due to a number of reasons. The
UTL_FILE package comes with a large number of predefined exceptions, and I recommend using all
the exceptions at the end of your procedure or code block to facilitate debugging. If you use
RAISE_APPLICATION_ERROR to assign an error number and a message with the exceptions, you’ll have
an easier time debugging the code.

A Simple Example Using the UTL_FILE Package
The following anonymous PL/SQL code uses the UTL_FILE package to write password-related infor-
mation using the DBA_USERS and the DBA_PROFILES dictionary views. Your goal is to produce an
operating system file listing user names, their maximum allowable login attempts, their password
lifetime, and their password lock time. Listing 6-12 shows the code block.

Listing 6-12. Using the UTL_FILE Package to Perform Text Input and Output

SQL> DECLARE
 v_failed dba_profiles.limit%TYPE;
 v_lock dba_profiles.limit%TYPE;
 v_reuse dba_profiles.limit%TYPE;
 /* the fHandle declared here is used every time
 the OS file is opened /*
 fHandle UTL_FILE.FILE_TYPE;
 vText VARCHAR2(10);
 v_username dba_users.username%TYPE;
 CURSOR users IS
 SELECT username FROM dba_users;
 BEGIN
 /* Open utlfile.txt file for writing, and get its file handle */
 fHandle := UTL_FILE.FOPEN('/a01/pas/pasp/import','utlfile.txt','w');
/* Write a line of text to the file utlfile.txt */
UTL_FILE.PUT_LINE(fHandle,'USERNAME'||'ATTEMPTS'||'LIFE'||'LOCK'||);
/* Close the utlfile.txt file */
UTL_FILE.FCLOSE(fHandle);
/* Open the utlfile.txt file for writing, and get its file handle */
 fHandle := UTL_FILE.FOPEN('/a01/pas/pasp/import','utlfile.txt','a');
 OPEN users;
 LOOP
 FETCH users INTO v_username;
 EXIT when users%NOTFOUND;
SELECT p.limit

CH AP T E R 6 ■ M A N AG I N G TA B L E SP A CE S 259

 INTO v_failed
 FROM dba_profiles p, dba_users u
 WHERE p.resource_name='FAILED_LOGIN_ATTEMPTS'
 AND p.profile=u.profile
 AND u.username=v_username;
SELECT p.limit
 INTO v_life
 FROM dba_profiles p, dba_users u
 WHERE p.resource_name='PASSWORD_LIFE_TIME'
 AND p.profile=u.profile
 AND u.username=v_username;
SELECT p.limit
 INTO v_lock
 FROM dba_profiles p, dba_users u
 WHERE p.resource_name='PASSWORD_LOCK_TIME'
 AND p.profile=u.profile
 AND u.username=v_username;
 vtext :='TEST';
 /* Write a line of text to the file utlfile.txt */
 UTL_FILE.PUT_LINE(fHandle,v_username||v_failed||_life||v_lock);
 /* Read a line from the file utltext.txt */
 UTL_FILE.GET_LINE(fHandle,v_username||v_failed||v_life||v_lock);
 /* Write a line of text to the screen */
 UTL_FILE.PUT_LINE(v_username||_failed||v_life||v_lock);
 END LOOP;
 CLOSE users;
 /* Close the utlfile.txt file */
 UTL_FILE.FCLOSE(fHandle);
 /* this is the exception block for the UTL_File errors */
 EXCEPTION
 WHEN UTL_FILE.INVALID_PATH THEN
RAISE_APPLICATION_ERROR(-20100,'Invalid Path');
WHEN UTL_FILE.INVALID_MODE THEN
 RAISE_APPLICATION_ERROR(-20101,'Invalid Mode');
WHEN UTL_FILE.INVALID_OPERATION then
 RAISE_APPLICATION_ERROR(-20102,'Invalid Operation');
 WHEN UTL_FILE.INVALID_FILEHANDLE then
 RAISE_APPLICATION_ERROR(-20103,'Invalid Filehandle');
 WHEN UTL_FILE.WRITE_ERROR then
 RAISE_APPLICATION_ERROR(-20104,'Write Error');
 WHEN UTL_FILE.READ_ERROR then
 RAISE_APPLICATION_ERROR(-20105,'Read Error');
 WHEN UTL_FILE.INTERNAL_ERROR then
 RAISE_APPLICATION_ERROR(-20106,'Internal Error');
 WHEN OTHERS THEN
 UTL_FILE.FCLOSE(fHandle);
END;

261

■ ■ ■

C H A P T E R 7

Schema Management

An important part of the Oracle DBA’s job is to support developers in creating database objects
and, later on, to manage these objects in production systems. This chapter will give you a thorough
understanding of objects such as tables, indexes, views, sequences, and triggers, which will help in
the development process and also in troubleshooting problems during data loads and other
situations.

To create a table, index, or other object, you first need to create tablespaces in your databases.
Several special types of tables, such as the temporary tables and external tables, are very useful to the
DBA in performing specialized tasks. I discuss both of these special tables, as well as index-organized
tables and clusters, in this chapter. I also introduce the topic of table partitioning, which is useful
when dealing with large amounts of data. I follow this discussion with coverage of index creation and
management. Indexes have a significant bearing on the performance of database queries, and I
provide basic guidelines for creating good Oracle indexes in this chapter. You’ll find more informa-
tion on index management in Chapter 19, which deals with performance tuning.

When loading data into tables, an important part of an Oracle DBA’s job is managing database
constraints and troubleshooting problems caused by table constraints. In this chapter, I also provide
a summary of all the major types of constraints, constraint states, and their implications.

Managing other database objects, such as views, sequences, and synonyms, is another impor-
tant part of the Oracle DBA’s skill set. I explore these topics in detail before concluding the chapter
with a discussion of creating and managing materialized views, which are a powerful feature of the
Oracle database. You’ll also learn how to use the new SQL Access Advisor to figure out the proper
materialized views for your database.

You use a particular type of SQL statement called a data definition language (DDL) statement to
create and manage Oracle database objects, including tables and indexes. As an Oracle DBA, you’ll
be using DDL SQL statements quite frequently to manage your database. However, there are other
important types of Oracle SQL statements as well, and I start the chapter by introducing these main
types of Oracle SQL statements.

Types of SQL Statements
Relational database principles underlie SQL. You need only instruct the language what to do, not
how to do it. In addition to working with traditional relational data, Oracle’s new XML-centric exten-
sions to its SQL language enable you to manage XML, full text, multimedia, and objects. Oracle
Database 11g integrates XML query, storage, and update functionality in the database engine. No
matter which tool you use to access the Oracle database, ultimately you’ll be using Oracle SQL to
perform your transactions. Your application program or the Oracle tool you use may allow you
access to the database without your using SQL, but the tools and applications themselves have to
use SQL to process your requests.

262 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

SQL includes commands for data modeling, data definition, data access, data security, and data
administration. SQL statements used by Oracle can be broadly divided into several groups based on
whether they change the table data, the table structures, or some other session or instance charac-
teristic. The SQL statement types are as follows:

• System control

• Session control

• Embedded SQL

• Data manipulation

• Transaction control

• Data definition

The following sections examine each of these broad types of SQL statements in detail.

System-Control Statements
You can use the system-control statement ALTER SYSTEM to alter the properties of a running database
instance. For example, you can use ALTER SYSTEM to modify certain initialization parameters, such as
the shared pool component of the system global area (SGA). At present, the ALTER SYSTEM command
is the only system-control SQL statement in Oracle.

Here’s an example of the ALTER SYSTEM command:

SQL> ALTER SYSTEM KILL SESSION '25,9192';

Session killed
SQL>

Session-Control Statements
Session-control statements dynamically alter the properties of an individual user’s session. For
example, if you intend to trace what your SQL session is doing in the database, you can use the ALTER
SESSION SET SQL_TRACE=TRUE SQL statement to trace your session alone. The session-control state-
ments also come in handy when you’re changing several initialization parameters just for your
session.

■Note PL/SQL (Oracle’s procedural extension of the SQL language) doesn’t support session-control statements.

Common session-control statements include the ALTER SESSION and SET ROLE commands.
Here’s an example of the use of the ALTER SESSION statement, wherein the ALTER SESSION command
is used to set the data format for the duration of the session:

SQL> ALTER SESSION SET NLS_DATE_FORMAT = 'MM-DD-YYYY HH:MI:SS';

Session altered.
SQL>

Embedded SQL Statements
Embedded SQL statements are data definition language, data manipulation language (DML), and
transaction-control statements (such as OPEN, CLOSE, FETCH, and EXECUTE) used in a procedural
language program, such as the statements used with the Oracle precompilers.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 263

Data Manipulation Language Statements
The data manipulation language statements are statements that either query (retrieve) or manipu-
late (change) data in a table. For the most part, DML statements modify the data in the schema
objects. In most online transaction processing (OLTP) systems, the bulk of Oracle’s work consists of
accepting requests from users that contain DML statements and returning the results of those
statements.

You’ll deal with four important DML statements most of the time: SELECT, INSERT, UPDATE, and
DELETE. Note that in addition to these four common DML statements, there are others that facilitate
the execution of the four basic DML statements. For example, the MERGE statement deals with condi-
tional inserts and deletes, and you use the LOCK TABLE statement to modify the default Oracle locking
mechanism.

SELECT Statements

SELECT statements are queries that retrieve data from a table or a set of tables (or views). Oracle
provides set operators, such as UNION, MINUS, and INTERSECT, that enable you to combine the results
of several queries to get one final result set of data. You can use the ORDER BY command to sort the
results provided by Oracle; otherwise, the results will not be in any particular order. When you need
data from several tables, you need to join the tables in your SELECT statements. You can limit the
result set when you join tables by providing a join condition.

You can also use subqueries as part of the main or top query. A subquery in the WHERE clause of
a SELECT statement is called a nested subquery. A subquery that is part of the FROM clause of a SELECT
statement is called an inline view. The Appendix provides examples of subqueries, nested subque-
ries, and inline views.

INSERT, DELETE, and UPDATE Statements

The INSERT statement inserts new rows into existing tables, and the DELETE statement removes entire
rows from tables. The UPDATE command modifies one or more columns of a single row, or multiple
rows within a table. Although optimizing the writing of SELECT statements that address large tables is
an important part of performance tuning, it’s the SQL statements that modify, delete, or add data that
cause more frustration for the DBA when dealing with an OLTP database. Designing proper tables
and indexes is important if the database is to efficiently process a large number of concurrent inserts,
deletes, and updates to tables. In addition, the DBA needs to properly size the undo tablespace and
the online redo logs to efficiently process these types of statements.

Transaction-Control Statements
Transaction-control statements are used to control the changes made by data-manipulation SQL
statements, such as INSERT, UPDATE, and DELETE. These are the four transaction-control statements:

• COMMIT: When this statement follows a set of DML statements, the changes will be made
permanent.

• ROLLBACK: When this statement follows one or more DML statements, the changes made by
the preceding statement or statements will be undone. If there are no save points, all state-
ments from the beginning of the transaction will be rolled back.

• SAVEPOINT: This statement allows flexibility in your transactions, helping you set intermediate
points in the transaction to which you can roll back (undo) your transactions.

• SET TRANSACTION: This rarely used statement denotes the start of a transaction and is used in
statements like SET TRANSACTION READ ONLY.

264 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

Data Definition Language Statements
Data definition language statements enable you to define the structure of the various schema objects
in the Oracle database. DDL statements enable you to create, alter, and remove database objects,
such as tables and indexes. These are some of the main uses of DDL statements:

• Creating tables, indexes, and other schema objects

• Creating and modifying procedures, functions, and packages

• Dropping and modifying database objects

• Creating and managing users of the database

• Granting and revoking privileges on objects

• Creating and altering tablespaces

• Creating and modifying database links

Oracle Schemas
In Oracle, a schema is defined as a collection of logical structures of data, or schema objects,
although it is used mostly as a synonym for the database user (specifically, the application owner)
that owns the schema pertaining to a specific application. Thus, the accounting schema within a
company database would own all the tables and code pertaining to the accounting department. In
addition to containing tables, a schema contains other database objects, such as PL/SQL proce-
dures, functions and packages, views, sequences, synonyms, and clusters. This logical separation of
the objects within the database allows you considerable flexibility in managing and securing your
Oracle databases.

Although the DBA can use the CREATE SCHEMA statement to populate a schema with database
objects such as tables and views, more often the application owner creates the database objects and
is referred to as the schema owner. The user who creates the objects owns database objects such as
tables, views, procedures, functions, and triggers. The owner of the object has to explicitly assign
specific rights to other users, such as SELECT or UPDATE, if those other users are to use the objects.

USER-DEFINED OBJECT TYPES

Oracle Database 11g is an object-relational database and, as such, it allows users to define several types of data
other than the standard relational data types. These user-defined data types include the following:

• Object types: These complex types are an abstraction of real-world entities.

• Array types: These types are used to create ordered sets of data elements of the same type.

• Table types: These types are used to create an unordered set of data elements of the same data type.

• XML schema: This is a new object type that is used to create types and storage elements for XML documents
based on the XML schema.

The Appendix provides examples of how to create various kinds of user-defined object types. In this chapter, the
focus is on the traditional relational objects.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 265

In addition, the owner may also create synonyms, which are aliases for the various objects for
other users in the database. Synonyms, which are explained in the “Using Synonyms” section, later
in this chapter, serve multiple purposes, including masking the ownership of data objects and
simplifying SQL statements for users by eliminating the need for them to specify the schema owner’s
name each time they access a database object not owned by themselves.

There are two basic ways to create a schema in an Oracle database. The common way is to log
in as the schema owner and create all the tables, indexes, and other objects that you plan to include
in your schema. Since the objects are all created by the same schema owner, they’ll automatically be
part of the schema.

The second way to create a schema is to explicitly create it by using the CREATE SCHEMA state-
ment. The CREATE SCHEMA statement lets you create multiple tables and views, as well as grant users
privileges on those tables and views, all in a single SQL statement.

Oracle Tables
Tables are the basic units of data storage in an Oracle database. A table is a logical entity that makes
the reading and manipulation of data intuitive to users. A table consists of columns and rows, and a
table row corresponds to a single record. When you create a table, you give it a name and define the
set of columns that belong to it. Each column has a name and a specific data type (such as VARCHAR2
or DATE). You may have to specify the width or the precision and scale for certain columns, and some
of the table columns can be set to contain default values.

■Note You can create either relational tables or object tables in Oracle databases. Relational tables are the basic

table structures with rows and columns to hold data. Object tables use object types for their column definitions and
are used to hold object instances of a particular type. In this chapter, we exclusively use relational tables.

WHAT’S THE DUAL TABLE?

The dual table belongs to the sys schema and is created automatically when the data dictionary is created. The dual
table has one column called “dummy” and one row, and it enables you to use the Oracle SELECT command to
compute a constant expression. As you have seen, everything in Oracle has to be in a table somewhere. Even if
something isn’t in a table, such as the evaluation of an arithmetical expression, a query that retrieves those results
needs to use a table, and the dual table serves as a catchall table for those expressions. For example, to compute
the product of 9 and 24,567, you can issue the following SQL command: SELECT 9*24567 FROM dual.

There are four basic ways in which you can organize tables in an Oracle database:

• Heap-organized tables: A heap-organized table is nothing but the normal Oracle table, where
data is stored in no particular order.

• Index-organized tables: An index-organized table stores data sorted in a B-tree indexed
structure.

266 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

• Clustered tables: A clustered table is part of a group of tables that shares the same data blocks,
because data from the clustered tables are often requested together.

• Partitioned tables: A partitioned table lets you divide a large amount of data into subtables,
called partitions, according to various criteria. Partitioning is especially useful in a data ware-
house environment.

This section of the chapter will discuss the standard (heap-organized) Oracle tables. I’ll discuss
the other types of tables in the “Special Oracle Tables” section, later in the chapter.

Estimating the Table Size
Before you create a new table, it’s a good idea to estimate the size of the table you’ll need now and
the size you expect in the future. Knowing the size of the table allows you to make the right decisions
about space allocation.

Algorithms are available for figuring out the potential size of tables and indexes—they take the
row size in bytes and multiply it by the estimated number of rows in the table. Estimation of table size
is more an art than a precise science, and you don’t need to agonize over coming up with “accurate”
figures. Just use common sense and make sure you are not wildly off the mark.

You can simplify table-size estimation by using the OEM Database Control or by using the
CREATE_TABLE_COST procedure of the DBMS_SPACE package. The following sections illustrate both
approaches to sizing a new table.

Using Database Control to Estimate Table Size

Let’s look at the steps you need to follow to derive size estimates for a new table using the Database
Control interface:

1. From the Database Control home page, click the Administration tab.

2. Click Tables in the Schema list.

3. Click the Create button at the bottom-right corner.

4. Select Standard or the Index Organized type.

5. On the Create Table page, enter the new table name and the column data types in the
columns section. Click the Estimate Table Size button.

6. In the Estimate Table Size page, enter the estimated number of rows in your table (see
Figure 7-1).

Once you finish all the steps, OEM will quickly tell you how much space you’ll need to accom-
modate the new table. It will also tell you how much space you need to allocate to the tablespace in
which you’re going to create your new table.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 267

Figure 7-1. Using the OEM Database Control to estimate table size

■Note The following discussion of table operations deals with the “normal” or “regular” heap-organized Oracle
tables, whose rows aren’t stored in any particular order into the table. Most of the table operations discussed are
common to all types of Oracle tables, but with some syntax modifications or limitations.

ORACLE ROW FORMAT AND SIZE

The Oracle database stores each row of a table as one or more row pieces. If a table row is longer than the row piece,
the database may store the row using multiple row pieces, by chaining the row across the multiple blocks. Of course,
if the table row is small, a data block can contain multiple table rows. The database uses the ROWIDs of the row
pieces to chain the pieces together. Each of the row pieces contains a row header and the data for all or part of a
row’s columns.

268 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

Using the DBMS_SPACE Package to Estimate Space Requirements

The DBMS_SPACE package enables you to analyze segment growth and space requirements. You
can use a procedure from this package to estimate size requirements for table indexes. If you know
the approximate length of a new table’s rows and the estimated number of rows, the DBMS_SPACE
package will tell you the estimated space you need to create the table, given the storage attributes of
the tablespace in which you plan to create it. You can use either the column information of the table
or its row size to output the estimated table size. Listing 7-1 shows a simple example.

Listing 7-1. Using the DBMS_SPACE Package to Estimate Space Requirements

SQL> SET SERVEROUTPUT ON
SQL> DECLARE
 2 l_used_bytes NUMBER;
 3 l_allocated_bytes NUMBER;
 4 BEGIN
 5 DBMS_SPACE.CREATE_TABLE_COST (
 6 tablespace_name => 'PERSON_D',
 7 avg_row_size => 120,
 8 row_count => 1000000,
 9 pct_free => 10,
 10 used_bytes => l_used_bytes,
 11 alloc_bytes => l_allocated_bytes);
 12 DBMS_OUTPUT.PUT_LINE ('used = ' || l_used_bytes || ' bytes'
 13 || 'allocated = ' || l_allocated_bytes || ' bytes');
 14*END;
SQL> /
used = 138854400 bytes allocated = 167772160 bytes
PL/SQL procedure successfully completed.
SQL>

Note that the DBMS_SPACE package also contains the SPACE_USAGE procedure, which helps you
deallocate unused space (actually unused extents) allocated to tables, indexes, and other objects.
Here’s the syntax for using this procedure to deallocate space allocated to a table:

SQL> ALTER TABLE persons DEALLOCATE UNUSED;
Table altered.
SQL>

Creating a Simple Table
To create a table in your own schema, you must have the CREATE TABLE system privilege; to create
a table in another user’s schema, you must have the CREATE ANY TABLE system privilege. Always
specify a tablespace for the table creation—if you don’t, the table will be created in the user’s default
tablespace. You must have either enough space quota in the tablespace where you are going to
create your tables, or you must have the UNLIMITED TABLESPACE system privilege. Listing 7-2
gives the syntax for creating a simple table.

■Tip If your database consists of large read-only tables, consider using the Oracle table compression feature to
save storage space.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 269

Listing 7-2. Creating a Simple Table

SQL> CREATE TABLE emp (
 empno NUMBER(5) PRIMARY KEY,
 ename VARCHAR2(15) NOT NULL,
 ssn NUMBER(9),
 job VARCHAR2(10),
 mgr NUMBER(5),
 hiredate DATE DEFAULT (SYSDATE),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(3) NOT NULL
 CONSTRAINT dept_fkey REFERENCES hr.dept(dept_id))
 TABLESPACE admin_tbs01

SQL>

In the CREATE TABLE statement in Listing 7-2, there are several integrity constraints, including a
primary key and a foreign key defined on various columns of the table. Constraints are discussed in
the “Managing Database Integrity Constraints” section, later in this chapter.

■Note You can use the ENCRYPT clause to transparently encrypt column data. You can encrypt columns of type
CHAR, NCHAR, VARCHAR2, NVARCHAR2, NUMBER, DATE, and RAW. The user who encrypts the column will see the data
in its unencrypted format. Encryption involves setting an encryption key and some other details—see the Oracle
manual titled Oracle Advanced Security Administrator’s Guide, accessible through http://tahiti.oracle.com,
for additional information on encryption.

Here’s how you would encrypt the ssn column in the previous table creation statement:

ssn NUMBER(9) ENCRYPT

Once you create a new table, you can populate the table with data in several ways: you can use an
INSERT command to insert data or use SQL*Loader (see Chapter 14) to load data. Or, you may decide
to create a new table and have data come from an existing table in the same or a different database.
This uses the well-known CREATE TABLE AS SELECT (CTAS) technique, which I explain shortly, in the
“Creating a New Table with the CTAS Option” section. You can also use the SQL MERGE command to
insert data from another table based on specific conditions. The use of the MERGE command is
explained in the Appendix.

■Note If you are creating your database objects in a locally managed tablespace, you don’t have to set storage
parameters for any objects you create in that tablespace.

What Is a Null Value?
A null value means you simply leave a column blank in a row. A null value for a column in a certain
row doesn’t indicate a zero value for that column. Rather, the null indicates there is no value for that
column in that row. If you have missing, inapplicable, or unknown data for a column, you use a null
to indicate that. You can’t leave any column in a table as a null value. A column will allow null values
only if you don’t specify the NOT NULL constraint for that column. In addition, when you designate a
column as the primary key for that table, the column will not allow null values. Try to include all null

270 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

values toward the end of the table, to conserve disk space. This is so because of the way Oracle stores
null values. Any comparison between a null and other values can’t be true or false, since the null
signifies an unknown value.

Default Values for Columns
You can assign default values to columns. When you insert a new row, you can omit a value for any
column with a default value. The database will automatically supply the default value for that column.
If you don’t explicitly define a default value for a column, the column value defaults to null. For
example, if you set the 20 as the default value of the DEPT_NO column in the employees table,
Oracle will insert the value 20 for the DEPT_NO column, even though that column doesn’t have a
value when new data in inserted.

Virtual Columns
In an Oracle Database 11g release database, you can use virtual columns in a table. A virtual column
is a column that is derived by evaluating an expression based on one or more of the actual columns
of the table or by evaluating a SQL or PL/SQL function. Unlike normal columns, the virtual column
data is not stored permanently on disk. The database computes the virtual column values when you
query it, by dynamically evaluating an expression on other columns or by computing a function.

You can use virtual columns in both DDL and DML statements. You can defined indexes on
them and collect statistics on them as well.

Creating a Virtual Column

You use the clause GENERATED ALWAYS AS when you specify a virtual column as part of a CREATE TABLE
statement, as the following example illustrates:

SQL> CREATE TABLE emp (
 2 empno NUMBER(5) PRIMARY KEY,
 3 ename VARCHAR2(15) NOT NULL,
 4 ssn NUMBER(9),
 5 sal NUMBER(7,2),
 6* hrly_rate NUMBER(7,2) generated always as (sal/2080));

Table created.
SQL>

The last line in the previous example shows the specification of the virtual column. If you want,
you can also specify the optional keyword VIRTUAL, as shown here:

SQL> CREATE TABLE emp3
 2 (sal number (7,2),
 3 hrly_rate number (7,2) generated always as (sal/2080)
 4 VIRTUAL
 5* CONSTRAINT HourlyRate CHECK (hrly_rate > 8.00));

Table created.
SQL>

In both of the examples shown here, hrly_rate is a virtual column generated by evaluating the
expression sal/2800 for each row. You can also add a virtual column to an existing table by executing
the ALTER TABLE statement, as shown in this example:

SQL> ALTER TABLE employees ADD (income AS (salary*commission_pct));
Table altered.
SQL>

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 271

Since I didn’t specify a data type for the virtual column income, Oracle will automatically assign
a default data type based on the data type for the two columns (salary and commission_pct) from
which the database computes the virtual column.

Limitations of Virtual Columns

Some limitations exist on the use of virtual columns in a table, which I summarize here:

• You can’t create virtual columns on an index-organized table, external table, temporary table,
object, or a cluster.

• You can’t create a virtual column as a user-defined type, large object (LOB), or RAW.

• All columns in the column expression must belong to the same table.

• The column expression must result in a scalar value.

• The column expression in the AS clause can’t refer to another virtual column.

• You can’t update a virtual column by using it in the SET clause of an update statement.

• You can’t perform a delete or insert operation on a virtual column

Adding a Column to a Table
Adding a column to a table is a very straightforward operation. You simply use the ALTER TABLE
command to add a column to a table, as shown here:

SQL> ALTER TABLE emp
 ADD (retired char(1));

Table altered.
SQL>

Dropping a Column from a Table
You can drop an existing column from a table by using the following command:

SQL> ALTER TABLE emp
 DROP (retired);

Table altered.
SQL>

If the table from which you’re dropping the column contains a large amount of data, you can ask
Oracle to merely mark the column as unused, without trying to remove the data at all. You won’t see
the column in any queries or views, and all dependent objects, such as constraints and indexes,
defined on the column are removed. For all practical purposes, you can “drop” a large column this
way very quickly.

Here’s an example that marks as unused the hiredate and mgr columns in the emp table:

SQL> ALTER TABLE emp SET UNUSED (hiredate, mgr);

During a maintenance window, you can then permanently drop the two columns by using the
following command:

SQL> ALTER TABLE emp DROP UNUSED COLUMNS;

If you think that the large number of rows in a table could potentially exhaust the undo space,
you can drop a column with the optional CHECKPOINT clause. This will reduce the generation of undo
data while dropping the column by applying checkpoints after a certain number of rows. Here’s an

272 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

example that makes the database apply a checkpoint each time it removes 10,000 rows in the emp
table:

SQL> ALTER TABLE emp DROP UNUSED COLUMNS CHECKPOINT 10000;

Renaming a Table Column
You can easily rename table columns using the rename column command. For example, the following
command will rename the retired column in the emp table to non_active. Note that you can also
rename the column constraints, if you wish.

SQL> ALTER TABLE emp
 RENAME COLUMN retired TO non_active;
Table altered.
SQL>

■Tip You can rename tempfiles, as well as datafiles and the redo log files, using the ALTER DATABASE command.

Renaming a Table
On occasion, an application developer may want to rename a table. Renaming a table is
straightforward:

SQL> ALTER TABLE emp
 RENAME TO emp;
Table altered.
SQL>

Removing All Data from a Table
To remove all the rows from a table, you can use the TRUNCATE command, which, contrary to its
name, doesn’t abbreviate or shorten anything—it summarily removes all the rows very quickly.
TRUNCATE is a DDL command, so it can’t be undone by using the ROLLBACK command.

You can also remove all the rows in a table with the DELETE * FROM TABLE . . . command, and
because this is a DML command, you can roll back the deletion if you desire. However, because the
DELETE command writes all changes to the undo segments, it takes a much longer time to execute.
The TRUNCATE command doesn’t have to bother with the undo segments, so it executes in a few
seconds, even for the largest tables.

Here’s an example of the TRUNCATE command in action:

SQL> SELECT COUNT(*) FROM test;

 COUNT(*)

 31

SQL> TRUNCATE TABLE test;

Table truncated.

SQL> SELECT COUNT(*) FROM test;

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 273

COUNT(*)

 0
SQL>

Creating a New Table with the CTAS Option
To create a new table that is identical to an existing table, or to create a new table that includes only
some rows and columns from another table, you can use the CREATE TABLE AS SELECT * FROM
command. With this command, you can load a portion of an existing table into a new table by using
where conditions, or you can load all the data of the old table into the newly created table by simply
using the SELECT * FROM clause, as shown in the following code snippet:

SQL> CREATE TABLE emp_new
 AS
 SELECT * FROM emp;

Table created.
SQL>

If the table has millions of rows, and your time is too limited to use the simple CTAS method,
there are a couple of ways to speed up the creation of new tables that contain large amounts of data.
If the table you’re creating is empty, you don’t need to be concerned with the speed with which it’s
created—it’s created immediately. But if you’re loading the new table from an existing table, you can
benefit from using the PARALLEL and NOLOGGING options, which speed up the loading of large tables.

The PARALLEL option enables you to do your data loading in parallel by several processes, and
the NOLOGGING option instructs Oracle not to bother logging the changes to the redo log files and roll-
back segments (except the very minimum necessary for housekeeping purposes). Here’s an
example:

SQL> CREATE TABLE employee_new
 2 AS SELECT * FROM employees
 3 PARALLEL DEGREE 4
 4*NOLOGGING;

Table created.
SQL>

The other method you can use to save time during table creation is to simply move a table from
one tablespace to another. You can take advantage of the moving operation to change any storage
parameters you wish. Here’s an example of the ALTER TABLE . . . MOVE command, which enables
you to move tables between tablespaces rapidly. In this example, the employee table is moved from
its present tablespace to a new tablespace:

SQL> ALTER TABLE employee MOVE new_tablespace;

When you move a table, the ROWIDs of the rows change, thus making the indexes on the table
unusable. You must either re-create the indexes or rebuild them after you move the table.

Placing a Table in Read-Only Mode
You can make any table in an Oracle database a read-only table, which means that the database will
not permit you to add, remove, or alter the data in any way. For example, if you have a configuration
table that you want to keep safe from any changes by any users, you can change the status of the
table to read-only.

Use the ALTER TABLE statement to place a table in the read-only mode. Here’s an example:

274 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

;

SQL> ALTER TABLE test READ ONLY;

Once you place a table in read-only mode, the database won’t permit the following operations
on that table:

• TRUNCATE TABLE

• SELECT FOR UPDATE

• Any DML operations

• ALTER TABLE ADD/MODIFY/RENAME/DROP COLUMN

• ALTER TABLE SET COLUMN UNUSED

• ALTER TABLE DROP/TRUNCATE/EXCHANGE (SUB)PARTITION

• ALTER TABLE UPGRADE INCLUDING DATA or ALTER TYPE CASCADE INCLUDING TABLE DATA for a type
with read-only table dependents

• Online redefinition

• FLASHBACK TABLE

You can perform the following operations on a read-only table:

• SELECT

• CREATE/ALTER/DROP INDEX

• ALTER TABLE ADD/MODIFY/DROP/ENABLE/DISABLE CONSTRAINT

• ALTER TABLE for physical property changes

• ALTER TABLE MOVE

• RENAME TABLE and ALTER TABLE RENAME TO

• DROP TABLE

You can return a table to the normal read-write status by specifying the READ WRITE clause in the
ALTER TABLE statement, as shown here:

SQL> ALTER TABLE test READ WRITE;

Table Compression
You can compress data in a table to save disk space and reduce memory usage, besides speeding
up query performance. There is some overhead associated with table compression when you’re
loading data or performing DML operations, however. You can use table compression for both data
warehousing applications, which involve primarily read-only operations, as well as OLTP systems,
which include heavy DML operations. You can perform insert, delete, and update operations on
compressed tables. To reduce your overhead, try to compress data that is mostly used for read-only
operations and that is infrequently updated. Historical data and archival data are good candidates
for table compression.

When the database compresses a table, it eliminates all duplicate values in a data block. The
database stores all duplicate values in the table at the beginning of the block, in a symbol table for
the block. The database replaces multiple occurrences of the duplicate data with a short reference to
the symbol table. You can perform all operations that you can perform on a normal table on a
compressed table. You can compress tables and materialized views. You can also compress only
some of the partitions of a partitioned table.

Oracle offers tablespace compression as well. If you compress a tablespace, all tables you create
in that tablespace are automatically compressed.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 275

Once you define a table as a compressed table, the compression will occur when the data is
undergoing any of the following operations:

• Load through direct-path SQL*Loader operations

• Load through a CTAS statement

• Parallel insert statements

• Serial insert statements with an append hint

• Single-row or array inserts and updates

The biggest hit on performance due to compression of data occurs during the insertion of data
using any of the methods shown here. Deleting compressed data, however, is just as fast as deleting
uncompressed data. In addition, updating also is slower in a compressed table.

In addition to creating a table with compression enabled, you can also compress existing data
in a table by using the ALTER TABLE . . . MOVE statement. When you compress the data in this way,
the database needs to acquire an exclusive lock on the table, which prevents all updates and inserts
until the compression operation completes. Alternatively, you can use the DBMS_REDEFINITION
package to perform an online redefinition of the table to avoid the locking of the table.

Enabling Compression

You can enable compression by specifying the COMPRESS clause either in a CREATE TABLE statement
or in an ALTER TABLE . . . COMPRESS statement. If you’re altering a table, only new data will be
compressed. Thus, the table can have both compressed and uncompressed data in it at the same
time. You can disable table compression for a table by using the ALTER TABLE . . . UNCOMPRESS state-
ment. Disabling compression doesn’t compress the already compressed data in the table—it makes
sure that the new data is uncompressed.

■Note You can use table compression in both an OLTP as well as a data warehousing environment. You can get
the best results by compressing all read-only or historical data, which rarely changes.

There are a couple of variants of the COMPRESS clause: you must use the COMPRESS FOR ALL OPER-
ATIONS clause to enable compression for all operations. In order to enable it only for direct-path
inserts (bulk insert operations), specify the COMPRESS FOR DIRECT_LOAD OPERATIONS clause. The clause
COMPRESS by itself is equivalent to the COMPRESS FOR DIRECT_LOAD OPERATIONS clause.

Note that if you enable compression only for direct-path inserts, you can’t drop any columns
later on. You can add columns only if you don’t specify default values for the columns. These restric-
tions don’t apply when you enable compression for all operations on a table.

Examples of Table Compression

The following example shows how to enable compression for all operations on a table, which is what
you’d want to do in an OLTP setting:

SQL> CREATE TABLE test
 name varchar2(20)
 address varchar2(50))
 COMPRESS FOR ALL OPERATIONS;

You can use either of the following statements to enable compression for direct-path inserts
only on a table:

SQL> CREATE TABLE test
 name varchar2(20)

276 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

 address varchar2(50))
 COMPRESS;
SQL> CREATE TABLE test
 name varchar2(20)
 address varchar2(50))
 COMPRESS FOR DIRECT_LOAD OPERATIONS

As you can see from the examples, the COMPRESS FOR ALL OPERATIONS clause is what you must
use for compressing OLTP tables. You can use the following query to find out which tables are
compressed in your database:

SQL> SELECT table_name, compression, compress_for
 FROM dba_tables;

TABLE_NAME COMPRESS COMPRESS_FOR
---------------- -------- -------------------
EMP ENABLED DIRECT LOAD ONLY
DEPT ENABLED FOR ALL OPERATIONS
SQL>

The COMPRESS_FOR column shows the type of table compression (all operations or direct load
only).

Dropping Tables
You can drop a table by using the DROP TABLE table_name command. In order to be able to drop a
table, the user must own the table (it must be in your schema), or the user must have the DROP ANY
TABLE privilege.

When you use the DROP TABLE command, however, the table doesn’t go away immediately—
Oracle simply renames the table and stores it in the Recycle Bin, which is in reality simply a data
dictionary table. Thus, you can bring back a table you dropped accidentally by using the following
command:

SQL> FLASHBACK TABLE emp TO BEFORE DROP;

The ability to bring back a dropped table is known as the Flashback Drop feature. Chapter 16
explains this feature in detail and provides information about managing the Recycle Bin.

If you are sure that you’ll never need the table, you can get rid of it permanently by using the
PURGE option with your DROP TABLE command, as shown here:

SQL> DROP TABLE emp PURGE;

When you use the preceding PURGE command, the emp table is dropped immediately, and you
can’t get it back! Again, you’ll see a lot more about this command in Chapter 16.

■Note The DROP TABLE table_name PURGE command is equivalent to the old DROP TABLE table_name
command in pre–Oracle Database 10g release databases.

When you drop a table, all indexes you had defined on the table will be dropped as well. If the
table you want to drop contains any primary or unique keys referenced by foreign keys of other
tables, you must include the CASCADE clause in the DROP TABLE statement, in order to drop those
constraints as well:

SQL> DROP TABLE emp CASCADE CONSTRAINTS;

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 277

Special Oracle Tables
The simple tables you saw in the previous sections satisfy most of the data needs of an application,
but these aren’t the only kind of tables Oracle allows you to create. You can create several kinds of
specialized tables, such as temporary tables, external tables, and index-organized tables. In the
following sections, you’ll examine these important types of tables.

Temporary Tables
Oracle allows you to create temporary tables to hold data just for the duration of a session or even a
transaction. After the session or the transaction ends, the table is truncated (the rows are automati-
cally removed). Temporary tables are handy when you are dealing with complex queries or
transactions that require transitory row information to be stored briefly before it is written to a
permanent table.

The data in temporary tables cannot be backed up like that in other permanent tables. No data
or index segments are automatically allotted to temporary tables or indexes upon their creation, as
is the case for permanent tables and indexes. Space is allocated in temporary segments for the
temporary tables only after the first INSERT command is used for the tables.

Temporary tables increase the performance of transactions that involve complex queries. One
of the traditional responses to complex queries is to use a view to make the complex queries simpler
to handle, but the view needs to execute each time you access it, thereby negating its benefits in
many cases. Temporary tables are an excellent solution for cases like this, because they can be
created as the product of complex SELECT statements used for the particular session or transaction,
and they are automatically purged of data after the session.

■Note Although Oracle doesn’t analyze the temporary table data to gather the data distribution, that’s not a
problem for efficient query processing, because the temporary tables can keep constantly accessed join and other
information in one handy location. You can repeatedly access this table rather than having to repeatedly execute
complex queries.

Temporary tables are created in the user’s temporary tablespace and are assigned temporary
segments only after the first INSERT statement is issued for the temporary table. They are deallocated
after the completion of the transaction or the end of the session, depending on how the temporary
tables were defined.

Here are some attractive features of temporary tables from the Oracle DBA’s point of view:

• Temporary tables drastically reduce the amount of redo activity generated by transactions.
Redo logs don’t fill up as quickly if temporary tables are used extensively during complex
transactions.

• Temporary tables can be indexed to improve performance.

• Sessions can update, insert, and delete data in temporary tables just as in normal permanent
tables.

• The data is automatically removed from the temporary table after a session or a transaction.

• You can define table constraints on temporary tables.

• Different users can access the same temporary table, with each user seeing only his or her
session data.

• Temporary tables provide efficient data access because complex queries need not be
executed repeatedly.

278 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

• The minimal amount of locking of temporary tables means more efficient query processing.

• The structure of the table persists after the data is removed, so future use is facilitated.

Creating a Session Temporary Table

Here is an example of a temporary table that lasts for an entire session. You use the ON COMMIT DELETE
ROWS option to ensure that the data remains in the table only for the duration of the session.

SQL> CREATE GLOBAL TEMPORARY TABLE flight_status(
 destination VARCHAR2(30),
 startdate DATE,
 return_date DATE,
 ticket_price NUMBER)
 ON COMMIT PRESERVE ROWS;

The ON COMMIT PRESERVE ROWS option in the preceding example indicates that the table data is
saved for the entire session, not just for the length of the transaction.

Creating a Transaction Temporary Table

Unlike session temporary tables, transaction temporary tables are specific to a single transaction. As
soon as the transaction is committed or rolled back, the data is deleted from the temporary table.
Here’s how you create a transaction temporary table:

SQL> CREATE GLOBAL TEMPORARY TABLE sales_info
 (customer_name VARCHAR2(30),
 transaction_no NUMBER,
 transaction_date DATE)
 ON COMMIT DELETE ROWS;

The ON COMMIT DELETE ROWS option makes it clear that the data in this table should be retained
only for the duration of the transaction that used this temporary table.

Index-Organized Tables
Index-organized tables (IOTs) are somewhat of a hybrid, because they possess features of both
indexes and tables. IOTs are tables in which the data is stored in a B-tree index structure (in a
primary key sorted manner), but they are unlike regular or heap-organized tables because regular
tables do not order data. They are unlike regular indexes because while indexes consist only of the
indexed columns, IOTs include both the key and the non-key columns. Oracle uses the B-tree index
structures to store its data by sorting it by the primary key.

When you update an IOT, it is the index structure that really gets updated. Data access is much
faster because you only have to perform one I/O to access the index/table. There is no need to access
the index and the real table separately, as is the case with traditional indexed tables. The actual row
data, and not merely the ROWID, is held in the index leaf block along with the indexed column value.
IOTs are especially well suited for cases where you need to issue queries based on the values of the
primary key. IOTs are convenient for very large databases (VLDBs) and OLTP applications. You can
reorganize IOTs without rebuilding the indexes separately, which means that the reorganization

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 279

time is less than it would be if you used regular heap-based tables. The major differences between
normal tables and IOTs are shown in Table 7-1.

Listing 7-3 shows how to create an IOT.

Listing 7-3. Creating an Index-Organized Table

SQL> CREATE TABLE employee_new(
 employee_id NUMBER,
 dept_id NUMBER,
 name VARCHAR2(30),
 address VARCHAR2(120),
 CONSTRAINT pk_employee_new PRIMARY KEY (employee_id))
 ORGANIZATION INDEX TABLESPACE empindex_01
 PCTTHRESHOLD 25
 OVERFLOW TABLESPACE overflow_tables;

A few keywords in the previous CREATE TABLE statement are worth reviewing carefully. The key
phrase ORGANIZATION INDEX indicates that this table is an IOT rather than a regular heap-organized
table. The PCTTHRESHOLD keyword indicates the percentage of space reserved in the index blocks for the
employee_new IOT. Any part of a row in the table that does not fit the 25 percent threshold value in
each data block is saved in an overflow area. The CREATE TABLE statement assigns the overflow_tables
tablespace to hold the overflow of data from the index blocks. You can set the threshold value to
accommodate both the key columns as well as the frequently accessed first few non-key columns.
You can find out which rows exceed the threshold value by executing the ANALYZE TABLE . . . LIST
CHAINED ROWS statement.

You can employ the optional INCLUDING clause to specify the non-key columns you want stored
with the key columns. As long as the database doesn’t exceed the threshold specified by you, it tries
to accommodate all non-key columns up to and including the column you specify with the INCLUDING
clause in the index leaf block. The database stores the rest of the non-key columns in the overflow
segment. The PCTTHRESHOLD clause will override the INCLUDING clause if there is a conflict between the
values you specify for the two clauses. Listing 7-4 shows how to employ the INCLUDING clause.

Listing 7-4. Using the INCLUDING Clause When Creating an Index-Organized Table

SQL> CREATE TABLE employee_new(
 employee_id NUMBER,
 dept_id NUMBER,

Table 7-1. Differences Between Regular Oracle Tables and Index-Organized Tables

Regular Oracle Tables Index-Organized Tables

Physical ROWIDs Logical ROWIDs

Uniquely identified by
ROWID

Uniquely identified by primary key

Can contain LONG and LOB
data

Can’t contain LONG data

Allowed in table clusters Not allowed in table clusters

Larger space requirements Smaller space requirements

Slower data access Faster data access

280 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

 name VARCHAR2(30),
 address VARCHAR2(120),
 CONSTRAINT pk_employee_new PRIMARY KEY (employee_id))
 ORGANIZATION INDEX TABLESPACE empindex_01
 PCTTHRESHOLD 25
 INCLUDING name
 OVERFLOW TABLESPACE overflow_tables;

In Listing 7-4, the INCLUDING clause instructs the database to include the employee_id, dept_id,
and name columns (all of which are non-key columns) in the index leaf block, along with the key
column values, of course.

Remember that index entries in IOTs can be large because they contain not just a key value, but
all the row values. So IOTs do not necessarily have all of their data stored in the index blocks. It is
quite possible for the key and part of the row to be saved in the index blocks and for the rest to be in
some other tablespace. If the PCTTHRESHOLD parameter is too low, there is a risk of a chaining problem
in which parts of the row reside in different data blocks, leading to a slowdown of your queries.

External Tables
Databases in general, and data warehouses in particular, need to regularly extract data from various
sources and transform it into a more useful form. For example, a data warehouse may collect data
from the OLTP data sources and transform it according to some business rules to make it useful for
management.

Traditionally, the way to load a data warehouse has been to first load staging tables with the raw
data. Sometimes the data would be transformed outside of the database and loaded directly in one
pass to the warehouse tables. Either method is usually very cumbersome, even when you use state-
of-the-art extraction and transformation tools or custom scripts.

Oracle allows the use of external tables—that is, tables that use data that resides in external
operating system files. External tables don’t need any storage in terms of extents in the Oracle data-
base—the definition of an external table merely makes an entry in the data dictionary, which enables
you to load data into other Oracle database tables from the external tables. If you drop an external
table in Oracle, you’ll only be removing its definition from the data dictionary—the data itself
remains safe in the external source files.

External tables are commonly used as intermediate staging tables during data transformations.
External tables enable you to view externally stored data as if it were inside a table in the Oracle data-
base. You can perform queries and joins on external tables, but you can’t update, insert, or delete
from these tables; no DML operations are permissible on external tables.

■Note Chapter 14 provides a detailed example of using external tables and discusses them in more depth.

Partitioned Tables
Oracle databases can be quite large, and it’s not uncommon to encounter tables that hold several
gigabytes (or even several terabytes) worth of data. Partitioning is a way of logically dividing a large
table into smaller chunks to facilitate query processing, DML operations, and database manage-
ment. All the partitions share the same logical definition, column definitions, and constraints.

Improvements in query response times are startling when you partition a multibillion-row table
into hundreds or thousands of partitions. In some busy environments, new partitions may be
created as often as every hour! Partitioning leads directly to better query performance because the
database needs to search only the relevant partitions of the table during a query. This avoidance of
unneeded partitions when querying is called partition pruning; the availability of one partition is
independent of the availability of the other partitions.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 281

Data I/O can also be enhanced by using partitions because you can keep the partitions of a
heavily accessed table on different disk drives. If you are using the Oracle parallel DML features,
partitioned tables provide you with better performance.

Partitioning a table also provides partition independence, meaning, among other things, that
you can perform your backup and recovery operations, data loading, and index creation on parti-
tions of a large table instead of the whole table. For example, you can copy a single partition’s data
using the Data Pump Export utility, reducing export and import times dramatically when you only
need part of the entire data set. The ability to perform tasks on partitions instead of entire tables
means that your database downtime will be reduced drastically.

■Note Although partitioned tables generally improve query performance in very large tables, they aren’t a
panacea for poor coding or other design problems in the application. Partitioning also carries a price in terms of
additional work to maintain the partitions and their indexes. Of course, you also have to pay for the partitioning
capability, as it’s an option that you have to license separately from Oracle Corporation.

Partitioning tables is also an effective way of purging or archiving older data that you don’t need
right now. It is very common for large data warehouses to archive data that is older than a certain
date, and partitioned tables make archiving easy. For example, each quarter you can drop the oldest
partition and replace it with a new partition. The partitioned table in this case will end up having
roughly the same amount of data, and it will cover the same length of time (a quarterly collection of
company data for three years will always have 12 partitions in the table). In addition, large table
exports can be performed more quickly when you partition the table into smaller chunks and export
each partition separately.

Oracle offers six different ways to partition your table data: range partitioning, interval parti-
tioning, hash partitioning, list partitioning, reference partitioning, and system partitioning. In
addition, you can use composite partitioning (combine two partitioning methods to divide the data
into smaller subpartitions) strategies, which takes the actual number of partitioning methods to over
a dozen types. No matter which partitioning method you use, you must specify the following infor-
mation when creating a partitioned table:

• Partitioning method: This is one of the six types of partitioning.

• Partitioning column (or columns): This is the column or columns on the basis of which you
want to partition the table (for example, transaction_date). The range or set of values of the
partitioning columns are called the partitioning keys.

• The partition descriptions: These descriptions specify the criteria for the inclusion of the
actual partitioning keys in each partition. You use a partition bound for range partitioning
and use the clause VALUES LESS THAN to limit the partitioning key values in each partition. In
list partitioning, you specify a list of literal values that tell Oracle what partitioning key values
qualify for inclusion in a partition.

The following sections discuss the different types of partitioning and show how to partition a
table.

Range Partitioning
Range partitioning is a popular way to partition Oracle tables, and it was the first type of partitioning
introduced by Oracle. Range partitioning is used for data that can be separated into ranges based on
some criterion. You get the best results from range partitioning if the data falls evenly into the
different ranges that you create. Your ranges can be based on a sequence number or a part number,
but the range-partitioning technique is usually based on time (monthly or quarterly data, for
example).

282 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

Let’s say you need to create a table to hold three years of quarterly sales data for a major airline.
This could easily add up to several hundreds of millions of transactions. If you partition the sales
table by a range of quarters and decide to hold no more than three years’ worth of data at any given
time, you could have 12 partitions in the table, partitioned by quarters. Each time you enter a new
quarter, you can archive the oldest quarter’s data, thus keeping the number of partitions constant.
By partitioning the huge table, which might have a total of 480 million rows, for example, any queries
you run would only have to deal with one-twelfth of the table—that is, about 40 million rows—which
makes a big difference. Partitioning thus provides you with a divide-and-conquer technique for
dealing efficiently with massive amounts of table data.

Listing 7-5 shows the DDL for creating a range-partitioned table, with each year’s worth of data
divided into four partitions. With each new quarter, you can add another partition. Thus, you’ll end
up with 12 partitions over a three-year period.

Listing 7-5. Creating a Range-Partitioned Table

SQL> CREATE TABLE sales_data
 2 (ticket_no NUMBER,
 3 sale_year INT NOT NULL,
 4 sale_month INT NOT NULL,
 5 sale_day INT NOT NULL)
 6 PARTITION BY RANGE (sale_year, sale_month, sale_day)
 7 (PARTITION sales_q1 VALUES LESS THAN (2008, 04, 01)
 8 TABLESPACE ts1,
 9 PARTITION sales_q2 VALUES LESS THAN (2008, 07, 01)
 10 TABLESPACE ts2,
 11 PARTITION sales_q3 VALUES LESS THAN (2008, 10, 01)
 12 TABLESPACE ts3,
 13 PARTITION sales_q4 VALUES LESS THAN (2009, 01, 01)
 14* TABLESPACE ts4);

Table created.
SQL>

The CREATE TABLE statement in Listing 7-5 will create four partitions, each stored in a separate
tablespace. Notice how the partitions are based on date ranges. The first partition, sales_q1, will
include all transactions that took place in the first three months (one quarter) of the year 2008. The
second quarter, sales_q2, will include transactions that occurred between April and June of
2008(months 4, 5, and 6 of the year), and so on.

It is common in range-partitioned tables to use a catchall partition as the very last one. When
this is the case, the last partition will contain values less than a value called maxvalue, which is
simply any value higher than the values in the second-to-last partition. Note that each partition has
a specific name and is stored in a separate tablespace.

In the partitioned sales_data table, the sales data for June 10, 2008 (sale_year=2004,
sale_month=6, and sale_day=10) has a partitioning key of (2004, 6, 10) and would be stored in parti-
tion sales_q2. When a query requests data for June 10, 2008, the Oracle query zooms in on partition
sales_q2 and completely ignores the rest of the table data.

Interval Partitioning
Interval partitioning is an extension of the traditional range-partitioning method. In order to imple-
ment interval partitioning for a table, you must first specify a minimum of one range partition for
that table. Whether you use the minimum single-range partition or multiple-range partitions, the
high value of the range partitioning key is called the transition point. The database automatically
creates interval partitions after the data in the table crosses the transition point.

If, for example, you use monthly intervals for a table, and the highest value for the range parti-
tions is January 1, 2009, then the transition point will be at January 1, 2009. The first month interval,

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 283

then, would be January 2008, and its lower boundary would be January 1, 2008. Similarly, the lower
boundary for the December 2008 interval would be December 1, 2008. It doesn’t matter in this case
whether the November 2008 partition already exists.

Here’s what you need to know about interval partitioning:

• Use the INTERVAL clause in the CREATE TABLE statement to create an interval-partitioned table.

• Specify at least one range partition using the partition clause, before specifying your interval
partitions.

• You can’t use a partitioning key that includes more than one column.

• The partitioning key must be of the NUMBER or DATE type.

• You can optionally specify the tablespaces for the partition data by including the STORE IN
clause in the CREATE TABLE statement.

In the following example, I create an interval-partitioned table with four range partitions, iden-
tified by p0, p1, p2, and p3. The four range partitions are created on the time_id column, with the
transition point being the highest value of the range partitions, which is January 1, 2008 (in partition
p3). Once the time_id column’s value crosses January 1, 2009, the database will automatically spawn
interval-based partitions, all with a width of one month.

CREATE TABLE interval_sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
 PARTITION BY RANGE (time_id)
 INTERVAL(NUMTOYMINTERVAL(1, 'MONTH'))
 (PARTITION p0 VALUES LESS THAN (TO_DATE('1-1-2006', 'DD-MM-YYYY')),
 PARTITION p1 VALUES LESS THAN (TO_DATE('1-1-2007', 'DD-MM-YYYY')),
 PARTITION p2 VALUES LESS THAN (TO_DATE('1-7-2008', 'DD-MM-YYYY')),
 PARTITION p3 VALUES LESS THAN (TO_DATE('1-1-2009', 'DD-MM-YYYY')));

There is no limit on the number of interval partitions in a table. In our example here, the data-
base will continue to create a new interval partition for each new month.

Hash Partitioning
Suppose the transaction data in the previous example were not evenly distributed among the quar-
ters. What if, due to business and cyclical reasons, an overwhelming number of sales occurred in the
last two quarters, with the earlier quarters contributing relatively negligible sales? Range parti-
tioning will be good only in theory, because the last two quarters could end up each having almost
half of the original nonpartitioned table’s data.

In such cases, it’s better to use the hash-partitioning scheme. All you have to do is decide on the
number of partitions, and Oracle’s hashing algorithms will assign a hash value to each row’s parti-
tioning key and place it in the appropriate partition. You don’t have to know anything about the
distribution of the data in the table, other than that the data doesn’t fall into some easily determined
ranges. All you need to do is provide a partition key, which in the hash-partitioning scheme shown
next is the ticket_no column:

SQL> CREATE TABLE sales_data
 2 (ticket_no NUMBER,
 3 sale_year INT NOT NULL,
 4 sale_month INT NOT NULL,

284 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

 5 sale_day INT NOT NULL)
 6 PARTITION BY HASH (ticket_no)
 7 PARTITIONS 4
 8* STORE IN (ts1,ts2,ts3,ts4);
Table created.
SQL>

In the preceding example, four hash partitions are created in four tablespaces. We won’t know
in which partition the data for, say, June 10, 2008, is stored. Oracle determines the storage based on
a hashing algorithm, and you have no control whatsoever over the row-to-partition mapping.

List Partitioning
There may be times when you’ll want to partition the data not on the basis of a time range or evenly
distributed hashing scheme, but rather by known values, such as city, territory, or some such attri-
bute. List partitioning is preferable to range or hash partitioning when your data is distributed
among a set number of discrete values. For example, you may want to group a company’s sales data
according to regions rather than quarters. List partitioning enables you to group your data on the
same lines as real-world groupings of data, rather than arbitrary ranges of time or some such
criterion.

For example, when you’re dealing with statewide totals in the United States, you’ll be dealing
with 50 different sets of data. It makes more sense in this situation to partition your data into four or
five regions, rather than use the range method to partition the data alphabetically. Listing 7-6 shows
how to use list partitioning to partition the ticket_sales table. The partitions are made up of groups
of flight-originating cities, shown by the start_city column.

Listing 7-6. Creating a List-Partitioned Table

SQL> CREATE TABLE sales_data
 2 (ticket_no NUMBER,
 3 sale_year INT NOT NULL,
 4 sale_month INT NOT NULL,
 5 sale_day INT NOT NULL,
 6 destination_city CHAR(3),
 7 start_city CHAR(3))
 8 PARTITION BY LIST (start_city)
 9 (PARTITION northeast_sales values ('NYC','BOS','PEN') TABLESPACE ts1,
 10 PARTITION southwest_sales values ('DFW','ORL','HOU') TABLESPACE ts2,
 11 PARTITION pacificwest_sales values('SAN','LOS','WAS') TABLESPACE ts3,
 12* PARTITION southeast_sales values ('MIA','CHA','ATL') TABLESPACE ts4);

Table created.
SQL>

In the previous list-partitioning example, the partition description specifies a list of values for
the start_city column. Our table creation statement created four list partitions. Only cities that fall in
this list will be included in the partition. A ticket with the information 9999, 2004, 06, 01, DFW, HOU
will be stored in the southwest_sales partition.

Reference Partitioning
If two tables are related to one another, you can take advantage of this relationship by partitioning
the two tables on the basis of the existing parent-child relationship. The relationship is enforced by
primary key and foreign key constraints. If two tables share a parent-child relationship, you only
need to formally partition the parent table. Once you do this, you can equipartition the child table,
which inherits the partitioning key from the parent table. You thus avoid duplicating key columns.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 285

Any partition maintenance operations on the parent table will automatically cascade to the child
table as well.

A simple example will make reference partitioning clear. The tables orders and orderitems are
related to each other, on the basis of the orderid column in the two tables. This relationship is
captured by the referential constraint orderid_refconstraint. The parent table, orders, is parti-
tioned on the OrderDate column using a range-partitioning scheme, as shown here:

CREATE TABLE orders
 (order_id NUMBER(12),
 order_date DATE,
 order_mode VARCHAR2(8),
 customer_id NUMBER(6),
 order_status NUMBER(2),
 order_total NUMBER(8,2),
 sales_rep_id NUMBER(6),
 promotion_id NUMBER(6),
 CONSTRAINT orders_pk PRIMARY KEY(order_id)
)
 PARTITION BY RANGE(order_date)
 (PARTITION Q1_2005 VALUES LESS THAN (TO_DATE('01-APR-2005','DD-MON-YYYY')),
 PARTITION Q2_2005 VALUES LESS THAN (TO_DATE('01-JUL-2005','DD-MON-YYYY')),
 PARTITION Q3_2005 VALUES LESS THAN (TO_DATE('01-OCT-2005','DD-MON-YYYY')),
 PARTITION Q4_2005 VALUES LESS THAN (TO_DATE('01-JAN-2006','DD-MON-YYYY'))
);

Since there is a parent-child relationship between the orders and orderitems tables, you use
reference partitioning on the constraint orderid_refconstraint for orderitems, to create the parti-
tioned table. The clause FOREIGN KEY (order_id) REFERENCES order (order_id) shows that the
orderitems table is created with the reference-partitioning scheme. The orderitems table is equipar-
titioned with reference to the parent table orders.

CREATE TABLE order_items
 (order_id NUMBER(12) NOT NULL,
 line_item_id NUMBER(3) NOT NULL,
 product_id NUMBER(6) NOT NULL,
 unit_price NUMBER(8,2),
 quantity NUMBER(8),
 CONSTRAINT order_items_fk
 FOREIGN KEY(order_id) REFERENCES orders(order_id)
)
PARTITION BY REFERENCE(order_items_fk);

You can use all partitioning strategies with reference partitioning, with the exception of interval
partitioning.

When creating a reference-partitioned table, the partition by reference clause in the CREATE
TABLE statement specifies the name for the reference constraint that is the basis for the reference
partition. You must ensure that this referential constraint is both enabled and enforced.

In the example, the child table orderitems has four partitions: Q1_2005, Q2_2005, Q3_2005, and
Q4_2005. Each of these four partitions contains the order_items column values that correspond to
orders in the parent table’s partition

Note the following features about a reference-partitioned table:

• The reference-partitioning example here doesn’t use any partition descriptors. If you do
provide partition descriptors, they must be the same as the number of partitions or subparti-
tions in the parent table. That is, the child table will have one partition for each partition or
subpartition of the parent table.

• You can name the partitions of a reference-partitioned table.

286 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

• If you don’t name the partitions, the partitions will derive their names from the corre-
sponding partitions of the parent table.

• You can specify an explicit tablespace for the partitions of a reference-partitioned table.

• If you don’t specify a tablespace, the partitions of a reference-partitioned table are stored
along with the corresponding partition of the parent table, in the same tablespace.

■Note You can’t specify partition bounds for the partitions of a reference-partitioned table.

Virtual Column-Based Partitioning
Earlier in this chapter, you learned how to create and use virtual columns in an Oracle database. You
can use one or more columns of a table to create a virtual column on that table. You can partition a
table on a virtual column. What this means is that you can partition a table on a partition key that
doesn’t actually exist in the table. Your partitioning key is defined by the same expression that the
database uses for the virtual column.

You can use all basic partitioning strategies, including the different combinations of composite
partitioning, with virtual column-based partitioning of a table.

In the following example, I partition the sales table using a virtual column for the subparti-
tioning key. The virtual column total_amount is defined as the product of the amount_sold and
quantity_sold columns.

CREATE TABLE sales
 (prod_id NUMBER(6) NOT NULL
 , cust_id NUMBER NOT NULL
 , time_id DATE NOT NULL
 , channel_id CHAR(1) NOT NULL
 , promo_id NUMBER(6) NOT NULL
 , quantity_sold NUMBER(3) NOT NULL
 , amount_sold NUMBER(10,2) NOT NULL
 , total_amount AS (quantity_sold * amount_sold)
)
 PARTITION BY RANGE (time_id) INTERVAL (NUMTOYMINTERVAL(1,'MONTH'))
 SUBPARTITION BY RANGE(total_amount)
 SUBPARTITION TEMPLATE
 (SUBPARTITION p_small VALUES LESS THAN (1000)
 , SUBPARTITION p_medium VALUES LESS THAN (5000)
 , SUBPARTITION p_large VALUES LESS THAN (10000)
 , SUBPARTITION p_extreme VALUES LESS THAN (MAXVALUE)
)
 (PARTITION sales_before_2007 VALUES LESS THAN
 (TO_DATE('01-JAN-2007','dd-MON-yyyy'))
)
ENABLE ROW MOVEMENT
PARALLEL NOLOGGING;

Notice that the ENABLE ROW MOVEMENT clause ensures that a row can migrate from its current
partition to a different partition if the virtual column’s value evaluates to a value that doesn’t belong
in the current partition any longer.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 287

System Partitioning
System partitioning is a unique partitioning method, where the application and not the database
controls the placement of the data. The database merely lets you break a table up into partitions,
without any idea of what each of the partitions will contain. The application controls what goes into
the individual partitions. You must explicitly specify the partition when inserting data into a system-
partitioned table. So, if you try to insert data into a system-partitioned table without specifying the
specific partition into which the data goes, the insert will fail.

The biggest advantage in using system partitioning is that you can create and maintain tables
that are equipartitioned with respect to a base table.

Creating a System-Partitioned Table

The following example shows how to create a system-partitioned table:

CREATE TABLE test (c1 integer, c2 integer)
PARTITIONED BY SYSTEM
(
 PARTITION p1 TABLESPACE tbs_1,
 PARTITION p2 TABLESPACE tbs_2,
 PARTITION p3 TABLESPACE tbs_3,
 PARTITION p4 TABLESPACE tbs_4
);

The clause PARTITIONED BY SYSTEM, of course, specifies that the table use system partitioning.

Inserting Data

When you’re inserting data using an INSERT or MERGE statement, you must specify the partition into
which you want the new row to be placed. Here’s an example of an insertion into a system-parti-
tioned table:

SQL> INSERT INTO test PARTITION (p1) VALUES (4,5);

The example specifies the partition p1 for inserting the new data.

Deleting and Updating Data

Unlike the insert operation, deleting and updating data in a system-partitioned table doesn’t require
you to use a partition-aware syntax, by specifying the partition name in the DELETE or UPDATE
command. However, Oracle recommends that you specify the partition, so the database can use
partition pruning and avoid scanning the entire table for the data.

Limitations

System partitioning doesn’t support the CREATE TABLE AS SELECT and the INSERT INTO TABLE AS
statements. The reason in both cases is that system partitioning doesn’t make use of a partitioning
method, and hence there’s no mapping between rows and partitions.

Composite Partitioning
Sometimes, merely partitioning on range, hash, or list schemes may not be enough. You can further
break down a large table into subpartitions for more control over data placement and performance.
Oracle offers several types of composite partitioning. For example, under the range-hash-parti-
tioning method, you first partition the table using range partitioning and then subpartition each of
those partitions using a hash scheme. In a range-list-partitioning scheme, you first partition the

288 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

table using range partitioning and then subpartition those partitions using list partitioning. Simi-
larly, you can use the range-range, list-list, list-hash, and list-range composite partitioning methods.

Range-Hash Partitioning

Sometimes you may partition a table range-wise, but the distribution may not be very equal. You can
make this a better partitioning scheme by hash partitioning after the range partitioning is done. This
will allow you to store the data more efficiently, although it becomes more complex to manage.

Range-hash partitioning combines the best of the range- and hash-partitioning schemes. Range
partitioning, as you’ve already seen, is easy to implement, and hash partitioning provides you bene-
fits such as striping and parallelism.

Listing 7-7 shows a simple example of how to create a range-hash-partitioned table.

Listing 7-7. Creating a Range-Hash-Partitioned Table

SQL> CREATE TABLE scout_gear (equipno NUMBER,equipname VARCHAR(32),price NUMBER)
 2 PARTITION BY RANGE (equipno) SUBPARTITION BY HASH(equipname)
 3 SUBPARTITIONS 8 STORE IN (ts1, ts2, ts3, ts4)
 4 (PARTITION p1 VALUES LESS THAN (1000),
 5 PARTITION p2 VALUES LESS THAN (2000),
 6 PARTITION p3 VALUES LESS THAN (3000),
 7* PARTITION p4 VALUES LESS THAN (MAXVALUE));
Table created.
SQL>

In this example, the scout_gear table is first partitioned by range on the equipno column—four
range-based partitions are created. These four partitions are then subpartitioned on the equipname
column using a hash-partitioning scheme, resulting in 32 subpartitions altogether. Note the SUBPAR-
TITIONS clause in line 3.

Range-List Partitioning

In the range-list-partitioning method, you first partition the data based on a range of values. You then
use list partitioning to break up the first set of partitions, using a list of discrete values. Listing 7-8
shows an example of how to create a range-list-partitioned table.

Listing 7-8. Creating a Range-List-Partitioned Table

SQL> CREATE TABLE quarterly_regional_sales
 2 (ticket_no NUMBER,
 3 sale_year INT NOT NULL,
 4 sale_month INT NOT NULL,
 5 sale_day DATE,
 6 destination_city CHAR(3),
 7 start_city CHAR(3))
 8 PARTITION BY RANGE(sale_day)
 9 SUBPARTITION BY LIST (start_city)
 10 (PARTITION q1_2004 VALUES LESS THAN (TO_DATE('1-APR-2004','DD-MON-YYYY'))
 11 TABLESPACE t1
 12 (SUBPARTITION q12004_northeast_sales VALUES ('NYC','BOS','PEN'),
 13 SUBPARTITION q12004_southwest_sales VALUES ('DFW','ORL','HOU'),
 14 SUBPARTITION q12004_pacificwest_sales VALUES ('SAN','LOS','WAS'),
 15 SUBPARTITION q12004_southeast_sales VALUES ('MIA','CHA','ATL')
 16),
 17 PARTITION q2_2004 VALUES LESS THAN (TO_DATE('1-JUL-2004','DD-MON-YYYY'))

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 289

 18 TABLESPACE t2
 19 (SUBPARTITION q22004_northeast_sales VALUES ('NYC','BOS','PEN'),
 20 SUBPARTITION q22004_southwest_sales VALUES ('DFW','ORL','HOU'),
 21 SUBPARTITION q22004_pacificwest_sales VALUES ('SAN','LOS','WAS'),
 22 SUBPARTITION q22004_southeast_sales VALUES ('MIA','CHA','ATL')
 23),
 24 PARTITION q3_2004 VALUES LESS THAN (TO_DATE('1-OCT-2004','DD-MON-YYYY'))
 25 TABLESPACE t3
 26 (SUBPARTITION q32004_northeast_sales VALUES ('NYC','BOS','PEN'),
 27 SUBPARTITION q32004_southwest_sales VALUES ('DFW','ORL','HOU'),
 28 SUBPARTITION q32004_pacificwest_sales VALUES ('SAN','LOS','WAS'),
 39 SUBPARTITION q32004_southeast_sales VALUES ('MIA','CHA','ATL')
 30),
 31 PARTITION q4_2004 VALUES LESS THAN (TO_DATE('1-JAN-2005','DD-MON-YYYY'))
 32 TABLESPACE t4
 33 (SUBPARTITION q42004_northeast_sales VALUES ('NYC','BOS','PEN'),
 34 SUBPARTITION q42004_southwest_sales VALUES ('DFW','ORL','HOU'),
 35 SUBPARTITION q42004_pacificwest_sales VALUES ('SAN','LOS','WAS'),
 36 SUBPARTITION q42004_southeast_sales VALUES ('MIA','CHA','ATL')
 37)
 38*);
Table created.
SQL>

The preceding statement will create 16 subpartitions in the range-list-partitioned table with 4
subpartitions in each tablespace (t1, t2, t3, t4). Each time you insert a row of data into the
quarterly_regional_sales table, Oracle will first check whether the value of the partitioning column
for a row falls within a specific partition range. Oracle will then map the row to a subpartition within
that partition, by mapping the subpartition column value to the appropriate subpartition based on
the values in that subpartition’s list. For example, the row with the column values (9999, 2004, 10, 1,
‘DAL’, ‘HOU’) maps to subpartition q32004_southwest_sales.

Composite Interval-List-Partitioned Tables

You must use a subpartition template to create a table with list subpartitions. Otherwise, you’ll be
able to create only a default subpartition for every interval partition.

In the example shown in Listing 7-9, the sales table is first interval partitioned on the time_id
columns, with a daily interval. The table is then subpartitioned by list on the channel_id column.

Listing 7-9. Creating an Interval-List-Partitioned Table

CREATE TABLE sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
 PARTITION BY RANGE (time_id) INTERVAL (NUMTODSINTERVAL(1,'DAY'))
SUBPARTITION BY RANGE(amount_sold)
 SUBPARTITION TEMPLATE
 (SUBPARTITION p_low VALUES LESS THAN (1000)
 , SUBPARTITION p_medium VALUES LESS THAN (4000)

290 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

 , SUBPARTITION p_high VALUES LESS THAN (8000)
 , SUBPARTITION p_ultimate VALUES LESS THAN (maxvalue)
)
 (PARTITION before_2000 VALUES LESS THAN (TO_DATE('01-JAN-2000','dd-MON-yyyy')))
PARALLEL;

Composite Interval-Range Partitioning

As in the case of the list subpartitioning, you must use a subpartition template if you want to create
range subpartitions for the future interval partitions in an interval-range-partitioned table. Without
such a template, you’ll manage to create only a range subpartition with the MAXVALUE upper
boundary for every interval partition.

The example shown in Listing 7-10 illustrates the creation of an interval-range composite parti-
tioned table. The interval partitions are created using daily intervals on the time_id column and the
range subpartitions by partitioning on the amount_sold column.

Listing 7-10. Creating an Interval-Range-Partitioned Table

CREATE TABLE sales
 (prod_id NUMBER(6)
 , cust_id NUMBER
 , time_id DATE
 , channel_id CHAR(1)
 , promo_id NUMBER(6)
 , quantity_sold NUMBER(3)
 , amount_sold NUMBER(10,2)
)
 PARTITION BY RANGE (time_id) INTERVAL (NUMTODSINTERVAL(1,'DAY'))
 SUBPARTITION BY LIST (channel_id)
 SUBPARTITION TEMPLATE
 (SUBPARTITION p_catalog VALUES ('C')
 , SUBPARTITION p_internet VALUES ('I')
 , SUBPARTITION p_partners VALUES ('P')
 , SUBPARTITION p_direct_sales VALUES ('S')
 , SUBPARTITION p_tele_sales VALUES ('T')
)
 (PARTITION before_2000 VALUES LESS THAN (TO_DATE('01-JAN-2000','dd-MON-yyyy')))
PARALLEL;

Partition Maintenance Operations
After you initially create partitioned tables, you can perform a number of maintenance operations
on the partitions. For example, you can add and drop partitions to maintain a fixed number of parti-
tions based on a quarterly time period.

In this section, I illustrate the use of these maintenance operations by assuming a range-parti-
tioning scheme. These maintenance operations apply to all types of partitioning schemes, with a few
exceptions, like the following:

• Range and list partitions can’t be coalesced.

• Hash partitions can’t be dropped, split, or merged.

• Only list partitions allow the modification of partitions by adding and dropping the partition
values.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 291

Adding Partitions

You can add a new partition to the ticket_sales table to include a new quarter, as follows:

SQL> ALTER TABLE ticket_sales
 ADD PARTITION sales_quarter5 VALUES LESS THAN
 (TO_DATE('1-APR-2005','DD-MON-YYYY'))
 TABLESPACE ticket_sales05;

This example adds a new quarterly partition for the first quarter of the year 2005, which comes
after the last quarter in the original table.

Splitting a Partition

The add partition statement will add partitions only to the upper end of the existing table. But what
if you need to insert some new data into the middle of a table? What if an existing partition becomes
too large, and you would rather have smaller partitions? Splitting a partition takes the data in an
existing partition and distributes it between two partitions.

You can use the split partition clause to break up a partition, as shown here:

SQL> ALTER TABLE ticket_sales
 SPLIT PARTITION ticket_sales01 AT (2000) INTO
 (PARTITION ticket_sales01A, ticket_sales01B);

Merging Partitions

You can use the MERGE PARTITIONS command to combine the contents of two adjacent partitions. For
example, you can merge the first two partitions of the ticket_sales table in the following way:

SQL> ALTER TABLE ticket_sales
 MERGE PARTITIONS ticket_sales01, ticket_sales02 INTO PARTITION
 ticket_sales02;

Renaming Partitions

You can rename partitions in the same way you rename a table. Here is an example:

SQL> ALTER TABLE
 RENAME PARTITION fight_sales01 TO quarterly_sales01;

Exchanging Partitions

The EXCHANGE PARTITION command enables you to convert a regular nonpartitioned table into a
partition of a partitioned table. Here’s an example:

SQL> ALTER TABLE ticket_sales
 EXCHANGE PARTITION ticket_sales02 WITH ticket_sales03;

A partition exchange doesn’t involve the actual movement of data. Oracle renames the source
table as a partition and the target partition as the source table. Thus, the database completes the
loading process with no data movement.

Dropping Partitions

Dropping partitions is easy if you don’t have any data in the partitions. Here’s an example:

SQL> ALTER TABLE ticket_sales
 DROP PARTITION ticket_sales01;

292 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

If you do have data in the partitions that you intend to drop, you need to be careful to use the
additional UPDATE GLOBAL INDEXES clause with the preceding drop partition syntax. Otherwise, all
globally created indexes will be invalidated. Local indexes will still be okay, because they’re mapped
directly to the affected partitions only.

Coalescing Partitions

The hash-partitioned and list-partitioned tables enable you to coalesce their partitions. Coalescing
partitions amounts to shrinking the number of partitions. In a hash-partitioned table, the COALESCE
command will reorganize the data of the removed partition into the remaining partitions based on
a hash function. The database chooses a specific partition for coalescing, and drops it after reorga-
nizing its data among the remaining partitions. In range-hash partitioning, you can coalesce
subpartitions.

Here’s an example of coalescing a hash-partitioned table, which will reduce the number of
partitions by one:

SQL> ALTER TABLE ticket_sales
 COALESCE PARTITION;

■Note I’ve presented only a bare introduction to the vast and complex topic of Oracle table partitioning. Please
refer to the Oracle documentation for a complete discussion of this powerful feature, including restrictions on the
numerous partition-maintenance operations.

Data Dictionary Views for Managing Tables
Several data dictionary views can help in managing Oracle tables. The most important one is the
DBA_TABLES view—it gives you the owner, the number of rows, the tablespace name, space infor-
mation, and a number of other details about all the tables in the database. Listing 7-11 shows a
sample query.

Listing 7-11. Using the DBA_TABLES Data Dictionary View

SQL> SELECT tablespace_name, table_name, num_rows
 FROM dba_tables
 WHERE owner='HR';

TABLESPACE_NAME TABLE_NAME NUM_ROWS
--------------- -------------- ---------
EXAMPLE DEPARTMENTS 27
EXAMPLE EMPLOYEES 107
EXAMPLE JOBS 19
EXAMPLE JOB_HISTORY 10
EXAMPLE LOCATIONS 23
EXAMPLE REGIONS 4
6 rows selected.
SQL>

Use the DBA_TAB_PARTITIONS view to find out detailed information about partitioned tables.
Listing 7-12 shows an example of this view that summarizes information about a partitioned table
from an earlier example in this chapter.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 293

Listing 7-12. Using the DBA_TAB_PARTITIONS Data Dictionary View
TABLE_NAME PARTITION_NAME SUBPARTITION_COUNT
----------- ----------------- ------------------
SALES_DATA SALES_Q1 0
SALES_DATA SALES_Q2 0
SALES_DATA SALES_Q3 0
SALES_DATA SALES_Q4 0
SALES_HASH SYS_P3161 0
SALES_HASH SYS_P3162 0
SALES_HASH SYS_P3163 0
SALES_HASH SYS_P3164 0
SALES_LIST NORTHEAST_SALES 0
SALES_LIST SOUTHWEST_SALES 0
SALES_LIST PACIFICWEST_SALES 0
SALES_LIST SOUTHEAST_SALES 0
SCOUT_GEAR P1 8
SCOUT_GEAR P2 8
SCOUT_GEAR P3 8
SCOUT_GEAR P4 8
QUARTERLY_REGIONAL_SALES Q1_2009 4
QUARTERLY_REGIONAL_SALES Q2_2009 4
QUARTERLY_REGIONAL_SALES Q3_2009 4
QUARTERLY_REGIONAL_SALES Q4_2009 4
20 rows selected.
SQL>

The DBA_TAB_COLUMNS view is another useful data dictionary view that provides a lot of
information about table columns. Listing 7-13 shows a simple query using this view.

Listing 7-13. Using the DBA_TAB_COLUMNS Data Dictionary View

SQL> SELECT column_name, data_type,
 nullable
 FROM dba_tab_columns
 WHERE owner='HR'
 AND table_name = 'EMPLOYEES';

COLUMN_NAME DATA_TYPE NULLABLE
-------------- ---------- ---------
EMPLOYEE_ID NUMBER N
FIRST_NAME VARCHAR2 Y
LAST_NAME VARCHAR2 N
EMAIL VARCHAR2 N
PHONE_NUMBER VARCHAR2 Y
HIRE_DATE DATE N
JOB_ID VARCHAR2 N
SALARY NUMBER Y
8 rows selected.
SQL>

Of course, you could have obtained this type of information easily by using the DESCRIBE
command. Listing 7-14 shows how to use this command.

294 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

Listing 7-14. Using the DESCRIBE Command

SQL> DESCRIBE new_employees

 Name Null? Type
 --------------- ----------- ------------
 EMPLOYEE_ID NOT NULL NUMBER(6)
 FIRST_NAME NOT NULL VARCHAR2(20)
 LAST_NAME NOT NULL VARCHAR2(25)
 HIRE_DATE NOT NULL DATE
 JOB_ID NOT NULL VARCHAR2(10)
 SALARY NUMBER(8,2)
 SQL>

EXTRACTING OBJECT DDL USING THE DBMS_METADATA PACKAGE

Often you’ll want to re-create a table or create a similar table in a different database, and it would be nice to have
the DDL for the original table handy. If you’re using a third-party tool, such as the SQL Navigator from Quest Soft-
ware, all you have to do is click a few buttons, and your table DDL statements will be shown on the screen.

But what commands can you use to get the CREATE TABLE statement that created a table? You could get this infor-
mation from the DBA_TABLES and DBA_TAB_COLUMNS views, but you would have to write lengthy SQL statements
to do so. Alternatively, you can use the Oracle-supplied DBMS_METADATA package to quickly get the DDL state-
ments for your tables and indexes.

As an example, let’s get the DDL for the employee table using this package. Here is the output of the package execu-
tion:

SQL> CONNECT hr/hr
Connected.SQL> SET LONG 100000
SQL> SELECT dbms_metadata.get_ddl('TABLE','EMPLOYEE') from dual;

DBMS_METADATA.GET_DDL('TABLE','EMPLOYEE')

CREATE TABLE "HR"."EMPLOYEES"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "FIRST_NAME" VARCHAR2(20),
 "LAST_NAME" VARCHAR2(25) CONSTRAINT "EMP_LAST_NAME_NN" NOT NULL ENABLE,
 "HIRE_DATE" DATE CONSTRAINT "EMP_HIRE_DATE_NN" NOT NULL ENABLE,
 "SALARY" NUMBER(8,2),
 "COMMISSION_PCT" NUMBER(2,2),
 "MANAGER_ID" NUMBER(6,0),
 "DEPARTMENT_ID" NUMBER(4,0),
 CONSTRAINT "EMP_SALARY_MIN" CHECK (salary > 0) ENABLE NOVALIDATE,
 USING INDEX PCTFREE 10 INITRANS 2 MAXTRANS 255
STORAGE(INITIAL 65536 NEXT 1048576
MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE
 "EXAMPLE" ENABLE,
 CONSTRAINT "EMP_EMP_ID_PK" PRIMARY KEY ("EMPLOYEE_ID")
 USING INDEX PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS
2147483645 PCTINCREASE 0
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 295

"EXAMPLE" ENABLE,
 CONSTRAINT "EMP_DEPT_FK" FOREIGN KEY ("DEPARTMENT_ID")
 REFERENCES "HR"."DEPARTMENTS" ("DEPARTMENT_ID") ENABLE NOVALIDATE,
DBMS_METADATA.GET_DDL('TABLE','EMPLOYEES')
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS
2147483645 PCTINCREASE 0
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "EXAMPLE"
SQL>

■Tip The output of the get_ddl procedure in the DBMS_METADATA package spits out its DDL text in long
format. If you don’t have the LONG variable set in your SQL*Plus session, you may not see the entire DDL
statement.

This is the most elegant and the easiest way to get the DDL for your tables and indexes using SQL*Plus. If you need
the DDL statements for your database objects, you should use the DBMS_METADATA package. Of course, you can
always use the OEM Database Control to extract all types of DDL for your database objects.

Clusters
Clusters are two or more tables that are physically stored together to take advantage of similar
columns between the tables. If two tables have an identical column and you frequently need to join
the two tables, for example, it is advantageous to store the common column values in the same data
block. The goal is to reduce disk I/O and thereby increase access speed when you join related tables.
However, clusters will reduce the performance of your INSERT statements, because more blocks are
needed to store the data of multiple tables.

In order to create clustered tables, you must first create a cluster. The following example creates
a cluster named emp_dept that will store the emp and dept tables, clustered by the deptno column:

SQL> CREATE CLUSTER emp_dept(deptno NUMBER(3))
 2 TABLESPACE users;

Cluster created.
SQL>

You can create the two tables, emp and dept, that are part of the cluster, as shown here:

SQL> CREATE TABLE dept(
 2 deptno NUMBER(3) PRIMARY KEY)
 3* CLUSTER emp_dept (deptno);

Table created.
SQL>

SQL> CREATE TABLE emp(
 2 empno NUMBER(5) PRIMARY KEY,
 3 ename VARCHAR2(15) NOT NULL,
 4 deptno NUMBER(3) REFERENCES dept)
 5* CLUSTER emp_dept(deptno);

296 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

Table created.
SQL>

Make sure you cluster only those tables that your applications access frequently in join
statements.

Hash Clusters
You can create a hash cluster and store tables in the cluster. Rows are retrieved according to the
results of a hash function. To find any row value, all you need to do is find the hash value for a
cluster’s key value, which you can get by using the hash function. The hash values point to data
blocks in the hash cluster, so a single I/O will get you the row data and lead to more efficient perfor-
mance. When your application uses equality queries such as, say, a query that returns all rows for
region 10, hash clusters are a better choice than using a normal table with indexes. The reason is that
the database hashes the specified cluster key, and the hash key value directly points to the area on
disk where the database has stored the rows.

Here’s a simple example of how you create a hash cluster:

SQL> CREATE CLUSTER emp_dept(deptno NUMBER(3))
 2 TABLESPACE users
 3* HASH IS deptno HASHKEYS 200;

Cluster created.
SQL>

Once you create the hash cluster, you create the cluster tables just as you would in a regular
cluster. The HASHKEYS value specifies the maximum number of unique hash values that can be gener-
ated by the hash function.

Oracle Indexes
Oracle indexes provide speedy access to table rows by storing sorted values of specified columns,
and using those sorted values to easily look up the associated table rows, much the same way you
use a book’s index to quickly find a particular item you’re interested in. Indexes enable you to find a
row with a certain column value without your having to look at more than a small fraction of the total
rows in the table. Thus, the proper use of indexes will reduce your expensive disk I/Os to a bare
minimum. Indexes are purely optional database structures, and they’re maintained completely by
Oracle.

Using an index involves a trade-off between speedy retrieval of query results and slower updates
and insertions. The first part of the trade-off, the speedy execution of queries, is quite apparent: if
you look up a sorted index rather than performing a full table scan, your queries will be faster. But
every time you update, insert, or delete a row in a table with indexes, the indexes have to be updated,
inserted, or deleted as well. This makes these processes more time consuming on a table with
indexes. In addition, don’t forget that large tables will have large indexes, and you need a large disk
to accommodate these indexes in addition to the table data.

In general, if your tables are mostly used for reading (selecting) data, as in a data warehouse, you
are better off with more indexes. If your database is more of an OLTP type, with heavy inserts,
updates, and deletes, you are better off with fewer indexes.

Unless you need to access most of the rows of a table, indexed queries often provide results
much more quickly than queries that do not use indexes. There is no limit to the number of indexes
you can have on a single Oracle table but, as mentioned previously, there are performance implica-
tions. An index is completely transparent to the user—that is, the user’s SQL statement does not have
to be changed when you create indexes. However, it is incumbent upon application developers to be
well versed in the subject of indexes and how they work, so that they can build efficient queries.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 297

■Note You’ll find a detailed discussion on appropriate indexing strategies in Chapter 19.

Oracle indexes can be of several types, the most important of which are listed here:

• Unique and nonunique indexes: Unique indexes are those based on a unique column, usually
something like the social security number of an employee. Although you can explicitly create
unique indexes, Oracle recommends that you not do so. Oracle advises you to use unique
constraints instead. When you place a unique constraint on a table’s column, Oracle will
automatically create unique indexes on those columns.

• Primary and secondary indexes: Primary indexes are the unique indexes in a table that must
always possess a value; they can’t be null. Secondary indexes are other indexes in the same
table that may not be unique.

• Composite indexes: Composite indexes are indexes that contain two or more columns from
the same table. They’re also known as concatenated indexes. Composite indexes are espe-
cially useful for enforcing uniqueness in a table’s columns in cases where there’s no single
column that can uniquely identify a row.

INDEXES AND KEYS

Often, you’ll see the terms “index” and “key” being used interchangeably. However, the two things are actually
different from each other. An index is a physical structure that’s stored in the database. You can create, alter, and
drop an index, and you mostly use an index to speed up access to the table data. Keys, on the other hand, are a
purely logical concept. Keys represent the integrity constraints that you create to enforce the business rules. The
confusion between an index and a key normally arises because often the database uses an index to enforce an integ-
rity constraint. Just remember that the two things are different.

Guidelines for Creating Indexes
Although it is well known that indexes will enhance database performance, you will need to under-
stand how to make them work well for you. Placing unnecessary or inappropriate indexes on your
table may prove to be detrimental to performance.

Here are some guidelines for creating efficient indexes for your Oracle tables:

• Index only if you need to access no more than 4 or 5percent of the data in a table. The alter-
native to using an index to access row data in a table is to read the entire table sequentially
from top to bottom, which is called a full table scan. Full table scans are better for queries that
require a high percentage of the data in a table. Remember that using indexes to retrieve rows
requires two reads: an index read followed by a table read.

• Avoid indexes on relatively small tables. Full table scans are just fine for small tables. There’s
no need to store both table and index data for small tables.

• Create primary keys for all tables. When you designate a column as a primary key, Oracle
automatically creates an index on the column.

• Index the columns that are involved in multitable join operations.

• Index columns that are used frequently in WHERE clauses.

• Index the columns that are involved in ORDER BY and GROUP BY operations, or other operations,
such as UNION and DISTINCT, that involve sorting. Because indexes are already sorted, the
sorting necessary to perform the previously mentioned operations will be considerably
reduced.

298 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

• Columns that consist of long character strings are usually poor candidates for indexing.

• Columns that are frequently updated should ideally not be indexed because of the overhead
involved.

• Index tables with high selectivity only. That is, choose to index tables where few rows have
similar values.

• Keep the number of indexes small.

• Composite indexes may need to be used where single-column values may not be unique by
themselves. In composite indexes, the driving or the first column should be the most selective
column.

Always keep in mind the golden rule of indexing a table: The index on a table should be based
on the types of queries you expect to occur against the table’s columns. You can create more than
one index on a table; you can choose to create an index on column X, or column Y, or both, and you
can also create a composite index on both columns X and Y. You will make the right decisions about
which index to create by thinking about the most frequent types of queries involving the table’s data.

Oracle Index Schemes
Oracle provides several indexing schemes to suit the requirements of different types of applications.
During the design phase, you should select the right index type after you conduct a careful analysis
of the particular requirements of your application.

The B-tree index implementation uses the concept of a balanced (which is what the “B” stands
for) search tree as the basis of an index’s structure. Oracle uses its own variation on the B-tree called
the “B*tree” for implementing B-tree indexes. These are the regular default indexes created when
you use a CREATE INDEX statement in Oracle. The term “B*tree index” isn’t generally used to refer to
Oracle regular indexes—they are just called “indexes.”

B-tree indexes are structured in the form of an inverse tree, with top-level blocks called branch
blocks and lower-level blocks called leaf blocks. In the hierarchy of nodes, all nodes except the top or
root node have one parent node and may have zero or more nodes beneath them called child nodes.
If the depth of the tree structure—that is, the number of levels—is the same from each leaf block to
the root node, the tree is called a balanced tree or B-tree.

B-trees automatically maintain the necessary level of index for the size of the table. B-trees also
ensure that the index blocks are always between half used and full. B-trees permit select, insert,
update, and delete operations with very few I/Os per statement. Most B-trees have only three or
fewer levels. When you use a B-tree, you need to read only the B-tree blocks, so the number of disk
I/Os will be the number of B-tree levels (say, three) plus the I/Os for performing an update or delete
(two: one to read and one to write). To search through a B-tree, you would only need three or fewer
disk I/Os.

Oracle’s implementation of the B-tree, the B*tree, always keeps the tree balanced. The leaf
blocks contain two items: the indexed column values and the corresponding ROWID for the row that
contains the particular column value. The ROWID is a unique Oracle pointer that identifies the phys-
ical location of the row in question, and it is the fastest way to access a row in an Oracle database.
Scanning the index will quickly get you the ROWID of the row, and from there it’s a quick hop to the
row itself. If the query just wanted the value of the indexed column itself, of course, the latter step is
omitted because you don’t have to fetch any more data for the query.

Estimating the Size of an Index
As in the case of tables, you can use the DBMS_SPACE package to estimate the size of a new index. You
must provide the DDL statement that creates the index as an attribute to the CREATE_INDEX_COST
procedure of the package, as shown in Listing 7-15.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 299

Listing 7-15. Using the DBMS_SPACE Package to Estimate a New Index’s Space Requirements

SQL> SET SERVEROUTPUT ON
SQL> declare
 2 l_index_ddl VARCHAR2(1000);
 3 l_used_bytes NUMBER;
 4 l_allocated_bytes NUMBER;
 5 BEGIN
 6 DBMS_SPACE.create_index_cost (
 7 ddl => 'create index persons_idx on persons(person_id)',
 8 used_bytes => l_used_bytes,
 9 alloc_bytes => l_allocated_bytes);
 10 DBMS_OUTPUT.PUT_LINE ('used = ' || l_used_bytes || 'bytes'
 11 || ' allocated = ' || l_allocated_bytes || 'bytes');
 12* END;
SQL> /

used = 154414918bytes allocated = 427720704bytes

PL/SQL procedure successfully completed.
SQL>

Note the interesting difference between the two size-related attributes of the
CREATE_INDEX_COST procedure:

• used_bytes shows the number of bytes that the index data actually represents.

• alloc_bytes shows the number of bytes the index will take up in the tablespace when you
actually create it.

■Tip The table on which you are planning to create the new index must, of course, exist, and the database should
have the latest statistics on that table, in order to use the DBMS_SPACE package to estimate index sizes.

Creating an Index
You create an index using the CREATE INDEX statement, as follows:

SQL> CREATE INDEX employee_id ON employee(employee_id)
 TABLESPACE emp_index_01;

If you are creating an index for a large table with data already populated, you can choose to
collect optimizer statistics at table creation time by specifying the COMPUTE STATISTICS option as
shown in this example:

SQL> CREATE INDEX employee_id ON employee(employee_id)
 TABLESPACE emp_index_01
 COMPUTE STATISTICS;

If you don’t specify any storage settings, the database will use the default storage options of the
tablespace you specify for the creation of the index.

By default, Oracle allows duplicate values in the indexed column, also known as the key column.
However, you can specify a unique index, which disallows duplicate values for a column in multiple
rows. To create a unique index, use the CREATE UNIQUE INDEX statement, as shown here:

SQL> CREATE UNIQUE INDEX employee_id ON employee(employee_id)
 TABLESPACE emp_index_01;

300 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

The examples I showed thus far are all indexes created on a single column. You can also create
a composite index on a table, by specifying multiple columns in the CREATE INDEX statement, as
shown in this example:

SQL> CREATE INDEX employee_id ON employee(employee_id,location_id)
 TABLESPACE emp_index_01;

All the examples of index creation thus far showed you how to explicitly create an index on a
table’s column. However, there is also a different way to create an index on a table, and that is by
simply specifying a UNIQUE or PRIMARY KEY integrity constraint on that table. When you do so, Oracle
automatically creates a unique index on the unique key or primary key. The database will create the
index automatically when the constraint is enabled and by default names the index after the
constraint. Here are two examples that demonstrate situations when the database creates an auto-
matic index on a table’s columns.

In the first case, I specify a unique constraint on two columns: dept_name and location.

SQL> CREATE TABLE dept(
 dept_no NUMBER(3),
 dept_name VARCHAR2(15),
 location VARCHAR2(25),
 CONSTRAINT dept_name_ukey UNIQUE(dept_Name,location);

The database automatically creates a unique index on these two columns to enforce the unique
constraint named dept_name_ukey.

In the second example, I show how to specify a primary key constraint on a column when
creating a table.

SQL> CREATE TABLE employee (
 empno NUMBER (5) PRIMARY KEY, age INTEGER)
 ENABLE PRIMARY KEY USING INDEX
 TABLESPACE users;

The CREATE TABLE statement shown here enables the primary key constraint, which automati-
cally creates a unique index on the empno column.

You can also specify that the database use an existing index to enforce a new constraint you are
creating, as shown in this example:

SQL> ALTER TABLE employee ADD CONSTRAINT test_const1
 PRIMARY KEY (pkey1) USING INDEX ind1;

In this example, the new primary key I specify uses the existing index ind1, instead of having the
database create a new index. Interestingly, you can also specify a CREATE INDEX statement when
creating a unique or primary key constraint. The following example creates a primary key on a
column:

SQL> CREATE TABLE employee (
 emp_id INT PRIMARY KEY USING INDEX (create index ind1
 ON employee (emp_id)))

The use of the CREATE INDEX statement in this example gives you more control over the creation
of the index for the primary key constraint you specified.

Special Types of Indexes
The normal or typical index you create in an Oracle database is called a heap index. Oracle also offers
several special types of index for specific needs. I explain the main types of index in the following
sections.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 301

Bitmap Indexes
Bitmap indexes use bitmaps to indicate the value of the column being indexed. This is an ideal index
for a column with a low cardinality and a large table size. These indexes are not usually appropriate
for tables with heavy updates and are well suited for data warehouse applications.

Bitmap indexes consist of a bit stream (0 or 1) for each column in the index. Bitmap indexes are
very compact compared to the normal B-tree indexes. Table 7-2 presents a comparison of B-tree
indexes and bitmap indexes.

To create a bitmap index, you use the CREATE INDEX statement with the BITMAP keyword added
to it:

SQL> CREATE BITMAP INDEX gender_idx ON employee(gender)
 TABLESPACE emp_index_05;

I’ve seen query performance significantly improve when ordinary B*tree indexes were replaced
with bitmap indexes in some very large tables. However, each bitmap index entry covers a large
number of rows in the table, so when data is updated, inserted, or deleted in the table, the necessary
bitmap index updates are very large, and the index can increase substantially in size. The only way
around this increase in bitmap index size, and the consequent drop in performance, is to maintain
the bitmap index by regularly rebuilding the index. You may decide that a bitmap index is not a smart
alternative for tables that involve large numbers of inserts, deletes, and updates.

Reverse-Key Indexes
Reverse-key indexes are fundamentally the same as B-tree indexes, except that the bytes of key
column data are reversed during indexing. The column order is kept intact; only the bytes are
reversed. The biggest advantage to using reverse-key indexes is that they tend to avoid hot spots
when you do sequential insertion of values into the index. Here’s how to create one:

SQL> CREATE INDEX reverse_idx ON employee(emp_id) REVERSE;

When you use a reverse-key index, the database doesn’t store the index keys next to each other
in a lexical order. Thus, when you use a nonequality predicate in your query, results are going to be
slow because the database has to perform a full-table scan. Under reverse-key index, the database
can’t run an index range scan query.

Key-Compressed Indexes
You can save index storage space as well as improve performance by creating indexes using key
compression. Any time the indexed key has a repeatedly occurring component, or you are creating
a unique multicolumn index, you’ll benefit by using key compression. Here is an example:

Table 7-2. B-tree Indexes vs. Bitmap Indexes

B-tree Indexes Bitmap Indexes

Good for high-cardinality data Good for low-cardinality data

Good for OLTP databases Good for data warehousing applications

Use a large amount of space Use relatively little space

Easy to update Difficult to update

302 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

SQL> CREATE INDEX emp_indx1 ON employees(ename)
 TABLESPACE users
 COMPRESS 1;

The previous statement compresses all duplicate occurrences of an indexed key in the index leaf
block (level 1) of the index.

Function-Based Indexes
Function-based indexes precompute functions on a given column and store the results in an index.
When where clauses include functions, function-based indexes are an ideal way to index the column.
Here’s how to create a function-based index, using the LOWER function:

SQL> CREATE INDEX lastname_idx ON employees(LOWER(l_name));

This CREATE INDEX statement will create an index on the l_name (last name) column, which
contains the last names of the employees in uppercase. However, this index will be a function-based
index, since the database will actually create the index on the l_name column after first using the
LOWER function to convert the l_name column values to lowercase.

Partitioned Indexes
Partitioned indexes are used to index partitioned tables. Oracle provides two types of indexes for
partitioned tables: local and global.

The essential difference between the two is that local indexes are based on the underlying table
partitions. If the table is partitioned 12 ways using date ranges, the indexes are also distributed over
the same 12 partitions. There is a one-to-one correspondence, in other words, between data parti-
tions and index partitions. There is no such one-to-one correspondence between global indexes and
the underlying table partitions—a global index is partitioned independently of the base tables.

The following sections cover the important differences between managing globally partitioned
indexes and locally partitioned indexes.

Global Indexes

Global indexes on a partitioned table can be either partitioned or nonpartitioned. The globally
nonpartitioned indexes are similar to the regular Oracle indexes for nonpartitioned tables. You just
use the regular CREATE INDEX syntax to create these globally nonpartitioned indexes.

Here’s an example of a global index on the ticket_sales table:

SQL> CREATE INDEX ticketsales_idx ON ticket_sales(month)
 GLOBAL PARTITION BY range(month)
 (PARTITION ticketsales1_idx VALUES LESS THAN (3)
 PARTITION ticketsales1_idx VALUES LESS THAN (6)
 PARTITION ticketsales2_idx VALUES LESS THAN (9)
 PARTITION ticketsales3_idx VALUES LESS THAN (MAXVALUE);

Note that there’s substantial maintenance involved in the management of globally partitioned
indexes. Whenever there is DDL activity on a partitioned table, its global indexes need to be rebuilt.
DDL activity on the underlying table will mark the associated global indexes as unusable. By default,
any table maintenance operation on a partitioned table will invalidate (mark as unusable) global
indexes.

Let’s use the ticket_sales table as an example to see why this is so. Let’s assume that you drop
the oldest partition each quarter, in order to make room for the new partition for the new quarter.
When a partition belonging to the ticket_sales table gets dropped, the global indexes could be inval-
idated, because some of the data the index is pointing to isn’t there anymore. To prevent this
invalidation due to the dropping of a partition, you have to use the UPDATE GLOBAL INDEXES option
along with the DROP PARTITION statement, as shown here:

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 303

SQL> ALTER TABLE ticket_sales
 DROP PARTITION sales_quarter01
 UPDATE GLOBAL INDEXES;

■Note If you don’t include the UPDATE GLOBAL INDEXES statement, the entire global index will be invalidated.
You can also use the UPDATE GLOBAL INDEX option when you add, coalesce, exchange, merge, move, split, or trun-
cate partitioned tables. Of course, you can use the ALTER INDEX . . . REBUILD option to rebuild any index that
becomes unusable, but this option also involves additional time and maintenance.

When you have a small number of index leaf blocks leading to high contention, Oracle recom-
mends using hash-partitioned global indexes. The syntax for creating a hash-partitioned global
index is similar to that used for a hash-partitioned table. For example, the following statement
creates a hash-partitioned global index:

SQL> CREATE INDEX hgidx ON tab (c1,c2,c3) GLOBAL
 PARTITION BY HASH (c1,c2)
 (PARTITION p1 TABLESPACE tbs_1,
 PARTITION p2 TABLESPACE tbs_2,
 PARTITION p3 TABLESPACE tbs_3,
 PARTITION p4 TABLESPACE tbs_4);

Local Indexes

Locally partitioned indexes, unlike globally partitioned indexes, have a one-to-one correspondence
with the table partitions. You can create locally partitioned indexes to match partitions or even
subpartitions. The database constructs the index so that it is equipartitioned with the underlying
table. Any time you modify the underlying table partition, the database automatically maintains the
index partition. This is probably the biggest advantage to using locally partitioned indexes—Oracle
will automatically rebuild the locally partitioned indexes whenever a partition gets dropped, or any
other DDL activity occurs on a partition.

Here is a simple example of creating a locally partitioned index on a partitioned table:

SQL> CREATE INDEX ticket_no_idx ON
 ticket_sales(ticket__no) LOCAL
 TABLESPACE localidx_01;

■Tip You can use the new SQL Access Advisor tool to get recommendations on which indexes to create. The SQL
Access Advisor will also tell you which of your indexes aren’t being used and hence are candidates for removal. I
show how to use the SQL Access Advisor in the “Using the SQL Access Advisor” section, later in this chapter.

Invisible Indexes
By default, the optimizer “sees” all indexes. However, you can create an index as an invisible index
that’s not seen by the optimizer and hence isn’t taken into account by the optimizer when it’s
creating the execution plan for a statement. You can use the invisible index as a temporary index for
certain special operations or for testing the use of an index before making it “official.” In addition,
sometimes making an index invisible could be used as an alternative to dropping an index or making
it unusable. You can make an index invisible temporarily to test the effects of dropping the index.

The database maintains an invisible index just as it does a normal (visible) index. The only
difference will be that that optimizer won’t be able to make use of the invisible index. After making

304 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

an index invisible, you can make it and all other invisible indexes visible to the optimizer again by
setting the optimizer_use_invisible_indexes parameter to TRUE either at the session or the system
level. The default value of this parameter is FALSE, meaning the optimizer can’t make use of any
invisible indexes by default.

Creating an Invisible Index

You must add the clause INVISIBLE to the CREATE INDEX statement to make the index invisible, as
shown here:

SQL> CREATE INDEX test_idx ON test(tname)
 TABLESPACE testdata
 STORAGE (INITIAL 20K
 NEXT 20k
 PCTINCREASE 75)
 INVISIBLE;

The previous statement creates the invisible index test_idx for the tname column of the table
test.

Altering an Index to Make It Invisible

In addition to creating an invisible index, you can alter an existing index to an invisible status, by
issuing the ALTER INDEX statement as shown here:

SQL> ALTER INDEX test_idx INVISIBLE;

To make an invisible index visible again, use the following statement:

SQL> ALTER INDEX test_idx VISIBLE;

A query on the DBA_INDEXES view indicates whether an index is visible, as shown here:

SQL> SELECT INDEX_NAME, VISIBILITY FROM USER_INDEXES
 WHERE INDEX_NAME = 'INDX1';

 INDEX_NAME VISIBILITY
 ---------- ----------
 INDX1 VISIBLE
SQL>

Monitoring Index Usage
Oracle offers the EXPLAIN PLAN and SQL Trace tools to help you see the path followed by your
queries on the way to their execution. You can use the EXPLAIN PLAN output or the results of a SQL
Trace to see what the execution path of the query looks like and thus determine whether your
indexes are being used. I discuss EXPLAIN PLAN and SQL Trace in detail in Chapter 19.

Oracle also provides an easier way to monitor index usage in your database. If you are doubtful
as to the usefulness of a particular index, you can ask Oracle to monitor the index usage. This way, if
the index turns out to be redundant, you can drop it and save the storage space and the overhead
during DML operations.

Here’s what you have to do to monitor index usage in your database. Assume you’re trying to
find out whether the p_key_sales index is being used by certain queries on the sales table. Make sure
you use a representative time period to gauge index usage. For an OLTP database, this period could
be relatively short. For a data warehouse, you may need to run the monitoring test for several days
to accurately check index usage.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 305

To start monitoring the index use, log in as the owner of the p_key_sales index and run this
command:

SQL> ALTER INDEX p_key_sales MONITORING USAGE;

 Index altered.
SQL>

Now, run some queries on the sales table. End the monitoring by using the following command:

SQL> ALTER INDEX p_key_sales NOMONITORING USAGE;

 Index altered.
SQL>

You can now query the V$OBJECT_USAGE dictionary view to find out whether the p_key_sales
index is being used. The following results confirm that the index is indeed being used:

SQL> SELECT * FROM v$object_usage
 WHERE index_name='P_KEY_SALES';

INDEX_NM TAB_NM MON USED START_MON END_MONITORING
----------- ------ ---- ----- -------------------- --------------------
P_KEY_SALES SALE NO YES 01/23/2008 06:20:45 01/23/2008 06:40:22

In the preceding output, Oracle placed a YES value in the USED column, thus indicating that the
index in question was being used by the database. If the index had been ignored during the moni-
toring period, the column would contain NO instead. The reason why you can’t actually get an
estimate of the number of times an index is used is because the database performs the index usage
monitoring only at parse time—if it were done for each execution, there would be a performance hit.

Index Maintenance
Index data constantly changes due to the underlying table’s DML activity. Indexes often become too
large if there are many deletions, because the space used by the deleted values is not reused auto-
matically by the index. You can use the REBUILD command on a periodic basis to reorganize indexes
to make them more compact and thus more efficient. You can also use the REBUILD command to
alter the storage parameters you set during the initial creation of the index. Here’s an example:

SQL> ALTER INDEX sales_idx REBUILD;

Index altered
Sql>

Rebuilding indexes is better than dropping and re-creating a bad index, because users will
continue to have access to the index while you’re rebuilding it. However, indexes in the process of
rebuilding do impose many limits on users’ actions. An even more efficient way to rebuild indexes is
to do them online, as shown in the following example. You can perform all DML operations, but not
any DDL operations, while the online rebuild of the index is going on.

SQL> ALTER INDEX p_key_sales REBUILD ONLINE;

Index altered.
SQL>

You can speed up the online index build by adding the ONLINE NOLOGGING clause to the ALTER
INDEX statement shown here. When you add this clause, the database doesn’t generate redo data for
the index rebuild operation.

306 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

Managing Database Integrity Constraints
Integrity constraints in relational databases enable easy and automatic enforcement of important
business rules in the database tables. For example, in a human resources–related table, you can’t
have an employee without assigning him or her to a supervisor. When you create the relevant tables,
you can declare the necessary integrity constraints, which must be satisfied each time data is
entered or modified in the table.

You can also use application logic to enforce business rules, but integrity constraints are usually
simpler to enforce than application logic, and they usually do their job by making sure that inserts,
updates, and deletes of table data conform to certain rules. Application logic, on the other hand, has
the advantage that it can reject or approve data without having to check the entire table’s contents.
Thus, you have to determine which method you’ll use to enforce the business rules—application logic
or integrity constraints—based on the needs of your application. In any case, integrity constraints are
so fundamental to the operation of relational databases that you are bound to use them in your
database.

By default, Oracle allows null values in all columns. If null values are not permissible for some
columns in a table, you need to use the NOT NULL constraint when specifying the column. Note that
you can impose the database constraints on tables either at table creation time or later by using the
ALTER TABLE command. Obviously, however, if you already have null columns or duplicate data, it is
not possible to alter the table to impose a NOT NULL or unique constraint on the table.

You can enforce several types of constraints in an Oracle table. For simplicity’s sake, you can
divide the constraints into five different types:

• Primary key constraints

• NOT NULL constraints

• Check constraints

• Unique constraints

• Referential integrity constraints

I discuss each of these types of constraints in the following sections. In addition, I also present
a brief discussion of integrity constraint states.

Primary Key Constraints
The primary key is a very important kind of constraint on a table. When you want a column’s values
to be identified uniquely, you can do this by creating a primary key on the column value. A column
on which a primary key has been defined has to be unique as well as not null.

A table can have only one primary key. You can create a primary key when creating the table, as
shown in the following example:

SQL> CREATE TABLE dept
 (dept_id number(9) PRIMARY KEY);

You can also add a constraint to an existing table in the following way:

SQL> ALTER TABLE dept
 ADD PRIMARY KEY(dept_id);

Since the constraint wasn’t assigned a name in the preceding example, Oracle will assign a
system-generated constraint name. If you want to give your own name to the constraint, you can use
the following command, which names the constraint dept_pk:

SQL> ALTER TABLE dept
 ADD CONSTRAINT
 dept_pk PRIMARY KEY(dept_id);

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 307

Table altered.
SQL>

Note that if the primary key will have more than one column in it (meaning that it will be a
composite key), you can’t specify the primary key designation against the column name during table
creation. You have to specify the primary key columns as a separate item at the end of the CREATE
TABLE statement, after listing all the columns.

■Note In both of the preceding examples, Oracle automatically creates an index on the column you designate as
the primary key.

Not Null Constraints
A table usually has one or more columns that can’t be allowed to be left null—that is, with no values.
A good example is the last_name column in the employee table. You can force users to always put a
value in this column at table creation time by using the NOT NULL option for the column you don’t
want to be null:

SQL> CREATE TABLE employee
 (last_name VARCHAR(30) NOT NULL);

If the table has already been created and you want to modify a column from a nullable to a non-
nullable constraint, you can use the following statement:

SQL> ALTER TABLE employee MODIFY last_name NOT NULL;

Check Constraints
You use check constraints to ensure that data in a column is within some parameters that you
specify. For example, say the salary for an employee in a firm can’t be equal to or exceed $100,000
under any circumstances. You can enforce this condition by using the following statement, which
uses the CHECK constraint on the SALARY column:

SQL> CREATE TABLE employee
 (employee_id NUMBER,
 last_name VARCHAR2(30),
 first_name VARCHAR2(30),
 department_id NUMBER,
 salary NUMBER CHECK(salary < 100000));

Unique Constraints
Unique constraints are very common in relational databases. These constraints ensure the unique-
ness of the rows in a relational table. You may have more than one unique constraint on a table. For
example, a unique constraint on the employee_id column ensures that no employee is listed twice
in the employee table.

In the following example, the first statement specifies a unique constraint on the combination
of the dept_name and location columns:

SQL> CREATE TABLE dept(
 dept_no NUMBER(3),
 dept_name VARCHAR2(15),
 location VARCHAR2(25),
 CONSTRAINT dept_name_ukey UNIQUE(dept_Name,location);

308 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

You can also create a unique constraint on the department table by executing the ALTER TABLE
statement:

SQL> ALTER TABLE dept
 ADD CONSTRAINT dept_idx UNIQUE(dept_no);

Table altered.
SQL>

Referential Integrity Constraints
Referential integrity constraints ensure that values for certain important columns make sense.
Suppose you have a parent table that refers to values in another table, as in the case of the dept table
and the employee tables. You shouldn’t be able to assign an employee to a department in the
employee table if the department doesn’t exist in the department table.

You can ensure the existence of a valid department by using a referential integrity constraint. In
this case, the department_id column is the dept table’s primary key, and the dept_id column in the
employee table, which refers to the corresponding column in the department table, is called the
foreign key. The table containing the foreign key is usually referred to as the child table, and the table
containing the referenced key is called the parent table. As with all the other types of constraints, you
can create the referential integrity constraint at table creation time or later on, with the help of the
ALTER TABLE statement:

SQL> CREATE TABLE employee
 (employee_id NUMBER(7),
 last_name VARCHAR2(30),
 first name VARCHAR2(30),
 job VARCHAR2(15),
 dept_id NUMBER(3) NOT NULL
 CONSTRAINT dept_fkey REFERENCES dept(dept_id));

The database designates the dept_id column of the employee table as a foreign key because it
refers to the dept_id column in the dept table. Note that for a column to serve as the referenced
column, it must be unique or be a primary key in the reference table.

Integrity Constraint States
As you saw in the previous section, integrity constraints are defined on tables to ensure that data that
violates preset rules doesn’t enter the tables. However, during times like data loading, you can’t keep
the integrity constraints in a valid state, as this will lead to certain problems. Oracle lets you disable
constraints when necessary and enable them when you want. Let’s examine the various ways you
can alter the states of table constraints.

During large data loads, using either the SQL*Loader or the Import utility, it may take a consid-
erably longer time to load the data if you have to check for integrity violations for each row inserted
into the table. A better strategy would be to disable the constraint, load the data, and worry about any
possible insertion of bad data later on. After the load is completed, the constraints are brought into
effect again by enabling them. When you disable the constraint as explained here, the database
drops the index. It’s therefore a better strategy to precreate nonunique indexes for constraints,
which the database doesn’t have to drop because they can handle duplicates.

■Note The enabled state is Oracle’s default constraint state.

You can disable constraints in two ways: you can specify either the disable validate or the disable
no validate constraint state, using the DISABLE VALIDATE or DISABLE NO VALIDATE command, respec-

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 309

tively. Similarly, you can use the ENABLE VALIDATE or the ENABLE NO VALIDATE commands when
enabling a constraint. The next sections briefly discuss the different ways to disable and enable
constraints.

Disable Validate State

When you use the DISABLE VALIDATE command, you’re doing the following two things at once. First,
by using the VALIDATE clause, you’re ensuring that all the data in the table satisfies the constraint.
Second, by using the DISABLE clause, you’re doing away with the requirements of maintaining the
constraint. Oracle drops the index on the constraint, but keeps it valid. Here’s an example:

SQL> ALTER TABLE sales_data
 ADD CONSTRAINT quantity_unique
 UNIQUE (prod_id,customer_id) DISABLE VALIDATE;

When you issue the preceding SQL statement, Oracle ensures that only unique combinations of
the unique key prod_id and customer_id exist in the table, but it will not maintain a unique index.
Note that because I have chosen to keep the constraint in a disabled state, no DML is possible against
the table. This option is really ideal for large data warehouse tables, which are normally used only for
querying purposes.

Disable No Validate State

Under the disable no validate constraint state, the constraint is disabled and there is no guarantee of
the data meeting the constraint requirements, because Oracle does not perform constraint valida-
tion. This is essentially the same as a DISABLE constraint command.

Enable Validate State

This constraint state will have an enabled constraint that ensures that all data is checked to ensure
compliance with the constraint. This state is exactly the same as the plain enabled state. The
following example shows the use of this state:

SQL> ALTER TABLE sales_data ADD CONSTRAINT sales_region_fk
 FOREIGN KEY (sales_region) REFERENCES region(region_id)
 ENABLE VALIDATE;

Enable No Validate State

Under this constraint state, the database checks all new inserts and updates for compliance with the
constraint. Because the existing data won’t be checked for compliance, there’s no assurance that the
data already in the table meets the constraint requirements. You’ll usually use this option when
you’re loading large tables and you have reason to believe that the data will satisfy the constraint.
Here’s an example:

SQL> ALTER TABLE sales ADD CONSTRAINT sales_region_fk
 FOREIGN KEY (sales_region_id) REFERENCES time(time_id)
 ENABLE NOVALIDATE;

A better strategy would be to use the DISABLE NOVALIDATE state while you load data, transition to
the ENABLE NOVALIDATE state while you clean the data, and then finally, adopt the ENABLE VALIDATE
state at the end of the extraction, transformation, loading (ETL) cycle.

310 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

Rely Constraints
Data ETL steps are usually undertaken before loading data into data warehouse tables. If you have
reason to believe that the data is good, you can save time during loading by disabling and not vali-
dating the constraints. You can use the ALTER TABLE command to disable the constraints with the
RELY DISABLE NOVALIDATE option, as shown in the following example:

SQL> ALTER TABLE sales ADD CONSTRAINT sales_region_fk
 FOREIGN KEY (sales_region_id) REFERENCES time(region_id)
 RELY DISABLE NOVALIDATE;

Deferrable and Immediate Constraints
In addition to specifying the type of validation of a constraint, you can specify when exactly this
constraint is checked during the loading process.

If you want the constraint to be checked immediately after each data modification occurs,
choose the not deferrable option, which is, in fact, the default behavior in Oracle databases. If you
want a one-time check of a constraint after the whole transaction is committed, choose the defer-
rable option. All constraints and foreign keys may be declared deferrable or not deferrable.

If you choose the deferrable option, you have two further options. You can specify that the defer-
rable constraint is either initially deferred or initially immediate. In the former case, the database will
defer checking until the transaction completes. If you choose the initially immediate option, the
database checks the constraint before any data is changed. Note that if you precreate an index, it
must be nonunique to handle duplicate values.

The following example shows how to specify this kind of constraint in the employee table:

SQL> CREATE TABLE employee
 employee_id NUMBER,
 last_name VARCHAR2(30),
 first_name VARCHAR2(30),
 dept VARCHAR2(30) UNIQUE
 REFERENCES department(dept_name)
 DEFERRABLE INITIALLY DEFERRED;

Oracle also provides a way of changing a deferrable constraint from immediate to deferred or
vice versa with the following statements:

SQL> SET CONSTRAINT constraint_name DEFERRED;
SQL> SET CONSTRAINT constraint_name IMMEDIATE;

Constraint- and Index-Related Views
How do you find out what constraints exist on a table’s columns? When a process fails with the
message “Referential integrity constraint violated,” what’s the best way to find out what the
constraint and the affected tables are? The constraint- and index-related data dictionary views are
critical for resolving problems similar to these. In the following sections, you’ll examine the key
constraint- and index-related views.

DBA_CONSTRAINTS
The DBA_CONSTRAINTS view provides information on all types of table constraints in the database.
You can query this view when you need to figure out what type of constraints a table has. The view
lists several types of constraints, as shown by the following query:

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 311

SQL> SELECT DISTINCT constraint_type FROM DBA_CONSTRAINTS;

Constraint_type

 C /* check constraints */
 P /* primary key constraint */
 R /* referential integrity (foreign key) constraint */
 U /* unique key constraint */
SQL>

The following query lets you know what, if any, constraints are in the TESTD table. The response
indicates that the table has a single check constraint defined on it. The SYS prefix in the NAME
column shows that CONSTRAINT_NAME is a default name, not one that was explicitly named by the
owner of the table.

SQL> SELECT constraint_name, constraint_type
 2 FROM DBA_CONSTRAINTS
 3* WHHERE table_name='TESTD';

CONSTRAINT_NAME CONSTRAINT_TYPE
------------------- ---------------
SYS_C005263 C
SQL>

Note that if you want to see the particular referential constraints and the delete rule, you have
to use a slight variation on the preceding query:

SQL> SELECT constraint_name, constraint_type,
 R_constraint_name, delete_rule
 FROM dba_constraints
 WHERE table_name='ORDERS';

CONSTRAINT_NAME TYPE R_CONSTRAINT_NAME DELETE_RULE
---------------------- ------ ----------------- -----------
ORDER_DATE_NN C
ORDER_CUSTOMER_ID_NN C
ORDER_MODE_LOV C
ORDER_TOTAL_MIN C
ORDER_PK P
ORDERS_SALES_REP_FK R EMP_EMP_ID_PK SET NULL
ORDERS_CUSTOMER_ID_FK R CUSTOMERS_PK SET NULL
7 rows selected.
SQL>

DBA_CONS_COLUMNS
The DBA_CONS_COLUMNS view provides the column name and position in the table on which a
constraint is defined. Here’s the view:

SQL> DESC DBA_CONS_COLUMNS

 Name

 OWNER
 CONSTRAINT_NAME
 TABLE_NAME
 COLUMN_NAME

312 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

 POSITION
SQL>

Using Views
A view is a virtual table—it’s a specific representation of a table or set of tables, and it is defined by
using a SELECT statement. A view doesn’t physically exist, like regular tables, as part of a tablespace.
A view, in effect, creates a virtual table or subtable with only those rows and/or columns that you
want the user to access.

A view is the product of a stored query, so only the view definition is stored in the data dictionary.
When you export the database, you’ll see the statement “exporting views,” but that’s referring only
to the view definitions and not to any physical objects

You can query views and even modify, remove, or add data using UPDATE, DELETE, or INSERT state-
ments, provided the user has the appropriate privileges on the underlying base tables. For example,
if you grant a user only the INSERT privilege on the base table underlying a view, that user can only
insert new rows into that table but won’t be able to select, update, or delete any rows.

Views are used in applications for several reasons, including the following:

• Reduce complexity.

• Improve security.

• Increase convenience.

• Rename table columns.

• Customize the data for users.

• Protect data integrity.

You create views by using a SQL statement that describes the composition of the view. When
you invoke the view, the query by which the view is defined is executed, and the results are presented
to you. A query on a view looks exactly like a regular query, but the database converts the query on
the view into an identical query on the underlying tables. In order to create a view, you must have the
CREATE VIEW system privilege, and to create a view in any schema, rather than just in your own, you
need the CREATE ANY VIEW system privilege. In addition, you must either own the underlying tables
or must be granted the SELECT, INSERT, UPDATE, and DELETE object privileges on all the tables under-
lying the view. You can use a view to add column-level or value-based security to a table. Column-
level security is provided by creating views that give access to selected columns of base tables. Value-
based security involves using a WHERE clause in the view definition, which displays only selected rows
of base tables. In order to use a view, a user needs privileges on the view itself, and not on the base
tables underlying the view.

The following statement creates a view called MY_EMPLOYEES that gives a specific manager’s
information only on the employees managed directly by her:

SQL> CREATE VIEW my_employees AS
 SELECT employee_id, first_name, last_name, salary
 FROM employees
 WHERE manager_id=122;

View created.
SQL>

■Tip You can add the WITH READ ONLY clause to a CREATE VIEW statement to ensure that users can only select
from the view. This means the users can’t modify the view and thus indirectly update, insert, or delete any rows of
the underlying base tables. Otherwise, by default, Oracle allows you to update the view.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 313

Now the manager with the ID 122 can query the my_employees view just as he or she would a
normal table, but it gives this manager information on his or her employees only. Listing 7-16 shows
the output of a query on the view.

Listing 7-16. Selecting Data from a View

SQL> SELECT * FROM my_employees;

EMPLOYEE_ID FIRST_NAME LAST_NAME SALARY
----------- ----------- --------- ------
 133 Jason Mallin 3300
 134 Michael Rogers 2900
 135 Ki Gee 2400
 136 Hazel Philtanker 2200
 188 Kelly Chung 3800
 189 Jennifer Dilly 3600
 190 Timothy Gates 2900
 191 Randall Perkins 2500
8 rows selected
SQL>

You can also specify multiple base tables or even views in the FROM clause, when creating a view.
The views you create thus are called join views, and the following example shows the creation of one
such view:

SQL> CREATE VIEW view_1 AS
 SELECT ename, empno, job,dname
 FROM employee, dept
 WHERE employee.deptno IN (10, 60)
 AND employee.deptno = DEPT.DEPTNO;

Although you use views mostly for querying purposes, under some circumstances you can also
use INSERT, DELETE, and UPDATE views. For example, you can perform a DML operation on a view if it
doesn’t have any GROUP BY, START WITH, or CONNECT BY clauses, or any subqueries in its SELECT clause.
However, since a view doesn’t really exist, you’ll be modifying the underlying table data, and the view
will therefore be subject to the same integrity constraints as the underlying base tables. The following
example shows how to insert rows into a view named sales_view, which depends on the employees
table.

SQL> INSERT INTO sales_view
 VALUES (1234, 'ALAPATI', 99);

The previous statement inserts the new row into the underlying base table named employees.
Updates, deletes, and inserts on a view are subject to a few restrictions. For example, when you use
a CHECK constraint when creating a view, you can’t insert a row or update the base table with that row,
if the view can’t select the row from the underlying base table.

You can drop a view by simply using the DROP VIEW command, as shown here:

SQL> DROP VIEW my_employees;

View dropped.

Instead of dropping and re-creating a view, you can also use the OR REPLACE clause to redefine a
view, as shown in the following example:

SQL> CREATE OR REPLACE VIEW view1 AS
 SELECT empno, ename,deptno
 FROM employee
 WHERE deptno=50;

314 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

If there are other views in a database that depend on a replaced view, they’ll become unusable.
You can recompile an invalidated view by executing the ALTER VIEW statement. If a PL/SQL program
unit such as a procedure or function depends on the view, the database may invalidate that program
unit if the changes in the new view pertain to the number of view columns or the column names in
the view or the data types.

Using Materialized Views
Every time you need to access a view, Oracle must execute the query that defines the view in ques-
tion and get you the results. This process of populating the view is called view resolution, and it must
be done afresh each time a user refers to the view. If you’re dealing with views with multiple JOIN and
GROUP BY clauses, this process of view resolution could take a very long time. If you need to access a
view frequently, it is very inefficient to have to constantly resolve the view each time.

Oracle’s materialized views offer a way out of this predicament. You can think of materialized
views as specialized views that have a physical representation, unlike normal views. They occupy
space and need storage just like your regular tables. You can even partition materialized views and
create indexes on them if necessary.

■Note A view is always computed on the fly, and its data isn’t stored separately from the tables on which it’s
defined. Thus, queries using views, by definition, guarantee that up-to-the-minute data will be returned. Any change
in the source tables on which the view is defined will be reflected by the view instantaneously. Materialized views,
on the other hand, are static objects that derive their data from the underlying base tables. If you refresh your mate-
rialized views infrequently, the data in them may be at odds with the data in the underlying tables.

Traditionally, data warehousing and other similar large databases have needed summary tables
or aggregate tables to perform their work. Defining these summary tables and constantly main-
taining them was a complex task. Any time you added data to the underlying detail table, you had to
manually update all the summary tables and their indexes. Oracle’s materialized views offer a way to
simplify summary management in large databases. Materialized views in these environments are
also called summaries because they store summarized data.

You can use tables, views, or other materialized views as the source for a materialized view. The
source tables are called master tables, and it’s common to refer to the master tables as detail tables
in a data warehousing environment. When you create a new materialized view, Oracle will automat-
ically create an internal table to hold the data of this materialized view. Thus, a materialized view will
take up physical space in your database, whereas a regular view doesn’t, since a view is only the
output of a SQL query.

You can do the following with a materialized view:

• Create indexes on a materialized view.

• Create a materialized view on partitioned tables.

• Partition a materialized view.

■Tip You can use an index to access a materialized view directly, as you would a table. Similarly, you can also
access a materialized view directly in an INSERT, UPDATE, or DELETE statement. However, Oracle recommends that

you not do so, and that you let the Oracle Cost Based Optimizer (CBO) make the decision about whether to rewrite
your normal queries to take advantage of a materialized view. If the execution plan using the materialized view has
a lower cost of accessing it compared to accessing the tables directly, Oracle will automatically do so.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 315

You can use various types of aggregations like SUM, COUNT(*), AVG, MIN, and MAX in a materialized
view. You can also use multiple table joins in the materialized view definition.

Creating a materialized view is pretty straightforward, but optimizing it can be tricky. Opti-
mizing a materialized view involves both ensuring that the Oracle cost-based optimizer rewrites
users’ queries to use the materialized views that you have created, and keeping the data in the mate-
rialized views current. Let’s briefly look at these two aspects of optimizing materialized views.

Query Rewriting
In large databases with heavy time- and processing power–consuming activity, such as table joins
and the use of aggregates like SUM, materialized views speed up queries. Materialized views makes
queries faster by recalculating and storing the results of expensive join and aggregate operations.
The beauty of Oracle’s materialized view facility is that you can specify during their creation that the
database must automatically update the materialized views whenever there are changes in the
underlying base tables. The materialized views are completely transparent to users. If users write
queries using the underlying table, Oracle will automatically rewrite those queries to use the mate-
rialized views—this query-optimization technique is known as query rewrite. The Oracle CBO will
automatically recognize that it should rewrite a user’s query to use the materialized view rather than
the underlying tables if the estimated query cost of using the materialized views is lower. Query cost
here refers to the I/O, CPU, and memory costs involved in processing a SQL query. Complex joins
involve a lot of I/O and CPU expense, and the use of materialized views will avoid incurring this cost
each time you need to perform such joins. Because the materialized views already have the
summary information precomputed in them, your queries will cost much less in terms of resource
usage, and hence run much more quickly.

The automatic query rewrite optimization technique is at the heart of materialized view usage.
The QUERY_REWRITE_ENABLED initialization parameter allows you to enable or disable query writing at
a global level. The parameter can take the following values:

• FALSE: The database doesn’t rewrite any queries.

• TRUE: The database compares the cost of the query with and without a rewrite and chooses
the cheaper method.

• FORCE: The database always rewrites the query, without evaluating any costs. Use the FORCE
setting if you are certain that the query is beneficial and will result in shortening the response
time.

The default value for this parameter is TRUE, provided you set the OPTIMIZER_FEATURES_ENABLE
parameter to 10.0.0 or higher (it is FALSE if you set the OPTIMIZER_FEATURES_ENABLE parameter to
9.2.0 or lower), which means that Oracle automatically uses the query rewrite feature. When the
parameter is set to TRUE, Oracle will estimate the cost of the query both with and without a rewrite
and will choose the one with the lesser processing cost. When you enable query rewriting, it’s
enabled systemwide, for the entire database.

You must specify the FORCE value for the OPTIMIZER_QUERY_REWRITE parameter only if you
are sure that it is beneficial to do so. To enable query rewriting for a specific materialized view, you
must explicitly specify the ENABLE QUERY REWRITE clause when you create the materialized view.

The Rewrite_or_Error Hint
Let’s say you create a new materialized view and find out that the intended queries aren’t being
rewritten to take advantage of your new materialized view. If the queries take too long to complete
without the materialized view, you can force Oracle to stop executing the query without the materi-
alized view. You can use a hint (a user-created directive that provides guidance to the CBO; I discuss
hints in detail in Chapter 19) to tell Oracle to issue an error instead of executing the unrewritten
query. The hint is called the REWRITE_OR_ERROR hint, and here’s how you use it:

SQL> SELECT /*+ REWRITE_OR_ERROR */
 prod_id

316 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

 SUM(quantity_sold) AS sum_sales_qty
 FROM sales_data
 GROUP BY prod_id
SQL>

If the query fails to rewrite, you’ll see the following error:

ORA-30393: a query block in the statement did not write.

Once you get the preceding error, you can use the DBMS_MVIEW.EXPLAIN_REWRITE procedure to
figure out why the query didn’t rewrite, and fix the problem so it will rewrite as planned and take
advantage of your materialized view.

Rewrite Integrity
When you set up query rewrite, Oracle will use only fresh data from the materialized views by
default. Further, it only utilizes ENABLED VALIDATED primary, unique, or foreign key constraints. The
QUERY_REWRITE_INTEGRITY initialization parameter determines the optimizer’s behavior in this
regard. The default behavior is known as the ENFORCED mode. Besides this mode, the
QUERY_REWRITE_INTEGRITY parameter can take two other values:

• TRUSTED: In this mode, the optimizer will accept several relationships other than those
accepted under the ENFORCED mode. The optimizer will accept, for example, unenforced rela-
tionships as well as declared but not ENABLED VALIDATED primary or unique key constraints.
Since you are allowing the optimizer to accept relationships on trust (not on an enforced
basis), more queries will be eligible for a query rewrite.

• STALE_TOLERATED: The optimizer will accept fresh and stale data, as long as the data is valid. Of
course, you’ll rewrite more queries in this mode, but you also run a higher risk of getting
incorrect results if the stale data doesn’t accurately represent the true nature of the current
table.

Refreshing Materialized View Data
Since a materialized view is defined on underlying master tables, when the data in the master tables
changes, the materialized view becomes outdated. To take care of this problem, materialized views
are updated, thus keeping them in sync with the master tables. The following sections present the
materialized view refresh options.

Refresh Mode

You can choose between the ON COMMIT and ON DEMAND modes of data refresh.

• ON COMMIT: In this mode, whenever a data change in one of the master tables is committed, the
materialized view is refreshed automatically to reflect the change.

• ON DEMAND: In this mode, you must execute a procedure like DBMS_MVIEW.REFRESH to update the
materialized view.

The default refresh mode is ON DEMAND.

Refresh Type

You can choose from the following four refresh types:

• COMPLETE: This refresh option will completely recalculate the query underlying the material-
ized view. Thus, if the materialized view originally took you 12 hours to build, it’ll take about
the same time to rebuild it. Obviously, you wouldn’t want to use this option each time a few
rows are modified, dropped, or inserted into your master tables.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 317

• FAST REFRESH: Under the fast refresh mechanism, Oracle will use a materialized view log to log
all changes to the master tables. It’ll then use the materialized view log to update the materi-
alized view. The materialized view log is a table based on the associated materialized view.
Each of the tables involved in the join in the materialized view needs its own materialized
view log to capture changes to the tables. Oracle can also use data from partition mainte-
nance operation or a data load made by using the SQL*Loader direct-path method to perform
the fast refresh of a materialized view.

• FORCE: If you choose this option, Oracle will try to use the fast refresh mechanism. If it isn’t
able to use it for some reason, it’ll use the complete refresh method.

• NEVER: This refresh option never refreshes a materialized view. Obviously, this isn’t a viable
option for a materialized view whose master tables undergo significant change over time.

The default refresh type is FORCE.

Using the DBMS_MVIEW Package
Even after you specify the query rewrite mechanism, the Oracle cost-based optimizer may not
always automatically rewrite a query, accessing the master tables instead of the materialized view.
Thus, even though you have a materialized view, the optimizer ignores it, defeating the purpose of
creating and maintaining the materialized view. The Oracle optimizer does this because some
conditions for query rewrite may not have been met. You can use the Oracle-supplied
DBMS_MVIEW package to diagnose this and other materialized view problems.

You can use the DBMS_MVIEW package’s procedures in the following way:

• Use the EXPLAIN_MVIEW procedure to see what types of query rewrite are possible.

• Use the EXPLAIN_REWRITE procedure to see why a particular query is not being rewritten to use
the materialized view.

• Use the TUNE_MVIEW procedure to enable a query rewrite. This procedure will suggest how you
can rewrite a materialized view to make it eligible for a query rewrite. The TUNE_MVIEW proce-
dure also tells you how to satisfy the requirements for a fast refreshable materialized view.
The procedure will take your input and produce a materialized view creation script (and any
necessary materialized view logs) that is ready to implement.

Creating Materialized Views
In this section, I’ll show you how to create a basic materialized view, using some of the options that
I described in the previous sections. If you aren’t sure about which materialized views to create, you
can take advantage of Oracle’s SQL Access Advisor, which can make specific recommendations
regarding the use of indexes and materialized views. The SQL Access Advisor can design a material-
ized view and tell you whether it’s eligible for a query rewrite. The “Using the SQL Access Advisor”
section, later in this chapter, covers the SQL Access Advisor in detail.

There are three steps required to get the materialized views going, although the creation itself is
simple:

1. Grant the necessary privileges.

2. Create the materialized view log (assuming you’re using the FAST refresh option).

3. Create the materialized view.

Granting the Necessary Privileges

You must first grant the necessary privileges to the user who is creating the materialized views. The
main privileges are those that enable the user to create a materialized view. In addition, you must
grant the QUERY REWRITE privilege to the user, by using either the GLOBAL QUERY REWRITE priv-

318 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

ilege or specific QUERY REWRITE privileges on each object that is not part of the user’s schema.
Here are the grant statements that enable a user to create a materialized view in the user’s schema:

SQL> GRANT CREATE MATERIALIZED VIEW TO salapati;
SQL> GRANT QUERY REWRITE TO salapati;

In addition, if the user doesn’t already have it, you must grant the ability to create tables, by
using the following GRANT statement:

SQL> GRANT CREATE ANY TABLE TO salapati;

If the user doesn’t own any of the master tables that are part of the materialized view definition,
you must grant the user the SELECT privilege on those individual tables, or just make the following
grant:

SQL> GRANT SELECT ANY TABLE TO salapati

Creating the Materialized View Log

Let’s use the fast refresh mechanism for our materialized view. In most cases, you must create a
materialized view log if you want to use the fast refresh mechanism. This will require the creation of
two materialized view logs, of course, to capture the changes to the two master tables that are going
to be the basis for our materialized view.

If you want to use the fast refresh mechanism to refresh the materialized view, you must first
create materialized view logs for al the tables that are part of the materialized view. In our case, these
are the products and the sales tables. In addition, you must also specify the ROWID clause in the CREATE
MATERIALIZED VIEW LOG statement when you want to use the fast refresh mechanism. You must also
include all columns referenced in the materialized view, and the SEQUENCE and the INCLUDING NEW
VALUES clause, as shown in the following example:

SQL> CREATE MATERIALIZED VIEW LOG
 ON products WITH SEQUENCE, ROWID
 (prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc,
 prod_category, prod_category_desc, prod_weight_class,
 prod_unit_of_measure, prod_pack_size, supplier_id, prod_status,
 prod_list_price, prod_min_price)
 INCLUDING NEW VALUES;

SQL> CREATE MATERIALIZED VIEW LOG ON sales
 WITH SEQUENCE, ROWID
 (prod_id, cust_id, time_id, channel_id, promo_id,
 quantity_sold, amount_sold)
 INCLUDING NEW VALUES;

The example shows how to create two materialized view logs to capture changes in the products
and sales master tables, respectively. In the next step, I show how to create the materialized view
itself.

Creating the Materialized View
Now you are ready to create your materialized view. The example, shown in Listing 7-17, uses the
FAST REFRESH clause to specify the refresh mechanism for the materialized view.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 319

■Tip If you already have a table containing some type of aggregates or summary results in your database, you
can use the CREATE MATERIALIZED VIEW statement with the ON PREBUILT TABLE clause to register the existing
summary table as a materialized view.

Listing 7-17. Creating a Materialized View

SQL CREATE MATERIALIZED VIEW product_sales_mv
 TABLESPACE test1
 STORAGE (INITIAL 8k NEXT 8k PCTINCREASE 0)
 BUILD IMMEDIATE
 REFRESH FAST
 ENABLE QUERY REWRITE
 AS SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales,
 COUNT(*) AS cnt, COUNT(s.amount_sold) AS cnt_amt
 FROM sales s, products p
 WHERE s.prod_id = p.prod_id GROUP BY p.prod_name;GROUP BY p.prod_name;
SQL>

Let’s look at some of the important clauses of the CREATE MATERIALIZED VIEW statement:

• BUILD IMMEDIATE populates the materialized view right away, and this is the default option.
The alternative is to use the build deferred option, which will actually load the materialized
view with data later on, at a specified time.

• REFRESH FAST specifies that the materialized view should use the FAST refresh method, which
requires using the two materialized logs that you created in the previous step, to capture all
changes to the master tables. The ON COMMIT part of the REFRESH clause specifies that all
committed changes to the master tables should be propagated to the materialized view
immediately upon the committing of the changes.

• ENABLE QUERY REWRITE means that the Oracle optimizer will transparently rewrite your queries
to use the newly created materialized views instead of the underlying master tables.

• The AS subquery defines the materialized view. Oracle will store the output of this subquery
in the materialized view you’re creating. You can use any valid SQL subquery you wish here.

• The last four lines of code contain the actual query defining the materialized view; it retrieves
the output from the master tables and makes it part of the materialized view.

■Note Due to space limitations, I presented a simple example of creating a materialized view and materialized
view log here. In reality, you may have to satisfy additional requirements to be able to create these objects. For
example, to enable a fast-refreshable materialized view with materialized view logs, there are specific conditions
that you must satisfy. Refer to the Oracle manuals (especially the Data Warehousing Guide) for the full requirements.

Note that you can enable query rewrite by specifying ENABLE QUERY REWRITE when you create the
materialized view itself (as shown in Listing 7-16) or by specifying the option after the materialized
view is created, by using the ALTER MATERIALIZED VIEW statement.

Instead of using the EXPLAIN_REWRITE procedure of the DBMS_MVIEW package, you can use the
EXPLAIN PLAN tool to see the proposed execution plan for the query. Your EXPLAIN PLAN should not
show any references to the underlying base tables. It should show that the materialized view is being
referred to instead, to convince you that the query rewrite is indeed forcing queries to use the new
materialized view.

320 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

■Tip Collect optimizer statistics (see Chapter 19) for a materialized view immediately after you create it. This
helps the Oracle optimizer optimize the query rewriting process.

If you think you don’t need a materialized view, you can drop it by simply using the DROP MATE-
RIALIZED VIEW statement, as shown here:

SQL> DROP MATERIALIZED VIEW sales_sum_mv;

Using the SQL Access Advisor
As you realize by now, materialized views are very helpful, but creating and maintaining them is no
trivial task. It’s not easy to figure out the optimal or best materialized views to create. You can use the
SQL Access Advisor to help determine which materialized views, materialized view logs, indexes,
and partitioned tables you must create in your database. The SQL Access Advisor can also recom-
mend removal of certain indexes to enhance performance.

■Note In addition to making recommendations for creating new materialized views (and indexes as well) and
helping to implement those recommendations, the SQL Access Advisor also helps you optimize your materialized

views by showing you how to ensure query rewriting and to make a materialized view fast-refreshable.

The SQL Access Advisor can use one of the following sources of SQL to determine ideal materi-
alized views and indexes:

• A hypothetical database workload

• An actual workload you provide

• SQL cache

You can also filter the workloads according to criteria such as queries containing only a certain
table or tables.

You can use the SQL Access Advisor tool manually, by invoking various procedures that belong
to the DBMS_ADVISOR package. Or, you can take a smart shortcut by invoking the SQL Access
Advisor wizard through the OEM Database Control (or Grid control) interface.

You can also use the DBMS_ADVISOR’s QUICK_TUNE procedure, if you want to get quick
recommendations for a single SQL statement. The following sections explain all three methods, with
the easiest method, using the OEM Database Control, being first.

Using the OEM Database Control
The SQL Access Advisor works the same way when you invoke it using the OEM Database Control (or
Grid Control) as it does when you invoke it directly through the DBMS_ADVISOR package. The
reason for this is that the OEM internally relies on the DBMS_ADVISOR package for its functionality.
You can provide a SQL workload as input to the SQL Access Advisor, and you can use a user-defined
workload, current and recent SQL statements in the database’s SQL cache, or a SQL repository as the
source for this SQL workload.

When you use the SQL Access Advisor through the OEM, you create tasks and view the recom-
mendations with the help of an intuitive SQL Access Advisor wizard. You provide the SQL statements
that are going to use the materialized views during several steps presented by the wizard. You can
access this wizard through the Advisor Central link on the Database Control home page (under the

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 321

Related Links section at the bottom of the page). You can also access it through links provided on
individual alerts or performance pages.

■Tip You can also use the SQL Access Advisor in an evaluation mode, where the advisor evaluates existing
indexes and materialized views and tells you which of those are being utilized by the database.

Follow these steps to use the SQL Access Advisor through the Database Control:

1. Clear the SQL cache.

2. Grant the necessary privileges.

3. Create the SQL cache.

4. Get the SQL Access Advisor recommendations.

5. Review the recommendations.

6. Implement the recommendations.

Clearing the Cache

The first step is to flush the shared pool to clear the cache of older SQL statements:

SQL> ALTER SYSTEM FLUSH SHARED_POOL;

System altered.
SQL>

Granting Necessary Privileges

You must next grant the user sh the ADVISOR privilege in order to use the SQL Access Advisor:

SQL> GRANT ADVISOR TO sh;

Grant succeeded.
SQL>

Creating the SQL Cache

In order to provide a SQL workload, you can use any one of the methods mentioned previously. In
this example, the workload is created by providing three SQL statements that become part of the
SQL cache. Connect as the SH user, and run the SQL statements shown in Listing 7-18.

Listing 7-18. Providing a SQL Workload for the SQL Access Advisor

SQL> SELECT c.cust_last_name, SUM(s.amount_sold),
 SUM(s.quantity_sold)
 FROM sales s, customers c, products p
 WHERE c.cust_id = s.cust_id
 AND s.prod_id = p.prod_id
 AND c.cust_state_province IN ('Texas','New Jersey')

SQL> SELECT c.cust_id, SUM(amount_sold)
 FROM sales s, customers c
 WHERE s.cust_id= c.cust_id GROUP BY c.cust_id;

322 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

SQL> SELECT SUM(unit_cost)
 FROM costs
 GROUP BY prod_id;

■Tip The SQL Access Advisor can be resource-hungry and thus adversely affect your production database perfor-
mance. To avoid this, simply collect the necessary workload-related data from the production database and use one
of your test databases to run the SQL Access Advisor’s analysis and recommendation steps.

Getting the SQL Access Advisor Recommendations

The previous step created the SQL workload. Using this workload, the SQL Access Advisor will
recommend the necessary materialized views. Log into the OEM Database Control with SYSDBA
privileges, and then follow these steps to use the SQL Access Advisor:

1. Go the OEM home page ➤ Advisor Central (under the Related Links section) ➤ ?SQL Access
Advisor.

2. The Initial Options page will be displayed. You can choose between the following:

• Default options: Your task will use the Oracle-recommended options.

• Inherit options: Your task will inherit the options from the selected task or template.

For this example, select Use Default Options and click Next.

3. The Workload Source page is displayed. In this page, you must select one of the following as
the source for your SQL workload:

• Current and Recent SQL Activity

• Import Workload from SQL Repository

• User-Defined Workload; Import SQL from a Table or View

• Create a Hypothetical Workload from the Following Schemas and Tables

You’ve already executed the three SQL statements you want to use as your workload, so
select the Current and Recent SQL Activity option.

4. Click Filter Options to fine-tune the scope of the SQL workload. Select Filter Workload under
Filter Options. Under the USERS section, select the option that states Include Only SQL
Statements Executed by These Users. Enter SH in the Users field.

5. The Recommendation Options page is displayed. There are two sections: Recommendation
Types and Advisor Mode.

In the Recommendation Types section, you must select one of the following:

• Indexes

• Materialized Views

• Both Indexes and Materialized Views

• Partitioned tables

• Evaluation Only

Since our goal is to create materialized views, select the second option.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 323

In the Advisor Mode section, choose one of the following two modes for the SQL Access
Advisor:

• Limited: This mode is quicker and only processes statements with the highest cost.

• Comprehensive: This mode takes longer to finish, but it performs an exhaustive analysis.
The Comprehensive mode is very resource-intensive, so you may not want to run it during
the day in a production database.

Select the Limited mode option.

6. The Schedule page is displayed. This page lets you run the analysis immediately or schedule
it for a later time. You can also enter a task name for your SQL Access Advisor job in the Task
Name box at the top of the page. Go all the way to the bottom of the page and select Imme-
diately under the Start options. Click Next.

7. The Review page appears next, and you can confirm all your choices before the Advisor
starts its run.

8. You’ll see the Advisor Central page next, with a confirmation note saying that your SQL
Access Advisor job was created successfully.

Reviewing the Recommendations

Once the SQL Access Adviser job successfully completes, you can review the recommendations and
decide whether you want to implement them. Follow these steps:

1. On the Advisor Central page (see step 7 in the previous section), navigate to the Results
section at the bottom of the page and select your task name. Click View Result.

2. The Results for Task: Task Number page appears next. Click Recommendation ID 1 to see the
recommendation details.

3. Change the Schema Name for the Create Materialized View to SH, and click OK.

4. On the next page, click Show SQL to view the materialized view generation script, and click
OK.

Implementing the Recommendations

To implement the recommendations, follow these steps:

1. Click Schedule Implementation on the Results for Task page.

2. Enter your task name and click Submit.

3. Click View to see if your job is running.

4. Review the summary, click Materialized View, enter SH in the schema field, and click Go.

Using the DBMS_ADVISOR Package
Since the OEM Database Control offers such an intuitive interface for using the SQL Access Advisor
to generate recommendations regarding indexes and materialized views, I won’t discuss the labo-
rious steps you need to use when invoking the SQL Access Advisor through the DBMS_ADVISOR
package. I’ll merely summarize the approach here:

1. Run some SQL statements so you can use them for your task later on.

2. Create a task using the CREATE_TASK procedure.

3. Create a workload using the CREATE_SQLWKLD procedure.

4. Link your task to the workload by using the ADD_SQLWKLD_REF procedure.

324 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

5. Use the appropriate procedure for loading either a hypothetical workload, a SQL cache
workload, or a SQL tuning set.

6. Set the task parameters by using the SET_TASK_PARAMETER procedure.

7. Generate recommendations by using the EXECUTE_TASK procedure, using your task name.

8. View the recommendations using the USER_ADVISOR_RECOMMENDATIONS view.

Here’s a query using the USER_ADVISOR_ACTIONS view that shows the SQL Access Advisor’s
recommendations:

SQL> SELECT rec_id, action_id, SUBSTR(command,1,30) AS command
 FROM user_advisor_actions WHERE task_name = :task_name
 ORDER BY rec_id, action_id;

 REC_ID ACTION_ID COMMAND
------------ ------------ --------------------------------
 1 5 CREATE MATERIALIZED VIEW LOG
 1 8 ALTER MATERIALIZED VIEW LOG
 1 9 CREATE MATERIALIZED VIEW LOG
 1 19 CREATE INDEX
SQL>

Using the QUICK_TUNE Procedure
You can use the QUICK_TUNE procedure of the DBMS_ADVISOR package when you have a single
SQL statement to tune. You need to supply a task name and a SQL statement as inputs to the proce-
dure. Here’s an example:

VARIABLE task_name VARCHAR2(255);
VARIABLE sql_stmt VARCHAR2(4000);
EXECUTE :sql_stmt := 'SELECT COUNT(*) FROM customers
 WHERE cust_state_province=''TX''';
EXECUTE :task_name := 'MY_QUICKTUNE_TASK';
EXECUTE DBMS_ADVISOR.QUICK_TUNE(DBMS_ADVISOR.SQLACCESS_ADVISOR, -
 :task_name, :sql_stmt);

This will produce identical results as when you use all the steps outlined in the “Using the
DBMS_ADVISOR Package” section.

Using Synonyms
Synonyms are aliases for objects in the database, and they are used mainly to make it easy for users
to access database objects owned by other users, and for security purposes. Synonyms hide the
underlying object’s identity and can be either private or public. Public synonyms are accessible by
all the users in the database, and private synonyms are part of the individual user’s schema—access
rights have to be individually granted to specific users before they can use the private synonyms.
Oracle synonyms can be created for tables, views, materialized views, and stored code, such as pack-
ages and procedures.

Synonyms are very powerful from the point of view of allowing users access to objects that do
not lie within their schemas. All synonyms have to be created explicitly with the create synonym
command, and the underlying objects can be located in the same database or in other databases that
are connected by database links.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 325

There are two major uses of synonyms:

• Object transparency: Synonyms can be created to keep the original object transparent to the
user.

• Location transparency: Synonyms can be created as aliases for tables and other objects that
belong to a database other than the local database.

■Note Keep in mind that even if you know the synonym for a schema table, you can’t necessarily access it. You
must also have been granted the necessary privileges on the table for you to be able to access the table.

When you create a table or procedure, the database creates it in your schema, and other users
can access it only by using your schema name as a prefix to the object’s name. Listing 7-19 shows a
couple of examples that illustrate this point.

Listing 7-19. Using Schema Names to Access Tables

SQL> SHOW USER

USER is "SYSTEM"

SQL> DESC employees

ERROR:
ORA-04043: object employees does not exist

SQL> DESC hr.employees

 Name Null? Type
 --------------- -------- --------------
 EMPLOYEE_ID NOT NULL NUMBER(6)
 FIRST_NAME VARCHAR2(20)
 LAST_NAME NOT NULL VARCHAR2(25)
 EMAIL NOT NULL VARCHAR2(25)
 PHONE_NUMBER VARCHAR2(20)
 HIRE_DATE NOT NULL DATE
 JOB_ID NOT NULL VARCHAR2(10)
 SALARY NUMBER(8,2)
 COMMISSION_PCT NUMBER(2,2)
 MANAGER_ID NUMBER(6)
 DEPARTMENT_ID NUMBER(4)
SQL>

As you can see, when the user SYSTEM tried to describe the table without the schema prefix,
Oracle issued an error stating that the table “does not exist.” The way around this is for the schema
owner to create a synonym with the same name as the table name. Once the user SYSTEM uses the
schema.table notation, the table’s contents can be seen.

Creating a Public Synonym
Public synonyms are owned by a special schema in the Oracle database called PUBLIC. As
mentioned earlier, public synonyms can be referenced by all users in the database. Public synonyms

326 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

are usually created by the application owner for tables and other objects such as procedures and
packages so the users of the application can see the objects.

The following code shows how to create a public synonym for the employees table:

SQL> CREATE PUBLIC SYNONYM employees FOR hr.employees;

Synonym created.
SQL>

Now any user can see the table by just typing the original table name.
If you wish, you could provide a different name for the table in the CREATE SYNONYM statement.

Remember that the DBA must explicitly grant the CREATE PUBLIC SYNONYM privilege to user hr
before that user can create any public synonyms.

Just because you can see a table through a public (or private) synonym doesn’t mean that you
can also perform SELECT, INSERT, UPDATE, or DELETE operations on the table. To be able to perform
those operations, a user needs specific privileges for the underlying object, either directly or
through roles, from the application owner. The topic of granting privileges and roles is discussed in
Chapter 12.

Creating a Private Synonym
Private synonyms, unlike public synonyms, can be referenced only by the schema that owns the
table or object. You may want to create private synonyms when you want to refer to the same table
by different aliases in different contexts. You create private synonyms the same way you create
public synonyms, but you omit the PUBLIC keyword in the CREATE statement.

The following example shows how to create a private synonym called addresses for the locations
table. Note that once you create the private synonym, you can refer to the synonym exactly as you
would the original table name.

SQL> CREATE SYNONYM addresses FOR hr.locations;

Synonym created.
SQL> SELECT * FROM addresses;

Dropping a Synonym
You can drop both private and public synonyms with the DROP SYNONYM command, but there is one
important difference. If you are dropping a public synonym, you need to add the keyword PUBLIC
after the keyword DROP.

Here’s an example of dropping a private synonym:

SQL> DROP SYNONYM addresses;

Synonym dropped.
SQL>

Managing Synonyms
The DBA_SYNONYMS view provides information on all synonyms in your database. Synonyms are
based on underlying base tables, and you can find out the names of the base objects by issuing a
query such as the following:

SQL> SELECT TABLE_NAME, SYNONYM_NAME
 FROM dba_synonyms
 WHERE OWNER = 'SALAPATI';

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 327

TABLE_NAME SYNONYM_NAME
---------- ------------
DEPT DEPT
EMP EMP
SQL>

Use the DBA_SYNONYMS view to clarify the names of the base tables underlying synonyms.

Switching to a Different Schema
If you have to constantly use tables owned by a different schema and there aren’t any synonyms on
the table, you may be forced to use the schema qualifier in front of every table name. For example,
you might need to use scott.emp to refer to the emp table owned by the user scott. To avoid this, you
can simply use the ALTER SESSION SET SCHEMA statement, as shown here:

SQL> CONNECT samalapati/sammyy1
SQL> ALTER SESSION SET CURRENT_SCHEMA = scott;
SQL> SELECT * FROM emp;

The use of the ALTER SESSION statement here doesn’t confer any automatic object privileges. In
order to query the emp table without any schema qualifier, as shown in the preceding example, the
user must have SELECT privileges on the emp table.

Using Sequences
Oracle uses a sequence generator to automatically generate a unique sequence of numbers that
users can use in their operations. Sequences are commonly used to create a unique number to
generate a unique primary key for a column. We’ll look at using an Oracle sequence to generate
employee numbers during a data insert.

■Note If users were to use programmatically created sequence numbers instead, Oracle would have to constantly
lock and unlock records holding the maximum value of those sequences to ensure an orderly incrementing of the
sequence. This locking would result in users waiting for the next value in the sequence to be issued to their trans-
actions. Oracle’s automatic generation of sequences increases database concurrency.

You have several options to choose from to create a sequence. We will use a plain vanilla
sequence that starts at 10,000 and is incremented by 1 each time. The sequence is never recycled or
reused, because we want distinct sequence numbers for each employee.

■Note There are two pseudo-columns called currval and nextval that you can use to query sequence values. The
currval pseudo-column provides you with the current value of the sequence, and the nextval pseudo-column gets
you the new or next sequence number.

First, create a sequence as shown in the following example. This is usually the way you use a
sequence to generate a unique primary key for a column.

SQL> CREATE SEQUENCE employee_seq
 START WITH 10000
 INCREMENT BY 1
 NOMAXVALUE

328 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

 NOCYCLE;
Sequence created.
SQL>

Second, select the current sequence number by using the following statement:

SQL> SELECT employee_seq.currval FROM dual;

Third, insert a new row into the employee table using nextval from the employee_seq sequence:

SQL> INSERT INTO employees(employee_id, first_name, last_name, email,
 2 phone_number, hire_date)
 3 VALUES
 4* (employee_seq.nextval,'sam','alapati','salapati.tnt.org'
 ,345-555-5555,to_char('21-JUN-2005');
1 row created.

SQL> COMMIT;
Commit complete.
SQL>

Finally, check to make sure the employee_id column is being populated by the employee_seq
sequence:

SQL> SELECT employee_id, first_name, last_name
 FROM employees
 WHERE last_name = 'alapati';
EMPLOYEE_ID FIRST_NAME LAST_NAME
------------- ---------------- ----------
 10011 sam alapati
SQL>

Note that you can have an Oracle sequence that is incremented continuously, but there may be
occasional gaps in the sequence numbers. This is because Oracle always keeps 20 values (by default)
in memory, and that’s where it gets the nextval from. If there should be a database crash, the
numbers stored in memory will be lost, and there will be a gap in that particular sequence.

Using Triggers
Oracle triggers are similar to PL/SQL procedures, but they are automatically fired by the database
based on specified events. For DBAs, triggers come in handy in performing audit- and security-
related tasks. Besides the standard Oracle triggers, which fire before or after DML statements, there
are powerful triggers based on system events, such as database startup and shutdown and the users
logging on and logging off. Chapter 11 shows you how to use triggers to enhance database security.

You create a trigger with the CREATE TRIGGER statement. You can choose to have the trigger fire
BEFORE, AFTER, or INSTEAD OF the triggering event.

The following example shows the structure of the CREATE TRIGGER statement for a BEFORE event
trigger. Before a DML statement can delete, insert, or update a row in the employees table, Oracle
automatically fires this trigger:

SQL> CREATE TRIGGER scott.emp_permit_changes
 BEFORE DELETE
 OR INSERT
 OR UPDATE
 ON employees
. . .
/* Your SQL or PL/SQL code here

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 329

When you create a trigger, it is enabled by default. If you want to temporarily disable a trigger
for some reason, you use the following statement:

SQL> ALTER TRIGGER test DISABLE;

You can reenable this trigger by using the following command:

SQL> ALTER TRIGGER test ENABLE;

Viewing Object Information
There are several important data dictionary views you can use to find out detailed information about
any of the database objects discussed in this chapter. DBAs also make heavy use of data dictionary
views to manage various schema objects. I provide a brief list of the important views here, some of
which were explained earlier in the chapter. To get complete information about the types of infor-
mation you can glean from each of these views, use the SQL command DESCRIBE (as in DESCRIBE
DBA_CATALOG.

Views for Managing Database Objects
In this section, you’ll look at the important data dictionary views that help you manage nondata
objects (that is, objects other than tables and indexes). The following is a list of the important data
dictionary views for looking up various database objects:

• DBA_SYNONYMS: Information about database synonyms

• DBA_TRIGGERS: Information about triggers

• DBA_SEQUENCES: Information about user-created sequences

• DBA_DB_LINKS: Information about database links

As mentioned earlier, the DBA_OBJECTS view provides important information on the
preceding objects, as well as several other types of database objects. However, the preceding views
provide detailed information about the object, such as the source text of a trigger, which you won’t
get from the DBA_OBJECTS view.

You manage objects such as tables and views by referring to the data dictionary views, such as
DBA_TABLES and DBA_VIEWS. There are also separate views for partitioned tables. Let’s look at the
key table- and index-related dictionary views.

DBA_OBJECTS
The DBA_OBJECTS view contains information about all the objects in the database, including
tables, indexes, packages, procedures, functions, dimensions, materialized views, resource plans,
types, sequences, synonyms, triggers, views, and table partitions. As you can surmise, this view is
useful when you need to know general information regarding any database object. Listing 7-20
shows a query designed to find out the created time and the LAST_DDL_TIME (the last time the object
was modified). This type of query helps you identify when a certain object was modified, and is often
used for auditing purposes.

Listing 7-20. Querying the DBA_OBJECTS View

SQL> SELECT object_name,
 2 object_type,
 3 created,
 4 last_ddl_time,
 5 FROM DBA_OBJECTS

330 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

 6 WHERE owner ='APPOWNER'
 7* AND object_name LIKE 'YTD%';

OBJECT_NAME OBJECT_TYPE CREATED LAST_DDL_TIME
----------------- ---------- ---------- -------------
YTD_ADJ2005050603 TABLE 01/23/2008 01/23/2008
SQL>

DBA_TABLES
The DBA_TABLES view contains information about all relational tables in your database. The
DBA_TABLES view is your main reference for finding out storage information, the number of rows
in the table, logging status, buffer pool information, and a host of other things. Here’s a simple query
on the DBA_TABLES view:

SQL> SELECT tablespace_name,table_name
 FROM DBA_TABLES;

TABLESPACE_NAME TABLE_NAME
--------------- ----------------
EXAMPLE DEPARTMENTS
EXAMPLE EMPLOYEES_INTERI
EXAMPLE EMPLOYEES_NEW
EXAMPLE JOBS
EXAMPLE JOB_HISTORY
EXAMPLE TEST
6 rows selected.
SQL>

■Note The DBA_ALL_TABLES view contains information about all object tables and relational tables in a data-
base, while the DBA_TABLES view is limited to only relational tables.

You can use the DBA_TABLES view to find out things such as whether table compression and
row-level dependency tracking are enabled, and whether the table has been dropped and is in the
Recycle Bin.

DBA_EXTERNAL_TABLES
The DBA_EXTERNAL_TABLES view shows details about any external tables in a database, including
their access type, access parameters, and directory information.

DBA_TAB_PARTITIONS
The DBA_TAB_PARTITIONS view is similar to the DBA_TABLES view, but it provides detailed infor-
mation about table partitions. You can get information about the partition name, partition high
values, partition storage information, and partition statistics, plus all the other information that’s
available from the DBA_TABLES view. Listing 7-21 shows a simple query using the
DBA_TAB_PARTITIONS view.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 331

Listing 7-21. Querying the DBA_TAB_PARTITIONS View

SQL> SELECT table_name, partition_name,
 2 high_value,
 3* FROM DBA_TAB_PARTITIONS;

TABLE_NAME PARTITION_NAME HIGH_VALUE
------------ -------------- -------------------------------
SALES SALES_Q2_2004 TO_DATE(' 2007-07-01 00:00:00')
SALES SALES_Q3_2004 TO_DATE(' 2007-10-01 00:00:00')
SALES SALES_Q4_2004 TO_DATE(' 2008-01-01 00:00:00')
SALES SALES_Q1_2005 TO_DATE(' 2008-04-01 00:00:00')
SALES SALES_Q2_2005 TO_DATE(' 2008-07-01 00:00:00')
SALES SALES_Q3_2005 TO_DATE(' 2008-10-01 00:00:00')
SALES SALES_Q4_2005 TO_DATE(' 2009-01-01 00:00:00')
EMPLOYEES EMPLOYEES1 100
EMPLOYEES EMPLOYEES2 300
SQL>

DBA_PART_TABLES
The DBA_PART_TABLES view provides information about the type of partition scheme and other
storage parameters for partitions and subpartitions. You can find out the partition type of each
partitioned table using the following query:

SQL> SELECT table_name, partitioning_type,
 2 def_tablespace_name
 3 FROM DBA_PART_TABLES;

TABLE_NAME PARTITION_TYPE DEF_TABLESPACE_NAME
------------------ --------------- -------------------
EMPLOYEES RANGE EXAMPLE
EMPLOYEES_INTERIM RANGE EXAMPLE
COSTS RANGE EXAMPLE
SALES RANGE EXAMPLE
SQL>

DBA_TAB_MODIFICATIONS
The DBA_TAB_MODIFICATIONS view shows all DML changes in a table since statistics were last
collected for that table. Here’s a query on this view:

SQL> SELECT table_name, inserts, updates, deletes
 FROM DBA_TAB_MODIFICATIONS;

TABLE_NAME INSERTS UPDATES DELETES
-------------------------- ------- ------- -------
WRH$ACTIVE_SESSION_HISTORY 1233 0 0
WRH$SERVICE_STAT 5376 0 0
WRH$SERVICE_WAIT_CLASS 1050 0 0
. . .
SQL>

The database doesn’t update the DBA_TAB_MODIFCATIONS view in real time. Consequently,
you may not see the changes you make to various tables immediately reflected in this view.

332 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

DBA_TAB_COLUMNS
Suppose you want to find out the average length of each row in a table or the default value of each
column (if there is one). The DBA_TAB_COLUMNS view is an excellent way to quickly get detailed
column-level information on schema tables, as shown in Listing 7-22.

Listing 7-22. Using the DBA_TAB_COLUMNS View

SQL> SELECT column_name,
 2 avg_col_len,
 3 data_type,
 4 data_length,
 5 nullable,
 6 FROM dba_tab_columns
 7* WHERE owner='OE';

COLUMN_NAME AVG_COL_LEN DATA_TYPE DATA_LENGTH NULL
---------------------- ----------- --------- ------------- ----
CUSTOMER_ID 4 NUMBER 22 N
CUST_FIRST_NAME 7 VARCHAR2 20 N
CUST_LAST_NAME 8 VARCHAR2 20 N
TRANSLATED_DESCRIPTION 245 NVARCHAR2 4000 N
PRODUCT_DESCRIPTION 123 VARCHAR2 2000 Y
WARRANTY_PERIOD 5 INTERVAL YEA 5 Y
SQL>

DBA_VIEWS
As you know, views are the product of a query on some database table(s). The DBA_VIEWS
dictionary view provides you with the SQL query that underlies the views. Listing 7-23 shows how to
get the text of a view, OC_CUSTOMERS, owned by user oe.

■Tip To ensure you see the whole text of the view when you use the DBA_VIEWS view, set the long variable to a
large number (for example, SET LONG 2000). Otherwise, you’ll see only the first line of the view definition.

Listing 7-23. Getting the Source for a View Using the DBA_VIEWS View

SQL> SET LONG 2000
SQL> SELECT text
 2 FROM DBA_VIEWS
 3 WHERE view_name ='OC_CUSTOMERS'
 4* AND owner = 'OE';

TEXT
--
SELECT c.customer_id, c.cust_first_name,
 c.cust_last_name, c.cust_address,
 c.phone_numbers,c.nls_languag
e,c.nls_territory,c.credit_limit, c.cust_email,
 CAST(MULTISET(SELECT o.order_id, o.order_mode,
 MAKE_REF(
oc_customers,o.customer_id),

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 333

 o.order_status,o.order_t
otal,o.sales_rep_id,
 CAST(MULTISET(SELECT l.order_id,l.line_item_id,
 l.unit_price,l.quantity,
 MAKE_REF(oc_product_information,
 l.product_id)
FROM order_items l
WHERE o.order_id = l.order_id)
AS order_item_list_typ)
FROM orders o
WHERE c.customer_id = o.customer_id)
AS order_list_typ)
FROM customers c
SQL>

DBA_MVIEWS
The DBA_MVIEWS dictionary view tells you all about the materialized views in your database, including
whether the query rewrite feature is enabled or not on the views. Listing 7-24 shows you how to use
this view.

Listing 7-24. Using the DBA_MVIEWS View

SQL> SELECT
 2 mview_name,
 3 query,
 4 updatable,
 5 rewrite_enabled, /* whether query rewrite is enabled */
 6 refresh_mode, /* demand,commit, or never */
 7 refresh_method /* complete,force, fast, or never */
 8* FROM dba_mviews;

MVIEW_NAME QUERY UPD REW REFR REFRESH_ME
---------------- ---------------------------- ---- ---- ---------------
MONTH_SALES_MV SELECT t.calendar_month_desc N Y DEMAND FORCE
PCAT_SALES_MV SELECT t.week_ending_day N Y DEMAND COMPLETE
SQL>

DBA_INDEXES
You can use the DBA_INDEXES dictionary view to find out just about everything you need to know
about the indexes in your database, including the index name, index type, and the table and
tablespace an index belongs to. Certain columns, such as BLEVEL (tells you the level of the B-tree
index) and DISTINCT_KEYS (number of distinct index key values), are populated only if you’ve
collected statistics for the index using the DBMS_STATS package.

DBA_IND_COLUMNS
The DBA_IND_COLUMNS view is similar to the DBA_CONS_COLUMNS view in structure, and it
provides information on all the indexed columns in every table. This is important during SQL perfor-
mance tuning when you notice that the query is using an index, but you aren’t sure exactly on which
columns the index is defined. The query in Listing 7-25 may reveal that the table has indexes on the
wrong columns after all.

334 CH AP T E R 7 ■ SC H E M A M AN AG E M E N T

Listing 7-25. Querying the DBA_IND_COLUMNS View

SQL> SELECT index_name,
 2 table_name,
 3 column_name,
 4 column_position
 5 FROM DBA_IND_COLUMNS
 6* WHERE table_owner='OE';

INDEX_NAME TABLE_NAME COLUMN_NAME COLUMN_POSITION
----------------------- ----------- ---------------- ---------------
CUST_ACCOUNT_MANAGER_IX CUSTOMERS ACCOUNT_MGR_ID 1
CUST_LNAME_IX CUSTOMERS CUST_LAST_NAME 1
CUST_EMAIL_IX CUSTOMERS CUST_EMAIL 1
INVENTORY_PK INVENTORIES PRODUCT_ID 1
INVENTORY_PK INVENTORIES WAREHOUSE_ID 2
INV_PRODUCT_IX INVENTORIES PRODUCT_ID 1
ORDER_PK ORDERS ORDER_ID 1
ORD_SALES_REP_IX ORDERS SALES_REP_ID 1
ORD_CUSTOMER_IX ORDERS CUSTOMER_ID 1
SQL>

■Tip You can identify composite keys easily by looking in the INDEX_NAME column. If the same INDEX_NAME
entry appears more than once, it’s a composite key, and you can see the columns that are part of the key in the
COLUMN_NAME column. For example, INVENTORY_PK is the primary key of the INVENTORIES table and is defined
on two columns: PRODUCT_ID and WAREHOUSE_ID. You can glean the order of the two columns in a composite key
by looking at the COLUMN_POSITION column.

INDEX_STATS
The INDEX_STATS view is useful for seeing how efficiently an index is using its space. Large indexes
have a tendency to become unbalanced over time if many deletions are in the table (and therefore
index) data. Your goal is to keep an eye on those large indexes with a view to keeping them balanced.

Note that the INDEX_STATS view is populated only if the table has been analyzed by using the
ANALYZE command, as follows:

SQL> ANALYZE index hr.emp_name_ix VALIDATE STRUCTURE;
Index analyzed.

The query in Listing 7-26 using the INDEX_STATS view helps determine whether you need to
rebuild the index. In the query, you should focus on the following columns in the INDEX_STATS view
to determine if your index is a candidate for a rebuild:

• HEIGHT: This column refers to the height of the B-tree index, and it’s usually at the 1, 2, or 3
level. If large inserts push the index height beyond a level of 4, it’s time to rebuild, which flat-
tens the B-tree.

• DEL_LF_ROWS: This is the number of leaf nodes deleted due to the deletion of rows. Oracle
doesn’t rebuild indexes automatically and, consequently, too many deleted leaf rows can lead
to an unbalanced B-tree.

• BLK_GETS_PER_ACCESS: You can look at the BLK_GETS_PER_ACCESS column to see how
much logical I/O it takes to retrieve data from the index. If this row shows a double-digit
number, you should probably start rebuilding the index.

CH AP T E R 7 ■ S CH E M A M AN AG E M E N T 335

Listing 7-26. Using the INDEX_STATS View to Determine Whether to Rebuild an Index

SQL> SELECT height, /*Height of the B-Tree*/
 2 blocks, /* Blocks in the index segment */
 3 name, /*index name */
 4 lf_rows, /* number of leaf rows in the index */
 5 lf_blks, /* number of leaf blocks in the index */
 6 del_lf_rows, /* number of deleted leaf rows
 in the index */
 7 rows_per_key /* average number of rows
 per distinct key */
 8 blk_gets_per_access /* consistent mode block reads (gets) */
 8 FROM INDEX_STATS
 9* WHERE name='EMP_NAME_IX';

HEIGHT BLOCK LF_ROWS LF_BLKS DEL_LF_ROWS ROWS_PER_KEY BLK_GETS
------ ----------- ------- -------- ----------- ------------ ---------
16 EMP_NAME_IX 107 1 0 1 1
SQL>

337

■ ■ ■

C H A P T E R 8

Oracle Transaction Management

Transaction management is at the heart of database processing. In order for a large number of
users to run concurrent transactions, the DBMS must manage the transactions with the least
amount of conflict while ensuring the consistency of the database. Transaction management
ensures that a database is accessible to many users simultaneously, and that users can’t undo each
other’s work.

A transaction is a logical unit of work consisting of one or more SQL statements. Transactions
may encompass all of your program or just a part of it. A transaction may perform one operation or
an entire series of operations on the database objects, either interactively or as part of a program.
Transactions are begun implicitly whenever data is read or written, and they are ended by a COMMIT
or ROLLBACK statement.

In this chapter, I cover the basics of transaction management. I start with an explanation of a
transaction in the context of a relational database, I explain the main types of data anomalies, and I
explain the standard transaction isolation levels and Oracle’s implementation of the read-committed
isolation level for maintaining consistency and concurrency.

The concept of serializability is crucial in transaction processing. Concurrency of usage gives
relational databases their great strength, and serializability conditions ensure the concurrency of
database transactions. In this chapter, I explain how Oracle uses the twin techniques of transaction
locking and multiversion concurrency control using undo records to enforce serializability in trans-
actions. The other component in Oracle’s transaction management is its automatic locking feature,
which helps Oracle increase concurrency.

Undo space management is an important part of transaction management, and in this chapter
you’ll learn about the Automatic Undo Management (AUM) feature. You’ll also learn how to use
Oracle’s powerful flashback features, which help you perform various tasks such as quickly recov-
ering from logical errors, for example. I explain the key Oracle flashback features such as the
Flashback Query, Flashback Versions Query, Flash Transaction Query, and the powerful Flashback
Table features, which help in auditing and correcting logical data errors. All of these Flashback
features rely on the use of undo data in your undo tablespace.

Longer transactions can run the risk of failing to complete due to space errors. You’ll learn how
to use Oracle’s new Resumable Space Allocation feature to resume transactions that are suspended
due to a space-related error. You’ll also learn how to use autonomous transactions. This chapter also
provides an introduction to the Oracle Workspace Manager feature, which offers version control for
table data.

Oracle Transactions
DDL statements issued by a DBA usually aren’t very complex to process. The DDL commands alter
the schema (which means changing the data dictionary), which contains object definitions and
other related metadata for the database. DML language (also called query language) operations are
a different kettle of fish altogether. The majority of DML statements retrieve data from the database,
and the rest modify data or insert new data. DML transaction processing involves compiling and

338 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

executing SQL statements in the most efficient manner with the least contention among multiple
transactions, while preserving the consistency of the database.

A transaction starts implicitly when the first executable SQL statement begins, and it continues
as the following SQL statements are processed until one of the following events occurs:

• COMMIT: If a transaction encounters a COMMIT statement, all the changes to that point are made
permanent in the database.

• Rollback: If a transaction encounters a ROLLBACK statement, all changes made up to that point
are cancelled.

• DDL statement: If a user issues a DDL statement, such as CREATE, DROP, RENAME, or ALTER, Oracle
first commits any current DML statements that are part of the transaction, before executing
and committing the results of the DDL statement. This is called an implicit commit, since the
committing of the DML statements immediately preceding the DDL statements isn’t explic-
itly done by the user.

• Normal program conclusion: If a program ends without errors, all changes are implicitly
committed by the database. When you make a normal clean exit from SQL*Plus, the database
automatically commits all changes you made to data in that session.

• Abnormal program failure: If the program crashes or is terminated, all changes made by it are
implicitly rolled back by the database.

When a transaction begins, Oracle will assign the transaction an undo segment, where the orig-
inal data is recorded whenever data is modified by an update or delete. In the case of an insert
operation, the undo segments will record the relevant ROWIDs. The first statement after the comple-
tion of a transaction will mark the beginning of a new transaction. In the sections that follow, you’ll
look at the COMMIT and ROLLBACK transaction control statements in detail.

COMMIT Statement
The COMMIT statement ends a transaction successfully. All changes made by all SQL statements since
the transaction began are recorded permanently in the database. Before the COMMIT statement is
issued, the changes may not be visible to other transactions.

You can commit a transaction by using either of the following statements, which make the
changes permanent:

SQL> COMMIT;
SQL> COMMIT WORK;

Before Oracle can issue a COMMIT statement, the following things happen in the database:

• Oracle generates undo records in the undo segment buffers in the SGA. As you know, the
undo records contain the old values of the updated and deleted table rows.

• Oracle generates redo log entries in the redo log buffers in the SGA.

• Oracle modifies the database buffers in the SGA.

■Note The modified database buffers may be written to the disk before a COMMIT statement is issued. Similarly,
the redo log entries may be written to the redo logs before a COMMIT statement is ever issued.

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 339

When an Oracle transaction is committed, the following three things happen:

1. The transaction tables in the redo records are tagged with the unique system change number
(SCN) of the committed transaction.

2. The log writer writes the redo log information for the transaction from the redo log buffer to
the redo log files on disk, along with the transaction’s SCN. This is the point at which a
commit is considered complete in Oracle.

3. Any locks that Oracle holds are released, and Oracle marks the transaction as complete.

■Note If you set the SQL*Plus variable AUTOCOMMIT to on, Oracle will automatically commit transactions, even
without an explicit COMMIT statement.

The default behavior for the COMMIT statement, which is generally the only type you’ll encounter,
is to use the IMMEDIATE and WAIT options:

• IMMEDIATE vs. BATCH: With the IMMEDIATE option, the log writer writes the redo log records for
the committing transaction immediately to disk. If you’d rather the log writer write the redo
records by buffering them in memory until it’s convenient to write them, you can use the
alternative BATCH option.

• WAIT vs. NOWAIT: With the WAIT option, the COMMIT statement doesn’t return as successful until
the redo records are successfully written to the redo logs. If you’d rather have the COMMIT state-
ment return without waiting for the writing of the redo records, you can use the NOWAIT option.

As you can see, the default behavior means that there is a disk I/O after each commit, and conse-
quently, a slight delay in finishing the transaction. For certain types of long transactions, you may
want to avoid the delay resulting from frequent writing of redo log records and waiting for the confir-
mation of those writes.

You can modify this default behavior by using the initialization parameters COMMIT_WAIT and
COMMIT_LOGGING. Use the COMMIT_WAIT parameter to control when the database flushes the redo for a
commit to the redo logs. Use the COMMIT_LOGGING parameter to control how the log writer batches
redo.

ROLLBACK Statement
The ROLLBACK statement undoes, or rolls back, the changes made by SQL statements within a trans-
action, so long as you didn’t already commit the transaction. Once you issue the ROLLBACK statement,
none of the changes made to the tables by SQL statements since the transaction began are recorded
to the database permanently. You can roll back an entire transaction by rolling back all changes
made by all the SQL statements within that transaction by simply using the ROLLBACK command as
follows:

SQL> ROLLBACK;

You can also partially roll back the effects of a transaction by using save points in the transaction.
Using a save point, you can roll back to the last SAVEPOINT command in the transaction, as follows:

SQL> ROLLBACK TO SAVEPOINT POINT A;

The SAVEPOINT statement acts like a bookmark for the uncommitted statements in the transac-
tion. In the second of the preceding examples, the rollback is only up to point A in the transaction.
Everything before point A is still committed.

340 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

Oracle uses the undo records in the undo tablespace to roll back the transactions after a ROLL-
BACK command. It also releases any locks that are held, and it marks the transaction as complete. If
the rollback is to a save point, the transaction is deemed incomplete, and you can continue the
transaction.

If a SQL statement errors out during its execution, all the changes made by it to that point are
automatically rolled back. This is known as a statement-level rollback. A deadlock is a condition that
occurs when SQL statements from two sessions contend for the same piece of data. In that situation,
Oracle automatically rolls back one of the SQL statements to resolve deadlocks.

Transaction Properties
Transactions in RDBMSs must possess four important properties, symbolized by the ACID acronym,
which stands for atomicity, consistency, isolation, and durability of transactions. Transaction
management, in general, means supporting database transactions so the ACID properties are
maintained.

Let’s look at the transaction properties in more detail:

• Atomicity: Either a transaction should be performed entirely or none of it should be
performed. That is, you can’t have the database performing only a part of a transaction. For
example, if you issue a SQL statement that should delete 1,000 records, your entire transac-
tion should abort (roll back) if your database crashes after the transaction deletes 999 records.

• Consistency: The database is supposed to ensure that it’s always in a consistent state. For
example, in a banking transaction that involves debits from your savings account and credits
to your checking account, the database can’t just credit your checking account and stop. This
will lead to inconsistent data, and the consistency property of transactions ensures that the
database doesn’t leave data in an inconsistent state. All transactions must preserve the
consistency of the database. For example, if you wish to delete a department ID from the
Department table, the database shouldn’t permit your action if some employees in the
Employees table belong to the department you’re planning on eliminating.

• Isolation: Isolation means that although there’s concurrent access to the database by
multiple transactions, each transaction must appear to be executing in isolation. The isola-
tion property of transactions ensures that a transaction is kept from viewing changes made by
another transaction before the first transaction commits. This property is upheld by the data-
base’s concurrency control mechanisms, as you’ll see in the following sections. Although
concurrent access is a hallmark of the relational database, isolation techniques make it
appear as though users are executing transactions serially, one after another. This chapter
discusses how Oracle implements concurrency control—the assurance of atomicity and isola-
tion of individual transactions in a concurrently accessed database.

• Durability: The last ACID property, durability, ensures that the database saves commit trans-
actions permanently. Once a transaction completes, the database should ensure that the
transaction’s changes are not lost. This property is enforced by the database recovery mech-
anisms, which make sure that all committed transactions are retrieved. As you saw in
Chapter 5, Oracle uses the write-ahead protocol, which ensures that all changes are first
written to the redo logs on disk before they’re transferred to the database files on disk.

■Note Users can name a transaction to make it easier to monitor it, and there are several advantages to giving a
meaningful name to a long-running transaction. For example, using the LogMiner utility, you can look for details of

the specific transaction you’re interested in. Chapter 16 shows how to use the LogMiner utility to help undo DML
changes. Assigning names to transactions also makes it easier for the user to query the transaction details using
the name column of the V$TRANSACTION view.

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 341

Transaction Concurrency Control
To ensure data consistency, each user must see a consistent set of data that includes all changes
made by that user’s transactions as well as all the other users’ transactions. In a single-user database,
it’s a trivial matter to achieve data consistency. However, real-life databases need to allow simulta-
neous operations by numerous users, a requirement that’s known as data concurrency. Improper
interactions among transactions can cause data to become inconsistent.

Transaction concurrency is achieved by managing various users’ simultaneous transactions
without permitting any interference among them. If you’re the only user of the database, you don’t
need to worry about concurrency control of transactions. However, in most cases, databases enable
thousands of users to perform simultaneous select, update, insert, and delete transactions against
the same table.

One solution to concurrency control is to lock the entire table for the duration of each opera-
tion, so one user’s transactions do not impact another’s. Thus, each user would be operating in
isolation, thereby sacrificing data concurrency. However, this would mean that access to the table
would be severely reduced. As you’ll see, Oracle does use locking mechanisms to keep the data
consistent, but the locking is done in the least restrictive fashion, with the goal of maintaining the
maximum amount of concurrency.

Concurrency no doubt increases the throughput of an RDBMS, but it brings along its own
special set of problems, which we’ll look at next.

Concurrency Problems
Concurrent access to the database by multiple users introduces several problems. Some of the most
important problems potentially encountered in concurrent transaction processing are dirty reads,
phantom reads, lost updates, and nonrepeatable reads.

The Dirty-Read Problem

A dirty read occurs when a transaction reads data that has been updated by an ongoing transaction
but has not been committed permanently to the database. For example, say transaction A has just
updated the value of a column, and it is now read by transaction B. What if transaction A rolls back
its changes, whether intentionally or because it aborts for some reason? The value of the updated
column will also be rolled back as a result. Unfortunately, transaction B has already read the new
value of the column, which is now incorrect because of the rolling back of transaction A.

■Tip The problem described in this section could be avoided by imposing a simple rule: Don’t let any transaction

read the intermediate results of another transaction before the other transaction is either committed or rolled back.
This way, the reads are guaranteed to be consistent.

The Phantom-Read Problem

Say you’re reading data from a table (using a SELECT statement). You re-execute your query after
some time elapses, and in the meantime, some other user has inserted new data into the table.
Because your second query will come up with extra rows that weren’t in the first read, they’re
referred to as “phantom” reads, and the problem is termed a phantom read. Phantom-read prob-
lems are caused by the appearance of new data in between two database operations in a transaction.

The Lost-Update Problem

The lost-update problem is caused by transactions trying to read data while it is being updated by
other transactions. Say transaction A is reading a table’s data while it is being updated by transaction

342 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

B, and transaction B completes successfully and is committed. If transaction A has read the data
before transaction B has fully completed, it might end up with intermediate data. The lost update
anomaly occurs because two users have updated the same row, and since the second update over-
writes the first, the first update is lost. Allowing transactions to read and update a table before the
completion of another transaction causes the problem in this case.

The Nonrepeatable-Read (Fuzzy-Read) Problem

When a transaction finds that data it has read previously has been modified by some other transac-
tion, you have a nonrepeatable-read (or fuzzy-read) problem. Suppose you access a table’s data at a
certain point in time, and then you try to access the same data a little later, only to find that the data
values are different the second time around. This inconsistent data during the same transaction
causes a nonrepeatable-read problem.

Schedules and Serializability
As you can see, all the data problems are due to concurrent access—you can safely assume that a
transaction executed in isolation will always leave the database in a consistent state when the
transaction completes. If the database permits concurrent access, then you need to consider the
cumulative effect of all the transactions on database consistency.

To do this, the database uses a schedule, which is a sequence of operations from one or more
transactions. If all the transactions executed serially, one after another, the schedule would also be
serial. If the database can produce a schedule that is equivalent in its effect to a serial schedule, even
though it may be derived from a set of concurrent transactions, it is called a serializable schedule. The
serializable schedule consists of a series of intermingled database operations drawn from several
transactions, the final outcome of which is a consistent database.

As you can surmise, deriving a schedule is not easy in practice. However, users don’t have to
concern themselves with the mechanics of serialization when they use their transactions. The Oracle
database automatically derives serializable schedules through the use of isolation levels and the
management of undo data. Let’s look at these important concepts next.

Isolation Levels and the ISO Transaction Standard
You know that one way to avoid data anomalies is to prevent more than one user from viewing or
changing data at the same time. However, this defeats our main purpose of providing concurrent
access to users. To control this trade-off between concurrency and isolation, you specify an isolation
level for each transaction.

The ISO (http://www.iso.ch) standard for transactions rests on the two key transaction-ending
statements: COMMIT and ROLLBACK. All transactions, according to the ISO standard, begin with a
SELECT, UPDATE, INSERT or DELETE statement. No transaction can view another transaction’s interme-
diate results. Results of a second transaction are available to the first transaction only after the
second transaction completes.

The ISO transaction standards ensure the compliance of transactions with the atomic and isola-
tion properties, and help avoid the concurrency problems explained in the previous section. All
transactions must ensure that they preserve database consistency. A database is consistent before a
transaction begins, and it must be left in a consistent state at the end of the transaction. If you can
devise a method to avoid the problems mentioned in the previous section, you can ensure a high
degree of concurrent interactions among transactions in the database. There is a price to pay for this,
however. Attempts to reduce the anomalies will result in reduced concurrency.

You can achieve consistency by enforcing serial use of the database, but it’s impractical. There-
fore, the practical goal is to find those types of concurrent transactions that don’t interfere with each
other—in other words, to find transactions that guarantee a serializable schedule. Proper ordering
of the transactions becomes very important, unless they’re all read-only transactions.

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 343

THE MAIN STAGES OF SQL PROCESSING

SQL statements pass through several stages during their processing: parsing, binding, and executing. Oracle uses
cursors, private SQL areas, to store parsed statements and other information relating to the statements it’s currently
processing. Oracle automatically opens a cursor for all SQL statements.

Parsing

During the parsing stage, Oracle does several things to check your SQL statements:

• Oracle checks that your statements are syntactically correct. The server consults the data dictionary to check
whether the tables and column specifications are correct.

• Oracle ensures that you have the privileges to perform the actions you are attempting through your SQL state-
ments.

• Oracle draws up the execution plan for the statement, which involves selecting the best access methods for
the objects in the statement.

After it checks the privileges, Oracle assigns a number called the SQL hash value to the SQL statement for identifi-
cation purposes. If the SQL hash value already exists in memory, Oracle will look for an existing execution plan for
the statement, which details the ideal way it should access the various database objects, among other things. If the
execution plan exists, Oracle will proceed straight to the actual execution of the statement using that execution plan.
This is called a soft parse, and it is the preferred technique for statement processing. Because it uses previously
formed execution plans, soft parsing is fast and efficient.

The opposite of a soft parse is a hard parse, and Oracle has to perform this type of parse when it doesn’t find the
SQL hash value in memory for the statement it wants to execute. Hard parses are tough on system memory and other
resources. Oracle has to create a fresh execution plan, which means that it has to evaluate the numerous possibili-
ties and choose the best plan from among them. During this process, Oracle needs to access the library cache and
dictionary cache numerous times to check the data dictionary, and each time it accesses these commonly used
areas, Oracle needs to use latches, which are low-level serialization control mechanisms, to protect shared data
structures in the SGA. Thus, hard parsing contributes to an increase in latch contention.

Any time there’s a severe contention for resources during statement processing, the execution time will increase.
Remember that too many hard parses will lead to a fragmentation of the shared pool, making the contention worse.

After the parsing operation is complete, Oracle allots a shared SQL area for the statement. Other users can access
this parsed version as long as it is retained in memory.

Binding

During the binding stage, Oracle retrieves the values for the variables used in the parsing stage. Note that the vari-
ables are expanded to literal values only after the parsing stage is over.

Execution

Once Oracle completes the parsing and binding, it executes the statement. Note that Oracle will first check whether
there is a parsed representation of the statement in memory already. If there is, the user can execute this parsed
representation directly, without going through the parsing process all over again.

It’s during the execution phase that the database reads the data from the disk into the memory buffers (if it doesn’t
find the data there already). The database also takes out all the necessary locks and ensures that it logs any changes
made during the SQL execution. After the execution of the SQL statement, Oracle automatically closes the cursors.

344 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

■Note It’s important for you as a DBA to fully understand the nature of transactions in relational databases. A
good reference is the book by Jim Gray (a leading expert on database and transaction processing) and Andreas
Reuter, Transaction Processing: Concepts and Techniques (Morgan Kaufmann, 1993).

Oracle’s Isolation Levels
The ISO transaction standards use the term isolation level to indicate the extent to which a database
allows interaction among transactions. Isolation defines how and when the changes made by an
operation are made visible to other concurrent operations in the database. Isolation of transactions
keeps concurrently executing database transactions from viewing incomplete results of other trans-
actions. The main isolation levels are the serializable, repeatable-read, read-uncommitted, and
read-committed isolation levels. Here’s what the different transaction isolation levels mean:

• Serializable: At the serializable isolation level, all transactions are isolated completely from
each other, as if the transactions have executed in a serial fashion, one after the other. Under
the serializable level of isolation, a transaction that performs an insert, delete, or update
places a write lock on the set of data that is affected by the DML operation. The database locks
the affected data until the isolating transaction releases its locks, which happens when this
transaction is committed or rolled back. Because other transactions involving DML opera-
tions have to wait until the locks are cleared, those transactions won’t read any “dirty” data.
The serializable level of isolation also helps you avoid nonrepeatable reads, because the
subsequent transactions can’t update or delete the locked data. You also get rid of phantom
data because the subsequent transactions can’t insert any new rows that fall into the range of
data locked by the first transaction.

• Repeatable read: The repeatable-read isolation level guarantees read consistency—a transac-
tion that reads the data twice from a table at two different points in time will find the same
values each time. You avoid both the dirty-read problem and the nonrepeatable-read
problem through this level of isolation.

• Read uncommitted: The read-uncommitted level, which allows a transaction to read another
transaction’s intermediate values before it commits, will result in the occurrence of all the
problems of concurrent usage.

• Read committed: Oracle’s default isolation level is the read-committed level of isolation at the
statement level. Oracle queries see only the data that was committed at the beginning of the
query. Because the isolation level is at the statement level, each statement is allowed to see
only the data that was committed before the commencement of that statement. The read-
committed level of isolation guarantees that the row data won’t change while you’re
accessing a particular row in an Oracle table.

■Note If you’re in the process of updating a row that you fetched into a cursor, you can rest assured that no one
else is updating the same row simultaneously. However, if you’re executing queries, you may get different values
each time if other transactions have updated data successfully in between your queries. Remember that Oracle only
guarantees statement-level isolation here, not transaction-level isolation.

Practical real-world databases need a compromise between concurrency access and serializ-
able modes of operation. The key issue here is that by specifying a high degree of isolation, you can
keep one transaction from affecting another, but at the cost of significant deterioration in database

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 345

performance. On the other hand, a low level of transaction isolation will introduce the data problems
outlined earlier in the chapter, but it leads to better performance. A transaction running at a serial-
izable isolation level will appear as if it’s running in isolation—it’s as if all the other concurrent
transactions run either before or after this transaction.

Three of the four main ISO isolation levels allow for some deviation from the theoretical concept
of serializable transactions. Table 8-1 shows the extent to which each of the four main levels of isola-
tion suffers from the concurrency problems listed earlier. Note that a value of Yes in the table means
that the particular problem is possible under that isolation level, and a value of No means that the
problem isn’t possible for that isolation level.

As you can see, the last isolation level in Table 8-1, serializable, avoids all concurrency prob-
lems, but unfortunately, it’s not a practical option because it doesn’t allow any concurrent use of the
database. Oracle’s default read-committed isolation level will get rid of the dirty-read and the lost-
update problems. You won’t have the dirty-read problem because your queries will read only data
that was committed at the beginning of the query, thereby avoiding reading data that may later be
rolled back by a different transaction. In addition, you’ll avoid the lost-update problem because
transactions can’t read data that’s currently being modified until the updates have been completed.

Transaction- and Statement-Level Consistency
Oracle automatically provides statement-level read consistency by default. That is, all data that a
query sees comes from a single point in time. This means that a query will see consistent data when
it begins. The query sees only data committed before it starts, and no data committed during the
course of the query is visible to it. Queries in this context don’t have to be SELECT statements. An
INSERT with a subquery or an UPDATE or DELETE will also involve an implicit query, and they all return
consistent data.

Oracle can also provide transaction-level read consistency, though this is not the default. Oracle
can use pre-change data images stored in undo segments to provide the transaction- and statement-
level read consistency.

Changing the Default Isolation Level
Oracle’s read-committed level of isolation provides protection against dirty reads and lost updates
because queries read data only after the COMMIT statement is executed. The transactions are all
consistent on a per-statement basis. Readers will not block writers of transactions, and vice versa. As
you can see, Oracle’s default read-committed isolation level doesn’t guarantee you’ll avoid the
nonrepeatable-read and phantom-read problems. Oracle guarantees only statement-level, not
transaction-level, read consistency. However, Oracle allows you to explicitly change the default
read-committed isolation level by selecting the serializable isolation level as an alternative.

Table 8-1. Preventable Concurrency Problems Under Various Isolation Levels

Isolation Level Dirty Read Nonrepeatable Read Phantom Read

Read uncommitted Yes Yes Yes

Read committed No Yes Yes

Repeatable read No No Yes

Serializable No No No

346 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

■Note The read-committed level of isolation provides a great deal of concurrency and consistency in the data-
base. However, this mode does not provide transaction-level consistency. Because it’s a statement-level isolation,
changes made in between statements in a transaction may not be seen by a query, and for this reason you’ll
continue to have the nonrepeatable-read problem; you simply can’t be guaranteed the same results if you repeat
your queries. The phantom-read problem also still lurks because the model doesn’t prevent other transactions from

updating tables in between your queries.

The serializable isolation level will treat the database as a single-user database, thus eliminating
the data anomalies caused by simultaneous use and modification of the data. By using the ALTER
SESSION statement, you can serialize the isolation level, thus avoiding the concurrency problems.
You can change the isolation level from the default level of read-committed to a serializable isolation
level using the following statement:

SQL> ALTER SESSION SET ISOLATION LEVEL SERIALIZABLE;

Once you execute this statement, you are shielded from all transactions, committed as well as
uncommitted, that have occurred since you set the transaction. Instead of using the serializable
isolation level, you can also use the SET TRANSACTION READ ONLY command to give you repeatable
reads without phantom reads. A serializable level of isolation is suited for databases where multiple
consistent queries are made during an update transaction. However, serialization isn’t a simple
choice, because it seriously reduces your concurrency. These are some of the problems involved in
setting the serializable isolation level:

• Since serialization involves the locking of data for exclusive use by transactions, it thereby
slows down transaction concurrency.

• You have to set the INITTRANS parameter for tables at creation time to at least 3 in order for the
serialization level of isolation to take effect. The INITTRANS parameter determines the number
of concurrent transactions on a table.

• Throughput in the serialization isolation level is much lower than in the read-committed
isolation level, especially in high-concurrency databases with many transactions accessing
the same tables for updates.

• You must incorporate error-checking code in the application if you want to use the serializ-
able mode of isolation.

• Serializable transactions are more prone to deadlocks, a situation in which transactions are
stuck waiting for each other to release locks over data objects. Deadlocks lead to costly roll-
backs of transactions.

In general, it’s safest to stick with Oracle’s default read-committed level of transaction isolation,
although it isn’t perfect. Oracle recommends that you stick with the default read-committed level of
isolation, which produces the maximum throughput with only a slight risk of running into the nonre-
peatable-read and phantom-read anomalies.

The read-committed transaction level provides a good trade-off between data concurrency and
data consistency. Also, the throughput is much higher with this mode of isolation than with the purer
serialization mode. If getting a repeatable read is your objective in using a serializable isolation level,
you can always use explicit locks in situations where that is necessary.

For standard OLTP applications, in particular, with their high-volume, concurrent, short-lived
transactions that are unlikely to conflict with each other, this mode is ideal from a performance point
of view. Very few transactions in an OLTP database issue the same query multiple times, so phantom
reads and nonrepeatable reads are rare. Serializable modes of concurrency are more appropriate for
databases with mostly read-only transactions that run for a long time.

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 347

Implementing Oracle’s Concurrency Control
A database may use one or more methods to implement concurrency of use. These include locking
mechanisms to guarantee exclusive use of a table by a transaction, time-stamping methods that
enable serialization of transactions, and the validation-based scheduling of transactions. Locking
methods are called pessimistic because they assume that transactions will violate the serializable
schedules unless they’re prevented explicitly from doing so. The time-stamping and validation
methods, on the other hand, are called optimistic because they don’t assume that transactions are
bound to violate the serializable schedules.

As you might guess, locking methods cause more delays than the optimistic methods because
they keep conflicting transactions waiting for access to the locked database objects. On the positive
side, however, locking methods don’t have to abort transactions because they prevent potentially
conflicting transactions from interacting with other transactions. The optimistic methods usually
have to abort transactions when they might violate a serializable schedule.

Time-stamping methods assign time stamps to each transaction and enforce serializability by
ensuring that the transaction time stamps match the schedule for the transactions. Validation
methods maintain a record of transaction activity. Before committing a transaction, the database
validates the changed data against the changed items of all currently active transactions to eliminate
any unserialized schedules.

Oracle uses a combination of the available methods. It uses locks along with what is called the
multiversion concurrency control system (a variation of the time-stamping method) to manage
concurrency.

Oracle locks prevent destructive interaction between transactions that are trying to access the
same resource. The resource could be an application table or row, or it could be a shared system data
structure in memory. It could also be a data dictionary table or row. Locks ensure data consistency
while allowing data concurrency by letting multiple users simultaneously access the database.

Oracle does its locking implicitly; you don’t have to worry about which table to lock or how to
lock it, as Oracle will automatically place locks on your transaction’s behalf when necessary. By
default, Oracle uses row-level locking, which involves the least restrictive amount of locking, thus
guaranteeing the highest amount of concurrency. By default, Oracle stores the locked row informa-
tion in the data blocks. Also, Oracle never uses lock escalation—that is, it doesn’t go from a lower-
level granularity like row-level locking to a higher level of granularity like table-level locking.

Oracle’s multiversion concurrency control system is a variation of the time-stamp approach to
concurrency control; it maintains older versions of table data to ensure that any transaction can read
the original data even after it has been changed by other transactions. Unlike locking, no waits are
involved here; transactions use different versions of the same table instead of waiting for other trans-
actions to complete. When transactions want to update a row, Oracle first writes the original before-
image to an undo record in the undo tablespace. Queries then have a consistent view of the data,
which provides read consistency—they only see data from a single point in time. Using the same
mechanism, Oracle is also capable of providing transaction-level read consistency, meaning that all
the separate statements in a transaction see data from a single point in time. The multiversion
concurrency control system used by Oracle enables you to get by with the less-stringent read-
committed mode of isolation instead of having to use the slower but safer serializable isolation level.

Here are some important features of Oracle locking:

• Oracle implements locks by setting a bit in the data item being locked. The locking informa-
tion is stored in the data block where the row lives.

• Locks are held for the entire length of a transaction and are released when a COMMIT or a ROLL-
BACK statement is issued.

348 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

• Oracle doesn’t use lock escalation. Oracle doesn’t need to escalate locks, as it stores the
locking information in the individual data blocks. Lock escalation—for example, an escala-
tion from the row level to the table level—reduces concurrency.

• Oracle does use lock conversion, which involves changing the restrictiveness of a lock while
keeping the granularity of the lock the same. For example, a row share table lock is converted
into a more restrictive row exclusive table lock when a SELECT FOR UPDATE statement starts
updating the previously locked rows in the table. I explain locking granularity and Oracle
locking types in more detail in the following sections.

In the next few sections, you’ll learn more about the locking methods and lock types used by
Oracle’s concurrency control mechanism.

Oracle Locking Methods
Oracle uses locks to control access to two broad types of objects: user objects, which include tables,
and system objects, which may include shared memory structures and data dictionary objects.
Oracle follows a pessimistic locking approach, which anticipates potential conflicts and will block
some transactions from interfering with others in order to avoid conflicts between concurrent
transactions.

Granularity, in the context of locking, is the size of the data unit locked by the locking mecha-
nism. Oracle uses row-level granularity to lock objects, which is the finest level of granularity
(exclusive table locking is the most coarse level). Several databases, including Microsoft SQL Server,
provide only page-level, not row-level, locking. A page is somewhat similar to an Oracle data block,
and it can have a bunch of rows, so page-level locking means that during an update, several rows in
addition to the rows of interest are locked; if other users need the locked rows that are not part of the
update, they have to wait for the lock on the page to be released. For example, if your page size is 8KB,
and the average row length in a table is 100 bytes, about 80 rows can fit in that one page. If one of the
rows is being updated, a block-level lock limits access to the other 79 rows in the block. Locking at a
level larger than the row level would reduce data concurrency.

■Note Remember, the coarser the locking granularity, the more serializable the transactions, and thus the fewer
the concurrency anomalies. The flip side of this is that the coarser the granularity level, the lower the concurrency
level. Oracle locks don’t prevent other users from reading a table’s data, and by default, queries never place locks
on tables.

All locks acquired by statements in a transaction are held by Oracle until the transaction
completes. When an explicit or implicit COMMIT or ROLLBACK is issued by a transaction, Oracle releases
any locks that the statements within the transaction have been holding. If Oracle rolls back to a save
point, it releases any locks acquired after the save point.

Oracle Lock Types
Locks, as you have seen, prevent destructive interaction between transactions by allowing orderly
access to resources. These resources could be database objects such as tables, or other shared data-
base structures in memory. Oracle locks can be broadly divided into the following types, according
to the type of object that is locked: DML locks, DDL locks, latches, internal locks, and distributed
locks. These lock types are described in the following sections.

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 349

DML Locks

DML locks are locks placed by Oracle to protect data in tables and indexes. Whenever a DML state-
ment seeks to modify data in a table, Oracle automatically places a row-level lock on the rows in the
table that are being modified. (This makes it impossible, for example, for a group of booking clerks
to sell the “last” ticket to more than one customer.) Row-level DML locks guarantee that readers of
data don’t wait for writers of data, and vice versa. Writers will only have to wait when they want to
update the same rows that are currently being modified by other transactions.

Any Oracle lock mode will permit queries on the table. A query will never block an update,
delete, or insert, and vice versa. An exclusive lock only permits queries on a table, and prevents users
from performing any other activity on it, like updating or deleting data. A row exclusive lock, on the
other hand, allows concurrent access to a table for updating, deleting, and inserting data, but
prevents any user from locking the entire table for exclusive use. There are other lock modes as well,
but for our purposes, it’s enough to focus on these two basic Oracle lock modes.

Any query that a transaction issues won’t interfere with any other transaction, because all they
do is read data—they don’t modify it. Queries include transactions using the SELECT statement, as
well as transactions such as INSERT, UPDATE, and DELETE if they happen to use an implicit SELECT state-
ment. Queries never need locks, and they never need to wait for any other locks to be released. So, a
SELECT statement that reads data from a table will never have to wait for a lock to be acquired.

Any INSERT, DELETE, UPDATE, or SELECT FOR UPDATE statements will automatically issue an exclu-
sive row-level lock on the rows affected by the transaction. This exclusive row-level lock means that
other transactions can’t modify the affected rows until the original transaction commits or rolls
back, thereby releasing the exclusive locks.

A simultaneous DDL table lock is held for operations that include the INSERT, UPDATE, DELETE,
and the SELECT FOR UPDATE DML operations. DML operations need DDL table locks to ensure that
some other transaction isn’t changing the table definition while modifying data. This means that a
table can’t be altered or dropped while an uncommitted transaction is still holding a table lock on the
table.

Table locks can range from being very restrictive to minimally restrictive. Oracle acquires a row
exclusive table lock, which indicates that a transaction holding the lock has updated one or more
rows in the table. Other transactions are allowed to select, insert, update, delete, or lock rows in the
same table concurrently. However, other transactions can’t lock the table exclusively for their own
reads or writes. All INSERT, UPDATE, and DELETE statements impose row exclusive locks.

Table 8-2 summarizes the row-level and table-level DML locks that are acquired for the most
common database operations.

Table 8-2. DML Row- and Table-Level Locks Held for Common Operations

Operation Row-Level Lock Table-Level Lock

SELECT . . . FROM table None None

INSERT INTO table Exclusive Row exclusive

UPDATE table Exclusive Row exclusive

INSERT INTO table Exclusive Row exclusive

DELETE FROM table Exclusive Row exclusive

350 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

Here’s a brief summary of how Oracle’s transactions most commonly use the Oracle locking
features:

• The transaction that contains a DML statement acquires exclusive row locks on the rows
modified by a statement within the transaction. Until this transaction commits or rolls back,
other transactions can’t update or delete these rows.

• A query in a transaction can see only committed changes made by earlier statements in the
same transaction, but won’t be able to see data committed by other transactions after it
started.

• In addition to the exclusive row locks, a transaction that contains a DML statement acquires
at least a row exclusive table lock on the table that contains the rows. If it’s already holding a
more restrictive table-level DML lock, it retains the more restrictive lock.

Oracle offers other kinds of table locks besides the row exclusive lock described previously, but
they are not important for our purposes here. All you need to understand is that Oracle uses row-
level locking for updates, inserts, and deletes, and that it also automatically imposes a row exclusive
table lock during these operations.

DDL Locks

As you’ve seen, Oracle automatically places DML locks on tables that are in the process of having
some of their rows modified by a transaction. In addition, such a transaction simultaneously holds
a table-level DDL lock on the table, which will prevent other transactions from altering or dropping
the table while its DML transactions aren’t yet completed.

You can also place DDL locks on tables when you are conducting a purely DDL operation,
without any accompanying DML transaction.

Allowing DDL Locks to Wait for DML Locks
By default, a DDL lock request won’t wait for a DML lock. That is, the DDL lock request will fail auto-
matically if it’s unable to acquire an immediate DML lock on the table. You can, however, use the
ddl_lock_timeout initialization parameter to specify the duration for which a DDL statement will
wait for a DML lock.

Since the default value of the ddl_lock_timeout parameter is zero, DDL statements won’t wait
at all for a DML lock. You can set the parameter up to the maximum value of 1,000,000 seconds,
which is about 11 and a half days. Here’s an example that shows how to set the parameter inside a
session:

SQL> ALTER SESSION SET ddl_lock_timeout = 30;

Session altered.

SQL>

Explicit Table Locking
Whenever you add a column to a table, the database needs to acquire an exclusive DML lock on that
table. You can specify that a DDL command wait for a specific length of time before it fails, when it’s
unable to acquire a DML lock. The LOCK TABLE statement lets you specify the maximum length of
time a DDL statement can wait for the acquiring of a DML lock on a table. Use this feature when
adding a column that is frequently updated by users.

Here’s the syntax of the LOCK TABLE statement:

LOCK TABLE . . . IN lockmode MODE [NOWAIT | WAIT integer]

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 351

In the LOCK TABLE statement, the MODE parameter values NOWAIT and WAIT mean the following:

• If you want the database to return control to you immediately upon finding that a necessary
table is already locked by other users, specify the NOWAIT option.

• You can use the wait parameter to specify the number of seconds the LOCK TABLE statement
can wait in order to acquire a DML lock. You can set the value of this parameter to any integer
value you want—there’s no limit.

• If you don’t specify either WAIT or NOWAIT, the database will wait until the locked table is avail-
able and then lock it before returning control to you.

Latches, Internal Locks, and Distributed Locks

Latches are internal mechanisms that protect shared data structures in the SGA. For example, data
dictionary entries are accessed in the buffer by many processes, and latches control the processes’
access to these memory structures. The data structures that list the blocks currently in memory are
also frequently consulted during the running of the Oracle instance, and server and background
processes that need to change or read the data in critical data structures such as these would acquire
a very short lock (called a latch, in this instance) on the object. The implementation of latches,
including the specification of how long a process will wait for it, is usually specific to the operating
system.

Data dictionary locks are used by Oracle whenever the dictionary objects are being modified.
Distributed locks are specialized locking mechanisms used in a distributed database system or in the
Oracle Real Application Clusters (RAC) environment. Internal locks are used by Oracle to protect
access to structures such as datafiles, tablespaces, and rollback segments.

Explicit Locking in Oracle
Oracle automatically applies the necessary locks to the tables and other objects based on the trans-
actions that are coded in the applications. Oracle’s locking mechanism works automatically to
ensure statement-level read consistency and concurrency. For the most part, Oracle’s default,
behind-the-scenes locking operations should suffice, but there occasionally may be situations when
the application developer will be better off manually locking tables. Sometimes when the transac-
tion needs to see consistent data across many joined tables, the application developer can use
explicit locking. In addition, when you don’t want the data values changed during long transactions,
it may sometimes be necessary for the application developer to apply explicit locks.

Oracle provides explicit locking features to override the implicit locks placed by Oracle on
behalf of transactions. You can override Oracle’s default (implicit) locking mechanism at the trans-
action level or the session level. If you want to override all Oracle’s default locking mechanisms, you
can do so by using the SET TRANSACTION ISOLATION LEVEL SERIALIZABLE statement at the session
level. The same statement will also override the default locking modes at the transaction level. In
addition, you can manually lock a table by explicitly using a table lock or by using the SELECT FOR
UPDATE command.

Blocking Locks

A blocking lock occurs when a lock placed on an object by a user prevents or blocks other users from
accessing the same object or objects. The DBA_BLOCKERS table is useful in getting this informa-
tion—it tells you which sessions are currently holding locks on objects for which some other object
is presently waiting. You can combine the information in the DBA_BLOCKERS table with that in the
V$SESSION tables, to find out who is holding the blocking session. Here is the SQL statement:

352 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

SQL> SELECT a.username, a.program, a.sid, a.serial#
 2 FROM v$session a, dba_blockers b
 3 WHERE a.sid = b.holding_session;
SQL>

The following is a simple example of a blocking session: user nick alapati issues the following
DML statement, but doesn’t commit it:

SQL> DELETE FROM emp
 WHERE name='samalapati';
1 row deleted.
SQL>

User nina alapati, in the meanwhile, issues an identical statement, but when she executes it, it
hangs:

SQL> DELETE FROM emp
 WHERE name='samalapati';

The second user’s DML statement will hang because the first user hasn’t committed yet, and
thus holds a row-level lock on the row the second user is trying to change. When the first user rolls
back or commits, the second user’s session automatically moves forward and finishes.

You can use the V$SESSION view to find out which sessions are blocking other sessions. Here’s
a simple query using the view that shows the blocking lock caused by the previous two SQL
statements:

SQL> SELECT username, blocking_session
 blocking_session_status
 FROM V$SESSION WHERE blocking_session_status='VALID';

When you do find a blocking session, and it is blocking another session from doing its job, you
may have to terminate the blocking session by using the ALTER SYSTEM KILL SESSION command. If
the process or the session still won’t go away, go to the operating system level and kill the process or
the thread that spawned the Oracle session.

Deadlocks

Deadlocks occur in any RDBMS when two sessions block each other while each waits for a resource
that the other session is holding. This is a catch-22 situation, because the stalemate can’t be broken
by either session unilaterally. In such circumstances, Oracle steps in, terminates one of the sessions,
and rolls back its statement. Oracle quickly recognizes that two sessions are deadlocked and termi-
nates the session that issued the most recent request for a lock. This will release the object locks that
the other session is waiting for. You don’t really need to do anything when there are deadlocks,
although you’ll see messages in your dump directory that deadlocks are currently in the database.

When Oracle encounters a deadlock between transactions, it records in the trace file the session
IDs involved, the SQL statements issued in the transactions, and the specific object name and the
rows on which locks are held in each session involved in the deadlock. Oracle further informs you
that the deadlock is not an Oracle error, but is due to errors in application design or is a result of
issuing ad hoc SQL. Application designers must write exception handlers in the code to roll back the
aborted transaction and restart it.

You can avoid deadlocks by paying attention in the design phase and ensuring the proper
locking order of the objects. Given that writers block other writers, deadlocks in Oracle are a rare
phenomenon.

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 353

Managing Oracle Locks
As I mentioned in the previous sections, locking in Oracle is usually done implicitly by Oracle itself,
at the least restrictive level. Users can override Oracle’s default locking behavior, but you probably
won’t find too many cases where you’re dealing with user-managed locks. Most of your lock
management on a live database will involve checking whether any active locks are actually blocking
users from conducting their DML operations. You can use either a script-based approach or the
Oracle Enterprise Manager to analyze locks in your instance.

Using SQL to Analyze Locks

It’s possible to examine the current locking situation in your instance by using SQL scripts. You may
have to first run the catblock.sql script, located in the $ORACLE_HOME/rdbms/admin directory, before
executing any locking-related SQL scripts for the first time in a database. This script will create
several important locking-related views, such as DBA_LOCKS, DBA_WAITERS, and
DBA_BLOCKERS.

Oracle provides a script called utllockt.sql that gives you a lock wait-for graph in a tree-struc-
tured format showing sessions that are holding locks affecting other sessions. Using this script, you
can see what locks a session may be waiting for and which session is holding the lock. The script is
located in the $ORACLE_HOME/rdbms/admin directory. Here’s a sample execution of the utllockt.sql
script:

SQL> @$ORACLE_HOME/rdbmsa/admin/utllockt.sql
Waiting session Type Mode requested Mode Held Lock Id1
--------------- ---- -------------- ------------- ---------
682 None None None 0
363 TX Share (S) Exclusive (X)

■Note The utllockt.sql script prints the sessions in the system that are waiting for locks, and the locks that
they are waiting for. The printout is tree-structured. If a session ID is printed immediately below and to the right
of another session, then it is waiting for that session. The session IDs printed at the left side of the page are the
sessions everyone is waiting for.

In the preceding example, the session ID on the left side, 682, is what session 363 is waiting for.
The information printed to the right of each session shows information about the lock it’s waiting
for. Thus, session 682, although it’s holding a lock, doesn’t show anything (None) in the lock-informa-
tion columns because it isn’t waiting for any lock. Session 363, however, tells you that it has
requested a share (S) lock and is waiting for session 682 to release its exclusive (X) lock on the table
row.

In the following example from the utllockt.sql script, session 9 is waiting for session 8, session
7 is waiting for session 9, and session 10 is waiting for session 9 as well.

 * WAITING SESSION TYPE MODE REQUESTED MODE HELD LOCK ID1 LOCK ID2
 * ----------------- ---- ----------------- ----------------- -------- --------
 * 8 NONE None None 0 0
 * 9 TX Share (S) Exclusive (X) 65547 16
 * 7 RW Exclusive (X) S/Row-X (SSX) 33554440 2
 * 10 RW Exclusive (X) S/Row-X (SSX) 33554440 2

The lock information to the right of the session ID describes the lock that the session is waiting
for (not the lock it is holding).

354 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

The V$LOCK and the V$LOCK_HOLDERS views are very helpful in analyzing locks in your
instance, but sometimes they take a long time to run. The V$SESSION view can provide a quick idea
about the blocking sessions in your database. The blocking_session column of the V$SESSION view
reveals the identity of the user who is holding the lock. The blocking_session_status column shows
whether the blocking_session data is valid or not. For example, if you find the value VALID in the
blocking_session_status column, it means that you’ll find the SID of the blocking user under the
blocking_session column.

Here’s a simple query that shows how to use the V$SESSION view to find out who is blocking a
certain session:

SQL> SELECT sid, blocking_session, username, event
 2 FROM v$session
 3* WHERE blocking_session_status = 'VALID';

SID BLOCKING_SESSION USERNAME EVENT
--- ---------------- -------- ----------------------------------
24 32 SALAPATI enq: TX - row lock contention
SQL>

The previous query shows that the user with the SID 24 is being blocked by user with the SID 32.
The event column shows the type of lock that the blocking session holds.

■Note The data dictionary tables that you need to look at to find locking information are the DBA_LOCKS,
DBA_BLOCKERS, and DBA_WAITERS views. If, for some reason, you don’t see the DBA_BLOCKERS view, run the
catblock.sql script, located in the $ORACLE_HOME/rdbms/admin directory, to create it.

Using Database Control to Manage Session Locks

The most efficient way to see what locks currently exist within your instance is to use the Oracle
Enterprise Manager (OEM) Database Control (or Grid Control). You can get to this page by going to
Database Control Home Page ➤ Performance ➤ Additional Monitoring Links ➤ Instance Locks. The
Instance Locks page shows all locks, both blocking and nonblocking. Most of the locks you’ll see are
harmless; they are routine nonblocking locks Oracle uses to maintain concurrency.

To see locks that are causing contention in your system, choose the Blocking Sessions option
from the drop-down list in the Instance Locks page. The Blocking Session page will show you all the
sessions that are currently blocking other sessions. You can also go directly to the Blocking Sessions
page by going to Database Control Home Page ➤ Performance ➤ Additional Monitoring Links ➤
Blocking Sessions.

The Blocking Sessions page shows the session IDs of both the blocking and the blocked sessions
(see Figure 6-1). You can terminate a blocking session by selecting the appropriate session and
clicking the Kill Session button.

Figure 6-1 shows that the user nick_alapati is holding an exclusive lock (on a certain row in the
test01 table, which you can’t see in the figure), thereby blocking the user nina_alapati from getting
an exclusive lock on the same row. The blocking session is identified by a value of 1 or greater under
the Sessions Blocked column on the Blocking Sessions page (see Figure 8-1). The session that’s being
blocked is indicated by a value of zero.

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 355

Figure 8-1. Using the Database Control to identify blocking and waiting sessions

You can also use OEM’s Hang Analysis page (go to Database Control Home Page ➤ Performance
➤ Additional Monitoring Links ➤ Hang Analysis) to find out the exact wait status of the blocking and
waiting sessions. The Hang Analysis page will show you the following:

• Instantaneously blocked sessions

• Sessions in a prolonged wait state

• Sessions that are hung

When there is a severe contention for locks in the instance, the Hang Analysis page will help you
identify the problems much more quickly than running a SQL script, which might actually worsen
the locking problems.

■Note Be prepared to wait for a very long time when you run most of the SQL scripts that relate to locking situ-

ations. Also, be aware that some of the scripts might sometimes make matters worse. The utllockt.sql script,
for example, creates a table to store locking information, and it needs to acquire locks to create this table, which
might exacerbate the locking problems that you are trying to diagnose in the first place! It’s smarter to schedule
these scripts using a scheduling tool or the Oracle Enterprise Manager and arrange for database alerts when there
are problem locks in the system, so you can take action to fix the problem.

356 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

Using Undo Data to Provide Read Consistency
Oracle uses special structures called undo records to help provide automatic statement-level read
consistency. All data for a single query will come from a single point in time. Only data committed
when a query begins will be seen by the query—any changes made by other transactions after a
query begins won’t be seen by the query once it begins executing.

If a transaction is modifying data, Oracle will write a before-image of the table data to its undo
records. For example, if you update the salary of an employee from 10,500 to 11,000, the undo record
will store the old salary value of 10,500. When a query begins execution, Oracle will determine the
current system change number, which identifies the order in which transactions occurred in the
database. When data blocks are read for this query, Oracle will only use data blocks with the SCN that
it determined for this query. When it encounters data blocks for the query with a more recent SCN,
Oracle will automatically go to the undo segments and reconstruct the data from the undo records
stored there. Any changes made by other transactions during the query’s execution will have more
recent SCNs, and are disregarded, guaranteeing that only consistent data is returned for the query at
hand.

Oracle’s undo records are stored in the undo tablespace specified at database creation time. The
undo tablespace will always hold the before-image of table data for users if other transactions have
updated it since a query began. Undo data is used for the following purposes:

• Providing read consistency for SQL queries

• Rolling back unwanted active transactions

• Recovering terminated transactions

• Analyzing older data by using Flashback Query

• Recovering from logical corruptions using the Flashback features

Remember that the undo data remains in the undo tablespace even after a database shutdown.
This makes Oracle’s undo management valuable for activities beyond providing read consistency
and rolling back transactions. By using the Flashback features and undo data together, you can fix
logical errors and query past data.

Automatic Undo Management
Automatic Undo Management takes the entire issue of sizing and allocation of undo segments from
the DBA’s hands and makes it Oracle’s responsibility. As the DBA, all you have to do is create an
adequately sized tablespace (the undo tablespace) for storing undo information. Oracle will dynam-
ically create undo (rollback) segments and adjust their number to match the instance’s workload
requirements. The database will automatically allocate and deallocate undo segments to match the
transaction throughput in the instance.

■Tip Proper undo management means that necessary undo information is not overwritten by newer undo data.

By setting the appropriate size for the undo tablespace and the undo_retention interval, you can increase the
chance that long-running queries can complete without receiving the snapshot-too-old error. It also ensures that
critical Flashback features can retrieve the older data they are seeking.

Traditionally, DBAs had to contend with regular ORA_1555 (snapshot-too-old) errors because
the rollback segments were being written over with new information too quickly for some transac-
tions. When a DBA uses traditional rollback segments, he or she has the responsibility of monitoring
the rollback segments for contention and may also need to change the number and size of the roll-
back segments. AUM eliminates most of the undo-block and consistent-read contention.

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 357

Traditional rollback segments would sometimes be slow to relinquish the space they occupied,
even after their transactions completed. Undo segments use space much more efficiently by
exchanging space dynamically with other segments. Oracle will create, bring online, and take offline
the undo segments automatically as needed. When the undo segments are no longer necessary,
Oracle will reclaim the space used by the segments. It is common practice for DBAs to assign a trans-
action to a specific rollback segment using the SET TRANSACTION command. AUM removes the need
to do this manual assignment of rollback segments—Oracle manages all undo space allocation auto-
matically behind the scenes.

Several of the Flashback recovery features, like Flashback Query, Flashback Versions Query,
Flashback Transaction Query, and Flashback Table, require the use of undo data.

Setting up AUM

To enable the automatic management of your undo space, you first need to specify the automatic
undo mode in the init.ora file or your SPFILE. By default, the database uses AUM in Oracle Data-
base 11g. Second, you need to create a dedicated tablespace to hold the undo information. This will
guarantee that you don’t end up storing the undo information in the System tablespace, which isn’t
a great idea. You also must choose an interval for undo retention.

If you want to choose AUM when you create a new database, you need to configure the
following three initialization parameters:

• undo_management

• undo_tablespace

• undo_retention

The UNDO_MANAGEMENT Parameter

You specify AUM in your initialization parameter file by adding the following line:

UNDO_MANAGEMENT = auto

The default for undo management in Oracle Database 11g is automatic, which means you can
leave out the UNDO_MANAGEMENT initialization parameter if you want.

■Tip Use the Database Resource Manager to set up undo quotas for groups of users called consumer resource
groups, if you think any users are monopolizing undo tablespace usage.

The UNDO_TABLESPACE Parameter

The UNDO_TABLESPACE parameter isn’t mandatory—if you only have a single undo tablespace, you
don’t have to specify this parameter in your initialization parameter file, because Oracle will use the
one available undo tablespace automatically. If you specify AUM and don’t have an undo tablespace
in your database at all, Oracle will be forced to use the System tablespace (the System rollback
segment, to be more specific) for storing the undo data. You should avoid using the System
tablespace for storing the undo data, since that tablespace also stores the data dictionary, and you
don’t want to use up space there and cause problems such as fragmentation. Note that you can’t
create application tables and indexes in an undo tablespace, since it’s exclusively reserved for undo
data.

If you have multiple undo tablespaces in your database, however, you must specify which undo
tablespace you want the database to use, by specifying the UNDO_TABLESPACE parameter in the initial-
ization parameter file. You can have multiple tablespaces in your database, but only one of them can
be active at any given time. You activate an undo tablespace by using the ALTER SYSTEM SET
UNDO_TABLESPACE command, which you’ll see shortly.

358 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

You create an undo tablespace when you create your database. The following database creation
statement shows how to create the undo tablespace during database creation:

SQL> CREATE DATABASE cust_prod
 . . .
 UNDO TABLESPACE undotbs_01 datafile
 DATAFILE '/u10/orcl/oradata/undotbs01_01.dbf' size 750M;
 . . .

■Note I also explain the creation of the undo tablespace in Chapter 10, which deals with creating an Oracle
database.

You may choose not to create the undo tablespace when you create a new database, and even if
you create an undo tablespace at database creation time, you may choose to add another undo
tablespace later on. Creating an undo tablespace is like creating any other tablespace, except that
you use the keyword UNDO in the CREATE TABLESPACE statement. To create an undo tablespace by itself,
in an existing database, use this statement:

SQL> CREATE UNDO TABLESPACE undotbs_02
 DATAFILE 'c:\oracle11g\oradata\finance\undotbs01_01.dbf'
 SIZE 500M;

Tablespace created.
SQL>

You can add space to an existing undo tablespace by using the ALTER TABLESPACE statement, as
shown here:

SQL> ALTER TABLESPACE undotbs_01
 ADD DATAFILE '/u09/oradata/test/undo01dbf' 500M;

You can create several undo tablespaces for your database, but the instance can only use a
single undo tablespace at any given time. Let’s say you are using the undo tablespace undotbs_01 as
your current undo tablespace. The following alter system SQL statement will dynamically change
the undo tablespace for your database:

SQL> ALTER SYSTEM SET UNDO_TABLESPACE = undotbs_02;

If you want Oracle to continue to use the new undo tablespace you just created, undotbs_02,
you need to specify this in the init.ora file. Otherwise, Oracle will always use the default undo
tablespace, which is the tablespace you specified for the UNDO TABLESPACE parameter in the database
creation statement.

In the preceding example, I used a fixed-size undo tablespace, where there is a hard limit on the
undo tablespace size. If the undo data uses up all the assigned space, however, you’ll have problems.
To avoid this, you should create auto-extensible undo tablespaces. Especially when you are creating
a new database and implementing it in production, you may not be sure how big you should size your
undo tablespace. The best course of action is to let the undo tablespace automatically increase in size,
based on the undo requirements. You can enable the automatic growth of the undo tablespace by
using the AUTOEXTEND keyword when you create a new undo tablespace, as shown here:

SQL> CREATE UNDO TABLESPACE undotbs_01
 DATAFILE '/u10/oradata/prod/undo0101.dbf' SIZE 100M AUTOEXTEND ON;

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 359

If you’ve already created the undo tablespace, you can make it auto-extensible by simply adding
an auto-extensible data file to the undo tablespace, as shown here:

SQL> ALTER TABLESPACE undotbs_01
 ADD DATAFILE '/u01/oradata/prod/undo0102.dbf' AUTOEXTEND ON NEXT 5M
 MAXSIZE UNLIMITED;

If, for some reason, you decide that you have to create a fixed-size undo tablespace, you can use
the Undo Advisor to get recommendations about the ideal size. The Undo Advisor uses the data
collected by the Automatic Workload Repository (AWR) as the basis for its analysis, so you should let
the instance run for a good while after you start it, so that the Undo Advisor has enough data to figure
out its recommendations. The Undo Advisor takes two inputs—the estimated length of the longest
query in the database, and how far you want to go back in time for your Flashback operations that
depend on undo data. Using the larger of these as a guide, you can look up the ideal size for your
undo tablespace on an Undo Advisor graph. I explain how to use the Undo Advisor later in this
chapter, in the “Using the OEM to Manage Undo Data” section.

■Note Sometimes when you start an instance or switch an undo tablespace, it takes several minutes for the undo
segments to come online. To avoid this problem, the database uses the data in the Automatic Workload Repository
to determine the number of undo segments to bring online upon an instance restart or the switching of an undo
tablespace. This feature is also known as the fast ramping up of undo segments.

The UNDO_RETENTION Parameter

When a transaction commits, the undo data for that transaction isn’t needed any more. That undo
data will stay in the undo tablespace, however, until space is needed to record undo data for newer
transactions. When the newer transactions’ undo data comes in, it may overwrite the old undo data
(from the committed transactions) if there isn’t enough free space left in the undo tablespace. For a
long-running query that needs to retain older undo data for consistency purposes, there is a possi-
bility that some of the undo data it needs has been overwritten by other, newer transactions. In this
case, you could get an error message (“snapshot too old”) from the database indicating that the
before-image of the transaction has been overwritten.

To prevent this, Oracle provides the UNDO_RETENTION configuration parameter, which you can set
to the interval you wish. Note that in the older manual undo management mode, DBAs don’t have
the option of determining how long Oracle retains undo information.

Let’s briefly review how undo information is managed in an undo segment. Undo information
can be classified in two broad types:

• If a transaction that has generated the undo data is still active, the undo data is said to be
active (uncommitted). Oracle will always retain active undo data to support ongoing uncom-
mitted transactions.

• If the transaction that generated the undo data is inactive (committed), then the undo data is
said to be committed. The committed undo data can be either expired or unexpired. Expired
data can be overwritten by new transactions. Oracle will try to save the unexpired data as
long as it can, subject to undo space limitations. When there is no more room in the undo
tablespace for newer transactions, Oracle will finally overwrite the unexpired data,
depending on how you configure the UNDO_RETENTION parameter.

The UNDO_RETENTION parameter lets you control the reuse of the committed undo space. By
setting the UNDO_RETENTION parameter, you can specify the lower limit for how long the database will
retain uncommitted undo data as unexpired data, so that it is available for read consistency and
Flashback purposes.

Note that setting the UNDO_RETENTION interval is not a guarantee that Oracle will always retain
undo information for at least that time period. If there is no free space left in the undo tablespace for

360 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

a new transaction, Oracle will use an unexpired undo extent—a transaction can’t be stopped, after
all. This is a last-resort event, but you should be aware that it is a possibility. The key is to make the
undo tablespace big enough so that it can support your undo retention interval, thus helping Oracle
retain undo information for the specified period.

You can set the undo retention size by specifying it in the initialization file as follows:

UNDO_RETENTION = 1800

The default for the UNDO_RETENTION parameter is 900 seconds.

■Tip Your undo tablespace must be able to accommodate any increase in the undo retention period. If the undo
tablespace can’t keep undo records for the required time, you run the risk of queries failing with the snapshot-too-
old error.

If you wish to change the amount of time the database should retain the undo information, you
can dynamically change the UNDO_RETENTION parameter as follows:

SQL> ALTER SYSTEM SET UNDO_RETENTION = 7200 /* two hours

There is no one ideal UNDO_RETENTION time interval. Your retention time interval will depend
on how long you estimate your longest transactions may run. Based on the information about the
maximum length of transactions in your database, you can arrive at an approximate time to assign
for the UNDO_RETENTION parameter.

The V$UNDOSTAT table provides an indicator for helping figure out the undo retention
interval. Query the V$UNDOSTAT view as follows:

SQL> SELECT MAX(maxquerylen) FROM v$undostat;

MAX(MAXQUERYLEN)

 210

The maxquerylen column of the V$UNDOSTAT view tells you the length of the longest executed
query (in seconds) during the past 24 hours. The time set in the UNDO_RETENTION parameter should be
at least as long as the time indicated in the maxquerylen column. This, by itself, won’t guarantee that
a new long-running query will definitely be accommodated, but you’ll have a reasonable chance that
your longest transactions will have read consistency when using the undo tablespace.

Oracle provides the following guidelines for setting the undo retention interval for a new
database:

• OLTP: 15 minutes

• Mixed: 1 hour

• DSS: 3 hours

• Flashback Query: 24 hours

If you think all of this undo retention business is too much work, take the easy way out and let
Oracle automatically tune undo in your database. Oracle automatically tunes the undo retention
period for the longest-running query and collects query-duration information every 30 seconds.
Depending on your workload characteristics, Oracle will adjust the length of the undo retention
period. For example, during the day, shorter transactions may mean a shorter undo retention period,
and during the nightly batch jobs, you’d need a much longer undo retention period to avoid the
snapshot-too-old errors. If you don’t set a value for the UNDO_RETENTION parameter (or if you set a
value of 0), Oracle automatically tunes undo with 900 seconds as the minimum value.

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 361

Here’s a summary of automatic undo retention in Oracle Database 11g Release 1:

• If you use an auto-extensible undo tablespace (using an AUTOEXTEND datafile), Oracle will treat
any UNDO_RETENTION value you specify as the low threshold value and retain undo for at least
this time period. If you set an undo retention period of 30 minutes, Oracle will adjust the
retention period upward of 30 minutes if needed, but never let it go below 30 minutes (unless
faced with a lack of space in the undo tablespace). The database will tune the undo retention
to take care of the undo needs of the longest queries in your database. Thus, in the case of
auto-extensible undo tablespaces, Oracle will

• Retain undo data a little longer than the longest query in your database, if space allows it

• Retain undo data at least as long as the low threshold of undo retention, subject to space
limitations

• If you use a fixed-size undo tablespace, Oracle will ignore any UNDO_RETENTION value you may
have set. The database will automatically tune undo with the goal of achieving the maximum
possible retention period, given the undo tablespace size and its usage history. Of course, if
you use the guaranteed undo retention feature, as explained later in this chapter, Oracle will
have to honor any UNDO_RETENTION period you set. If you’ve specified any Flashback require-
ments, Oracle will satisfy them as well.

• If you’re considering a fixed size and an auto-extensible tablespace of the same size, know
that the fixed-size tablespace will provide you with a slightly longer undo retention period.

• Even if you do set a value for the UNDO_RETENTION parameter, Oracle will still auto-tune undo,
with the value you specified as the minimum value. Note that the value you assign for the
UNDO_RETENTION parameter is treated by Oracle as a requested minimum. If Oracle determines,
through its automatic tuning, that the undo retention period should be longer than this
requested minimum to accommodate long transactions, it will retain undo data for the
longer retention period.

■Tip By default, Oracle Database 11g automatically tunes the undo retention period. Oracle recommends
that you not set a value for the UNDO_RETENTION parameter unless your system has Flashback or LOB retention
requirements.

In Automatic Undo Management, the database is in charge of creating, allocating, and deallo-
cating the undo segments as necessary. You can query the DBA_ROLLBACK_SEGS view to find out
which of your undo segments are online, as shown here:

SQL> SELECT segment_name, tablespace_name, status
 FROM dba_rollback_segs;

The undo segments created under AUM are structurally similar to the traditional rollback
segments. The big difference, of course, is that Oracle will automatically create them and drop them
as necessary. Oracle creates a predetermined number of undo segments when you create the undo
tablespace, and it may bring all or some of them online when you start up the instance. Oracle will
always try to assign each transaction its own undo segment, and it will create more undo segments
if necessary, based on the transactions in the database. During a day’s time, it’s common for Oracle
to increase and decrease the number of undo segments based on its own internal algorithms and the
level of database activity.

If the UNDO_RETENTION parameter is set to AUTO and you fail to create a specific undo tablespace
for storing undo information, Oracle will still create undo records in a default tablespace named
SYS_UNDOTBS, with a default size of around 200MB.

362 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

The following SQL script will tell you the location and size of the undo tablespace in your
database:

SQL> SELECT file_name, bytes
 2 FROM dba_data_files
 3 WHERE tablespace_name='UNDOTBS';

FILE_NAME BYTES
----------------------------------- ---------
/u01/orcl/oradata/undotbs01_01.dbf 209715200
SQL>

Sizing the Undo Tablespace

Oracle recommends that you size your undo tablespace with the help of the Undo Advisor. However,
if you’ve just created your database, the Undo Advisor won’t have enough historical data about undo
requirements to help you. Oracle makes the following recommendations for a new database.

Initially, create a small-sized (approximately 500MB) undo tablespace, with the AUTOEXTEND
datafile attribute set to ON, thus allowing an automatically extensible tablespace. The tablespace will
automatically grow, both to support a growing number of active transactions as well as the growing
length of transactions in the database.

After the database has run for a reasonable length of time, use the Undo Advisor to get recom-
mendations for sizing the undo tablespace. Use the maximum time allowed in the Analysis Time
Period field. You can use the Longest-Running Query length shown in the OEM Undo Management
page for this purpose. You must also specify a value for the New Undo Retention field based on your
Flashback requirements. If you wish to be able to flash back your tables, for example, for a period of
24 hours in the past, use 24 hours as the value for this field.

■Tip The main reason for fixing the size of the undo tablespace (rather than keeping it auto-extensible) is to
prevent a single runaway query from taking up all the free space in the database.

Using these two values (those in the Analysis Time Period field and the New Undo Retention
field), the Undo Advisor will recommend the appropriate undo tablespace size. You can then add
about 20 percent to the size you arrive at as a safety margin, and make the undo tablespace a fixed-
size tablespace by disabling the AUTOEXTEND attribute.

Guaranteed Undo Retention
Under AUM, the Oracle database collects undo data and stores it in the undo segments. Tradition-
ally, Oracle has used data in the undo segments to provide read consistency for queries, to roll back
transactions, and to recover terminated transactions. Starting with Oracle9i, undo data has been
used for even farther-reaching purposes—to query past data and recover from logical errors in the
data. Undo data also supports the new Flashback features at the row and table levels.

The UNDO_RETENTION initialization parameter enables you to specify the length of time undo
information must be saved in the undo segments. Oracle Database 11g automatically tunes undo
information by collecting statistics on the longest-running queries and the undo generation rate in
your database. If you don’t set the UNDO_RETENTION parameter or specify a zero value for the param-
eter, Oracle automatically tunes undo, using 900 seconds as the default value for the UNDO_RETENTION
parameter. By setting a higher value than the default of 900 seconds, you can keep undo records
longer and go back further in the past. Since several Flashback features in Oracle Database 11g rely
on undo data, you should set the UNDO_RETENTION parameter much higher than the default value. (In
addition to enabling more effective Flashback features, this will reduce the probability of snapshot-
too-old errors.)

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 363

Guaranteed undo retention simply means that Oracle will retain undo data for the entire length
of the undo retention period you specify, no matter what. That is, if you specify half an hour as the
undo retention interval, Oracle will retain the undo data for the full 30 minutes, under all circum-
stances. If you run out of room for recording the undo information generated by new transactions,
any new DML transactions will fail, since Oracle won’t be able to store the undo information for
those changes. Thus, there is a trade-off between guaranteeing undo information and the potential
failure of some DML statements.

■Tip By default, Oracle doesn’t guarantee undo retention; the default retention time is 900 seconds (15 minutes)
if you decide to guarantee undo retention.

You can specify guaranteed undo retention for the undo tablespace when you create the data-
base, or by specifying the RETENTION GUARANTEE clause while creating a new undo tablespace, as
shown here:

SQL> CREATE UNDO TABLESPACE undotbs01
 2 DATAFILE
 3 '/u01/orcl/oradata/undotbs01_01.dbf'
 4 SIZE 10M AUTOEXTEND ON
 5* RETENTION GUARANTEE;
Tablespace created.
SQL>

You can also use the ALTER TABLESPACE command to guarantee undo retention in your database,
as shown here:

SQL> ALTER TABLESPACE undotbs01 RETENTION GUARANTEE;

You can use the RETENTION NOGUARANTEE clause to turn off the guaranteed retention of undo
information, as shown in the following example:

SQL> ALTER TABLESPACE undotbs01 RETENTION NOGUARANTEE;

■Caution A high value for the UNDO_RETENTION parameter doesn’t guarantee the retention of undo data for the
duration specified by the UNDO_RETENTION parameter. You must use the RETENTION GUARANTEE clause to guar-

antee undo retention for a specified time.

Let’s say you’ve configured guaranteed undo retention in your database by using the RETENTION
GUARANTEE clause. If your undo tablespace is too small to accommodate all the active transactions
that are using it, the following will happen:

• Oracle will issue an automatic tablespace warning alert when the undo tablespace is 85
percent full (if you haven’t disabled the automatic tablespace alert feature).

• Oracle will also issue an automatic tablespace critical alert when the undo tablespace is 97
percent full.

• All DML statements will be disallowed and will receive an out-of-space error.

• DDL statements will continue to be allowed.

364 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

Managing Undo Tablespaces

Managing undo tablespaces is similar to managing any other tablespaces in your database. You add
space to an undo tablespace by adding a datafile, and you decrease the size of an undo tablespace by
reducing the size of the datafile(s) in it with the ALTER DATABASE DATAFILE . . . RESIZE command.

You drop an undo tablespace with the normal DROP TABLESPACE command. (If the undo table-
space contains any outstanding transactions, you can’t drop it.) The DROP TABLESPACE command,
since it removes all contents of the undo tablespace, is similar to using the DROP TABLESPACE . . .
WITH CONTENTS command. If you need to switch undo tablespaces for some reason, you can drop the
old one after you create a new undo tablespace.

The Snapshot-Too-Old Error

Occasionally, a long-running transaction can’t find the undo data it needs, and consequently fails
with the well-known Oracle snapshot-too-old error. Here’s an example:

SQL> BEGIN
 2 purge_data_pkg.main_driver(1502,2005,'N','B','N','N');
 3 END;
 4 /

begin
*
ERROR at line 1:
ORA-01555: snapshot too old: rollback segment number 9 with name "_SYSSMU9$"
too small
ORA-06512: at "APPOWNER.PURGE_DATA_PKG", line 2040
ORA-06512: at "APPOWNER.PURGE_DATA_PKG", line 4318
ORA-06512: at line 2

SQL>

Even when you use Automatic Undo Management, as the previous example shows, you can get
this error, since the UNDO_RETENTION parameter is set too low. This happens even when there is plenty
of free space in the undo tablespace. Your best bet is to raise the value of the UNDO_RETENTION param-
eter so the necessary undo data isn’t overwritten before your long transaction finishes. The only
certain way to avoid the snapshot-too-old error is to enable guaranteed undo retention in your
database.

Managing Undo Space Information

You can use the SHOW PARAMETER UNDO command in SQL*Plus to see what the configured options are
for undo space management, as shown here:

SQL> SHOW PARAMETER UNDO

NAME TYPE VALUE
----------------- ------- -------------
undo_management string AUTO
undo_retention integer 900
undo_tablespace string UNDOTBS_01
SQL>

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 365

■Note If you used older versions of Oracle, you are most likely familiar with the SET TRANSACTION USE
ROLLBACK SEGMENT . . . statement, which enabled you to assign large rollback segments to a transaction to
avoid the snapshot-too-old error. You can use this statement only under manual undo management. If you’re using
the Oracle-recommended Automatic Undo Management feature, the database will ignore this statement if you use
it—however, no errors are generated.

If you use the Database Resource Manager to create consumer groups in your database, which
are a convenient way to group your users based on their usage of database resources (see Chapter 12),
you can easily prevent a single transaction from taking up most of the undo space, thus hindering
new transactions from acquiring undo space. You can set a special parameter called UNDO_POOL to
limit the maximum undo space a resource consumer group can use. Once this UNDO_POOL limit is
reached, any transactions that need more undo room will error out. Only after some of the currently
running transactions in the resource consumer group finish can more undo space be granted to that
group.

The following data dictionary views are useful in managing undo space information:

• V$UNDOSTAT: This is the view Oracle uses to tune undo space allocation in the database.
This view can indicate whether your current allocation of space in the undo tablespace is
enough. It also indicates whether you have set the UNDO_RETENTION parameter correctly. The
TUNED_UNDORETENTION column in the V$UNDOSTAT view tells you the length of time undo is
retained in your undo tablespace.

• DBA_ROLLBACK_SEGS: You can use this view to find out the undo segment name, initial,
next, and maximum extents, and other related information.

• DBA_TABLESPACES: This view will show whether the guaranteed undo retention feature is
enabled for a certain undo tablespace.

• V$TRANSACTION: You can get transaction information from this view.

• V$ROLLSTAT: You can join V$ROLLSTAT and V$ROLLNAME to get a lot of information on the
behavior of the undo segments.

• DBA_UNDO_EXTENTS: This view provides detailed information on the undo extents within
the undo tablespace.

Using the OEM to Manage Undo Data
You can use OEM to help you correctly size your undo tablespace and set the right UNDO_RETENTION
parameter value. OEM provides the Undo Advisor to help you determine the space required for your
undo tablespace, based on average and peak-level undo generation rates.

To get to the Undo Advisor page, go to the OEM Home Page ➤ Advisor Central ➤ Undo Manage-
ment and click on the Undo Advisor button. (You can also get to the Undo Advisor by going to the
OEM Home Page ➤ Performance Page ➤ Advisor Central ➤ Undo Management and clicking on the
Undo Advisor button.)

The Undo Advisor shows you the best undo retention possible for a given undo tablespace size.
It can also advise you about the correct size for the undo tablespace, based on an undo retention
value that you specify, by analyzing the impact of various hypothetical undo retention values.

You can also use the Undo Management page (OEM Home Page ➤ Administration ➤ Instance
➤ Undo Management) to perform the following tasks:

• Change and edit the undo tablespace.

• View system activity and undo tablespace usage statistics, including the average and
maximum undo generation rates and the length (in minutes) of the longest running query.

• Get recommendations for both undo retention length and undo tablespace size.

366 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

Figure 8-2 shows the Undo Generation Rate and Tablespace Usage graph from the bottom of
the OEM Undo Management page. This graph is color-coded so you can see at a glance how the undo
tablespace is handling the amount of undo information generated in your instance.

Figure 8-2. The Undo Generation and Tablespace Usage graph

Flashback Error Correction Using Undo Data
Up until the Oracle9i database version, the only way to correct user errors was to perform point-in-
time recovery, which is tedious and somewhat complex. The Oracle9i database introduced the first
Flashback features in the database. Flashback features enable you to query past versions of data, as
well as retrieve the history of changes made to a table’s data. You can use the historical information
either to query past data or to recover from logical corruption in the data.

Oracle Database 11g provides several error-correction techniques that depend on undo data.
The following Flashback features in Oracle Database 11g depend on undo data:

• Flashback Query: Retrieves data from a past point in time.

• Flashback Versions Query: Shows you the different versions of table rows, and provides meta-
data, such as the start and end time of the particular transaction that created the row version.

• Flashback Transaction Query: Lets you retrieve historical data for a given transaction, along
with the SQL code to undo the changes made to particular rows.

• Flashback Table: Recovers a table quickly to its state at a past point in time, without having to
perform point-in-time recovery.

• Flashback Transaction: Enables you to roll back a transaction, along with all of its dependent
transactions.

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 367

■Note There are other flashback features, like Flashback Drop and Flashback Database, but they don’t use undo
data. I’ll discuss these features in Chapter 16, which deals with database recovery.

In the following sections, we’ll look at each of these important Flashback features in detail.

■Tip If you want to make serious use of the new Flashback features, make sure that you provide sufficiently sized
undo tablespaces. Preferably, you must use auto-extensible undo tablespaces, so that Oracle retains undo data
longer than the longest query duration. In addition, you should specify RETENTION GUARANTEE for the undo data.
Simply setting a large UNDO_RETENTION value doesn’t guarantee that Oracle won’t discard unexpired undo data (as
was discussed previously).

Querying Old Data with Flashback Query
Using the Flashback Query feature simply involves using the SELECT statement with an AS OF clause.
This type of query lets you retrieve committed data as it existed at some time in the past. You can
select data from the past based on a time stamp or SCN.

It is common for an application to need older data for analysis purposes. A company’s sales
force, for example, may need older sales data but may find that it has been modified already. Even
more important, sometimes a user error or faulty application code may require the restoration of
older data. Right now, the most common way to go back in time is for the DBA to perform a laborious
and time-consuming point-in-time database recovery, which may involve some disruption in service
and a loss of critical business data. The Flashback Query feature provides you an easy way to query
data at a point in time.

Flashback Query with the AS OF Clause

Here’s a simple example that shows how to use Flashback Query. Suppose you find that a user was
accidentally deleted from your employees table around noon. The only thing you know for sure is
that the employee was in the database at 8 AM. You can use a SELECT statement with the AS OF clause
to find the lost data.

■Tip How far back in time you can go with a Flashback Query depends on your UNDO_RETENTION parameter
setting.

First, you must grant the necessary privileges. A user needs to have the privilege to issue a Flash-
back Query on the table if the user doesn’t own the table. Note that you don’t need this privilege to
execute the DBMS_FLASHBACK package or any of its component procedures.

Here’s how the DBA can grant the object privileges to enable a user to issue a Flashback Query:

SQL> GRANT FLASHBACK ON employees TO salapati

Grant succeeded.
SQL>

368 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

Or you could use a statement like this:

SQL> GRANT FLASHBACK ANY TABLE TO salapati;

Grant succeeded.
SQL>

You can grant the Flashback Query object privilege (GRANT FLASHBACK ANY TABLE) on a table,
view, or a materialized view.

Next, use the SELECT . . . AS OF query to retrieve Flashback data from the past.

SQL> SELECT * FROM employees AS OF TIMESTAMP
 TO_TIMESTAMP ('2008-09-02 08:00:00', 'YYYY-MM-DD HH:MI:SS')
 WHERE last_name = 'Alapati';

Once you confirm the validity of the accidentally deleted data, it’s easy to reinsert the data by
using the previous query as part of an INSERT statement, as shown here:

SQL> INSERT INTO employees
 SELECT * FROM employees AS OF TIMESTAMP
 TO_TIMESTAMP('2008-09-02 08:00:00', 'YYYY-MM-DD HH:MI:SS')
 WHERE last_name = 'Alapati';

The previous two examples use a time stamp to pinpoint the exact time the data was acciden-
tally dropped. You could use the SCN for the transaction instead of time stamps. Just note that an
SCN will only put you within 3 seconds of the actual occurrence of the event. If you need to be very
specific regarding the time point, use the time-stamp method to specify the time.

Flashback Using the DBMS_FLASHBACK Package
Oracle provides a special package called DBMS_FLASHBACK that allows you to see a consistent
version of the database at a time (or SCN) that you specify. A big advantage of using the DBMS_
FLASHBACK package over the other Flashback features is that you can use existing PL/SQL code
with it to retrieve older data without having to add the AS OF and VERSIONS BETWEEN clauses, which
you have to do if you wish to use the other types of Flashback features.

You can specify either a time stamp or an SCN number as the starting point for your query. In
the simple example that follows, you’ll see how you can query for the number of rows that existed in
a table before they were deleted permanently from the table.

In the following trivial example that illustrates the use of the DBMS_FLASHBACK package, the
following query is first used to get the number of rows that currently exist in the employees table:

SQL> SELECT COUNT(*) FROM employees;

 COUNT(*)

495

Suppose you’re interested in finding out the number of rows that existed in this table on
December 11, 2008. You can call the DBMS_FLASHBACK.ENABLE_AT_TIME procedure, as shown in the
following code, to specify the specific past point in time you are interested in:

SQL> EXECUTE DBMS_FLASHBACK.ENABLE_AT_TIME (TO_TIMESTAMP '11-DEC-
 2008:10:00:00',
 -'DD-MON-YYYY:hh24:MI:SS');
PL/SQL procedure successfully completed.
SQL>

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 369

If you’d rather use an SCN instead of a time stamp, you must use the DBMS_FLASHBACK.
ENABLE_AT_SYSTEM_CHANGE_NUMBER procedure instead. To get the correct SCN, you can use the
DBMS_FLASHBACK.GET_SYSTEM_CHANGE procedure first.

Next, issue the same query as before. Now, the results of the output will reflect the contents of
the emp table on December 11, 2004, not the current time. Note that you don’t have to use the AS OF
formulation in your query, since you’re using the DBMS_FLASHBACK package.

Here’s the query that gets you the output as of December 11, 2004:

SQL> SELECT COUNT(*) FROM emp;

 COUNT(*)

 525

Once you’ve finished executing your query to fetch the results from a past point in time, disable
the DBMS_FLASHBACK package as follows:

SQL> EXECUTE DBMS_FLASHBACK.DISABLE ();

PL/SQL procedure successfully completed.
SQL>

Enabling the Flashback Query feature in the preceding example allowed you to see how many
rows were in a table at a time in the past. You found out from your simple query that the emp table
had 525 rows at the time in the recent past that you specified. If you want, you can use cursors to
retrieve the past data in order to either compare it to present data in the emp table, or, if necessary,
insert it into the emp table. You must open the cursor before you disable the DBMS_FLASHBACK
feature, and store the results so you can do the comparisons or inserts.

Use the DBMS_FLASHBACK package in cases where you can’t touch the code, as is the case with
packaged applications. The package comes in handy when you have to specify the past point in time
several times, to retrieve older data. You can recover lost data using other methods, as you will see in
Chapter 16, which discusses database recovery. However, the Flashback Query feature gives you a
chance to just analyze or verify old data, even in cases where you are not interested in restoring that
data.

■Tip To ensure data consistency, make sure you issue a COMMIT or a ROLLBACK statement before using a Flash-
back operation of any kind.

Flashback Versions Query
The Flashback Versions Query feature provides you with row history by letting you retrieve all the
versions of a row between either two points in time or two SCNs. Oracle creates a new version of a
row each time a COMMIT statement is executed. If you insert a row and subsequently update or delete
the row, only the latest version of the row will be preserved in your table. If you wish to find out
exactly what changes a row went through over a certain interval of time, you can use the Flashback
Versions Query feature. The Flashback Versions Query will return one row for each version of every
row in the table. The feature is ideal when you’re trying to audit table data or undo erroneous
changes to data.

Here are some things to keep in mind about the Flashback Versions query feature:

• You can retrieve only the committed versions of a row.

• The query will retrieve all deleted rows as well as current rows.

370 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

• The query will retrieve any rows that were deleted and reinserted later on.

• The query result is in the form of a table and contains a row for each version of a row during
the time or SCN interval you specify.

By reviewing the history of the rows in a table, you can audit the changes and find out which
transactions changed the rows.

Syntax of the Flashback Versions Query

The Flashback Versions Query feature enables you to retrieve all committed versions of a table’s data
between two time points. If you’ve updated a table row ten different times, for example, the Flash-
back Versions Query will get you all ten versions of that row over time.

The complete syntax for the Flashback Versions Query is as follows:

SQL> SELECT [pseudocolumns] . . . /* provide details about the row history */
 FROM . . . /* table name goes here */
 VERSIONS BETWEEN
 {SCN|TIMESTAMP {expr|MINVALUE} AND
 {expr|MAXVALUE}}
 [AS OF{SCN|TIMESTAMP expr}]
 WHERE [pseudocolumns . . .] . . .

Using the versions clause in a query will get you multiple versions of the rows returned by the
query. In the preceding syntax statement, you can use the VERSIONS clause as a part of your normal
SELECT statement, with a BETWEEN clause appended to it. You can also specify an SCN or a TIMESTAMP
clause. You must specify the start and end expressions by using MINVALUE and MAXVALUE, which indi-
cate the start time and end time of the interval for which you are seeking the different row versions.
The MINVALUE and the MAXVALUE are resolved to the time stamp or the SCN of the oldest and the most
recent data that’s available in the database, respectively.

■Note You must ensure that the beginning and ending interval, framed by either SCNs or time stamps, don’t go
back beyond the time specified by the UNDO_RETENTION parameter. While you can actually specify a begin or an
end time point that lies outside the interval spanned by the UNDO_RETENTION parameter, the query may not work.

Note that the AS OF clause is optional, and when you use it, the database will retrieve all the rows
as of that particular SCN or time stamp. If the VERSIONS clause is used by itself, as in VERSIONS BETWEEN
SCN MINVALUE and MAXVALUE, without using the optional AS OF clause, the data is retrieved as of the
current session. If you add the AS OF clause, as shown next, the data is retrieved as of a specified SCN
or clock time:

VERSIONS BETWEEN SCN MINVALUE and MAXVALUE AS OF SCN 56789

■Note You may also use the VERSIONS clause in subqueries of DML and DDL statements.

Flashback Versions Query Pseudo-Columns

The output of a Flashback Versions Query is unlike the output of your typical SELECT statement. The
output can show multiple versions of the same row, with a row representing each time the particular
row was inserted, updated, or deleted. In addition to the column values you specify in the SELECT
statement, Oracle will provide you with values for a set of pseudo-columns for each row version.
These pseudo-columns provide metadata about the various row versions, including the type of

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 371

operation, the begin and end time of the transaction, and so on. It is these pseudo-columns that tell
you exactly when a row was modified and what was done to the row at that time.

Here is a brief explanation of each pseudo-column in the Flashback Versions Query output:

• VERSIONS_STARTSCN and VERSIONS_STARTTIME: These pseudo-columns tell you the SCN
and time stamp when this particular row was first created. If the VERSIONS_STARTTIME is
null, the row was created before the lower time boundary of the query.

• VERSIONS_ENDSCN and VERSIONS_ENDTIME: These pseudo-columns tell you when this
particular row expired. If the VERSIONS_ENDTIME column value is null, it means that the
row is either current or that it has been deleted.

• VERSIONS_OPERATION: This pseudo-column provides you with information about the type
of DML activity that was performed on the particular row. The column has three possible
values: I represents an insert, D a delete operation, and U an update operation.

• VERSIONS_XID: This pseudo-column displays the unique transaction identifier of the trans-
action that resulted in this row version.

■Note An index-organized table (IOT) will show an update operation as a delete and an insert operation. Your

Flashback Versions Query would produce both the deleted and inserted rows as two independent versions. The first
version would show a D for the delete operation under the VERSIONS_OPERATION pseudo-column, and the subse-
quent insert column would show an I for the same pseudo-column.

If the version of a row was created before the MINVALUE or the beginning of the query, you can’t
capture the value for the starting time stamp or SCN, and your VERSIONS_STARTSCN and
VERSIONS_STARTTIME pseudo-columns will be null—there won’t be any history for this row in
your undo segments.

The VERSIONS_ENDSCN and VERSIONS_ENDTIME pseudo-columns tell you when the row
version expired. If the row version is still current at the time of your Flashback Versions Query, the
VERSIONS_ENDSCN and VERSIONS_ENDTIME pseudo-columns will be null. Similarly, if the row
version has been deleted from the table, you’ll see a null value for these two pseudo-columns.

Using Flashback Versions Query

To understand the capabilities and power of the Flashback Versions Query feature, let’s look at the
simple example shown in Listing 8-1.

Listing 8-1. Using the Flashback Versions Query Feature

SQL> SELECT versions_xid AS XID, versions_startscn AS START_SCN,
 versions_endscn AS END_SCN,
 versions_operation AS OPERATION,
 empname FROM EMPLOYEES
 VERSIONS BETWEEN SCN MINVALUE AND MAXVALUE
 AS OF SCN 7920
 WHERE emp_id = 222;

 XID START_SCN END_SCN OPERATION EMPNAME SALARY
---------------- --------- -------- ---------- ---------- -------
0003002F00038BA9 2266 I Nick 19000
0004002D0002B366 0864 D Sam 20000
000400170002B366 0827 0864 I Sam 20000
SQL>

372 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

The example in Listing 8-1 retrieves three versions of a row for employee number (emp_id) 222.
The AS OF SCN of the query is 7920. That is, we want to know what versions of the row existed at this
SCN. Although you see three versions in the output, only one of the row versions is true as of the SCN
you’re interested in. So, which version is it?

Let’s read the query output from top to bottom. Pay particular attention to the START_SCN and
the END_SCN columns. All rows will have a START_SCN, but they may have a null value for the END_SCN if
the version of the row still exists at the current SCN.

The first row, which inserted (operation I) employee name Nick at SCN 2266, is the latest
version of the row. Since the END_SCN is null for the first row, you know that this row still existed at
SCN 7920. If you look under the OPERATION column, you see the letter D for the second version
(START_SCN 0864), indicating that the middle row was deleted (probably accidentally), and the row
didn’t exist at SCN 7920. The first row thus reflects the fact that the row was reinserted, with a
different employee’s name. The bottom or third row has an END_SCN number, so clearly this row
expired at SCN 0864. This was the originally inserted version of this row, as indicated by the value I
(insert) under the OPERATION column.

■Note You must substitute VERSIONS BETWEEN TIMESTAMP . . . for the VERSIONS BETWEEN SCN nn AND nn
clause to use time stamps to specify the time interval for retrieving the various versions of a row instead of using SCNs.

Restrictions and Observations on the Flashback Versions Query

Here are the main limitations of the Flashback Versions Query feature:

• You can only use the feature to query actual tables, not views.

• You can’t apply the VERSIONS clause across DDL operations.

• The query will ignore purely physical row changes as happen, for example, during a segment
shrink operation.

• You can’t use this feature if you’re dealing with external or temporary tables.

If you want to query past data at a precise time, you must use an SCN, since the actual time
might be up to three seconds earlier or later than the time you specify with a time stamp. Oracle
Database 11g uses SCNs internally and maps them to time stamps with a granularity of three
seconds. This potential gap between an SCN and a time stamp may cause problems when you’re
trying to flash back to an exact time that immediately follows a DDL operation. Suppose you created
a new table. If you use a time stamp, your Flashback Versions Query might start a little before the
exact time the table was created and miss the new table entirely. You’ll end up with an error in this
case instead of the Flashback Version Query results. By using an SCN instead of a time stamp, you
can avoid this problem.

Flashback Transaction Query
The FLASHBACK_TRANSACTION_QUERY view lets you identify which transaction or transactions
were responsible for a certain change in a table’s data during a specified interval. A Flashback Trans-
action Query is simply a query on the FLASHBACK_TRANSACTION_QUERY view, and it can provide
transaction information, including the SQL statements needed to undo all the changes made by
either a single transaction or a set of transactions during a specified interval of time. This feature
enables you not only to correct logical errors, but also to conduct transaction audits in your
database.

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 373

Flashback Transaction Query gets all its transaction information from the undo segments.
Thus, the value you set for the UNDO_RETENTION parameter determines how far back you can go to
retrieve undo data.

When you use Oracle’s LogMiner tool to undo SQL statements, Oracle has to serially read entire
redo log files to get the necessary information. The Flashback Transaction Query feature lets you use
an indexed access path to get to the required undo data directly, instead of traversing an entire redo
log file. You can also undo a single transaction or a set of bad transactions during an interval of time.

Using the Flashback Transaction Query Feature

You need the SELECT ANY TRANSACTION system privilege to query the FLASHBACK_
TRANSACTION_QUERY view. This view contains columns that let you identify a transaction’s time
stamp, the identity of the user who made the transaction, the type of operations done during the
transaction, and the undo statements necessary to retrieve the original row. Listing 8-2 shows the
structure of the FLASHBACK_TRANSACTION_QUERY view.

Listing 8-2. The Flashback Transaction Query View

SQL> DESC flashback_transaction_query
 Name Null? Type
 ----------------- ------ --------------
 XID RAW(8)
 START_SCN NUMBER
 START_TIMESTAMP DATE
 COMMIT_SCN NUMBER
 COMMIT_TIMESTAMP DATE
 LOGON_USER VARCHAR2(30)
 UNDO_CHANGE# NUMBER
 OPERATION VARCHAR2(32)
 TABLE_NAME VARCHAR2(256)
 TABLE_OWNER VARCHAR2(32)
 ROW_ID VARCHAR2(19)
 UNDO_SQL VARCHAR2(4000)
SQL>

The FLASHBACK_TRANSACTION_QUERY view contains the following columns:

• START_SCN and START_TIMESTAMP identify when a certain row was created.

• COMMIT_SCN and COMMIT_TIMESTAMP tell you when a transaction was committed.

• XID, ROW_ID, and UNDO_CHANGE# identify the transaction, the row, and the undo change
number, respectively.

• OPERATION tells you whether the DML operation was an insert, update, or delete operation.

■Note If you see a value of UNKNOWN under the OPERATION column, it means that there isn’t sufficient undo infor-
mation in your undo tablespace to correctly identify the transaction’s exact operation type.

• LOGON_USER, TABLE_NAME, and TABLE_OWNER provide the username, table name, and schema
name.

• UNDO_SQL gives you the exact SQL statement required to undo the transaction. Here’s an
example of the type of data you would find under the UNDO_SQL column:

delete from "APPOWNER"."PERSONS" where ROWID = 'AAAP84AAGAAAAA1AAB';

374 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

Oracle recommends that if any of the tables that are part of the Flashback Transaction Query
operation contained chained rows, or if you’re using clustered tables, you must turn on supple-
mental logging in your database before using the Flashback Transaction Query. You can turn supple-
mental logging on at the database level, using the following SQL statement:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

The following query will display all transactions, both committed and active, in all the undo
segments:

SQL> SELECT operation, undo_sql, table_name
 FROM flashback_transaction_query;

The query in Listing 8-3 shows how to determine the operation that will undo a transaction and
the specific SQL statement that will undo it.

Listing 8-3. Identifying SQL Statements to Undo Data Changes

SQL> SELECT operation, undo_sql, table_name
 2 FROM flashback_transaction_query
 3 WHERE start_timestamp >= TO_TIMESTAMP
 4 ('2009-02-15 05:00:00', 'YYYY-MM-DD HH:MI:SS')
 5 AND commit_timestamp <= TO_TIMESTAMP('2009-02-15 06:30:00', 'YYYY-MM-DD
 HH:MI:SS')
 6* AND table_owner='PASOWNER';

OPERATION UNDO_SQL TABLE_NAME
------------------- -------------------------------------- ---------------
INSERT delete from "APPOWNER"."FR_DETAILS" FR_DETAILS
 where ROWID = 'AAQXXZAC8AAAB+zAAb';
INSERT delete from "APPOWNER"."FR_DETAILS" FR_DETAILS
 where ROWID = 'AAQXXZAC8AAAB +zAAa';
SQL>

The OPERATION column in Listing 8-3 indicates that two inserts were made during the time
period specified in the query. The UNDO_SQL column shows the exact SQL statement you must run
to undo the changes—this is information the query fetched for you from the undo segments. In this
simple example, there are only two delete statements that you’ll have to execute if you wish to undo
the inserts displayed by your query. However, transactions usually contain several DML statements,
in which case you’ll have to apply the undo changes in the sequence that the query returns them to
correctly recover the data to its original state.

■Tip Consider using the RETENTION GUARANTEE setting for your undo tablespace if you’re going to issue an
Oracle Flashback Query or an Oracle Flashback Transaction Query to resolve a critical data error. This will ensure
that the database preserves the necessary unexpired undo data in all undo segments.

Flashback Transaction Query Considerations

Keep the following points in mind concerning the Flashback Transaction Query feature:

• Turn on minimal supplemental logging if your operations involve chained rows and special
storage structures, such as clustered tables.

• When querying index-organized tables, an update operation is always shown as a two-step
delete/insert operation.

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 375

• If the query involves a dropped table or a dropped user, it returns object numbers and user
IDs instead of the object names and usernames.

Using Flashback Transaction Query and Flashback Versions
Query Together
The Flashback Versions Query feature lets you retrieve the various versions of a row, along with their
unique version IDs, row version time stamps, SCNs, and so on. It tells you what was in the row and
what happened to it. The Flashback Transaction Query feature, on the other hand, not only identi-
fies the type of operations performed on each version of a row, but also provides the necessary undo
SQL to put the rows back in their original state. It tells you how to get back to a previous version of
the row.

You can combine the capabilities of these two features by using them in sequence, to perform
auditing and related activities. Let’s look at an example that shows how you can combine the Flash-
back Versions Query and the Flashback Transaction Query features to undo undesirable changes to
your data.

First, use the Flashback Versions Query feature to identify all the row versions in a certain table
that have changed in a certain time period, as shown in Listing 8-4 (which is identical to Listing 8-1).

Listing 8-4. Using the Flashback Versions Query to Identify Changed Row Versions

SQL> SELECT versions_xid AS XID, versions_startscn AS START_SCN,
 versions_endscn AS END_SCN,
 versions_operation AS OPERATION,
 empname FROM EMPLOYEES
 VERSIONS BETWEEN SCN MINVALUE AND MAXVALUE
 AS OF SCN 7920
 WHERE emp_id = 222;

 XID START_SCN END_SCN OPERATION EMPNAME SALARY
---------------- -------- -------- ---------- --------- --------
0003002F00038BA9 2266 I Nick 19000
0004002D0002B366 0864 D Sam 20000
000400170002B366 0827 0864 I Sam 20000

SQL>

In Listing 8-4, let’s say we identified the second row, which indicates a delete operation (D) as the
culprit. By mistake, one of our users incorrectly deleted the row. All you need to do in order to extract
the correct SQL to undo this delete operation is to take the transaction ID (XID) from this Flashback
Versions Query and search for it in the FLASHBACK_TRANSACTION_QUERY view. Listing 8-5 shows
the query you’ll need to execute.

Listing 8-5. Selecting Undo SQL Based on a Transaction ID

SQL> SELECT xid, start_scn START, commit_scn COMMIT,
 operation OPERATION, logon_user USER,
 undo_sql
 FROM flashback_transaction_query
 WHERE xid = HEXTORAW('0004002D0002B366');

XID START COMMIT OPERATION USER UNDO_SQL
--------- ------ ------ --------- ---- ------------------------------
00020030D 195243 195244 DELETE HR insert into "HR"."EMP"
 ("EMPNO","EMPNAME","SALARY")

376 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

 values ('222','Mike','20000');
1 row selected.
SQL>

The query in Listing 8-5 gives you the exact undo SQL statement to undo the deletion operation
performed by the transaction with XID 0020030002D. As you can see, the Flashback Versions Query
and the Flashback Transaction Query provide complementary features. You can use the two
together not only to undo logical data errors, but also to audit transactions in your database. By using
the two features, you can tell exactly how a certain row came to have a certain set of values and then
get the exact SQL statements you need to undo the changes if necessary.

The Flashback Table Feature
Oracle’s Flashback Table feature lets you recover a table to a previous point in time. This feature
relies on undo information in the database undo segments to perform the point-in-time recovery
without restoring any datafiles or applying any archived redo log files, as needed to be done for tradi-
tional point-in-time recovery. You can use the Flashback Table feature to roll back changes to a
previous point in time defined by either a time stamp or an SCN.

Since you rely on undo data to flash back a table (rather than restoring your backup files), you
don’t have to take your database or tablespaces offline during a Flashback Table operation. Oracle
acquires exclusive DML locks on the table or tables that it is recovering, but the tables continue to
remain online.

■Note There are two distinct table-related Flashback features in Oracle Database 11g. The first, Flashback Table,
lets you flash back a table to a past point in time. This feature depends entirely on the availability of the necessary
undo data, and is discussed in this chapter. The second feature, Flashback Drop (FLASHBACK TABLE table_name
TO BEFORE DROP), lets you retrieve a table that has been dropped altogether. This feature is helpful in performing
a point-in-time recovery and relies on the Recycle Bin, not undo data. I’ll discuss the Flashback Drop feature in
Chapter 16, which deals with database recovery.

How the Flashback Table Feature Works

Flashback Table uses undo information to restore data rows in changed blocks of tables with DML
statements like INSERT, UPDATE, and DELETE. Let’s review the steps in a Flashback Table operation.

■Note You can’t flash back any of the SYS user’s objects.

First, you need to make sure the user performing the Flashback Table operation has all privi-
leges, which could be either FLASHBACK ANY TABLE or the more specific FLASHBACK object
privilege on the table to be flashed back. The user must also have SELECT, INSERT, DELETE, and
ALTER privileges on the table.

The flashback operation doesn’t preserve Oracle ROWIDs when it restores rows in the changed
data blocks of the table, since it uses DML operations to perform its work. These DML operations
change the ROWIDs of the affected rows, so you must ensure that you have enabled row movement
in the tables you are using for the Flashback Table feature, as shown here:

SQL> ALTER TABLE emp ENABLE ROW MOVEMENT;

Table altered.
SQL>

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 377

Once you enable row movement in the table, you are ready to flash back the table to any time or
any SCN in the past, providing you have the necessary undo information in your undo tablespace.

Before you use the Flashback Table feature, note its complete syntax:

SQL> FLASHBACK TABLE
 [schema.]table
 [,[schema.]table] . . .
 TO {{SCN|TIMESTAMP} expr
 [{ENABLE|DISABLE}TRIGGERS]
 |BEFORE DROP[RENAME TO table]
 };

In this chapter, you’ll only see the FLASHBACK TABLE . . . TO SCN|TIMESTAMP part of the FLASH-
BACK TABLE statement. In the last line, BEFORE DROP refers to the FLASHBACK DROP feature, which is
covered in Chapter 16 in the discussion of database recovery techniques.

Here’s an example that shows how to flash back a table to a past SCN:

SQL> FLASHBACK TABLE emp TO SCN 5759290864;
Flashback complete.
SQL>

■Tip When a Flashback Table operation completes, all indexes that belong to the tables in the Flashback Table
list will have their indexes reverted to the time to which the tables are flashed back. However, the optimizer statis-
tics will still reflect the current data in the table.

You can also specify a time to flash back to, using a time stamp instead of an SCN, as shown here:

SQL> FLASHBACK TABLE persons TO TIMESTAMP TO_TIMESTAMP
 ('2008-01-30 07:00:00', 'YYYY-MM-DD HH24:MI:SS');

The preceding FLASHBACK TABLE command restores the persons table to 10:00 AM on April 5,
2005.

You can use the following statement to flash back a table by one day:

SQL> FLASHBACK TABLE persons to TIMESTAMP (SYDATE -1);

You can flash back more than one table at a time, as shown in the following example (but first
make sure you enable row movement for both tables):

SQL> FLASHBACK TABLE persons,person_orgs TO TIMESTAMP (SYSDATE -1)

The Flashback Table operation is an in-place, online operation and thus doesn’t involve taking
datafiles or tablespaces offline, unlike traditional point-in-time recovery. Oracle disables all relevant
triggers by default and reenables them upon completing the table recovery, though you can override
this by appending the ENABLE TRIGGERS clause to your FLASHBACK TABLE statement, as shown here:

SQL> FLASHBACK TABLE persons to TIMESTAMP TO_TIMESTAMP
 ('2009-04-05 10:00:00', 'YYYY-MM-DD HH24:MI:SS')
 ENABLE TRIGGERS;

If you don’t have sufficient undo data to flash back the table, you’ll get the error shown in Listing
8-6, which means that part of the undo information was overwritten. Unfortunately, the Flashback
Table feature can’t help you here, as it relies entirely on the presence of adequate undo information.
The only solution is to use a larger undo tablespace or enable the guaranteed undo retention feature
as explained in the “The UNDO_RETENTION Parameter” section, earlier in this chapter.

378 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

Listing 8-6. Failure of a Flashback Table Operation

SQL> FLASHBACK TABLE emp,dept to TIMESTAMP (SYSDATE -1);
 flashback table emp, dept to TIMESTAMP (SYSDATE -1)
 *
ERROR at line 1:
ORA-00604: error occurred at recursive SQL level 1
ORA-12801: error signaled in parallel query server P005
ORA-01555: snapshot too old: rollback segment number 108 with name
"_SYSSMU108$" too small
01555, 00000, "snapshot too old: rollback segment number %s with name \"%s\" too
small"
// *Cause: rollback records needed by a reader for consistent read are
// overwritten by other writers
// *Action: If in Automatic Undo Management mode, increase undo_retention
// setting.

Undoing a Flashback Table Operation

If it turns out that your Flashback Table results aren’t to your liking, you can use the FLASHBACK TABLE
statement again to go back to just before you first issued the FLASHBACK TABLE statement.

It’s important to always note your current SCN before running a Flashback Table operation so
that you can undo it with the FLASHBACK TABLE . . . TO SCN statement if necessary. You can find out
the current SCN in your database by using the following query:

SQL> SELECT current_scn from V$DATABASE;

CURRENT_SCN

 5581746576
SQL>

Restrictions on the Flashback Table Feature

Several restrictions apply to the Flashback Table feature. Here are the important ones:

• You can’t flash back a table owned by SYS, recovered objects, or a remote table.

• You can’t flash back a table to a time preceding any DDL operation involving a change in table
structure, such as modifying or dropping a column, truncating a table, adding a constraint, or
performing any partition-related operations, such as adding or dropping a partition.

• The FLASHBACK statement involves a single transaction, and the Flashback operation succeeds
entirely or it fails. If the flashback operation involves multiple tables, all of the tables must be
flashed back or none.

• If Oracle discovers any constraint violations during the Flashback operation, it abandons the
operation, leaving the tables in their original state.

• If you shrink a table or change any nonstorage attributes of a table (other than attributes such
as PCTFREE, INITTRANS, and MAXTRANS), you won’t be able to flash back to a time before these
changes were made.

■Note The entire flashback table operation executes as a single transaction.

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 379

Flashback Transaction

You can use the Flashback Transaction feature to back out an unwanted transaction. You can back
out not only the unwanted transaction, but also its dependent transactions as well, with a single
click. So, if you’re using the Database Control to do this instead of a PL/SQL procedure, the Flash-
back Transaction feature offers a far superior alternative to restoring backups to undo transactions,
since the database remains online to users while you’re backing out the unwanted transactions.
Undo data is the key to the Flashback Transaction feature. The database uses the undo data to create
and execute the necessary compensation transactions that’ll undo the unwanted transaction.

The TRANSACTION_BACKOUT procedure analyzes all transactional dependencies and
performs the necessary DML operations to undo the changes made in a transaction. Execution of the
procedure also generates reports of the changes it made. However, the critical thing to know is that
the procedure doesn’t automatically commit the DML operations that it performs, but waits for you
to explicitly commit the transaction and make the backout operation permanent.

Using Flashback Transaction

You can back out transactions either through the Database Control or by executing PL/SQL proce-
dures. To back out a transaction manually, use the DBMS_FLASHBACK.TRANSACTION_BACKOUT
procedure. The TRANSACTION_BACKOUT procedure contains the following parameters:

PROCEDURE TRANSACTION_BACKOUT
 Argument Name Type In/Out Default?
 ------------------------------ ------------------- ------ --------
 NUMTXNS NUMBER IN
 XIDS XID_ARRAY IN
 OPTIONS BINARY_INTEGER IN DEFAULT
 SCNHINT NUMBER IN DEFAULT
PROCEDURE TRANSACTION_BACKOUT
 Argument Name Type In/Out Default?
 ------------------------------ ------------------ ------ --------
 NUMTXNS NUMBER IN
 XIDS XID_ARRAY IN
 OPTIONS BINARY_INTEGER IN DEFAULT
 TIMEHINT TIMESTAMP IN
PROCEDURE TRANSACTION_BACKOUT
 Argument Name Type In/Out Default?
------------------------------- ------------------ ------ --------
 NUMTXNS NUMBER IN
 NAMES TXNAME_ARRAY IN
 OPTIONS BINARY_INTEGER IN DEFAULT
 SCNHINT NUMBER IN DEFAULT
PROCEDURE TRANSACTION_BACKOUT
 Argument Name Type In/Out Default?
------------------------------- ------------------ ------ --------
 NUMTXNS NUMBER IN
 NAMES TXNAME_ARRAY IN
 OPTIONS BINARY_INTEGER IN DEFAULT
 TIMEHINT TIMESTAMP IN

As you can see, the procedure is overloaded. Here’s what the different parameters stand for:

• NUMTXNS: Indicates the number of transactions to be backed out.

• NAMES: Defines a list of transactions to be backed out, which you can pass out in the form of an
array by using XIDs or by passing the names of the transactions.

• TIMEHINT: Lets you specify a time if you’re identifying transactions by name.

380 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

• SCNHINT: Lets you specify the SCN for identifying transactions.

• OPTIONS: Lets you specify the backout options. You can use the following values for the
OPTIONS parameter:

• Cascade: Use this to back out the child transactions before backing out the parent
transactions.

• Nocascade: Use this if a transaction isn’t supposed to have any dependent transactions.

• Nocascade_force: Use this to back out the transactions and ignore any dependent
transactions.

• Nonconfict_only: Use this to back out only the changes made to the nonconflicting rows of
a transaction.

Monitoring the Backout of Transactions

You can query the data dictionary views DBA_FLASHBACK_TXN_STATE and DBSA_FLASHBACK_
TXN_REPORT to view the reports generated by executing the TRANSACTION_BACKOUT
procedure.

Transaction Management
Oracle enables you to use two special types of transactions, discrete transactions and autonomous
transactions, to help you manage transactions. I briefly review these two concepts in the following
sections.

Discrete Transactions
To enhance the speed of transactions, Oracle enables the explicit use of discrete transactions. When
you specify a transaction as a discrete transaction, Oracle skips certain routine processing overhead,
such as writing the undo records, thereby speeding up the transaction. Oracle doesn’t modify the
data blocks until the transaction commits.

You use the BEGIN_DISCRETE_TRANSACTION procedure, which is part of the DBMS_
TRANSACTION package, to implement the discrete transaction strategy. Short transactions run
faster when you use this procedure, but if discrete transactions occur during the course of long
queries, and these queries request data modified by the discrete transactions, there could be prob-
lems. Because discrete transactions skip the undo writing process, it isn’t possible for a long-running
query to get a consistent view of the data. Oracle doesn’t generate undo records for discrete transac-
tions because the data blocks aren’t modified until the discrete transaction commits.

Autonomous Transactions
A transaction can run as part of another transaction. In such cases, the parent transaction is called
the main transaction, and the independent child transaction is called the autonomous transaction.
An autonomous transaction is formally defined as an independent transaction that can be called
from another transaction. Notice that although the child transaction is called from the parent trans-
action, it is independent of the parent transaction.

Packages, procedures, functions, and triggers could all include transactions marked as autono-
mous. You have to include a directive in the main transaction so that Oracle will know you intend to
use an autonomous transaction within the main transaction. The autonomous transaction can have
its own ROLLBACK and COMMIT statements, just like normal transactions. The main transaction, by
using an autonomous transaction, can pause and execute the autonomous transaction, and then
continue from where it stopped. In other words, you leave the calling transaction’s context, execute
SQL statements that are part of the autonomous transaction, either commit or roll back your trans-

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 381

action, and resume the parent transaction upon returning to the calling transaction’s context. Note
that the autonomous transaction does not share transaction resources, such as locks, with the parent
transaction.

Autonomous transactions provide developers with the ability to create more fine-grained trans-
actions, where a transaction will not be an all-or-nothing affair. You can have the nested
autonomous transactions commit or roll back their transactions independent of the calling parent
transaction.

■Note If you don’t use an autonomous transaction, all the changes in your session will be committed or rolled
back at once (when you issue a COMMIT or ROLLBACK statement). The autonomous transactions give you the ability
to commit or roll back the subprogram’s changes independent of the main program. Also note that if you don’t
commit or roll back an autonomous transaction, Oracle will issue an error message.

Listing 8-7 provides a simple example of an autonomous transaction. Note that the PRAGMA
AUTONOMOUS_TRANSACTION (a compiler directive) statement is instructing Oracle to mark the attached
piece of code, the loans function, as autonomous.

Listing 8-7. A Simple Autonomous Transaction

SQL> CREATE OR REPLACE package lending AS function loans
 (user_id integer) return real;
 -- add additional functions and/or packages
 END lending;
 CREATE OR REPLACE PACKAGE BODY lending AS
 function loans (user_id integer) return REAL IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 loan_bal REAL;
 BEGIN
 --the code goes here
 END;
 -- any additional functions and/or packages go here
 END lending;
SQL>

Autonomous transactions provide you with a lot of flexibility. You can suspend the main trans-
action, run the autonomous transaction, and resume the processing of the main transaction. The
autonomous transaction’s committed changes are visible to the main transaction, because the
default isolation level in Oracle is read committed, meaning that a transaction will see all the
committed data.

There can be many uses for autonomous transactions. For example, you can use the transac-
tions to send error-logging messages. You can have a single procedure that will write error messages
to an error log table and invoke this procedure as an autonomous transaction from a regular trans-
action. Listing 8-8 shows how to write error messages to a table.

Listing 8-8. Writing Error Messages to a Table

SQL> CREATE OR REPLACE PROCEDURE error_log(error__msg in varchar2,
 procedure_name IN VARCHAR2 IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 BEGIN
 INSERT INTO log_table (error_msg, procedure_name)
 VALUES (error_msg,procedure_name));
 COMMIT;

382 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

 EXCEPTION
 WHEN OTHERS THEN ROLLBACK;
 END;
SQL>

Autonomous transactions can serve other purposes in the Oracle database. For example, they
can enable the handling of nonstandard PL/SQL coding issues, such as using DDL statements in trig-
gers. Autonomous transactions also are useful in performing an audit of database queries and failed
(unauthorized) database activity.

Listing 8-9 shows an example in which the autonomous transaction feature is used to audit
(presumably) unauthorized update activity. Even when a user is unsuccessful in the update attempt,
the user’s name can be successfully logged into an audit table if you code a simple pair of triggers that
use the autonomous transaction feature.

Listing 8-9. Using an Autonomous Transaction to Audit Database Activity

SQL> CREATE OR REPLACE TRIGGER aud_bef_trig
 BEFORE INSERT ON emp FOR EACH ROW
 DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION
 BEGIN
 INSERT INTO audit_employee VALUES (
 :new.username, 'before insert', sysdate);
 COMMIT;
 END;

SQL> CREATE OR REPLACE TRIGGER aud_aft_trig
 AFTER INSERT ON emp FOR EACH ROW
 DECLARE
 PRAGMA AUTONOMOUS TRANSACTION
 BEGIN
 INSERT INTO audit_emp VALUES (
 :new.username, 'after insert', sysdate);
 COMMIT;
 END;
SQL>

Note that you can’t always just use a pair of normal triggers to audit database activity because
auditing data provided by the triggers won’t be recorded if the triggering statement is rolled back.

Resumable Space Allocation
Imagine you’re running a very long batch job and it runs out of space for some reason, whether
because of an unexpected amount of data or because of a failure to notice that the space was
running out for the objects involved in the DML transactions. Or perhaps there was a “maximum
number of extents reached” error. What are your options when this sort of thing happens (as it inev-
itably will)?

Most of the time, you must correct the space problem or other condition that caused the error
in the first place, and then restart your transactions. More often than not, you will roll back the whole
operation, which will take quite a bit of time. Sometimes you have to restart at the very beginning of
the program, which is a waste of time. In any case, your actions as a DBA are limited to playing catch-
up after the fact to rectify the error and redo the operation. Oracle’s Resumable Space Allocation
feature will suspend database operations that run into problems due to lack of space, and it restarts
those operations automatically when the space problems are fixed. The Resumable Space Allocation

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 383

feature comes in handy when you’re trying to ensure that key batch jobs or data loads run within the
window of operation they are allotted when they encounter space-related issues.

■Tip To take full advantage of the Resumable Space Allocation feature, you should use locally managed tablespaces
coupled with Automatic Undo Management.

You can explicitly make operations run in the Resumable Space Allocation mode by using the
ALTER SESSION command. The Resumable Space Allocation feature will just suspend operations until
the problem is fixed (such as by your adding a datafile to extend space) and it will resume automat-
ically after that.

Resumable Operations
The following types of database operations are resumable:

• Queries: These operations can always be resumed after they run out of temporary sorting
space.

• DML operations: Insert, update, and delete operations can be resumed after an error is issued.

• DDL operations: Index operations involving creating, rebuilding, and altering are resumable,
as are CREATE TABLE AS SELECT operations and several other DDL operations.

• Import and export operations: SQL*Loader data load jobs that run out of space are resumable.
You must use the RESUMABLE parameter when you specify the SQL*Loader job, to make the
operation resumable. Two other resumable operation parameters, RESUMABLE_TIMEOUT and
RESUMABLE_NAME, can be set only if you set the RESUMABLE parameter.

Common Resumable Errors
You can resume operations after fixing any of the following types of errors during the execution of
any operation:

• Out of space errors: Typically, operations fail when you can’t add extents to your tables or
indexes because the tablespace is full. You need to add a datafile to your tablespace to enable
the objects to throw a new extent and continue to grow. The typical error message is ORA-
01653.

• Maximum extents errors: When a table or a rollback segment reaches the maximum extents
specified, it can’t grow any further, even if you have space in the tablespace. You end up with
errors such as ORA-01628.

• User’s space quota errors: If the user’s quota on a tablespace is exceeded, your operations on
that tablespace will come to a halt. The typical Oracle error is ORA-01536.

Using the Resumable Space Allocation Feature
To use the Resumable Space Allocation feature, a user must have the appropriate privileges:

SQL> GRANT RESUMABLE TO salapati;

Grant succeeded.
SQL>

384 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

When you wish to revoke the privilege, use the following command:

SQL> REVOKE RESUMABLE FROM salapati;

Revoke succeeded.
SQL>

You can enable a session for Resumable Space Allocation in one of two ways—set the
resumable_timeout initialization parameter, or use the ALTER SESSION command to enable and
disable resumable space allocation. The following sections discuss these methods.

Using the RESUMABLE_TIMEOUT Initialization Parameter

Using the RESUMABLE_TIMEOUT initialization parameter, you can enable the resumable space alloca-
tion features across the entire system. For example, to enable all database sessions for Resumable
Space Allocation for a period of two hours, you’d set the parameter this way:

RESUMABLE_TIMEOUT=7200

You can change the RESUMABLE_TIMEOUT parameter dynamically using the ALTER SYSTEM
command. You can also dynamically disable the feature by setting the parameter to 0.

Using the ALTER SESSION Statement

You can enable Resumable Space Allocation in your session simply by using the following state-
ment, regardless of whether you’ve set the RESUMABLE_TIMEOUT initialization parameter:

SQL> ALTER SESSION ENABLE RESUMABLE;

Session altered.
SQL>

Similarly, you can disable the feature by using the ALTER SESSION ENABLE TIMEOUT statement.

Providing a Timeout Interval

You can also use the optional TIMEOUT clause with the ALTER SESSION ENABLE RESUMABLE statement to
specify a time interval within which you need to fix the problem that caused the operation to be
suspended. If you don’t respond within the allotted time interval, the program will error out with the
ORA-30032 error (“the statement has timed out”), and you can’t resume it from where it stopped.

In the following example, the TIMEOUT parameter is set to 18,000 seconds (5 hours). The Oracle
default timeout is set for 7,200 seconds. If you don’t want to change the default timeout period, all
you have to do is issue the simpler ALTER SESSION ENABLE RESUMABLE command.

SQL> ALTER SESSION ENABLE RESUMABLE TIMEOUT 18000;

Session altered.
SQL>

■Note By default, the Resumable Space Allocation feature is disabled for all sessions unless you’ve set the
RESUMABLE_TIMEOUT initialization parameter to a nonzero value.

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 385

You can also set the timeout interval using the DBMS_RESUMABLE package, as follows:

SQL> EXECUTE DBMS_RESUMABLE.set_session_timeout(4349,18000);

PL/SQL procedure successfully completed.
SQL>

In the preceding example, the first number in the parentheses, 4349, is the SID of the session for
which you want the timeout to be enforced. You can omit the SID if you’re setting the timeout for the
current session. The second number, 18000, is the timeout period.

Naming a Resumable Operation

You may sometimes want to name an operation to help track it later on. The NAME parameter is
optional and has no real operational significance.

You can name any resumable operation in the following manner:

SQL> ALTER SESSION ENABLE RESUMABLE
 NAME 'resumable_test';

Session altered.
SQL>

■Caution If an operation is suspended, any locks that are held by Oracle on various database objects will not be
released automatically. The locks and other resources will be released only after the transaction either completes
successfully upon resumption or ends and throws an exception.

A Resumable Operation Example

Let’s look at a simple example of the Resumable Space Allocation feature.
First, the alert log showed the following message, indicating that a DML statement was

suspended because the undo tablespace ran out of space. Instead of erroring out immediately, the
statement is merely suspended.

Fri Aug 1 11:15:00 2008
statement in resumable session 'User PASOWNER(11), Session 173, Instance 1' was
suspended due to
 ORA-30036: unable to extend segment by 8 in undo tablespace 'UNDOTBS_01'

Once the problem was corrected by adding space to the undo tablespace (UNDOTBS_01), the
alert log showed the following message, indicating that the suspended statement was resumed after
the problem was cleared:

Fri Aug 1 11:21:52 2008
statement in resumable session 'User PASOWNER(11), Session 173, Instance 1' was
resumed

If space wasn’t added to the undo tablespace within the timeout interval, the suspended state-
ment would be aborted. The following entry from the alert log shows that situation:

Fri Aug 1 10:29:34 2008
Errors in file /a03/app/oracle/admin/pasx/bdump/pasx_smon_7091.trc:
ORA-30036: unable to extend segment by 8 in undo tablespace 'UNDOTBS_01'
Fri Aug 1 10:33:07 2008
statement in resumable session 'User PASOWNER(11), Session 184, Instance 1' was
aborted

386 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

Notification of Suspended Operations
Upon suspending an operation for a space-related problem, Oracle will automatically generate an
AFTER SUSPEND system event. If you want automatic notification, you can write a trigger that will be
set off by this event, as shown here:

SQL> CREATE OR REPLACE TRIGGER page_dba
 AFTER SUSPEND ON DATABASE
 DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
 BEGIN
 /* Code here that'll page the DBA */
 COMMIT;
 END;
Trigger created.
SQL>

Note that the trigger must always be declared as an autonomous transaction.

Operation-Suspended Alert
When Oracle suspends a resumable session, it automatically issues an operation-suspended alert
through the automatic Server Generated Alerts feature. Once you fix the problem by allocating the
necessary resources and the operation completes, Oracle will automatically clear this alert.

Monitoring Resumable Space Allocation
You can monitor resumable operations by using the DBA_RESUMABLE view. This view provides
the name of the operation, the user’s SID, the start time of the statement, the error message
encountered, the suspend and resume times, and the text and current status of the SQL statements.
The V$SESSION_WAIT view also provides information about suspended resumable statements.
The EVENT column of this view shows you that a statement is suspended, pending the clearance of a
“wait error.”

The DBMS_RESUMABLE package contains procedures to help you manage suspended
sessions. The SET_SESSION_TIMEOUT procedure, for example, allows you to specify the time a
suspended session will wait before failing.

Managing Long Transactions
Suppose you’re running transactions in your database that are extremely long—maybe even as long
as a whole day. Oracle primarily uses locks to ensure concurrency and atomicity, but locks on a long-
running transaction can reduce concurrency dramatically because other users are forced to wait for
the long-running transaction to complete.

Fortunately, Oracle provides the Workspace Manager, a feature you can use to version-enable
tables, so different users can maintain different versions of the data. During long-running transac-
tions, changes can be made to the same table in different workspaces, and these versions are finally
reconciled and the results are stored permanently in the original table. You can think of a workspace
as a virtual environment shared by several users making changes to the same data.

In addition to facilitating long transactions, the Workspace Manager enables you to create
multiple data scenarios for what-if analyses. It can also help you track the history of all the changes
to a set of tables. The feature is especially useful in collaborative projects because it allows teams to
share content.

The Workspace Manager enables simultaneous read and write access to production data during
long transactions. It uses multiple versioning of tables to enable the simultaneous reading and
writing of data. Consistency is guaranteed because the final, permanent version of the table will not

C H AP TE R 8 ■ OR A CL E TR A N SA CT I ON M AN AG E M E N T 387

have any conflicts within the data. All the users see is their own virtual version of the database—that
is, different versions of the rows in the same tables. But the versions each user sees from his or her
workspace are guaranteed to be transactionally consistent; the user’s versions will have the original
data the user started with, plus all the changes he or she made to the original data.

Benefits of Using the Workspace Manager
Among other things, the Workspace Manager enables you to try out various scenarios with your data
(such as the effects of different marketing campaigns) before you finally settle on one acceptable
version that you can make permanent by merging all the virtual versions of the table data. Merging,
in effect, incorporates the child workspace data with the original (parent workspace) data. If, after
analysis, you decide to nullify all the child workspace’s data, you can do so by rolling it back, just like
you would roll back a transaction under normal circumstances.

■Note Although the Workspace Manager provides you with the capability to create multiple versions of one table,
or even of all the tables in your database, it doesn’t impose a severe storage cost because only the changed rows
in each workspace are versioned, and these new versions are saved in the original table (and in the original

tablespace). In other words, you don’t need to make any special storage allocations for the database tables that
belong to different versions.

The Workspace Manager offers the following features:

• You can maintain multiple versions of data, which you can keep or discard as necessary.

• Multiple users can simultaneously access and modify the same data.

• The updates made by several users over time are isolated in workspaces until they’re merged
into the production database.

• Conflicts between multiple versions are resolved automatically by the Workspace Manager.

Table Versioning and Workspaces
The concepts of table versioning and workspaces are the foundation of the Workspace Manager
feature. Table versioning enables you to have different sets of rows sharing the same table name. The
amazing thing about table versioning is that users can continue to change data through DML oper-
ations on a day-to-day basis. The Workspace Manager maintains the structure of the versioned
tables using views based on the original production table. This ability to version-enable even
production tables makes the Workspace Manager very powerful in performing what-if analyses.

You can use the WM$VERSIONED_TABLES and WM$VERSION_TABLE tables to find out details
about the versioned tables. The WMSYS schema owns both of these tables, so first make sure that
you have the WMSYS schema in your database.

Workspaces enable users to make changes to versions of a table, and the workspaces isolate the
versioned tables until they’re finally discarded or merged with the original table. This ability of the
workspaces to save the versioned tables means that access to the original tables isn’t impeded. You
can assign each workspace to one or several users, and they can see a consistent view of the database,
including the rows in their versions of the tables in the workspace, plus all the other tables at the time
the workspaces were either created or refreshed, whichever is later.

Note that when versioned tables are created in a database, the original table is renamed
tableName_LT. Oracle also creates a new table called tableName_AUX and a view with an identical
name as the original table. When users log in, they are placed, by default, in the LIVE workspace. All
other workspaces that exist in the database are children of the LIVE workspace. Whenever you
refresh your workspace, you can see the latest changes made in the parent workspace, which also
includes any changes merged from other child workspaces. The merging of a workspace with the

388 CH AP T E R 8 ■ O R AC L E T R AN S AC T I O N M A N AG E M E N T

parent LIVE tablespace makes the changes in the child workspace public. The MERGE statement
follows the resolution of any conflicts.

The Workspace Manager feature is provided with the Oracle software, but it won’t be automat-
ically installed in a database that you create manually. If you use the DBCA to create a new database,
and you let Oracle create a seed database as part of the Oracle software installation, the Workspace
Manager feature is automatically installed.

An easy way to find out whether the Workspace Manager is already installed is to look for the
WMSYS user using the DBA_USERS view, since WMSYS owns the Workspace Manager tables. If that
user is already there, you can go ahead and use the feature. Otherwise you’ll need to install the Oracle
Workspace Manager in your database.

The easiest way to use the Workspace Manager is by accessing it through OEM. OEM lets you
create and manage workspaces, as well as enable and disable table versioning.

■ ■ ■

P A R T 3

Installing Oracle Database
11g, Upgrading, and
Creating Databases

391

■ ■ ■

C H A P T E R 9

Installing and Upgrading to Oracle
Database 11g

This chapter will give you a good understanding of the procedure for correctly installing the Oracle
Database 11g server software, and it includes an example of an installation of Oracle Database 11g
on a server using the Red Hat Enterprise Linux WS 3 operating system.

There are some variations in the installation procedure for the different flavors of UNIX, such as
Sun’s Solaris, Hewlett Packard’s HP-UX, IBM’s AIX, and so on, but the steps are essentially the same.
Several steps need to be performed before and after the installation of the Oracle software, both by
you and the Linux/UNIX system administrator, and this chapter explains those steps. The software
must be installed according to a sensible plan, and this chapter shows you how to install Oracle by
following the well-known Optimal Flexible Architecture (OFA) guidelines.

Note that you’ll be going through the main features of a generic Oracle installation in this
chapter. It’s important that you have access to the Oracle installation manuals for your specific oper-
ating system before you begin installing the Oracle Database 11g software. The installation manuals
are all available on the Oracle Technology Network (OTN) web site.

Of course, if you’re configuring Oracle Real Application Clusters (RAC) or some such advanced
architecture, you’ll need more time to finish the installation. Complex as the Oracle database server
software is, the actual time you need to install the software is trivial compared to the time you need
to spend to ensure that all the preinstallation steps have been completed correctly. If you follow all
the recommended steps, the installation process should work the first time around.

Installing Oracle
When it comes to the mechanics of the process, installing the Oracle server software is really a simple
affair. Installing all the software will probably not take you more than a couple of hours. All the real
effort goes into the proper planning of such things as the physical space and memory allocation, and
the operating system configuration you need for your Oracle databases to function optimally.

■Note Installing the Oracle client is a much simpler task. When you invoke the Oracle installer, simply choose the
client installation option instead of the server installation option.

I’m assuming that you, or your organization, have bought the necessary software from Oracle
Corporation. If that’s the case, the software CDs will have been sent to you by Oracle. If you just want
to try the Oracle database software, however, you don’t have to purchase a thing. You can download
the Oracle server software freely from the OTN web site at http://technet.oracle.com/. The OTN

392 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

site has complete enterprise versions of the server software for all UNIX, Linux, and Windows
servers. In addition, you can check out the operating system installation and administration
manuals at http://tahiti.oracle.com.

Reviewing the Documentation
You can save yourself a lot of grief during the installation process by carefully reviewing the Oracle
installation manuals for your particular operating system. These manuals are very clear and provide
you with a detailed map of the installation process. You’ll need to review three sets of installation
documents:

• Oracle Installation Guide for your operating system: This document will provide you with
information about the system requirements, UNIX users and groups, and other require-
ments, and it will step you through the installation and post-installation processes.

• Release Notes and Release Notes Addendums: The Release Notes and any related Addendums
are very important, and they cover the most recent changes to the installation and upgrade
procedures for many components of the Oracle database server and client. The last-minute
changes that are covered in the Release Notes (and related Addendums) may make the differ-
ence between a successful installation of the various components and an error-prone
installation.

• README files: The README files are usually in the \doc\readmes directory on the first
product CD-ROM.

The Release Notes and the README files inform you about any potential restrictions, limita-
tions concerning the installation, and the use of new Oracle Database 11g software.

■Note The Installation Guide and the Release Notes are available at the OTN site (http://technet.oracle.
com/), or you can access them by going to http://docs.oracle.com/ or http://tahiti.oracle.com/.

Determining Disk and Memory Requirements
You should focus on two key operating system resources when you are planning a new Oracle instal-
lation: disk storage and the amount of memory (RAM) that your systems need on the server
machine.

The amount of total physical space (disk storage) will depend on the size of your applications
and data. The Oracle software itself takes approximately 1.5–2 gigabytes of disk space, depending on
the operating system. You also have to run one or more databases with this software, so the total
space you need will depend on the requirements for all the databases considered together. You need
to determine the sizes of the tables and indexes and the number of stored procedures you will have
in the database. You also need to find out as much as you can about the growth expectations for your
data over time. If you have a database that you anticipate will grow quickly, you need to make allow-
ances for that. Plan ahead, because disk space is something that needs to be budgeted for, and you
may find yourself scrambling for space if you are way off the mark.

■Tip For larger databases, the size of the tables and indexes will be the predominant component of total database
size. Fortunately, you can easily find out your database’s size by using database-sizing spreadsheets. One such
sizing spreadsheet is available from Blue Hills Technology Corporation at http://bhtech.com/. Although the
spreadsheet is for an older version of Oracle, the idea behind it remains the same, and you can derive meaningful
estimates of the size of your tables and indexes using this spreadsheet.

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 393

The total amount of memory that you need will depend on the size and nature of your applica-
tions. Oracle does provide a rule of thumb for memory requirements, and you can follow this rule
when you are in the initial stages of planning your system. Later on, you can adjust these initial
estimates.

The minimum requirement that Oracle imposes for memory is 256MB, but this is not enough
for serious applications. Depending on your application’s size and the number of users, your
memory requirements may run to several gigabytes of RAM. In addition, Oracle requires that you
allocate swap space that is about two to three times your Oracle RAM allocation. The requirements
of the applications that your system will be running will determine the total memory you need. At the
very least, your system shouldn’t be memory-bound, because inadequate memory leads to excessive
swapping and paging, and your system could slow to a crawl. In Chapter 20, you’ll learn how to
monitor memory usage and determine when you may need to increase it.

Optimal Flexible Architecture
Although the Oracle database server software and the databases managed by the server will function
even if they’re installed on a single disk or a set of disks without any organization, as such, you’ll lose
performance and endanger the safety of the databases if you don’t follow a well-thought-out
strategy regarding disk allocation. Oracle strongly recommends a disk layout methodology formally
called the Optimal Flexible Architecture for efficiency as well as many other reasons.

Before you start any installation of the Oracle software itself, it is absolutely necessary for you to
be familiar with the OFA recommendations regarding proper disk layout. The OFA is a set of recom-
mendations from Oracle Corporation aimed at simplifying management of complex software and
databases often running under multiple versions of software. The OFA essentially imposes a stan-
dardized way of naming the different physical components of Oracle and places them on the file
system according to a logical plan.

■Note The OFA guidelines were formulated at Oracle in 1990 in an internal paper by Cary Millsap. Millsap revised
them in 1995 and published them under the title “OFA Standard: Oracle for Open Systems.” You can find this paper
and many other excellent white papers at http://www.hotsos.com/.

The OFA guidelines are only Oracle’s recommendations, and you do not have to follow them in
their entirety, but OFA was designed to minimize disk contention, to provide for operating more
than one database without administrative confusion, and to improve database performance. Laying
out the UNIX directories according to the OFA guidelines leads to a clear and efficient distribution of
Oracle’s various files, even with several databases simultaneously running under different Oracle
versions. You can consider the OFA guidelines a set of best practices regarding two important
issues—disk layout and naming conventions—based on extensive field experience by Oracle profes-
sionals. Although originally intended only for internal Oracle use, the OFA is now the standard by
which all Oracle installations should be measured.

If you’ve ever walked into an organization and taken over a database installation that had files
stored all over the place, you’ll immediately recognize the benefits of the OFA. If the previous DBA
has adhered to the OFA guidelines, any new hire can easily go to the standard directories and look
for various types of information. If your database is growing and needs more space, following the
OFA guidelines will ensure that space will be added in the right directories with the standard naming
convention. The standardization of directory and file placement leads to minimal administrative
overhead and helps create more efficient databases. When you separate categories of files into inde-
pendent UNIX subdirectories, files in one category are minimally affected by operations on files in
other categories.

The usefulness of the OFA guidelines becomes particularly clear when you are trying to manage
multiple databases on the same server. You can simplify administration by using the structured OMF
system for maintaining your files. Creating new databases won’t pose any problems, because each

394 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

database is separated into its own directories, simplifying user administration and the creation of
new databases. The OFA guidelines contribute to database reliability, because your hard drive fail-
ures won’t propagate to whole applications—they help in balancing the load efficiently across the
disk drives, thereby enhancing performance and minimizing contention. The OFA guidelines also
promote the efficient separation of administrative files from several databases by using standard
naming conventions. Another big benefit in using the OFA guidelines is that they enable you to
simultaneously run multiple versions of Oracle software. You thus can run your production and test
databases using different versions of Oracle on the same server.

Before plunging into a detailed discussion of the OFA concepts and the implementation details,
you should be familiar with the following terms:

Mount points: These are directories in the UNIX file system that are used to access mounted file
systems.

Product files: These are the many sets of configuration and binary executable files that come
with the Oracle software.

Versions: These can refer to entirely different releases or to point upgrades (patch upgrades).
For example, 9.2.0.1.0 and 10.1.0.2.0 are different versions of the server software.

Oracle datafiles: These are the UNIX files that hold Oracle table and index data.

Oracle administrative files: These include the database log files, error logs, and so forth.

Tablespaces: These refer to the logical allocation of space within Oracle and are discussed in
detail in Chapter 6.

■Tip If you are using NFS file systems, you should know that these can’t guarantee that writes always complete
successfully, leaving open the possibility of file corruption. Unless your storage vendor is listed in the Oracle Storage
Compatibility Program (OSCP) member list, don’t install the software on NFS file systems.

Mount Points
Mount points are the directory names under which file systems are mounted by the UNIX operating
system. That is, the mount point refers to the top-level directory of a file system. Oracle recommends
that all your Oracle mount points be named according to the convention /pm, where p is a string
constant to distinguish itself from other mount points and m is a two-digit number. This means you
can name your mount points /u01, /u02, /u03, and so on. Keep the mount point names simple, and
don’t include any hardware-related information in the mount point name. That way, changing your
disk system hardware will not affect the mount point names.

Oracle recommends that you have four mount points to fully comply with the OFA guidelines.
The first of these is for locating the Oracle Database 11g server binaries, and the other three are for
holding the database files. Let’s say you’re creating mount points for a database named prod. In this
case, the three mount points designated for the datafiles can be clearly named as follows: /u01/
oradata/prod, /u02/oradata/prod, and /u03/oradata/prod. This nomenclature makes it clear that
these file systems are meant for Oracle databases and that the data for different databases is stored
on separate mount points.

Directory and File-Naming Conventions
In Linux and UNIX systems, a home directory is the directory that a user lands in when he or she first
logs in. All home directories should follow the naming convention /pm/h/u, where pm is the mount
point name, h is a standard directory name, and u refers to the directory owner. For example, the
/u01/app/oracle directory could be the home directory for the user named oracle. Note that the

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 395

entire home directory for each user (e.g., /u01/app/oracle) is denoted by the letter h for the purposes
of the following discussion.

Directory Structure

During the installation, you’ll be prompted for the path for several key Oracle directories, and I’ll
briefly discuss these in this section. You can use any directory structure you wish for these directo-
ries, but, as you’ll see, following the standard directory structures recommended here makes it easy
to administer multiple databases and software versions on the same server.

Oracle Base

At the root of the Oracle directory structure is the directory called Oracle base, denoted by the envi-
ronmental variable ORACLE_BASE. The Oracle base directory is the top directory for all Oracle software
installations. As mentioned previously, Oracle recommends that you use the form /pm/h/u.

The default owner of the Oracle base directory is usually a user named oracle, and the standard
directory is usually named app. Therefore, the Oracle base directory usually has the form of /pm/app/
oracle (for example, /u01/app/oracle).

The Oracle installer will take this as the default Oracle base and install all the software under this
base directory. You can create the Oracle base directory by using the following commands (assuming
that u01 is your mount point and user oracle is the Oracle software owner):

mkdir -p /u01/app/oracle
chown -R oracle:oinstall /u01/app/oracle
chmod -R 775 /u01/app/oracle

Oracle Home

The Oracle home directory, denoted by the ORACLE_HOME environment variable, is very important,
since the Oracle server software executable files and other configuration files are located under this
directory. For example, the $ORACLE_HOME/bin directory holds the executables for the Oracle prod-
ucts, and the $ORACLE_HOME/network directory holds the Oracle Net Services files.

In Oracle Database 11g, the OFA-recommended Oracle home directory path has changed. In
order to comply with the OFA requirement of enabling the simultaneous running of multiple
versions of Oracle software, you need to install Oracle software in a directory with the following path:
/pm/h/u/product/v/type_[n], where the new variables have the following meanings:

v: The version of the software

type: The type of installation, such as database (db), client (client), or companion (companion)

n: An optional counter, which enables you to install the same product multiple times under the
same Oracle base directory

In the preceding syntax for the Oracle home, the first part, /pm/h/u, is nothing but the Oracle
base directory. Thus the Oracle home directory is always located underneath the Oracle base direc-
tory, and it can also be specified as $ORACLE_BASE/product/v/type_[n].

Using the preceding OFA-based Oracle home path, you can install different products—the
server and the client with the same release number (Oracle 11.1.0)—in the same Oracle base
directory.

■Note The formal name for the Oracle database server version in this book is Oracle Database 11g Release 2.
However, you’ll occasionally see references to 11.1, 11.1.0, or Oracle 11.1, all of which are alternative names for
the same software.

396 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

/u01/app/oracle/product/11.1.0/db_1
/u01/app/oracle/product/11.1.0/client_1

The db_1 and client_1 at the end of the paths indicate that these are the Oracle home directories
for the first installation of the Oracle database and the Oracle client software, respectively.

Oracle supports multiple Oracle homes, but you can’t install products from one release of
Oracle into an Oracle home directory of a different release. You must install the Oracle Database 10.2
software into a new Oracle home directory. For example, you can’t install Release 10.2 software into
an existing Oracle9i Oracle home directory. You can install this release more than once on the same
system, however, as long as you choose a separate Oracle home directory for each release. It’s also
okay to install the same product multiple times in the Oracle home directory, as shown here:

/u01/app/oracle/product/11.1.0/db_1
/u01/app/oracle/product/11.1.0/db_2

Once you finish your Oracle software installation, set your ORACLE_HOME environment variable to
specify your Oracle home directory.

When you install the Oracle Database 11g software, the Oracle Universal Installer prompts you
to provide the Oracle base location. Oracle recommends that you share the Oracle base for all Oracle
homes that you create on a server. Although the installer will derive the default Oracle home location
from the Oracle base location you provide during the installation, you can change this default
location.

In the current version, the ORACLE_BASE environment variable is only recommended, but Oracle
intends to make it a mandatory variable in future releases. Oracle recommends that you create the
flash recovery area and the datafiles under the Oracle base location.

Flash Recovery Area and Datafile Location

The Oracle base is your starting point for the default locations of all datafiles and the flash recovery
area. Oracle recommends that you place the Oracle home, the Oracle datafiles, and the flash
recovery area on separate mount points, as shown in the following example:

$ORACLE_BASE/flash_recovery_area
$ORACLE_BASE/oradata
$ORACLE_BASE/product/11.1.0/db_1

Of course, in an Oracle RAC installation, you share the flash recovery area and the datafiles
among the different nodes of the RAC.

Automatic Diagnostic Repository

In Oracle Database 11g, all diagnostic data is consolidated into the new Automatic Diagnostic
Repository (ADR). The database stores the ADR under the ADR base directory. The new initialization
parameter DIAGNOSTIC_DEST sets the default location of the ADR base directory. The following is how
the database determines the value of the DIAGNOSTIC_DEST parameter, if you don’t explicitly set the
parameter.

• If you set the ORACLE_BASE environment variable, the default value of the DIAGNOSTIC_DEST
parameter is the same as the value of the ORACLE_BASE variable.

• If you haven’t set the ORACLE_BASE environment variable, the default value of the
DIAGNOSTIC_DEST parameter is set to $ORACLE_HOME/log.

Oracle Inventory Directory

Oracle uses a special directory called the Oracle Inventory directory, also known as OraInventory, to
store an inventory of all the Oracle software on a server. Multiple Oracle installations can share the
same Oracle Inventory directory. You need to specify the path for this directory only the first time
you install an Oracle product on a server. The usual format of this directory is as follows:

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 397

$ORACLE_BASE/ora_inventory

For example, if /u01/app/oracle is your ORACLE_BASE directory location, then the Oracle Inven-
tory directory will be

/u01/app/oracle/ora_inventory

The first time you install Oracle software, the installer prompts for the OraInventory directory
path, and creates the directory itself.

Administrative Files

Every Oracle database has several administrative files associated with it. Among these files are
configuration files, core dump files, trace files, export files, and other related log files. You need to
store these files under separate directories for ease of maintenance. Assuming you have about ten or
so of these directories for each database, you can see why it’s imperative that you have a simple
means of organizing them. Oracle recommends the following directory structure for clarity: /h/
admin/d/a, where h is the Oracle base directory (e.g., /u01/app/oracle), admin indicates that this
directory holds administration-related files, d refers to the specific database, and a refers to the
subdirectories for each specific type of administrative files. For example, the /u01/app/oracle/
admin/prod1/bdump directory will contain all background process trace files as well as the all-impor-
tant alert log files for the prod1 database.

Table 9-1 lists some of the standard administrative directories that you’ll need in most cases. Of
course, you may add to the recommended list or modify it to fit your circumstances.

Product Files

The whole idea behind properly naming and placing the product files is to be able to implement
multiple versions of the Oracle server software simultaneously. This is necessary because when you
migrate between versions, it is normal to retain the older software versions until you switch over to
the new version. Different applications on the system may have different timeframes within which
they want to migrate to the new version. Consequently, in most cases, you’ll end up having to
support multiple versions of the Oracle server software simultaneously.

Oracle recommends that you keep each version of the software in a separate directory distin-
guished by the naming convention /h/product/v, where h is the home directory, product indicates
that the software versions are under this directory, and v is the version of the product. For example,
I have a directory on my system called /u01/app/oracle/product/10.1.0.2.0 under which I save all
the Oracle server software subdirectories during installation. If I decide to install the 10.2.0 version,
I’ll do so under the directory /u01/app/oracle/product/10.2.0. You can see that this type of naming
convention makes it very easy to install and manage multiple versions of the Oracle software.

Table 9-1. Typical Administrative Directories

Directory Contents

adhoc Contains ad hoc SQL files

arch Contains archived redo log files

create Contains SQL scripts that you can use for creating your databases

dpdump Contains the Data Pump Export files

pfile Contains instance parameter files (such as init.ora)

398 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

Installing on a Multihomed Computer

A server with multiple IP addresses is called a multihomed computer. A multihomed computer uses
multiple network cards, with each IP address linked to a distinct host name or an alias.

By default the installer identifies the host name on a multihomed computer by using the
ORACLE_HOSTNAME environment variable. You can set the ORACLE_HOSTNAME environment variable in
the following way.

Bourne, Bash, or Korn shell:
$ ORACLE_HOSTNAME=myhost.us.example.com
$ export ORACLE_HOSTNAME

C shell:
% setenv ORACLE_HOSTNAME myhost.us.example.com

In the previous examples, the fully qualified host name is myhost.us.example.com. If you haven’t
set the ORACLE_HOSTNAME environment variable and the server has multiple network cards, the
installer finds the host name by looking up the first entry in the /etc/hosts file. All clients must be
able to access the server by utilizing this host name or an alias for it.

Database Files

The administrative and product files are generic files. Oracle databases contain another set of key
files called database files. These include the datafiles that contain the table and index data and
certain operational files called control files and redo log files. Control files are crucial to the operation
of the database, and redo log files hold information necessary to recover the database during an
instance crash and similar situations.

The OFA recommendation for control and redo log files is to follow the naming conventions
/pm/q/d/controln.ctl and /pm/q/d/redon.log, respectively. In this notation, pm is the mount point;
q is an indicator, such as oradata, denoting that the files contain Oracle-related data; d is the data-
base name (provided by the DB_NAME initialization parameter, which is the same as the SID for the
database); and n is a two-digit number.

Since Oracle recommends that you have multiple control files and duplexed online redo log
files, it’s common to see the following naming structure for redo log files and control files:

/u01/oradata/prod1/control01.ctl
/u05/oradata/prod1/control02.ctl
/u02/oradata/prod1/redo01.log
/u04/oradata/prod1/redo02.log

Oracle recommends that all tablespaces be named with no more than eight characters, with the
format tn, where t is a descriptive name for the tablespace and n is a two-digit number. For datafiles,
the recommended notation is /pm/q/d/tn.dbf, where pm is the mount point; q is an indicator, usually
oradata; d is the database name; t is the descriptive name for the tablespace that contains this data-
file; and n is a two-digit number. Thus, a typical datafile under the OFA guidelines would have a name
like /u20/oradata/prod/system01.dbf, which refers to a datafile in the System tablespace.

OFA file-naming conventions are designed to achieve the following goals:

• Show which tablespace a datafile belongs to.

• Distinguish database files from other files on the system.

• Distinguish between database files belonging to various databases.

• Identify control files, redo log files, and datafiles easily.

Table 9-2 clearly shows how an OFA-compliant database enables you to easily manage files
belonging to several database versions. The example also shows two Oracle home directories, one for
Oracle 9.2 and the other for Oracle 10.2. There are a total of four mount points. The Oracle software

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 399

is on mount point /u01, and the database files are distributed across three mount points: /u02, /u03,
and /u04.

Creating Directories for Oracle Database Files

Although our concern in this chapter is with installing Oracle server software, the storage space
necessary for database files (which includes the files for tables and indexes, as well as the files for the
redo logs and the undo tablespace and so on) will, in most cases, dwarf the space needed for the
installation files.

Although nothing prevents you from placing all your database files on one storage device,
Oracle recommends that you use a logical volume spread over several disks or use a RAID system.
Oracle further recommends that you use the SAME (stripe-and-mirror-everything) technique. For

Table 9-2. Directory Structure for an OFA-Compliant Oracle Database

Directory Format Description

/ Root directory

/u01 User data mount point 1

/u01/app/ Subdirectory for application software

/u01/app/oracle/ Oracle base directory

/u01/app/oracle/admin Directory for the Oracle administrative files

/u01/app/oracle/admin/
nina/

Admin subdirectory for the nina database

/u01/app/oracle/
flash_recovery_area/

Subdirectory for recovery files

/u01/app/oracle/
flash_recovery_area/nina

Recovery files for the nina database

/u01/app/oracle/product/ Distribution files

/u01/app/oracle/product/
10.2.0

Oracle home directory for Oracle Database 10g Release 2 (10.2.0)

/u01/app/oracle/product/
11.1/db_1

Oracle home directory for Oracle Database 11g Release 1 (11.1.0)

/u02 User data mount point 2

/u02/oradata/ Subdirectory for Oracle data

/u02/oradata/nina/ Subdirectory for database files for the nina database

/u03 User data mount point 3

/u03/oradata/ Subdirectory for Oracle data

/u03/oradata/nina/ Subdirectory for database files for the nina database

/u04 User data mount point 4

/u04/oradata/ Subdirectory for Oracle data

/u04/oradata/nina/ Subdirectory for database files for the nina database

400 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

each of the mount points you select for your database files, you need to issue the following
commands as root in order to set the owner, group, and permissions:

mkdir /mount_point/oradata
chown oracle:oinstall /mount_point/oradata
chmod 775 /mount_point/oradata

Using the preceding command structure, you can create as many subdirectories for your data-
files as necessary; for example, /u10/oradata, /u11/oradata, and so on.

Creating the Flash Recovery Area

The flash recovery area is a disk area set apart for storing all the recovery-related files. It’s a good idea
to create it on entirely different storage devices from where you have your datafiles. You also need to
set another parameter, DB_RECOVERY_FILE_DEST, to indicate the location of the flash recovery area.
You can set the physical size of the flash recovery area by using the DB_RECOVERY_FILE_DEST_SIZE
initialization parameter.

Here is how you create the flash recovery area directory:

mkdir /mount_point/flash_recovery_area
chown oracle:oinstall /mount_point/flash_recovery_area
chmod 775 /mount_point/flash_recovery_area

For example, you can designate /u20/flash_recovery_area as your flash recovery area, and set
the DB_RECOVERY_FILE_DEST_SIZE parameter to 5GB.

Performing Preinstallation Tasks
The installation of the Oracle software, as I mentioned earlier, is a straightforward exercise. You do
the bulk of your work before the installation of the software. Your crucial partner in this process is the
Linux/UNIX system administrator.

To estimate the total disk space you need, you have to add the space required for the Oracle
Database 11g installation to the total space you expect the database files to consume. For example,
for an Oracle Database 11g installation on the HP UNIX system, Oracle recommends that you allo-
cate around 2GB of space for your software. You must add this 2GB to whatever space estimates
you’ve come up with for your database files in the previous section.

You can also estimate memory requirements by following some basic guidelines. Most small
OLTP systems require about 500MB of RAM, medium installations require about 1GB, and larger
installations require more RAM. A more important issue at software installation time is that you allo-
cate enough swap space for your system.

■Note The Oracle Universal Installer, which comes with the software distribution, will let you install a seed data-
base. This might be a good idea if you are a complete beginner. If you already have some experience, you’re better
off configuring your own customized database.

Checking the Preinstallation Requirements
The preinstallation tasks depend on your operating system, but the steps are similar. In this discus-
sion, I show you how to install the Oracle software on a Red Hat 3.0 WS Linux operating system. You
will need to consult your specific documentation from Oracle for the exact installation procedures
for your operating system.

The installation process for Oracle Database 11g is much more automated than were previous
versions. The installation process automatically checks the following prerequisites:

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 401

• Platform version: The installation process checks to make sure the operating system is appro-
priate for the Oracle installation. If you were using an HP-UX system, for example, you would
need to have at least the HP-UX-11.11 operating system version. In this chapter, since we’re
using a Linux-based server for the Oracle installation, we can use one of the following Linux
distributions, which are certified for Oracle Database 11g:

• Oracle Enterprise Linux 4.0

• Oracle Enterprise Linux 5.0

• Red Hat Enterprise Linux 4.0

• Red Hat Enterprise Linux 5.0

• SUSE Linux Enterprise Server 10.0

• Operating system patches: The installation process checks to ensure that you’ve applied the
latest operating system patches.

• Kernel parameters: The installation process verifies that your OS kernel settings are adequate.
It also verifies that you have installed the necessary OS system packages.

• Space: The installation process checks to ensure that you have the minimum amount of
temporary space in your /tmp directory before starting the installation. It also checks for
adequate swap space.

• ORACLE_HOME directory: The installation process checks that you have either a non-empty
Oracle home directory or one that qualifies for the installation because it contains a release
on top of which Oracle Database 11g can be installed.

■Note If you aren’t sure whether your operating system is certified for a certain Oracle release, you can check
the latest Oracle product and platform certification matrices on the Oracle web site: http://www.oracle.com/
technology/support/metalink/content.html.

Although it’s true that the Oracle installer software checks to ensure that all the prerequisites are
satisfied, you shouldn’t wait until installation time to find out. You must diligently check each neces-
sary component, to make sure your installation will be a smooth process, instead of erroring out
several times. You can divide the checking of the prerequisites into tasks that fall into the domain of
the UNIX or Linux (or Windows) system administrator and those that are the responsibility of the
Oracle DBA.

Oracle Products Installed with the 11.1 Release

The following products are installed by default when you install the 11.1 release database server.

• Oracle Application Express: Tool for developing and deploying web applications

• Oracle Warehouse Builder: Tool to design, deploy, and manage business intelligence systems

• Oracle Configuration Manager: Tool that collects and uploads configuration information to
the Oracle configuration repository

• Oracle SQL Developer: Graphical version of SQL*Plus

• Oracle Database Vault: Tool that enables you to secure business data

System Administrator’s Preinstallation Tasks
The UNIX/Linux system administrator needs to perform several steps before you can install your
Oracle software. First, the system administrator should make sure that the latest operating system

402 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

patch sets are applied, per Oracle’s installation recommendations. The other important tasks are
creating separate mount points for the Oracle software, reconfiguring the kernel (if necessary),
creating the necessary users and groups on the UNIX/Linux server, and making sure that the Oracle
users have the right file and directory permissions.

All these system administrator tasks are covered in some detail in the following sections. The
tasks are discussed in general, but the examples are all based on an actual installation on a Red Hat
Linux 3 system.

Verifying Operating System Software

The system administrator must check several things regarding the compatibility of the operating
system software for the Oracle installation, such as checking the OS and kernel versions and making
sure necessary packages are present and patches applied.

Checking Operating System Version

The system administrator must also make sure that the server on which you’re installing Oracle is
using the correct operating system version for Oracle Database 11g. On a Linux system, for example,
the operating system must be one of the following for installing Oracle Database Release 1 for Linux
x86 and Linux x86-64.

• Asianux 2.0

• Asianux 3.0

• Oracle Enterprise Linux 4.0

• Oracle Enterprise Linux 5.0

• Red Hat Enterprise Linux 4.0

• Red Hat Enterprise Linux 5.0

• SUSE Linux Enterprise Server 10.0

The correct version of Linux must be installed on a platform certified for it. To find out what OS
version is installed on a UNIX or Linux server, use the following command:

cat /etc/issue
Red Hat Enterprise Linux WS Release 3 (Taroon Update 4)
Kernel \r on an \m

Checking Kernel Version

Once the system administrator has ensured that one of the approved operating system versions is
indeed being used, the next step is to check to ensure that the OS is using the correct kernel version.
The Oracle Universal Installer performs checks on your system to verify that it meets the require-
ments. If you don’t have the necessary OS version, the installation will fail, however, so it is a good
idea to verify the requirements before you start the Oracle Universal Installer.

Following are the kernel requirements for Oracle Database 11g Release 1:

• For Asianux 2.0, Oracle Enterprise Linux 4.0, and Red Hat Enterprise Linux 4.0: 2.6.9

• For Asianux 3.0, Oracle Enterprise Linux 5.0, and Red Hat Enterprise Linux 5.0: 2.6.18

• For SUSE Linux Enterprise Server 10: 2.6.16.21

On my Red Hat Linux Enterprise Linux 4.0 system, the kernel version must be at least at the
2.4.21-27 EL level. The system administrator can verify the kernel version by using the following
command:

uname –r
2.6.9-55.0.0.0.2.EL

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 403

The uname command shows that the kernel version is 2.6.9 and the errata level is 55.0.0.0.2.EL.
In this case, the kernel version is exactly what is required. If it turns out that you need kernel

updates or a newer OS version, the system administrator will have to download the updates and
install them, in most cases. Alternatively, you can use the command /cat /proc/version to find out
your kernel version.

Checking for Required Packages

The installation process also requires that certain operating system packages be installed. For
example, my Linux 3 OS must have the following packages:

make-3.79.1
gcc-3.2.3-34
glibc-2.3.2-95.20
compat-db-4.0.14-5
compat-gcc-7.3-2.96.128
compat-gcc-c++-7.3-2.96.128
compat-libstdc++-7.3-2.96.128
compat-libstdc++-devel-7.3-2.96.128
openmotif21-2.1.30-8
setarch-1.3-1

The system administrator can verify whether a particular required package is installed by using
the following command:

rpm -q package_name

If a package is not installed, the system administrator can copy it from the OS software installa-
tion CDs or download it from the Linux vendor.

Applying Necessary OS Patches

The system administrator must ensure that all required operating system patches are installed
before performing the Oracle software installation. Oracle’s operating system–specific guides will
provide you with the required and recommended patches for your operating system.

Checking Physical OS Requirements for Oracle Installation

Check that you have at least the following memory and physical space:

• A minimum of 1024MB of physical RAM.

• 1GB of swap space, or twice the size of the physical RAM if your RAM is between 256MB and
512MB. Oracle provides a matrix that shows the amount of swap space for varying RAM sizes.

• At least 400MB of free space in the /tmp directory.

• From 1.5GB to 3GB of disk space for the Oracle software, depending on the installation type.

The root user should run the following two commands to check the amount of RAM and swap
space:

grep MemTotal /proc/meminfo
MemTotal: 1203934 kB
grep SwapTotal /proc/meminfo
SwapTotal: 2040244 kB

To check the available disk space, run the following command:

df -h
Filesystem Size Used Avail Used% Mounted on

404 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

/dev/sda3 11G 8.7G 1.7G 85% /
/dev/sda1 99M 15M 79M 16% /boot
none 588M 0 588M 0% /dev/shm

To find out how much space you have in your /tmp directory, the system administrator can run
the following command:

$ df –k /tmp

Based on the physical disk storage requirements, the Oracle DBA will need to prepare an instal-
lation-requirements document, identifying the resources required and the preferred layout of the
disks. Once the DBA’s requirements pass through any necessary approvals, the system administrator
will allocate the memory and disk space. The system administrator will also provide the location of
all your mount points.

Creating Mount Points for the Installation

Oracle recommends a minimum of four mount points for an OFA-compatible Oracle installation.
You absolutely must have at least two mount points: one for the software and the other for the data-
base files. However, you actually need more than that for a database with several large datafiles. A
minimum OFA-compatible installation requires four mount points: one for the Oracle software and
three for the various database files.

The number of mount points you need depends on your total space requirements. If your
computations indicate that you need around 200GB of total space, and each of your mount points
supports 7GB, you would need roughly 30 mount points for your applications.

It is important that the UNIX administrator name the mount points in accordance with the OFA
guidelines discussed earlier in this chapter.

Reconfiguring the Kernel

Oracle requires huge amounts of shared memory segments, which are usually not configured by
default in the Linux (or UNIX) operating system. There is a good possibility that the system admin-
istrator will need to change certain kernel parameters, such as the ones dealing with memory and
semaphores (structures that control access to the operating system’s memory).

■Note It is extremely important for the kernel to be reconfigured at the outset. If enough memory resources aren’t
configured per Oracle’s guidelines, either your installation will not succeed or you will encounter an error when you
try to create a database after the installation of the Oracle software. The kernel reconfiguration is a very simple task
for the administrator. All he or she has to do is change the kernel configuration file and regenerate a new kernel file
using the appropriate command. The system administrator then needs to restart the system with the new kernel file
replacing the older version.

Each UNIX or Linux operating system may have a different set of kernel requirements for an
Oracle installation. Table 9-3 shows the kernel requirements for the Red Hat Linux 3 operating
system I am using for the Oracle software installation.

Table 9-3. Sample Linux Kernel Requirements for an Oracle Installation

Parameter Value

semmsl 250

semmns 32000

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 405

To view the current kernel configuration, issue this command:

$ cat /etc/sysctl.conf

During the operating system prerequisite checks, the Oracle installer might show errors that can
be fixed by reconfiguring the UNIX or Linux kernel. If the kernel needs reconfiguring, the system
administrator will need to edit to the kernel configuration file.

If the values of any of the kernel parameters are not big enough, the installation will fail; if the
values of any parameters are below the minimum values, you must edit the /etc/sysctl.conf file to
specify the larger values for the parameters, as shown here:

fs.file-max = 512 * PROCESSES
kernel.shmall = 2097152
kernel.shmmax = 2147483648
kernel.shmmni = 4096
kernel.sem = 250 32000 100 128
net.ipv4.ip_local_port_range = 1024 65000
net.core.rmem_default = 262144
net.core.rmem_max = 4194304
net.core.wmem_default = 262144

On my Linux server, I modified the /etc/sysctl.conf file, but this may vary depending on your
OS. After reconfiguring the kernel parameter settings and generating a new kernel, the system
administrator must reboot the system using the new kernel for the new settings to take effect.

The system administrator can also use the following command on Red Hat Linux to dynamically
change the current values of the kernel parameters, without a need to reboot the system (this will
only change the values temporarily and they’ll revert to their original values upon rebooting):

/sbin/sysctl –p

After the kernel parameters have been changed, the system administrator can verify the settings
by running the following commands as root:

semopm 100

semmni 128

shmall 2097152

shmmax Minimum of half the physical memory or 4GB

shmmni 4096

file-max 65536 (512*processes)

ip_local_port_range Minimum 1024

ip_local_port_range Maximum 65000

rmem_default 262144

rmem_max 4194304

wmem_default 262144

wmem_max 262144

Table 9-3. Sample Linux Kernel Requirements for an Oracle Installation (Continued)

Parameter Value

406 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

/sbin/sysctl -a | grep shm
/sbin/sysctl -a | grep sem
/sbin/sysctl -a | grep file-max
/sbin/sysctl -a | grep ip_local_port_range

■Note Oracle uses the shared memory segments of the operating system to share data among its various
processes.

In addition to modifying the kernel parameters, the system administrator must also check limits
on user processes as well as certain user login shell scripts, and change them if necessary. The
following sections discuss these additional changes to be made by the system administrator.

Changing Shell Limits

Oracle recommends setting limits on the number of processes and open files each Linux account
may use. To improve the performance of Oracle software on Linux systems, the system adminis-
trator must increase certain shell limits for the oracle user by adding the following lines to the /etc/
security/limits.conf file:

oracle soft nproc 2047
oracle hard nproc 16384
oracle soft nofile 1024
oracle hard nofile 65536

You must also add the following line to the /etc/pam.d/login file:

session required /lib/security/pam_limits.so

Changing Login Scripts

The system administrator must also make changes to the Oracle users’ login shell. The changes
depend on the default shell type.

For the Bourne, BASH, or Korn shell, add the following lines to the /etc/profile file:

if [$USER = "oracle"];
then
 if [$SHELL = "/bin/ksh"]; then
 ulimit -p 16384
 ulimit -n 65536
else
 ulimit -u 16384 -n 65536
 fi
fi

For the C shell (csh or tcsh), add the following lines to the /etc/csh.login file:

if ($USER == "oracle") then
 limit maxproc 16384
 limit descriptors 65536
endif

Creating Necessary Groups

Operating system groups consist of a set of users who perform related tasks and have similar privi-
leges. Oracle recommends that you create three operating system groups for both Linux and UNIX

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 407

operating systems: OSDBA, OSOPER, and ORAINVENTORY (Oracle Inventory group). The default
name for the OSDBA group is dba, for the OSOPER group is oper, and for the ORAINVENTORY group
is oinstall. You can find out whether each of these three groups already exists in your system by
checking the /etc/group file.

Members of the OSDBA (dba) group will have the SYSDBA Oracle database privilege, which
lets them perform privileged actions such as starting up and shutting down the database. The
ORAINVENTORY (oinstall) group is mandatory when you install Oracle software for the first time on
any server. The ORAINVENTORY group owns all Oracle inventory, which is a catalog of all the Oracle
software installed on a server. All new installations and upgrades are performed by users belonging
to the ORAINVENTORY group.

The OSOPER (oper) group is optional, and you need to create it only if you plan to grant any
users the OSOPER Oracle privilege to perform a limited set of administrative tasks, such as backing
up databases. All database users with the OSOPER privilege will be members of the OSOPER group
at the OS level.

■Note Users belonging to the ORAINVENTORY group must be given read, write, and execute privileges on the
ORAINVENTORY directory only. The group shouldn’t be given write permissions for any other directories.

Creating the Oracle Inventory Group

The ORAINVENTORY group needs to be created only if it doesn’t already exist in your system. Here’s
the command to create it, with the default name for the group:

/usr/sbin/groupadd oinstall

The Oracle installer creates the oraInst.loc file when you install Oracle software on a server for
the first time. This file tells you the name of the ORAINVENTORY group and the path of the Oracle
Inventory directory. Use the following command to determine whether the ORAINVENTORY group
already exists on your server:

more /etc/oraInst.loc

If the oraInst.loc file exists, you’ll see the following, which means you don’t have to create the
ORAINVENTORY group:

inventory_loc=/u01/app/oracle/oraInventory
inst_group=oinstall

Creating the OSDBA Group

Create this group only if one doesn’t exist, or if you want to give a new group of users DBA privileges
in a new Oracle installation. Use the following command to create the OSDBA group:

/usr/sbin/groupadd dba

Creating the OSOPER Group

The OSOPER group is optional—it should be created only if you’re planning to create one or more
Oracle users with limited administrative privileges. Here’s how you create the OSOPER group:

/usr/sbin/groupadd oper

The OSASM Group (asmadmin)

In order to clearly divide the responsibilities between ASM administration and database administra-
tion, Oracle 11g introduces a new SYSASM privilege. There is a new operating system group called

408 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

OSASM, which you use exclusively for ASM administration. Members of the OSASM group can
connect as SYSASM using operating system authentication, similar to members using the SYSDBA
privilege for database administration.

Create a new OSASM operating system group with the following command:

/usr/sbin/groupadd asadmin

The group name in this example is asadmin.

Verifying That an Unprivileged User Exists

An unprivileged user called nobody is necessary to own the external jobs (extjob) executable. Before
you install the Oracle software, verify that the user nobody exists in the system. If the user nobody
doesn’t exist, create the user by executing the following command:

$ /usr/sbin/useradd -g nobody

Creating the Oracle Software Owner User

After the system administrator has created the necessary groups, he or she needs to create the all-
important user that owns the Oracle software, usually named oracle (you can choose any name, but
oracle is used by convention). The oracle user is the owner of the Oracle software, and this user’s
default or primary group will be the newly created ORAINVENTORY group.

You need to install Oracle software as the Oracle software owner (the oracle user), rather than
as root. The oracle user’s secondary group should be the OSDBA group, and if necessary, the
OSOPER group as well. The oracle user will have a home directory like all the other users (usually
something like /u01/app/oracle), under which you’ll create the rest of the directory structure for
holding the Oracle Database 11g server software.

■Caution Don’t use the root account to install or modify Oracle software. Only the oracle user should perform
the Oracle software installation operations.

Under an HP-UX system, you can use the administrative tool SAM to create the users. In any
UNIX or Linux system, you can create the users manually, with the following command:

/usr/sbin/useradd –g oinstall –G dba –d /home/oracle -p oracle1 oracle

In the preceding command

g denotes the primary group of the user oracle, which is the oinstall group.

G is the secondary group, which is the dba group.

d denotes the home directory for the new user.

p is the password for the oracle user.

You may use the following command to set the password for the oracle user, if you wish:

/usr/bin/passwd oracle

Refer to Chapter 3 for more details about the passwd command.
Note that the default home directory of the oracle user should be similar to that of the normal

users of the system. The ORACLE_HOME directory is not meant for the oracle user; it’s the location for
the Oracle software binaries and similar files.

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 409

■Note The oracle user should be given read, write, and execute privileges on all files and directories that are part
of the Oracle Database 11g installation.

Setting File Permissions

The next step is to set the default Linux/UNIX file permissions. To do this, the system administrator
must first check the existing default permissions by issuing the umask command. If the umask is set
to anything but 022, change it to 022 by issuing the umask 022 command. The system administrator
can simply open the default login shell (which, for the BASH shell on Red Hat Linux, is
.bash_profile) and add this line:

umask 022

As you saw in Chapter 3, the default permissions for a newly created file system are 666 under
the octal notation. That is, everyone is able to read and write any file. By using a default file permis-
sion of 644 (by using the umask of 022), you are granting any users other than the oracle user read
permission only on the file systems. Of course, the system administrator must make sure the oracle
user has write permissions to create files in all the user’s directories.

The UNIX administrator must ensure that a local bin directory exists, such as /user/local/bin
or /opt/bin. The administrator must further ensure that this directory is included in the PATH envi-
ronment variable used by the oracle user and that the oracle user has execute permission on this
directory.

The system administrator must also create a directory with the name /var/opt/oracle that is
owned by the oracle user. This directory will contain files that describe various components of the
Oracle server software installation. The following commands will create the directory and assign it
the necessary privileges:

$ mkdir /var/opt/oracle
$ chown oracle:dba /var/opt/oracle
$ chmod 755 /var/opt/oracle

Creating Necessary Directories

The system administrator (root) must also create the Oracle base directory, which acts as a top-level
directory for Oracle software installations, and its ownership must be assigned to the oracle user.
Assuming you choose the standard /u01/app/oracle directory as your Oracle base directory, you can
create it and assign the necessary ownership and file permissions with these commands:

$ mkdir -p /u01/app/oracle
$ chown -R oracle:oinstall /u01/app/oracle
$ chmod -R 775 /u01/app/oracle

During the installation, you must set the ORACLE_BASE environment variable to specify the full
path to this directory (/u01/app/oracle).

Oracle Inventory Directory

The Oracle Inventory directory is usually the /$ORACLE_BASE/oraInventory directory, and it contains
an inventory of all Oracle software installed on the system. You don’t need to explicitly create this
directory. The Oracle Universal Installer will prompt you for its location the first time it installs soft-
ware on your server. The installer creates the directory and assigns the Oracle user the necessary
rights.

410 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

Oracle Home Directory

As mentioned earlier in this chapter, the Oracle home directory is the key directory where the installer
actually installs all the Oracle executables. The Oracle home directory must be a subdirectory of the
Oracle base directory you just created. You don’t have to explicitly create the Oracle home directory—
the installer prompts you for a symbolic name as well as the direct location for it. The installer will
then automatically create this directory and assign the Oracle user the necessary privileges.

This is an example of the correct format for the Oracle home directory (first installation of the
database software):

$ORACLE_BASE/product/11.1.0/db_1

Database Directories (for Data Storage)

Of course, the Oracle home directory is only for the Oracle binaries. The DBA must also create sepa-
rate database directories for locating the datafiles, control files, redo logs, and other files. The Oracle
installer suggests a subdirectory of the Oracle base directory for locating these files.

However, the system administrator must create separate directories for the database-related
files. Ideally, these directories must be created on separate physical devices. This way, you can
distribute physical I/O as well as have different devices for locating your duplexed control files and
redo log files. Although the same drive can be used for creating all the directories, it won’t be possible
to fully implement the OFA guidelines.

Create multiple database directories using the following format (adjusted for your require-
ments), and make sure that the oracle user has write permissions on them:

$ mkdir -p /prod10/oradata/prod
$ chown -R oracle:oinstall /prod10/oradata/prod
$ chmod -R 775 /prod10/oradata/prod

Flash Recovery Area

As I mentioned earlier in this chapter, Oracle strongly recommends that you maintain a flash
recovery area for storing all recovery-related files. You must place the recovery files on a different
physical disk from the database files, to prevent a disk failure from affecting both the current data-
base files and the recovery files.

Here’s an example showing how to create and set the appropriate owner, group, and permis-
sions on the directory for the flash recovery area. I named the subdirectory flash_recovery_area, but
it could be anything that you specify using the DB_RECOVERY_FILE_DEST parameter:

$ mkdir -p /prod20/oradata/prod/flash_recovery_area
$ chown -R oracle:oinstall /prod20/oradata/prod/flash_recovery_area
$ chmod -R 775 /prod20/oradata/prod/flash_recovery_area

Oracle Owner’s Preinstallation Tasks
As I mentioned earlier, the system administrator must create an account for the owner of the Oracle
software. Usually, this is an account with the name oracle. The Oracle owner—in our case, the oracle
user—needs to set the environment variables before the installation of the software.

Setting the Environment Variables

You need to log in as the oracle user and set a number of environment variables. Although all of the
environment variables can be set manually, you are better off editing the default shell startup file,
which, on my Red Hat Linux server, is the .bash_profile file in the home directory of the oracle user
(the /home/oracle directory by default). By editing the shell startup file, you will ensure that the envi-
ronment will always be set appropriately each time you log in. Here are the main environment
variables that you need to set:

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 411

• ORACLE_BASE: The ORACLE_BASE variable is the starting directory for all Oracle installations. All
the software files and other files are placed in directories underneath the ORACLE_BASE direc-
tory. In our example, the directory is /u01/app/oracle.

• ORACLE_HOME: When you’re installing the Oracle server, the ORACLE_HOME variable should be set
to oracle_base/product/10.2.0/db_1. In our case, this will be /u01/app/oracle/product/
10.2.0/db_1. The Oracle installer prompts you for the value of the ORACLE_HOME variable
during the installation of the software.

■Caution Your environment variables may be slightly different from the ones listed here, depending on your
operating system and its version. Always check the operating system–specific installation guides—it’s well worth
the effort to read them. The specifics in this chapter are based on a Red Hat Linux operating system.

■Note You can identify existing ORACLE_HOME directories by looking at the contents of the oratab file:

cat /etc/oratab

If the oratab file exists, it contains lines similar to the following:

prod1:/a03/app/oracle/product/11.1.0:Y
prod2:/a04/app/oracle/product/10.2.0:Y

The oratab file’s contents reveal that there is one 11.1 and one 10.2 version of Oracle home on this server.

• PATH: The PATH variable should be set to the following:

$ export PATH=$ORACLE_HOME/bin:/usr/bin:/usr/ccs/bin:
/etc:/usr/binx11:/usr/local/bin

• DISPLAY: You may or may not have to set the DISPLAY environment variable. See the “Setting
the DISPLAY Variable” sidebar for details.

■Note An easy way to check whether you need to set the DISPLAY variable is to run an x11-base program such
as xclock. Simply type the following command in a new xterm, dtterm, or xconsole at the very outset:

$ xclock

You can also specify the complete path to the xclock program this way:

$ /usr/bin/x11/xclock

If the DISPLAY variable is set, you’ll see a small analog clock displayed on your screen. If the DISPLAY variable isn’t
set correctly, you’ll see the following message:

$ xclock
Error: Can't open display:
$

412 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

• TNS_ADMIN: The TNS_ADMIN variable is used to set the location of the Oracle Net configuration
files. By default, the network configuration file, called tnsnames.ora, is located in the
$ORACLE_HOME/network/admin directory.

• ORACLE_SID: The important ORACLE_SID variable need not be set if you are not planning to
create a database right now.

• ORAENV_ASK: In addition to the environment variables in the .profile file, you need to add
another line to source the oraenv file, so all user sessions will automatically read the oraenv
file upon logging in as the oracle software user. The oraenv file will prompt the oracle user for
the correct SID of the database he or she wants to use. On a system with several database
instances, the oraenv file comes in handy in making this choice as soon as you log in. Here’s
the line you must add to the .profile file:

. /usr/local/bin/oraenv

• If you set the value of the ORAENV_ASK variable to NO, the current value of ORACLE_SID will be
assumed to be the SID you want to use.

SETTING THE DISPLAY VARIABLE

If you’re performing the Oracle installation directly from an X Window System workstation or X terminal connected to
the server on which you’re installing the software, just start an X terminal window. No other changes are necessary.
If you’re installing the software on a remote system, you must set the DISPLAY environment variable so the X appli-
cations will display on your local PC or workstation window.

If you’re using the Bourne, BASH, or Korn shell, enter this command:

$ DISPLAY=localhost:0.0; export DISPLAY

If you’re using the C shell, enter this command:

% setenv DISPLAY localhost:0.0

In both of the preceding commands, replace localhost with the IP address or symbolic name of the host PC or work-
station where you want to run the Oracle installer. Here’s an example that sets the DISPLAY variable using an IP
address of 174:16.14.15:

$ export DISPLAY=174:16:14:15:0.0

If you’re getting errors when trying to run the Oracle installer (even after setting your DISPLAY environment variable),
you may have to use the xhost program to add your local host name to the list of hosts allowed to make connections
to the X server on the host where you’re running the Oracle installer. The xhost program is a server access-control
program for X windows, and you can add your local host name to the access list for the X Window System as follows:

$ xhost +localhost

Or you can use the following variation, to enable access for anyone, by essentially turning access control off:

$ xhost +
access control disabled, clients can connect from any host
$

Once you finish installing the Oracle software, you can turn access control off again by using the xhost command
with the - option (xhost -).

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 413

■Tip It may be a good idea to incorporate as many of the environment variables as possible in the shell startup
file in the oracle user’s home directory. This way, when you log in as the oracle user, the variables will already be
in force in your shell.

You must also edit the /home/oracle/.bash_profile file as follows, so the environment variables
are set correctly each time the user oracle logs in:

umask 022
PATH=/bin:/usr/bin:/usr/local/bin:/usr/X11R6/bin
ORACLE_BASE=/u01/app/oracle
ORACLE_HOME=$ORACLE_BASE/product/11.1.0/db_1
PATH=$ORACLE_HOME/bin:$PATH
LD_LIBRARY_PATH=$ORACLE_HOME/lib
export ORACLE_BASE ORACLE_HOME
export PATH LD_LIBRARY_PATH

■Tip If you’re installing the Oracle 11.1.0 software on a server where you already have other Oracle databases,
make sure you back up those databases first. Delete the ORACLE_HOME environment variable that you’re currently
using, and stop all running services if you’re installing software in an already existing Oracle Database 11g release 1 (11.1)
home.

A Final Checklist for the Installation
To ensure that your Oracle installation won’t abort in the middle, make sure you satisfy the following
requirements:

• Make sure you have enough temporary space. There is usually only a small amount of tempo-
rary space on most UNIX servers—something like 100MB or so. If this is the case on your
system, your Oracle installation will fail midway through, because Oracle uses the temporary
directory on the server heavily during the installation process. You have two ways to get
around this problem. You can either ask your system administrator to increase the size of the
temporary directory on the server, or you can change the environment variable for the
temporary directory. Usually, you do this by setting the TMPDIR environment variable to
something other than /tmp and making sure that there is at least 400MB of space under this
temporary directory. Here’s how I changed my temporary space during the Oracle
installation:

$ export TMPDIR=/test01/app/oracle/tmp
$ export TMP=/test01/app/oracle/tmp

• Set the swap space to a high amount, at least satisfying Oracle’s requirements specified in the
operating system–specific installation guide. Oracle provides a matrix recommending
varying swap space requirements based on the size of the available RAM. Make sure you allo-
cate about 500MB to avoid any swapping or paging problems on the server.

• Modify the UNIX kernel to meet your installation requirements. Even if you install the server
software correctly, if kernel parameters such as SHMMAX and SEMMNS are not set high enough
and you have a large number of processes in your initialization file, your database creation
will fail.

414 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

• Set the DISPLAY variable properly so the Oracle installer will come up correctly. If you’re
installing the Oracle software directly on the server, you need to change the DISPLAY variable
on the server; if you’re installing remotely from a client, you need to set the variable on the
client. In most cases, a command such as the following will set up your display correctly:

$ export DISPLAY=<Your IP address or hostname>:0.0

• Sometimes when you are working on a workstation, you will be unable to use the X Window
System emulation on the machine, which means the Oracle Universal Installer cannot func-
tion in the GUI mode. In these circumstances, use the xhost command in a window on the
workstation. Here’s an example:

$ xhost +localhost

• Mount the installation CD correctly, if you’ve chosen to use it to install the software. Just
follow your operating system–specific installation guide for the correct CD installation
commands.

Accessing the Installation Software
Once you have finished all the preinstallation work, you are ready to install the Oracle Database 11g
software. In this chapter, I install Oracle Database 11g Release 1 software on a Linux server as an
example. You can install directly from the Oracle software distribution available on CD or DVD. You
can also download the software for free, from the Oracle Technology Network web site (http://
technet.oracle.com).

Using Oracle Software Packages

The following are the important CDs that are part of the Oracle Enterprise Edition software CD pack:

• Oracle Database 11g CD: This is the only CD you’ll need to install the Oracle Database 11g
server software.

• Companion CD: This CD contains additional software that you may want to install for prod-
ucts like Oracle JVM, Oracle Multimedia, and Oracle Text.

• Oracle Database 11g Client CD: This CD contains the client software you may need to install
on your users’ or developers’ servers.

• Oracle Enterprise Manager CD: This CD contains the Enterprise Manager Grid Control soft-
ware, which lets you manage all the databases, servers, and other components from a
centralized location. The local OEM Database Control is automatically installed when you
create a new Oracle database.

■Caution Make sure you are logged in as the Oracle software owner, oracle, and not as root, when you perform
the various installation procedures. Otherwise, your installation process will fail. There are only a couple of times
during the installation process when you’ll need to log in as root to perform certain tasks.

In several versions of Linux and UNIX, the Oracle CDs load automatically, but sometimes you
may have to use an explicit command, such as the following to mount the CD (make sure you log in
as the root user to run these commands):

$ umount /dev/cdrom
$ mount /dev/cdrom /mnt/cdrom
mount: block device /dev/cdrom is write-protected, mounting read-only
$

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 415

Your Oracle software CD is now mounted for your use, and you should see its files under the CD
mount point, which is /mnt/cdrom in our case.

You can move to the /mnt/cdrom directory to view the files on the CD, as shown here:

$ cd /mnt/cdrom
$ ls
doc install response runInstaller stage welcome.htm

The runInstaller file is the executable you must run to invoke the Oracle Universal Installer,
which helps you install the Oracle server software.

■Note In the installation example that follows, I used the Linux x86–specific Oracle Database 11g version 11.1
software.

Downloading Oracle Software

The Oracle software download site (http://technet.oracle.com) gives clear instructions on how to
download and install the software on various operating systems. Once you download the software,
you usually need to use either the gunzip (gzip) utility on UNIX and Linux systems or the WinZip
utility on Windows to unzip the compressed installation files before you can install the software.

Here’s a brief summary of the Oracle software downloading process: First download the zipped
Linux x86 file by FTP. The file name is ship.db.cpio.gz. Once the file is downloaded, the following
two steps will extract the software files. The following command unzips the original ship.db.cpio.gz
file that I downloaded:

$ gunzip ship.db.cpio.gz

The next command extracts the installation files:

$ cpio -idmv < ship.db.cpio

Once you have extracted the zipped file, you’ll see a new directory named Disk1, which is
created as a subdirectory in the directory from which you extracted the zipped file. The Disk1 direc-
tory contains several directories and one binary file, runInstaller, which is the executable for
invoking the Oracle Universal Installer.

You can use the runInstaller script and invoke the Oracle Universal Installer not just for the
initial installation of the Oracle Database 11g software, but also for modifications and additions to
the initial software configuration. Ensure your system administrator is nearby, because you may
need help with setting the DISPLAY variable for the installer GUI, or you may run into unforeseen
space or file privilege problems. You’ll also need the administrator to run the root.sh script
(discussed in the next section) as the root user, toward the end of the installation process.

■Tip Make sure you have enough space in the temporary directory, as the Oracle installer creates a lot of files in
this directory. Your installation may stop in the middle, and you’ll have to restart it if this happens. About 400MB to
500MB of space in the /tmp directory should be available for the Oracle installer’s use during the installation process.

You can install the Oracle software in the following ways:

• Install directly from the Oracle product CDs.

• Install from software downloaded from the OTN site.

• Copy the software from the product CDs to disk, and install it from disk.

416 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

In the next section, I show you how to copy the software from the Oracle product CDs to disk,
and to install from there.

Installing the Software
You can install the Oracle server software from the software CD or the downloaded files directly, but
Oracle recommends that you perform the installation from a staging directory on your system. If
you’re installing Oracle from the CD, first create a staging directory, such as /staging. You can then
copy the contents of the CD to your staging directory, as shown here:

$ cp –r /mnt/cdrom /staging

The previous command will recursively copy all the directories on the installation CD to the
/staging directory. Installing from disk is slightly faster than installing from the CD. Saving the
installation files on disk in this manner will also help you down the road, when you need to invoke
the Oracle installer to perform installation-related tasks—you won’t need to locate the CD.

In this section, I detail the interactive installation method, which involves you responding to the
installer’s prompts from the command line. I also briefly discuss the less frequently employed auto-
mated installation method using response files in the section “Using Response Files to Install Oracle
Software” later in this chapter.

To begin the installation process, switch to the appropriate directory and execute the runInstaller
script as the oracle user. (If you’re using the extracted files, you’ll start from the Disk1 directory. If
you’re using the CD staging area, it’ll be the /staging directory.)

To start from the /staging directory, first go to the directory:

$ cd /staging

Check to make sure the runInstaller executable script is there:

$ ls
doc install response runInstaller stage welcome.htm

Invoke the Oracle Universal Installer by executing the runInstaller script:

$./runInstaller
[pasu] $./runInstaller
Starting Oracle Universal Installer . . .
Checking Installer requirements . . .
Checking operating system version: must be redhat 2.1, UnitedLinux-1.0 or redhat-3
 Passed
Preparing to launch Oracle Universal Installer from /tmp/OraInstall . . .
 Please wait . . .

At this point, assuming there are no problems with the DISPLAY variable settings, the GUI
version of the Oracle Universal Installer should show up. (If the GUI doesn’t show up on your screen,
you probably have to adjust your DISPLAY variable or use the xhost command, as explained earlier.)
The following series of windows and prompts will be displayed during the Oracle Database 11g
Release 1 server software installation:

1. You’ll see the Welcome to the Oracle Database 11g Installation window, as shown in
Figure 9-1. In Oracle Database 11g Release 1, you can choose between the options Basic
Installation and Advanced Installation. Basic Installation is the default method, and it
quickly installs the Oracle software and, optionally, also creates a general-purpose database
for you. The Advanced Installation option will let you upgrade databases to the 11g version,
use raw devices or the Automatic Storage Management options for storage, specify different
passwords for administrators (like SYS and SYSTEM schemas), configure automatic
database backups and Oracle Enterprise Manager (OEM) notifications, and other options.

Choose Advanced Installation and click Next, which will start up the installer in the
advanced mode.

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 417

Figure 9-1. The Oracle Universal Installer’s welcome window

2. Oracle offers you a choice of installation types in the Select Installation Type window. You
can choose one of the following installation types when installing Oracle Database 11g:

• Enterprise Edition: Installs the Oracle database with all of its performance, high avail-
ability, and security features to enable the running of mission-critical applications

• Standard Edition: Installs a scaled-down offering suitable for small businesses and depart-
ments within a large organization

• Custom: Allows you to choose individual components to install

Choose the Enterprise Edition option (1.28GB) and click Next.

3. The Specify Home Details window is next. You specify the Oracle home name and provide
the complete path to the Oracle home directory. If this is the first installation of Oracle
Database 11g software on this server, I recommend the following path:

/u01/app/oracle/product/11.1.0/db_1

Click Next after you specify the Oracle home path.

■Caution Oracle recommends that you specify an empty or nonexistent directory for the Oracle home location.
Otherwise, Oracle will warn you before letting you proceed further.

418 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

4. Oracle will perform product-specific prerequisite checks at this point. Note that the earlier
OS-compatibility checks were purely for determining whether Oracle could run the Uni-
versal Installer successfully. At this point, the installer verifies that your system meets the
minimum necessary operating system requirements for the Oracle Database 11g server
software installation. The installer checks the following:

• Operating system

• Operating system packages

• Operating system kernel

• Physical memory

• Swap space

• Network configuration

• Oracle home setting (for compatibility and space)

The installer may simply issue a warning if some minor requirements aren’t met, or it may
ask you to bring the system up to par before proceeding further. If your kernel parameters
or OS level aren’t correct, for example, there will be a warning that the particular component
failed the check and that you need to cancel the installation at this point. Once you fix the
kernel parameters or whatever it was that the installer objected to, you can restart the instal-
lation process by running the runInstaller script once again.

5. Once you pass the checks without getting any error messages from the installer, as shown in
Figure 9-2, click Next.

Figure 9-2. Passing the Oracle Universal Installer’s prerequisite checks

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 419

6. The installer displays the Select Configuration Options window. Here, you’re presented with
three options, as shown in Figure 9-3:

• Create a Database

• Configure Automatic Storage Management (ASM)

• Install Software Only

Choose the last option to just install the database software, and click Next.

Figure 9-3. Selecting a configuration for the Oracle installation

7. You’ll be shown a Summary window as a final confirmation (see Figure 9-4). Click Install to
begin the actual installation of the Oracle binaries.

420 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

Figure 9-4. Summary of installation settings

8. The Install window appears and shows the components as they are installed on your server.
At the bottom of this screen, you’ll also see the directory name to which the installation log is
being written. It can sometimes be nerve-wracking to watch the installer seemingly stall on
some action, but you can monitor what the installer is doing on the server by using the tail
command and monitoring the installation log file in a separate window.

9. The install process will pause briefly to ask you to run a privileges script named root.sh as
the system administrator (root). Open a different window and run the /u01/app/oracle/
product/11.1/db_1/root.sh script as root. The root.sh script sets the values for the
ORACLE_OWNER and ORACLE_HOME environment variables. The script adds the appropriate
values to the /etc/oratab file.

In addition, if you’re installing Oracle software for the first time on this server, the installer
also asks the root user to run orainstRoot.sh, located in the /u01/app/oracle/oraInventory
directory.

10. Once you’ve run one or both scripts as required, click OK. You’ll immediately see the End of
Installation window, which signifies the successful end of the Oracle Database 11g software
installation.

11. Click Exit and confirm the choice to end the Oracle Universal Installer session.

Your Oracle Database 11g server installation is now complete.

■Note Oracle Database 11g supports multiple Oracle homes, meaning that you can install the server software in
different Oracle directories.

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 421

Using Response Files to Install Oracle Software
By creating a response file and specifying this file when you start the Oracle Universal Installer, you
can automate some or all of the Oracle Database installation. When you use a response file, you can
run the Oracle Universal Installer in one of the following modes, depending on whether you specify
all of the required information or not:

• Silent mode: Oracle Universal Installer runs in silent mode if you use a response file that spec-
ifies all the required information. None of the Oracle Universal Installer windows are
displayed.

• Suppressed mode: Oracle Universal Installer runs in suppressed mode if you do not specify all
the required information in the response file. Oracle Universal Installer displays only the
windows that prompt you for the information that you did not specify.

The silent mode is useful when you can’t be physically present for an installation—the response
file will contain the responses to the questions asked by the installer. This method can be very useful
for client installations when you can’t physically visit and install the software on all the different
client servers. It is also particularly useful when you need to perform multiple installations on simi-
larly configured systems, because the response file will ensure uniformity and consistency in the
product installation. For example, suppose you’re working in an organization that has multiple
geographical locations and client installations are required, but there are no skilled database
personnel at some of the locations—the silent mode is the simplest way to install Oracle in such as
situation. The silent mode is also useful if your server doesn’t have the X Window System software.

Oracle supplies different response files for the installation of various types of software. I provide
a list of the important response files Oracle provides, later in this section.

Before you can run the Oracle installation in either silent or suppressed mode, you need to
create the oraInst.loc file, which lists the Oracle products on your server, and then create the
response files themselves.

Creating the oraInst.loc File

If you have never had an Oracle installation on your server, you must create the oraInst.loc file in
the /etc directory as the root user. If you had an older Oracle installation (even one that has been
uninstalled), you’ll have this file already. The file provides the installer with the location of the inven-
tory of Oracle products installed on your server.

To create the oraInst.loc file, follow these steps:

1. Log in as the root user and change to the /etc directory:

cd /etc

2. Create the oraInst.loc file with the following two lines:

inventory_loc=ORACLE_BASE/oraInventory
inst_group= oinstall

3. Enter the following commands to set the appropriate owner, group, and permissions on the
oraInst.loc file:

chown oracle:oinstall oraInst.loc
chmod 664 oraInst.loc

Creating the Response Files

The easiest way to create a response file is to edit one of the Oracle-provided response file templates,
located in the /db/response directory on the CD. If you create a staging directory, the response files
will be in the /staging/response directory. If you don’t create a staging directory, they’ll be in the

422 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

/Disk1/response directory. These are the response file templates provided by Oracle, with each one
meant for a specific purpose:

• enterprise.rsp: Oracle Database 11g Enterprise version

• standard.rsp: Oracle Database 11g Standard version

• netca.rsp: Oracle Net Configuration Assistant

• custom.rsp: Custom installation of Oracle Database 11g

• emca.rsp: Enterprise Manager Configuration Assistant

• dbca.rsp: Database Configuration Assistant

The response file for the Enterprise Edition installation is copied from the CD during installa-
tion, along with the other files and scripts. It’s located in a separate directory called response, which
is located in the same directory as the runInstaller executable file. You need to copy the response
file to a directory on your own system and edit it according to your needs. The editing of the response
file may take some time, but it’s well worth it if you’re planning multiple installations.

Once you’ve edited the response file, you can start the automatic silent installation. Make sure
you set your DISPLAY variable correctly before using the silent mode for installation. When you’re
ready to start, run this command:

$ cd $CDROM_mount_directory
$./runInstaller -silent –response[Response File Name]

The preceding command will run the Oracle Universal Installer in the silent mode. You must
include responses for all the prompts in the response file in order to specify the -silent option. You
won’t see any installer screens—only the progress information in the terminal.

If you include responses for some of the prompts in the response file, and just use the runInstaller
command without the -silent option, the Oracle Universal Installer will run in suppressed mode.
During this type of installation, the installer displays only those screens for which you didn’t specify
any information.

When Oracle finishes a silent installation, it will display the following message on the screen:

The installation of Oracle Database 11g was successful.
Please check /u01/app/oracle/oraInventory/logs
/silentInstall.log for more details.

At this point, you need to manually run the root.sh script, just as you would in the normal
manual installation procedure. You’ll find the root.sh script in the /u01/app/oracle/product/
10.2.0.0.0 directory. After the root.sh script runs successfully, you’re done with the silent installa-
tion of Oracle. Of course, you still have to create your database and configure the networking
components.

Oracle provides a whole set of response files for several types of installations, including server
and client installations. You’ll probably use the Oracle client response file more frequently, because
it makes it unnecessary for you to physically visit all the client stations for a new installation.

After the Installation
After you’ve installed the Oracle Database 11g server software, you still have some chores left to do.
You need to perform several post-installation steps carefully to make sure that the software func-
tions correctly. As with the installation procedures, the system administrator and the oracle user are
responsible for specific tasks. Let’s look at the important tasks that the system administrator and the
Oracle software owner (user oracle here) must perform after the server software installation is
finished.

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 423

System Administrator’s Post-Installation Tasks
The UNIX/Linux administrator has to perform the following tasks after the installation of Oracle
software is complete:

• Update the database shutdown and startup scripts.

• Create additional operating system accounts.

Updating Shutdown and Startup Scripts

The Oracle software comes with sample scripts that automatically start up and shut down the data-
base, and the system administrator must add them to the system startup and shutdown scripts.
When installed, these scripts will start up and shut down the Oracle database whenever the server is
booted up or shut down, ensuring that the database is always closed cleanly and that you don’t have
to manually bring up the database after system crashes. These sample scripts are located in the
$ORACLE_HOME/bin directory. To start a database automatically upon system reboot, use the
dbstart.sh script. To stop a database upon system shutdown, use the dbshut.sh script. Both these
files are designed to be run as part of the system boot procedure.

In most versions of UNIX and Linux, the contents of the /etc/oratab file will determine whether
your database will automatically start up or shut down each time the server starts up and shuts
down. The /etc/oratab file is simply a list of the databases running on a server, each with a yes or no
indicator for automatic startup and shutdown. If you’re creating a new database named finance1,
and you want to automate the startup and shutdown process for it, here’s what you would need to
add to the oratab file:

finance1:/u01/app/oracle/product/11.1/db_1:Y

The entry in the /etc/oratab file has three components separated by colons: the database
name, the Oracle home location, and a Y or N indicating whether the database should automatically
start and stop when the host starts up or shuts down. If you want automatic startup and shutdown,
specify Y at the end of the line; otherwise specify N.

The UNIX or Linux administrator must add the database startup and shutdown scripts to the
system startup and shutdown scripts. For example, on an HP UNIX system, the rc scripts (in the /
sbin directory) are run automatically whenever the system moves from one run level to the other.
When the system moves to run level 0 (shutdown), the rc script halts the UNIX system by stopping
certain daemons and server processes. Similarly, when the run level changes from 0 to 1, the rc script
starts the system by starting the necessary daemons and server processes. The system administrator
has to include Oracle-related information in the /sbin/rc script to automate the shutdown and
startup of the Oracle databases whenever the UNIX server stops and starts for any reason.

Following is an example of the startup information that the system administrator needs to add
to the rc script (you must modify the generic dbstart.sh and dbshut.sh scripts to reflect particular
database names):

/u01/app/oracle/product/11.1.0/bin/dbstart_finance
/u01/app/oracle/product/11.1.0/bin/lsnrctl start

And here is an example of the shutdown information:

/u01/app/oracle/product/11.1.0/bin/dbshut_finance
/u01/app/oracle/product/11.1.0/bin/lsnrctl stop

The script will determine whether to use the startup or shutdown scripts after testing the system
run level. The first lines in the preceding startup and shutdown information will start and stop the
database (named finance in our example). The second lines will start and stop the Oracle listener
process, which helps you establish communication with the database server (the Oracle listener is
discussed in detail in Chapter 11).

424 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

Creating Additional Operating System Accounts

After the installation is complete, the system administrator must create any other necessary user
accounts. All the DBA users must be part of the OSDBA group.

Oracle Owner’s Post-Installation Tasks
The oracle user has a set of tasks to perform after the Oracle server software is installed. These
include setting the correct environment, applying any necessary Oracle patches, and setting the
initialization parameters.

Setting the Environment

Before you can create a database on your system, you need to set some environment variables. The
most important of these are the ORACLE_HOME, ORACLE_SID, TNS_ADMIN, CLASS_PATH, TWO_TASK, and
LD_LIBRARY_PATH variables. Please refer to your operating system–specific guidelines before you set
these and other environment variables.

As the oracle user, you also need to initialize the oraenv script (the coraenv script if you’re using
the C shell). This script lets you ensure a common environment for all Oracle users. The oraenv script
is initialized by including it in the .login or .profile file. For example, for a single-instance database
in the Korn shell, this is what you’d need to add to your .login or .profile file:

ORAENV_ASK=NO
. /usr/local/bin/oraenv

Miscellaneous Tasks

You need to perform some additional tasks as the oracle user. Make sure you check the patch direc-
tory on your CD and apply any available patches. You also need to ensure that your databases are a
part of the /etc/oratab file, so they can be automatically started up and shut down.

■Tip Back up the root.sh script, as it may be overwritten during additional Oracle product installations.

Setting Initialization Parameters

You also have to edit the sample initialization file and modify it for your needs. After you create the
database, make sure you create an SPFILE, which is a more sophisticated way of managing your
initialization parameters than the traditional init.ora file. Creating SPFILEs is discussed in detail in
Chapter 10.

THE ORATAB FILE

The oratab file, which is usually located in the /etc directory on UNIX systems, is useful for several reasons. First,
you can use this file to specify whether you want automatic start/stop procedures in place for your databases. Second,
oraenv reads the contents of the /etc/oratab file during the setting of the environment variables. If you want to
back up all the databases on the server in sequence, you can use the oratab file to provide a list of all the databases
the backup script must include.

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 425

Configuring Oracle Net Services

To enable connectivity to the database, you must configure Oracle Net Services. The configuration
tasks include starting the listener process or, if the listener is already running on the server, making
sure your databases are registered with it. All databases automatically register with the listener when
they are created.

We haven’t covered creating databases yet, so you probably won’t have to configure the
network connections at this point. You’ll learn all about connectivity in Chapter 11, which discusses
Oracle Net Services.

Uninstalling Oracle
Sometimes, your installation process may get messed up in the middle, or a lack of disk space may
force you to abort the installation abruptly. In this case, the best thing is to simply uninstall all the
components that you have already installed. You can install again from scratch when you are ready.
There may also be times when you need to remove Oracle software from your server. Before you
remove the software, make sure you remove the databases from the server.

During an installation

• Oracle automatically removes all files, including files that belong to configuration assistants
and patch sets, during the uninstallation process.

• The installer automatically cleans up all the Windows registry entries.

The following two sections list the simple steps you need to follow to uninstall first the Oracle
databases and then the Oracle software.

Removing All Oracle Databases Running on Your Server
Before you remove the Oracle software, first remove all databases from the server, using the Data-
base Configuration Assistant (DBCA). Log in as the oracle user, and get the list of databases from a
file such as /etc/oratab. Here’s an example:

$ cat /etc/oratab
prod1:/a03/app/oracle/product/10.2.:N
prod2:/a03/app/oracle/product/10.2:Y
test1:/a03/app/oracle/product/11.1:N
test2:/a03/app/oracle/product/11.1:Y
$

For each database listed in the /etc/oratab file, follow these steps:

1. Use the oraenv or the coraenv script to set up the environment correctly for the particular
database you want to remove. Here’s an example that removes the database named prod1
from the server:

 $. oraenv
ORACLE_SID = [prod2] ? prod1
$

2. Start the DBCA by issuing the following command:

$ dbca

3. Click Next when you see the Welcome window.

4. Select Delete a Database in the Operations window that appears. Click Next.

426 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

5. Select the database you want to remove, click Finish, and confirm your choice in the next
window.

6. After the database is removed, you are prompted to click Yes to go back to the Operations
window and delete more databases or No to exit the DBCA session.

Removing the Oracle Software
To remove the Oracle software, log in as the oracle user and follow these steps:

1. Set the ORACLE_HOME environment variable to specify the path of your Oracle home directory,
as shown here:

$ export ORACLE_HOME=/u01/app/oracle/product/11.1.0/db_1

2. Stop all Oracle processes that may be running, using the appropriate commands, as shown
here:

• Database Control: $ORACLE_HOME/bin/emctl stop dbconsole

• Oracle Net Listener: $ORACLE_HOME/bin/lsnrctl stop

3. Start the Oracle installer by using the following command:

$ /staging/runInstaller

4. Click Installed Products in the Welcome window.

5. The Inventory Contents tab is displayed, showing you all Oracle homes in your database.
Select the Oracle home you wish to remove, and click the Remove button. If there are any
dependencies, the installer may not allow you to uninstall the products right away. Click Yes
in the Confirmation dialog that appears next.

When the uninstallation is over, click Cancel to exit, and click Yes. Note that no files will remain
in the Oracle home directory after a complete uninstallation of the software.

Upgrading to Oracle Database 11g
In the previous section of this chapter, you’ve learned how to install the Oracle Database 11g server
software. Of course, the next step is to run a database with this software. In most cases, you already
have Oracle databases running with older release server software. You must therefore upgrade your
current databases to the Oracle Database 11g release. Chapter 10 shows you how to create an Oracle
database from scratch. This chapter shows you how to upgrade a pre–Oracle Database 11g release
database to the Oracle Database 11g release. The chapter first reviews the available methods of
upgrading to the new version and then explains how to use the new Database Upgrade Assistant
(DBUA) tool as well as how to upgrade manually, which includes the use of Oracle’s new Pre-
Upgrade Information Tool and the Post-Upgrade Status Tool.

Routes to Oracle Database 11g
Oracle has made the process of upgrading from Oracle9i (or even older releases) or an Oracle
Database 10g database simple by automating a large portion of the upgrade process. I discuss
the different upgrade paths to migrate to Oracle Database 11g in this section.

Depending on your current database release, you may or may not be able to directly upgrade to
the Oracle Database 11g Release 1 (11.1) version. You can directly upgrade to Oracle Database 11g
Release 1 if your current database is based on an Oracle 9.2.0.4 or newer release. For Oracle database
releases older than Oracle 9.2.0.4, you have to migrate via one or two intermediate releases, as shown
by the following upgrade paths:

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 427

• 7.3.3 (or lower) => 7.3.4 => 9.2.0.8 => 11.1

• 8.0.5 (or lower) => 8.0.6 => 9.2.0.8 => 11.1

• 8.1.7 (or lower) => 8.1.7.4 => 9.2.0.8 => 11.1

• 9.0.1.3 (or lower) => 9.0.1.4 => 9.2.0.8 => 11.1

• 9.2.0.3 (or lower) => 9.2.0.8 => 11.1

For example, if you want to upgrade a database from Release 8.1.6, the following would be your
game plan: upgrade Release 8.1.6 to 8.1.7; upgrade 8.1.7 to Release 9.2.0.8; upgrade Release 9.2.0.8 to
Release 11.1.

Upgrade Methods and Tools
There are two ways for you to upgrade: the traditional manual method or the Database Upgrade
Assistant method, which automates the upgrade process. The DBUA is an improved version of the
Oracle Data Migration Assistant, which was a tool provided in previous versions of the database.

■Note The Oracle Database 11g upgrade process is somewhat automatic even if you do it manually. The
following sections will show how the manual process uses the STARTUP UPGRADE command. After running this
command, you have to run the main upgrade script, which upgrades your installation without causing dependency
problems. The database determines the order in which it should upgrade components by querying the DBA_
SERVER_REGISTRY data dictionary view. It will also query this view for the upgrade status of each component after
the conclusion of the database upgrade. The new Post-Upgrade Status Tool, which I discuss later in this chapter,
also uses the DBA_SERVER_REGISTRY view.

The DBA_REGISTRY or the DBA_SERVER_REGISTRY view both contain the upgrade status of individual database
components. These views are almost identical, except that the DBA_REGISTRY view has the extra namespace
column. If you set the namespace to SERVER, you get identical results using either data dictionary view.

In the past, the upgrade process required you to run various scripts throughout the process, but
the Oracle Database 11g upgrade process only requires a single upgrade script (there’s an example
of the use of this script in the “Upgrading Manually” section later).

The Manual Upgrade Process
If you use the manual upgrade process, you must perform due diligence: this means removing or
changing all your obsolete initialization parameters and running all the Oracle-provided database
upgrade scripts. This method’s advantage is that you control the whole upgrade process. There are
drawbacks to the manual method, however: you must back up the database yourself, you must use
the correct initialization parameters, and you must give the System tablespace adequate free space.

■Note The old Export and Import utilities are still available, should you wish to use them, though they’ve been
supplanted by the Data Pump Export and Import utilities. They are still pretty useful if you have a very small
database.

428 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

The Database Upgrade Assistant
If you use the DBUA, it does the preinstallation checks for you and automatically manages the
upgrade process by performing the following tasks:

• Performs initialization checks, including for invalid data types, unsupported character sets,
invalid user accounts, and sufficient free space in the tablespaces

• Backs up the database

• Creates any necessary objects

• Invokes the correct upgrade script

• Shows the progress of the upgrade process

• Creates the parameter and listener files in the new Oracle home

■Tip The DBUA uses a GUI, but you can also use it in the silent mode.

The Pre-Upgrade Information Tool
Before you start an upgrade, you have to check your system for any necessary changes. Luckily, we
have the Pre-Upgrade Information Tool, which does this for us. The Pre-Upgrade Information Tool,
which is implemented by executing an Oracle-supplied script, helps you collect various critical
pieces of information before the upgrade process begins. Too often in the past, DBAs have needed
to restart the upgrade process because of initialization features that were incompatible or tablespace
sizes that were too small, and this new tool helps avoid that situation.

■Note The manual process and the DBUA both use the same Pre-Upgrade Information Tool. The DBUA automat-
ically runs it as part of this initial check.

The Pre-Upgrade Information Tool provides information about the following:

• The Sysaux tablespace: Before you run the upgrade script, you have to create the Sysaux
tablespace. The Pre-Upgrade Information Tool will recommend the correct settings for this.

• Log files: The new version of Oracle needs redo log files to be at least 4MB. If your existing log
files are smaller than this, the Pre-Upgrade Information Tool will tell you to increase their
size.

• Tablespace sizes: If your existing tablespaces lack the free space required, the Pre-Upgrade
Information Tool will tell you so you can increase their size.

• Initialization parameters: The Pre-Upgrade Information Tool tells you which initialization
parameters you should remove (because they are deprecated and obsolete) and which you
should add before you can upgrade.

• Database versions and compatibility level: The Pre-Upgrade Information Tool lets you know
whether you need to change the compatibility level of your database with the COMPATIBLE
initialization parameter.

• Time estimates: The Pre-Upgrade Information Tool will give you an estimate of how long the
upgrade will take.

The Pre-Upgrade Information Tool will do a lot of the work for you. Just make sure that you
implement the recommended changes, and you will be ready to upgrade to Oracle Database 11g.

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 429

The Pre-Upgrade Information Tool is actually a SQL script, called utlu111i.sql (in
$ORACLE_HOME/rdbms/admin). Here’s how you invoke the Pre-Upgrade Information Tool:

SQL> @$ORACLE_HOME/rdbms/admin/utlu111i.sql

The Post-Upgrade Status Tool
The new Post-Upgrade Status Tool gives you an accurate summary of the upgrade process and lists
any necessary corrective steps that need to be taken. No error messages during the upgrade process
doesn’t guarantee that you upgraded successfully—the Post-Upgrade Status Tool looks in
DBA_SERVER_REGISTRY to ascertain the status of every database component. If one or more
components didn’t upgrade correctly, the Post-Upgrade Status Tool will show the details.

■Tip The Post-Upgrade Status Tool runs automatically when you use the DBUA. You have to run it yourself if you
are doing a manual upgrade.

DATABASE COMPATIBILITY

The database compatibility level is set by the value of the COMPATIBLE initialization parameter—the compatibility
level specifies the release with which the database must remain compatible. This is important because the COMPAT-
IBLE parameter helps you guarantee backward compatibility with an earlier release. The parameter’s default value
in Oracle Database 11g Release 1 is 11.0.0.0, and the minimum value is 10.0.0. When you are upgrading to Oracle
Database 11g, and you set the COMPATIBLE parameter to 10.0.0, it means that you can undo the changes made by
the upgrade process and go back to the older release if the upgrade doesn’t pan out. Otherwise, the only way to go
back to the older release is to restore from a backup.

Oracle recommends that you set the COMPATIBLE parameter to 10.0.0 before you upgrade to Oracle Database 11g,
which ensures that you can always revert to the Oracle Database 10g release if necessary. However, the price you
pay for this convenience is that you can only use a limited subset of the new Oracle Database 11g features. After
you’ve upgraded your database and are sure that you want to continue further, you can set the COMPATIBLE initial-
ization parameter in your SPFILE to match the new release number (11.1.0).

The Post-Upgrade Status Tool provides you with the following information:

• The name and status (VALID or INVALID) of each database component

• The version compatibility of the component with the current database version

• Suggestions for corrective action if it finds invalid components (such as the names of appro-
priate scripts to run)

The Post-Upgrade Status Tool is also a SQL script, called utlu111s.sql and located in the
$ORACLE_HOME/rdbms/admin directory.

While manual upgrades are easy, the burden of due diligence is on you, and you can lose a lot
of time if you make any mistakes.

■Tip Which of the two upgrade methods (DBUA or manual upgrade) is superior? The underlying scripts and
upgrade procedures are identical for both methods—choose the method you’re most comfortable with.

430 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

Preparing the Database for the Upgrade
Before you upgrade to Oracle Database 11g, you must be aware of the following changes concerning
privileges, timestamps, and the Oracle Database Vault.

Deprecated CONNECT Role

In Oracle Database 11g, the CONNECT role has only the CREATE SESSION privilege and nothing
else. In previous versions, the CONNECT role had other privileges, which are automatically revoked
during an upgrade to Oracle Database 10g. If you think any of the users with the CONNECT role in
the previous release need the privileges that used to be a part of the CONNECT role, you must grant
the specific required privileges prior to upgrading to Oracle Database 11g.

Timestamp with Time Zone Data Type

If the time zone versions used by the Oracle Database 11g server and the database that’s being
upgraded are different, the upgrade will fail. To avoid this, you must first update the existing data-
base to time zone file version 4 (path 5632264—TZ v4 FILE).

Disable Oracle Database Vault

You must disable the Oracle Database Vault before upgrading the database, in case you’ve
enabled it.

Upgrading with the DBUA
The DBUA combines the work of the Pre-Upgrade Information Tool and the manual upgrade
process. The DBUA performs the following pre-upgrade steps automatically:

• Sets ORACLE_HOME to the new Oracle Database 11g locations.

• Changes the oratab file entries to the new location.

• Copies your current init.ora file to the new Oracle Database 11g default init.ora location
($ORACLE_HOME/dbs in UNIX and Linux systems).

• Checks that your tablespaces have adequate space before the upgrade process begins. These
checks also cover the undo tablespace and the rollback segments.

• Checks for unsupported character sets and invalid data types and usernames, and so on.

• Performs backups, if you choose.

• Updates obsolete initialization parameters.

• Configures the database with the Enterprise Manager, if you choose.

• Writes detailed trace and log files, as well as showing the upgrade progress.

The DBUA can upgrade not only a single instance configuration, but also Oracle Real Applica-
tion Clusters and standby database configurations as well.

Starting the DBUA
Start the DBUA by simply typing dbua at the operating system prompt. You have to log in as the
oracle user first. On a Windows server, you start the DBUA tool by going to Start ➤ All Programs ➤
Oracle ➤ Configuration and Migration Tools ➤ Database Upgrade Assistant.

As mentioned previously, you can do a silent upgrade using the DBUA if you don’t want to use
the GUI. This means you won’t see any prompts when you invoke the DBUA.

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 431

Here’s how you would invoke the DBUA in the silent mode for a database called nina:

$ dbua -silent –dbName nina

That’s it. Your current database will be migrated to the Oracle Database 11g release.

Running the DBUA
Let’s take a look at the steps in the automatic upgrade process using the DBUA from the command
line.

1. Invoke the DBUA with this command:

$ dbua

2. The DBUA GUI Welcome window is displayed, as shown in Figure 9-5. Click Next.

Figure 9-5. The DBUA Welcome window

3. In the Selecting a Database Instance window, first ensure that the database you want to
upgrade is running. Then select the instance you want to upgrade, and click Next.

4. In the Recompile Invalid Objects window, select the option to recompile invalid objects. The
upgrade process always invalidates several database objects, and you have the option of
letting the DBUA automatically recompile invalid database objects as soon as the upgrade is
over.

432 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

■Tip Telling Oracle to recompile invalid objects as part of the upgrade process is the same as running the
utlrp.sql script as part of a manual upgrade.

5. In the next window, Choosing a Database Backup Procedure, you can select the option to do
a cold backup of your database. If you have already made backups, choose the I Have
Already Backed Up My Database option.

■Tip If the upgrade process doesn’t go well, and you need to go back to the pre-upgrade database, the DBUA-
created database backup makes it easy to do so. You can also make a backup manually, prior to starting the upgrade
process. If you choose the option to let the DBUA do the backup, it will back up the database files to the file location

you specify in the Backup Directory field before it starts the upgrade of the database to the 11.1.0 release. The DBUA
will also create a file called db_name_restore.sh (db_name_restore.bat in a Windows system), which enables
you to easily restore the current database files if necessary.

6. In the Management Options window, you can choose to configure the OEM. The options for
database control are the Grid Control or Database Control version of the OEM. The Database
Control component is bundled with the installation package, and Oracle automatically
installs it; the Grid Control must be installed separately. If you haven’t installed the Grid
Control software, choose the Database Control option at this point.

7. In the Database Credentials window, you have to choose passwords for the default Oracle
users, such as SYSMAN and DBSNMP.

8. In the Recovery Configuration window, you can choose to specify a flash recovery area as
well as to enable archiving.

9. In the Network Configuration window, you can use the Listener tab to choose whether you
want to register the upgraded database with selected listeners or all the listeners. If you have
directory services configured in the new Oracle home, you must use the Directory Service
tab and choose to either register the upgraded database with your directory service or not.

10. In the Upgrade Summary window, shown in Figure 9-6,the names of the source and target
databases and the database versions are displayed, along with a list of all obsolete and new
initialization parameters. An estimate of the time it’ll take to upgrade the database is also
provided. The DBUA automatically shuts down the database that is being upgraded before it
starts the upgrade process. Click Finish to begin.

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 433

Figure 9-6. The Upgrade Results window

11. When the database upgrade is finished, you’ll see the results in the Upgrade Results window
for you to review. You have three options at this point:

• Configure database passwords.

• Restore the database to what it was before the upgrade and revert all changes made to the
database.

• Close the window to finish the installation.

Restoring the Pre-Upgrade Database
If you aren’t sure you want to upgrade to the new version at the conclusion of the DBUA upgrade
process, you can simply click the Restore button to revert to the previous database version. If the
DBUA backed up your database, then Oracle will automatically restore the original database and the
original database settings. If the DBUA didn’t do the backup, the DBUA can’t automatically revert
the database to the previous version. You’ll have to use your backups to manually restore the data-
base from the earlier version.

You can also run an Oracle-provided script at a later time to go back to the previous database.
Oracle automatically creates this script when you select to back up the database during the begin-
ning of the upgrade process.

434 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

Upgrading Manually
Let’s step through the manual database upgrade process in this section so you understand what
happens during a database upgrade. Recall that the DBUA does a lot of the following steps for you.

Upgrade and Downgrade Scripts
Following are the various scripts you use for upgrading to Oracle Database 11g. You’ll find all these
scripts in the $ORACLE_HOME/rdbms/admin directory.

• catdwgrd.sql enables a direct downgrade from the Oracle Database 11g release to the Oracle
Database 11g release from which you upgraded.

• catupgrd.sql enables a direct upgrading to the Oracle Database 11g release.

• utlu111i.sql analyzes the database you’re upgrading and shows the requirements and issues
for upgrading to Oracle Database 11g.

• utlu111s.sql shows the component upgrade status after upgrading to Release 11.1.

• utlrp.sql recompiles PL/SQL modules such as packages, procedures, and types that are in
an invalid state.

• utluppset.sq performs upgrade actions that don’t require you to keep the database in
upgrade mode.

Following is the list of steps to manually upgrade to Oracle Database 11g:

1. Create a spool file.

2. Log in as a user with the SYSDBA privilege, and run the Pre-Upgrade Information Tool. Make
any changes it recommends.

3. Back up the database you’re going to upgrade.

4. Copy the current init.ora file to the new Oracle Database 11g init.ora file location.

5. Shut down the database and restart it under the new Oracle 11g home in the STARTUP
UPGRADE mode.

6. Create the required Sysaux tablespace.

7. Run the catupgrd.sql upgrade script.

8. Check to see if any objects became invalidated during the database upgrade.

9. Run the utlrp.sql script to recompile any objects that became invalid during the database
upgrade.

10. Run the Post-Upgrade Status Tool.

11. End the spool file.

12. Shut down and start up the new database.

In the following sections, I explain each of the upgrade actions I listed.

Creating a Spool File
Create a spool file to record the upgrade process so that you can easily review it later.

SQL> SPOOL upgrade.log

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 435

Running the Pre-Upgrade Information Tool
First, copy the Pre-Upgrade Information Tool (utlu11i.sql script) from the Oracle Database 11g
$ORACLE_HOME/rdbms/admin directory to a temporary directory such as /u01/app/oracle/upgrade, for
example. Log into SQL*Plus as the user SYS. To start the Pre-Upgrade Information Tool, run the
following:

SQL> @/u01/app/oracle/upgrade/utlu11i.sql

To see the results of the pre-upgrade check, turn spooling off with the following command:

SQL> spool off

Check the upgrade.log spool file to see if you meet all upgrade requirements. Listing 9-1 shows
part of the output from a sample run.

Listing 9-1. Partial Output of the Pre-Upgrade Information Tool

SQL> @utlu111i.sql
Oracle Database 11.1 Pre-Upgrade Information Tool 01-30-2008 05:33:22
.
**
Database:
**
--> name: ORCL10
--> version: 10.2.0.1.0
--> compatible: 10.2.0.1.0
--> blocksize: 8192
--> platform: Linux IA (32-bit)
--> timezone file: V2
.
**
Tablespaces: [make adjustments in the current environment]
**
--> SYSTEM tablespace is adequate for the upgrade.
.... minimum required size: 723 MB
.... AUTOEXTEND additional space required: 243 MB
--> UNDOTBS1 tablespace is adequate for the upgrade.
.... minimum required size: 471 MB
.... AUTOEXTEND additional space required: 441 MB
--> SYSAUX tablespace is adequate for the upgrade.
.... minimum required size: 412 MB
.... AUTOEXTEND additional space required: 182 MB
--> TEMP tablespace is adequate for the upgrade.
.... minimum required size: 61 MB
.... AUTOEXTEND additional space required: 41 MB
--> EXAMPLE tablespace is adequate for the upgrade.
.... minimum required size: 69 MB
.
**
Update Parameters: [Update Oracle Database 11.1 init.ora or spfile]
**
WARNING: --> "sga_target" needs to be increased to at least 336 MB
.
**
Renamed Parameters: [Update Oracle Database 11.1 init.ora or spfile]

436 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

**
-- No renamed parameters found. No changes are required.
.
**
Obsolete/Deprecated Parameters: [Update Oracle Database 11.1 init.ora or spfile]
**
--> "background_dump_dest" replaced by "diagnostic_dest"
--> "user_dump_dest" replaced by "diagnostic_dest"
--> "core_dump_dest" replaced by "diagnostic_dest"
.
**
Components: [The following database components will be upgraded or installed]
**
--> Oracle Catalog Views [upgrade] VALID
--> Oracle Packages and Types [upgrade] VALID
--> JServer JAVA Virtual Machine [upgrade] VALID
--> Oracle XDK for Java [upgrade] VALID
--> Oracle Workspace Manager [upgrade] VALID
--> OLAP Analytic Workspace [upgrade] VALID
--> OLAP Catalog [upgrade] VALID
--> EM Repository [upgrade] VALID
--> Oracle Text [upgrade] VALID
--> Oracle XML Database [upgrade] VALID
--> Oracle Java Packages [upgrade] VALID
--> Oracle interMedia [upgrade] VALID
--> Spatial [upgrade] VALID
--> Data Mining [upgrade] VALID
--> Expression Filter [upgrade] VALID
--> Rule Manager [upgrade] VALID
--> Oracle OLAP API [upgrade] VALID
.
**
Miscellaneous Warnings
**
WARNING: --> Database is using an old timezone file version.
.... Patch the 10.2.0.1.0 database to timezone file version 4
.... BEFORE upgrading the database. Re-run utlu111i.sql after
.... patching the database to record the new timezone file version.
WARNING: --> Database contains stale optimizer statistics.
.... Refer to the 11g Upgrade Guide for instructions to update
.... statistics prior to upgrading the database.
.... Component Schemas with stale statistics:
.... SYS
.... OLAPSYS
.... SYSMAN
.... CTXSYS
.... XDB
WARNING: --> Database contains schemas with objects dependent on network
packages.
.... Refer to the 11g Upgrade Guide for instructions to configure Network ACLs.
.... USER SYSMAN has dependent objects.
WARNING: --> EM Database Control Repository exists in the database.
.... Direct downgrade of EM Database Control is not supported. Refer to the
.... 11g Upgrade Guide for instructions to save the EM data prior to upgrade.

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 437

.
PL/SQL procedure successfully completed.
SQL> spool off

Make all the changes pointed out by the Pre-Upgrade Information Tool before proceeding with
the upgrade.

Backing up the Database
Back up the database you are upgrading, either by using RMAN or by using your own backup
techniques.

■Tip At this point, make sure you’ve set your ORACLE_HOME variable to the new Oracle home using the format
$ORACLE_BASE/product/11.1/db_name.

Copying the Parameter File
Copy your current init.ora file to its default location in the new Oracle Database 11g home
($ORACLE_HOME/dbs). You should also make the changes that the Pre-Upgrade Information Tool
recommended. Remove all obsolete and deprecated parameters and add the new parameters, such
as MEMORY_TARGET, which automates memory management.

If you’re using a password file, move or copy that password file to the Oracle Database 11g
Release 1 (11.1) Oracle home.

Starting Up the New Database
Shut down the current database if it’s running, and start it up again with the updated init.ora
parameter file under the new Oracle Database 11g home. Make sure the ORACLE_HOME and the PATH
variables point to the new Oracle Database 11g Release 1 (11.1) directories. You must use the STARTUP
UPGRADE command to start up your database under the Oracle 11.1 version, which tells Oracle to
modify those initialization parameters that would otherwise cause errors during the upgrade (for
example, the new startup mode will set the job_que_processes parameter to 0). The startup upgrade
mode starts a restricted session and prepares the environment for the upgrade.

Listing 9-2 shows how to start the database using the STARTUP UPGRADE command. Note that if
you’re storing your initialization parameter in the default location ($ORACLE_HOME/dbs), you don’t
need to specify its path when you use the STARTUP UPGRADE command.

Listing 9-2. Starting the Database with the STARTUP UPGRADE Command

SQL> CONNECT sys/sammyy1 AS SYSDBA
Connected to an idle instance.
SQL> STARTUP UPGRADE
ORACLE instance started.

Total System Global Area 314572800 bytes
Fixed Size 1236756 bytes
Variable Size 99164396 bytes
Database Buffers 213909504 bytes
Redo Buffers 524288 bytes
Database mounted.
Database opened.
SQL>

438 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

If you’re upgrading from the Oracle Database 9i Release 2 (9.2) database, you must create a
Sysaux tablespace, which is mandatory for the Oracle 10g and 11g releases. Here’s the code for
creating the Sysaux tablespace.

SQL> CREATE TABLESPACE sysaux DATAFILE '/u01/app/oracle/sysaux01.dbf'
 SIZE 1000m
 EXTENT MANAGEMENT LOCAL
 SEGMENT SPACE MANAGEMENT AUTO
 ONLINE;

The database is now technically converted into an Oracle Database 11g version database, as the
following query shows:

SQL> SELECT * FROM V$VERSION;

BANNER
Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - Production
PL/SQL Release 11.1.0.6.0 - Production
CORE 11.1.0.6.0 - Production
TNS for Linux: Version 11.1.0.6.0 - Production
NLSRTL Version 11.1.0.6.0 - Production

SQL>

In the next step, you actually upgrade the current database to the 11.1 version.

Running the Upgrade Script
From the Oracle Database 11g Release 1 (11.1) environment, run the catupgrd.sql script (found in
the $ORACLE_HOME/rdbms/admin directory). This script automatically runs the appropriate upgrade
script for the database version you’re upgrading and uses procedures from the DBMS_REGISTRY
package to execute various component upgrades.

Make sure you’re logged in as a user with SYSDBA privileges, and run the upgrade script from
the new environment:

SQL> @$ORACLE_HOME/rdbms/admin/catupgrd.sql

The catupgrd.sql script creates and alters certain data dictionary tables and upgrades or installs
several database components in the new database.

Running the Upgrade Actions Script
After the catupgd.sql script finishes executing, you must run the new upgrade script called
catuppset.sql to perform upgrade actions that don’t require the database to be in upgrade mode.

SQL> @$ORACLE_HOME/rdbms/admin/catuppst.sql

You can run the catuppst.sql script simultaneously with the catupgd.sql script in a different
SQL*Plus session.

Restarting the Instance
Restart the instance to reinitialize the system parameters. The restart ensures that all caches and
buffers are cleared and ensures the integrity and consistency of the newly upgraded database.

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 439

Running the Post Upgrade Actions Script
Execute the new upgrade script catuppset.sql to perform the remaining upgrade actions that don’t
require you to run the database in upgrade mode.

SQL> @catuppset.sql

You can run the catuppset.sql script simultaneously with the catupgd.sql script to save time.

Checking for Invalid Objects
Oracle will create, drop, and alter some database objects as the upgrade process progresses, thus
invalidating some internal Oracle packages and procedures. After the upgrade script has finished,
you need to check for invalid objects:

SQL> SELECT count(*) FROM DBA_OBJECTS
 WHERE status = 'INVALID';

Recompiling and Validating Objects
By running the Oracle-provided utlrp.sql script, you can do a recompilation and validation of all
the objects invalidated during the upgrade process. During this process, utlrp.sql calls utlprp.sql
(a wrapper based on the UTL_RECOMP package). Note that Oracle will dynamically compile each of
the invalidated objects when they are accessed if you don’t do it now. However, this runtime compi-
lation of invalidated objects could slow down your database’s performance.

You can recompile all invalidated Oracle database objects using the utlrp.sql script:

SQL> @$ORACLE_HOME/rdbms/admin/utlrp.sql
. . .
PL/SQL procedure successfully completed.

TIMESTAMP

COMP_TIMESTAMP UTLRP_END 2008-2-21 15:20:49
PL/SQL procedure successfully completed.
SQL>

To check that there aren’t any invalid objects left, you should run the check again:

SQL> SELECT count(*) FROM dba_objects
 WHERE status = 'INVALID';

 COUNT(*)

 0
1 row selected.
SQL>

Once it has validated all the invalid objects, the utlrp.sql script validates each individual
component in the database and updates the DBMS_SERVER_REGISTRY view.

■Note You can revert to the older database as long as you have a backup of the database made before starting
the upgrade process. It’s vital to have a backup, since the upgrade process may fail before it’s completed, leaving
you with a database that won’t be functional under the pre- or post-upgrade version of Oracle.

440 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

Running the Post-Upgrade Status Tool
After the upgrade process completes, you must run the Post-Upgrade Status Tool, using the
following script:

SQL> @$ORACLE_HOME/rdbms/admin/utlu1111s.sql

The Post-Upgrade Status Tool summarizes the upgrade process, which should look similar to
Listing 9-3, if everything went okay during the database upgrade.

Listing 9-3. Partial Output from the Post-Upgrade Status Tool

Oracle Database 11.1 Upgrade Status Utility
01-30-2008 22:05:04
.
Component Status Version HH:MM:SS
.
Oracle Server VALID 11.1.0.1.0 00:14:01
JServer JAVA Virtual Machine VALID 11.1.0.1.0 00:11:08
Oracle Workspace Manager VALID 11.1.0.1.0 00:00:40
OLAP Analytic Workspace VALID 11.1.0.0.0 00:00:25
OLAP Catalog . VALID 11.1.0.1.0 00:00:50
Oracle OLAP API VALID 11.1.0.1.0 00:00:31
Oracle Enterprise Manager VALID 11.1.0.1.0 00:08:06
Oracle XDK VALID 11.1.0.1.0 00:00:58
Oracle Text VALID 11.1.0.1.0 00:00:45
Oracle XML Database VALID 11.1.0.1.0 00:09:29
Oracle Database Java Packages VALID 11.1.0.1.0 00:01:00
Oracle interMedia VALID 11.1.0.1.0 00:16:11
Spatial VALID 11.1.0.1.0 00:04:43
Oracle Expression Filter VALID 11.1.0.1.0 00:00:13
Oracle Rules Manager VALID 11.1.0.1.0 00:00:11
.
Total Upgrade Time: 01:13:55
PL/SQL procedure successfully completed.
SQL>

The utlu111s.sql script shows that the database components have been upgraded correctly. If
you see the INVALID status for any component, that’ll most likely be taken care of when you run the
utlrp.sql script next. If that fails, you may have to rerun the catupgrd.sql.

The Post-Upgrade Status Tool determines the upgrade status of each database component by
querying the DBA_SERVER_REGISTRY view. You can also query the DBA_SERVER_REGISTRY view,
as shown in Listing 9-4.

Listing 9-4. Querying the DBA_SERVER_REGISTRY View for Post-Upgrade Information

SQL> SELECT comp_id, comp_name, version, status
 FROM DBA_SERVER_REGISTRY;

COMP_ID COMP_NAME VERSION STATUS
--------- ------------------------------ --------- ------
CATALOG Oracle Database Catalog 1.1.1.0.6 VALID
CATPROC Oracle Database Packages 11.1.0.6 VALID
JAVAVM JServer JAVA Virtual Machine 11.1.0.6 VALID

CH A PT E R 9 ■ I N ST A LL I N G AN D U P G R A DI N G T O OR ACL E DA TA B AS E 1 1 G 441

CATJAVA Oracle Database Java Packages 11.1.0.6 VALID
CONTEXT Oracle Text 11.1.0.6 VALID
SQL>

The Post-Upgrade Status Tool will tell you how the upgrade went. If you didn’t cleanly upgrade
a component, the Post-Upgrade Status Tool will tell you what you have to do to fix the problem.

■Caution Don’t start the newly upgraded database under the old Oracle home—this corrupts your database.

Ending the Spool File
After the upgrade script had finished, you can turn off the spooling of the upgrade process:

SQL> SPOOL OFF

Restarting the New Database
You can now shut down and restart the instance so you’re ready for normal database operations:

SQL> SHUTDOWN IMMEDIATE
SQL> STARTUP

After the Upgrade
After the upgrade, you have a brand-new Oracle Database 11g (11.1.0) instance. Of course, at this
point, all your old application code continues to remain at the Oracle 9.2, Oracle Database 10g, or
whatever release level you upgraded from. You may want to test the new database features as well as
your old applications, to see that they run in the upgraded database without problems.

It’s a good idea to promptly back up the new database. You must also change the passwords for
the Oracle-supplied user accounts if you manually upgraded the database. You may also need to
modify the listener.ora file, as well as migrate to the SPFILE from your init.ora file.

Resetting Passwords for Stronger Password Protection
After the upgrade is completed, you may want to reset the user passwords to take advantage of the
case sensitivity new to Oracle Database 11g. If you create a brand-new Oracle Database 11g release
database, passwords are automatically case sensitive. If you’re upgrading to Oracle Database 11g,
however, you must reset each user’s password with the ALTER USER statement. Chapter 12 explains
the new password case-sensitivity feature in Oracle Database 11g.

You can also start migrating database jobs to the new Oracle Scheduler and check out the Auto-
matic Jobs feature, the Automatic Database Diagnostic Monitor, and many other goodies you have
available in your new Oracle Database 11g Release 1 database.

Downgrading to an Old Version
Oracle supports downgrades to the 10.1 and 10.2 releases. You can downgrade only to the exact
release from which you upgraded. If you upgraded to 11.1 from 10.1, you can’t downgrade to 10.2. If
you’ve set the COMPATIBLE parameter to 11.0.0 or higher, you won’t be able to downgrade, however.
You can downgrade to Oracle Database 10g Release 2 (10.2) if the COMPATIBLE parameter is set to 10.2.0
or lower. Similarly, you can downgrade to Oracle Database 10g Release 1 (10.1) if the COMPATIBLE
parameter is set to 10.1.0.

442 CH AP T E R 9 ■ I N ST AL L I N G A N D U P G R AD I N G T O OR A CL E DA TA B AS E 1 1 G

Here’s a summary of the steps you must take to downgrade your Oracle Database 11g Release 1
(11.1) database to a lower release:

1. Log into the database as the owner of the Oracle Database 11g Release 1 (11.1) Oracle home
directory.

2. Go the $ORACLE_HOME/rdbms/admin directory and start SQL*Plus from there.

3. Connect to the database as the user SYS.

SQL> CONNECT ssys/sammyy1 AS sysdba

4. Start up the instance in downgrade mode.

SQL> STARTUP DOWNGRADE

5. Drop the user sysman from the database.

SQL>DROP USER sysman CASCADE;

6. Turn spooling on to capture the downgrade effects.

SQL> SPOOL downgrade.log

7. Issue the command to run the downgrade.

SQL> @catdwgrd.sql

8. The catdowngrd.sql script downgrades the database to the major release from which you
upgraded to Oracle Database 11g Release 1. Once the script stops running, turn spooling off
as shown here:

SQL> SPOOL OFF

9. Shut down the instance.

SQL> SHUTDOWN IMMEDIATE

10. Change the ORACLE_HOME and PATH variables to point to the correct release to which you’ve
just downgraded the database.

443

■ ■ ■

C H A P T E R 1 0

Creating a Database

You can create an Oracle database as part of the Oracle software installation process in both
Windows and UNIX versions. The Oracle Universal Installer provides several templates for database
creation, including the decision-support system (DSS) and online transaction processing (OLTP)
templates. You can also invoke the Oracle Database Configuration Assistant (DBCA), a GUI tool,
which will guide you through the installation process.

Until you become very well versed in the creation of databases, however, you may be better off
using the tedious but more flexible manual mode to create databases. I recommend that you manu-
ally type in the database creation SQL statements line by line from SQL*Plus; this will give you insight
into the various steps involved in creating a database and the potential problems at every stage. Later
on, when you’re more comfortable with the process, you can just enter all the commands into a
script and run the whole script to create other databases, or just use the DBCA.

Before you start creating an Oracle database, there are some steps you need to take: ensuring
that you have the right permissions, checking that the file structures are in place, and determining
whether you have sufficient resources to start up your new database. Next you need to set up the
initialization parameters for the database. This chapter covers all of these topics and provides a
summary of the important Oracle configuration (initialization) parameters, with guidelines for their
use in your database.

After you create a new database, there are additional tasks you must perform, which I discuss in
this chapter: running the necessary post–database creation scripts, changing the passwords, and
configuring the database for archive logging. You’ll need to know the various modes in which you
can start an Oracle instance, as well as how to stop it in different modes and how to restrict access to
just the DBAs when necessary. To round out your basic knowledge, we’ll look at how to quiesce and
suspend a database, which you’ll need to know to efficiently manage your databases, and how to
drop an Oracle database with the DROP DATABASE command.

Getting Ready to Create the Database
You can create a new database either manually (using scripts) or by using the Oracle Database
Configuration Assistant. The DBCA is configured to appear immediately after the installation of the
Oracle software to assist you in creating a database, and you can also invoke the DBCA later on to
help you create a database.

Whether you create a database manually or let Oracle create one for you at software installation
time, a configuration file called init.ora, or its newer equivalent, SPFILE, holds all the database
configuration details. After the initial creation of the database, you can always change the behavior
of the database by changing the initialization parameters. You can also change the behavior of the
database for brief periods or during some sessions by using the ALTER SYSTEM and ALTER SESSION
commands to change certain initialization parameter values.

Before you create a database, however, you need to make sure you have the necessary software
and appropriate memory and storage resources. The next few sections run through the brief list of
things to check.

444 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

Installing the Oracle Software
Before you can create a database, you must first install the Oracle Database 11g software. If you
haven’t already done so, see Chapter 9, which covers the installation of the Oracle server software on
UNIX and Linux systems.

Creating the File System for the Database
Planning your file systems is an important task, and you need to complete it before you start creating
the database. You have to plan the location of the various database files, such as the redo log files
and archivelog files, before you create the database, and the placement of the files can have serious
effects on performance down the road. Let’s look at the sizing and location issues in some detail.

Sizing the File System

The amount of file system space you need depends primarily upon the total space you need to allo-
cate for Oracle datafiles. You use datafiles to create the System and Sysaux tablespaces, as well as the
undo tablespace, default permanent tablespace, redo logs, and files to hold application data (tables
and indexes). Your overall space estimate should include space for the following:

• Tables and indexes: Table and index data is the biggest component of the physical database.
You first need to estimate the size of all the tables, which you can base on the number and
width of columns and the expected number of rows in each table. You don’t need accurate
numbers here; rough figures should suffice. You must know what indexes are needed by your
application. You also need to know the type of indexes you’re going to create, as this has a
major bearing on the physical size of the indexes. You can use formulas to determine the
space required for the indexes.

• Undo tablespace: How much space needs to be allocated to the undo tablespace depends on
the size of your database and the nature of your transactions. If you anticipate a lot of large
transactions, or you need to plan for large batch jobs, you will require a fairly large undo
tablespace. You can always enlarge the undo tablespace later on by adding datafiles to the
undo tablespace.

• Temporary tablespace: The temporary tablespace size also depends on the nature of your
application and the transaction pattern. If the queries involve a lot of sorting operations,
you’re better off with a larger temporary tablespace in general. Note that you’ll be creating the
temporary tablespace explicitly during creation of the database and assigning it to be the
default temporary tablespace for the users in the database.

• Default permanent tablespace: As I explained in Chapter 6, it’s a good idea to assign a default
permanent tablespace for the database. All database users are automatically assigned the
default permanent tablespace.

• System and Sysaux tablespaces: The System and Sysaux tablespaces are both mandatory
tablespaces used by the database to store data dictionary information and objects pertaining
to various Oracle schemas.

• Redo log files: Redo log files are critical for the functioning of a database, and they’re key
components when you’re trying to recover the database without any loss of committed data.
Oracle recommends that you have a minimum of two redo log groups (with each group
having one or more members). Redo log files need to be multiplexed—that is, you should
have more than a single redo log file in each group, because they’re a critical part of the data-
base and they’re a single point of failure. With multiplexed redo logs, the instance will
continue to run even if one copy of the redo log file is removed by error or is corrupted.

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 445

The appropriate size for the redo log file will depend on how quickly your database is writing
to the log. If you have a lot of DML operations in your database, and the redo logs seem to be
filling up very quickly, you may want to increase the size of the log files. (You can’t increase
the size of an existing redo log file, but you can create larger redo log files and drop the smaller
files.) The redo log files are written in a circular fashion, and your goal should be to size the
log files such that no more than two or three redo log files are filled up every hour. The funda-
mental conflict here is between performance and recovery time. A very large redo log file will
be efficient because there won’t be many log switches and associated checkpoints, all of
which impose a performance overhead on the database. However, when you need to
perform recovery, larger redo logs take more time to recover from, because you have more
data to recover.

You can figure out the optimal redo log file size by looking at the OPTIMAL_LOGFILE_SIZE
column of the V$INSTANCE_RECOVERY view, after your database has been running for a
while. An easier way to get recommendations for the redo log file size is to view the Redo Log
Groups page of the Oracle Enterprise Manager (OEM) Database Control.

■Note Oracle recommends that you have four redo log groups, to keep the log writer from having to wait for an
available group after each log switch. The members of the redo log groups (the redo log files) should be the same
size. Oracle suggests sizing the redo log files such that they switch about every 20 minutes during a busy workload
and about once an hour during normal workloads.

• Flash recovery area: Oracle recommends that you create a flash recovery area to hold all data-
base backup- and recovery-related files needed for a recovery from a media failure. The flash
recovery area holds all datafile backups, Recovery Manager (RMAN) backups, flashback logs,
archived redo log files, and control file backups. The size of the flashback area depends on the
size and frequency of your backups and on how long you want to retain backups on disk. For
example, if you plan on taking weekly backups, you must allocate enough space in the flash
recovery area to hold one week’s full backups as well as the archived redo logs. If you plan on
taking incremental backups in between the weekly full backups, you must also allocate space
for those backups in the flash recovery area.

Choosing the Location for the Files

You should place the database files, such as the system, redo log, and archivelog files, in locations
that allow you to benefit from the Optimal Flexible Architecture (OFA) guidelines, which I discussed
in Chapter 5. Following the OFA guidelines for file placement in your database offers the following
benefits:

• Makes it easy for you to locate and identify the various files, such as database files, control
files, and redo log files

• Makes it easy to administer multiple Oracle databases and multiple Oracle software versions

• Improves database performance by minimizing contention among the different types of files

If you followed the OFA guidelines while installing your software, you should be in good shape
regarding the way your files are physically laid out.

Ensuring Sufficient Memory Allocation
If you don’t have enough memory in the system to satisfy the requirements of your database, your
database instance will fail to start. Even if it does start, there will be a lot of memory paging and

446 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

swapping that will slow your database down. The cost of memory is such a small component of
enterprise computing costs these days that you’re better off getting a large amount of memory for
the server on which you plan to install the Oracle database. In Oracle Database 11g, you can use the
new MEMORY_TARGET initialization parameter to completely automate the allocation of memory to the
Oracle instance.

Getting Necessary Authorizations
You will need authorization to be granted by the UNIX/Linux system administrator for you to be
able to create file systems on the server. Your Oracle username should be included in the DBA group
by the system administrator, if you are working on a UNIX or a Linux server.

Setting the OS Environment Variables
Before you proceed to create the database, you must set all the necessary operating system environ-
ment variables. In UNIX and Linux environments, you must set the following environment
variables:

• ORACLE_SID: This is your database’s name and is the same as the value of the DB_NAME initial-
ization parameter.

• ORACLE_BASE: This is the top directory for the Oracle software, which for our purposes, is /u01/
app/oracle. ORACLE_BASE is currently a recommended variable, but Oracle intends to make it
a required variable in a future release.

• ORACLE_HOME: This is the directory in which you installed the Oracle software. Oracle recom-
mends you use the following format for this variable: $ORACLE_BASE/product/release/db_n.
For this chapter’s purposes, this directory is /u01/app/oracle/product/11.1.0.0/db_1.

• PATH: This is the directory in which Oracle’s executable files are located. Oracle’s executables
are always located in the $ORACLE_HOME/bin directory. You can add the location of Oracle’s
executable files to the existing PATH value in the following way:

export PATH=$PATH:$ORACLE_HOME/bin

• LD_LIBRARY_PATH: This variable points out where the Oracle libraries are located. The usual
location is the $ORACLE_HOME/lib directory.

Creating the Parameter File
Every Oracle instance makes use of a set of initialization parameters that dictate database limits
such as the number of users, specify the names and locations of key files and directories, and opti-
mize performance by setting the size of key resources such as memory. Before you jump into the
details of Oracle database creation, it’s important to familiarize yourself with the important Oracle
initialization parameters and how Oracle uses them.

Types of Database Parameter Files
Oracle uses a parameter file to store the initialization parameters and their settings for an instance.
You can use either of the following two types of parameter files:

• Server parameter file (SPFILE): A binary file that contains the initialization parameters

• Initialization parameter file (PFILE): A text file that contains a list of all initialization
parameters

The key difference between these two types of files is that with an SPFILE, you have the option
of making any changes to the initialization parameters while an instance is running persist across an

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 447

instance shutdown. You can’t do this using the PFILE, since any dynamic changes that are also not
recorded in that file will not persist after you restart your instance.

Note that I use the filename init.ora to refer to the PFILE, as the standard name for the PFILE is
initdb_name.ora. After I create the database, I’ll show you how to create the SPFILE from the init.ora
file.

The initialization parameter file was traditionally the only type of file in which you could store
these initialization parameter values. An initialization parameter file is a text file that you can edit
like any other text file. By default, this file is located in the $ORACLE_HOME/dbs directory (though you
can store it in any place that’s helpful to you). If you store the configuration file in a location other
than the default, you must specify the complete location when you start the instance. If the initial-
ization parameter filename and the location follow the default conventions, you don’t have to
specify the name or location of the file at startup.

■Note The initialization files are used not only to create the database itself, but also each time you start an Oracle
instance. You can tune several aspects of a database’s performance by modifying parameter values. You can
change some of these parameters dynamically while the instance is running, but for other changes to take effect,
you’ll have to restart the instance.

The initialization parameter file includes parameters that will help tune the instance, that set
limits on certain database resources, and that specify the names and locations of important files. It
also contains parameters that affect database performance, such as those specifying the amount of
memory allocated to Oracle. Once you create the initialization file, you can start the instance by
using the file in your database startup commands.

You can dynamically modify several important configuration parameters while the instance is
running. The dynamic changes are made in a SQL*Plus session, without changing the init.ora file
itself. You can make an instance-wide change by using the ALTER SYSTEM statement and a session-
wide change by using the ALTER SESSION statement. These modifications won’t be permanent,
however; as soon as you shut down the database, the changes are gone and you’re back to the values
hard-coded in the init.ora file. To make any configuration parameter changes permanent, you
must edit the initialization parameter (init.ora) file.

If you want to make the dynamic changes permanent, so that the parameter is automatically
updated and the database uses these new values upon restarting, you should use a server parameter
file. The SPFILE is also an initialization file, but you can’t make changes to it directly because it’s a
binary file, not a text file. Using the SPFILE to manage your instance provides several benefits, as
you’ll see in the “Using a Server Parameter File” section later in the chapter. Oracle recommends that
you use the SPFILE because of the advantages it offers.

The Initialization Parameter File
In the database creation example I show later, I use the traditional init.ora file to create the data-
base. Once I create my database, I’ll create an SPFILE from this init.ora file. Oracle provides a
template to make it easy for you to create your own initialization parameter file. This template is
located in the $ORACLE_HOME/dbs directory in UNIX/Linux systems and in the $ORACLE_HOME/database
directory in Windows systems. Copy this init.ora template, rename it initdb_name.ora, and then
edit it to meet your own site’s requirements. Don’t be too nervous about trying to make “correct” esti-
mates for the various configuration parameters, because most of the configuration parameters are
easily modifiable throughout the life of the database. Just make sure you’re careful about the handful
of parameters that you can’t change without redoing the entire database from scratch. I point out
these parameters in the “Important Oracle Database 11g Initialization Parameters” section later in
this chapter.

The interesting thing about the initialization parameter file is that it contains the configuration
parameters for memory and some I/O parameters, but not for the database filenames or the
tablespaces that the datafiles belong to. The control file holds all that information. The initialization

448 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

file, though, has the locations of the control files and the dump directories for error messages. It also
specifies the modes chosen for undo management, the optimizer, and archiving for the redo logs.

With the exception of DB_NAME, all Oracle initialization parameters are optional. Oracle will
simply use the default values for all the initialization parameters you leave out of the initialization
parameter file.

Of course, when you let Oracle use default values for a parameter, you relinquish control over
that parameter. You should leave parameters out of the init.ora file only if you determine that their
default values are okay for your database. In general, it’s a good idea to use approximate sizes for the
important configuration parameters and use a trial-and-error method to determine whether you
need to use parameters that are new or that you haven’t used before.

Oracle Database 11g is highly configurable, but that benefit also carries with it the need for DBAs
to learn not only how the large number of parameters work, but also how they may interact with one
another to produce results at variance with your original plans. For example, an increase in the SGA
size may increase database performance up to a point, but too big an increase might actually slow
the database down, because the operating system might be induced to swap the higher SGA in and
out of real memory. Be cautious about making configuration changes; always think through the
implications of tinkering with initialization parameters.

Changing the Initialization Parameter Values
You can change the value of any initialization parameter by simply editing the init.ora file.
However, for the changes to actually take effect, you have to bounce the database—stop it and start
it again. As you can imagine, this is not always possible, especially if you are managing a production
database. However, you can change several of the parameters on the fly—these are called dynamic
parameters for that reason. The parameters you can change only by changing the init.ora file and
then restarting the database are called static parameters.

You have three ways to change the value of dynamic parameters: the ALTER SESSION, ALTER
SYSTEM, and ALTER SYSTEM . . . DEFERRED commands.

Using the ALTER SESSION Command

The ALTER SESSION command enables you to change dynamic parameter values for the duration of
the session that issues the command. The ALTER SESSION command is used only to change a param-
eter’s value temporarily.

Here is the general syntax for the command:

ALTER SESSION SET parameter_name=value;

Using the ALTER SYSTEM Statement

The ALTER SYSTEM statement changes the parameter’s value for all sessions. However, these changes
will be in force only for the duration of the instance; when the database is restarted, these changes
will go away, unless you modify the init.ora file accordingly or you use the SPFILE.

Here is the syntax for this command:

ALTER SYSTEM SET parameter_name=value;

Using the ALTER SYSTEM . . . DEFERRED Statement

The ALTER SYSTEM . . . DEFERRED statement will make the new values for a parameter effective for
all sessions, but not immediately. Only sessions started after the statement is executed are affected.
All currently open sessions will continue to use the old parameter values.

Here is the syntax for this command:

ALTER SYSTEM SET parameter_name DEFERRED;

The ALTER SYSTEM . . . DEFERRED statement works only for only a few initialization parameters.
Therefore, you must use the ALTER SYSTEM statement instead for systemwide initialization parameter

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 449

changes. Any parameter value change you make through the ALTER SYSTEM statement, of course,
applies immediately to all sessions.

When you change the value of a parameter by using the ALTER SESSION or ALTER SYSTEM state-
ment, the change in the parameter’s value will last only for the duration of the instance. When you
have to restart the instance, the parameter values will revert to their old values, unless you record the
changes in the init.ora file or you use (started up your instance with) the SPFILE.

Important Oracle Database 11g Initialization Parameters
The following sections present the most important Oracle initialization parameters you need to be
familiar with. For the sake of clarity, I’ve divided the parameters into various groups, such as audit-
related parameters, process and session parameters, memory configuration parameters, and so on.
My parameter groupings are arbitrary and are designed simply to make it easier to understand the
configuration of a new database.

Although this list looks long and formidable, it isn’t a complete list of the initialization parame-
ters for Oracle Database 11g—it’s a list of only the most commonly used parameters. Oracle
Database 11g has over 250 documented initialization parameters that DBAs can configure (if you add
the undocumented or hidden initialization parameters, the total comes to well over a thousand
parameters). Don’t be disheartened, though. The basic list of parameters that you need in order to
start your new database can be fairly small and easy to understand. Oracle has, for the first time,
grouped together the most common initialization parameters, and according to Oracle, most data-
bases should only need these basic parameters set. Oracle advises you to become familiar with these
basic parameters and to use other parameters only when directed to do so by the documentation or
in special circumstances. Later on, as you study various topics such as backup and recovery, perfor-
mance tuning, networking, and so on, you’ll have a chance to really understand how to use the more
esoteric initialization parameters.

DIAGNOSTIC_DEST

Oracle Database 11g uses a new infrastructure for storing diagnostic information, called the Auto-
matic Diagnostic Repository (ADR). You specify the location of this directory with the initialization
parameter DIAGNOSTIC_DEST. The DIAGNOSTIC_DEST parameter specifies the structure of the ADR in
the following way:

<diagnostic_dest>/diag/rdbms/<dbname>/<instname>

If your database name is orcl1 and the instance name is also orcl1, the ADR home directory
will be

<diagnostic_dest>/diag/rdbms/orcl1/orcl1

The ADR home directory contains alert logs, trace files, core files, and incident files, as I explain
in Chapter 5. If you set the ORACLE_BASE directory, the location of the ADR is derived from that. Other-
wise, the default location of the diagnostic directory is $ORACLE_HOME/log.

FIXED_DATE

This is a new initialization parameter in Oracle Database 11g that enables you to set a constant date
that SYSDATE will return instead of the current date. You can undo the FIXED_DATE setting with a value
of NONE. Here is the syntax of the parameter:

Example: FIXED_DATE = YYYY-MM-DD-HH24:MI:SS (or the default Oracle date format)

Default value: None

Parameter type: Dynamic

450 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

Audit-Related Parameters

An Oracle database can be configured to audit actions by its users, and you can configure this
auditing feature according to several criteria, although the default behavior of the database is not to
audit actions. The following parameters let you configure how you audit your database usage.

AUDIT_TRAIL

The AUDIT_TRAIL parameter turns auditing on or off for the database. If you don’t want auditing to be
turned on, do nothing, since the default value for this parameter is none, or false, which disables
database auditing. If you want auditing turned on, you can set the AUDIT_TRAIL parameter to any of
the following values:

• os: Oracle writes the audit records to an operating system audit trail, which is an operating
system file, including audit records from the OS, audit records for the SYS user, and those
database actions that are always automatically audited.

• db: Oracle records the same type of auditing as with the os setting, but it directs all audit
records to the database audit trail, which is the AUD$ table owned by SYS.

• db,extended: This is similar to the db setting, but also provides extended audit information
like the SQLBIND and SQLTEXT columns of the SYS.AUD$ table.

• none: This value disables auditing.

In addition, you have two XML-related AUDIT_TRAIL values:

• XML: This value for audit trail enables database auditing and writes audit details to OS files in
XML format.

• XML,EXTENDED: This value prints all database audit records plus the SQLTEXT and
SQLBIND values to OS files in the XML format.

The parameter is set as follows:

Example: AUDIT_TRAIL=db

Default value: None

Parameter type: Static

Chapter 12 provides more information about auditing actions within an Oracle database.

■Tip Even if you don’t set the AUDIT_TRAIL parameter to any value, Oracle will still write audit information to an
operating system file for all database actions that are audited by default. On a UNIX system, the default location for
this file is the $ORACLE_HOME/rdbms/audit directory. Of course, you can specify a different directory if you wish.

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 451

AUDIT_FILE_DEST

The AUDIT_FILE_DEST parameter specifies the directory in which the database will write the audit
records, when you choose the operating system as the destination with the AUDIT_TRAIL parameter
by specifying AUDIT_TRAIL=os. You can also specify this parameter if you choose the XML or
XML,EXTENDED options for the AUDIT_TRAIL option, since the audit records are written to oper-
ating system files in both cases.

Example: AUDIT_FILE_DEST=/u01/app/oracle/audit

Default value: $ORACLE_HOME/rdbms/audit

Parameter type: Dynamic. You can modify this parameter with the ALTER SYSTEM . . . DEFERRED
command.

AUDIT_SYS_OPERATIONS

If set to a value of true, AUDIT_SYS_OPERATIONS will audit all actions of the SYS user and any other user
with a SYSDBA or SYSOPER role and will write the details to the operating system audit trail specified
by the AUDIT_TRAIL parameter. By writing the audit information to a secure operating system loca-
tion, you remove any possibility of the SYS user tampering with an audit trail that is located within
the database. The possible values are true and false.

Example: AUDIT_SYS_OPERATIONS=true

Default value: false

Parameter type: Static

LDAP_DIRECTORY_SYSAUTH

LDAP_DIRECTORY_SYSAUTH is a new initialization parameter in Oracle Database 11g that enables or
disables directory authentication for the SYSDBA and SYSOPER privileges. Possible values are yes
and no.

Example: LDAP_DIRECTORY_SYSAUTH=yes

Default value: None

Parameter type: Static

Database Name and Other General Parameters

The most important of the general parameters is the parameter that sets the name of the database.
Let’s look at this set of parameters in detail.

DB_NAME and DB_UNIQUE_NAME

The DB_NAME parameter sets the name of the database. This is a mandatory parameter, and the value
is the same as the database name you used to create the database. The DB_NAME value should be the
same as the value of the ORACLE_SID environment variable. This parameter can’t be changed after the
database is created. You can have a DB_NAME value of up to eight characters.

Example: DB_NAME=orcl11

Default value: false

Parameter type: Static

The DB_UNIQUE_NAME parameter lets you specify a globally unique name for the database.

452 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

DB_DOMAIN

The DB_DOMAIN parameter specifies a fully qualified name (in Internet dot notation) for the database,
and this is typically the same as the name of the organization that owns the database. The DB_DOMAIN
parameter specifies the logical location of the database within the network structure, and you
should set this parameter if your database is part of a distributed system.

Example: DB_DOMAIN=world

Default value: Null

Parameter type: Static

INSTANCE_NAME

The INSTANCE_NAME parameter will have the same value as the DB_NAME parameter in a single instance
environment. You can associate multiple instances to a single database service (DB_NAME) in a Real
Application Clusters environment.

Example: INSTANCE NAME=orcl11

Default value: The instance SID

Parameter type: Static

SERVICE_NAME

The SERVICE_NAME parameter provides a name for the database service, and it can be anything you
want it to be. Usually, it is a combination of the database name and your database domain.

Example: SERVICE_NAME=orcl11

Default value: DB_NAME.DB_DOMAIN

Parameter type: Dynamic. This parameter can be changed with the ALTER SYSTEM command.

COMPATIBLE

The COMPATIBLE parameter allows you to use the latest Oracle database release, while making sure
that the database is compatible with an earlier release.

Suppose you upgrade to the Oracle Database 11g Release 1 version, but your application devel-
opers haven’t made any changes to their Oracle 10.2 application. In this case, you could set the
COMPATIBLE parameter equal to 10.2 so the untested features of the new Oracle version won’t hurt
your application. Later on, after the application has been suitably upgraded, you can reset the
COMPATIBLE initialization parameter to 11.1.0, which is the default value for Oracle Database 11g
Release 1.

If, instead, you immediately raise the compatible value to 10.2, you can use all the new 10.2
features, but you won’t be able to downgrade your database to 9.2 or any other lower versions. You
must understand this irreversible compatibility clearly, before you set the value for this parameter.

Example: COMPATIBLE=11.1.0.6

Default value: 10.2.0

Parameter type: Static

INSTANCE_TYPE

The INSTANCE_TYPE parameter specifies whether your instance is a database instance or an Auto-
matic Storage Management instance. You specify ASM if the instance is an Automatic Storage
Management instance. A setting of RDBMS denotes a normal database instance.

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 453

Example: INSTANCE_TYPE=asm

Default value: RDBMS

Parameter type: Static

■Note A set of parameter values is specific to an Oracle database using ASM, and some parameters pertain only

to the special ASM instances. You’ll review these initialization parameters in Chapter 17, where I discuss ASM
in detail.

NLS_DATE_FORMAT

The NLS_DATE_FORMAT parameter specifies the default date format Oracle will use. Oracle uses this
date format when using the TO_CHAR or TO_DATE functions in SQL. There is a default value, which is
derived from the NLS_TERRITORY parameter. For example, if the NLS_TERRITORY format is America, the
NLS_DATE_FORMAT parameter is automatically set to the DD-MON-YY format.

Example: NLS_DATE_FORMAT=DD-MM-YYYY HH:MI:SS

Default value: Depends on the NLS_TERRITORY variable and the operating system

Parameter type: Dynamic. This parameter can be altered by using the ALTER SESSION command.

File-Related Parameters

You can specify several file-related parameters in your init.ora file. Oracle requires you to specify
several destination locations for trace files and error messages. In addition, you need to specify the
UTL_FILE_DIR parameter in order to use the UTL_FILE package. The following sections cover the key
file-related parameters.

IFILE

You can use the IFILE parameter to embed another initialization file in it. For example, you can have
a line in your init.ora file such as this:

ifile=config.ora

In the config.ora file, you could then have some common initialization parameters for several
instances. You can have up to three levels of nesting.

Default value: No default value

Parameter type: Static

CONTROL_FILES

Control files are key files that hold datafile names and locations and a lot of other important infor-
mation. The database needs only one control file, but because this is such an important file, you
always save multiple copies of it. The way to multiplex the control file is to simply specify multiple
locations (up to a maximum of eight) in the CONTROL_FILES parameter. The minimum number of
control files is one, but Oracle recommends you have at least two control files per instance, and most
DBAs usually use three. If one of the control files is damaged or accidentally deleted, the instance
will fail when it tries to access that control file. When this happens with multiple copies of the control
file, you can always restart the database after first copying the undamaged control file to a different
location.

454 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

When you use the CREATE DATABASE statement, Oracle creates the control files listed in the
CONTROL_FILES parameter. If you don’t include this parameter in your initialization file when creating
the database, Oracle will create a control file using a default operating system–dependent filename
or, if you have enabled Oracle Managed Files, it will create Oracle-managed control files. You must
have a minimum of one control file and may have up to eight control files per database.

Example: CONTROL_FILES=('/u01/app/oracle/orcl11/control/ctl01.ora', ' /u01/app/
oracle/orcl11/control/ctl02.ora',/ u01/app/oracle/orcl11/control/ctl03.ora'

Default value: Depends on the operating system

Parameter type: Static

CONTROL_FILE_RECORD_KEEP_TIME

The CONTROL_FILE_RECORD_KEEP_TIME parameter specifies how many days Oracle will retain records
in the control file before overwriting them. Oracle recommends that you set this parameter to a high
value, to ensure that all online disk backup information remains in the control file. For example, if
you maintain a flash recovery area that holds two full weekly backups and daily incremental
backups, you must set CONTROL_FILE_RECORD_KEEP_TIME to at least 21 days.

Example: CONTROL_FILE_RECORD_KEEP_TIME=14

Default value: Seven days

Parameter type: Modifiable dynamically, with the ALTER SYSTEM statement

UTL_FILE_DIR

You can use the UTL_FILE_DIR parameter to specify the directory (or directories) Oracle will use to
process I/O when you use the Oracle UTL_FILE package to read from or write to the operating system
files. You can set UTL_FILE_DIR to any OS directory you want. If you just specify an asterisk (*) instead
of any specific directory name, the UTL_FILE package will read and write to and from all the OS direc-
tories; Oracle recommends against this practice.

Example: UTL_FILE_DIR=/u01/app/oracle/utl_dir

Default value: None; you can’t use the UTL_FILE package to do any I/O with this setting.

Parameter type: Static

■Caution You’ll need to use some directory on the server where you have read/write privileges as the setting for
UTL_FILE_DIR; otherwise the package can’t process I/O to the operating system. If you use * as the value for
the UTL_FILE_DIR parameter, however, users can write to and read from all directories for which you have read/

write privileges. Obviously, you don’t want this to happen!

Oracle Managed Files Parameters

You’ll need to use three parameters to specify the format of the Oracle Managed Files (OMF) when
you decide to use the feature: DB_CREATE_FILE_DEST, DB_CREATE_ONLINE_LOG_DEST_n, and DB_RECOVERY_
FILE_DEST. I describe the first two parameters in the sections that follow and the third under the
“Recovery-Related Parameters” section. Chapter 6 discusses in more detail how to use the initializa-
tion parameters dealing with OMF.

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 455

DB_CREATE_FILE_DEST

The DB_CREATE_FILE_DEST parameter specifies the default location for Oracle-managed datafiles. It’s
also the directory where Oracle will create datafiles and temporary files when you don’t specify an
explicit location for them. The directory must already exist with the correct read/write permissions
for Oracle.

Example: DB_CREATE_FILE_DEST=/u01/app/oracle/orcl11/dbfile/

Default value: None

Parameter type: Dynamic. It can be changed using either the ALTER SYSTEM or ALTER SESSION
command.

DB_CREATE_ONLINE_LOG_DEST_n

The DB_CREATE_ONLINE_LOG_DEST_n parameter specifies the default location for OMF online redo log
files and control files. To multiplex the online redo log files or the control file, specify more than one
value for the parameter. Oracle creates one member of each online redo log and one control file in
each location when you specify a value of n greater than one. You can have a maximum of five sepa-
rate directory locations. Please see Chapter 17 for examples of how to use this parameter.

Example: DB_CREATE_ONLINE_LOG_DEST_1=/u01/app/oracle/orcl11/log

Default value: None

Parameter type: Dynamic. This parameter can be changed using either the ALTER SYSTEM or
ALTER SESSION command.

Process and Session Parameters

Several initialization parameters relate to the number of processes and the number of sessions that
your database can handle. The following sections explore the important process and session
parameters.

PROCESSES

The value of the PROCESSES parameter will set the upper limit for the number of operating system
processes that can connect to your database concurrently. Both the SESSIONS and TRANSACTIONS
parameters derive their default values from this parameter.

Example: PROCESSES=200

Default value: At least 6, but varies according to the operating system

Parameter type: Static

DB_WRITER_PROCESSES

The DB_WRITER_PROCESSES parameter specifies the initial number of database writer processes for
your instance. Instances with very heavy data modification may opt for more than the default, which
is one process or the number of CPUs divided by 8, whichever is greater. You can have up to 20
processes per instance.

Example: DB_WRITER_PROCESSES=12

Default value: 1 or the number of CPUs divided by 8, whichever is greater

Parameter type: Static

456 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

OPEN_CURSORS

The OPEN_CURSORS parameter sets the limit on the number of open cursors a single session can have
at any given time.

Example: OPEN_CURSORS=300

Default value: 50

Parameter type: Modifiable with the ALTER SYSTEM statement

Memory-Configuration Parameters

The memory-configuration parameters determine the memory allocated to key components of the
SGA. There are two major areas of memory you allocate to Oracle from the operating system’s
memory: the system global area (SGA) and the program global area (PGA). Oracle Database 11g
takes the guessing and fine-tuning out of both SGA and PGA memory allocations. You can simply set
the MEMORY_TARGET parameter to completely automate Oracle’s memory management.

■Note Oracle’s guidelines regarding the ideal settings for the various components of memory, such as the

DB_CACHE_SIZE and shared pool, are often vague and not really helpful to a beginner. For example, Oracle states
that the DB_CACHE_SIZE should be from 20 to 80 percent of the available memory for a data warehouse database.
The shared pool recommendation for the same database is between 5 and 10 percent. The wide ranges make the
DB_CACHE_SIZE recommendations useless. If your total memory is 2GB, you’re supposed to allocate from 100MB
to 200MB of memory for the shared pool. If your total memory allocation is 32GB, your allocation for the shared pool
would be between 1.6GB and 3.2GB, according to the “standard” recommendations. The best thing to do is use a
trial-and-error method to see whether the various memory settings are appropriate for your database.

Let’s briefly review the key Oracle Database 11g parameters concerning memory allocation. The
buffer cache is the area of Oracle’s memory where it keeps data blocks that have been read in from
disk, and the data blocks may be modified here before being written back to disk again. Having a big
enough buffer cache will improve performance by avoiding too many disk accesses, which are much
slower than accessing data in memory.

You can set up the buffer cache for your database in units of the standard or primary block size
you chose for the database (using the DB_BLOCK_SIZE parameter), or you can use nonstandard-
block-sized buffer caches. If you want to base your buffer cache on the standard block size, you use
the DB_CACHE_SIZE parameter to size your cache.

MEMORY_MAX_TARGET

The MEMORY_MAX_TARGET parameter defines the maximum value to which you can set the
MEMORY_TARGET initialization parameter. The value can range from 0 to the maximum physical
memory available to the Oracle instance. You can set the value in KB, MB, or GB.

Example: MEMORY_MAX_TARGET=1800m

Default value: 0

Parameter type: Static

If you omit the MEMORY_MAX_TARGET parameter but set the MEMORY_TARGET parameter, the
MEMORY_MAX_TARGET parameter’s value defaults to that of the MEMORY_TARGET parameter’s value.

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 457

MEMORY_TARGET

The MEMORY_TARGET parameter specifies the memory allocated to Oracle when you use automatic
memory management to allocate memory to the Oracle instance. The database will raise or lower
the values of the SGA and the PGA components so the combined value is equal to the MEMORY_TARGET
parameter setting. You can set the value in KB, MB, or GB.

Example: MEMORY_TARGET=1000m

Default value: 0

Parameter type: Dynamic

DB_CACHE_SIZE

The DB_CACHE_SIZE parameter sets the size of the default buffer pool for those buffers that have the
primary block size (this is the block size defined by DB_BLOCK_SIZE). For example, you can use a
number like 1024MB.

Example: DB_CACHE_SIZE = 750MB

Default value: If you’re using the MEMORY_TARGET parameter, the default is 0. If you aren’t using
MEMORY_TARGET, it’s the greater of 48MB or 4MB.

Parameter type: Dynamic. It can be modified with the ALTER SYSTEM command.

If you’re using automatic memory management, of course, you don’t have any specific
memory-related initialization parameters, including the DB_CACHE_SIZE parameters. The database
assigns a default value of 0 for this parameter if you choose automatic memory management and
ignore this parameter. However, you can assign a specific value for this parameter even when you
choose to implement automatic memory management. When you do so, Oracle will treat the value
you assign for the DB_CACHE_SIZE parameter as the minimum value for the memory pool.

DB_KEEP_CACHE_SIZE

The normal behavior of the buffer pool is to treat all the objects placed in it equally. That is, any
object will remain in the pool as long as free memory is available in the buffer cache. Objects are
removed (aged out) only when there is no free space. When this happens, the oldest unused objects
sitting in memory are removed to make space for new objects.

The use of two specialized buffer pools—the keep pool and the recycle pool—allows you to
specify at object-creation time how you want the buffer pool to treat certain objects. For example, if
you know that certain objects don’t really need to be in memory for a long time, you can assign them
to a recycle pool, which removes the objects right after they’re used. In contrast, the keep pool always
retains an object in memory if it’s created with the KEEP option.

The DB_KEEP_CACHE_SIZE parameter specifies the size of the keep pool, and it’s set as follows:

Example: DB_KEEP_CACHE_SIZE = 500MB

Default value: 0; by default, this parameter is not configured.

Parameter type: Dynamic. It can be changed by using the ALTER SYSTEM command.

458 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

DB_RECYCLE_CACHE_SIZE

The DB_RECYCLE_CACHE_SIZE parameter specifies the size of the recycle pool in the buffer cache.
Oracle removes objects from this pool as soon as the objects are used. The parameter is set as
follows:

Example: DB_RECYCLE_CACHE_SIZE = 200MB

Default value: 0; by default, this parameter is not configured.

Parameter type: Dynamic. It can be changed by using the ALTER SYSTEM command.

DB_nK_CACHE_SIZE

If you prefer to use nonstandard-sized buffer caches, you need to specify the DB_nK_CACHE_SIZE
parameter for each. You can use 2, 4, 8, 16, or 32 as the value for the variable n.

Example: DB_8K_CACHE_SIZE=4096MB

Default value: 0

Parameter type: Dynamic. You can change the value of this parameter’s value with the ALTER
SYSTEM command.

AUDIT_SYS_OPERATIONS

The AUDIT_SYS_OPERATIONS parameter enables and disables the auditing of actions by the user SYS as
well as any users connecting with the SYSDBA or the SYSOPER privileges. The database writes the
audit records to the operating system audit trail. Possible values are true and false.

Example: AUDIT_SYS_OPERATIONS=true

Default value: false

Parameter type: Static

CLIENT_RESULT_CACHE_LAG

The CLIENT_RESULT_CACHE_LAG initialization parameter specifies the maximum time that can elapse
before the OCI client query makes another round-trip to retrieve database changes pertaining to
queries cached on the client. The range of values is 0 to a system-dependent maximum value.

Example: CLIENT_RESULT_CACHE_LAG = 10000

Default value: 5000 (seconds)

Parameter type: Static

CLIENT_RESULT_CACHE_SIZE

The CLIENT_RESULT_CACHE_SIZE parameter specifies the maximum memory allocated to the client
per process result set cache (in bytes). You must set a nonzero value for this parameter to enable the
client query cache feature. You can override this parameter by setting the client configuration
parameter OCI_RESULT_CACHE_MAX_SIZE. The range of values is 0 to an operating system–dependent
value.

Example: CLIENT_RESULT_CACHE_SIZE = 50M

Default value: 0

Parameter type: Static

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 459

CONTROL_MANAGEMENT_PACK_ACCESS

The CONTROL_MANAGEMENT_PACK_ACCESS parameter specifies which of the two Server Manageability
Packs should be active in the database. You can use the following two packs:

• Diagnostic pack: Includes AWR, ADDM, and so on

• Tuning pack: Includes the SQL Tuning Advisor, SQL Access Advisor, and so on

You’ll need a separate license for the diagnostic pack in order to enable the tuning pack.
Possible values are diagnostic, none, and diagnostic+tuning.

Example: CONTROL_MANAGEMENT_PACK=diagnostic

Default value: diagnostic+tuning

Parameter type: Dynamic. Modifiable with the ALTER SYSTEM statement

LARGE_POOL_SIZE

The shared pool can normally take care of the memory needs of shared servers as well as Oracle
backup and restore operations, and a few other operations. Sometimes, though, this may place a
heavy burden on the shared pool, causing a lot of fragmentation and the premature aging-out of
important objects from the shared pool due to lack of space.

To avoid these problems, you can use the LARGE_POOL_SIZE parameter to mostly free up the
shared pool for caching SQL queries and data dictionary information. If the PARALLEL_AUTOMATIC
_TUNING parameter is set, the large pool is also used for parallel-execution message buffers. The
amount of memory required for the large pool in this case depends on the number of parallel threads
per CPU and the number of CPUs.

Example: LARGE_POOL_SIZE=800M

Default value: 0 (if the pool is not required for parallel execution and DBWR_IO_SLAVES is not set)

Parameter type: Dynamic. The ALTER SYSTEM command can be used to modify this parameter.

Archivelog Parameters

Oracle gives you the option of archiving your filled redo logs. When you configure your database to
archive its redo logs, the database is said to be in an archivelog mode. You should always archivelog
your production databases unless there are exceptional reasons for not doing so. If you decide to
archive the redo logs, you have to specify that in the initialization file using the three parameters
described next.

LOG_ARCHIVE_DEST_n

The LOG_ARCHIVE_DEST_n parameters (where n = 1, 2, 3, . . . 10) define up to ten archivelog destina-
tions. This parameter enables you to specify the location (or locations) of the archived logs.

You should set this parameter only if you are running the database in archivelog mode. You can
set the database to run in archivelog mode when you create the database by specifying the
ARCHIVELOG keyword in your CREATE DATABASE statement.

This is how you specify the LOG_ARCHIVE_DEST_n parameter (n=1):

Example: LOG_ARCHIVE_DEST_1='LOCATION=/u02/app/oracle/arch/'

Default value: None

Parameter type: Dynamic. You can use the ALTER SESSION or the ALTER SYSTEM command to
make changes.

460 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

LOG_ARCHIVE_FORMAT

The LOG_ARCHIVE_FORMAT parameter specifies the default filename format for the archived redo log
files. In this example, %t stands for the thread number, %s for the log sequence number, and %r for
the resetlog’s ID that ensures a unique name for archived redo logs across multiple incarnations of
the database (the multiple incarnations are created after using a resetlogs operation).

Example: LOG_ARCHIVE_FORMAT = 'log%t_%s_%r.arc'

Default value: Operating-system dependent

Parameter type: Static

Undo Space Parameters

The main undo-related parameters are the UNDO_MANAGEMENT, UNDO_TABLESPACE, and UNDO_RETENTION
parameters. Note that you can specify the undo-retention guarantee when you create the database
by using the RETENTION GUARANTEE clause in the CREATE UNDO TABLESPACE statement.

UNDO_MANAGEMENT

If the UNDO_MANAGEMENT parameter is set to auto, the undo tablespace is used for storing the undo
records, and Oracle will automatically manage the undo segments.

Example: UNDO_MANAGEMENT = auto

Default value: auto

Parameter type: Static

UNDO_TABLESPACE

The UNDO_TABLESPACE parameter determines the default tablespace for undo records. If you have
only a single undo tablespace, you don’t need to specify this parameter—Oracle will automatically
use your undo tablespace. If you don’t have an undo tablespace available, Oracle will use the System
rollback segment for undo storage, which isn’t a good option. If you don’t specify a value for this
parameter when you create the database, and you have chosen to use Automatic Undo Management
(AUM), Oracle will create a default undo tablespace with the name UNDOTBS. This default
tablespace will have a single 10MB datafile that will be automatically extended without a maximum
limit.

Example: UNDO_TABLESPACE = undotbs1

Default value: The first undo tablespace available

Parameter type: Dynamic. You can use the ALTER SYSTEM command to change the default undo
tablespace.

UNDO_RETENTION

The UNDO_RETENTION parameter specifies the amount of redo information to be saved in the undo
tablespace before it can be overwritten. The appropriate value for this parameter depends on the
size of the undo tablespace and the nature of the queries in your database. If the queries aren’t huge,
they don’t need to have large snapshots of data, and you could get by with a low undo retention
interval. Similarly, if there is plenty of free space available in the undo tablespace, transactions won’t
be overwritten, and you are less likely to run into the snapshot-too-old problem.

If you plan on using the Flashback Query feature extensively, you will have to figure out how far
back in time your Flashback queries will go, and specify the UNDO_RETENTION parameter accordingly.

Example: UNDO_RETENTION = 14400 (4 hours)

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 461

Default value: 900 (seconds)

Parameter type: Dynamic. You can use the ALTER SYSTEM command to increase the value to a
practically unlimited time period.

Oracle Licensing Parameter

The use of Oracle software is limited by the license agreement between Oracle and the customer.
There are two important parameters that control the usage of Oracle licenses, LICENSE_MAX_USERS
and LICENSE_MAX_SESSIONS, the first setting a limit on the number of concurrent Oracle users and the
second, the maximum number of users you can create in a database.

LICENSE_MAX_SESSIONS

The LICENSE_MAX_SESSIONS parameter sets the maximum number of concurrent sessions you can
have at any given time. Once your database reaches this limit, new sessions can’t connect, getting a
warning about the database reaching its maximum user capacity. If you set a zero value for this
parameter, the database doesn’t enforce session licensing.

Example: LICENSE_MAX_SESSIONS=250

Default value: 0

Parameter type: Dynamic. You can issue the ALTER SYSTEM command to change the value of this
parameter.

■Note You must set either the LICENSE_MAX_SESSIONS parameter or the LICENSE_MAX_USERS parameter, but

not both. That is, you must set one of the parameters to zero and the other to a positive number.

LICENSE_MAX_USERS

The LICENSE_MAX_USERS parameter specifies the maximum number of users you can create in your
database. The value of this parameter can range from zero to the number of user licenses.

Example: LICENSE_MAX_USRS=1200

Default value: 0

Parameter type: Dynamic. You can issue the ALTER SYSTEM command to change the value of the
parameter.

Performance- and Diagnostics-Related Parameters

You can configure several performance-related parameters in your parameter file. In addition, you
can set several parameters to change the diagnostic capabilities of the database when you’re
performing activities such as tracing SQL statements.

STATISTICS_LEVEL

You set the STATISTICS_LEVEL parameter to specify the level of statistics collection by Oracle. There
are three possible values for this parameter: BASIC, TYPICAL, and ALL. Setting this parameter to the
default value of TYPICAL will ensure the collection of all major statistics required for database self-
management and will provide the best overall performance. When the STATISTICS_LEVEL parameter
is set to ALL, Oracle collects additional statistics, such as timed OS statistics and plan-execution
statistics.

462 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

Example: STATISTICS_LEVEL = typical

Default value: TYPICAL

Parameter type: Modifiable with either the ALTER SESSION or the ALTER SYSTEM statement

■Caution Setting the STATISTICS_LEVEL parameter to BASIC disables the collection of many of the important

statistics required by Oracle Database 11g features and functionality, including these:

• Automatic Workload Repository (AWR) snapshots

• Automatic Database Diagnostic Monitor (ADDM)

• All server-generated alerts

• Automatic Shared Memory Management

• Automatic optimizer statistics collection

• Buffer cache advisory and the mean time to recover (MTTR) advisory

• Timed statistics

OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES

The OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES parameter enables the SQL Plan Management feature
by enabling the capturing of repeatable SQL statements and the generation of SQL plan baselines for
those statements. Possible values for this parameter are true and false.

Example: OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES=true

Default value: false

Parameter type: Dynamic. Modifiable with the ALTER SESSION or the ALTER SYSTEM statement.

OPTIMIZER_MODE

The OPTIMIZER_MODE parameter dictates the type of optimization you want Oracle’s query optimizer
to follow. You can set the optimizer mode to the following values:

• all_rows: The query optimizer uses a cost-based approach for all SQL statements and opti-
mizes with a goal of best throughput (minimum resource cost to complete the entire
statement).

• first_rows_n: The query optimizer uses a cost-based approach and optimizes with a goal of
best response time to return the first n rows (where n = 1, 10, 100, or 1000).

• first_rows: The query optimizer uses a mix of costs and heuristics to find the best plan for
quickly returning the first few rows.

■Note The first_rows setting is available for backward compatibility—Oracle recommends using the

first_rows_n setting instead.

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 463

Example: OPTIMIZER_MODE = first_rows

Default value: all_rows

Parameter type: Dynamic. You can modify the value by issuing the ALTER SESSION or ALTER
SYSTEM statement.

OPTIMIZER_FEATURES_ENABLE

The OPTIMIZER_FEATURES_ENABLE parameter enables the database to retain the behavior of an older
Oracle software release after you upgrade it. For example, after upgrading an Oracle 10.2 release
database to the Oracle 11.1 release, you can set the OPTIMIZER_FEATURES_ENABLE parameter to 10.2,
thus retaining the optimizer behavior of Oracle Database 10g Release 2.

Example: OPTIMIZER_FEATURES_ENABLE = 10.2

Default value: 11.1.0.6

Parameter type: Dynamic. You can use the ALTER SESSION or the ALTER SYSTEM command to
make changes.

OPTIMIZER_DYNAMIC_SAMPLING

When an object doesn’t have any optimizer statistics collected, Oracle dynamically samples the data
in order to collect a quick set of statistics. You control the level of dynamic sampling by setting the
OPTIMIZER_DYNAMIC_SAMPLING parameter.

Example: OPTIMIZER_DYNAMIC_SAMPLING = 2

Default value: Ranges from 0 to 2, depending upon the value of the OPTIMIZER_FEATURES_ENABLE
parameter (if less than 9.0.1, 0; for 9.2.0, 1; and for 10.0.0 or higher, 2).

Parameter type: Dynamic. It can be modified by the ALTER SESSION or ALTER SYSTEM command.

OPTIMIZER_USE_INVISIBLE_INDEXES

The OPTIMIZER_USE_INVISIBLE_INDEXES parameter enables or disables the use of invisible indexes.
Possible values are true and false.

Example: OPTIMIZER_USE_INVISIBLE_INDEXES=true

Default value: false

Parameter type: Dynamic. You can modify it with the ALTER SESSION or ALTER SYSTEM command.

OPTIMIZER_USE_PENDING_STATISTICS

The OPTIMIZER_USE_PENDING_STATISTICS parameter specifies whether the cost optimizer can use
pending statistics. Possible values are true and false.

Example: OPTIMIZER_USE_PENDING_STATISTICS=true

Default value: false

Parameter type: Dynamic. You can modify it with the ALTER SESSION or ALTER SYSTEM command.

464 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

OPTIMIZER_USE_SQL_PLAN_BASELINES

The OPTIMIZER_USE_SQL_PLAN_BASELINES initialization parameter enables or disables the use of SQL
plan baselines stored in the database. If you enable SQL Plan Management by enabling this feature,
the optimizer will look for a SQL plan baseline and choose the plan with the lowest cost. Possible
values are true and false.

Example: OPTIMIZER_USE_SQL_PLAN_BASELINES=true

Default value: true

Parameter type: Dynamic. You can modify it with the ALTER SESSION or ALTER SYSTEM command.

PLSQL_CODE_TYPE

The PLSQL_CODE_TYPE initialization parameter enables you to specify native or interpreted compila-
tion mode for PL/SQL library units. Possible values are interpreted and native.

Example: PLSQL_CODE_TYPE=native

Default value: interpreted

Parameter type: Dynamic. You can modify it with the ALTER SESSION or ALTER SYSTEM statement.

RESULT_CACHE_MAX_RESULT

The RESULT_CACHE_MAX_SIZE parameter specifies the percentage of the result cache that any single
result can use. The range of values is from 1 to 100.

Example: RESULT_CACHE_MAX_RESULT=25

Default value: 5 percent

Parameter type: Dynamic. You can modify it with the ALTER SYSTEM command.

RESULT_CACHE_MAX_SIZE

The RESULT_CACHE_MAX_SIZE parameter specifies the maximum amount of the SGA that the result
cache can use. Setting this parameter to 0 disables the result cache. The range of values is from 0 to
an operating system–dependent value.

Example: RESULT_CACHE_MAX_SIZE=500m

Default value: Depends on the value you assign for the MEMORY_TARGET, SGA_TARGET, and
SHARED_POOL parameters

Parameter type: Dynamic. You can modify it with the ALTER SYSTEM command.

RESULT_CACHE_MODE

The RESULT_CACHE_MODE parameter specifies when the database will use the results cache in memory
for a SQL statement. Possible values are manual and force.

Example: RESULT_CACHE_MODE=force

Default value: manual

Parameter type: Dynamic. You can modify it with the ALTER SESSION or ALTER SYSTEM statement.

If you set the value of this parameter to manual, you must use a RESULT_CACHE hint in a query for
the database to cache its results. If you specify the value force, the database will try to cache the
results of all statements whenever it’s possible to do so.

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 465

SEC_CASE_SENSITIVE_LOGON

The SEC_CASE_SENSITIVE_LOGON parameter enables or disables password case sensitivity. Possible
values are true and false.

Example: SEC_CASE_SENSITIVE_LOGON=true

Default: true

Parameter type: Dynamic. You can modify it with the ALTER SYSTEM command.

SEC_MAX_FAILED_LOGIN_ATTEMPTS

You use the SEC_MAX_FAILED_LOGIN_ATTEMPTS parameter to specify the maximum number of unsuc-
cessful authentication attempts a client can make before the server process automatically drops the
connection attempt. The minimum value is 1 and maximum value is unlimited.

Example: SEC_MAX_FAILED_LOGIN_ATTEMPTS=3

Default: 10

Parameter type: Dynamic. You can modify it with the ALTER SYSTEM command.

QUERY_REWRITE_ENABLED

The QUERY_REWRITE_ENABLED parameter determines whether query rewriting is enabled or disabled,
which is of importance mostly when you use materialized views.

Example: QUERY_REWRITE_ENABLED=false

Default: true if the OPTIMIZER_FEATURES_ENABLE parameter is set to 10.0.0 or higher; false if it is
set to 9.2.0 or lower.

Parameter type: Dynamic. You can modify it with the ALTER SESSION or ALTER SYSTEM command.

QUERY_REWRITE_INTEGRITY

The QUERY_REWRITE_INTEGRITY parameter specifies the degree to which Oracle will enforce integrity
rules during a query rewrite: trusted, enforced, or stale tolerated.

• trusted: Oracle assumes the materialized view is current and allows rewrites using relation-
ships that are not enforced by Oracle.

• enforced: This is the safest mode; Oracle doesn’t use transformations that rely on unenforced
relationships. This mode always uses fresh data, guaranteeing consistency and integrity.

• stale_tolerated: Oracle will allow query rewrites using unenforced relationships.

Example: QUERY_WRITE_INTEGRITY = trusted

Default value: enforced

Parameter type: Dynamic. You can modify it with the ALTER SESSION or ALTER SYSTEM command.

466 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

CURSOR_SHARING

This crucial initialization parameter specifies how Oracle’s SQL statements are supposed to share
cursors. The three possible values are forced, exact, and similar. You’ll learn more about setting
this parameter in Chapters 19 and 20.

Example: CURSOR_SHARING = force

Default value: exact

Parameter type: Dynamic. Both the ALTER SESSION and ALTER SYSTEM commands can be used to
change the value.

■Caution You have to be extremely careful when using the CURSOR_SHARING parameter. As you’ll learn in
Chapter 19, using the forced option will force Oracle to use bind variables, and thus will enhance your application
performance. However, there are many caveats, and the wrong option for this parameter can hurt performance.

DB_BLOCK_SIZE

The DB_BLOCK_SIZE parameter sets the standard database block size (measured in bytes, such as
4096, which is a 4KB block size). The System tablespace and most other tablespaces use the standard
block size. You set the standard block size from 2KB to 32KB (2, 4, 8, 16, or 32) in the DB_BLOCK_SIZE
parameter. (Because the size is specified in bytes, the actual range for the DB_BLOCK_SIZE parameter
is 2,048–32,768.) You can also specify up to four nonstandard block sizes when creating tablespaces.

You have to carefully evaluate your application’s needs before you pick the correct database
block size. Whenever you need to read data from or write data to an Oracle database object, you do
so in terms of data blocks. Also, you always should make the DB_BLOCK_SIZE value a multiple of your
operating system’s block size, which you can ascertain from your UNIX or Windows system
administrator.

■Tip Remember that the data block is the smallest unit in the Oracle physical database structure. When you are
querying data, the rows aren’t fetched individually; rather, the entire set of blocks in which the rows reside is read

into memory in one fell swoop.

If you’re supporting data warehouse applications, it makes sense to have a very large DB_BLOCK_
SIZE—something between 8KB and 32KB. This will improve database performance when reading
huge chunks of data from disk. Large data warehouses perform more full table scans and thus perform
more sequential data access than random access I/Os.

However, if you’re dealing with a typical OLTP application, where most of your reads and writes
consist of relatively short transactions, a large DB_BLOCK_SIZE setting would be overkill and could
actually lead to inefficiency in input and output operations. Most OLTP transactions read and write
a very small number of rows per transaction, and they conduct numerous transactions with random
access I/O (index scans), so you need to have a smaller block size, somewhere from 2KB to 8KB. A
larger block size may be too large for most OLTP applications, as the database has to read large
amounts of data into memory even when it really needs very small bits of information. Data ware-
housing applications, on the other hand, will benefit from a large block size, say 32KB.

Example: DB_BLOCK_SIZE=32768

Default value: 8192 (bytes)

Parameter type: Static

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 467

■Note You can’t simply change the DB_BLOCK_SIZE parameter in the init.ora file after the database is
created. The block size is more or less permanent. However, you can get around the need to re-create the whole
database by creating new tablespaces (all but the System tablespace) with the required block size by using the
BLOCKSIZE parameter, which will perform a roundabout change in the block size. Officially, the DB_BLOCK_SIZE
parameter will still be set at the original value you specified. You can then use the online redefinition feature to move

tables to the newly created tablespaces with the new block size. You can also do this using OEM.

DB_FILE_MULTIBLOCK_READ_COUNT

The DB_FILE_MULTIBLOCK_READ_COUNT parameter specifies the maximum number of blocks Oracle
will read during a full table scan. The larger the value, the more efficient your full table scans will be.
The general principle is that data warehouse operations need high multiblock read counts because
of the heavy amount of data processing involved. If you are using a 16KB block size for your data-
base, and the DB_FILE_MULTIBLOCK_READ_COUNT parameter is also set to 16, Oracle will read 256KB in
a single I/O. Depending on the platform, Oracle supports I/Os up to 1MB.

Note that when you stripe your disks, the stripe size should be a multiple of the I/O size for
optimum performance. If you are using an OLTP application, a multiblock read count such as 8 or
16 would be ideal. Large data warehouses could go much higher than this.

Example: DB_FILE_MULTIBLOCK_READ_COUNT = 32

Default value: Platform dependent

Parameter type: Dynamic. It is modifiable with either an ALTER SYSTEM or an ALTER SESSION
command.

■Tip Since Oracle Database has been self-tuning this parameter since Release 10.2, it’s probably a good idea not
to set this parameter.

SQL_TRACE

The SQL_TRACE parameter will turn the SQL trace utility on or off. You can leave this parameter at its
default setting of false (off), setting it to true (on) only when you are tuning a specific query or set of
queries. Because of the heavy overhead, you should always use this parameter at the session, not the
instance, level. Chapter 20 shows you how to use trace queries and format the trace output to help
you in tuning SQL queries.

Example: SQL_TRACE = on

Default value: false

Parameter type: Dynamic. It can be changed with the ALTER SYSTEM or ALTER SESSION command.

PARALLEL_MAX_SERVERS

The PARALLEL_MAX_SERVERS parameter determines the number of parallel execution processes.
Oracle recommends two parallel processes per CPU on larger systems, and four processes per CPU
on smaller systems.

468 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

Default value: Depends on the values of the CPU_COUNT, PARALLEL_AUTOMATIC_TUNING, and
PARALLEL_ADAPTIVE_MULTI_USER parameters

Parameter type: Dynamic. It can be changed only at the system level with the ALTER SYSTEM
command.

TIMED_STATISTICS

The TIMED_STATISTICS parameter is used to tell Oracle whether it should collect timed statistics
during tracing. The possible values are true (timed statistics are collected) and false (timed statis-
tics are not collected). If timed statistics are collected, they are used in some dynamic performance
views. If you set the STATISTICS_LEVEL parameter to the recommended level of TYPICAL or to AUTO, the
TIMED_STATISTICS parameter is by default set to true.

Example: TIMED_STATISTICS = true

Default value: true if the STATISTICS_LEVEL parameter is set to TYPICAL or ALL, false otherwise

Parameter type: Dynamic. You can change it with the ALTER SYSTEM or ALTER SESSION command.

PLSQL_OPTIMIZE_LEVEL

The PLSQL_OPTIMIZE_LEVEL parameter specifies the optimization level that will be used to compile
PL/SQL library units. The higher you set this parameter (in a range from 0 to 2), the more effort the
compiler makes to optimize PL/SQL library units. According to Oracle, setting this parameter to 2
pays off in better execution performance, but setting this parameter to 1 will result in almost as good
a compilation with less use of compile-time resources.

Example: PL_SQL_OPTIMIZE_LEVEL = 2

Default value: 2

Parameter type: Dynamic. You can use the ALTER SYSTEM or ALTER SESSION command to change
the value.

Recovery-Related Parameters

When you create a new database, you’ll need to configure several recovery-related parameters.
When an instance crash occurs, all the data on disk is safe, but the data stored in the database buffers
is wiped out instantaneously. Redo logs are on disk, so they are intact, but the redo log buffers are
wiped out. To recover successfully from such a crash, the database needs to be brought to a consis-
tent state by using Oracle’s redo logs and the undo records from the undo tablespace. The redo log
records are used to write all the committed data to disk, and the undo records are used to roll back
any uncommitted data that was stored on disk.

Recovering an instance can take a long time—and can keep the database out of commission for
an unacceptable length of time—if you don’t configure any thresholds that determine how long
an instance recovery can take. You can, for example, specify a precise time target for a complete
instance recovery, and the database will automatically adjust the frequency of the checkpoints to
make sure that there’s only a certain maximum amount of redo information to be rolled back when
instance recovery is performed.

Of course, if you set a very low recovery time target, your instance recovery will be quick, but the
database will need an excessive number of checkpoints on an ongoing basis, which will affect perfor-
mance. There’s no one magic number for this recovery time target. You have to take into consideration
your site’s service-level agreement and the tolerance for downtime.

The flash recovery area is an area reserved for all Oracle backup and recovery-related files, and
it contains copies of current control files and online redo logs, as well as archived redo logs, flashback
logs, and RMAN backups. The flash recovery area is completely separate from the database area,
which is the location for the current database files (datafiles, control files, and online redo logs). The

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 469

flash recovery area isn’t mandatory, but Oracle strongly recommends using it to simplify backup and
recovery operations. You’ll learn more about the flash recovery area in Chapter 16.

The two parameters described next, DB_RECOVERY_FILE_DEST_SIZE and DB_RECOVERY_FILE_DEST,
are used to configure the flash recovery area.

DB_RECOVERY_FILE_DEST_SIZE

The DB_RECOVERY_FILE_DEST_SIZE parameter specifies (in bytes) the size of the flash recovery area.

Example: DB_RECOVERY_FILE_DEST_SIZE=2000M

Default value: None

Parameter type: Dynamic. The ALTER SYSTEM command can be used to change the value.

DB_RECOVERY_FILE_DEST

The DB_RECOVERY_FILE_DEST parameter specifies the default location for the flash recovery area. If
you don’t specify DB_CREATE_ONLINE_LOG_DEST_n when using OMF files, Oracle uses the location you
specify for the DB_RECOVERY_FILE_DEST parameter as the default location for online redo log files and
control files.

Example: DB_RECOVERY_FILE_DEST = /u05/app/oracle/fla

Default value: None

Parameter type: Dynamic. The ALTER SYSTEM command can be used to change the value.

■Note You must set the DB_RECOVERY_FILE_DEST_SIZE parameter in order to set the DB_RECOVERY_FILE_
DEST parameter. If you want to use the Flashback Database feature (explained in Chapter 16), you must also use
the DB_FLASHBACK_RETENTION_TARGET parameter.

DB_FLASHBACK_RETENTION_TARGET

The DB_FLASHBACK_RETENTION_TARGET parameter specifies how far back (in minutes) you can flash
back your database. The Flashback Database feature relies on flashback logs, and the DB_FLASHBACK_
RETENTION_TARGET parameter dictates the length of time the flashback logs are retained. How far
back you can flash back your database depends on how much flashback data Oracle has kept in the
flash recovery area.

Example: DB_FLASHBACK_RETENTION_TARGET = 2880

Default value: 1440 (minutes)

Parameter type: Dynamic. The ALTER SYSTEM command can be used to change the value.

470 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

RESUMABLE_TIMEOUT

The RESUMABLE_TIMEOUT parameter enables or disables the Resumable Space Allocation feature and
specifies resumable timeout at the system level. For example, if you set RESUMABLE_TIMEOUT=3600, the
database will suspend any resumable space type operation and wait one hour (3,600 seconds) before
erroring out. Chapter 8 discusses the Resumable Space Allocation feature in detail.

Example: RESUMABLE_TIMEOUT = 7200

Default value: 0

Parameter type: Dynamic. You can use the ALTER SYSTEM or ALTER SESSION command to change
this parameter.

Corruption-Checking Parameters

The Oracle database is equipped with certain features that can automatically check your data blocks
on the datafiles for consistency and data corruption. Block checking involves going through the data
on the block and checking for consistency. Block checking prevents memory and data corruption,
but costs from 1 to 10 percent overhead, so use these parameters with caution during peak produc-
tion periods.

DB_LOST_WRITE_PROTECT

The DB_WRITE_LOST_PROTECT parameter is mainly for a Data Guard environment, where you have
databases in either a standby or a primary role. The parameter enables or disables lost write detec-
tion. A database lost write occurs when the I/O subsystem signals the completion of a write before
the write is stored on disk. Possible values are none, typical, and full.

Example: DB_LOST_WRITE_PROTECT=full

Default value: none

Parameter type: Dynamic. The ALTER SYSTEM command can be used to change the value.

DB_ULTRA_SAFE

You can use the DB_ULTRA_SAFE initialization parameter to control the default settings for parameters
that control database protection levels, such as the DB_BLOCK_CHECKING and DB_BLOCK_CHECKSUM
parameters. You may set the DB_ULTRA_SAFE parameter to the following values:

• OFF: The database doesn’t make any changes if you set any of the following parameters:
DB_BLOCK_CHECKING, DB_BLOCK_CHECKSUM, or DB_LOST_WRITE_PROTECT.

• DATA_ONLY: The database sets the DB_BLOCK_CHECKING parameter to MEDIUM, the DB_LOST_WRITE_
PROTECT parameter to TYPICAL, and the DB_BLOCK_CHECKSUM parameter to FULL.

• DATA_AND_INDEX: The database sets the DB_BLOCK_CHECKING parameter to FULL. The other two
protection-related parameters will have the same values as you get when you choose the
DATA_ONLY value for the DB_ULTRA_SAFE parameter.

Example: DB_ULTRA_SAFE = data_and_index

Default Value: OFF

Parameter type: Static

DB_BLOCK_CHECKSUM

Block checksums enable the detection of corruption caused by disks or the I/O system. Before
Oracle writes a data block to disk, it calculates a checksum for that block and stores the value in the

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 471

block itself. When it subsequently reads data from this block, it computes the checksum again and
compares its value to the one it computed when writing to the block. If the checksums are different,
Oracle notifies you that the data block is corrupted. You may have to perform a media recovery in
this case, as explained in Chapter 16.

Oracle recommends that you turn block checksumming on in your database to catch corrup-
tions in data blocks as well as redo log files. You can set the DB_BLOCK_CHECKSUM parameter to turn on
the computing of checksums. You can use either the FULL or TYPICAL mode, or set it to OFF. In the FULL
mode, Oracle will trap any in-memory corruption before it is recorded on the disk. However, Oracle
recommends that you set this parameter to the alternative value of TYPICAL, since it involves a lower
overhead (1 to 2 percent, instead of 4 to 5 percent). If you choose the OFF mode, DBWn calculates
checksums just for the System tablespace.

Example: DB_BLOCK_CHECKSUM = full

Default value: TYPICAL

Parameter type: Dynamic. The ALTER SYSTEM command can be used to change the value.

DB_BLOCK_CHECKING

Using the DB_BLOCK_CHECKING parameter, you can set the database to check for corrupted data
blocks. You can set this parameter to low, medium, or full, with each level involving a progressively
higher amount of block checking (or you can set it to off to turn it off). When you enable block
checking, Oracle automatically checks a block for consistency each time that block is modified. If a
block isn’t consistent, Oracle will mark it as corrupt and create a trace file. Depending on your work-
load, there is a 1 to 10 percent overhead when you turn block checking on. Oracle recommends that
you turn block checking on. Note that Oracle checks the blocks in the System tablespace in all
settings.

You can set the DB_BLOCK_CHECKING parameter to one of the following:

• OFF or FALSE: The database doesn’t perform block checking for tablespaces other than the
System tablespace.

• LOW: The database performs only basic block header checks after a change of the block
contents in memory.

• MEDIUM: In addition to the checks performed under the LOW setting, the database also performs
semantic block checking for all non-index-organized table blocks.

• FULL or TRUE: The database performs all the checks specified under the LOW and MEDIUM
settings, and additionally, performs semantic checks for index blocks.

Example: DB_BLOCK_CHECKING = medium

Default value: false

Parameter type: Dynamic. You can use the ALTER SYSTEM or ALTER SESSION command to change
this parameter.

472 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

DB_SECUREFILE

You use the DB_SECUREFILE parameter to specify whether you want the database to treat large objects
as SecureFiles, new in Oracle Database 11g, or traditional BasicFiles. If you set this parameter to the
value NEVER, the database will create all LOBS that you specify as SecureFiles as traditional Basic-
Files. The value PERMITTED allows the creation of LOBs as SecureFiles. You can also assign the values
ALWAYS and NEVER for this parameter.

Example: DB_SECUREFILE = always

Default value: PERMITTED

Parameter type: You can change this parameter with either the ALTER SYSTEM or the ALTER
SESSION statement.

Security-Related Parameters

The following initialization parameters concern database security, including password
authentication.

OS_AUTHENT_PREFIX

Oracle uses the value of the OS_AUTHENT_PREFIX parameter as a prefix to the operating system–
authenticated usernames.

Default value: OPS$

Parameter type: Static

■Note The default value of OPS$ is well known to Oracle DBAs. However, Oracle suggests that you set the prefix
value to the null string "" (OS_AUTHENT_PREFIX =""), which implies that you mustn’t add any prefix to operating
system–account names.

REMOTE_LOGIN_PASSWORDFILE

The REMOTE_LOGIN_PASSWORDFILE initialization parameter specifies whether Oracle checks for a pass-
word file for authentication purposes, and how many databases can use the password file. If you set
the value to NONE, Oracle ignores any password file, and all privileged users must be authenticated by
the operating system. If you use the SHARED value, Oracle will look for a password file to authenticate
users, and one or more databases can share the same password file and can contain names other
than SYS. Chapter 11 shows how to create a password file. The value EXCLUSIVE lets only one data-
base use the password file, and it can include both SYS and non-SYS users.

Example: REMOTE_LOGIN_PASSWORDFILE = shared

Default value: EXCLUSIVE

Parameter type: Static

■Tip When you are using Oracle RAC, all instances must have the same value for the REMOTE_LOGIN_
PASSWORDFILE parameter.

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 473

Undocumented Initialization Parameters
In addition to the initialization parameters listed in this chapter, Oracle has several undocumented
initialization parameters. These parameters are not supposed to be altered in any way by regular
users, and Oracle will not help you troubleshoot several kinds of problems that may occur if you use
these undocumented and unsupported parameters. Once you gain sufficient experience, though,
you will be able to make good use of some of these parameters.

Listing 10-1 shows how to query for the list of undocumented initialization parameters.

Listing 10-1. Query to List the Undocumented Oracle Parameters

SQL> SELECT
 a.ksppinm parameter,
 a.ksppdesc description,
 b.ksppstvl session_value,
 c.ksppstvl instance_value
 FROM x$ksppi a, x$ksppcv b, x$ksppsv c
 WHERE
 a.indx = b.indx
 AND a.indx = c.indx
 AND SUBSTR (a.ksppinm,1,1) = '_'
 ORDER BY a.ksppinm;

This query produced a list of 911 undocumented parameters for the Oracle Database 11g
release.

Viewing the Current Initialization Parameter Values
How do you know what values the numerous initialization parameters are currently set to for your
database? The following sections describe several ways.

Reading the init.ora File (or the SPFILE)

You can always use a file editor such as Windows Notepad to examine init.ora files, not only to view
the settings for initialization parameters, but also (at your own risk) to change their values. However,
there is a major drawback to doing this: you cannot see the default values of all the initialization
parameters. Remember that there are about 300 initialization parameters in Oracle Database 11g,
and you will probably not set the values of more than a quarter of these parameters explicitly by
using your init.ora file.

The V$PARAMETER View

A good and quick way to find out the initialization settings for your database is to query the
V$PARAMETER view. You can run the following query to find out the values of all the parameters:

SQL> SELECT name, value, isdefault FROM v$parameter;

The isdefault column has a value of true if the parameter is the default value and false if you
actually set it to something other than the default value.

When I ran this command on my NT server, the output showed about 250 parameters. If you
want to see only one or a set of related parameters and their values, you can add a WHERE clause to the
previous SQL query.

474 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

The SHOW PARAMETER Command

Even though it’s easy to query the V$PARAMETER view, there’s a simpler means of querying the
database about your initialization parameters. You can just type SHOW PARAMETER and you’ll see all
the initialization parameters with their values. You can also limit the vast amount of output by
passing a keyword to SHOW PARAMETER. For example, the keywords LOCKS, FILES, LOG, and many others
can be passed along to the SHOW PARAMETER command to get the values of a related set of parameters.
(Note that the resulting list may not necessarily be a set of related parameters, as the command just
uses a pattern search of the NAME column to pull the values from the V$PARAMETER table.)

Listing 10-2 shows an example of the use of the SHOW PARAMETER command. Here, the output
shows all initialization parameters that contain the string “lock”.

Listing 10-2. Using the SHOW PARAMETER Command

SQL> SHOW PARAMETER LOCK

NAME TYPE VALUE
------------------------------- ------- ------
db_block_buffers integer 0
db_block_checking boolean FALSE
db_block_checksum boolean TRUE
db_block_size integer 8192
db_file_multiblock_read_count integer 8
ddl_wait_for_locks boolean FALSE
distributed_lock_timeout integer 60
dml_locks integer 400
gc_files_to_locks string
lock_name_space string
lock_sga boolean FALSE
SQL>

Creating a New Database
As I mentioned at the beginning of the chapter, you have several ways to create an Oracle database.
One way is to have Oracle create a database for you as part of the server software installation. You
simply choose the installation option to create a new database, and Oracle will lead you through the
necessary steps to configure a database. Alternatively, you can use the DBCA to create a new
database.

Manual Creation
In this section, I show you how to create a new database from scratch, using individual database
creation statements. Of course, if you are familiar with the database creation process, you don’t have
to run these SQL statements one by one—just create a script with all the necessary statements, and
simply execute the script from SQL*Plus.

Setting OS Variables

You can use the SQL*Plus interface to create the database, either directly from a workstation or
through a terminal connected to the server where you want to create the database. Before you log
into the SQL*Plus session, however, you will need to set some environment variables at the oper-
ating system level.

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 475

First, make sure ORACLE_HOME is set for the session you log into. The ORACLE_HOME environment
variable in Oracle Database 11g databases is in the following format:

$ORACLE_BASE/product/11.1.0/db_1

You can thus set your ORACLE_HOME as in the following example:

$ export ORACLE_HOME=/u01/app/oracle/product/11.1.0/db_1

Second, set the Oracle system identifier (ORACLE_SID) for your database to uniquely identify your
database. This value will be the same as your DB_NAME initialization parameter value (which in this
example is nina).

$ export ORACLE_SID=nina

Finally, make sure you set the LD_LIBRARY_PATH variable as shown here:

$ export LD_LIBRARY_PATH=$ORACLE_HOME/lib

Ensuring You Have the Privileges to Create Databases

Every Oracle database has a set of default administrative users to manage the database or to monitor
various components of the database. Of these default users, two are special because their accounts
can be used to perform most of the database administrative tasks. They are the SYS and SYSTEM
accounts.

The default password for SYS is change_on_install and the password for the SYSTEM account is
manager. You can specify passwords for these two critical accounts as part of your database creation
process, as you’ll see shortly. In addition to the two administrative user accounts, most types of
Oracle databases come with several other default accounts, usually with default passwords. (See the
“Changing the Passwords for the Default Users” section later in this chapter to learn how to ensure
that you change all the default passwords.) All users except SYS need to be explicitly granted high-
level privileges before they can perform special administrative functions, such as creating databases
and starting, stopping, and backing them up. The SYSDBA privilege will allow a user to create
databases.

The interesting thing about the SYSDBA privilege is that you don’t really need to have the data-
base open or even have a database before you can invoke it. Before you create the database, you’ll be
creating the instance (SGA + Oracle processes), and the SYSDBA privilege is in effect even at the
instance level. You’ll be connecting to the database as the super user SYS with the SYSDBA privilege,
as shown here:

SQL> CONNECT sys AS sysdba

If the system administrator sets the oracle user to be part of a special group called DBA in the
/etc/group file, you can also use the following command to log in as user SYS with the SYSDBA
privilege:

SQL> CONNECT / AS sysdba

Creating the init.ora File

Before you can start the Oracle instance, you first must create the initialization parameter file
(init.ora). Once you create the instance, you can create an SPFILE from your init.ora file. As you
will recall, an Oracle instance consists of certain Oracle background processes and Oracle memory.
Once you have the instance running, you can create the database proper. As most of the parameters
in the initialization file are easily modifiable later on, the goal at this point isn’t to be precise or
exhaustive, but rather to get the instance up and running quickly.

The Oracle instance I created as an example for the database nina (initnina.ora), shown in
Listing 10-3, contains the standard parameters to help support an OLTP application. Thus, you won’t

476 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

see data warehouse–oriented parameters in this initialization file. You’ll notice that in several cases,
I explicitly state the default values for certain parameters—this is purely for pedagogical reasons.

Listing 10-3. The Initialization Parameter File for the Example Database nina

first, specify the name of the databasedb_name=nina
\pard\ri144\sl-240\slmult0 #for an ASM instance, use instance_type=ASM.
Following is the default\par
instance_type=RDBMS\par
you can set the db_name to your organization name as well\par
db_domain=world\par
following two parameters set the max number of open files and processes\par
db_files=1000\par
processes=600\par
following is the default block size\par
db_block_size=8192\par
following is the default value for the statistics_level parameter \par
statistics_level=typical\par
following is the default audit_trail value\par
audit_trail=none\par
following three lines set the dump directory destinations\par
background_dump_dest=\rquote /u01/app/oracle/admin/nina/\rquote\par
user_dump_dest=\rquote /u01/app/oracle/admin/nina/\rquote\par
core_dump_dest=\rquote /u01/app/oracle/admin/nina/\rquote\par
following parameter sets the database compatibility level\par
compatible=10.2.1.0\par
two control files are specified below\par
control_files=(\lquote /u01/app/oracle/oradata/cont1.ctl\rquote ,\par
 \lquote /u01/app/oracle/oradata/cont2.ctl\rquote)\par
cursor sharing is set to force, to make the database use bind variables\par
cursor_sharing=force\par
following two parameters set the SGA and the PGA targets.\par
sga_target=300M\par
pga_aggregate_target=2000M\par
the multiblock read count is 16\par
db_file_multiblock_read_count=16\par
the following will ensure that flashback logs \par
are retained for 2 hours\par
db_flashback_retention_target=7200\par
Following two parameters configure the optional flash recovery area\par
db_recovery_file_dest=\rquote /u02/app/oracle/flash_recovery_area\rquote\par
db_recovery_file_dest_size=1000M\par
Following two parameters control the archiving of the redo\par
log files. For now, I am not archiving the logs, but these two parameters\par
enable me to turn it on later.\par
log_archive_dest_1=\rquote LOCATION=/u02/app/oracle/arch/\rquote\par
log_archive_format=\rquote log%t_%s_%r.arc\rquote\par
following is the default optimizer mode\par
optimizer_mode=all_rows\par
the following line makes it necessary to use a password file
#to connect as SYSDBA\par
remote_login_passwordfile=none\par
#Following parameter allows certain operations to resume after a suspension\par
resumbable_timeout=1800\par

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 477

the following two parameters pertain to automatic undo management\par
undo_management=auto\par
undo_retention=7200\par
The following is optional, since I'm using only
#a single undo tablespace\par
undo_tablespace=undotbs_01\par
\pard\f1\par
}

■Tip The default value for the STATISTICS_LEVEL initialization parameter is TYPICAL. You need to use this
setting if you want to use several of Oracle’s features, including the Automatic Shared Memory Management
feature.

Once you configure your initialization file, you are ready to create the instance. Make sure you
save the initnina.ora file in the $ORACLE_HOME/dbs directory, which is the default location for an
init.ora file or an SPFILE on UNIX/Linux systems (on a Windows system, the default location is
$ORACLE_HOME\database). This way, Oracle will always find it without you having to specify the
complete path of the location.

Starting the Oracle Instance

To create the database, first you must have the instance up and running. Remember, an instance can
exist without any database attached to it, and the active instance makes it possible for you to create
the database. Follow these steps:

1. Make sure you have specified the correct ORACLE_SID and ORACLE_HOME locations, as
explained earlier in the “Setting OS Variables” section in this chapter.

2. Log in to the database through the SQL*Plus interface, as shown here:

oracle@localhostdbs]$ sqlplus /nolog
SQL*Plus: Release 11.1.0.6.0 - Production on Fri Mar 7 15:35:32 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.

SQL> CONNECT sys AS sysdba
Enter password:
Connected to an idle instance.
SQL>

3. Start the instance in the NOMOUNT mode, since you don’t have any control files to mount yet. If
you use the plain STARTUP command, Oracle will look for the control files. You’re probably
thinking, “But we haven’t created those files yet!” Not to worry—that will come during the
creation of the database itself.

If you saved your init.ora file in the default location ($ORACLE_HOME/dbs), and you correctly
specified the ORACLE_SID environment variable (nina) before you started the instance, you
don’t have to specify the init.ora file explicitly.

SQL> STARTUP NOMOUNT
ORACLE instance started.

Total System Global Area 314572800 bytes
Fixed Size 1236756 bytes
Variable Size 99164396 bytes

478 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

Database Buffers 213909504 bytes
Redo Buffers 5169152 bytes
SQL>

If you didn’t save your init.ora file in the default location ($ORACLE_HOME/dbs), you must
specify the complete path and the name of the file:

SQL> NOMOUNT PFILE='/u01/app/oracle/product/10.2.0/db_1/dbs/initnina.ora'

■Tip It’s common to get a couple of ORA-01078 errors (failure to process system parameters) at this point. Just
correct the error shown in the message in the init.ora file, and you should have no problem starting your
instance.

4. The instance will start using the parameters specified in the initnina.ora file. You can see
that all the background processes for your database instance have been started by using the
ps -ef command, as shown here:

[oracle@localhost]$ ps -ef | grep nina

oracle 5211 1 0 Mar05 ? 00:00:32 ora_pmon_nina
oracle 5213 1 0 Mar05 ? 00:00:06 ora_vktm_nina
oracle 5217 1 0 Mar05 ? 00:00:04 ora_diag_nina
oracle 5219 1 0 Mar05 ? 00:00:06 ora_dbrm_nina
oracle 5221 1 0 Mar05 ? 00:00:11 ora_psp0_nina
oracle 5225 1 0 Mar05 ? 00:04:39 ora_dia0_nina
oracle 5227 1 0 Mar05 ? 00:00:07 ora_mman_nina
oracle 5229 1 0 Mar05 ? 00:00:19 ora_dbw0_nina
oracle 5231 1 0 Mar05 ? 00:00:17 ora_lgwr_nina
oracle 5233 1 0 Mar05 ? 00:01:34 ora_ckpt_nina
oracle 5235 1 0 Mar05 ? 00:00:15 ora_smon_nina
oracle 5237 1 0 Mar05 ? 00:00:01 ora_reco_nina
oracle 5239 1 0 Mar05 ? 00:00:52 ora_mmon_nina
oracle 5241 1 0 Mar05 ? 00:01:22 ora_mmnl_nina
oracle 5249 1 0 Mar05 ? 00:00:04 ora_fbda_nina
oracle 5251 1 0 Mar05 ? 00:00:07 ora_smco_nina
oracle 5257 1 0 Mar05 ? 00:00:03 ora_qmnc_nina
oracle 5273 1 0 Mar05 ? 00:00:00 ora_q000_nina
oracle 5275 1 0 Mar05 ? 00:00:02 ora_q001_nina
(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))
oracle 27290 1 0 15:29 ? 00:00:00 ora_w000_ninal11
oracle 27394 27375 0 15:36 pts/2 00:00:00 grep nina
[oracle@localhost] $

5. You can execute a simple query at this stage to verify the version of the database, as shown
here:

SQL> SELECT * FROM v$version;

BANNER
--
Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - Production
PL/SQL Release 11.1.0.6.0 – Production
CORE 11.1.0.6.0 Production
TNS for Linux: Version 11.1.0.6.0 - Production

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 479

NLSRTL Version 11.1.0.6.0 - Production
SQL>

As you can see in the example in Listing 10-4, Oracle will write all the startup and shutdown
information to the alert log, as well as any errors during instance creation and routine database oper-
ation. The alert log also lists all the nondefault initialization parameters that you had specified in
your init.ora file. Note the starting up of all the Oracle processes: database writer (DBWn), process
monitor (PMON), log writer (LGWR), checkpoint (CKPT), system monitor (SMON), and recoverer
(RECO). The startup shown in Listing 10-4 is clean so far, as there are no errors either on the screen
or in the alert log file.

Listing 10-4. The Instance Creation Process in the Alert Log
Wed Feb 13 15:05:22 2008
Starting ORACLE instance (normal)
LICENSE_MAX_SESSION = 0
LICENSE_SESSIONS_WARNING = 0
Picked latch-free SCN scheme 2
Autotune of undo retention is turned on.
IMODE=BR
ILAT =73
LICENSE_MAX_USERS = 0
SYS auditing is disabled
Starting up ORACLE RDBMS Version: 11.1.0.6.0.
Using parameter settings in server-side pfile
/u01/app/oracle/product/11.1.0.6/db_1/dbs/initorcl11.ora
System parameters with non-default values:
 processes = 600
 instance_type = "RDBMS"
 sga_target = 300M
 control_files = "/u01/app/oracle/oradata/orcl11/cont1.ctl"
 control_files = "/u01/app/oracle/product/11.1.0.6
/db_1/dbs/ /u01/app/oracle/oradata/orcl11/cont2.ctl"
 db_block_size = 8192
 compatible = "11.1.0"
 log_archive_dest_1 = "LOCATION=/u02/app/oracle/arch/"
 log_archive_format = "log%t_%s_%r.arc"
 db_files = 1000
 db_recovery_file_dest = "/u02/app/oracle/oradata/orcl11/flash_recovery_area"
 db_recovery_file_dest_size= 1000M
 db_flashback_retention_target= 7200
 undo_management = "AUTO"
 undo_tablespace = "undotbs_01"
 undo_retention = 7200
 resumable_timeout = 1800
 remote_login_passwordfile= "NONE"
 db_domain = "world"
 cursor_sharing = "force"
 audit_trail = "NONE"
 db_name = "orcl11"
 optimizer_mode = "all_rows"
 pga_aggregate_target = 2000M
 statistics_level = "typical"
Wed Feb 13 15:05:24 2008
WARNING:Oracle instance running on a system with low open file descriptor

480 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

 limit. Tune your system to increase this limit to avoid
 severe performance degradation.
PMON started with pid=2, OS id=3548
Wed Feb 13 15:05:25 2008
DIAG started with pid=4, OS id=3554
Wed Feb 13 15:05:25 2008
DBRM started with pid=5, OS id=3557
Wed Feb 13 15:05:25 2008
VKTM started with pid=3, OS id=3550
VKTM running at (100ms) precision
Wed Feb 13 15:05:25 2008
PSP0 started with pid=6, OS id=3559
Wed Feb 13 15:05:25 2008
DIA0 started with pid=8, OS id=3563
Wed Feb 13 15:05:25 2008
DSKM started with pid=7, OS id=3561
Wed Feb 13 15:05:25 2008
MMAN started with pid=7, OS id=3565
Wed Feb 13 15:05:26 2008
DBW0 started with pid=9, OS id=3567
Wed Feb 13 15:05:26 2008
LGWR started with pid=10, OS id=3569
Wed Feb 13 15:05:26 2008
SMON started with pid=12, OS id=3573
Wed Feb 13 15:05:26 2008
CKPT started with pid=11, OS id=3571
Wed Feb 13 15:05:26 2008
RECO started with pid=13, OS id=3575
Wed Feb 13 15:05:26 2008
MMON started with pid=14, OS id=3577
Wed Feb 13 15:05:27 2008
MMNL started with pid=15, OS id=3579
ORACLE_BASE not set in environment. It is recommended
that ORACLE_BASE be set in the environment
Wed Feb 13 15:10:24 2008

At this point, you have a running Oracle instance, which consists of the Oracle processes and the
SGA memory that you allocated for it. You don’t have a database yet; you’ll create one from scratch
in the next section.

Creating the Database

The simplest database you can create will have a System tablespace to hold the data dictionary, a
Sysaux tablespace, a pair of control files and redo log files, a default temporary tablespace, and an
undo tablespace. Once you have this database going, you can add any number of new tablespaces
to it.

Let’s create a bare-bones Oracle Database 11g database now. You can create your new database
either by entering each line of the database-creation statement individually or by creating a data-
base-creation script with the entire statement, as shown in Listing 10-5, and executing the script.

Listing 10-5. The CREATE DATABASE Script

SQL> CREATE DATABASE nina
 2 USER SYS IDENTIFIED BY sys_password
 3 USER SYSTEM IDENTIFIED BY system_password

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 481

 4 LOGFILE GROUP 1 ('/u01/app/oracle/oradata/nina/redo01.log') SIZE 100M,
 a. GROUP 2 ('/u01/app/oracle/oradata/nina/redo02.log') SIZE 100M,
 b. GROUP 3 ('/u01/app/oracle/oradata/nina/redo03.log') SIZE 100M
 5 MAXLOGFILES 5
 6 MAXLOGMEMBERS 5
 7 MAXLOGHISTORY 1
 8 MAXDATAFILES 300
 9 CHARACTER SET US7ASCII
 10 NATIONAL CHARACTER SET AL16UTF16
 11 EXTENT MANAGEMENT LOCAL
 12 DATAFILE '/u01/app/oracle/oradata/nina/system01.dbf' SIZE 500M REUSE
 13 SYSAUX DATAFILE '/u01/app/oracle/oradata/nina/sysaux01.dbf' SIZE 325M REUSE
 14 DEFAULT TABLESPACE users
 15 DATAFILE '/u01/app/oracle/oradata/nina/users01.dbf'
 16 SIZE 500M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED
 17 DEFAULT TEMPORARY TABLESPACE tempts1
 18 TEMPFILE '/u01/app/oracle/oradata/nina/temp01.dbf'
 19 SIZE 200M REUSE
 20 UNDO TABLESPACE undotbs
 21 DATAFILE '/u01/app/oracle/oradata/nina/undotbs01.dbf'
 22 SIZE 200M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

Database created.
SQL>

Here’s a quick review of the CREATE DATABASE statement:

• Line 1 issues the CREATE DATABASE command to Oracle. This command prompts the creation
of two control files, and their locations are read from the initnina.ora parameter file. If
control files with the same names already exist at the time of database creation (from a prior
failed installation), you must specify the CONTROLFILE REUSE clause in the CREATE DATABASE
statement.

• Lines 2 and 3 show how you can specify the passwords for the two key users SYS and SYSTEM.
These are optional clauses, and if you omit them, users SYS and SYSTEM are assigned the
default passwords change_on_install and manager, respectively. Since these are well-known
default passwords, Oracle advises you to use these clauses to change the default passwords.

• Line 4 creates the pair of online redo log groups required by Oracle.

• Lines 5 through 8 specify the maximum setting for datafiles, log files and such.

• Lines 9 and 10 specify the character sets used by the database. Just use these character sets for
all the databases you’ll be creating, unless you have special needs based on languages other
than English.

• Line 11 specifies that the System tablespace should be locally managed, rather than
dictionary managed.

• Line 12 creates the System tablespace with one datafile of 500MB. The data dictionary is
created within this System tablespace. One system rollback segment is also automatically
created.

• Line 13 creates the new default tablespace Sysaux. You must create the Sysaux tablespace, or
your database creation statement will fail.

482 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

• Lines 14 through16 create the default permanent tablespace TEMP01 with one 500MB-sized
tempfile. All users have to be allotted a temporary tablespace when they are initially created
in the database. If you don’t do so, the users will be allocated to the default temporary
tablespace, TEMP01, automatically. Notice how line 14 specifies that the file used for the
temporary tablespace is a temp file, not a regular datafile. You can’t create the temporary
tablespace with a normal datafile specification.

• Lines 17 through 19 create the new default temporary tablespace for the database. Any users
that aren’t explicitly assigned a permanent tablespace will automatically be allocated this
tablespace as their default tablespace, instead of the System tablespace.

• Lines 20 through 22 create the undo tablespace for the new database.

Oracle automatically mounts and opens the database after it creates all the files described previ-
ously. As you’ll see in the last part of this chapter, mounting a database involves reading the control
files, and opening the database enables all users to access the various parts of the new database.

Take a peek at the alert log at this point to see what Oracle actually did when the CREATE DATA-
BASE command was issued. Listing 10-6 shows the relevant portion from the alert log.

Listing 10-6. The Database Creation Process in the Alert Log

Sun Feb 13 15: 13:00 2008
create database orcl11
 USER SYS IDENTIFIED BY *****
USER SYSTEM IDENTIFIED BY ******
LOGFILE GROUP 1 ('/u01/app/oracle/oradata/orcl11/redo01.log') SIZE 100M,
 GROUP 2 ('/u01/app/oracle/oradata/orcl11/redo02.log') SIZE 100M,
 GROUP 3 ('/u01/app/oracle/oradata/orcl11/redo03.log') SIZE 100M
 MAXLOGFILES 5
 MAXLOGMEMBERS 5
 MAXLOGHISTORY 1
 MAXDATAFILES 100
 CHARACTER SET US7ASCII
 NATIONAL CHARACTER SET AL16UTF16
 EXTENT MANAGEMENT LOCAL
 DATAFILE '/u01/app/oracle/oradata/orcl11/system01.dbf' SIZE 325M REUSE
 SYSAUX DATAFILE '/u01/app/oracle/oradata/orcl11/sysaux01.dbf' SIZE 325M REUSE
 DEFAULT TABLESPACE users
 DATAFILE '/u01/app/oracle/oradata/orcl11/users01.dbf'
 SIZE 500M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED
 DEFAULT TEMPORARY TABLESPACE tempts1
 TEMPFILE '/u01/app/oracle/oradata/orcl11/temp01.dbf'
 SIZE 20M REUSE
 UNDO TABLESPACE undotbs
 DATAFILE '/u01/app/oracle/oradata/orcl11/undotbs01.dbf'
 SIZE 200M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED
Database mounted in Exclusive Mode
Lost write protection disabled
Wed Feb 13 15:33:08 2008
Successful mount of redo thread 1, with mount id 3893367911
Assigning activation ID 3893367911 (0xe8101467)
Thread 1 opened at log sequence 1
 Current log# 1 seq# 1 mem# 0: /u01/app/oracle/oradata/orcl11/redo01.log
Successful open of redo thread 1
Wed Feb 13 15:33:08 2008
MTTR advisory is disabled because FAST_START_MTTR_TARGET is not set

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 483

Wed Feb 13 15:33:08 2008
SMON: enabling cache recovery
processing ?/rdbms/admin/dcore.bsq
create tablespace SYSTEM datafile '/u01/app/oracle/oradata/orcl11/
system01.dbf' SIZE 325M REUSE

 EXTENT MANAGEMENT LOCAL online
Wed Feb 13 15:33:20 2008
Completed: create tablespace SYSTEM datafile
 '/u01/app/oracle/oradata/orcl11/system01.dbf' SIZE 325M REUSE

 EXTENT MANAGEMENT LOCAL online
create rollback segment SYSTEM tablespace SYSTEM
 storage (initial 50K next 50K)
Completed: create rollback segment SYSTEM tablespace SYSTEM
 storage (initial 50K next 50K)
processing ?/rdbms/admin/dsqlddl.bsq
processing ?/rdbms/admin/dmanage.bsq
CREATE TABLESPACE sysaux DATAFILE '/u01/app/oracle/oradata/orcl11/
sysaux01.dbf' SIZE 325M REUSE

 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ONLINE
Wed Feb 13 15:33:36 2008
Completed: CREATE TABLESPACE sysaux DATAFILE
'/u01/app/oracle/oradata/orcl11/sysaux01.dbf' SIZE 325M REUSE

 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO ONLINE
processing ?/rdbms/admin/dplsql.bsq
processing ?/rdbms/admin/dtxnspc.bsq
CREATE UNDO TABLESPACE UNDOTBS DATAFILE
'/u01/app/oracle/oradata/orcl11/undotbs01.dbf'
 SIZE 200M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED
Successfully onlined Undo Tablespace 2.
Completed: CREATE UNDO TABLESPACE UNDOTBS DATAFILE
'/u01/app/oracle/oradata/orcl11/undotbs01.dbf'
 SIZE 200M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED
CREATE TEMPORARY TABLESPACE TEMPTS1 TEMPFILE
'/u01/app/oracle/oradata/orcl11/temp01.dbf'
 SIZE 20M REUSE

Completed: CREATE TEMPORARY TABLESPACE TEMPTS1 TEMPFILE
'/u01/app/oracle/oradata/orcl11/temp01.dbf'
 SIZE 20M REUSE

ALTER DATABASE DEFAULT TEMPORARY TABLESPACE TEMPTS1
Completed: ALTER DATABASE DEFAULT TEMPORARY TABLESPACE TEMPTS1
CREATE TABLESPACE USERS DATAFILE '/u01/app/oracle/oradata/orcl11/users01.dbf'
 SIZE 500M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT MANUAL
Wed Feb 13 15:34:12 2008
Completed: CREATE TABLESPACE USERS DATAFLE
'/u01/app/oracle/oradata/orcl11/users01.dbf'
 SIZE 500M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT MANUAL

484 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

ALTER DATABASE DEFAULT TABLESPACE USERS
Completed: ALTER DATABASE DEFAULT TABLESPACE USERS
processing ?/rdbms/admin/dfmap.bsq
. . .
Wed Feb 13 15:34:32 2008
SMON: enabling tx recovery
Starting background process SMCO
Wed Feb 13 15:34:33 2008
SMCO started with pid=17, OS id=4055
Wed Feb 13 15:34:38 2008
Starting background process FBDA
Wed Feb 13 15:34:38 2008
FBDA started with pid=19, OS id=4059
replication_dependency_tracking turned off (no async multimaster replication found)
Starting background process QMNC
Wed Feb 13 15:34:40 2008
QMNC started with pid=20, OS id=4063
Completed: create database orcl11
. . .
Wed Feb 13 15:50:43 2008
Sat Feb 16 11:00:18 2008

■Tip If you want to see exactly what Oracle is doing during the database-creation process, go to the directory
where the alert log is located and run the following command:

$ tail –f alertnina.log

Here are the key steps in the database-creation log shown in Listing 10-6:

• The database mounted statement means that Oracle has opened the control files you specified
in the init.ora file.

• The successful open of redo thread 1 statement indicates that the first redo log file has
successfully been created and opened for recovery purposes.

• The Sysaux and System tablespaces are successfully created.

• The rollback segment named “system” is created in the System tablespace.

• The undo tablespace, UNDOTBS, is successfully created.

• The TEMP01 tablespace is created as a temporary tablespace, using a temp file instead of the
regular datafiles used for permanent tablespaces. After the temporary tablespace is created,
the ALTER DATABASE DEFAULT TEMPORARY TABLESPACE TEMP01 statement is executed to desig-
nate TEMP01 as the default temporary tablespace for this database.

• The USERS tablespace is created and the ALTER DATABASE DEFAULT TABLESPACE USERS state-
ment is executed to designate the USERS tablespace as the default permanent tablespace for
the new database.

• The new background processes, QMNC and MMNL, are started.

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 485

■Note When you create the flash recovery area, which is a specialized location for storing recovery-related files,
you can’t use the traditional LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST parameters. You must instead
specify the LOG_ARCHIVE_DEST_n parameter.

Running Oracle Scripts to Create Data Dictionary Objects

Oracle provides two important scripts, catalog.sql and catproc.sql, that you need to run right after
you create your new database:

• catalog.sql populates the database with the data dictionary views, public synonyms, and
other objects. The data dictionary base tables, the parents of the V$ views, are the first objects
created in the Oracle database.

• catproc.sql creates the Oracle-provided packages and other objects to support the use of PL/
SQL code in the database.

When you run these scripts, you’ll see a lot of information flow past on the screen, indicating
that the necessary database objects are being created, and so on. Just let the two scripts do what they
are supposed to do. It should take about an hour or so to run both scripts.

■Note Ignore any errors that you see during the execution of the catalog.sql and catproc.sql scripts. These
errors mostly state that the object that is to be dropped doesn’t exist. If it bothers you to see all those errors, you
can reassure yourself by running each script twice. You won’t see any errors during the second execution if you
do this.

Connect as the SYS user with SYSDBA privileges, and run the scripts as follows:

SQL> @$ORACLE_HOME/rdbms/admin/catalog.sql
. . .
Grant succeeded

PL/SQL procedure successfully completed.
SQL>
SQL> @$ORACLE_HOME/rdbms/admin/catproc.sql
. . .

PL/SQL procedure successfully completed.
SQL>

A Simple Way to Create a Database

You’ve seen how to create a database by first specifying various initialization parameters in the
parameter file to start the instance and then using the CREATE DATABASE statement to create the data-
base itself. Both the initialization parameter file and the CREATE DATABASE statement are pretty
detailed, if not complex. However, you don’t have to have such an elaborate initialization file and
CREATE DATABASE statement each time you create a new database. If you want to create a new Oracle
database in a hurry, you can do so by following these steps:

1. Create a new init.ora file with just one parameter, DB_NAME (DB_NAME=orcl11, for example).

2. Start up your new instance as follows:

486 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

SQL> STARTUP NOMOUNT
ORACLE instance started.
Total System Global Area 188743680 bytes
Fixed Size 1308048 bytes
Variable Size 116132464 bytes
Database Buffers 67108864 bytes
Redo Buffers 5169152 bytes
SQL>

3. Create your new database with the following simple statement:

SQL> CREATE DATABASE;
Database created.
SQL>

Oracle will automatically create an OMF System and a Sysaux tablespace. The database will run
with manual undo management using rollback segments. Of course, you must still run the two
scripts, catalog.sql and catproc.sql, in order to create the data dictionary and the Oracle packages.

■Tip The initialization parameter file will contain the locations for the datafiles, redo log files, and control files.
Oracle will automatically create a 100MB auto-extensible system file, a pair of redo logs, control files, an undo
tablespace, and a temporary tablespace. Simple as that! Chapter 17 shows you other interesting features of OMF.

Using the DBCA to Create a Database
The simplest way to create an Oracle database is to the use the Oracle database creation wizard,
Database Configuration Assistant. The Oracle Universal Installer automatically invokes the DBCA
when you choose to create a database as part of the installation of the Oracle Database 11g software.
You can also launch DBCA anytime after the installation is completed to create an Oracle database.

You can run the DBCA in interactive or silent mode, and it has several benefits, including
providing templates for creating DSS, OLTP, or hybrid databases. The biggest benefit to using the
DBCA is that for DBAs with little experience, it lets Oracle set all the configuration parameters and
start up a new database quickly without errors. Finally, the DBCA also automatically creates all its file
systems based on the highly utilitarian Optimal Flexible Architecture standard.

The DBCA is an excellent tool, and it even allows you to register a new database automatically
with Oracle Internet Directory (OID). However, I recommend strongly that you use the manual
approach initially, so you can get a good idea of what initialization parameters to pick and how the
database is created step by step. Once you gain sufficient confidence, of course, the DBCA is, without
a doubt, the best way to create an Oracle database of any size and complexity.

You can perform the following tasks with the DBCA:

• Create a database.

• Change the configuration of an existing database.

• Delete a database.

• Configure ASM.

Starting DBCA

On a Windows operating system, click Start and then select Programs ➤ Oraclehome_name ➤
Configuration and Migration Tools ➤ Database Configuration Assistant. You can start DBCA on a
UNIX or Linux system by typing dbca at the command-line prompt. Since DBCA is a GUI tool, make
sure you set the DISPLAY environment variable correctly before you invoke the tool.

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 487

Database Creation Steps

Here’s a summary of the steps you must follow to create a new database using the DBCA:

1. If you haven’t already started DBCA, type dbca at the operating system prompt.

2. In the Welcome window, click Next.

3. The DBCA Operations window appears. Select Create a Database, and click OK.

4. In the Database Templates window, the DBCA offers you a choice of the type of database you
can create. The three choices are Data Warehouse, General Purpose, and Transaction Pro-
cessing. You can select the default General Purpose template if you aren’t sure which type of
database you want to create. You can also select the Custom Database option if you wish,
where you’ll have to provide more information to DBCA in order to create the database. Click
Next.

5. In the Database Identification window, enter the database name in the form database_
name.domain name (for example, orcl11.world). In the SID field, enter the system identifier,
which defaults to the database name (orcl11). Click Next.

6. In the Management Options window, you can set up management by the Oracle Enterprise
Manager. You can choose between the Grid Control and Database Control. If you have
already installed the Oracle Management Agent on the host computer, you can select Grid
Control. Otherwise, select Configure Database Control for local management. You can also
select the Enable Daily Backup to Recovery Area option in this window. Click Next.

7. In the Database Credentials window, specify passwords for the administrative accounts such
as SYS and SYSTEM. Click Next.

8. In the Storage Options window, specify the type of storage devices you want to use for the
new database. Select File System and click Next.

9. In the Database File Locations window, using the Choose Common Location for All
Database Files option, specify the Oracle software home and the directory path where you
want DBCA to create the database files. You can choose Oracle Managed Files if you want,
making the database completely manage the database files.

10. In the Recovery Configuration window, choose between the default noarchivelog mode and
archivelog mode of operating the database. Oracle recommends that you choose the Enable
Archiving option to enable the archiving of the redo logs. Oracle recommends that you also
enable the Select Flash Recovery Area option so the database will use a flash recovery area to
store all backup- and recovery-related files. The flash recovery area is distinct from the
storage location of the current database files such as datafiles, control files, and online redo
logs.

11. In the Database Content page, select Sample Schemas to include the Sample Schemas
tablespace (EXAMPLE tablespace) in your database. Oracle recommends you do this in
order to use the examples based on the sample schemas such as HR and OE.

12. In the Initialization Parameters page, you can set the initialization parameters related to the
following four areas:

• Memory

• Sizing

• Character Sets

• Connection Mode

Let’s take a closer look at each of these areas before continuing with creating our database.

488 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

Memory

The Memory window lets you set initialization parameters that control how the database manages
the memory allocated to it. You can choose between the Typical and the Custom options to specify
a method of memory management. The easiest way to manage memory is to select Typical and enter
a percentage value, such as 40 percent. The instance will then use Automatic Memory Management,
a new Oracle Database 11g feature, to automatically tune both the SGA and the PGA.

Sizing

In the Sizing tab, you specify the database block size and the maximum number of user processes
that can connect simultaneously to the database. For the block size, accept the default value, which
is 8KB. For processes, use a number such as 150, unless you know that you have a larger number of
processes.

Character Sets

Use the default value for the database character set, which supports the language used by the oper-
ating system for all database users and database applications.

Connection Mode

The Connection Mode tab lets you specify the connection method users will use to connect to the
database. Select Dedicated Server Mode to specify the default mode in which the database operates.

13. Once you make your choices for memory allocation, database block sizing, character sets,
and connection mode, click Next.

14. In the Security Settings window, select the new enhanced default, which includes the
enabling of auditing and default password file settings.

15. In the Automatic Maintenance Tasks page, select the Enable automatic maintenance tasks
option so the three automated maintenance tasks can run daily in the database.

16. In the Database Storage window, you can modify the default file locations for the datafiles,
control files, and redo logs. Once you’ve done so, click Next.

17. In the Creation Options window, select Create Database and click Finish. DBCA presents a
confirmation page. Review the information and click OK to start the database creation. Once
the database creation finishes, click Exit to leave the DBCA.

Changing the Configuration of a Database

You can use DBCA to change certain database configuration options for an existing database. For
example, you can change the memory allocation method or the database storage method using the
DBCA.

Deleting a Database

You can delete a database easily with the DBCA. Select the Delete a Database option in the Opera-
tions window. DBCA will remove all the database files. If you’re on the Windows operating system,
DBCA also deletes the associated services, thus enabling you to make a clean deletion of the data-
base instead of physically removing the database files yourself.

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 489

Creating Additional Tablespaces

Now you have a real Oracle database humming away on your server, although you still can’t do a
whole lot with it because it’s just a bare-bones database. You don’t have any application code, appli-
cation objects, or data stored in it. To be able to create objects and load data, you need physical
space, and you assign the space by creating a number of tablespaces.

The first thing you should do is size your planned tables, indexes, and other database objects
using standard table-sizing guidelines. This will give you an idea of how many tablespaces you’ll
need to create. You don’t want thousands of small tablespaces, because you’ll have a hard time
managing all of them. The idea is to have as many tablespaces as are necessary to group related
application tables. You can theoretically create everything in just one large tablespace, but that
defeats the purpose of having a tablespace in an Oracle database.

Once you’ve decided on the tablespaces you need, use commands like the following to create
the additional tablespaces (by default, Oracle will create a locally managed tablespace):

SQL> CREATE TABLESPACE sales01
 DATAFILE '/u02/app/oracle/oradata/nina/sales01_01.dbf' size 500M
 Tablespace created.
SQL>
SQL> CREATE TABLESPACE sales02
 DATAFILE '/u02/app/oracle/oradata/nina/sales02_01.dbf' size 500M
 Tablespace created.
SQL>

Now, verify the tablespaces in the new database, as shown in Listing 10-7.

Listing 10-7. Query Showing Various Characteristics of Tablespaces in the New Database

SQL> SELECT tablespace_name, extent_management,
 allocation_type, segment_space_management
 FROM dba_tablespaces;

TABLESPACE_NAME EXTENT_MAN ALLOCATIO SEGMEN
--------------- ----------- --------- ------
SYSTEM LOCAL SYSTEM MANUAL
UNDOTBS_01 LOCAL SYSTEM MANUAL
SYSAUX LOCAL SYSTEM AUTO
TEMP01 LOCAL UNIFORM MANUAL
USERS LOCAL SYSTEM MANUAL
SALES01 LOCAL SYSTEM AUTO
SALES02 LOCAL SYSTEM AUTO
7 rows selected.
SQL>

The query shows a total of seven tablespaces, five of which were created during the database-
creation process (System, Sysaux, undo, temporary, and the default permanent tablespace). The
other two are the newly created application tablespaces, sales01 and sales02.

490 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

STARTING OEM DATABASE CONTROL

The Oracle Enterprise Manager comes in two versions: the Grid Control and Database Control. You have to install the
OEM Grid Control software separately and use it along with agents on remote servers to manage your entire system.
The Database Control is part of the Oracle Database 11g server software, and no special installation is necessary.

If you create your new database using the DBCA, Oracle automatically starts up the Database Control service. If you
manually create the database, you must run the following command to start up the dbconsole for the Enterprise
Manager:

$ emctl start dbconsole

Once you start up the dbconsole process, you can access OEM Database Control by opening your web browser and
entering the following URL:

http://hostname:portnumber/em

In the URL, hostname is your computer name or address, and portnumber is the Database Control HTTP port
number. The default port is 1158 on my Red Hat Linux server, and you can look up port values by viewing the
portlist.ini file, located in the $ORACLE_HOME/install/portlist directory.

Changing the Passwords for the Default Users

One of the first tasks to perform after you create a new database is to change the passwords for all the
default users. The names and number of these default users could differ among databases. For
example, if you choose to let Oracle create your database using the Oracle Universal Installer, you
can pick a database customized for an OLTP, a DSS, or a hybrid database. Each of these databases
has a different group of specialized default users associated with it. Nevertheless, all types of data-
bases will have at least a handful of common default users.

The following are some of the common default users in a new Oracle database:

SQL> SELECT username FROM dba_users;

USERNAME

DBSNMP
SYSTEM
SYS
OUTLN
. . .
SQL>

You don’t have to worry about the SYS and SYSTEM passwords, as you’ve already changed them
during the database-creation process. The OUTLN user account is used to provide stored outlines
for SQL queries, and the DBSNMP account is for the Oracle Intelligent Agent. There may be other
users created in your database, depending on the type of database you create and the options you
choose for your database. The default password for each of these accounts is the same as the user-
name. Change these passwords immediately, as they represent a potential security problem. For
each of the default users, you must modify the default passwords, as shown in the following
examples:

SQL> ALTER USER outln IDENTIFIED BY 'new_password';
SQL> ALTER USER dbsnmp IDENTIFIED BY 'new_password';

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 491

■Tip Most default accounts (other than SYS, SYSTEM, DBSNMP, and SYSMAN) are initially locked with their pass-
words expired. You need to unlock and reset the passwords for these accounts, using the ALTER USER statement.
Chapter 12 details how to unlock user passwords.

Case-Sensitive Passwords

In Oracle Database 11g, all passwords are case sensitive by default. When you upgrade a database to
the Oracle Database 11g release, however, passwords will continue to remain case insensitive, and
you must use the ALTER USER statement to make these passwords case sensitive.

The initialization parameter SEC_CASE_SENSITIVE_LOGON controls the password case sensitivity.
By default, this parameter is set to true, meaning passwords are case sensitive by default. If for some
reason you need to alter this default, say because one of your applications requires the use of case-
insensitive passwords, you can do so by setting the SEC_CASE_SENSITIVE_LOGON parameter to false.

Changing the Archive Logging Mode

You can configure a database to run in noarchivelog mode or in archivelog mode. In noarchivelog
mode, Oracle won’t archive or save the redo logs it fills up. Instead, it overwrites them when it needs
to write to a new log file. In archivelog mode, Oracle ensures that it first saves the filled-up redo log
file before permitting it to be overwritten.

The distinction between archivelog mode and noarchivelog mode is extremely important. If you
archive all the filled redo logs, you’ll have a complete record of the changes made to the database
since the last backup. In the event that you lose a disk, for example, you can use your backups of the
database along with the archived redo logs to recover the database without losing any committed
data. Chapters 15 and 16 deal with database backup and recovery in detail. Here, I’ll show you how
to alter the logging mode of a database.

Before you change anything, you should confirm the archivelog mode of the database. Here is
one way of doing so:

SQL> SELECT log_mode FROM v$database;

LOG_MODE

NOARCHIVELOG
1 row selected.
SQL>

The other method is to use the ARCHIVE LOG LIST command:

SQL> ARCHIVE LOG LIST

Database log mode No Archive Mode
Automatic archival Disabled
Archive destination /u02/app/oracle/oradata/arch/
Oldest online log sequence 3
Current log sequence 4
SQL>

This command shows the archivelog destination (/u02/app/oracle/arch) and confirms that the
database is running in noarchivelog mode (No Archive Mode). Automatic archival is disabled as well.

Now that you’ve verified that your database is indeed running in the noarchivelog mode, let’s
see what you need to do to turn archiving on in your new database.

First, make sure that the archivelog-related parameters in your init.ora file (or SPFILE) are set.
In my init.ora file, I add (or uncomment) the following parameters:

492 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

log_archive_dest_n = 'LOCATION=/u02/app/oracle/oradata/nina/arch'
log_archive_format = 'log%t_%s_%r.arc'

Second, you need to shut down the database so it can use the new archivelog-related informa-
tion, which wasn’t in the init.ora file or was commented out initially. Note that only the LOG_ARCHIVE_
DEST_n parameter is a dynamically modifiable parameter. The other archivelog-related parameter,
LOG_ARCHIVE_FORMAT, is static, meaning you can’t use the ALTER SYSTEM command to change the
archive logging mode of your database; you have to bounce your database. However, you have a
certain amount of room to maneuver around this limitation. You don’t really have to set the static
parameter for archiving to begin. The LOG_ARCHIVE_FORMAT variable just sets the format for the way
your archived log files are named, and if you don’t specify a value, they will take Oracle’s default
archivelog naming convention.

Here’s the database shutdown command:

SQL> SHUTDOWN IMMEDIATE

Database closed.
Database dismounted.
ORACLE instance shut down.
SQL>

Third, start the database in mount mode only, by using the following command:

SQL> STARTUP MOUNT

Next, use the following command to turn archive logging on:

SQL> ALTER DATABASE ARCHIVELOG
Database altered.
SQL>

Finally, open the database. Your database will now run in archivelog mode.

SQL> ALTER DATABASE OPEN
Database altered.
SQL>

You can confirm that the database is running in archivelog mode by using the following
command. The results show that the database is in archive mode and that the automatic archival
setting is enabled.

SQL> ARCHIVE LOG LIST

Database log mode Archive Mode
Automatic archival Enabled
Archive destination /u02/app/oracle/oradata/nina/arch/
Oldest online log sequence 3
Next log sequence to archive 4
Current log sequence 4
SQL>

If you decide to turn off archiving for some reason, you can do so by using the ALTER DATABASE
NOARCHIVELOG command, as shown in the following extract, after first starting up with the STARTUP
MOUNT command:

SQL> ALTER DATABASE NOARCHIVELOG;

Database altered.
SQL> archive log list
Database log mode No Archive Mode
Automatic archival Disabled

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 493

Archive destination /u02/app/oracle/oradata/nina/arch/
Oldest online log sequence 47
Current log sequence 48
SQL>

■Note With Oracle Database 10g Release 10.1, Oracle deprecated the LOG_ARCHIVE_START parameter. When
you place the database in the archivelog mode, Oracle automatically starts archiving the redo logs.

Running the pupbld.sql File

You may occasionally see errors like the following when new users you have created try accessing
the database through SQL*Plus:

Error accessing PRODUCT_USER_PROFILE
Warning: Product user profile information not loaded!
You may need to run PUPBLD.SQL as SYSTEM

The product_user_profile table is a table Oracle maintains to control access to the database
through SQL*Plus. Chapter 12 discusses how to use the product_user_profile table to restrict opera-
tions by certain users. Make sure you are logged in as the SYSTEM user and run the following script
to ensure that this table can be accessed properly by all users, so that their SQL*Plus privileges can
be checked properly:

SQL> @$ORACLE_HOME/sqlplus/admin/pupbld.sql
DROP SYNONYM PRODUCT_USER_PROFILE
. . .
Synonym created.
SQL>

Using a Server Parameter File
The init.ora file is the initialization file where you specify values for all the parameters you intend to
use at database-creation time. But what if you need to change some of the parameters later on? You
can do so in two ways: You can change the init.ora parameters, and stop and start the database
instance. Or, if the parameter is dynamically configurable, you can change its value while the instance
is running. Although being able to dynamically reconfigure database parameters is nice, there are
inherent problems with this approach. When you restart the database, dynamically changed param-
eters are gone, because they weren’t part of the init.ora file; if you intend to make a change
permanent after you dynamically change it, you have to remember to correctly modify the init.ora
file so those changes will become permanent the next time the database reads the file when it’s
restarted. Often, DBAs forget to perform this manual chore.

The server parameter file is an alternative (or a complement) to the init.ora file, and it makes
the dynamic parameter changes permanent on an ongoing basis. You can specify that any dynamic
parameter changes made by using the ALTER SYSTEM command be saved permanently in the server
parameter file, which already consists of all the parameters in the regular init.ora file. After you
create the database, you can create the SPFILE from your init.ora file as shown in the next section.
If you later use this SPFILE to start your database, all dynamic changes made to the initialization
parameters can be permanently saved in the SPFILE. By using the SPFILE, you can ensure that
dynamic parameter changes will not be lost in between database shutdowns and restarts.

The file is called a server file because it is always maintained on the machine where the Oracle
database server is located. Oracle recommends the use of the SPFILE to dynamically maintain the
database configuration parameters.

494 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

The number of dynamically modifiable parameters in Oracle Database 11g is quite high. More
than half of the initialization parameters are dynamically changeable through the ALTER SYSTEM
statement, which means that the SPFILE is a smart way to permanently record a dynamically
changed parameter value.

When the database is started, unless you specify the type of initialization file and its location
explicitly, Oracle will look for the SPFILE first. On UNIX/Linux systems, the default location for the
SPFILE is the $ORACLE_HOME/dbs/ directory ($ORACLE_HOME\dbs in Windows). In the default directory,
Oracle first looks for a file named spfile$ORACLE_SID.ora (in our case, for the database nina, this
would be spfilenina.ora). If it can’t find this file, it then looks for a file named spfile.ora. If
spfile.ora isn’t found, Oracle will next look for the init.ora file in the same default directory. The
init.ora file is traditionally named init$ORACLE_SID.ora (in our example, it is initnina.ora).

■Note Although the SPFILE is placed in the $ORACLE_HOME/dbs directory by default, you can place it anywhere
as long as you specify the location in an initialization parameter file by using the SPFILE parameter.

The V$SPPARAMETER dynamic view is comparable to the V$PARAMETER view and is used to
record all the initialization parameter names and their values when using the SPFILE rather than the
init.ora file.

Creating a Server Parameter File
Oracle lets you use the traditional init.ora file (or PFILE) as the configuration file. However, Oracle
also recommends that you create and use an SPFILE for all databases. You can create the SPFILE from
the init.ora file, and the process is very simple.

You must first log in as a user with SYSDBA or SYSOPER privileges. Then run the following
command, in which PFILE is the init.ora file for our new nina database (initnina.ora):

SQL> CREATE spfile
 FROM
 pfile = '/u03/app/oracle/dbs/initnina.ora';

File created.
SQL>

■Caution Once you create the SPFILE, a subsequent request to create it from the init.ora file will overwrite
the existing SPFILE.

The previous command will create the SPFILE in the default location ($ORACLE_HOME/dbs). The
file will be named spfilenina.ora. You can also create an SPFILE by giving it an explicit name, as
shown in the following example:

SQL> CREATE spfile = '/u03/app/oracle/dbs/nina_spfile.ora'
 FROM
 pfile = '/u03/app/oracle/dbs/initnina.ora';

If you want Oracle to create an SPFILE from your init.ora file, and both files are located in their
default locations ($ORACLE_HOME/dbs), you can simply issue the following command:

SQL> CREATE spfile FROM pfile;

File created.
SQL>

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 495

You can also create a new init.ora file from the SPFILE in the default location by using the
following command:

SQL> CREATE pfile FROM spfile;

File created.
SQL>

If you bounce the database now, the instance will start up using your new SPFILE. Oracle will
look for the initialization parameter lists in their default locations in the following order, and it will
use the first one it finds:

1. It looks for the spfile$ORACLE_SID.ora file in the default location.

2. It looks for a file called spfile.ora in the default location.

3. It looks for the traditional init.ora file, with the name init$ORACLE_SID.ora, in the default
location.

■Tip Although you can change the init.ora text file to your heart’s content, don’t try modifying the SPFILE
directly. You’ll end up corrupting it, and your instance may fail to start the next time you try to use the SPFILE!

Creating the SPFILE from the init.ora file doesn’t mean that you can’t use the init.ora file
anymore. If you need to start the instance with the original init.ora file, you can do so as before by
specifying it explicitly:

SQL> STARTUP PFILE='/u01/app/oracle/product/10.1.0.2.0/dbs/initnina.ora';

However, you can’t specify the SPFILE instead of the PFILE in the preceding example—Oracle
won’t allow you to specify the SPFILE directly in a STARTUP command. However, you can do so indi-
rectly by using a PFILE (init.ora) file that includes just one initialization parameter: the SPFILE
parameter:

spfile = ' /u01/app/oracle/product/10.1.0.2.0/dbs/spfilenina.ora

After creating this new init.ora file, you can specify the PFILE variable in the STARTUP command,
as shown earlier.

Listing 10-8 shows the contents of the SPFILE (called SPFILEnina.ora) that was created from the
initnina.ora file.

Listing 10-8. A Sample SPFILE

*.compatible='11.1.0.6'
*.control_files='/u01/app/oracle/oradata/nina/control1.ctl',
'/u01/app/oracle/oradata/nina/control2.ctl
*.cursor_sharing='force'
*.db_block_size=8192
*.db_domain='world'
*.db_file_multiblock_read_count=16
*.db_files=1000
* db_flashback_retention_target=720
*.db_name='nina'
*.db_recovery_file_dest='/u02/app/oracle/flash_recov_area'
*.db_recovery_file_dest_size=1000M
* instance_type='RDBMS'
*.log_archive_dest_1='LOCATION=/u02/app/oracle/arch/'

496 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

*.log_archive_format='log%t_%s_%r.arc'
*.pga_aggregate_target=1000M
*.processes=600
*.remote_login_passwordfile='none'
*.resumable_timeout=1800
*.sga_target=300M
*.statistics_level='typical'
*.undo_management='auto'
*.undo_retention=7200
*.undo_tablespace='undotbs_01'
*.

■Tip It’s customary for DBAs to place comments in the init.ora file, but the SPFILE will not include comment
lines from the init.ora file. However, the SPFILE will retain comments placed on the same line as the parameter
in the init.ora file (for example, CURSOR_SHARING=false # comment).

Setting the Scope of Dynamic Parameter Changes
You now have an SPFILE that contains all your initialization parameters, and you can control
whether any changes to the initialization parameters persist by being recorded in the SPFILE or not.
Once you create an SPFILE, you can use a special SCOPE clause as part of all your ALTER SYSTEM
commands that will determine whether the changes persist or not. The SCOPE clause can take the
following three values:

• SPFILE

• MEMORY

• BOTH

When the SCOPE clause is set to MEMORY, changes are merely temporary and they go away after the
database is restarted. When the SCOPE clause is set to BOTH, all dynamic changes get recorded in the
SPFILE and are operational in the instance immediately. When the SCOPE clause is set to SPFILE,
changes aren’t applied immediately but only get recorded in the SPFILE; dynamic and static config-
uration parameters become effective only after the next startup of the database. If the database
instance is started with an SPFILE, SCOPE=BOTH is the default option used by Oracle.

■Note For static parameters, SCOPE=SPFILE is the only option, because the parameters can’t be activated right
away by definition.

As you can see, you have enormous flexibility in determining how long a change in a dynami-
cally configurable parameter’s value will persist. Here are some examples:

SQL> ALTER SYSTEM SET
 log_archive_dest_2='location=/test02/app/oracle/oradata/arch'
 SCOPE=SPFILE;
SQL> ALTER SYSTEM SET log_checkpoint_interval=600
 SCOPE=MEMORY;
SQL> ALTER SYSTEM SET license_max_users=200
 SCOPE=BOTH;

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 497

RMAN, Oracle’s backup and recovery tool, will back up the server parameter file automatically
when you back up your database. If you wish to modify several parameters in the SPFILE, the easiest
way to do so is to first create an init.ora file from the SPFILE (as discussed in the previous section),
make changes in the init.ora file, and create a new SPFILE from it. This process will, however,
involve restarting the database.

■Tip Always create an SPFILE soon after you create the initial database. You’ll be making a lot of initialization
parameter changes on a new database, and the SPFILE gives you the chance to make these changes permanent if
you so wish. This eliminates a lot of confusion later on, when you’re making changes to several initialization param-

eters at once.

Creating an SPFILE or PFILE from Memory
You can re-create the SPFILE or the PFILE from the current values of the initialization parameters
that an instance is currently using. The following command will create an SPFILE from the current
values in use:

SQL> CREATE spfile FROM MEMORY;

The command creates a new SPFILE in the default location, but you can specify an alternative
location. You can similarly create a regular initialization parameter file, as shown in this example:

SQL> CREATE pfile FROM MEMORY;

This command will come in handy when you lose the current parameter file. In a RAC environ-
ment, the command will capture the parameter settings being used by each of the instances in the
system.

Starting Up and Shutting Down the Database from
SQL*Plus
You can start up and shut down your Oracle database from the SQL*Plus interface, the OEM inter-
face, and an RMAN interface. I’ll focus on performing these operations using the SQL*Plus interface
in this chapter.

Starting the Database
When you issue the STARTUP command to start an Oracle database, Oracle will look for the initializa-
tion parameters in the default location, $ORACLE_HOME/dbs (for UNIX/Linux). There, Oracle will look
for the correct initialization file to use, in the following order:

• spfile$ORACLE_SID.ora

• spfile.ora

• init$ORACLE_SID.ora

■Note Regardless of which file Oracle reads, you don’t have to specify the path and location of the file if it’s in
the default location. If you wish to store your initialization file in a nondefault location, you have to specify the loca-
tion when you issue the startup commands.

498 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

You can start an Oracle database in several modes. Let’s take a quick look at the different
options you have while starting up a database.

The STARTUP NOMOUNT Command

You can start up the instance in a SQL*Plus session with just the instance running by using the
STARTUP NOMOUNT command. The control files aren’t read and the datafiles aren’t opened when you
open a database in this mode. The Oracle background processes are started up, and the SGA is allo-
cated to Oracle by the operating system. In fact, the instance is running by itself, much like the
engine of a tractor trailer being started with no trailer attached to the cab (you can’t do much with
either).

Listing 10-9 shows the use of the STARTUP NOMOUNT command.

Listing 10-9. Using the STARTUP NOMOUNT Command

SQL> STARTUP NOMOUNT
ORACLE instance started.

Total System Global Area 314572800 bytes
Fixed Size 1236756 bytes
Variable Size 99164396 bytes
Database Buffers 213909504 bytes
Redo Buffers 5169152 bytes
SQL>

Sometimes during certain maintenance operations and during recovery times, you can’t have
the database open for public access. That’s when this partial opening of the database is necessary.
You also use the NOMOUNT startup option during database creation and when you have to re-create
control files.

The STARTUP MOUNT Command

The next step in the startup process, after the instance is started, is the mounting of the database.
During the mount stage, Oracle associates the instance with the database. Oracle opens and reads
the control files and gets the names and locations of the datafiles and the redo log files. You can
mount an already started instance with the ALTER DATABASE command, or you can use the STARTUP
MOUNT command when you initially start the database.

If you’ve already started the database in the nomount mode, use this command:

SQL> ALTER DATABASE MOUNT;
Database altered.
SQL>

To start up in the mount mode directly, use this command:

SQL> STARTUP MOUNT
ORACLE instance started.
Total System Global Area 314572800 bytes
Fixed Size 1236756 bytes
Variable Size 99164396 bytes
Database Buffers 213909504 bytes
Redo Buffers 5169152 bytes
Database mounted.
SQL>

You usually need to start up a database in mount mode when you’re doing activities such as
performing a full database recovery, changing the archive logging mode of the database, or

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 499

renaming datafiles. Note that all three of these operations require Oracle to access the datafiles but
can’t accommodate any user operations in the files.

The STARTUP OPEN Command

The last stage of the startup process is opening the database. When the database is started in the
open mode, all valid users can connect to the database and perform database operations. Prior to
this stage, the general users can’t connect to the database at all. You can bring the database into the
open mode by issuing the ALTER DATABASE command as follows:

SQL> ALTER DATABASE OPEN;
Database altered.

More commonly, you simply use the STARTUP command to mount and open your database all at
once:

SQL> STARTUP
Oracle instance started.

Total System Global Area 314572800 bytes
Fixed Size 1236756 bytes
Variable Size 99164396 bytes
Database Buffers 213909504 bytes
Redo Buffers 5169152 bytes
Database mounted.
Database opened.
SQL>

To open the database, the Oracle server first opens all the datafiles and the online redo log files,
and verifies that the database is consistent. If the database isn’t consistent—for example, if the SCNs
in the control files don’t match some of the SCNs in the datafile headers—the background process
will automatically perform an instance recovery before opening the database. If media recovery
rather than instance recovery is needed, Oracle will signal that a database recovery is called for and
won’t open the database until you perform the recovery.

■Note When you issue the simple STARTUP command, Oracle will process all the startup steps in sequence and
will start the instance and open it for public access all at once. As long as your ORACLE_SID parameter is set to the
right database, you don’t need to specify the database name in the STARTUP command.

Automatically Starting Databases
You can let all your databases start up automatically each time the operating system restarts by
simply using standard operating system scripts. Each operating system will have its own system-
specific way of automating Oracle database startups. Here, I’ll discuss the startup and shutdown
scripts used in UNIX/Linux systems, and I’ll specifically use examples for a Red Hat Linux environ-
ment. Automatic startup on Windows systems is covered in Chapter 20.

Oracle provides two files, dbstart and dbshut, that use the standard /etc/oratab file contents to
determine which Oracle databases are running on the server, and automatically start up and shut
down all the databases whenever the system is started up and shut down. In most UNIX/Linux
systems, these two scripts are located in the $ORACLE_HOME/bin directory. After I created the new nina
database, I added it to the oratab file by adding the following line (which specifies the database
name, ORACLE_HOME, and whether the database should be automatically stopped and started):

nina:/u01/app/oracle/product/10.2.0/db_1:Y

500 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

In order to make a database start up and shut down automatically upon a system reboot, you
must add a script to the /etc/rc.d/init.d directory. This file will include the Oracle-provided
dbstart and dbshut scripts in it, as shown in Listing 10-10. The script uses a case statement to deter-
mine whether to start or stop all the Oracle databases and the Oracle Listener service.

Listing 10-10. A Script to Start and Stop Oracle Database and the Oracle Listener

#!/bin/sh
/etc/rc.d/init.d/oracle
Description: The following script
starts and stops all Oracle databases and listeners
case "$1" in
start)
echo -n "Starting Oracle Databases: "
date +"! %T %a %D : Starting Oracle Databases after
system start up." >> /var/log/oracle
echo "-------------------------------------" >> /var/log/oracle
su - oracle -c dbstart >> /var/log/oracle
echo "Done."
echo -n "Starting Oracle Listeners: "
su - oracle -c "lsnrctl start" >> /var/log/oracle
echo "Done."
echo ""
echo "--------------------------------------" >> /var/log/oracle
date +"! %T %a %D : Finished." >> /var/log/oracle
echo "--------------------------------------" >> /var/log/oracle
;;
stop)
echo -n "Shutting Down Oracle Listeners: "
echo "--" >> /var/log/oracle
date +"! %T %a %D : Shutting Down All Oracle Databases
as part of system shutdown." >> /var/log/oracle
echo "--" >> /var/log/oracle
su - oracle -c "lsnrctl stop" >> /var/log/oracle
echo "Done."
echo -n "Shutting Down Oracle Databases: "
su - oracle -c dbshut >> /var/log/oracle
echo "Done."
echo ""
echo "---" >> /var/log/oracle
date +"! %T %a %D : Finished." >> /var/log/oracle
echo "---" >> /var/log/oracle
;;
restart)
echo -n "Restarting Oracle Databases: "
echo "--" >> /var/log/oracle
date +"! %T %a %D : Restarting Oracle Databases
 after system startup." >> /var/log/oracle
echo "--" >> /var/log/oracle
su - oracle -c dbshut >> /var/log/oracle
su - oracle -c dbstart >> /var/log/oracle
echo "Done."
echo -n "Restarting the Oracle Listener: "
su - oracle -c "lsnrctl stop" >> /var/log/oracle

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 501

echo "Done."
echo ""
echo "---" >> /var/log/oracle
date +"! %T %a %D : Finished." >> /var/log/oracle
echo "---" >> /var/log/oracle
;;
*)
echo "Usage: oracle {start|stop|restart}"
exit 1
esac

The system administrator needs to create start and kill symbolic links in the appropriate run-
level directories /etc/rc.d/rcX.d. The following commands will ensure that the databases will come
up in run levels 2, 3, and 4:

$ ln -s ../init.d/oracle /etc/rc.d/rc2.d/S99oracle
$ ln -s ../init.d/oracle /etc/rc.d/rc3.d/S99oracle
$ ln -s ../init.d/oracle /etc/rc.d/rc4.d/S99oracle

In order to stop the databases on each host reboot or restart, you must also add the following
links:

$ ln -s ../init.d/oracle /etc/rc.d/rc0.d/K01oracle # Halting
$ ln -s ../init.d/oracle /etc/rc.d/rc6.d/K01oracle # Rebooting

Restricting Database Access
Sometimes when you’re performing data loads or an export or import of data, or when you’re
performing other critical maintenance tasks, you’ll want the database to be open for you but not for
general users. You can do so in a couple of different ways. First, you can bring up the database in a
restricted mode, which will provide you with complete access and prevent general users from
connecting, as shown in Listing 10-11.

Listing 10-11. Starting a Database in Restricted Mode

SQL> STARTUP RESTRICT;

ORACLE instance started.
Total System Global Area 314572800 bytes
Fixed Size 1236756 bytes
Variable Size 99164396 bytes
Database Buffers 213909504 bytes
Redo Buffers 5169152 bytes
Database mounted.
Database opened.
SQL>

When you’re done with your maintenance or other tasks and wish to open up the database to
the general public, you can simply use the ALTER SYSTEM command, as follows:

SQL ALTER SYSTEM DISABLE RESTRICTED SESSION;
System altered.
SQL>

You can also change an open and unrestricted database to a restricted state of operation by
using the following command:

502 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

SQL> ALTER SYSTEM ENABLE RESTRICTED SESSION;
System altered.
SQL>

When you put a database in a restricted mode using the ALTER SYSTEM command, as shown
previously, existing users are not hindered in any way. Only new logins are prevented, unless they
have the restricted session privilege. Once you are finished doing whatever you needed to do, you
can put the database back in an unrestricted open mode by using the ALTER SYSTEM DISABLE
RESTRICT SESSION command. Sometimes you may want to use an open database but prevent any
changes to the database for the time being. That is, you want to allow reads (SELECT operations)
against the database, but no writes. Listing 10-12 shows how you can put your database in a read-
only mode.

Listing 10-12. Putting a Database in a Read-Only Mode

SQL> STARTUP MOUNT
ORACLE instance started.
Total System Global Area 314572800 bytes
Fixed Size 1236756 bytes
Variable Size 99164396 bytes
Database Buffers 213909504 bytes
Redo Buffers 5169152 bytes

Database mounted.
SQL> ALTER DATABASE OPEN READ ONLY;
Database altered.
SQL>

The read-only mode is usually employed by standby databases, which are copies of production
databases designed to relieve the querying load on the parent production database.

Shutting Down the Database
You may need to shut down a running database for some types of backups, for upgrades of software,
and so on, and there are several ways to do this. The option you choose will affect the time it takes to
shut down the database and the potential for needing database instance recovery upon restarting
the database. The following sections cover the four available database shutdown command options.

The SHUTDOWN NORMAL Command

When you issue the SHUTDOWN NORMAL command to shut the database down, Oracle will wait for all
users to disconnect from the database before shutting it down. If a user goes on vacation for a week
after logging in to a database, and you subsequently issue a SHUTDOWN NORMAL command, the data-
base will have to keep running until the user returns and logs out. The normal mode is Oracle’s
default mode for shutting down the database.

The command is issued as follows:

SQL> SHUTDOWN NORMAL

or

SQL> SHUTDOWN

Here are some details about the SHUTDOWN NORMAL command:

• No new user connections can be made to the database once the command is issued.

• Oracle waits for all users to exit their sessions before shutting down the database.

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 503

• No instance recovery is needed when you restart the database because Oracle will write all
redo log buffers and data block buffers to disk before shutting down. Thus, the database will
be consistent when it’s shut down in this way.

• Oracle closes the datafiles and terminates the background processes. Oracle’s SGA is
deallocated.

The SHUTDOWN TRANSACTIONAL Command

If you don’t want to wait for a long time for a user to log off, you can use the SHUTDOWN TRANSACTIONAL
command. Oracle will wait for all active transactions to complete before disconnecting all users
from the database, and then it will shut down the database. The command is issued as follows:

SQL> SHUTDOWN TRANSACTIONAL

Here are the details about the SHUTDOWN TRANSACTIONAL command:

• No new user connections are permitted once the command is issued.

• Existing users can’t start a new transaction and will be disconnected.

• If a user has a transaction in progress, Oracle will wait until the transaction is completed
before disconnecting the user.

• After all existing transactions are completed, Oracle shuts down the instance and deallocates
memory. Oracle writes all redo log buffers and data block buffers to disk.

• No instance recovery is needed because the database is consistent.

The SHUTDOWN IMMEDIATE Command

Sometimes, a user may be running a very long transaction when you decide to shut down the database.
Both of the previously discussed shutdown modes are worthless to you under such circumstances.
Under the SHUTDOWN IMMEDIATE mode, Oracle will neither wait indefinitely for users to log off nor wait
for any transactions to complete. It simply rolls back all active transactions, disconnects all connected
users, and shuts the database down. Here is the command:

SQL> SHUTDOWN IMMEDIATE

Here are the details about the SHUTDOWN IMMEDIATE command:

• No new user connections are allowed once the command is issued.

• Oracle immediately disconnects all users.

• Oracle terminates all currently executing transactions.

• For all transactions terminated midway, Oracle will perform a rollback so the database ends
up consistent. This rollback process is why the SHUTDOWN IMMEDIATE operation is not always
immediate. This is because Oracle is busy rolling back the transactions it just terminated.
However, if there are no active transactions, the SHUTDOWN IMMEDIATE command will shut
down the database very quickly. Oracle terminates the background processes and deallocates
memory.

• No instance recovery is needed upon starting up the database because it is consistent when
shut down.

The SHUTDOWN ABORT Command

The SHUTDOWN ABORT command is a very abrupt shutting down of the database. Currently running
transactions are neither allowed to complete nor rolled back. The user connections are just discon-
nected. This is the command:

504 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

SQL> SHUTDOWN ABORT

These are the details about the SHUTDOWN ABORT command:

• No new connections are permitted once the command is issued.

• Existing sessions are terminated, regardless of whether they have an active transaction or not.

• Oracle doesn’t roll back the terminated transactions.

• Oracle doesn’t write the redo log buffers and data buffers to disk.

• Oracle terminates the background processes, deallocates memory immediately, and shuts
down.

• Upon restarting, Oracle will perform an automatic instance recovery, because the database
isn’t guaranteed to be consistent when shut down.

When you shut down the database using the SHUTDOWN ABORT command, the database has to
perform instance recovery upon restarting to make the database transactionally consistent, because
there may be uncommitted transactions that need to be rolled back. The critical thing to remember
about the SHUTDOWN ABORT command is that the database may be shut down in an inconsistent mode.
In most cases, you aren’t required to explicitly use a RECOVER command, because the database will
perform the instance recovery on its own.

■Tip Oracle recommends that you always shut down the database in a consistent mode by using the SHUTDOWN
or SHUTDOWN IMMEDIATE command and not the SHUTDOWN ABORT command before backing it up.

Listing 10-13 shows what happens when an attempt is made to put a database in a read-only
mode after the SHUTDOWN ABORT command was used to shut it down first. Note that Oracle won’t put
the datafiles in read-only mode until the database is manually recovered. (You’ll find a lot more
information on recovery in Chapter 16.)

Listing 10-13. The SHUTDOWN ABORT Command and the Need for Instance Recovery

SQL> SHUTDOWN ABORT
ORACLE instance shut down.
SQL> STARTUP MOUNT
ORACLE instance started.
Total System Global Area 314572800 bytes
Fixed Size 1236756 bytes
Variable Size 99164396 bytes
Database Buffers 213909504 bytes
Redo Buffers 5169152 bytes
Database mounted.
SQL> ALTER DATABASE OPEN READ ONLY;
alter database open read only
*
ERROR at line 1:
ORA-16005: database requires recovery
SQL> RECOVER DATABASE;
Media recovery complete.
SQL>

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 505

■Note In all shutdown modes, upon the issuing of the SHUTDOWN command, all new user connection attempts will
fail. Except for the SHUTDOWN ABORT command, all the other SHUTDOWN commands won’t require instance recovery
upon database startup.

Quiescing a Database
Suppose you want to put your database in a restricted mode to perform table reorganization or some
other administrative task. Schema changes are especially hard to make while users are conducting
live transactions in the database. The same goes for when you have to import data into a large table
while users are connected to the database. You have to perform these activities during a “mainte-
nance window,” or you have to shut down the database and bring it up in a restricted mode.

But what if you don’t have a maintenance window in which to shut down and restart the data-
base? Or, as so often happens in practice, the assumed window magically disappears because you
encounter some problem in performing your tasks during the allotted time? You are forced to wait
for the next weekend, in most cases. To redress this problem, quiescing a database gives you the
opportunity to put the database in a single-user mode without having to ever shut the database
down.

When a database is put in a quiesced state by the DBA, the following conditions apply:

• All inactive sessions are prevented from issuing any database commands until the database is
unquiesced.

• All active sessions are allowed to compile.

• All new login attempts will be queued. A user trying to log in during the time the database is
in a quiesced state won’t get an error message. Rather, his or her login attempts will seem to
hang.

• Only DBA queries, transactions, and PL/SQL statements will be allowed in the database. To
be more precise, queries and statements issued by all users in the Oracle Resource Manager
SYS_GROUP consumer group are allowed.

To place the database into a quiesced state, you use the following ALTER SYSTEM command as the
SYS or SYSTEM user:

SQL> ALTER SYSTEM QUIESCE RESTRICTED;
System altered.
SQL>

Later on, when you’ve finished your administrative tasks, you can allow regular access to the
database by issuing the following command:

SQL> ALTER SYSTEM UNQUIESCE;
System altered.
SQL>

Once the database is unquiesced, all the queued logins are allowed into the database, and all the
inactive transactions are once again allowed to turn active by letting them execute their DML
statements.

Suspending a Database
If you want to suspend all I/O operations during some special administrative job, you can suspend
the database. All reads from and writes to the datafiles and control files are prohibited while the
database is under suspension. The suspension of activity on a database may be necessary when you
want to perform an emergency backup of a tablespace, for example, or specialized chores such as
splitting a mirror, which you can’t do in any other way.

506 CH AP T E R 1 0 ■ C R E AT IN G A DA TA B AS E

You can suspend and resume a database as follows:

SQL> ALTER SYSTEM SUSPEND;
System altered.
SQL> ALTER SYSTEM RESUME;
System altered.
SQL>

Dropping a Database
In the past, Oracle DBAs constantly bemoaned their inability to issue a simple DROP DATABASE
command to remove a database. Starting with the Oracle Database 10g release, you can drop a data-
base with the help of a simple DROP DATABASE command. When you issue this command, all datafiles,
redo log files, and control files are removed automatically. However, it doesn’t remove any param-
eter files, like the init.ora file and the alert.log file.

You must start the database in the RESTRICT MOUNT mode for this operation, as shown in
Listing 10-14.

Listing 10-14. Dropping a Database Using the DROP DATABASE Command

SQL> CONNECT sys/sys_passwd AS SYSDBA
Connected to an idle instance.
SQL> STARTUP RESTRICT MOUNT
ORACLE instance started.
Total System Global Area 314572800 bytes
Fixed Size 1236756 bytes
Variable Size 99164396 bytes
Database Buffers 213909504 bytes
Redo Buffers 5169152 bytes
Database mounted.

SQL> SELECT name FROM v$database;
NAME

NINA

SQL> DROP DATABASE;
Database dropped.
Disconnected from Oracle Database 10g Enterprise Edition Release 10.2.0.0.0 -Beta
With the Partitioning, OLAP and Data Mining options
SQL>

The STARTUP RESTRICT MOUNT command ensures that no other users can connect to the database.
Make sure you verify the name of the database before using the DROP DATABASE command to drop the
database.

■Caution Obviously, you can’t test the DROP DATABASE command casually! Be careful, since this command is
unforgiving—it doesn’t give you any chances to recall the command. All your datafiles, log files, and control files
will vanish before you can blink!

C H AP TE R 1 0 ■ CR E AT IN G A D AT AB ASE 507

Using the Data Dictionary to Monitor Database Status
The dynamic view V$INSTANCE is useful in monitoring the current status of an instance. The
following query tells you that the database is open and no shutdowns are pending:

SQL> SELECT instance_name, status,
 2 shutdown_pending,
 3 active_state
 4* FROM v$instance
SQL> /

INST STATUS SHUTDOWN ACTIVE
NAME PENDING STATE
----- ------ -------- ------
nina OPEN NO NORMAL
SQL>

In the preceding output, the active state is normal, which means that the database is neither in
the process of being quiesced nor is it already in a quiesced state. The database status column indi-
cates open, where a suspended database would have a status of suspended.

The DATABASE_PROPERTIES view will provide the name of the default temporary tablespaces
in your database, in addition to a host of other information regarding NLS parameters.

The V$DATABASE view gives you plenty of details about your database. Here’s a typical query,
which shows the name of the database, whether archive logging is turned on (yes), and whether the
database is in the flashback database mode (no):

SQL> SELECT name, log_mode,
 flashback_on
 FROM v$database;

NAME LOG_MODE FLASHBACK_ON
------- ---------- ------------
PASPROD ARCHIVELOG NO
SQL>

What Next?
You’ve now created the new database, but you still need to do a few things to make it fully functional
(patience—you’re almost there!). At this point, you have the instance up and running and you have
a first draft of the physical database based on tentative estimates.

To make this database do something useful, you need to create users. And to empower the users
and ensure the security of the database, you’ll need to grant these users specific roles and privileges.

You have to create objects such as tables, views, indexes, synonyms, sequences, and so on,
based on the requests of the application development team. You also have to create the necessary
application code in the database, including stored procedures and packages. Because an empty
database with no data won’t do anyone much good, you need to load data into the database. You also
have to establish connectivity between the database you just created, the users, and other systems
that need to access your database.

Finally, to secure your database from unexpected failures and malfunctioning systems, you
need to back up the database and put a regular backup schema in place before you go off on your
long-awaited and well-earned vacation. The remaining chapters of this book address all these
important topics in detail.

■ ■ ■

P A R T 4

Connectivity and User
Management

511

■ ■ ■

C H A P T E R 1 1

Connectivity and Networking

One of the DBA’s key tasks is to establish and maintain connectivity between the database on the
server and the user community. In the traditional client/server model, users connect to databases
on separate servers by using a client, and the client/server model is still used in many places to run
business functions. However, web-based connection models are much more common today as a
means of connecting to databases. Oracle calls its set of connectivity solutions (which encompasses
connectivity, manageability, and network security) Oracle Net (previously SQL Net) Services. In this
chapter, I show how to use Oracle Net, a component of Oracle Net Services, to make and maintain
connections between clients and databases. I also show you how to install the Oracle Client soft-
ware. You’ll also see how to use the new Oracle Instant Client, which lets you connect to an Oracle
database without the use of network configuration files.

Oracle Database 11g provides several methods of connecting database servers to end users. For
small sets of users, you can use the Oracle tnsnames.ora file, which is a local file containing the
connection details. The new easy connect method lets clients connect to your databases without any
configuration files. The most sophisticated connection method provided by Oracle is the directory
naming method, which makes use of the LDAP-compliant Oracle Internet Directory (OID). You can
use OID for security management and other purposes besides facilitating database connectivity.
There is also an external naming method, which uses external naming services such as the Network
Information Service to configure client connections to the Oracle database.

This chapter will provide you with a quick introduction to Java Database Connectivity (JDBC) as
well. You’ll learn how to connect to an Oracle database from within a Java program, and you’ll step
through a small example that illustrates the basic concepts of Oracle JDBC.

Oracle Networking and Database Connectivity
After you create the database and various database objects and load the data, the next big step is to
establish connectivity between the database server and the users who will be using it. Oracle Net
Services is the set of services that makes this possible. Oracle Net Services components have to “live”
on both the client and the server, and they typically use the TCP/IP network protocol to establish
network connectivity between clients and the database server.

Oracle Net Services is configured with several important features to make life easier for DBAs:

• Location transparency: Clients need not know the network location or any other privileged
information about database services, because you can maintain all the information required
to make database connections in a centralized repository. Users are given only the database
name, and the connection is entirely transparent to them.

512 CH AP T E R 1 1 ■ C ON N E C T I V IT Y A N D N E T W O R K I N G

• Centralized configuration: For large installations, a centralized means of establishing and
maintaining connections makes a lot of sense. The LDAP-compliant directory server
supported by Oracle provides a very efficient centralized repository for meeting all your
networking needs. Network, authentication, and other security information is saved in a
central place where numerous users then access this information. Maintenance is extremely
easy, because regardless of the number of clients, you only have to maintain the centralized
information.

• Scalability: Oracle offers a specialized architecture, called the shared server architecture, to
enhance scalability. This architecture enables several users to share the same connection
process through the use of a dispatcher process. A small number of server connections can
enable a large number of end users to use the system, thus increasing the scalability of the
system. In addition, Oracle offers the Connection Manager feature, which provides connec-
tion multiplexing whereby multiple connections are taken care of simultaneously.

SHARED SERVER VS. DEDICATED SERVER ARCHITECTURE

You can set up a connection architecture where the Oracle server starts a separate server process for each client
connection, or you can enable several clients to share a single server process. The separate server processes use
dedicated connections between each client and the Oracle server, and it is therefore named the dedicated server
architecture. The shared server architecture is the term for connections where several user processes use the same
Oracle server connection to perform their work.

Shared Server Architecture

The shared server architecture relies on a dispatcher service to process connection requests from clients. A single
dispatcher can service many client connections simultaneously. Dispatchers essentially act as mediators between
the clients and the shared servers. Dispatchers are in charge of receiving requests from clients and placing them in
a request queue, from which the shared server picks them up.

When you use a dispatcher (that is, when you use the shared server approach), the listener will not hand off a
connection request to the database server directly; it hands the request off to the dispatcher. This is referred to as a
direct hand-off to the dispatcher. The listener can also redirect a client connection to a dispatcher. In this case, the
listener will pass the dispatcher’s network address to the client connection, and this information enables the client
to connect to the dispatcher, whereupon the listener connection is terminated.

You can use the Oracle Connection Manager to configure session multiplexing, which involves pooling multiple client
sessions through a network connection to a shared server destination.

Dedicated Server Architecture

Dedicated server processes do not involve any sharing of resources by clients. Each client is assigned a dedicated
server connection. The Oracle listener will start up a dedicated server process whenever a client process requests a
connection. The listener passes the dedicated server’s protocol address back to the client; the client then uses that
to connect directly to the database server. The listener connection is terminated as soon as it passes the dedicated
server’s address to the client.

This chapter deals exclusively with the more commonly used dedicated server architecture. To learn how to set up
a shared server configuration, please refer to Oracle’s manual for networking, the Net Services Administrator’s Guide.

C H AP TE R 1 1 ■ CO N N E CT IV I T Y AN D N E T W OR K IN G 513

Networking Concepts: How Oracle
Networking Works
When you want to open a database session from a client, whether it’s a traditional client or a browser-
based client, you need to connect to the database across a network. Suppose you’re establishing a
connection over an existing network from your desktop to an Oracle database on a UNIX server
across town. You need a method of making a connection between your desktop and the Oracle data-
base (which involves the use of specialized software), you need some kind of interface to conduct the
session (which, in this example, will be SQL*Plus), and you need some way of communicating with
the industry-standard network protocols, such as TCP/IP.

To make it easier for you to configure and manage network connections, Oracle provides Oracle
Net Services, which is a suite of components that provide connectivity solutions in distributed,
heterogeneous computing environments. Oracle Net Services consists of Oracle Net, Oracle Net
Listener, Oracle Connection Manager, Oracle Net Configuration Assistant, and Oracle Net Manager.
The Oracle Net Services software is installed automatically as part of the Oracle Database Server or
the Oracle Client software installation.

Oracle Net is a software component that initiates, establishes, and maintains connections
between clients and servers. That’s why Oracle Net must be installed on both the client and the
server. Oracle Net consists mainly of two components:

• Oracle Network Foundation Layer: Responsible for establishing and maintaining the connec-
tion between the client application and the server, as well as exchanging messages between
them

• Oracle Protocol Support: Responsible for mapping Transparent Network Substrate (TNS)
functionality to industry-standard protocols used in connections

All servers that host an Oracle database also run a service called the Oracle Net Listener
(commonly referred to as just the listener), whose main function is to listen for requests from client
services to log into the Oracle database. The listener, after ensuring that the client service has the
matching information for the database (protocol, port, and instance name), passes the client request
on to the database. The database will allow the client to log in, provided the username and password
are authenticated. Once the listener hands off the user request to the database, the client and the
database will be in direct contact, without any help from the listener service.

Oracle provides a number of GUI-based utilities to help configure network connections for your
databases. These utilities include the Oracle Connection Manager, Oracle Net Manager, and Oracle
Net Configuration Assistant. These tools can help you take care of all your networking needs. After
you finish reading this chapter, just click these program icons and start experimenting with test
connections.

How a Web Application Connects to Oracle
To make an Internet connection to an Oracle database, the web browser on the client communicates
with the web server and makes the connection request using the HTTP protocol. The web server
passes the request along to an application, which processes it and communicates with the Oracle
database server using Oracle Net (which is configured on both the database server and the client).

In the next sections, you’ll look at some important terms that are crucial in Oracle networking.

514 CH AP T E R 1 1 ■ C ON N E C T I V IT Y A N D N E T W O R K I N G

Database Instance Names
As you know by now, an Oracle instance consists of the SGA and a set of Oracle processes. The data-
base instance name is specified in the initialization file (init.ora) as the INSTANCE_NAME parameter.
When you talk about the Oracle system identifier (SID), you are simply referring to the Oracle
instance.

Normally, each database can have only one instance associated with it. In an Oracle Real Appli-
cation Clusters (RAC) configuration, however, a single database could be associated with multiple
instances.

Global Database Names
The global database name uniquely identifies an Oracle database and is of the format database_
name.database_domain, for example, sales.us.acme.com. In this global database name, “sales” is
the database name and “us.acme.com” is the database domain. Since no two databases in the same
domain could have the same database name, every global database name is unique.

Database Service Names
To a client, the database logically appears as simply a service. There is a many-to-many relationship
between services and databases, since a database can be represented by one or more services, each
dedicated to a different set of clients, and a service can cover more than one database instance. You
identify each database in your system by its service name, and you specify the service name of a
database with the SERVICE_NAMES initialization parameter. The service name parameter’s value
defaults to the global database name.

Note that a database can be addressed by more than one service name. You may do this when
you want different sets of clients to address the database differently to suit their particular needs. For
example, you can take the same database and create two service names like the following:

sales.us.acme.com
finance.us.acme.com

The sales people will use the sales.us.acme.com service name, and the finance.us.acme.com
service name will be used by the accounting and finance departments.

Connect Descriptors
To connect to any database service in the world from your desktop, you need to provide two bits of
information:

• Name of the database service

• Location of the address

Oracle uses the term connect descriptor to refer to the combined specification of the two neces-
sary components for a database connection: a database service name and its address. A connect
descriptor address portion contains three components: the communications protocol used for the
connection, the host name, and the port number.

C H AP TE R 1 1 ■ CO N N E CT IV I T Y AN D N E T W OR K IN G 515

Knowing the communication protocol helps ensure that the networking protocols agree, so you
can establish a connection. The standard protocol is TCP/IP or TCP/IP with Secure Sockets Layer
(SSL). The standard port number for Oracle connections on UNIX servers is either 1521 or 1526. The
default port on Windows machines is 1521. Because you can’t have more than one database with the
same service name on any host, an Oracle database service name and a host name will uniquely
identify any Oracle database in the world. Here’s an example of a typical connect descriptor:

(DESCRIPTION
 (ADDRESS=(PROTOCOL=tcp) (HOST=sales-server) (PORT=1521))
 (CONNECT_DATA=
 (SERVICE_NAME=sales.us.acme.com)))

In this connect descriptor, the ADDRESS line specifies that the TCP protocol will be used for
network communication. HOST refers to the UNIX (or Windows) server on which the Oracle listener
is listening for connection requests at a specific port: 1521. The ADDRESS part of the connect descriptor
is also called the protocol address.

Clients wishing to connect to the database first connect to the Oracle listener process. The
listener receives the incoming connection requests and hands them off to the database server. Once
the client and database server hook up through the mediation of the listener, they’re in direct commu-
nication, and the listener won’t involve itself any further in the communication process for this client
connection.

Connect Identifiers
A connect identifier is closely related to the connect descriptor. You can use the connect descriptor as
your connect identifier, or you can simply map a database service name to a connect descriptor. For
example, you can take a service name such as “sales” and map it to the connect descriptor you saw
in the previous section. Here’s an example showing the mapping of the sales connect identifier:

sales=
(DESCRIPTION
 (ADDRESS=(PROTOCOL=tcp) (HOST=sales-server) (PORT=1521))
 (CONNECT_DATA=
 (SERVICE_NAME=sales.us.acme.com)))

Connect Strings
You connect to a database by providing a connect string. A connect string contains a username/pass-
word combination and a connect identifier. One of the most common connect identifiers is a net
service name, which is a simple name for a database service.

The following example shows a connect string that uses a complete connect descriptor as the
connect identifier:

CONNECT scott/tiger@(DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)
 (HOST=sales_server1)
 (PORT=1521))
 (CONNECT_DATA=(SERVICE_NAME=sales.us.acme.com)))

Here’s a much easier way to connect to the same database, using the connect identifier sales:

CONNECT scott/tiger@sales

Both of the preceding examples will connect you to the sales database, but obviously the second
connect string (using the sales connect identifier) is much simpler.

516 CH AP T E R 1 1 ■ C ON N E C T I V IT Y A N D N E T W O R K I N G

USING ORACLE NET SERVICES TOOLS

Oracle Net provides you with several GUI and command-line tools to configure connections between clients and
database services. The most common command line you’ll probably use is the lsnrctl utility, which helps manage the
Oracle Net Listener service. The following are the important GUI tools that help you manage Oracle Net Services:

• Oracle Net Configuration Assistant (NCA): This tool is used mostly to configure network components during
installation, and it enables you to select one of the available options (I discuss these options later in the
chapter) to configure client connectivity. The easy-to-use GUI interface enables you to quickly configure client
connections under any naming method you choose. On UNIX/Linux systems, you can start NCA by running
netca from the $ORACLE_HOME/bin directory. On Windows, choose Start ➤ Programs ➤ Oracle -
HOME_NAME ➤ Configuration and Migration Tools ➤ Net Configuration Assistant.

• Oracle Net Manager: Oracle Net Manager can be run on clients and servers, and it allows you to configure
various naming methods and listeners. With this tool, you can configure connect descriptors in local
tnsnames.ora files or in a centralized OID, and you can easily add and modify connection methods.

To start Oracle Net Manager from the Oracle Enterprise Manager console, select Tools ➤ Service Manage-
ment ➤ Oracle Net Manager. To start Oracle Net Manager as a stand-alone application on UNIX, run netmgr
from $ORACLE_HOME/bin. On Windows, choose Start ➤ Programs ➤ Oracle - HOME_NAME ➤ Configura-
tion and Migration Tools ➤ Net Manager.

• Oracle Enterprise Manager: OEM in Oracle Database 11g can do everything that the Oracle Net Manager can
do, but for multiple Oracle homes across multiple file systems. In addition, using the OEM, you can export
directory naming entries to a tnsnames.ora file.

• Oracle Directory Manager: This powerful tool enables you to create the various domains and contexts neces-
sary for using OID. You can also perform password policy management and many Oracle advanced security
tasks with this tool. On UNIX/Linux systems, you can start OID by running oidadmin from the $ORACLE_HOME/
bin directory. On Windows, choose Start ➤ Programs ➤ Oracle - HOME_NAME ➤ Integrated Management
Tools ➤ Oracle Directory Manager.

Establishing Oracle Connectivity
In order to connect to an Oracle database using the network, you must first establish a network
connection between your client and the server. You must have either the Oracle Client or the Oracle
Database Server software installed on the machine you’re making the connection from. I explain the
installation of the Oracle Client software in the following section.

Here are the steps you must take to make a successful connection:

1. Make sure the database server is installed and the Oracle instance is running.

2. Make sure that your Oracle Client software is installed on the client machine.

3. Check that the database server and client are running on the same network. Check this by
using the ping command:

C:\> ping prod1
Pinging prod1.netbsa.org [172.14.152.1] with 32 bytes of data:
Reply from 172.14.152.1: bytes=32 time<1ms TTL=255
Reply from 172.14.152.1: bytes=32 time<1ms TTL=255
Reply from 172.14.152.1: bytes=32 time<1ms TTL=255
Reply from 172.14.152.1: bytes=32 time<1ms TTL=255
Ping statistics for 172.14.152.1:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:

C H AP TE R 1 1 ■ CO N N E CT IV I T Y AN D N E T W OR K IN G 517

 Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>

The results of the ping command show that the connection is successful. If the connection
can’t be made, you’ll see a connection request timed out message, and the number of sent
packets of data will be more than the number of received packets in the ping statistics.

4. The TCP/IP protocol must be installed on both the server and the client; if you install Oracle
server and client software, these protocols are automatically installed in the form of the
Oracle Net software component.

5. Ensure that the Oracle Net Listener service is running on the server and is listening at the
appropriate port for incoming requests for connections.

6. Configure the client for connecting to the database. You can connect to an Oracle database
by using one of four available methods: local naming, easy connect naming, directory
naming, and external naming. I discuss these methods later in this chapter.

7. Connect to the database with SQL*Plus or a third-party tool. For example, with SQL*Plus you
can connect to the database by providing the username/password combination and the
database name:

C:\> sqlplus system/sammyy1@orcl

SQL*Plus: Release 11.1.0.6.0 - Production on Thu Mar 20 09:25:27 2008
Copyright (c) 1982, 2007, Oracle. All rights reserved.

Connected to:
Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options

SQL>

In the following sections, I’ll discuss the Oracle Client, the listener, and naming methods in
more detail.

The Oracle Client
If you wish to access an Oracle database from a PC, you must first install the Oracle Client software
on the PC. The Oracle Client software comes with the Oracle Server software, and you can also
download the Oracle Client software from the OTN site (http://technet.oracle.com). The Oracle
Client software is available for download separately. Although the Oracle Server and Oracle Client
software versions need not be the same, Oracle recommends you use matching versions of the types
of software so you can take advantage of new features.

You can determine your Oracle Client version by looking at the output when you invoke the
SQL*Plus utility, as shown here:

$ sqlplus
C:\>sqlplus

SQL*Plus: Release 11.1.0.6.0 - Production on Thu Mar 20 09:27:14 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.

Enter user-name:

The output of the preceding SQL*Plus command shows that I have Release 11.1.0.6.0 Oracle
Client software on my system.

518 CH AP T E R 1 1 ■ C ON N E C T I V IT Y A N D N E T W O R K I N G

When you install the Oracle Client software, you have four options:

• Administrator: Lets applications connect to local or remote Oracle databases and administer
them as well

• Runtime: Lets you connect to local or remote Oracle databases

• Custom: Lets you select individual components from the Administrator and Runtime instal-
lation components

• Instant Client: Installs only the shared libraries required by Oracle Call Interface (OCI), Oracle
C++ Call Interface (OCCI), and Java Database Connectivity OCI applications

■Note The new Instant Client is discussed shortly in the “The Instant Client” section.

Installing the Oracle Client
Here’s how you install the Oracle Client software:

1. Insert the Oracle Database 11g Client CD in the CD drive, or run the runInstaller script
from your staging directory, as shown in Chapter 9.

2. Select Install/Deinstall Products, and click Next.

3. The Welcome window is displayed. Click Next.

4. In the Specify File Locations page, accept the default file directory or enter an Oracle home
name and directory path. Click Next.

5. In the Select Installation Type screen, you’re offered four choices—Instant Client, Adminis-
trator, Runtime, or Custom. Select Runtime Installation from the list, and click Next.

6. Review the components of the Runtime install, and click Install.

7. After the installation of the Oracle Client software is completed, the Oracle Net Configu-
ration Assistant will appear. Select the “No, I Will Create Service Names Myself” option, and
click Next.

8. Under Database SID, enter your database name, and click Next.

9. Select TCP as the protocol, and click Next.

10. Under Host Name, enter your host server name, and select the standard port. Click Next.

11. Click the Yes button to test the connectivity, and click Next.

12. When you see the message, “Connecting . . . Test Successful,” click Next.

13. Select No when asked if you would like to configure another service. Click Next.

14. Confirm the completion of the Net Service Name configuration by clicking Next.

15. Click Finish and Exit.

■Tip If there are multiple Oracle installations on a PC, there may be several tnsnames.ora files on the system
as well. A user may be unable to connect to a new database after adding the network configuration information to
a tnsnames.ora file if it’s not the one in use. Make sure the correct tnsnames.ora file is in the Oracle Client’s
path.

C H AP TE R 1 1 ■ CO N N E CT IV I T Y AN D N E T W OR K IN G 519

Using the TWO_TASK Environment Variable
You can bypass the use of an Oracle Net name by setting the TWO_TASK environment variable (on
UNIX/Linux) or the LOCAL environment variable (on Windows).

The TWO_TASK environment variable specifies the connect string for connecting to a remote
machine. SQL*Net will check the value of the TWO_TASK environment variable and automatically add
it to your connect string, as shown in the following example:

$ export TWO_TASK=mydb

Once you set the TWO_TASK environment variable, you can connect to the mydb database in the
following way:

$ sqlplus scott/tiger

Note that you didn’t have to use the specification sqlplus scott/tiger@mydb, since you’re using
the TWO_TASK variable.

On a Windows server, the following is the equivalent for setting the TWO_TASK environment
variable:

$ SET LOCAL=<mydb>
$ sqlplus scott/tiger

The Instant Client
The Oracle Client installation described in the previous section requires you to go through all the
preparatory steps needed for a regular Oracle Database Server software installation. Fortunately,
you may not always need to install the complete Oracle Client software for connecting to an Oracle
database. Oracle’s new Instant Client software allows you to run your applications without installing
the standard Oracle Client or having an ORACLE_HOME. You don’t need to install the Oracle Client soft-
ware on every machine that needs access to the Oracle database. All existing OCI, ODBC, and JDBC
applications will work with the Instant Client. If you wish, you can even use SQL*Plus with the
Instant Client.

The Instant Client offers the following advantages, as compared to the full-blown Oracle Client
software:

• It is free.

• It takes less disk space.

• The installation is faster (five minutes or so).

• No CD is required.

• It has all the features of the regular Oracle Client, including SQL*Plus if necessary.

Installing the Instant Client
Here are the steps to install the new Instant Client software and connect quickly to an Oracle
database:

520 CH AP T E R 1 1 ■ C ON N E C T I V IT Y A N D N E T W O R K I N G

1. Download the Instant Client software from the OTN web site. You must install the Basic
client package and you can also include any of the advanced optional packages. The
packages contain the following items:

• Basic: Files required to run OCI, OCCI, and JDBC-OCI applications

• SQL*Plus: Additional libraries and executables for running SQL*Plus with Instant Client

• JDBC Supplement: Additional support for XA, Internationalization, and RowSet operations
under JDBC

• ODBC Supplement: Additional libraries for enabling ODBC applications with Instant Client
(Windows only)

• SDK: Additional files for developing Oracle applications with Instant Client

2. Unzip the selected packages into a single directory, and name it something like “instantclient”.

3. In UNIX and Linux systems, set the environment variable LD_LIBRARY_PATH to instantclient
(thus making sure the setting for the parameter matches the name of the directory that con-
tains the packages). On Windows systems, set the environment variable PATH to instantclient.

4. Test your connection to the Oracle server.

The Listener and Connectivity
The Oracle Net Listener is a service that runs only on the server and listens for incoming connection
requests. Oracle provides a utility called lsnrctl to manage the listener process. Here’s a summary of
how the listener fits into Oracle networking:

• The database registers information about the services, instances, and service handlers with
the listener.

• The client makes the initial connection with the listener.

• The listener receives and verifies the client connection request and forwards it to the service
handler for the database service. Once the listener hands off the client request, the listener is
out of the picture for that connection.

The listener.ora file, whose default location is the $ORACLE_HOME/network/admin directory on
UNIX systems and the $ORACLE_HOME\network\admin directory on Windows systems, contains the
configuration information for the listener. Because the listener service is run only on the server, there
is no listener.ora file on the client machines. Listing 11-1 shows a typical listener.ora file.

All the configuration parameters in listener.ora have default values, and you don’t have to
configure a listener service manually anymore. After the first database on the server is created, the
listener service automatically starts, and the listener configuration file, listener.ora, is placed in the
default directory. Upon the creation of a new database, the database’s network and service informa-
tion is automatically added to the listener’s configuration file. Upon instance startup, the database
registers itself automatically with the listener, and the listener starts listening for connection
requests to this database.

Listing 11-1. A Typical Listener Configuration File

LISTENER.ORA Network Configuration File:
/u01/app/oracle/product/11.1.0.6.0 /db_1/network/admin/listener.ora
Generated by Oracle configuration tools.
SID_LIST_LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =

C H AP TE R 1 1 ■ CO N N E CT IV I T Y AN D N E T W OR K IN G 521

 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC4))
)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = NTL-ALAPATISAM)(PORT = 1521))
)
)
)

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = PLSExtProc)
 (ORACLE_HOME = /u01/app/oracle/product/11.1.0/db_1)
 (PROGRAM = extproc)
)
 (SID_DESC =
 (GLOBAL_DBNAME = remorse.world)
 (ORACLE_HOME = /u01/app/oracle/product/11.1.0/db_1)
 (SID_NAME = remorse)
)
 (SID_DESC =
 (GLOBAL_DBNAME = finance.world)
 (ORACLE_HOME = /u01/app/oracle/product/11.1.0/db_1)
 (SID_NAME = finance)
))

Automatic Service Registration
The Oracle PMON process is in charge of the dynamic service registration of new Oracle database
service names with the listener—when you create new Oracle databases, they’ll automatically
register themselves with the listener service. The PMON process will update the listener.ora file
after each new database is created on a server.

For automatic service registration, the init.ora file or the SPFILE should contain the following
parameters:

• SERVICE_NAMES (for example, sales.us.oracle.com)

• INSTANCE_NAME (for example, sales)

If you don’t specify a value for the SERVICE_NAMES parameter, it defaults to the global database
name, which is a combination of the DB_NAME and DB_DOMAIN parameters. The INSTANCE_NAME param-
eter’s value defaults to the SID entered during Oracle installation or database creation.

You can check the status of the listener on the server by using the lsnrctl utility, as shown in
Listing 11-2. The output shows how long the listener has been up and where the configuration file for
the listener service is located. It also tells you the names of the databases for which the listener is
“listening” for connect requests.

Listing 11-2. Using the lsnrctl Utility to Check the Status of the Listener

 $ lsnrctl status
C:\>lsnrctl status

LSNRCTL for 32-bit Windows: Version 11.1.0.6.0 - Production on 20-MAR-2008

Copyright (c) 1991, 2007, Oracle. All rights reserved.

522 CH AP T E R 1 1 ■ C ON N E C T I V IT Y A N D N E T W O R K I N G

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=ntl-alapatisam.netbsa.or
g)(PORT=1522)))
STATUS of the LISTENER

Alias LISTENER
Version TNSLSNR for 32-bit Windows: Version 11.1.0.6.0 - Produ
ction
Start Date 03-MAR-2008 11:15:53
Uptime 16 days 21 hr. 14 min. 27 sec
Trace Level off
Security ON: Local OS Authentication
SNMP OFF
Listener Parameter File c:\orcl\app\oracle\product\11.1.0\db_1\network\admin\l
istener.ora
Listener Log File c:\orcl11\app\oracle\diag\tnslsnr\ntl-alapatisam\liste
ner\alert\log.xml
Listening Endpoints Summary...
 (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=ntl-alapatisam.netbsa.org)(PORT=1522
)))
 (DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(PIPENAME=\\.\pipe\EXTPROC1522ipc)))
Services Summary...
Service "orcl" has 1 instance(s).
 Instance "orcl", status READY, has 1 handler(s) for this service...
Service "orclXDB" has 1 instance(s).
 Instance "orcl", status READY, has 1 handler(s) for this service...
Service "orcl_XPT" has 1 instance(s).
 Instance "orcl", status READY, has 1 handler(s) for this service...
The command completed successfully
C:\>

In the Services Summary section of Listing 11-2, the status can have one of the following values:

• READY: The instance can accept connections.

• BLOCKED: The instance cannot accept connections.

• UNKNOWN: The instance is registered in the listener.ora file rather than through dynamic
service registration. The status is thus unknown.

Listener Commands
You can run other important commands besides the status command after invoking the lsnrctl
utility. For example, the services command will let you see what services the listener is monitoring
for connection requests.

■Note You can also check the status of the listener service from the Net Services Administration page in Oracle
Enterprise Manager.

You can see the various lsnrctl commands available by using the help command in the lsnrctl
interface, as shown in Listing 11-3.

C H AP TE R 1 1 ■ CO N N E CT IV I T Y AN D N E T W OR K IN G 523

Listing 11-3. Using lsnrctl Help to List the lsnrctl Commands

$ lsnrctl help

LSNRCTL for 32-bit Windows: Version 11.1.0.6.0 - Production on 20-MAR-2008
Copyright (c) 1991, 2007, Oracle. All rights reserved.

The following operations are available
An asterisk (*) denotes a modifier or extended command:

start stop status
services version reload
save_config trace change_password
quit exit set*
show*$

You can start the listener by using the start command, and you can stop the listener by using
the stop command after invoking the lsnrctl utility. If you want to issue these commands from the
operating system command line, you can use the commands lsnrctl start and lsnrctl stop to
perform the two tasks.

If you make changes to the listener.ora file, one way to put the changes into effect is to restart
your listener. The other and safer method is to merely reload the listener information, which includes
the newly made changes to the listener configuration file. The lsnrctl reload command lets you
reload the listener on the fly, without your having to bounce it. Currently connected clients will
continue to be connected while the listener is being reloaded (or even bounced) because the listener
has already “handed off” the connections to the database and isn’t involved between the client and
the database service.

■Caution I advise not modifying the listener.ora file unless you absolutely have to, and with dynamic auto-
matic service registration, there is less need for you to modify the file. Nevertheless, there may be times when you
have to change some part of the listener file, which consists of network configuration information for all the services
the listener is monitoring for connection requests.

Listener Management
Although it’s quite easy to set up the listener service, you can do several things afterward to tune up
your connection process and to make the listener service secure. I’ll cover some of these options in
the following sections.

Multiple Listeners

You can have more than one listener service running on the same server, but you’ll usually do this
when you’re using Oracle Real Application Clusters (RAC). If you do use multiple listener services,
you can configure the CONNECT_TIME_FAILOVER parameter, which determines how long a client
connection waits for a connection through one listener before attempting a connection through
another.

Setting a Queue Size

Sometimes a large volume of simultaneous connection requests from clients may overwhelm a
listener service. To keep the listener from failing, you can use the QUEUESIZE parameter in the
listener.ora configuration file to specify how many concurrent connection requests can be made.

524 CH AP T E R 1 1 ■ C ON N E C T I V IT Y A N D N E T W O R K I N G

For most operating systems, the default value for QUEUESIZE is a small number, such as 5. Here’s an
example showing how to set the QUEUESIZE parameter:

LISTENER=
 (DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales-server)(PORT=1521)(QUEUESIZE=10)))

Setting a Password for the Listener

When the listener is first set up, there’s no password protection set for the utility. Any user who can
get into the operating system can easily stop the listener and prevent clients from making new
connections just by typing lsnrctl stop at the command prompt.

■Note The default password for the listener service is “listener,” and you don’t have to specify this password
when you use the listener.

You can set your own password for the listener utility as shown in Listing 11-4.

Listing 11-4. Setting a Password for the Listener

LSNRCTL> set password
Password:
The command completed successfully
LSNRCTL> change_password
Old password:
New password:
Reenter new password:
Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=ntl-alapatisam.netbsa.org
)(PORT=1521)))
Password changed for LISTENER
The command completed successfully
LSNRCTL> save_config
Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=ntl-alapatisam.netbsa.org
)(PORT=1521)))
Saved LISTENER configuration parameters.
Listener Parameter File
/u01/app/oracle/product/11.1.0/db_1/network/admin/listener.ora
Old Parameter File /u01/app/oracle/product/11.1.0/db_1/network/admin/listener.bak

After you change the password successfully, you can’t stop or start the listener service as
before—you need to use your password to do so. You need to use the set password clause at the
lsnrctl prompt to provide the listener with your (new) password, and then you can start and stop the
listener service once again. Note that set password doesn’t set a new password; it merely causes the
listener to ask you for the listener password so you can perform administrative tasks.

Listing 11-5 shows an attempt to stop the listener, which was refused because the password
wasn’t provided. The listener is then stopped properly with the set password command.

Listing 11-5. Stopping a Listener with Password Protection

$ lsnrctl stop
LSNRCTL for 32-bit Windows: Version 11.1.0.6.0 - Production on 20-MAR-2008

Copyright (c) 1991, 2001, Oracle Corporation. All rights reserved.

C H AP TE R 1 1 ■ CO N N E CT IV I T Y AN D N E T W OR K IN G 525

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=ntl-alaptisam.netbsa.org
)(PORT=1521)))
TNS-01169: The listener has not recognized the password
$ lsnrctl set password
Password:
The command completed successfully
LSNRCTL> stop
Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC0)))
The command completed successfully

Naming and Connectivity
In the previous examples of connect descriptors and connect identifiers, the “sales” connect identi-
fier was used to connect to the sales service. A connect identifier can be the connect descriptor itself
or a simpler name (like “sales”) that resolves into a connect descriptor. A commonly used simple
connect identifier is called a net service name. Thus, the sales connect identifier in those earlier
examples is a net service name.

Because providing the complete connect descriptor each time you want to make a connection
is very tedious, the use of net service names makes more sense. In order to do so, however, you need
to maintain a central repository of all the mappings between net service names and the connect
descriptor information so that Oracle can validate the net service names. Thus, when a user starts the
connection process by using the net service name “sales”, the central repository is searched for the
connect descriptor for “sales.” Once the connect descriptor is found, a connection is initiated by
Oracle Net to the database on the specified server.

Oracle allows you to have several types of naming repositories, and you can access the mapping
information stored in these locations with one of the following four naming methods:

• Local naming: Uses a file called tnsnames.ora stored on each client to connect to the database
server

• Easy connect naming: Enables connections without any service name configuration

• External naming: Uses a third-party naming service to resolve service names

• Directory naming: Uses a centralized LDAP-compliant directory server to resolve service
names

No matter which naming method you use, the name-resolving process is the same. The
following steps are followed under each naming method to resolve a connect descriptor to a net
service name:

1. Select the naming method—local, easy connect, external naming, or directory service
naming.

2. Map the connect descriptors to the service names.

3. Configure clients to use the naming method chosen in step 1.

The Local Naming Method
Local naming is the simplest and easiest way to establish Oracle connectivity. Using this method,
you store service names and their connect descriptors in a localized configuration file named
tnsnames.ora. By default, this file is always stored in the $ORACLE_HOME/network/admin directory.
Oracle provides a sample tnsnames.ora file for your use, and you can find it in the default directory.
(You can think of the tnsnames.ora file as being similar to the /etc/hosts file, which contains the
networking information for UNIX/Linux systems.) The tnsnames.ora file is always present on the
client machine; if the database server is also used for client-type connections, there will be a
tnsnames.ora file on the server for the other databases you need to connect to from that server.

526 CH AP T E R 1 1 ■ C ON N E C T I V IT Y A N D N E T W O R K I N G

When you initiate a connection by using either the SQL*Plus interface or some other means, you
need to provide your username and password for the database you are connecting to. Once you do so,
Oracle Net has to figure out which server the database is running on, so it consults the tnsnames.ora
file to resolve the network address, the protocol, and the port for the database server. When it
successfully resolves these, it initiates contact with the listener on the machine where the database
server is located. Once the listener hands off the connection to the database server, the database
authenticates your username and password.

Once you configure connections using the local naming method, all database connections,
whether they are made directly through SQL*Plus or through an application’s logon page, will use
the tnsnames.ora file to resolve service names.

In addition to the tnsnames.ora file, client machines make use of another file called sqlnet.ora
when they use the local naming method. The sqlnet.ora file is located on each client and contains
import network configuration parameters. (Of course, if a server is used as a client as well, there will
be a sqlnet.ora file on the server.) Chapter 11 shows how to use the SQLNET.AUTHENTICATION_SERVICES
parameter to configure operating system authentication. Here’s a typical sqlnet.ora file:

SQLNET.ORA Network Configuration File:
/u01/app/oracle/product/10.1.0/db_1/network/admin/sqlnet.ora
Generated by Oracle configuration tools.
NAMES.DEFAULT_DOMAIN = wowcompany.com
SQLNET.AUTHENTICATION_SERVICES= (NTS)
NAMES.DIRECTORY_PATH= (TNSNAMES)

The tnsnames.ora and sqlnet.ora configuration files are usually located in the $ORACLE_HOME/
network/admin directory on UNIX/Linux systems and in the $ORACLE_HOME\network\admin directory
on Windows systems. However, you can place these files anywhere you like. If you place them in a
nondefault location, you have to use the TNS_ADMIN environment variable to tell Oracle where the
files are. Oracle will search for the two files in the following locations, and it will use the first of each
it finds:

1. Oracle looks in the directory specified by the TNS_ADMIN environment variable.

2. For the tnsnames.ora file, Oracle will look in the global configuration directory. For a UNIX/
Linux system, this is usually the /var/opt/oracle directory.

3. Oracle will look in the standard network directories: $ORACLE_HOME/network/admin on UNIX/
Linux systems and $ORACLE_HOME\network\admin on Windows systems.

Modifying tnsnames.ora Manually

To configure local naming, you have to edit the tnsnames.ora file provided by Oracle when you
create a database. All you need to do is go to the default tnsnames.ora location, $ORACLE_HOME/
network/admin, and edit this file to reflect your network and database service name information.
When you add a new database to your system, you also need to physically add the new database
service name mapping to each user’s tnsnames.ora file or send all your users a new, updated
tnsnames.ora file to replace the old one. Listing 11-6 shows a typical tnsnames.ora file.

Listing 11-6. A Typical tnsnames.ora File

TNSNAMES.ORA Network Configuration File:
/u01/app/oracle/product/10.1.0/db_1/network/admin/tnsnames.ora
Generated by Oracle configuration tools.
finance =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = localhost)(PORT = 1521))
)
 (CONNECT_DATA =

C H AP TE R 1 1 ■ CO N N E CT IV I T Y AN D N E T W OR K IN G 527

 (SERVICE_NAME = finance.world)
)
)
salesprod =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = 172.11.150.1)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = salesprod.world)
)
)
custprod =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = custprod)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME = custprod.world)
)
)

Three databases are listed in the tnsnames.ora file in Listing 11-6, and all three have different
features that distinguish them. The first entry is for the finance database, which is on the desktop
computer, NTL-ALAPATISAM. The salesprod database is located on the UNIX server, whose IP
address is 172.11.150.1, and Oracle Net can connect to it using port 1521 and the TCP protocol. The
last database uses a symbolic name, custprod, instead of the IP address, to denote the host server.

If you were to add a fourth database, orderprod, located on the host with IP address
172.16.11.151, to this tnsnames.ora file, you would need to add the appropriate connect identifier to
the tnsnames.ora file, as shown here:

orderprod =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = 172.16.11.151)(PORT = 1521))
)
 (CONNECT_DATA =
 (SERVICE_NAME =orderprod.world)
)

Once you configure a net service name and modify the tnsnames.ora file, here’s how you
connect to the database:

1. Distribute the new service name configuration to your clients. You may do so by copying the
tnsnames.ora and sqlnet.ora files to your clients, who must have the Oracle Client software
installed. Alternatively, you can use the Oracle Net8 Assistant or Net8 Configuration
Assistant to configure the net service names on the client itself.

2. Make sure the listener on the server where the database is running is started. Check that the
listener is using the same protocol and address as that you configured for the net service
name in the tnsnames.ora file. Also make sure that the listener is using the TCP/IP protocol
and is listening on the default port 1521.

3. Make sure that the target database you’re trying to connect to is running.

4. Test the new connection by using the following syntax:

CONNECT username/password@net_service_name

528 CH AP T E R 1 1 ■ C ON N E C T I V IT Y A N D N E T W O R K I N G

Although local naming is quite easy to implement, it is a cumbersome method to use if you have
a large number of client installations that need to access the database server directly because you
need to maintain a local copy of the tnsnames.ora file on all your local clients. Furthermore, when
you change hosts or add databases to your system, you need to ensure that you make the changes in
all your client tnsnames.ora files. Of course, if you have a small client base, the maintenance of the
tnsnames.ora files shouldn’t be a problem.

Modifying tnsnames.ora with the Net Configuration Assistant

I prefer using the Oracle Net Configuration Assistant (NCA) to add a new service to my tnsnames.ora
file, rather than manually adding it to the file. Like the listener.ora file, the tnsnames.ora file is
somewhat tricky, with all its parentheses, and it’s easy to make a mistake when you’re manually
editing it. Creating new services using the GUI is very easy, with the NCA prompting you for the
server name, database name, network address, and protocol type. Once you’re done configuring the
connection, there will be a new or an updated tnsnames.ora file in the default location that includes
the database services you just added.

To use the NCA, you must first install the Oracle Client software on the client machine by using
the Oracle Client CD. The NCA comes bundled with both the server and the client versions of the
software. You can create a connection and test it, all in under a minute.

Here are the steps involved in using the NCA to configure a new service name in your
tnsnames.ora file:

1. Start the Oracle Net Configuration Assistant on a UNIX/Linux server with the netca
command, as shown here:

 $ export DISPLAY=172.16.14.15:0.0
 $ netca

■Note You can start the NCA on a Windows system by selecting Start ➤ Programs ➤ Oracle ➤ Configuration
and Migration Tools.

2. The Welcome page is displayed next. Select Local Net Service Name Configuration, and click
Next.

3. On the Net Service Name Configuration page, select Add and click Next.

4. In the Service Name Configuration page, enter the service name you want to configure. In
this example, it is the database named emrep.netbsa.org. Note that the database service
name is generally the same as the global database name. Click Next.

5. In the Select Protocol page, select TCP and click Next.

6. In the TCP/IP Protocol page, enter the name of the host on which the database is running.
Select the standard port number, 1521. Click Next.

7. In the Test Page, click the “Yes, Perform a Test” button, and click Next.

8. The NCA will try to connect to the database using the new configuration and will show you
the results. If the connection fails, make sure the listener for the target database is up and
that the default username and password combination the test process uses (system/
manager) is changed to a valid username/password combination. Also, make sure that
you’ve provided the correct database name and domain name.

9. The NCA will then ask you to confirm the net service name in the Net Service Name page.
Click Next.

C H AP TE R 1 1 ■ CO N N E CT IV I T Y AN D N E T W OR K IN G 529

10. In the Another Service Name page, you can choose to configure more service names.

11. On the Net Service Name Configuration Done page, click Next. Click Finish on the Welcome
page when it reappears.

■Note You can also configure net service names using the Net Services Administration page in Oracle Enterprise
Manager, or the Oracle Net Manager GUI.

The Easy Connect Naming Method
Oracle DBAs can simplify client configuration by using the easy connect naming method. Using this
method, your database clients can connect to the database without using the tnsnames.ora configu-
ration file for TCP/IP environments. All that your clients need is the host name and the optional port
number and service name of the database. You thus have configuration-free, out-of-the-box TCP/IP
connectivity to any database in your system.

The only condition for using the easy connect naming method is that you must have support for
the TCP/IP protocol on both the client and the server. However, you don’t have to configure a
tnsnames.ora file. You can look at this new connection method as an extension of the host naming
method introduced in Oracle9i.

Here’s the general syntax of this new connecting method:

$ CONNECT username/password@[//]host[:port][/service_name]

In this easy connect syntax statement, there are four things you need to focus on:

• // (double slash): This is optional.

• Host: This is a mandatory parameter. You can specify either a symbolic host name or the IP
address of the server hosting your target database.

• Port: This is an optional parameter. If you don’t specify a port, the default port, 1521, is used.

• Service_name: This specifies the service name of the database (the default is the host name),
and it is optional. You can leave this parameter out if your host name and database server
name are identical. If they aren’t, you must provide a valid service name to identify your
database.

The following example shows a connection being made to the dev1 database located on the
hp50 server. The connection is being made directly from the operating system prompt, so the
SQLPLUS keyword is used instead of CONNECT:

$ sqlplus system/system_passwd@ntl-alapatisam.netbsa.org:1521/emrep.netbsa.org
–
SQL*Plus: Release 11.1.0.6.0 - Production on Thu Mar 20 09:38:15 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.

Connected to:
Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options

SQL>

Note that you can also connect without using the optional port number, as shown here:

$ sqlplus system/system_passwd@ntl-alaptisam.netbsa.org/emrep.netbsa.org

530 CH AP T E R 1 1 ■ C ON N E C T I V IT Y A N D N E T W O R K I N G

Note that the main parameters of the easy connect method are the same as the connection
information the local naming method requires in the tnsnames.ora file. The information provided in
the preceding example would be configured in the tnsnames.ora file as follows:

 (DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)(HOST=ntl_alapatisam.netbsa.org)(PORT=1521))
 (CONNECT_DATA=
 (SERVICE_NAME=emrep.netbsa.org)))

If I am connecting from within SQL*Plus, I can use the following syntax:

$ sqlplus /nolog

SQL*Plus: Release 11.1.0.6.0 - Production on Thu Mar 20 09:38:15 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.
SQL> connect system/system_passwd@ntl-alaptisam.netbsa.org:1521/emrep.netbsa.org

Connected.
SQL>

■Note Of the four items you need to specify in the easy connect naming method, only the host name is
mandatory.

Configuring Easy Connect Naming

As the name indicates, the easy connect naming method needs very little in the way of configura-
tion. You specify the easy connect method by using the EZCONNECT keyword as a value for the
NAMES.DIRECTORY_PATH variable in the sqlnet.ora file. Consider the following sqlnet.ora file:

sqlnet.ora Network Configuration File:
/u01/app/oracle/10.1.0/db_1/network/admin/sqlnet.ora
Generated by Oracle configuration tools.
NAMES.DEFAULT_DOMAIN = netbsa.org
SQLNET.AUTHENTICATION_SERVICES = (NTS)
NAMES.DIRECTORY_PATH = (TNSNAMES,EZCONNECT)

The last line shows the connect methods that Oracle Net will use to resolve connect identifiers
to connect descriptors. The NAMES.DIRECTORY_PATH parameter specifies the order of the naming
methods Oracle Net will use to resolve connect identifiers to connect descriptors. In this example,
TNSNAMES is the first setting, so Oracle Net will use the tnsnames.ora file by default. If it fails to connect
using the tnsnames.ora file, it will try connecting through the EZCONNECT method.

If you want EZCONNECT to be the default method, you can manually edit your sqlnet.ora file so
that EZCONNECT comes first in your NAMES.DIRECTORY_PATH parameter, as shown here:

NAMES.DIRECTORY_PATH = (EZCONNECT, TNSNAMES)

Restrictions on the Easy Connect Naming Method

There are a few restrictions to using the easy connect naming method:

• You must install the Oracle Database 11g Net Services software on the client.

• TCP/IP protocol support must be provided on the client and the database server.

• You can’t use any advanced features of Oracle networking such as connection pooling,
external procedure calls, or Heterogeneous Services.

C H AP TE R 1 1 ■ CO N N E CT IV I T Y AN D N E T W OR K IN G 531

Database Resident Connection Pooling
Up until the Oracle Database 11g release, you could use two ways to connect user sessions to the
database: a dedicated server process, which handles one user process at a time, or a shared server
process, which serves multiple user processes. In Oracle Database 11g, you can use a third way to
connect sessions to the database, which is a variation on the dedicated server approach and relies on
the concept of using a pool of servers to serve connection requests.

Web-based applications typically acquire a connection, use it briefly, and relinquish it quickly.
It’s common for these applications to share or reuse sessions. Web applications don’t usually main-
tain a continuous active connection to the database, but use the database occasionally over a period
of time, and usually don’t maintain state while they’re connected to the database. Database connec-
tion pooling helps service thousands of end users through a small number of database sessions,
thus enhancing database scalability. Technologies such as PHP can’t avail themselves of connection
pooling through the application server, since each Web server process requires a dedicated database
connection.

Oracle’s brand-new database resident connection pooling (DRCP) connection method uses pools
of servers for serving a large number of user sessions. DRCP makes fewer demands for memory when
compared to the dedicated server and the shared server configurations. DRCP is especially designed
to help architectures such as PHP with the Apache server, that can’t take advantage of middle-tier
connection pooling because they used multiprocess single-threaded application servers. DRCP
enables applications such as these to easily scale up to server connections in the tens of thousands.

DRCP is quite similar to the dedicated server in the sense that it works like a dedicated server
configuration, but each user connection doesn’t have to retain an exclusive dedicated server for the
lifetime of a connection. Each database connection acquires a server from the pool of servers, for a
brief period. When the user session completes its work, it releases the server connection back to the
server pool.

How DRCP Works

DRCP uses a connection broker that assigns each new client session to an available pooled server.
Once the client connection’s request is served by the database, the connection releases the pooled
server back to the server pool. Thus, the sessions use memory and other resources only while the
database is actually performing tasks for the sessions and release those resources when they release
the pooled server back to the pool of servers.

As long as the database doesn’t reach the maximum number of pooled servers, the connection
broker will create a pooled server to assign to a new client connection, if it can’t find a free pooled
server. Once the maximum number of pooled servers is reached, the connection broker can’t create
a new pooled server. It sends the client connections to a wait queue until some pooled servers are
freed up. Unlike in a dedicated server approach where the amount of (PGA) memory used is propor-
tional to the number of user sessions, under DRCP, the amount of memory is proportional to the
number of active pooled servers. The following example shows how you can make significant gains
in memory usage by switching to DRCP from a dedicated server configuration.

In the example, I assume that there are a total of 5,000 client connections, and that each client
session requires 200KB of memory and each server process requires 5MB of memory. Also, let’s
assume that you need a maximum of 200 server connections. You can compute the total memory
requirements for the dedicated server configuration and the DRCP method as shown:

Dedicated server
Total memory required = 5000 X (200KB + 5MB) = 260GB

Database Resident Connection Pooling

Total Memory Required = 200 X (200KB + 5MB) = 502 MB

Shared Server
500 X 200KB + 200 X 5MB = 11GB

532 CH AP T E R 1 1 ■ C ON N E C T I V IT Y A N D N E T W O R K I N G

You can see that while a dedicated server configuration requires a total of 260GB, you’ll need
only a little over a half gigabyte under the DRCP configuration.

Enabling and Disabling DRCP

By default, the database comes preconfigured with a default connection pool named SYS_
DEFAULT_CONNECTION_POOL. You must, however, start the default connection pool in order to
take advantage of the DRCP feature. You start the connection pool by executing the START_POOL
procedure of the DBMS_CONNECTION_POOL package, as shown here:

SQL> connect sys/sammyy1 as sysdba
SQL> exec dbms_connection_pool.start_pool();

PL/SQL procedure successfully completed.
SQL>

You can check the status of the connection pool with the following query:

SQL> select connection_pool, status, maxsize from dba_cpool_info;

CONNECTION_POOL STATUS MAXSIZE
---------------------------- ------ --------
SYS_DEFAULT_CONNECTION_POOL ACTIVE 80
SQL>

Once you start the connection pool, it will remain open even if you stop the database and start
it back up again. You can stop the connection pool by executing the STOP_POOL procedure, as
shown here:

SQL> exec dbms_connection_pool.stop_pool();

PL/SQL procedure successfully completed.
SQL>

The background process Connection Monitor (CMON) manages the connection pool. Applica-
tions hand back dedicated server processes to the CMON process, which returns the process back to
the connection pool.

You can specify the DRCP connection in the following way:
If you’re using an EZ Connect string, specify POOLED in the string, as shown here:

myhost.comany.com:1521/mydb.company.com:POOLED

If you’re using a tnsnames.ora file, specify SERVER=POOLED in the TNS connect string, as shown
here:

mydb = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp) (HOST=myhost.company.com)
 (SERVER=POOLED)))

Configuring DRCP

You use the following parameters to configure DRCP in your database:
You can configure the connection pool based on your database’s usage requirements. Here are

the main DRCP configuration parameters:

• INACTIVITY TIMEOUT: Maximum idle time allowable for a pooled server before it is terminated

• MAX_LIFETIME_PER_SESSION: The time to live (TTL) duration for a pooled session

• MAX_USES_PER_SESSION: The maximum number of times a pooled server can be released to the
connection pool

C H AP TE R 1 1 ■ CO N N E CT IV I T Y AN D N E T W OR K IN G 533

• MAX_SIZE and MIN_SIZE: The maximum and minimum number of pooled servers in the
connection pool

• MAX_THINK_TIME: The maximum time a client can remain inactive after obtaining a pooled
server from the connection pool

You can execute the CONFIGURE_POOL procedure of the DBMS_CONNECTION_POOL
package to configure several connection pool configuration parameters at once. You can execute the
ALTER_PARAM procedure of the DBMS_CONNECTION_POOL package to modify the value of a
single connection pool configuration parameter, as shown here:

SQL> exec dbms_connection_pool.alter_param(' ','INACTIVITY_TIMEOUT','2400')

The previous example shows how you can configure the INACTIVITY_TIMEOUT parameter. The
database allows a pooled server to remain idle for up to one hour before terminating the connection
based on the value of 2400 for the INACTIVITY_TIMEOUT parameter.

You can restore the connection pool configuration to its default values by executing the
RESTORE_DEFAULTS procedure, as shown here:

SQL> exec dbms_connection_pool.restore_defaults()

The RESTORE_DEFAULTS procedure helps restore all connection pool configuration parame-
ters to their default values.

Monitoring DRCP

Use the following views to monitor DRCP:

• DB_CPOOL_INFO: Shows the name of the connection pool, its status, the maximum and
minimum number of connections, and the timeout for idle sessions

• V$CPOOL_STAT: Shows pool statistics such as the number of session requests and wait times
for a session request

• V$CPOOL_CC_STATS: Shows details about the connection class-level statistics

The External Naming Method
The external naming method uses external naming services such as the Network Information
Service (NIS), originally developed by Sun Microsystems, to resolve net service names. NIS systems
keep a central database of host names and use a flat namespace based on a master server.

Here are the steps you need to perform to use the external naming method for name resolution:

1. Have your system administrator configure NIS if it isn’t already in place.

2. Create a tnsnames.ora file as you would in the local naming method.

3. Convert the tnsnames.ora file to a tnsnames map, which you’ll need for the NIS server later
on. You can derive the tnsnames map from the tnsnames.ora file by having your system
administrator use the tns2nis command, as shown here:

tns2nis tnsnames.ora

4. Copy the tnsnames map file to the server on which the NIS is running.

5. Install the tnsnames map file on the NIS server using the makedbm NIS program, as shown
here:

makedbm tnsnames /var/yp/'domainname'/tnsnames

534 CH AP T E R 1 1 ■ C ON N E C T I V IT Y A N D N E T W O R K I N G

6. Test the NIS installation of the tnsnames map by using the following command:

ypmatch net_service_name tnsnames

You should get a confirmation back in the following form:

description=(address=(protocol=tcp)
 (host=host_name)(port=port_number)))
 (connect_data=(service_name=service_name)))

7. Edit the sqlnet.ora file as follows:

NAMES_DIRECTORY_PATH=(nis, hostname, tnsnames)

The nis method should be listed first inside the brackets so that Oracle Net will attempt to
resolve the service name using NIS first. Apart from that, the order of the items in the
brackets doesn’t matter.

The Directory Naming Method
Traditionally, network information was stored on multiple servers, often in different formats, but
today’s Internet-based applications leave many organizations open to huge security risks. Decen-
tralized systems are a constant source of worry for most security professionals. Centralized directory
services for authenticating users and enforcing security policies enhance an organization’s power to
safeguard its networked resources.

Directory services are huge centralized repositories that contain all the metadata pertaining to
databases, networks, users, security policies, and so forth. The directory behind these services can
replace a large number of localized files, such as the tnsnames.ora file, and can provide a single point
of name resolution and authentication. These directories are relatively low-update databases with
substantial numbers of reads against them. Retrieval performance is a key factor in the success of a
directory service.

Here are some examples of the kinds of data that such directories can manage efficiently:

• Usernames and passwords

• User profiles

• Authorization policies

• Network configuration and Net Services information

Many kinds of commercial directory services are available, including Microsoft’s Active Direc-
tory and Oracle Internet Directory, and they can be employed to perform a host of functions for an
organization.

The directory naming method stores database connection information in a Lightweight Direc-
tory Access Protocol (LDAP)–compliant directory server. The connect identifiers are stored under an
Oracle context that contains entries for use with OID.

Although a centralized setup may seem daunting at first, it is quite easy to set up. The initial cost
may be higher, but the cost of managing the information over time is minimal. In addition to helping
clients connect to central networks and databases, directories such as OID are valuable for providing
enterprise-wide security.

Oracle Internet Directory

OID is an LDAP-compliant directory service that stores connect identifiers, among other things.
LDAP is a popular protocol for accessing online services, and it is an Internet standard for storage
and directory access. OID is very scalable because it is implemented on the highly scalable Oracle
database. Thus, a potentially huge amount of directory information can be stored and easily
accessed. The data is secure because it is stored in the database, and OID is a high-availability

C H AP TE R 1 1 ■ CO N N E CT IV I T Y AN D N E T W OR K IN G 535

service, just like the Oracle database. The LDAP specification is also attractive because of the
minimal client software it needs.

You can use OID for many applications, such as address books, security credential repositories,
and corporate directory services. Oracle strongly recommends moving to OID as a way of config-
uring database connectivity. By deemphasizing Oracle Names, a connection method offered in the
past, Oracle is positioning OID as the main alternative to the traditional local naming method, which
involves the use of the tnsnames.ora network configuration file. The Oracle database can use OID to
store usernames and passwords and to store a password verifier along with the entry of each user.
Other Oracle components use OID for various purposes:

• Oracle Application Server Single Sign-On: Uses OID to store user entries

• Oracle Collaboration Suite: Uses OID for centralized management of information about users
and groups

• Oracle Net Services: Uses OID to store and resolve database services and net service names

• Oracle Advanced Security: Uses OID for central management of user authentication creden-
tials, authorizations, mappings to shared schema, single password authentication, Enterprise
user security, and the central storage of Public Key Infrastructure (PKI) credentials

OID includes the following elements:

• Oracle directory server: Provides service names and other information by using a multitiered
architecture over TCP/IP

• Oracle directory replication server: Replicates LDAP data between Oracle directory servers

• Directory administration tools, including the following:

• Oracle Directory Manager, a GUI that helps you administer OID and other command-line
administration tools

• Directory server management tools within Oracle Enterprise Manager 10g Application
Server Control console, which enable you to monitor real-time events from a web browser

The basic idea behind the use of OID is straightforward. Users connect to OID, which is an
application running on an Oracle database. Users provide OID with an Oracle service identifier (a
database name). The directory returns the complete connection information—host name, connec-
tion protocol, port number, and database instance name—to the client, which then connects to the
database server. The connect identifiers are stored in the Oracle context, which contains entries such
as database names and service names, for use with Oracle software such as OID.

Oracle’s Advanced Security option uses OID to centrally manage user-related information. If
you are using Oracle’s replicated database technology, OID will come in very handy in managing the
complexity of multiple servers and network protocols.

Although Oracle would like you to convert all your network configurations to OID, it is not clear
that OID is worth the extra administrative overhead for most small to medium-sized enterprises.
Remember that OID is not a product meant exclusively for network configuration. Networking data-
base connections is only a small part of the capabilities of OID. The local naming approach (or the
new easy connect naming method) is still useful for most organizations because of its simplicity.

How OID Makes Database Connections

When you use OID to resolve names, remember that the client doesn’t have a file, such as
tnsnames.ora, with the name-resolution information. When using directory naming, Net Services
clients connect to a database as follows:

1. The person wanting to connect types his or her usual username/password combination into
the client computer, along with a connect identifier.

2. The sqlnet.ora file on the client specifies that it’s using OID to resolve names, so the Net Ser-
vices client hands its request to the OID listener/dispatcher process.

536 CH AP T E R 1 1 ■ C ON N E C T I V IT Y A N D N E T W O R K I N G

3. The OID listener/dispatcher relays the LDAP request to the Oracle directory server.

4. The directory server connects to the OID database and resolves the connect identifier to the
underlying connect descriptor, which contains the network, server, and protocol infor-
mation. It sends this detailed connect descriptor information to the Net Services client.

5. The client sends the connect descriptor it receives to the Oracle Net Listener (or to the dis-
patcher, if shared servers are being used).

6. The listener service receives the connection request and, after verifying it, sends it to the
database.

The Organization of OID

A directory contains a set of information about various objects, such as employee names and
addresses or database service name information (as is discussed in this chapter). The information in
a directory is arranged in a hierarchical structure called the Directory Information Tree (DIT).

Every directory entry is made up of various object classes and attributes, as follows:

• Directories are made up of object classes.

• Object classes are groups of attributes.

• Attributes are the containers that hold the data.

A directory consists of entries, which are collections of information about an object. To identify
an entry unambiguously, you need something to tell you where it is located in the directory struc-
ture. This unambiguous address locator is the distinguished name (DN) of the entry. A DN is like an
address that exactly locates an entry in the directory—it gives you the complete path from the top of
the hierarchy to where an entry is located.

Here’s an example of a DN:

cn=nina
ou=finance
c=us
o= wowcompany

This DN for the nina entry has the following nodes:

• cn: Common name

• ou: Organizational unit

• c: Country

• o: Organization

Thus, the DN nina.finance.us.wowcompany uniquely identifies the person with the name Nina
working in the finance department of the US branch of Wowcompany. Note that each of the various
nodes are called relative distinguished names (RDNs), so in essence a DN is nothing more than a
string of RDNs.

A naming context is a contiguous subtree on a single directory server. An Oracle context contains
relevant entries for use with Oracle features, such as Oracle Net Service directory naming and enter-
prise user security. You can have multiple Oracle contexts in one directory server. OID will create a
default Oracle context at the root of the directory information tree. In the DIT, the Oracle context
RDN (cn=OracleContext) is the default location a client uses to look up matching connect descriptors
for a connect identifier in the directory.

An Oracle context in a directory tree would have all the service names underneath it, including
complete network- and server-connection information. In addition to subentries that support direc-
tory naming, an Oracle context contains other entries to support enterprise security. Therefore, if
you’re trying to connect to a database on a server, the OID server doesn’t have to search the directory
tree all the way from the root entry to the last node. You merely have to provide it with a partial DN

C H AP TE R 1 1 ■ CO N N E CT IV I T Y AN D N E T W OR K IN G 537

from the top root node to the Oracle context. The Oracle context will contain the net service names
underneath it, and the net service names will contain the detailed connect information.

The administrative context, also known as the directory naming context, is a directory entry that
contains an Oracle context. The following simple example demonstrates these sometimes confusing
concepts.

The complete DN for the database orcl is the following:

dc=com,dc=wowcompany
cn=orcl,
cn=description,
cn=address,
cn=port,
cn=service_name

In the DN, dc stands for domain component and is usually used to describe domain elements in
the directory.

The important point to note is that because all the connect descriptor information is under the
Oracle context RDN, you don’t have to provide the full DN each time you want to look up the connec-
tion information for the database. You can replace the preceding lengthy DN with the following
generic-looking DN:

dc=com,dc=wowcompany,cn=OracleContext

Note that dc identifies a domain component and cn stands for a common name. In this example,
com and wowcompany are both domain components and are therefore at the top of the directory tree.

Installing OID

You can install OID using the Oracle Application Server 10g Release 2 (10.1.2.0.0) software. You must
choose the OracleAS Infrastructure 10g option in the Select a Product to Install window when using
the Oracle Universal Installer. This option lets you install a new OID on your server. In the next page
of the Oracle Universal Installer—the Select Installation Type page—select the Identify Manage-
ment and Metadata Repository option; this creates a Metadata Repository, which is a requirement
for installing OID.

Coverage of the installation and management of OID is beyond the scope of this book. Please
refer to the Oracle Application Server Release 2 documentation on the http://technet.oracle.com
web site for details.

Once you’ve configured OID, you’re ready to enter Oracle net service names into it. You can use
several methods to do so. The easiest ways are to add service names using Oracle Net Manager, if
you’re adding entries individually, or to import your entire tnsnames.ora file into OID using Oracle
Enterprise Manager.

Oracle and Java Database Connectivity
Frequently, Java programs need to connect to a database to perform data manipulation tasks. JDBC
is an interface that permits a Java program to connect to a database and issue DML and DDL SQL
statements. JDBC allows the use of dynamic SQL statements, for situations where you may not know
the number and types of columns until run time. (If you’re going to write static SQL, you can use
SQLJ, which lets you embed SQL statements in Java.) JDBC provides a rich library of routines that
help you open and close connections to databases and process data.

In the following sections, you’ll see how you can use JDBC to connect to and work with Oracle
databases from Java.

538 CH AP T E R 1 1 ■ C ON N E C T I V IT Y A N D N E T W O R K I N G

Establishing Database Connectivity
Before you can connect to a database, you have to select the appropriate drivers. Oracle provides
four major kinds of JDBC drivers:

• JDBC thin driver: This pure Java client–based driver provides a direct connection to the data-
base using the TCP/IP protocol. The driver requires a listener and uses sockets for making
connections to databases.

• JDBC OCI driver: This driver needs a client installation of Oracle, so it is specific to Oracle.
This driver is highly scalable and can use connection pooling to serve large numbers of users.

• JDBC server-side thin driver: Running on the server, this driver connects to remote databases
and provides the same functionality as the client-based thin driver.

• JDBC server-side internal driver: As its name indicates, this driver resides on the server and is
used by the Java Virtual Machine (JVM) to talk to the Oracle database server.

Once you choose a specific type of JDBC driver, you must specify the JDBC driver in one of two
ways: use the static registerDriver() method of the JDBC DriverManager class, or use the forName()
method of the java.lang class. Here are the two methods of specifying the JDBC driver:

DriverManager.registerDriver ("new oracle.jdbc.OracleDriver()");

and

Class.forName("oracle.jdbc.driver.OracleDriver")

Once you’ve loaded the JDBC driver, it’s time to make the connection to the database by using
the static getConnection() method of the DriverManager class. This will create an instance of the
JDBC connection class. Listing 11-7 shows the code for doing this.

Listing 11-7. Making the Database Connection

connection conn=DriverManager.getConnection(
"jdbc:oracle:thin:@prod1:1521:finprod", username, passwd);
/* Here's what the different parts of the connection object stand for: */
jdbc=protocol
oracle=vendor
thin=driver
prod1=server
1521=port number
finprod=Oracle database
username=database username
password=database password

If all your information is valid, you are connected to the database from your Java application.

Working with the Database
Now that you’ve learned how to connect to the database using JDBC, it’s time to find out how you
can process SQL statements in the database through the JDBC connection.

You can’t execute SQL directly from your Java program. First you need to create JDBC state-
ments, and then you need to execute your SQL statements. Let’s look at these two steps in detail.

C H AP TE R 1 1 ■ CO N N E CT IV I T Y AN D N E T W OR K IN G 539

Creating the Statement Object

To relay your SQL statements to the database, you need to create a JDBC Statement object. This
object will associate itself with an open connection and henceforth act as the conduit through which
SQL statements are transferred from the Java program to the database for execution.

Here’s how you create the JDBC Statement object:

statement stmt = conn.createStatement();

No SQL statements are associated with the stmt object. However, under the Statement class,
there is another object called PreparedStatement that always contains a SQL statement in addition to
being the channel for the statement’s execution. This SQL statement is compiled immediately, and
it can be compiled just once and used many times thereafter, which is a great benefit.

For simplicity, however, I’ll just use the Statement object in this discussion. Let’s now turn to the
execution of SQL statements.

Executing SQL Statements

You can understand JDBC SQL statements if you separate the SELECT statements that query the data-
base from all the other statements. Unlike the others, SELECT statements don’t change the state of
the database.

Let’s first look at how to deal with query statements.

Handling Queries

SELECT statements use the executeQuery() method to get the query results. The method returns the
results in the ResultSet object. Listing 11-8 shows an example.

Listing 11-8. Getting the Query Results

string first_name,last_name,manager;
number salary;
resultSet rs = stmt.executeQuery("SELECT * FROM Employees");
 while (rs.next()) {
 first_name = rs.getString("first_name");
 last_name = rs.getString("last_name");
 manager = rs.getString("manager");
 salary = rs.getNumber("salary");
 system.out.println(first_name + last_name "works for"
 Manager "salary is:" salary.");

Note that rs is an instance of the resultSet object, and it holds the query results. The resultSet
object also provides a cursor, so you can access the results one by one. Each time you invoke the
resultSet method, the cursor moves to the next row in the result set.

Handling DDL and Nonquery DML Statements

Any statement that changes the state of the database—be it a DDL statement or a DML statement
such as INSERT, UPDATE, or DELETE—is executed using the executeUpdate() method. Note that the
word “update” in the method name indicates that the SQL statement will change something in the
database.

Here are some examples of executeUpdate() statements:

statement stmt = conn.createStatement();
 stmt.executeUpdate("CREATE TABLE Employees" +

540 CH AP T E R 1 1 ■ C ON N E C T I V IT Y A N D N E T W O R K I N G

 "(last_name VARCHAR2(30), first_name VARCHAR2(20),
 manager VARCHAR2(30), salary(number");
 stmt.executeUpdate("INSERT INTO Employees " +
 "VALUES ('Alapati', 'Valerie', 'Shannon', salary)");

The preceding statements create the Statement object, and then they create a table and insert
some data into it.

All your normal SQL transaction properties, such as consistency and durability, are maintained
when you use JDBC to execute SQL statements. By default, each statement commits after its execu-
tion because the value of conn.setAutoCommit() is set to true, as you can see in the following
example. You can ensure that there is a commit after every statement in either of the following ways
(and if you wish, you can also use the conn.rollback() method to roll back a statement):

conn.setAutoCommit(false);

or

conn.commit();

Here’s a simple example that shows how to use the commit() and rollback() statements:

conn.setAutoCommit(false);
 Statement stmt = conn.createStatement();
stmt.executeUpdate("INSERT INTO employees
VALUES('Alapati','Valerie','Nicholas',50000)");
 conn.rollback();
stmt.executeUpdate("INSERT INTO employees
VALUES('Alapati','Nina','Nicholas',50000)");
 conn.commit();

Error Handling

All programs must have an exception handler built in; especially those DML statements that change
the database state. One way to do this is to use the rollback() statement when you run into an error,
so your partial changes are all undone.

You can use the SQLException() method to catch errors. In Java programs, you use a try code
block to generate (or throw) an exception, and the catch block will “catch” the exception thus
thrown. Listing 11-9 shows a sample Java code block that illustrates these concepts.

Listing 11-9. Handling Errors in Java

try { conn.setAutoCommit(false);
 stmt.executeUpdate(" " +
 "(Disney World', 'MickeyMouse', 2.00)");
 conn.commit();
 conn.setAutoCommit(true);
 }
catch(SQLException ex) {
 system.err.println("SQLException: " + ex.getMessage());
 conn.rollback();
 conn.setAutoCommit(true);
 }

C H AP TE R 1 1 ■ CO N N E CT IV I T Y AN D N E T W OR K IN G 541

A Complete Program
Listing 11-10 shows a sample program that puts together all the concepts of the preceding sections.
The example first registers the Oracle thin driver and connects to the database using it. The program
updates some rows in a table and uses the result set to print the data.

Listing 11-10. A Complete Java Program Using JDBC

/* import java packages */
import java.sql.*;
public class accessDatabase{
 public static void main(String[] args)
 throws SQLException {
 stringfirst_name,last_name ;
 number salary ;
 connection c = null;
/* register the Oracle Driver */
 try {
 class.forName("oracle.jdbc.driver.OracleDriver");
 c = DriverManager.getConnection(
 "jdbc:oracle:thin:@prod1:1521:finprod",
 "user", "user_passwd");
/* create the statement object */
 statement s = c.createStatement();
 c.setAutoCommit(false);
 s.executeUpdate("CREATE TABLE employees " +
 "(first_name VARCHAR2(30), last_name VARCHAR2(20),salary NUMBER)");
 s.executeUpdate("INSERT INTO employee VALUES " +
 "('nicholas', 'Alapati', 50000)");
 c.commit();
 c.setAutoCommit(true);
/* the result set */
 resultSet rs = s.executeQuery("SELECT * FROM Employees");
 while(rs.next()){
 first_name = rs.getString("first_name");
 last_name = rs.getString("last_name");
 salary = rs.getFloat("salary");
 System.out.println(first_name + last_name + " works for " +
 Manager + " salary is:" + salary");
 }
/* exception handler */
 } catch (ClassNotFoundException ex){
 system.out.println(ex);
 } catch (SQLException ex){
 if (c != null){
 c.rollback();
 c.setAutoCommit(true);
 }
 system.out.println("SQLException caught");
 system.out.println("---");
 while (ex != null){
 system.out.println("Message : " + ex.getMessage());
 system.out.println("SQLState : " + ex.getSQLState());
 system.out.println("ErrorCode : " + ex.getErrorCode());

542 CH AP T E R 1 1 ■ C ON N E C T I V IT Y A N D N E T W O R K I N G

 system.out.println("---");
 ex = ex.getNextException();
 }
 }
 }
}

As our focus is on Oracle database administration and not on programming, I presented the
simple Java program here mainly to draw your attention to aspects of Oracle database connectivity.

543

■ ■ ■

C H A P T E R 1 2

User Management and
Database Security

Database security means different things to different people. The essential thing to remember,
though, is that the underlying goal of database security is to prevent unauthorized use of the data-
base or its components. Database security depends on system and network security as well, but this
chapter mostly focuses on how you can provide solid security at the database level.

The first thing you’ll learn in this chapter is how to create and manage users in an Oracle data-
base. Everything users can do within an Oracle database is based on explicit privileges granted to
them. You can grant users system and object privileges directly, but it’s far more common to grant
these privileges to roles, and to then grant roles to users, so this chapter shows you how to work with roles.

You’ll also learn about Oracle profiles and how to manage them. Profiles let you set limits on the
resources used by each user in the database and enforce a password policy for security purposes. The
Oracle Resource Manager enables you to allocate scarce database and server resources among groups
of users according to a resource plan. This chapter provides you with an introduction to this tool.

While controlling database access through the use of grants and privileges is fairly common, you
must also consider using Oracle’s powerful fine-grained access control feature, which lets you control
access at the row level. This chapter discusses Oracle’s fine-grained access control feature, also known
as a virtual private database, in detail.

In a production database, it’s always a good idea to audit database usage. You can audit both
changes made to the data and database events, such as unsuccessful attempts to log into the data-
base. Triggers based on system events can provide your database with a strong security layer, and
this chapter explains how to use these special triggers. I also show how you can use Oracle’s fine-
grained auditing polices.

Data encryption is an important tool for most organizations today. Oracle offers several ways to
encrypt your data, including special PL/SQL encryption packages, the capability to encrypt a table’s
columns with the transparent data-encryption feature, and the ability to encrypt an entire
tablespace. I cover these encryption features in this chapter.

In short, these are the main aspects of Oracle database security management:

• Controlling access to data (authorization)

• Restricting access to legitimate users (authentication)

• Ensuring accountability on the part of the users (auditing)

• Safeguarding key data in the database (encryption)

• Managing the security of the entire organizational information structure (enterprise security)

Users are, of course, why a database exists, so let’s look at how to manage users in an Oracle
database before covering the various Oracle security management techniques.

544 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

Managing Users
User management is a pretty complex topic because not only does it deal with authorizing users to use
the database, but it also touches on vital topics such as security and resource management. The DBA
creates the users in the database and sets limits on their access to the various components. The DBA also
limits the physical space and system resources that the users can use, generally by assigning database
roles and setting privileges. You’ll see later on how to make sure that the default passwords associ-
ated with various database users are changed soon after creating a new database.

When you create a new database, the only users at first will be the application or schema owners.
Later on, you’ll create the actual end users who will be using the database on a day-to-day basis. For
the first set of users, the application owners, you will be more concerned with allocating sufficient
space and other privileges to create objects in the database. For the end users, your primary concern
will be their access rights to various objects and the limits on their use of resources while accessing
the database.

Temporary and Default Tablespaces
All users need a temporary tablespace where they can perform work such as sorting data during SQL
execution. Users also need to have a default tablespace, where their objects will be created if they
don’t explicitly assign a different tablespace during object creation.

You can create a default temporary tablespace and a default permanent tablespace for all users
during the database-creation process (Chapter 10 explains how to create these two tablespaces).
Once you have created these two tablespaces, you don’t have to specify them again when you create
a new database user.

■Caution If you don’t assign a specific tablespace as the default tablespace, the System tablespace becomes
your default tablespace. If a user creates a very large object in the System tablespace, he or she might take up all
the space in it and make it impossible for the SYS super user to create any new objects in it, causing the database
to come to a grinding halt. This is the main reason why you should always create a default tablespace for every user.

Creating a New User
You use the CREATE USER statement to create a user. It’s good practice to assign each new user both a
default temporary and a default permanent tablespace. Since I’m assuming that you’ve already created
both of these tablespaces when you created the database, the CREATE USER statement can be very
simple, as shown here:

SQL> CREATE USER salapati IDENTIFIED BY sammyy1;
User created.
SQL>

This statement creates a new user, salapati, with sammyy1 as the password. You don’t have to
assign a default temporary or permanent tablespace to the user (assuming that you created a default
temporary and permanent tablespace for the database while creating your database). You can use
the ALTER TABLESPACE DEFAULT TEMPORARY TABLESPACE statement to set up a default temporary
tablespace after creating a database. Query the DATABASE_PROPERTIES view to see the current
values for the default tablespace.

The following query shows the new user’s default (permanent) and temporary tablespaces:

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 545

SQL> SELECT default_tablespace, temporary_tablespace
 2 FROM dba_users
 3* WHERE username='SALAPATI';

DEFAULT_TABLESPACE TEMPORARY_TABLESPACE
------------------- -------------------------
USERS TEMPTBS_01

SQL>

The new user can’t connect to the database, however, because the user doesn’t have any privileges
to do so. This is what happens when the user salapati tries to connect using SQL*Plus:

 $ sqlplus salapati/sammyy1

SQL*Plus: Release 11.1.0.6.0 - Production on Fri Mar 21 11:55:38 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.ERROR:
Ora-01045: user SALAPATI lacks CREATE SESSION privilege; logon denied

Enter user-name:

In order for the salapati user to connect and start communicating with the database, you must
grant the CREATE SESSION system privilege to the new user, as shown here:

SQL> GRANT CREATE SESSION TO salapati;
Grant succeeded.
SQL>

If you’ve followed the Oracle-recommended practice and have created default temporary and
permanent tablespaces when creating the database, any new user you create will be able to use them
instead of using the System tablespace as the temporary and default tablespace by default. In any
case, after you create a user, the new user can’t create new objects, such as tables and indexes, right
away. In the following example, USERS is the default permanent tablespace for the database, and
you can see what happens when the user tries to create a table:

SQL> CONNECT salapati/sammyy1
Connected.
SQL> CREATE TABLE xyz (name VARCHAR2(30));
create table xyz (name varchar2(30))
*
ERROR at line 1:
ORA-01950: no privileges on tablespace 'USERS'
SQL>

Let’s say you assigned the default permanent tablespace USERS to all users. Since user salapati
didn’t specify a tablespace for creating the new xyz table, Oracle tries to create it in the default
permanent tablespace, USERS. However, the user wasn’t granted any quota on the tablespace. By
default, users aren’t given any space quotas on any tablespaces. Since the user is assigned the USERS
tablespace but isn’t allocated a quota of space in that tablespace, the user can’t create any objects in
the USERS tablespace. You must explicitly allocate tablespace quotas to a user.

It’s common to assign specific tablespace quotas at user creation time. Here’s how you grant a
space quota on a tablespace to a user:

SQL> ALTER USER salapati
 2 QUOTA 100M ON users;
User altered.
SQL>

546 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

■Tip If you don’t want a user to create any objects at all in the database, don’t assign a quota on any tablespace.
If it’s an existing user with a specific quota on a tablespace, you can use the ALTER USER statement to set this
quota to 0. When you use the ALTER USER statement to assign a quota of 0 on all tablespaces, any objects already
created by the user will remain, but the user won’t be able to create any new objects. The existing objects also
cannot grow in size, since you revoked the tablespace quotas.

Once the new user is given a space quota on a tablespace, the user can create database objects
such as tables and indexes. By default, any objects a user creates will be placed in the user’s default
permanent tablespace (USERS in our example). The user can choose to create the objects in any
tablespace, however, as long as the user has a space quota on that tablespace. If you want a user
to have unlimited space usage rights in all tablespaces, you need to grant the user the UNLIMITED
TABLESPACE privilege, as shown here:

SQL> GRANT UNLIMITED TABLESPACE TO salapati;
Grant succeeded.
SQL>

If you want a user to create his or her own tablespaces, you must enable the user to create a
tablespace by using the GRANT CREATE TABLESPACE TO username command. Similarly, you must
grant the DROP TABLESPACE privilege. If a user wishes to subsequently create database objects in
a tablespace that he or she has created, the user won’t need any space quotas on those tablespaces.
You can see the individual tablespace quotas allocated to a user by using the DBA_TS_QUOTAS view,
as shown here:

SQL> SELECT tablespace_name, username, bytes FROM DBA_TS_QUOTAS;

TABLESPACE USERNAME BYTES
---------- --------- ----------
SYSAUX DMSYS 196608
SYSAUX OLAPSYS 16252928
SYSAUX WK_TEST 12582912
SYSAUX SYSMAN 78577664
RMAN_TBSP RMAN 8585216
SQL>

As you can see, four different users, all owners of various Oracle components, have quotas in the
Sysaux tablespace, and the user RMAN has a quota on a tablespace created exclusively for the Recovery
Manager’s use.

Since they aren’t mandatory, you can create a database without a default temporary tablespace
or a default (permanent) tablespace. In such a case, you can assign both tablespaces explicitly when
you create a new user. You can also assign a quota on the default permanent tablespace. Here’s an
example showing how to create a user by explicitly specifying the default tablespaces (temporary
and permanent). The GRANT QUOTA clause gives the user a 500MB space allocation in the USERS
tablespace so the user can create objects there:

SQL> CREATE USER salapati IDENTIFIED BY sammyy1
 TEMPORARY TABLESPACE TEMPTBS01
 DEFAULT TABLESPACE USERS
 QUOTA 500M ON USERS;

User created.
SQL>

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 547

If you omit the QUOTA clause, the new user can’t use any space in the tablespace USERS, which
is the default tablespace for the user. If you have created a permanent default tablespace, as recom-
mended by Oracle, you can omit the DEFAULT TABLESPACE clause. If you haven’t, you should specify
the DEFAULT TABLESPACE clause; otherwise, the new user will be assigned the System tablespace as the
default tablespace and that’s not a good idea, since you don’t want users possibly creating objects in
the System tablespace.

Altering a User
You use the ALTER USER statement to alter a user in the database. Using this statement, you can do
the following:

• Change a user’s password.

• Assign tablespace quotas.

• Set and alter default and temporary tablespaces.

• Assign a profile and default roles.

Here’s an example showing how a DBA (or the user being altered) can use the ALTER USER
command to change a user’s password:

SQL> SHOW USER

USER is "SALAPATI"

SQL> ALTER USER salapati IDENTIFIED BY sammyy1;

User altered.
SQL>

Only a DBA or another user to whom you’ve granted the ALTER USER privilege can change pass-
words with the ALTER USER statement. Users can also change their own passwords with the PASSWORD
command in SQL*Plus, as shown here:

SQL> PASSWORD

Changing password for SALAPATI
Old password: *********
New password: *********
Retype new password: *********
Password changed
SQL>

Whether users assign their own passwords or a DBA creates their passwords, a DBA won’t ever
be able to find out what any user’s password is, since all passwords are stored in the encrypted form.
However, I’ll show you later in this chapter how to log in as another user by making use of the
encrypted password.

Dropping a User
To drop a user, you use the DROP USER statement, as shown here:

SQL> DROP USER salapati;

User Dropped.
SQL>

548 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

The DROP USER statement will remove just the user from the database, but all the objects owned
by the user will remain intact. If other objects in the database depend on this user, you won’t be able
to use the simple DROP USER command—you must use the DROP USER . . . CASCADE statement, which
drops the user, the user’s schema objects, and any dependent objects as well. Here’s an example:

SQL> DROP USER salapati CASCADE;

User Dropped.
SQL>

In Chapter 16, you’ll learn about Oracle’s new Recycle Bin, which keeps the database from drop-
ping a table permanently when you issue a DROP TABLE statement. This gives you the chance to revive
a “dropped” table if necessary. When you drop a user, however, all tables and other objects in the
user’s schema will be dropped permanently, without using the Recycle Bin! Therefore, if you aren’t
sure whether you will need a user’s objects later, but you want to deny access, simply leave the user
and the user’s schema intact, but deny the user access to the database by using the following statement:

SQL> REVOKE CREATE SESSION FROM salapati;

Revoke succeeded.
SQL>

Since a user can have the CREATE SESSION privilege through another role such as CONNECT,
for example, Oracle recommends that you use the ALTER USER username ACCOUNT LOCK statement to
ensure that a user is locked out of the database.

Creating and Using User Profiles
We have so far created a new user, assigned the user a set of default and temporary tablespaces, and
granted the user the privileges to connect to the database. What is the limit on the amount of data-
base resources this person can use? What if he or she unwittingly starts a SQL program that guzzles
CPU resources like crazy and brings your system to its knees?

You can set the individual resource limits in Oracle by using what are known as profiles. A profile
is a collection of resource-usage and password-related attributes that you can assign to a user. Multiple
users can share the same profile, and you can have an unlimited number of profiles in an Oracle
database. Profiles set hard limits on resource consumption by the various users in the database and
help you limit the number of sessions a user can simultaneously keep open, the length of time these
sessions can be maintained, and the usage of CPU and other resources. Here, for example, is a profile
called “miser” (because it limits resource usage to a minimum):

SQL> CREATE PROFILE miser
 2 LIMIT
 3 connect_time 120
 4 failed_login_attempts 3
 5 idle_time 60
 6* sessions_per_user 2;
Profile created.
SQL>

When a user with the miser profile connects, the database will allow the connection to be main-
tained for a maximum of 120 seconds and will log the user out if he or she is idle for more than 60 seconds.
The user is limited to two sessions at any one time. If the user fails to log in within three attempts, the
user’s accounts will be locked for a specified period or until the DBA manually unlocks them.

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 549

■Note Besides user profiles, you can also use some third-party tools that include query governs, which limit the
types of queries that users can use within the database, thus ensuring that the database is not loaded down by
inefficient queries.

Profile Parameters and Limits

Oracle databases enable you to set limits on several parameters within a profile. The following sections
provide brief explanations of these parameters, which can be divided into two broad types: resource
parameters, which are concerned purely with limiting resource usage, and password parameters,
used for enforcing password-related security policies.

Resource Parameters

The main reason for using resource parameters is to ensure that a single user or a set of users doesn’t
monopolize the database and server resources. Here are the most important resource parameters
that you can set within an Oracle Database 11g database:

• CONNECT_TIME: Specifies the total time (in minutes) a session may remain connected to the
database.

• CPU_PER_CALL: Limits the CPU time used per each call within a transaction (for the parse,
execute, and fetch operations).

• CPU_PER_SESSION: Limits the total CPU time used during a session.

• SESSIONS_PER_USER: Specifies the maximum number of concurrent sessions that can be opened
by the user.

• IDLE_TIME: Limits the amount of time a session is idle (which is when nothing is running on
its behalf).

• LOGICAL_READS_PER_SESSION: Limits the total number of data blocks read (from the SGA memory
area plus disk reads).

• LOGICAL_READS_PER_CALL: Limits the total logical reads per each session call (parse, execute,
and fetch).

• PRIVATE_SGA: Specifies a session’s limits on the space it allocated in the shared pool compo-
nent of the SGA (applicable only to shared server architecture systems).

• COMPOSITE_LIMIT: Sets an overall limit on resource use. A composite limit is a limit on the sum
of several of the previously described resource parameters, measured in service units. These
resources are weighted by their importance. Oracle takes into account four parameters to
compute a weighted COMPOSITE_LIMIT: CPU_PER_SESSION, CONNECT_TIME, LOGICAL_READS_PER_
SESSION, and PRIVATE_SGA. You can set a weight for each of these four parameters by using the
ALTER RESOURCE COST statement, as shown in the following example:

SQL> ALTER RESOURCE COST
 2 cpu_per_session 200
 3 connect_time 2;
Resource cost altered.
SQL>

■Tip If you don’t use a weight for any of these four parameters, the parameters will be ignored in the computation
of the COMPOSITE_LIMIT parameter.

550 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

Password Parameters

Oracle provides you with a wide variety of parameters to manage user passwords. You can set the
following password-related profile parameters to enforce your security policies:

• FAILED_LOGIN_ATTEMPTS: Specifies the number of consecutive login attempts a user can make
before being locked out.

• PASSWORD_LIFE_TIME: Sets the time limit for using a particular password. If you don’t change
the password within this specified time, the password expires.

• PASSWORD_GRACE_TIME: Sets the time period during which you’ll be warned that your password
has expired. After the grace period is exhausted, you can’t connect to the database with that
password.

• PASSWORD_LOCK_TIME: Specifies the number of days a user will be locked out after reaching the
maximum number of unsuccessful login attempts.

• PASSWORD_REUSE_TIME: Specifies the number of days that must pass before you can reuse the
same password.

• PASSWORD_REUSE_MAX: Determines how many times you need to change your password before
you can reuse a particular password.

• PASSWORD_VERIFY_FUNCTION: Lets you specify an Oracle-provided password-verification func-
tion to set up an automatic password-verification mechanism.

The Default Profile

As you can see, you can set a number of resource- and password-related attributes to control access
to the database and resource usage. If you create a user and don’t explicitly assign any profile to the
user, the user will inherit the default profile, as shown here:

SQL> SELECT profile FROM dba_users
 WHERE username = 'SALAPATI'
PROFILE

DEFAULT

The default profile, unfortunately, isn’t very limiting at all—virtually all the resource limits are
set to UNLIMITED, meaning there’s no limit on resource usage whatsoever.

Listing 12-1 shows the results of querying the DBA_PROFILES table regarding the attributes for
the profile named default.

Listing 12-1. Resource Limits for the Default Profile

SQL> SELECT DISTINCT resource_name, limit
 2 FROM dba_profiles
 3* WHERE profile='DEFAULT';

RESOURCE_NAME LIMIT
-------------------------------- ----------
PASSWORD_LOCK_TIME 1
IDLE_TIME UNLIMITED
CONNECT_TIME UNLIMITED
PASSWORD_GRACE_TIME 7

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 551

LOGICAL_READS_PER_SESSION UNLIMITED
PRIVATE_SGA UNLIMITED
LOGICAL_READS_PER_CALL UNLIMITED
SESSIONS_PER_USER UNLIMITED
CPU_PER_SESSION UNLIMITED
FAILED_LOGIN_ATTEMPTS 10
PASSWORD_LIFE_TIME 180
PASSWORD_VERIFY_FUNCTION NULL
PASSWORD_REUSE_TIME UNLIMITED
PASSWORD_REUSE_MAX UNLIMITED
COMPOSITE_LIMIT UNLIMITED
CPU_PER_CALL UNLIMITED

16 rows selected.
SQL>

■Caution If you don’t assign a profile to a user, Oracle assigns that user the default profile. Because the default
profile uses a value of UNLIMITED for several parameters, you could end up with resource usage problems if users
are assigned the default profile.

By default, the default password profile is enabled when you create a database.

Assigning a User Profile

You can assign a user a profile when you create the user. Here’s an example:

SQL> CREATE USER salapati IDENTIFIED BY sammyy1
 TEMPORARY TABLESPACE TEMPTBS01
 DEFAULT TABLESPACE USERS
 GRANT QUOTA 500M ON USERS;
 PROFILE 'prod_user';

User created.
SQL>

You can also assign a profile to a user any time by using the ALTER USER statement, as shown
here:

SQL> ALTER USER salapati
 2 PROFILE test;

User altered.
SQL>

You can use the ALTER USER statement to assign an initial profile or to replace the current profile
with another.

552 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

Altering a User Profile

You can alter a profile by using the ALTER PROFILE statement, as follows:

SQL> ALTER PROFILE test
 2 LIMIT
 3 sessions_per_user 4
 4* failed_login_attempts 4;

Profile altered.
SQL>

The previous ALTER PROFILE statement limits the sessions a user can create as well as the
maximum login attempts (before locking the user’s account) to four.

Password Management Function

You can use the Oracle provided script named utlpwdmg.sql (from the $ORACLE_HOME/rdbms/admin
directory) to implement various password management features such as setting the default password
resource limits. This script lets you create a password verification function named verify_function_11g.
The verify_function_11g function helps you implement password complexity in your database and
lets you customize it for ensuring complex password checking.

The verify_function_11g function lets you implement password protection features such as
the following:

• Ensuring that all passwords are at least eight characters long

• Ensuring that every password contains at least one number and one alphabetic character

• Ensuring that a password differs from the previous password by at least three characters

• Checking to make sure that passwords aren’t simply a reverse of the usernames

• Checking to make sure the passwords aren’t the same as or similar to the name of the server

• Checking to make sure that a password isn’t in a set of well-known and common passwords
such as “welcome1” or “database1”

Here’s how you can execute the ALTER PROFILE statement in the utlpwdmg.sql script to create the
verify_function_11g function first and, immediately after that, alter the DEFAULT profile that comes
with the database and is automatically assigned to all users for whom you haven’t assigned a profile.

ALTER PROFILE DEFAULT LIMITPASSWORD_LIFE_TIME 180
PASSWORD_GRACE_TIME 7
PASSWORD_REUSE_TIME UNLIMITED
PASSWORD_REUSE_MAX UNLIMITED
FAILED_LOGIN_ATTEMPTS 10
PASSWORD_LOCK_TIME 1
PASSWORD_VERIFY_FUNCTION verify_function_11G;

Once you create the verify_function_11g function as shown here, the database will automati-
cally execute the function every time the DBA or a user creates or modifies a password. The function
ensures that the passwords meet the requirements specified by the function. Of course, you may
alter the function to create more stringent password checks in your database.

When Do Profile Changes Go into Effect?

Unless you change the setting of the RESOURCE_LIMIT initialization parameter from its default value
of false, the profile changes you make will never be applied. The RESOURCE_LIMIT parameter determines

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 553

whether the resource limits are enforced in database profiles. You need to set this parameter to true
in the init.ora file and restart the database, or use the ALTER SYSTEM command, as shown here:

SQL> ALTER SYSTEM SET resource_limit=true;

System altered.
SQL>

■Tip Make sure you have the RESOURCE_LIMIT initialization parameter set to true so that the resource limits
set by the profiles will be enforced. Otherwise, Oracle will ignore the limits set in the CREATE or ALTER PROFILE
statement. The password-related profile attributes don’t depend on the RESOURCE_LIMIT parameter—they are
enabled automatically when you create the profile.

Dropping a User Profile

Dropping a profile is straightforward. Here’s how you would drop the test profile:

SQL> DROP PROFILE test CASCADE;

Profile dropped.
SQL>

The test profile is assigned to several users in the database, and to drop the profile for all of them, you
must use the CASCADE keyword. Note that the users who were assigned the test profile will now be
automatically assigned the default profile.

What Happens When Profile Limits Are Reached?

When a user hits either a session-level or a call-level resource limit, Oracle rolls back the user’s state-
ment that is in progress and returns an error message. If it’s a call-level limit (such as CPU_PER_CALL),
the user’s session remains intact, and other statements belonging to the current transaction remain
valid. If a session-level limit is reached, the user can’t go any further in that session.

How Do You Know What the Profile Limits Should Be?

You have several ways to gather the statistics to determine the optimal values for several critical
resource limits, such as LOGICAL_READS_PER_SESSION. If you’re too liberal with the value, some users
may hog resources, and if you’re too conservative, you’ll be fielding many calls from irate users who
are prevented from completing their jobs.

By using the IDLE_TIME profile attribute, you can limit the amount of time a user’s session can
remain idle. However, using the DBMS_RESOURCE_MANAGER package may be a better way to
control a user’s idle connection time, and I explain this package in the “Using the Database Resource
Manager” section of this chapter. Using this package, you can set a maximum idle limit for a session
as well as limit the length of time an idle session can block other sessions.

Try to get some information from test runs that you’ve made of certain jobs. If you don’t have
reliable historical data, use the AUDIT SESSION statement to acquire baseline data for several param-
eters, such as connect time and logical reads. You can also use Oracle Enterprise Manager (OEM) to
gather the data. In addition, you may have feedback (or complaints!) from the users themselves
about programs that are failing due to limits on resource use or that need longer connect times to the
database server.

554 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

Managing Resources
With large numbers of database users, resource management becomes an important issue. Server
resources are ultimately limited, and you must have some means of apportioning the scarce resources
among the users. Oracle provides a powerful tool, the Database Resource Manager, which allows
you to control database resource usage in a sophisticated manner.

You can use either the user profiles I discussed in the previous section or the Database Resource
Manager to control resource usage in your database. User profiles are effective in controlling the
resource usage of individual users, but Oracle prefers that you use profiles mainly for password
management. Oracle recommends using the Database Resource Manager to control resource usage.

The Database Resource Manager
Suppose you’re managing a production database with the following problems:

• Batch jobs are taking up most of the available resources, which is hurting other, more critical
jobs that need to run at the same time.

• Excessive loads at peak times are causing critical processes to run for an unacceptably long time.

• You schedule large jobs and really can’t predict when they might be launched.

• Some users are using an excessive amount of CPU time, causing you to kill their sessions abruptly.

• Some users are using a very high degree of parallelism in their operations, which is hurting
the performance of the system as a whole.

• You can’t manage active sessions.

• You want to prioritize jobs according to some scheme, but you can’t do so using operating
system resources.

As you can see, all these problems stem from the inability of the DBA to allocate the limited
resources efficiently among competing operations, which leads to lopsided resource allocation and
very long response times for critical jobs. The Oracle Resource Manager is the answer—it allows you
to create resource plans, which specify how much of your resources should go to the various
consumer groups. You can group users based on their resource requirements, and you can have the
Database Resource Manager allocate a preset amount of resources to these groups. You can distribute
the available CPU resources by allocating a set percentage of CPU time to various users. Thus, you
can easily prioritize your users and jobs. Your higher-priority online users will be served faster, while
your lower-priority batch jobs may take longer.

Using the Database Resource Manager, it’s possible for you to ensure that your critical user
groups (formally referred to as resource consumer groups) are always guaranteed enough resources
to perform their tasks.

The Database Resource Manager also enables you to limit the length of time a user session can
stay idle and to automatically terminate long-running SQL statements and user sessions. Using the
Database Resource Manager, you can set initial login priorities for various consumer groups. By
using the concept of the active session pool, you can also specify the maximum number of concurrently
active sessions for a consumer group—the Database Resource Manager will automatically queue all
subsequent requests until the currently running sessions complete. The DBA can also automatically
switch users from one resource group to another, based on preset resource usage criteria, and can
limit the amount of undo space a resource group can use.

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 555

The following four elements are integral to the Database Resource Manager:

• Resource consumer group: A resource consumer group is used to group together similar users
based on their resource needs.

• Resource plan: The resource plan lays out how resource consumer groups are allocated
resources. Each resource plan contains a set of resource consumer groups that belong to this
plan, together with instructions as to how resources are to be allocated among these groups.
For example, a resource plan may dictate that the CPU resource be allocated among three
resource consumer groups so that the first group gets 60 percent and the remaining two groups
20 percent of the total CPU time. A resource plan can also have subplans, which enable the
allocation of resources in greater detail among resource consumer groups.

• Resource allocation method: The resource allocation method dictates the specific method you
choose to use to allocate resources like the CPU. These are the available methods of allocating
database resources:

• CPU method: Oracle uses multiple levels of CPU allocation to prioritize and allocate CPU
usage among the competing user sessions.

• Idle time: You can direct that a user’s session be terminated after it has been idle for a spec-
ified period of time. You can also specify that only idle sessions blocking other sessions be
terminated.

• Execution time limit: You can control resource usage by setting a limit on the maximum
execution time of an operation.

• Undo pool: By setting an undo pool directive, you can limit the total amount of undos that
can be generated by a consumer resource group.

• Active session pool: You can set a maximum allowable number of active sessions within any
consumer resource group. All sessions that are beyond the maximum limit are queued for
execution after the freeing up of current active sessions.

• Automatic consumer group switching: Using this method, you can specify that a user session
be automatically switched to a different group after it runs more than a specified number of
seconds. The group the session should switch to is called the switch group, and the time
limit is the switch time. The session can revert to its original consumer group after the end
of the top call, which is defined as an entire PL/SQL block or a separate SQL statement.

• Canceling SQL and terminating sessions: By using CANCEL_SQL or KILL_SESSION as the switch
group, you can direct a long-running SQL statement or even an entire session to be canceled
or terminated.

• Parallel degree limit: You can use this method to specify the limit of the degree of parallelism
for an operation.

• Resource plan directive: The resource plan directive links a resource plan to a specific resource
consumer group.

Using the Database Resource Manager
You manage the Database Resource Manager by executing procedures in the Oracle-supplied
DBMS_RESOURCE_MANAGER package. It enables you to create a resource plan for the various
consumer groups and to assign the plans to the consumer groups. As a DBA, you’ll already have priv-
ileges to execute any procedure in the DBMS_RESOURCE_MANAGER package, but for any other
users that need to use the Database Resource Manager, you’ll need to grant a special system privilege
called ADMINISTER_RESOURCE_MANAGER so they can use the Database Resource Manager, as
shown here:

556 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

SQL> EXEC DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SYSTEM_PRIVILEGE -
 (GRANTEE_NAME => 'scott', PRIVILEGE_NAME => 'ADMINISTER_RESOURCE_MANAGER');

The DBMS_RESOURCE_MANAGER package has several procedures, but we’ll focus on a few
important ones that will let you use the package to control resource allocation among database users.

■Note The following discussion of the Database Resource Manager is meant to familiarize you with the various
steps involved in creating resource plans and enforcing them. The Resource Plan Wizard in the OEM toolset is really
the best way to quickly create resource plans in your database once you get the hang of the various steps involved
in creating and maintaining the plans.

Here are the steps you need to follow to start using the Database Resource Manager:

1. Create a pending area. This is the work area where you create and validate resource consumer
groups, resource plans, and plan directives.

2. Create a resource consumer group. This is a grouping of users who will receive the same
amount of resources.

3. Create a resource plan. This is a collection of directives that specify how Oracle should allocate
resources to resource consumer groups.

4. Create a plan directive. This associates resource consumer groups with resource plans and
allocates resources among resource consumer groups.

5. Validate the pending area. This process validates the resource consumer group, the resource
plan, and the plan directive.

6. Submit the pending area. This creates the resource consumer group, the resource plan, and
the plan directives, and makes them active.

Once this is all done, you can assign users to resource consumer groups, and they’ll get the
resources that have been assigned to that group.

Creating a Pending Area

Before you can use the Database Resource Manager to allocate resources, modify an old plan, or
create a new plan, you need to create what is called a pending area to validate changes before their
implementation. The pending area serves as a work area for your changes. All the resource plans
you’ll create will be stored in the data dictionary, and the pending area is the staging area where you
work with resource plans before they are implemented.

Here’s how you create the pending area:

SQL> EXECUTE dbms_resource_manager.create_pending_area;
PL/SQL procedure successfully completed.
SQL>

You can also clear the pending area by using the following procedure if you think you’ve made
errors while creating the various components of the Database Resource Manager:

SQL> EXECUTE dbms_resource_manager.clear_pending_area;
PL/SQL procedure successfully completed.
SQL>

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 557

Creating Resource Consumer Groups

Once the pending area is active, you can create the resource consumer groups to which you’ll allo-
cate your users. You can assign users initially to one group and switch them to another group later,
if necessary. You use three parameters to create a resource consumer group: consumer group name
(CONSUMER_GROUP), a comment (COMMENT), and the method for distributing CPU resources among the
resource consumer group’s active sessions (CPU_MTH). There are two choices you can use for the
CPU_MTH parameter—the RUN_TO_COMPLETION method schedules sessions that will take the most time
ahead of other, less time-intensive sessions, and the default ROUND_ROBIN method, which uses a
round-robin scheduling system.

The example in Listing 12-2 shows how to create three consumer groups in the database: local,
regional, and national. Note that I’m not using the CPU_MTH parameter, since I plan to use the default
ROUND_ROBIN method.

Listing 12-2. Creating the Resource Consumer Groups

SQL> EXECUTE dbms_resource_manager.create_consumer_group -
 > (consumer_group => 'local', comment => 'local councils');
PL/SQL procedure successfully completed.
SQL> EXECUTE dbms_resource_manager.create_consumer_group -
 > (consumer_group => 'regional', comment => 'regional councils');
PL/SQL procedure successfully completed.
SQL>
SQL> EXECUTE dbms_resource_manager.create_consumer_group -
 > (consumer_group => 'national', comment => 'national office');
PL/SQL procedure successfully completed.
SQL>

Determining What Groups Exist in Your Database

You can query the DBA_RSRC_CONSUMER_GROUPS view for information about what groups
currently exist in your database (before validating and submitting the pending area), as shown in
Listing 12-3.

Listing 12-3. Querying the DBA_RSRC_CONSUMER_GROUPS View

SQL> SELECT consumer_group, status
 2* FROM dba_rsrc_consumer_groups;

CONSUMER_GROUP STATUS
------------------------------ -------
AUTO_TASK_CONSUMER_GROUP PENDING
DEFAULT_CONSUMER_GROUP PENDING
SYS_GROUP PENDING
OTHER_GROUPS PENDING
LOW_GROUP ACTIVE
AUTO_TASK_CONSUMER_GROUP ACTIVE
DEFAULT_CONSUMER_GROUP ACTIVE
SYS_GROUP ACTIVE
LOW_GROUP PENDING
OTHER_GROUPS ACTIVE
LOCAL PENDING
REGIONAL PENDING
NATIONAL PENDING
13 rows selected.
SQL>

558 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

Three new groups were created in the previous section—national, regional, and local—but
Listing 12-3 shows eight distinct consumer groups. The same query would have given you the following
output before you created the three new groups in the pending area:

SQL> SELECT consumer_group,status
 2 FROM dba_rsrc_consumer_groups;

CONSUMER_GROUP STATUS
-------------------------- ------
ORA$AUTOTASK_URGENT_GROUP
BATCH_GROUP
ORA$DIAGNOSTICS
ORA$AUTOTASK_HEALTH_GROUP
ORA$AUTOTASK_SQL_GROUP
ORA$AUTOTASK_SPACE_GROUP
ORA$AUTOTASK_STATS_GROUP
ORA$AUTOTASK_MEDIUM_GROUP
INTERACTIVE_GROUP
OTHER_GROUPS
DEFAULT_CONSUMER_GROUP
SYS_GROUP
LOW_GROUP
AUTO_TASK_CONSUMER_GROUP

14 rows selected.
SQL>

The five resource consumer groups that you see in the preceding output are default groups that
exist in every Oracle database:

• OTHER_GROUPS: This isn’t really a group, because you can’t assign users to it. When a resource
plan is active, OTHER_GROUPS is the catchall term for all sessions that don’t belong to this
active resource plan.

• DEFAULT_CONSUMER_GROUP: If you don’t assign users to any group, they will, by default,
become members of the default group.

• SYS_GROUP and LOW_GROUP: These are part of the default plan, named system_plan, that
exists in every database.

• BATCH_GROUP: This is a default group intended for use with batch operations.

• AUTO_TASK_CONSUMER_GROUP: This is a default resource consumer group used for auto-
matically executed tasks, such as the gathering of statistics. The priority for jobs such as statistics
collection will remain below jobs in the default consumer group. Oracle supplies seven default
resource plans for each database, as shown by the output of the following query:

SQL> SELECT plan, comments FROM dba_rsrc_plans;

 PLAN COMMENTS
------------------- --
MIXED_WORKLOAD_PLAN Example plan for a mixed workload that prioritizes
 interactive operations over batch operations.
ORA$AUTOTASK_SUB_PLAN Default sub-plan for automated maintenance tasks. A
 directive to this sub-plan should be included in
 every top-level plan to manage the resources consumed
 by the automated maintenance tasks.

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 559

ORA$AUTOTASK_HIGH_SUB_PLAN
 Default sub-plan for high-priority, automated
 maintenance tasks. This sub-plan is referenced by
 ORA$AUTOTASK_SUB_PLAN and should not be referenced
 directly.

INTERNAL_PLAN Internally-used plan for disabling the resource
 manager.

DEFAULT_PLAN Default, basic, pre-defined plan that
 prioritizes SYS_GROUP operations and
 allocates minimal resources for automated
 maintenance and diagnostics operations.

INTERNAL_QUIESCE Plan for quiescing the database. This plan
 cannot be activated directly. To activate, use
 the quiesce command.

DEFAULT_MAINTENANCE_PLAN Default plan for maintenance windows that
 prioritizes SYS_GROUP operations and allocates
 the remaining 5% to diagnostic operations and 25%
 to automated maintenance operations.

7 rows selected.
SQL>

If you query the DBA_RSRC_CONSUMER_GROUPS view after you validate the pending area,
you’ll see the five default groups and the three groups you just created. In Listing 12-4, you can see
that the STATUS shows ACTIVE instead of PENDING for the three new resource consumer groups that I
created.

Listing 12-4. Listing the Resource Consumer Groups

SQL> SELECT consumer_group, status
 FROM dba_rsrc_consumer_groups;

CONSUMER_GROUP STATUS
------------------------------ --------
AUTO_TASK_CONSUMER_GROUP ACTIVE
DEFAULT_CONSUMER_GROUP ACTIVE
SYS_GROUP ACTIVE
OTHER_GROUPS ACTIVE
LOW_GROUP ACTIVE
LOCAL ACTIVE
REGIONAL ACTIVE
NATIONAL ACTIVE
8 rows selected.
SQL>

Creating Resource Plans

A resource plan contains directives that control the allocation of resources among various resource
consumer groups. Resource plans enable you to set limits on resource use by specifying limits on
four variables: CPU, number of active sessions, degree of parallelism, and the order in which queued
sessions will execute. Let’s look at the five parameters that control these resources in more detail:

560 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

• CPU_MTH: You use this resource allocation method to specify how you wish to allocate the CPU
resource among the resource consumer groups. The default method is called EMPHASIS, and it
uses percentages to allocate CPU among the various groups. The alternative method, RATIO,
uses ratios instead.

• ACTIVE_SESS_POOL_MTH: This parameter determines the limit on the number of active sessions
in a resource consumer group. The only method available is the ACTIVE_SESS_POOL_ABSOLUTE
method, which is the default.

• PARALLEL_DEGREE_LIMIT_MTH: This is the parameter that determines the degree of parallelism
used by a specific operation. The only option is PARALLEL_DEGREE_LIMIT_ABSOLUTE (which is
the default).

• SUB_PLAN: If this is TRUE, you can’t use the plan as the top plan (you can use it as a subplan
only). The default value is FALSE.

• QUEUEING_MTH: This parameter determines the order in which queued sessions will execute.
Only the default FIFO_TIMEOUT option is currently available.

You can also create subplans (plans within plans), which let you subdivide resources among
different users.

Create your resource plan by invoking the DBMS_RESOURCE_MANAGER package again:

SQL> DBMS_RESOURCE_MANAGER.CREATE_PLAN
 (PLAN => 'membership_plan',
 CPU_MTH -> 'RATIO',
 COMMENT => 'New Membership Recruitment');
PL/SQL procedure successfully completed.
SQL>

Creating Plan Directives

You now have a resource plan, but the plan still doesn’t have any resource limits assigned to it. You
need to create a resource plan directive to assign resources to the various resource consumer groups
in the database. You can allocate resources according to the following criteria:

• CPU: Using the CPU method, you can allocate resources among consumer groups or subplans.
You can use multiple levels of CPU resource allocation to prioritize CPU usage. For example,
you could specify that level 2 gets CPU resources only if any CPU resources are left after level
1 is taken care of.

• Sessions: You can control the maximum number of active sessions open at any time by using
the ACTIVE_SESSION_POOL parameter. You can also allow for the termination of long-running
SQL queries and user sessions.

• Degree of parallelism: You can set a limit on the degree of parallelism during any operation.

• Automatic consumer group switching: You can specify that, under some conditions, the data-
base will automatically switch sessions to another consumer group.

• Undo usage: You can set limits on the number of undo operations a resource consumer group
can generate. The database automatically terminates SQL statements that cause the undo
generated by a consumer group to exceed its undo limit. This will prevent new members of
the consumer group from issuing DML statements.

• Idle time limit: The idle-time-limit resource directive, set by using the MAX_IDLE_TIME param-
eter, helps you control resource use by various sessions in a busy database. You can use it to
set the maximum idle time for a single session. In addition, you can also limit the amount of
time a user session can block another session by setting the MAX_IDLE_BLOCKER_TIME parameter.

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 561

• Session switching: You can use the SWITCH_GROUP parameter to specify the consumer group to
which a session can be switched upon meeting specific switching criteria. The two switch
group names are CANCEL_SQL and KILL_SESSION. Assigning a session to the former will
result in canceling the current call, and assigning a session to the latter will terminate the
session. The SWITCH_GROUP parameter can also specify values for the following switching-
related parameters:

• SWITCH_IO_MEGABYTES: This parameter specifies the number of megabytes of I/O a session
can transfer before the database takes an action.

• SWITCH_IO_REQS: This parameter specifies the number of I/O requests a session can execute
before the database takes an action.

• SWITCH_FOR_CALL: If you set this parameter to TRUE, the database returns a session that was
switched to its original group after the top call completes.

Here’s an example that shows how you can limit a session in a resource plan to a maximum idle
time of 600 seconds and a maximum idle time of only 300 seconds if it happens to be blocking another
session:

SQL> EXECUTE dbms_resource_manager.create_plan_directive -
 (plan => 'prod_plan',
 group_or_subplan => 'dss_group',
 comment => 'Limit idle time',
 max_idle_time => 900,
 max_idle_blocker_time => 300);

In the preceding example, when a session exceeds 900 seconds (or 300 seconds if it’s blocking
another session), the PMON background process will automatically kill the offending session.

Listing 12-5 shows how to create a plan directive using the CPU method. The plan directive assigns
70 percent of the available CPU time at the first level to the local group, and the rest, 30 percent, to
the regional group. It allocates 100 percent of the CPU at the second level to the national group. Note
that this example uses the default emphasis method of CPU allocation, which allocates CPU in terms
of percentages. There also is an alternative allocation method called ratio, which allocates CPU resources
by using ratios.

Listing 12-5. Creating Plan Directives Using the CPU Method

SQL> EXECUTE dbms_resource_manager.create_plan -
 directive (plan => 'membership_plan', -
 GROUP_OR_SUBPLAN => 'local', COMMENT => 'LOCAL GROUP',-
 CPU_P1 => 70);
PL/SQL procedure successfully completed.
SQL> EXECUTE dbms_resource_manager.create_plan -
 directive (plan => 'membership_plan', -
 GROUP_OR_SUBPLAN => 'REGIONAL',COMMENT=> 'regional group',-
 CPU_P1 => 30);
PL/SQL procedure successfully completed.
SQL> EXECUTE dbms_resource_manager.create_plan
 directive (plan => 'membership_plan', -
 GROUP_OR_SUBPLAN => 'national',comment => 'national group',-
 CPU_P2 => 100);
PL/SQL procedure successfully completed.
SQL>

562 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

■Tip If you don’t include a resource directive for OTHER_GROUPS, and the plan directive is for a primary or top
plan, Oracle won’t let you use your directives for the other groups in OTHER_GROUPS.

Validating the Pending Area

After you’ve created the resource consumer groups, the resource plans, and the plan directives, you
are ready to validate the changes you made. Here’s how you do it:

SQL> EXEC DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();
PL/SQL procedure successfully completed.

Submitting the Pending Area

By submitting the pending area, you actually create all the necessary entities, such as the resource
consumer group, the resource plan, and the plan directives, and make them active. You submit the
pending area as follows:

SQL> EXEC DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();
PL/SQL procedure successfully completed.

You can use the query in Listing 12-6 to determine resource plan directives that are currently in
force for various groups.

Listing 12-6. Determining the Status of the Resource Plans

SQL> SELECT plan,group_or_subplan,cpu_p1,cpu_p2,cpu_p3, status
 2* FROM dba_rsrc_plan_directives;

PLAN GROUP CPU_P1 CPU_P2 CPU_P3 STATUS
---------------- ------------ ------ ------- ------ ------
SYSTEM_PLAN SYS_GROUP 100 0 0 ACTIVE
SYSTEM_PLAN OTHER_GROUPS 0 100 0 ACTIVE
SYSTEM_PLAN LOW_GROUP 0 0 100 ACTIVE
INTERNAL_QUIESCE SYS_GROUP 0 0 0 ACTIVE
INTERNAL_QUIESCE OTHER_GROUPS 0 0 0 ACTIVE
INTERNAL_PLAN OTHER_GROUPS 0 0 0 ACTIVE
MEMBERSHIP_PLAN REGIONAL 30 0 0 ACTIVE
MEMBERSHIP_PLAN NATIONAL 0 100 0 ACTIVE
MEMBERSHIP_PLAN OTHER_GROUPS 0 0 100 ACTIVE
MEMBERSHIP_PLAN LOCAL 70 0 0 ACTIVE
10 rows selected.
SQL>

Assigning Users to Consumer Groups

After you create your resource consumer groups and validate your pending area, you can assign some
of your users to the consumer groups you’ve created. Let’s say you want to assign three users named
local_user, regional_user, and national_user to the three resource groups as follows: assign local_user to
the local consumer group, regional_user to the regional consumer group, and national_user to the
national consumer group.

Remember that the three users are already members of a default group, the default_consumer_
group. Therefore, you need to first grant the three users privileges to switch their groups before you

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 563

can actually switch them to your new groups. Listing 12-7 shows how you can use the DBMS_
RESOURCE_MANAGER package to assign and switch users’ consumer groups.

■Tip If you grant the PUBLIC user the privilege to switch groups, you won’t have to grant the privilege to all the
users in the group individually. If you have a large number of users in each group, this is a better approach.

Listing 12-7. Assigning Users to Consumer Groups

SQL> EXECUTE dbms_resource_manager_privs.grant_switch_
 consumer_group ('local_user','local', true);
PL/SQL procedure successfully completed.
SQL> EXECUTE dbms_resource_manager.set_
 initial_consumer_group ('local_user','local');
PL/SQL procedure successfully completed.
SQL> EXECUTE dbms_resource_manager_privs.grant_
 switch_consumer_group('regional_user','regional', true);
PL/SQL procedure successfully completed.
SQL> EXECUTE dbms_resource_manager.set_initial_
 consumer_group ('regional_user','regional');
PL/SQL procedure successfully completed.
SQL> EXECUTE dbms_resource_manager_privs.grant_
 switch_consumer_group('national_user','national',true);
PL/SQL procedure successfully completed.
SQL> EXECUTE dbms_resource_manager.set_
 initial_consumer_group ('national_user','national');
PL/SQL procedure successfully completed.
SQL>

You can verify that the three users have been assigned to the appropriate consumer groups by
using the query in Listing 12-8.

Listing 12-8. Verifying Resource Consumer Group Membership of Users

SQL> SELECT username, initial_rsrc_consumer_group
 2 FROM dba_users;

USERNAME INITIAL_RSRC_CONSUMER_GROUP
---------------- ---------------------------
SYS SYS_GROUP
SYSTEM SYS_GROUP
SALAPATI DEFAULT_CONSUMER_GROUP
NATIONAL_USER NATIONAL
REGIONAL_USER REGIONAL
LOCAL_USER LOCAL
6 rows selected.
SQL>

Note that super users SYS and SYSTEM are default members of the SYS_GROUP. User salapati
is a member of the DEFAULT_CONSUMER_GROUP, to which all users in the database are automatically
assigned when they are first created. Your three new users, local_user, regional_user, and national_
user, are correctly assigned to their new consumer groups, LOCAL, REGIONAL, and NATIONAL,
respectively.

564 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

Automatic Assignment of a Resource Consumer Group to a Session

You can have the Database Resource Manager automatically assign a user session to a particular
consumer group, based on certain session attributes. You map the session attributes to various
consumer groups, and when the user logs in, the relevant consumer group is automatically assigned
to the user based on the user’s attributes. If there is a conflict, it can be resolved by a prioritizing of
the mapping between session attributes and resource consumer groups.

You use two DBMS_RESOURCE_MANAGER packages, SET_CONSUMER_GROUP_MAPPING
and SET_CONSUMER_MAPPING_PRI, to map session attributes and consumer resource groups
and set the priorities in the mappings. There are two distinct types of session attributes. The first set
encompasses login attributes, which help the Database Resource Manager determine the user’s
initial consumer group. The other set of session attributes consists of runtime attributes.

The following are some of the session attributes that are considered when mapping a user
session to a particular consumer resource group:

ORACLE_USER

SERVICE_NAME

CLIENT_OS_USER

CLIENT_PROGRAM

CLIENT_MACHINE

MODULE_NAME

You map each of these session attributes to a particular resource consumer group using the
SET_CONSUMER_GROUP_MAPPING procedure. In the following example, the hr user is mapped to the
HUMAN_RESOURCES_GROUP at login time:

SQL> EXECUTE DBMS_RESOURCE_MANAGER.SET_CONSUMER_GROUP_MAPPING
 (DBMS_RESOURCE_MANAGER.ORACLE_USER, 'HR', 'HUMAN_RESOURCES_GROUP');

After login time, as the user’s session attributes change, so does the user’s resource consumer
group, based on the mapping between session attributes and resource groups.

At times, there can be a conflict between two mappings, and to resolve these conflicts, you use
the SET_CONSUMER_MAPPING_PRI procedure to set priorities for the various session attributes,
ranging from 1 to 10, with 1 being the least important and 10 being the most important priority value.
Here’s an example:

SQL> EXECUTE DBMS_RESOURCE_MANAGER. SET_CONSUMER_GROUP_MAPPING_PRI (
 EXPLICIT => 1, CLIENT_MACHINE => 2, MODULE_NAME => 3, ORACLE_USER => 4,
 SERVICE_NAME => 5, CLIENT_OS_USER => 6, CLIENT_PROGRAM => 7,
 MODULE_NAME_ACTION => 8, SERVICE_MODULE=>9, SERVICE_MODULE_ACTION=>10);

When a session attribute changes, the user is automatically switched to the relevant resource
consumer group.

Enforcing Per-Session CPU and I/O Limits

The database can also automatically switch sessions based on the session’s CPU and I/O usage, thus
letting you enforce CPU and I/O usage per session. If a user is using excessive CPU, say, instead of
killing that user’s session, you can have the database automatically switch the user to another resource
group that has a lower CPU allocation. You can specify that the database take one of the following
actions when a session exceeds its preset resource limits:

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 565

• Switch the session to a resource group with lower resource allocation.

• Terminate the session.

• Abort the SQL statement that issued the database call.

Specify the values for the session within parameters such as SWITCH_IO_MEGABYTES, SWITCH_GROUP,
and SWITCH_TIME when you create a plan. I present a couple of examples to show how you can set up
automatic session switching to alternate resource consumer groups based on a session’s resource usage.

The following example shows how to specify session switching to a low-priority group if a session
exceeds a specified limit on CPU usage:

SQL> BEGIN
 dbms_resource_manager.create_plan_directive (
 plan => 'peaktime',
 group_or_subplan => 'oltp',
 mgmt_p1 => 75,
 switch_group => 'low_Group',
 switch_time => 10
 switch_for_call => true);
 END;

When a session exceeds a preset CPU usage limit, the session is automatically switched to the
resource consumer group LOW_GROUP, which is a lower- priority resource consumer group. Since
I specified the SWITCH_FOR_CALL parameter, the database switches the session back to its original
resource consumer group after the high-resource call is completed.

The following example shows how to specify that the database terminate a session if it exceeds
a preset CPU usage limit:

SQL> BEGIN
 dbms_resource_manager.create_plan_directive (
 plan => 'peaktime',
 group_or_subplan => 'oltp',
 mgmt_p1 => 75,
 switch_group => 'kill_session',
 switch_time => 60);

 END;

The previous code specifies that the database must kill a session (SWITCH_GROUP=> 'kill_session')
when the session exceeds 60 seconds of CPU usage time.

Enabling the Database Resource Manager

Just because you created a new plan and plan directives and submitted your pending area doesn’t
mean that Oracle will automatically enforce the resource plans. It’s your job to explicitly activate the
Database Resource Manager, either by specifying the RESOURCE_MANAGER_PLAN initialization param-
eter in the init.ora file or by using the ALTER SYSTEM command as follows:

SQL> ALTER SYSTEM SET resource_manager_plan=MEMBERSHIP_PLAN;
System altered.
SQL> SELECT * FROM v$rsrc_plan;
NAME

MEMBERSHIP_PLAN
SQL>

566 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

If you decide to deactivate the Database Resource Manager, you can use the following command:

SQL> ALTER SYSTEM SET resource_manager_plan='';
System altered.
SQL> SELECT * FROM v$rsrc_plan;
no rows selected
SQL>

At any given time, you can query V$RSRC_CONSUMER_GROUP to see what the resource usage
among the consumer groups looks like:

SQL> SELECT name,active_sessions,cpu_wait_time, consumed_cpu_time,
 current_undo_consumption
 FROM v$rsrc_consumer_group;

NAME ACTIVE CPU_ CONSUMED_ CURRENT
 SESSIONS WAIT CPU_TIME UNDO_CONS
------------- --------- ----- --------- ----------
REGIONAL 0 0 0 0
NATIONAL 0 0 0 0
OTHER_GROUPS 1 0 74 0
LOCAL 0 0 18017 0
SQL>

Data Dictionary Views

The following data dictionary views help you manage the Database Resource Manager:

• The V$SESSION view shows which resource consumer groups the sessions are currently
assigned to.

• The DBA_RSRC_CONSUMER_GROUP_PRIVS view shows all resource consumer groups
granted to users or roles.

• The DBA_RSRC_PLANS view shows all resource plans in the database.

• The V$RSRC_PLAN view shows all currently active resource plans.

Using OEM to Administer the Database Resource Manager
Now that you’ve sweated through all the error-prone, time-consuming work of creating and enabling
resource plans, let me remind you that using the Oracle Enterprise Manager to manage the Database
Resource Manager is a far easier alternative. Here’s a brief introduction to using OEM to administer
the Database Resource Manager.

Using the Resource Monitors Page

You can use the Resource Monitors page to display the current state of the active resource plan. You
can view statistics for the currently active plan, and you can select a plan from the list and activate it.
The Consumer Group Statistics table lists a series of statistics for the consumer groups that are part
of the current resource plan.

■Tip When you activate a plan using the Resource Monitors page, you must exit the page and then choose
Resource Monitors to update the page.

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 567

Creating, Editing, and Deleting Resource Plans

You can manage the list of resource plans through the Resource Plans property sheet. As you know
by now, you can use resource plans to allocate resources among consumer groups. The Resource
Plans property sheet lets you create, delete, and modify the settings of a resource plan.

To manage a resource plan, go to Database Control Home Page ➤Administration ➤ Consumer
Groups. From the Object_Type drop-down window, select Resource Plans. The Resource Plans page
appears, with a listing of all the current resource plans. You can either create a new resource plan or
select a resource plan from the list.

Managing Resource Consumer Groups

You can manage resource groups through the Resource Consumer Groups property sheet. You can
use the property sheet to create, delete, and modify the settings of a resource consumer group.

To manage a resource consumer group, go to Database Control Home Page ➤ Administration ➤
Consumer Groups. The Resource Consumer Groups page appears, showing all resource consumer
groups for the current database. You can create, edit, and delete resource consumer groups from
here.

Controlling Database Access
Once you create users in the database, you need to control their access to the various data objects.
To take a simple example, a clerk in the human resources department of an organization may be
able to see the salary data of employees, but he or she should not have the authority to change sala-
ries. Oracle uses several means to control data access, and the most elementary way to do so is by
assigning database privileges and roles to database users.

Privileges in an Oracle Database
A privilege is the right to execute a particular type of SQL statement or to access a database object
owned by another user. In an Oracle database, you must explicitly grant a user privileges to perform
any activity, including connecting to a database or selecting, modifying, and updating data in a table
other than their own.

There are two basic types of Oracle privileges: system privileges and object privileges. You use the
GRANT statement to grant specific system privileges as well as object privileges to users. The following
sections cover these two types of Oracle privileges in detail.

■Note You can manage your users through Database Control by going to Database Control Home Page ➤
Administration ➤ Users (under the Users and Privileges Section).

System Privileges

You grant a system privilege to a user so the user can perform either a particular action within the
database or an action on any schema object of a particular type. A good example of the first type of
system privilege is the privilege that lets you connect to a database, called the CONNECT privilege.
Other such system privileges include the CREATE TABLESPACE, CREATE USER, DROP USER, and
ALTER USER privileges. The second class of system privileges grants users the right to perform oper-
ations that affect objects in any schema. Examples of this type of system privilege include ANALYZE
ANY TABLE, GRANT ANY PRIVILEGE, INSERT ANY TABLE, GRANT ANY PRIVILEGE, INSERT ANY

568 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

TABLE, DELETE ANY TABLE, and so on. As you can see, system privileges are very powerful, and
granting them to the wrong user could have a devastating impact on your database.

Here are some common system privileges in an Oracle database:

• ADVISOR

• ALTER DATABASE

• ALTER SYSTEM

• AUDIT SYSTEM

• CREATE DATABASE LINK

• CREATE TABLE

• CREATE ANY INDEX

• CREATE SESSION

• CREATE TABLESPACE

• CREATE USER

• DROP USER

• INSERT ANY TABLE

Granting System Privileges

You use the GRANT statement to grant system privileges to users. When you grant a system privilege
to a user, the user can immediately use that privilege. Thus, privileges work in a dynamic fashion.

■Tip You can use either Oracle Enterprise Manager Database Control or SQL statements to GRANT and REVOKE
system privileges.

For example, to grant the CREATE SESSION system privilege to the sample user, hr, allowing hr
to log onto an Oracle database, issue the following statement:

SQL> GRANT CREATE SESSION TO hr;
Grant succeeded.
SQL>

The CREATE SESSION privilege enables a user to log onto an Oracle database.

■Tip You can grant all system privileges to a user (except the SELECT ANY DICTIONARY privilege), by specifying
ALL PRIVILEGES in the GRANT statement, as shown here:

SQL> GRANT ALL PRIVILEGES TO salapati;
Grant succeeded.
SQL>

ALL PRIVILEGES itself isn’t a system privilege—it’s a convenient way to grant all privileges in one step. You can
revoke all system privileges similarly, by using the REVOKE ALL PRIVILEGES statement.

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 569

As a DBA, you can also grant a system privilege to PUBLIC, in which case all users in the data-
base can perform the actions authorized by the privilege. Here’s an example:

SQL> GRANT CREATE SESSION TO public;
Grant succeeded.
SQL>

Once you grant the CREATE SESSION privilege to PUBLIC, all users can log into the database
without being granted the CREATE SESSION privilege on an individual basis. As you can see, granting
a privilege to PUBLIC is fraught with danger, since all users will have that privilege.

You can grant a system privilege to a user, provided one of the following is true:

• You have been granted the system privilege with the WITH ADMIN OPTION clause.

• You have been granted the GRANT ANY PRIVILEGE system privilege.

Here’s an example of the use of the WITH ADMIN OPTION clause when granting a system privilege:

SQL> GRANT CREATE SESSION TO salapati WITH ADMIN OPTION;
Grant succeeded.
SQL>

The GRANT ANY OBJECT privilege is a special system privilege that lets the grantee grant (and
revoke) object privileges for objects in any schema. The interesting thing is that when the grantee of
this privilege grants any privileges on any object, it appears as if the schema owner granted the priv-
ilege (the DBA_TAB_PRIVS view shows this). However, if you’re auditing the use of the GRANT statement,
you’ll see the real user who issued this statement. All users with the SYSDBA privilege automatically
have the GRANT ANY OBJECT privilege.

Revoking System Privileges

You use the REVOKE statement to revoke system privileges. The revoking of the privileges takes place
immediately. Here’s an example:

SQL> REVOKE DELETE ANY TABLE FROM pasowner;
Revoke succeeded.
SQL>

You can use the REVOKE statement to revoke only those privileges that were previously granted
to the user with a GRANT statement.

Only users with the SYSDBA privilege or those who have been explicitly granted object privi-
leges can access objects in the SYS schema. You can also enable other users’ access to SYS-owned
objects by granting one of the following three roles to those users. (Roles are named sets of privileges,
and I discuss them in the “Roles” section of this chapter.)

• SELECT_CATALOG_ROLE: This role grants SELECT privileges on the data dictionary views.

• EXECUTE_CATALOG_ROLE: This role grants EXECUTE privileges on the data dictionary
packages.

• DELETE_CATALOG_ROLE: This role enables users to delete records from the audit table,
called SYS.AUD$. (This table is discussed in the “Auditing Database Usage” section later in
this chapter.)

You can also use the SELECT ANY DICTIONARY system privilege to grant a user (usually devel-
opers) the privilege to select data from any object in the SYS schema.

570 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

The SYSDBA and SYSOPER SYSASM System Privileges

There are two powerful administrative system privileges, known as SYSDBA and SYSOPER. Because
of the powerful nature of these privileges, some restrictions apply to their administration. You can’t
use WITH ADMIN OPTION when granting these roles; only a user connected as SYSDBA can grant (or
revoke) these privileges to other users; and you can’t grant this system privilege to a role.

The SYSDBA system privilege includes the RESTRICTED SESSION privilege and has all system
privileges with WITH ADMIN OPTION, including the SYSOPER system privilege. The SYSDBA privilege
lets you do the following:

• Perform STARTUP and SHUTDOWN operations.

• Use the ALTER DATABASE command to open, mount, back up, or change a character set.

• Use the CREATE DATABASE command.

• Perform ARCHIVELOG and RECOVERY operations.

• Create an SPFILE.

The SYSOPER privilege similarly includes the RESTRICTED SESSION privilege, and it lets you do
the following:

• Perform STARTUP and SHUTDOWN operations.

• Use the ALTER DATABASE command to open, mount, or back up.

• Perform ARCHIVELOG and RECOVERY operations.

• Create an SPFILE.

■Tip Several normal database operations require users to query some data dictionary tables routinely. Therefore,
it’s a good idea to grant your developers on the development databases a set of basic system privileges by granting
these users the SELECT_CATALOG_ROLE. This role gives the developers select privileges on all data dictionary
views.

In addition to the SYSDBA and the SYSOPER privileges, there’s also a SYSASM privilege, which
you can use to administer Automatic Storage Management (ASM) instances. Although you can work
with ASM instances using your SYSDBA privileges, Oracle prefers you to separate database adminis-
tration and ASM administration. In Chapter 17, I discuss the SYSASM privilege in more detail in the
section “Automatic Storage Management.”

Object Privileges

Object privileges are privileges on the various types of database objects. An object privilege allows a
user to perform actions on a specific table, view, materialized view, sequence, procedure, function,
or package. Thus, all users of the database will need object privileges, even if they may not need any
system privileges. There are some common object privileges that apply to all database objects and
some that apply to only certain objects.

You can use the following SQL statements when you grant object privileges:

• ALTER

• SELECT

• DELETE

• EXECUTE

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 571

• INSERT

• REFERENCES

• INDEX

The following list identifies the different types of object privileges in an Oracle database, the
main object privileges of each type, and an example for each object type:

• Table privileges: SELECT, ALTER, DELETE, INSERT, and UPDATE

GRANT DELETE ON bonuses TO hr

■Tip You can grant INSERT and UPDATE privileges at a column level. Here is an example that shows how you
grant the INSERT privilege on the column salary in the persons table:

SQL> GRANT INSERT (salary) ON persons to salapati;

In order to grant privileges at the row level, you can use Oracle’s virtual private database (which I discuss in the
“Fine-Grained Data Access” section of this chapter) or the Oracle Label Security feature.

• View privileges: SELECT, DELETE, INSERT, and UPDATE

GRANT SELECT, UPDATE
ON emp_view TO PUBLIC;

• Sequence privileges: ALTER and SELECT

GRANT SELECT
ON oe.customers_seq TO hr;

• Procedure, function, and package privileges: EXECUTE and DEBUG

GRANT EXECUTE ON employee_pkg TO hr;

• Materialized view privileges: SELECT and QUERY REWRITE

GRANT QUERY REWRITE TO hr

• Directory privileges: READ and WRITE

GRANT READ ON DIRECTORY bfile_dir TO hr

If you grant a user an object privilege with an additional GRANT OPTION clause, the user can in
turn grant that privilege to other users in the database. Here’s an example:

SQL> GRANT DELETE ON bonuses TO hr WITH GRANT OPTION;

Once you grant the user hr the DELETE privilege on the bonuses table in the preceding manner,
hr can turn around and grant that privilege to any other users.

The owner of any object has all rights on the object and can grant privileges on that object to any
other user in the database. The schema owner has the right to grant these privileges—not the DBA
or the SYSTEM or SYS users. You can grant an object privilege to a user, provided one of the following
is true:

• You are the owner of the object.

• The object’s owner gave you the object privileges with the GRANT OPTION.

• You have been granted the GRANT ANY OBJECT system privilege.

572 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

■Note You can’t grant object privileges on some schema objects, such as clusters, indexes, triggers, and data-
base links. You control the use of these types of objects with a system privilege instead. For example, to alter a
cluster, a user must own the cluster or have the ALTER ANY CLUSTER system privilege.

An object owner can add the additional ALL clause to a GRANT statement in order to grant all
possible privileges on an object. For example, both the following GRANT statements are equivalent:

SQL> GRANT SELECT,INSERT,UPDATE,DELETE on EMPLOYEES TO oe;
SQL> GRANT ALL ON EMPLOYEES TO oe;

The schema owner can grant one type or all types of privileges at once on any given object. Here
are some examples that illustrate the granting of object privileges:

SQL> GRANT SELECT ON ods_process TO tester;
Grant succeeded.
SQL> GRANT INSERT ON ods_process TO tester;
Grant succeeded.
SQL> GRANT ALL ON ods_servers TO tester;
Grant succeeded.
SQL> GRANT INSERT ANY TABLE TO tester;
grant insert any table to tester
*
ERROR at line 1:
ORA-01031: insufficient privileges
SQL>

The ODS user is able to grant all privileges (SELECT, INSERT, UPDATE, and DELETE) on the
ods_servers table to the tester user by using the GRANT ALL command. But ODS fails to successfully
grant the INSERT ANY TABLE privilege to tester, because this requires a system privilege (INSERT
ANY TABLE) that ODS does not have. Note, however, that the system user can successfully make this
grant, as shown here:

SQL> CONNECT system/manager@finance1
Connected.
SQL> SHOW USER
USER is "SYSTEM"
SQL> GRANT INSERT ANY TABLE TO tester;
Grant succeeded.
SQL>

If the owner of an object grants an object privilege to a user with the WITH GRANT clause, the
grantee of the privilege is given the right to grant that same object privilege to other users. Here’s an
example:

SQL> GRANT INSERT ANY TABLE TO tester WITH GRANT OPTION

Column-Level Object Privileges

In the previous discussion, object privileges always implied a right to perform a DML action on an
entire table. However, a user can also be granted privileges on only certain columns of a table, as
shown in the following examples:

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 573

SQL> GRANT UPDATE (product_id) ON sales01 TO salapati;
Grant succeeded.
SQL>

Revoking Object Privileges

Revoking object privileges is analogous to granting privileges. You simply issue the REVOKE statement
for each object privilege you want to revoke:

SQL> CONNECT ods/ods@finance1;
Connected.
SQL> REVOKE SELECT, INSERT ON ods_process FROM tester;
Revoke succeeded.
SQL>

Note that you can’t revoke privileges at a column level, even though the privilege may have been
granted at that level. You’ll have to use the table level for the revocation of a privilege, regardless of
the level at which it was granted, as you can see in the following example:

SQL> REVOKE UPDATE (hostname) ON ods_process FROM tester;
revoke update(hostname) on ods_process from tester
 *
ERROR at line 1:
ORA-01750: UPDATE/REFERENCES may only
be revoked from the whole table, not by column
SQL> REVOKE UPDATE ON ods_process FROM tester;
Revoke succeeded.
SQL>

The GRANT ANY OBJECT Privilege

A user with the GRANT ANY OBJECT system privilege can grant and revoke any object privilege as if
he or she were the actual object owner. When you connect as SYSDBA (user SYS), you are automati-
cally granted this role with the WITH ADMIN OPTION clause.

Invoker Rights and Definer Rights

When you create a stored procedure in Oracle, it is executed by using the creator’s privileges. This is
the default behavior, and the stored procedure is said to have been created with definer’s rights.
When a user executes the procedure, it executes with the creator’s (definer’s) object privileges, not
the particular user’s, but there may be several situations where you don’t want all users to be able to
execute a procedure with the same rights. You can customize the accessibility of a procedure by
creating it with invoker’s rights, meaning the procedure will execute with the privileges of the user,
not the creator, of the procedure.

When you create a procedure with invoker’s rights, the procedure will execute under the user’s
security context, not the owner’s security context. Thus, any user who intends to execute a procedure
from a different schema will need to have the object privileges on all the tables that are part of the
procedure. All DML privileges on those tables should be granted directly, not through any role, to
the user.

The AUTHID clause in a CREATE PROCEDURE statement indicates that this procedure is being created
with user’s or invoker’s rights, not with the default owner’s or definer’s rights. Here is an example:

574 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

SQL> CREATE OR REPLACE PROCEDURE delete_emp
 2 (p_emp_id number)
 3 AUTHID current_user IS
 4 BEGIN
 5 DELETE FROM emp WHERE
 6 emp_id = p_emp_id;
 7 COMMIT;
 8* END;

Procedure created.
SQL>

In line 3, the AUTHID clause specifies that the procedure will execute with the privileges of the
current_user, the invoker of the procedure. Obviously, the user must have the explicit object privi-
lege on the table, DELETE on emp, for the procedure to execute successfully.

Roles
Although you can fairly easily manage user privileges by directly granting and revoking them, the job can
quickly become overwhelming when you add more users and the number of objects keeps increasing.
It’s very difficult, after a while, to keep track of each user’s current privileges. Oracle addresses this
problem by using roles, which are named sets of privileges that can be assigned to users.

Think of roles as a set of privileges that you can grant and revoke with a single GRANT or REVOKE
command. A role can contain both a set of privileges and other roles as well. Roles make it easy for
you to assign multiple privileges to a user. A default role is a role that’s automatically operative when
a user creates a session, and you can assign more than one default role to a user.

■Tip The DBA role, which is predefined in Oracle databases, is a set of system privileges WITH ADMIN OPTION,
meaning that the user with this role can grant these privileges to other users as well. In most cases, you grant this
role to a handful of users who perform database administration.

There are several predefined roles in an Oracle database, including the EXP_FULL_DATABASE,
IMP_FULL_DATABASE, and RECOVERY_CATALOG_OWNER roles. In addition, every Oracle data-
base contains the following three important roles, which have listed privileges:

• The CONNECT role: CREATE SESSION (earlier, the CONNECT role had several other privi-
leges, but now it has only the single CREATE SESSION privilege)

• The RESOURCE role: CREATE CLUSTER, CREATE INDEXTYPE, CREATE OPERATOR, CREATE
PROCEDURE, CREATE SEQUENCE, CREATE TABLE, CREATE TRIGGER, CREATE TYPE

• The DBA role: All system privileges with the WITH ADMIN OPTION clause

There are also two other predefined roles, EXP_FULL_DATABASE and IMP_FULL_DATABASE,
which enable a user to perform a Data Pump Export and Import at the database level.

The DBA role is traditionally assigned to all individuals in an organization who perform data-
base administration tasks. Oracle has indicated, however, that it may drop the DBA, CONNECT, and
RESOURCE roles in future versions, and it recommends that you create your own roles to replace
these three.

■Note By default, no user is granted any system privileges except those who have been granted the DBA role.

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 575

Creating a Role

Assuming you have either been granted the DBA role or you have a specific system privilege called
CREATE ROLE, you can create a role in the following manner:

SQL> CREATE ROLE new_dba;
Role created.
SQL>

The new_dba role just created doesn’t have any privileges attached to it, so you must now grant
privileges to this role. You may even grant other preexisting roles to the new_dba role. Roles are
empty vessels into which you can pour any number of system and object privileges.

Once the role has been created, you simply assign the role to a user, and the user will inherit all
the privileges contained in the role. Listing 12-9 shows how to grant various database privileges to a
new role.

Listing 12-9. Granting Privileges to a Role

SQL> GRANT CONNECT TO new_dba;
Grant succeeded.
SQL> GRANT SELECT ANY TABLE TO new_dba;
Grant succeeded.
SQL> GRANT UPDATE ANY TABLE TO new_dba;
Grant succeeded.
SQL> GRANT select_catalog_role TO new_dba;
Grant succeeded.
SQL> GRANT exp_full_database TO new_dba;
Grant succeeded.
SQL> GRANT imp_full_database TO new_dba;
Grant succeeded.
SQL>

To grant user salapati all the preceding privileges, all you need to do is this:

SQL> GRANT new_dba TO salapati;
Grant succeeded.
SQL>

A user can be assigned more than one role, and all of the roles that are granted to that user will
be active when the user logs into the database.

Role Authorization

In the example in the previous section, a password wasn’t needed to use the role. However, you can
specify that a role must be authorized before it can be used. You can specify role authorization in
several ways:

• Database authorization: You use a password when a role is authorized by the database, as
shown in this example:

CREATE ROLE clerk IDENTIFIED BY password;

• Database authorization with a PL/SQL package: A developer can create a role and specify that
a PL/SQL package be used to authorize that role. In the following example, the admin_role
role is enabled by a module defined inside the hr.admin PL/SQL package:

CREATE ROLE admin_role IDENTIFIED USING hr.admin;

576 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

• Externally, by the operating system, network, or other external source: You can require that a
role be authorized by an external source before it can be enabled, as shown here:

CREATE ROLE accts_rec IDENTIFIED EXTERNALLY;

• Globally, by an enterprise directory service: You can also define a role as a global role, which
means that a user can only be authorized to use the role by an enterprise directory service.
The following statement creates a global role that can be authorized by a directory service:

CREATE ROLE supervisor IDENTIFIED GLOBALLY;

Granting a Role Using WITH ADMIN OPTION

If you grant a user a role using the WITH ADMIN OPTION clause, the grantee can do the following:

• Grant the role to or revoke it from any user or other role in the database.

• Grant the role with the WITH ADMIN OPTION.

• Alter or drop the role.

Granting a Role to Another Role

You normally grant a role to a user. The user then can immediately exercise all the privileges encom-
passed by the role. However, you can grant a role to another role. In this case, the database will add
all the privileges of the role being granted to the privilege domain of the grantee role.

The PUBLIC User Group and Roles

If you grant a role to PUBLIC, the database makes the role available to all the users in your database.
If you wish to give a certain privilege or role to all the users in the database, you simply grant this
privilege or role to the PUBLIC user group, which exists in every database by default. This is not a
recommended way to grant privileges, however, for obvious reasons.

Disabling and Enabling a Role

You can disable a user’s role by inserting the appropriate row into the Product_User_Profile table in
the SYSTEM schema. Listing 12-10 shows you how to insert a row into this table to disable the TEST123
role, which has been assigned to the user TESTER.

Listing 12-10. Disabling a Role Using the Product_User_Profile Table

SQL> INSERT INTO PRODUCT_USER_PROFILE(PRODUCT,userid,attribute,char_value)
 2* VALUES('SQL*Plus','TESTER','ROLES','TEST123');

1 row created.
SQL> COMMIT;
Commit complete.
SQL> CONNECT tester/tester@finance1
Connected.
SQL> SELECT * FROM hr.regions;;
select * from hr.regions
 *ERROR at line 1:
ORA-00942: table or view does not exist

As you can see, once the TEST123 role is disabled, the TESTER user can’t select from the data-
base tables, and an error is issued when the SELECT is attempted.

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 577

When you want to reenable the TEST123 role, all you need to do is delete the appropriate row
from the Product_User_Profile table, as shown here:

SQL> DELETE FROM product_user_profile
 2 WHERE userid='TESTER'
 3* AND char_value = 'TEST123';
1 row deleted.
SQL> commit;
Commit complete.

Dropping a Role

Dropping a role is simple. Just use the DROP ROLE command:

SQL> DROP ROLE admin_user;
Role dropped.
SQL>

Using Views and Stored Procedures to Manage Privileges
In addition to using roles and privileges, Oracle also enables data security through the use of views
and stored procedures. You’ve already seen in Chapter 5 how views on key tables or even table joins
can not only hide the complexity of queries, but also provide significant data security.

DBA Views for Managing Users, Roles, and Privileges
The OEM is very handy when managing users in the database. However, you may wish to use a SQL
script from time to time to glean information about the users. Specific data dictionary views can help
you see who has what role, and what privileges a certain role has. You can also see what system- and
object-level privileges have been granted to a certain user. Table 12-1 presents the key data dictionary
views you can use to manage users, privileges, and roles in the database.

Table 12-1. Data Dictionary Views for Managing Users

Data Dictionary View Description

DBA_USERS Provides information about users

DBA_ROLES Shows all the roles in the database

DBA_COL_PRIVS Shows column-level object grants

DBA_ROLE_PRIVS Shows users and their roles

DBA_SYS_PRIVS Shows users who have been granted system privileges

DBA_TAB_PRIVS Shows users and their privileges on tables

ROLE_ROLE_PRIVS Shows roles granted to roles

ROLE_SYS_PRIVS Shows system privileges granted to roles

ROLE_TAB_PRIVS Shows table privileges granted to roles

SESSION_PRIVS Shows privileges currently enabled for the current session

SESSION_ROLES Shows roles currently enabled for the current session

578 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

Fine-Grained Data Access
The traditional means of ensuring data security (using privileges, roles, views, etc.) works pretty well,
but it has certain limitations. Chief among these is the fact that most security measures are too broad-
based, with the result that you end up unnecessarily restricting users when your primary goal is to
ensure that users can freely access information they need. In addition to the traditional concepts of
roles and privileges, Oracle provides more fine-grained, lower-level data security techniques. For
example, you can allow all users to access a central table, such as a payroll table, but you can insti-
tute security policies that limit an individual user’s access to only those rows in the table that pertain
to his or her department. Such limitations are transparent to the database users.

Oracle uses two related mechanisms to enforce fine-grained security within the database: an
application context and a fine-grained access control (FGAC) policy. Oracle uses the term virtual
private database to refer to the implementation of fine-grained access control policies using appli-
cation contexts. Often, you’ll find the terms fine-grained access control, virtual private database, and
row-level security used interchangeably to refer to Oracle’s capability to ensure security at the indi-
vidual row level instead of the table level.

By using Oracle’s fine-grained access control, you can fine-tune security policies in a very
sophisticated manner. You can use the fine-grained access control for the following purposes:

• Enforce row-level access control through SELECT, INSERT, UPDATE, and DELETE statements.

• Create a security policy that controls access based on a certain value of a column.

• Create policies that are applied the same way always as well as policies that dynamically
change during the execution of the query.

• Create sets of security policies, called policy groups.

Oracle lets you control row-level access to database objects through the virtual private database
(VPD) feature. Each user of an application can be limited to seeing only a part of a table’s data by
using the VPD concept. This row-level security is enforced by attaching a security policy directly to
a database object, such as a table, view, or synonym. No matter which tool the user uses to access the
database (SQL*Plus, an ad hoc query tool, or a report writer), the user can’t elude this row-level secu-
rity, which is enforced by the database server. Since the database enforces VPD, it provides much
stronger security than application-based security.

VPD uses a type of query rewrite to restrict users to certain rows of tables and views. A security
policy is attached to the table or tables to which you want to control access, and stored procedures
are written to modify any relevant SQL statements made against the tables in question. When a user
issues an UPDATE statement against a table with such a security policy, Oracle will dynamically append a
predicate (a WHERE clause) to the user’s statement to modify it and limit the user’s access to that table.

For example, if a user belonging to the sales department issues the statement UPDATE EMPLOYEE
SET salary=salary*1.10, the security policies attached to the employees table will cause Oracle to
add the fine-grained security function to the clause WHERE dept='SALES' to ensure that only employees in
sales are affected. Here is the original query:

UPDATE EMPLOYEE SET salary=salary*1.10

And here is the modified statement:

UPDATE EMPLOYEE SET salary=salary*1.10 WHERE dept='SALES'

To create a VPD, you have to create what is known as an application context and then imple-
ment fine-grained access control to enforce the row-level security for database tables and views. The
application context helps you create security policies that draw upon certain aspects of a user’s
session information. To take a simple example, when a user logs into the database, the user’s ID
identifies the user, and based on that piece of information, the application’s security policy sets

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 579

limits on what the user can do within the database. VPD is simply the implementation of an applica-
tion context with fine-grained access control.

■Note VPD policies can be applied to SELECT, INSERT, UPDATE, INDEX, and DELETE statements.

Application Context

An application context allows you to define a set of application attributes, usually a set of session
environmental variables, that you can use to control an application’s access to the database. Using
application attributes, you can supply relevant predicate values for fine-grained access control policies.
Oracle uses a built-in application context namespace called USERENV, which has a set of predefined
session attributes attached to it. These predefined attributes are then used by Oracle to control
access. When a user logs in, the database automatically captures key session attributes such as the
username, machine name, and IP address from the USERENV application context.

You can find out session-related information about any user by using the USERENV application
context, as shown by the examples in Listing 12-11. In the first example, the TERMINAL attribute shows
the name of the terminal from which the user is accessing the database. The second example uses the
OS_USER attribute to show the name of the operating system account name of the database user. The
third example gets the username by which the current user is authenticated from the SESSION_USER
attribute.

Listing 12-11. Using sys_context to Discover Session Information

SQL> CONNECT system/system_passwd;
Connected.
SQL>

SQL> SELECT sys_context ('USERENV', 'TERMINAL')
 2 FROM DUAL;
SYS_CONTEXT('USERENV','TERMINAL')

NTL-ALAPATISAM
SQL>

SQL> SELECT sys_context ('USERENV', 'OS_USER') FROM DUAL;
SYS_CONTEXT('_USERENV','CURRENT_USER')

oracle
SQL>

SQL> CONNECT fay/fay1;
Connected.
SQL>

SQL> SELECT first_name,last_name,employee_id FROM employees
 2 WHERE UPPER(last_name)=sys_context('USERENV', 'SESSION_USER');
 3
FIRST_NAME LAST_NAME EMPLOYEE_ID
--------------- --------- ------------
Pat Fay 202
1 row selected.
SQL>

580 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

Besides the TERMINAL, CURRENT_USER, and SESSION_USER attributes shown in the examples in
Listing 12-11, several other important predefined attributes belong to the USERENV namespace.
Table 12-2 lists some of the common predefined attributes.

When a user logs in, it’s useful to identify the type of the user and to capture certain key user
attributes. You can later use this information in the security policies that are attached to the database
objects. The built-in USERENV namespace is ideal for capturing these kinds of information.

The USERENV namespace, of course, is just one of the application context namespaces that you
can use. You’ll have to create your own application context so you can define which attributes you
want to use in setting your security policies. To define your own application context, you need to do
the following:

1. Create a PL/SQL package that sets the context with the help of functions.

2. Create an application context that uses the package you created.

Creating a Package to Set the Context

To set the application context for the hr user, you need to create a PL/SQL package. Listing 12-12
shows you how to create a simple package called HR_CONTEXT to set the application context. The
package includes a single procedure that selects the value of the employee_id column into the empnum
variable. Since this SELECT statement is based on a WHERE clause that determines the last_name of the
employee based on the value of the SESSION_USER attribute, the employee_id will be that of the user-
name by which the current user is authenticated by the database.

Listing 12-12. Creating a Package to Set the Application Context

SQL> CONNECT hr/hr
Connected.

SQL> CREATE OR REPLACE PACKAGE hr_context AS
 2 PROCEDURE select_emp_no ;
 3* END;

Table 12-2. Common Predefined Attributes in the USERENV Namespace

Attribute Description

instance Instance ID

entryID Auditing entry identifier

current_user Name of the user who started the session

session_user Database username by which the current user is authenticated

db_name Name of the database

host Name of the machine on which the database is running

os_user Operating system account name

terminal Client terminal through which the database is being accessed

ip_address IP address of the client machine

external_name External name of the database user

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 581

SQL> /
Package created.

SQL> CREATE OR REPLACE PACKAGE BODY hr_context as
 2 PROCEDURE select_emp_no IS
 3 empnum number;
 4 BEGIN
 5 SELECT employee_id INTO empnum FROM employees WHERE
 6 UPPER(last_name) =
 7 sys_context('USERENV', 'SESSION_USER');
 8 dbms_session.set_context('employee_info', 'emp_num', empnum);
 9 END select_emp_no;
 10* END;
SQL> /
Package body created.
SQL>

Creating the Application Context

You can think of an application context as a named set of variable=value pairs that are specific to a
session. Once you create the package (HR_CONTEXT) that helps set the application context, you can
go ahead and create the application context itself as follows. Note that the hr user uses the package
just created in the previous section to create the employee_info application context.

SQL> CONNECT system/system_passwd;
Connected.
SQL> GRANT CREATE ANY CONTEXT TO hr;
Grant succeeded.

SQL> CONNECT hr/hr;
Connected.
SQL> CREATE CONTEXT employee_info USING hr.context;
Context created.
SQL>

You can set the application context for a user in two ways. The first is to implement an application
context by itself, without fine-grained access control. To do this, you just create an event trigger on a
user’s logon so the user will invoke the SELECT_EMP_NO procedure belonging to the HR_CONTEXT
package upon logging into the database. Here’s how you create the logon trigger to set the initial context
for a user:

SQL> CREATE OR REPLACE TRIGGER hr.security_context
 2 AFTER LOGON ON DATABASE
 3 BEGIN
 4 hr_context.select_emp_no;
 5* END;
SQL> /
Trigger created.
SQL>

The preceding logon trigger uses the SELECT_EMP_NO procedure of the HR_CONTEXT package
you created to grab the user’s employee_id and store it in the emp_num variable.

The second way to set or reference an application context is to do so as an integral part of VPD,
using a policy function implementing fine-grained access control. The following section discusses
this in detail.

582 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

Fine-Grained Access Control

Traditionally, security policies were applied to entire applications. Users were given roles or privileges,
based on which they could access the tables in the application. This always left open the possibility
of users using tools such as SQL*Plus to go around the application’s security protocols and modify
data in the database tables. Furthermore, application-level security enforcement meant you had to
manage a grant/revoke policy for each user in the system for access to all the tables in the database.

There are situations where you might want to limit access to an application’s data to certain
segments of users. Of course, you could create views to such a thing, but managing views poses
several problems, such as maintenance and auditing usage.

Fine-grained access control enables you to restrict Oracle users so that they can only use the
data you want them to access and modify. FGAC is facilitated through the use of policy functions,
which you attach to the tables or views you want to secure. It uses dynamically modifiable state-
ments to restrict or limit users to certain portions of a table, view, or synonym. When a user’s SQL
statements are parsed, FGAC makes Oracle automatically evaluate the policy functions (you can
attach more than one policy to a table). Oracle will execute the user’s query after dynamically modi-
fying the query if necessary.

■Note FGAC enables you to implement fine-grained data security. You can enforce a row-level security policy
using this feature.

FGAC involves the following steps:

1. You create a policy function that will dynamically add a predicate to a user’s DML statement.
A predicate is the WHERE clause based on an operator (=, !=, IS, IS NOT, >, >=, EXIST, BETWEEN, IN,
NOT IN, and so on). Here’s an example of such a function:

cust_no = (SELECT custno FROM orders
WHERE
custname = SYS_CONTEXT ('USERENV','SESSION_USER'))

The package that implements your security policy will dynamically append a predicate to all
SELECT statements on the ORDERS table, returning only those orders that pertain to the user’s
customer number (cust_no).

2. A user enters a statement such as the following:

SELECT * FROM orders;

3. Oracle will use the policy function you created to dynamically modify the user’s statement.
For example, the statement in step 2 would be modified by the policy function in step 1
as follows:

 SELECT * FROM orders WHERE custno = (
 SELECT custno FROM customers
 WHERE custname = SYS_CONTEXT('USERENV', 'SESSION_USER'))

4. Oracle uses the username returned by SYS_CONTEXT('USERENV', 'SESSION_USER') and executes
the modified original query, thus limiting the data returned from the ORDERS table to that
customer’s data only.

Creating a Package That Will Access the Context

Let’s look at a simple example of FGAC. This FGAC implementation will use a policy that limits an
employee to only seeing appropriate data in the employees table.

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 583

First, we will create the hr_security package, which we will use later to access the application
context. This package is the key to row-level security, since it generates the dynamic-access predi-
cates for a table. Listing 12-13 shows how to create the hr_security package.

Listing 12-13. Creating the hr_security Package

SQL> CREATE OR REPLACE PACKAGE hr_security AS
 2 FUNCTION empnum_sec (A1 VARCHAR2, A2 VARCHAR2)
 3 RETURN varchar2;
 4 END;
 5*/
Package created.
SQL> CREATE OR REPLACE PACKAGE BODY hr_security AS
 2 FUNCTION empnum_sec (A1 VARCHAR2, A2 VARCHAR2)
 3 RETURN varchar2
 4 IS
 5 d_predicate varchar2 (2000);
 6 BEGIN
 7 d_predicate:= 'employee_id =
 8 SYS_CONTEXT("EMPLOYEE_INFO","EMP_NUM")';
 9 RETURN d_predicate;
 10 END empnum_sec;
 11 END hr_security;
 12* /
Package body created.
SQL>

The package created in Listing 12-13, hr_security, will use the employee_info context (created
earlier in the “Creating the Application Context” section) to get the emp_num variable. As you recall from
the previous section, the employee_info application context gets the emp_num variable from the USERENV
namespace (the SESSION_USER attribute of the USERENV namespace).

The d_predicate predicate in the hr_security package indicates the transformation that should
be applied to any queries made by any employee whose employee_id matches the emp_num variable
obtained from the employee_info context. For example, if user salapati issues the following command:

SQL> SELECT * FROM employees;

it will be modified by our predicate (d_predicate) as follows:

SQL> SELECT * FROM employees
 2* WHERE employee_id = SYS_CONTEXT ('EMPLOYEE_INFO', 'EMP_NUM');

Creating the Security Policy

The hr_security package created in the previous section lets you attach a dynamic predicate (WHERE
employee_id = SYS_CONTEXT ('EMPLOYEE_INFO', 'EMP_NUM')) to any SQL statements that can be used
by employees whose employee_id matches the emp_num derived by using the employee_info applica-
tion context. But we still haven’t attached a security policy to the employees table. That is, we now
have to specify what kinds of SQL statements, and precisely what tables, the hr_security package
would be applied to.

In previous releases of the Oracle database, all security polices were dynamic, meaning the
database had to execute the policy function for each DML statement. Of course, repeated execution
of the policy functions costs system resources and could hurt performance in a busy OLTP database.
Oracle now offers several choices regarding the type of policy you can use. You can specify the

584 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

following five types of security policies by using the POLICY_TYPE parameter of the DBMS_RLS.ADD_
POLICY procedure:

• Dynamic: Each time a statement is parsed or executed, the security policy function is executed
afresh. This is the default policy type, and you can specify it either by setting the POLICY_TYPE
parameter to DBMS_RLS.DYNAMIC or by just leaving the parameter out altogether.

• Static: This type of policy function needs to be executed only once, when a user first accesses
a database object. Thereafter, the value of the policy function is cached in the SGA, and all
users accessing the object will get the same predicate. You can choose this type by setting the
POLICY_TYPE parameter to DBMS_RLS.STATIC. The function must be deterministic so that
the predicate returned is always the same: if you have a branch in the function that can return
different predicates, you must specify a dynamic security policy instead.

• Shared static: This is identical to a static policy, and it is applied to multiple objects. Shared poli-
cies reduce your administrative burden by letting a single security policy cover several database
objects. You can enable it by setting the POLICY_TYPE parameter to DBMS_RLS.SHARED_STATIC.

• Context sensitive: Under this type of security policy, the policy predicate can be modified
based on changes in certain context attributes within a user’s session. The database caches
the policy predicate in the SGA. You choose this type by setting the POLICY_TYPE parameter to
DBMS_RLS.CONTEXT_SENSITIVE.

• Shared context sensitive: This policy type is similar to context-sensitive policies, but it is
shared across multiple objects. You choose this type by setting the POLICY_TYPE parameter to
DBMS_RLS.SHARED_CONTEXT_SENSITIVE.

You can add a security policy to a database by using the DBMS_RLS package (RLS stands for
row-level security) provided by Oracle. This package enables you to administer security policies,
which means you can add and drop policies, policy groups, or application contexts. You provide the
name of the table, view, or synonym for which you want the security policy to apply, as well as the
security policy for implementing the FGAC. You also specify the particular types of SQL statements
the policy applies to, such as a SELECT, INSERT, UPDATE, DELETE, CREATE INDEX, or ALTER INDEX statement.

Here are the main procedures of the DBMS_RLS package:

• DBMS_RLS.ADD_POLICY: Adds a policy to a table, view, or synonym

• DBMS_RLS.CREATE_POLICY_GROUP: Creates a policy group

• DBMS_RLS.ADD_POLICY_CONTEXT: Adds the context for the application

You create the security policy using the DBMS_RLS.ADD_POLICY procedure, as shown here:

SQL> CONNECT system/system_passwd
Connected.

SQL> EXECUTE dbms_rls.add_policy('hr','employees','manager_policy','hr',-
 'hr_security.empnum_sec','select');
PL/SQL procedure successfully completed.

Note that you could also have executed the preceding statement in the following equivalent
manner:

SQL> BEGIN
 2 dbms_rls.add_policy
 3 (object_schema => 'hr',
 4 object_name => 'employees',
 5 policy_name => 'manager_policy',
 6 function_schema => 'hr',
 7 policy_function => 'hr_security.empnum_sec',

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 585

 8 statement_types => 'select');
 9* END;
SQL> /

The DBMS_RLS.ADD_POLICY procedure in the preceding statements creates a policy called
manager_policy in the hr schema. This security policy is actually implemented by the function
empnum_sec, which is part of the hr_security package that you created earlier. The security policy
specifies that it applies to all SELECT operations against the employees table.

To put it simply, the new security policy you created (manager_policy) will limit all SELECT state-
ments against the hr.employees table to information that pertains to the employee_id of the user
who issued the query.

You can check that the new policy was indeed created successfully by making the following query:

SQL> SELECT object_name, policy_name, sel, ins, upd, del, enable
 FROM all_policies;

OBJECT_NAME POLICY_NAME SEL INS UPD DEL ENABLED
----------- ------------- ---- --- ---- ---- --------
EMPLOYEES MANAGER_POLICY YES NO NO NO YES

SQL>

The output of the query indicates that all SELECT statements against the employees table are
now controlled by the manager_policy security policy.

To make the security policy functions accessible to the public so that all users accessing the
database will use it, you can make the following grant:

SQL> GRANT EXECUTE ON hr_security TO public;
Grant succeeded.

Column-Level VPD

You’ve seen how you can enforce row-level security anytime you access a table. Oracle also lets you
use a column-level VPD to enforce row-level security whenever a query references a certain column
or columns only. You can apply column-level VPD to a table or a view.

Creating a column-level security policy is almost identical to creating regular security policies—
you just add the additional SEC_RELEVANT_COLS parameter in the DBMS_RLS.ADD_POLICY procedure to
specify the relevant columns for security. Here’s how you use the DBMS_RLS.ADD_POLICY proce-
dure to create a column-level security policy.

SQL> BEGIN
 2 dbms_rls.add_policy
 3 (object_schema => 'hr',
 4 object_name => 'employees',
 5 policy_name => 'manager_policy',
 6 function_schema => 'hr',
 7 policy_function => 'hr_security.empnum_sec',
 8 statement_types => 'select,insert',
 9 sec_relevant_cols => 'salary');
 10*END;
SQL> /

The column-level policy created in the preceding example would come into effect only if the
salary column of the employees table is accessed. Suppose a user subsequently issues the following
query:

SQL> SELECT fname, lname, salary FROM employees;

586 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

The column-level VPD policy kicks into action when it sees that the salary column is referenced
in a query, and the policy function implementing the column-level security policy returns the pred-
icate WHERE salary ='my_salary', thus transforming the query as follows:

SQL> SELECT fname, lname, salary FROM employees WHERE salary = 'my_salary';

Policy Groups

When you access a table, Oracle looks up the application context (the policy context) to determine
which policy group, and therefore which security policy, should be enforced. There is one default
policy group called SYS_DEFAULT that can never be dropped from the database, and every policy
belongs to this group by default.

Using Oracle Policy Manager

You can use the Oracle Policy Manager GUI, an extension to Oracle Enterprise Manager, to admin-
ister Oracle Label Security (discussed next) as well as to create VPD security policies. Oracle Policy
Manager will help you effortlessly create application contexts and complex security policies to enforce
fine-grained data security. This definitely beats creating application contexts and security policies
manually.

When you use OEM to create a VPD policy, you create an application context and provide the
table (or view or synonym) name, the policy name, the function name that generates the predicate,
and the statement types to which the policy applies (SELECT, INSERT, UPDATE, or DELETE). Oracle Policy
Manager executes the DBMS_RLS.ADD_POLICY function to create the FGAC policy to support your VPD.

Label-Based Access Control

Oracle allows you to label parts of your data, and users can be granted privileges to access data with
certain labels. Security policies are implemented on a single column, which represents the label. The
Oracle Label Security feature (based on the older Trusted Oracle security product) is built on the
same components that help you create a VPD. You can easily construct labels to limit access to rows
in a certain table, and use label authorizations and privileges to set up a label-based security policy.
The Oracle Policy Manager GUI is mainly designed to create and administer Oracle Label Security
policies.

Auditing Database Usage
Just because you have set up a sophisticated system of access controls using privileges, roles, views,
and even fine-grained security policies doesn’t guarantee that database security won’t be breached.
Auditing database usage lets you know whether your access control mechanisms are indeed working
as designed. Auditing involves monitoring and recording (selected) users’ database activity.

Oracle’s built-in auditing features allow you to track the changes made to database objects. You
can audit the granting of privileges within the database, as well as non-DML and non-DDL changes,
such as database startup and shutdown events. Auditing user activity can potentially lead to a large
amount of data to keep track of, but fortunately, Oracle offers you a lot of control over what type of
activities you want to audit. You can audit just at the session level or at the entire database level.

Oracle makes a broad distinction between standard auditing and fine-grained auditing. Standard
auditing is based on statement-, privilege-, and object-level auditing. Fine-grained auditing deals
with data access at a granular level, with actions based on content, such as value > 100,000. I discuss
standard auditing first, and then fine-grained auditing.

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 587

Standard Auditing
Oracle Database 11g lets you audit database use at three different levels: statement, privilege, and
object. A statement-level audit specifies the auditing of all actions on any type of object. For example,
you can specify that the database audit all actions on tables by using the AUDIT TABLE statement. A
privilege-level audit tracks actions that stem from system privileges. You can audit all actions that
involve the use of a granted privilege, such as auditing all CREATE ANY PROCEDURE statements. Finally,
an object-level audit monitors actions such as UPDATE, DELETE, and INSERT statements on a specific
table, so you could audit all DELETEs on the hr_employees table.

For each of the three levels of auditing, you can choose to audit either by session or by access. If
you audit by session, Oracle will log just one record for all similar statements that fall under the purview
of auditing. If you audit by access, Oracle writes a record for each access. You can also decide to log
only whether a certain action failed or succeeded by using the WHENEVER SUCCESSFUL and the WHENEVER
NOT SUCCESSFUL auditing options. When the operation is unsuccessful, it’s usually an indication that
the user doesn’t have privileges to perform the operation. You’ll want to know who is attempting
such unauthorized operations.

■Tip One of the common arguments against the use of Oracle database auditing is that it will consume a lot of
space in the database. If you spend time analyzing why you are auditing, you can limit the amount of data written
to the audit trail. By using a focused auditing policy that targets only vital data, rather than systemwide auditing, you
can limit the auditing output to a manageable amount. You may also decide to turn on auditing only if you encounter
questionable activity in the database.

Enabling Auditing

In order for you to audit any user activity within the database, and even attempt to log into the data-
base, you need to enable auditing by specifying the AUDIT_TRAIL parameter in your init.ora file.
Audit records contain the audit information, such as the audited user, the type of operation, and the
date and time of the operation, and the AUDIT_TRAIL parameter specifies what is done with these
records. The parameter can take the following values:

• NONE: Disables database auditing. NONE is the default value for this parameter.

• OS: Specifies that Oracle will write the audit records to an operating system file (operating
system audit trail).

• DB: Specifies that Oracle will write the audit records to the database audit trail, viewable as
DBA_AUDIT_TRAIL (stored in the SYS.AUD$ table).

• DB, EXTENDED: Specifies that Oracle will send all audit records to the database audit trail
(SYS.AUD$), and in addition, populates the SQLBIND and SQLTEXT CLOB columns.

• XML: Specifies database auditing, with the XML-format audit records going to the OS files.

• XML, EXTENDED: Same as the XML setting, but also records all audit-trail columns, including
SQLTEXT and SQLBIND.

There is a default location in which Oracle will place the audit file, and you can easily change the
location of this file by using the AUDIT_FILE_DEST parameter in the init.ora file, as shown here:

AUDIT_TRAIL=DB
AUDIT_FILE_DEST=/a10/app/oracle/oradata/audit_data

588 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

If you specify AUDIT_TRAIL=OS, the audit trail won’t store the audit information in the database.
It will instead store that information in the location specified by the AUDIT_FILE_DEST parameter. If
you specify AUDIT_TRAIL=OS and omit the AUDIT_FILE_DEST parameter, by default the audit informa-
tion will be written to the $ORACLE_HOME/rdbms/audit/ directory.

■Tip If you specify AUDIT_TRAIL=DB, the audit records will be logged to a special table owned by SYS called
SYS.AUD$, located in the System tablespace. If you want to do any kind of serious auditing on your database, the
tablespace will quickly run out of space. Make sure you change the storage parameters of the SYS.AUD$ table and
add more space to the System tablespace before you turn auditing on. Otherwise, you run the risk of filling up your
System tablespace while auditing the database.

You can use the DBA_AUDIT_TRAIL view to make use of the information in the database audit
trail table (SYS.AUD$). Depending on the event you are auditing and the options you select for auditing,
you may see the following types of data in the audit trail:

• Operating system login

• Database username

• Terminal and session identifiers

• Operation performed or attempted

• Date and time stamp

• SQL text that triggered the auditing

You don’t need to be overly concerned with the filling up of the SYS.AUD$ table when auditing
is turned on. You can always truncate the table after exporting the contents to a different location or
when you deem it isn’t necessary to store the contents of the audit table any longer.

Oracle’s Default Auditing

Even when you don’t set up database auditing by specifying the AUDIT_TRAIL parameter at all, by
default Oracle will log three types of database actions to the $ORACLE_HOME/rdbms/audit directory:

• Connections as SYSOPER or SYSDBA

• Database startup

• Database shutdown

Typically, the audit file captures the CONNECT, SHUTDOWN, and STARTUP events undertaken by the
user SYS, who, of course has the SYSDBA privileges.

You can audit all actions of the user SYS, including all users connecting with the SYSDBA or
SYSOPER privileges, by setting the AUDIT_SYS_OPERATIONS init.ora parameter to true.

AUDIT_SYS_OPERATIONS=TRUE

Note that if this parameter is set, all actions of the SYS user will be audited, whether you set the
AUDIT_TRAIL parameter or not. The parameter has a default value of false.

Turning Auditing On

Once you have set the AUDIT_TRAIL parameter, you will have enabled auditing in your database.
However, for the actual auditing to begin, you must also specify which tables and what actions you
want the database to audit.

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 589

You can start auditing actions at any level by using the appropriate command. Listing 12-14
shows a sampling of commands that specify auditing at various levels, with different options.

Listing 12-14. Turning Auditing On in the Database

SQL> AUDIT SELECT ON employees;
Audit succeeded.
SQL> AUDIT DELETE ANY TABLE BY salapati WHENEVER NOT SUCCESSFUL;
Audit succeeded.
SQL> AUDIT UPDATE ANY TABLE;
Audit succeeded.
SQL> AUDIT SESSION BY SALAPATI;
Audit succeeded.
SQL> AUDIT SELECT,INSERT,UPDATE,DELETE
 2 ON employees BY ACCESS WHENEVER SUCCESSFUL;
Audit succeeded.
SQL>

Here is a more powerful audit option that ensures the auditing of all privileges:

SQL> AUDIT ALL PRIVILEGES;
Audit succeeded.
SQL>

Obviously, the audit trail for this auditing choice will be large if you have many users who have
been granted object privileges in the database.

■Note The AUDIT SESSION statement does not audit the statements executed during an entire session—it logs
the session start time, the end time, and the logical and physical I/O resources consumed by this session, among
other things.

Turning Auditing Off

To turn auditing off, you use a statement that is almost identical to the one you used to turn auditing
on. The big difference, of course, is that you use the NOAUDIT keyword in place of AUDIT. Here are
some examples:

SQL> NOAUDIT SESSION;
Noaudit succeeded.
SQL> NOAUDIT DELETE ANY TABLE BY salapati WHENEVER NOT SUCCESSFUL;
Noaudit succeeded.
SQL> NOAUDIT DELETE ANY TABLE BY salapati;
Noaudit succeeded.

■Note You can use either of the last two statements to turn DELETE ANY TABLE BY salapati WHENEVER
NOT SUCCESSFUL off. That is, the NOAUDIT keyword, when applied to a more general statement, will turn off
lower-level auditing that is subsumed by the general privilege.

If you want to turn off all the levels of auditing—statement, privilege, and object—you can do so
by using the following three SQL statements:

590 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

SQL> NOAUDIT ALL; /* turns off all statement auditing */
SQL> NOAUDIT ALL PRIVILEGES; /* turns off all privilege auditing */
SQL> NOAUDIT ALL ON DEFAULT; /* turns off all object auditing */

Customizing Database Auditing with Triggers

Oracle triggers are special blocks of code that are triggered or fired off by certain events in the data-
base. Most applications use triggers to update one table based on an action in another table. A trigger
could fire off based on DML or DDL statements, and they can be used to help enforce business rules
within the database. You can audit specific user actions by simply writing triggers or other stored
procedures that will log user information to a table when the user performs a specific database
operation.

You can create several types of triggers in Oracle, including DML and DDL triggers, which are
based on actions performed by users on tables and views, and system-level triggers, which are more
broad-based. In the following sections you’ll learn about these types of triggers.

■Tip You don’t have to necessarily turn database-wide auditing on if you’re solely interested in a specific user’s
actions or want to audit limited actions in the database. You can write triggers that will insert information into a log
table upon the occurrence of specified events.

Using DML-Based Triggers for Auditing

The most commonly used triggers in Oracle databases are DML triggers; applications routinely use
them to maintain business rules within the database. Oracle triggers are easy to implement, and you
can employ them if you’re interested in a modest range of auditing activity. Listing 12-15 shows a
small example of how to use a trigger to audit insert operations by users on a certain table.

Listing 12-15. A Typical DML Trigger

SQL> CONNECT tester/tester1
Connected.

SQL> CREATE OR REPLACE TRIGGER audit_insert
 2 AFTER INSERT ON tester.xyz
 3 FOR EACH ROW
 4 INSERT INTO xyz_audit
 5* VALUES(user, sysdate);
Trigger created.
SQL>

SQL> CONNECT tester/tester1
Connected.

SQL> INSERT INTO xyz
 2 VALUES
 3 ('sam alapati');
1 row created.

SQL> COMMIT;
Commit complete.

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 591

SQL> CONNECT system/system_passwd
Connected.
SQL> SELECT * FROM xyz_audit;
USER_NAME ACTION_DATE

TESTER 24-MAR-08
SQL>

The more actions you want to audit, the larger the space required to hold the audit trail. You
have to understand why you are auditing and only audit those activities that are of true significance
to your organization.

■Note There are no rules regarding the operations you should audit. In some organizations, all DML changes
(INSERT, UPDATE, and DELETE) may have to be audited to ensure that you can track down any unauthorized
changes. In other organizations, simply auditing failed logins might suffice.

Using System-Level Triggers for Auditing

Triggers that fire after DML operations, such as an INSERT or a DELETE, are the most commonly used
triggers in Oracle databases, but they aren’t the only types of triggers you can use. Oracle provides
powerful system-level triggers, such as those set to fire after database startup and before database
shutdown. Login and logoff triggers are especially useful for database auditing.

The following are the main types of system-level triggers that Oracle Database 11g offers:

• Database startup triggers: You can use these triggers mostly to execute code that you want to
execute immediately after database startup.

• Logon triggers: These triggers provide you with information regarding the logon times of a
user and details about the user’s session.

• Logoff triggers: These triggers are similar to the logon triggers, but they execute right before
the user’s session logs off.

• DDL triggers: You can capture all database object changes with these triggers.

• Server error triggers: These triggers capture all major PL/SQL code errors into a special table.

Let’s look at a simple example that shows the potential of the special Oracle triggers for auditing
users. This example first creates a simple table to hold logon data. Whenever a user logs in, the table
captures several pieces of information about the user. By auditing the logoff items with another
trigger, it is easy to find out how long the user was inside the database on a given day.

Here are the steps involved in creating a logon/logoff auditing system using system-level triggers:

1. Create a test table called logon_audit:

SQL> CREATE TABLE logon_audit(
 2 user_id VARCHAR2(30),
 3 sess_id NUMBER(10),
 4 logon_time DATE,
 5 logoff_time DATE,
 6* host VARCHAR2(20));
Table created.
SQL>

592 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

2. Create a pair of logon and logoff triggers:

SQL> CREATE OR REPLACE TRIGGER logon_audit_trig
 2 AFTER LOGON
 3 ON DATABASE
 4 BEGIN
 5 INSERT INTO logon_audit
 6 VALUES
 7 (user,
 8 sys_context('userenv', 'sessionid'),
 9 sysdate,
 10 null,
 11 sys_context('userenv', 'host'));
 12* END;
Trigger created.

SQL> CREATE OR REPLACE TRIGGER logoff_audit_trig
 2 AFTER LOGOFF
 3 ON DATABASE
 4 BEGIN
 5 INSERT INTO logon_audit
 6 VALUES
 7 (user,
 8 sys_context('userenv', 'sessionid'),
 9 null,
 10 sysdate,
 11 sys_context('userenv', 'host'));
 12* END;
Trigger created.
SQL>

3. Review your users’ login/logout details:

SQL> SELECT * FROM logon_audit;
USER_NAME SESS_ID LOGON_TIME LOGOFF_TIME HOST_NAME
--------- -------- ------------------- ----------- ----------
SYSTEM 347 24-MAR-085 07:00:30 NTL-ALAPATI
HR 348 24-MAR-08 07:10:31 NTL-ALAPATI
HR 348 24-MAR-08 07:32:17 NTL-ALAPATI
SQL>

You could also use a DDL trigger to capture changes made to objects by users, including modi-
fication, creation, and deletion of various types of objects. You can capture a large number of attributes
about the event and the user that sets off a DDL trigger.

To capture some of the important attributes of a user event, you first need to create a table to
log DDL changes. Once you have done that, you can create a DDL trigger like the one shown in
Listing 12-16. In this example, the table is named DDL_LOG and the trigger is DDL_LOG_TRIG.

Listing 12-16. Using DDL Triggers to Audit Users

SQL> CREATE OR REPLACE TRIGGER
 2 ddl_log_trig
 3 AFTER DDL ON DATABASE
 4 BEGIN
 5 INSERT INTO ddl_log
 6 (username,

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 593

 7 change_date,
 8 object_type,
 9 object_owner,
 10 database
 11)
 12 VALUES
 13 (ora_login_user,
 14 sysdate,
 15 ora_dict_obj_type,
 16 ora_dict_obj_owner,
 17 ora_database_name)
 16* END;
Trigger created.
SQL>

Once the trigger is in use, you can query the DDL_LOG table to see the changes. As you can see
here, users HR and SYSTEM have made several DDL-based changes to the database:

SQL> SELECT * FROM ddl_log;
USERNAME CHANGE_DATE OBJECT_TYPE OBJECT_OWNER DATABASE_NAME
-------- ----------- --------------- ------------- -------------
HR 24-MAR-08 SYNONYM HR NINA
SYSTEM 24-MAR-08 OBJECTPRIVILEGE SYSTEM NINA
HR 24-MAR-08 TRIGGER HR NINA
SQL>

Using Flashback Features for Auditing

In addition to using the standard Oracle auditing features described in the previous sections, you
can also take advantage of Oracle’s Flashback capabilities to audit changes made to a table’s rows.
For example, you can use the Flashback Query feature to examine a table’s data at a past point in
time. Using the Flashback Transaction Query, you can find out all the changes made to a row since
a past point in time or an SCN.

The Flashback Versions Query will return each version of a row that existed in the specified
period. You can easily identify the user and the specific operation that resulted in any inappropriate
or unauthorized modifications to data. Using the transaction details from this query, you can go
ahead and identify the entire transaction(s) with the help of another flashback feature, Flashback
Transaction Query.

The Flashback Query, Flashback Versions Query, and Flashback Transaction Query features rely
on undo data and are discussed in detail in Chapter 8.

Fine-Grained Auditing
Suppose you’re interested in using auditing to find out whether users are viewing data in a table
they’re not really supposed to access. For example, say a manager is supposed to be able to see
salary-related information for employees working for him. Can you tell whether the manager is also
looking at the salary information of his superiors? Do you need to audit all the SELECT statements
done by the manager?

Auditing all SELECT statements would lead to a colossal amount of audit data, but fortunately
there’s an easy out. Oracle lets you audit actions in the database on the basis of content. That is, you
can specify that the audit records be written not for all SELECT, INSERT, UPDATE, and DELETE statements,
but only for statements that meet certain criteria. Instead of trying to determine policy violations
based on what is being done to any data, you apply fine-grained auditing (FGA) policies to individual
tables or specific operations that you wish to monitor.

594 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

Enabling Fine-Grained Auditing

You use the DBMS_FGA Oracle package to enable fine-grained auditing. With FGA, you can audit
only specific rows within a table. You can simulate a trigger for statements by executing a user-written
procedure when an audit condition is met. You can catch employee misuse of data. You can also use
FGA as an intrusion-detection device.

You don’t need to turn on database-wide auditing to use FGA, and since the auditing is based
on table access, it is virtually impossible to bypass FGA policies. FGA records are accessible through
the DBA_FGA_AUDIT_TRAIL and DBA_COMMON_AUDIT_TRAIL views, with the latter view
combining both standard and fine-grained audit log records.

You use the DBMS_FGA package’s ADD_POLICY procedure to add a fine-grained audit policy.
Listing 12-17 shows the structure of the ADD_POLICY procedure.

Listing 12-17. The ADD_POLICY Procedure

SQL> EXECUTE DBMS_FGA.ADD_POLICY(
 object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_name VARCHAR2,
 audit_condition VARCHAR2,
 audit_column VARCHAR2,
 handler_schema VARCHAR2,
 handler_module VARCHAR2,
 enable BOOLEAN,
 statement_types VARCHAR2,
 audit_trail BINARY_INTEGER IN DEFAULT,
 audit_column_opts BINARY_INTEGER IN DEFAULT);

These are the parameters of the ADD_POLICY procedure:

• object_schema: The schema of the object you want to audit. The default is NULL meaning the
logon user schema.

• object_name: The name of the object you want to audit.

• policy_name: A user-given name for the audit policy.

• audit_condition: A condition in a row that indicates a monitoring condition. The default
value is NULL, which acts as TRUE.

• audit_column: The columns you want to audit for access. The default is NULL, which means
that all column access will be audited. The audit_column_opts parameter works in conjunc-
tion with this parameter.

• handler_schema: The schema that contains the event handler. The default is NULL, meaning
that the current schema will be used.

• enable: The parameter that enables or disables the policy. The default value is TRUE, which
enables the policy.

• statement_types: The SQL statement types to which this policy is applicable: INSERT, UPDATE,
DELETE, or SELECT. The default is SELECT.

• audit_trail: The parameter that says whether to populate LSQLTEXT and LSQLBIND in the
fga_log$ table. A setting of DB does not populate the columns. The default value is
DB_EXTENDED, which populates the columns.

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 595

• audit_column_opts: Determines whether auditing should be enforced when the query references
any column or all columns specified in the audit_column parameter. Set to DBMS_FGA.ALL_COLUMNS,
the statement will be audited only if it references all columns specified in the audit_column
parameter. The default is DBMS_FGA.ANY_COLUMNS, which means the statement will be audited
if it references any column specified in the audit_column parameter.

Using Fine-Grained Auditing

It’s time to see how you can use the DBMS_FGA package to enforce fine-grained auditing. The
following FGA example audits any DML statement (INSERT, UPDATE, DELETE, and SELECT) on the
hr.emp table that accesses the salary column for any employee belonging to the SALES department:

SQL> EXECUTE DBMS_FGA.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'emp',
 policy_name => 'chk_hr_emp',
 audit_condition => 'dept = ''SALES'' ',
 audit_column => 'salary',
 statement_types => 'insert,update,delete,select',
 handler_schema => 'sec',
 handler_module => 'log_id',
 enable => TRUE);

Once the preceding ADD_POLICY procedure is executed, all subsequent SELECT statements that
query the emp table for salary information where the employee belongs to the SALES department
will be logged in the SYS.FGA_LOG$ table in the System tablespace; DBA_FGA_AUDIT_TRAIL is a
view built on this table. You can also capture the SQL text, policy name, and other information
through the LSQLTEXT and LSQLBIND columns of fga_log$, providing you specify audit_trail =
DBMS_FGA.DB_EXTENDED.

The handler_module and the handler_schema parameters are used to take a predetermined set of
actions whenever an audit event occurs, and you can create a trigger-like mechanism called the
audit event handler that handles the audit event when it occurs.

Here are what the two event handler–related parameters stand for:

• handler_schema: The schema that owns the data procedure

• handler_module: The procedure or package name

In our example, the handler module is denoted by sec_id, which is the following procedure:

SQL> CREATE PROCEDURE sec.log_id (schema1 varchar2, table1 varchar2,
 policy1 varchar2)
 AS
 BEGIN
 UTIL_ALERT_PAGER(schema1, table1, policy1); /*send an alert to my pager*/
 END;

■Tip You only need the execute privilege on the DBMS_FGA package in order to use FGA. When you use the
DBMS_FGA package, the audit records don’t go into the standard audit table, the SYS.AUD$ table, even when you
turn on the database audit trail. The audit records go into a special table called sys.fga_aud$.

596 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

Viewing the Audit Trail

The DBA_FGA_AUDIT_TRAIL view shows you the audit trail (stored in the sys.fga_aud$ table) when
you use FGA in your database. It provides fine-grained audit information, such as the time stamp,
database user ID, object name, and actual SQL text used in the statement flagged by your FGA policy.
Here’s an example:

SQL> SELECT timestamp,
 db_user,
 os_user,
 object_schema,
 object_name,
 sql_text
 FROM dba_fga_audit_trail;

The standard audit trail in Oracle databases is also called DBA_AUDIT_TRAIL and the FGA audit
trail is called DBA_FGA_AUDIT_TRAIL. If you wish, you can view both types of auditing in the new
DBA_COMMON_AUDIT_TRAIL view, which combines both regular and FGA audit trails.

■Note Always try to keep your audit options to the minimum necessary to meet your auditing objectives. As a
DBA, you should keep a close watch on the System tablespace and the SYS.AUD$ table when auditing is turned on.
If the SYS.AUD$ table gets full, further connections and DML activity in the database might come to a standstill. You
may want to archive and purge the records from the SYS.AUD$ table periodically.

Authenticating Users
Database authentication refers to the authentication of the user account and password directly by
Oracle. However, although database authentication is easy to set up, it isn’t the only or the best
means of authenticating Oracle users. You have a choice of several ways of authenticating database
users—ways that aren’t dependent on the database.

The following section covers the most common means of Oracle user authentication, which is
to authenticate users through the database. After this, I briefly discuss some other means of user
authentication—external, proxy, and centralized user authentication.

Database Authentication
Database authentication is the standard verification of a user’s access privileges by using database
passwords. If you’re relying on the database to authenticate your users, you should have a strong
password-management policy.

Here’s an example of database authentication:

SQL> CREATE USER scott IDENTIFIED BY tiger;

Managing Passwords

Depending on how you create a database (manually or using the DBCA), Oracle will have several
accounts with default passwords. If you create a tablespace manually, you may only have SYS, SYSTEM,
DBSNMP (the Oracle Intelligent Agent account), and OUTLN (the username for managing the outlines
feature). In some cases, the user scott (owner of the old Oracle demo database schema) is also created
with the default password of “tiger.” A standard database created by the DBCA may have up to
32 default user accounts.

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 597

As part of securing the database, you must use all the standard password-management tech-
niques, including changing passwords at set intervals, checking passwords for complexity, and
preventing reuse of old passwords.

Let’s see how Oracle creates the default user accounts in a new database. The query in Listing 12-18
lists all the usernames and their status. An account may be open or it may be locked or expired. An
open account is one you can log into, as long as you have a valid password. A locked account must be
explicitly unlocked by the DBA. A locked regular account usually results from the user trying to enter
the database with an incorrect password more times than the specified limit allows. An expired
account is one whose password has to be changed, which ensures that the same passwords aren’t
used forever.

Listing 12-18. Displaying the Account Status of All Users

SQL> SELECT username, account_status
 2 FROM dba_users;

USERNAME ACCOUNT_STATUS
---------- ---------------
MGMT_VIEW OPEN
SYS OPEN
SYSTEM OPEN
DBSNMP OPEN
SYSMAN OPEN
SCOTT OPEN
OUTLN EXPIRED & LOCKED
HR EXPIRED & LOCKED
. . .
32 rows selected
SQL>

The DBA must change the passwords for all default user accounts immediately after the data-
base has been created. Any unnecessary default accounts must be locked and expired.

Password Case Sensitivity

By default, all passwords are case sensitive in Oracle Database 11g. The initialization parameter
SEC_CASE_SENSITIVE_LOGON controls whether passwords are case sensitive or not. The default value
of this parameter is true, which means all passwords are case sensitive by default. If, for some reason,
say because some of your applications use hard-coded passwords that require that passwords not be
case insensitive, you can instruct the database to disregard case when evaluating passwords, by
setting the SEC_CASE_SENSITIVE_LOGON parameter to false, as shown here:

sec_case_sensitive_logon=false

When you upgrade a pre–Oracle Database 11g release database to Oracle Database 11g, the
passwords remain case insensitive, because that was the behavior in those releases. You must use
the ALTER USER statement to change the password of each user, in order to make them case sensitive.

When you upgrade to Oracle Database 11g, passwords remain case insensitive until you change
the passwords, If you leave the SEC_CASE_SENSITIVE_LOGON parameter at its default value of true, all
new passwords will be case sensitive, just as in a newly created Oracle Database 11g release database.
You can execute the following query in a newly upgraded database to find out in which release a
user’s password was set or changed.

598 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

SQL> SELECT username, password, password_versions
 FROM dba_users;

USERNAME PASSWORD PASSWORD
-------------------- --------- --------
MGMT_VIEW 10G 11G
SYS 10G 11G
SYSTEM 10G 11G
DBSNMP 10G 11G
SYSMAN 10G 11G
RMAN 10G 11G
SH 10G 11G
. . .
39 rows selected.
SQL>

The column PASSWORD_VERSIONS reveals the database version in which a password was
initially set or modified. The output of the query shows that all passwords were either created or
changed in the Oracle Database 11g release database. You can’t see the (encrypted) passwords in this
query as you could in prior releases, but the encrypted passwords are available through the USER$
view.

When a user tries and fails to connect with a wrong password, the database will increase the
time between successive attempts after the third failed attempt, for a maximum of 10 seconds.

Secure Password Support

In addition to making all passwords case sensitive by default, Oracle also provides other features to
provide secure password support. These features include the passing of all passwords entered by
users through the strong hash algorithm (SHA-1, which uses a 160-bit key) and comparing it with the
stored credentials for that user, as well as making all passwords use salt, which is a unique random
value that’s added to the passwords to ensure that the output credentials are unique.

Locking Accounts

Any user account that is locked can be unlocked for free access with the following statement:

SQL> ALTER USER hr ACCOUNT UNLOCK;
User altered.
SQL>

You can make Oracle lock any account after a certain number of failed login attempts with the
CREATE or ALTER PROFILE statement. Oracle lets you specify how long you want the account to be
locked after making the specified login attempts to enter the database; after that time is reached,
Oracle will automatically unlock the account. To close this loophole, simply set the locked time
period to UNLIMITED.

Here’s an example of creating a profile with the time period for locking the account:

SQL> CREATE PROFILE test_profile
 2 LIMIT FAILED_LOGIN_ATTEMPTS 5
 3* PASSWORD_LOCK_TIME UNLIMITED
Profile created.
SQL>

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 599

The database will lock an account once the FAILED_LOGIN_ATTEMPTS limit is reached. However,
the DBA can unlock a user’s account at any time by using the following command:

SQL> ALTER USER hr ACCOUNT UNLOCK;
User altered.
SQL>

Password Expiration

Password aging policies, which ensure that users don’t hang onto the same password for a long time,
are a standard part of database security. Once a password expires, the user is forced to change it.

You can make a password expire with the ALTER USER command, as shown here:

SQL> ALTER USER hr IDENTIFIED BY hr PASSWORD EXPIRE;
User altered.
SQL>

You can also make a password expire with the ALTER PROFILE command:

SQL> ALTER PROFILE test_profile
 2* LIMIT PASSWORD_LIFE_TIME 30;
Profile altered.

SQL> ALTER USER hr PROFILE test_profile;
User altered.
SQL>

The preceding ALTER PROFILE statement limits the password life to 30 days, and you can gently
remind the user about this by using another clause in your ALTER PROFILE statement, PASSWORD_
GRACE_TIME. Once you set the PASSWORD_GRACE_TIME clause as shown here, the first time the user logs
in after the end of the password lifetime, the user will receive a warning that the password is about
to expire in three days. If the user doesn’t change the password within the grace period of three days,
the password will expire. After the user’s password expires, the password must be changed:

SQL> CONNECT hr/hr
ERROR:
ORA-28001: the password has expired
Changing password for hr
New password: **
Retype new password: **
Password changed
Connected.
SQL>

The Password File

Oracle will let you choose how you want your privileged users to connect to the database. Privileged
users are those users who can perform tasks such as starting up and shutting down the database. By
default, only the SYS user has the SYSDBA and SYSOPER privileges, both of which are considered
high-level privileges. The SYS user can grant these privileges to other users.

Of course, any DBA who knows the SYS password can log in as SYS and perform the privileged
tasks. However, by granting the critical privileges SYSDBA and SYSOPER explicitly to users, you force
them to provide their username and password, which makes it easy to track the actions of privileged
users. The REMOTE_LOGIN_PASSWORDFILE initialization parameter specifies whether Oracle checks for
a password file.

600 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

The REMOTE_LOGIN_PASSWORDFILE parameter can take the following values:

• none: No password file is used, and the database permits only operating system–authenticated
users to perform privileged database administration tasks.

• exclusive: Only a single database can use the password file. The file can contain both SYS and
non-SYS users.

• shared: A password file is created that can be used by multiple databases. The password file
includes both SYS and non-SYS users.

Oracle recommends that you use the REMOTE_LOGIN_PASSWORDFILE=SHARED option for the highest
degree of security. There is a way to manually create a password file and specify which users can have
the SYSDBA and SYSOPER privileges, but if you use the EXCLUSIVE option, Oracle will automatically
add users to the password file upon their being granted the SYSDBA and SYSOPER privileges. You
can use the V$PWFILE_USERS view to see who has been granted these privileges besides the default
SYS user by using the following query:

SQL> CONNECT sys/life1 AS SYSDBA;
Connected.

SQL> GRANT sysoper, sysdba TO tester;
Grant succeeded.

SQL> SELECT * FROM v$pwfile_users;
USERNAME SYSDB SYSOP
-------- ----- -----
SYS TRUE TRUE
TESTER TRUE TRUE
SQL>

You use the orapwd command to create a new password file. The following output shows the
possible values you can supply with the orapwd command and also which of them are required and
which are optional.

$ orapwd
Usage: orapwd file=<fname> password=<password> entries=<users> force=<y/n>
ignorecase=<y/n> nosysdba=<y/n>

 where
 file - name of password file (required),
 password - password for SYS (optional),
 entries - maximum number of distinct DBA (required),
 force - whether to overwrite existing file (optional),
 ignorecase - passwords are case-insensitive (optional),
 nosysdba - whether to shut out the SYSDBA logon (optional Database Vault onl
y).

 There must be no spaces around the equal-to (=) character.
S

The following command creates a new password file called testpwd:

$ orapwd FILE=testpwd PASSWORD=remorse1 ENTRIES=20

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 601

Encrypted Passwords

By default, Oracle user passwords aren’t encrypted, and this leaves them vulnerable to unauthorized
use. By setting the following environment variables, one on the client and the other on the server,
you can ensure that Oracle will always encrypt a password when it’s sending it across a network.

Set this one on the client:

ora_encrypt_login=true

And set this one on the server:

dblink_encrypt_login=true

■Note All passwords are always automatically encrypted during network connections, using a modified Data
Encryption Standard (DES) algorithm.

External Authentication
Another method of authenticating database users is the external authentication method, under
which you match the user accounts at the operating system level with the usernames in the data-
base. Oracle manages the user’s privileges in the database itself, but the user authentication is
performed by the operating system, which is external to the database. The advantage to this method
is that you’ll need only a single username for both the operating system and database connections.
This can also help in auditing user actions, as the database names and operating system accounts
correspond.

To use operating system authentication, you first have to set the OS_AUTHENT_PREFIX configura-
tion parameter in the init.ora file as follows:

OS_AUTHENT_PREFIX = ""

There shouldn’t be a space between the pair of quotes.

■Note The default value for the OS_AUTHENT_PREFIX parameter is "OPS$", but that is only for maintaining
backward compatibility.

When you start the database again, you can start using external authentication based on the
underlying operating system. To enable operating system authentication, this is how you need to
create your users:

SQL> CREATE USER salapati IDENTIFIED EXTERNALLY;
User created.
SQL>

Note that the new user isn’t given a password—the user doesn’t need one. As long as the user
can log into the operating system, all he or she will have to do is type the following command to log
into the database:

$ sqlplus /

602 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

■Note The well-known Oracle OPS$ORACLE database account is a simple variation on the preceding example of
external authentication. OPS$ is a prefix Oracle has used since the Oracle 5 version. You can use any prefix or no
prefix at all for operating system external authentication.

The external operating system authentication described in this section doesn’t allow users to
connect over Oracle Net, because that authentication method isn’t considered very secure. There-
fore, shared server configurations that use Oracle Net can’t, by default, use operating system external
authentication. To override this default behavior, you have to set the following parameter in your
init.ora file:

REMOTE_OS_AUTHENT=TRUE

Proxy Authentication
You can use proxy authentication to allow a single, persistent database session to switch identity to other
users without having to logon/logoff all the time. You can use several middle-tier products to facilitate
user interaction with the Oracle database. A web server is often used as the middle or application layer
connecting the clients to the database. You can choose to have the middle tier authenticate your users,
or you can have the middle tier pass the username and password to the database for authentication.

Here is an example showing how to authorize connections by a database user logging on from
a middle-tier node, using password authentication.

SQL> ALTER USER salapati
 2 GRANT CONNECT THROUGH appserv
 3* AUTHENTICATED USING PASSWORD;
User altered.
SQL>

The following example shows how you can allow a persistent session logged on as appserv to
take on temporarily the identity of salapati, if the persistent session provides user salapati’s password.

SQL> ALTER USER salapati
 2* GRANT CONNECT THROUGH appserv;
User altered.
SQL>

Centralized User Authorization
If you use the Oracle Advanced Security option, you can use a Lightweight Directory Access Protocol
(LDAP)–based directory service, such as Oracle Internet Directory (OID), to perform user authenti-
cation. The directory-based service lets you create enterprise users who can be granted global roles.
Centralized user management enables the use of a single sign-on—that is, users need only sign in
once to access all the databases they need to use.

Because Oracle Advanced Security isn’t used by every database, I don’t provide a detailed expla-
nation of the implementation of centralized user authorization. Please refer to the Oracle manual
Oracle Advanced Security Administrator’s Guide, available on the http://tahiti.oracle.com web
site, for a detailed explanation of this feature.

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 603

Enterprise User Security
Large organizations these days have both internal and Web-based applications to manage. It quickly
becomes an administrative nightmare to manage users and their privileges on all these different
applications. Centralized directories are increasingly being seen as the best way to manage multiple
systems within an organization.

LDAP is a popular industry standard, and Oracle has its own implementation of it. Information
that has been managed in multiple systems and formats can be brought under one umbrella using a
directory service like LDAP. You can replace all your tnsnames.ora files on clients and manage user
connectivity, authorization, and security with the help of the LDAP directory services. The LDAP
directory can provide solid password policy management, data privacy, data integrity, and strong
authentication and authorization protocols.

Shared Schemas
When users are registered and maintained in an LDAP repository, they are referred to as shared
schemas or schema-independent users. When an LDAP-registered user connects to a specific data-
base, the database will ask the LDAP server for confirmation of the user’s identity and the roles that
should be assigned to the user upon connection. Thus, in a database with several hundred users for
a certain application, you need to create only one schema to manage the application. The individual
user will be registered in the centralized directory, and when the user connects to the database, he
or she will be assigned this common schema.

Single Sign-On
If you use the Oracle Application Server, you can take advantage of the Single Sign-On feature, so a
user need only log into the system once. Once the user is authenticated, he or she can access all the
other applications on the system without having to enter a name and password repeatedly. This
automatic authentication is very helpful to system administrators and other key users of systems in
an organization.

Data Encryption
Sometimes you may want to encrypt data (encode it so only users who are authorized can understand
it). Oracle supports encryption of network data through its Advanced Security option. For encryption of
data, Oracle provides two PL/SQL packages, the older of which is the DBMS_OBFUSCATION_
TOOLKIT package. This package enables data encryption by using the DES algorithm. The toolkit
supports triple DES encryption for the highest level of security. It also supports the use of the MD5
secure cryptographic hash.

You can also use the newer PL/SQL encryption package called DBMS_CRYPTO to encrypt and
decrypt data. Compared to DBMS_OBFUSCATION_TOOLKIT, DBMS_CRYPTO provides a wider
range of advanced security encryption and cryptographic algorithms and is easier to use. Oracle
intends this package to replace the older DBMS_OBFUSCATION_TOOLKIT package. Whichever
Oracle PL/SQL package you use, you have to manage the data encryption keys, which isn’t a trivial
task. You often have to create views to help you decrypt the encrypted data, which adds to the manage-
ment tasks. In addition, you can’t index the encrypted data according to Oracle’s recommendations,
which reduces the value of both of these encryption packages in several cases.

604 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

There is also a third, easier option: encrypting data with the transparent data encryption
feature. The next section shows you how to easily encrypt Oracle table data using an Oracle Wallet
to store encryption keys. You can index the encrypted table’s columns as well, thus overcoming one
of the biggest drawbacks in using the Oracle encryption packages.

Transparent Data Encryption

Even with all kinds of access control mechanisms in place, you may ultimately come to the realiza-
tion that your data is physically stored on a disk drive or tape somewhere, making it vulnerable to
unauthorized access. You often come across situations where certain key column values in a table
need to be encrypted to provide security. You can use the transparent data encryption feature to
encrypt a column. Transparent data encryption means that the database will handle encryption and
decryption automatically, without the user or the application having to manage the encryption key.
This means the application no longer needs to handle the cumbersome process of managing the
encryption key.

For example, when you create a table, you can simply specify the ENCRYPT keyword along with
the column name, as shown in the following example. This statement creates a table that converts
the ssn column values into an encrypted data format when they are stored on disk:

SQL> CREATE TABLE employees (
 empno NUMBER(5) PRIMARY KEY
 ename VARCHAR2(15) NOT NULL,
 ssn NUMBER(9) ENCRYPT,
. . .

The ENCRYPT keyword in the preceding example specifies that the ssn (Social Security number)
be encrypted. Once you do this, even if unauthorized users gain access to the data on your storage
devices, they can’t read the data, since it’s encrypted. When authorized users access data, however,
the encrypted data is automatically decrypted, and the decryption process is transparent to the user.

An Oracle Wallet is used to store authentication and signing credentials, including private keys
and certificates. Before you can start encrypting or decrypting a table, the encryption key is retrieved
from the Oracle Wallet and stored in the SGA.

■Note In addition to regular database tables, you can also encrypt external tables using the transparent data
encryption feature.

In the following sections, I provide a brief introduction to this new Oracle feature, which lets you
encrypt one or more of a table’s columns when you create the table, or even later on. Here are the
steps you need to follow in order to use the transparent data encryption feature:

1. Create an Oracle Wallet.

2. Open the Oracle Wallet.

3. Generate the master encryption key that will be used to encrypt the column’s encryption key.

4. Specify exactly how you want the encrypted column to be encrypted.

■Note Data decryption is automatic when an authorized user accesses an encrypted column. You don’t need to
create any views to decrypt the data. As with encryption, the database will load the master and the data encryption
keys into the SGA from the Oracle Wallet prior to decrypting data.

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 605

Creating the Oracle Wallet with OWM

You create the Oracle Wallet using the Oracle Wallet Manager (OWM). Follow these steps:

1. Start up the Oracle Wallet Manager by typing owm at the operating system prompt in a
UNIX/Linux system. On a Windows server, select Start ➤ Programs ➤ Oracle ➤ Configuration
and Management Tools ➤ Integration Management Tools ➤ Oracle Wallet Manager. Figure 12-1
shows the opening window of the Oracle Wallet Manager.

Figure 12-1. The Oracle Wallet Manager

2. At the top left of the Oracle Wallet Manager window, click the Wallet menu and choose the
New option. If you don’t already have a default directory enabled to create the wallet in, the
Oracle Wallet Manager will ask if you want to create one. You can choose to create the Oracle
Wallet in the default directory, or choose any other directory you wish.

3. A box will open in which you can enter a password for wallet management. This is the same
password that you’ll use later in SQL*Plus to open the Oracle Wallet and to create and alter
the master encryption key. You can also select the wallet type; to keep things simple for now,
just choose the default wallet type, which is STANDARD. Click OK.

4. A new empty Oracle Wallet is created, and you’re asked if you wish to create a certificate at
this time. Click No.

Figure 12-2 shows that your Oracle Wallet is created, without any certificates. You can add Trusted
Certificates later on, if you wish. For our examples, you won’t need them.

606 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

Figure 12-2. A newly created Oracle Wallet

The encryption keys are stored in the Oracle Wallet, whose location is specified in the sqlnet.ora
configuration file. Once you successfully create your new Oracle Wallet, go the $ORACLE_HOME/network/
admin directory and add the following line to the sqlnet.ora file (making sure it points to the directory you
chose previously):

ENCRYPTION_WALLET_LOCATION = '/etc/oracle/wallet/oracle'

Now you’re ready to use your Oracle Wallet to encrypt your table columns.

Opening and Closing the Oracle Wallet

Before you can use the transparent data encryption feature to encrypt a column, you must open the
Oracle Wallet, since it is closed after you create it. Here’s how you open the Oracle Wallet:

SQL> ALTER SYSTEM SET ENCRYPTION WALLET OPEN IDENTIFIED BY "password";
System altered.
SQL>

Note that the password is whatever you specified when you created the Oracle Wallet. Make
sure you enclose it in double quotes.

The Oracle Wallet you opened can be closed in two ways:

• Use the ALTER SYSTEM SET ENCRYPTION WALLET CLOSE statement.

• Shut down the database—the wallet will be closed automatically.

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 607

Once a wallet is closed, you have to open it again before you use it by using the ALTER SYSTEM SET
ENCRYPTION WALLET OPEN statement again. You don’t have to open the wallet manually every time,
if you use an auto-login wallet (set in the Oracle Wallet Manager). The auto-login wallet is opened
when the user that created it logs in. It stays in effect until that user logs off.

Generating the Master Encryption Key

Even if an unauthorized user gains access to the stored table data, the encrypted data in the key columns
you encrypted will thwart the user from understanding what’s there. Regardless of the number of
columns you encrypt in your database, you use a single encryption key for each table. You can change
this key if you wish, and the keys for each encrypted table are stored in the data dictionary after they
are encrypted by the master key of the database.

The master key’s function is to protect the data encryption keys. The data encryption keys are
automatically generated when you use the transparent data encryption feature (by using the ENCRYPT
keyword), but you have to manually generate the master key to actually encrypt the table columns.
Here’s how you create the master encryption key:

SQL> ALTER SYSTEM SET ENCRYPTION KEY IDENTIFIED BY "password";
System altered.
SQL>

Again, you provide your Oracle Wallet password, as in the previous example.
If you ever think the master key has been compromised, you can regenerate a new key by using

the same statement. Each time you do so, a new master key is generated by the database.

Encrypting the Table Columns

Now that you’ve created the master encryption key, you can start encrypting your table data by
using the ENCRYPT keyword after the name of the column you want to encrypt.

First, let’s look at how to encrypt a column while creating the table. In the following example,
the ssn column in the employees table is encrypted:

SQL> CREATE TABLE EMPLOYEES
 first_name VARCHAR2(30),
 last_name VARCHAR2(30),
 emp_id NUMBER (9),
 salary NUMBER(6),
 ssn NUMBER(9) ENCRYPT;

Table created.
SQL>

Table creation is not the only time you can encrypt a table’s columns. You can also encrypt a
column in an existing table by using the ALTER TABLE statement. Let’s add a new column, ENCRYPT_ID,
to the employees table:

SQL> ALTER TABLE EMPLOYEES ADD (ENCRYPT_ID NUMBER(9) ENCRYPT);
Table altered.
SQL>

You can also encrypt an existing column in a table, as shown here:

SQL> ALTER TABLE EMPLOYEES MODIFY (EMP_ID ENCRYPT);
Table altered.
SQL>

608 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

If you check the employees table now, you’ll find that the ssn, encrypt_id, and emp_id columns
are all encrypted:

SQL> DESCRIBE employees

NAME NULL? TYPE
------------ ------- -----------------
FIRST_NAME VARCHAR2(30)
LAST_NAME VARCHAR2(30)
EMP_ID NUMBER(9) ENCRYPT
SALARY NUMBER(6)
SSN NUMBER(9) ENCRYPT
ENCRYPT_ID NUMBER(9) ENCRYPT
SQL>

Note that encrypting data will result in a performance hit, especially when users are selecting or
inserting data. If you decide you want to turn off encryption for any reason, you can do so by using
the DECRYPT keyword, as shown here:

SQL> ALTER TABLE employees MODIFY (ssn DECRYPT);

Encryption Algorithms

The encrypted columns in the employees table use the default encryption algorithm. This default
encryption algorithm uses salt, which involves adding a random string to data before it’s encrypted,
thus making it harder for someone to match patterns in the text.

As mentioned earlier, you can index transparently encrypted columns, but Oracle recommends
that you not use salt if you plan on using indexes on the encrypted columns. If you don’t wish to use
salt, specify the ENCRYPT NO SALT option when you encrypt a column. Similarly, if you wish to use a
nondefault encryption algorithm, you can do so by specifying the algorithm when you encrypt the
column, as shown in the following example, where the 3DES168 algorithm is used:

ssn NUMBER(9) ENCRYPT USING '3DES168'

Tablespace Encryption
You can use the DBMS_OBFUSCATION_TOOLKIT and the DBMS_CRYPTO packages provided by
Oracle to implement encryption of data. Both these packages, however, impose a burden on you in
the sense that your application must manage the encryption keys as well as call the APIs to encrypt
and decrypt the data. To overcome these drawbacks, Oracle Database 10g introduced Transparent
Data Encryption (TDE), which enabled you to encrypt columns in a table. The feature is called
“transparent” because the database takes care of all the encryption and decryption details.

In Oracle Database 11g, you can also encrypt an entire tablespace. In fact, tablespace encryption
helps you get around some of the restrictions imposed on encrypting a column in a table through the
TDE feature. For example, you can get around the restriction that makes it impossible for you to
encrypt a column that’s part of a foreign key or that’s used in another constraint, by using tablespace
encryption.

Restrictions on Tablespace Encryption

You must be aware of the following restrictions on encrypting tablespaces. You

• Can’t encrypt a temporary or an undo tablespace.

• Can’t change the security key of an encrypted tablespace.

• Can’t encrypt an external table.

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 609

As with TDE, you need to create an Oracle Wallet to implement tablespace encryption. There-
fore, let’s first create an Oracle Wallet before exploring how to encrypt a tablespace.

Creating the Oracle Wallet

Tablespace encryption uses Oracle Wallets to store the encryption master keys. Oracle Wallets could
be either encryption wallets or auto-open wallets. When you start the database, the auto-open wallet
opens automatically, but you must open the encryption wallet yourself. Oracle recommends that
you use an encryption wallet for tablespace encryption, unless you’re dealing with a Data Guard
setup, where it’s better to use the auto-open wallet.

Earlier in this chapter, I showed you how to create an Oracle Wallet by using the OWM. However,
you can also create an Oracle Wallet through the mkstore command at the operating system level or
through executing a special SQL*Plus command.

Here’s an example showing how to use the mkstore command from the operating system command
line to create an Oracle Wallet:

$ mkstore -wrl $ORACLE_BASE/admin/$ORACLE_SID/wallet -create
Enter password:******
Enter password again:******

You can also create the wallet easily by executing the following command in SQL*Plus:

SQL> alter system set encryption key identified by "password"

The previous command creates an Oracle Wallet if there isn’t one already and adds a master key
to that wallet.

By default, Oracle stores the Oracle Wallet, which is simply an operating system file named
ewallet.pl2, in an operating system–determined location. You can, however, specify a location for
the file by setting the parameter encryption_wallet_location in the sqlnet.ora file, as shown here:

ENCRYPTION_WALLET_LOCATION =
 (SOURCE=
 (METHOD=file)
 (METHOD_DATA=
 (DIRECTORY=/apps/oracle/general/wallet)))

You must first create a directory named wallet under the $ORACLE_BASE/admin/$ORACLE_SID
directory. Otherwise, you’ll get an error when creating the wallet:

ORA-28368: cannot auto-create wallet

Once you create the directory named wallet, issue the following command to create the Oracle
Wallet:

SQL> ALTER SYSTEM SET ENCRYPTION KEY IDENTIFIED BY "sammyy11";

System altered.
SQL>

The ALTER SYSTEM command shown here will create a new Oracle Wallet if you don’t have one.
It also opens the wallet and creates a master encryption key. If you have an Oracle Wallet, the command
opens the wallet and re-creates the master encryption key.

Once you’ve created the Oracle Wallet, you can encrypt your tablespaces, as I explain in the
following section.

610 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

Creating an Encrypted Tablespace

The following example shows how to encrypt a tablespace:

SQL> CREATE TABLESPACE tbsp1
 DATAFILE '/u01/app/oracle/test/tbsp1_01.dbf' SIZE 500m
 ENCRYPTION
 DEFAULT STORAGE (ENCRYPT);

Tablespace created.
SQL>

The storage clause ENCRYPT tells the database to encrypt the new tablespace. The clause ENCRYPTION
tells the database to use the default encryption algorithm, DES128. You can specify an alternate algo-
rithm such as 3DES168, AES128, or AES256 through the clause USING, which you specify right after
the ENCRYPTION clause. Since I chose the default encryption algorithm, I didn’t use the USING clause here.

The following example shows how to specify the optional USING clause, to define a nondefault
encryption algorithm.

SQL> CREATE TABLESPACE mytbsp2
 DATAFILE '/u01/app/oracle/test/mytbsp2_01.dbf' size 500m
 ENCRYPTION USING '3DES168'
 DEFAULT STORAGE (ENCRYPT);

Tablespace created.

SQL>

The example shown here creates an encrypted tablespace, MYTBSP2, that uses the 3DES168
encryption algorithm instead of the default algorithm.

You can check whether a tablespace is encrypted by querying the DBA_TABLESPACES view, as
shown here:

SQL> SELECT tablespace_name, encrypted
 2 FROM dba_tablespaces;

TABLESPACE_NAME ENC
--------------- ----
SYSTEM NO
SYSAUX NO
UNDOTBS1 NO
TEMP NO
USERS NO
MYTBSP1 YES
MYTBSP2 YES
7 rows selected.

SQL>

The database automatically encrypts data during the writes and decrypts it during reads. Since
both encryption and decryption aren’t performed in memory, there’s no additional memory require-
ment. There is, however, a small additional I/O overhead. The data in the undo segments and the
redo log will keep the encrypted data in the encrypted form. When you perform operations such as
a sort or a join operation that use the temporary tablespace, the encrypted data remains encrypted
in the temporary tablespace.

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 611

Oracle Internet Directory
In Chapter 11, I briefly explained the Oracle Internet Directory (OID). Using the OID, you can perform
effective security management, including enforcing strict password policies for security manage-
ment. OID also helps you maintain a single, global identity for each user across the application
environment, and helps you centrally store user credentials.

Database Security Dos and Don’ts
A common misunderstanding among DBAs is that once the database is behind a firewall, it’s immune to
security attacks. This presupposes, of course, that your security threats are always external, when
real-life statistics point out that the majority of security violations are from insiders. That’s why you
have to follow a rock-solid authentication policy and sound data-access policies.

You can take several basic steps to enhance the security of your Oracle database. Most of these
steps are based on common sense and prohibit easy entry into the database through well-known
backdoor access points. Let’s quickly review these security guidelines.

Automatic Secure Configuration
As I mentioned in Chapter 6, when you create a new database using the DBCA, you can choose to
implement automatic secure configuration for your database. By making the choice to use the new
Oracle Database 11g secure configuration settings, you enable the following security-related features in
your new database:

• Password-specific security settings: The database will enforce password expiration and other
password-related security policies that enforce built-in complexity checking in the default
password profile that you assign to users.

• Auditing: The database enables auditing for certain privileges by default. These privileges are
considered crucial to database security, such as connecting to a database. The database stores
the audit records in the AUD$ table by default and sets the audit_trail initialization parameter
to the value db.

Adoption of the automatic secure configuration feature ensures that your database conforms to
the security features recommended by the Center for Internet Security (CIS) benchmarks.

User Accounts
Oracle recommends that you lock and expire all default user accounts except, of course, the SYS and
SYSTEM accounts, and other user accounts that you’ll need, like DBSNMP, SYSMAN, and MGMT_VIEW.
The number of default accounts depends on the number of database features and components you
use and how you create your database. For example, creating a database with the help of the DBCA
usually results in the creation of a larger number of default accounts than you’ll find in a manually
created database.

Passwords
You mustn’t hard-code Oracle user passwords in shell scripts. Otherwise, your user passwords can
be gleaned by using a simple ps -ef | grep command while the process is running.

Change the passwords for all default user accounts immediately after creating the database. You
should set passwords for the SYS and SYSTEM users while creating the database, although this isn’t
mandatory.

612 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

Use strict password aging and expiration policies, and force users to change passwords in a
timely fashion. Use the FAILED_LOGIN_ATTEMPTS option when setting user profiles to limit unsuccessful
login attempts to a reasonable number. Accounts should be locked indefinitely (which is the default
behavior) if they hit the FAILED_LOGIN_ATTEMPTS ceiling. This way, the DBA will be the only one who
can unlock these accounts. You can also use Oracle’s password-complexity verification routine to
make sure your users’ passwords meet standard password-complexity requirements.

Operating System Authentication
Two initialization parameters enable access to an Oracle database through authentication at the
operating system level. One is the well-known OS_AUTHENT_PREFIX parameter, which many people
use to create the OPS$ account for use in shell scripts and other places. Of course, using the OPS$
account implies that you’re relying on operating system authentication and security.

The other initialization parameter affecting operating system authentication of users is the
REMOTE_OS_AUTHENT parameter, which enables users who authenticate themselves not on the server,
but on a remote workstation, to gain access to your database. There may be an exceptional circum-
stance when you want to use this feature. In general, though, you should leave this parameter at its
default value of false. Otherwise, a user from a remote system can log in using nonsecure protocols
through the remote operating system authorization, and that’s a serious violation of security standards.
Perhaps more importantly, any user can create an account on his or her own computer with the
same name as your externally identified database user.

Database Auditing
Check the audit trail for logins as SYSDBA to make sure that only authorized people are logging in as
SYSDBA users. The audit trail also lets you see whether the database was brought up at any time with
the auditing feature disabled.

You should audit all unsuccessful attempts to log into the database. In addition, you can audit
all actions by any user connected as SYSDBA or SYSOPER. To enable auditing of all SYSDBA and
SYSOPER operations, you need to set the following initialization parameter:

AUDIT_SYS_OPERATIONS=TRUE

■Note Setting AUDIT_SYS_OPERATIONS=TRUE logs all SYSDBA and SYSOPER activity to an operating system
audit trail, not a database audit trail. Thus, the audit trail can’t be tampered with by users with powerful privileges
within the database.

Granting Privileges
Oracle recommends strongly that you avoid granting ANY privileges, as in delete ANY table, to reduce
your vulnerability. You can avoid this problem generally by refraining from (carelessly) granting
object privileges directly to users. In addition, avoid granting privileges with the ADMIN privilege.
The ADMIN privilege means that the user to whom you granted a privilege can grant the same priv-
ilege to other users in turn. This means that you, the DBA, can very quickly lose control over who is
being granted privileges in your database.

Use roles rather than granting privileges directly to users. This will help you a lot on databases
with a large user base, where it is hard to check which user has been granted which privilege if you
have been granting them directly to the users.

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 613

PUBLIC is a default role for every user created in the database. Make sure you don’t grant any
unnecessary roles or privileges to PUBLIC, because every user will automatically inherit those roles
and privileges, including default users such as DBSNMP and OUTLN.

The following query shows that PUBLIC has over 12,000 object-level privileges:

SQL> SELECT COUNT(*) FROM dba_tab_privs
 2 WHERE grantee='PUBLIC';

 COUNT(*)

 12814
SQL>

Of the more than 12,000 object privileges that have been granted to PUBLIC, over 100 are privileges
to execute DBMS packages, such as DBMS_JOB, DBMS_METADATA, DBMS_SNAPSHOT, DBMS_DDL,
DBMS_SPACE, and DBMS_OBFUSCATION_TOOLKIT. Revoke all important execution privileges
from PUBLIC. Grant important privileges to users through the judicious use of roles.

The SYSDBA privilege gives a user very powerful privileges, including the ability to drop database
objects and alter data dictionary tables. It goes without saying that you must hand out the SYSDBA
privilege very sparingly.

Dealing with Environments with Multiple DBAs
If you’re the only Oracle DBA in your organization, you must have all the system privileges to manage the
database. However, if you have a group of Oracle DBAs managing a large number of databases, it’s
smart not to give everyone the same type of privileges (such as SYSDBA) and the same type of roles
(such as DBA). You should create your own specialized roles, with each role containing a specific set
of privileges for performing certain database tasks. Thus, a DBA in charge of helping the developers
create new objects won’t be able to perform certain recovery-related tasks, and vice versa. You can
then assign these roles to the DBAs, ensuring that there is a clear demarcation of job duties.

Protecting the Data Dictionary
Users that are granted the ANY system privilege can drop data dictionary tables. To protect your data
dictionary, you must set the 07_DICTIONARY_ACCESSIBILITY configuration parameter to FALSE in your
parameter file. This will limit the ANY privilege to only those users who log in with the SYSDBA privilege.

Setting Permissions
Set the proper file permissions at the operating system level, as there often can be a security loophole
at this level. The default permissions on a newly created file in most UNIX systems are rw-rw-rw. This
means that any users who gain admission to the UNIX server can read or copy all files, including
your database files. You should set the UMASK variable to 022, so only the Oracle username can read
from and write to database files.

Ensure that you remove the SETUID on all Oracle files immediately. Some of the SETUID files may
allow the execution of scripts as the root user in UNIX systems.

The UTL_FILE package enables writing to operating system files from within an Oracle PL/SQL
program. When you use the UTL_FILE_DIR initialization parameter, never use the * value for the param-
eter, which means that the package could output files to any directory in the operating system’s file
system. Restrict the directories to some well-known locations that are exclusively set apart from the
UTL_FILE output files.

614 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

Remove the PL/SQL EXTPROC functionality unless it is needed. First remove mentions to EXTPROC
in both the listener.ora file on the server and the tnsnames.ora file on the client. You then can remove
all EXTPROC executables from your $ORACLE_HOME/bin directory. There is usually a pair of executables
called extproc and extproc0. The EXTPROC facility gives hackers a way to break into the operating
system without any authentication. If you do need to use the EXTPROC functionality, refer to Note
175429.1 on Oracle’s MetaLink site (http://metalink.oracle.com).

Make sure you don’t allow ordinary users access to your export and import control files, because
your passwords may appear in those files.

■Note Peter Finnegan’s Oracle security web site (http://www.petefinnigan.com) provides several inter-
esting and useful Oracle security-related articles and scripts, including discussion about the detection of SQL injection and
numerous other Oracle security issues. The comprehensive “Oracle Database Checklist” that’s available on Finnegan’s
web site is used to audit Oracle database installations and pretty much covers all Oracle database security issues.

The Network and the Listener
The network and the listener service are vulnerable points of Oracle security—there are many ways
you can inadvertently leave avenues open for attacks on your database. Let’s first look at how you
can strengthen the listener service.

Securing the Listener

As you learned in Chapter 11, you should always use a password for the listener to prevent unauthor-
ized users from preventing connections to the database. Once you set a password for the listener,
privileged actions such as shutting down or starting up the listener can’t be performed unless you
provide the right password.

You can also prevent a user from using the SET command to interfere with listener functions. To
do this, you need to add the following line to your listener.ora configuration file:

ADMIN_RESTRICTIONS=ON

By default, this parameter is set to false. You should also avoid remote management of the
listener service, as its password isn’t encrypted over the network. The listener password is stored in
the listener.ora file, so you must safeguard this file.

Securing the Network

One of the basic security requirements for today’s Internet-based database applications is that you
must have a firewall protecting your system from the external world. Once you have a firewall in
place, keep it secure by not poking holes in it for any reason, such as by using the ports used by the
listener to connect to the Internet.

In addition to having a normal firewall, you can use a feature of Oracle Net to add an additional
layer of protection called server-side access controls. Server-side access controls limit the capability
of an address to connect to your database using the listener service. There are two ways to limit the
addresses through which connections can be made. You can list either the invited (accepted) address or
the excluded addresses in the sqlnet.ora file. All network addresses in the invited list are allowed to
connect, and all addresses in the excluded nodes list are denied access.

When the listener service starts, it reads the sqlnet.ora file and provides access according to the
access controls you specified. Here are the additions that you need to make to your sqlnet.ora file
to enforce server-side access controls if you are specifying the invited addresses:

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 615

tcp.validnode_checking = yes
tcp.invited_nodes = (server1.us.wowcompany.com,
172.14.16.152)

Here is what you need to add if you are excluding addresses:

tcp.excluded_nodes = (server1.us.wowcompany.com,
 172.14.16.152)

■Note In general, because it’s more likely that you know the addresses that are going to connect to your data-
base, using the TCP_INVITED_NODES parameter may be the best way to limit access to your system.

Denying Remote Client Authentication

As you learned earlier in this chapter, letting remote clients authenticate logins is unsafe, and you
should always let the server authenticate clients connecting to your database. You can turn client-
based operating system authentication off by setting the following parameter in your init.ora file:

REMOTE_OS_AUTHENT=FALSE

The preceding setting will force server authentication of users, which is more secure than
trusting the clients to perform operating system authentication.

Setting Security-Related Initialization Parameters

In addition to the SEC_CASE_SENSITIVE_LOGON initialization parameter, you can also use the following
parameters to enforce database security:

• sec_protocol_error_further_action: Enables you to specify what the database must do
(drop the connection or continue) when it receives bad network packets from clients, with
the underlying presumption that those packets are being sent with malicious intent.

• sec_protocal_error_trace_action: Enables you to specify the kind of action to take in order
to trace an error. For example, you may want to trace an error or send out an alert following
an error.

• sec_max_failed_login_attempts: Lets you specify the maximum number of consecutive
unsuccessful attempts a user can make and remains in force even if you choose not to enable
a password profile for the user.

• ldap_directory_sysauth: Enables strong authentication (authentication that uses Kerberos
tickets or certificates over a Secure Sockets Layer).

Fine-Grained Network Access Control
Network-related packages such as UTL_TCP, UTL_SMTP, UTL_MAIL, UTL_HTTP, and UTL_INADDR
can create a security loophole, because the user PUBLIC has execute privileges on all these pack-
ages. A malicious user can easily break into a database through one of these packages. You can use
Oracle’s find-grained network access control feature to control a user’s access to the database through
external network services. For example, you can limit a user to access to databases from specific hosts.

You can use the DBMS_NETWORK_ACL_ADMIN and the DBMS_NETWORK_ACL_UTILITY
packages to create what are called access control lists (ACLs). An access control list is a list of users
and the privileges you grant to those users. You can manage ACLs through Oracle XML DB. The data-
base stores the ACLs in the form of an XML document in the /sys/acl folder in Oracle XML DB.

616 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

Creating an Access Control List

Use the CREATE_ACL procedure of the DBMS_NETWORK_ADMIN package to create an ACL, as
shown here:

SQL> begin
 dbms_network_acl_admin.create_acl (
 acl => 'my_xml',
 description => 'Permissions for my network',
 principal => 'APPOWNER',
 is_grant => 'TRUE',
 privilege => 'connect');
 end;
SQL>

The following list describes the create_acl procedure parameters:

• acl: Specifies the name of the XML file holding the usernames and privileges in the ACL.

• prinicpal: Indicates the username and must match the username of the session.

• is_grant: Shows whether a privilege is granted or denied.

• privilege: Specifies the network privilege you want to grant or deny. You can specify either
CONNECT or RESOLVE as the values for the privilege parameter. You must grant a user the CONNECT
privilege if that user needs to connect to the database through any of the network-related PL/SQL
packages such as UTL_MAIL, for example. The RESOLVE privilege helps resolve the host name
when given the host IP address or vice versa, when using the UTL_INADDR package.

Once you create an ACL, you can add users or privileges to that ACL by executing the ADD_
PRIVILEGE procedure as shown here:

SQL> begin
 dbms_network_acl_admin.add_privilege (
 acl => 'test.xml',
 prinicpal => 'test_users',
 is_grant => true,
 privilege => 'connect')
 end;
SQL>

If an ACL that you reference in the add_privilege procedure doesn’t exist, the database creates it.

Assigning the Access Control List to a Host

Use the ASSIGN_ACL procedure to associate the ACL you just created with a network host, as shown
here.

SQL> begin
 dbms_network_acl_admin.assign_acl (
 acl => 'test.xml',
 host => '*.us.mycompany.com',
 lower_port => 80,
 upper_port => null);
 end;
SQL>

You can assign ACLs to a host, domain, or IP subnet and optionally specify the TCP port range.
When you execute the ASSIGN-ACL procedure, note the following:

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 617

• You may assign only a single ACL to each host, domain, or IP subnet.

• The database doesn’t automatically drop an older ACL when you replace it with a new ACL.
You have to execute the DROP_ACL procedure to drop the ACL.

• You may unassign a control list by executing the UNASSIGN_ACL procedure.

Precedence Order for a Host Computer

If you specify a wildcard character for the host name such as a *, the database assigns the control list
to all hosts in the domain you specify. ACLs use the following order of precedence for evaluating host
names:

• Fully qualified host names with ports

• Fully qualified host names

• Subdomains under a domain

In the same way, ACLs that you assign to an individual IP address are accorded precedence over
ACLs assigned to subnets.

Checking the Privileges and Host Assignments

Use the CHECK_PRIVIELGE function to examine which privileges have been granted to a user in an
ACL, as shown in the following example:

SQL> SELECT DECODE(dbms_network_acl_admin.check_privilege (
 test.xml', 'hr','resolve'),
 1, 'granted', 0, 'denied', null) privilege
 FROM DUAL;

The previous function execution will return 0 if a privilege was denied and 1 if the privilege was
granted. It returns NULL if a privilege was neither granted nor denied.

MetaLink and Critical Patch Updates

An important part of security management is keeping up with the latest news about security vulner-
abilities and the patches or workarounds to overcome them. Oracle has a policy of quickly issuing
fixes for new security problems, so you should check for the latest security patches on the Oracle
MetaLink web site (http://metalink.oracle.com).

You can find regular Oracle security alerts at the following location: http://technet.oracle.com/
deploy/security/alerts.htm. You can also find news about security breaches on the MetaLink site
in the “News & Notes” section. If you wish, Oracle will send you e-mail security alerts about new
issues. You can sign up for this free service by registering at http://otn.oracle.com/deploy/
security/alerts.htm.

Oracle provides Critical Patch Updates on a quarterly schedule, and Oracle’s customers are
notified of these updates via MetaLink, the OTN Security Alerts page, and the Oracle Security RSS
newsfeed. If you’re already a MetaLink subscriber, you are automatically signed up for the Critical
Patch Updates. If a patch addresses a severe threat, Oracle will not wait for the quarterly Critical
Patch Update to send the patch to you. In such cases, Oracle will issue an unscheduled Security Alert
through MetaLink and will let you immediately download the patch. The patch will also be included
in the next quarterly Critical Patch Update. For the most part, though, Critical Patch Updates will be
the process by which most patches will be released by Oracle from now on.

Critical Patch Updates are comprehensive patches that address significant security vulnerabil-
ities and include fixes you can apply, prerequisites for the security fixes, or both. You can thus have

618 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

a regular, planned quarterly schedule for patching your system. A single patch on a quarterly basis is
better than a number of patches that need extensive testing and may conflict with each other.

Oracle has also introduced a new Risk Matrix along with its quarterly Critical Patch Updates.
The Risk Matrix enables customers to estimate the scope and severity of the vulnerabilities addressed by
each Critical Patch Update. The Risk Matrix tells you the threat you face to confidentiality, integrity,
and availability, and the conditions under which your system is most exploitable. You can thus
assess the risk to your system and prioritize patching on those systems.

Oracle’s Advanced Security Option
Oracle doesn’t require or recommend that you use its Advanced Security option to secure your
Oracle databases. However, the Advanced Security option provides so many strong security features
that you may want to consider using it if your business needs warrant the highest degree of data and
network security. Here are some of the additional security features available when you use Oracle’s
Advanced Security option:

• Encryption of network traffic among clients, application servers, and databases

• Sophisticated authentication methods for users

• Centralized user management

• Support for Public Key Infrastructure (PKI)

Application Security
Although the security guidelines thus far have mostly dealt with preventing unauthorized access to
your network and the database, it’s extremely important that you review the application security
policies to ensure no vulnerabilities exist there. There are some commonsense policies involving
roles and SQL*Plus use that your organization must enforce to provide strong application security.

Granting Privileges Through Roles

You’ve already seen how you can use roles to encapsulate privileges rather than granting privileges
directly to various users. You should minimize the number of direct object privileges by letting
stored code such as procedures and packages be the means through which users can issue DML
statements. Then you can just grant the user the privilege to execute a certain package or procedure
to perform any DML actions. Once the package or procedure completes executing, the user will not
have the privilege to perform the DML activity from outside the stored code.

Disabling Roles

All application roles should use the SET ROLE statement to enable the roles granted to users. Applica-
tion users should be granted roles only for specific purposes, and the roles should be revoked from
them when they aren’t needed any longer.

Application owners should consider creating secure application roles, which are enabled by PL/SQL
packages. Once you create and assign a secure application role to a user, it automatically gets assigned
to the user when the user logs into the database.

Restricting SQL*Plus Usage

One of the first things you should do when opening your database to the public is to tightly restrict
the ability of users to use the SQL*Plus interface. You can restrict the SQL*Plus capabilities of a user
by using the product_user_profile table.

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 619

Useful Techniques for Managing Users
In this section you’ll examine some simple scripts that can help you manage your users. You’ll also
learn about some typical problems that you might encounter in this area.

Altering Profiles

The following code shows how to alter a user’s profile:

SQL> ALTER PROFILE fin_user
 2 LIMIT
 3 FAILED_LOGIN_ATTEMPTS 5
 4 PASSWORD_LOCK_TIME 1;

Profile altered.
SQL>

Listing User Information

You can use the DBA_USERS view to get quite a bit of information about the user population in your
database. Here’s a typical query using the DBA_USERS view:

SQL> SELECT username, profile, account, status
 FROM dba_users;

USERNAME PROFILE ACCOUNT_STATUS
---------- -------- ---------------
SYS DEFAULT OPEN
SYSTEM DEFAULT OPEN
OUTLN DEFAULT OPEN
DBSNMP DEFAULT OPEN
HARTSTEIN DEFAULT OPEN
FINANCE DEFAULT OPEN
SQL>

Determining What SQL a User Is Currently Executing

You can use the query shown in Listing 12-19, which joins the V$SESSION and the V$SQLTEXT
tables, to give you the text of the SQL currently being used by a user.

Listing 12-19. Finding Out the SQL Being Executed by a User

SQL> SELECT a.sid,a.username,
 2 s.sql_text
 3 FROM v$session a,v$sqltext s
 4 WHERE a.sql_address = s.address
 5 AND a.sql_hash_value = s.hash_value
 6 AND a.username LIKE 'HR%'
 7* ORDER BY a.username,a.sid,s.piece;

 SID USERNAME SQL_TEXT
-------- -------- -----------------------------------
 8 HR BEGIN dbms_stats.gather_table_stats
 ('HR','REGIONS'); END;
SQL>

620 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

Logging In As a Different User

You may need to sometimes log in as another DBA to perform certain actions. However, even the
Oracle DBA doesn’t have access to users’ passwords, which are stored in an encrypted form. You
could use the ALTER USER statement to change the user’s password, but you might not want to incon-
venience the user by changing the password for good.

In a case like this, you can change the password of a user temporarily and use the new password
to get in as that user. Before you change a user’s password, get the original encrypted password,
which you can use to reset the user’s password back after you’re done. You can get the encrypted
password for all users from the USER$ view. Here’s an example:

SQL> SELECT 'alter user tester identified by values '||password||';'
 2 FROM user$
 3* WHERE username='TESTER';

'ALTERUSERTESTERIDENTIFIEDBYVALUES'||';'

alter user tester identified by values 1825ACAA229030F1;
SQL>

Now change the password of user tester so you can log in as that user:

SQL> ALTER USER tester IDENTIFIED BY newpassword;

When you’re done using the tester user account, use the ALTER USER statement again to change
user tester’s password back to its original value. Make sure you enclose the encrypted password in
single quotes.

SQL> ALTER USER tester IDENTIFIED BY VALUES '1825ACAA229030F1';
User altered.
SQL>

Killing a User’s Session

You can use the ALTER SYSTEM command to kill any user’s session. You need to first query the V$SESSION
view for the values of the SID and serial number of the user. Then using the SID and serial number,
you can kill the user’s session. Here’s an example:

SQL> SELECT sid, serial# FROM v$session
 2* WHERE username='SALAPATI';

 SID SERIAL#

 10 32

SQL> ALTER SYSTEM KILL SESSION '10,32';

System altered.
SQL>

If the session you want to kill is involved in a long operation, such as a lengthy rollback, Oracle
will inform you that the session is marked to be killed and kills the session once the operation completes.
When Oracle kills a session, it rolls back all ongoing transactions and releases all session locks.

If the UNIX process of the user is killed, the Oracle session will most likely be killed also, but that
isn’t the most graceful way to end a session. If you think you must kill a user’s UNIX session, and the
Oracle KILL SESSION command isn’t working, or it’s taking a long time, you can terminate the session

CH AP T E R 1 2 ■ U SE R M A N AG E M E N T AN D DA TA B AS E S E CU R I TY 621

rather abruptly by using the UNIX kill command as follows. Note that you can use either the kill
command by itself or with the -9 switch, but in most cases the simple kill command will be enough
to terminate the UNIX session of your Oracle users:

$ kill 345678

or

$ kill -9 345678

You can use the following script to derive the process number from the V$SESSION dynamic
view (and the SID and serial number as well):

SQL> SELECT process, sid, serial# FROM v$session
 WHERE username='&user';

Enter value for user: SALAPATI
old 2: username='&user'
new 2: username='SALAPATI'

PROCESS SID SERIAL#
--------- ---- -------
2920:2836 10 34
SQL>

Windows systems don’t use the concept of processes, of course, but all user processes are threads of
the same Oracle .exe process. In order to terminate an Oracle user’s session on Windows, you can
use the ORAKILL utility, which will kill a specific thread under the Oracle .exe process.

Suppose you wish to kill a user’s session. How do you find out what that user’s thread is?
Listing 12-20 shows how you can use a simple query to identify any user’s thread in a Windows
system.

Listing 12-20. Identifying a User’s Thread in a Windows System

SQL> SELECT sid, spid as thread, osuser, s.program
 2 FROM v$process p, v$session s
 3* WHERE p.addr = s.paddr;

 SID THREAD OSUSER PROGRAM
----------- ------ ------ -------------
 1 1192 SYSTEM ORACLE.EXE
 2 1420 SYSTEM ORACLE.EXE
 3 1524 SYSTEM ORACLE.EXE
 4 1552 SYSTEM ORACLE.EXE
 5 1528 SYSTEM ORACLE.EXE
 6 1540 SYSTEM ORACLE.EXE
 7 1580 SYSTEM ORACLE.EXE
 8 1680 SYSTEM ORACLE.EXE
 9 2948 NETBSA\SAlapati sqlplusw.exe
 10 4072 NETBSA\SAlapati sqlplusw.exe
10 rows selected.
SQL>

The script in Listing 12-20 will give you the thread numbers associated with each Oracle user.
Once you have the thread numbers, you can kill the user’s session by using the following command.
Here’s an example, assuming that the thread number is 2948:

622 CH AP T E R 1 2 ■ U S E R M A N AG E M E N T A N D DA T AB A SE S E CU R IT Y

C:> orakill 2948

This chapter covered a vast terrain, including creating users, granting privileges and roles, auditing
the Oracle database, security mechanisms (including the virtual private database concept), authen-
tication methods, and data encryption. For more details about Oracle’s user management and security
mechanisms, please refer to the Oracle Database Security Guide manual.

■ ■ ■

P A R T 5

Data Loading, Backup,
and Recovery

625

■ ■ ■

C H A P T E R 1 3

Loading and Transforming Data

One of your most common tasks as a DBA is loading data from external sources. Although you
normally do this when you first populate a database, you frequently need to load data into various
tables throughout the life of a production database. Traditionally, DBAs have used the SQL*Loader
utility to load data from flat files into the Oracle database tables.

Although SQL*Loader has always been an important tool for loading data into Oracle databases,
Oracle also provides another way to load tables: using the external tables feature. External tables use
SQL*Loader functionality and let you perform complex transformations on data before loading it
into the database. Not only can you load data into your database, but you can also unload data into
external files. You can then use these files to load data into other Oracle databases.

In many cases, especially in data warehouses, you need to transform the data you load. Oracle
provides several means of performing data transformation within the database, including SQL and
PL/SQL techniques. For example, the powerful MODEL clause enables you to create sophisticated
multidimensional arrays and conduct complex interrow and interarray calculations using simple SQL.

Oracle provides a useful data replication feature called Oracle Streams, which lets you propa-
gate changes from one database to another. You can use the Streams feature for various purposes,
including the maintenance of a standby database.

This chapter covers all of these topics related to loading and transforming data. First, I’ll give
you an overview of the extraction, transformation, and loading process.

An Overview of Extraction, Transformation,
and Loading
Before you can run your application on an Oracle database, you need to populate your database.
One of the most common sources of database data is a set of flat files from legacy systems or some
other source.

Traditionally, using the conventional or direct data load method with SQL*Loader was the only
way to load this data from the external files into database tables. SQL*Loader is still technically the
main Oracle-supplied utility to load data from external files, but you can also use the external tables
feature, which employs the SQL*Loader tool to help you access data located in external datafiles.

Because the raw data may contain extraneous information or data in a different format from
what your application needs, you frequently need to transform the data in some way before the data-
base can use it. Transforming data is an especially common requirement for data warehouses, which
extract their data from multiple sources. It’s possible to do some preliminary or basic transformation
of the raw data during the SQL*Loader run itself. However, more complex data transformation
requires separate steps, and you have a choice of several techniques to manage the transformation
process. Most warehouse data goes through three major steps before you can analyze the data:
extraction, transformation, loading (ETL). These steps are defined as follows:

626 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

• Extraction is the identification and extraction of raw data, possibly in multiple formats, from
several sources, not all of which may be relational databases.

• Transformation of data is the most challenging and time consuming of the three processes.
Transformation of data may involve the application of complex rules to data. It may also
include performing operations such as data aggregation and the application of functions to
the raw data.

• Loading is the process of placing the data in the database tables. This may also include the
task of maintaining indexes and constraints on the tables.

Traditionally, organizations have used two different methods of performing the ETL process:
the transform-then-load method and the load-then-transform method. In the former method, the
data is cleaned or transformed before it’s loaded into Oracle tables. Custom-made ETL processes are
usually used for the transformation of data. In the latter method of data cleansing, you aren’t fully
taking advantage of Oracle’s built-in transformation capabilities in most cases. In the load-then-
transform method, the raw data is first loaded into staging tables and moved to the final tables after the
data transformation process is performed within the database itself. Intermediate staging tables are
the key to the load-then-transform method. The drawback to this technique is that you must maintain
multiple types of data in the table, some in a raw and original state and some in a finished state.

Oracle Database 11g offers terrific ETL capabilities that enable a newer way to load data into a
database: the transform-while-loading method. By using the Oracle database to perform all the ETL
steps, you can efficiently perform the typically laborious ETL processes. Oracle provides you with a
whole set of complementary tools and techniques aimed at reducing the time needed to load data
into the database while simplifying the work involved. Oracle’s ETL solution includes the following
components:

• External tables: External tables provide a way to merge the loading and transformation
processes. Using external tables will enable you to eliminate cumbersome and time-consuming
intermediate staging tables during data loading. External tables are discussed in the “Using
External Tables to Load Data” section in this chapter.

• Multitable inserts: Using the multitable insert feature, you can insert data into more than one
table at the same time, using different criteria for the various tables. This capability eliminates
the additional step of first dividing data into separate groupings and then performing data
loading. Multitable inserts are discussed in the “Using Multitable Inserts” section in this chapter.

• Upserts: This is simply a made-up name indicating the technique by which you can either
insert data into a table or just update the rows with a single SQL statement: MERGE. The MERGE
statement will insert new data and update data if the rows already exist in the table. This simplifies
your loading process because you don’t need to worry about whether a table already contains
the data. Upserts are discussed in the “Using the MERGE Statement” section in this chapter.

• Table functions: Table functions produce a set of rows as output. Table functions return a
collection type instance (nested table and VARRAY data types). Table functions are similar to
views, but, instead of defining the transform declaratively in SQL, you define it procedurally
in PL/SQL. Table functions are a great help when you’re doing large and complex transforma-
tions, because you can perform the transformations before loading data into a data warehouse.
Table functions are discussed in the “Using Table Functions for Data Transformation” section in
this chapter.

• Transportable tablespaces: These tablespaces provide you with an efficient and speedy way to
move data from one database to another. For example, you can migrate data between an OLTP
database and a data warehouse using transportable tablespaces. I discuss transportable
tablespaces in Chapter 14.

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 627

■Note You can also use Oracle Warehouse Builder (OWB) to efficiently load data. OWB offers you a wizard-driven
facility to load data into the database through SQL*Loader. OWB can load data from an Oracle database or from flat
files. In addition, OWB can extract data from other databases such as Sybase, Informix, and Microsoft SQL Server
via Oracle Transparent Gateways. OWB combines ETL and design functions in an easy-to-use format.

In the next section, you’ll learn how to use the SQL*Loader utility to load data from external files.
This will also help you understand how to use external tables to perform data loading. After exam-
ining the external tables feature, you’ll review the various methods of data transformation offered by
Oracle Database 11g.

Using the SQL*Loader Utility
The SQL*Loader utility, which comes with the Oracle database server, is commonly used by DBAs to
load external data into an Oracle database. SQL*Loader is an immensely powerful tool that’s capable
of performing more than just a data load from text files. Here’s a quick list of the SQL*Loader utility’s
capabilities:

• You can use SQL*Loader to transform data before it’s loaded into the database or during the
data load itself (limited capabilities).

• You can load data from multiple sources: disk, tape, and named pipes. You can also use
multiple datafiles in the same loading session.

• You can load data across a network.

• You can selectively load from the input file based on conditions.

• You can load all or part of a table. You can also load data into several tables simultaneously.

• You can perform simultaneous data loads.

• You can automate the load process, so it runs at scheduled times.

• You can load complex object-relational data.

You can use the SQL*Loader utility to perform several types of data loading:

• Conventional data loading: Under conventional data loading, SQL*Loader reads multiple
rows at a time and stores them in a bind array. SQL*Loader subsequently inserts this whole
array at once into the database and commits the operation.

• Direct-path loading: The direct-path loading method doesn’t use the SQL INSERT statement to
load the data into Oracle tables. Column array structures are built from the data to be loaded,
and these structures are used to format Oracle data blocks that are then written directly to the
database tables.

• External data loading: The new external tables feature of Oracle relies on the functionality of
SQL*Loader to access data in external files as if it were part of the database tables. When you
use the ORACLE_LOADER access driver to create an external table, you are basically using the
SQL*Loader’s functionality. In Oracle Database 11g, you can also use the new ORACLE_DATAPUMP
access driver, which provides the ability to write to external tables.

The conventional and direct-path loading methods offer their own benefits and drawbacks.
Because the direct-path loading method bypasses the Oracle SQL mechanism, it is much faster than
the conventional loading method. However, when it comes to the data transformation capabilities, the
conventional loading method is much more powerful than direct-path loading, because it allows a

628 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

full range of functions to be applied to the table columns during the load. The direct-path loading
method supports a far more limited number of transformations during the load. Oracle recommends
that you use the conventional loading method for small data loads and the direct-path loading method
for larger loads. You’ll learn the specifics of direct-path loading after examining the main SQL*Loader
features and using the conventional loading method. External data loading is covered in the “Using
External Tables to Load Data” section later in this chapter.

Loading data using the SQL*Loader utility involves two main steps:

1. Select the datafile that contains the data you want to load. The datafile usually ends with the
extension .dat and contains the data you want to load. The data could be in several formats.

2. Create a control file. The control file tells SQL*Loader how to map the data fields to an Oracle
table and specifies whether the data needs to be transformed in some way. The control file
usually ends with the extension .ctl.

The control file will provide the mapping of the table columns to the data fields in the input file.
There is no requirement that you have a separate datafile for the load. If you wish, you can include
the data in the control file itself, after you specify the load control information such as the field spec-
ification and so on. The data can be supplied in fixed-length fields or in free format, separated by a
character such as a comma (,) or a pipe (|). Let’s begin by studying the all-important SQL*Loader
control file.

Exploring the SQL*Loader Control File
The SQL*Loader control file is a simple text file in which you specify important details about the data
load job, such as the location of the source datafile. The control file is also the place where you map
the datafiles to the table columns. You can also specify any transformation during the load process
within the control file. The control file contains the names of the log files for the load and files for
catching bad and rejected data. The control file instructs SQL*Loader regarding the following aspects
of the SQL*Loader session:

• The source of the data to be loaded into the database

• The column specification of the target table

• The nature of the input file formatting

• The mapping of the input file fields to the table columns

• Data transformation rules (applying SQL functions)

• The locations for the log files and error files

Listing 13-1 shows a typical SQL*Loader control file. SQL*Loader considers data rows in the
source datafiles to be records, and you can specify the record formats in the control file. Note that
you can also use a separate file for the data. In this example, you see the control information followed
by in-line data, as shown by the use of the INFILE * specification in the control file. This specification
indicates that the data for the load will follow the control information for the load. If you are doing a
onetime data load, it is probably better to keep things simple and place the data in the control file
itself. The keyword BEGINDATA tells SQL*Loader where the data portion of the control file starts.

Listing 13-1. A Typical SQL*Loader Control File

LOAD DATA
INFILE *
BADFILE test.bad
DISCARDFILE test.dsc

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 629

INSERT
INTO TABLE tablename
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY""
(column1 POSITION (1:2) CHAR,
column2 POSITION (3:9) INTEGER EXTERNAL,
column3 POSITION (10:15) INTEGER EXTERNAL,
column4 POSITION (16:16) CHAR
)
BEGINDATA
AY3456789111111Y
/* Rest of the data here . . .*/

The portion of the control file that describes the data fields is called the field list. In the control
file in Listing 13-1, the field list is the following section:

(column1 POSITION (1:2) char,
 column2 POSITION (3:9) integer external,
 column3 POSITION (10:15) integer external,
 column4 POSITION (16:16) char
)

The field list shows the field names, position, data type, delimiters, and any applicable conditions.
You can specify numerous variables in the control file, and you can informally sort them into the

following groups:

• Loading-related clauses

• Datafile-related clauses

• Table- and field-mapping clauses

• Command-line parameters in the control file

The following sections describe the parameters you can specify in the control file to configure
your data loads.

■Tip If you aren’t sure which parameters you can use for your SQL*Loader run, just type sqlldr at the operating
system prompt to view all the available options. You will see a complete list of all the parameters and their operating
system-specific default values (if any exist).

Loading-Related Clauses

The keywords LOAD DATA start off a control file. This simply means that the data is to be loaded from
the input datafile to the Oracle tables using the SQL*Loader utility.

The INTO TABLE clause indicates into which table the data will be loaded. If you’re loading into
multiple tables simultaneously, you’ll need an INTO TABLE statement for each table. The keywords
INSERT, REPLACE, and APPEND instruct the database how the load will be done. If it is an INSERT, the
table is assumed to be empty; otherwise, the loading process will generate an error and stop. The
REPLACE clause will truncate the table and start loading new data. You’ll often see that a load job using
the REPLACE option seems to hang initially. This is because Oracle is busy truncating the table before
it starts the load process. The APPEND clause will add the new rows to existing table data.

630 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

Datafile-Related Clauses

You can use several clauses to specify the locations and other characteristics of the datafile(s) from
which you’re going to load data using SQL*Loader. The following sections cover the important data-
file-related clauses.

Datafile Specification

You specify the name and location of the input datafile by using the INFILE parameter:

INFILE='/a01/app/oracle/oradata/load/consumer.dat'

If you don’t want to use the INFILE specification, you can include the data in the control file
itself. When you include the data in the control file instead of a separate input file, you omit the file
location and use the * notation, as follows:

INFILE = *

If you choose to have the data in the control file itself, you must use the BEGINDATA clause before
your data starts:

BEGINDATA
Nicholas Alapati,243 New Highway,Irving,TX,75078
. . .

Physical and Logical Records

Every physical record in the source datafile is equivalent to a logical record by default, but the control file
can specify that more than one physical record be combined into a single logical record. For example, in
the following input file, three physical records are also considered three logical records:

Nicholas Alapati,243 New Highway,Irving,TX,75078
Shannon Wilson,1234 Elm Street,Fort Worth,TX,98765
Nina Alapati,2629 Skinner Drive,Flower Mound,TX,75028

You can transform these three physical records by using either of two parameters in the control
file: the CONCATENATE clause or the CONTINUEIF clause.

If your input is in the fixed format, you can specify the number of rows of data to be read for each
logical record in the following way:

CONCATENATE 4

This CONCATENATE clause will combine four rows of data. If each row of data has 80 characters,
then the total number of characters in the new logical record that is created will be 320. Therefore,
when you use the CONCATENATE clause, you should also specify a record length (RECLEN) clause along
with it. In this case, the record length clause is as follows:

RECLEN 320

The CONTINUEIF clause lets you combine physical records into logical records by specifying one
or more characters in a specified location. Here’s an example:

CONTINUEIF THIS (1:4) = 'next'

In this line, the CONTINUEIF clause means that if SQL*Loader finds the four letters next at the
beginning of a line, it should treat the data that follows as a continuation of the previous line (the four
characters and the word next are arbitrary—continuation indicators can be any arbitrary characters).

If you are using fixed-format data, the CONTINUEIF character may be placed in the very last column,
as shown in the following example:

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 631

CONTINUEIF LAST = '&'

This line means that if SQL*Loader encounters the ampersand (&) character at the end of a line,
it will treat the following line as a continuation of the preceding line.

■Note Using either CONTINUEIF or CONCATENATE will slow down SQL*Loader, so map physical and logical
records one to one. You should do this because when you join more than one physical record to make a single
logical record, SQL*Loader must perform additional scanning of the input data, which takes more time.

Record Format

You may specify a record format in one of three ways:

• Stream record format: This is the most common record format, which uses a record terminator to
indicate the end of a record. When SQL*Loader scans the input file, it knows it has reached
the end of a record when it encounters the terminator string. If no terminator string is speci-
fied, the last character defaults to a newline character or a linefeed (carriage return followed
by a linefeed on Windows) character. The set of three records in the previous example uses
this record format.

• Variable record format: In this format, you explicitly specify the length at the beginning of the
each record, as shown in the following example:

INFILE 'example1.dat' "var 2"
06sammyy12johnson,1234

This line contains two records: the first with six characters (sammyy) and the second with
twelve characters (johnson,1234). var 2 indicates that the data records are of variable size,
with record size indicators specified as a field of length 2, before every new record.

• Fixed record format: In this format, you specify that all records are a specific fixed size. Here’s
an example, which specifies that every record is 12 bytes long:

INFILE 'example1.dat' "fix 12"
sammyy,1234, johnso,1234

Although at first glance in this example, the record seems to include the entire line
(sammyy,1234, johnso,1234), the fix 12 specification means that there are actually two
12-byte records in this line. Thus, when you use the fixed record format, you may have
several loader records on each line in your source datafile.

Table- and Field-Mapping Clauses

During a load session, SQL*Loader takes the data fields in the data records and converts them into
table columns. The table- and field-mapping clauses pertain to the mapping process between data
fields and table columns. The control file provides details about fields, including the column name,
position, input record data types, delimiters, and data transformation parameters.

Table Column Name

Each column in the table is specified clearly, with the position and data type of the matching field
value in the input file. You don’t need to load all the columns in the table. If you omit any columns
in the control file, they’re set to null.

632 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

Position

SQL*Loader must have a way of knowing the location of the various fields in the input file. Oracle
calls the individual items in the datafile fields, and there is no direct correspondence between these
fields and the columns in the table in which you are loading the data. The process of mapping fields
in the input datafile to the table columns in the database is called field setting, and it is the biggest
contributor to CPU time taken during the load. The POSITION clause specifies exactly where in the
data record the various fields are. You have two ways to specify the location of the fields: relative and
absolute.

Relative position implies that you specify the position of a field with respect to the position of the
preceding field, as shown in the following example:

employee_id POSITION(*) NUMBER EXTERNAL 6
employee_name POSITION(*) CHAR 30

In this example, the load starts with the first field, employee_id. SQL*Loader then expects
employee_name to start in position 7 and continue for 30 characters. It will look for the next field
starting at position 37, and so on.

When you use the POSITION clause in an absolute position sense, you just specify the position at
which each field starts and ends, as follows:

employee_id POSITION(1:6) INTEGER EXTERNAL
employee_name POSITION(7:36) CHAR

Data Types

The data types used in the control file refer to the input records only and aren’t the same as the column
data types within the database tables. The following are the main data types used in SQL*Loader control
files:

• INTEGER(n)—binary integer, where n can be 1, 2, 4, or 8

• SMALLINT

• CHAR

• INTEGER EXTERNAL

• FLOAT EXTERNAL

• DECIMAL EXTERNAL

Delimiters

After each column’s data type is specified, you can specify a delimiter, which indicates how the field
should be delimited. You can delimit data by using one of the following two clauses: TERMINATED BY
or ENCLOSED BY.

TERMINATED BY limits the field to the character specified and denotes the end of a field. Here are
a couple of examples:

TERMINATED BY WHITESPACE
TERMINATED BY ","

The first example indicates that the field is terminated by the first blank that is encountered. The
second example simply indicates that the fields are separated by commas.

The ENCLOSED BY " " delimiter specifies that the field is enclosed by a pair of quotation marks.
Here is an example:

FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 633

■Tip Oracle recommends that you avoid delimited fields and choose positional fields (using the POSITION
parameter) where possible. Choosing positional fields means that the database avoids scanning the datafile to find
the delimiters you chose, thus reducing processing time.

Data Transformation Parameters

You can apply SQL functions to the field data before loading it into table columns. Only SQL func-
tions that return single values can be used for transforming field values in general. The field should
be denoted inside the SQL string as field_name. You specify the SQL function(s) after you specify the
data type for the field, and you enclose the SQL string in double quotation marks, as shown in the
following examples:

field_name CHAR TERMINATED BY "," "SUBSTR(:field_name, 1, 10)"
employee_name POSITION 32-62 CHAR "UPPER(:ename)"
salary position 75 CHAR "TO_NUMBER(:sal,'$99,999.99')"
commission INTEGER EXTERNAL "":commission * 100"

As you can see, the application of SQL operators and functions to field values before they are
loaded into tables helps you transform the data at the same time you are loading it. This is a handy
feature.

Command-Line Parameters in the Control File

SQL*Loader allows you to specify a number of runtime parameters at the command line when you
invoke the SQL*Loader executable. Usually, you specify in the parameter file those parameters whose
values remain the same across jobs. You can then use the command line to start the SQL*Loader job,
either interactively or as part of a scheduled batch job. On the command line, you specify runtime-
specific parameters, along with the control filename and location.

As an alternative, you may use the OPTIONS clause of the control file to specify runtime parameters
inside the control file itself. You can always specify a number of runtime parameters while invoking
SQL*Loader, but you’re better off using the OPTIONS clause to specify them in the control file, if those
parameters are something you’ll repeat often. Using the OPTIONS clause comes in handy particularly
if your SQL*Loader command-line specification is so long that it exceeds your operating system’s
maximum command-line size.

■Note Specifying a parameter on the command line will override the parameter’s values inside a control file.

The following sections cover some of the important parameters you can control using the
OPTIONS clause in the control file.

USERID

The USERID parameter specifies both the username and the password of the user in the database who
has the privileges for the data load:

USERID = samalapati/sammyy1

CONTROL

The CONTROL parameter specifies the name of the control file for the SQL*Loader session. The control
file may include the specifications for all the load parameters. Of course, you can load data using

634 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

manual commands, but using a control file gives you more flexibility and enables the automation of
the load process.

CONTROL = '/test01/app/oracle/oradata/load/finance.ctl'

DATA

The DATA parameter simply refers to the input datafile. The default filename extension is .dat. Note
that the data doesn’t necessarily need to be inside a separate datafile. If you wish, you can include
the data at the end of the control file load specifications.

DATA = '/test02/app/oracle/oradata/load/finance.dat'

BINDSIZE and ROWS

You can use the two parameters BINDSIZE and ROWS to specify a conventional path bind array.
SQL*Loader in the conventional path mode doesn’t insert data into the table row by row. Rather, it
inserts a set of rows at a time, and that set of rows, called the bind array, is sized based on either the
BINDSIZE or ROWS parameter.

The BINDSIZE parameter sets the bind array size in bytes. On my system, the default bind size is
256,000 bytes.

BINDSIZE = 512000

The ROWS parameter does not set any limit on the number of bytes in the bind array. It imposes
a limit on the number of rows in each bind array, and SQL*Loader multiplies this value in the ROWS
parameter with its estimate of the size of each row in the table. The default number of rows under the
conventional method on my system is 64.

ROWS = 64000

■Note If you specify both the BINDSIZE and ROWS parameters, SQL*Loader uses the smaller of the two values
for the bind array.

DIRECT

If you specify DIRECT=true, SQL*Loader loads using the direct-path method instead of the conven-
tional method. The default for this parameter is DIRECT=false, meaning the conventional method is
the default method used.

ERRORS

The ERRORS parameter specifies the maximum number of errors that can occur before the SQL*Loader
job is terminated. The default on most systems is 50. If you don’t want to tolerate any errors, set this
parameter to 0:

ERRORS = 0

LOAD

Using the LOAD parameter, you can set the maximum number of logical records to be loaded into the
table. The default is to load all the records in the input datafile.

LOAD = 10000

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 635

LOG

The LOG parameter specifies the name of the log file. The SQL*Loader log file, as you’ll see shortly,
provides a lot of information about your SQL*Loader session.

LOG = '/u01/app/oracle/admin/finance/logs/financeload.log'

BAD

The BAD parameter specifies the name and location of the bad file. If any records are rejected due to
data formatting errors, SQL*Loader will write the record to the bad file. For example, a field could
exceed its specified length and be rejected by SQL*Loader. Note that besides the records rejected by
SQL*Loader, other records may be rejected by the database. For example, if you try to insert rows
with duplicate primary key values, the database will reject the insert. These records will be part of the
bad file as well. If you don’t explicitly name a bad file, Oracle will create one and use a default name
with the control filename as a prefix.

BAD = '/u01/app/oracle/load/financeload.bad'

SILENT

By default, SQL*Loader displays feedback messages on the screen showing the load job’s progress.
You can turn off the display with the SILENT parameter. You can use several options with the SILENT
parameter. For example, you can turn off all types of messages with the ALL option, as shown here:

SILENT = ALL

DISCARD and DISCARDMAX

The discard file contains all records rejected during the load because they didn’t meet the record
selection criteria you specified in the control file. The default is to not have a discard file. Oracle will
create this file only if there are discarded records, and, even then, only if you explicitly specify the discard
file in the control file. You use the DISCARD parameter to specify the name and location of the discard file.

DISCARD = 'test01/app/oracle/oradata/load/finance.dsc'

By default, SQL*Loader doesn’t impose any limit on the number of records; therefore, all the
logical records can be discarded. Using the DISCARDMAX parameter, you can set a limit on the number
of records that can be discarded.

■Tip Both the bad and discard files contain records in the original format. Therefore, it’s easy, especially during
large loads, to just edit these files and use them for loading the data that was left out during the first load run.

PARALLEL

The PARALLEL parameter specifies whether SQL*Loader can run multiple sessions when you’re
employing the direct-path loading method.

sqlldr USERID=salapati/sammyy1 CONTROL=load1.ctl DIRECT=true PARALLEL=true

RESUMABLE

Using the RESUMABLE parameter, you can turn on Oracle’s Resumable Space Allocation feature. This
way, if a job encounters a space problem while loading the data, the load job is merely suspended.

636 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

You can arrange for a notification about the job suspension and allocate more space so the job can
continue without failing. The Resumable Space Allocation feature is discussed in Chapter 8. The
default for the RESUMABLE parameter is false, meaning Resumable Space Allocation is disabled. Set
RESUMABLE=true to enable this feature.

RESUMABLE_NAME

The RESUMABLE_NAME parameter enables you to identify a specific resumable load job when you use
the Resumable Space Allocation feature. The default name is the combination of the username,
session ID, and instance ID.

RESUMABLE_NAME = finance1_load

RESUMABLE_TIMEOUT

The RESUMABLE_TIMEOUT parameter can be set only when the RESUMABLE parameter is set to true. The
timeout is the maximum length of time for which an operation can be suspended when it runs into
a space-related problem. If the space-related problem is not fixed within this interval, the operation
will be aborted. The default is 7,200 seconds.

RESUMABLE_TIMEOUT = 3600

SKIP

The SKIP parameter is very useful in situations where your SQL*Loader job fails to complete its run
due to some errors, but it has already committed some rows. The SKIP parameter lets you skip a
specified number of records in the input file when you run the SQL*Loader job the second time. The
alternative is to truncate the table and restart the SQL*Loader job from the beginning—not a great
idea if a large number of rows have already been loaded into the database tables.

SKIP = 235550

This example assumes the first job failed after loading 235,549 records successfully. You can find
out this information from the log file for the load, or query the table directly.

Generating Data During the Load
The SQL*Loader utility enables you to generate data to load columns. This means that you can do
a load without ever using a datafile. More commonly, however, you generate data for one or more
columns of the data when you are loading from a datafile. The following types of data can be gener-
ated by SQL*Loader:

• Constant value: You can set a column to a constant value by using the CONSTANT specification.
For example, with the following specification, all the rows populated during this run will have
the value sysadm in the loaded_by column:

loaded_by CONSTANT "sysadm"

• Expression value: You can set a column to the value specified by a SQL operator or a PL/SQL
function. You specify the expression value using the EXPRESSION parameter, as shown here:

column_name EXPRESSION "SQL string"

• Datafile record number: You can set a column’s value to the record number that loaded that
row by using the RECNUM column specification:

record_num RECNUM

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 637

• System date: You can use the sysdate variable to set a column to the date you’re loading the
data:

loaded_date sysdate

• Sequence: You can generate unique values to load a column by using the SEQUENCE function.
In the following example, the current maximum value of the loadseq sequence is incremented by
one each time a row is inserted:

loadseq SEQUENCE(max,1)

Invoking SQL*Loader
You can invoke the SQL*Loader utility in a number of ways. The standard syntax for invoking the
SQL*Loader is as follows:

SQLLDR keyword=value [,keyword=value,. . .]

Here’s an example showing how to invoke the SQL*Loader:

$ sqlldr USERID=nicholas/nicholas1 CONTROL=/u01/app/oracle/finance/finance.ctl \
DATA=/u01/app/oracle/oradata/load/finance.dat \
LOG=/u01/aapp/oracle/finance/log/finance.log \
ERRORS=0 DIRECT=true SKIP=235550 RESUMABLE=true RESUMABLE_TIMEOUT=7200

■Note In the command-line invocation of the SQL*Loader utility, the backslash (\) at the end of each line simply
indicates that the command continues on the next line. You can specify a command-line parameter with the parameter
name itself or by position. For example, the username/password specification always follows the keyword sqlldr. If you
ignore a parameter, Oracle will use the default value for that parameter. You can optionally use a comma after each
parameter.

As you can see, the more parameters you want to use, the more information you need to provide
at the command line. This approach presents two problems. First, if you make typing or other errors,
you’ll have a mess on your hands. Second, there may be a limit on some operating systems regarding
how many characters you can input at the command prompt. Fortunately, you can run the same
SQL*Loader job with the following command, which is a lot less complicated:

$ sqlldr PARFILE=/u01/app/oracle/admin/finance/load/finance.par

The command-line parameter PARFILE stands for parameter file, which is a file in which you can
specify values for all your command parameters. For example, for the load specifications shown in
this chapter, the parameter file looks like this:

USERID=nicholas/nicholas1
CONTROL='/u01/app/oracle/admin/finance/finance.ctl'
DATA='/app/oracle/oradata/load/finance.dat'
LOG='/u01/aapp/oracle/admin/finance/log/finance.log'
ERRORS=0
DIRECT=true
SKIP=235550
RESUMABLE=true
RESUMABLE_TIMEOUT=7200

Using the parameter file is more elegant than typing all the parameters at the command line,
and it is a logical approach when you need to regularly run jobs that use the same options. Any

638 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

option that you specify at the command line will override the value specified for that parameter
inside a parameter file.

If you want to use the command line, but you don’t want to type the password where someone
can easily see it, you can invoke SQL*Loader in the following manner:

$ sqlldr CONTROL=control.ctl

SQL*Loader will then prompt you for your username/password combination.

Exploring the Loader Log File
The SQL*Loader log file offers a host of information regarding a SQL*Loader run. It tells you how
many records were supposed to be loaded and how many actually were loaded. It tells you which
records failed to get loaded and why. It also describes the field columns provided in the SQL*Loader
control file. Listing 13-2 shows a typical SQL*Loader log file.

Listing 13-2. A Typical SQL*Loader Log File

SQL*Loader: Release 11.1.0.0.0 - Production on Sun Aug 24 14:04:26 2008
Control File: /u01/app/oracle/admin/fnfactsp/load/test.ctl
 Data File: /u01/app/oracle/admin/fnfactsp/load/test.ctl
 Bad File: /u01/app/oracle/admin/fnfactsp/load/test.badl
Discard File: none specified
 (Allow all discards)
Number to load: ALL
Number to skip: 0
Errors allowed: 0
Bind array: 64 rows, maximum of 65536 bytes
Continuation: none specified
Path used: Conventional
Table TBLSTAGE1, loaded when ACTIVITY_TYPE != 0X48(character 'H')
 and ACTIVITY_TYPE != 0X54(character 'T')
Insert option in effect for this table: APPEND
TRAILING NULLCOLS option in effect
 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- -----
COUNCIL_NUMBER FIRST * , CHARACTER
COMPANY NEXT * , CHARACTER
ACTIVITY_TYPE NEXT * , CHARACTER
RECORD_NUMBER NEXT * , CHARACTER
FUND_NUMBER NEXT * , CHARACTER
BASE_ACCOUNT_NUMBER NEXT * , CHARACTER
FUNCTIONAL_CODE NEXT * , CHARACTER
DEFERRED_STATUS NEXT * , CHARACTER
CLASS NEXT * , CHARACTER
UPDATE_DATE SYSDATE
UPDATED_BY CONSTANT
 Value is 'sysadm'
BATCH_LOADED_BY CONSTANT
 Value is 'sysadm'
/*Discarded Records Section: Gives the complete list of discarded
records, including reasons why they were discarded.*/

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 639

Record 1: Discarded - failed all WHEN clauses.
Record 1527: Discarded - failed all WHEN clauses.
Table TBLSTAGE1:
/*Number of Rows: Gives the number of rows
 successfully loaded and the number of rows not
 loaded due to errors or because they failed the
 WHEN conditions, if any. Here, two records failed the WHEN condition*/
 1525 Rows successfully loaded.
 0 Rows not loaded due to data errors.
 2 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

/* Memory Section: Gives the bind array size chosen for the data load*/
Space allocated for bind array: 99072 bytes(64 rows)
Read buffer bytes: 1048576
/* Logical Records Section: Gives the total records, number of rejected
 and discarded records.*/
Total logical records skipped: 0
Total logical records read: 1527
Total logical records rejected: 0
Total logical records discarded: 2
/*Date Section: Gives the day and date of the data load.*/
Run began on Sun Mar 06 14:04:26 2009
Run ended on Sun Mar 06 14:04:27 2009
/*Time section: Gives the time taken for completing the data load.*/
Elapsed time was: 00:00:01.01
CPU time was: 00:00:00.27

When you examine the log file, focus on the total logical records read and the records that are
skipped, rejected, and discarded. When you encounter difficulty running a job, the log file is the first
place you should look to see whether or not the data records are being loaded.

Using Return Codes
The log file provides a wealth of information about the load, but Oracle also allows you to trap the
exit code after each load run. This enables you to check the results of the load when you run it through a
cron job or a shell script. For a Windows server, you may use the at command to schedule the load
job. Here are the key exit codes for the UNIX/Linux operating systems:

• EX_SUCC 0 indicates that all the rows were loaded successfully.

• EX_FAIL 1 indicates that there were command-line or syntax errors.

• EX_WARN 2 indicates that some or all rows were rejected.

• EX_FTL 3 indicates operating system errors.

Using the Direct-Path Loading Method
So far, you have looked at the SQL*Loader utility from the point of view of a conventional load. As
you recall, the conventional loading method uses SQL INSERT statements to insert data into tables
one bind array size at a time. The direct-path loading option doesn’t use the SQL INSERT statement
to put data into tables; rather, it formats Oracle data blocks and writes them directly to the database
files. This direct-write process eliminates much of the overhead involved in executing SQL statements

640 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

to load tables. Since the direct-path loading method doesn’t contend for database resources, it will
load data much faster than a conventional data load. For larger data loads, the direct-path loading
method works best, and it may be the only viable method of loading data into tables for the simple
reason that a conventional load may require more time than is available.

Besides the obvious advantages of a shorter load time, direct loading also helps you rebuild
indexes and presort table data. Using the direct-path loading method as opposed to the conven-
tional loading method has the following advantages:

• The load is much faster than in the conventional loading method because you aren’t using
SQL INSERT statements for the load.

• The direct load uses multiblock asynchronous I/O for database writes, so the writing is fast.

• You have the option of presorting data using efficient sorting routines with the direct load.

• By setting the UNRECOVERABLE=Y parameter, you can avoid the writing of any redo data during
a direct load.

• By using temporary storage, you can build indexes more efficiently during a direct load than
when you’re using the conventional load method.

■Note A conventional load will always generate redo entries, whereas the direct-path loading method will
generate such entries only under specific conditions. A direct load also won’t fire any insert triggers, unlike the
conventional load, which fires the triggers during the load. Users can’t make any changes when a table is being
loaded using a direct load, unlike in a conventional load.

However, direct-path loads have some serious limitations. You can’t use this method under the
following conditions:

• You’re using clustered tables.

• You’re loading parent and child tables together.

• You’re loading VARRAY or BFILE columns.

• You’re loading across heterogeneous platforms using Oracle Net.

• You want to apply SQL functions during the load.

■Note In a direct load, you can’t use any SQL functions. If you need to perform a large data load and also trans-
form the data during the load, you have a problem. The conventional data load will let you use SQL functions to
transform data, but the method is very slow compared to the direct load. Thus, for large data loads, you may want
to consider using one of the newer load/transform techniques, such as external tables or table functions.

Direct Load Options

Several SQL*Loader options are intended especially for use with the direct load option or are more
significant for direct loads than conventional loads. The following options are relevant to the direct-
path loading method:

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 641

• DIRECT: The DIRECT clause must be set to true in order for you to use the direct-path loading
method (DIRECT=true).

• DATA_CACHE: The DATA_CACHE parameter comes in handy if you’re loading the same data or time-
stamp values several times during a direct load. SQL*Loader has to convert the date and
timestamp data each time it encounters them. If you have duplicate data and timestamp
values in your data, you can reduce unnecessary data conversions, and thus processing time,
by specifying the DATA_CACHE parameter. By default, the DATA_CACHE parameter is enabled for
1,000 values. If you don’t have duplicate date and timestamp values in your data, or if there
are few such duplicates, you can disable the DATA_CACHE parameter by setting it to zero
(DATA_CACHE=0).

• ROWS: The ROWS parameter is crucial because you can use it to specify how many rows SQL*Loader
will read from the input datafile before saving the insertions to the tables. You use the ROWS
parameter to set the ceiling on the amount of data lost if the instance fails during a long
SQL*Loader run. When SQL*Loader reads the number of rows specified in the ROWS parameter, it
will stop loading data until all of the data buffers are successfully written to the datafiles. This
process is called a data save. For example, if SQL*Loader can load about 10,000 rows per minute,
setting ROWS=150000 saves the data every 15 minutes.

• UNRECOVERABLE: If you want to minimize the use of the redo log, you can do so by using the
UNRECOVERABLE parameter during a direct load (specify UNRECOVERABLE in the control file).

• SKIP_INDEX_MAINTENANCE: The SKIP_INDEX_MAINTENANCE parameter, when turned on
(SKIP_INDEX_MAINTENANCE=true), instructs SQL*Loader not to bother maintaining the
indexes during the load. The default for SKIP_INDEX_MAINTENANCE is false.

• SKIP_UNUSABLE_INDEXES: Setting a value of true for the SKIP_UNUSABLE_INDEXES parameter will
ensure that SQL*Loader will load tables with indexes in an unusable state. These indexes
won’t be maintained by SQL*Loader, however. The default for this parameter is based on the
setting for the SKIP_UNUSABLE_INDEXES initialization parameter, whose default value is true.

• SORTED_INDEXES: The SORTED_INDEXES parameter signals SQL*Loader that data is sorted on a
specified index, which helps improve load performance.

• COLUMNARRAYROWS: This parameter determines the number of rows loaded before the building
of the stream buffer. For example, COLUMNARRAYROWS=100000 loads 100,000 rows first. The size
of the direct-path column array is thus determined by this parameter. The default value for
this parameter on my UNIX server is 5,000.

• STREAMSIZE: The STREAMSIZE parameter lets you set the size of the stream buffer. The default
on my server, for example, is 256,000, and I can increase it using the STREAMSIZE parameter;
for example, STREAMSIZE=512000.

• MULTITHREADING: Under MULTITHREADING, the conversion of column arrays to stream buffers
and stream buffer loading are performed in parallel. On machines with multiple CPUs, by
default, multithreading is turned on (true). If you wish, you can turn it off by setting
MULTITHREADING=false.

Direct Loads and Constraint/Trigger Management

The direct-path loading method inserts data directly into the datafiles by formatting the data blocks.
By bypassing the INSERT statement mechanism, the table constraints and triggers aren’t systematically
applied during a direct load. All triggers are disabled, as are several integrity constraints. SQL*Loader

642 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

automatically disables all foreign keys and check constraints, but the not null, unique, and primary
key constraints are still maintained by SQL*Loader. Upon completion of the SQL*Loader run, the
disabled constraints are automatically enabled by SQL*Loader if the REENABLE clause has been spec-
ified. Otherwise, the disabled constraints must be manually reenabled. The disabled triggers are
automatically enabled after the load is completed.

TIPS FOR OPTIMAL USE OF SQL*LOADER

The following tips will help you optimize SQL*Loader during data loads, especially when the data loads are large and/or
you have multiple indexes and constraints on the tables in your database.

• Try to use the direct-path loading method as much as possible. It’s much faster than conventional data loading.

• Use the UNRECOVERABLE=true option wherever possible (in direct loads). This will save you considerable
time, because the newly loaded data doesn’t need to be logged in the redo log file. Media recovery is still in
force for all the other users of the database, and you can always start a new SQL*Loader run if there’s a problem.

• Keep the use of the NULLIF and DEFAULTIF parameters to a minimum. These clauses must be tested for
every single row on which they’re used.

• Minimize the number of data type and character set conversions, as they slow down processing.

• Wherever possible, use positional fields rather than delimited fields. SQL*Loader can move from field to field
much faster if it’s given the position of the field.

• Map physical and logical records on a one-to-one basis.

• Disable constraints before the load, as the constraints will slow down the loading. Of course, you may some-
times end up with errors while enabling the constraints, but it’s a small price to pay for a much faster data
load, especially for large tables.

• If you’re using the direct-path loading method, specify the SORTED_INDEXES clause to optimize the load
performance.

• If you’re doing large data loads, it’s smart to drop the indexes on the tables before the load. Index maintenance
will slow down your SQL*Loader session. If it isn’t possible to drop the indexes, you can make them unusable
and use the SKIP_UNUSABLE_INDEXES clause during the load. If it’s a direct load, use the SKIP_INDEX_
MAINTENANCE clause.

Some Useful SQL*Loader Data-Loading Techniques
Using SQL*Loader is efficient, but it’s not without its share of headaches. This section describes how
to perform some special types of operations during data loads.

Using the WHEN Clause During Loads

You can use WHEN clauses during data loads to limit the load to only those rows that match certain
conditions. For example, in a datafile, you can pick up only those records that have a field matching
certain criteria. Here’s an example that shows how to use the WHEN clause in a SQL*Loader control file:

LOAD DATA
INFILE *
INTO TABLE stagetbl
APPEND
 WHEN (activity_type <>'H') and (activity_type <>'T')
FIELDS TERMINATED BY ','

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 643

TRAILING NULLCOLS
/* Table columns here . . .*/
BEGINDATA
/* Data here . . .*/

The WHEN condition will reject all records where the data record field matching the activity_type
column in the stagetbl table is neither H nor T.

Loading the Username into a Table

You can use the user pseudo-variable to load the username into a table during the load. The following
example illustrates the use of this variable. Note that the target table stagetbl should have a column
called loaded_by so SQL*Loader can insert the username into that column.

LOAD DATA
INFILE *
INTO TABLE stagetbl
INSERT
(loaded_by "USER")
/* Table columns and the data follow . . .*/

Loading Large Data Fields into a Table

If you try to load any field larger than 255 bytes into a table, even if the table column is defined as
VARCHAR2(2000) or a CLOB, SQL*Loader won’t be able to load the data. You’ll get an error informing
you that the “Field in datafile exceeds maximum length.” To manage the load of the large field, you
need to specify the size of the table column in the control file when you’re matching table columns
to the data fields, as in this example (for a table column called text):

LOAD DATA
INFILE '/u01/app/oracle/oradata/load/testload.txt'
INSERT INTO TABLE test123
FIELDS TERMINATED BY ','
(text CHAR(2000))

Loading a Sequence Number into a Table

Suppose you have a sequence named test_seq, and you want this sequence to be incremented each
time you load a data record into your table. Here’s how to do it:

LOAD DATA
INFILE '/u01/app/oracle/oradata/load/testload.txt'
INSERT INTO TABLE test123
 (test_seq.nextval,. . .)

Loading Data from a Table into an ASCII File

You may sometimes want to get data out of the database table into flat files; for example, to later use
this data to load data into Oracle tables in a different location. You can write complex scripts to do
the job if there are a number of tables, but if there are few tables to load, you can use the following
simple method of extracting data using SQL*Plus commands:

SET TERMOUT OFF
SET PAGESIZE 0
SET ECHO OFF
SET FEED OFF

644 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

SET HEAD OFF
SET LINESIZE 100
COLUMN customer_id FORMAT 999,999
COLUMN first_name FORMAT a15
COLUMN last_name FORMAT a25
SPOOL test.txt
SELECT customer_id,first_name,last_name FROM customer;
SPOOL OFF

You may also use the UTL_FILE package to load data into text files.

Dropping Indexes Before Bulk Data Loads

There are two major reasons why you should seriously consider dropping indexes on a large table
before performing a direct-path load using the NOLOGGING option. First, it may take you a longer time
to do the load with the indexes included with the table data. Second, if you leave indexes on, there
will be redo records generated by the changes that will be made to the index structure during the
load.

■Tip Even if you choose to load data using the NOLOGGING option, there will be considerable redo generated
to mark the changes being made to the indexes. In addition, there will always be some redo to support the data
dictionary, even during a NOLOGGING data load operation. The best strategy here is to drop the indexes and rebuild
them after the tables are created.

While you’re performing a direct load, the instance may fail halfway through, SQL*Loader may
run out of space that it needs to update the index, or SQL*Loader may encounter duplicate values for
the index keys. This situation is referred to as the indexes left unusable condition, as the indexes will
be unusable upon instance recovery. In such cases, it may be better to create the indexes after the
load is complete.

Loading into Multiple Tables

You can use the same SQL*Loader run to load into multiple tables. Here’s an example that shows
how to load data into two tables simultaneously:

LOAD DATA
INFILE *
INSERT
INTO TABLE dept
 WHEN recid = 1
 (recid FILLER POSITION(1:1) INTEGER EXTERNAL,
 deptno POSITION(3:4) INTEGER EXTERNAL,
 dname POSITION(8:21) CHAR)
INTO TABLE emp
 WHEN recid <> 1
 (recid FILLER POSITION(1:1) INTEGER EXTERNAL,
 empno POSITION(3:6) INTEGER EXTERNAL,
 ename POSITION(8:17) CHAR,
 deptno POSITION(19:20) INTEGER EXTERNAL)

In the preceding example, data from the same datafile is simultaneously loaded into two tables,
dept and emp, based on whether or not the recid field value is 1.

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 645

Trapping Error Codes from SQL*Loader

Here’s a simple example of how you can trap the process error codes issued by SQL*Loader:

$ sqlldr PARFILE=test.par
retcode=$?
if [[retcode !=2]]
 then
 mv ${ImpDir}/${Fil} ${InvalidLoadDir}/.${Dstamp}.${Fil}
 writeLog $func "Load Error" "load error:${retcode} on file ${Fil}"
 else
 sqlplus / ___EOF
 /* You can place any SQL statements to process the successfully loaded data */
___EOF

Loading XML Data into an Oracle XML Database

SQL*Loader supports the XML data type for columns. If a column is of this type, you can use SQL*Loader
to load the XML data into a table. SQL*Loader treats the XML columns as CLOBs. Oracle also lets you
load the XML data either from a primary datafile or from an external LOB file. You can use fixed-length
fields or delimited fields. The contents of the entire file could also be read into a single LOB field.

Using External Tables to Load Data
For many years, Oracle DBAs used SQL*Loader almost exclusively for loading data into Oracle data-
base tables from outside sources, employing either the conventional loading method or the direct-
path loading method. Oracle’s external tables feature goes one step further and enables you to use
the SQL*Loader functionality to access data stored in operating system files without ever loading the
data into a real Oracle table.

If your source data doesn’t need any transformations when loading into the database, using the
SQL*Loader to perform a conventional or a direct load is sufficient. External tables complement the
functionality of the SQL*Loader. If you want to perform major data transformations before the load,
then external tables are the recommended way to go.

Using the external tables feature, you can visualize external data as if it were stored in an Oracle
table. When you create an external table, the columns are listed the same way as they are when you
create a regular table. However, the data fields in the external file are merely mapped to the external
table columns, not actually loaded into them.

External tables don’t actually exist anywhere, inside or outside the database. The term external
table implies that a given table structure is mapped to a datafile that’s located in an operating system
file. When you create an external table, the only thing that happens in the database is the creation of
new metadata entries in the data dictionary for the new table. You can’t change the datafile’s contents in
any way while you’re accessing its contents from within the database. In other words, you can only
use the SELECT command when you’re dealing with external tables, not the INSERT, UPDATE, or DELETE
command.

In reality, an external table is an interface to an external datafile. However, you may query this
external table like a virtual table, just as you would query any regular Oracle table, which makes it a
very powerful tool for data warehouse ETL activities. You can query external tables or join them with
regular tables, without ever loading the external data into your database. In addition, you may create
other regular tables or views from the external tables, so this feature comes in handy during the
population of data warehouses.

SQL*Loader and the external tables feature perform similarly in terms of data-loading speed, in
most cases. The two techniques offer you alternative methods of loading data into your database

646 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

tables from external sources. The following are the general advantages that the external table method of
loading offers in comparison with the SQL*Loader method:

• You can query data in the external files before it’s loaded into the tables.

• You can perform an extensive range of transformations on the data during the load process
itself. SQL*Loader is limited in the number of data transformations you can perform.

• You may choose to perform data transformation at the same time you’re loading data into the
tables. This is called the pipelining of the two phases. When you use SQL*Loader to load
directly into the tables, you can’t perform anything other than the most minimal data trans-
formation at load time. Consequently, major transformations must be done in a separate step
from that of data loading.

• External tables are suitable for large data loads that may have a onetime use in your database.

• External tables save the time involved in creating real database tables and then aggregating
the data dimensions for loading into other tables.

• External tables eliminate the need to create staging or temporary tables, which are almost a
must if you’re using SQL*Loader to load the data from external sources.

• You don’t need any physical space even for the largest external table. Once the datafiles are
loaded into the operating system, you can create your external tables and start executing SQL
queries against them.

If you need to load data remotely, or if your data doesn’t need major transformations, SQL*Loader
is the best way to go. External tables are in no way as versatile as regular database tables, because
they’re read-only tables. Furthermore, external tables suffer from the limitation that you can’t index
them. Therefore, high-powered query work with these tables is impractical. If the data in your staging
tables needs to be indexed for some reason, then SQL*Loader is the only viable alternative. The real
benefit of the external tables feature is primarily realized in data warehousing environments or in situa-
tions where you need to load and transform huge amounts of data when you first load an application.

■Caution If you want to create indexes on a staging table, you’re better off using the SQL*Loader utility to load
data into the table. You can’t index an external table!

For example, suppose you have an external datafile named sales_data that contains detailed
information about your firm’s sales data for the last year. Your firm wants to perform product and
time cost analysis based on this raw data. You create a cost table to do this analysis. Now, the sales_
data datafile contains a lot of detailed information on costs, but your company wants the data to be
aggregated, say on the basis of regions. External tables are excellent for this kind of analysis, where
you have large amounts of raw data available, but you need only certain transformed parts of this data.

Traditionally, data warehousing DBAs had to create staging tables to first transform data, before
loading it into the data warehouse. Using just the SQL*Loader, you would need to load the raw data
into your database first, and then apply the necessary transformations to it. Using an external table,
you can perform the loading and transform operations in one step!

Now, let’s look at how to create and populate external tables.

Creating the External Table Layer
The external table description is also called the external table layer, and it is basically a description
of the columns in your external table. This external table layer, along with the access driver, maps
the data in the external file to the external table definition.

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 647

Listing 13-3 shows how to create an external table.

Listing 13-3. Creating an External Table

SQL> CREATE TABLE sales_ext(
 2 product_id NUMBER(6),
 3 sale_date DATE,
 4 store_id NUMBER(8),
 5 quantity_sold NUMBER(8),
 6 unit_cost NUMBER(10,2),
 7 unit_price NUMBER(10,2))
 8 ORGANIZATION EXTERNAL (
 9 TYPE ORACLE_LOADER
 10 DEFAULT DIRECTORY ext_data_dir
 11 ACCESS PARAMETERS
 12 (RECORDS DELIMITED BY NEWLINE
 13 BADFILE log_file_dir:'sales.bad_xt'
 14 LOGFILE log_file_dir:'sales.log_xt'
 15 FIELDS TERMINATED BY "|" LDRTRIM
 16 MISSING FIELD VALUES ARE NULL)
 17 LOCATION ('sales.data'))
 18* REJECT LIMIT UNLIMITED;
Table created.
SQL>

Let’s analyze this statement in detail, in order to understand the various components of an
external table.

CREATE TABLE . . . ORGANIZATION EXTERNAL

The statement CREATE TABLE sales_ext (. . .) describes the external table structure, with the
ORGANIZATION EXTERNAL clause that follows it indicating that this isn’t going to be a regular Oracle
table, but an external table.

The CREATE statement for an external table is very similar to that of a regular table, except that in
addition to the column definitions, you must provide the mapping for the columns to the data fields
in the external datafile. In addition, the external table creation statement must provide the operating
system location of the external datafile.

Access Parameters

The ACCESS PARAMETERS clause, somewhat similar to the OPTIONS clause in a SQL*Loader control file,
indicates the various options chosen, as well as the location of the bad file and log file. Several external
table parameters are available to specify the format of the data. Important among them are the
following:

• RECORD_FORMAT_INFO: This is an optional clause. The default is RECORDS DELIMITED BY NEWLINE.

• FIXED: When you specify a fixed length by using the FIXED clause, you’re indicating that all
records in the external file are of the same length.

ACCESS PARAMETERS (RECORD FIXED 20 FIELDS (. . .))

• VARIABLE: The VARIABLE clause indicates that each record may be a different size, indicated by
a number of digits before the beginning of each record.

ACCESS PARAMETERS (RECORDS VARIABLE 2)

648 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

• When you use the VARIABLE clause, every record in this data set will have the following format,
with the first two bytes indicating the length of the record:

22samalapati1999dallastx

• DELIMITED BY: This clause indicates the character that terminates each record. The most
common delimiters are the pipe (|) and the comma (,).

• LOAD WHEN: This clause indicates the conditions that must be satisfied before a record can be
loaded into a table.

LOAD WHEN (job != MANAGER)

• LOG FILE, BAD FILE, and DISCARD FILE: These are optional parameters, but a log file is always
created by default. The bad file and the discard file are created only if data is rejected or data
fails to meet a LOAD WHEN condition.

• Condition: This variable compares all or part of a field against an arbitrarily chosen constant
string.

Access Driver

The access parameters describe the external data in the datafiles. The access driver ensures that the
external data processing matches the description of the external table.

Two types of access drivers are available, and you specify each of them by using the attribute
TYPE in the external table creation statement. The first is the ORACLE_LOADER access driver, which is the
default. Listing 13-3 creates an external table using the ORACLE_LOADER access driver. Using this access
driver, you can only load data into a table from an external text file.

The new ORACLE_DATAPUMP access driver lets you both load and unload data using external dump
files. You can read data into database tables from an external dump file. You can also extract data
from an Oracle table into an external table’s dump file.

Directory Objects and Their Locations

The clause DEFAULT DIRECTORY indicates the default location for all files that external tables need to
read from or write to. You can’t place the external datafiles in a random operating system directory
for obvious security reasons. For an external table creation statement to succeed, you must first
create a directory object, and then grant rights to specific users on this directory object.

The LOCATION parameter toward the end of the external table creation statement shown in
Listing 13-3 indicates where the datafiles for the external table creation are located. The LOCATION
parameter could indicate both a directory object and a filename. The format of the LOCATION param-
eter is directory: file, where directory is a directory object you’ve created in the database, not an
actual directory path on your system. If you omit the directory part of the specification, then it’s
assumed that the datafile(s) is located in the directory specified by the DEFAULT DIRECTORY clause. You
can also use the directory: file notation to specify the datafiles directly under the ACCESS
PARAMETERS clause, if you wish.

SQL*Loader uses the directory object(s) to indicate where the datafiles are located, as well as to
store its output files, such as the bad and discard files. A user must have read privileges on the direc-
tory object containing the datafiles and write privilege on the directory object containing the output
files. If you wish to place both the datafiles and the output files in the same directory object, you may
grant both read and write privileges on that directory object to the user. Here’s one such example:

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 649

SQL> CREATE DIRECTORY ext_data_dir AS '/u01/oradata/ext_data';
Directory created.
SQL> GRANT READ, WRITE ON DIRECTORY ext_data_dir TO samalapati;
Grant succeeded.
SQL>

Once you create the directory object ext_data_dir and grant the proper rights, you can then use
this as the default directory for placing all the external datafiles as well as output files. The LOCATION
parameter in the external table creation statement shown in Listing 13-3 simply names the external
datafile, which will be located in the default directory specified by ext_data_dir.

For demonstration purposes, let’s create a new table named costs, into which you’ll eventually
load the aggregate data (the totals of the unit_cost and unit_price columns) from the external datafile
(external table):

SQL> CREATE TABLE costs
 2 (sale_date DATE,
 3 product_id NUMBER(6),
 4 unit_cost NUMBER (10,2),
 5 unit_price NUMBER(10,2));
Table created.

Now you’re ready to insert the necessary aggregate data from the external table (external file,
actually) sales_ext into the new costs table. This process of first reading data from an external table
and then loading it into a normal database table is called loading data. Listing 13-4 shows how to
insert data into a normal table from an external table. The Oracle table is named costs, and sales_ext
is the external table.

Listing 13-4. Loading Data into a Normal Table from an External Table

SQL> INSERT INTO costs
 (sale_date,
 product_id, unit_cost, unit_price)
 SELECT
 sale_date,
 product_id,
 sum(unit_cost),
 sum(unit_price)
 FROM sales_ext
 GROUP BY time_id, prod_id;
SQL>

Note that you can insert only some of the columns in the external table if you choose, and you
can transform the data before it’s even loaded into your tables. This is the key difference between
using external tables and SQL*Loader to load data into Oracle tables. The SQL*Loader tool permits
you to perform data transformation, but its capabilities in that area are extremely limited, as you saw
earlier in this chapter. You can use just about any arbitrary SQL transformations when creating an
external table.

Populating External Tables
The terms loading and unloading in the context of external tables can be confusing, so let’s pause
and make sure you understand these terms without any ambiguity. When you deal with external
tables, this is what these terms mean:

650 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

• Loading data means reading data from an external table and loading it into a regular Oracle
table. Oracle first reads the data stream from the files you specify. Oracle will then convert the
data from its external representation to an Oracle internal data type and pass it along to the
external table interface.

• Unloading data means reading data from a regular Oracle table and putting it into an external
table. Actually, you’ll be loading table data into an external file. In Oracle Database 11g, you
can load and transform large volumes of data into platform-independent, Oracle proprietary
flat files for data propagation or storage.

The ORACLE_DATAPUMP access driver can load as well extract data; that is, it can both load an
external table from a flat file and extract data from a regular database table to an external flat file.
This external flat file data is written in a proprietary format, which only the ORACLE_DATAPUMP access
driver can read. You can then use this newly created file to create an external table in the same data-
base or a different database.

When you load an Oracle table from an external table (data loading), you use the INSERT INTO . . .
SELECT clause, as shown in Listing 13-4. When you populate an external table using Oracle table data (data
unloading), you use the CREATE TABLE . . . AS SELECT clause (CTAS), as shown later in Listing 13-6.

Following are some of the benefits of being able to populate tables with external tables:

• Loading table data into flat files means that you can now store data or move it to different
databases easily. External tables help move large volumes of data across platforms, since they
are platform-independent.

• In data warehousing environments, there are many situations where you need to perform
complex ETL jobs. You can use SQL transformations to manipulate the data in the external
tables before reloading them into the same or other databases.

Note that when you talk about writing to external tables, you are really referring to writing to
an external file. You use a SELECT statement to extract table data to this operating system file. The
ORACLE_DATAPUMP access driver writes data to this file in a binary Oracle-internal Data Pump format,
and you can then use this file to load another external table in a different database.

Creating an External Table with the ORACLE_DATAPUMP Access Driver

The example in Listing 13-5 shows how you can create an external table and populate it with data
from an external flat file using the ORACLE_DATAPUMP access driver rather than the ORACLE_LOADER driver.

Listing 13-5. Creating an External Table with the ORACLE_DATAPUMP Access Driver

SQL> CREATE TABLE test_xt(
 2 product_id NUMBER(6),
 3 warehouse_id NUMBER(3),
 4 quantity_on_hand NUMBER(8))
 5 ORGANIZATION EXTERNAL(
 6 TYPE ORACLE_DATAPUMP
 7 DEFAULT DIRECTORY ext_data_dir
 8 LOCATION ('test_xt.dmp'));
Table created.
SQL>

To load data from this external table into an existing database table, you can use the INSERT INTO
. . . SELECT clause, as shown earlier in Listing 13-4.

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 651

Writing to an External Table

The example in Listing 13-6 shows how to write to an external table.

Listing 13-6. Populating an External Table

SQL> CREATE TABLE test_xt
 ORGANIZATION EXTERNAL(
 TYPE ORACLE_DATAPUMP
 DEFAULT DIRECTORY ext_data_dir
 LOCATION ('test_xt.dmp'))
 AS
 SELECT * FROM scott.dept;

Note how the external table creation statement uses the SELECT * FROM clause to write data from
the scott.dept table to the external table (file). If your new external table contains some but not all of
the columns of the table scott.dept, you use the appropriate SELECT statement instead of the SELECT
* FROM statement.

■Note Remember that when you load an Oracle table from an external table (data loading), you use the INSERT
INTO . . . SELECT clause. When you populate an external table using Oracle table data (data unloading), you
use the CREATE TABLE . . . AS SELECT clause.

If you now go look in the location specified for the default directory (ext_data_dir), you’ll see the
following:

SQL> ls -altr
Total 24
drwxr-xr-x 5 root root 4096 March 4 14:08 ..
-rw-r--r-- 1 oracle oinstall 41 March 5 10:08 TEST_XT_28637.log
-rw-r------- 1 oracle oinstall 12288 March 5 10:08 test_xt.dmp

The first file, test_xt_28637.log, logs the creation of this external table. The dump file test_xt.dmp
contains the data from the table. You are creating the external table test_xt as an external table. The
table structure and data both come from the regular Oracle table scott.dept. If you wish, you can then
use this dump file in the same database or a different database to load other tables. Note that you
must create the default directory (ext_data_dir) beforehand for this external table creation statement
to succeed. The CTAS method of table creation will load the data from the scott.dept table into the
new external table dept_xt. The CTAS command simply stores the table data in the external file called
dept_xt_dmp. Thus, the external table is really composed of proprietary format, operating system–
independent flat files.

You can also use the ORACLE_DATAPUMP access loader to extract Oracle table data into multiple
files, as shown here:

SQL> CREATE TABLE extract_cust
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY ext_data_dir ACCESS PARAMETERS
 (NOBADFILE NOLOGFILE)
 LOCATION ('extract_cust1.exp', 'extract_cust2.exp', 'extract_cust3.exp',
 'extract_cust4.exp'))
 PARALLEL 4 REJECT LIMIT UNLIMITED AS
 SELECT c.*, co.country_name, co.country_subregion, co.country_region
 FROM customers c, countries co where co.country_id=c.country_id;

652 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

The PARALLEL parameter will speed up the data unloading to the four datafiles. Note that the
number of files you specify sets a limit on the degree of parallelization. For example, if you specify
PARALLEL=8 and specify only four files, the degree of parallelism would be four, not eight.

Compressing and Encrypting Data

You can specify the COMPRESSION and the ENCRYPTION parameters to ensure that the data is compressed
and encrypted when it’s written out to the dump file set. By default, the database doesn’t compress
or encrypt the data. Following is a description of the two parameters.

COMPRESSION

The COMPRESSION parameter specifies whether data is compressed before it is written to a dump file
set. By default, compression is disabled (COMPRESSION DISABLED). You can enable compression of the
data for the entire upload operation by specifying COMPRESSION ENABLED.

The following example shows how you specify compression:

SQL> CREATE TABLE table TEST
 ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY def_dir1
 ACCESS PARAMETERS (COMPRESSION ENABLED) LOCATION ('test.dmp'));

The previous command will ensure that all data written to the test.dmp file is in a compressed
format.

ENCRYPTION

You can use the ENCRYPTION parameter to specify whether the database should encrypt data before
writing the data to the dump file set. By default, encryption is disabled and you can enable it by using
the ENCRYPTIUON ENABLED clause, as shown in the following example:

SQL> CREATE TABLE TEST
 ORGANIZATION EXTERNAL (TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY test_dir1
 ACCESS PARAMETERS (ENCRYPTION ENABLED) LOCATION ('test.dmp'));

The ENCRYPTION ENABLED clause ensures that the data is encrypted when it’s written to the
test.dmp dump file.

Using an External Table
Once you create a new external table by populating an external file with data from an Oracle table,
you can query the new table as you would any normal Oracle table. For example, the external table
you created, test_xt, would show you the same data as a query on the original table (scott.dept).
Here’s the query:

SQL> SELECT * FROM test_xt;

The user samalapati is listed as the owner for this new table test_xt, as shown here:

SQL> SELECT owner FROM dba_tables
 WHERE table_name='TEST_XT';
 OWNER

SAMALAPATI

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 653

Note that as in the case of the original external tables in Oracle9i, you can only select from an
external table. You also cannot insert, delete, or update data in an external table. Therefore, the term
writable external tables applies in only a limited sense—you can write to the external tables only
when you initially create them. Here is an example of what would happen if you attempted to insert
into your new external table:

SQL> INSERT INTO test_xt (product_id) VALUES (222222);
INSERT INTO test_xt
 *
ERROR at line 1:
ORA-30657: operation not supported on external organized table
SQL>

You would get similar error messages if you tried a DELETE or an UPDATE operation.
Also note that when you use the external tables feature to extract table data to a file, you export

only the data. You can’t export metadata using external tables. If you wish to extract the metadata for
any object, just use DBMS_METADATA, as shown here:

SET LONG 2000
SELECT DBMS_METADATA.GET_DDL('TABLE','EXTRACT_CUST') FROM DUAL;

Using SQL*Loader to Generate External Table
Creation Statements
As you saw in the previous sections, creating external tables correctly and choosing the appropriate
access parameters can be a tedious task. Fortunately, there is an easier way to do all this: you can
have SQL*Loader generate the entire DDL for creating the external tables and all the SQL statements
to load the tables directly.

The SQL*Loader command-line parameter EXTERNAL_TABLE will allow you to generate the DDL
for creating all your external tables. The default value for the EXTERNAL_TABLE parameter is NOT_USED,
which means SQL*Loader will perform a normal data load in using either conventional or direct-path
loading. When you use this parameter with the value GENERATE_ONLY, the SQL*Loader utility does not
load any data; rather, SQL*Loader generates all SQL statements necessary to load the external tables
described in the control file and places these statements in the SQL*Loader log file. If you use the
EXTERNAL_TABLE parameter with the EXECUTE option, SQL*Loader will try to execute the SQL state-
ments to create the external tables and perform the load.

The EXTERNAL_TABLE=GENERATE_ONLY option outputs the following information in the
SQL*Loader log file:

• A CREATE DIRECTORY statement

• A complete CREATE TABLE statement for the external table, with all necessary access parameters

• All INSERT statements needed for loading the internal tables

• The DELETE statements for the directory and the external table

Let’s look at an example that illustrates how to generate the external table creation statements
with the help of the SQL*Loader utility. In this example, the internal table name is test_emp. This
table must already exist, or you must create it before you can use SQL*Loader. The SQL*Loader-
generated external table name is sys_sqlldr_x_ext_test_emp. The control file for SQL*Loader is called
test.ctl, and it looks like this:

654 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

LOAD DATA
INFILE *
INTO TABLE test_emp
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
(employee_id,first_name,last_name,hire_date,salary,manager_id)
BEGINDATA
12345,"sam","alapati",sysdate,50000,99999
23456,"mark","potts",sysdate,50000,99999

Invoke the SQL*Loader utility with test.ctl as your control file. Note that you’re generating
only the CREATE TABLE and INSERT statements; you aren’t actually loading the tables.

$ sqlldr USERID=system/sammyy1 CONTROL=test.ctl \
 EXTERNAL_TABLE=GENERATE_ONLY
SQL*Loader: Release 10.2.0.0.0 - Beta on Sun Mar 6 13:49:39 2009
Copyright (c) 1982, 2008, Oracle. All rights reserved.
oracle@hp50.netbsa.org [/u01/app/oracle/dba]
$

Since no directory was specified for the log file, it will be created in the same directory where you
ran SQL*Loader. The log file for the preceding run, test.log, will have all the information in it, including
the external directory and table creation statements, and the actual INSERT statements to load the
data into those tables. You can create the external table and then load the data directly using SQL
without needing to use the SQL*Loader utility again. Listing 13-7 shows the log file generated using
the EXTERNAL_TABLE=GENERATE_ONLY parameter.

Listing 13-7. Using SQL*Loader to Generate the External Table Creation Statements

SQL*Loader: Release 10.2.0.0.0 - Beta on Sun Mar 9 13:49:39 2008

Copyright (c) 1982, 2008, Oracle. All rights reserved.
Control File: test.ctl
Data File: test.ctl
Bad File: test.bad
Discard File: none specified
(Allow all discards)
Number to load: ALL
Number to skip: 0
Errors allowed: 50
Continuation: none specified
Path used: External Table
Table TEST_EMP, loaded from every logical record.
Insert option in effect for this table: INSERT

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ----- ---- ---- ---------
EMPLOYEE_ID FIRST * , O(") CHARACTER
FIRST_NAME NEXT * , O(") CHARACTER
LAST_NAME NEXT * , O(") CHARACTER
HIRE_DATE NEXT * , O(") CHARACTER
SALARY NEXT * , O(") CHARACTER
MANAGER_ID NEXT * , O(") CHARACTER
CREATE DIRECTORY statements needed for files
--
CREATE DIRECTORY SYS_SQLLDR_XT_TMPDIR_00000 AS '/u01/app/oracle/dba'

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 655

CREATE TABLE statement for external table:
--
CREATE TABLE "SYS_SQLLDR_X_EXT_TEST_EMP"
(
 "EMPLOYEE_ID" NUMBER,
 "FIRST_NAME" VARCHAR2(20),
 "LAST_NAME" VARCHAR2(20),
 "HIRE_DATE" DATE,
 "SALARY" NUMBER,
 "MANAGER_ID" NUMBER
)
ORGANIZATION external
(
 TYPE oracle_loader
 DEFAULT DIRECTORY SYS_SQLLDR_XT_TMPDIR_00000
ACCESS PARAMETERS
 (
 RECORDS DELIMITED BY NEWLINE CHARACTERSET US7ASCII
 BADFILE 'SYS_SQLLDR_XT_TMPDIR_00000':'test.bad'
 LOGFILE 'test.log_xt'
 READSIZE 1048576
 SKIP 6
 FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"' LDRTRIM
 REJECT ROWS WITH ALL NULL FIELDS
 (
 "EMPLOYEE_ID" CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY '"',
 "FIRST_NAME" CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY '"',
 "LAST_NAME" CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY '"',
 "HIRE_DATE" CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY '"',
 "SALARY" CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY '"',
 "MANAGER_ID" CHAR(255)
 TERMINATED BY "," OPTIONALLY ENCLOSED BY '"'
)
)
 location
 (
 'test.ctl'
)
)REJECT LIMIT UNLIMITED
INSERT statements used to load internal tables:
--
INSERT /*+ append */ INTO TEST_EMP
(
 EMPLOYEE_ID,
 FIRST_NAME,
 LAST_NAME,
 HIRE_DATE,
 SALARY,
 MANAGER_ID

656 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

)
SELECT
 "EMPLOYEE_ID",
 "FIRST_NAME",
 "LAST_NAME",
 "HIRE_DATE",
 "SALARY",
 "MANAGER_ID"
FROM "SYS_SQLLDR_X_EXT_TEST_EMP"
Run began on Sun Mar 06 13:49:39 2009
Run ended on Sun Mar 06 13:49:40 2009
Elapsed time was: 00:00:01.22
CPU time was: 00:00:00.27

You can see that it’s a lot easier to generate the CREATE TABLE statements for the external tables
this way, rather than creating them from scratch.

Transforming Data
In most cases, especially in data warehouse environments, the data you’re loading needs to be
transformed to make it more meaningful for analysis. Oracle Database 11g can help you perform
sophisticated and efficient data transformation within the database itself, so you don’t need to rely
on external processes or tools. You have several ways of performing data transformations in Oracle
Database 11g. The following are the most commonly used techniques:

• Derive the data from existing tables. You can use joins or aggregations of data from tables in
the same database, or you can gather the data from tables located in external Oracle or non-
Oracle databases.

• Use SQL to transform data. SQL techniques including the MERGE statement, multiple-table
inserts, and table functions to transform data during the loading process.

• Use the MODEL statement, which helps you perform highly expressive computations using sets
of interrelated formulas. Using the MODEL clause, you can now treat an Oracle table as an
n-dimensional array and specify interrow references without SQL joins and unions.

■Note You can also use PL/SQL procedural techniques to perform complex data transformations. The real issue
here is whether you have the time and expertise at your disposal to code the transformation. In addition, when
you’re dealing with very large data sets, the use of PL/SQL is not very efficient when you compare it to some of the
alternatives.

You’ll examine the main Oracle data transformation techniques in more detail in the following
sections.

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 657

Deriving the Data from Existing Tables
It’s common to derive your new transformed data from existing tables in your database or other
databases. You have two basic methods you can use to derive data from another table. If you’re
creating the table for the very first time, you can use the CTAS method to create new tables that meet
your specifications. If the table already exists in your database or another database, you can use the
INSERT /* APPEND */ INTO . . . SELECT method.

If the tables are in external databases, you can still use the CTAS method by using database links.
Using the CTAS method simply means that you create a new table from an existing table. While
you’re creating the new table, you can apply certain SQL functions to the source table’s columns,
thereby transforming the data in the process. The following is a simple example showing the use of
the CTAS method:

SQL> CREATE TABLE new_employees
 AS
 SELECT e.empno, INITCAP(e.ename), e.sal*1.1,
 e.mgr, d.deptno, d.loc, d.dname
 FROM emp e, dept d
 WHERE e.deptno=d.deptno;
Table created.
SQL>

The data transformations in this example state that the employee names will all start with a
capital letter (INITCAP) and the salary column will be raised by a uniform 10 percent (sal * 1.1).

The next example shows how to load data into an existing table from another table. The use of
the NOLOGGING and PARALLEL options in the example make the bulk insert run extremely fast.

SQL> INSERT /*APPEND NOLOGGING PARALLEL */
 INTO sales_data
 SELECT product_id, customer_id, TRUNC(sales_date),
 discount_rate, sales_quantity, sale_price
 FROM sales_history;
SQL>

Note that even though you used the PARALLEL hint in the preceding INSERT statement, Oracle
may not execute your INSERT statement in parallel because, by default, parallel mode is disabled. You
first must use the following statement so any DML statements you issue can be considered for
parallel execution:

SQL> ALTER SESSION ENABLE PARALLEL DML;
Session altered.
SQL>

Once you have enabled parallel DML in your session, you can use the PARALLEL hint in your DML
statements, and Oracle will parallelize its execution.

■Caution There are several restrictions on the use of parallel DML. For example, you can’t use parallel DML on
a table that has triggers. Refer to Oracle’s documentation for more information about conditions that may preclude
the use of the parallel DML feature.

658 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

Using SQL to Transform Data
It’s common to use SQL statements to perform various kinds of data transformations. You can trans-
form data by using simple UPDATE statements, although they could take a considerable time to execute in
large tables. For smaller transactions in OLTP databases, the UPDATE statement is adequate when you
need to transform data in a column based on some criteria. In the following sections, you’ll explore
some of the other common ways of using SQL to transform your data before loading: the MERGE state-
ment, multitable inserts, and table functions.

Using the MERGE Statement

The MERGE statement is a powerful means of transforming data because it provides the functionality
of checking the data to see whether an update is indeed required for a given row. Suppose you’re
loading data from a data source into your table. You want to insert customer data only if the customer is
a new customer. If the customer’s data is already present in your table, you don’t want to reload the
data, but you may want to update the customer’s information based on the new data you just received.

The MERGE statement is actually an UPDATE–ELSE-INSERT operation performed by a single SQL
statement. You could do the same thing without using the MERGE statement by performing a two-pass
operation. In the first pass, you update all rows that have matching customer IDs in the table. In the
second pass, you insert all rows that don’t have a matching customer ID in your table. The following
listings show the traditional two-pass update/insert method using separate UPDATE and INSERT state-
ments. First, the update:

SQL> UPDATE catalog c SET
 (catalog_name, catalog_desc, catalog_category, catalog_price) =
 SELECT (catalog_name, catalog_desc, catalog_category, catalog_price)
 FROM catalog_data d
 WHERE c.catalog_id=d.catalog_id;

Second, the insert:

SQL> INSERT INTO catalog c
 SELECT * FROM catalog_data d
 WHERE c.catalog_id NOT IN
 (select catalog_id from catalog_data);

You could do the preceding work using a lengthy PL/SQL code piece. The PL/SQL procedures
must match each input row against the table to see whether it already exists. Based on the results of
the checks, code that either inserts or updates rows is executed.

Whether you use SQL or PL/SQL, you can’t avoid the inefficient multiple processing of the same
data to complete your update/insert processing. Both methods are fairly tedious and take a long time.

The MERGE statement, sometimes referred to as the upsert statement (because it does both an
update and an insert using a single SQL statement), is a much more efficient way of performing tradi-
tionally multiple-pass operations. It’s almost like using if-then-else logic. Listing 13-8 shows an
update and insert process using the MERGE statement. The MERGE statement in Listing 13-8 instructs
that if a certain row exists, update it; otherwise, insert the new row.

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 659

Listing 13-8. Using the MERGE Statement to Perform an Update/Insert

SQL> MERGE INTO target t
 USING source s
 ON (t.product_id=s.product_id)
 WHEN MATCHED THEN UPDATE SET
 t.price=s.price,
 t.discount=s.discount
 WHEN NOT MATCHED THEN INSERT
 (product_id, product_code, product_desc,
 product_price, product_discount)
 VALUES
 (s.product_id, s.product_code, s.product_desc,
 s.product_price, s.product_discount);

The WHEN MATCHED THEN UPDATE SET clause determines whether an UPDATE or an INSERT operation
will take place. The previous statement will update a row in the table target if that row already exists.
If there is no such row, Oracle will insert a new row in the table.

In addition to a straightforward insert/delete operation, you may perform conditional updates/
inserts and optionally delete some rows, as shown in the following sections.

Conditional UPDATE and INSERT Statements

Rather than unconditionally inserting or updating all the table rows, you may want to insert or update
data only when certain conditions are met. The MERGE statement allows you to conditionally insert or
delete data. Now, Oracle allows you to use a WHERE clause in a MERGE statement’s UPDATE or INSERT
clause to conditionally update or insert data, as shown in Listing 13-9 (note the USING clause in the
MERGE statement).

Listing 13-9. Using UPDATE and INSERT Clauses in a MERGE Statement

SQL> MERGE INTO products p /* Destination table
 USING product_changes s /* Source table
 ON (p.prod_id = s.prod_id) /* Search/join condition
 WHEN MATCHED THEN UPDATE /* Update if join
 SET p.prod_list_price = s.prod_new_price
 WHERE p.prod_status <> 'EXPIRED' /* Conditional update
 WHEN NOT MATCHED THEN
 INSERT /* Insert if not join
 SET p.prod_list_price = s.prod_new_price
 WHERE s.prod_status <> 'EXPIRED' /* Conditional insert

Note that Oracle will skip the INSERT or UPDATE operation if the statement doesn’t satisfy the
WHERE condition. Both the INSERT and UPDATE operations would occur only if the product is not an
expired item (WHERE s.prod_status <> "EXPIRED").

660 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

The DELETE Clause with the MERGE Statement

You can now use the MERGE statement with an optional DELETE clause. However, you can’t use the
DELETE clause independently in a MERGE statement, as with the UPDATE or INSERT clause. You must
embed the DELETE statement inside the UPDATE statement. This means that the DELETE statement isn’t
a global clause, but rather works in the confines of the data affected by the UPDATE clause of the MERGE
statement. Listing 13-10 shows how the DELETE clause is embedded within the UPDATE clause.

Listing 13-10. Using the DELETE Clause in a MERGE Statement

SQL> MERGE INTO products p
 USING product_changes s ON (p.prod_id = s.prod_id)
 WHEN MATCHED THEN UPDATE
 SET p.prod_list_price = s.prod_new_price,
 p.prod_status = s.prod_new_status
 DELETE WHERE (p.prod_status = 'OLD_ITEM')
 WHEN NOT MATCHED THEN INSERT
 (prod_id, prod_list_price, prod_status)
 VALUES (s.prod_id, s.prod_new_price, s.prod_new_status);

This MERGE statement will first update the prod_list_price and the prod_status columns of the
products table wherever the join condition is true. The join condition (p.prod_id = s.prod_id) joins
the two tables: product (the source table) and product_changes (the destination table).

Here are a couple of considerations when using the DELETE statement:

• The DELETE clause affects only the rows that were updated by the MERGE statement.

• The MERGE statement will delete only the rows included in the join condition specified by the
ON clause.

In the example, when you use this MERGE statement, the UPDATE clause fires first, and it may set
some of the prod_new_status values to expired. The DELETE clause will then remove all the rows whose
prod_new_status value was set to expired by the UPDATE clause. The DELETE clause will not remove any
other rows with the expired status, unless they are part of the join defined in the ON clause.

Using Multitable Inserts

Suppose you need to insert data from the source table into several target tables. Additionally, you
want this loading to be based on various conditions: if condition A, then load into table X; if condi-
tion B, then load into table Y; and so on. Normally, you’re forced to write several INSERT statements
for inserting from the source into the target tables. If the data were very large, this would slow down
the data loading. Alternatively, you could write PL/SQL-based code to do the same thing, but that
would also slow down the process.

A type of SQL statement called a multitable insert enables you to do fast conditional loads of
data from one source into multiple tables simultaneously. Because it’s still a normal SQL statement,
you can parallelize the operation to make the operation even faster. Multitable inserts can be either
unconditional or conditional. You can also have a multitable insert that is a mix of conditional and

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 661

unconditional inserts. The structure of the multitable insert varies depending on whether all or only
some of the source table’s rows are being loaded into the target tables.

■Note The performance gain from using a multitable insert is directly proportional to the complexity of the data
and the number of target tables. Oracle claims that you can achieve a processing speed gain of 400 percent or more.

Loading All the Rows from the Source Table

When you load all rows of a table, you can use either an unconditional all row insert or a conditional
all row insert. In the following example, the source table is called sales_activity, whose data is loaded
at the same time into two destination tables: sales and cost. The unconditional insert uses the keywords
INSERT ALL, meaning that all the source rows (sales_activity) are loaded into the sales and cost tables.

SQL> INSERT ALL
 INTO target1 VALUES (product_id, customer_id, sysdate, product_quantity)
 INTO target2 VALUES
 (product_id,sysdate,product_price,product_discount)
 SELECT s.product_id, s.customer_id, sysdate, s.product_quantity,
 s.product_price, s.product_discount
 FROM source s;

After the INSERT ALL keywords, there are two INTO statements, each denoting an insert into a
separate table. Notice that the SELECT statement contains all the necessary columns required by both
INTO statements for inserting into the two tables.

The conditional insert of all rows from the source table is similar to the unconditional version,
except that the keyword WHEN indicates the conditions under which the inserts will be made. The
following example shows how to perform a conditional all-row insert:

SQL> INSERT ALL
 WHEN product_id IN(SELECT product_id FROM primary) THEN
 INTO target1 VALUES (product_id, customer_id, sysdate, product_quantity)
 WHEN product_id IN (SELECT product_id FROM secondary) THEN
 INTO target2 VALUES
 (product_id, sysdate, product_price, product_discount)
 SELECT s.product_id, s.customer_id, sysdate, s.product_quantity,
 s.product_price, s.product_discount
 FROM source s;

This example still inserts all the rows from sales_data, because it uses the key phrase INSERT ALL.

Loading Selected Rows from the Source Table

Sometimes, you’re interested in loading only some rows from a table, either based on a condition or
unconditionally. You can do this in a multitable insert by using the keywords INSERT FIRST. Listing 13-11
shows how only some of the source table’s rows are loaded into each target table, based on a separate
condition for each table.

662 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

Listing 13-11. Partial Loading of Rows from the Source Table

SQL> INSERT FIRST
 WHEN (quantity_sold > 10 AND product_id <1000)
 THEN INTO targetA VALUES
 (sysdate,product_id, customer_id, quantity_sold))
 WHEN quantity_sold <= 10 and product_id >10000
 THEN INTO targetB VALUES
 (sysdate,product_id, customer_id, quantity_sold)
 ELSE
 INTO targetC VALUES
 (time_id, cust_id, prod_id, sum_quantity_sold)
 SELECT s.time_id, s.cust_id, s.prod_id, p.prod_weight_class,
 SUM(amount_sold) AS sum_amount_sold,
 SUM(quantity_sold) AS sum_quantity_sold
 FROM sales s, products p
 WHERE s.prod_id = p.prod_id
 AND s.time_id = TRUNC(sysdate)
 GROUP BY s.time_id, s.cust_id, s.prod_id, p.prod_weight_class;

Using Table Functions for Data Transformation

You can use Oracle’s table functions to perform efficient data transformations. Table functions
produce a collection of transformed rows that can be queried just like a regular table’s data. Oracle
table functions are an excellent example of Oracle’s sophisticated transform-while-loading paradigm.
Table functions can take a set of rows as input and return a transformed set of rows. When you query
a table function in a statement, the function returns a collection type instance representing the rows
in a table. The collection types can be either a VARRAY or a nested table. Table functions allow you to
use PL/SQL, C, or Java with SQL without any problems.

Table functions make the traditional use of staging tables redundant. You don’t need to create
any intermediate tables to perform data transformations before loading data into the final data
warehouse tables. Three features make table functions a powerful means of performing fast trans-
formation of data sets:

• Streaming: This refers to the direct transmission of results from one process to the other without
any intermediate steps. The way in which a table function orders or clusters rows that it fetches
from cursor arguments is called data streaming.

• Parallel execution: This refers to the concurrent execution of the functions on multiprocessor
systems.

• Pipelining: This technique lets you see the results of a query iteratively, instead of waiting for
the entire result set to be batched and returned. Pipelining can thus help table functions reduce
the response time by sending results as soon as they are produced in batches. You also have
the option of having the table function immediately return rows from a collection by using
pipelining. The elimination of (sometimes multiple) staging tables and the lack of need for
any manual coding of parallel processing makes the pipelined parallel processing provided
by table functions very attractive during large-scale data loading and transformation.

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 663

Here’s a brief summary of the tasks that table functions can help you perform:

• Return a set of rows

• Return a result set incrementally, so you can process the results gradually

• Accept a cursor as an input

• Return results continuously while the transformation is taking place

• Be parallelized

It’s easy to understand what a table function is when you think about a regular Oracle function.
An Oracle function such as SUBSTR or TRANSLATE transforms data. For example, you can use the SUBSTR
function to cut out a portion of a string, as shown in the following example:

SQL> SELECT sysdate FROM dual;
SYSDATE
========
20-MAY-08
SQL> SELECT SUBSTR(sysdate,4,3) FROM dual;
SUBSTRING(SYSDATE)
===================
MAY
SQL>

Table functions work the same way as regular Oracle functions that transform data. The only
difference is that the table functions can be much more complex, and they can take cursors as inputs
and return multiple rows after transforming them.

Suppose you need to load data from a table using an INSERT statement, and suppose that you
don’t need the data to be in the same format as the data in the source table. You can easily use the
INSERT statement with one additional (automatic) step: use a table function to transform the data
after it extracts the rows from the source and before the data gets inserted into your target table.
Instead of the normal statement:

INSERT INTO target_table
SELECT * FROM source_table;

you use the following INSERT statement:

INSERT INTO target_table
SELECT * FROM (table function(source_table));

The previous INSERT statement will take the rows from the source table and insert them into the
target table, with the twist that the inserted data will be of a different format from the original data
in the target table. The table function will modify the data format before the INSERT operation can
insert the data into the target table.

As an example, suppose you have an original table named sales_data, which shows a holding
company’s stores and sales figures for the two years 2001 and 2002:

664 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

SQL> SELECT * FROM sales_data;
STORE_NAME SALES_2001 SALES_2002
------------------------- ---------- ---------------------------------
shoe city 500000
trinkets galore 1400000 1500000
modern tools 1000000 1200000
toys and toys 800000
SQL>

Your goal is to extract data from this table to a target table with a different format. The new table
is named yearly_store_sales, and it lists the company sales figures differently—each company’s sales
figure is listed by year. For example, in the original table, the store modern tools showed two yearly
sales numbers in the same row: 1000000 and 1200000. In the new transformed table, these numbers
should appear in different rows—that is, the data should show the store/sales year combinations. To
do this, the company name may appear more than once in this table:

SQL> CREATE TABLE yearly_store_sales
 2 (store_name VARCHAR2(25),
 3 sales_year NUMBER,
 4* total_sales NUMBER);
Table created.
SQL>

Because table functions return sets of records, you need to create some special object structures
to use table functions to transform data. The first object you need to create is an object type called
yearly_store_sales_row, which reflects the records. Note that the structure of this type is the same
as your target table, yearly_store_sales.

SQL> CREATE TYPE yearly_store_sales_row AS
 2 OBJECT(
 3 store_name varchar2(25),
 4 sales_year number,
 5* total_sales number);
Type created.
SQL>

The next step is to create a table type named yearly_store_sales_table. This table type is based
on the object type you just created.

SQL> CREATE TYPE yearly_store_sales_table
 2 AS
 3 TABLE OF yearly_store_sales_row;
Type created.
SQL>

The package creation statement shown in Listing 13-12 is somewhat complex, and it is the heart
of the table function feature. The table function uses a REF CURSOR to fetch the input rows. It then
transforms the data and sends it out interactively (that is, it pipelines the data).

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 665

Listing 13-12. Creating the Table Function

SQL> CREATE OR REPLACE PACKAGE sales_package
 2 AS
 3 TYPE sales_cursor_type IS REF CURSOR
 4 RETURN sales_data%ROWTYPE;
 5 FUNCTION modify_sales_data
 6 (INPUTDATA IN sales_cursor_type)
 7 RETURN yearly_store_sales_table
 8 PIPELINED;
 9* END;
SQL> /
Package created.

SQL>
 1 CREATE OR REPLACE PACKAGE BODY sales_package
 2 AS
 3 FUNCTION modify_sales_data(
 4 inputdata IN sales_cursor_type)
 5 RETURN yearly_store_sales_table
 6 PIPELINED IS
 7 inputrec sales_data%ROWTYPE;
 8 outputrow_2001 yearly_store_sales_row :=
 yearly_store_sales_row(NULL,NULL,NULL);
 9 outputrow_2002 yearly_store_sales_row :=
 yearly_store_sales_row(NULL,NULL,NULL);
 10 BEGIN
 11 LOOP
 12 FETCH inputdata INTO inputrec;
 13 EXIT WHEN inputdata%NOTFOUND;
 14 IF INPUTREC.SALES_2001 IS NOT NULL THEN
 15 outputrow_2001.store_name := inputrec.store_name;
 16 outputrow_2001.sales_year := 2001;
 17 outputrow_2001.total_sales:= inputrec.sales_2001;
 18 pipe row (outputrow_2001);
 19 END IF;
 20 IF INPUTREC.SALES_2002 IS NOT NULL THEN
 21 outputrow_2002.store_name := inputrec.store_name;
 22 outputrow_2002.sales_year := 2002;
 23 outputrow_2002.total_sales:= inputrec.sales_2002;
 24 pipe row (outputrow_2002);
 25 END IF;
 26 END LOOP;
 27 RETURN;
 28 END;
 29* END;
SQL> /
Package body created.
SQL>

666 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

Let’s look at each part of the package carefully:

• In order to return sets of rows from the source table as inputs to the table function, you need
to create a REF CURSOR based on the source table rows. The REF CURSOR in the example is
named sales_cursor.

• The function modify_sales_data is the table function. It has one input parameter, the
REF CURSOR sales_cursor. The function returns data in the format of the source table,
yearly_store_sales.

• The keyword PIPELINED at the end means that data flows through the data transformation
process. As the input data is processed, the transformed results are continuously fed into the
target table.

• The package body shows the details of the function modify_sales_data. The function will
transform the original structure of data in the source table into the desired format and insert
it into the target table.

In the following INSERT statement, the function modify_sales_data is used. Note how the func-
tion is applied to the row data from the original table sales_data. The data is transformed before it is
inserted into the yearly_store_sales table.

SQL> INSERT INTO yearly_store_sales t
 2 SELECT *
 3 FROM TABLE(sales_package.modify_sales_data(
 4 CURSOR(select store_name,sales_2001,sales_2002
 5 FROM sales_data)));
6 rows created.
SQL> COMMIT;
Commit complete.
SQL>

USING TABLE FUNCTIONS TO MINE WEB SERVICES DATA

Web services are self-contained, modular applications that can be published and invoked on the Web. Web services
can perform complex business processes or serve as information providers. For example, you will find weather infor-
mation services and stock market ticker services. Table functions can help you mine web services data.

Here’s an outline of how you might use a table function to mine the stock market information that is published on the
Web to provide a stock price alert system:

1. A private web service run by a stock market information service is accessed to collect the stock price information.

2. A table function, using a REF CURSOR of stock symbols as inputs, calls a Java stored procedure to gather the
stock information from the web service. The table function converts the necessary stock price information into
relational table data. The table function processes the information in the REF CURSOR one row at a time, and
loads it into the table in a streamed fashion. You can have this information updated at regular intervals.

3. You can then use SQL and PL/SQL code to mine the stock data you collected in step 2. For example, the
following is a typical SQL statement that uses the web services data you downloaded into your database table(s):

SQL> SELECT AVG(price), MIN(price), MAX(price)
 FROM
 table(stock_service_pack.to_table
 (cursor(select stock_symbol from stocks)));

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 667

Listing 13-13 shows the data in the new table. Note how the original data in the sales_data table
has been transformed into a different format by the table function.

Listing 13-13. The Transformed Table

SQL> SELECT * FROM yearly_store_sales;
STORE_NAME SALES_YEAR TOTAL_SALES
---------------- ---------- ----------
shoe city 2002 500000
trinkets galore 2001 1400000
trinkets galore 2002 1500000
modern tools 2001 1000000
modern tools 2002 1200000
toys and toys 2002 800000
6 rows selected.
SQL>

The final SELECT statement from the yearly_store_sales table shows a different layout of data
from that of the original table, sales_data. Now each store has a new column and year, and the yearly
sales data is in separate rows. This makes it easier to compare the yearly sales figures of the various
stores.

This example is rather trivial, but it clearly illustrates how you can use table functions to easily
transform data during the process of loading it into another table.

Using the SQL MODEL Clause
It is common for Oracle users to process data using third-party tools, since Oracle SQL has tradition-
ally lacked sophisticated modeling capabilities to produce complex reports. A basic example is the
use of spreadsheets, which apply formulas to transform data into new forms. In previous versions of
Oracle, in order to produce these spreadsheet-like reports, you needed to either download data into
spreadsheet programs like Microsoft Excel or use dedicated multidimensional online analytical
processing (OLAP) servers such as Oracle Express. For example, you might use Excel to convert your
business data into rule-based business models, with the help of various macros. But third-party
spreadsheet tools are cumbersome to use, and you need to expend considerable effort and time to
constantly import updated Oracle data into the spreadsheet programs.

Oracle professionals commonly make heavy use of multiple table joins and unions when dealing
with complex data warehousing. These techniques help you perform very complex computations,
but they are usually slow and computationally expensive.

Oracle offers the powerful MODEL clause, which allows you to use SQL statements to categorize
data and apply sophisticated formulas to produce fancy reports directly from within the database
itself. You can now produce highly useful Oracle analytical queries, overcoming several drawbacks
of Oracle SQL. With the new MODEL clause, you can use normal SQL statements to create multidimen-
sional arrays and conduct complex interrow and interarray calculations on the array cells.

The MODEL clause provides interrow calculation functionality by enabling you to create multidi-
mensional arrays of your query data and letting you randomly access the cells within the arrays. The
way the MODEL clause addresses individual cells is called symbolic cell addressing. The MODEL clause
also performs symbolic array computation, by transforming the individual cells using formulas,
which it calls rules.

668 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

The MODEL clause enables you to apply business models to your existing data. When you use the
MODEL clause as part of a query, Oracle feeds the data retrieved by the query to the MODEL clause.
The MODEL clause rearranges the data into a multidimensional array and applies your business
rules to the individual elements of the array. From the application of various user-specified business
rules, Oracle derives updated as well as newly created data. However, you won’t actually see an array
as your final form of the output, since Oracle will format the new and updated data into a row format
when it delivers the MODEL clause’s output to you.

The first step in a MODEL-based query is the creation of the multidimensional array. The following
section explains the basis of the arrays created by the MODEL clause.

Creating the Multidimensional Arrays

The MODEL clause creates the multidimensional arrays that are at the heart of its functionality by
mapping all the columns of the query that contains a MODEL clause into the following three groups.

• Partitions: Basically, a partition is a result handed to the MODEL clause by previous grouping
operations. The MODEL clause is always separately applied to the data within each partition.

• Dimensions: A dimension is a layer of metadata you can apply to a table to define hierarchical
relationships among the table’s columns. For example, a dimension named REGION could
contain the hierarchy of STATE, COUNTY, and CITY. You may define several dimensions on a
table, such as region, time, and product.

• Measures: Measures are the fact table data on which you are modeling your report, such as
sales or inventories. You can look at the aggregate measure as consisting of a bunch of measure
cells, with each of the cells identified by a unique combination of dimensions. For example, if
sales is your measure, then the sales of detergents for the third quarter of 2008 in the New York
region is one cell of the measure, since you can have only one such unique combination of
your three dimensions: product (detergents), time (third quarter of 2008), and region (New
York region).

The next section looks at how the MODEL feature uses rules to modify your multidimensional
array data.

Transforming Array Data with Rules

A rule in the context of the MODEL clause is any business rule or formula you want to apply to the array
data created by the MODEL clause. You may, for example, use a formula to forecast next year’s sales on
the basis of the preceding two years’ sales data. You create a simple forecasting formula that expresses
your business reasoning, and then pass it along to the MODEL clause as a rule.

You use the keyword RULES to indicate that you are specifying the rules that the MODEL clause
must apply to its multidimensional array data. For example, you could specify a simple rule as follows:

MODEL
. . .
RULES
. . .
(sales['ProductA', 2009] = sales['ProductA', 2007] + sales['ProductA', 2008]
. . .

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 669

This rule specifies that the sales of ProductA for the year 2009 would be the sum of the sales of
ProductA in the years 2007 and 2008.

When you specify the RULES keyword, you may also want to indicate whether the rules you are
specifying will be transforming existing data or inserting new rows of data. By default, the RULES
keyword operates with the UPSERT specification. That is, if the measure cell on the left side of a rule
exists, Oracle will update it. Otherwise, Oracle will create a new row with the measure cell values.
Here’s an example:

MODEL
. . .
RULES UPSERT
sales ('ProductA', 2009) = sales ('ProductA', 2007) + sales ('ProductA', 2009)
. . .
/* MORE RULES HERE */)

In this rules specification, if there is already a table or view row that shows the sales for ProductA
in the year 2009, Oracle will update that row with the values derived from applying the rule formula.
If there is no such row, Oracle will create a new row to show the forecasted sales of ProductA for the
year 2009.

If you don’t want Oracle to insert any new rows, but just update the existing rows, you can change
the default behavior of the RULES clause by specifying the UPDATE option for all the rules, as shown
here:

MODEL
. . .
RULES UPDATE
Sales ('ProductA', 2009) = sales ('ProductA', 2007) + sales ('ProductA', 2008)
. . .
/* MORE RULES HERE */

The previous two examples demonstrated how to apply different rule options at the MODEL clause
level. You may also specify rule options at the individual rule level, as shown here:

RULES
(UPDATE sales ('ProductA', 2009) = sales ('ProductA', 2007) +
sales ('ProductA', 2008)

When you specify a rule option at the individual rule level as shown in this example, the use of
the RULES keyword is optional.

■Note If you specify a rule option at the rule level, it will override the RULES specification at the MODEL clause
level. If you don’t specify a rule option at the rule level, the MODEL level option applies to all the rules. If you don’t
specify an option at the MODEL level, the default UPSERT option will prevail.

670 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

You can specify that Oracle should evaluate the rules in either of the following two ways:

• SEQUENTIAL_ORDER: Oracle will evaluate a rule in the order it appears in the MODEL clause.
SEQUENTIAL_ORDER is the default order of processing rules in a MODEL clause.

• AUTOMATIC_ORDER: Rather than evaluating a rule based on its order of appearance in a list of
several rules, Oracle will evaluate the rule on the basis of the dependencies between the various
rules in the MODEL clause. If rule A depends on rule B, Oracle will evaluate rule B first, even
though rule A appears before rule B in the list of rules under the RULES keyword.

Producing the Final Output

As its output, the MODEL clause will give the results of applying your rules to the multidimensional
arrays it created from your table data. A MODEL-based SQL analytical query typically uses an ORDER BY
clause at the very end of the query to precisely order its output.

You can use the optional RETURN UPDATED ROWS clause after the MODEL keyword to specify that only
the new values created by the MODEL statement should be returned. These new values may be either
updated values of a column or newly created rows.

Note that when I say that the MODEL clause will create or update rows, I strictly mean that the
changes are shown in the MODEL clause output. The MODEL clause doesn’t update or insert rows into
the table or views. To change the base table data, you must use the traditional INSERT, UPDATE, or
MERGE statement.

Using the MODEL Clause

Let’s look at a simple SQL example that demonstrates the capabilities of the MODEL clause. Here’s
the query:

SQL> SELECT country, product, year, sales
 FROM sales_view
 WHERE country IN ('Mexico', 'Canada')
 MODEL
 PARTITION BY (country) DIMENSION BY (product, year)
 MEASURES (sale sales)
 RULES
 (sales['ProductA', 2009] = sales['ProductA', 2008] +
 sales['ProductA',2007],
 sales['ProductB', 2009] = sales['ProductB', 2008],
 sales['All_Products', 2009] = sales['ProductA', 2009] +
 sales['ProductB',2009])
 ORDER BY country, product, year;

Sales units are the measure in this example. The query partitions the data by country and forms
the measure cells consisting of product and year combinations. The three rules specify the following:

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 671

• Total sales of ProductA in 2009 are forecast as the sum of ProductA sales in the years 2007
and 2008.

• Total sales of ProductB in the year 2009 are forecast to be the same as the sales in 2008.

• Total product sales in 2009 are computed as the sum of the ProductA and ProductB sales
in 2009.

Here’s the output generated by using the preceding SQL statement with the MODEL clause:

COUNTRY PRODUCT YEAR SALES
-------- ------------ ----- ---------
Mexico ProductA 2006 2474.78
Mexico ProductA 2007 4333.69
Mexico ProductA 2008 4846.3
Mexico ProductA 2009 9179.99
Mexico ProductB 2006 15215.16
Mexico ProductB 2007 29322.89
Mexico ProductB 2008 81207.55
Mexico ProductB 2009 81207.55
Mexico All_Products 2009 90387.54
Canada ProductA 2006 2961.3
Canada ProductA 2007 5133.53
Canada ProductA 2008 6303.6
Canada ProductA 2009 11437.13
Canada ProductB 2006 22161.91
Canada ProductB 2007 45690.66
Canada ProductB 2008 89634.83
Canada ProductB 2009 89634.83
Canada All_Products 2009 101071.96

The SELECT clause first retrieves the product, year, and sales data for the two countries (Mexico
and Canada) and feeds it into the MODEL clause. The MODEL clause takes this raw data and rearranges
it into a multidimensional array, based on the values of the PARTITION BY (country) and DIMENSION
BY (product and year) clauses. After the MODEL clause creates the array, it applies the three formulas
listed under the RULES clause to the data. It finally produces the resulting row data, after ordering it
by country, product, and year. Note that the MODEL clause shows the original table or view data, as
well as the new data that the MODEL clause has calculated.

Using Oracle Streams for Replication and
Information Sharing
As companies grow, it becomes important to be able to share information among multiple databases
and applications. Disparate information-sharing technologies add to the burden of effectively repli-
cating data. The Oracle Streams feature provides a single unified solution for information sharing
across the enterprise.

672 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

When you use Oracle Streams, each unit of information is called an event, and you share these
events in a stream. A stream routes specified information to specified destinations. The Oracle
Streams feature captures changes occurring in the database, using both the active and archived redo
logs. Streams capture these changes and store them in queues, after proper formatting. Streams then
propagate these changes to other databases and apply them to the target databases. Using the Oracle
Streams feature, you can capture, propagate, and apply information within an Oracle database, between
two Oracle databases, among multiple Oracle databases, or between an Oracle database and a non-
Oracle database.

Using Streams, you can transform the streams of data at any of the three points: during capture
of data, during propagation to the target, and during application at the destination site. The events
may include messages queued into a database queue by applications as well as DML and DDL changes.
You can use Oracle Streams for the following applications:

• Data replication: You can use Oracle Streams to capture changes from a source database,
stage and propagate these changes to a target databases, and consume or apply the changes
to the target database.

• Advanced message queuing: The Oracle Streams Advanced Queuing (AQ) feature lets you
enqueue messages into a queue, propagate messages to subscribing queues, notify user appli-
cations that messages are ready for consumption, and dequeue messages at their destination.

• Event management and notification: The ability to capture events and propagate them based
on rules lets you use Oracle Streams for event notification. Events staged in a queue may be
dequeued explicitly by a messaging client or an application, and actions can be taken based
on these events, including e-mail notification and cell phone transmission.

• Data warehouse loading: Streams can capture changes made to a production database and
send those changes over to a data warehouse. During the apply process, you can apply trans-
formations to the data before you load it in the target database.

• Data protection: You can use the streams technology to maintain a logical standby database.
The logical standby database can remain open for read/write operations, and you can query
it as updates are applied. Standby databases are a good solution for offloading queries from
your production database.

■Note You can use Oracle Streams at multiple levels of granularity: database, schema, and table. Oracle Streams can
use rules to configure the capture of changes for the entire database, a specific schema, or a set of tables.

Exploring the Streams Architecture
The three basic elements of Oracle Streams technology are capture, staging, and consumption of
events within the Oracle database.

The capture process captures change information from the source database, at the table, schema,
or database level. Streams capture events in one of two ways: explicitly or implicitly. Explicit capture
is when users and applications manually enqueue events into a queue. These user-enqueued events can
be redo log change records or messages of a user-defined type called user messages. In the implicit
capture process, the server captures DML and DDL changes from the source database by mining
the redo logs and archived redo logs. The implicit capture process, which is an Oracle background
process, consists of the following components:

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 673

• A reader server, which reads redo logs and divides them into regions

• One or more prepare servers, which scan the regions in parallel and perform prefiltering of
changes

• A builder server, which merges redo records it receives from the prepare servers and hands
them to the capture process

The capture process formats the merged redo records into a logical change record (LCR) and
enqueues them into the staging area for further processing. An LCR describes changes made to a
single row with a DML statement. A single DML statement can produce several LCRs. An LCR, which
is a set of captured changes, is also called an event. LCRs containing information about table data are
known as row LCRs, and those containing information about DDL changes are called DDL LCRs.
Rules used by the capture process determine which changes it captures. Note that you can set up
Streams such that the database can extract changes from the redo stream at the source and then
transmit the LCRs to the target or transmit the entire redo stream the target. The target can then
extract the LCRs.

In the staging element, the Oracle Streams process stores events in a queue. These events could
include both explicit and implicit changes.

In the final stage, consumption, the queued events are consumed in the target database. An event is
consumed when you dequeue it from an event queue. Users and applications can dequeue events
explicitly. However, most of the dequeueing is through an implicit apply process. The dequeueing
and processing of the captured data is done according to rules. The apply process may apply the
captured data directly or transform it using PL/SQL code.

Setting Up Oracle Streams
Following are the steps you must take in order to configure and administer the Oracle Streams feature to
propagate changes between multiple databases. Note that this is a very brief overview of the Streams
configuration process designed to give you a flavor of the process. You must refer to the appropriate
guidelines in the Oracle manuals for setting up Streams in your environment.

1. Make the necessary changes to your init.ora or SPFILE file to make sure the following are true:

• The COMPATIBLE parameter should be set to 10.2.0 or higher in both databases (you can
actually set it to 9.2 or higher).

• The JOB_QUEUE_PROCESSES parameter on the source database should be at least 2.

• The GLOBAL_NAMES parameter should be set to true in both the source and target databases.

• Set LOG_ARCHIVE_DEST_n. You must have at least one log archive destination at the site running
the downstream capture process.

• Make sure you allocate at least 200MB to the STREAMS_POOL_SIZE memory component of
the SGA.

• Ensure that the undo tablespace is large enough to accommodate the UNDO_RETENTION setting.

• Make sure your source database is in archivelog mode.

2. Create a new user to manage the streams. Before you create the user, you may want to create
a new tablespace for the use of this new Streams user.

SQL> CREATE TABLESPACE streams_tbs
 DATAFILE '/u01/app/oracle/oradata/
 streams_tbs.dbf' SIZE 100M;

674 CH AP T E R 1 3 ■ L O AD IN G AN D TR A N SF O R M I N G D AT A

Now create the Streams administrator user in the database, as follows:

SQL> CREATE USER strmadmin
 IDENTIFIED BY strmadmin
 DEFAULT TABLESPACE streams_tbs
 TEMPORARY TABLESPACE temp
 QUOTA UNLIMITED ON streams_tbs;

3. Grant the CONNECT, RESOURCE, and DBA roles to the Streams administrator:

SQL> GRANT DBA TO strmadmin;

4. Use the GRANT_ADMIN_PRIVILEGE procedure in the DBMS_STREAMS_AUTH package to
grant necessary privileges to the Streams administrator:

SQL> BEGIN
 DBMS_STREAMS_AUTH.GRANT_ADMIN_PRIVILEGE(
 GRANTEE => 'strmadmin',
 GRANT_PRIVILEGES => true);
 END;
 /

5. Create a database link between the source and target databases, as shown here:

SQL> CREATE DATABASE LINK targetdb
 CONNECT TO strmadmin
 IDENTIFIED BY strmadmin
 USING 'target.db.world';

6. Oracle Streams moves data between the source and destination databases using queues. You
need to create a queue on both the source and destination databases. To do this, you must
run the following procedure on both the source and the target databases. This will create
both queues with their default names.

EXEC DBMS_STREAMS_ADM.SET_UP_QUEUE();

7. You need to enable supplemental logging for all the tables on the source databases for which
you intend to capture changes. You set up supplemental logging in the following manner:

SQL> ALTER TABLE emp ADD SUPPLEMENTAL LOG DATA
 (PRIMARY KEY, UNIQUE) COLUMNS;

8. Configure the capture process in the source database, using the ADD_TABLE_RULES
procedure of the DBMS_STREAMS_ADM package, as shown here:

SQL> BEGIN
 DBMS_STREAMS_ADM.ADD_TABLE_RULES(
 table_name => 'scott.emp',
 streams_type => 'capture',
 streams_name => 'capture_stream',
 queue_name => 'strmadmin.streams_queue',
 include_dml => true,
 include_ddl => true,
 inclusion_rule => true);
 END;
 /

C HA P TE R 1 3 ■ L O A DI N G A N D T R AN S FO R M I N G D A TA 675

Now that you’ve configured your Oracle Streams setup, you can test the setup by starting a
capture process and using an apply process to replicate the emp table from the source database to
the emp table in the target database. First, capture the changes using the following procedure:

SQL> BEGIN
 DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name => 'capture_stream');
 END;
 /

To migrate the captured changes to the destination database, run the following procedure:

SQL> BEGIN
 DBMS_APPLY_ADM.START_APPLY(
 apply_name => 'apply_stream');
 END;
 /

The Oracle Streams feature was discussed very briefly here. However, it’s a very powerful feature
useful for database replication, migration, and upgrades. The primary interface to Streams is this
collection of Oracle-supplied PL/SQL packages. You saw how to use various Oracle-supplied PL/SQL
packages to set up and manage the Streams feature, so you know exactly what’s happening during
the change capture and propagation phases. To help users configure, administer, and monitor their
Streams environments, Oracle provides a Streams tool in the OEM Console. I recommend using the
Streams feature with the help of the OEM Database Control interface, for convenience.

677

■ ■ ■

C H A P T E R 1 4

Using Data Pump Export and Import

Almost all Oracle DBAs are familiar with Oracle’s export and import utilities, which help in loading
data into and unloading data from databases. In both the Oracle Database 10g and Oracle Database
11g releases, you must use the more versatile and powerful Data Pump Export and Import utilities to
export and import data.

The old export and import utilities continue to be available under Oracle Database 11g, but Oracle
would prefer you to use the Data Pump technology because it offers more sophisticated features. For
example, you can now interrupt export/import jobs in the middle and then resume them. You can
restart failed export and import jobs. You can remap object attributes to modify the objects. You can
easily monitor your Data Pump jobs from a different session, and you can even modify job attributes
on the fly during the course of a job. It’s easy to move massive amounts of data quickly using paral-
lelization techniques. Because Oracle provides you the APIs for the Data Pump technology, you can
easily incorporate export/import jobs within PL/SQL programs.

You can also use the powerful transportable tablespaces feature to transport large amounts of
data quickly, even across disparate operating system platforms.

This chapter provides in-depth coverage of the Data Pump technology, as well as transportable
tablespaces.

Introduction to the Data Pump Technology
The Data Pump technology, which was new to Oracle Database 10g, is a server-side infrastructure
for fast data movement between Oracle databases. The Data Pump technology enables DBAs to
transfer large amounts of data and metadata at very high speeds compared with the older export/
import technology. Data Pump manages multiple parallel streams of data to achieve maximum
throughput. Oracle claims that Data Pump enables you to decrease total export time by more than
two orders of magnitude in most data-intensive export jobs. Imports are supposed to run 15 to 45 times
faster than with the original import utility (the estimates are for single-thread operations; parallel
threads will make the operations even faster). Much of the higher speed comes from using parallelism to
read and write export dump files.

Data Pump is a superset of the original export and import utilities, offering several different
capabilities. Data Pump lets you estimate job times, perform fine-grained object selection, monitor
jobs effectively, and directly load a database from a remote instance via the network.

For compatibility purposes, Oracle still includes the old export and import utilities in Oracle
Database 11g. Thus, you can continue to use older export and import scripts as usual, without any
changes. Once you see how and why the newer Data Pump utilities are better than the older ones,
you probably will choose the newer utilities, however. Oracle will eventually deprecate the original
export utility, but it will support the original import utility forever. This means that you’ll always have
a way of importing dump files from earlier versions of Oracle. However, Data Pump Import will not

678 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

work with databases that are older than the Oracle Database 10g Release 1 (10.1) version. Also note
that the new Data Pump technology lets you export data only to disk. You cannot use a tape drive
when performing a Data Pump export.

Oracle Data Pump technology consists of two components: the Data Pump Export utility, to
unload data objects from a database, and the Data Pump Import utility, to load data objects into a
database. You access the two Data Pump utilities through a pair of clients called expdp and impdp.
As their names indicate, the first of these corresponds to the Data Pump Export utility and the latter
to the Data Pump Import utility. You can control both Data Pump Export and Import jobs with the
help of several parameters. Here’s how you invoke the two utilities:

$ expdp username/password (various parameters here)
$ impdp username/password (various parameters here)

Unlike the old export and import utilities, the Data Pump utilities have a set of parameters you
can use at the command line and a set of special commands you can use only in an interactive mode.
I’ll explain the main parameters, commands, and other important features of the Data Pump tool set
in the “Performing Data Pump Exports and Imports” section later in this chapter. You can also get a
quick summary of all Data Pump parameters and commands (including the interactive commands)
by simply typing expdp help=y or impdp help=y at the command line.

The Data Pump Export utility unloads data into operating system files known as dump files in a
proprietary format that only the Data Pump Import utility can understand. You can take Data Pump
Export dump files from an operating system and import them into a database running on a different
platform, as you could with the older export/import utilities.

■Caution The original export and Data Pump dump files aren’t compatible. You can’t read the older export dump
files with Data Pump Import, and the older import utility can’t read Data Pump Export dump files.

In addition to expdp and impdp, you can have other clients perform Data Pump export and
import by using the Data Pump API. The database uses the Oracle-supplied package DBMS_DATA
PUMP to implement the API, through which you can programmatically access the Data Pump Export
and Import utilities. This means that you can create powerful custom data-movement utilities using
the Data Pump technology.

The traditional export utility is a normal user process that writes data to its local disks. The old
export utility fetches this data from a server process as part of a regular session. In contrast, the Data
Pump expdp user process launches a server-side process that writes data to disks on the server node,
and this process runs independent of the session established by the expdp client.

Benefits of the Data Pump Technology
The older export/import technology was client-based. The Data Pump technology is purely server-
based. All dump, log, and other files are created on the server by default.

Data Pump technology offers several benefits over the traditional export and import data utili-
ties. The following are the main benefits of the Data Pump technology:

• Improved performance: The performance benefits are significant if you are transferring huge
amounts of data.

• Ability to restart jobs: You can easily restart jobs that have stalled due to lack of space or have
failed for other reasons. You may also manually stop and restart jobs.

• Parallel execution capabilities: By specifying a value for the PARALLEL parameter, you can choose
the number of active execution threads for a Data Pump Export or Data Pump Import job.

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 679

• Ability to attach to running jobs: You can attach to a running Data Pump job and interact with
it from a different screen or location. This enables you to monitor jobs, as well as to modify
certain parameters interactively. Data Pump is an integral part of the Oracle database server,
and as such, it doesn’t need a client to run once it starts a job.

• Ability to estimate space requirements: You can easily estimate the space requirements for
your export jobs by using the default BLOCKS method or the ESTIMATES method, before running
an actual export job (see the “Data Pump Export Parameters” section later in this chapter for
details).

• Network mode of operation: Once you create database links between two databases, you can
perform exports from a remote database straight to a dump file set. You can also perform
direct imports via the network using database links, without using any dump files. The network
mode is a means of transferring data from one database directly into another database with
the help of database links and without the need to stage it on disk.

• Fine-grained data import capability: Oracle9i offered only the QUERY parameter, which enabled
you to specify that the export utility extract a specified portion of a table’s rows. With Data Pump,
you have access to a vastly improved fine-grained options arsenal, thanks to new parameters
like INCLUDE and EXCLUDE.

• Remapping capabilities: During a Data Pump import, you can remap schemas and tablespaces,
as well as filenames, by using the new REMAP_ * parameters. Remapping capabilities enable
you to modify objects during the process of importing data by changing old attributes to new
values. For example, the REMAP_SCHEMA parameter enables you to map all of user HR’s schema
to a new user, OE. The REMAP_SCHEMA parameter is similar to the TOUSER parameter in the old
import utility.

Uses for Data Pump Export and Import
The SQL*Loader tool discussed in the previous chapter is primarily designed to move data into one
or more tables from flat files. For exporting or importing entire schemas and even databases, you
must use the Data Pump Export and Import utilities. Here are some of the main uses of the Data
Pump tools:

• Migrating databases from development to test or production

• Copying test data from development/testing databases to production or vice versa

• Transferring data between Oracle databases on different operating system platforms

• Backing up important tables before you make any changes to them

• Backing up databases

• Moving database objects from one tablespace to another

• Transporting tablespaces between databases

• Reorganizing fragmented table data

• Extracting the DDL for tables and other objects such as stored procedures and packages

■Note Data Pump doesn’t create a perfect backup, because you won’t have up-to-the-minute data in the export
file when a disaster occurs. However, for smaller databases and individual tablespace exports, data exports are still
viable as a backup tool.

680 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

As you’ll see, the Data Pump Export and Import utilities are extremely versatile and easy to use.
You can export just the DDL for objects if you wish, or you can export and import the objects with
the data. You also have the choice of exporting and importing a single table (or even a part of a single
table), all the tables in a tablespace, an entire schema, or an entire database.

Data Pump Components
On the surface, expdp and impdp are quite similar to the traditional export and import utilities.
However, while they are syntactically similar to the Data Pump clients, exp and imp are ordinary
user processes that use SQL statements like SELECT, INSERT, and CREATE. In contrast, the new Data
Pump utilities are more like control processes that initiate jobs. In Data Pump Export and Import,
the database instance handles the Data Pump utilities.

The Data Pump technology consists of three major components:

• DBMS_DATAPUMP package: This is the main engine for driving data dictionary metadata
loading and unloading. The DBMS_DATAPUMP package (Data Pump API) contains the guts
of the Data Pump technology in the form of procedures that actually drive the data loading
and unloading jobs. The contents of this package perform the work of both the Data Pump
Export and Import utilities.

• DBMS_METADATA package: To extract and modify metadata, Oracle provides the DBMS_
METADATA package (Metadata API), which has been available since Oracle9i. In the tradi-
tional export and import utilities, the metadata of the objects is included in the export dump
file. In Data Pump technology, you need to use the DBMS_METADATA package to extract the
appropriate metadata.

• Command-line clients: The two command-line utilities—expdp and impdp—correspond to
the old exp and imp utilities. The expdp utility invokes the Data Pump Export utility, and the
impdp utility invokes the Data Pump Import utility. The dump files you create with these new
utilities aren’t compatible with the older export/import utilities.

Note that both packages—DBMS_DATAPUMP and DBMS_METADATA—act as APIs (the Data
Pump API and the Metadata API), in the sense that you can use either of them directly in your programs
to load and unload data without accessing the expdp and impdp clients.

Data-Access Methods
A Data Pump Import or Export job can access table data in either of two ways:

• Direct path: This access uses the Direct Path API. Direct-path exports and imports lead to
improved performance, since the direct-path internal stream format is the same format as
the data stored in Oracle dump files. This leads to a reduced need for data conversions. The
big advantage of the direct-path mode is that it bypasses the database buffer cache and doesn’t
generate any undo data.

• External tables: The external tables feature lets Oracle read data from and write data to oper-
ating system files that lie outside the database. Chapter 13 explains external tables in detail.

It is up to Oracle to decide which access method it will employ for a given job. Oracle always tries
to use the direct-path method to load or unload data, but under some conditions, it may not be able
to employ that method. In the following cases, the structure of the table and/or the indexes precludes the
use of direct-path access, so Data Pump will use external tables:

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 681

• Clustered tables

• Active triggers in the tables

• A single partition in a table with a global index

• Referential integrity constraints

• Domain indexes on LOB columns

• Tables with fine-grained access control enabled in the insert mode

• Tables with BFILE or opaque type columns

■Note The datafile format is identical in external tables and the direct-access method. Therefore, you can easily
export data with one method and import it with the other method, if you wish.

Data Pump Files
As in the case of the traditional export and import utilities, Data Pump uses dump files and other log
files, but there are significant differences. You’ll use three types of files for Data Pump operations:

• Dump files: These hold the table data as well as the metadata that’s being loaded or unloaded.

• Log files: These are the standard files for logging the messages and results of Data Pump
operations.

• SQL files: Data Pump Import uses a special parameter called SQLFILE, which will write all the
DDL statements it will execute during the import job to a file. Data Pump doesn’t actually
execute the SQL, but merely writes the DDL statements to the file specified by the SQLFILE
parameter. You use SQL files only to hold the output of the SQLFILE command during a Data
Pump Import job. This parameter is discussed in the “Data Pump Import Parameters” section
later in this chapter.

As in the case of the older export/import utilities, all new log files (and SQL files) will overwrite
any older files with the same name. If an older dump file of the same name already exists, you’ll get
an error.

Unlike with the traditional export and import utilities, you use directories and directory objects
to store the Data Pump files. The following section explains how to use directory objects.

Using Directory Objects

A Data Pump job creates all its dump files on the server, not on the client machine where a job may
have originated. Oracle background processes are responsible for all dump file set I/O, on behalf of
the Oracle software owner (usually, the user oracle). This means that for security reasons, you can’t
let any user specify an absolute file path on the server. In addition to a possible violation of security,
there is the matter of safety, as you can unwittingly overwrite a server file if you are given the power
to write dump files anywhere on the system. Similarly, you’ll be able to read all files that the server
has access to, even though you may not have been granted specific privileges to do so. To avoid these
types of problems, Data Pump uses directory objects.

■Caution Your Data Pump Export and Import jobs will not run unless you create a directory object first. Subse-
quently, you must also ensure that the user has the necessary file and directory access privileges on that file system.

682 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

Directory objects are named objects that Data Pump maps to a specific operating system direc-
tory. For example, a directory object named dpump_dir1 can point to the /u01/app/oracle/admin/
export directory on the server. You can then access this directory by simply using the dpump_dir1
directory object name. Oracle creates a default directory object, DATA_PUMP_DIR, when you create a
new database or if you upgrade a database to that version. This default DATA_PUMP_DIR directory
object points to a directory named dpdump. The default Data Pump directory is automatically created
by Oracle in one of the following locations:

• ORACLE_BASE/admin/SID

• ORACLE_HOME/admin/SID

If you have defined the ORACLE_BASE directory, Oracle uses the location based on it. Otherwise,
Oracle will create the default directory under the ORACLE_HOME directory. Data Pump will write all
dump files, SQL files, and log files to the directory specified for the default DATA_PUMP_DIR object. To
see exactly where your default DATA_PUMP_DIR directory object is located, you can use the following
query, based on the DBA_DIRECTORIES view:

SQL> SELECT * FROM dba_directories;

OWNER DIRECTORY_NAME DIRECTORY_PATH
--
SYS DATA_PUMP_DIR /u01/app/oracle/product/10.2.0/db_1/admin/orcl/dpdump/
SQL>

Only privileged users like SYS and SYSTEM can use the default directory object DATA_PUMP_DIR.
Thus, user SYSTEM can start a Data Pump Export job without providing a directory name. Listing 14-1
shows the output of the Data Pump Export job.

Listing 14-1. A Data Pump Export Run by the User SYSTEM

C:\>expdp system/sammyy1
Export: Release 11.1.0.6.0 - Production on Saturday, 22 March, 2008 11:10:36

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - Produc
tion
With the Partitioning, OLAP, Data Mining and Real Application Testing options
FLASHBACK automatically enabled to preserve database integrity.
Starting "SYSTEM"."SYS_EXPORT_SCHEMA_01": system/********
Estimate in progress using BLOCKS method . . .
Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA
Total estimation using BLOCKS method: 320 KB
Processing object type SCHEMA_EXPORT/USER
. . .
Processing object type SCHEMA_EXPORT/POST_SCHEMA/PROCACT_SCHEMA
. . exported "SYSTEM"."REPCAT$_AUDIT_ATTRIBUTE" 6.398 KB 2 rows
. . .
. . exported "SYSTEM"."SQLPLUS_PRODUCT_PROFILE" 0 KB 0 rows
Master table "SYSTEM"."SYS_EXPORT_SCHEMA_01" successfully loaded/unloaded
**
Dump file set for SYSTEM.SYS_EXPORT_SCHEMA_01 is:
 C:\ORCL\APP\ORACLE\ADMIN\ORCL\DPDUMP\EXPDAT.DMP
Job "SYSTEM"."SYS_EXPORT_SCHEMA_01" successfully completed at 11:11:52

C:\>

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 683

However, before a nonprivileged user can use Data Pump Export or Import, the DBA must create a
directory object or grant privileges to use an existing directory. In addition to the DBA, any user with
the CREATE ANY DIRECTORY privilege can create a directory object. Here’s how you create a direc-
tory object:

SQL> CREATE DIRECTORY dpump_dir1 AS '/u01/finance/oradata/dump_dir';

In order for a user to use a specific directory, the user must have access privileges to the directory
object. For example, in order to let the database read and write files on behalf of user salapati in the
new directory object dpump_dir1, you need to grant the following privileges:

SQL> GRANT READ, WRITE ON DIRECTORY dpump_dir1 TO salapati
Grant succeeded.
SQL>

This command will permit the Oracle database to read and write files in the dpump_dir1 direc-
tory object on behalf of the user, but won’t give the user any direct privileges on that directory. You’ll
need the write privilege on all files for a Data Pump Export job. During an import, you’ll need read
access to the export dump file. You’ll also need write privileges on the directory for an import job, so
that you can write to the log file. Here’s what happens when you are given the read/write privileges
on a directory object:

• You can read/write files mapped to that directory object only through Oracle.

• The Oracle database must have privileges to read/write files in that directory.

Once you create a directory and grant the necessary rights, all Data Pump Export and Import
jobs can use the DIRECTORY parameter (described shortly) to specify the name of the directory object
(DIRECTORY=dpump_dir1). This way, the DIRECTORY parameter will indirectly point to the actual oper-
ating system directories and files. Here’s an example:

$ expdp salapati/password DIRECTORY=dpump_dir1 dumpfile=testexp01.dmp

If a user tries to use the expdp or impdp utility without a DBA creating and granting privileges
on a directory beforehand, that user will get an error, which means that Oracle isn’t able to find a
directory object and, hence, can’t start the Data Pump job, as shown in Listing 14-2.

Listing 14-2. Data Pump Error Caused by Nonspecification of a Directory Object

C:\> expdp hr/hr

Export: Release 11.1.0.6.0 - Production on Saturday, 22 March, 2008 11:13:29

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Connected to: Oracle Database 11g Enterprise
Edition Release 11.1.0.6.0 - Prodution
With the Partitioning, OLAP, Data Mining and Real Application Testing options

ORA-39002: invalid operation
ORA-39070: Unable to open the log file.
ORA-39145: directory object parameter must be specified and non-null

C:\>

In order for the Data Pump utilities to know where to place or get data for their export and
import jobs, you need to specify location information when you use the expdp and impdp clients.

684 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

As you know by now, you can’t use an absolute directory path location for Data Pump jobs; you
must always use a directory object. However, you can specify this directory object name during an
actual job in several ways:

• DIRECTORY parameter: During a Data Pump Export job, you can specify the directory object by
using the DIRECTORY parameter:

$ expdp hr/hr DIRECTORY=dpump_dir1 . . .

• DIRECTORY:FILE notation: Instead of using the DIRECTORY parameter, you can specify the directory
object’s name as part of the value for a specific Data Pump file (the dump file, log file, or SQL
file). Use a colon (:) to separate the directory and the individual filenames in the file specifica-
tion. In the following example, dpump_dir2 is the name of the directory object, and the Data
Pump filename is salapati.log:

$ expdp LOGFILE=dpump_dir2:salapati.log . . .

• DATA_DUMP_DIR environment variable: You can also use the environment variable DATA_DUMP_DIR
to point to the directory object on the server. In order to use the DATA_DUMP_DIR environment,
you must have first created a specific directory object on the server.

For example, you could first create a new directory object on the server with the variable DATA_
DUMP_DIR, and then use the export command to save the value of the DATA_DUMP_DIR variable in the
operating system environment. Once you have made the DATA_DUMP_DIR variable part of your oper-
ating system environment, you don’t need to specify the actual directory name (data_dump_dir2, in
this example) explicitly (by using the DIRECTORY parameter) when you perform a Data Pump export.
As shown in the following example, you merely need to specify the name, not the location, for the
DUMPFILE parameter.

First, create the directory data_dump_dir2 object, as follows:

SQL> CREATE DIRECTORY data_dump_dir2 AS '/u01/app/oracle/datapump/dumpfiles_02';

Next, export the environment variable DATA_PUMP_DIR, with the value data_dump_dir2.

$ export DATA_PUMP_DIR data_dump_dir2

Now, you can perform the export without explicitly using the DIRECTORY parameter, since its
value is saved in the DATA_PUMP_DIR environment variable. You merely use the DUMPFILE parameter,
and the employees.dmp file will be located in the directory /u01/app/oracle/datapump/dumpfiles_02.

$ expdp salapati/password TABLES=employees DUMPFILE=employees.dmp

Understanding the Order of Precedence for File Locations

Now that we have reviewed the various ways you can specify a directory object for a Data Pump job,
you may wonder how Oracle knows which location to use in case there is a conflict. You can have a
situation where you specified a DATA_DUMP_DIR environment variable, but you then also specify a
DIRECTORY parameter for the export job. Here’s the order of precedence for directory objects:

1. Oracle looks to see if you specified a directory name as part of a file-related parameter (for
example, the LOGFILE parameter). Remember that, in these cases, the directory object is sep-
arated from the filename by a colon (:).

2. Oracle’s second choice is to see whether you specified a directory object during the export or
import job by using the DIRECTORY parameter (DIRECTORY=dpump_dir1 . . .). If you explicitly
specify the DIRECTORY parameter, you don’t need to use the directory name as part of a file-
related parameter.

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 685

3. If you aren’t using an explicit directory object or using the DIRECTORY parameter, Oracle
checks whether the Data Pump Export and Import clients are using the environment
variable DATA_PUMP_DIR.

4. Finally, Oracle looks to see whether there is a default server-based directory object named
DATA_PUMP_DIR. As noted earlier, Oracle automatically creates this directory when you create
a new database, or when you upgrade to this version. Note that the default DATA_DUMP_DIR
object is available only to DBAs and other privileged users.

The directory object name resolution simply means that Oracle knows which directory it should
be using to read or write datafiles. However, you must have already granted the database read/write
privileges at the operating system level in order to enable the database to actually use the operating
system files.

Data Pump Privileges
All Oracle users can use the Data Pump utilities by default. However, you must have the special priv-
ileges EXP_FULL_DATABASE and IMP_FULL_DATABASE to perform advanced tasks. The granting
of these roles will make you a privileged user, with the capability to perform the following tasks:

• Export and import database objects owned by any user.

• Attach to and modify jobs started by other users.

• Use all the new remapping capabilities during a Data Pump Import job.

The Mechanics of a Data Pump Job
The Data Pump Export and Import utilities use several processes to perform their jobs, including the
key master and worker processes, as well as the shadow process and client processes. Let’s look at
these important Data Pump processes in detail.

The Master Process

The master process, or more accurately, the Master Control Process (MCP), has a process name of
DMnn. The full master process name is in the format <instance>_DMnn_<pid>. There is only one master
process for each job. The master process controls the execution and sequencing of the entire Data
Pump job. More specifically, the master process performs the following tasks:

• Creates jobs and controls them

• Creates and manages the worker processes

• Monitors the jobs and logs the progress

• Maintains the job state and restart information in the master table

• Manages the necessary files, including the dump file set

The master process uses a special table called the master table to log the location of the various
database objects in the export dump file. The master table is like any Oracle table and is at the heart of
every Data Pump Export and Import job. The master process maintains the job state and restart informa-
tion in the master table. Oracle creates the master table in the schema of the user who is running the Data
Pump job at the beginning of every export job. The master table contains various types of information
pertaining to the current job, such as the state of the objects in the export/import job, the location of the
objects in the dump file set, the parameters of the job, and the status of all worker processes. The master
table has the same name as the export job, such as SYS_EXPORT_SCHEMA_01.

686 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

The master process uses the master table only for the duration of the export. At the end of the
export, as the last step in the export job, it writes the contents of the master table to the export dump
file and automatically deletes the master table from the database. The deletion of the master table
will occur automatically, as long as the export completed successfully (or if you issue the KILL_JOB
command). However, if you use the STOP_JOB command to stop a job or the export fails for some
reason, the master table isn’t deleted from the database. (Data Pump job commands are described
in the “Data Pump Export Parameters” section later in this chapter.) When you restart the export job,
it then uses the same master table. Since the master table tracks the status of all the objects, Data
Pump can easily tell which objects are in the middle of an export and which have been successfully
exported to the dump files.

The master process re-creates the master table saved by the export utility (in the dump file) in
the schema of the user who is performing the import. This is the first step in any Data Pump Import
job. The Data Pump Import utility reads the contents of the master table to verify the correct sequence
in which it should import the various exported database objects. As in the case of a Data Pump export,
if the import job finishes successfully, Oracle will automatically delete the master table.

■Note The master table contains all the necessary information to restart a stopped job. It is thus the key to Data
Pump’s job restart capability, regardless of whether you stopped the job intentionally or it died unexpectedly.

The Worker Process

The worker process is named <instance>_DWnn_<pid>. It is the process that actually performs the
heavy-duty work of loading and unloading data. The master process (DMnn) creates the worker
process. The degree of parallelism determines the number of worker processes that the master
process will create.

The worker processes maintain the rows of the master table. As they export or import various
objects, they update the master table with information about the status of the various jobs:
completed, pending, or failed.

Shadow Process

When a client logs in to an Oracle server, the database creates an Oracle process to service Data
Pump API requests. This shadow process creates the job consisting of the master table and the master
process. Once a client detaches, the shadow process automatically disappears.

Client Processes

The client processes call the Data Pump API. You perform export and import with the two clients,
expdp and impdp. In the next section, you’ll learn about the various parameters you can specify
when you invoke these clients.

Performing Data Pump Exports and Imports
The Data Pump Export utility loads row data from database tables, as well as object metadata, into
dump file sets in a proprietary format that only the Data Pump Import utility can read. The dump file
sets, which are operating system files, contain data, metadata, and control information. Dump file
sets usually refer to a single file, such as the default export dump file expdat.dmp.

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 687

Quite a few of the Data Pump Import utility’s features are mirror images of the Data Pump Export
utility features. However, some features are exclusive to the Data Pump Import utility.

In the following sections, we’ll look at Data Pump types, modes, and parameters, as well as some
examples.

Data Pump Export Methods
You can interface with the Data Pump Export and Import utilities through the command line, using
a parameter file, or interactively. Let’s now examine the various methods.

■Note Performing a Data Pump export or import of data using manual methods is tedious and error-prone. OEM
provides excellent export and import wizards that let you quickly perform an export or import. You can also schedule
these jobs using OEM. Before you use the OEM’s wizards, however, it’s good to go through the manual processes
to understand what’s involved in using the Data Pump Export and Import utilities.

Using the Command Line

You can use the Data Pump Export utility from the command line in a manner similar to the tradi-
tional export utility. Note that by default, you specify the username/password combination after the
keyword expdp. Here’s a simple example:

$ expdp system/manager DIRECTORY=dpump_dir1 DUMPFILE=expdat1.dmp

As you can see, the command-line option would quickly get tiring if you were doing anything
but the simplest type of exports.

Using a Parameter File

Rather than specifying the export parameters on the command line, you can put them in a parameter
file. You then simply invoke the parameter file during the actual export. Here’s an example of a
parameter file:

SCHEMAS=HR
DIRECTORY=dpump_dir1
DUMPFILE=system1.dmp
SCHEMAS=hr

Once you create the parameter file, all you need to do in order to export the HR schema is invoke
expdp with just the PARFILE parameter:

$ expdp PARFILE=myfile.txt

■Note You can use all command-line export parameters in an export parameter file. The only exception is the
parameter PARFILE itself.

Using Interactive Data Pump Export

Several of you are probably familiar with the interactive feature of the old export and import utilities.
All you needed to do during an interactive export or import was type exp or imp at the command
line, and Oracle would prompt you for the rest of the information. Interactive Data Pump is quite

688 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

different from the interactive mode of the older utilities. As you’ll see in the following sections, Data
Pump’s interactive mode isn’t meant to be used in the same way as the exp/imp interactive mode—
you can’t start an interactive job using the Data Pump Export (or Import) utility. You can use the
interactive mode only to intervene during a running job.

In Data Pump Export, you use the interactive method for one purpose only: to change some
export parameters midstream while the job is still running. There are two ways to get into the inter-
active mode. The first is by pressing the Ctrl+C combination on your keyboard, which interrupts the
running job and displays the export prompt (export>) on your screen. At this point, you can deal
interactively with the Export utility, with the help of a special set of interesting commands, which I’ll
explain later in this chapter in the “Interactive Mode Export Parameters (Commands)” section.

The second way to enter the interactive mode of operation is by using the ATTACH command. If
you are at a terminal other than the one where you started the job, you can attach to the running job
by specifying the ATTACH parameter.

■Note In Data Pump, the interactive mode means that the export or import job stops logging its progress on the
screen and displays the export> (or import>) prompt. You can enter the special interactive commands at this
point. Note that the export or import job keeps running throughout, without any interruption.

You can also perform Data Pump Export and Import operations easily through the OEM Data-
base Control interface. To use this feature, start the Database Control, select Maintenance, and then
choose Utilities. On the Utilities page, you can see the various choices for exporting and importing
data.

Data Pump Export Modes
As in the case of the regular export utilities, you can perform Data Pump Export jobs in several modes:

• Full export mode: You use the FULL parameter when you want to export the entire database in
one export session. You need the EXPORT_FULL_DATABASE role to use this mode.

• Schema mode: If you want to export a single user’s data and/or objects only, you must use the
SCHEMAS parameter.

• Tablespace mode: By using the TABLESPACES parameter, you can export all the tables in one or
more tablespaces. If you use the TRANSPORT_TABLESPACES parameter, you can export just the
metadata of the objects contained in one or more tablespaces. You may recall that you can
export tablespaces between databases by first exporting the metadata, copying the files of the
tablespace to the target server, and then importing the metadata into the target database.

• Table mode: By using the TABLES parameter, you can export one or more tables. The TABLES
parameter is identical to the TABLES parameter in the old export utility.

Schema mode is the default mode for Data Pump Export and Import jobs. If you log in as follows,
for example, Data Pump will automatically perform a full export of all of SYSTEM’s objects:

$ expdp system/sammyy1

If you are the SYSTEM user, you can export another schema’s objects by explicitly using the
SCHEMAS parameter, as shown in Listing 14-3.

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 689

Listing 14-3. A Data Pump Export Using the Schema Mode

$ expdp system/sammyy1 DUMPFILE=scott.dmp SCHEMAS=SCOTT
Export: Release 11.1.0.6.0 - Production on Tuesday, 25 March, 2008 12:19:31

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 –
Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
FLASHBACK automatically enabled to preserve database integrity.
Master table "SCOTT"."SYS_SQL_FILE_SCHEMA_01" successfully loaded/unloaded
Starting "SYSTEM"."SYS_EXPORT_SCHEMA_01": system/******** dumpfile=scott.dmp
 schemas=SCOTT
total estimation using BLOCKS method: 192 KB
Processing object type SCHEMA_EXPORT/USER
Processing object type SCHEMA_EXPORT/SYSTEM_GRANT
Processing object type SCHEMA_EXPORT/ROLE_GRANT
Processing object type SCHEMA_EXPORT/DEFAULT_ROLE
Processing object type SCHEMA_EXPORT/PRE_SCHEMA/PROCACT_SCHEMA
Processing object type SCHEMA_EXPORT/TABLE/TABLE
Processing object type SCHEMA_EXPORT/TABLE/INDEX/INDEX
Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/CONSTRAINT
Processing object type SCHEMA_EXPORT/TABLE/INDEX/STATISTICS/INDEX_STATISTICS
Processing object type SCHEMA_EXPORT/CONSTRAINT/REF_CONSTRAINT
Processing object type SCHEMA_EXPORT/TABLE/STATISTICS/TABLE_STATISTICS
. . exported "SCOTT"."DEPT"
. . exported "SCOTT"."EMP"
. . exported "SCOTT"."SALGRADE"
. . exported "SCOTT"."BONUS"
Dump file set for SYSTEM.SYS_EXPORT_SCHEMA_01 is:
 /u01/app/oracle/product/10.2.0/db_1/admin/orcl/dpdump/scott.dmp
Job "SYSTEM"."SYS-EXPORT_SCHEMA_01" successfully completed AT 18:25:16

Data Pump Export Parameters
Some of the Data Pump Export utility parameters will be familiar to you from the traditional export
utility. Others are quite new. Here, I’ll briefly run through the parameters, providing detailed expla-
nations for the most important parameters. For this discussion, I’ve grouped the parameters into the
following categories:

• File- and directory-related parameters

• Export mode-related parameters

• Export filtering parameters

• Encryption-related parameters

• Estimation parameters

• The network link parameter

• Interactive mode export parameters

• Job-related parameters

Note that you can use all the export parameters at the command line or in parameter files,
except for those listed in the “Interactive Mode Export Parameters (Commands)” section.

690 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

File- and Directory-Related Parameters

You can specify several file- and directory-related parameters during a Data Pump Export job. These
include the DIRECTORY, DUMPFILE, FILESIZE, PARFILE, LOGFILE, NOLOGFILE, and COMPRESSION
parameters.

DIRECTORY

The DIRECTORY parameter refers to the directory object to be used for dump files and log files. See the
“Using Directory Objects” section earlier in this chapter for details.

DUMPFILE

The DUMPFILE parameter provides the name (or list) of the dump file(s) to which the export dump
should be written. The DUMPFILE parameter replaces the FILE parameter in the old export utility. You
can provide multiple dump filenames in several ways:

• Create multiple dump files by specifying the %U substitution variable. The substitution variable
will start at 01 and can go up to 99. For example, a specification like exp%U.dmp can be expanded
into filenames such as exp01.dmp, exp02.dmp, exp03.dmp, and so on.

• Provide multiple files in a comma-separated list.

• Specify the DUMPFILE parameter multiple times for a single export job.

■Note If you specify the %U notation to indicate multiple dump files, the number of files you can create is equal
to the value of the PARALLEL parameter.

If you don’t specify the DUMPFILE parameter, Oracle will use the default name expdat.dmp for the
export dump file, just as it did with the traditional export utility.

FILESIZE

The FILESIZE parameter is purely optional, and it specifies the size of the dump file in bytes by default.
You may use bytes, kilobytes, megabytes, and gigabytes to specify the FILESIZE parameter. If you
don’t specify this parameter, the dump file has no limits on its size. If you use the FILESIZE parameter by
specifying, say 10MB, as the maximum dump file size, your export will stop if your dump file reaches
its size limit, and you can restart it after correcting the problem.

PARFILE

The PARFILE parameter stands for the same thing it did in the traditional export utility: the parameter
file. As explained earlier in this chapter, you can specify export parameters in a parameter file, instead
of entering them directly from the command line.

LOGFILE and NOLOGFILE

You can use the LOGFILE parameter to specify a log file for your export jobs. Here’s what you need to
remember regarding this parameter:

• If you just specify the LOGFILE parameter without the DIRECTORY parameter, Oracle automati-
cally creates the log file in the location you specified for the DIRECTORY parameter.

• If you don’t specify this parameter, Oracle creates a log file named export.log.

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 691

If you specify the parameter NOLOGFILE, Oracle does not create its log file (export.log). You still
see the progress of the export job on the screen, but Oracle suppresses the writing of a separate log
file for the job.

REUSE_DUMPFILES

You can specify the REUSE_DUMPFILE parameter to overwrite an export dump file. By default, the data-
base doesn’t overwrite dump files. You can specify the value Y to overwrite a dump file and the value
N for the default behavior, which is not to use older dump files. Here’s an example showing how to
specify this parameter during an export job:

$ expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp
TABLES=employees REUSE_DUMPFILES=y

Of course, you must make sure that you don’t need the contents of the preexisting dump file,
hr.dmp.

COMPRESSION

The COMPRESSION parameter enables the user to specify which data to compress before writing the
export data to a dump file. By default, all metadata is compressed before it’s written out to an export
dump file. You can disable compression by specifying a value of NONE for the COMPRESSION parameter,
as shown here:

$ expdp hr/hr DIRECTORY=dpump_dir1 DUMPFILE=hr_comp.dmp COMPRESSION=NONE

The COMPRESSION parameter can take any of the following four values:

• ALL: Enables compression for the entire operation.

• DATA_ONLY: Specifies that all data should be written to the dump file in a compressed format.

• METADATA_ONLY: Specifies all metadata be written to the dump file in a compressed format.
This is the default value.

• NONE: Disables compression of all types.

Export Mode-Related Parameters

The export mode-related parameters are FULL, SCHEMAS, TABLES, TABLESPACES, TRANSPORT_TABLESPACES,
and TRANSPORT_FULL_CHECK. You’ve already seen all these parameters except the last one, TRANSPORT_
FULL_CHECK, in the “Data Pump Export Modes” section earlier in this chapter.

The TRANSPORT_FULL_CHECK parameter checks to make sure that the tablespaces you are trying to
transport meet all the conditions to qualify for the transportable tablespaces job. Using this param-
eter, you can specify whether to check for dependencies between objects inside the transportable set
and the other objects in the database. For example, an index is entirely dependent on the table, since
it doesn’t have any meaning without the table. However, a table isn’t dependent on an index, since
the table can exist without an index.

You can set the TRANSPORT_FULL_CHECK parameter to a value of Y or N. If you set TRANSPORT_
FULL_CHECK=Y, the Data Pump Export job will check for two-way dependencies. If you have a table in
the transportable tablespace but not its indexes, or your tablespace contains indexes without their
tables, the export job will fail. If you set TRANSPORT_FULL_CHECK=N, the Data Pump Export job will
check for one-way dependencies. If your transportable tablespace set contains tables without their
indexes, the export will succeed. However, if the set contains indexes without their tables, the export
job will fail.

692 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

Export Filtering Parameters

Data Pump contains several parameters related to export filtering. Some of them are substitutes for
old export parameters; others offer new functionality. Let’s look at these important parameters in
detail.

CONTENT

By using the CONTENT parameter, you can filter what goes into the export dump file. The CONTENT
parameter can take three values:

• ALL exports both table data and table and other object definitions (metadata).

• DATA_ONLY exports only table rows.

• METADATA_ONLY exports only metadata.

Here’s an example:

$ expdp system/manager DUMPFILE=expdat1.dmp CONTENT=DATA_ONLY

■Note The CONTENT=METADATA_ONLY option is equivalent to the ROWS=N option in the original export utility.

EXCLUDE and INCLUDE

The EXCLUDE and INCLUDE parameters are two mutually exclusive parameters that you can use to
perform what is known as metadata filtering. Metadata filtering enables you to selectively leave out
or include certain types of objects during a Data Pump Export or Import job. In the old export utility,
you used the CONSTRAINTS, GRANTS, and INDEXES parameters to specify whether you wanted to export
those objects. Using the EXCLUDE and INCLUDE parameters, you now can include or exclude many other
kinds of objects besides the four objects you could filter previously. For example, if you don’t wish to
export any packages during the export, you can specify this with the help of the EXCLUDE parameter.

■Note If you use the CONTENT=DATA_ONLY option (same as the old ROWS=Y parameter), you aren’t exporting
any objects—just table row data. Naturally, in this case, you can’t use either the EXCLUDE or INCLUDE parameter.

Simply put, the EXCLUDE parameter helps you omit specific database object types from an export
or import operation. The INCLUDE parameter, on the other hand, enables you to include only a specific
set of objects. Following is the format of the EXCLUDE and INCLUDE parameters:

EXCLUDE=object_type[:name_clause]
INCLUDE=object_type[:name_clause]

For both the EXCLUDE and INCLUDE parameters, the name clause is optional. As you know, several
objects in a database—such as tables, indexes, packages, and procedures—have names. Other objects,
such as grants, don’t. The name clause in an EXCLUDE or an INCLUDE parameter lets you apply a SQL
function to filter named objects.

Here’s a simple example that excludes all tables that start with EMP:

EXCLUDE=TABLE:"LIKE 'EMP%'"

In this example, "LIKE 'EMP%'" is the name clause.

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 693

The name clause in an EXCLUDE or INCLUDE parameter is optional. It’s purely a filtering device,
allowing you finer selectivity within an object type (index, table, and so on). If you leave out the name
clause component, all objects of the specified type will be excluded or included.

In the following example, Oracle excludes all indexes from the export job, since there is no name
clause to filter out only some of the indexes:

EXCLUDE=INDEX

You can also use the EXCLUDE parameter to exclude an entire schema, as shown in the following
example:

EXCLUDE=SCHEMA:"='HR'"

The INCLUDE parameter is the precise opposite of the EXCLUDE parameter: it forces the inclusion
of only a set of specified objects in an export. As in the case of the EXCLUDE parameter, you can use a
name clause to qualify exactly which objects you want to export. Thus, you have the ability to selec-
tively choose objects at a fine-grained level.

The following three examples show how you can use the name clause to limit the selection of
objects:

INCLUDE=TABLE:"IN ('EMPLOYEES', 'DEPARTMENTS')"
INCLUDE=PROCEDURE
INCLUDE=INDEX:"LIKE 'EMP%'"

The first example is telling the Data Pump job to include only two tables: employees and depart-
ments. In the second example, the INCLUDE parameter specifies that only procedures should be
included in this export job. The third example shows how you can specify that only those indexes
that start with EMP should be part of the export job.

The following example shows how you must use slashes (\) to escape the double quotation
marks:

$ expdp scott/tiger DUMPFILE=dumphere:file%U.dmp
schemas=SCOTT EXCLUDE=TABLE:\"='EMP'\", EXCLUDE=FUNCTION:\"='MY_FUNCTION''\",

■Note The EXCLUDE and INCLUDE parameters are mutually exclusive. You can use one or the other, not both
simultaneously in the same job.

When you filter metadata by using the EXCLUDE or INCLUDE parameters, remember that all objects
that depend on any of the filtered objects are processed in the same fashion as the filtered object. For
example, when you use the EXCLUDE parameter to exclude a table, you’ll also be automatically excluding
the indexes, constraints, triggers, and so on that are dependent on the table.

REMAP_DATA

The REMAP_DATA parameter enables you to replace the values in a column with a new value. The new
values for a column are specified by a remap function. You can use this parameter when you’re moving
data from a production system to a test system and would like some columns containing sensitive
information to be changed for privacy reasons. You can use the same remapping function to remap
both child and parent columns in a referential constraint.

The following example shows how to apply remapping functions to two columns in a table:

$ expdp hr DIRECTORY=dpump_dir1 DUMPFILE=remap1.dmp TABLES=employees
REMAP_DATA=hr.employees.employee_id:hr.remap.minus10
REMAP_DATA=hr.employees.first_name:hr.remap.plusx

694 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

In the example, the EMPLOYEE_ID and FIRST_NAME columns from the employees table are
remapped using the two functions REMAP10 and PLUSX that belong to the package named REMAP.

DATA_OPTIONS

The DATA_OPTIONS parameter lets you specify options on handling specific types of data during an
export. You can only specify the value XML_CLOBS for this parameter (DATA_OPTIONS=XML_CLOBS).

QUERY

The QUERY parameter serves the same function as it does in the traditional export utility: it lets you
selectively export table row data with the help of a SQL statement. The QUERY parameter permits you
to qualify the SQL statement with a table name, so that it applies only to a particular table. Here’s an
example:

QUERY=OE.ORDERS: "WHERE order_id > 100000"

In this example, only those rows in the orders table (owned by user OE) where the order_id is
greater than 100,000 are exported.

SAMPLE

Using the SAMPLE parameter, which was brand new in Oracle Database 10g Release 2, you have the
capability to export only a subset of data from a table. The SAMPLE parameter lets you specify a
percentage value ranging from .000001 to 100. This parameter has the following syntax:

SAMPLE=[[schema_name.]table_name:]sample_percent

Here’s an example:

SAMPLE="HR"."EMPLOYEES":50

You specify the sample size by providing a value for the SAMPLE_PERCENT clause. The schema
name and table name are optional. If you don’t provide the schema name, the current schema is
assumed. You must provide a table name if you do provide a schema name. Otherwise, the sample
percent value will be used for all the tables in the export job. In the following example, the sample
size is 70 percent for all tables in the export job because it doesn’t specify a table name:

$ expdp hr/hr DIRECTORY=dpump_dir1 DUMPFILE=sample.dmp SAMPLE=70

TRANSPORTABLE

The TRANSPORTABLE parameter enables you to specify whether you want the database to export the
metadata for specific tables (and partitions and subpartitions) when doing a table mode export. You
can specify either ALWAYS or NEVER as values for the TRANSPORTABLE parameter. Here’s an example:

$ expdp sh DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp
TABLES=employees TRANSPORTABLE=always

There’s no default value of this parameter.

Enforcing Encryption of the Export Data

You can use one or more of the following encryption-related parameters to specify whether data
must be encrypted before it’s written to a dump set: ENCRYPTION, ENCRYPTION_ALGORITHM, ENCRYPTION_
MODE, and ENCRYPTION_PASSWORD. Let’s take a closer look at each of these parameters.

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 695

ENCRYPTION

Use the ENCRYPTION parameter to specify whether or not to encrypt data before it’s written to a dump
file. You can assign the following values to the ENCRYPTION parameter:

ALL: Encrypts all data and metadata

DATA_ONLY: Encrypts only data written to the dump file set

ENCRYPTED_COLUMNS_ONLY: Specifies encryption for only encrypted columns using the TDE feature

METADATA_ONLY: Specifies the encryption of just the metadata

NONE: Specifies that no data will be encrypted

■Note You can enforce encryption by specifying either the ENCRYPTION or the ENCRYPTION_PASSWORD parameter
or both. If you specify the ENCRYPTION_PASSWORD parameter only, the ENCRYPTION parameter will default to the
value of ALL.

If you don’t specify the ENCRYPTION or the ENCRYPTION_PASSWORD parameter, the ENCRYPTION
parameter defaults to NULL. If you omit the ENCRYPTION parameter but specify the ENCRYPTION_PASSWORD
parameter, the ENCRYPTION parameter defaults to ALL.

The following example shows how to specify just the data and nothing else:

$ expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp JOB_NAME=test1
ENCRYPTION=data_only ENCRYPTION_PASSWORD=foobar

ENCRYPTION_ALGORITHM

The ENCRYPTION_ALGORITHM parameter specifies the encryption algorithm to use in the encryption of
data. The default value is AES128, and you can also specify AE192 and AES256. The following example
shows how to specify this parameter:

$ expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp
ENCRYPTION_PASSWORD=foobar ENCRYPTION_ALGORITHM=AES128

ENCRYPTION_MODE

The ENCRYPTION_MODE parameter specifies the type of security to be performed by the database when
you choose to encrypt data during an export. The parameter can take three values: DUAL, PASSWORD,
and TRANSPARENT. The default value for this parameter depends on whether you specify the other
encryption-related parameters, as shown here:

• If you specify only the ENCRYPTION parameter, the default mode is TRANSPARENT.

• If you specify the ENCRYPTION_PASSWORD parameter and the Oracle Encryption Wallet is open,
the default is DUAL.

• If you specify the ENCRYPTION_PASSWORD parameter and the Oracle Encryption Wallet is closed,
the default is PASSWORD.

DUAL mode enables you to create a dump set that you can import later using either the Oracle
Encryption Wallet or the password you specified with the ENCRYPTION_PASSWORD parameter. You can
use DUAL mode when you want to import the data into a site that doesn’t use the Oracle Encryption
Wallet.

696 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

PASSWORD mode enables you to secure a dump file set when you transmit it to a remote database,
but requires you to provide a password using the ENCRYPTION_PASSWORD parameter during the export.
The database will require you to provide the same password during the import of the dump file set.

TRANSPARENT mode enables you to create a dump file set without using the ENCRYPTION_PASSWORD
parameter. You use this parameter when you’re importing the same database from which you exported
the dump file set.

Here’s an example that shows how to specify the dual value for the ENCRYPTION_MODE parameter.

$ expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp
ENCRYPTION=all ENCRYPTION_PASSWORD=encrypt_pwd
ENCRYPTION_ALGORITHM=AES256 ENCRYPTION_MODE=dual

ENCRYPTION_PASSWORD

You can use the ENCRYPTION_PASSWORD parameter to encrypt table data or metadata in the export
dump file to prevent unauthorized users from reading data from the dump set. Note that if you
specify ENCRYPTION_PASSWORD and omit the ENCRYPTION parameter, the database encrypts all data
written to the export dump set.

■Note If you export a table with encrypted columns but don’t specify the ENCRYPTION_PASSWORD parameter,
the database stores the encrypted table column or columns as clear text in the export dump file when you do this.
The database issues a warning when this happens.

You can supply any password you want when you export a table, even if the table has encrypted
columns. The password you supply doesn’t have to be the same as the password you use when
encrypting a table column. If you set the ENCRYPTION_MODE parameter to PASSWORD or DUAL, the data-
base requires that you also specify the ENCRYPTION_PASSWORD parameter.

The following example shows how to pass a value of testpass for the ENCRYPTION_PASSWORD
parameter:

$ expdp hr TABLES=employee_s_encrypt DIRECTORY=dpump_dir
 DUMPFILE=hr.dmp ENCRYPTION=ENCRYPTED_COLUMNS_ONLY
 ENCRYPTION_PASSWORD=testpass

The dump file for the export will encrypt the encrypted columns in the employees table.

Estimation Parameters

Two interesting parameters enable you to estimate how much physical space your export job will
consume: ESTIMATE and ESTIMATE_ONLY.

ESTIMATE

The ESTIMATE parameter will tell you how much space your new export job is going to consume. The
space estimate is always in terms of bytes. You can specify that the database provide you the space
estimates using either the number of database blocks (BLOCKS option) in the objects that are going to
be exported or the optimizer statistics (STATISTICS option) for the tables. The following is the syntax
of the ESTIMATE parameter specification:

ESTIMATE={BLOCKS | STATISTICS}

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 697

By default, Oracle estimates the export job space requirements in terms of blocks. It simply takes
your database block size and multiplies it by the number of blocks all the objects together will need.
Here is an example of what you’ll see in your log file (and on the screen):

Estimate in progress using BLOCKS method . . .
Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA
Total estimation using BLOCKS method: 654 KB

Since the space estimation in terms of blocks is the default behavior, you don’t need to specify
the ESTIMATE parameter during the export. However, if you have analyzed all your tables recently, you
can ask the Data Pump Export utility to estimate the space requirements by using the statistics the
database has already calculated for each of the tables. In order to tell the database to use the database
statistics (rather than use the default BLOCKS method), you need to specify the ESTIMATE parameter in the
following manner:

ESTIMATE=STATISTICS

Here’s what you’ll see in your log file when you use the ESTIMATE=STATISTICS parameter:

Estimate in progress using STATISTICS method . . .
Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA
. estimated "SYSTEM"."HELP" 35.32 KB
Total estimation using STATISTICS method: 65.72 KB

ESTIMATE_ONLY

While the ESTIMATE parameter is operative only during an actual export job, you can use the
ESTIMATE_ONLY parameter without starting an export job. Listing 14-4 shows one such example.

Listing 14-4. Using the ESTIMATE_ONLY Parameter

$ expdp system/sammyy1 estimate_only=y

Export: Release 11.1.0.6.0 - Production on Saturday, 22 March, 2008 11:19:4

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - P
tion
With the Partitioning, OLAP, Data Mining and Real Application Testing optio
FLASHBACK automatically enabled to preserve database integrity.
Starting "SYSTEM"."SYS_EXPORT_SCHEMA_01": system/******** estimate_only=y
Estimate in progress using BLOCKS method . . .
Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA
. estimated "SYSTEM"."REPCAT$_AUDIT_ATTRIBUTE" 64 KB
. . .
. estimated "SYSTEM"."SQLPLUS_PRODUCT_PROFILE" 0 KB
Total estimation using BLOCKS method: 320 KB
Job "SYSTEM"."SYS_EXPORT_SCHEMA_01" successfully completed at 11:20:16

C:\>

Although the log indicates that the export job “successfully completed,” all the previous job
really did was to estimate the space that you will need for the actual export job.

698 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

The Network Link Parameter

The Data Pump Export utility provides a way to initiate a network export. Using the NETWORK_LINK
parameter, you can initiate an export job from your server and have Data Pump export data from
a remote database to dump files located on the instance from which you initiate the Data Pump
Export job.

Here’s an example that shows you how to perform a network export:

$ expdp hr/hr DIRECTORY=dpump_dir1 NETWORK_LINK=finance
DUMPFILE=network_export.dmp LOGFILE=network_export.log

In the example, the NETWORK_LINK parameter must have a valid database link as its value. This
means that you must have created the database link ahead of time. This example is exporting data
from the finance database on the prod1 server.

Let’s say you have two databases, called local and remote. In order to use the NETWORK_LINK
parameter and pass data directly over the network, follow these steps:

1. Create a database link to the remote database, which is named remote in this example:

SQL> CREATE DATABASE LINK remote
 2 CONNECT TO scott IDENTIFIED BY tiger
 3 USING 'remote.world';

2. If there isn’t one already, create a Data Pump directory object:

SQL> CREATE DIRECTORY remote_dir1 AS '/u01/app/oracle/dp_dir';

3. Set the new directory as your default directory, by exporting the directory value:

$ export DATA_PUMP_DIR=remote_dir1

4. Perform the network export from the database named remote:

$ expdp system/sammyy1 SCHEMAS=SCOTT FILE_NAME=network.dmp NETWORK_LINK=finance

You’ll see that the Data Pump Export job will create the dump file network.dmp (in the directory
location specified by remote_dir1) on the server hosting the database named local. However, the
data within the dump file is extracted from the user scott’s schema in the remote database (named
remote in our example). You can see that the NETWORK_LINK parameter carries the dump files over the
network from a remote location to the local server. All you need is a database link from a database on
the local server to the source database on the remote server.

■Caution You can’t use Data Pump in the normal way to export data from a read-only database. This is because
Data Pump can’t create the necessary master table or create external tables on a read-only tablespace. Using the
network mode, however, you can export data from a read-only database on server A to dump files on server B,
where Data Pump is running.

The Encryption Parameter

If your export data dump file includes encrypted column data columns, you can use the new ENCRYPTION_
PASSWORD parameter to supply a password, to prevent the writing of the encrypted column data as
clear text in the dump file set. When you import a dump file that was created using an encryption
password this way, you’ll need to supply the password. Here’s an example of using the ENCRYPTION_
PASSWORD parameter:

$ expdp hr/hr TABLES=employees DUMPFILE=test.dmp ENCRYPTION_PASSWORD=123456

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 699

Job-Related Parameters

Several of the Data Pump Export parameters can be classified as job-related parameters. I’ll briefly
discuss the important ones here.

JOB_NAME

The JOB_NAME parameter is purely optional. You can use this parameter to give an explicit name to the
export job, instead of letting Oracle assign a default name. Remember that Oracle gives the master
table, which holds critical information about your export job, the same name as the name of the job.

STATUS

The STATUS parameter is useful while you’re running long jobs, as it provides you with an updated
status at intervals that you can specify. The parameter takes integer values that stand for seconds.
The default is 0 and will show new status when it’s available. If you want to reassure yourself with
minute-by-minute updates concerning a Data Pump job you’re currently running, use the STATUS
parameter, as shown in Listing 14-5.

Listing 14-5. Using the STATUS Parameter

$ expdp system/manager STATUS=60 . . .
. . .
Worker 1 Status:
State: EXECUTING
..Object Schema: SYSTEM
..Object Name: SYS_EXPORT_SCHEMA_01
 Object Type: SCHEMA_EXPORT/TABLE/TABLE_DATA
 Completed Objects: 1
 Total Objects: 65
. . exported "SYSTEM"."REPCAT$_SITES_NEW"
Job: SYS_EXPORT_SCHEMA_01
 Operation: EXPORT
 Mode: SCHEMA
 State: EXECUTING
 Bytes Processed: 69,312
 Percent Done: 99
 Current Parallelism: 1
 Job Error Count: 0
 Dump File: C:\ORACLE\PRODUCT\11.1.0\ADMIN\EXPORT\EXPDAT6.DMP
 bytes written: 1,748,992
. . .

The STATUS parameter shows the overall percentage of the job that is completed, the status of the
worker processes, and the status of the current data objects being processed. Note that the Data
Pump log file will show the completion status of the job, whereas the STATUS parameter gives you the
status of an ongoing Data Pump job.

FLASHBACK_SCN

The FLASHBACK_SCN parameter specifies the system change number (SCN) that Data Pump Export
will use to enable the Flashback utility. If you specify this parameter, the export will be consistent as
of this SCN.

The following example shows how you can export the user HR’s schema up to the SCN 150222:

$ expdp hr/hr DIRECTORY=dpump_dir1 DUMPFILE=hr_exp.dmp FLASHBACK_SCN=150222

700 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

FLASHBACK_TIME

The FLASHBACK_TIME parameter is similar to the FLASHBACK_SCN parameter. The only difference is that
here you use a time, instead of an SCN, to limit the export. Oracle finds the SCN that most closely
matches the time you specify, and uses this SCN to enable the Flashback utility. The Data Pump
Export operation will be consistent as of this SCN. Here’s an example:

$ expdp system/sammyy1 DIRECTORY=dpump_dir1 DUMPFILE=hr_time.dmp
FLASHBACK_TIME="TO_TIMESTAMP('25-05-2008 17:22:00', 'DD-MM-YYYY HH24:MI:SS')"

■Note FLASHBACK_SCN and FLASHBACK_TIME are mutually exclusive.

PARALLEL

PARALLEL is the mighty parameter that lets you specify more than a single active execution thread
(worker process) for your export job. Using the PARALLEL parameter means that your jobs will use
multiple threads for their execution. You can change the degree of parallelism on the fly by using the
ATTACH command. Note that the Data Pump PARALLEL parameter has nothing to do with the Oracle
parallel execution features, but they can work together.

The default value of the PARALLEL parameter is 1, meaning a single-thread export operation
writing to a single dump file. If you specify anything more than 1 as the value for the PARALLEL parameter,
you also should remember to specify the same number of dump files, so the multiple execution
threads can simultaneously write to the multiple dump files. Here’s an example that shows how you
can set the level of parallelism to 3, forcing the export job to write in parallel to three dump files:

$ expdp system/manager DIRECTORY=dpump_dir1 DUMPFILE=par_exp%U.dmp PARALLEL=3

In this example, the DUMPFILE parameter uses the substitution variable %U to indicate that multiple
files should be generated, of the format par_expNN.dmp, where NN is a two-character integer starting
with 01. Since the PARALLEL parameter is set to 3, the substitution variable will create three files with
the following names: par_exp01.dmp, par_exp02.dmp, and par_exp03.dmp.

Note that you don’t need to use the %U substitution variable to generate multiple dump files
when you choose a value greater than 1 for the PARALLEL parameter. You could simply use a comma-
separated list of values, as follows:

$ expdp system/manager DIRECTORY=dpump_dir1
 DUMPFILE=(par_exp01.dmp,par_exp02.dmp,par_exp03.dmp)

Be aware that if you don’t have sufficient I/O bandwidth, you may actually experience a degra-
dation in Data Pump performance with the PARALLEL parameter.

■Caution If you specify the PARALLEL parameter, make sure you allocate the same number of dump files
as the degree of parallelism. You must also remember that the higher the degree of parallelism, the higher the
memory, CPU, and network bandwidth usage as well.

ATTACH

The ATTACH parameter attaches your Data Pump client session to a running job and places you in
an interactive mode. You can use this parameter only in conjunction with the username/password
combination; you can’t use any other export parameters along with it. Here’s an example:

$ expdp hr/hr ATTACH=hr.export_job

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 701

The ATTACH parameter is very important, as it’s one of the two ways to open an interactive Data
Pump job, as explained in the following section.

Interactive Mode Export Parameters (Commands)

As I mentioned earlier in this chapter, the interactive mode of Data Pump is quite different from the
interactive export and import mode in the older utilities. Traditionally, the interactive mode gave
you the chance to enter a limited set of export/import parameters at the command line in response
to the queries made by the export or import utility. You use the interactive mode in the new Data
Pump technology only to intervene in the middle of a running job, to either suspend the job or modify
some aspects of it. You can enter the interactive mode of Data Pump Export in either of two ways:

• Use the Ctrl+C keyboard combination during a Data Pump Export job, if you want to enter the
interactive mode from the same session where you are running the Data Pump job.

• Use a separate session or even a separate server to attach yourself to a running session by
using—what else?—the ATTACH command. (You can also attach to a stopped job.) When you
successfully attach yourself to a job, you’ll be able to use specific export parameters in an
interactive mode. I use the word parameters, but you may also refer to these as interactive
export commands.

■Note In the Data Pump Export (and Import) utility, the only way to get into an interactive mode of operation is
by using the Ctrl+C sequence or by opening another session and “attaching” yourself to that session. You cannot
start an interactive Data Pump session from the command line.

Let’s examine when you might use the interactive mode in a Data Pump Export job. Suppose
that you started a job in the evening at work and left for home. At midnight, you check the status of
the job and find that it’s barely moving. You can easily start another session, and then connect to the
running job and monitor it by using the ATTACH command. When you do this, the running job does not
pause. Instead, it opens an interactive window into the running session so you can change some
parameters to hasten the crawling export job via a special set of interactive Data Pump Export
commands. Using the ATTACH parameter, you can restart jobs that are stalled because of a lack of
space in the file system, instead of having to start a new job from the beginning. This feature comes
in especially handy when dealing with exports and imports of large amounts of data.

Listing 14-6 shows an example of using the ATTACH command.

Listing 14-6. Using the ATTACH Command to Attach to a Stopped Job

[orcl] $ expdp system/sammyy1 ATTACH=system.sys_export_schema_01
Export: Release 11.1.0.6.0 - Production on Tuesday, 25 March, 2008 11:58:08

Copyright (c) 2003, 2007, Oracle. All rights reserved.
Job: SYS_EXPORT_SCHEMA_01
 Owner: SYSTEM
 Operation: EXPORT
 Creator Privs: FALSE
 GUID: F24953A52C006A63E0340060B0B2C268
 Start Time: Monday, 14 March, 2005 11:03:03
 Mode: SCHEMA
 Instance: orcl
 Max Parallelism: 1

702 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

 EXPORT Job Parameters:
 Parameter Name Parameter Value:
 CLIENT_COMMAND system/********
 State: EXECUTING
 Bytes Processed: 0
 Current Parallelism: 1
 Job Error Count: 0
 Dump File: /u01/app/oracle/product/10.2.0/db_1/admin/orcl/dpdump/expdat.dmp
 bytes written: 4,096

Worker 1 Status:
 State: EXECUTING

■Note You may attach multiple clients to a single job.

You can attach to a running job by using the ATTACH command as just shown, or by simply using
the Ctrl+C (^C) sequence on the server where the job is actually running. When you use the Ctrl+C
sequence, you get the interactive export prompt (export>), indicating that Data Pump is awaiting
your interactive commands. Here’s an example:

Starting "SYSTEM"."SYS_EXPORT_SCHEMA_01": system/********
Estimate in progress using BLOCKS method . . .
(You stop the export job by using the ^C sequence)
export>

Note that when you use the ATTACH command or the Ctrl+C sequence to interactively attach to
a job, you don’t stop the running job itself. The commands will merely stop the display of the job
messages on the screen and present you with the prompt (export>).

From the interactive prompt, you can use several options to influence the progress of the currently
executing Data Pump job. You may intervene during a running export or import job, not only when
you issue the ATTACH command or Ctrl+C sequence, but also when the jobs temporarily fail. For
example, your export job may run out of dump file space, as shown by the following set of entries in your
export log file:

Processing object type SCHEMA_EXPORT/TABLE/COMMENT
Processing object type SCHEMA_EXPORT/VIEW/VIEW
Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT
ORA-39095: Dump file space has been exhausted: Unable to allocate 524288 bytes
Job "SYSTEM"."SYS_EXPORT_SCHEMA_01" stopped due to fatal error at 18:40
. . .

One option is to end this idle export job with the following interactive command:

export> KILL_JOB

More likely, you would want the job to resume by adding more space to your directory. Here’s
how you can use the ADD_FILE command to add files to your export directory:

export> ADD_FILE=data_dump_dir:expdat02.dmp

Once you finish adding space to the export directory, you use the interactive command
START_JOB to continue the stopped export job, as shown here:

export> START_JOB

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 703

To resume the logging of the output on your screen, you issue the CONTINUE_CLIENT command,
as shown here:

export> CONTINUE_CLIENT
Job SYS_EXPORT_SCHEMA_01 has been reopened at Sunday, 20 March, 2005 19:15
Restarting "SYSTEM"."SYS_EXPORT_SCHEMA_01": system/********
parfile=test_export.par
. . .

In a Data Pump Import job, your space-related problems are most likely to be caused by running out
of room in the tablespaces that contain the tables into which you are importing. In such a case, the
import job will stop in the middle. You can add space to the relevant tablespaces, and then use
the ATTACH command to attach to the held-up job, followed by the START_JOB and CONTINUE_CLIENT
commands as shown in the preceding example.

■Note You must be a DBA, or have the EXP_FULL_DATABASE or IMP_FULL_DATABASE role, in order to attach
and control Data Pump jobs of other users.

Table 14-1 provides a summary of the interactive Data Pump Export commands.

■Tip STOP_JOB=IMMEDIATE performs an immediate shutdown of the Data Pump job.

I’ll explain the important interactive Data Pump parameters in the following sections, grouped
in the categories of client-related parameters, job-related parameters, and other parameters.

Client-Related Interactive Parameters

The CONTINUE_CLIENT parameter will take you out of interactive mode and resume the running export
job. Your client connection will still be intact, and you’ll continue to see the export messages on your

Table 14-1. Interactive Data Pump Export Commands

Command Description

ADD_FILE Adds a dump file to the dump file set.

CONTINUE_CLIENT Returns to logging mode. The job will be restarted if it was idle.

EXIT_CLIENT Quits the client session and leaves the job running.

HELP Provides summaries of the usage of the interactive commands.

KILL_JOB Detaches and deletes the job.

PARALLEL Changes the number of active workers for the current job.

START_JOB Starts or resumes the current job.

STATUS Sets the frequency of job monitoring (in seconds). The default (0) will show
the new status when available.

STOP_JOB Performs an orderly shutdown of the job execution and exits the client.

704 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

screen. However, the EXIT_CLIENT parameter will stop the interactive session, as well as terminate the
client session. In both of these cases, the actual Data Pump Export job will continue to run unhindered.

Job-Related Interactive Parameters

You can use several job-related parameters from any interactive session you open with an export
session using the ATTACH command. You can use the STOP_JOB command to stop the export job in an
orderly fashion. To stop it immediately, use the STOP_JOB=IMMEDIATE command. You can choose to
resume any export jobs you’ve stopped in this manner with the START_JOB command.

If you decide that you don’t really want to continue the job you’ve just attached to, you can
terminate it by using the KILL_JOB parameter. Unlike the EXIT_CLIENT parameter, the KILL_JOB
parameter terminates both the client as well as the export job itself.

To summarize, the job-related interactive parameters work as follows:

• STOP_JOB stops running Data Pump jobs.

• START_JOB resumes stopped jobs.

• KILL_JOB kills both the client and the Data Pump job.

■Note You can restart any job that is stopped, whether it’s stopped because you issued a STOP_JOB command
or due to a system crash, as long as you have access to the master table and an uncorrupted dump file set.

Other Interactive Parameters

From the interactive prompt, you can use the ADD_FILE parameter to add a dump file to your job, if
you find that the dump file is filling rapidly and may not have any more free space left. You can also
use the HELP and STATUS parameters interactively, and both of these parameters function the same
way as their command-line counterparts.

Data Pump Export Examples
Let’s look at a few simple Data Pump Export job specifications that demonstrate some of the concepts
you’ve learned in this chapter. The first example creates an export dump file of just two tables:
employees and jobs.

$ expdp hr/hr TABLES=employees,jobs DUMPFILE=dpump_dir1:table.dmp NOLOGFILE=Y

The following example shows how to use a parameter file, as well as how to use the CONTENT and
EXCLUDE parameters. The CONTENT=DATA_ONLY specification means you are exporting just rows of data
and excluding all object definitions (metadata). The EXCLUDE parameter requires that the countries,
locations, and regions tables be omitted from the export. The QUERY parameter stipulates that all the
data in the employees table, except that belonging to department_id 20, be exported. The parameter
file, exp.par, has the following information:

DIRECTORY=dpump_dir1
DUMPFILE=dataonly.dmp
CONTENT=DATA_ONLY
EXCLUDE=TABLE:"IN ('COUNTRIES', 'LOCATIONS', 'REGIONS')"
QUERY=employees:"WHERE department_id !=20 ORDER BY employee_id"

You can then issue the following command to execute the exp.par parameter file:

$ expdp hr/hr PARFILE=exp.par

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 705

The following example illustrates a schema mode export. You don’t see any mention of the
SCHEMA parameter, because Data Pump will export a schema (of the exporting user) by default.

$ expdp hr/hr DUMPFILE=dpump_dir1:expschema.dmp
LOGFILE=dpump_dir1:expschema.log

■Note By default, the Data Pump Export utility will run the export in schema mode.

The following example shows how you can export specific tables from a specific schema:

$ expdp hr/hr TABLES=employees,jobs DUMPFILE=dpump_dir1:hrtable.dmp NOLOGFILE=Y

Here’s an interesting Data Pump Export example, showing how to use the PARALLEL, FILESIZE,
and JOB_NAME parameters. It also illustrates the use of the DUMPFILE parameter when there are
multiple dump files.

$ expdp hr/hr FULL=Y DUMPFILE=dpump_dir1:full1%U.dmp, dpump_dir2:full2%U.dmp
FILESIZE=2G PARALLEL=3 LOGFILE=dpump_dir1:expfull.log JOB_NAME=expfull

Now that you’ve seen how the Data Pump Export utility works, you’re ready to look at the Data
Pump Import utility features.

Data Pump Import Types and Modes
As in the case of a Data Pump Export job, you can perform a Data Pump Import job from the command
line or use a parameter file. Interactive access to the Import utility is available, but it is different from
what you are used to when working with the traditional import utilities. The interactive framework
is analogous to the interactive access to the Data Pump Export utility, as you’ll see shortly.

You can use Data Pump Import in the same modes as Data Pump Export: table, schema, tablespace,
and full modes. In addition, you can employ the TRANSPORTABLE_TABLESPACES parameter to import
the metadata necessary for implementing the transportable tablespaces feature.

You must have the IMPORT_FULL_DATABASE role in order to perform one of the following:

• Full database import

• Import of a schema other than your own

• Import of a table that you don’t own

■Note You’ll need the IMPORT_FULL_DATABASE role to perform an import if the dump file for the import was
created using the EXPORT_FULL_DATABASE role.

Data Pump Import Parameters
As in the case of the Data Pump Export utility, you control a Data Pump Import job with the help of
several parameters when you invoke the impdp utility. For this discussion, I’ve grouped the parameters
into the following categories:

• File- and directory-related parameters

• Filtering parameters

• Job-related parameters

706 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

• Import mode-related parameters

• Remapping parameters

• The TRANSFORM parameter

• The NETWORK_LINK parameter

• The Flashback parameters

File- and Directory-Related Parameters

The Data Pump Import utility uses the PARFILE, DIRECTORY, DUMPFILE, LOGFILE, and NOLOGFILE commands
in the same way as the Data Pump Export utility does. However, SQLFILE is a file-related parameter
unique to the Import utility.

The SQLFILE parameter is similar to the old import utility’s INDEXFILE parameter. When you
perform a Data Pump Import job, you may sometimes wish to extract the DDL from the export dump
file. The SQLFILE parameter enables you to do this easily, as shown in the following example:

$ impdp system/sammyy1 DIRECTORY=dpump_dir1 DUMPFILE=scott.dmp
 SQLFILE=dpump_dir2:finance.sql SCHEMAS=scott

In this example, the SQLFILE parameter instructs the Data Pump Import job to write all the DDL
pertaining to the scott schema to the scott.dmp file, located in the directory dpump_dir2. Of course,
you must have created dpump_dir2 prior to issuing this command, using the CREATE DIRECTORY AS
command. The DIRECTORY=dpump_dir1 parameter value tells the Data Pump Import utility where to
find the dump file scott.dmp, from which the Data Pump Import job will extract the DDL for user
scott’s schema. This example also shows how you can use multiple directories in a single Data Pump job.

Listing 14-7 shows the output from running the previously specified Data Pump Import job.

Listing 14-7. Running a Data Pump Import Job

[oracle@localhost] $ impdp system/sammyy1 DIRECTORY=dpump_dir1
DUMPFILE=scott.dmp SQLFILE=dpump_dir2:finance.sql SCHEMAS=scott

Import: Release 11.1.0.6.0 - Production on Tuesday, 25 March, 2008 12:23:07

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 –
Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
Master table "SYSTEM"."SYS_SQL_FILE_SCHEMA_01" successfully loaded/unloaded
Starting "SCOTT"."SYS_SQL_FILE_SCHEMA_01": system/******** dumpfile=scott.dmp
 sqlfile=scott.sql schemas=scott
Processing object type SCHEMA_EXPORT/USER
Processing object type SCHEMA_EXPORT/SYSTEM_GRANT
Processing object type SCHEMA_EXPORT/ROLE_GRANT
Processing object type SCHEMA_EXPORT/DEFAULT_ROLE
Processing object type SCHEMA_EXPORT/PRE_SCHEMA/PROCACT_SCHEMA
Processing object type SCHEMA_EXPORT/TABLE/TABLE
Processing object type SCHEMA_EXPORT/TABLE/INDEX/INDEX
Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/CONSTRAINT
Processing object type SCHEMA_EXPORT/TABLE/INDEX/STATISTICS/INDEX_STATISTICS
Processing object type SCHEMA_EXPORT/CONSTRAINT/REF_CONSTRAINT
Processing object type SCHEMA_EXPORT/TABLE/STATISTICS/TABLE_STATISTICS
Job "SYSTEM"."SYS_SQL_FILE_SCHEMA_01" successfully completed at 18:42:20
[oracle@localhost] $

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 707

It’s important to remember that the SQLFILE parameter just extracts the SQL DDL to the speci-
fied file—no actual data import takes place. By using this parameter, you can extract a SQL script
with all the DDL from your export dump file. The DDL in SQLFILE lets you peek at what the import
job will execute.

If you edit the finance.sql file, you’ll see uncommented, ready-to-use SQL DDL statements to
re-create user scott’s schema. Listing 14-8 shows the first few lines of the script obtained by using the
SQLFILE parameter.

Listing 14-8. Partial Output Obtained Using the SQLFILE Parameter

-- CONNECT SYSTEM
-- new object type path is: SCHEMA_EXPORT/USER
 CREATE USER "SCOTT" IDENTIFIED BY VALUES 'F894844C34402B67'
 DEFAULT TABLESPACE "USERS"
 TEMPORARY TABLESPACE "TEMP"
 PASSWORD EXPIRE
 ACCOUNT UNLOCK;

-- new object type path is: SCHEMA_EXPORT/SYSTEM_GRANT
GRANT UNLIMITED TABLESPACE TO "SCOTT";

-- new object type path is: SCHEMA_EXPORT/ROLE_GRANT
 GRANT "CONNECT" TO "SCOTT";
 GRANT "RESOURCE" TO "SCOTT";
-- new object type path is: SCHEMA_EXPORT/DEFAULT_ROLE
 ALTER USER "SCOTT" DEFAULT ROLE ALL;
-- new object type path is: DATABASE_EXPORT/SCHEMA/PROCACT_SCHEMA
-- CONNECT SCOTT
BEGIN
sys.dbms_logrep_imp.instantiate_schema(schema_name=>'SCOTT',
export_db_name=>'SALES', inst_scn=>'643491');
COMMIT;
END;
/
new object type path is: SCHEMA_EXPORT/TABLE/TABLE
--CONNECT SYSTEM
CREATE TABLE "SCOTT"."DEPT"
 ("DEPTNO" NUMBER(2,0),
 "DNAME" VARCHAR2(14),
 "LOC" VARCHAR2(13)
) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
 STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
 PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
 TABLESPACE "USERS" ;
. . .

Note that you’ll get the SQL to re-create not only tables and indexes, but all objects, including
any functions and procedures in user scott’s schema.

The other important file-related Data Pump Import parameter is the new REUSE_DATAFILES
parameter. This parameter tells Data Pump whether it should use existing datafiles for creating
tablespaces during an import. If you specify REUSE_DATAFILES=Y, the Data Pump Import utility will
write over your existing datafiles.

708 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

Filtering Parameters

You use the CONTENT parameter, as in the case of a Data Pump export, to determine whether
you’ll load just rows (CONTENT=DATA_ONLY), rows and metadata (CONTENT=ALL), or just metadata
(CONTENT=METADATA_ONLY).

The EXCLUDE and INCLUDE parameters have the same meaning as in an export, and they are
mutually exclusive:

• Use the INCLUDE parameter to list the objects that you wish to import.

• Use the EXCLUDE parameter to list the objects you don’t want to import.

Here’s a simple example of using the INCLUDE parameter. The specification restricts the import
to only table objects. Only the persons table will be imported.

INCLUDE=TABLE:"= 'persons'"

You can use the clause INCLUDE=TABLE:"LIKE 'PER%'" to export only those tables whose name
start with PER. You can also use the INCLUDE parameter in a negative fashion, by specifying that all
objects with a certain syntax be ignored, as shown here:

INCLUDE=TABLE:"NOT LIKE 'PER%'"

Note that if you use the CONTENT=DATA_ONLY option, you cannot use either the EXCLUDE or INCLUDE
parameter during an import.

You can use the QUERY parameter as well to filter data during an import. (In the older export and
import utilities, you could use the QUERY parameter only during an export.) You can use the QUERY
parameter to specify an entire schema or a single table. Note that if you use the QUERY parameter
during import, Data Pump will use only the external tables data method, rather than the direct-path
method, to access the data.

You can use the TABLE_EXISTS_ACTION parameter to tell Data Pump import what to do when a
table already exists. You can provide four different values to the TABLE_EXISTS_ACTION parameter:

• With SKIP (the default), Data Pump will skip a table if it exists.

• The APPEND value appends rows to the table.

• The TRUNCATE value truncates the table and reloads the data from the export dump file.

• The REPLACE value drops the table if it exists, re-creates it, and reloads it.

Job-Related Parameters

The JOB_NAME, STATUS, and PARALLEL parameters carry identical meanings as their Data Pump Export
counterparts. Note that if you have multiple dump files, you should specify them either explicitly or
by using the %U notation, as shown earlier in the coverage of Data Pump Export parameters.

Import Mode-Related Parameters

You can perform a Data Pump import in various modes, using the TABLE, SCHEMAS, TABLESPACES,
and FULL parameters, just as with the Data Pump Export utility. You can use the TRANSPORTABLE_
TABLESPACES parameter when you wish to transport tablespaces between databases.

You use the TRANSPORT_FULL_CHECK parameter in a manner analogous to its use under Data
Pump Export, when you’re performing a transportable tablespaces operation. The TRANSPORT_FULL_
CHECK parameter is applicable to a tablespace transport only if you’re using the NETWORK_LINK parameter.

The TRANSPORT_DATAFILES import parameter is used during a transportable tablespaces opera-
tion, to specify the list of datafiles the job should import into the target database. You must first copy

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 709

these files from the source system to the target server. Here’s a simple example that illustrates how
to use the transport tablespaces-related import parameters:

$ impdp salapati/sammyy1 DIRECTORY=dpump_dir1 \
> NETWORK_LINK=source_database_link \
> TRANSPORT_TABLESPACES=users TRANSPORT_FULL_CHECK=Y \
> TRANSPORT_DATAFILES='/wkdir/data/tbs6.f'

Remapping Parameters

The remapping parameters clearly mark the superiority of this utility over the older import utility by
expanding Oracle’s ability to remap objects during the data import process. The remapping param-
eters are REMAP_TABLES, REMAP_SCHEMA, REMAP_DATAFILE, and REMAP_TABLESPACE. While you did have
the ability to remap schemas in the old export and import utilities (by using the FROMUSER/TOUSER
specification), you couldn’t remap datafiles and tablespaces. I explain the remapping parameters
briefly in the following sections.

REMAP_TABLE

The REMAP_TABLE parameter enables you to rename a table during an import operation that uses the
transportable method. In addition to renaming regular tables, you can also specify the REMAP_TABLE
parameter to provide your own name for the individual partitions of a portioned table that you have
exported using the transportable method. This way, you can prevent Oracle from giving default
names to the partitions and subpartitions imported by the Data Pump Import utility. Following is an
example that shows how to specify the REMAP_TABLE parameter to rename a table:

$ impdp hr/HR DIRECTORY=dpump_dir1 DUMPFILE=newdump.dmp –
 TABLES=hr.employees REMAP_TABLE=hr.employees:emp

The REMAP_TABLE parameter changes the hr.employees table to the hr.emp table during the
import operation.

REMAP_SCHEMA

Using the REMAP_SCHEMA parameter, you can move objects from one schema to another. You need to
specify this parameter in the following manner:

$ impdp system/manager DUMPFILE=newdump.dmp REMAP_SCHEMA=hr:oe

In this example, HR is the source schema, and Data Pump Import will import all of user HR’s
objects into the target schema OE. The Import utility can even create the OE schema if it doesn’t
already exist in the target database. Of course, if you want to just import one or more tables from the
HR schema and then into the OE schema, you can do that as well, by using the TABLES parameter.

REMAP_DATAFILE

When you are moving databases between two different platforms, each with a separate file-naming
convention, the REMAP_DATAFILE parameter comes in handy to change file system names. The following
is an example that shows how you can change the file system from the old Windows platform to the
new UNIX platform. Whenever there is any reference to the Windows file system in the export dump
file, the Import utility will automatically remap the filename to the UNIX file system.

$ impdp hr/hr FULL=Y DIRECTORY=dpump_dir1 DUMPFILE=db_full.dmp \
 REMAP_DATAFILE='DB1$:[HRDATA.PAYROLL]tbs6.f':'/db1/hrdata/payroll/tbs6.f'

710 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

REMAP_TABLESPACE

Sometimes, you may want the tablespace into which you are importing data to be different from the
tablespace in the source database. The REMAP_TABLESPACE parameter enables you to move objects
from one tablespace into a different tablespace during an import, as shown in the following example.
Here, Data Pump Import is transferring all objects from the tablespace example_tbs to the tablespace
new_tbs.

$ impdp hr/hr REMAP_TABLESPACE='example_tbs':'new_tbs' DIRECTORY=dpump_dir1 \
 PARALLEL=2 JOB_NAME=TESTJOB_01 DUMPFILE=employees.dmp NOLOGFILE=Y

REMAP_DATA

You can specify the REMAP_DATA parameter to remap data while importing it into tables. You may
want to use it, for example, when you’re regenerating primary keys to avoid conflict with existing
data. You must create the remap function that determines the remapped values of the columns you
want to change.

Here’s an example that shows how to specify the REMAP_DATA parameter during import:

$ impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expschema.dmp
TABLES=hr.employees REMAP_DATA=hr.employees.first_name:hr.remap.plusx

The PLUSX function from the REMAP package remaps the FIRST_NAME column in this example.

TRANSPORTABLE

The TRANSPORTABLE parameter lets you tell the database whether it should use the transportable
option during a table-mode import. The two possible values are ALWAYS and NEVER, the latter being
the default value.

Note that you can use the TRANSPORTABLE parameter only if you also specify the NETWORK_LINK
parameter. Here’s an example:

$ impdp system TABLES=hr.sales TRANSPORTABLE=always
 DIRECTORY=dpump_dir1 NETWORK_LINK=dbs1
 PARTITION_OPTIONS=departition
 TRANSPORT_DATAFILES=datafile_name

If you don’t specify the TRANSPORTABLE parameter, by default, the import job uses the direct path
or external table method during the import.

DATA_OPTIONS

The DATA_OPTIONS parameter is the counterpart to the DATA_OPTIONS parameter during export opera-
tions. You can specify only the SKIP_CONSTRAINT_ERRORS value for this parameter during an import
(DATA_OPTIONS=SKIP_CONSTRAINT_ERRORS). The SKIP_CONSTRAINT_ERRORS option lets the import operation
continue even if the database encounters any nondeferred constraint violations.

The TRANSFORM Parameter

Suppose you are importing a table from a different schema or even a different database. Let’s say
you want to make sure that you don’t also import the objects’ storage attributes during the import—
you just want to bring in the data that the table contains. The TRANSFORM parameter lets you specify
that your Data Pump Import job should not import certain storage and other attributes. Using the
TRANSFORM parameter, you can exclude the STORAGE and TABLESPACE clauses, or just the STORAGE clause,
from a table or an index.

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 711

During a Data Pump (or traditional) import, Oracle creates objects using the DDL that it finds
in the export dump files. The TRANSFORM parameter instructs Data Pump Import to modify the DDL
that creates the objects during the import job.

The TRANSFORM parameter has the following syntax:

TRANSFORM = transform_name:value[:object_type]

where the syntax elements represent the following:

• Transform name: You can modify four basic types of an object’s characteristics using four
possible options for the TRANSFORM_NAME component. Here are the options and what they
stand for:

• SEGMENT ATTRIBUTES: Segment attributes include physical attributes, storage attributes,
tablespaces, and logging. You can instruct the import job to include the previous attri-
butes by specifying SEGMENT_ATTRIBUTES=Y (the default for this parameter) as the transform
name. When you do this, the import job will include all four of the segment attributes,
along with their DDL.

• STORAGE: You can use the STORAGE=Y (default) specification to get just the storage attributes
of the objects that are part of the import job.

• OID: If you specify OID=Y (the default value), a new OID is assigned to object tables during
the import.

• PCTSPACE: By supplying a positive number as the value for this transform, you can increase
the extent allocation size of objects and the datafile size by a percentage equal to the value
of PCTSPACE.

• Value: The value of the TRANSFORM parameter can be Y (yes) or N (no). You’ve already seen that
the default value for the first three transform names is Y. This means that, by default, Data
Pump imports an object’s segment attributes and storage features. Alternatively, you can set
the value for these parameters to N. If you assign a value of N, you specify not to import the
original segment attributes and/or the storage attributes. The PCTSPACE transform name takes
a number as its value.

• Object type: The object type specifies which types of objects should be transformed. You can
choose from tables, indexes, tablespaces, types, clusters, constraints, and so on, depending
on the type of transform you’re employing for the TRANSFORM parameter. If you don’t specify
an object type when using the SEGMENT_ATTRIBUTES and STORAGE transforms, the transforms
are applied to all tables and indexes that are part of the import.

Here’s an example of using the TRANSFORM parameter:

$ impdp hr/hr TABLES=hr.employees \
 DIRECTORY=dpump_dir1 DUMPFILE=hr_emp.dmp \
 TRANSFORM=SEGMENT_ATTRIBUTES:N:table

In this example, the SEGMENT_ATTRIBUTES transform is applied with the value of N. The object type
is table. This specification of the TRANSFORM parameter means that the import job will not import the
existing storage attributes for any table.

The NETWORK_LINK Parameter

Using the NETWORK_LINK parameter, you can perform an import across the network without using
dump files. The NETWORK_LINK parameter enables the Data Pump Import utility to connect directly to
the source database and transfer data to the target database. Here’s an example:

712 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

$ impdp hr/hr TABLES=employees DIRECTORY=dpump_dir1 SCHEMAS=SCOTT \
 EXCLUDE=CONSTRAINT NETWORK_LINK=finance

In this example, finance is the network link. It is a valid database link, created by you before-
hand using the CREATE DATABASE LINK command. Thus, the database shown in the database link is
your source for the import job. Data Pump will import the table employees from the remote database
finance to your instance where you run the Data Pump Import job. In a network import, the Metadata API
executes on the remote instance, extracts object definitions, and re-creates necessary objects in your
local instance. It then fetches data from the remote database tables and loads them in your local
instance, using the INSERT INTO . . . SELECT SQL statement, as follows:

SQL> INSERT INTO employees(emp_name,emp_id) . . . SELECT (emp_name,emp_id) FROM
 finance

Note that a Data Pump network import doesn’t involve a dump file, as Data Pump will import
the table from the source to the target database directly.

Here’s an example showing how to use the NETWORK_LINK parameter to perform a direct import
from a remote database into a local database:

1. Create a database link in the remote database:

SQL> CREATE DATABASE LINK remote
 CONNECT TO system IDENTIFIED BY sammyy1
 USING 'remote.world';

2. If there isn’t one already, create a Data Pump directory object:

SQL> CREATE DIRECTORY remote_dir1 AS '/u01/app/oracle/dp_dir';

3. Set the new directory as your default directory, by exporting the directory value:

$ export DATA_PUMP_DIR=remote_dir1

4. Perform the network import from the database named remote, using the following Data
Pump Import command:

[local] $ impdp system/sammyy1 SCHEMAS=scott NETWORK_LINK=remote

Listing 14-9 shows the output of the Data Pump job specification in this example, using the
NETWORK_LINK parameter.

Listing 14-9. Using the NETWORK_LINK Parameter in Data Pump Import

Import: Release 11.1.0.6.0 - Production on Tuesday, 25 March, 2008 12:00:32

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Connected to: Oracle Database 10g Enterprise Edition Release 10.2.0.0.0 - Beta
With the Partitioning, OLAP and Data Mining options
FLASHBACK automatically enabled to preserve database integrity.
Starting "SYSTEM"."SYS_IMPORT_SCHEMA_01": system/******** schemas=SCOTT
NETWORK_LINK=remote
Estimate in progress using BLOCKS method . . .
Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA
Total estimation using BLOCKS method: 32 KB
Processing object type SCHEMA_EXPORT/USER

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 713

Processing object type SCHEMA_EXPORT/SYSTEM_GRANT
Processing object type SCHEMA_EXPORT/ROLE_GRANT
Processing object type SCHEMA_EXPORT/DEFAULT_ROLE
Processing object type SCHEMA_EXPORT/TABLESPACE_QUOTA
Processing object type SCHEMA_EXPORT/TABLE/TABLE
. . imported "SCOTT"."TEST" 96 rows
Job "SYSTEM"."SYS_IMPORT_SCHEMA_01" successfully completed at 06:59
[local] $

The Flashback Parameters

The FLASHBACK_TIME parameter enables you to import data consistent as of the flashback time you
specify in your import job. Oracle finds the SCN closest to the time you specify, and enables the
Flashback utility using this SCN. For example, look at the following import statement:

$ impdp system/manager FLASHBACK_TIME="TO_TIMESTAMP('01-06-2005 07:00:00;',
'DD-MM-YYYY HH24:MI:SS')"

Note that the FLASHBACK_TIME parameter does the same thing as the old CONSISTENT parameter
in the traditional import utility.

The FLASHBACK_SCN parameter is similar to the FLASHBACK_TIME parameter, except that you directly
specify the SCN.

Whether you use the FLASHBACK_TIME or the FLASHBACK_SCN parameter, it is the SCN that plays the
key role in determining the flashback time with which your imported data will be consistent.

Interactive Import Parameters

All the interactive export parameters shown in Table 14-1 are valid for interactive import as well,
with one exception: the ADD_FILE command is valid only for Data Pump Export jobs. As with Data
Pump Export jobs, when you use the Ctrl+C sequence, the import job will pause, and you’ll see the
import> prompt, enabling you to enter any of the interactive import commands from there.

Monitoring a Data Pump Job
Two new views—DBA_DATA PUMP_JOBS and DBA_DATA PUMP_SESSIONS—are crucial for moni-
toring Data Pump jobs. In addition, you can use the V$SESSION_LONGOPS view and the old standby
V$SESSION to obtain session information. In most cases, you can join two or more of these views to
gain the necessary information about job progress. Let’s look at some of the important data dictionary
views that help you manage Data Pump jobs.

Viewing Data Pump Jobs
The DBA_DATAPUMP_JOBS view shows summary information of all currently running Data Pump
jobs. Here’s an example:

SQL> SELECT * FROM dba_datapump_jobs;

OWNER_NAME JOB_NAME OPERATION JOB_MODE STATE DEGREE ATTACHED_SESSIONS
----------- ---------- -------- -------- --------- ------ -------- ----------
SYSTEM SYS_EXPORT EXPORT FULL EXECUTING 1 1
 _FULL_01
SQL>

714 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

Since the dynamic DBA_DATA PUMP_JOBS view shows only the active jobs, a query on this
view will reveal the value of the important JOB_NAME column for any job that is running right now.
You’ll need to know the job name for a job if you want to attach to a running job in midstream.
Because the name of the master table is the same as the JOB_NAME value, you can thus determine the
name of the master table through this view.

The JOB_MODE column can take the values FULL, TABLE, SCHEMA, or TABLESPACE, reflecting the mode
of the currently executing export or import job.

The STATE column can take the values UNDEFINED, DEFINING, EXECUTING, and NOT RUNNING, depending
on which stage of the export or import you execute your query. Of course, when there aren’t any
active jobs running, the view DBA_DATAPUMP_JOBS returns no rows whatsoever.

Viewing Data Pump Sessions
The DBA_DATAPUMP_SESSIONS view identifies the user sessions currently attached to a Data
Pump Export or Import job. You can join the SADDR column in this view with the SADDR column in the
V$SESSION view to gain useful information about user sessions that are currently attached to a job.
The following query shows this information:

SQL> SELECT sid, serial#
 FROM v$session s, dba_datapump_sessions d
 WHERE s.saddr = d.saddr;

Viewing Data Pump Job Progress
The V$SESSION_LONGOPS dynamic performance view is not new to Oracle Database 11g. In Oracle9i,
you could use this view to monitor long-running sessions.

In the V$SESSION_LONGOPS view, you can use the following four columns to monitor the
progress of an export or import job:

• TOTALWORK shows the total estimated number of megabytes in the job.

• SOFAR shows the megabytes transferred thus far in the job.

• UNITS stands for megabytes.

• OPNAME shows the Data Pump job name.

Here’s a typical SQL script that you can run to show how much longer it will take for your Data
Pump job to finish:

SQL> SELECT opname, target_desc, sofar, totalwork
 2 FROM v$session_longops;

OPNAME TARGET_DES SOFAR TOTALWORK
----------------------- ---------- ---------- ------------
SYS_EXPORT_FULL_01 EXPORT 244 244
SYS_EXPORT_FULL_02 EXPORT 55 244
SQL>

In this example, the first row shows that the job is already complete, since the TOTALWORK and
SOFAR columns are equal in value. In the second row, the SOFAR value is only 55MB, and TOTALWORK
is 244MB. Thus, only about a quarter of the second export job has been completed thus far.

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 715

Using the Data Pump API
You can use the Data Pump API to write PL/SQL scripts that export and import data. The Data Pump
API is in the DBMS_DATAPUMP package, which you can use for the following tasks:

• Starting a job

• Monitoring a job

• Detaching from a job

• Stopping a job

• Restarting a job

Listing 14-10 presents a simple PL/SQL script that shows how to export a simple schema export
of a user. Make sure you create a directory object first and grant the user the appropriate rights to it.

Listing 14-10. Using the Data Pump API to Create a Data Pump Export Job

DECLARE
 d1 NUMBER; -- Data Pump job handle
BEGIN
-- first create a Data Pump job for the export.
 d1 := DBMS_DATAPUMP.OPEN('EXPORT','SCHEMA',NULL,'TEST1','LATEST');
-- Specify a single dump file for the job
 DBMS_DATAPUMP.ADD_FILE(d1,'test1.dmp','DMPDIR');
-- Specify the schema.
 DBMS_DATAPUMP.METADATA_FILTER(d1,'SCHEMA_EXPR','IN (''OE'')');
-- Start the export job.
 DBMS_DATAPUMP.START_JOB(d1);
-- Indicate that the job finished and detach from it.
 dbms_output.put_line('Job has completed');
 dbms_datapump.detach(d1);
END;
/

Listing 14-11 shows how to import the dump file you just created. The example uses the remap-
ping parameter to remap OE’s objects into the user HR’s schema.

Listing 14-11. Using the Data Pump API to Create a Data Pump Import Job

DECLARE
 d1 NUMBER; -- Data Pump job handle
BEGIN
-- Create a Data Pump job to do a "full" import.
 d1 := DBMS_DATAPUMP.OPEN('IMPORT','FULL',NULL,'TEST2');
-- Specify the dump file for the job
 DBMS_DATAPUMP.ADD_FILE(d1,'example1.dmp','DMPDIR');
-- The following will remap schema objects from oe to hr.
 DBMS_DATAPUMP.METADATA_REMAP(d1,'REMAP_SCHEMA','oe','hr');
-- Start the job.
 DBMS_DATAPUMP.START_JOB(h1);
-- Indicate that the job finished and gracefully detach from it.
 dbms_output.put_line('Job has completed');
 dbms_datapump.detach(h1);
END;
/

716 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

Transportable Tablespaces
Oracle’s transportable tablespaces feature offers you an easy way to move large amounts of data
between databases efficiently by simply moving datafiles from one database to the other. Instead of
re-creating the objects, transportable tablespaces enable you to move large objects effortlessly in a
fraction of the time it takes to re-create them manually in a database. Oracle strongly recommends
that you use the transportable tablespaces feature wherever applicable because of its superiority to
other methods of moving data between databases.

Transporting tablespaces involves copying all the datafiles belonging to the source database to
the target database and importing the data dictionary information about the tablespaces from the
source database to the target database. Thus, the Data Pump Export and Import utilities, described
in the preceding sections of this chapter, are essential players in the transportable tablespaces
feature. You can also transport the index tablespaces pertaining to the tables, which makes the entire
data transfer extremely fast. The whole operation will take only a little longer than the time it takes
for you to copy the datafiles belonging to the tablespace to the new location, by using FTP, remote
copy, or some other method such as a tape copy.

Uses for Transportable Tablespaces
You use transportable tablespaces mainly in the context of a data warehouse, but you can employ
them in any kind of database. The following are some of the important uses of the transportable
tablespaces feature:

• Moving data from a source database (usually OLTP) to a data warehouse

• Moving data from a staging database into a data warehouse

• Moving data from a data warehouse to a data mart

• Performing tablespace point-in-time recovery (PITR)

• Archiving historical data

Transporting a Tablespace
Transporting a tablespace between two databases involves the following main steps:

1. Select the tablespace to be transported (and make sure there are no dependencies with
objects in other tablespaces).

2. Generate the transportable tablespace set.

3. Perform the tablespace import. This involves copying datafiles to the target server and
importing related metadata into the target database.

Let’s go through each of these steps. Note that the tablespace you’re transporting must not
already exist in the target database.

Selecting the Tablespaces to Be Transported

The primary condition you must meet for transporting tablespaces is that the set of candidate
tablespaces must be self-contained. For example, if the tables in the tablespaces have any indexes,
they should be contained in one of the tablespaces in the set you’re transporting. Referential integ-
rity constraints for objects inside the tablespace being transported must not refer to objects outside
the tablespace.

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 717

You must meet a few other conditions when you’re importing tablespaces containing partitioned
tables (refer to the Oracle manual “Database Administrator’s Guide” for the complete set of condi-
tions). One way to verify that your set of tablespaces meets the self-contained criteria is by using the
DBMS_TTS package, as follows:

SQL> EXECUTE sys.dbms_tts.transport_set_check('sales01,sales02',true);
PL/SQL procedure successfully completed.
SQL>

You must have the EXECUTE_CATALOG_ROLE role to execute the TRANSPORT_SET_CHECK
procedure. The procedure TRANSPORT_SET_CHECK returns no errors, indicating that the two
tablespaces in your transportable tablespaces set, sales01 and sales02, are self-contained and therefore
eligible candidates for transporting. You can further confirm this by querying the transport_set_
violations table, which lists all the partially contained tables in a tablespace and any references
between objects belonging to different tablespaces.

SQL> SELECT * FROM sys.transport_set_violations
no rows selected
SQL>

■Note Instead of using the TRANSPORT_SET_CHECK procedure, you can simply use the TRANSPORT_FULL_
CHECK parameter during Data Pump export and import to specify that a certain tablespace set has no dependencies.
However, during the import, you must be using the NETWORK_LINK parameter in order to use the TRANSPORT_FULL_
CHECK parameter.

Generating the Transportable Tablespace Set

Before you can transport your tablespaces to the target database, you must generate a transportable
tablespace set. The transportable tablespace set consists of all the datafiles in the tablespaces plus
the export dump file, which contains the structural data dictionary information about the tablespaces.

The first thing you need to do before transporting a tablespace is to put the tablespaces in a
read-only mode. If there are active transactions modifying the tables, you can’t transport the tablespace.
If your objective is to export a very large table or a part of a very large table, then create a new tablespace
where you can put a new table that holds the data of interest. You can then transport this new
tablespace to a different database.

SQL> ALTER TABLESPACE sales01 READ ONLY;
Tablespace altered.
SQL> ALTER TABLESPACE sales02 READ ONLY;
Tablespace altered.
SQL>

■Note You can transport a tablespace without first putting it into a read-only mode, but doing so ensures that
there aren’t any active transactions in that tablespace while you are transporting it.

Once you’ve put both tablespaces that you want to transport in read-only mode, you have two
things left to do to generate your transportable tablespaces set. First, you must use the Data Pump
Export utility to generate the data dictionary metadata for the two tablespaces, sales01 and sales02.
Second, you must physically copy all the datafiles in the two tablespaces and the export dump file to

718 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

a directory that the target database can access. The next two sections show you how to perform
these steps.

Exporting the Dictionary Information (Metadata) for the Tablespaces

The first step in creating the transportable tablespaces set is to export the metadata that describes
the objects that are part of the tablespaces you want to export. Here’s the interesting part about the
transportable tables feature: no matter how large the tablespace is, this step is done very quickly
because all you’re exporting is the data dictionary information (metadata) about the objects, not
their row data. You also have the option of using the parameter TTS_FULL_CHECK=Y, in which case the
export utility will ensure that the tablespaces being exported are fully contained. However, you’ve
already ascertained this in the previous step, so you can leave out this parameter. Listing 14-12 shows
the export of the metadata for the pair of tablespaces.

Listing 14-12. Exporting the Dictionary Metadata for the Tablespaces

[finance] $ expdp oe/oe DIRECTORY=dpump_dir1 DUMPFILE=sales.dmp
 TRANSPORT_TABLESPACES=sales01,sales02 INCLUDE=triggers,constraint,grant

Import: Release 11.1.0.6.0 - Production on Tuesday, 25 March, 2008 12:23:07

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 –
Production
With the Partitioning, OLAP, Data Mining and Real Application Testing options
Starting "oe"."SYS_EXPORT_TRANSPORTABLE_01": oe/********
transport_tablespaces=sales01,sales02
include=triggers,constraint,grant directory=dpump_dir1 dumpfile=sales.dmp
Processing object type TRANSPORTABLE_EXPORT/TYPE/GRANT/OBJECT_GRANT
Master table "OE"."SYS_EXPORT_TRANSPORTABLE_01" successfully loaded/unloaded
**
Dump file set for OE.SYS_EXPORT_TRANSPORTABLE_01 is:
 /u01/app/oracle/dba/sales.dmp
Job "OE"."SYS_EXPORT_TRANSPORTABLE_01" successfully completed at 14:36
oracle@finance.netbsa.org [/u01/app/oracle]
[finance] $

■Tip Don’t specify the USERID parameter when you use the TRANSPORT_TABLESPACE parameter. When you
omit the USERID parameter, the Data Pump Export utility will prompt you for the username. Connect by using the
string connect SYS/password as SYSDBA to perform the TRANSPORT_TABLESPACE export.

Note that the export in this example didn’t export any rows of the tables in the pair of tablespaces
you are transporting. The export specifies only which tablespaces are going to be part of your trans-
portable tablespaces set. Only the metadata (table and index definitions) is exported to the export
dump file. The export dump file, sales.dmp, will be very small, because it contains just the table defi-
nitions, column descriptions, and so forth that will help identify the objects in the tablespace when
you export them to the target database.

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 719

Copying the Export File and the Tablespace Files to the Target

The next step in generating the transportable tablespaces set is the physical copying of the datafiles
contained in the tablespaces and the export dump file containing the metadata about the tablespaces to
the target location. Before you can start importing the export dump file to the target database, make
sure that the block size of the tablespace is the same as the standard block size of the target tablespace. If
it isn’t, the target database must have a nonstandard block size specified in its init.ora file of the
same size as the block size of the tablespace you want to export.

You must now copy the export dump file, sales.dmp, to the target database using FTP, remote
copy (or copy, if you’re using Windows), or some other means. You also copy all the datafiles that are
part of the two tablespaces sales01 and sales02 to the target location, so they’re accessible to the
target database for importing.

Performing the Tablespace Import

Next, run the Data Pump Import utility (in the target database), which will plug in the tablespaces
and incorporate information about them in the data dictionary of the target database. Because the
export dump file doesn’t have any data, all you’ll be importing is the metadata about the objects. The
target database will simply use the copied datafiles from the source database as the datafiles for the
transported tablespaces. All you’re doing is plugging the tablespaces into the target database.

Listing 14-13 shows the importing of the metadata into the target database from the dump file.

Listing 14-13. Performing the Transportable Tablespaces Import

C:\>impdp system/sammyy1 dumpfile=sales.dmp TRANSPORT_DATAFILES='sales01_01.dbf', \
'sales02_01.dbf' directory=dpump_dir1

Import: Release 11.1.0.6.0 - Production on Tuesday, 25 March, 2008 12:23:07

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 –
Production
Master table "SYSTEM"."SYS_IMPORT_TRANSPORTABLE_01" successfully loaded/unloaded
Starting "SYSTEM"."SYS_IMPORT_TRANSPORTABLE_01": system/********
dumpfile=sales.dmp TRANSPORT_DATAFILES='sales01_01.dbf',
'sales02_01.dbf' directory=dpump_dir1
Processing object type TRANSPORTABLE_EXPORT/TYPE/GRANT/OBJECT_GRANT
. . .
C:\>

As you can see, there are two parts to the import of the transportable tablespaces. First, the Data
Pump Import utility will extract the metadata of the transportable tablespaces from the export dump
file. After this, it will extract the various object (tables and indexes) definitions from the dump file
into the target database. No data rows are actually imported into the database at this time. The data
is already in the datafiles of the tablespaces, and you’ve already plugged those tablespaces into the
target database. The import log will show the tables that are being imported into the target database,
but unlike in a normal import process, you don’t see the number of rows being imported.

As you can see from the examples, the transportable tablespaces feature is very powerful, because it
will let you move entire tablespaces between databases by merely copying the datafiles and exporting the
data dictionary information from one database to another. Compared to any of the alternatives, this
is a much a faster and more efficient means of transferring very large objects.

720 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

■Tip You can transport a tablespace to a database with the same or higher compatibility setting. The two data-
bases could be on different platforms.

Transporting Tablespaces Across Platforms with
Different Endian Formats
The transportable tablespaces feature applies regardless of the platform of the source and target
databases; that is, you can transport tablespaces from a Windows platform, for example, to a UNIX
platform and vice versa. However, there is one requirement you must meet in order to perform
cross-platform transport of tablespaces: the endian format of the datafiles in the source and target
databases must be identical.

■Note Endian format refers to the byte ordering of file systems. Endian format could be one of two types: big or
little. If the endian formats of the source and target database are identical, everything you’ve seen up to now is all
you’ll need to do to transport the tablespaces. However, if the endian formats are different, you must convert the
endian format of the source datafiles, either before or after transporting the datafiles to the target server.

Determining the Endian Format of a Platform

You need to join the well-known V$DATABASE view with the new V$TRANSPORTABLE_PLATFORM
view to determine whether the source and target endian formats are identical. For example, the
following query reveals that the endian format of a Linux platform is little endian:

SQL> SELECT t.endian_format
 2 FROM v$transportable_platform t, v$database d
 4* WHERE t.platform_name = d.platform_name;

ENDIAN_FORMAT

Little
SQL>

Then run the same query on the other server (target or source) to see what the endian format is.
If the endian formats are the same in the source and target platforms, you can transport the tablespaces
using the standard method described in the previous section. However, if the endian formats on the
two platforms are different (one is little endian and the other is big endian), you need to perform a
conversion of the tablespaces either at the source or the target database. Here are the steps:

1. Ensure the tablespaces are self-contained.

2. Make the tablespaces read-only.

3. Export the metadata using Data Pump Export.

4. Convert the datafiles to match the endian format.

5. Copy the files to the target system.

6. Use the Data Pump Import utility to import the metadata.

Let’s look at what’s involved in each of these steps.

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 721

Ensuring Tablespaces Are Self-Contained and Making Them Read-Only

Ensure that the tables you want to transport are all placed in their own separate tablespaces. To ensure
that your tablespaces are self-contained, you need to use the TRANSPORT_SET_CHECK procedure
in the Oracle-supplied DBMS_TTS package. As of Oracle Database 10g Release 2, you can also use
the TRANSPORT_FULL_CHECK parameter while performing the export, to ensure that the tablespaces
don’t contain dependent objects. For example, setting the TRANSPORT_FULL_CHECK=Y specification
ensures that the tablespaces you are exporting won’t contain tables without their indexes or any
indexes without the parent tables.

Also, alter the tablespace to make it read-only. Once you complete the export of the metadata in
the next step, you can make the tablespace read/write again.

Exporting the Metadata Using Data Pump Export

Export the metadata describing the objects in the tablespace(s), by using the TRANSPORTABLE_TABLESPACES
parameter, as described earlier in this chapter.

Converting the Datafiles to Match the Endian Format

If your platforms are compatible, but the endian formats are different, you need to convert the data-
files. You may perform the conversion before transporting the tablespace set or after finishing the
transport. You can convert the datafiles before transporting the tablespaces, using the CONVERT
TABLESPACE command in the Recovery Manager (RMAN) utility, as shown in Listing 14-14.

Listing 14-14. Using the RMAN CONVERT TABLESPACE Command to Convert Datafiles

RMAN> CONVERT TABLESPACE finance_tbs01
 2> TO PLATFORM 'HP-UX (64-bit)'
 3> FORMAT '/temp/%U';

Starting backup at 09-MAY-08
using channel ORA_DISK_1
channel ORA_DISK_1: starting datafile conversion
input datafile fno=00011 name=C:\ORACLE\TEST02.DBF
converted datafile=C:\TEMP\DATA_D-FINANCE_I-2343065311_TS-TODAY_FNO-11_05FLAUM6
channel ORA_DISK_1: datafile conversion complete, elapsed time: 00:00:17
Finished backup at 09-MAY-08
RMAN> exit
Recovery Manager complete.

This example shows how you can use the FORMAT parameter to tell Oracle what format the newly
converted file should be and in which directory to put it. But as you can see, Oracle gives the file
a name. If you want to specify the name of the datafile yourself, perform the conversion using the
DB_FILE_NAME_CONVERT clause. Listing 14-15 shows the results of using the CONVERT TABLESPACE command
with the DB_FILE_NAME_CONVERT clause.

Listing 14-15. Converting Filenames with the DB_FILE_NAME_CONVERT Clause

RMAN> CONVERT TABLESPACE test
 2> TO PLATFORM 'HP-UX (64-bit)'
 3> DB_FILE_NAME_CONVERT = 'c:\oracle\test.dbf','c:\temp\test.dbf';

722 CH AP T E R 1 4 ■ U S IN G DA TA P U M P E X P O R T AN D I M P OR T

Starting backup at 10-MAY-08
using target database controlfile instead of recovery catalog
allocated channel: ORA_DISK_1
channel ORA_DISK_1: sid=151 devtype=DISK
channel ORA_DISK_1: starting datafile conversion
input datafile fno=00011 name=C:\ORACLE\TEST.DBF
converted datafile=C:\TEMP\TEST.DBF
channel ORA_DISK_1: datafile conversion complete, elapsed time: 00:00:16
Finished backup at 10-MAY-08
RMAN>

The DB_FILE_NAME_CONVERT clause performs the following functions for you:

• Takes a given filename and converts it to any filename you specify

• Places the converted file in the location you specify

Note that you use the DB_FILE_NAME_CONVERT command when you convert the files directly on
the source system, before transporting them.

Copying the Files to the Target System

At this point, you need to copy both the converted datafile that is part of the tablespace (finance_tbs01 in
this example) as well as the expdp dump file, which was named sales.dmp in the earlier transport-
able tablespaces example, over to the target server where your target database is running.

If you chose to transport the tablespaces (the datafiles that constitute the tablespaces) first instead,
you must convert the datafiles on the target platform at this point, before trying to perform the import of
the metadata in the tablespace. Here’s an example that shows how you can take a datafile that belongs to
the HP-UX operating system platform and convert it into a Windows platform:

RMAN> CONVERT DATAFILE 'c:\audit_d01_01.dbf'
 2> TO PLATFORM 'Microsoft Windows IA (32-bit)'
 3> FROM platform='HP-UX (64-bit)'
 4> FORMAT '\u01\oradata\finance\export';

As in the previous example, where you performed the file conversion on the source system, you
may use the DB_FILE_NAME_CONVERT clause when performing the datafile conversion on the target
system. Your datafile conversion statement would then have the following format:

CONVERT DATAFILE . . . FROM PLATFORM . . . DB_FILE_NAME_CONVERT . . .

Here’s an example that shows the use of the DB_FILE_NAME_CONVERT clause:

RMAN> CONVERT DATAFILE
 2> '/hq/finance/work/tru/tbs_31.f',
 3> '/hq/finance/work/tru/tbs_32.f',
 4> '/hq/finance/work/tru/tbs_41.f'
 5> TO PLATFORM="Solaris[tm] OE (32-bit)"
 6> FROM PLATFORM="HP TRu64 UNIX"
 7> DB_FILE_NAME_CONVERT=
 8> "/hq/finance/work/tru/", "/hq/finance/dbs/tru"
 9> PARALLELISM=5;

■Tip By default, Oracle places the converted files in the flash recovery area, without changing the datafile names.

C HA P TE R 1 4 ■ U S I N G D AT A PU M P E X P OR T A N D IM P O R T 723

Using Data Pump Import to Import the Metadata

Once you move the converted files over to the target system (or move the files over first and convert
them later), use the Data Pump Import utility as follows to import the metadata into the target database:

$ impdp system/password DUMPFILE=sales.dmp DIRECTORY=dpump_dir
 TRANSPORT_DATAFILES=/salesdb/sales_101.dbf, /salesdb/sales_201.dbf

As you can see, you just plug in the tablespaces and use the Data Pump Import utility to integrate the
datafiles and their metadata (found in the test.dmp file).

As you’ve seen in this chapter, the Data Pump Export and Import utilities are valuable assets to
a DBA and help you perform numerous tasks. The transportable tablespaces feature is of great help,
especially when you’re dealing with very large tables. Instead of performing a laborious and long
export and import job, all you need to do is copy data fields at the operating system level, and then
export and import the metadata.

Time and again, you’ll find yourself relying on the wonderful set of tools that are part of the Data
Pump technology. It isn’t an exaggeration to say that in many databases, the Data Pump utilities will
be among the most frequently used of all DBA tools.

725

■ ■ ■

C H A P T E R 1 5

Backing Up Databases

As an Oracle DBA, one of your fundamental tasks is to regularly back up databases. Backups involve
making copies of your database to re-create the database if necessary. They provide the basis of all
database recoveries—no backup, no recovery. One of the best things you can do to help yourself as
a DBA is to focus on a tried-and-tested strategy for backing up the database, because the more time
you spend planning backups, the less time you’ll spend recovering the database from a mishap.

You can perform database backups in two different ways: use Oracle’s Recovery Manager (RMAN)
interface or use operating system utilities. I give RMAN-based backups much more attention in this
chapter because of the many benefits they offer compared with operating system-based, user-created
backups.

Database administrators frequently use tape devices for Oracle backups, because of their conve-
nience and also because tape backups are easy to archive for safekeeping. If you want to use RMAN
with tape devices, you need to use a media management layer (MML). Oracle Corporation offers its
own media management tool, called Oracle Secure Backup, free with the Oracle server. In this chapter,
you’ll learn how to install, configure, and integrate Oracle Secure Backup with RMAN to perform
sophisticated backups.

You need to consistently check and verify backups to make sure they’re correct and usable
during a recovery. The latter part of this chapter is devoted to a review of database corruption and
the many ways to test for it. I’ll also briefly review Oracle Data Guard and the concept of standby
databases.

Let’s begin with an overview of Oracle database backups.

Backing Up Oracle Databases
Database backups are used to avoid the loss of data, so it’s essential to have a backup system in place.
Backups involve keeping copies of the key Oracle database files: datafiles, the control file, and the
archived redo log files.

Physical backups involve the copying of database files. You can perform physical backups in
two main ways:

• Use operating system utilities like cp and dd to back up files to perform user-managed backups.
You use a combination of operating system backup commands and SQL*Plus commands to
back up the database files.

• Use the Oracle-provided utility Recovery Manager to perform the backups. RMAN can be
used in the command-line mode, as well as through the OEM Database Control interface.

RMAN can do everything that user-managed backups can, and it provides several additional
capabilities. You also don’t need to keep track of the backed-up datafiles and archived redo log files
with RMAN, since RMAN itself manages all that information.

726 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

In this chapter, I introduce you to using RMAN through the command line so you understand
the concepts behind it. Once you gain proficiency in using the tool, feel free to use the Database
Control interface to manage RMAN-based backups. Although I’ll focus on using RMAN in this chapter,
I briefly discuss user-managed backups toward the end of the chapter.

Although disk storage prices keep dropping, tape storage is still the cheaper way to store large
amounts of data offsite. If you’re using RMAN, you need a third-party media manager to make a
backup to a tape device.

Before you start dealing with the mechanics of backups, you need to understand certain terms
associated with backups.

Important Backup Terms
A clear understanding of the types of backups and backup concepts is extremely important for a
successful recovery. Here, I’ll review some terminology related to Oracle database backups.

Archivelog and Noarchivelog Modes

Oracle writes all changes to the data blocks in memory to the online redo logs, usually before they
are written to the database files. During a recovery process, Oracle uses the changes recorded in the
redo log files to bring the database up-to-date. Oracle can manage the redo log files in two ways:

• Archivelog mode: In this mode, Oracle saves (archives) the filled redo logs. Thus, no matter
how old the database backup is, if you are running in archivelog mode, you can recover the
database to any point in time using the archived logs.

• Noarchivelog mode: In this mode, the filled redo logs are overwritten and not saved. The
noarchivelog mode thus implies that you can restore only the backup, and you’ll lose all the
changes made to the database after the backup was performed. The noarchivelog mode of
operation means that you can recover from a crash of only the database instance. If there is a
media failure (for example, a loss of a disk), a database in noarchivelog mode may be restored
from a backup, but it will lose all changes made to the database since the backup was made.

Production systems are usually run in archivelog mode, for the following reasons:

• You can recover completely from an instance failure as well as a media failure.

• You can completely recover all your data in the event of a damaged disk drive.

• You can maintain high availability because a database run in archivelog mode doesn’t need
to be shut down in order to be backed up. You can perform online backups in this mode, thus
keeping the database open for any length of time you wish.

• You can perform open backups—that is, backups while the database is running—only if the
database is operating in archivelog mode.

• You need to run your database in archivelog mode to carry out a tablespace point-in-time
recovery (PITR).

I can’t think of any organization that doesn’t care if it loses valuable business data, so just about
all production databases are run in archivelog mode. If you’re running in noarchivelog mode, the
implication is that the data can be restored from other sources, or it’s just a test or development data-
base and you don’t need to have up-to-the-minute recoverability. Although I do discuss backing up
noarchivelog mode databases in this chapter, I concentrate on backing up databases operating in
archivelog mode.

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 727

■Note If the database is being backed up very frequently (using incremental backups, for example), or you’re
using a snapshot technology based on a tool such as Hewlett-Packard’s Business Copy, you may be able to get
away with running in noarchivelog mode for certain types of databases.

Whole and Partial Database Backups

You can back up either an entire database or part of it, such as a tablespace or a datafile. Note that
you can’t back up a partial database if the database is running in noarchivelog mode, unless all the
tablespaces and files in the partial backup are read-only. You can make a whole database backup in
either archivelog or noarchivelog mode.

The most commonly performed backup is the whole database backup, and it consists of all the
datafiles and one other important file: the control file. Without the control file, Oracle will not open
the database, so you need the latest backup of the control file along with all the datafile backups for
recovery.

Consistent and Inconsistent Backups

The difference between consistent and inconsistent backups is simple. A consistent backup doesn’t
need to go through a recovery process. When a backup is used to recover a database or a part of a
database (such as a tablespace or a datafile), first you need to restore the backup, and then you recover
the database. In the case of a consistent backup, you don’t have to perform any recovery steps. An
inconsistent backup, on the other hand, always needs to undergo a recovery.

Oracle assigns every transaction a unique system change number (SCN). Each commit, for
example, will advance the SCN forward. Each time Oracle performs a checkpoint, all the changed
data in the online datafiles is written to disk. And each time there is a checkpoint, the thread check-
point in the control file is updated by Oracle. During this thread checkpoint, Oracle makes all the
read/write datafiles and the control files consistent to the same SCN. A consistent database means
that the SCNs stored in all the datafile headers are identical and are also the same as the datafile
header information held in the control files. The important thing is that the same SCN number must
appear in all the datafiles and the control file(s). The identical SCN means that the datafiles contain
data taken from the same point in time. Since the data is consistent, you don’t need to perform any
recovery steps after you restore (or copy back) a set of backup files.

To make a consistent backup, either the database needs to be closed (with a normal SHUTDOWN or
SHUTDOWN TRANSACTIONAL command, not a SHUTDOWN ABORT command) or it needs to be in a mount
position after being started (again, after a clean shutdown).

An inconsistent backup is a backup in which the files contain data from different points in time.
Most production systems can’t be shut down for a consistent backup. Instead, you need to operate
those databases on a 24/7 basis. You thus must back up the datafiles of these databases online; that
is, while the database is open for transactions. Since the datafiles are being modified by users while
you are backing them up, you end up with an inconsistent backup. Inconsistent backups don’t mean
there is anything wrong with your backups. However, during a recovery process, it isn’t sufficient to
merely restore these backups. In addition to restoring these backups, you must also supply all archived
and online redo logs from the time of the backup to the time to which you want to recover the data-
base. Oracle will read these log files and apply all necessary changes to the restored backup files.

Since you can make an inconsistent backup of a database while it’s open, most production data-
bases use inconsistent backups as the foundation of their backup strategy.

728 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

Open and Closed Backups

Online or open (or hot/warm) backups are backups you make while the database is open and acces-
sible to users. You can make an online backup of the entire database (or a tablespace or datafile) as
long as the database is being run in archivelog mode. You can’t make an online backup if the database
is running in noarchivelog mode.

A closed backup of a database, also called a cold backup, is made while the database is shut
down. A closed backup is always consistent, as long as the database wasn’t shut down with the
SHUTDOWN ABORT command.

■Note Remember that if the backup is open (online), or if it is closed (offline) but inconsistent, you may need to
use archived redo logs to make the database consistent.

The decision about whether you should make a closed backup or an open backup depends on
business requirements. Business requirements dictate the uptime levels, which are then encapsu-
lated in the service-level agreement (SLA). If your SLA requires that your database be up 24/7, you
must make online backups. On the other hand, if your organization allows you a backup window that
will enable you to bring the database down, you can schedule closed backups. The frequency of
closed backups and the number of redo logs produced by the database are both factors in the time it
takes to recover the database. If you are performing closed backups on a weekly basis, you may have up
to six days’ worth of archived logs to apply to the database backup during recovery (in the worst case).

Physical and Logical Backups

Technically speaking, you can divide Oracle backups into logical and physical backups. Logical
backups are backups made using the Data Pump Export utility, and they contain logical objects like
tables and procedures. These backups are in proprietary binary form, and their data can be
extracted only by using Oracle’s own Data Pump Import utility.

Physical backups refer to the backing up of the key Oracle database files: datafiles, archived redo
logs, and control files. Physical backups are made on disk or on tape drives.

This chapter discusses physical backups, which are the cornerstone of Oracle’s recovery strategy
when confronted with a major loss of data. Logical files are an adjunct, not an alternative, to physical
backups.

Backup Levels

Following are the levels at which you can perform Oracle database backups:

• Whole database: You back up all files including the control file. This level is applicable to both
archivelog and noarchivelog modes of operation.

• Tablespace backups: You back up all the datafiles belonging to a tablespace. Tablespace backups
are applicable only in archivelog mode.

• Datafile backups: You back up a single datafile. Datafile backups are valid in archivelog
mode only.

Backup Guidelines
Regardless of your SLA and your recovery requirements, some general guidelines regarding backup
processes will help you avoid a recovery in most cases. After all, the best strategy for recovery is to

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 729

avoid having to do one by having an ironclad backup and data protection system in place. The guide-
lines are as follows:

• Build redundancy into your systems by using RAID-based storage systems, which will let you
mask individual disk failures.

• Perform backups at frequent intervals to reduce your recovery time.

• Maintain offsite storage of your backups with a reliable vendor. The tapes that you store offsite
should be part of a regular recovery testing program.

• Run any database deemed to contain useful data for the organization in archivelog mode.
You would run a database in noarchivelog mode only when you don’t care about the up-to-
the-minute recoverability of the data.

• Multiplex the control files on separate disk drives managed by different disk controllers.
Multiplexing means that Oracle will automatically maintain more than one copy of a file. For
example, when you specify two copies of the Oracle control file, Oracle will write to both the
control files. Mirror the control files in addition to using the multiplexing offered by Oracle.

■Note Unlike in the case of the online redo log file, the Oracle instance will shut down if one of the multiplexed
control files can’t be written to due to a disk failure, or if the disk on which the control file is located runs out of
space.

• A loss of an active redo log file could be a single point of failure, which will result in the loss of
data. To avoid such an event, Oracle strongly recommends that you multiplex the redo log
file. When you multiplex the redo log file, even if one of the files is corrupted or lost, Oracle
will continue writing to its copy. A mirrored strategy may not be appropriate here, as both
copies might be corrupted at the same time, thus making the extra copy just as useless as the
original. Even when the database files are mirrored, it’s important to use Oracle multiplexing
for both archivelogs and control files.

• Take advantage of the archivelog multiplexing option and set the LOG_ARCHIVE_MIN_SUCCEED_
DEST parameter to at least 2 to ensure you have multiple sets of good archived logs.

• After every major structural change, back up the control file. The control file backup takes so
little space that you can schedule a job that will back up the control file every hour or so on a
busy production machine without affecting its performance.

• Always make more than one copy of the database when it’s being backed up to tape, because
the tapes can be defective and you may not be aware of it.

• Make at least two copies of the archived redo logs, and keep one on disk for a short recovery
time if there’s a media problem.

• Though the datafiles, log files, and control files are indeed the key files needed for recovery,
you should back up other Oracle database files on a routine basis and put them away safely.
These include the server parameter file (SPFILE) or the init.ora file, the sqlnet.ora file, the
tnsnames.ora file, and the password file. You can always reconfigure each of these files in case
you lose them, but this wastes a lot of critical time, and you could end up making mistakes in
the process. These auxiliary files take very little space to store, and you may sometimes need
these other files to restore and recover a damaged database.

• Keep the use of the UNRECOVERABLE and NOLOGGING options to a minimum, for obvious reasons.
If there’s a problem, you won’t have those objects in the redo logs, and you won’t be able to
recover them.

730 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

• Use the RMAN tool, which is provided free of cost from Oracle, to perform your backups and
recovery. RMAN maintains a log of all the backup and recovery actions performed, so it’s easy
to keep track of those operations.

• Keep older copies of backups for added protection. It’s not a good idea to overwrite your
tapes too soon to save a little money. If the current backups turn out to be unusable for some
reason (which is a real possibility), you end up losing all of your data. Always know how many
archived backups you have and where they are, and safeguard them.

• Your backup scripts should write to a log file or a log table, which should be examined for any
problems that might have occurred during the backups.

• Ensure that your applications are separated into independent tablespaces, so you needn’t
take more than one application offline if you have a major media problem.

• Consider using snapshot technology-based storage system backup techniques for fast
backups of large databases.

• Use the Data Pump Export utility (discussed in Chapter 14) to provide supplemental protection.

Testing Your Backups
Too often, the first encounter a DBA has with a defective backup strategy occurs during a frustrating
recovery session of a production database. You can attribute the vast majority of problems encoun-
tered during recovery to inadequate or even nonexistent planning and testing of the backup and
recovery strategy. The time to find out whether your database is recoverable is most definitely not
when you are trying to recover a production database in the dead of night. To avoid a catastrophic
recovery experience, every DBA should have established and tested backup and disaster recovery plans.

Always validate your backups and make sure that the backups are actually readable. Check for
corrupted blocks in the backed-up files, so recovery doesn’t become impossible due to bad files. The
RMAN utility and user-managed backups both offer ways to check for data block corruption. I discuss
these features in the “Database Corruption Detection” section later in this chapter.

You should also make periodic restoration tests mandatory for all key databases.

Maintaining a Redundancy Set
Always keep a redundancy set online so you can recover faster. A redundancy set is defined as the
following:

• Last backup of all datafiles

• Last backup of the control file

• Multiplexed copies of the current redo log files

• Copies of the current control file that’s being used

• All the archived redo logs since the last backup

You may also include the SPFILE or the init.ora, listener.ora, and tnsnames.ora files in your
redundancy set.

If you have such a redundancy set, you can recover from a media failure that results in any of the
possible losses: a datafile, control file, or online redo log. Make sure you save the redundancy set on
completely separate physical volumes and RAID systems than those on which the datafiles, online
redo log files, and control files are located. This separation of the redundancy set and the active data-
base files guarantees that you’ll never lose any uncommitted data due to media failure.

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 731

The ideal way to maintain a redundancy set is to use the flash recovery area, as described in the
section “The Flash Recovery Area” later in this chapter. This way, you can maintain the redundancy
set in one location on disk and automatically manage this space. Your recovery time will be reduced,
as all the necessary backups that are part of your redundancy set are maintained on the disk itself.

Backup Strategies
You can take it for granted that there will be some kind of storage media–related problems over time. You
need to have a strategy so you can be ready for this eventuality. Your backup strategy will depend
heavily on the type of SLA you have in place, the size of your databases, the amount of changes made
to your data, the disk space available, and other factors.

Service-Level Agreements

It is common for most IT departments today to draw up formal SLAs with their clients. SLAs are ways
to formalize expectations regarding the availability and performance of the database, as well as
other components such as the network. SLAs usually include factors such as the following:

• Maintenance windows

• Upgrade schedules

• Backup and recovery procedures

• Response times for certain key database operations

• Database and server downtime parameters

SLAs specify the uptime for the databases in clear terms. They also specify maintenance windows
and the planned recovery time under several identifiable downtimes (for example, downtime due to
a disk failure). The concept of uptime is pretty tricky—with a 99 percent uptime, you are still down
almost four entire days during the year. Whether your organization can handle this or would like a
99.999 percent uptime, which implies only five minutes of downtime, is something you need to nail
down in clear terms.

A typical SLA for database operations may look like the following (a partial agreement is
shown here):

Standard Processing Services. The Provider shall furnish and allow access to the processing envi-
ronments listed below:

a. Mid-tier processing.

(1) Applications to be processed:

Financial Information Systems (FIS) to include:

LIST OF FIS APPLICATIONS

Other Departmental Applications

(2) Hours of Availability.

Interactive: Monday-Friday* 07:00-17:00*

Saturday, Sunday and Holidays Not Applicable

*Application will be a web-based 24×7×365 system WITH the exception of the scheduled
maintenance periods (see below)

Batch: Not applicable

Maintenance: Monthly, Fourth Weekend of Every Month

732 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

(3) Standard Processing/Service Requirements.

All of the systems/applications listed in paragraph (1) above are required to be operational
98% of the total time listed in paragraph (2) above. The Information Systems Department
will provide a method for the Department of Finance to monitor operational percentages.

(4) Processing of data will be limited to the functionality/processing that was being conducted
at the time of handing over the operations to the Information Services Department.

b. . . .

■Note SLAs also specify the cause of possible service interruptions and the expectations regarding the resump-
tion of normal service. If the disruption of service is not due to a database failure, obviously other factors come into
play, such as the network and the servers. You should, however, list the potential reasons for a database failure and
the time it will take to recover from each of those failures. The total time taken for any recovery, of course, will
include the time taken to restore the lost or damaged files and the time to recover the database. Chapter 16 covers
the recovery process.

The type of backup and recovery strategy you want to adopt depends very much on the level of
uptime specified in your SLA. The uptime level reflects how quickly you must recover from a failure.
If the SLA states that you can take a whole day to restore and recover your database, then you may
not need to do a nightly online backup.

You can get by with a once-a-week cold backup (if you’re allowed the downtime for it). If your
SLA specifies a 99.999 percent uptime, you may want to invest in Oracle Real Application Clusters
(RAC), for example.

Usually, you’ll find that uptime and cost are directly proportional to each other. What happens
if you find out you can’t make your main production server function for a very long time? Maybe you
should have a standby database in place to take over for the main database in such a case.

Planning a Backup Strategy

There is no “one size fits all” type backup strategy that works for all organizations. Plan on using the
flash recovery area, described in the next section, as it will eliminate the need to restore from tape in
many cases, saving you valuable time. You also don’t need to manually remove the obsolete backup
files.

Planning an efficient backup strategy will mean two important things:

• You have all required backup files preferably on disk for a quick restoration and recovery.

• You minimize the space requirements by deleting obsolete backups and keeping only the
required backup files on hand.

If you expect few changes in data, you are better off using incremental backups, since they won’t
consume a lot of space. Incremental backups, as part of your backup strategy, will reduce the time
required to apply redo during recovery. However, if most of your database blocks change frequently,
your incremental backups will be quite large. In such a case, you are better off making a complete
image copy of the database at regular intervals.

Your frequency of backups and whether and how you should use incremental backups depends
on the acceptable mean time to recover (MTTR). For example, you can implement a three-level backup
scheme where you take a full or level 0 monthly backup, a weekly cumulative level 1 backup, and a
daily differential level 1 backup. (See the “Incremental Backups” section in the discussion of RMAN
commands later in this chapter for a description of these levels and cumulative and differential
backups.) Using this strategy, you most likely can completely recover your database without needing
to apply more than a day’s worth of redo logs.

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 733

You could use the incrementally updated backups feature to minimize the MTTR. If on a daily
basis, you run the script that appears in the “Incrementally Updated Backups” section later in this
chapter, in essence, you can perform any PITR within 24 hours.

A Suggested Backup Schedule for Databases with Few Changes

In this example, you size the flash recovery area so it holds three days’ worth of incremental backups. In
this and the next example, assume that the retention policy is REDUNDANCY 1; that is, you keep only
one set of backups on hand. Use the following commands to make your incremental backups. As
explained later in this chapter, the RECOVER COPY command will produce a level 0 whole database
backup. Use the following script to save archived logs and incremental backups created after SYSDATE-3:

RECOVER COPY OF DATABASE TAG "whole_db_copy" UNTIL TIME 'SYSDATE-3';
BACKUP INCREMENTAL LEVEL 1
 FOR RECOVER OF COPY WITH TAG "whole_db_copy" DATABASE;

Let’s say you start running the script on Sunday, July 20, 2008. You decide that you want to keep
only three days’ worth of backups in the flash recovery area, including datafiles and archived redo
logs. Any backups and archived redo logs older than three days are automatically deleted when the
flash recovery area needs additional space for new files. This is what you’ll have in the flash recovery
area after each of the following days:

• Sunday, July 20: Level 0 backup

• Monday, July 21: Level 0 backup from July 20, level 1 incremental backup from July 21, and
the archived logs from July 20 onward

• Tuesday, July 22: Level 0 backup, level 1 incremental backups from July 21 to July 22, archived
logs from July 20 onward

• Wednesday, July 23: Level 0 backup, level 1 backups from July 20 to July 23, archived logs from
July 20 onward

• Thursday, July 24: Level 0 backup rolled forward to July 21, level 1 backups from July 21 to July 24,
and archived logs from July 23 through July 24

• Every day from Friday, July 25, on: Level 0 backup rolled forward to level 1 backup and archived
logs from the day of the new level 0 backup until the current day

A Suggested Backup Schedule for Databases with Many Changes

If your database undergoes numerous changes, incremental backups won’t be very helpful. You are
better off with a full backup of your database at regular intervals. The following example shows how
to make a weekly full backup:

RMAN> BACKUP DATABASE TAG "weekly_full_bkup";

You schedule this backup command to run once a week on Sunday night. Let’s say you use the
backup command for the first time on Sunday, March 20. This is what the flash recovery area will
contain over time:

• Sunday, March 20: Full backup of the database

• Sunday, March 27: Full backup from March 27 and the archived logs from March 20 to March 27
(The full backup from the previous week; March 20 will be deleted, if space requirements
dictate it.)

• Sunday, April 3, and every Sunday thereafter: Full backup from that day and archived logs
from the previous Sunday to this Sunday

734 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

Now that you’ve had an overview of backing up an Oracle database and reviewed some basic
backup strategies, you’ll learn about the nuts and bolts of Oracle backups next, beginning with the
flash recovery area.

The Flash Recovery Area
Oracle Corporation recommends that you designate the flash recovery area as the default area for
storing every file related to backup and restore operations. One of the first steps in setting up your
backup/recovery strategy is to configure a flash recovery area.

Traditionally, Oracle DBAs had to manage the areas of backup storage, ensuring that there was
sufficient space to save their backup-related files. However, you should now allow the database to
take care of these chores by using Automatic Disk-Based Backup and Recovery. Using a disk-based
backup and recovery strategy minimizes the response time for a database recovery and increases
database availability.

■Note The flash recovery area isn’t mandatory, but it’s highly recommended. Some features of Oracle database
backup and recovery, such as Oracle Flashback Database, require the use of a flash recovery area. You don’t need
to store all your backup-related files here, although that’s what Oracle recommends.

To enable Automatic Disk-Based Backup and Recovery, you have to designate enough disk
space for the flash recovery area, set the maximum size for the area, and tell Oracle how long you
want to keep backup-related information. Oracle then manages the backup, including archivelog
files, control files, and other files (your redundancy set will be part of this set of files). Oracle also
deletes any files not needed by your database. Therefore, all you have to do is provide enough space
for the flash recovery area and select an appropriate length of time for keeping files.

To delete unwanted files automatically, the Oracle database relies on the Oracle Managed Files
(OMF) system. The OMF system automates Oracle database file management by creating and managing
the database files that are part of the operating system. To set up an OMF file system, set the following
OMF-related initialization parameters: DB_CREATE_FILE_DEST and DB_CREATE_ONLINE_LOG_DEST_n. OMF
has the ability to create and delete Oracle files without the DBA’s intervention. RMAN uses this OMF
capability in its backup- and recovery-related functions in conjunction with the flash recovery area.
If you want, you can use a flash recovery area with an ASM file system. Chapter 17 provides details
on OMF and ASM file systems.

■Tip You can share a flash recovery area among multiple databases.

Benefits of the Flash Recovery Area
Following are the key benefits of using the flash recovery area:

• It acts as a central storage area.

• It allows you to automatically manage recovery-related disk space.

• It allows you to carry out backup and restore operations more quickly.

• Backups have an increased reliability, because disks are safer storage devices than tapes.

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 735

Because you are no longer restoring tape backups, backup and restore operations are quicker.
Even the backups moved to tape from the flash recovery area are retained on disk as long as there is
room in the flash recovery area. Backup files that become obsolete per your recoverability goals will
be automatically deleted when space is needed for new files.

Ideally, the flash recovery area holds a full backup of every datafile, your incremental backups,
control file backups, and every archived redo log that is required for media recovery. In addition, you
can use the flash recovery area as a disk cache for tape.

If you configure a flash recovery area, RMAN will store all the backup-related files in it by default. In
this case, Oracle will use OMF files and generate the filenames.

The flash recovery area can contain the following:

• Datafile copies: The RMAN BACKUP AS COPY command creates image copies of every datafile.
The RMAN will in turn store these in the flash recovery area. You can also store RMAN backup
pieces in the flash recovery area. (An RMAN backup piece is an operating system file containing
the backup of a datafile, a control file, or archived redo log files.)

• Incremental backups: If your backup strategy includes any incremental backups, they can be
stored here.

• Control file auto-backups: The flash recovery area is the default area for all control file auto-
backups made by RMAN.

• Archived redo log files: Oracle automatically deletes every obsolete file and every file that has
been transferred to tape, so the flash recovery area is the ideal place to store archived redo log
files.

• Online redo log files: Oracle recommends that you save multiplexed copies of the online redo
log files in the flash recovery area. Oracle generates its own names for these files.

• Current control files: You should also store a multiplexed copy of your current control file in
the flash recovery area.

• Flashback logs: The Oracle Flashback Database feature, which provides a convenient alterna-
tive to traditional PITR, generates flashback logs. Oracle stores the flashback logs in the flash
recovery area. The Flashback Database feature (discussed in Chapter 16), if enabled, copies
images of each altered block in every datafile into the flashback logs in the flash recovery area.

The multiplexed redo log files and control files contained in the flash recovery area are called
permanent files, since you should never delete them (if you did, your instance will eventually crash
as a result). The other files in the flash recovery area (recovery-related files) are transient files, because
they’ll be deleted after they are obsolete or have been copied to tape. The transient files include
archived redo logs, datafile copies, control file copies, control file auto-backups, and backup pieces.

■Note At the very least, you should keep those archived logs that are not saved to tape in the flash recovery area.

The background process archiver (ARCn) will automatically create a copy of every archived redo
log file in the flash recovery area, if you have specified the flash recovery area as the place to save
archivelogs. If you configure a flash recovery area, you won’t be able to use the older LOG_ARCHIVE_DEST
and LOG_ARCHIVE_DUPLEX_DEST parameters; you must use the LOG_ARCHIVE_DEST_n parameter instead.
The LOG_ARCHIVE_DEST_10 parameter is implicitly set to the flash recovery area, where the database will
save archived redo log files. If you don’t set any other local archiving destinations, LOG_ARCHIVE_DEST_10
is, by default, set to USE_DB_RECOVERY_FILE_DEST. This means that the archived redo log files will be
automatically sent to the flash recovery area. In addition, if you’ve configured other archivelog locations
with LOG_ARCHIVE_DEST_n, copies of archived redo logs will also be placed in those other locations.

736 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

For example, if you configured a flash recovery area and turned on archiving for a database
without setting an explicit archivelog location, and then issued the ARCHIVE LOG LIST command, you
would see something like this:

SQL> ARCHIVE LOG LIST
Database log mode Archive Mode
Automatic archival Enabled
Archive destination USE_DB_RECOVERY_FILE_DEST
Oldest online log sequence 825
Next log sequence to archive 827
Current log sequence 827
SQL>

The USE_DB_RECOVERY_FILE_DEST setting points to the flash recovery area for the database. This
is because you configured a flash recovery area and didn’t specify a LOG_ARCHIVE_DEST_n destination.
Therefore, the LOG_ARCHIVE_DEST_10 destination is implicitly set to the flash recovery area. (You can
override this behavior by explicitly setting LOG_ARCHIVE_DEST_10 to an empty string.)

Setting the Size of the Flash Recovery Area
Oracle recommends that your flash recovery area should be the same size as the sum of the size of
the database, any incremental backups, and every archived redo log. Your flash recovery area must
be large enough to accommodate the following:

• A copy of all datafiles

• Incremental backups

• Online redo logs

• Archived redo logs that haven’t been backed up to tape

• Control files

• Control file auto-backups

You should save both a multiplexed online redo log file and a current control file, in addition to
all the other recovery-related files. Since Oracle recommends that you keep at least two copies of the
online redo logs and the control file, you can use the flash recovery area to save a pair of redo log and
control files.

The size of your database is the main factor when setting the size of the flash recovery area.
Other factors that affect the size of the flash recovery area are

• The RMAN backup retention policy

• The type of storage device for backups (tape and disk or a disk device alone)

• The number of data block changes in your database

Ways to Create a Flash Recovery Area
There are a number of ways you can create a flash recovery area:

• Configure the flash recovery area at database-creation time using the Database Configuration
Assistant (DBCA).

• Configure two flash recovery area–related dynamic initialization parameters. You can create
a flash recovery area with these two parameters while the database is running.

• Use the OEM Database Control to configure a flash recovery area.

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 737

Configuring a Flash Recovery Area

You use two initialization parameters to configure a flash recovery area:

• DB_RECOVERY_FILE_DEST_SIZE: This parameter sets the maximum size of the flash recovery area.

• DB_RECOVERY_FILE_DEST: This parameter points to the location on disk of the flash recovery
area. You must locate the flash recovery area on a disk separate from the database area, where
you store the active database files such as datafiles, control files, and online redo logs.

You have to specify DB_RECOVERY_FILE_DEST_SIZE before you can specify DB_RECOVERY_FILE_DEST.
Here’s how you would specify the two flash recovery area initialization parameters in your

init.ora file:

DB_RECOVERY_FILE_DEST_SIZE = 10G
DB_RECOVERY_FILE_DEST = '/u01/oradata/rcv_area'

Note that the database doesn’t allocate the amount of disk space set in DB_RECOVERY_FILE_DEST_
SIZE to the flash recovery area immediately. Oracle will use this space only as the maximum limit on
the flash recovery area size. Until new files necessitate the use of more space, the space is controlled
by the operating system, although Oracle has assigned it to the flash recovery area.

Dynamically Defining the Flash Recovery Area

Even if you don’t specify a flash recovery area in the init.ora file or the SPFILE, you can use the ALTER
SYSTEM statement to configure it while the instance is running. You can create and modify the flash
recovery area dynamically using DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE as
follows:

SQL> ALTER SYSTEM SET
 2* DB_RECOVERY_FILE_DEST_SIZE = 2G;
System altered.
SQL> ALTER SYSTEM SET
 2 DB_RECOVERY_FILE_DEST = '/u01/app/oracle/flashrec_area';
System altered.
SQL>

As noted earlier, you must set the DB_RECOVERY_FILE_DEST_SIZE parameter first, before you set
DB_RECOVERY_FILE_DEST. Ensure that you have created the flash recovery area directory before you
use DB_RECOVERY_FILE_DEST. The SCOPE=BOTH clause makes sure that the changes you made are
written permanently to the SPFILE. Use the ALTER SYSTEM command to make any changes to the flash
recovery area after you create it.

■Note The DB_RECOVERY_FILE_DEST location is really a synonym for the flash recovery area.

Disabling the Current Flash Recovery Area

If you want to disable the current flash recovery area, set DB_RECOVERY_FILE_DEST to blank (''). This
unsets the destination for the flash recovery area files. You can check the V$RECOVERY_FILE_DEST
view to see the current location of the flash recovery area.

RMAN will still access the flash recovery area to carry out backup and recovery tasks, even if you
have disabled flash recovery. However, RMAN can’t access the automatic space management
features of flash recovery.

738 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

Examining the Default File Location

The flash recovery area requires that you use OMF, which means you can’t use the LOG_ARCHIVE_DEST
and LOG_ARCHIVE_DUPLEX_DEST parameters to specify redo log archive destinations (if you use these,
you can’t enable the flash recovery area). Instead, you must use the newer LOG_ARCHIVE_DEST_n
parameters.

With OMF, Oracle designates the default location for the datafiles, control files, and redo log
files based on the values of DB_CREATE_FILE_DEST and DB_CREATE_ONLINE_LOG_DEST_n. You use these
two initialization parameters, along with DB_RECOVERY_FILE_DEST, which specifies the location of the
flash recovery area.

■Note The location specified with DB_RECOVERY_FILE_DEST should not be the same as DB_CREATE_FILE_
DEST or any setting in DB_CREATE_ONLINE_LOG_DEST_n.

Control Files

Setting the CONTROL_FILES parameter before you start the instance and create a new database means
that Oracle creates the control files in the locations that you specify. If you don’t set the CONTROL_
FILES parameter during instance creation, Oracle creates the control files in default locations, following
a set of rules:

• Specifying DB_CREATE_ONLINE_LOG_DEST_n gets Oracle to create an OMF-based control file in n
number of locations. The first directory will hold the primary control file.

• If you specify the DB_CREATE_FILE_DEST and DB_RECOVERY_FILE_DEST parameters, Oracle will
create an OMF-based control file in both of these locations.

• If you just specify DB_RECOVERY_FILE_DEST, Oracle creates an OMF-based control file only in
the flash recovery area.

• If you omit all the initialization parameters, Oracle creates a non-OMF-based control file in
the system-specific default location.

Redo Log Files

As I noted earlier, you can’t use the LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST parameters to
specify redo log archive destinations. If you don’t specify the LOGFILE clause when you create a data-
base, Oracle creates the redo log files based on the following rules:

• If you specify the DB_CREATE_ONLINE_LOG_DEST_n parameter, Oracle creates an online redo log
member in n number of locations. The maximum number is equal to the MAXLOGMEMBERS limit.

• If you specify the DB_CREATE_FILE_DEST and DB_RECOVERY_FILE_DEST parameters, Oracle creates
an online redo log member in these locations.

• If you just specify the DB_RECOVERY_FILE_DEST parameter, Oracle will create an online redo log
member in the flash recovery area only. Oracle will also implicitly set LOG_ARCHIVE_DEST_10 to
the flash recovery area.

• If you omit all three initialization parameters, Oracle will create a non-OMF online redo log
file in the system-specific default location.

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 739

Setting Up Flash Recovery Parameters

Let’s review the procedure for configuring the flash recovery area and look at an example of how to
set up the flash recovery parameters in your initialization file. This example assumes you are using
OMF (see Chapter 17). OMF files are automatically named and managed by the Oracle database
itself. You just provide a directory for the files, and Oracle will take care of the rest.

When you use OMF files, you use two parameters to tell Oracle where to create your datafiles,
online redo log files, and control files. You use the DB_CREATE_FILE_DEST parameter to specify the location
for all database files. You use the DB_CREATE_ONLINE_LOG_DEST_n parameter to specify the location of
all online redo log and control files. If you don’t specify the second parameter, Oracle will create all
three types of files in the directory you specified for the DB_CREATE_FILE_DEST parameter.

For example, here is a set of initialization parameters you might use to create a test database:

DB_CREATE_FILE_DEST = /u02/test/oradata/dbfiles/
LOG_ARCHIVE_DEST_1 = 'LOCATION=/u03/test/arc_dest1'
LOG_ARCHIVE_DEST_2 = 'LOCATION=USE_DB_RECOVERY_FILE_DEST'
DB_RECOVERY_FILE_DEST = '/u03/test/oradata/rcv_area'
DB_RECOVERY_FILE_DEST_SIZE = 10G

This set of initialization parameters will create the following:

• OMF-based datafiles, online redo log files, and control files in the directory specified by the
DB_CREATE_FILE_DEST parameter

• One copy of the current control file in the flash recovery area, since you are using both the
DB_CREATE_FILE_DEST and DB_RECOVERY_FILE_DEST parameters

• One copy of the online redo log files in the flash recovery area, since you are using both the
DB_CREATE_FILE_DEST and DB_RECOVERY_FILE_DEST parameters

• One copy of the archived redo logs in a file system location, indicated by LOG_ARCHIVE_DEST_
1 = 'LOCATION=/u03/test/arc_dest1'

• One copy of the archived redo log files in the flash recovery area, indicated by LOG_ARCHIVE_
DEST_2 = 'LOCATION=USE_DB_RECOVERY_FILE_DEST'

If you make sure your flash recovery area is physically separated from the other files, you will
have ensured the creation of a safe redundancy set by following the example outlined here. By default,
RMAN will send all backups of datafiles and control files to the flash recovery area. In addition, you
have specified that copies of the online redo log files and control file also should be sent there. You
thus have a complete redundancy set.

Backing Up the Flash Recovery Area
You can back up the flash recovery area with RMAN backup commands. You can only back up the
flash recovery area to a tape device using these backup commands.

The RMAN command BACKUP RECOVERY AREA allows you to back up every flash recovery file in
either the current flash recovery area or the previous flash recovery area. This will only back up those
files that haven’t been backed up to tape before.

The RMAN command BACKUP RECOVERY FILES allows you to back up every file that the BACKUP
RECOVERY AREA command does, but includes files from all areas on the file system.

■Tip You can use the RMAN command BACKUP RECOVERY FILES to move disk backups to tape.

740 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

Working with the Flash Recovery Area
You need to ensure that the flash recovery area is large enough for your needs.

When you add a new file to the flash recovery area, Oracle does an update on the list of backup
files it considers eligible for deletion. This list contains files that you’ve backed up to tape or that have
become obsolete according to the local retention rules. Here’s a summary of Oracle’s automatic file
deletion policy for the flash recovery area:

• Permanent files (multiplexed redo log files and control files) are never deleted.

• Files that are obsolete under the configured retention policy are eligible for deletion.

• Transient files (files other than the redo log and control files) that have been copied to tape
are also eligible for deletion.

Even though a file might become eligible for deletion, Oracle removes it only when the flash
recovery area is full. Thus, files recently moved to tape might still be available on disk, if there is no
space pressure in the flash recovery area.

The V$RECOVERY_FILE_DEST view is the best place to find information on managing the flash
recovery area. You can use this view to check the current location, disk quota, space in use, space
reclaimable by deleting files, and total number of files in the flash recovery area:

SQL> SELECT * FROM V$RECOVERY_FILE_DEST;

 NAME SPACE_LIMIT SPACE_USED SPACE_RECLAIMABLE NUMBER_OF_FILES
 ---------- ------------ --------- ----------------- ----------------
u01/app/oracle 2147483648 1545718272 0 100
SQL>

In the V$RECOVERY_FILE_DEST view, the SPACE_LIMIT column contains the allocated flash
recovery area space. The SPACE_RECLAIMABLE column contains the value that shows how much
space you can reclaim by garbage collecting obsolete and redundant files in the flash recovery area.

You can use the V$FLASH_RECOVERY_AREA_USAGE view to check the space being used by
different types of files, and how much space for each type of file you can reclaim by deleting files that
are obsolete, redundant, or already backed up to tape.

SQL> SELECT * FROM V$FLASH_RECOVERY_AREA_USAGE;

FILE_TYPE PERCENT_SPACE_USED PERCENT_SPACE_RECLAIMABLE NUMBER_OF_FILES
------------ ------------------ ------------------------- ------------
CONTROLFILE 0 0 0
ONLINELOG 0 0 0
ARCHIVELOG 43.57 0 96
BACKUPPIECE 28.41 0 4
IMAGECOPY 0 0 0
FLASHBACKLOG 0 0 0

Additionally, Oracle has added the IS_RECOVERY_DEST_FILE column to the V$LOGFILE,
V$CONTROLFILE, V$ARCHIVED_LOG, V$DATAFILE_COPY, and V$BACKUP_PIECE views. A value
of YES means the file is in the flash recovery area; NO means that it is not.

If the flash recovery area runs out of space and it can’t remove any files to compensate, you will
see one of the following: a warning alert at 85 percent full or a critical alert at 97 percent full. If this
happens, Oracle adds entries to the alert log file and the DBA_OUTSTANDING_ALERTS view.
However, Oracle continues placing recovery-related files in the flash recovery area, until it fills
100 percent of the space; at that point, it issues an error that tells you that the flash recovery area
is full.

When the flash recovery area fills up, the database issues the following error:

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 741

ORA-19815: WARNING: db_recovery_file_dest_size of 2147483648 bytes is 100.00% used,
and has 0 remaining bytes available.

The following are two other errors you’ll most likely see when you run out of space in the flash
recovery area:

• ORA-19809 means that the limit set by the DB_RECOVERY_FILE_DEST_SIZE parameter is exceeded.

• ORA-19804 indicates that Oracle is unable to reclaim a specified amount of bytes from the
limit set by DB_RECOVERY_FILE_DEST_SIZE.

■Note The ORA-00257 error message is “Archiver error. Connect internal only, until freed.” This means that your
archivelog directory is full and users can’t connect to the database anymore. Existing users can continue to query
the database, but no DML can be executed because Oracle can’t archive the logs. If you quickly move some of the
files in the archivelog directory to a different location, the database is free to continue its normal operations. If you
have a script monitoring the free space on your archivelog directory, you shouldn’t have this problem.

If any of this ever happens, you can do the following:

• Think about changing your policies that cover backup and archivelog retention.

• Increase the size of DB_RECOVERY_FILE_DEST_SIZE.

• Back up the contents of the flash recovery area to a tape device with the RMAN BACKUP RECOVERY
AREA command.

• Delete unnecessary backup files with RMAN. You can issue the DELETE OBSOLETE command to
delete the backup files.

If you want to move the flash recovery area, use the DB_RECOVERY_FILE_DEST initialization parameter:

SQL> ALTER SYSTEM SET DB_RECOVERY_FILE_DEST='/u01/app/oracle/new_area';

Oracle creates the flash recovery area files in the new flash recovery area. You can, if you want,
leave the permanent files, flashback logs, and transient files where they are. Eventually, as they become
eligible for deletion, Oracle will remove all the transient files. However, you can move the permanent
files, transient files, and flashback logs with the standard operating system file commands.

Recovery Manager
The traditional user-managed backup method consists simply of using the operating system commands
to copy the relevant files to a different location and/or to a tape device. With RMAN, you back up the
database files from within the database with the help of the database server itself. RMAN can make
backups of datafiles and datafile image copies, control files and control file image copies, archived
redo logs, the SPFILE, and RMAN backup pieces. Oracle recommends using the RMAN interface to
back up your databases.

■Note Most “old-school” Oracle DBAs will be familiar with operating system commands, but newer DBAs may
want to focus on RMAN, which offers ease of use, safety, and features that the traditional methods don’t have. You
can use all the RMAN backup and recovery functionality through the OEM interface (Database Control or Grid Control),
without needing to remember complex commands.

742 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

RMAN simplifies the backup procedures by enabling the use of powerful yet easy-to-write backup
and recovery scripts. RMAN also offers features such as corruption detection within the data blocks and
the ability to back up only the changed blocks in the database. You can save RMAN’s scripts in the
database and use them right from there, so you don’t need to write operating system-based scripts.
RMAN automatically ensures the backup of all the database files, which eliminates the human-error
component that is present in operating system-based backups.

Despite its sophistication, RMAN has some limitations. You can’t, for example, read from or
write directly to a tape device using RMAN; you need to use what’s known as a media management
layer to make tape backups.

■Note RMAN can create and manage backups on disk and on tape devices, also referred to as system backup
to tape (SBT) devices, move backups on disk to tape, and restore backups from tape. However, RMAN interacts with
SBT devices through an MML, or media manager. Oracle provides its own MML, in the form of Oracle Secure Backup.

Benefits of RMAN
RMAN provides an array of benefits compared to user-managed backup methods, including the
following:

• You can perform incremental backups using RMAN. The size of the backups doesn’t depend
on database size; rather, it depends on the activity level within the database, because unchanged
blocks are skipped during incremental backups. You can’t perform incremental backups any
other way. You can perform incremental exports, but that isn’t considered a real backup for
all databases.

• You can repair a datafile with a few corrupt data blocks online, without needing to resort to
restoring a file from backup. This is called block media recovery.

■Tip Even if you use user-managed backups, you can perform block media recovery by cataloging your datafile
and archiving redo log backups into the RMAN repository.

• Human error is minimized because RMAN, not the individual DBA, keeps track of all the file-
names and locations. Once you understand the use of the RMAN utility, it’s easy for you to
take over the backup and recovery of databases from another DBA.

• A simple command, such as BACKUP DATABASE, can back up an entire database, without the
need for complex scripts.

• The unused block compression feature of RMAN lets you skip copying never-used data blocks
in a datafile during a backup, thus saving storage space and backup time.

• It’s easy to automate the backup and recovery process through RMAN. RMAN can also auto-
matically parallelize your backup and recovery sessions.

• RMAN can perform error checking during backups and recovery, thus ensuring that the
backed-up files aren’t corrupt. RMAN has the capability to recover any corrupted data blocks
without taking the datafile offline.

• During online backups, no redo is generated, unlike when online backups are performed
using the operating system utilities. Thus, the overhead is low for online backups.

• The binary compression feature reduces the size of backups saved on disk.

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 743

• If you use the recovery catalog, you can store backup and recovery scripts directly in it.

• RMAN can perform simulated backups and restores.

• RMAN enables you to make image copies, which are similar to operating system-based
backups of files.

• RMAN can be easily integrated with powerful third-party media management products to
make tape backups effortless.

• RMAN is integrated well with the OEM backup functionality, so you can schedule backup jobs
easily for a large number of databases through a common management framework.

• You can easily clone databases and maintain standby databases using the RMAN
functionality.

As the preceding list clearly shows, it’s no contest when it comes to the question of whether you
should be using operating system-based backup and recovery techniques (user-managed backup
and recovery) or RMAN. Therefore, you’ll see quite a bit of discussion about RMAN in this chapter
and the next, which deals with recovering databases. Oracle maintains that both RMAN and tradi-
tional user-managed backup and recovery methods are equally valid and effective, but recommends
the use of RMAN.

RMAN Architecture
RMAN operates via server sessions connecting to the target databases, which are the databases you
want to back up or recover. The collection of information about the target database—such as its
schema information, backup copy information, configuration settings, and backup and recovery
scripts—is called the RMAN repository. RMAN uses this metadata about the target databases to
perform its backup and recovery activities. RMAN periodically retrieves metadata from the target
database control file and saves it in the recovery catalog.

Following is a list of the entities that enable RMAN to perform its backup and recovery
functions:

• Target database: This is the database that the RMAN needs to back up. RMAN server sessions
running in the target database perform the backup and recovery operations.

• RMAN repository: This is RMAN’s metadata about backups, archived redo logs, and its own
activities. The control file of each database is the primary storage for RMAN’s repository.

• Recovery catalog schema: This is the database schema in the recovery catalog database that
owns the RMAN backup and recovery metadata (the RMAN repository).

• RMAN client: You manage RMAN operations through RMAN client sessions. The RMAN client
is a command-line interface through which you issue commands to perform backup and
recovery operations by communicating with the RMAN server process. You can issue special
RMAN commands, as well as SQL statements from the RMAN client. The client starts the RMAN
server sessions on the target database and directs them to perform the backup and recovery
operations. The RMAN client uses Oracle Net to connect to a target database, so it can be
located on any host that is connected to the target host through Oracle Net.

• RMAN executable: This is the actual program that manages all backup and recovery opera-
tions. You can find the RMAN executable (also known simply as rman) in the $ORACLE_HOME/bin
directory. You specify the backup or recovery operation, and the RMAN executable performs
it for you by interacting with the target database. It records the results in the control file and
the optional recovery catalog.

744 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

• Server processes: These are the background processes that facilitate communication between
the RMAN executable and the target database. The server process performs the real work of
reading and writing to disk devices and tape drives during backup and recovery.

■Note Three entities are optional when you use RMAN: the flash recovery area, the recovery catalog database
(and the recovery catalog schema), and media management software.

The RMAN Repository and Recovery Catalog

You have a choice of two locations for storing the RMAN repository: you can let RMAN store it in the
target database control file, or you can configure and use the optional recovery catalog to manage
the metadata. The RMAN repository contains information about the following items:

• Datafile backup sets and copies

• Archived redo log copies and backup sets

• Tablespaces and datafile information

• Stored scripts and RMAN configuration settings

By default, RMAN stores all metadata in the control file. All RMAN information is first written in
the control file, and then to the recovery catalog if one exists. For instance, when RMAN creates a
new backup set, you can view the information in the V$BACKUP_SET view. You can also view the
same information in the recovery catalog view, RC_BACKUP_SET. Thus, for every change to the
RMAN repository, information is recorded in two places: the control file and the optional recovery
catalog. The recovery catalog versions of the RMAN repository are stored in database tables. The
control file version of the repository is stored as records within the control file.

If you wish, you can manage the RMAN with just the information in the control file. The objec-
tions you’ll hear regarding using the recovery catalog are that it’s too complex to maintain and that
it needs another database to manage it. However, there are some RMAN commands you can use only
when you use the recovery catalog. You can also use RMAN-stored scripts only if you use the recovery
catalog. If you use the control file, you run the risk of some of the historical data being overwritten,
but the recovery catalog will safeguard all such data. This is because the control file allocates a finite
space for backup-related activities, while the recovery catalog has more room for storing backup
history. One recovery catalog in your system can perform backup, restore, and recovery activities for
dozens of Oracle databases. Thus, you can centralize and automate backup and recovery operations
by using the recovery catalog. Oracle recommends that you use a dedicated database for running the
recovery catalog, but it isn’t absolutely necessary.

■Note You’re strongly advised to use the recovery catalog so you can take advantage of the full range of features
provided by RMAN. The discussion of RMAN’s features in this chapter and the next assumes the existence of the
recovery catalog.

The Media Management Layer

You can make backups directly to your operating system disks using RMAN. If you want to make
backups to tape, you’ll need additional software called an MML or a media manager. RMAN can
move backups on disk to tape and restore the tape backups if necessary. Oracle Database 11g contains
a proprietary media management product, called Oracle Secure Backup, which I discuss in the
“Oracle Secure Backup” section later in this chapter.

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 745

Connecting to RMAN
You can connect to RMAN by simply typing rman at the operating system prompt. (Make sure you’ve set
the path variables correctly; in some operating systems, such as SUSE Linux, you may get the operating
system’s utility, named rman, instead of Oracle’s RMAN utility.) This will get you the RMAN> prompt, at
which point you can type in the various commands. You can also use the RMAN commands in batch
mode or through pipes by using Oracle’s DBMS_PIPE package.

You don’t need to be a SYSDBA privilege holder to just connect to the RMAN catalog; you can
do so with the special rman account and password. As you’ll see later in the “Creating the Recovery
Catalog” section, the user rman is the owner of the catalog. You can connect to RMAN through database
password authentication. You can also connect to the database using operating system authentication.
The following sections describe each of these methods.

Connecting to RMAN Using Database Authentication

You can log into the RMAN utility using your database credentials. You issue backup/recovery
commands after connecting to the target database. To finish your RMAN session, use the
exit command. Here is an example of connecting to the database named orcl, which is the
target database:

$ rman

Recovery Manager: Release 11.1.0.6.0 - Production on Thu Mar 27 11:09:16 2008
Copyright (c) 1982, 2007, Oracle. All rights reserved.
RMAN> CONNECT TARGET /
connected to target database: ORCL (DBID=1080111806)
RMAN> exit
Recovery Manager complete.
$

USING A MEDIA MANAGEMENT LAYER WITH RMAN

It’s not uncommon for Oracle databases to be hundreds of gigabytes in size. Backing up large, mission-critical data-
bases poses challenges to the DBA in terms of the complexity of the techniques and the longer durations of the backups.
In recent years, several advances in technology have contributed to easing the DBA’s burden in this area. Today’s
leading solutions do provide an array of choices, in terms of both strategy and third-party tools, to make the backup
process extremely efficient and safe.

Manually tracking backup files and backup operations also starts hitting the point of diminishing returns after a
while. Even if you use RMAN, a large number of databases make it imperative to work with a third-party tool to
manage the backup schedules and to automate the media devices. Oracle maintains the Oracle Backup Solutions
Program (BSP), which is a team of vendors whose media management products are designed to work with RMAN.
Some of the important players in the field are Legato Systems (NetWorker) and VERITAS (NetBackup). For a complete
list of BSP media management software vendors, visit http://otn.oracle.com/deploy/availability/htdocs/
bsp.htm#MMV.

NetWorker, for example, provides an automated way of performing backups that includes monitoring all the backups
in addition to scheduling them. NetWorker also has the capability to perform parallel backups to multiple tape systems
simultaneously, thereby cutting down on the time needed for backups of extremely large databases. Dedicated
storage servers and autochanger-based tape drives are used by Legato, as well as other similar private-party offerings.
NetWorker accepts data through RMAN, saves it on tape, and provides archiving and indexing services for the tapes.
Products such as NetWorker provide much better I/O performance than the traditional operating system utilities.

746 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

Another interesting third-party product is Business Copy XP, offered by Hewlett Packard in support of its HP line of
UNIX machines. Business Copy XP is an array-based mirroring strategy that enables you to make copies online in a
fraction of the time it normally takes. You can even run background processes on the copied data without adversely
affecting production. This reduction in the time taken for backups enables more frequent backups.

In the past, Oracle depended exclusively on third-party products for RMAN media management to access sequential
media devices like tape libraries. In fact, Oracle even bundled a single-user version of the Legato NetWorker, called
the Legato Single Server Version (LSSV), with the Oracle database. However, in Oracle Database 10g Release 2,
Oracle introduced its own proprietary media management solution named Oracle Secure Backup.

The following way of specifying the credentials at the operating system level is equivalent to the
preceding commands:

$ rman target system/system__passwd

Recovery Manager: Release 11.1.0.6.0 - Production on Thu Mar 27 11:38:16 2008
Copyright (c) 1982, 2007, Oracle. All rights reserved.connected to
 target database: ORCL (DBID=1080111806)
RMAN>

Connecting to RMAN Using Operating System Authentication

You can also log in to RMAN using operating system authentication, without using a database user
account and password. Here’s how you do this:

$ rman target /

Recovery Manager: Release 11.1.0.6.0 - Production on Thu Mar 27 11:09:16 2008
Copyright (c) 1982, 2007, Oracle. All rights reserved.
connected to target database: ORCL (DBID=1080111806)
RMAN>

Connecting to the Recovery Catalog

The preceding login examples connect directly to the target database without a recovery catalog.
Once you configure the optional recovery catalog, you have the option of connecting to the recovery
catalog first and performing all your backup/recovery actions through it. This is the option Oracle
strongly recommends because of the benefits of using the recovery catalog. In the following, the
recovery catalog is in the database nick and the target database is orcl:

$ rman target orcl catalog rman/rman@nick

Recovery Manager: Release 11.1.0.6.0 - Production on Thu Mar 27 11:09:16 2008
Copyright (c) 1982, 2007, Oracle. All rights reserved.target database Password:
connected to target database: ORCL (DBID=1065483535)
connected to recovery catalog database
RMAN>

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 747

Redirecting Output to a Log File

By default, RMAN outputs everything to the screen, but you can have it redirect the output to a log
file by specifying the parameter LOG when starting RMAN. For example:

$ rman LOG /u01/app/oracle/rman.log

When you specify the LOG parameter, RMAN doesn’t display any output to you. To make RMAN
log its output as well as send it to standard output, use the Linux or UNIX tee command, as shown
here:

$ rman | tee /u01/app/oracle/rman.log

The tee command makes RMAN output visible to you, while sending it simultaneously to a log file.

Scripting with RMAN
As you’ll see in upcoming sections of this chapter, you can use simple manual RMAN commands,
such as BACKUP DATABASE and LIST OBSOLETE. However, manual commands aren’t the only or the best way
to give directives to RMAN. RMAN comes with a powerful scripting language that lets you encapsulate
common backup tasks easily. You can store RMAN scripts either in the recovery catalog or as text
files. You can create scripts designed for a single database or global scripts that can be used in several
databases.

RMAN offers two sorts of scripts: stored scripts (kept in the RMAN recovery catalog) and text
scripts (kept in regular text files). Stored scripts have the advantage that any user who logs into RMAN
can access them easily. You can use stored scripts as alternatives to command files for any set of
RMAN commands that you regularly execute. Unlike command files, which are stored on the file
system, stored scripts are stored in the recovery catalog.

When you need to use a large number of configuration parameters for a particular backup, it’s
much easier to use a script. RMAN scripts thus perform the same function as regular scripts in UNIX
or SQL: they make it easier to store and rerun long sets of commands.

Using Command Files

You can create operating system command files for regularly scheduled RMAN backup jobs. Inside
a command file, you can use the @filename syntax to specify a command file that you want RMAN to
execute. For example, you can create a command file named testfile1 with the following RMAN
command:

BACKUP DATABASE PLUS ARCHIVELOG;

You can then run the command file testfile1 from the operating system command line as follows:

$ rman target / @testfile1

Note that you can also specify the @filename syntax at the RMAN prompt to execute a command
file, as shown here:

RMAN> @testfile1

You can also specify the USING clause at the command-line prompt to specify values for use in
substitution variables in a command file, thus making a command file dynamic. I provide a simple
example that shows how to create and execute a dynamic shell script. The script calls a command file
that contains the substitution variables.

748 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

1. Create a command file (monthly_backup.cmd) that uses substitution variables, as shown here:

#monthly_backup.cmd
CONNECT TARGET /
RUN
{
 ALLOCATE CHANNEL c1
 DEVICE TYPE sbt
 PARMS 'ENV=(OB_MEDIA_FAMILY=&1)';
 BACKUP DATABASE
 TAG &2
 FORMAT '/u02/app/oracle/bck/&1%U.bck'
 RESTORE POINT &3;
}
EXIT;

The command file monthly_backup.cmd uses three substitution variables to name the tape set, to
provide the FORMAT string specification, and to name the restore point.

2. Next, create a shell script you’ll use to run the monthly_backup.cmd file. The shell script
mybackup.sh contains three shell variables, and you can pass the values for those variables
at the command line when you execute the script.

#!/bin/tcsh
name: mybackup.sh
usage: use the tag name and number of copies as arguments
set media_family = $argv[1]
set format = $argv[2]set restore_point = $argv[3]
rman @'/u01/app/oracle/scripts/monthly_backup.cmd' USING $media_family $format ➥

 $restore_point

Now you have a shell script (mybackup.sh) that you can execute by passing arguments at the
command line to specify values for our three substitution variables.

3. Execute the mybackup.sh shell script, as shown here:

% mybackup.sh archival_backup bck0906 FY06Q3

Each time you run the mybackup.sh script, you can specify different values for the three substi-
tution variables, right at the command line.

Creating and Running Stored Scripts

All stored scripts in RMAN are created with the CREATE SCRIPT command, followed by the actual
script contents enclosed within a pair of curly brackets, { }. You can use any commands within the
brackets of a CREATE SCRIPT command that you can use in a RUN block. The RMAN scripts do look a
bit cryptic at first, but they are highly effective and actually easy to write.

Here’s a simplified nightly backup script that performs a full database backup. Note that by
using the keyword SQL, you can include regular SQL commands within your RMAN backup script.

RMAN> CREATE SCRIPT nightly_backup {
2> ALLOCATE CHANNEL c1 TYPE DISK;
3> BACKUP DATABASE FORMAT '/u01/app/oracle/%u';
4> SQL 'ALTER DATABASE BACKUP CONTROLFILE TO TRACE';
5> }
created script nightly_backup
RMAN>

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 749

You execute a script with the RUN command and the EXECUTE SCRIPT command. So, now that you
have created the script nightly_backup, all you need to do to run the full backup is to execute the
script as follows:

RMAN> RUN {EXECUTE SCRIPT nightly_backup;}
executing script: nightly_backup
allocated channel: c1
channel c1: sid=19 devtype=DISK
. . .
RMAN>

RMAN scripting enables you to perform complex tasks in a few short lines. The following script
uses two tape devices to perform a full database backup. The script allocates the two channels
(connections to the server), completes the backup in a specified format, and releases the channels.

RMAN> RUN {
2> ALLOCATE CHANNEL c1 TYPE 'sbt_tape';
3> ALLOCATE CHANNEL c2 TYPE 'sbt_tape';
4> BACKUP
5> FORMAT 'full d%d_u%u'
6> FILESPERSET 10
7> DATABASE;
8> RELEASE CHANNEL c1;
9> RELEASE CHANNEL c2;
10> }

If you wish, you can incorporate RMAN commands in an operating system file, called a command
file. Here is an example that shows how you can use an operating system file to execute RMAN
commands and store the results in a log file (output.txt):

$ rman TARGET/CATALOG rman/cat@catdb CMDFILE commandfile.rcv LOG outfile.txt

Checking the Syntax of RMAN Scripts

You can use the CHECKSYNTAX parameter to check the syntax of a script (or any RMAN command) you
plan to use with RMAN. Here’s an example that shows a script contained in the script file testfile
that has the correct syntax:

$ rman CHECKSYNTAX @/tmp/testfile
Recovery Manager: Release 11.1.0.6.0 - Production on Thu Mar 27 11:09:16 2008
Copyright (c) 1982, 2007, Oracle. All rights reserved.

RMAN> # command file with correct syntax
2> restore database;
3> recover database;
4>
The cmdfile has no syntax errors
 Recovery Manager complete.
$

Creating Global RMAN Scripts

The scripts you’ve seen so far are local scripts, since you can use them only in the database in which
you create them. You can also create and execute an RMAN global script against a database registered in
the recovery catalog, providing your RMAN client is connected to the recovery catalog and the target

750 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

database simultaneously. You can get databases to share RMAN scripts if they connect to the data-
base with the RMAN catalog. The following statement shows the syntax for creating a global script:

RMAN> CREATE GLOBAL SCRIPT global_full_backup
 {
 BACKUP DATABASE PLUS ARCHIVELOG;
 DELETE OBSOLETE;
 }
created global script global_full_backup
RMAN>

You execute a global script in the same way as a local script:

RMAN> RUN {EXECUTE GLOBAL SCRIPT global_full_backup};}

Printing a Script

The following PRINT SCRIPT command prints out the contents of the global script example:

RMAN> PRINT GLOBAL SCRIPT global_full_backup;
printing stored global script: global_full_backup
 {backup database plus archivelog ;
 delete obsolete;
 }
RMAN>

Listing Script Names

The LlST . . . SCRIPT NAMES command lets you view the names of all the scripts you stored in a
recovery catalog. Here’s an example:

RMAN> LIST SCRIPT NAMES;

The LIST . . . SCRIPT NAMES command shows all local and global scripts that you can execute
for the database you are currently connected to. To view the script names for all the databases registered
in the recovery catalog, execute the LIST ALL SCRIPT NAMES command instead.

Deleting Stored Scripts

Use the DELETE SCRIPT command to delete a stored script from the recovery catalog, as shown here:

RMAN> DELETE SCRIPT 'my-script';

If the script is global, use the DELETE GLOBAL SCRIPT command instead.

Creating Dynamic Stored Scripts

You can create a dynamic stored script by specifying substitution variables while creating a script
with the CREATE SCRIPT command. The USING clause lets you specify values for the substitution variables
in a command file. Follow these steps to create and use a dynamic stored script:

1. Create a command file that you can use to create a stored script. In our example, the command
file is named myscript.rman, and it contains the CREATE SCRIPT command to create the new
stored script. Use substitution variables for values that you want to assign dynamically.

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 751

RMAN> CREATE SCRIPT quarterly {
 ALLOCATE CHANNEL c1
 DEVICE TYPE sbt
 PARMS 'ENV=(OB_MEDIA_FAMILY=&1)';
 BACKUP
 TAG &2
 FORMAT '/disk2/bck/&1%U.bck'
 KEEP FOREVER
 RESTORE POINT &3
 DATABASE;
 }

The QUARTERLY script (created using the command file myscript.rman) uses three substitution
variables: OB_MEDIA_FAMILY to specify the name of the tape set, FORMAT to specify the format string,
and RESTORE_POINT to specify the name of the restore point.

2. Connect to the target database and the recovery catalog, specifying initial values for the
three substitution variables in the QUARTERLY script. Place the values after the keyword USING,
as in the following example:

$ rman target / catalog rman@catdb USING arc_backup bck0908 FY08Q3

Note that at this point, you’re merely logged in to RMAN: specifying the USING clause during the
RMAN login enables you to pass values for the three substitution variables in the script. You’ll create
the script in the next step.

3. Once you log in to RMAN, execute the command file myscript.rman to create the stored
script QUARTERLY.

RMAN> @catscript.rman

RMAN now has a new stored script named QUARTERLY, which can accept different values for its
three substitution variables.

Now that you have created the dynamic stored script, you can execute it every quarter by passing the
correct values for the three substitution variables. For example, I can assign the following values to
the substitution variables: arch_bkp for the media family, bkp1208 as part of the FORMAT string, and
FY0804 as the name of the restore point. Here’s how to invoke the stored script with those parameter
values:

RUN
{
 EXECUTE SCRIPT quarterly
 USING arch_bkp
 bkp1208
 FY08Q4;
}

As the example shows, it’s very easy to pass different runtime values for the variables inside the
dynamic stored script.

Converting RMAN Scripts

You can change scripts from the text format to a stored script and vice versa. Here’s how an RMAN
command can send the contents of a stored script to a text file:

RMAN> PRINT script nightly_backup to file 'test.txt';
script nightly_backup written to file test.txt
RMAN>

752 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

Replacing a Stored Script

You can issue the REPLACE SCRIPT command to update a stored script. Here’s an example:

RMAN> REPLACE SCRIPT full_backup
 {
 BACKUP DATABASE;
 }

If the script full_backup doesn’t exist, RMAN creates the script. To replace a global script,
execute the REPLACE GLOBAL SCRIPT command.

Important RMAN Terms
RMAN uses some special terminology. To use RMAN effectively, you need a good understanding of
the terms discussed in the following sections.

Backup Piece

A backup piece is an operating system file containing the backup of a datafile, a control file, or archived
redo log files. This backup information is stored in an RMAN-specific format.

Backup Set

A backup set is a logical structure that consists of one or more RMAN backup pieces (the default is
one backup piece per backup set). You can create a backup set on disk or tape. If you back up a data-
base, datafile, tablespace, or archivelog, RMAN groups the complete set of relevant backup pieces
into one backup set. When you issue the backup command, RMAN creates the backup set to hold
the output. Remember that a backup set is a file or set of files in a proprietary format that only RMAN
can understand. Thus, only RMAN is able to use the backup sets to recover the database.

By default, RMAN creates a backup set when you use a backup command, whether you are
copying to disk or tape (through a media manager).

Image Copy

Image copies are similar to the copies you can make of operating system files with the cp command
in UNIX or the copy command in DOS. You can make image copies of datafiles, control files, and
archived redo log files. RMAN image copies can be made only to disk; they can’t be made to tape.

RMAN can also use copies that you make using non-RMAN operating system utilities. These
types of copies are called user-managed copies or operating system copies. Really, there’s no differ-
ence between RMAN image copies and normal copies made with the cp command, for example,
except that image copies made through the RMAN tool have information about them written to the
control file or the recovery catalog. If you use an operating system command such as dd to produce
image copies, you can then use the RMAN CATALOG command to record these copies in the RMAN
repository. Thus, you can use a manually copied datafile during a recovery, if you first use the CATALOG
command to register the file with RMAN. You can then use these user-made copies of datafiles in
RMAN operations through the RESTORE and SWITCH commands.

You use the RMAN command BACKUP AS COPY to make image copies. You may also direct RMAN
to always produce image copies rather than backup sets (thus changing the default behavior of making
backup sets) by performing the following configuration change:

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 753

RMAN> CONFIGURE DEVICE TYPE DISK BACKUP TYPE TO COPY;
new RMAN configuration parameters:
CONFIGURE DEVICE TYPE DISK BACKUP TYPE TO COPY PARALLELISM 1;
new RMAN configuration parameters are successfully stored
released channel: ORA_DISK_1
starting full resync of recovery catalog
full resync complete
RMAN>

You can use the image copies produced by the RMAN BACKUP AS COPY command just like any
other file copies made with operating system utilities.

Proxy Copy

RMAN can also perform a special kind of backup called the proxy copy, where the media manager is
given control of the copying process. Proxy copies can’t be used with disks. Here’s an example of
how you specify a proxy copy:

RMAN> BACKUP DEVICE TYPE sbt PROXY DATAFILE 2;

Channel

An RMAN session must use some kind of a connection to the server to perform backup and recovery
work, and channels represent those connections. Channels specify the specific device, disk, or tape
that will be used for the backup or recovery. You can either have preconfigured channels (somewhat
like default channels) or specify the channel manually.

You can use automatic channel allocation to configure channels persistently across sessions. In
the following examples, the default device is set to an SBT in the first case and to disk in the second
case:

RMAN> CONFIGURE DEFAULT DEVICE TYPE TO sbt; /* tape device */
RMAN> CONFIGURE DEFAULT DEVICE TYPE TO disk; /* OS file system */

These devices are made part of the RMAN configuration, and until they are changed again through
the use of the CONFIGURE command, they remain the default device types for all RMAN sessions.

You can manually set the channel type by using the ALLOCATE CHANNEL command. The following
command sets the device to sbt, which indicates a sequential tape device. Note that the example
uses a RUN block for allocating the channel. A RUN block is used in RMAN when you need to set up the
environment for the statements within the block:

RMAN> RUN
 {ALLOCATE CHANNEL a1 DEVICE TYPE sbt;
 backup database;
 }
RMAN>

Specifying Backup Tags and Backup Formats
RMAN lets you use a tag for every backup so you can easily identify the backup. Thus, when you
perform a restore or recovery operation, you can specify the tag to identify the backups to use. Tags
are very useful in identifying various backups, especially those created using incremental backup
strategies. Here’s a simple example, showing how you can tag a full database backup:

RMAN> BACKUP TAG 'weekly_full_db_bkup' DATABASE;

754 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

You can use the FORMAT option with backup commands to specify a location and name for
backup pieces and copies. You use substitution variables to generate unique filenames. Here’s an
example that shows how you can specify a file format, as well as the location, using the FORMAT option:

RMAN> BACKUP FORMAT='AL_%d/%t/%s/%p' ARCHIVELOG LIKE '%arc_dest%';

Making Copies of RMAN Backups
You cannot produce multiple copies of an RMAN image copy while performing the backup itself.
However, you can make multiple copies of backup sets within a BACKUP command. You may send
each backup copy to a different disk or tape location. You can produce up to four copies of each
backup piece in a backup set within a single BACKUP command. You can specify multiple copies in
one of the following ways:

• Use the CONFIGURE . . . BACKUP COPIES option.

• Use SET BACKUP COPIES in a RUN block.

• Use the COPIES option in the BACKUP command.

The following example demonstrates how to make copies of a backup to multiple disks:

RMAN> BACKUP DEVICE TYPE DISK
 COPIES 2 DATAFILE 1
 FORMAT '/disk1/df1_%U', '/disk2/df1_%U';

If you already have a previously made backup on a disk and wish to make a copy of it to another
disk, use the BACKUP AS BACKUPSET command in the following way:

RMAN> BACKUP DEVICE TYPE DISK AS BACKUPSET DATABASE PLUS ARCHIVELOG;

If you would rather copy the previously made backup sets on disk to tape, use the following
version of the BACKUP BACKUPSET command:

RMAN> BACKUP DEVICE TYPE sbt BACKUPSET ALL

After making image copies of a datafile, tablespace, or database, you can back up the image
copies of the backups, as either image copies or backups sets. Here are some examples:

• Create an image copy of a database:

RMAN> BACKUP AS COPY DATABASE;

• Copy the previous image copy of the database:

RMAN> BACKUP AS COPY COPY OF DATABASE;

• Make an image copy of a single tablespace:

RMAN> BACKUP AS COPY TABLESPACE SYSAUX;

• Create a backup set from the tablespace image copy:

RMAN> BACKUP AS BACKUPSET COPY OF TABLESPACE SYSAUX;

• Copy a datafile:

RMAN> BACKUP AS COPY DATAFILE 2;

• Copy the datafile copy:

RMAN> BACKUP AS COPY COPY OF DATAFILE 2;

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 755

RMAN Backup Locations
Let’s say you configured DISK as the default device, using the CONFIGURE DEFAULT DEVICE TYPE command.
The actual location on disk where RMAN will create its backup files is determined in the following
manner:

• As described earlier in the chapter, you can specify a backup location and name using the
FORMAT parameter, in which case, this location will override any location you specified for the
flash recovery area. Here’s an example:

RMAN> BACKUP DATABASE FORMAT '/tmp/%U'; /* %U generates a unique filename */

• If you don’t specify the FORMAT parameter in the backup command, RMAN uses the flash
recovery area as the default location for storing the backups, as is the case in the following
example:

RMAN> BACKUP DATABASE;

• If you have not configured a flash recovery area and also don’t specify the FORMAT parameter
during the backup, RMAN will store the backups in an operating system-specific directory on
disk.

RMAN Commands
You need to be familiar with a limited set of commands to use the RMAN utility for performing
backups. You’ll encounter the specific commands pertaining to restoring and recovering databases
in Chapter 16. The following sections describe the RMAN commands related to backups, grouped
into the following types:

• Backup commands

• Job commands

• Copy commands

• Reporting commands

• Listing commands

• Validating commands

Backup Commands

The most important backup command is obviously the BACKUP command. As noted earlier, you can
either specify a channel manually at backup time or let RMAN allocate a default channel.

The BACKUP command allows you to back up the entire database, a tablespace, single datafile
(current or a copy), control file (current or a copy), SPFILE, archived redo log, and other backup sets.
Here are some examples showing how to use the BACKUP command:

RMAN> BACKUP DATABASE;
RMAN> BACKUP TABLESPACE users;
RMAN> BACKUP DATAFILE '/u01/app/oracle/oradata/finance/users01.dbf';

The use of the simple BACKUP DATABASE command is the same as using the BACKUP AS BACKUPSET
DATABASE command. When you use the preceding commands, RMAN generates one or more backup
sets, which are RMAN-specific logical backup units.

756 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

Image Copy Backups

When you use the BACKUP AS COPY version of the command, RMAN generates image copies of the files
you want to back up. In order to make corresponding image copy backups for the previous examples,
use the following commands:

RMAN> BACKUP AS COPY DATABASE;
RMAN> BACKUP AS COPY TABLESPACE USERS;
RMAN> BACKUP AS COPY DATAFILE '/u01/app/oracle/oradata/finance/users01.dbf';

■Note By default, RMAN creates all backups as backup sets, on tape or on disk.

None of the previous examples used names for the backups created by RMAN. In all such cases,
RMAN assigns a default tag to the backups it creates. As explained earlier, you can use the TAG param-
eter to specify a backup tag. Here’s an example, showing how to attach the tag weekly_backup to an
RMAN backup:

RMAN> BACKUP DATABASE TAG = 'weekly_backup';

Logical Checking of RMAN Backups

You can use the keyword LOGICAL during a backup to let RMAN perform a logical check of the backup
files. Here is an example that checks for logical corruption in the copy of a database copy (duptest),
which is made from the copy of a database (test):

RMAN> BACKUP AS COPY COPY OF DATABASE FROM TAG 'TEST' CHECK LOGICAL TAG 'DUPTEST';

Incremental Backups

All the BACKUP commands in the preceding sections are full backup commands. You can also perform
incremental backups using RMAN, and in fact, this is one of the big advantages of using RMAN. Incre-
mental backups are much faster than backing up the entire database. Incremental backups will back
up only those data blocks that changed since a previous backup.

Incremental backups can be either level 0 or level 1. A level 0 incremental backup copies all data
blocks just like a full backup, and acts as the base for subsequent incremental backups. To perform
a level 1 incremental backup, you must first have a base level 0 backup.

RMAN provides two types of incremental backups:

• Differential backup: Backs up all blocks changed after the most recent incremental backup at
level 1 or 0.

• Cumulative backup: Backs up all blocks changed after the most recent incremental backup at
level 0.

The following command gets a level 0 backup to start with:

RMAN> BACKUP INCREMENTAL LEVEL 0 DATABASE;

Once you have the level 0 backup, you perform a level 1 differential incremental backup:

RMAN> BACKUP INCREMENTAL LEVEL 1 DATABASE;

A cumulative incremental backup at level n will perform a backup of all changed blocks since
the last backup at level n–1 or lower. So, if you perform the cumulative incremental backup at level 2,

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 757

it will back up all data blocks changed since level 0 or level 1. Although you can perform a level 2
incremental backup, according to Oracle, only level 0 and level 1 are permitted.

The size of your incremental backup file will depend on the number of changed blocks and the
incremental level. Cumulative backups will, in general, be larger than differential backups, since
they duplicate the data copied by backups at the same level. However, cumulative backups have the
advantage that they reduce recovery time, because you apply only one backup. Thus, Oracle recom-
mends using cumulative backups, if space isn’t a problem on your server.

Here’s an example that shows how you can use a combination of incremental backups to come
up with your backup strategy:

• On Sunday, perform an incremental level 0 backup.

• On Monday through Saturday, perform differential incremental level 1 backups.

• Repeat the cycle next week.

In this strategy, if you need to recover data on Thursday evening, you apply the incremental
backups from Monday, Tuesday, and Wednesday to Sunday’s level 0 backup.

Consider an alternative strategy using cumulative backups:

• On Sunday, perform an incremental level 0 backup.

• On Monday through Saturday, perform cumulative incremental level 1 backups.

• Repeat the cycle next week.

Note that in this case, the daily cumulative level 1 backup backs up all blocks changed since the
Sunday backup. Thus, if you need to recover your database on Thursday, you need to apply only one
cumulative backup from the night before to Sunday’s incremental level 0 backup.

Job Commands

You can’t use the ALLOCATE CHANNEL and SWITCH commands as stand-alone commands. You must use
them with the RUN command, as follows:

RMAN> RUN
 {ALLOCATE CHANNEL c1 DEVICE TYPE sbt
 PARMS='ENV=(NSR_GROUP=default)';
 BACKUP DATAFILE 1;
 }
allocated channel: c1
channel c1: sid=11 devtype=SBT_TAPE
channel c1: MMS Version 2.2.0.1

The SWITCH command is similar to the ALTER DATABASE RENAME DATAFILE command. It lets you
replace a datafile with file copy made by RMAN.

Datafile Copies

The RMAN BACKUP AS COPY command makes a plain copy of a datafile (you can also use the old
COPY command to do this, but Oracle deprecated the COPY command in Oracle Database 10g). These
image copies are identical to the copies made by using operating system utilities. Here’s an example:

RMAN> BACKUP AS COPY DATAFILE 1;
Starting backup at 05-JUN-08
using channel ORA_DISK_1
channel ORA_DISK_1: starting datafile copy
input datafile fno=00001 name=C:\ORALE\PRODUCT\11.1.0\ORADATA\NEWS\SYSTEM01.DBF

758 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

output filename=C:\ORALE\PRODUCT\11.1.0\FLASH_RECOVERY_AREA\NEWS\DATAFILE\O1_MF_
SYSTEM_0Q2XPZ1Y_.DBF tag=TAG20041016T143037 recid=2 stamp=539706790
channel ORA_DISK_1: datafile copy complete, elapsed time: 00:02:35
channel ORA_DISK_1: starting datafile copy
copying current controlfile
output filename=C:\ORALE\PRODUCT\11.1.0\FLASH_RECOVERY_AREA\NEWS\CONTROLFILE\O1_
MF_TAG20041016T143037_0Q2XVT4T_.CTL tag=TAG20041016T143037 recid=3 stamp=5397067
96
channel ORA_DISK_1: datafile copy complete, elapsed time: 00:00:07
Finished backup at 05-JUN-08
RMAN>

The following example illustrates the use of the older COPY command:

RMAN> COPY DATAFILE 1 TO 'c:\download\test.copy';
Starting backup at 05-JUN-08
using channel ORA_DISK_1
channel ORA_DISK_1: starting datafile copy
input datafile fno=00001 name=C:\ORALE\PRODUCT\11.1.0\ORADATA\ORCL\SYSTEM01.DBF
output filename=C:\DOWNLOAD\TEST.COPY tag=TAG20041009T124719 recid=2 stamp=53909
channel ORA_DISK_1: datafile copy complete, elapsed time: 00:01:35
Finished backup at 05-JUN-08
RMAN>

Backup Deletion

You use the DELETE command to remove physical backups made by RMAN. The DELETE command
deletes physical backups, updates control file records to indicate that the backups are deleted, and
also removes their records from the recovery catalog (if you use one). You can delete backup sets,
archived redo logs, and datafile copies.

■Caution Always use RMAN’S DELETE command, rather than an operating system deletion command, to remove
RMAN backups. Otherwise, the RMAN repository will contain records of backups that are no longer available.

The following example deletes all archived redo logs that RMAN has backed up at least twice to tape:

RMAN> DELETE ARCHIVELOG ALL BACKED UP 2 TIMES TO DEVICE TYPE sbt;

The DELETE OBSOLETE command will remove all backups you no longer need. You can run DELETE
OBSOLETE periodically to delete all backups that are obsolete. A backup is obsolete if it’s no longer
needed for database recovery, according to your retention policy. The DELETE EXPIRED command
removes the recovery catalog records for expired backups and marks them as DELETED. This command is
handy when you think you might have deleted RMAN backups or archived logs from disk with an
operating system utility. You can first run the CROSSCHECK command so RMAN can mark the backups
it can’t find as expired. An expired backup means that the backup file can’t be found by RMAN. You
can then use the DELETE EXPIRED command to remove the records for these files from the control file
and the recovery catalog.

Reporting Commands

RMAN provides useful reporting commands that enable you to check your backup and recovery
processes. You can query RMAN to see which files need backup and which files are obsolete and,
therefore, removable.

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 759

Schema, Obsolete, Need Backup, and Unrecoverable Reports

The REPORT SCHEMA command lists all datafiles that are part of the target database.
The REPORT OBSOLETE command displays all the backups rendered obsolete based on the reten-

tion policy you choose:

RMAN> REPORT OBSOLETE;
RMAN retention policy will be applied to the command
RMAN retention policy is set to recovery window of 14 days
no obsolete backups found
RMAN>

If there are obsolete backups in the repository, you can delete them with the DELETE OBSOLETE
command.

If you use the flash recovery area to store your backups, RMAN automatically deletes obsolete
backups when it needs to make room for newer backups. Until then, obsolete backups will remain
in the flash recovery area. If you aren’t using a flash recovery area, you must manually run the DELETE
OBSOLETE command periodically to remove the obsolete backup files.

The REPORT NEED BACKUP command lists any datafiles that need backup to conform with the
retention policy you originally chose for your backups. The following example shows that no files
need a backup:

RMAN> REPORT NEED BACKUP;
RMAN retention policy will be applied to the command
RMAN retention policy is set to redundancy 1
Report of files with less than 1 redundant backups
File #bkps Name
---- ----- ---
1 0 /u01/app/oracle/product/11.1.0/oradata/nicko/system01.dbf
2 0 /u01/app/oracle/product/11.1.0/oradata/nicko/undotbs01.dbf
3 0 /u01/app/oracle/product/11.1.0/oradata/nicko/sysaux01.dbf
4 0 /u01/app/oracle/product/11.1.0/oradata/nicko/users01.dbf
RMAN>

The REPORT UNRECOVERABLE command lists all unrecoverable datafiles. An unrecoverable file is a
datafile with a segment that has undergone a nologging operation, and should therefore be backed
up immediately.

Catalog Reports

The CATALOG command helps you identify and catalog any files that aren’t recorded in RMAN’s
repository and thus are unknown to RMAN. Any one of the following events might cause this:

• You restore a backup control file.

• Your restore a standby control file.

• You re-create the control file.

• You enable the DB_RECOVERY_FILE_DEST parameter and then disable it.

In addition, you may create file backups of both datafiles and archived redo logs that RMAN
won’t be aware of. For example, you can use the CATALOG command to catalog database file copies
you made as a level 0 backup. You can then do an incremental backup later by using the datafile copy
as the basis.

You can catalog all datafile copies, backup pieces, or archivelogs on disk using the CATALOG
command. Here are a couple of examples:

760 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

RMAN> CATALOG DATAFILECOPY '/u01/app/oracle/backup/users01.dbf';
RMAN> CATALOG BACKUPPIECE '/disk1/backups/backup_820.bkp';

By using the CATALOG START WITH command, you can make RMAN start searching for all uncat-
aloged files in the directory you specify. This command is especially handy when your filenames are
cryptic, as when you use an OMF or ASM file system. The following example shows how you can
catalog multiple backup files in a directory at once, using the CATALOG START WITH command:

RMAN> CATALOG START WITH '/disk1/backups/';

RMAN will first list all files in the /disk1/backups directory and add them to its repository, after
you confirm the operation.

If you notice a discrepancy between the recovery catalog entries and the actual backups on disk,
RMAN will issue an error when you try to perform a backup or recovery. To get rid of invalid entries
in the recovery catalog, you use the DELETE command with the FORCE option, as shown here:

RMAN> DELETE FORCE NOPROMPT ARCHIVELOG SEQUENCE 40;

Listing Commands

Several RMAN commands let you list various items, like backups and stored scripts in the recovery
catalog.

The LIST BACKUP command shows you all the completed backups registered by RMAN. The
command shows all backup sets and image copies, as well as the individual datafiles, control files,
archived redo log files, and SPFILEs in the backup files. You can also list all backups by querying
V$BACKUP_FILES and the RC_BACKUP_FILES recovery catalog view. Listing 15-1 shows the output
of the LIST BACKUP command.

Listing 15-1. Using the LIST BACKUP Command

RMAN> LIST BACKUP;
List of Backup Sets
===================
BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
892 Full 169M DISK 00:01:19 06-JUN-08
 List of Datafiles in backup set 892
 File LV Type Ckp SCN Ckp Time Name
 ---- -- ---- ---------- --------- ----
 1 Full 81814 06-JUN-08 C:\ORALE\PRODUCT\11.1.0\
ORADATA\NEWS\SYSTEM01.DBF
. . .
 List of Archived Logs in backup set 917

BS Key Type LV Size Device Type Elapsed Time Completion Time
------- ---- -- ---------- ----------- ------------ ---------------
928 Full 3M DISK 00:00:06 06-JUN-08

 BP Key: 930 Status: AVAILABLE Compressed: NO Tag: TAG20041016T132630
 Controlfile Included: Ckp SCN: 81959 Ckp time: 06-JUN-08
RMAN>

The LIST COPY command is analogous to the LIST BACKUP command and shows you the
complete list of all the copies made using RMAN.

RMAN> LIST COPY;

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 761

The LIST ARCHIVELOG ALL command will list all available archived log copies.
Finally, you can use the LIST SCRIPT NAMES command to display the names of all the stored scripts

in the recovery catalog. The LIST GLOBAL SCRIPT NAMES command will show all the global scripts.

Validating Commands

You can use the VALIDATE BACKUPSET command to validate backup sets before you use them from a
recovery. In the following example, the VALIDATE command shows that backup set 1 can’t be found
by RMAN:

RMAN> VALIDATE BACKUPSET 1;
using channel ORA_DISK_1
RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of validate command at 06/05/2008 13:14:04
RMAN-06004: ORACLE error from recovery catalog database: RMAN-20215: backup set
not found
RMAN-06159: error while looking up backup set
RMAN>

In addition, you can use the CROSSCHECK command to make sure that a backup is indeed present
and is usable. You’ll see an example of this command in the “Monitoring and Verifying RMAN Jobs”
section later in this chapter.

RMAN Configuration Parameters
RMAN has several configuration parameters, which are set to their default values when you first
use RMAN. You don’t have to configure anything really to start using RMAN or learn how to use the
various commands. Of course, as you become proficient with RMAN, you’ll want to configure several of
the configuration parameters to suit your needs. Use the SHOW ALL command to see the default values, as
shown in Listing 15-2.

Listing 15-2. Using the SHOW ALL Command

RMAN> SHOW ALL;
using target database control file instead of recovery catalog
RMAN configuration parameters for database with db_unique_name ORCL are:
CONFIGURE RETENTION POLICY TO REDUNDANCY 1; # default
CONFIGURE BACKUP OPTIMIZATION OFF; # default
CONFIGURE DEFAULT DEVICE TYPE TO DISK; # default
CONFIGURE CONTROLFILE AUTOBACKUP OFF; # default
CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO '%F'; # default
CONFIGURE DEVICE TYPE DISK PARALLELISM 1 BACKUP TYPE TO BACKUPSET; # default
CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default
CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE DISK TO 1; # default
CONFIGURE MAXSETSIZE TO UNLIMITED; # default
CONFIGURE ENCRYPTION FOR DATABASE OFF; # default
CONFIGURE ENCRYPTION ALGORITHM 'AES128'; # default
CONFIGURE COMPRESSION ALGORITHM 'BZIP2'; # default
CONFIGURE ARCHIVELOG DELETION POLICY TO NONE; # default
CONFIGURE SNAPSHOT CONTROLFILE NAME TO 'C:\ORCL\APP\ORACLE\PRODUCT\11.1.0\DB_1\D
ATABASE\SNCFORCL.ORA'; # default

762 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

You can view the current configuration values of all the RMAN parameters that you change from
their default values by using the V$RMAN_CONFIGURATION view, as follows:

SQL> SELECT * FROM v$rman_configuration;
CONF# NAME VALUE
----- ---------------------------- -----------------
1 DEFAULT DEVICE TYPE TO 'SBT_TAPE'
2 CONTROLFILE AUTOBACKUP ON
3 BACKUP OPTIMIZATION ON
4 RETENTION POLICY TO REDUNDANCY 2
SQL>

If you haven’t changed any of the configuration parameters from their default values, the previous
query will not return any rows. You can use the CONFIGURE command to change the values of these
RMAN configuration parameters. Let’s take a closer look at some of the important configurable
parameters and how you can change them.

Backup Retention Policy

A backup retention policy tells RMAN when to consider backups of datafiles and log files obsolete.
Note that when you tell RMAN to consider a backup file obsolete after a certain time period, RMAN
only marks the file obsolete—it doesn’t delete it. You must go in and delete the obsolete files.

You can set a retention policy by using either of two methods: the default REDUNDANCY option or
the RETENTION WINDOW option. In both cases, you use the CONFIGURE RETENTION POLICY command to
set the retention policy for all of your database files by default.

The REDUNDANCY Option

The REDUNDANCY option lets you specify how many copies of the backups you want to retain. The
default is 1. You set the retention policy this way:

RMAN> CONFIGURE RETENTION POLICY TO REDUNDANCY 2;
new RMAN configuration parameters:
CONFIGURE RETENTION POLICY TO REDUNDANCY 2;
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete
RMAN>

Let’s say you’re backing up your datafiles every day. The previous RMAN command specifies
that RMAN keep only two backups of each database file. RMAN will also retain all redo logs required
to recover the two days’ worth of datafile backups. Any backups that are older than two days are
considered obsolete. Of course, you can save to tape and archive a much older set of backups.

Archived backups are useful if you ever want to perform a PITR to a time further back than your
recent backup. In addition, if your current backups end up being unusable, you have an alternative
set of backups available.

The RECOVERY WINDOW Option

Setting the backup retention policy using the RECOVERY WINDOW option enables you to specify how far
back in time you want to recover from when your database is affected by a media failure. RMAN will
keep all backups of datafiles and log files one backup older than the recovery window. For example,
if the recovery window is seven days, RMAN will save all backups starting from the backups done
immediately before the seven-day period. You set the recovery window as follows:

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 763

RMAN> CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 14 DAYS;
old RMAN configuration parameters:
CONFIGURE RETENTION POLICY TO REDUNDANCY 2;
new RMAN configuration parameters:
CONFIGURE RETENTION POLICY TO RECOVERY WINDOW OF 14 DAYS;
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete
RMAN>

As you can see in this example, you can set the redundancy number or a recovery window, but
not both. A change in the value of either of the two options will supersede the values of the existing
option.

Default Device Type

The default device for backups is a disk; that is, RMAN will automatically make backups to a file
system on your server. If you want to back up to tape, you configure the default device type to sbt (all
tape destinations are referred to as sbt). Here’s an example:

RMAN> CONFIGURE DEFAULT DEVICE TYPE TO sbt;
old RMAN configuration parameters:
CONFIGURE DEFAULT DEVICE TYPE TO DISK;
new RMAN configuration parameters:
CONFIGURE DEFAULT DEVICE TYPE TO 'SBT_TAPE';
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete
RMAN>

If you wish to switch the default device back to disk, you can do so with the following command:

RMAN> CONFIGURE DEFAULT DEVICE TYPE TO DISK;
old RMAN configuration parameters:
CONFIGURE DEFAULT DEVICE TYPE TO 'SBT_TAPE';
new RMAN configuration parameters:
CONFIGURE DEFAULT DEVICE TYPE TO DISK;
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete
RMAN>

Encryption and Compression Parameters

You must have the Oracle Advanced Security option to create an encrypted RMAN backup on disk.
If you want to create encrypted backups on tape, you must use the Oracle Secure Backup SBT inter-
face. You can query the V$RMAN_ENCRYPTION_ALGORITHM view to see the various encryption
algorithms that RMAN supports. RMAN provides the following three modes of encryption:

• Transparent encryption: Requires Oracle Public Key Infrastructure (PKI).

• Password-based encryption: Requires a password during the backup and the restore of
the backup.

• Dual-mode encryption: Enables the encryption through either of the first two modes. Decryp-
tion can be performed either by supplying a password or by using the Oracle Wallet.

764 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

You can use the CONFIGURATION ENCRYPTION and the SET ENCRYPTION commands to encrypt
RMAN backups.

In addition to encrypting RMAN backups, you can also specify the compression of RMAN backups.
You must use the CONFIGURE COMPRESSION command to instruct RMAN to compress the backups it
makes. The CONFIGURE COMPRESSION ALGORTIHM command enables you to specify one of two available
compression algorithms: BZIP2 and ZLIB. The default compression algorithm is ZLIB, which Oracle
claims is significantly faster (by about 40 percent) than the alternative algorithm, BZIP2. You can query
the V$RMAN_COMPRESSION_ALGORITHM view to examine Oracle’s description of the difference
between the two algorithms. For example:

SQL> select algorithm_name,algorithm_description, is_default
 2 from v$rman_compression_algorithm;

ALGORITHM ALGORITHM DESCRIPTION IS_DEFAULT
--------- -- ----------
ZLIB fast but little worse compression ratio YES
BZIP2 good compression ratio but little slower NO
SQL>

As you can see, the ZLIB algorithm is faster, but the BZIP2 algorithm provides a superior
compression ratio.

Channel Configuration

Channels are the means by which RMAN conducts its backup and recovery operations, and they
represent a single stream of data to a particular device (such as a tape). If you have four channels
configured, four connections will be made to the target database to open four separate server
sessions.

The following example configures two channels, with channel 1 backing up to the backup directory
under /test01 and channel 2 backing up to the backup directory under /test02:

RMAN> CONFIGURE CHANNEL 1 DEVICE TYPE DISK FORMAT
 '/test01/app/oracle/oradata/backup/%U';
new RMAN configuration parameters:
CONFIGURE CHANNEL 1 DEVICE TYPE DISK FORMAT'/test01/app/oracle/oradata/backup/%U';
new RMAN configuration parameters are successfully stored
RMAN> CONFIGURE CHANNEL 2 DEVICE TYPE DISK FORMAT
'/test02/app/oracle/oradata/backup/%U';
new RMAN configuration parameters:
CONFIGURE CHANNEL 2 DEVICE TYPE DISK
FORMAT'/test02/app/oracle/oradata/backup/%U';
new RMAN configuration parameters are successfully stored

■Note The DISK PARALLELISM parameter and the CHANNEL parameter are related to each other. For example,
if the degree of parallelism is 4 and you have specified only two or even no channels at all, RMAN will open four
generic channels. If, on the other hand, you have manually configured six channels but set the degree of parallelism
to 1, RMAN will use only the first channel and ignore the other five.

If you start the backup with multiple channels, the failure of one channel, say, due to the failure
of a tape device, won’t stop the backup job. RMAN will instead complete the job using the remaining
channels, and report the problem in the V$RMAN_OUTPUT view. This is also known as RMAN’s
Automatic Channel Failover feature.

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 765

Degree of Parallelism

The degree of parallelism (the default degree is 1) denotes the number of channels that RMAN can
open during a backup or recovery. The time taken to complete the backup or recovery will decrease
as you increase the degree of parallelism.

RMAN> CONFIGURE DEVICE TYPE DISK PARALLELISM 4;
old RMAN configuration parameters:
CONFIGURE DEVICE TYPE DISK BACKUP TYPE TO COPY PARALLELISM 1;
new RMAN configuration parameters:
CONFIGURE DEVICE TYPE DISK PARALLELISM 4 BACKUP TYPE TO COPY;
new RMAN configuration parameters are successfully stored
released channel: ORA_DISK_1
starting full resync of recovery catalog
full resync complete
RMAN>

Backup Optimization

The BACKUP OPTIMIZATION option ensures that RMAN doesn’t perform a file backup if it has already
backed up identical versions of the file. Here is how you turn on this option:

RMAN> CONFIGURE BACKUP OPTIMIZATION ON;
new RMAN configuration parameters:
CONFIGURE BACKUP OPTIMIZATION ON;
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete
RMAN>

Control File Parameters

RMAN has several configuration parameters that deal with control file backups. The following
sections cover the important control file parameters.

Control File Auto-Backup

If you set the CONTROLFILE AUTOBACKUP option to ON, each time you do a backup of your datafiles, the
control file is automatically backed up along with the SPFILE. Here’s how you configure this:

RMAN> CONFIGURE CONTROLFILE AUTOBACKUP ON;
old RMAN configuration parameters:
CONFIGURE CONTROLFILE AUTOBACKUP OFF;
new RMAN configuration parameters:
CONFIGURE CONTROLFILE AUTOBACKUP ON;
new RMAN configuration parameters are successfully stored
starting full resync of recovery catalog
full resync complete
RMAN>

Now, if you use any BACKUP command, the control file and the SPFILE (if there is one) are both
automatically backed up, as shown in the following example:

RMAN> BACKUP TABLESPACE sysaux;
Starting backup at 06-JUN-08
. . .

766 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

channel ORA_DISK_1: datafile copy complete, elapsed time: 00:01:16
Finished backup at 06-JUN-05
Starting Control File Autobackup at 06-JUN-05
Finished Control File Autobackup at 06-JUN-05
RMAN>

Control File Backup Location and Format

You can use the control file AUTOBACKUP FORMAT parameter to specify the location and format of the
control file backups. Here’s an example:

RMAN> CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO
 '/test01/app/oracle/oradta/backup/cf_%F';
 new RMAN configuration parameters:
 CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR
 DEVICE TYPE DISK TO '/test01/app/oracle/oradata
 /backup/cf_%F'; new RMAN configuration parameters
 are successfully stored
RMAN>

Archivelog Deletion Policy

You can set up a persistent policy that regulates when archived redo logs become eligible for deletion
from disk. The archived redo log deletion policy you configure applies to all archiving destinations,
including the flash recovery area.

The database removes all eligible logs from the flash recovery area automatically. You can also
manually delete an eligible archived redo log from any location, including the flash recovery area, by
issuing either the DELETE ARCHIVELOG or BACKUP . . . DELETE INPUT command.

By default, RMAN’s archived redo log deletion policy is configured to NONE. Under this policy of
NONE, an archived redo log will be considered for deletion only if the archived redo log has been trans-
ferred to the location specified by the LOG_ARCHIVE_DEST_n parameter, and then it must also have
been backed up at least once to disk or tape.

You can configure an explicit archived redo log deletion policy. Issue the CONFIGURE ARCHIVELOG
DELETION POLICY BACKED command to configure the policy, as shown in the following example:

RMAN> CONFIGURE ARCHIVELOG DELETION POLICY
 TO BACKED UP 2 TIMES TO SBT;

This command specifies that all archived redo logs are eligible for deletion after they have been
backed up to tape twice.

Working with the Recovery Catalog
Using the recovery catalog is purely optional, as Oracle can use the control file to store the RMAN
repository data (metadata). However, as explained earlier in this chapter, it’s a good idea to spend
the little time it takes to create and use the recovery catalog. I assume the use of the recovery catalog
in the discussions in this and the next chapter.

■Tip Make sure that the database in which the recovery catalog is being created runs in archivelog mode. This
ensures that you can always perform a PITR.

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 767

To create the recovery catalog, you must first connect to the database in which you want to
create the recovery catalog. You need to create a new recovery catalog owner schema (usually named
rman), grant the necessary privileges to it, and then create the recovery catalog. Once you create the
catalog, you can register databases in it.

Creating the Recovery Catalog Schema

In order to use the recovery catalog, you need to first create a recovery catalog schema. You can
create this schema or user in an existing tablespace or in a new tablespace created for this purpose.
The recovery catalog itself is stored in the default tablespace of this schema. The following example
creates a schema called rman:

SQL> CREATE USER RMAN IDENTIFIED BY rman
 TEMPORARY TABLESPACE temp
 DEFAULT TABLESPACE rman_tbsp
 QUOTA UNLIMITED ON rman_tbsp
User created.
SQL>

Make sure you first create the rman_tbsp tablespace for the user rman.

Making the Necessary Grants

The new rman schema owner, rman, needs privileges to maintain and query the recovery catalog.
You do this by granting the user the RECOVERY_CATALOG_OWNER role. The following code shows
how to make the necessary grants to user rman:

SQL> GRANT RECOVERY_CATALOG_OWNER TO rman;
Grant succeeded.
SQL>

Connecting to RMAN

You can connect to RMAN in one of two ways. One way is to first invoke RMAN, and then use the
CONNECT CATALOG command to connect to it, as shown here (nicko is the database containing the
recovery catalog in this example):

$ rman
Recovery Manager: Release 11.1.0.6.0 - Production on Thu Mar 27 11:36:34 2008
Copyright (c) 1982, 2007, Oracle. All rights reserved.
RMAN> CONNECT CATALOG rman/rman@nicko
connected to recovery catalog database
RMAN>

You can also connect directly from the operating system level, as follows:

$ rman CATALOG rman/rman@nicko
connected to recovery catalog database
RMAN>

When you connect to the catalog database directly, you still aren’t connected to the target database
(unless the target and the catalog database are the same). To connect to the target database, you must
now use the following command from within the RMAN interface (nina is the target database name):

RMAN> connect target nina
Connected to target database: NINA (DBID=1974138212)
RMAN>

768 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

Instead of first connecting to the recovery catalog and then to the target database, you can use
the following method to connect to the recovery catalog and to the target database in one step:

$ rman catalog rman/rman@nicko target nina
Recovery Manager: Release 11.1.0.6.0 - Production on Thu Mar 27 11:36:34 2008
Copyright (c) 1982, 2007, Oracle. All rights reserved.target database password:
connected to target database: NINA (DBID=1974138212)
connected to recovery catalog database
RMAN>

■Tip Although you can create the recovery catalog schema in the target database itself, Oracle recommends that
you use a dedicated recovery catalog database, to secure the recovery catalog. This way, if the target database
needs to be recovered, you’ll have the necessary recovery data available in the recovery catalog.

Creating the Recovery Catalog

If you want to utilize the recovery catalog (instead of the default method of using the control file) to
store the RMAN metadata, you must first create it in the recovery catalog owner’s (rman) schema.

First, connect to the catalog database in one of the two ways shown in the previous section.
Next, use the CREATE CATALOG command, which will create the recovery catalog:

RMAN> CREATE CATALOG;
recovery catalog created
RMAN>

The CREATE CATALOG command creates the RMAN recovery catalog in the tablespace rman_tbsp,
which you assigned as the default tablespace for the user rman.

The DROP CATALOG command will remove the recovery catalog:

RMAN> DROP CATALOG;
Recovery catalog owner is RMAN
Enter DROP CATALOG command again to confirm catalog removal
RMAN> DROP CATALOG;
Recovery catalog dropped
RMAN>.

Registering a Database

For RMAN to do its job, you need to register the target database you want to back up and recover.
Registration means that a database is enrolled in the recovery catalog. Once you register the data-
base, RMAN will automatically get all the relevant metadata pertaining to the target database and
store it in its own schema.

You don’t need a separate recovery catalog for each of your Oracle databases; you can register
all your databases in a single recovery catalog.

To register a new database in the recovery catalog, first connect to the target database:

$ rman catalog rman/rman@nicko target nina
Recovery Manager: Release 11.1.0.6.0 - Production on Thu Mar 27 11:36:34 2008
Copyright (c) 1982, 2007, Oracle. All rights reserved.
target database Password:
connected to target database: NINA (DBID=1974138212)
connected to recovery catalog database
RMAN>

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 769

■Caution Make sure you set the ORACLE_SID to the target database SID before you register a database in the
recovery catalog. Otherwise, when you specify the target, you’ll connect to the database whose instance name
matches the ORACLE_SID of your UNIX session, not to the target database.

Next, register the database in the recovery catalog:

RMAN> REGISTER DATABASE;
database registered in recovery catalog
starting full resync of recovery catalog
full resync complete
RMAN>

The target database is now successfully registered in the recovery catalog. At this point, you can
use the REPORT SCHEMA command to make sure all the datafiles of the target database show up in the list.

You can also issue the following command to check the incarnation of the database:

RMAN> LIST INCARNATION;
List of Database Incarnations
DB Key Inc Key DB Name DB ID STATUS Reset SCN Reset Time
------- ------- -------- ----------- ---------- ---------- -----------
1 8 NINA 1974138212 PARENT 1 11-JAN-08
1 2 NINA 1974138212 CURRENT 318842 05-JUN-08
RMAN>

Maintaining the Recovery Catalog
If you choose to create and use a recovery catalog, you must know how to maintain it. The following
sections explain important recovery catalog maintenance tasks.

Resynchronizing the Recovery Catalog

Changes made to the target database structure aren’t automatically propagated to the recovery
catalog. The BACKUP and COPY commands automatically perform a resynchronization each time you
perform a backup or copy. But you may need to manually resynchronize the recovery catalog under
two circumstances: when your target database has just undergone a number of physical changes and
when the target database is performing a very large number of log switches in between the backups.

During a resync operation, RMAN reads the target database’s control file to update the informa-
tion it keeps regarding datafiles, log switches, physical schema, and so forth. Oracle recommends
that you resynchronize the recovery catalog after making any changes to the physical structure of a
target database. You issue the RESYNC CATALOG command as follows, after connecting to the target
database:

RMAN> RESYNC CATALOG;
starting full resync of recovery catalog
full resync complete
RMAN>

Backing Up the Recovery Catalog

You should always back up the recovery catalog database immediately after you back up the target
database. Backing up the recovery catalog becomes even more critical if you’re using a single recovery

770 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

catalog to store the metadata of all the databases in your system. You should follow these principles
to afford the maximum possible security to the recovery catalog database:

• Back up the recovery catalog on a frequent basis.

• Never store the recovery catalog in the target database. You could end up losing the target
database and the recovery catalog at the same time if there’s a media failure.

• Always run the database holding the recovery catalog in archivelog mode.

• Make multiple copies of the recovery catalog database backup, preferably to tape, in addition
to disk backups.

• Set the retention policy to a value greater than 1.

• Set CONTROLFILE AUTOBACKUP to ON, thus ensuring that you can always recover the recovery
catalog database, provided you have the control file auto-backup on hand.

• Set a very high value for CONTROL_FILE_RECORD_KEEP_TIME, so the control file won’t be over-
written quickly, wiping out your RMAN repository data.

Note that in addition to using RMAN to back up the recovery catalog database, you can use the
Data Pump Export utility to create logical backups of the recovery catalog database.

Recovering the Recovery Catalog

In order to restore and recover the recovery catalog database, you must first restore the control file
and the server parameter file for the database from the auto-backups you made earlier. You can then
restore and recover the database itself.

If you have failed to make backups of your recovery catalog, or if you have made the backups but
are unable to use them (perhaps because you have lost parts of them), you must re-create the recovery
catalog. You can re-create the recovery catalog in one of the following ways:

• Execute the RESYNC CATALOG command to update the recovery catalog with the repository
information from the control file of the target database. Of course, any aged out metadata will
be lost for good.

• Execute the CATALOG START WITH . . . command to recatalog any available backups.

Cataloging Backups

You can issue the CATALOG command to catalog older backups in the recovery catalog. By issuing the
CATALOG command, you can catalog older backups that have aged out of the control file, thus enabling
RMAN to use those backups during a file restore operation. Here’s an example that shows how to use
the CATALOG command:

RMAN> CATALOG DATAFILECOPY '/u01/old_backups/users01.dbf';

You can execute the CATALOG START WITH command to catalog multiple files in a directory, as
shown here:

RMAN> CATALOG START WITH '/u01/old_backups/';

RMAN waits for your confirmation after listing each file, before adding the file to the recovery
catalog.

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 771

Upgrading the Recovery Catalog

If your RMAN client is from the Oracle 11.1 release, but the recovery catalog schema is from an older
version, you must upgrade the recovery catalog. You can determine the schema version of the recovery
catalog by executing the following query:

SQL> SELECT * FROM rcver;

VERSION

10.02.00

If the output of this query shows multiple rows, the highest version number is the catalog schema
version. In our example, there’s only one version number, 10.2.0, meaning that the catalog version
is 10.2.0.

In order to upgrade the recovery catalog, follow these steps:

1. If the recovery catalog owner that you created is from a release before 10.1, execute the fol-
lowing GRANT command (assuming that rman is the catalog owner):

SQL> GRANT CREATE TYPE TO rman;

2. Start RMAN and connect to the recovery catalog database.

RMAN> connect catalog rman/rman;

3. Execute the UPGRADE CATALOG command.

RMAN> UPGRADE CATALOG;

4. Confirm the command by rerunning it.

RMAN> UPGRADE CATALOG;

You can now use the recovery catalog with the RMAN client from the Oracle Database 11g release.

Importing Recovery Catalogs

You may have multiple recovery catalogs, each taking care of databases from different versions
of the Oracle database. You can consolidate those recovery catalogs into one catalog, by using the
IMPORT CATALOG command. By default, the command imports metadata for all databases registered
in the source recovery catalog to the destination recovery catalog. You can, however, specify the
databases you want to import into the destination catalog. Also by default, RMAN unregisters an
imported database from the source recovery catalog, but you can retain the imported databases in
the source catalog by adding the NO UNREGISTER clause to the IMPORT CATALOG command.

Your target databases, recovery catalog databases, and the recovery catalog schema can be from
different database versions. However, Oracle recommends that you consolidate all your recovery
catalogs into a single catalog at the most recent version of the recovery catalog schema. The IMPORT
CATALOG command helps you do this.

In the following example, I use the IMPORT CATALOG command to merge two recovery catalogs,
one from the 10.2 release and the other from 11g, into a single 11g release catalog schema. Here are
the steps:

1. Connect to the destination recovery catalog.

$ rman
RMAN> connect catalog rman/rman@rman11

772 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

2. Issue the IMPORT CATALOG command along with the connection information for the source
recovery catalog (rman10) in step 1.

RMAN> import catalog rman1/rman1@rman10;
Starting import catalog at 30-MAR-08
connected to source recovery catalog database
import validation complete
database unregistered from the source recovery catalog
Finished import catalog at 30-MAR-08
RMAN>

By default, the IMPORT CATALOG command imports all the registered databases from the source
catalog into the destination catalog, but you can specify a particular database or databases, as
shown here:

RMAN> import catalog rman10/rman10@tenner
 dbid = 123456, 1234557;
RMAN> import catalog rman10/rman10@tenner
 db_name = testdb, mydb;

The first example shows how you can specify one or more database identifiers (DBIDs), whereas
the second example shows how you can give the names of databases to import. In either case, you
are able to limit the import to a specific database or databases.

Moving the Recovery Catalog

You can move the recovery catalog to a different database by using the IMPORT CATALOG command.
First, create an empty recovery catalog into the destination database and then issue the IMPORT
CATALOG command, as shown in the following example:

$ rman
RMAN> connect catalog rman/rman@target_db
RMAN> import catalog rman10/rman10@source_db;

The IMPORT CATALOG command moves the recovery catalog contents to the destination database.
The IMPORT CATALOG command imports the source_db recovery catalog contents to a catalog in

the target_db database.

Dropping a Recovery Catalog

Execute the DROP CATALOG command to remove a recovery catalog, as shown here:

RMAN> DROP CATALOG;

When you drop the recovery catalog, the actual backups made by RMAN will be untouched. The
control files of the target database will contain records of the most recent backups made by RMAN.
You can re-create the recovery catalog and register the target database to make the existing backups
usable by RMAN again.

Virtual Private Catalogs
Once you register various databases in a recovery catalog, as the recovery catalog owner, you must
grant permissions for some users to access the recovery catalog. Even if a user needs access to just
one or two databases, you are forced to allow the user access to all databases you registered in the
catalog. To enhance security, Oracle recommends that you maintain one central recovery catalog
called a base recovery catalog in which you register all the databases you wish to manage, and then

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 773

create smaller virtual private catalogs that allow access to sets of databases. A virtual private catalog
is merely a set of synonyms and views based on the base recovery catalog, but stored in the schema
of the virtual private catalog owner. Thus, you will maintain a single recovery catalog as before while
also having the ability to grant users access to subsets of your catalog via virtual private catalogs that
you define.

In order to create a virtual private catalog, you must first create an owner for the virtual private
catalog. After this, you can go ahead and create the virtual private catalog itself. In the following
sections, I show you how to first create the virtual private catalog owner and then the virtual private
catalog itself.

Creating the Virtual Private Catalog Owner

Follow these steps to create a new virtual private catalog owner:

1. Start SQL*Plus and connect to the recovery catalog database as a user with administrator
privileges (SYS). For example:

SQL> connect sys/sammyy1 as sysdba

2. Execute the following statement to create the virtual private catalog owner:

SQL> CREATE USER virtual1 IDENTIFIED BY virtual1
 DEFAULT TABLESPACE virtual_tbsp1

3. Grant the new owner the RECOVERY_CATALOG_OWNER role:

SQL> GRANT recovery_catalog_owner TO virtual1;
Start RMAN and connect as the base recovery catalog owner:
RMAN> CONNECT CATALOG rman/rman@catdb

4. So the new virtual recovery catalog owner can work with databases, grant the privileges
necessary:

RMAN> GRANT CATALOG FOR DATABASE prod1 to virtual1;

The previous command grants rights to the virtual private catalog owner virtual1 to manage the
prod1 database. The GRANT CATALOG command grants access to the user virtual1 for just the prod1 data-
base. You can optionally grant the new user the capability to register new databases in the virtual
private catalog owned by virtual1 by issuing the REGISTER DATABASE command as shown here:

RMAN> GRANT REGISTER DATABASE TO virtual1;

Now that the new virtual private catalog owner has been created, it’s time to create the virtual
private catalog itself.

Creating the Virtual Private Catalog

Once you’ve created the new virtual recovery catalog owner, create the virtual private catalog using
the following steps:

1. Connect to the base recovery catalog database as the new virtual private catalog owner.
For example:

RMAN> CONNECT CATALOG virtual1/virtual1@catdb;

2. Issue the command to create the virtual private catalog:

RMAN> CREATE VIRTUAL CATALOG;

774 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

The user virtual1 is now ready to work with the virtual private catalog, with access to one data-
base, prod1.

Dropping a Virtual Private Catalog

The base recovery catalog owner can drop the virtual private catalog in a similar fashion as the base
recovery catalog, by issuing the following command:

RMAN> DROP CATALOG;

Revoking Access Granted Through a Virtual Private Catalog

To revoke access to any database from the virtual private catalog owner, issue the REVOKE CATALOG
command as shown here:

RMAN> REVOKE CATALOG FOR DATABASE prod1 FROM virtual1;

You can provide a database name as shown here or the DBID for the database. You can revoke
the right of the virtual private owner to register new databases in the virtual private catalog (and thus
in the base recovery catalog) by issuing the following command:

RMAN> REVOKE REGISTER DATABASE FROM virtual1;

Examples of RMAN Backups
The following sections take you through a few examples of various kinds of backups you can perform
using RMAN.

Backing Up an Entire Database

If you want to back up the entire database, you use the BACKUP DATABASE command. RMAN will auto-
matically back up all the datafiles that are part of the database, as shown in Listing 15-3.

Listing 15-3. Backing Up a Database Using RMAN

RMAN> BACKUP DATABASE;
Starting backup at 06-JUN-08
using channel ORA_DISK_1
channel ORA_DISK_1: starting full datafile backupset
channel ORA_DISK_1: specifying datafile(s) in backupset
input datafile fno=00001 name=C:\ORALE\PRODUCT\10.1.0\ORADATA\ORCL\SYSTEM01.DBF
input datafile fno=00003 name=C:\ORALE\PRODUCT\10.1.0\ORADATA\ORCL\SYSAUX01.DBF
input datafile fno=00005 name=C:\ORALE\PRODUCT\10.1.0\ORADATA\ORCL\EXAMPLE01.DBF
input datafile fno=00002 name=C:\ORALE\PRODUCT\10.1.0\ORADATA\ORCL\UNDOTBS01.DBF
input datafile fno=00004 name=C:\ORALE\PRODUCT\10.1.0\ORADATA\ORCL\USERS01.DBF
. . .
Starting Control File Autobackup at 06-JUN-08
piece handle=C:\ORACLE\PRODUCT\10.1.0\FLASH_RECOVERY_AREA\ORCL\AUTOBACKUP\2005_06
_06\O1_MF_N_539094997_0PJ8FDBF_.BKP comment=NONE
Finished Control File Autobackup at 06-JUN-08
RMAN>

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 775

Backing Up the Archived Logs

You use the BACKUP ARCHIVELOG ALL command to back up all archived logs that you haven’t backed
up before. You can also use the command BACKUP DATABASE PLUS ARCHIVELOG to back up all datafiles
as well as any archived redo log files, as shown in Listing 15-4.

Listing 15-4. Backing Up a Database and Archived Logs Using RMAN

RMAN> BACKUP DATABASE PLUS ARCHIVELOG;
Starting backup at 06-JUN-08
current log archived
allocated channel: ORA_DISK_1
channel ORA_DISK_1: sid=38 devtype=DISK
channel ORA_DISK_1: starting archive log backupset
channel ORA_DISK_1: specifying archive log(s) in backup set
input archive log thread=1 sequence=4 recid=1 stamp=539702327
. . .
16\O1_MF_ANNNN_TAG20041016T132206_0Q2SPK4S_.BKP comment=NONE
channel ORA_DISK_1: backup set complete, elapsed time: 00:00:05
Finished backup at 06-JUN-08
RMAN>

■Note If you’re running in archivelog mode, your redo log files are being archived continuously. Therefore,
there’s no need to back up your online redo log files. In fact, RMAN doesn’t let you back up the online redo log files.
The best way to protect the online logs against media failure is to multiplex them, with duplicate online log members
on different disks attached to different disk controllers. Losing an online redo log could mean loss of data if you don’t
have a copy.

Performing an Online Backup with a Script

The RMAN utility performs online backups in a more efficient manner than the normal user-managed
backups, besides providing many extra benefits that make the backups far easier and safer. For one
thing, you don’t need to place the tablespaces into the begin backup and end backup modes. In
addition, you back up only the used space in the database, not the entire allocated space. You also
take care of any fractured blocks, because RMAN will continue to read the blocks until it gets a
consistent read.

■Caution You should never back up your online redo log files when performing an online backup, because you’ll
run the risk of accidentally restoring the backed up log files and thus corrupt your database.

Listing 15-5 shows a typical script that performs online backups using RMAN, assuming you are
backing up to disk.

776 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

Listing 15-5. Performing an Online Backup with RMAN

RMAN> RUN {
backup the database to disk
ALLOCATE CHANNEL d1 TYPE DISK;
ALLOCATE CHANNEL t2 TYPE DISK;
ALLOCATE CHANNEL t3 TYPE DISK;
#backup the whole db
BACKUP
TAG whole_database_open
FORMAT '/u01/oradata/backups/db_%t_%s_p%p'
DATABASE;
switch the current log file
SQL 'alter system archive log current';
#backup the archived logs
BACKUP
ARCHIVELOG ALL
FORMAT '/u11/oradata/backups/al_%t_%s_p%p';
backup a copy of the control file
BACKUP
CURRENT CONTROLFILE
TAG = cf1
FORMAT '/u12/oradata/backups/cf_%t_%s_p%p';
RELEASE channel d1;
RELEASE channel d2;
RELEASE channel d3;
 }
RMAN>

Backing Up the Control File

The BACKUP CURRENT CONTROLFILE command backs up the control file, as shown in Listing 15-6.

Listing 15-6. Backing Up a Control File Using RMAN

RMAN> BACKUP CURRENT CONTROLFILE;
Starting backup at 06-JUN-08
using channel ORA_DISK_1
channel ORA_DISK_1: starting full datafile backupset
channel ORA_DISK_1: specifying datafile(s) in backupset
including current controlfile in backupset
channel ORA_DISK_1: starting piece 1 at 06-JUN-08
channel ORA_DISK_1: finished piece 1 at 06-JUN-08
piece handle=C:\ORALE\PRODUCT\10.1.0\FLASH_RECOVERY_AREA\NEWS\BACKUPSET\2005_06_
06\O1_MF_NCNNF_TAG20041016T132630_0Q2SYTM3_.BKP comment=NONE
channel ORA_DISK_1: backup set complete, elapsed time: 00:00:07
Finished backup at 06-JUN-08
RMAN>

If you had already configured the automatic backup of the control file with the CONFIGURE
CONTROLFILE AUTOBACKUP ON command, you can back up the entire database—datafiles, log files, and
the control file—with the RMAN command BACKUP DATABASE PLUS ARCHIVELOG (see Listing 15-4).

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 777

Backing Up a Tablespace

You can back up individual tablespaces if you are operating the database in archivelog mode:

RMAN> BACKUP TABLESPACE USERS;

Backing Up a Datafile

You can back up a single datafile by simply using the command BACKUP DATAFILE filename or, option-
ally, specifying the destination as well. In the first case, RMAN will store the backup files in the flash
recovery area. Here’s an example:

RMAN> BACKUP DATAFILE '/u01/orcl/oradata/system01.dbf';

Restarting an RMAN Backup
If an RMAN backup fails before it completes, you can resume the backup from the point where it
failed, without needing to redo the entire backup. Let’s say you perform a daily backup, and the last
backup failed midway. After the backup failure, issue the following command:

RMAN> BACKUP DATABASE NOT BACKED UP SINCE TIME 'SYSDATE-1';

Note that the BACKUP DATABASE NOT BACKED UP SINCE TIME command will back up only those
files that you haven’t backed up before.

Specifying Limits for Backup Duration
Sometimes, a nightly backup interferes with the performance of a critical database job. To help with
this, you can direct the database to take longer to finish the backup. The DURATION option for the
RMAN BACKUP command provides this capability. When you use the DURATION option, RMAN will
figure out the appropriate backup speed for the job. You can also add your own directives to either
minimize the backup time (MINIMIZE TIME) or to minimize the load (MINIMIZE LOAD) on your system.

You can use the DURATION clause with backup commands, such as BACKUP AS COPY, to specify the
time (in hours and minutes) Oracle should take when doing a backup job:

DURATION <hrs>:<mins> [PARTIAL] [MINIMIZE {TIME|LOAD}]

The options are as follows:

• PARTIAL: You can override RMAN’s default behavior when the backup job runs past the
interval you specify by using the PARTIAL clause. This clause prevents RMAN error messages.

• MINIMIZE TIME: This tells RMAN to finish the backup as fast as it can.

• MINIMIZE LOAD: This option tells RMAN to slow down if it is within its allotted time for
backing up.

■Note You must use disks if you want to use the MINIMIZE LOAD option, because you will probably want a tape
backup to finish as quickly as possible.

Remember that the DURATION clause’s PARTIAL option leads to an error if the backup exceeds its
time limit. The MINIMIZE TIME option gets the job done the fastest. The MINIMIZE LOAD option mini-
mizes resource use.

778 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

Here’s an example of this clause:

RMAN> BACKUP AS COPY
2> DURATION 04:00
3> MINIMIZE TIME DATABASE;

This says

• Limit the backup time to four hours (DURATION 04:00).

• Run the backup at full speed, telling it to finish within the four-hour limit (MINIMIZE TIME)
if possible.

• Back up the entire database (DATABASE).

Incrementally Updated Backups
Using the incrementally updated backups feature, you can use image file backups and apply incre-
mental backups to them, thus advancing or rolling forward the initial image copy to the time when
you took the level 1 incremental backup. When you perform recovery, you can use the incrementally
updated image copy as if it were an actual image copy taken at the time of the incremental backup.
Using incrementally updated backups truly revolutionizes backup strategies, as you always have an
updated image copy available, no matter when you took the first level 0 full backup. The incremen-
tally updated backup command looks like this:

RMAN> BACKUP INCREMENTAL LEVEL 1 FOR RECOVER OF COPY
 WITH TAG 'incr-update' LEVEL 0 DATABASE;

This command will take the incremental level 1 backup and update the existing level 0 full backup—
in effect, updating the previous level 0 backup to the current day’s level 0 backup.

You can run the script shown in Listing 15-7 to set up an incrementally updated backup.

Listing 15-7. Performing Incrementally Updated Backups Using RMAN

RMAN> RUN {
 RECOVER COPY OF DATABASE WITH TAG 'incr_update';
 BACKUP INCREMENTAL LEVEL 1 FOR RECOVER OF COPY WITH TAG 'incr_update'
 DATABASE;
 }

In this script, the RECOVER COPY command will make RMAN apply any incremental level 1 backups
to a set of datafile copies with the same tag. The BACKUP command will create a level 1 incremental
backup. However, the very first time the script runs, if there isn’t already a level 0 backup, the command
creates a level 0 backup as a starting point for the incremental backup strategy.

This is what happens when you execute the script:

• On the first day, the BACKUP command will create a level 0 backup, since there isn’t one already.

• On the second day, the BACKUP command creates a level 1 incremental backup.

• On the third day, and every day forward, the RECOVER COPY command will apply the level 1
backups to the level 0 backup, thus updating it continuously.

Using the script in Listing 15-7 will make it unnecessary for you to apply multiple incremental
backups to the initial level 0 backup. Each day, as the incremental backup (level 1) of that day is applied
to the level 0 backup, the level 0 backup becomes a full level 0 backup of that day. You don’t need
another full database backup. If you need to perform a recovery, you use the latest level 0 backup,
which is the updated product of all incremental level 1 backups since the first level 0 backup, and
then apply the archivelogs to it.

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 779

Fast Incremental Backups
During incremental backups, Oracle must scan the entire datafile. This ensures unnecessarily long
incremental backup times.

The change-tracking file, which was new in Oracle Database 10g, is used to track the physical
location of all database block changes. RMAN reads this file to discover which data blocks it has to
read and copy. RMAN therefore avoids reading entire datafiles, and backup times will be dramati-
cally reduced.

The change-tracking writer (CTWR) background process, another feature that was new in
Oracle Database 10g, writes the block-change information to the change-tracking file.

Enabling Block-Change Tracking

If you want to track block changes, you must explicitly enable the feature, as shown here:

SQL> ALTER DATABASE
 2 ENABLE BLOCK CHANGE TRACKING
 3 USING FILE '/u01/oradata/finance/changetrack.log';
Database altered.
SQL>

To rename or relocate a change-tracking file, use the ALTER DATABASE RENAME FILE statement
(ensure that the database is in the mount stage before you rename the change-tracking file):

SQL> ALTER DATABASE RENAME FILE
 '/u01/app/oracle/finance/changetrack.log'
 TO
 '/u02/app/oracle/finance/changetrack.log';

Database altered.
SQL>

You can disable block-change tracking with the following statement:

SQL> ALTER DATABASE DISABLE BLOCK CHANGE TRACKING;
Database altered.
SQL>

Monitoring Block-Change Tracking

You can monitor block-change tracking with the V$BLOCK_CHANGE_TRACKING and V$BACKUP_
DATAFILE views.

The V$BLOCK_CHANGE_TRACKING view shows the name, size, and status of the file, as shown
in this example:

SQL> SELECT filename,status,bytes
 2 FROM v$block_change_tracking;

FILENAME STATUS BYTES
-- ---------- ---------
/U01/APP/ORACLE/ORADATA/FINANCE/CHANGETRACK.LOG ENABLED 11599872
SQL>

In the V$BACKUP_DATAFILE view, use the ratio between the BLOCKS_READ column and the
DATAFILE_BLOCKS column to calculate the percentage of blocks Oracle is reading. If the BLOCKS_
READ to DATAFILE_BLOCKS ratio is too high, you may have to take more frequent backups.

780 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

RMAN Compressed Backups
You can compress RMAN backups if you need to save space. The compression factor depends on the
nature of the data in your datafiles. Oracle recommends that you use RMAN’s built-in compression
capability instead of an external compression utility. You must take care not to use both RMAN
compression and an external compression utility together.

■Note You can’t compress an image copy. You can compress a backup only if you are using backup sets.

Here is the RMAN command to compress a backup set:

RMAN> BACKUP AS COMPRESSED BACKUPSET DATABASE PLUS ARCHIVELOG;

The V$BACKUP_FILES view contains information about backup filenames and file sizes. In
addition, it will tell you the compression status. Here’s an example query showing how to do this:

SQL> SELECT fname, compressed, backup_type
 FROM v$backup_files;

Oracle Corporation believes that the RMAN binary compression technique will reduce the
space used by the backup file by about 50 to 75 percent.

Archival Backups
Sometimes, you may want to make a backup for long-term storage. Your goal is not to someday use
the backup for restoring the database, but to use the backup to restore data as it appeared at the time
of the backup. You may also do this to satisfy regulatory requirements. These types of backups are
called archival backups, or long-term backups, which you can make on tape devices and store offsite.

You can use the KEEP option with the BACKUP command to make long-term backups. The KEEP
clause exempts a backup from the currently configured backup retention policy. The KEEP clause
instructs RMAN to back up the datafiles, the control file, and the SPFILE. RMAN also generates an
archived redo log backup automatically to help recover the database to a consistent state. You can
also change an existing backup into an archival backup by using the CHANGE command. You can
specify that a backup be kept indefinitely by specifying the KEEP FOREVER clause or limit the retention
time by specifying the KEEP UNITL TIME clause with the BACKUP or CHANGE command.

In the following example, I use an optional RESTORE POINT clause to indicate the SCN to which
the database must be recovered in order for it to be consistent. This SCN is captured right after the
datafile backups are made. RMAN will save this restore point as long as you keep the backup. Here
are the steps to make a long-term archival backup.

Connect to the target database and a recovery catalog. You’ll need the recovery catalog connec-
tion only if you specify the KEEP FOREVER clause, but not for the KEEP clause.

RUN
{
ALLOCATE CHANNEL ch1
DEVICE TYPE sbt
PARMS 'ENV=(OB_MEDIA_FAMILY=archival_backup)';
BACKUP DATABASE
 TAG quarterly
KEEP FOREVER
RESTORE POINT FY08Q2;
}

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 781

This code generates a backup of all the datafiles and the archived logs and also creates a restore
point to which to restore the database. The KEEP FOREVER clause will save the backup indefinitely. If
you want to save a backup for a limited amount of time instead, you can do so by specifying the KEEP
UNTIL TIME clause instead of the KEEP FOREVER clause, as shown here:

RUN
{
ALLOCATE CHANNEL ch1
DEVICE TYPE sbt
PARMS 'ENV=(OB_MEDIA_FAMILY=archival_backup)';
BACKUP DATABASE
 TAG quarterly
KEEP UNTIL TIME 'SYSDATE+365'
RESTORE POINT FY08Q2;
}

This code will keep the backup for 365 days, after which the backup becomes obsolete and thus
eligible for deletion.

Limiting the Size of RMAN Backups

You can limit the maximum size of an RMAN backup set by specifying the MAXSETSIZE parameter. An
advantage to limiting a backup set to a certain size is that if the RMAN backup fails midway, you can
use RMAN’s restartable backup capability to backup only those files that weren’t backed up before
the failure. Here’s an example showing how to limit a backup set’s size:

RMAN> BACKUP DEVICE TYPE sbt
 MAXSETSIZE 250M
 ARCHIVELOG ALL;

You can specify the SECTION SIZE parameter to create a multisection backup, which is a backup
set in which each backup piece contains blocks from one section of the file that’s being backed up.
You can use the SECTION SIZE parameter to perform a parallel backup of a very large datafile. Here’s
an example showing how to specify the SECTION SIZE parameter:

RMAN> BACKUP
 SECTION SIZE 250M
 TABLESPACE TEST;

Let’s say the TEST tablespace is 1GB in size. You can set up four SBT channels, (parallel setting
for the SBT device must be set to 4), and thus break up the backup into four parallel streams, thereby
enhancing performance.

Encrypting RMAN Backups

You can configure two types of encryption for RMAN backups. First is transparent encryption, which
you can configure with the CONFIGURE ENCRYPTION command. The second type of encryption is dual-
mode or password-mode encryption. You can use the SET ENCRYPTION command to specify this type
of encryption at the RMAN session level. I explain the procedures for setting up the two types of
encryption in this section.

To configure transparent-mode encryption for backups, just use the CONFIGURE command as
shown earlier in this chapter, Once you set up this persistent configuration parameter, all further
backups will be in encrypted format.

782 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

Follow these steps to set up password-mode encryption:

1. Connect to the target database through RMAN.

RMAN> connect target /

connected to target database: ORCL (DBID=1170903133)
using target database control file instead of recovery catalog

RMAN>

2. Issue the SET ENCRYPTION ON IDENTIFIED BY PASSWORD ONLY command as shown here:

RMAN> set encryption on identified by sammyy1 only;

executing command: SET encryption

RMAN>

The keyword ONLY tells RMAN to use password-enabled encryption even if you’ve configured
transparent configuration with the CONFIGURE ENCRYPTION command. Any backups you make from
now on will be encrypted.

■Tip Since wallet-based encryption doesn’t involve the use of passwords, it’s more secure than password-based
encryption. Also, wallet-based encryption makes it easier to transport tablespaces.

Dual-mode encryption refers to data that’s protected both by transparent encryption as well as
with a password. In order to set up dual-mode encryption, you follow the same steps as you did for
enabling password-based encryption, but you must leave out the ONLY keyword.

You must be aware that encrypting RMAN backups involves a CPU overhead. To overcome this,
you can run an encrypted backup with multiple RMAN channels.

Monitoring and Verifying RMAN Jobs
You can monitor RMAN’s backups using several important data dictionary views. The V$BACKUP_
CORRUPTION and V$COPY_CORRUPTION views, for example, provide important information
about corrupt blocks. (I’ll discuss data block corruption in the “Database Corruption Detection”
section later in this chapter.) You can use the V$RMAN_OUTPUT view to monitor a running RMAN job.

The V$RMAN_STATUS view shows the status of all completed jobs as well as commands, as
shown here:

SQL> SELECT operation, status, start_time, end_time
 FROM v$rman_status;

OPERATION STATUS START_TIME END_TIME
--------- --------- ---------- ---------
LIST COMPLETED 28-APR-08 28-APR-08
VALIDATE COMPLETED 28-APR-08 28-APR-08
BACKUP FAILED 28-APR-08 28-APR-08
BACKUP COMPLETED 29-APR-08 29-APR-08
. . .
SQL>

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 783

You can estimate the backup’s progress using the following query on the V$SESSION_LONGOPS
view:

SQL> SELECT TO_CHAR(start_time,'DD-MON-YY HH24:MI') "Start of
 backup",Sofar, totalwork,
 elapsed_seconds/60 "ELAPSED TIME IN MINUTES",
 ROUND(sofar/totalwork*100,2) "Percentage Completed so far"
 FROM v$session_longops
 WHERE opname='prod1_dbbackup';

To ensure the backups made using RMAN are useful during a recovery, you can use the CROSSCHECK
and VALIDATE commands, as described in the following sections.

Cross-Checking Backups Made with RMAN

RMAN provides the useful CROSSCHECK command to enable you to check that the backup sets and
image copies listed in the recovery catalog actually exist in their specified locations and haven’t been
accidentally deleted or written over. In addition, the command verifies the headers and ensures that
RMAN can read the files. The CROSSCHECK command can thus test both the existence and the read-
ability of the backups. Here’s an example of the use of the CROSSCHECK command in RMAN:

RMAN> CROSSCHECK BACKUPSET 326;
allocated channel: ORA_DISK_1
. . .
channel ORA_DISK_4: sid=21 devtype=DISK
crosschecked backup piece: found to be 'AVAILABLE'
Crosschecked 1 objects
RMAN>

As you can see, RMAN has cross-checked the backup piece and found it to be available, which
confirms that the backup files exist and are usable.

Using the RMAN VALIDATE Command

RMAN helps detect both physical and logical corruption. When RMAN encounters corrupt blocks of
either kind, it logs the information to the control file and the recovery catalog. The VALIDATE command
helps you ensure that the backed-up files exist in the proper locations, and that they are readable
and free from any logical and physical corruption. You simply issue the following command to test
any particular backup set:

RMAN> VALIDATE BACKUPSET 9;

To test the entire database and archived log backup sets, you issue the following command:

RMAN> BACKUP VALIDATE DATABASE ARCHIVELOG ALL;

If the backup set does not exist, RMAN will let you know. If the command does not result in any
errors, you can assume that the specified backup set exists and can be used in the recovery process.

The following command doesn’t restore any datafiles; it merely validates that the contents of
the backup sets are restorable.

RMAN> RUN {
 ALLOCATE CHANNEL d1 TYPE DISK;
 RESTORE DATABASE VALIDATE;
 {

784 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

The BACKUP_VALIDATE command checks for both logical and physical corruption in the datafiles
and also determines whether RMAN can back up a datafile. By ensuring that RMAN can back up your
datafiles, you know that your RMAN backups will be usable and valid.

You can use the BACKUP_VALIDATE command only at the dataset level, whereas you can use the
VALIDATE command at the backup set, tablespace, datafile, or even data block level. You can also use
the latter command to check the integrity of the flash recovery area. You can proactively run the
VALIDATE command to check for missing datafiles or corrupt data blocks. RMAN logs any failures it
finds during the validate command execution in the Automatic Diagnostic Repository (ADR). You
can then use the Data Recovery Advisor to view the failures and to fix them. Although by default the
VALIDATE command checks for physical data block corruption (interblock), you can specify the CHECK
LOGICAL clause to include logical intrablock corruption checks.

Here’s an example that shows how to execute the VALIDATE DATABASE command to check for
data block corruption at the database level:

RMAN> VALIDATE DATABASE;

Starting validate at 01-APR-08
using target database control file instead of recovery catalog
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=155 device type=DISK
. . .
channel ORA_DISK_1: validation complete, elapsed time: 00:17:07
List of Datafiles
=================
File Status Marked Corrupt Empty Blocks Blocks Examined High SCN
---- ------ -------------- ------------ --------------- ----------
1 OK 0 12542 72960 4351550
 File Name: C:\ORCL11\APP\ORACLE\ORADATA\ORCL11\SYSTEM01.DBF
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 0 48959
 Index 0 9143
 Other 0 2316
. . .
including current control file for validation
including current SPFILE in backup set
channel ORA_DISK_1: validation complete, elapsed time: 00:00:02
List of Control File and SPFILE
===============================
File Type Status Blocks Failing Blocks Examined
------------ ------ -------------- ---------------
SPFILE OK 0 2
Control File OK 0 594
Finished validate at 01-APR-08

RMAN>

You can parallelize the database validation by specifying the SECTION SIZE parameter, which
divides a file into sections.

Backing Up the Control File
The control file is critical for recovery, as it contains crucial information like database checkpoints
and the datafile header checkpoints for the datafiles. A recovery is much harder when you lose all

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 785

copies of your control file. You also need to create a new control file when you want to change the
name of a database, clone a database in a different location, or increase the maximum number of
files you specified when you first created the control file.

You’ve seen how you can back up a control file using RMAN’s BACKUP CONTROLFILE command.
That command will produce a binary copy of the control file. You can also use the SQL statement
ALTER DATABASE BACKUP CONTROLFILE from the SQL*Plus interface or from within RMAN to back up
your control files.

It’s a good practice to back up your control file on a regular basis by using the BACKUP CONTROLFILE
TO TRACE command, as shown here:

SQL> ALTER DATABASE BACKUP CONTROLFILE TO TRACE;
Database altered.
SQL>

You can use the ALTER DATABASE BACKUP CONTROLFILE TO TRACE AS 'filename' command to
achieve the same result as the preceding command. It will produce a text file that has the CREATE
CONTROLFILE statement in it.

You should immediately back up your control file after you perform any of the following
operations:

• Create or drop a tablespace.

• Add or rename a datafile.

• Add, rename, or drop an online redo log group or member.

Oracle Secure Backup
Oracle Secure Backup is Oracle Corporation’s own media manager for tape backups, which simpli-
fies and automates backup and recovery operations. Underlying Oracle Secure Backup is backup
software called Reliaty, which Oracle recently acquired. RMAN, Oracle’s recommended backup tool,
works effectively with Oracle Secure Backup, as do other third-party media managers. However, Oracle
claims that Oracle Secure Backup is the fastest and best integrated media manager for backing up
Oracle databases. Note that due to the unavailability of the 11.1 version of Oracle Secure Backup
at the time of writing, I’ve used the Oracle Database 10g version instead to explain the main concepts of
the tool.

Although Oracle Secure Backup is a relatively new product, it’s actually based on a fourth-
generation of the Reliaty backup engine, which has a fairly long history. Oracle Secure Backup can
be used in UNIX, Linux, and Windows environments. It supports all major tape libraries and drives
in SAN, Gigabit Ethernet (GbE), and SCSI environments.

You can use the following tools when working with Oracle Secure Backup:

• A GUI tool called the Oracle Backup Web Interface, which allows you to configure administrative
domains, manage operations, and back up and restore data

• A command-line interface, which lets you perform many of the same functions as the GUI tool

• OEM’s interface to the Oracle Secure Backup tool

Using Oracle Secure Backup, you initiate a backup using one of these tools, and the RMAN
server process backs up the data and passes it to the media manager buffer. Then the media manage-
ment vendor (MMV) library backs up the database to tape.

786 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

Benefits of Oracle Secure Backup
Oracle Secure Backup provides the following benefits:

• Out-of-the-box integration with the RMAN tool

• Automated control of tape backups, automatic tape drive cleaning, and automatic tape expi-
ration and recycling

• Ability to back up both the database and operating system files

• Easy configuration

• Ability to share tape libraries across platforms

• Flexible backup strategies, including full, incremental, and differential backups

• Secondary verification of backup data

Oracle Secure Backup Administrative Domain
Oracle Secure Backup uses the concept of an administrative domain as the central piece in managing its
activities. An administrative domain is a collection of hosts under the direction of an administrative
server. All the machines in your network that you want to treat as a common unit for the purpose of
backup and restore operations are grouped together as the administrative domain.

An administrative domain consists of three types of servers:

• Administrative server: This server maintains the Oracle Secure Backup catalog files, which
contain configuration and history information.

• Media server: This server has the secondary storage devices, such as tape drives and robotic
tape libraries, attached to it. A media server must have at least one tape drive attached to it.
The media server transfers data to and from the attached media devices.

• Client host server: This server contains the Oracle databases that are backed up by Oracle
Secure Backup.

Typically, an administrative domain consists of a single administrative server at the top, one or
more media servers, and one or more client hosts.

A single server can play one or more roles; that is, a single server can be the administrative
server, media server, and host server, all rolled in one.

Installing Oracle Secure Backup
You can obtain Oracle Secure Backup software from OTN or install the software from an Oracle-
supplied CD-ROM. You must install the Oracle Secure Backup software on your administrative
server and on each of the media servers and client hosts in your administrative domain.

Here are the steps for installing Oracle Secure Backup on a Linux platform (UNIX platforms
have a similar installation process):

1. Log in as root and create a working directory named backup.

$ mkdir -p /usr/local/oracle/backup

2. Move to the working directory and invoke the setup program.

$ cd /usr/local/oracle/backup
$ /mnt/cdrom/setup

3. The setup program’s welcome page appears, with three choices regarding the operating
system. Select option 2 for a Linux installation.

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 787

4. The setup process loads the Oracle Secure Backup software onto the server and prompts you
to choose yes to continue the installation.

5. The installer will then ask, “Have you already reviewed and customized install/obparameters for
your Oracle Secure Backup installation?” You can, if you wish, configure the standard Oracle
Secure Backup user named oracle, who is in charge of facilitating RMAN backup and restore
operations through Oracle Secure Backup. However, the default answer is yes, meaning you
accept the default parameters for the installation.

6. In the next step, you’re offered a choice between an interactive and a batch mode of instal-
lation. Choose the interactive mode (option a).

7. You are now asked to select a host role, as shown here:

Oracle Backup is not yet installed on this machine.
Oracle Backup's Web server has been loaded, but is not yet configured.
You can install this host one of three ways:
(a) administrative host
(the host will also be able to act as a media server or client)
(b) media server
(the host will also be able to act as a client)
(c) client
If you are not sure which way to install, please refer to the Oracle
Backup Installation Guide. (a, b or c) [a]?

In this example, let’s choose to install an administrative server, by choosing (a).

8. The installation process will then ask you the following question:

Is localhost connected to any SCSI tape libraries that you'd like to use with ➥

Oracle
Backup [no]?

You can answer yes to configure a tape library. You must probe your platform for SCSI bus-
related data, such as host bus adapter, bus address (channel), target, and LUN numbers. The
following command will let you identify your device information:

[root@localhost] $ cat /proc/scsi/scsi

You can use the output of this command to provide the installer information regarding the
following:

Logical Unit Number
Host SCSI adapter number
SCSI bus address
SCSI target ID
SCSI lun
Confirm your choices and click Enter.

9. You’ll see the following prompt:

Is localhost connected to any SCSI tape drives that you'd like to use with
Oracle Backup [no]?

If your server is connected to a tape drive, respond yes. If it isn’t, answer no. If you choose yes,
the installer will then ask you for details about the tape drive, similar to the details you pro-
vided for the tape library (in step 8). Provide the information and press Enter.

10. In the final step, the installer will ask you if you want to install Oracle Secure Backup on
another machine. Choose no. You’ll see the installation summary.

788 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

Using the Oracle Backup Web Interface Tool
Oracle provides the Oracle Backup Web Interface tool on UNIX/Linux, as well as Windows systems.
The Backup GUI uses the Apache server. In order to use this tool, make sure that the observiced
process is running, as shown here:

$ ps –ef | grep observice
root 16127 1 0 10:57 pts/3 00:00:00 observiced -s
oracle 22093 1541 0 12:58 pts/0 00:00:00 grep observice
$

To bring up the web browser, type the following address in your web server’s address bar:
https:/localhost. When the security alert box appears, click OK (this box appears because the Oracle
Backup Web Interface installs a self-signed security certificate, and thus is unknown to the web
browser). You’ll then see the Oracle Backup Login page.

Since this is the first time you’re logging in, use the username admin and leave the password
blank. Once you log in successfully, you’ll see the Oracle Backup home page.

On this page, you can perform four major activities using the Oracle Backup Web Interface:
configure, manage, backup, and restore operations.

Configuring Oracle Secure Backup
When you install Oracle Secure Backup, it creates default users, hosts, devices, classes, and the null
media family. You can choose to use the defaults or configure your own entities, as described in the
following sections.

Users

You must have separate users with privileges to use the Oracle Secure Backup utility. You can add,
modify, and remove users through either the Oracle Backup Web Interface tool or the obtool command-
line interface. These users can be the same as some of your Oracle users if you wish. Classes assign a
set of access rights or privileges to users who perform backups and restore operations. Oracle Secure
Backup uses the following classes:

• admin: For overall administration of a domain

• operator: For standard day-to-day operations

• oracle: For specific database privileges

• reader: For viewing index information

• user: For allowing specific users to interact in a limited way with their domains

Hosts

Hosts are the server machines that host the Oracle Secure Backup tool. You can distinguish between
two types of hosts, based on their access mode:

• Ob host: These are servers on which Oracle Secure Backup components run in the background as
daemons. These daemons participate in managing the backup and restore operations.

• Network Data Management Protocol (NDMP) host: This is a storage appliance from a third-
party vendor. An NDMP host implements the NDMP protocol and employs NDMP daemons
instead of Oracle Secure Backup daemons to back up and restore files.

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 789

Devices

Devices include both tape drives and tape libraries. A library is a medium changer that accepts
commands to move media between storage locations and tape drives. Following are the basic
components of libraries:

• Storage element (se): Contains a volume when it is not in use

• Import-export element (iee): Moves volumes into and out of the library without opening the
door and is physically present only on certain libraries

• Medium transport element (mte): Moves a volume from a storage element to a drive

• Data transfer element (dte): Represents a tape drive

Media Families

Media families are a way of grouping together tape volumes with similar write periods and retention
policies. You could, for example, create a media family for all of your onsite full backups. Similarly,
you can create another media family for your offsite full backups. You could also define a separate
media family for all your incremental backups. Oracle Secure Backup lets you classify your backup
media using the following criteria:

• Volume identification sequence: Each tape volume has a unique identifier attached to it, when
it’s either written to the first time or overwritten from the beginning of the tape.

• Write-allowed period: Oracle Secure Backup can write to a volume set until a predetermined
write-allowed period has expired, at which time it closes the volume to further updates.

• Retention period: Oracle Secure Backup determines the expiration date and time for each
volume set when you first create the set. You can’t write to the set past the expiration date.

Oracle Database Objects

You use Oracle database objects to represent backup and restore parameters that describe your
Oracle database. RMAN accesses the database, and Oracle Secure Backup manages the media. Data-
base objects act as intermediaries between RMAN and the Oracle Secure Backup software. Oracle
database objects provide necessary information for Oracle Secure Backup to interact with RMAN.
RMAN provides the database name, content type, and copy number to Oracle Secure Backup. Based
on that information, Oracle Secure Backup determines the Oracle database object.

Performing Backups with Oracle Secure Backup
Before you can back up data, you must log into Oracle Secure Backup as a user having the privileges
to perform the backup and create a dataset. A dataset is a description file that identifies data you
want to back up.

You can back up data in two different ways:

• On demand: You can create immediate, one-time-use backup jobs and send your requests to
the scheduler when you’re ready. Oracle Secure Backup then turns it into a dataset job, making it
eligible to run.

• Scheduled jobs: You can use the Oracle Secure Backup scheduler to schedule jobs. You can
specify backups in terms of day, days of the week, month, quarter, or year.

790 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

■Note Expert users can use the obtar command-line tool to work directly with tape drives, bypassing the Oracle
Secure Backup’s scheduler.

You can also specify backup windows, to minimize the impact on day-to-day operations.

User-Managed Backups
RMAN is the Oracle-recommended method for backing up and recovering databases. RMAN is
designed to take advantage of its knowledge of Oracle’s block structures to provide excellent perfor-
mance, including features like compression, resumable backups and recovery, block-change tracking,
and integration with the MML. However, you can make completely valid backups yourself, without
the use of RMAN or the Oracle Secure Backup tool, by using operating system copy commands such
as cp and dd in UNIX, and the copy command in Windows systems. You can also connect to a media
manager if you want to make tape backups. If you choose this approach, you must keep track of all
the backups, check their validity, and also decide which of the backups you’ll need during a recovery
session. This is the reason Oracle calls this method user-managed backups.

If you have a simple Oracle database and your backup requirements aren’t onerous, you may
decide that it’s not worth the time and effort that you need to invest in ascending the learning curve
associated with RMAN. For you, user-managed backups are probably the ideal solution, even if it
means that you lose all the special features that Oracle has built into the RMAN tool.

Making Whole Database Backups
You can make a backup of the entire database when the database is closed or when it’s open, provided
you’re operating in archivelog mode. If you’re using noarchivelog mode, you can make only a closed
database backup.

Whole Closed Backup

To make a closed, or cold, backup, the database must have been shut down cleanly through a normal,
immediate, or transactional shutdown.

You need to back up the entire set of files necessary to restore the database: the datafiles, online
redo log files, and control files. Technically, you need only one control file to restore the database,
but because the init.ora file or the SPFILE refers to multiple control files, you might as well back up
all the multiplexed copies of the control files. You first get a list of the files in each category, and you
then copy the files to the target. In the following sections, you’ll learn how to back up the three main
types of files involved in a whole closed backup.

Backing Up the Datafiles

You can get the list of all the datafiles in your database by using the following query:

SQL> SELECT file_name FROM dba_data_files;

You can then use the UNIX cp command (or the Windows copy command) to copy these data-
files to whatever location you want. You may first copy them to an operating system file, and later on
copy those files to a tape device, so you can store them offsite. For example, in UNIX, you may use
the following command to back up the files:

$ cp /u01/orcl/oradata/data_01.dbf /u09/orcl/oradata/data_01.dbf

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 791

Backing Up the Online Redo Log Files

You can get the list of online redo files by making the following query:

SQL> SELECT member FROM v$logfile;
MEMBER
--
C:\ORACLENT\ORADATA\HELPME\REDO03.LOG
C:\ORACLENT\ORADATA\HELPME\REDO02.LOG
C:\ORACLENT\ORADATA\HELPME\REDO01.LOG
SQL>

Since you are performing a whole closed backup here, the backups are consistent; that is, when
you shut down the database, the datafiles are all consistent and don’t need recovery on startup. Thus, the
restored online backup logs aren’t really useful for recovery. So, you don’t really need to back up
these online redo log files. However, you’ll need redo log files to start the restored instance, so you
might as well use these copies of the online redo log files to start your instance.

Backing Up the Control Files

You can find the control filenames and their location by querying the V$CONTROLFILE view:

SQL> SELECT name FROM v$controlfile;
NAME

C:\ORACLENT\ORADATA\HELPME\CONTROL01.CTL
C:\ORACLENT\ORADATA\HELPME\CONTROL02.CTL
C:\ORACLENT\ORADATA\HELPME\CONTROL03.CTL
SQL>

A Simple Cold Backup Script

Scripts for cold backups are fairly simple. Because you’re doing a backup while the database is shut
down, the backup process boils down to copying all the necessary files using the operating system
copy utilities. Listing 15-8 shows a sample cold backup script.

Listing 15-8. A User-Managed Cold Backup Script

#!/bin/ksh
ORACLE_SID=$1
export ORACLE_SID
export ORAENV_ASK=NO
BACKUP_DIR=/test01/app/oracle
. oraenv
sqlplus -s system/remorse1 << EOF
SET HEAD OFF FEED OFF ECHO OFF TRIMSPOOL ON LINESIZE 200
SPOOL /u01/app/oracle/dba/cold_backup.ksh
SELECT 'cp ' ||file_name|| ' ${BACKUP_DIR}' from sys.dba_data_files;
SELECT 'cp ' ||name || ' ${BACKUP_DIR}' from V$controlfile;
SELECT 'cp ' ||member|| ' ${BACKUP_DIR}' from V$logfile;
SPOOL OFF;
EXIT;
EOF

When you run the preceding commands, the output will be cold_backup.ksh, which you can
then make into an executable script and schedule for regular execution.

792 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

Making a Whole Open Backup

There’s a world of difference between making closed backups and open (or hot) backups. Open
backups imply that users are changing data while you’re backing up files, and this leads to the use of
more complex mechanisms on behalf of the Oracle server to perform the backups.

You need to back up all the datafiles, control files, and archived redo logs for a complete online
database backup. You use the normal operating system copy commands to achieve this, but because
the database is actually running, you need to add some other commands to make the backups valid
and consistent. To understand this, it’s necessary to understand what happens within the database
during an online backup.

When you first prepare the tablespace for the backup by issuing the BEGIN BACKUP command,
Oracle notes the SCNs in the datafile headers and freezes them. In other words, the datafile header
checkpoint SCNs will remain constant at their old values until the backup is completed and the
command END BACKUP is issued. Oracle will continue writing all the changes to the datafiles and to the
redo log files, but the redo log files get filled up pretty fast in most cases, because Oracle will be writing the
entire data block instead of just the changes made by individual transactions, as is done during normal
operation. As users are modifying the data during the online backup, checkpoints will occur as normal,
and data blocks will keep being written to disk as usual. Once the backup is completed for the entire
tablespace, Oracle will advance the checkpoint SCN for each file to the latest actual SCN value.

The crucial idea in the hot backup process is that should a crash of the database occur before the
end of the backup, recovery can be performed based on the checkpoint that was noted when the
tablespace was first put in backup mode. The SCN that is frozen in the file headers is placed there
right after a checkpoint, which flushes all the modified records in the buffer to the datafiles. There is
a considerable amount of redo log activity during hot backups, mostly to handle what is known as
the fractured block problem. During the online backup of a particular Oracle block, the block could
be in the process of being written to. Consequently, a backed-up copy could conceivably end up with
inconsistent data, with part of the data from before the change was made and the rest from after the
change. The inconsistent block thus produced is called a fractured block. Oracle copies the entire
block to the redo log file to make sure that it can create a consistent version of the block later on if it
indeed has been split during the hot backup process.

The following is the basic hot backup process:

1. Issue the following command:

SQL> ALTER DATABASE BEGIN BACKUP;

2. Copy all the datafiles that are part of all the tablespaces in your database.

SQL> host cp /u10/app/oracle/oradata/remorse/users01.dbf
 /u01/app/oracle/remorse/backup

3. After you back up all the datafiles, end the online backup with the following command:

SQL> ALTER DATABASE END BACKUP;

The END BACKUP command instructs Oracle to take all tablespaces out of backup mode.

■Note RMAN doesn’t put the tablespaces in the begin backup and end backup modes. The Oracle server session
checks the data block header and footer to see whether the data block is fractured. If it is, the RMAN server simply
reads the data block again to get a consistent view of it.

When you perform an online full backup of an archivelog database, you must back up the control
file using the special BACKUP CONTROLFILE TO 'filename' command, as shown here:

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 793

SQL> ALTER DATABASE BACKUP CONTROLFILE TO
 '/u01/app/oracle/oradata/backup/cntlbkp.ctl';

During a recovery, you must use the backup of the control file derived in the previous manner
to avoid problems you may encounter if you try to use the normal operating system copy of the
control file.

As you noticed, you don’t need to individually place each tablespace into a hot backup mode.
Starting with Oracle Database 10g, you can put all datafiles in online backup mode with a single
command. You must make sure, however, that the database is in archivelog mode, mounted,
and open.

You’ve seen how the online backup mechanism works. Listing 15-9 shows a complete online
backup script that will dynamically pick up all the tablespaces in the databases and back them up to
disk; from there, you can copy them to tape later.

Listing 15-9. A User-Managed Backup Script

#!/bin/ksh
ORACLE_SID=$1
export ORACLE_SID
export ORACLE_ASK=NO
BACKUP_DIR=/u01/app/oracle/backup
export BACKUP_DIR
sqlplus -s "sys/sys_password as sysdba" << EOF
set linesize 200
set head off
set feed off
SPOOL /u01/app/oracle/dba/hot_backup.ksh
BEGIN
 dbms_output.put_line ('alter database begin backup;');
 for f1 in (select file_name fn from sys.dba_data_files)
 loop
 dbms_output.put_line('host cp '||f1.fn|| ' $BACKUP_DIR');
 end loop;
 dbms_output.put_line ('alter database end backup;');
 dbms_output.put_line('alter database backup
 controlfile to '|| ' $BACKUP_DIR/control'|| ';');
 dbms_output.put_line('alter system switch logfile;');
END;
/
SPOOL OFF;
EXIT
EOF

The spooled script hot_backup.sh looks like this:

ALTER DATABASE BEGIN BACKUP;
HOST cp /u05/oradata/nicko/system01.dbf $BACKUP_DIR
HOST cp /u05/oradata/nicko/undotbs01.dbf $BACKUP_DIR
. . .
ALTER DATABASE END BACKUP;
ALTER DATABASE BACKUP CONTROLFILE TO $BACKUP_DIR/control;
ALTER SYSTEM SWITCH LOGFILE;

As in the case of your cold backup script, you can make the hot backup script a part of a shell
script and run it at the specified backup time.

794 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

Making Partial Database Backups
You don’t need to back up the entire database at one time. You can back up a part of the database—
for instance, a tablespace or just a single datafile. Ordinarily, you can do a partial backup of a data-
base only if the database is running in archivelog mode, but there are a couple of exceptions. If a
database in noarchivelog mode has some read-only or offline-normal tablespaces, you can back up
those tablespaces by themselves.

You can make a tablespace backup with the tablespace either online or in an offline status,
depending on your needs. First, let’s look at an example of an offline backup of a tablespace. You first
take the tablespace offline, and then you back up the files that compose the tablespace.

SQL> SELECT file_name FROM dba_data_files
 WHERE tablespace_name = 'USERS';

 /u05/oradata/nicko/users01.dbf
SQL>

As you can see, only one datafile belongs to the tablespace USERS. In order to back up the
tablespace, you must back up this datafile. But first, take the tablespace offline, in case users are
accessing any of the datafiles in that tablespace.

SQL> ALTER TABLESPACE users OFFLINE;

Now, you can use an operating system utility like cp (or copy on a Windows system) to back up
the datafile belonging to the USERS tablespace.

SQL> host copy/u05/oradata/nicko /users01/dbf /u10/oradata/nicko/users01.dbf

Once you finish copying all the datafiles belonging to the tablespace (only one datafile in this
example), bring the tablespace online.

SQL> ALTER TABLESPACE users ONLINE;

In order to back up a tablespace without taking it offline, first, put the tablespace in backup
mode to let the database know that you’re starting an online backup:

SQL> ALTER TABLESPACE sysaux BEGIN BACKUP;
Tablespace altered.
SQL>

Next, copy the datafile(s) belonging to the online tablespace.

SQL> HOST copy /u01/oradata/nicko/sysaux01.dbf /u05/oradata/nicko/sysaux01.dbf
SQL>

Finally, issue the following command, to let the database know you’re finished:

SQL> ALTER TABLESPACE sysaux END BACKUP;
Tablespace altered.
SQL>

Monitoring User-Managed Online Backups
Several dynamic performance views help you monitor the online backups and troubleshoot the process.
Online backups could take a considerable amount of time, depending on the size of the database. It’s
not unheard of for the backup process to fail or hang up before it completes. As a DBA, you should
be aware of the steps you need to take under those circumstances. Table 15-1 lists the critical V$
views that help monitor and diagnose problems in backups.

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 795

Database Corruption Detection
Regular backups of a production database are imperative, but the backups won’t help if they are
unusable for some reason. Testing of backups is an often-ignored area of backup and recovery.
Unfortunately, many administrators realize its necessity under painful circumstances.

Backed-up database files may become useless during recovery for several reasons: corrupt data-
files and redo logs, accidentally overwritten files, defective tapes, or even nonexistent files. You must
get into the habit of regularly testing your production backups according to a schedule. This will help
you catch any data corruption. I use the term corruption to indicate the fact that the data is inconsis-
tent with what it should be. You are concerned here basically with what is known as block corruption,
which could be logical or physical.

Detecting Media Corruption
Media corruption can be caused by myriad factors, ranging from user error to bugs in the operating
system software, to bad disks, to a Logical Volume Manager (LVM) error, to faulty memory chips.
Media defects could lead to corruption in the control files, redo logs, data dictionary, table data, and
index data.

Your detection of media corruption anywhere in the database involves using scripts to monitor
your alert logs on a regular basis and using some Oracle features that enable early detection of problems.
You can almost completely prevent redo log and control file corruption by using multiplexing, at
both the operating system level and the Oracle level. Owing to the database’s sheer size and the fact
that its files are not multiplexed as a matter of course, data block corruption is of most concern to
DBAs. Try to catch the corruption messages in your alert logs early on and seek Oracle Worldwide
Support’s help in fixing any type of corruption issues in your database

Detecting Data Block Corruption
Data block corruption occurs when you have inconsistent data in tables or indexes. You usually end
up losing a significant amount of data if you can’t fix the corrupted blocks of data. Although you may
take several steps to prevent corruption, early detection of corrupted datafiles will help you in two ways:

Table 15-1. V$ Views for Monitoring Backups

View Description

V$BACKUP This view is of great help in determining whether any of the datafiles
are still in backup mode. Hot backups sometimes get hung up, and
you can query the status column of this table to find out whether any
file shows ACTIVE as the status. If a file does show this status, and
the backup is supposed to have been finished based on the schedule,
something obviously went wrong, and you need it to get the file(s) out
of hot backup mode.

V$DATAFILE This view lists all the datafiles that belong to all the tablespaces that
need to be backed up.

V$LOG This view displays all the online redo logs for the database.

V$ARCHIVED_LOG This view displays historical archived log information from the
control file.

V$LOG_HISTORY This view displays the redo logs that have been archived.

796 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

• It will enable you to find quick ways of salvaging all or as much of the affected data as possible.

• It will save you surprises during a recovery from media errors. Early detection of corruption
always will minimize the problem, because it will enable you to take the files offline and reduce
the potential damage.

You can use several methods to detect data block corruption. First, you can set a few initializa-
tion parameters to trap corrupted block information. Also, you can use utilities such as DBVERIFY
and DBMS_REPAIR and the ANALYZE command to enable you to detect data block corruption.
These methods are not mutually exclusive; rather, you should use them as complements to each
other, as each has its own appealing features. The following sections cover the use of each of these
techniques.

Setting Initialization Parameters

You can use the initialization parameter DB_BLOCK_CHECKSUM to force Oracle to perform check-summing,
which involves the computation of checksums for every data block and its storage in the data block
header. When the data is read, the checksums are compared and corrupt data blocks are identified.
Oracle recommends that you leave the DB_BLOCK_CHECKSUM parameter at its default setting of TYPICAL
(same as TRUE in previous versions). According to Oracle, using this feature in the TYPICAL mode causes
only an additional 1 to 2 percent overhead. In the alternative FULL mode, it causes a 4 to 5 percent
overhead.

The DB_BLOCK_CHECKING parameter is more sophisticated, and it checks data and index blocks
only when the blocks are actually changed. It also detects corruption before the data blocks are marked
corrupt. The default for this parameter is OFF. The other possible values are LOW, MEDIUM, and FULL.
Block checking may cause a 1 to 10 percent overhead; the overhead is directly linked to update and
insert operations in your database. Oracle recommends that you set this parameter value to FULL, if
you can handle the additional overhead. You can set this feature by including it in the init.ora file,
as in this example, which sets it to LOW:

DB_BLOCK_CHECKING=LOW

You can also set it dynamically using the ALTER SESSION statement:

SQL> ALTER SESSION SET DB_BLOCK_CHECKING=LOW;

You can specify the DB_ULTRA_SAFE initialization parameter to control the values of the DB_BLOCK_
CHECKSUM and the DB_BLOCK_CHECKING initialization parameters. If you leave DB_ULTRA_SAFE at its
default value (OFF), the database sets the values for the two corruption-related parameters at TYPICAL,
which involves minimal checks and thus a smaller CPU overhead. If you set DB_ULTRA_SAFE to the
value DATA_ONLY or DATA_AND_INDEX, the database will set the value of the two corruption-related
parameters to FULL, which results in more intensive corruption checking.

Using the ANALYZE Command

You can use the ANALYZE command to catch corrupted data blocks. The following command verifies
each data block in the customer table, and if it finds any corrupted blocks, it adds the suspect rows
to the invalid_rows table:

SQL> ANALYZE TABLE customer VALIDATE STRUCTURE;

In addition to checking for block corruption, the command will make sure that the index data
corresponds to the table data.

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 797

Using the DBVERIFY Utility

When you suspect data block corruption, you can use the Oracle-provided DBVERIFY utility. The
DBVERIFY tool is used from the operating system level. It checks the structural integrity of the data-
base files for corruption.

To illustrate the use of DBVERIFY, the following example verifies a file on a Windows platform
(the command works in the same way on UNIX platforms). You can easily write a script that will
perform the datafile verification and use crontab to schedule it on a regular basis. Listing 15-10
shows the results of using the DBVERIFY utility.

Listing 15-10. Output of the DBVERIFY Utility

$ dbv file=/u01/orcl/oradata/system01.dbf
DBVERIFY: Release 11.1.0.6.0 - Production on Sun Mar 30 15:53:46 2008
Copyright (c) 1982, 2007, Oracle. All rights reserved.
DBVERIFY - Verification starting :
FILE = =/u01/orcl/oradata/system01.dbf
DBVERIFY - Verification complete
Total Pages Examined : 19200
Total Pages Processed (Data) : 4404
Total Pages Failing (Data) : 0
Total Pages Processed (Index): 1245
Total Pages Failing (Index): 0
Total Pages Processed (Other): 2663
Total Pages Processed (Seg) : 0
Total Pages Failing (Seg) : 0
Total Pages Empty : 10888
Total Pages Marked Corrupt : 0
Total Pages Influx : 0
Highest block SCN : 935681 (0.935681)
$

This example shows a simplified use of the DBVERIFY utility, which is invoked by the command
DBV on both the UNIX and Windows platforms. The keyword FILE indicates the datafile you want to
check for corruption. As you can see, the total pages marked as corrupt are 0, which means the data-
file is free of any structural integrity problems—it is not corrupted.

Using the DBMS_REPAIR Package

Though using the DBVERIFY utility is simple, it’s severely limited by the fact that it can’t be used to
fix corrupted data. In Oracle8i, Oracle introduced the DBMS_REPAIR package, which can detect and
fix data block corruption while datafiles are online. To use this utility, you first need to log in as the
user SYS and then create a pair of tables: the first needs to be prefixed with repair_, and the second
is called the orphan_key table.

Once you have created the table repair_table, you’re ready to run the DBMS_REPAIR package.
The repair_table table will log all the information about corrupt data. The CHECK_OBJECT proce-
dure of the DBMS_REPAIR package detects corrupted data blocks and recommends fixes. After the
execution of the CHECK_OBJECT procedure, the table repair_table is queried on the columns OBJECT_
NAME and CORRUPT_DESCRIPTION to identify if and what type of data block corruption exists.

I discuss various ways of fixing data block corruption in the next chapter, because one of the
ways to fix the problem involves restoring the database from backups.

798 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

ORACLE’S HARD INITIATIVE

RAID ensures only that data storage drives are redundant, so you can withstand the loss of some disks without losing
any data. What if you have a mirrored system, but the data that’s being written to a mirrored pair is corrupted? Both
the disks in the mirrored pair, of course, will hold corrupted data. Oracle has recently instituted a new initiative, Hard-
ware Assisted Resilient Data (HARD), to prevent data corruption before it occurs. Oracle will incorporate special data
validation algorithms inside the storage devices sold by participating vendors in the HARD Initiative, thus preventing
corrupted data from being written permanently to disk. The HARD Initiative is designed to address problems of the
following nature:

• Operating system overwrites of Oracle data

• Partially written blocks and lost writes

• Physically and logically corrupt blocks being written

• Blocks being written to the wrong locations

Enhanced Data Protection for Disaster Recovery
The backup techniques you’ve seen in this chapter will protect your database from unexpected disk
and other hardware failures. If you have a well-designed mirroring or a RAID-configured disk system,
you’ll have built enough redundancy into your system to survive ordinary disasters. However, even
the most stringent backup systems are no guarantee that you have a high-availability system in place. A
disaster could easily put your organization data resources out of commission, causing severe service
interruptions. For events like those, you need more than the ordinary backup systems in place—you
need a high-availability strategy in place.

High-Availability Systems
A high-availability system will ensure almost continuous data availability in the face of disasters
of just about any kind. The key to providing such high availability is to have multiple data systems
using various architectures. Oracle provides several alternatives, including the following:

• Oracle Real Application Clusters: Oracle RAC uses multiple Oracle instances on multiple nodes
(servers) to connect to a single database. In the event of a node failure, the surviving nodes
recover the failed instance while providing continuous service to the users, who aren’t aware
that anything went wrong. Oracle RAC provides high availability, and under some circum-
stances, it can also enhance performance and provide scalability. However, if the single
database goes, everything goes with it, the multiple nodes notwithstanding. You can start
at http://www.oracle.com/technology/products/database/clustering/index.html to learn
more about Oracle RAC.

• Oracle Streams: Oracle’s Streams provides high availability by maintaining a distributed data-
base system. Changes from the source database are captured and sent to other databases.
High availability is ensured because the failure of one site means customers are switched over
to a different site, and they can continue selecting and updating data as before.

• Oracle Data Guard and standby databases: Oracle provides the standby database concept,
where you can have your primary production database update a secondary database in a
different location on a continuous basis. Oracle Data Guard helps you administer sophisti-
cated standby database setups so you can quickly failover from the production database to a
standby database in the case of a site disaster, for example.

CH A PT E R 1 5 ■ B A CK IN G U P D AT AB A SE S 799

Oracle Data Guard and standby databases are frequently used to provide disaster recovery, data
protection, and high availability. Let’s take a quick look at how these work.

Oracle Data Guard and Standby Databases
The standby database feature has been provided by Oracle for many years. Oracle Data Guard is the
management and monitoring layer through which the standby databases are maintained. The standby
databases are kept up-to-date by propagating changes from the primary server continuously.

In the event of a disaster, a standby database is activated and brought online as the primary
database. Besides providing you protection against a total destruction of the primary database, the
standby database can also be used for reporting purposes.

The databases maintained in an Oracle Data Guard configuration can be in the same LAN-based
location, or they can be in a much wider WAN-supported network. LAN-based local standby data-
bases offer faster failure capabilities, and WAN-based databases are a better bet against a catastrophic
disaster affecting your data center or local sites. You can configure a primary database and several
standby databases. You can reduce downtime to less than a minute by choosing the proper protec-
tion level when you set up the standby databases. Here is a brief summary of the many benefits of
using the Oracle Data Guard standby database feature:

• High availability

• Protection against disasters

• Protection against physical data corruption

• Protection against user errors

• Failover and switchover capabilities, which can be used for both planned and unplanned
switching of production and standby databases

• Geographical separation of primary and secondary servers through Oracle Net

Oracle provides the excellent Oracle Data Guard Broker to help create and manage the Oracle
Data Guard configurations. The Oracle Data Guard Broker can support up to ten databases (one
primary and nine standby) at a time. The Oracle Data Guard Broker can manage tasks such as log
application, log transportation, and switchover or failover from primary to secondary. The Oracle
Data Guard Broker offers two interfaces: a command-line interface and a GUI called the Data Guard
Manager.

The Oracle Data Guard Broker is a great tool, in that it automates the many tasks involved in
managing complex standby database groupings. It also automates the often-complex networking
aspects of maintaining standby databases.

■Note Oracle Data Guard isn’t meant for maintaining a low downtime. It’s meant to serve in a disaster-protection
capacity and to provide for an alternative database during scheduled maintenance of the production database.

Physical and Logical Standby Databases

Standby databases come in two flavors: physical and logical. Even the logical database, contrary to
what its name implies, is a real standby database. Logical and physical standby databases are main-
tained in the same fashion: by propagating changes from the main production (primary) database to
the standby database.

Physical standby databases are updated by applying the primary database’s archived redo logs
using the arch background process. However, the LGWR process can also be used to transfer the redo

800 CH AP T E R 1 5 ■ B A CK IN G U P DA TA B AS E S

log data from the primary to the standby databases. Physical standby databases are identical to the
production database. A physical standby database must undergo a constant recovery process for it
to be in tune with the production database.

Logical standby databases, on the other hand, use the same archived logs to derive transaction
information, which is applied to the standby database using SQL statements.

The big difference between the two standby databases is that you can’t use a physical standby
database for reporting while you’re performing recovery on it. However, you can continuously access a
logical database for reporting and querying, even while you’re performing recovery on it. You can
have a maximum of nine logical and physical standby databases in one Oracle Data Guard configuration.

Both logical and physical standby databases have their own benefits and drawbacks. The physical
standby database is the traditional Oracle standby database, and it is based on applying redo logs
from the production server to recover. There are no data limitations—all types of DML and DDL can
be propagated mechanically with the application of the redo logs.

Protection Modes

You can choose three data protection modes when you use the Oracle Data Guard feature to main-
tain standby databases. The protection modes are a reflection of the trade-off between availability
and performance. The following modes are available:

• Maximum protection mode: This mode, also called the double failure protection mode, offers the
highest level of protection. This mode guarantees that no data loss will occur if your primary data-
base fails. To ensure this protection, the redo data must be written to both the primary database’s
online redo log and the standby redo log on at least one standby database, before a transaction
can commit. The primary database will shut down if it can’t write redo data to at least one of
the secondary database redo log files.

• Maximum availability mode: This mode, also known as instant protection mode, offers protec-
tion from the failure of the primary production database. You get the highest level of data
protection possible while keeping the primary database available. The redo data from the
primary server is written asynchronously following the committing of the transactions on the
primary server. You could lose your primary database, your standby database, or the network
connection connecting the two, without losing any data under this data protection mode. If
you lose the connection to the standby database, the primary server stops shipping changes
to it, but doesn’t shut down.

• Maximum performance mode: If you don’t need protection against a zero loss of data, but you
would like to keep the production database’s performance at its peak level, this is the mode of
protection you should choose. The primary database doesn’t wait for confirmation from the
secondary database before committing its changes. If the primary database fails, the standby
database might miss some changes that were already committed on the primary.

As you can see, each mode is designed to provide either a greater amount of performance or a
greater amount of data protection. It’s up to the individual organization to make a choice between
them, based on the firm’s needs.

801

■ ■ ■

C H A P T E R 1 6

Database Recovery

A database can be unavailable for use for a number of reasons, including a system crash, a network
failure, a media failure, or a natural disaster. The keys to a successful recovery, of course, are solidly
tested backups and regular recovery drills using those backups.

Database recovery is a rather complex topic, and practicing the recovery techniques is essential
to a successful recovery. The new Flashback recovery techniques are great alternatives to several
more drastic traditional recovery techniques, and you should be comfortable with using these tools.
This chapter discusses the important Oracle recovery techniques, but you should also review the
Oracle manuals concerning backup and recovery, and you should simulate different types of recovery so
you’re ready for the real thing, should the need arise!

In this chapter, I’ll cover the following topics:

• Types of database failures (system failure, media failure, and so on)

• Automatic crash/instance recovery vs. user-initiated media recovery (the latter being the
main focus of this chapter)

• Recovery using Recovery Manager (RMAN)

• Oracle Database 11g’s new Flashback-related techniques

Besides having to recover from media failure, you may also encounter situations where data
blocks are corrupted, leading to a potential loss of data. You can take steps to prevent data corrup-
tion, and you can salvage most of the uncorrupted data from the data blocks using special Oracle-
provided packages. You’ll learn how to use these techniques in the latter part of this chapter.

Recovery is a process in which mistakes can be very expensive in terms of data loss. Your success
during a recovery process directly corresponds to your understanding of backup and recovery concepts
and your knowledge of which techniques to apply for different kinds of media losses. At the very end
of this chapter, a set of recovery scenarios will outline the steps to be followed during these various
types of recovery.

Types of Database Failures
As a DBA, your most important task is to safeguard the enterprise data and enable users to access it
with as few disruptions as possible. In the previous chapter, you learned how important it is to have
a proper backup and recovery process in place. Your database could stop functioning for a number
of reasons, some of them mechanical and others due to user errors or natural disasters, as outlined
in the next few sections.

802 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

System Failures
The most common system failures are hardware-related failures. A disk drive controller may fail, or
the disk head could be defective. Some of the system peripherals or controllers can also malfunc-
tion. You may have a problem with a CPU on your system, or the memory chips may turn out to be
defective. Of course, you could always end up with a power supply–related failure, especially if you
aren’t using uninterrupted power supplies. Software-related problems could result from problems
on either the operating system side or the Oracle server side. The database might crash without any
notice upon hitting a server bug. Similarly, the middle-tier software could cause the network to fail
or it could generate other problems.

If you have only one instance running and your entire system goes down, there’s really not a
whole lot you can do. If you have mission-critical systems, you can prevent the downtime by using
a cluster of several nodes, thus avoiding a single point of failure. Oracle offers Real Application Clusters
(RAC), which involves running several instances from different servers connecting to a single database.
When one node or server goes down, the others can take over within seconds, without any noticeable
disruption in service. Oracle also offers the Transparent Application Failover feature, which you can
use in tandem with RAC to failover clients transparently from one server to the other.

Data Center Disasters
Data center disasters could range from a tornado to a fire to a terrorist attack. I discussed the Oracle Data
Guard feature, which makes use of standby databases, in Chapter 15. Standby databases provide
good protection against a data center disaster. Your business will continue to run without any inter-
ruption, because all the changes made to your operational database are sent to a duplicate standby
database over the network. In a disaster recovery situation, you just turn the duplicate database into
your main production database, with almost no disruption and no loss of data.

You can also use Oracle Streams to maintain a distributed database system so a remote distributed
database can take over from the primary production system if it suffers a total failure.

Human Error
People can and do make mistakes. DBAs or system administrators can make critical errors that might
put their databases in jeopardy. For example, you could accidentally run the wrong batch job,
producing data that is meaningless or wrong.

If you have entered incorrect data into a table or deleted some data in error, you have several
ways to get out of this jam. You can use Oracle’s Flashback Query feature to query old data and replace
the lost or wrongly entered data without taking the database offline. Chapter 8 dealt with various
Flashback features that use undo data. In this chapter, I discuss the Flashback Database and Flashback
Drop features, which enable you to perform a database or table recovery without restoring datafiles.

You can also use Oracle’s LogMiner tool to read your redo logs and undo changes to the data-
base. You can use Data Pump Export and Import to replace the affected tables, but you may lose
some data in the process. Or, you can perform a point-in-time recovery (PITR) to recover the data-
base or a tablespace to a point in time before the problem occurred. However, the new Flashback
features are a better alternative in most cases, as you’ll see later in this chapter.

Media Failures
The most serious recovery issues are those related to media problems. Damage to disks that prevent
them from being read from or written to is the most serious scenario, and you’ll have to depend on
your backup copies of the database and log files to make the database current without any permanent

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 803

loss of data. If your datafiles or control files are on the inaccessible media, you’ll most likely end up
doing a recovery.

In some situations, you may perform a recovery even if there’s no media damage—for instance,
when there’s a serious case of user error. If you have to restore a backed-up datafile or you take a file
offline using the OFFLINE IMMEDIATE option, you’ll need to perform a media recovery. Two factors are
critical when disasters occur: the amount of data that becomes unavailable and needs to be replaced
from backups, and the amount of time it might take to replace the data.

Failures and Data Repair
As I mentioned earlier, an instance failure doesn’t require data recovery. Similarly, a network failure
or an abnormal shutdown of an Oracle background process or a problem caused by an out-of-space
condition may lead to temporary disruption of work in the database, but none of these situations
call for a data recovery.

You need to use data repair techniques only when an error is caused by a media failure or a user
error. Let’s take a closer look at these two types of critical failures:

• Media failures: Media failures occur when the database can’t read from or write to a file. You could
encounter such a media failure because a file was mistakenly deleted, corrupted, or overwritten.
Mechanical problems such as head crashes can also cause a disk failure. What happens as a result
of a media failure depends on whether you have a duplicate copy of an affected file. For example,
if a redo log file is affected, the database will continue operating without a problem if you’ve
multiplexed the redo log file. If, on the other hand, a datafile error that belongs to the System
tablespace encounters errors, the database will shut down immediately.

• User errors: User errors are errors in data entry or accidental deletion of data or dropping of a
table. You can use multiple techniques to undo the effects of a user error.

Oracle offers several methods to repair failures resulting from media failures and user errors. Of
course, you are always going to keep the appropriate backups of the database, but restoring and
recovering backups isn’t the only solution available to you. Depending on the type of problem you
are dealing with, you can use of one of the following methods to fix the failures:

• Data Recovery Advisor: The Data Recovery Advisor diagnoses failures, presents repair options,
and can execute those options once you approve them. The advisor recommends both manual
and automated repair options and can determine the best repair option for you. You can
access the Data Recovery Advisor either through the RMAN command line or through the
Enterprise Manager. The database automatically detects failures and records them in the
Automatic Diagnostic Repository. You can also run a proactive data integrity check or check
for block corruption by executing the VALIDATE command. No matter whether the failure you
are dealing with was detected through a proactive or a reactive check, using the Data
Recovery Advisor should be your first step to repairing persistent failures in your database.

• Flashback techniques: Oracle Flashback features include features that are useful in viewing
past states of data as well as backup- and recovery-related features. Except for the Flashback
Drop feature, all the Oracle Flashback features rely on undo data. The main Oracle Flashback
features that help you with fixing failures relating to user errors or logical data corruption are
as follows:

• Flashback Database

• Flashback Table

• Flashback Drop

• Flashback Transaction Backout

804 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

I dealt with the Flashback Table feature in Chapter 8. I discuss the Flashback Database and
the Flashback Drop features later in this chapter. In addition, Oracle Database 11g has intro-
duced a brand-new Flashback feature named Flashback Transaction Backout, which I
discuss in this chapter as well.

• Media recovery: Media recovery is probably the most drastic way of fixing a persistent failure.
If you lose a datafile, for example, you must restore a copy of that datafile from the backups.
However, restoring the backups only gets you so far, since the backups are from a previous
point in time. Depending on the frequency of your backups, they could be several days or even
weeks old. To update the restored file, then, you must next recover the database by updating
with the archived redo logs and online redo logs, which is generally what is known as media
recovery. You can use several types of media recovery, as explained here:

• Block media recovery

• Datafile media recovery

• Complete recovery

• Point-in-time recovery

In this chapter, I discuss the three major methods of repairing persistent failures in the data-
base. However, before we start discussing the recovery alternatives, you first need to become familiar
with the basic concepts of Oracle database recovery.

The Oracle Recovery Process
You can broadly divide Oracle database recoveries into crash and instance recoveries on one hand
and media recoveries on the other. Let’s clarify the differences between these two types of recoveries.

Crash and Instance Recovery
Oracle automatically performs crash recovery when a single instance suddenly fails, or when all
instances of a multiple-instance Oracle RAC fail. Also, if you shut down your database with the
SHUTDOWN ABORT command, Oracle has to perform a crash recovery. Instance recovery is very similar
to crash recovery, but it applies to cases where a surviving instance recovers the failed instances in
an RAC setup. The essential point about crash and instance recoveries is that you don’t apply any
backed-up datafiles or archived log files during recovery. Oracle uses only the current datafiles and
online redo log files to bring the database up to date.

Crash and instance recovery involves the following two-step procedure:

1. Roll-forward step: During this step, formally called cache recovery, the database applies the
committed and uncommitted data in the current online redo log files to the current online
datafiles.

2. Rollback step: During this step, formally called transaction recovery, the database removes
the uncommitted transactions applied in the previous step, using the undo data in the undo
segments.

As you know, when the database suddenly crashes, not all the committed transactions will have
been written to disk. If your database is large, and the redo log files are also large, it can take a long
time for the roll-forward and rollback to complete. By using Oracle’s Fast-Start Fault Recovery function-
ality, you can substantially reduce the downtime resulting from system-related outages.

The roll-forward phase of a crash recovery uses the redo logs to see what changes need to be
applied to disk. Redo application begins at a point in the redo logs known as the thread checkpoint
redo byte address. This is the time when the last checkpoint was done before the crash. Because all

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 805

the data in the buffers is written to disk during a checkpoint, only changes after this last checkpoint
position will need to be recovered. Fast-Start Checkpointing is the frequent writing of the dirty data-
base buffers in the cache to disk by the database writer (DBWn). Fast-Start Checkpointing is the basis
of Oracle’s Fast-Start Fault Recovery feature. You can minimize the time required for crash recovery
by frequently advancing the checkpoint position. Oracle uses a two-pass technique to perform a
recovery using the checkpoints. In the first pass, it determines which blocks in the redo logs need
recovery, and in the second pass the database applies the required changes.

Starting with Oracle Database 10g, the database automatically performs checkpoint tuning by
deciding when to write out dirty buffers with the least impact on throughput. All you have to do is
specify the time (in seconds) that a crash recovery should take by setting the FAST_START_MTTR_TARGET
parameter. The maximum value for FAST_START_MTTR_TARGET is 3,600 seconds (1 hour) and the
default is 0. (If you set the value to more than 3,600 seconds, Oracle resets it to 3,600 seconds.) Even
if you set the parameter to a large value, checkpointing is enabled by default. The goal of automatic
checkpoint tuning is to write as many dirty buffers and perform checkpointing as frequently as possible
without increasing the overhead and hurting database throughput.

The following example shows how to set FAST_START_MTTR_TARGET so that crash recovery will
take no longer than 1 minute :

SQL> ALTER DATABASE SET FAST_START_MTTR_TARGET=60;

■Note You can also set the value of the FAST_START_MTTR_TARGET parameter in the initialization parameter file.

The target of 60 seconds in the preceding example may not be met exactly by Oracle the very
first time during a crash recovery because Oracle initially uses an estimate of the I/O rates on your
system. Oracle constantly monitors your system to measure the actual I/O rates, and over time it
uses this information to estimate the recovery time more precisely. Every 30 seconds, Oracle estimates
the current mean time to recover (MTTR) and places this value in the V$INSTANCE_RECOVERY
table. You can query this table, as shown next, to see what Oracle’s current estimated MTTR is and
adjust your FAST_START_MTTR_TARGET value accordingly.

SQL> SELECT recovery_estimated_ios, estimated_mttr, target_mttr
 FROM v$instance_recovery;

RECOVERY_ESTIMATED_IOS ESTIMATED_MTTR TARGET_MTTR

 994 20 52
SQL>

■Note Using Fast-Start Fault Recovery can lower your crash-recovery times to less than a minute. Although there
is some concern that more frequent checkpointing has a performance cost, studies have shown that the performance
hit is negligible.

Faster Instance Startup
When you have very large SGAs, it can sometimes take a considerable amount of time for the instance
to start. Oracle traditionally used to wait for the initialization of the entire buffer cache before starting
the instance, which accounted for most of the delay. Oracle initializes only about 10 percent of the
buffer cache before starting up the instance and opening the database. The remaining buffer cache
is initialized by the checkpoint process after the database is opened.

806 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

Media Recovery
Unlike crash and instance recovery, media recovery isn’t automatic—the DBA has to initiate the
recovery process. You need the following four items to perform a complete media recovery:

• A full backup of all datafiles

• Archived redo logs since the last full backup

• A control file copy

• Current online redo logs

Oracle media recovery ensures the recovery of up-to-the-minute data, provided you have a copy
of a recent backup and archived redo logs. The archived logs are transaction journals, and they contain
the complete set of changes made to the database since the last backup. By using the archived redo
logs and contents of the online redo logs, you can bring your database up to date. You’ll see quite a
bit of discussion on recovering databases from a media failure in this chapter.

Dropping a Datafile

Before you can begin a complete media recovery, you must take the datafiles to be recovered offline.
You can drop a datafile directly from SQL*Plus with the DROP DATAFILE command. When you issue
this command, the datafile is removed both from the tablespace and the operating system as well.
Here’s an example:

SQL> ALTER TABLESPACE TEST DROP DATAFILE '/u01/app/oracle/test/test01.dbf';

If the datafile you’d like to drop is the only datafile in a tablespace, you must drop the tablespace
itself. The tablespace in which the datafile resides must also be online and read-write.

Restoring vs. Recovering

Using backed-up copies of datafiles and control files to replace lost or damaged datafiles and control
files is called restoring. Bringing the datafiles up to date using backed-up datafiles and archived redo
log files is called recovery.

The Media Recovery Process

There are two steps in an Oracle media recovery process: first you restore a backup of the datafiles
and make them available to Oracle. Then comes the recovery, when you bring the datafiles up to
date by applying the archived redo log files and the online redo log files.

The recovery process itself has two steps:

• Cache recovery (rolling forward): The redo log contains both committed and uncommitted
changes. As you know, Oracle writes to the redo log first and the datafiles later. When you
restore older files from backups to replace lost or damaged datafiles, those files are missing all
the changes made since the time of the backup. The process of applying the contents of both the
archived and redo log files to bring the datafiles up to date is called cache recovery or rolling
forward. Once you complete cache recovery, you will have gained all your committed changes,
but unfortunately, you’ll also have all the uncommitted changes that are part of the redo log.

• Transaction recovery (rolling back): During the application of the redo log data to the datafiles,
both committed and uncommitted changes get applied. The uncommitted changes must
now be removed from the datafiles. Oracle uses the prechange versions of data stored in the
undo segments to remove these uncommitted changes. This second step is called transaction
recovery or rolling back. Oracle gets the undo data through cache recovery, which regenerates
the undo segments from the redo log.

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 807

■Note If you use RMAN, you can recover your datafiles with incremental backups, which are backups that
contain only the changes after a previous backup. Chapter 15 explains RMAN incremental backups in detail.

Open and Closed Media Recovery

It’s important to remember that a database failure or even a disaster need not involve the entire
database. Users can continue to work away on most parts of the database while another part is being
repaired with the help of backups.

Open recovery is recovery performed while the database is open to users. Only the affected data-
files or tablespaces are taken offline for recovery. You can continue to run the database as usual, with
service being interrupted only for those transactions that involve the damaged part of the database.

A closed recovery is a recovery for which you need to shut down the database completely. You’ll
need to use closed recovery when your entire database needs to be recovered or when your system
or rollback (undo) datafiles are damaged.

Time Needed for Recovery

The time it will take you to perform a recovery depends on the following factors:

• On what media do you have your archived redo logs? If the logs are all on tape, it will take
much longer to perform the recovery than if they’re on disk. It’s a good idea to keep an extra
copy of the logs on disk somewhere.

• Are you using the parallel recovery feature? Parallel recovery, when it can be implemented,
will reduce the time needed to recover the database.

• Do you need to replace the disks right away, or can you get away with just moving the data-
files to a different good location?

• What’s your service contract for replacement and repair of parts on the server? Some companies
have a response time as short as 45 minutes from the initial call. Some may have a 24-hour
turnaround. Make sure you know and understand the implications of your company’s service
contract with the vendor of your system.

• How frequently do you perform backups? The more infrequently you perform backups, the
more logs need to be applied, and the longer the recovery time.

Complete and Incomplete Recovery

If you have a disk go bad on you, and you consequently have to restore and recover from backups,
naturally your goal will be a full recovery up to the time the problem occurred. On the other hand, if
you’re recovering your database due to user errors (such as incorrect data entry), your goal may be
to remove the errors from your database by recovering only up to the point when the incorrect activity
began. This is typically called incomplete recovery, and as you’ll see later on, you make the decision
about exactly when to stop recovering the database based on different criteria.

Complete recovery simply means a recovery with no loss of data. All the changes in the online
and archived redo logs are applied to the most recent backup of the database. Thus, the database is
brought up to date with the current point in time. You can perform a complete recovery at the data-
base, tablespace, or datafile level.

Incomplete recovery implies data loss, because you recover only part of the data that existed
when the database failure occurred. That is, you apply only some of the archived and current log
records to the database. Your database after recovery is consistent, but it’s not an up-to-date version.
You could have several reasons for wanting to do an incomplete recovery, including user error, loss

808 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

of necessary archived log files, or loss of an online redo log. When you perform an incomplete recovery,
you always open the database after resetting your redo logs. This will, in effect, give you a new version
or incarnation of the database. You can make an incomplete recovery only at the database level, not
at the tablespace or datafile level.

During both complete and incomplete database recovery, you can’t open your database to users.
When one or more tablespaces have been logically damaged (due to incorrect data entry, for example),
you can perform a tablespace point-in-time recovery (TSPITR). Since you don’t have to perform an
incomplete media recovery of the entire database, recovery will be much quicker. In addition, you
don’t have to make all of your database inaccessible to users during recovery. TSPITR techniques are
cumbersome, and you may want to first consider using the Flashback techniques like Flashback
Table and Flashback Drop instead.

Block Media Recovery

If only a few data blocks are corrupted, and the rest of the datafile is good, you should consider
performing a block media recovery instead of a datafile recovery. You can perform a block media
recovery only through RMAN. Even if you’re using your own backup and restore techniques, you can
still perform a block media recovery through RMAN by using the CATALOG command to first register
the necessary datafiles and archived redo log backups with RMAN.

Media Recovery vs. Nonmedia Recoveries
Most traditional recoveries are file-based media recoveries. Whether you use RMAN or user-managed
recovery techniques, recovery traditionally has meant the restoration and recovery of the datafiles,
archived redo logs, and control files. If you lost an entire database or entire datafile due to media
problems, you had no recourse but to use the file-based recovery techniques. However, if you were
trying to undo user errors or to recover an accidentally dropped table, traditional recovery techniques
proved to be overkill and were time consuming.

Over the last few years, Oracle has developed several non-file-based recovery techniques. In
these techniques, the emphasis isn’t on restoring and recovering files, but on using either undo data,
redo logs, or the new Flashback logs to restore lost objects. Here’s a list of these non-file-based recovery
techniques:

• Flashback: Flashback techniques enable you to recover dropped tables or restore a table or a
database to a past point in time. Chapter 8 dealt with the Flashback Query, Flashback Versions
Query, Flashback Transactions, and Flashback Table techniques, since that chapter discussed
undo data, which is the basis for these techniques. In this chapter, as I’ve mentioned before,
I’ll cover the other two important Flashback techniques—Flashback Drop and Flashback
Database.

• LogMiner: Oracle’s LogMiner utility lets you mine your redo logs, both online and archived,
to uncover and undo erroneous changes to your database. I discuss the LogMiner technique
later in this chapter.

• Data Pump: You may also consider Oracle’s Data Pump Export and Import tools as alterna-
tive tools for recovering lost objects. Chapter 14 discusses the Data Pump technology in detail.

Although the traditional file-based recovery techniques have been faithful standbys for a long
time, you should consider using the alternative techniques wherever you can use them instead of the
older techniques. For example, you can use the Flashback Database feature to revert your datafiles
to their state at a past time, thus achieving the same end result as a file-based point-in-time recovery,
but more quickly, since you don’t have to restore backed-up datafiles, and you apply only a limited
amount of redo compared to media recovery.

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 809

REDUCING YOUR VULNERABILITY

No aspect of an Oracle DBA’s job is more dreadful, or even scary, than recovering databases. Recovery techniques
aside, the best way to protect yourself is to reduce your vulnerability in the first place.

The most common errors on a day-to-day basis are hardware related. Disks or the controllers that manage them fail
on a regular basis. The larger the database (and the larger the number of disk drives), the greater the likelihood that on
any given day a service person is fixing or replacing a faulty part. Because it is well known that the entire disk system
is a vulnerable point, you must provide redundancy in your database. Either a mirrored system or a RAID 5 disk system,
or a combination of both, will give you the redundancy you need.

If your whole site goes down, you recover without a noticeable disruption if you have a distributed replication data-
base or standby database in place. Otherwise, your uptime will be seriously compromised by a major problem at the
production data center.

Keep a complete redundancy set somewhere on the production server. This redundancy set should consist of the
latest database backups, the archived redo logs since that backup, and a multiplexed copy of the online redo log files
and the control file. You can also include the other Oracle files, such as the init.ora or SPFILE, tnsnames.ora,
and listener.ora.

The key to a successful recovery is adhering to the simple admonition “Be prepared” by having the right backups,
which you know have passed a rigorous (and recent) testing process. In addition, your recovery concepts must be
crystal clear in your head. Although you can pore over the books and manuals and probably (eventually) figure out
the right sequence of actions for any DBA task, I don’t recommend that course of action in the case of database
recovery for a number of reasons. First, there’s enormous psychological pressure to bring the database up as soon
as possible. Second, your normal tranquil work circumstances are transformed rather suddenly and rudely, as your
cubicle turns into an overcrowded war room of edgy and frustrated managers—not exactly a great time to be hitting
the books. Third, you need to conserve as much time as you can by knowing the drill ahead of time for any number
of potential problem situations. And fourth, database recovery is one of those areas where the decisions you make
and the commands you execute aren’t always retractable. You’ll be traveling a one-way street during those times,
and any errors you make in haste or ignorance tend to cost you dearly.

In this chapter, I explain several techniques for restoring and recovering databases. Many more techniques are enumer-
ated in the Oracle manuals. It’s sometimes bewildering to see the types of recovery situations you can encounter.
However, if you have a good set of backups and you’re running your database in archivelog mode, you can recover
from the loss of any datafile or control file. The only situation in which you might have data loss is if your online redo
log files are lost. Therefore, if you multiplex your online redo log files and also mirror them, there’s very little chance
you’ll ever lose any data, even with a major problem involving your disk drives. But if all your drives are inaccessible,
mirrored or otherwise, you do have a disaster on your hands, and you need to have an alternative database to switch
over to, or at least you need to have an offsite disaster recovery system in place.

In the scenarios of database recovery that follow, I deal only with the recovery of a database running in archivelog
mode. The reason is obvious: just about all critical databases are run in archivelog mode. If you understand the
recovery procedures in the following sections, you can restore a noarchivelog mode database very easily.

Performing Recovery with RMAN
It’s critical to have the right log files during a recovery, and RMAN, with its automatic maintenance
of the necessary files, can be a big help. RMAN can help you perform all the user-managed types of
recovery, and it provides several other benefits discussed in the following section. This chapter focuses
on RMAN recovery techniques, although I do discuss user-managed recovery techniques briefly.

As was explained in Chapter 15, you can use RMAN to make either image copies that are similar
to operating system file copies or proprietary backup sets. If you have RMAN image copies, you can

810 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

directly use them to perform a recovery. However, if you have backup sets, you must first extract the
backup files using the RESTORE command before you can perform a recovery.

■Note You can use the database backups instead of the actual database files to transport tablespaces. Thus, you
don’t need to make a running database’s datafiles read-only in order to transport tablespaces.

RMAN’s Advantages for Recovery
RMAN provides undeniable benefits when compared to the traditional user-managed recovery
methods. Here’s a summary of what RMAN offers during a database recovery:

• RMAN selects and applies the necessary data and log files during recovery.

• RMAN selects the most recent backup sets and image copies to recover with.

• RMAN can perform recovery at the data block level with the block media recovery feature
(an option not otherwise available), which dramatically reduces recovery time.

• RMAN provides restore optimization, a great time-saving feature that enables you to bypass
datafiles that are okay during the recovery process. RMAN can check the files that need to be
restored and avoid recovering bad files.

• RMAN allows you to recover by applying incrementally updated backups, which drastically
reduces recovery time.

• RMAN provides the DUPLICATE command, which lets you easily create clones of your produc-
tion database.

RMAN restores datafiles from backups and applies the necessary archived redo logs to bring the
database up to date. RMAN knows, by looking into its recovery catalog, which files it needs. You thus
avoid the extremely labor-intensive and error-prone manual intervention in a typical user-managed
recovery.

■Note The recovery catalog, as you learned in Chapter 15, provides so many benefits that you should plan on
using it if RMAN is a part of your backup and recovery strategy.

One of the biggest advantages to using RMAN is that you can check whether your backups are
valid before performing a recovery. The following section explains how to validate backups taken
with RMAN.

Using VALIDATE BACKUP to Validate RMAN Backups
When you use RMAN to perform backup and recovery tasks, it’s easy to verify that a certain backup
not only exists, but also is usable. The LIST command shows information about backup sets, proxy
copies, and image copies recorded in the RMAN repository. You can use the LIST BACKUP command
in RMAN to view information about backup sets, backup pieces, and proxy copies. The LIST COPY
command shows information about all datafile copies, archived redo logs, and image copies of archived
redo logs. The LIST BACKUP SUMMARY command shows a summary of all RMAN backups.

The LIST commands show usable and unusable backups, backups that can and can’t be restored,
and expired and unavailable backups. You must use the RECOVERABLE option with the LIST command,
to list only those backups that can be used for recovery.

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 811

The VALIDATE BACKUPSET command checks the usability of RMAN backups. You can get the
backup set information by first using the LIST BACKUP command. You can then use the VALIDATE
BACKUPSET command to check a backup set’s usability.

Here’s an example of the use of the VALIDATE BACKUPSET command:

RMAN> VALIDATE BACKUPSET 1;
allocated channel: ORA_DISK_1
channel ORA_DISK_1: sid=155 devtype=DISK
channel ORA_DISK_1: starting validation of datafile backupset
channel ORA_DISK_1: reading from backup piece . . .
channel ORA_DISK_1: restored backup piece 1
piece handle=/u01/app/oracle/10.2.0/db_3/flash_recovery_area/NICKO...
channel ORA_DISK_1: validation complete, elapsed time: 00:00:34
RMAN>

The “validation complete” message on the last line is confirmation that RMAN considers the
specified backup set valid for a restore operation.

Using the RESTORE . . . VALIDATE Command
You can use the RESTORE . . . VALIDATE command to check whether a certain object of interest is
among RMAN’s backup sets. Here’s an example:

RMAN> RESTORE TABLESPACE users VALIDATE;
Starting restore at 29-JUN-05
. . .
Finished restore at 29-JUN-05
RMAN>

The RESTORE TABLESPACE users VALIDATE command asks RMAN to confirm whether it can restore
the users tablespace from its backup sets. The “Finished restore” message indicates only that the users
tablespace can be recovered if necessary—RMAN doesn’t perform an actual recovery of the tablespace.

Using the RESTORE . . . PREVIEW Command
In order to successfully restore a database or any part of it, RMAN should have access to all the necessary
datafiles and archived redo log files. RMAN provides a handy PREVIEW option you can use with the
RESTORE command, which lets you identify all the backup files necessary for a specific restore opera-
tion. You can then ensure that all the backups are available before issuing the RESTORE command.

Here are some examples of how you can use the RESTORE command with the PREVIEW option:

RMAN> RESTORE DATABASE PREVIEW;
RMAN> RESTORE TABLESPACE users PREVIEW;
RMAN> RESTORE DATAFILE 3 PREVIEW;

The RESTORE . . . PREVIEW command provides a detailed report of all backups that are neces-
sary for that RESTORE command to succeed. If you want a summary report instead, use the PREVIEW
SUMMARY option instead, as shown here:

RMAN> RESTORE DATABASE PREVIEW SUMMARY;
. . .
List of Backups
. . .
List of Archived Log Copies
. . .
Finished Restore at 29-JUN-05
RMAN>

812 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

Identifying Necessary Files for Recovery
You may need to perform a restore and recovery when you lose control files or datafiles. Your data-
base will shut down immediately if even one of the multiplexed control copies becomes inaccessible.
You then can take the appropriate action, as outlined in the “Recovering from the Loss of Control
Files” section of this chapter.

To identify which datafiles need recovery, you can run the following SQL statement:

SQL> SELECT FILE#, ERROR, ONLINE_STATUS, CHANGE#, TIME
 FROM V$RECOVER_FILE;

You can join the V$DATAFILE and V$TABLESPACE views, as shown here, to find out more
details about the files you may need to restore and recover:

SQL> SELECT r.FILE# AS df#, d.NAME AS df_name, t.NAME AS tbsp_name,
 d.STATUS, r.ERROR, r.CHANGE#, r.TIME
 FROM V$RECOVER_FILE r, V$DATAFILE d, V$TABLESPACE t
 WHERE t.TS# = d.TS#
 AND d.FILE# = r.FILE#;

RMAN Recovery Procedures
You really don’t have to do a whole lot of work during recovery if you’re using RMAN, since RMAN
automates the entire recovery process. You use the following RMAN commands to recover the data-
base (or a part of it):

• RESTORE: This command restores the entire database, a tablespace or a single datafile by itself,
control files, archived redo logs, and server parameter files from RMAN backup sets or from
image copies on disk. You don’t have to restore archived redo logs, since RMAN automatically
restores any necessary archived redo logs.

• RECOVER: This command will perform the actual media recovery by applying necessary
archived logs or incremental backups.

Before you use the RESTORE and RECOVER commands, you must place the database in the appro-
priate state. For example, if you are recovering a single tablespace, you can keep the database open
and take the tablespace offline, and once you are done recovering the datafile, you can bring the
tablespace online. However, if you’re recovering the entire database, you must first shut down the
database and then start it up in the mount mode before starting the restore and recovery process.
Then, after the RECOVER command executes without errors, you must open the database.

Recovering with Incrementally Updated Backups
There is overhead involved in taking full image copies of the database every night. In addition, it is
time consuming to perform media recoveries using archive logs. To reduce this overhead and recovery
time, you can use RMAN to roll forward the image copy of a datafile to a point in time simply by applying
incremental backups to image copies. For example, a daily incremental backup can be applied to a
base level 0 backup, which is taken once a week, say, on a Sunday. From Monday on, a daily incre-
mental backup is applied to this Sunday level 0 backup. On any given day during the week, after the
incremental backup for that day is merged with the level 0 backup, you’ll end up with an up-to-date
backup as of that day.

When you use incremental backups for recovery, you update the image copies with changes up
to the system change number (SCN) at which you took the last incremental backup. After you apply
the incremental backups, you must apply all archive logs (since the last incremental backup) as usual, to
bring the datafiles up to date. If RMAN has a choice between using an archived log or an incremental
backup to perform recovery, it chooses an incremental backup.

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 813

Chapter 15 explains the RMAN incremental backup feature in detail.

Monitoring RMAN Jobs
You can monitor the status of both an RMAN backup as well as a recovery job by using the V$RMAN_
STATUS view. This view shows all finished and ongoing RMAN jobs. Here’s a simple example:

SQL> SELECT operation, status from V$RMAN_STATUS;

OPERATION STATUS
---------------- ---------
REPORT COMPLETED
BACKUP COMPLETED
LIST COMPLETED
RESTORE PREVIEW COMPLETED
. . .
SQL>

Another highly useful data dictionary view for monitoring RMAN jobs is the in-memory V$RMAN_
OUTPUT view, which displays all the messages being put out by RMAN during a backup or recovery
job.

■Tip You can use the Database Control interface to perform most of RMAN’s backup and recovery tasks, including
point-in-time and Flashback tasks. The RMAN command-line client offers you more flexibility in complex recovery
situations, but the Database Control interface is far simpler to use in most situations.

User-Managed Recovery Procedures
Just as you can manage your own backups, user-managed techniques can be used to restore and
recover a database. It’s my firm belief that RMAN is vastly superior to the old-fashioned manual
method, but it’s a good idea to be familiar with both methods. When you use the user-managed
recovery method, you can learn a lot about the recovery process by watching the different steps that
Oracle goes through.

You should use the following general procedure during the user-managed recovery of databases
running in the archivelog mode. Specific situations demand different recovery strategies, but the
essential techniques are the same, no matter what type of file (control file, system tablespace file,
datafile, and so forth) you are recovering.

1. Decide whether you’re going to let users access your database during recovery. This decision
depends on the extent of the media damage—if most of the files are affected, you need to
start up the database in mount mode. If only a single datafile is affected, you can merely take
the tablespace to which the datafile belongs offline and leave the database itself open.

2. Restore the affected datafiles to their original location if possible or to an alternative location
after renaming them. You must also restore any necessary archived redo log files. The
V$RECOVERY_LOG and the V$ARCHIVED_LOG views list the names of archive log files. The
V$RECOVERY_LOG view lists only those archived redo log files that the database needs to
perform media recovery. If you have enough free space, restore the necessary archived redo
log files to the location specified by the LOG_ARCHIVE_DEST_1 initialization parameter. The
database will automatically locate the correct log during media recovery.

3. Use the RECOVER DATABASE, RECOVER TABLESPACE, or RECOVER DATAFILE command, depending
on the situation, to recover the entire database, a tablespace, or a datafile, respectively.

814 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

4. If any archive logs are needed to recover the database, tablespace, or datafiles, Oracle will ask
you to supply the archived redo logs, and you can recover up until the point of failure for a
complete recovery, or choose to recover to a point in time in the past, if you prefer an incom-
plete recovery.

5. If you did not open the database in step 1, open it now, using the ALTER DATABASE OPEN
command.

If you don’t want to recover to the point of failure—for instance, due to previous user errors or
if some of the necessary archived redo logs are missing—you can perform an incomplete recovery.

Typical Media Recovery Scenarios
The steps you take during a database recovery depend on the extent of the recovery and which of the
files (datafiles, control files, online and archived redo logs) are missing due to a media problem. The
following sections take you through several common recovery scenarios using RMAN and user-
managed recoveries.

Complete Recovery of a Whole Database
You may have to perform a complete recovery of the whole database when you lose several or all of
your datafiles. Before you recover the database, you must restore the backup files. Then you need to
apply all the available archived redo logs to the database. In the following sections, you’ll learn how
to do this with RMAN and with user-managed techniques.

Using RMAN for Whole Database Recovery

Assume that all the datafiles in your database are inaccessible due to a media malfunction. If you
have all your archived redo logs, you can restore your backups and do a complete recovery without
any loss of data.

To recover an entire database, first start the database but leave it in the mount position, as shown
in Listing 16-1. Thus, the database is not open to users while you’re restoring files and recovering the
database. (You can open the database if you are performing a tablespace recovery.)

Listing 16-1. Using RMAN to Start the Database

C:\> RMAN TARGET / CATALOG RMAN/RMAN1@NICK
Recovery Manager: Release 11.1.0.6.0 - Production on Mon Mar 31 11:25:29 2008
Copyright (c) 1982, 2007, Oracle. All rights reserved.
connected to target database (not started)
connected to recovery catalog database

RMAN> startup mount
Oracle instance started
database mounted
. . .
RMAN>

Next, you need to restore the datafiles that are lost. Because this is the recovery of an entire
database, you ask RMAN to restore all the datafiles from backup sets. The command is very simple:
RESTORE DATABASE. RMAN knows where the backed-up files are on disk, and it copies them to their
original locations. By default, RMAN will direct the server session to restore backups to the default

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 815

location, overwriting any previous files that are already there. If you wish, you can have RMAN copy
files to new locations by using the SET NEWNAME command, as shown here:

RMAN> SET NEWNAME FOR DATAFILE '?/oradata/trgt/tools01.dbf' TO '/tmp/tools01.dbf';
RMAN> RESTORE DATAFILE '?/oradata/trgt/tools01.dbf';

Listing 16-2 shows the output of the RESTORE DATABASE command.

Listing 16-2. The RMAN RESTORE DATABASE Command

RMAN> RESTORE DATABASE;

Starting restore at 29-MAR-08
Using channel ORA_DISK_1
channel ORA_DISK_1: sid=50 devtype=DISK
channel ORA_DISK_1: starting datafile backupset restore
channel ORA_DISK_1: specifying datafile(s) to restore from backup set
restoring datafile 00001 to C:\ORACLE\PRODUCT\10.1.0\ORADATA\NICK\SYSTEM01.DBF
. . .
channel ORA_DISK_1: restore complete
Finished restore at 29-MAR-08
RMAN>

Once RMAN restores all the datafiles, you need to synchronize them using the archived redo
logs. The RECOVER DATABASE command applies the archived logs to the restored files and synchro-
nizes the SCNs for all the datafiles and the control file. Listing 16-3 shows the output of the RECOVER
DATABASE command.

Listing 16-3. The RMAN RECOVER DATABASE Command

RMAN> RECOVER DATABASE;

Starting recover at 29-MAR-08
using channel ORA_DISK_1
starting media recovery
archive log thread 1 sequence 12 is already on disk as file
. . .
media recovery complete
Finished recover at 29-MAR-08
RMAN>

■Tip When you use RMAN, you don’t have to restore the archived redo logs—RMAN automatically applies
archived redo logs as necessary during the recovery process.

Finally, you need to bring the database online so users can access it once again:

RMAN> ALTER DATABASE OPEN;
Database opened;
RMAN>

Note that you can simplify the preceding steps for recovering the whole database by using the
following script:

816 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

RMAN> RUN {
 shutdown immediate;
 startup mount;
 restore database;
 recover database;
 alter database open;
 }
RMAN>

As you can see, RMAN makes the recovery of a database a breeze. You don’t have to specify the
location of any of the files that you need to restore. RMAN knows where to get the files from by looking
in the recovery catalog (or the control file).

Performing a Hot Restore with RMAN

In the previous example, I showed how you first had to restore the datafiles before recovering the
database. By default, when you use the RESTORE command, RMAN restores a datafile from an image
backup or from a backup set if an image copy isn’t available. Either way, you have to wait for RMAN
to copy the file to its original location.

However, you don’t have to copy the file to the original location. When you need to perform a
fast recovery, you can save the time it takes to restore the datafiles by using the image copies directly.
You use the special SWITCH command to let Oracle know that you are actually using the image copy
for the lost datafile. You can thus skip the restore step and directly head to the recovery stage.

The SWITCH command makes the control file point to the copy of the datafile as the current data-
file. This is the same as using the SQL statement ALTER DATABASE RENAME FILE. Note that the filename
at the operating system level remains unchanged.

Here’s how you use the SWITCH command:

RMAN> SWITCH DATABASE TO COPY;

The preceding command will perform a hot restore of your database.

■Tip Use the SWITCH DATABASE rather than the RESTORE DATABASE command if your goal is to restore as
quickly as possible.

User-Managed Whole Database Recovery

The user-managed complete database recovery process starts with the restoration of all lost or damaged
datafiles from the backup. You then recover the database by using the RECOVER DATABASE command.
Oracle will ask for the necessary archived log files and perform the recovery by applying them. It’s
easier to let Oracle apply the relevant archived log file than to attempt to do it yourself manually.

You can automate the application of the archived redo log files in two ways. Before you use the
RECOVER DATABASE command, you can use the SET AUTORECOVERY ON command. The other way is to
specify the AUTOMATIC keyword in the RECOVER command, as in RECOVER DATABASE AUTOMATIC.

The following is a summary of steps required for a complete recovery of your database:

1. Restore the datafiles from backup.

2. Start up the database in the mount mode:

SQL> STARTUP MOUNT;

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 817

3. Use the RECOVER DATABASE command to start recovering the database. The AUTOMATIC keyword
tells Oracle to automate the application of the archived redo logs. In this example, I’m assuming
that you’re placing the archived redo logs in the default location specified in the init.ora file
or SPFILE.

SQL> RECOVER AUTOMATIC DATABASE;

If you’ve placed them in a different location, you’ll have to supply the location to Oracle by
using the LOGSOURCE parameter of the SET statement, or the RECOVER FROM parameter of the
ALTER DATABASE statement. Here are examples of each method of specifying an alternative
location for the archived redo log files:

SQL> SET LOGSOURCE /new_directory;
SQL> ALTER DATABASE RECOVER FROM '/new_directory';

4. Open the database once you’re sure Oracle has completed media recovery:

Media recovery complete.
SQL> ALTER DATABASE OPEN;

Recovering a Tablespace
You need to perform a tablespace recovery when you lose one or more datafiles that belong to the
tablespace and you don’t have a mirrored copy of the files. The recovery may be open or closed, and
it may be a full recovery or a point-in-time recovery, as explained at the beginning of this chapter.
You can recover using either RMAN or user-managed techniques.

Using RMAN to Recover a Tablespace

Sometimes you may have to recover a tablespace or a set of tablespaces. You can use the RESTORE and
RECOVER commands at the tablespace level for these situations. Since only a part of the database is
affected, you don’t have to shut down the database—you can leave it open instead. If you wish, you
can shut down the database in the mount mode, if several tablespaces or a single very large tablespace
is affected.

Here are the recovery steps:

1. Take the tablespace you’re going to recover offline. The rest of the database will be functioning
normally after you do this:

RMAN> ALTER TABLESPACE sysaux OFFLINE;

2. Restore the tablespace using the RESTORE TABLESPACE command, as follows:

RMAN> RESTORE TABLESPACE sysaux;

Starting restore at 29-MAR-08
using channel ORA_DISK_1
. . .
channel ORA_DISK_1: restore complete
Finished restore at 29-MAR-08
RMAN>

818 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

3. Recover the tablespace, as follows:

RMAN> RECOVER TABLESPACE sysaux;

Starting recover at 29-MAR-08
using channel ORA_DISK_1
starting media recovery
archive log thread 1 sequence 12 is already on disk as file
. . .
media recovery complete
Finished recover at 29-MAR-08
RMAN>

4. Finally, bring the recovered tablespace online, as follows:

RMAN> ALTER TABLESPACE sysaux ONLINE;

User-Managed Recovery of a Tablespace

Say your database is online, and one or more files belonging to it are damaged. If the database writer
can’t write to the damaged files, Oracle will take the files offline automatically. Otherwise, you must
first take the tablespace offline. Then you need to restore the damaged datafiles and perform a recovery.

Here’s a summary of the recovery process:

1. Take the affected tablespace offline:

SQL> ALTER TABLESPACE sales01 OFFLINE IMMEDIATE;

2. Restore the damaged files:

SQL> HOST cp /u01/app/oracle/backup/shan/sales_01.dbf
 /u01/app/oracle/oradata/shan/sales_01.dbf

3. Recover the offline tablespace:

SQL> RECOVER TABLESPACE sales01;

4. Bring the tablespace you just recovered online:

SQL> ALTER TABLESPACE sales01 ONLINE;

Recovering a Datafile
The procedures for recovering from the loss of a datafile depend on the type of tablespace the data-
file belongs to. You can use the dynamic performance view V$RECOVER_FILE to determine the files
you need to recover.

Let’s see what happens when your instance encounters media errors, assuming you are oper-
ating in the archivelog mode. If your instance encounters a read error and can’t read a datafile, you’ll
see an operating system error stating this fact, but the database will continue to operate. When the
database tries writing the file header during a checkpoint, a write error will be issued. If the instance
encounters a write error and can’t write to a System or undo tablespace datafile, the instance will
immediately shut down.

If the write error pertains to any other tablespace, the database will take that datafile offline—
the other datafiles in the tablespace containing this datafile will remain online. Your job then is to
restore and recover the affected datafile.

The following discussion deals with the loss of a datafile from a non-System tablespace.

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 819

Using RMAN to Recover a Datafile

The recovery process using RMAN is much simpler than the user-managed recovery technique. First
of all, you don’t need to tell RMAN where to get the backup file from—it identifies the correct file
from its recovery catalog. All you have to do is tell RMAN to restore and recover the necessary datafile.

RMAN restores the datafile(s) first and then performs the necessary recovery on the datafile(s)
using the archived redo logs. RMAN knows what archived logs to apply to the restored datafile(s).

Let’s use a RUN block to perform our datafile recovery, as shown in Listing 16-4. Recovering a
datafile is a two-step process: to recover a datafile, you must first restore it from the RMAN backup.
The RESTORE DATAFILE command asks RMAN to restore the necessary datafile. The RECOVER DATAFILE
command that follows tells RMAN to perform recovery on the restored datafile.

Listing 16-4. Recovering a Datafile Using RMAN

RMAN> RUN {
2> restore datafile 'C:\ORACLE\PRODUCT\10.1.0\ORADATA\NICK\SYSAUX01.DBF';
3> recover datafile 'C:\ORACLE\PRODUCT\10.1.0\ORADATA\NICK\SYSAUX01.DBF';
4> }

starting full resync of recovery catalog
full resync complete
Starting restore at 12-JUL-08
using channel ORA_DISK_1
channel ORA_DISK_1: restore complete
Finished restore at 12-JUL-08
Starting recover at 12-JUL-08
using channel ORA_DISK_1
starting media recovery
. . .
media recovery complete
Finished recover at 12-JUL-08
starting full resync of recovery catalog
full resync complete
RMAN>

Note that behind the scenes, RMAN automatically applies any necessary archive logs without
prompting from you during the recovery step.

User-Managed Recovery of a Datafile

If the database instance crashes or can’t be started without an error, as the result of a missing or
damaged datafile, the identity of the datafile is obvious. However, you can lose a datafile and
continue to have an open database. You can use the following statement to find out which files may
need a recovery:

SQL> SELECT file#, status, error, recover, tablespace_name, name
 FROM V$DATAFILE_HEADER
 WHERE RECOVER = 'YES' OR (RECOVER IS NULL AND ERROR IS NOT NULL);

The various possibilities that can be shown in the output of the preceding query can be inter-
preted as follows:

• If the query results in “no rows selected,” then none of the datafiles need recovery.

• If the ERROR column shows NULL, and the RECOVER column says YES, you can recover without
having to restore a copy of the datafile.

820 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

• If the ERROR column is not NULL, there may be a media problem. Similarly, if the RECOVER
column doesn’t show the value NO, there may be a problem with the disk.

• In all the previous cases, first check whether the problem is temporary and can be fixed
without replacing the media. If the problem isn’t temporary, you’ll have to perform media
recovery.

• A NULL value in the RECOVER column indicates a hardware error.

You can also use the following query of the V$RECOVER_FILE view to find out the file number,
status, and other error information for datafiles:

SQL> SELECT file#, error, online_status, change#, time
 FROM V$RECOVER_FILE;

To recover from the loss of a datafile while the database is open, you must first take the affected
tablespace offline. You must then restore the datafile from a backup and recover the tablespace.
Here’s a summary of the commands you need to use:

SQL> ALTER TABLESPACE sales01 OFFLINE IMMEDIATE;

SQL> HOST cp /test01/app/oracle/backup/sales01.dbf
 /test01/app/oracle/oradata/finance/sales01.dbf;

SQL> RECOVER TABLESPACE sales01;

SQL> ALTER TABLESPACE sales01 ONLINE;

The ALTER TABLESPACE OFFLINE and ONLINE commands ensure that users don’t access the
tablespace during the recovery process.

Incomplete Recovery
The previous examples dealt with complete-recovery scenarios. The database or the tablespace, as
the case may be, are fully recovered, and there’s no loss of data. You use incomplete recovery in situ-
ations where you want to recover to a previous point in time, perhaps because you made a data entry
error or because an online redo log was lost. After recovery, you end up with a database that’s not
current to the latest point in time, but it is consistent. In the following sections, you’ll see how to
perform incomplete recovery using RMAN and user-managed recovery procedures.

Using RMAN for Incomplete Recovery

You can perform three types of incomplete recovery using RMAN, provided you are running your
database in the archivelog mode. You can specify a time, SCN, or log sequence number with the SET
UNTIL command before using the RESTORE and RECOVER commands. Your choice of recovery type
depends on the problem that prompts the incomplete recovery.

• Time-based recovery: In this type of recovery, RMAN restores and recovers all files in the data-
base up to a point in time. This is helpful if you know that a problem, such as the accidental
dropping of a table, occurred at a certain point in time. You use the SET UNTIL command to
perform a time-based recovery, as in this example:

SET UNTIL TIME 'Mar 21 2005 06:00:00'

• Change-based SCN: You can perform the recovery up to a specific SCN if you know it. You use
the keywords SET UNTIL SCN to specify that files up to that SCN be used. Here is an example:

SET UNTIL SCN 1000

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 821

• Log sequence–based recovery: You can recover until a particular log sequence number. RMAN
selects the files to recover up to but not including the specified sequence number. You use the
SET UNTIL SEQUENCE command for a log sequence–based recovery:

SET UNTIL SEQUENCE 9923

Let’s look at an example of a time-based recovery within the current incarnation of the data-
base. Assume that table test was accidentally dropped right before 6 p.m. Listing 16-5 shows the
time-based recovery process.

Listing 16-5. A Time-Based Incomplete Recovery Using RMAN

RMAN> STARTUP MOUNT
RMAN> RUN
2> {set until time 'Jun 30 2008 18:00:00';
3> restore database;
4> recover database;
5> }
executing command: SET until clause
restoring datafile 00024 to /test02/app/oracle/oradata/temp_01.dbf
channel ORA_DISK_1: restored backup piece 1
piece handle=/test01/app/oracle/oradata/backup
/2ddp387s_1_1 tag=null params=NULL
channel ORA_DISK_1: restore complete
Finished restore at 30-JUN-08
Starting recover at 30-JUN-08
using channel ORA_DISK_1
starting media recovery
media recovery complete
Finished recover at 30-JUN-08
RMAN> ALTER DATABASE OPEN RESETLOGS;
Database opened.
RMAN>

■Note For a point-in-time recovery to succeed, you must have backups of all datafiles from before the target
point in time (or SCN). You must also have all archived redo logs for the period between the SCN of the backups and
the target SCN.

In Listing 16-5, the database is first mounted but not opened. RMAN is asked to restore the data-
base (meaning that it is asked to get the backed-up datafiles that are necessary for this restore). It
then is asked to recover the database. RMAN knows which archived redo logs are needed based on
the information about backups stored in its recovery catalog. RMAN applies the archived redo logs
and finishes the recovery process. You can then open the database with the ALTER DATABASE OPEN
RESETLOGS command. This is a point-in-time recovery, and you need to make sure that the database
doesn’t apply the old redo logs by mistake. You ensure this by resetting or reinitializing the redo log files.

Here’s the entire script for performing a tablespace PITR using RMAN:

RMAN> RUN {
Allocate channel s1 type 'sbt_tape';
Allocate channel s2 type 'sbt_tape';
Set until time '28-JUL-08 06:00:00';
Restore database;

822 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

Recover database;
Sql "alter database open reset logs";
Release channel s1;
Release channel s2;
}

Once you query the database and verify that you have recovered it to the previous point in time,
you can open the database using the following command, which will undo all changes after the point
in time you’ve recovered to:

RMAN> ALTER DATABASE OPEN RESETLOGS;

The previous command will archive all online redo logs, reset the log sequence numbers, and
give the online redo logs a new time stamp and SCN. You thus eliminate the possibility of corrupting
your datafiles by mistakenly applying older redo logs.

If you want to use a specific log sequence number instead of a point in time, you modify the
script by replacing the SET UNTIL TIME line with the following:

RMAN> SET UNTIL SEQUENCE 1234;

WHAT IS RESETLOGS?

Note that after you perform any kind of incomplete recovery, the logs are always reset. Essentially, the RESETLOGS
option reinitializes the redo log files, erasing all the redo information they currently have, and resets the log sequence
number to 1. To apply any archived redo logs to a datafile, the SCNs and time stamps in the database files have to
match the SCNs and time stamps in the headers of the archived redo log files, and when you perform a RESETLOGS
operation, the datafiles are stamped with new SCN and time stamp information, making it impossible for the older
archived redo logs to be applied to them by mistake.

The RESETLOGS option is used under these circumstances:

• When you use a backup control file to recover

• When you perform an incomplete recovery, rather than a complete recovery

• When you recover using a control file created with the RESETLOGS option

If you were to do the incomplete recovery using an SCN, the SET UNTIL command would be modified as SET
UNTIL SCN nnnn. If you were to use an archived log sequence number, the command would be SET UNTIL
LOGSEQ=nnnn THREAD=nnnn, where LOGSEQ is the log you want to recover to.

Here’s a short script that shows how to perform incomplete recovery using RMAN, where you
specify an SCN:

RMAN> RUN
{
 ALLOCATE CHANNEL ch1 TYPE sbt;
 RESTORE DATABASE;
 RECOVER DATABASE UNTIL SCN 1000; # recovers through SCN 999
 ALTER DATABASE OPEN RESETLOGS;
}

Recovery Through Current and Ancestor Database Incarnations

Anytime you use the OPEN RESETLOGS command, the incarnation of the database changes and a new
incarnation begins. The previous incarnation is termed an ancestor incarnation, and the latest is the

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 823

current incarnation. RMAN can recover through multiple incarnations of a database. For example,
if you have backups from an older incarnation of the database, you can use them to recover your
current database incarnation, but you must specify that the backups are coming from a previous
incarnation.

The Simplified Recovery Through Resetlogs feature lets you use archived redo logs from an earlier
incarnation of the database. The default format for the LOG_ARCHIVE_FORMAT initialization parameter
now includes a %r component, which stands for the RESETLOGS identifier. For example, on a UNIX/
Linux system, your archived redo logs will use the format log%t_%s_%r.arc. The variable t stands for
the thread number, and the variable s is the log sequence number. The V$LOG_HISTORY view has
two columns, RESETLOGS_CHANGE# and RESETLOGS_TIME, that indicate the database incarna-
tion of the archived redo logs.

The point-in-time recovery example in the previous section dealt with recovery using the current
incarnation of the database. Let’s look at incomplete database recovery using a parent incarnation
of the database. Suppose you want to specify an SCN that isn’t in the current incarnation, but is in
an ancestor incarnation. There are two requirements for this type of a point-in-time recovery:

• You must reset the current incarnation of the database back to the incarnation to which your
target SCN belongs.

• You must use the control file from the older incarnation that contains the target SCN.

To perform point-in-time recovery to the older incarnation, use the following steps:

1. Find out the incarnation key for the incarnation that was current at the time you want to
recover your database to. You can find it in the incarnation key column of the output of
RMAN’s LIST INCARNATION command. Let’s say our incarnation key value for this example
is 2.

2. Start the database in the following way:

RMAN> STARTUP FORCE NOMOUNT;

3. Reset the current incarnation to the incarnation that was current at the point in time that
you want to recover to:

RMAN> RESET DATABASE TO INCARNATION 2;

4. Restore the old control file from a backup and mount the database with the following
commands:

RMAN> RESTORE CONTROLFILE FROM AUTOBACKUP;
RMAN> ALTER DATABASE MOUNT;

5. Restore and recover the database until the point in time or the SCN:

RMAN> RESTORE DATABASE;
RMAN> RECOVER DATABASE UNTIL SCN 1000;

6. Open the database after resetting the online log files:

RMAN> ALTER DATABASE OPEN RESETLOGS;

Oracle calls the preceding type of recovery Simplified Recovery Through Resetlogs. This feature
comes in handy when you perform a point-in-time recovery or a recovery using a backup control file
and use the RESETLOGS option to open the database. In these cases, you can still use the backup from
before the RESETLOGS operation.

824 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

User-Managed Incomplete Recovery

You have looked at how to use RMAN for incomplete recovery; let’s look now at how to do it manu-
ally. Assume that your database is open and you have decided that you have to perform an incomplete
recovery—you want to take the database back to a previous point. All changes since then are gone,
whether you want it that way (because of user error, for example) or you’re forced to do so (such as
when you don’t have all the archived redo logs needed for up-to-date recovery). Here’s a brief summary
of the steps you must take to perform an incomplete recovery:

1. Shut down the database immediately:

SQL> SHUTDOWN ABORT;

2. Restore all the datafiles and make sure all of them are online.

3. Choose one of the following three commands to recover the datafiles, depending upon your
situation:

• Cancel-based recovery: Here, you let Oracle apply the archived redo logs until you cancel
the recovery process. You could use this method, for example, when there is a gap in your
archived redo logs. Here is the command you would use:

SQL> RECOVER DATABASE UNTIL CANCEL;

• Time-based recovery: You have to specify the point in time to which you want the data-
base to be recovered. Here is an example:

SQL> RECOVER DATABASE UNTIL TIME '2005-06-30:12:00:00';

Or, if you’re using a backed-up control file, you should use the following command
instead of the preceding one:

SQL> RECOVER DATABASE UNTIL TIME
 '2005-06-30:12:00:00' USING BACKUP CONTROLFILE;

• Change-based recovery: In the change-based method, you need to find out what SCN you
want to go back to, and specify it in the command:

SQL> RECOVER DATABASE UNTIL CHANGE 27845;

4. No matter which of the three methods you use to perform your recovery, you must issue the
following command when the recovery is complete, because this is an incomplete recovery:

SQL> ALTER DATABASE OPEN RESETLOGS;

Recovering from the Loss of Control Files
Your instance will shut down immediately if one or all of the control files are inaccessible. Here are
two possible scenarios:

• If even a single copy of the duplexed control file is lost, your instance will crash immediately.
You then simply copy a duplexed control file to the same location as the lost or damaged
control file. If you can’t place it in the same location, update your parameter file (use the
CONTROL_FILES parameter) to indicate the new location. If you can’t replace the lost control
file for some reason, just edit the initialization parameter file so it doesn’t refer to the lost
control file any longer. You can successfully start your instance now.

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 825

• If you’ve lost all your control files, you must restore a backup control file or create a new one. If
you restore the control file from backup, you must perform media recovery of the whole data-
base and then perform an OPEN RESETLOGS operation.

The following sections show how to recover from a situation where all your control files are lost.
You’ll have to recover using a backed-up control file.

Using RMAN to Recover from Control-File Loss

In this section, we’ll simulate a control-file loss by deleting both the control files. Make sure you have
a backup of the database, including the control files, before you do this.

Once you have deleted your control files, follow these steps:

1. Shut down the database and try to start it up. The instance will start and try to mount the
database, but when it doesn’t find the control files, the database fails to mount:

RMAN> SHUTDOWN IMMEDIATE;
database closed
database dismounted
Oracle instance shut down
RMAN>
RMAN> STARTUP
Oracle instance started
RMAN-00571:
RMAN-00569: ERROR MESSAGE STACK FOLLOWS
RMAN-00571:
RMAN-03002: failure of startup command at 07/11/2008 17:18:05
ORA-00205: error in identifying controlfile, check alert log for more info
RMAN>

You can avoid the preceding error messages by using the alternative command STARTUP
NOMOUNT:

RMAN> SHUTDOWN IMMEDIATE;
database closed
database dismounted
Oracle instance shut down
RMAN>
RMAN> STARTUP NOMOUNT;
connected to target database (not started)
Oracle instance started
. . .
RMAN>

2. Issue the RESTORE CONTROLFILE command so RMAN can copy the control file backups to their
default locations specified in the init.ora file:

RMAN> RESTORE CONTROLFILE FROM AUTOBACKUP;
Starting restore at 14-JUL-08
allocated channel: ORA_DISK_1
. . .
output filename=C:\ORACLE\PRODUCT\10.1.0\ORADATA\NICK\CONTROL03.CTL
Finished restore at 14-JUL-08
RMAN>

826 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

3. After the restore is over, mount the database:

RMAN> ALTER DATABASE MOUNT;
database mounted
RMAN>

4. Recover the database as shown in Listing 16-6.

Listing 16-6. Using RMAN to Recover from the Loss of Control Files

RMAN> RECOVER DATABASE;
Starting recover at 14-JUL-08
Starting implicit crosscheck backup at 14-JUL-08
Crosschecked 5 objects
Finished implicit crosscheck backup at 14-JUL-08
Starting implicit crosscheck copy at 14-JUL-08
Finished implicit crosscheck copy at 14-JUL-08
searching for all files in the recovery area
cataloging files...
cataloging done
starting media recovery
media recovery complete
Finished recover at 14-JUL-08
RMAN>

Because RMAN restores the control files from its backups, you have to open the database with
the RESETLOGS option:

RMAN> ALTER DATABASE OPEN RESETLOGS;
database opened
new incarnation of database registered in recovery catalog
starting full resync of recovery catalog
full resync complete
RMAN>

User-Managed Recovery from Control-File Loss

If you’ve lost all your control files, you can create a brand-new control file by using the CREATE
CONTROLFILE command. Listing 16-7 shows a typical control file creation statement derived using the
output of the ALTER DATABASE BACKUP CONTROLFILE TO TRACE statement. Here’s the SQL statement
that will get you the output necessary to run the CREATE CONTROLFILE statement later on:

SQL> ALTER DATABASE BACKUP CONTROLFILE TO TRACE;
Database altered.
SQL>

■Tip Even if you don’t have a control file backup, you can easily create a new control file provided you have a
complete list of all the datafiles and the redo log files that are part of the database.

After you issue the ALTER DATABASE BACKUP CONTROLFILE TO TRACE statement, you can get a trace
file as shown in Listing 16-7 from your trace directory, usually the udump directory.

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 827

Listing 16-7. Recovering Lost Control Files with User-Managed Techniques

Dump file c:\oracle\product\10.1.0\admin\NICK\udump\NICK_ora_2452.trc
Sun Jul 10 16:35:47 2008
ORACLE Version 11.1.0.0.0 - Production vsnsta=0
The following commands will create a new control file and use it
-- to open the database.
-- Data used by Recovery Manager will be lost.
-- Additional logs may be required for media recovery of offline
-- Use this only if the current versions of all online logs are
-- available.
STARTUP NOMOUNT
CREATE CONTROLFILE REUSE DATABASE "NICK" NORESETLOGS ARCHIVELOG
 MAXLOGFILES 5
 MAXLOGMEMBERS 2
 MAXDATAFILES 200
 MAXINSTANCES 1
 MAXLOGHISTORY 454
LOGFILE
 GROUP 1 'C:\ORACLE\PROD\11.1.0\ORADATA\NICK\REDO01.LOG' SIZE 100M,
 GROUP 2 'C:\ORACLE\PROD\11.1.0\ORADATA\NICK\REDO02.LOG' SIZE 100M
-- STANDBY LOGFILE
DATAFILE
 'C:\ORACLE\PRODUCT\11.1.0\ORADATA\NICK\SYSTEM01.DBF',
 'C:\ORACLE\PRODUCT\11.1.0\ORADATA\NICK\UNDOTBS01.DBF',
 'C:\ORACLE\PRODUCT\11.1.0\ORADATA\NICK\SYSAUX01.DBF'
CHARACTER SET US7ASCII;
-- Commands to re-create incarnation table
-- Below log names MUST be changed to existing filenames on
-- disk. Any one log file from each branch can be used to
-- re-create incarnation records.
-- ALTER DATABASE REGISTER LOGFILE 'C:\ORACLE\PRODUCT\11.1.0\
FLASH_RECOVERY_AREA\NICK\ARCHIVELOG\
2008_07_10\O1_MF_1_1_%U_.ARC';
-- ALTER DATABASE REGISTER LOGFILE 'C:\ORACLE\PRODUCT\11.1.0\
FLASH_RECOVERY_AREA\NICK\ARCHIVELOG\
2008_07_10\O1_MF_1_1_%U_.ARC';
-- Recovery is required if any of the datafiles are restored backups,
-- or if the last shutdown was not normal or immediate.
RECOVER DATABASE
-- All logs need archiving and a log switch is needed.
ALTER SYSTEM ARCHIVE LOG ALL;
-- Database can now be opened normally.
ALTER DATABASE OPEN;
-- No tempfile entries found to add.

As you can see, you can make up your own CREATE CONTROLFILE statement, with the catch being
that you need to have an accurate record of all the component files of your database. Let’s take a
closer look at the control file creation script.

The script first starts up the database in nomount mode. Obviously, if you don’t have the control
files, you can’t mount the database. The next line, which includes the CREATE CONTROLFILE statement,
is the most critical one in the script. If you have all your redo log files intact, you have to specify the
NORESETLOGS option so that Oracle can reuse the redo logs. Alternatively, if your redo logs are lost or
damaged, you need to specify RESETLOGS in the CREATE CONTROLFILE statement. Oracle will create new
redo files in this case, or if they exist, Oracle will reinitialize them, essentially creating a new set of redo log

828 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

files. The REUSE parameter asks Oracle to overwrite any of the old control files if they exist in their
default locations.

Listing 16-8 shows how to use the CREATE CONTROLFILE statement in Listing 16-7.

Listing 16-8. Creating New Control Files

SQL> STARTUP NOMOUNT
ORACLE instance started.
Total System Global Area 118255568 bytes
Fixed Size 282576 bytes
Variable Size 83886080 bytes
Database Buffers 33554432 bytes
Redo Buffers 532480 bytes
SQL>
SQL> CREATE CONTROLFILE REUSE DATABASE "NICK" NORESETLOGS ARCHIVELOG
. . .
Control file created.
SQL>
SQL> RECOVER DATABASE
ORA-00283: recovery session canceled due to errors
ORA-00264: no recovery required
SQL> ALTER SYSTEM ARCHIVE LOG ALL;
System altered.
SQL> ALTER DATABASE OPEN;
Database altered.
SQL>

Recovering a Datafile Without a Backup
Suppose you add a new datafile and users consequently create some objects in it. Before you back
up your database over the weekend, the new file is damaged and you need to recover the data. The
archived redo logs since the last backup will contain the information regarding the lost file and will
enable you to recover the data. The following sections illustrate the procedures involved.

Using RMAN to Recover a File Without a Backup

Suppose you first notice the damaged file when you access the lost or damaged file and get the
following error:

SQL> CREATE TABLE x (name varchar2 (30));
create table x (name varchar2 (30))
*
ERROR at line 1:
ORA-01116: error in opening database file 5
ORA-01110: data file 5: '/test02/app/oracle/oradata/finance1/test01.dbf'

Here are the steps you would follow to fix the problem:

1. Take the affected datafile offline:

RMAN> SQL "alter database datafile
 2> ''/test01/app/oracle/oradata/remorse/sales_01.dbf'' offline";
 sql statement: alter database datafile
 ''/test01/app/oracle/oradata/remorse/sales_01.dbf'' offline
RMAN>

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 829

2. Create a new datafile with the same name as the damaged offline datafile:

RMAN> sql "alter database create datafile
 2> ''/test02/app/oracle/oradata/remorse/sales01.dbf'' ";
 sql statement: alter database create datafile
 ''/test02/app/oracle/oradata/remorse/sales01.dbf"
RMAN>

3. Recover the new datafile. RMAN will retrieve data from the archived redo logs, so the new
datafile is identical to the one that was lost:

RMAN> RECOVER DATAFILE '/test01/app/oracle/oradata/remorse/sales_01.dbf';
Starting recover at 30-JUN-08
using channel ORA_DISK_1
using channel ORA_DISK_2
using channel ORA_DISK_3
using channel ORA_DISK_4
starting media recovery
media recovery complete
Finished recover at 30-JUN-08
RMAN>

4. Bring the new datafile online:

RMAN> SQL "alter database datafile
 2> ''/test02/app/oracle/oradata/finance1/test01.dbf'' online";
 sql statement: alter database datafile
 ''/test02/app/oracle/oradata/remorse/sales01.dbf'' online
RMAN> EXIT

User-Managed Recovery of a File Without a Backup

The manual procedure for recovering a file without prior backups is very straightforward, again
assuming you have all the archived redo logs available. You first create a new file with the same
name as the lost file, and then you use the archived logs (if necessary) to recover the data that was
in that file.

The Data Recovery Advisor
The Data Recovery Advisor is a tool that helps you fix data failures, which are defined as corruption
or loss of data on a disk. The Data Recovery Advisor makes it easy to diagnose and repair data failures
and reduces the MTTR. The Data Recovery Advisor helps you proactively detect and repair data fail-
ures before the database is put out of commission and provides an assessment of the impact of a
failure in the form of a report. It also determines the best repair options and, although it can perform
automatic repairs, leaves the decision up to you. The Data Recovery Advisor helps you diagnose the
following types of failures:

• Inaccessible data fields and control files

• Datafiles older than other database files

• Physical corruption

• I/O failures such as hardware errors or operating system failures

830 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

You can access the Data Recovery Advisor from the Enterprise Manager Database Control or
Grid Control. However, I focus on accessing the Data Recovery Advisor through RMAN, since this
approach will help you understand how the various Data Recovery Advisor commands work.

Working with the Data Recovery Advisor
The database can detect a failure when it encounters an error such as corrupted data. In a case like
this, the database runs automatic data integrity checks that diagnose the data failure and lodge the
results in the Data Recovery Advisor. You can also manually invoke these data integrity checks your-
self proactively. You can run a diagnostic check through the Health Monitor or execute the VALIDATE
and BACKUP VALIDATE commands to check for block corruption. Whether the database reactively
runs a check or you run a proactive check, the failure analysis will be stored in the Automatic Diag-
nostic Repository (ADR). It’s only after the ADR records the failure information that you can invoke
the Data Recovery Advisor.

You can analyze a failure in terms of its failure properties:

• Failure status: The status of a failure is open until you execute the repair action. Once you
repair the failure, the status will be set to closed.

• Failure priority: A failure can be assigned a priority of high, medium, or low. The database
assigns only the high- and critical-priority levels, but you can downgrade a high-priority
failure to the low-priority level, if you think that the database can ignore the failure until it
fixes other more important failures. This way, you can limit the output of the LIST FAILURE
command, which lists all outstanding failures, with a critical or high priority.

• Failure grouping: The Data Recovery Advisor groups related subfailures into one failure. If
you want, you can get details about the individual subfailures.

Use the Data Recovery Advisor when some alerts, error messages, or data integrity check results
indicate there is a failure in the database. As I mentioned earlier, whether you run a database check
yourself or RMAN runs one, the database logs the failure assessments in the ADR. Once the failure is
recorded in the ADR, you can invoke the Data Recovery Advisor.

The Data Recovery Advisor depends on the diagnosing infrastructure (please see Chapter 17) for
problem diagnosis and solution. Use the DRA when you deal with problems such as lost datafiles,
data block corruption, or an I/O failure. You can limit damage by detecting problems automatically
along with recommendations for the repairing of the problems, thus helping reduce database
downtime.

Here’s how you execute the main commands of the Data Recovery Advisor to diagnose and
repair failures.

Listing the Failures

Execute the LIST FAILURE command to view all the failures the database is encountering, as shown here:

RMAN> list failure;

List of Database Failures
Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- ------------------
4 HIGH OPEN 30-MAR-08 multiple datafiles
 are missing

RMAN>

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 831

The output shows that multiple datafiles are missing. Note that the output of the LIST FAILURE
command shows all failures known to the Data Recovery Advisor. You can also execute the LIST
FAILURE . . . DETAIL command to list individual failures, as shown here:

RMAN> list failure 4 detail;

In addition, you can execute any of the following variations of the LIST FAILURE command:

RMAN> list failure critical;
RMAN> LIST FAILURE HIGH;
RMAN> LIST FAILURE LOW;
RMAN> list failure open;
RMAN> list failure closed;
RMAN> list failure exclude failure 12345

Determining Repair Options

Execute the ADVISE FAILURE command following the LIST FAILURE command to get a list of both
manual and automated repairs. A manual option can often avoid a more laborious automatic repair
option. For example, it’s easier to replace a table or two than to restore and recover entire datafiles.
Here’s an example showing how to use the ADVISE FAILURE command:

RMAN> advise failure;

List of Database Failures
Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- ----------------------
4 HIGH OPEN 30-MAR-08 multiple datafiles
 are missing

analyzing automatic repair options; this may take some time
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=152 device type=DISK

analyzing automatic repair options complete

Manual Checklist
===
if file C:\ORACLE\PRODUCT\11.1.0\ORADATA\NICK\USERS01.DBF was
unintentionally renamed or moved, restore it

if file C:\ORACLE\PRODUCT\11.1.0\ORADATA\NICK\EXAMPLE01.DBF was
unintentionally renamed or moved, restore it

Automated Repair Options
==
Option Strategy Repair Description
------ ------------ ------------------
 no data loss restore and recover datafile 4,
 Restore and recover datafile
 Repair script: C:\ORCL11\APP\ORACLE\NICK\DIAG\diag\
 rdbms\nick\nick\hm\reco_128942564.hm

RMAN>

832 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

In this example, the manual and automated repair options are the same: you must restore and
recover the missing datafiles.

Repairing Failures

You must first try to fix the failures by using the manual repairs, before trying the automatic repair
recommendations. Before issuing the REPAIR FAILURE command, it may be a good idea to issue the
REPAIR PREVIEW command as shown here, to preview the repair strategy:

RMAN> repair failure preview;

Strategy Repair script
------------ -------------------------------------
no data loss C:\ORCL11\APP\ORACLE\NICK\DIAG\diag\
 rdbms\nick\nick\hm\reco_128942564.hm

contents of repair script:
 # restore and recover datafile
 restore check readonly datafile 4, 5;
 recover datafile 4, 5;

RMAN>

Once you have previewed the repair strategy, issue the REPAIR FAILURE command, as shown
here:

RMAN> repair failure;

Strategy Repair script
------------ --
no data loss
C:\ORCL11\APP\ORACLE\NICK\DIAG\diag\rdbms\nick\
nick\hm\reco_128942564.hm

contents of repair script:
 # restore and recover datafile
 restore check readonly datafile 4, 5;
 recover datafile 4, 5;

Do you really want to execute the above repair
(enter YES or NO) ? yes
executing repair script

Starting restore at 30-MAR-08
using channel ORA_DISK_1

channel ORA_DISK_1: starting datafile backup set restore
channel ORA_DISK_1: specifying datafile(s) to restore
from backup set
Finished restore at 30-MAR-08

Starting recover at 30-MAR-08
starting media recovery
RMAN-08187: WARNING: media recovery until SCN 3212445 complete

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 833

Finished recover at 30-MAR-08
repair failure complete
Do you want to open the database (enter YES or NO)? yes

RMAN>

The V$IR_REPAIR view shows the results of the REPAIR FAILURE command. Here’s the structure
of the V$IR_REPAIR view:

SQL> desc v$ir_repair

 Name Null? Type
----------------------- ------ --------------
 REPAIR_ID NUMBER
 ADVISE_ID NUMBER
 SUMMARY VARCHAR2(32)
 RANK NUMBER
 TIME_DETECTED DATE
 EXECUTED DATE
 ESTIMATED_DATA_LOSS VARCHAR2(20)
 DETAILED_DESCRIPTION VARCHAR2(1024)
 REPAIR_SCRIPT VARCHAR2(512)
 ESTIMATED_REPAIR_TIME NUMBER
 ACTUAL_REPAIR_TIMENUMBER
 STATUS VARCHAR2(7)

SQL>

You can issue a query such as the following to view details about all the repair recommendations
made by the Data Recovery Advisor:

 SQL> select repair_id,advise_id,summary,rank
 from v$ir_repair;

REPAIR_ID ADVISE_ID SUMMARY RANK
--------- ---------- -------------------- ------
 23 21 NO DATA LOSS OPTION 1
 69 67 NO DATA LOSS OPTION 1
 82 80 NO DATA LOSS OPTION 1

SQL>

The RMAN commands to access and utilize the Data Recovery Advisor are simple enough, but
there’s an even easier way to access the Data Recovery Advisor, and that’s through the Enterprise
Manager.

Cloning a Database
DBAs routinely refresh development and test databases, and they will sometimes need to clone
databases to test backup and recovery strategies. If you have a small database, a simple Data Pump
Export/Import will suffice, but most databases aren’t amenable to this procedure. You can clone
databases in three different ways:

834 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

• By using the RMAN DUPLICATE command

• By using the OEM Database Control

• By manually performing the copy with SQL*Plus

■Note The main purpose of cloning databases is not to create a failover database during a crisis—you use
standby databases for that purpose.

Using RMAN to Clone a Database
RMAN provides the DUPLICATE command, which uses the RMAN backups of a database to create a
new database. The backup files are restored to the target database, after which an incomplete recovery
is performed and the new database is opened with the OPEN RESETLOGS command. The good thing
about using RMAN is that all the preceding steps are performed automatically, without any user
intervention. The duplicate database can be an exact replica of the original, or it can contain only a
subset of it.

The following steps are involved in cloning a database:

1. Create a new init.ora file for the auxiliary database. The init.ora file should have the following
parameters, with the datafiles and log file parameters changed to ensure that the original
database files aren’t used for the new database:

• DB_FILE_NAME_CONVERT: This parameter transforms the target datafile names to the dupli-
cate database datafile names.

• LOG_FILE_NAME_CONVERT: This parameter converts the target database redo log filenames
to the duplicate database redo log filenames.

2. Start the target database instance. You must start the target database instance in the
nomount mode.

3. Connect the recovery catalog to the target database and the auxiliary database:

RMAN> CONNECT target / catalog rman/rman1@catalog_db auxiliary
 sys/password@auxiliary_db

4. Issue the RMAN DUPLICATE command, as follows:

RMAN> DUPLICATE TARGET DATABASE TO
 auxiliary_db /* actual name of auxiliary database here */
 pfile =/u01/app/oracle/10.2.0/db_1/dbs/init_auxiliary_db;

Before you can issue the DUPLICATE DATABASE command, you must make the disk backups avail-
able to the duplicate instance by either manually transferring the backups and copies to the destination
host or using NFS or shared disks.

The preceding is a simplified presentation of the database duplication process using RMAN,
and you should refer to the Oracle documentation for complete details about duplicating a database.
When you issue the DUPLICATE TARGET DATABASE TO . . . command, as shown previously, RMAN
will shut down the auxiliary database and start it up again. It then performs the following steps:

• Restores all the backed-up files of the target database to the destination auxiliary database,
using all available archived redo logs

• Opens the duplicated database with the RESETLOGS option

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 835

■Note Whether you perform backup-based database duplication or active database duplication, RMAN must
perform an incomplete recovery always. The reason is that RMAN doesn’t back up the source database’s online
redo log files. It creates the duplicate datafiles on the auxiliary instance and recovers them with the help of archived
redo logs.

The previous example showed how to duplicate a database by using the source database’s
backup files. However, you can also duplicate a database without any backups by using the new
active database duplication technique. Under active database duplication, you can copy the active
database files over the network directly to the auxiliary instance. That’s the reason active database
duplication is also called network-enabled duplication. I summarize the active database duplication
technique here.

In the following database duplication example, I assume that the duplicate database is being
created on a different host. Thus, you can use the same directory structure as well as identical data-
base filenames for the duplicate database and the source database. You don’t have to rename the
duplicate database files as a result. However, you must specify the clause NOFILENAMECHECK with the
DUPLICATE DATABASE command, to avoid the unnecessary checks to ensure that identical filenames
aren’t being used on the same host.

In the following example, I duplicate a database on the same server. I must therefore use different
filenames for the target and the duplicate database.

Create an Oracle password file for the auxiliary instance, because you need it when you perform
active database duplication. You must use the same SYSDBA password in the duplicate database
password file as in the source database. If you want, you can specify the PASSWORD FILE option in the
DUPLICATE DATABASE command, to make RMAN copy the source database password file to the desti-
nation host. Here’s how you create the password file:

$ orapwd file=orapwtest1 password=<sys_pwd>
 entries=20 ignorecase=n

As I mentioned earlier, you can add the PASSWORD FILE clause to the DUPLICATE DATABASE command,
to make RMAN copy the source database password file to the destination database.

Even though I am duplicating the target database to the same server, since I’m using active data-
base duplication, I must ensure that both databases use Oracle Net. In the listener.ora file on the
host server, add the name of the duplicate database, as shown here:

SID_LIST_LISTENER=
(SID_DESC =
(GLOBAL_DBNAME = prod1)
(ORACLE_HOME = /u01/app/oracle/product/10.1g/)
(SID_NAME =prod1)
)
(SID_DESC =
(GLOBAL_DBNAME = test1)
(ORACLE_HOME = /u01/app/oracle/product/11.1/)
(SID_NAME =test1)
)
)

836 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

Restart the listener after making the change. You must also make the following change to your
tnsnames.ora file:

test1=
(DESCRIPTION=
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = prod1)(PORT = 1521))
)
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = test1)
)
)

Create an initialization parameter file for the auxiliary instance. Since I’m using the SPFILE tech-
nique for naming the duplicate database’s file, I need only one parameter in this parameter file, which is
the DB_NAME parameter.

db_name=test1

You can specify the actual filenames by specifying the DB_FILE_NAME_CONVERT and the LOG_FILE_
NAME_CONVERT parameters in the DUPLICATE DATABASE command itself.

Start the auxiliary instance in nomount mode.

$ sqlplus /nolog
SQL> connect sys/sammyy1 as sysdba
Connected to an idle instance
SQL> startup nomount
Oracle Instance started.
Total System Global Area 113246208 bytes
Fixed Size 1218004 bytes
Variable Size 58722860 bytes
Database Buffers 50331648 bytes
Redo Buffers 2973696 bytes
SQL>

The auxiliary instance shown here uses the simple initialization parameter with the DB_NAME
parameter. However, I use the SPFILE clause in the DUPLICATE DATABASE command later on, which
copies the source database’s SPFILE to the default location for the auxiliary instance.

Start RMAN and connect to the target database, source database, and recovery catalog, as
shown here:

$rman target sys/sammyy1@eleven
connected to target database: ELEVEN (DBID=3481681133)

RMAN> connect auxiliary sys/sammyy1@test1
connected to auxiliary database: TEST1 (not mounted)

RMAN> CONNECT CATALOG rman/rman@catdb
 connected to recovery catalog database
RMAN>

Issue the DUPLICATE DATABASE command, as shown here, to create the duplicate database using
the active database’s files over the network:

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 837

RMAN> duplicate target database
 2> to test1
 3> from active database
 4> spfile
 5> parameter_value_convert
 '/u01/app/oracle/eleven','/u10/app/oracle/test1'
 6> set log_file_name_convert
 '/u05/app/oracle/eleven', '/u10/app/oracle/test1'
 7> db_file_name_convert '/u10/app/oracle/eleven',
 '/u10/app/oracle/test1';

Starting Duplicate Db at 04-APR-08
using target database control file instead of recovery catalog
 contents of Memory Script:
{
 sql "declare worked boolean;
 begin worked := dbms_backup_restore.networkFileTransfer(
 ''auxdb'', null, null,
...
executing Memory Script
...
Starting backup at 04-APR-08
...
Finished backup at 04-APR-08
...
contents of Memory Script:
{
 set until scn 901715;
 recover
 clone database
 delete archivelog
 ;
}
...
starting media recovery
...
media recovery complete, elapsed time: 00:00:01
Finished recover at 04-APR-08
...
database opened
Finished Duplicate Db at 04-APR-08
RMAN>

Specifying the SPFILE clause in the DUPLICATE DATABASE command leads RMAN to copy the
source database’s SPFILE to the server hosting the auxiliary database. RMAN makes changes to the
auxiliary instance’s SPFILE, based on the settings you specify in the SPFILE clause when duplicating
the database. RMAN will then stop and start the auxiliary instance using the newly edited SPFILE.

RMAN first updates the source database’s SPFILE using the values you specify for the
PARAMETER_NAME_CONVERT and the SET clauses. RMAN shuts down the auxiliary instance and restarts
it using the new SPFILE. RMAN then starts copying the source database files over the network. Once
the copying is completed, RMAN recovers the duplicate database before opening it. As part of the
database duplication process, RMAN does the following:

838 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

• Copy the datafiles, but not the flash recovery area files.

• Copy the necessary archived redo log files.

• Since I specified the SPFILE clause, copy the source database SPFILE over to the target
database.

• Copy the password file if you specify the PASSWORD FILE clause.

• Re-create the online redo log files.

• Re-create the control files for the target database.

• Re-create the tempfiles in the directory specified by the DB_CREATE_FILE_DEST parameter.

Active database duplication is the easiest way to duplicate a database since you don’t need any
prior RMAN backups.

Using Database Control to Clone a Database
The Enterprise Manager Clone Database Wizard steps you through the database cloning operation.
Here are the main features of the cloning feature:

• You can clone any Oracle database that is release 8.1.7 or higher.

• The source database can be in the archivelog or the noarchivelog mode.

• You can clone a database while it is open. The Database Control uses RMAN internally for the
cloning operation.

• The Database Control will back up the datafiles and restore them in the new location. It will
then recover them using archived redo logs.

• The Database Control will create the new instance, a password file, any necessary networking
files, and the init.ora file and SPFILE.

• The Database Control will automatically start the new instance in the open mode.

Here are the steps for cloning a database using the Database Control:

1. Click the Maintenance Tab on the Database Home Page of the Database Control.

2. Click the Clone Database item in the Data Movement section (under the Move Database
files group).

3. In the Source Type page, choose the Clone a Running Database Instance option.

4. In the Source Working Directory page, enter your operating system username and password.
Click Next.

5. In the Select Destination page, enter the new database name and the destination host name.
Click Next.

6. In the Destination Options page, you can customize database file locations if you wish. Click
Next.

7. In the Schedule page, you can choose whether you want to clone the database immediately
or to schedule it for later. Click Next.

8. In the Review page, you can review the source and clone database information, as shown in
Figure 16-1. Click the Submit Job button to start the cloning operation.

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 839

Figure 16-1. The Clone Database Review page

Manually Cloning a Database
To clone a database manually, you need to first use the operating system to copy all of the source
database files to the target location. If you are on the same server, you also have to change the name
of the database; if you are on a different server, you can keep the same name for the databases if you
wish. You first back up the source database control file to trace (using the ALTER DATABASE BACKUP
CONTROLFILE TO TRACE statement) and, using the trace file’s contents, create a new control file that
will help you create the new clone database.

Here’s a summary of the steps involved in manually cloning a database. The procedure is simple,
with most of the time being consumed by copying the database files from source to target. Assume
that your production database is the source database and is named “prod” and your destination
(target) database is named “test.”

1. Copy the prod database files to the target location.

2. Prepare a text file for the creation of a control file for the new database as follows:

SQL> ALTER DATABASE BACKUP CONTROLFILE TO TRACE;

3. On the target location, create all the directories for the various files.

4. Copy the following four sets of files from the production (source) database to the target
database: parameter files, control files, datafiles, and redo log files.

5. In all the clone database files, change the database name to test.

840 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

6. Run the CREATE DATABASE statement, which was prepared with the ALTER DATABASE BACKUP
CONTROLFILE TO TRACE statement.

7. Create the control file for the test database using the following statement:

SQL> CREATE CONTROLFILE REUSE SET DATABASE "TEST" RESETLOGS NOARCHIVELOG

You’ll now have a new database called test that has a new control file pointing to the copied
(target) version of the production database.

8. Once you get the prompt back from the previous command, run this command:

SQL> ALTER DATABASE OPEN RESETLOGS USING BACKUP CONTROLFILE;

9. Finally, change the global name of the database you just created by running the following
command:

SQL> UPDATE global_name SET global name='test.world';

Techniques for Granular Recovery
The techniques you’ve seen thus far show that both RMAN and user-managed recovery strategies
are reliable methods for restoring databases when there’s a media-related problem. However, suppose
you only need to undo some changes in the database. Even the incomplete recoveries, though they
remove unwanted changes, will lead to a loss of data. In addition, sometimes you can’t determine
exactly when a change was made, so you can’t make a precise incomplete recovery. You may also
have to close the database to your users during the recovery process if you are recovering the entire
database.

Fortunately, you can use several other more granular recovery methods when your needs are
more precise. The TSPITR method enables you to recover a tablespace until a specified point in the
past. The LogMiner utility, which Oracle provides free of charge, enables you to perform extremely
precise recovery based on a reading of the changes recorded in the redo logs. In addition, you can use
the Flashback Query feature to identify and recover lost data or wrongly committed incorrect data.
Depending on your needs, you may find one of these alternatives a better way to fix data loss prob-
lems than having to restore and recover the database every time you have to undo the results of an
application error.

Tablespace Point-in-Time Recovery
Suppose you or one of the users of your database has dropped a table by mistake. Or, as it happens
sometimes, you truncated the wrong table or you wrongly deleted (or inserted) data into a table. You
don’t have to recover the entire database when you need to bring back the table’s contents. You can
use Oracle’s TSPITR technique to recover the tablespace containing the lost table to a point in time
that’s different from the rest of the database.

You can perform TSPITR using RMAN, or you can manage the whole process manually. Essen-
tially, you have to use an auxiliary database so you can recover the tablespace (or tablespaces) to the
desired point in time before the damaging action occurred. Once the tablespace is recovered to that
clean point, it is brought back to the main database. RMAN makes the TSPITR type of recovery very easy.

Using RMAN for TSPITR

You recover the tablespaces from the database (the target database) by first performing the PITR
in a temporary instance called the auxiliary database, which is created solely to serve as the staging
area for the recovery of the tablespaces.

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 841

Here’s how to use RMAN to perform a TSPITR:

1. Create the auxiliary database. Use a skeleton initialization parameter file for the auxiliary
instance along the lines of the following:

db_name=help (this is the target database_name)
db_file_name_convert=('/oraclehome/oradata/target/', '/tmp/')
/* Lets you convert the target database datafiles to a different name */
log_file_name_convert=('/oraclehome/oradata/target/redo', '/tmp/redo')
/* Lets you convert the target database redo log files
to a different name. */
instance_name=aux
control_files=/tmp/control1.ctl
compatible=11.1.0
db_block_size=8192

2. Start up the auxiliary database in the nomount mode:

$ sqlplus /nolog
SQL> CONNECT sys/oracle@aux AS sysdba
SQL> STARTUP NOMOUNT PFILE = /tmp/initaux.ora

3. Generate some archived redo logs and back up the target database. You can use the ALTER
SYSTEM SWITCH LOGFILE command to produce the archived redo log files.

4. Connect to all three databases—the catalog, target, and auxiliary databases—as follows:

$ rman target sys/sys_passwd@nick catalog rman/rman1@nina
 auxiliary system/oracle@aux

5. Perform a TSPITR. If you want to recover until a certain time, for example, you can use the
following statement (assuming your NLS_DATE format uses the following format mask: Mon
DD YYYY HH24:MI:SS):

RMAN> RECOVER TABLESPACE users UNTIL TIME ('JUN 30 2005 12:00:00');

This is a deceptively simple step, but RMAN performs a number of tasks in this step. It restores
the datafiles in the users tablespace to the auxiliary database and recovers them to the time
you specified. It then exports the metadata about the objects in the tablespaces from the
auxiliary to the target database. RMAN also uses the SWITCH command to point the control
file to the newly recovered datafiles.

6. Once the recovery is complete, bring the user tablespace online:

$ rman target sys/sys_passwd@nick
RMAN> SQL "alter tablespace users online";
RMAN> Exit;

7. Shut down the auxiliary instance and remove all the control files, redo log files, and datafiles
pertaining to the auxiliary database.

Using LogMiner for Precision Recovery
Oracle provides the excellent LogMiner utility, which helps you perform precision recovery by using
the data captured in the redo logs. LogMiner can read the redo logs, which opens the door to a number
of possibilities. Remember that redo logs hold the information about the history of the changes made to
the database. Although you can use LogMiner’s capability to read redo logs for security and auditing
purposes, our interest in it in this chapter is solely for database recovery.

842 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

When DBAs fix user errors with a PITR, there is a possible loss of valuable data. LogMiner obvi-
ates the need for a recovery when you are trying to undo a minor change to the data. In cases where
you need to undo a committed change to just one table, LogMiner can help you identify the exact
transaction, read the redo log files, and undo the changes that were incorrectly made. If you need to
recover from a massive error, LogMiner can still help by pinpointing the time to which you need to
recover from backups. You can then perform a time-based or change-based recovery.

LogMiner makes it easy to perform fine-grained recovery by reversing unwanted changes from
a table. In addition to serving as a fine-grained recovery tool, the LogMiner utility can help you
reconstruct SQL statements to help in auditing and debugging. You can also use this tool to discover
the time frame in which a logical corruption occurred.

LogMiner uses the DBMS_LOGMNR and the DBMS_LOGMNR_D packages supplied by Oracle
(along with a couple of other, less important packages) to extract the information from the redo logs.
In addition, LogMiner uses several dynamic performance views to help analyze the information
contained in the redo logs. You can give regular users access to the SYS-owned packages by granting
them the EXECUTE_CATALOG_ROLE role. To enable LogMiner to match its object IDs with actual
database object names, you have to specify a data dictionary to use, and the easiest thing to do is
assign LogMiner the normal data dictionary that belongs to the database.

The V$LOGMNR_CONTENTS view holds a wealth of information that LogMiner uses to help
remove unwanted changes in table data. Here is a brief list of the types of information recorded in
the V$LOGMNR_CONTENTS view:

• Time stamp

• Username

• Type of action (insert, update, delete, or DDL)

• The transaction numbers and SCNs

• The tables involved in the transaction

• A reconstruction of the SQL that made the changes

• SQL that will undo the change, if necessary

How the LogMiner Utility Works

LogMiner reads redo log files and puts the information it extracts into the V$LOGMNR_CONTENTS
view, which you can then query for details about transactions you’re interested in. Because the
information in the redo logs is in the form of internal object identifiers and data in hex form, Oracle
recommends you provide LogMiner with access to the data dictionary so it can translate the
contents of the redo log file into a form you can readily understand.

You can provide LogMiner with access to the data dictionary in three different ways:

• You can extract the data dictionary to a flat file.

• You can have a dictionary snapshot placed in the redo logs.

• You can do away with the extraction of the data dictionary and direct LogMiner to just use the
online data dictionary.

Note that LogMiner doesn’t show you all the SQL statements in the redo log; it just shows the
end statement that would need to be applied to the database to undo the unwanted changes.

Supplemental Logging

Before you start using the LogMiner utility, be aware that you must turn on supplemental logging to
take full advantage of the LogMiner functionality. As its name indicates, supplemental logging logs

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 843

more information about transactions by logging additional columns in the redo logs. This additional
information can be used to undo changes to the database.

Types of Supplemental Logging

There are two types of supplemental logging, differing in the set of additional columns logged. The
set of additional columns is the supplemental log group, the more restrictive supplemental logging
uses the conditional supplemental log group, and the more general supplemental logging uses the
unconditional supplemental log group.

If you want the before-images of these columns to always be logged, even if none of the columns
were changed, then you use an unconditional supplemental log group (also known as the ALWAYS
log group). Here’s an example that shows how you create an unconditional supplemental log group:

SQL> ALTER TABLE hr.employees
 ADD SUPPLEMENTAL LOG GROUP key_info(empno, ename)
 FROM hr.employees ALWAYS;

The conditional supplemental log group is a more restricted supplemental log group that logs
the before-images of the specified columns in the group only if one of them changes. Here’s an
example that shows how to create a conditional supplemental log group:

SQL> ALTER TABLE hr.employees
 ADD SUPPLEMENTAL LOG GROUP key_info(empno,ename)
 FROM hr.employees;

Levels of Supplemental Logging

You also have two levels of supplemental logging, one at the database level and the other at the table
level. If you turn on supplemental logging for the entire database, keep in mind that it could impose
a performance penalty. If you do use supplemental logging at the database level, use the minimal
supplemental logging, which is an option designed to put the least amount of stress on your data-
base. That said, minimal supplemental logging still provides the information you need to identify
and group the operations associated with various DML operations. Oracle strongly recommends
you have at least this level of supplemental logging turned on for LogMiner to be effective.

To turn minimal database-wide supplemental logging on, use the following command:

SQL> ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

You can specify table-level supplemental logging, which logs only that table’s supplemental
data in the redo log files. Here’s an example showing how you can specify table-level supplemental
logging for all columns of a table:

SQL> ALTER TABLE HR.EMPLOYEES ADD SUPPLEMENTAL LOG DATA (ALL) COLUMNS;

■Tip Although supplemental logging is strongly recommended by Oracle if you want to avail yourself of all the
features of the LogMiner utility, it does inflict some burden on the system if you choose the more expansive data-
base-wide supplemental logging rather than table-level supplemental logging.

Extracting the Data Dictionary

As mentioned previously, you have three ways to extract the data dictionary information for LogMiner’s
use: using a flat file, extracting the dictionary to the redo logs, or using the online data dictionary.
When you start LogMiner, it builds its own internal data dictionary from the dictionary supplied by
one of the preceding three methods.

844 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

The easiest method is to use the existing data dictionary, but it isn’t valid with the DDL_DICT_
TRACKING option, which means you can’t track changes to DDL. Also, you can’t track DML operations
performed on tables created after the dictionary was extracted.

The problem with the extraction of the dictionary to a flat file is that you can’t guarantee it’s
always consistent, because DDL operations could be changing the database structure while the
dictionary is being extracted.

During the extraction of the dictionary to the redo logs, on the other hand, DDL statements
aren’t allowed, thus ensuring the consistency of the dictionary that’s being extracted. Therefore, it is
best to extract the data dictionary to the redo logs, because it gives you a consistent version of the
data dictionary and enables DDL tracking at the same time.

A LogMiner Session

Before you invoke the LogMiner utility, make sure you create a separate tablespace for LogMiner’s
data, because the default location for it is the System tablespace. Also, make sure you have minimal
database-wide logging turned on, as explained in the previous “Supplemental Logging” section.

Let’s look at a simple LogMiner session with minimal supplemental logging already turned on.
Note that DBMS_LOGMNR is owned by SYS.

The first step is to extract the data dictionary to the redo logs. The DBMS_LOGMNR_D package
builds the data dictionary and stores it in the online redo logs:

SQL> EXECUTE sys.DBMS_LOGMNR_D.build(-
 > OPTIONS => sys.DBMS_LOGMNR_D.store_in_redo_logs);
PL/SQL procedure successfully completed.
SQL>

Next, you need to specify the logs to be included in the LogMiner analysis. Because you chose
to use the redo logs to extract the data dictionary, you must specify the redo logs that contain the data
dictionary, in addition to the other redo logs you’re interested in using in the DBMS_LOGMNR.ADD_
LOGFILE procedure. The first file you add should use the DBMS_LOGMNR.NEWFILE procedure,
and all the other ones should use the DBMS_LOGMNR.ADDFILE procedure.

You now can use the V$ARCHIVED_LOG view to find out which of the redo log files the data
dictionary was extracted to when you invoked the DBMS_LOGMNR_D.BUILD procedure. The
DICTIONARY_BEGIN and DICTIONARY_END columns will tell you in which redo log files your data
dictionary is contained. Here’s the query:

SQL> SELECT SEQUENCE#, DICTIONARY_BEGIN, DICTIONARY_END
 2 FROM V$ARCHIVED_LOG;

 SEQ# DIC DIC
 BEG END
 ---- ----- -----
 2 NO NO
 24 YES YES
 25 NO NO
 26 NO NO
 27 NO NO
 28 NO NO
 SQL>

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 845

From the output, you can see that the DICTIONARY_BEGIN and DICTIONARY_END columns
are both contained in archived redo log number 24. You must include this in your list of log files,
as follows:

SQL> EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 > LOGFILENAME => 'C:\ORACLENT\RDBMS\ARC00024.001', -
 > OPTIONS => DBMS_LOGMNR.NEW);
PL/SQL procedure successfully completed.
SQL>

In addition, you need to add the files you’re interested in to the ADD_LOGFILE procedure in the
DBMS_LOGMNR package:

SQL> EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 > LOGFILENAME => 'C:\ORACLENT\RDBMS\ARC00025.001' , -
 > OPTIONS => DBMS_LOGMNR.ADDFILE);

PL/SQL procedure successfully completed.
SQL>
SQL> EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 > LOGFILENAME => 'C:\ORACLENT\RDBMS\ARC00026.001', -
 > OPTIONS => DBMS_LOGMNR.ADDFILE);

PL/SQL procedure successfully completed.
SQL>

Note that you can also add log files without the OPTIONS line, as follows:

SQL> EXECUTE DBMS_LOGMNR.ADD_LOGFILE(-
 > LOGFILENAME => 'C:\ORACLENT\RDBMS\ARC00027.001');

PL/SQL procedure successfully completed.

Once you’ve specified the redo log files, it’s time to start the LogMiner utility. In this example,
in addition to specifying that LogMiner use the redo logs as the source of the data dictionary, you’ll
also enable DDL tracking, which is turned off by default:

SQL> EXECUTE DBMS_LOGMNR.START_LOGMNR(OPTIONS => -
 > DBMS_LOGMNR.DICT_FROM_REDO_LOGS + -
 > DBMS_LOGMNR.DDL_DICT_TRACKING);

PL/SQL procedure successfully completed.
SQL>

Using LogMiner to Analyze Redo Logs

Now that you’ve successfully started LogMiner, you can issue commands against the V$LOGMNR_
CONTENTS table to get information about various DML and DDL statements encompassed by the
set of redo log files you included earlier. Whenever you query the V$LOGMNR_CONTENTS view, all
the redo log files you specified are read sequentially, and the information is loaded into the V$LOGMNR_
CONTENTS view. Listing 16-9 shows a simple example.

846 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

Listing 16-9. Analyzing the V$LOGMNR_CONTENTS View

SQL> SELECT SQL_REDO
 2 FROM V$LOGMNR_CONTENTS
 3* WHERE USERNAME='HR';

 SQL_REDO

set transaction read write;
select * from "SYS"."DUAL" where ROWID = 'AAAADdAABAAAANnAAA' for update;
commit;
set transaction read write;
delete from "HR"."REGIONS" where "REGION_ID" = '5'
and "REGION_NAME" =
'northern europe' and ROWID = 'AAAHrNAAFAAAAESAAE';
delete from "HR"."REGIONS" where "REGION_ID" = '6'
and "REGION_NAME" =
'pacific region' and ROWID = 'AAAHrNAAFAAAAESAAF';
update "HR"."REGIONS" set "REGION_NAME" = 'eastern europe' where
"REGION_NAME" = 'northern africa' and ROWID = 'AAAHrNAAFAAAAESAAG';
commit;
10 rows selected.
SQL>

You can see that user HR has deleted two rows and updated one row. You can thus use LogMiner
to retrieve DML from a previous period. There’s an additional bonus to using LogMiner; it will give
you the SQL to undo the preceding DML statements, as shown in Listing 16-10.

Listing 16-10. Retrieving the SQL to Undo DML Statements

SQL> SELECT SQL_UNDO
 2 FROM V$LOGMNR_CONTENTS
 3* WHERE USERNAME='HR';
 SQL_UNDO
--
insert into "HR"."REGIONS"("REGION_ID","REGION_NAME")
values ('5','northern europe');
insert into "HR"."REGIONS"("REGION_ID","REGION_NAME")
values ('6','pacific region');
update "HR"."REGIONS" set "REGION_NAME" = 'northern africa' where
 "REGION_NAME"= 'eastern europe' and ROWID = 'AAAHrNAAFAAAAESAAG';
10 rows selected.
SQL>

The INSERT statements replace the deletes, and the UPDATE statement reverses the changes made.
Note that SQL*Plus indicates that ten rows were selected in response to your query, although only
the three DML operations executed by user HR are displayed.

As you can see, the SQL_UNDO column contains complete statements that are ready to be used
in SQL, semicolon and all. However, the statements aren’t very easy to read when they’re long and
complex. LogMiner provides the DBMS_LOGMNR.PRINT_PRETTY_SQL procedure to make the
LogMiner output appear less cluttered and enable you to print easy-to-read output.

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 847

If you want to continuously analyze data using LogMiner, you don’t have to keep adding files
manually. You can just add the DBMS_LOGMNR.CONTINUOUS_MINE procedure by using the
OPTIONS keyword, and LogMiner will keep adding any redo log files that are archived to the list of files
to be analyzed each time you query the V$LOGMNR_CONTENTS view.

Because you started LogMiner with the DDL tracking option turned on, the following query will
identify, for example, all the DDL changes made by user SYS:

SQL> SELECT sql_undo
 2 FROM v$logmnr_contents
 3 WHERE username='SYS'
 4* AND operation='DDL'

When you’ve finished using LogMiner, end your session with the DBMS_LOGMNR.end_logmnr
procedure, as follows:

SQL> EXECUTE dbms_logmnr.end_logmnr();
PL/SQL procedure successfully completed.
SQL>

Flashback Techniques and Recovery
Oracle’s Flashback technology allows you to “rewind” your database, or parts of it, to a previous
point in time, without recourse to the traditional, more time-consuming, recovery techniques
involving backup files and archived redo logs. It can often provide a quick and effective means of
recovering from logical corruptions or user error.

CONVERTING BETWEEN TIME STAMPS AND SCNS

Two SQL functions, SCN_TO_TIMESTAMP and TIMESTAMP_TO_SCN, convert SCNs to a corresponding time-stamp
value and vice versa. The SCN_TO_TIMESTAMP SQL function lets you convert an SCN to a calendar time
(TIMESTAMP) value. Here’s an example:

SQL> SELECT current_scn, SCN_TO_TIMESTAMP(current_scn)
 2> FROM v$database;

 CURRENT_SCN SCN_TO_TIMESTAMP(CURRENT_SCN)
 ------------- -----------------------------------
 5956956 13-JUL-08 09.37.16.000000000 AM
SQL>

The TIMESTAMP_TO_SCN function is the inverse of the SCN_TO_TIMESTAMP function. It converts a time stamp to
its corresponding SCN.

You can use either a clock time or an SCN to define the exact point to which you wish to restore.
If you specify a clock time, Oracle will pick an SCN that’s within three seconds of this clock time.
Oracle retains the mapping between your clock time and SCNs for a period that is as long as your
UNDO_RETENTION initialization parameter.

848 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

Flashback Levels
You can use flashback techniques at the row, table, or database levels, as follows:

• Row level: You can use Flashback techniques to undo erroneous changes to individual rows.
There are four types of row-level Flashback techniques, and all of them rely on undo data
stored in the undo tablespace:

• Flashback Query: Allows you to view old row data based on a point in time or an SCN. You
can view the older data and, if necessary, retrieve it and undo erroneous changes.

• Flashback Versions Query: Allows you to view all versions of the same row over a period of
time so that you can undo logical errors. It can also provide an audit history of changes,
effectively allowing you to compare present data against historical data without performing
any DML activity.

• Flashback Transaction Query: Lets you view changes made at the transaction level. This
technique helps in analysis and auditing of transactions, such as when a batch job runs
twice and you want to determine which objects were affected. Using this technique, you
can undo changes made by an entire transaction during a specified period.

• Flashback Transaction Backout: Lets you back out a transaction along with all its dependent
transactions, with a single click.

• Table level: There are two main Flashback features available at the table level:

• Flashback Table: Restores a table to a point in time or to a specified SCN without restoring
datafiles. This feature uses DML changes to undo the changes in a table. The Flashback
Table feature relies on undo data.

• Flashback Drop: Allows you to reverse the effects of a DROP TABLE statement, without resorting
to a point-in-time recovery. The Flashback Drop feature uses the Recycle Bin to restore a
dropped table.

• Database level: The Flashback Database feature allows you to restore an entire database to a
point in time, thus undoing all changes since that time. For example, you can restore a dropped
schema or an erroneously truncated table. Flashback Database mainly uses flashback logs to
retrieve older versions of the data blocks; it also relies, to a much smaller extent, on archived
redo logs to completely recover a database without restoring datafiles and performing tradi-
tional media recovery.

As you can see, Oracle’s Flashback technology employs a variety of techniques. The row-level
Flashback techniques and Flashback Table use undo data and are discussed in Chapter 6. In addition,
there is also a Flashback Data Archive feature that lets you store and track transactional changes to
a table’s data. You can use the archive for queries involving historical data or for meeting with regu-
larity compliance requirements. Flashback Drop and Flashback Database rely on the new concept of
a Recycle Bin and Flashback log data, respectively, to undo errors at various levels. We will focus on
these latter two techniques in this chapter.

Flashback vs. Traditional Recovery Techniques
Unlike traditional recovery techniques, the primary use of Flashback techniques isn’t to recover
from a media loss, but to recover from human errors. For example, you may accidentally change the
wrong set of data or drop a table. Or you may just want to query historical data and perform change
analysis. In some extreme cases, you may want to revert the entire database to a previous point in time.

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 849

■Note If you have a damaged disk drive, or if there is physical corruption (not logical corruption due to application
or user errors) in your database, you must still use the traditional methods of restoring backups and using archived
redo logs to perform the recovery.

Traditionally, the only way to recover from human error was to employ traditional backup and
restore techniques. The process of restoring the database files and then rolling forward through all
the redo logs could often involve significant downtime, however, and Flashback technology offers
you a much more efficient and much faster way to recover from logical errors, in most cases while
the database is still online and available to users. Furthermore, Flashback techniques allow you to
selectively restore certain objects. With traditional techniques, you have no choice but to recover the
entire database.

Flashback Drop
The Flashback Drop feature provides a means to recover an accidentally dropped table (and its indexes)
without the loss of any recent transactions. Most experienced DBAs will have experienced situations
where a production table has been accidentally dropped. It takes seconds to issue a DROP TABLE state-
ment; the SQL prompt comes back very quickly—but its consequences can be dire. Unfortunately, you
aren’t required to confirm your choice to drop a table before the table is gone!

Starting with Oracle Database 10g, when you drop a table, Oracle doesn’t get rid of it immediately.
It lists the table, and any dependent objects, in the Recycle Bin (more on this shortly) and retains it
for as long as possible. If you quickly realize a mistake has been made, you can use the following
simple command to immediately restore your lost table:

SQL> FLASHBACK TABLE table_name TO BEFORE DROP;

■Tip One of the best ways to avoid accidentally dropping a table is to use the new prompt variables in SQL*Plus,
so your database name and username appear as part of the prompt. I explain this in Chapter 4.

How Flashback Drop Works

Before Oracle Database 10g, executing a DROP TABLE command would result in the immediate removal of
the table and all its dependent objects, and all of the related space in that table segment would be
released back to the database.

As of Oracle Database 10g, however, the table and dependent objects aren’t immediately removed.
They are renamed, but they temporarily stay in the same location, and Oracle will retain them for as
long as possible, based on space pressure. As noted earlier, these “dropped” objects are listed in the
Recycle Bin, which is simply a logical container (a data dictionary table that maintains information
about dropped tables, such as their new and original names). You can query it as you would a normal
table to view its contents with a simple SELECT * FROM DBA_RECYCLEBIN command. As long as a table
is still listed in the Recycle Bin, it can be restored at any time using the Flashback Drop feature.

■Tip As of Oracle Database 10g Release 2, you can use the RECYCLEBIN initialization parameter to turn the
Flashback Drop capability off. By default, the parameter is set to ON, which means that all dropped tables go into
the Recycle Bin and you can recover them using the Flashback Drop feature. By setting the parameter’s value to
OFF, you turn the Flashback Drop feature off, and tables won’t go into the Recycle Bin upon being dropped.

850 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

A query on the DBA_FREE_SPACE view will tell you that the space previously occupied by these
“dropped” objects is now free. In fact, however, this space is not immediately reclaimable by the
database—it is potential free space that is reclaimed later, once the objects have been removed for
good. So, despite what the DBA_FREE_SPACE view tells you, these objects will continue to take up
their original space allocation in their tablespaces until they are permanently deleted from the
Recycle Bin. This deletion can occur in the following circumstances:

• A user can permanently remove the objects from the Recycle Bin using the PURGE command
(DROP TABLE table_name PURGE).

• Oracle automatically removes the dropped objects in the Recycle Bin due to space pressure—
when Oracle doesn’t have enough available free space in a tablespace to create a new object
or to extend more space to an existing object.

■Tip The Flashback Drop feature is automatically enabled in an Oracle Database 11g database. You don’t have
to configure a thing in order to use the feature.

In summary, on issuing a DROP TABLE (or DROP INDEX) command in Oracle Database 11g, the
objects in question are not truly dropped. Oracle simply hides them, and you can restore them at a
later point using Flashback Drop. If you truly do want to permanently remove an object, you can use
the PURGE option with the DROP command:

SQL> DROP TABLE test PURGE;

Let’s take a look at all this in a bit more detail.

The Recycle Bin

As mentioned earlier, the Recycle Bin is a logical structure—a data dictionary table named
RECYCLEBIN$. You can view the contents of the Recycle Bin for the currently logged in user via
the USER_RECYCLEBIN view (RECYCLEBIN is a synonym for USER_RECYCLEBIN). Alternatively,
you can view the contents of the Recycle Bin for the entire database via the DBA_RECYCLEBIN view.
The following code shows an example of the latter:

SQL> SELECT owner, original_name, object_name,
 ts_name, droptime
 FROM dba_recyclebin;

OWNER ORIGINAL_NAME OBJECT_NAME TS_NAME
--
sam PERSONS BIN$xTMPjHZ6SG+1xnDIaR9E+g==$0 USERS

At the user level, you simply select from the RECYCLEBIN view, instead of the DBA_
RECYCLEBIN view. You can also use the SHOW RECYCLEBIN command from SQL*Plus:

SQL> SHOW RECYCLEBIN

ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME
---------------- ------------------------------ ------------ -------------------
LOGIN_INFO BIN$5oAI+vnANcTgNABgsLLCaA==$0 TABLE 2008-06-29:15:48:31
TEST5 BIN$+rR0/h2APITgNABgsLLCaA==$0 TABLE 2008-06-29:15:44:53
SQL>

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 851

■Tip The CAN_UNDROP and CAN_PURGE columns of the DBA_RECYCLEBIN view tell you whether you can “undrop”
and purge an object, respectively. The SHOW RECYCLEBIN command shows only those objects that you can “undrop.”

As you can see, when a table is moved to the Recycle Bin, Oracle assigns it a system-generated
name, which is usually 30 characters long. If you wish to query an object in the Recycle Bin, you must
use its new system-generated name, enclosed in double quotes:

SQL> SELECT * FROM "BIN$xTMPjHZ6SG+1xnDIaR9E+g==$0";

NAME

valerie alapati
sam alapati
nina alapati
nicholas alapati
shannon alapati
SQL>

■Note You can only query objects in the Recycle Bin. INSERT, UPDATE, and DELETE commands won’t work.

Oracle renames all objects in the Recycle Bin, including any dependent objects such as indexes,
constraints, and triggers. When you recover a table, Oracle will recover the dependent objects as
well, but they’ll retain these cryptic system-generated names, so you will need to rename them
appropriately.

In order to find out which of your tables are currently in the Recycle Bin, you can simply query
the DBA_TABLES view. A table that was dropped and is in the Recycle Bin will show a YES value for the
DROPPED column, and NO otherwise.

Restoring a Dropped Table

You can restore any dropped table, as long as it is still listed in the Recycle Bin, by using the FLASHBACK
TABLE table_name TO BEFORE DROP command (at which point Oracle will also remove it from the Recycle
Bin). The following example would restore the previously dropped persons table.

SQL> FLASHBACK TABLE persons TO BEFORE DROP;
Flashback complete.
SQL>

Alternatively, you can use the system-generated table name:

SQL> FLASHBACK TABLE "BIN$xTMPjHZ6SG+1xnDIaR9E+g==$0"
 TO BEFORE DROP;
Flashback complete.
SQL>

As part of the Flashback operation, you may want to rename the previously dropped table, as
follows (you can use either the system-generated or original table name):

SQL> FLASHBACK TABLE "BIN$xTMPjHZ6SG+1xnDIaR9E+g==$0"
 TO BEFORE DROP
 RENAME TO NEW_PERSONS;

852 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

This is particularly useful when you’ve already created a new table with the same name as the
dropped table.

If you drop a table and then create a new one of the same name, it’s possible (if you then drop
that new table) that the Recycle Bin will contain several versions of the dropped table, each with a
unique system-generated table name. If you then issue a FLASHBACK TABLE . . . TO BEFORE DROP
command using the original table name, Oracle will simply recover the latest version of the table. If
you want to return to an older version, you can then simply reissue the same command until you
recover the required version. Alternatively, you can provide the specific system-generated name of
the table you want to recover.

Permanently Removing Tables

As noted previously, if you want to permanently and immediately remove a table, without moving it
to the Recycle Bin, you must use the DROP TABLE table_name PURGE command:

SQL> DROP TABLE persons PURGE;
Table dropped.
SQL>

■Tip The new PURGE clause comes in especially handy when you want to drop a sensitive table and don’t want
it to appear in the Recycle Bin for security reasons.

You can also use the PURGE TABLE or the PURGE INDEX command to permanently erase a previously
dropped table or index from the Recycle Bin:

SQL> PURGE TABLE persons
Table purged.
SQL>

Alternatively, you can use the system-generated name:

SQL> PURGE TABLE "BIN$Q1qZGCCMRsScbbRn9ivwfA==$0"
Table purged.
SQL>

If you have several tables of the same original name in the Recycle Bin, the PURGE command will
drop the first table that you originally dropped.

■Note Once you remove an object from the Recycle Bin with the PURGE command, or when you drop an object
with the PURGE option, you can’t apply the Flashback Drop feature to retrieve those objects (or their dependent
objects)—the purged objects are gone forever!

You can also use the PURGE TABLESPACE command to remove all objects from the Recycle Bin that
are part of that tablespace, as shown here:

SQL> PURGE TABLESPACE users;

The following command will remove all objects of a single user, scott (along with any dependent
objects that live in other tablespaces), from the tablespace named users:

SQL> PURGE TABLESPACE users USER scott;

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 853

To permanently remove all objects from a tablespace, without them moving to the Recycle Bin,
you can use the DROP TABLESPACE . . . INCLUDING CONTENTS command. In addition, any objects
belonging to the tablespace that are currently in the Recycle Bin are immediately purged. The DROP
TABLESPACE command by itself, without the INCLUDING CONTENTS clause, will fail unless the tablespace
is empty.

If you wish to permanently remove all of your objects currently in the Recycle Bin, you can use
the PURGE RECYCLEBIN command (or PURGE USER_RECYCLEBIN). These will simply remove any objects
belonging to the user issuing the command. In order to empty the entire Recycle Bin of all objects,
regardless of ownership, you can use PURGE DBA_RECYCLEBIN. However, for obvious reasons, you need
the SYSDBA privilege to issue this command.

■Note The DROP USER . . . CASCADE command will instruct Oracle to drop the user and all objects owned by
the user from the database and will automatically purge any objects in the Recycle Bin that belong to that user.

Finally, remember that Oracle may automatically purge objects from the Recycle Bin if it expe-
riences space pressure. It will start with the oldest objects.

Necessary Privileges

To retrieve a table using the FLASHBACK TABLE table_name TO BEFORE DROP command, you must
either be the owner or have the drop privileges (DROP TABLE or DROP ANY TABLE) on a table. To
use the PURGE command, you need similar privileges. You must have the SELECT privilege and the
FLASHBACK privilege on an object in order to query that object in the Recycle Bin.

Flashback Database
Before Oracle Database 10g, if you suffered logical database corruption, you would undertake tradi-
tional point-in-time recovery techniques, restoring datafile backup copies and then using archived
redo logs to advance the database forward. This was often time consuming and cumbersome. No
matter how limited the extent of the corruption, you would need to restore entire datafiles and apply
the archived redo logs.

■Note Oracle can check data block integrity by computing checksums before writing the data blocks to disk.
When the block is subsequently read again, the checksum for the data block is computed again, and if the two
checksums differ, there is likely corruption in the data block. By setting the DB_BLOCK_CHECKSUM initialization
parameter to FULL, you can make the database perform the check in the database buffer cache itself, thus elimi-
nating the possibility of corruption at the physical disk level. The DB_BLOCK_CHECKSUM parameter is FALSE by default.

The Flashback Database feature restores datafiles but without requiring backup datafiles and
using just a fraction of the archived redo log information. A Flashback Database operation simply
reverts all datafiles of the database to a specified previous point in time. With Flashback Database,
the time it takes to recover is directly proportional to the number of changes that you need to undo.
Thus, it is the size of the error and not the size of the database that determines the time it takes to
recover. This means that you can recover from logical errors in a fraction of the time—perhaps as
little as a hundredth of the time, depending on the size of the database—that it would take using
traditional methods.

854 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

■Note Flashing back a database is possible only when there is no media failure. If you lose a datafile or it
becomes corrupted, you’ll have to recover using a restored datafile from backups.

You can use Flashback Database in the following situations:

• To retrieve a dropped schema

• When a user error affects the entire database

• When you truncate a table in error

• When a batch job performs only partial changes

The Flashback Database feature uses flashback database logs, which are stored in the new flash
recovery area, to undo changes to a point in time just before a specified target time or SCN. Since
the specified target time and the actual recovery time may differ slightly, you then use archived redo
logs to recover the database over the short period of time between the target time and the actual
recovery time.

Once the Flashback Database feature is enabled, you simply use the FLASHBACK DATABASE command
to return the database to its state at a previous time, SCN, or log sequence. You can issue the
FLASHBACK DATABASE command from either RMAN or SQL*Plus. The only difference is that RMAN will
automatically retrieve the necessary archived redo logs, whereas in SQL*Plus you may have to supply
the archived redo logs, unless you use the SET AUTORECOVERY ON feature in SQL*Plus.

We’ll take a look at the whole Flashback Database process in more detail shortly, but first let’s
look at how to enable (and disable) the Flashback Database feature.

■Tip Since you need the current datafiles in order to apply changes to them, you can’t use the Flashback Database
feature in cases where a datafile has been damaged or lost.

Configuring Flashback Database

In order to configure the Flashback Database feature, you need to step through a series of operations, as
follows:

1. Check that your database is in the archivelog mode by either querying the V$DATABASE
view or simply issuing the following command:

SQL> ARCHIVE LOG LIST
Database log mode Archive Mode
Automatic archival Enabled
Archive destination /u01/app/oracle/admin/finance/arch/finance
Oldest online log sequence 42035
Next log sequence to archive 42039
Current log sequence 42039
SQL>

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 855

The preceding output reveals that the database is indeed running in the archivelog mode.
If it isn’t, you can turn archive logging on with the ALTER DATABASE statement shown in
the following code, after first shutting down the database and starting it up initially in the
mount mode:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;
SQL> ALTER DATABASE ARCHIVELOG;
SQL> ALTER DATABASE OPEN

2. Set up a flash recovery area, as described in Chapter 15.

3. Set the DB_FLASHBACK_RETENTION_TARGET initialization parameter to specify how far back you can
flash back your database. The following code sets the Flashback target to 1 day (1,440 minutes):

SQL> ALTER SYSTEM SET
 2 DB_FLASHBACK_RETENTION_TARGET=1440;

 System altered.
SQL>

4. Shut down and restart the database in the mount exclusive mode. If you are using a single
instance, a simple MOUNT command can be used:

SQL> SHUTDOWN IMMEDIATE;
 Database closed.
 Database dismounted.
 ORACLE instance shut down.
SQL> STARTUP MOUNT;

5. Enable the Flashback Database feature:

SQL> ALTER DATABASE FLASHBACK ON;
 Database altered.
SQL>

6. Use the ALTER DATABASE OPEN command to open the database and then confirm that the
Flashback Database feature is enabled, by querying the V$DATABASE view:

SQL> ALTER DATABASE OPEN;
SQL> SELECT FLASHBACK_ON FROM V$DATABASE;
FLA

YES
SQL>

If you want to take the easy way out, you can use the OEM Database Control tool to configure
Flashback logging in your database using the following steps (assuming you are working in archivelog
mode):

1. From the Database Home Page, click the Maintenance tab.

2. Go to the Backup/Recovery section and click Configure Recovery Settings.

3. Under the Flash Recovery Area section, specify the Flash Recovery Area Location and Flash
Recovery Area Size settings.

4. Check the box next to the option Enable Flash Database – flashback logging can be used for
fast database point-in-time recovery, as shown in Figure 16-2.

856 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

Figure 16-2. Configuring Flashback Database using the Database Control

Disabling Flashback Database

You can turn the Flashback Database feature off by issuing the ALTER DATABASE FLASHBACK OFF
command. First, though, make sure you shut down the database and restart the database in the
mount (or mount exclusive) mode before using this command.

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;
SQL> ALTER DATABASE FLASHBACK OFF;

■Tip When you disable the Flashback Database feature, Oracle deletes all Flashback Database logs in the flash
recovery area.

If you want to use Flashback Database, but not for certain tablespaces, you can disable it using
the ALTER TABLESPACE command:

SQL> ALTER TABLESPACE users FLASHBACK OFF;
Tablespace altered.

Once disabled, Oracle will not log any Flashback Database data for that tablespace. If you want
to switch it back on again, you simply issue this command:

SQL> ALTER TABLESPACE users FLASHBACK ON;
Tablespace altered.
SQL>

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 857

As Chapter 5 explains, you can create a tablespace with the Flashback feature turned off by
specifying the FLASHBACK OFF clause when creating the tablespace. By default, of course, Flashback
is on.

Flashback Database Concepts

With the Flashback Database feature enabled, a new background process, RVWR (recovery writer),
is also enabled. This process copies, at infrequent intervals in order to reduce the I/O and CPU over-
head, the before-image of each altered block in the datafiles from the memory buffer (flashback buffer)
to the flashback database logs, which are stored in the flash recovery area. This flash recovery area
is a dedicated area of disk storage for the retention of recovery-related components, such as these
datafile image copies, incremental backups, and archived redo logs.

■Note To increase disk throughput, Oracle recommends the use of fast file systems and multiple disk spindles
with small stripe sizes (128KB) for flash recovery areas.

The Flashback Database logs are similar to the traditional Oracle redo logs (both logs are written
to from a buffer area) but with the big difference that there aren’t any archived Flashback Database
logs! Oracle stores all the Flashback Database logs in the flash recovery area.

■Note You need the SYSDBA privilege to perform a Flashback Database operation.

You can use these before-images of data blocks to reconstruct a datafile as it existed at a specific
time in the past. In essence, you can back out any changes made after a specified target time. In
reality, the Flashback Database logs are used to recover to a time immediately before the target time,
and Oracle then uses traditional archive logs to write any changes made during the short gap between
the target recovery time and the actual recovery time.

For example, if you want to flash back to 9:00 a.m., it may turn out that the Flashback Database
logs nearest to the target time were written at 8:57 a.m. You then apply the changes from archived or
online redo log files to cover the three-to-four minute gap. For this reason, although you aren’t doing
a traditional point-in-time recovery using backup files and archived redo log files, the redo logs must
still be available for the entire time period spanned by the Flashback Database logs.

When you actually issue a FLASHBACK DATABASE command, Oracle first checks to see that the
required archived and online redo log files are available. If so, it automatically reverts all the currently
online datafiles to the SCN or time you specify in the FLASHBACK DATABASE statement.

■Tip The time taken to flash back a database depends on how far back you want to go and the number of data
block changes in the meantime. If you have a heavily used DML-based database, you’ll have more data block changes
than if the database were mainly supporting queries.

Flashback Storage Limits

You must bear in mind that Oracle doesn’t guarantee that you can flash back your database as far as
the time set in the FLASHBACK_RETENTION_TARGET init parameter (one day in our earlier example). If
Oracle is running low on free space in the flash recovery area, it will remove some older flashback

858 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

logs in order to make room for newly arriving datafile backups, archived redo log files, or any other
backup-related files that are part of the flash recovery area.

Furthermore, as we noted earlier, the flash recovery area is specifically set aside for the storage
of recovery-related files. The database accords priority to storing these recovery-related files over
retaining Flashback Database logs. As such, the database will delete Flashback Database logs if it
needs the flash recovery area space to accommodate other recovery-related files.

Therefore, it is essential that you monitor the flash recovery area’s size to ensure that you have
sufficient space so as not to risk losing any of the Flashback Database logs that you need to recover
your database.

■Note It is possible to create a guaranteed restore point to ensure that Oracle will always keep the Flashback
Database logs and redo logs necessary to flash back the database to a specified point in time. I explain restore
points and guaranteed restore points in the “Using Restore Points” section, later in this chapter.

The amount of space you need to allocate to the flash recovery area will depend on the value you
set for the DB_FLASHBACK_RETENTION_TARGET parameter. After the database has been running for a
reasonable length of time with the Flashback Database feature enabled (enough time to make sure
that a typical workload is recorded and that the level of data modification activity in your database
is adequately captured), you can estimate the space required by querying the V$FLASHBACK_
DATABASE_LOG view, as follows:

SQL> SELECT estimated_flashback_size, retention_target, flashback_size
 FROM v$flashback_database_log;

ESTIMATED_FLASHBACK_SIZE RETENTION_TARGET FLASHBACK_SIZE
------------------------ ---------------- -----------------
 126418944 1440 152600576
SQL>

Although this query helps you estimate the required disk space for the Flashback Database logs,
there is no guarantee that the space will suffice. In order to find out how far you can flash back your
database at any given time, use the following query:

SQL> SELECT oldest_flashback_scn,
 oldest_flashback_time
 FROM v$flashback_database_log;

OLDEST_FLASHBACK_SCN OLDEST_FLASHBACK_
--------------------- ------------------
 5964669 07-03-08 12:22:37
SQL>

If the result indicates that you can’t wind your database back as far as the time set in the
DB_FLASHBACK_RETENTION_TARGET parameter, then you should consider increasing the size of your
flash recovery area.

The V$FLASHBACK_DATABASE_STAT view allows you to monitor any modulation in the
generation of your Flashback data over the course of a day. You can adjust your retention target
or flash recovery area size or both, based on the statistics provided by this view.

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 859

Flashback Database in Action

We are now ready to take a look at Flashback Database in action. I use SQL commands in this example,
but you can also use RMAN to perform the same steps. For this example, we will first create a table
called persons and load it with some test data.

Follow these steps:

1. Create the table:

SQL> CREATE TABLE persons AS
 SELECT * FROM persons@prod;

Table created.
SQL>

2. Get a count of the total number of rows in the new table:

SQL> SELECT COUNT(*) FROM persons;

 COUNT(*)

 32768

3. Find out the current SCN of the database:

SQL> SELECT current_scn FROM V$DATABASE;

CURRENT_SCN

 5965123

4. Perform an INSERT, doubling the number of rows in our persons table, as shown here:

SQL> INSERT INTO persons
 SELECT * FROM persons;

65536 rows created.
SQL>

5. Verify the data insertion as follows:

SQL> SELECT COUNT(*) FROM persons;

 COUNT(*)

 65536

Our goal is to flash the database back to the point in time when the persons table held 32,768
rows. In effect, this means flashing back to the SCN 5965123. Follow these steps:

1. Shut down the database and start it up again in the mount exclusive mode, as shown here:

SQL> SHUTDOWN IMMEDIATE;
SQL> STARTUP MOUNT;
ORACLE instance started.
. . .
Database mounted.
SQL>

860 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

■Note In order to use the Flashback Database feature, the database must be running in mount mode.

2. Issue the following simple FLASHBACK DATABASE command:

SQL> FLASHBACK DATABASE TO SCN 5964663;
Flashback complete.
SQL>

Note that TO SCN takes the database back to its state at that SCN. You can also take a database
back to its state just before an SCN by using the TO BEFORE SCN clause. Alternatively, you can
use the TO TIMESTAMP or TO BEFORE TIMESTAMP clauses to revert the database to a specified
time stamp or to one second before the specified time stamp.

3. In order to query the persons table, you must first open the database, which I try to do here:

SQL> ALTER DATABASE OPEN;
alter database open
*
ERROR at line 1:
ORA-01589: must use RESETLOGS or NORESETLOGS option for database open
SQL>

As you can see, it didn’t work: in order to have write access to the flashed back database, we
have to reopen the database with an ALTER DATABASE OPEN RESETLOGS statement. However,
you should consider first opening the database using ALTER DATABASE OPEN READ ONLY in
order to confirm that you have flashed the database back to the correct point in time or the
correct SCN. If, after the initial read-only check, you find that you flashed back too far into
the past, you can use redo logs to roll forward. If you haven’t gone far enough back, you can
reissue the FLASHBACK DATABASE command using an earlier SCN.

Once you are certain you have the right time, finalize the flashback by issuing this command:

SQL> ALTER DATABASE OPEN RESETLOGS;
Database altered.
SQL>

4. Verify that the database has been flashed back appropriately:

SQL> SELECT COUNT(*) FROM persons;
 COUNT(*)

 32768
SQL>

As an alternative to using an SCN, you may use an archived log sequence, or a prior time, to
specify the Flashback point. Here are some examples using time and log sequence numbers:

/* will flash back the database to the log sequence 12345 */
SQL> FLASHBACK DATABASE TO SEQUENCE 12345;

/* will flash back the database to an hour ago */
SQL> FLASHBACK DATABASE TO TIMESTAMP(SYSDATE -1/24);

No matter whether you use an SCN, a time stamp, or a log sequence number, if you’re sure you
have recovered your database to the state you wanted, you can make the database available to your
users by using the following command:

RMAN> ALTER DATABASE OPEN RESETLOGS;

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 861

Your database will now reflect the state of the database at the past SCN or time stamp you chose.
All subsequent changes in the database are removed.

If, on the other hand, you aren’t happy with the state of the database after the Flashback Data-
base operation, you can simply undo the results of the entire Flashback operation by issuing the
following command:

SQL> RECOVER DATABASE;

The RECOVER DATABASE command will perform a complete recovery by applying all the changes
in the archived redo logs and making the database current again.

If you think you didn’t go far back enough the first time when you flashed back your database,
you can run the FLASHBACK DATABASE command once again, to take the database further back in time.

If you have flashed back farther than necessary, you can use the RECOVER DATABASE UNTIL command
to take the database forward in time.

Flashback Database Considerations

I’ll end this section with a few limitations that you must bear in mind when using the Flashback
Database feature:

• You must be running the database in the archivelog mode.

• If you’ve lost a datafile, or you can’t use a particular datafile for whatever reason, then you
can’t use Flashback Database for recovery.

• If a control file has been restored or re-created during the time span you want to flash back
over, then you can’t use the Flashback Database feature.

• You can’t flash back a database to before a RESETLOGS operation.

• You can’t flash back a datafile that was shrunk or dropped during the time span covered by
the Flashback Table operation.

■Note As of Oracle Database 10g Release 2, you can use Flashback Database to go back past an OPEN RESETLOGS
operation. You can thus return the current database to an ancestor or a sibling incarnation.

Using Restore Points
A restore point is an alias for an SCN, which eliminates the need to research and record SCNs or time
stamps, which you need to use for Flashback Database and Flashback Table operations. Suppose
you’re executing a new package or procedure that will modify a large amount of data. You can create
a restore point beforehand, just in case you have to reverse the effects of this operation. If you need
to ever revert back to the original data, all you need to do is refer to the restore point in a Flashback
Database or Flashback Table operation. You can also use restore points in a point-in-time recovery
operation.

You can use a restore point when performing the following types of operations:

• Flashback Table

• Flashback Database

• Database recovery operations

862 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

■Note In order to use restore points, you must be using at least Oracle Database 10g Release 2, the database
should be running in the archivelog mode, and you must use a flash recovery area.

Here’s how you create a restore point:

SQL> CREATE RESTORE POINT test;
Restore point created.
SQL>

You can drop a restore point by using this command:

SQL> DROP RESTORE POINT test;
Restore point dropped.
SQL>

Guaranteed Restore Points
The restore point I created in the previous example is known as an ordinary restore point. An ordi-
nary restore point merely provides you a convenient way of specifying a prior SCN or a point in time
during a Flashback or recovery operation. However, an ordinary restore point doesn’t guarantee
that the database will retain the Flashback Database logs necessary for a Flashback Database opera-
tion to succeed under all circumstances. However, you can also create a guaranteed restore point,
which guarantees that you can revert your database to the SCN or time specified by the restore point.
All you need is enough room in the flash recovery area to store the logs necessary to enforce the
guaranteed restore point.

Ordinarily, before undertaking a major operation in the database, you might ensure that you
have a backup, just in case you have to revert to the original version of the database if something goes
wrong. A guaranteed restore point makes performing a backup unnecessary. With a guaranteed
restore point, you are always guaranteed that you can flash back your database to that prior time.

Guaranteed restore points don’t depend on the Flashback logs. Thus, you can create a guaran-
teed restore point even if Flashback logging is turned off. Guaranteed restore points use a logging
mechanism that’s somewhat similar to the Flashback logs, but it’s separate from them.

If you use a guaranteed restore point, Oracle won’t delete any Flashback logs that are created
after you create the guaranteed restore point. Therefore, you can end up filling up your flash recovery
area and causing the database to stop its operations if Flashback logging is enabled when you’re
using guaranteed restore points. You’re better off turning off Flashback logging if you’re using guar-
anteed restore points.

■Tip Guaranteed restore points use a separate logging mechanism from the Flashback logging used for a Flash-
back Database operation. You can use guaranteed restore points with or without Flashback logging enabled—you
must, however, configure a flash recovery area.

You create a guaranteed restore point the same way as an ordinary restore point, just adding the
GUARANTEE FLASHBACK clause to it, as shown here:

SQL> CREATE RESTORE POINT test_guarantee GUARANTEE FLASHBACK DATABASE;
Restore point created.
SQL>

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 863

You drop a guaranteed restore point in the same way as an ordinary restore point.
Once you create a guaranteed restore point, you can use it to recover your database through a

Flashback Database operation in the following manner:

RMAN> FLASHBACK DATABASE TO RESTORE POINT test_guarantee;

Viewing Restore Points
You use the V$RESTORE_POINT view to view information about restore points in your database.
Here’s a typical query on that view:

SQL> SELECT name, scn, storage_size, time, guarantee_flashback_database
 FROM v$restore_point;

NAME SCN STORAGE_SIZE TIME GUARANTEE
--
TEST_GUARANTEE 1685977 199409664 09-MAY-08 02.10.55.00 PM YES
TEST 4039395 0 30-JUN-08 05.49.02.00 AM NO
SQL>

The preceding output shows two restore points, one of which is ordinary and the other being
a guaranteed restore point. The SCN column tells you when each of the restore points was created.
If you need to perform a recovery now, all you need to do is provide the name of the restore point
during the recovery, rather than the actual SCN or calendar time. As you can see, the STORAGE_SIZE
column, which shows the space (in bytes) needed for supporting the restore point, is zero for the
ordinary restore point and about 200MB for the guaranteed restore point.

As you are aware, you can determine whether a database is running in the Flashback Database
mode by using the following query:

SQL> SELECT flashback_on FROM v$database;

FLASHBACK_ON

NO

In the preceding example, the NO value for the FLASHBACK_ON column means that the Flash-
back Database feature is currently not enabled in this database. However, if you’ve created a restore
point, the same query would show this:

SQL> SELECT flashback_on FROM v$database;

FLASHBACK_ON

RESTORE POINT ONLY
SQL>

Even with the Flashback Database feature disabled, you can see that you can use restore points
to guarantee your ability to flash back a database. Once you enable the Flashback Database feature,
you’ll be able to flash back the database to the time or SCN specified by the guaranteed restore point.
The logs maintained in the flash recovery area by the guaranteed restore point will enable this flash-
back of the database, even though there are no Flashback logs during that time period.

Note that a guaranteed restore point guarantees only a Flashback Database operation, not a
point-in-time operation or a Flashback Table operation, since they require the necessary backup
files and undo data to succeed. However, guaranteed restore points can be used to approximate the
SCN or time for a point-in-time or Flashback Table operation.

864 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

■Note Although you can flash back your database to a guaranteed restore point even if Flashback Database
wasn’t originally enabled and therefore no Flashback logs were collected, you can only recover exactly to the guar-
anteed restore point. If you want to recover to any point before that, you must still use a point-in-time recovery
technique using backups and archived log files.

Repairing Data Corruption and Trial Recovery
As you saw in Chapter 15, Oracle provides several means of detecting data block corruption. These
methods include the use of the ANALYZE command, the DBVERIFY command, and the DB_BLOCK_
CHECKING initialization parameter. Oracle also provides the excellent DBMS_REPAIR package, which
not only detects corruption, but also helps you fix it. Using this package, you can analyze and repair
block corruption in Oracle tables and indexes.

Block Media Recovery
Even if only a few data blocks in a datafile are corrupted, the entire datafile becomes unavailable to
users during a normal datafile recovery process whether you use RMAN or user-managed recovery
techniques.

RMAN can help you recover from data block corruption by enabling block media recovery
(BMR). With BMR, your smallest recoverable unit of data is the data block, instead of the datafile.
Unlike in datafile recovery, which makes one or more entire datafiles unavailable while you’re recov-
ering data, with BMR virtually the entire database continues to be available to users while the corrupted
blocks are being recovered. If there’s physical corruption involving a known set of data blocks, you
can use the block media recovery technique to fix the problem. Only the specific data blocks you are
recovering will be unavailable to users. RMAN’s BLOCKRECOVER command recovers blocks marked as
corrupt in the V$BACKUP_CORRUPTION and V$COPY_CORRUPTION views.

During a block media recovery operation, RMAN restores from backups only those data blocks
that need recovery. Redo application time is vastly reduced because you only need to recover certain
data blocks, not entire datafiles.

Thus, BMR helps you achieve the following goals:

• Faster recovery time

• Increased database availability

Data block corruption could lead to the following types of messages in your alert log:

ORA_11578: ORACLE data block corrupted (file# 9, block# 21)
ORA=01110: data file 9: /u01/app/oracle/oradata/remorse/users_01.dbf'

Once you have the datafile number and the corrupt block number, you can use the following
RECOVER . . . BLOCK command to recover the corrupted block:

RMAN> RECOVER
 DATAFILE 9 BLOCK 21;

By default, RMAN first searches in the flashback logs for good blocks to replace the corrupted
data blocks. After this, it searches the backup files (full and incremental) for the good blocks. Since
flashback logs are readily available, as compared to database backups, which may even be stored
offsite sometimes, RMAN can quickly find the necessary blocks in the flash recovery area. Of course,
in order to use the flashback logs, you must have enabled the Flashback Database feature. RMAN
determines the backups from which it needs to get the necessary data blocks to perform recovery.

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 865

It then reads the backups and collects the necessary data blocks in memory buffers, and it may use
an older backup if it finds that the most recent backup contains corrupt data blocks. RMAN then
starts and manages the BMR session, reading any necessary archived redo logs from the backed-up
archived logs. The RECOVER . . . BLOCK command always results in a complete recovery; you can’t
perform a PITR using this command.

Anytime you run a command such as ANALYZE or DBVERIFY (dbv), for example, the database adds
rows to the V$DATABASE_BLOCK_CORRUPTION view regarding any blocks that it marks corrupt.
There can be two types of corrupt blocks: physical corruption and logical corruption. A physically
corrupted block remains unrecognizable to the database, whereas the database can recognize a logi-
cally corrupt data block, but the contents of the block are logically inconsistent. Block media recovery
can repair only physically corrupted data blocks but not the logically corrupted blocks.

The previous example showed how to use RMAN to recover a single corrupt block. You can also
recover multiple corrupt blocks using the same command, but if you have multiple corrupt blocks
and need to recover all of them, you can use a slightly different technique. You need to follow these
steps to enable RMAN to automatically recover all blocks listed in the V$DATABASE_BLOCK_
CORRUPTION view:

1. Issue the following SQL statement to determine how many corrupt blocks exist in the
database:

 SQL> SELECT * FROM V$DATABASE_BLOCK_CORRUPTION;

2. Next, start RMAN, connect to the target database, and issue the following command:

RMAN> RECOVER CORRUPTION LIST;

RMAN will automatically recover all blocks marked corrupt in the target database and also
remove them from the V$DATABASE_BLOCK_CORRUPTION view. You can therefore check the
success of the recovery by querying this view after RMAN completes its recovery.

If you think you have extensive database block corruption and you aren’t sure whether the
preceding method will successfully recover the data, the best course of action is to first get in touch
with Oracle Worldwide Support, which has access to specialized tools that can help you extract data
from corrupt data blocks. Oracle may charge you extra for these services, but if your data is critical,
it may be well worth the expense.

Trial Recovery
While you’re recovering databases, the recovery process may encounter corrupt data blocks some-
where along the line. When a situation like this occurs, the recovery process will stop, leaving the
database in a consistent state. Although it’s possible to recover the database to a point before the
corruption occurred, this could be a time-consuming process.

To determine the extent of the damage before you start recovery, you can use a trial recovery.
Depending on the amount of corruption you find, you can then decide whether you’ll use an incom-
plete recovery or continue recovery beyond the corrupted block by using the ALLOW n CORRUPTION
recovery option. For example, if you want to ignore a minor amount of corruption, you can use the
following command, which can find one corrupt data block yet continue the recovery process:

SQL> RECOVER DATABASE ALLOW 1 CORRUPTION;

Trial recovery lets you simulate the recovery process—it neither performs a real recovery nor
fixes data corruption. It lets you know whether there is corruption and, if there is, the extent of the
corruption. Trial recovery proceeds in the same way as real data recovery by applying the redo
changes. However, trial recovery changes the data blocks only in memory, not permanently on disk.
After the test, it rolls back all its changes, leaving only the possible error messages in the alert log file.

866 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

Here are the typical trial recovery commands:

SQL> RECOVER DATABASE UNTIL CANCEL TEST;
ORA-10574: Test recovery did not corrupt any data block
ORA-10573: Test recovery tested redo from change 9948095 to 9948095
ORA-10570: Test recovery complete
/* The following statement would recover a tablespace */
SQL> RECOVER TABLESPACE users TEST;

Troubleshooting Recovery Errors
Recovery management is prone to more errors, and it needs more troubleshooting than any other
part of Oracle database administration. If a production recovery is being bogged down by Oracle
errors, it gets to be an even more stressful event. You could conceivably run into numerous different
problems over the years. This section covers a few common error messages issued during a recovery
session.

The ORA-01194 Error
When you’re trying to start up a database after a database cloning, you’ll usually end up with the
ORA-01194 error. Listing 16-11 shows the sequence of Oracle messages and the DBA’s responses.

Listing 16-11. The ORA-01194 Error

SQL> startup
ORACLE instance started.
Total System Global Area 118255568 bytes
Fixed Size 282576 bytes
Variable Size 83886080 bytes
Database Buffers 33554432 bytes
Redo Buffers 532480 bytes
Database mounted.
ORA-01589: must use RESETLOGS or NORESETLOGS option for database open
SQL> alter database open noresetlogs;
alter database open noresetlogs
*
ERROR at line 1:
ORA-01588: must use RESETLOGS option for database open
SQL> alter database open resetlogs;
alter database open resetlogs
*
ERROR at line 1:
ORA-01194: file 1 needs more recovery to be consistent
ORA-01110: data file 1: 'C:\ORACLENT\ORADATA\MANAGER\SYSTEM01.DBF'
SQL> recover database until cancel using backup controlfile;
ORA-00279: change 405719 generated at 05/26/2008 15:51:04 needed for thread 1
ORA-00289: suggestion : C:\ORACLENT\RDBMS\ARC00019.001
ORA-00280: change 405719 for thread 1 is in sequence #19
Specify log: {<RET>=suggested | filename | AUTO | CANCEL}
ORA-01547: warning: RECOVER succeeded but OPEN RESETLOGS would get error below
ORA-01194: file 1 needs more recovery to be consistent
ORA-01110: data file 1: 'C:\ORACLENT\ORADATA\MANAGER\SYSTEM01.DBF'
SQL>

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 867

Oracle keeps issuing the 01194 error message, and even using the RECOVER DATABASE UNTIL CANCEL
USING BACKUP CONTROLFILE command (with which you can mimic a recovery) does not succeed in
stopping it. The problem is that the changes needed for recovery are in the very last online redo log, not
in any archived redo log Oracle might be suggesting to you. When you apply this online redo log,
Oracle will finish recovery successfully, as shown in Listing 16-12.

Listing 16-12. Applying a Redo Log During Recovery

SQL> RECOVER DATABASE UNTIL CANCEL USING BACKUP CONTROLFILE;
ORA-00279: change 405719 generated at 06/30/2008 15:51:04 needed for thread 1
ORA-00289: suggestion : C:\ORACLENT\RDBMS\ARC00019.001
ORA-00280: change 405719 for thread 1 is in sequence #19
Specify log: {<RET>=suggested | filename | AUTO | CANCEL}
C:\ORACLENT\ORADATA\MANAGER\REDO03.LOG
Log applied.
Media recovery complete.
SQL> alter database open resetlogs;
Database altered.
SQL>

The ORA-01152 Error
The ORA-01152 error (“File # was not restored from a sufficiently old backup”) bedevils quite a few
recovery sessions. This is an interesting situation whose solution is similar to the preceding example.
You provide all the archived redo logs that Oracle asks for, but you still get errors, as shown in
Listing 16-13.

Listing 16-13. When an Archived Redo Log File Isn’t Needed for Recovery

ORA-00289: suggestion :
/u01/app/oracle/admin/finance/arch/finance/_0000012976.arc
ORA-00280: change 962725326 for thread 1 is in sequence #12976
ORA-00278:
logfile'/u01/app/oracle/admin/finance/arch/finance/_0000012975.arc'
no longer needed for this recovery
Specify log: {<RET>=suggested | filename | AUTO | CANCEL}
ORA-01547: warning: RECOVER succeeded but OPEN RESETLOGS would get error below
ORA-01152: file 1 was not restored from a sufficiently old backup
ORA-01110: data file 1: '/pase16/oradata/finance/system_01.dbf'ORA-01112:
media recovery not started

In response to the preceding errors, the following recovery command was used:

SQL> recover database until cancel using backup controlfile;
ORA-00279: change 962726675 generated at 07/30/2008 04:32:48 needed for thread 1
ORA-00289: suggestion :
/u01/app/oracle/admin/finance/arch/finance/_0000012977.arc
ORA-00280: change 962726675 for thread 1 is in sequence #12977

Oracle’s response was to ask for an archived redo log file, but because the recovery process has
already indicated that it doesn’t need any more archived redo logs, you can ignore this misleading
request and provide Oracle with the name of your restored online redo log files, starting with the first
one. One of those redo log files will have the change number (SCN=962726675) the recovery process
is looking for. Just provide Oracle with your redo log files—one member from each redo log group.
Listing 16-14 shows the rest of this recovery process.

868 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

Listing 16-14. Using an Online Redo Log File During Recovery

Specify log: {<RET>=suggested | filename | AUTO | CANCEL}
/pase04/oradata/finance/redo01a.rdo
ORA-00279: change 962746677 generated at 07/30/2008 04:33:52 needed for thread 1
ORA-00289: suggestion :
/u01/app/oracle/admin/finance/arch/finance/_0000012978.arc
ORA-00280: change 962746677 for thread 1 is in sequence #12978
ORA-00278: log file '/pase04/oradata/finance/redo01a.rdo'
no longer needed for this recovery
Specify log: {<RET>=suggested | filename | AUTO | CANCEL}
/pase04/oradata/finance/redo02a.rdo
Log applied.
Media recovery complete.
SQL>

The ORA-00376 Error
Another common error that you could meet with is the ORA-00376 error, which indicates that your
database can’t read a certain file or files. The error results in the following messages:

ORA-00376: file 10 cannot be read at this time
ORA-01110: data file 10: '/u01/app/oracle/remorse/data_01.dbf'

ORA-00376 is usually the result of a datafile or tablespace being offline. By bringing the tablespace
or datafile online, you can fix the problem easily. Sometimes the error is the result of the datafile not
existing at the tablespace level. In this case, you have to take the tablespace offline, re-create it with
the correct datafile name, and bring it online.

The Transaction Backout Feature
You can use Oracle’s Flashback Transaction Backout feature to roll back or undo even committed
statements. You can roll back a transaction and its dependent transactions as well, without having
to take the database offline. The database uses the undo data to create what are called compensation
transactions to return the data to its before-change state. If a set of related transactions involve complex
insert, update, and delete operations, the Flashback Transaction Backout feature lets you undo the
entire set of changes with literally a single click (using the Database Control).

Use the TRANSACTION_BACKOUT procedure from the DBMS_FLASHBACK package to perform a
transaction backout. Here’s the structure of the procedure:

PROCEDURE TRANSACTION_BACKOUT
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 NUMTXNS NUMBER IN
 NAMES TXNAME_ARRAY IN
 OPTIONS BINARY_INTEGER IN DEFAULT
 TIMEHINT TIMESTAMP IN

The transaction backout feature relies primarily on the undo data saved in the undo tablespace.
However, the database also needs the redo generated by the undo blocks. Thus, you need both the
undo segments and the archived redo logs to perform a Flashback Transaction Backout operation.

Prerequisites

Before you can use the Flashback Transaction Backout feature, you must enable supplemental
logging in the database, as shown here:

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 869

SQL> alter database add supplemental log data;
SQL> alter database add supplemental log data
 (primary key) columns;

In order for any user to use the Flashback Transaction Backout feature, grant the following privileges
to the user:

SQL> grant execute on dbms_flashback to hr;
SQL> grant select any transaction to hr;

In addition, if a user wants to back out transactions that use tables in another user’s schema, the
first user must have the necessary DML privileges on the second user’s objects.

Backing Out Transactions

Use the DBMS_FLASHBACK.TRANSACTION_BACKOUT procedure to back out a transaction. The
TRANSACTION_BACKOUT procedure contains the following parameters:

PROCEDURE TRANSACTION_BACKOUT

Argument Name Type In/Out Default?
---------------- -------------- --------- ----------
NUMBEROFXIDS NUMBER IN
XIDS XID_ARRAY IN
OPTIONS BINARY_INTEGER IN DEFAULT
SCNHINT TIMESTAMP IN

In the TRANSACTION_BACKOUT procedure, the parameters stand for the following:

• numberofxids: Number of transactions to be backed out

• xids: List of transaction identifiers that must be passed as an array

• options: Backout options relating to the order in which to back out the parent and child trans-
actions. You can specify the following options:

• nocascade is the default value and backs out transactions that you don’t expect to have any
dependent transactions.

• cascade backs out the dependent transactions first and then the parent transactions.

• nocascade_force backs out the parent transactions only and ignores the dependent
transactions.

• noconflict_only backs out only the changes to nonconflicting rows of a transaction.

• scnhint: SCN at the beginning of the transaction you are backing out

The TRANSACTION_BACKOUT procedure is an overloaded procedure, and thus there can be
multiple variations of the procedure depending on the parameters you specify. Although I can specify
the xids parameter, I can also specify the txnames parameter instead, to pass an array of transaction
names instead of an array of transaction IDs. Instead of an scnhint parameter, I can also specify the
timehint parameter to provide the time at the start of the transaction I am backing out. If you are
using transaction names and not transaction IDs, you must specify the timehint parameter instead
of the scnhint parameter.

The greater the undo generated by the transaction you’re backing out, the longer will it take to
undo it. When you execute the TRANSACTION_BACKOUT procedure, the database doesn’t auto-
matically back out the transactions. The database performs the necessary DML operations to back
out the transactions but stops short of committing them. It holds locks on the rows and the tables
involved, thus keeping other transactions from affecting the transaction you want to back out. The

870 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

database produces a transaction backout report, which you can view before finalizing the transaction
backout by committing the changes made by executing the TRANSACTION_BACKOUT procedure.
The TRANSACTION_BACKOUT procedure populates the DBA_FLASHBACK_TRANSACTION_
STATE and the DBA_FLASHBACK_TRANSACTION_REPORT views. After the database backs out a
transaction, it records the transaction in the DBA_FLASHBACK_TRANSACTION_STATE view. Query
the DBA_FLASHBACK_TRANSACTION_REPORT view to examine the reports relating to the transac-
tion backout operations.

Using the TRANSACTION_BACKOUT Procedure

The following example shows how to execute the TRANSACTION_BACKOUT procedure to back out
a transaction. Before you can execute this procedure, you must first create a variable of an XID_ARRAY
type to hold the set of transaction identifiers.

declare
 trans_arr xid_array;
begin
 trans_arr := xid_array('030003000D02540','D10001000D02550');
 dbms_flashback.transaction_backout (
 numtxns => 1,
 xids => trans_arr,
 options => dbms_flashback.nocascade
);
end;

The previous code backs out the primary and the dependent transactions in one step. You can
also use the Enterprise Manager to back out transactions.

Flashback Data Archive
The undo tablespace can help you out with various flashback-related operations to retrieve older
data, but what do you do if the older data is really old, say, from six months or a year ago? Obviously,
most databases don’t use undo tablespaces that store undo data for that long a period. Of course, the
size of the undo tablespace and the amount of undo data generated by the database determines how
far back in time can you go. The purpose of the undo tablespace is to help with the rolling back of
statements as well as to maintain read consistency in the database, and not to provide a historical
record of all changes in data.

A Flashback Data Archive is a mechanism consisting of one or more tablespaces that store tran-
sitional changes to a specified table or tables. You can’t turn flashback data archiving on for the
entire database, but rather must turn it on for specified tables. A Flashback Data Archive is the ideal
mechanism to store all transactional changes to any table in the database over a period of time. You
may want to save the data for compliance reasons or for other purposes, as I show later in this chapter.
I show how to set up and use flashback data archiving in the following sections.

Managing the Flashback Data Archive
You can use the CREATE FLASHBACK ARCHIVE and the DROP FLASHBACK ARCHIVE statements to create and
drop a Flashback Data Archive. You use the ALTER FLASHBACK ARCHIVE statement to modify the prop-
erties of a Flashback Data Archive, such as the retention period. In the following sections, I explain
the various Flashback Data Archive management tasks.

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 871

Creating a Flashback Data Archive

Use the CREATE FLASHBACK ARCHIVE statement to create a Flashback Data Archive. Before you execute
this statement, make sure that the tablespace you specify in the statement exists. You can specify the
following when creating a Flashback Data Archive:

• Name of the archive

• Name of the first tablespace of the archive

• The quota for the archive in the first tablespace

• How far the database must retain the data

Of the four parameters you can specify, only two—the name of the first tablespace for the archive
and the retention period for the data—are mandatory. Here’s an example that shows how to create
a Flashback Data Archive named flash1:

SQL> CREATE FLASHBACK ARCHIVE flash1
 TABLESPACE test_tbs
 RETENTION 1 YEAR;

The previous statement creates the new flashback archive flash1 and ensures that any tables
you enable for archiving will be tracked and the transactional changes to data in the table will be
saved for a year. After the year is up, the transactional changes will be automatically deleted, thus
keeping only a year’s worth of changes at a given time. In the next example, I show how to create a
Flashback Data Archive that retains data for three years. In addition, I specify the QUOTA parameter to
limit the amount of space that the archive can use in tablespace test_tbs. You can have more than
one Flashback Data Archive in a database. In this example, I specify the DEFAULT parameter to mark
this flashback archive as the default Flashback Data Archive for the database.

SQL> CREATE FLASHBACK ARCHIVE DEFAULT flash1
 TABLESPACE test_tbs
 QUOTA 5g
 RETENTION 3 YEAR;

Altering a Flashback Data Archive

You can use the ALTER FLASHBACK ARCHIVE statement to alter the properties of a Flashback Data Archive,
such as the size of the archive and changes in the retention time for the archived data. Here are some
examples:

• Specify a Flashback Data Archive as the default archive for the database:

SQL> ALTER FLASHBACK ARCHIVE flash1 SET DEFAULT;

• Add a tablespace to the archive:

SQL> ALTER FLASHBACK ARCHIVE flash1
 ADD TABLESPACE flash2 QUOTA 10G;

• Change the retention period:

SQL> ALTER FLASHBACK ARCHIVE flash1 MODIFY RETENTION 5 YEAR;

• Purge all data from an archive:

SQL> ALTER FLASHBACK ARCHIVE flash1 PURGE ALL;

872 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

• Purge all data older than a week from an archive:

SQL> ALTER FLASHBACK ARCHIVE flash1
 PURGE BEFORE TIMESTAMP (SYSTIMESTAMP – INTERVAL '1' DAY);

Dropping a Flashback Data Archive

You can remove a Flashback Data Archive with the following statement:

SQL> DROP FLASHBACK ARCHIVE flash1;

The previous statement will only remove the Flashback Data Archive. The tablespace that hosts
the archive remains intact, since that tablespace may contain other objects besides the Flashback
Data Archive.

Viewing the Flashback Data Archive Data

You can use the following views to find out details about the data stored in the Flashback Data
Archive:

• DBA_FLASHBACK_ARCHIVE: Shows details about the Flashback Data Archive

• DBA_FLASHBACK_ARCHIVE_TS: Shows information about the tablespaces hosting the
Flashback Data Archive

• DBA_FLASHBACK_ARCHIVE_TABLES: Shows information about the tables that are enabled
for flashback data archiving

Enabling the Flashback Data Archive
You can only turn archiving on at the table level. You can’t turn archiving on for the entire database.
By default, the database doesn’t archive any changes. You can enable flashback data archiving for a
table by specifying the FLASHBACK ARCHIVE clause when you create the table, as shown here:

SQL> CREATE TABLE test1
 (name VARCHAR2(30),
 empno NUMBER(4) NOT NULL,
 salary NUMBER)
 FLASHBACK ARCHIVE;

In the previous example, I don’t specify a name for the Flashback Data Archive. The database
stores the historical data in the default Flashback Data Archive as a result. I can specify a particular
Flashback Data Archive by adding the name for the archive, as shown in the following example:

SQL> CREATE TABLE test1
 (name VARCHAR2(30),
 empno NUMBER(4) NOT NULL,
 salary NUMBER)
 FLASHBACK ARCHIVE flash1;

You can also turn flashback data archiving on for an existing table by issuing the ALTER TABLE
statement, as shown here:

SQL> ALTER TABLE employee FLASHBACK ARCHIVE;

To disable flashback data archiving for a table, issue the following statement:

SQL> ALTER TABLE employee NO FLASHBACK ARCHIVE;

CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y 873

Limitations

Using the Flashback Data Archive imposes certain limitations on the type of DDL statements you
can issue. You can’t issue the following types of DDL statements on a table that you enabled for a
Flashback Data Archive:

• An ALTER TABLE statement that drops, renames, or modifies a table column

• An ALTER TABLE statement that performs partition operations

• A DROP TABLE or a TRUNCATE TABLE statement

• A RENAME TABLE statement

Using Flashback Data Archives: Examples
You can use a Flashback Data Archive for querying historical data, auditing, as well as recovering
from data errors. The following examples illustrate how you can utilize the Flashback Data Archive
in different situations.

Accessing Historical Data

Using the AS_OF clause in a query, you can access the historical data stored in the Flashback Data
Archive, as shown in the following query:

SQL> select transaction_number, doctor_name, count
 from patient_info as of
 timestamp to_timestamp ('2009-01-01 00:00:00',
 'YYYY-MM-DD HH23:MI:SS');

You can also use the AS_OF clause to recover from logical errors. In the following example, an
employee by the name of Zlotkey has a current income of $10,500, as shown by the following query:

SQL> SELECT username, salary FROM HR.EMPLOYEES
 WHERE last_name='Zlotkey';

 SALARY

 10500
SQL>

The human resources department makes a wrong update to the EMPLOYEES table, when it
raises Zlotkey’s salary by $50,000 instead of $500, as shown here:

SQL> UPDATE hr.employees SET salary=salary+50000
 WHERE last_name='Zlotkey';

1 row updated.
SQL> commit;

Commit complete.
SQL>

Suppose you learn about the wrong update about two hours after it was made. Simply issue the
following statement using the AS_OF clause to correct the error:

874 CH AP T E R 1 6 ■ D AT AB A SE R E CO V E R Y

SQL> update hr.employees set salary =
 (select salary from hr.employees
 as of timestamp (systimestamp - interval '120' minute);
 where last_name='Zlotkey')
 where last_name='Zlotkey';

1 row updated.
SQL> commit;

Commit complete.

SQL>

Note that at no time do you have to access or query the history table that the database maintains
to track the transactional changes to a table’s data. The AS_OF clause ensures that the database looks
up the relevant information in the history table that supports the Flashback Data Archive. The clause
SYSTIMESTAMP – INTERVAL '120' MINUTE will retrieve the values from two hours ago. You can also
specify seconds, days, and months in this clause, as shown in the following examples:

systimestamp – interval '60' second
systimestamp – interval '7' day
systimestamp – interval '12' month

Generating Reports

You can access historical data to create reports that encompass data from the past. Specify the
VERSIONS BETWEEN TIMESTAMP clause to retrieve old values of a table’s columns, as shown in the
following example:

SQL> SELECT * FROM patient_info
 VERSIONS BETWEEN TIMESTAMP
 to_timestamp('2009-01-01 00:00:00','YYYY-MM-DD HH23:MI:SS')
 AND MAXVALUE
 WHERE name ='ALAPATI';

The query shown here retrieves all versions of the data you selected between January 1, 2009,
and today.

Information Lifecycle Management

Information Lifecycle Management (ILM) applications often require multiple versions of a table’s
rows over time. Specify the VERSIONS BETWEEN TIMESTAMP clause to retrieve all versions of a row or
rows over a period of time, as shown in the following example:

SQL> SELECT * FROM patient_info
 VERSIONS BETWEEN TIMESTAMP
 to_timestamp ('2009-01-01 00:00:00',
 'YYYY-MM-DD HH24:MI:SS')
 AND
 to_timestamp ('2009-06-30 00:00:00',
 'YYYY-MM-DD HH24:MI:SS')
 WHERE name='ALAPATI';

The query shown here retrieves all versions of the rows in the PATIENT_INFO table between
January 1, 2009, and June 30, 2009.

■ ■ ■

P A R T 6

Managing the Database

877

■ ■ ■

C H A P T E R 1 7

Automatic Management
and Online Capabilities

Oracle has been emphasizing that the Oracle Database 11g server automates management to such
an extent that it refers to the database as a self-managing database. Well, this is at least partially true,
as several traditional time-consuming and error-prone tasks have been replaced with new ways of
managing memory, transactions, and resources, and organizing space. In addition, there have been
improvements in backup and recovery techniques. However, the DBA is just as essential as ever. If
anything, the DBA’s role has become even more central because of the new features’ added complexity.

This chapter deals with the operational aspects of running an Oracle database. Several compo-
nents of the database require constant monitoring and modifications, and you’ll learn about some
important Oracle Database 11g features in detail in this chapter. Earlier chapters introduced several
topics that you’ll see here, and this chapter will tie together the various aspects of Oracle Database
11g that make the DBA’s job easier. The chapter highlights two main operational areas: automatic
database management features and online management features.

Oracle Database 10g introduced the revolutionary Automatic Storage Management (ASM) feature,
which helps Oracle DBAs manage disk storage with a built-in Logical Volume Manager (LVM) without
requiring a system administrator’s involvement. Automatic shared memory management is a useful
feature that will help you immensely in your day-to-day administration. The online table redefini-
tion feature will help you perform several routine tasks online without reducing database availability.
Furthermore, Oracle Managed Files (OMF) will help you reduce database file-management tasks. In
the following sections, you’ll explore how adopting these new features can make day-to-day database
management easier.

The Automatic Database Diagnostic Monitor
Traditionally, organizations have spent considerable amounts of effort on laborious performance-
tuning exercises. Oracle Database 11g provides you with powerful and accurate automatic perfor-
mance-tuning capabilities. The heart of this functionality is the new statistics collection facility, the
Automatic Workload Repository (AWR), which automatically collects and saves crucial performance
statistics (including those for SQL statements that use the most resources in the database) to help
detect performance problems and self-tune the database. AWR saves its data in the Sysaux tablespace.
I explain the AWR in detail in Chapter 18.

Instead of running myriad SQL performance-tuning scripts, just go to the Automatic Database
Diagnostic Monitor (ADDM, pronounced “adam”) as the first source for all your performance trouble-
shooting work. You’ll save a lot of time that you might otherwise spend looking at extraneous issues
that really don’t have a bearing on performance. Since the ADDM ranks both the problems and its

878 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

recommendations according to the crucial DB time statistic (more on this in a little bit), you have a
way of quantitatively estimating the effectiveness of different measures in improving performance.

■Note Oracle recommends that you rely on the AWR for all the performance data you need for tuning purposes.

By automatically analyzing performance data for you, the ADDM relieves you of the responsi-
bility of catching a problem at the right time to collect statistics. By default, the AWR collects new
performance statistics in the form of an hourly snapshot and saves these snapshots for eight days
before purging them. An AWR snapshot is a collection of database performance statistics at a single
point in time, including statistics for resource-intensive SQL statements. Every time the AWR takes
a new snapshot, the ADDM runs automatically, does its top-down system analysis, and reports its
findings on the Database Control home page. The ADDM’s output consists of a description of each
performance problem it identifies, along with the recommended action. The recommendations are
ranked by the expected benefit of implementing each of them. You can view the regular ADDM
reports from the OEM Database Control or view them from a SQL*Plus session with the help of an
Oracle-supplied SQL script.

The ADDM runs automatically, but you can also manually invoke the tool to investigate problems
that occur in between the scheduled snapshots. Oracle stores the ADDM analyses in the Sysaux
tablespace.

The Purpose of the ADDM
The basic rationale behind the ADDM is to reduce a key database metric called DB time, which is the
total time (in microseconds) the database spends actually processing users’ requests.

DB time includes the total amount of time spent on actual database calls (at the user level) and
it ignores time spent on background processes. DB time includes both the wait time and processing
time (CPU time), but doesn’t include the idle time incurred by your processes. For example, if you
spend an hour connected to the database and you’re idle for 58 of those minutes, the DB time is only
2 minutes.

If a problem contributes to inappropriate or excessive DB time, ADDM automatically flags it as
an issue needing attention. If there is a problem in your system, but it doesn’t contribute significantly to
the DB time, ADDM will simply ignore it. Thus, the ADDM is focused on the single mantra: reduce
DB time. The ADDM aims to increase the throughput of your database, thereby serving more users
with the same amount of resources.

Problems That the ADDM Diagnoses
The ADDM analyzes the AWR snapshots every hour by default, comes up with performance recommen-
dations, and ranks them in terms of the expected benefit of implementing the various actions. These
are some of the key problems that the ADDM diagnoses:

• Expensive SQL statements

• I/O performance issues

• Locking and concurrency issues

• Excessive parsing

• Resource bottlenecks, including memory and CPU bottlenecks

• Undersized memory allocation

• Connection management issues, such as excessive logon/logoff activity

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 879

When you are beset by a severe performance problem, look at the ADDM reports first, to get a
good diagnosis of the problem. ADDM ignores the nonproblem areas and focuses on the truly signif-
icant causes affecting performance. The ADDM report contains the following:

• Expert problem diagnosis

• Emphasis on the root cause of the problem rather than on the symptoms

• A ranking of the effects of the problems

• Recommendations ranked according to their benefit

Unlike running some complex SQL scripts, the ADDM report has very little overhead associated
with it, since its raw material is already saved in the AWR.

The ADDM uses sophisticated time-model statistics in Oracle Database 11g that are highly
effective in determining where the database spends the most time. These new time-model statistics
enable Oracle to focus on only the most critical performance problems. If a problem exceeds the
threshold for the key DB time metric, the ADDM tags it as a top performance problem; otherwise, it
leaves it alone as a nonproblem area. Let’s look at these new time-model statistics in the following
section.

Time-Model Statistics

The ADDM bases most of its performance recommendations on time-model statistics, the most
important of which is the new DB time statistic, explained in the earlier section “The Purpose of the
ADDM.” Time-model statistics provide a uniform way to quantify various database operations. In
addition to DB time, there are other time-model statistics, such as statistics that quantify the time
taken by logon statistics and hard and soft parses.

You can use the new V$SESS_TIME_MODEL and V$SYS_TIME_MODEL database views to look
at the time-based performance statistics. The V$SYS_TIME_MODEL view provides the accumulated
time statistics for various operations in the entire database and shows the number of microseconds
the database has spent on specific operations. The query in Listing 17-1 demonstrates the kind of
operations for which the V$SYS_TIME_MODEL view holds time-based statistics.

Listing 17-1. A Query Using the V$SYS_TIME_MODEL View

SQL> SELECT stat_name, value FROM v$sys_time_model;
STAT_NAME VALUE
--- ----------
DB time 3.8422E+13
DB CPU 9.2726E+12
background elaps 2.7506E+12
background cpu time 1.3335E+11
sequence load elapsed ti 6583934097
parse time elapse 3.0984E+11
hard parse elapsed time 4.7280E+10
sql execute elapsed time 3.7533E+13
connection management call elapsed time 4.3565E+10
failed parse elapsed time 3350540297
failed parse (out of shared memory) elapsed time 0
hard parse (sharing criteria) elapsed time 1770964950
hard parse (bind mismatch) elapsed time 706518501
PL/SQL execution elapsed time 7.0339E+11
inbound PL/SQL rpc elapsed time 7.3869E+12
PL/SQL compilation elapsed time 3667675394

880 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

Java execution elapsed time 1.7993E+11
RMAN cpu time (backup/restore) 0
17 rows selected.
SQL>

The V$SESS_TIME_MODEL view is similar to the V$SYS_TIME_MODEL view and provides the
same types of time statistics, but it shows a session’s accumulated time for the various operations
rather than information for the entire database.

The AWR collects time-model statistics as part of its hourly snapshots. In addition, the AWR
collects object statistics, including the usage statistics for objects, system and session statistics,
statistics for high-load SQL statements, and a history of recent session activity, called the Active
Session History (ASH). I discuss the AWR statistics, including ASH, in Chapter 18.

ADDM Findings
The ADDM analysis is available in the form of a series of findings, of which there are three types:
problem, symptom, and informational. Here’s an example of a typical ADDM finding:

FINDING 1: 45% impact (11223 seconds)

SQL statements were not shared due to the usage of literals.
This resulted in additional hard parses which were consuming
 significant database time.

This is a problem finding, because it’s accompanied by an impact estimate, which is an estimate
of the amount of additional DB time caused by the problem.

The findings are presented in decreasing order of importance (as defined by the impact
percentages), and the sum of the impact percentages for all the findings may exceed 100 percent,
as you can see in the following example:

FINDING 1: 34% impact (289378 seconds)
FINDING 2: 25% impact (214227 seconds)
FINDING 3: 23% impact (193521 seconds)
FINDING 4: 16% impact (134639 seconds)
FINDING 5: 6.1% impact (51563 seconds)
FINDING 6: 2.1% impact (17753 seconds)

The sum of the impact percentages can exceed 100 percent of DB time because the performance
issues of the various findings might overlap and, therefore, encompass the same portion of DB time.

ADDM Recommendations
ADDM usually proposes one or more recommendations for each of the problem findings in its anal-
ysis. You may not need to follow all the recommendations to fix the problem. Each recommendation
is accompanied by a quantified benefit that will result from the adoption of the ADDM recommen-
dation, the benefit being measured in terms of the estimated reduction in DB time.

Here’s a typical ADDM recommendation, wherein you’re asked to first analyze your application
logic:

RECOMMENDATION 1: Application Analysis, 45% benefit (11223 seconds)

If you see multiple recommendations, which is common, it means that the benefit that accrues
from adopting all the recommendations would be equal to the impact percentage noted for the rele-
vant finding. Here’s an example:

FINDING 1: 34% impact (289378 seconds)

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 881

The report starts with a finding that has a 34 percent impact on DB time. The finding is accom-
panied by the following five recommendations, each with a certain benefit. If you sum up the benefit
(in percentages) that results from adopting all five recommendations, you’ll notice that it’s equal to
the value of the finding’s impact (34 percent):

RECOMMENDATION 1: Segment Tuning, 13% benefit (112768 seconds)
RECOMMENDATION 2: Segment Tuning, 6.7% benefit (56805 seconds)
RECOMMENDATION 3: Segment Tuning, 6.1% benefit (51882 seconds)
RECOMMENDATION 4: Segment Tuning, 4.4% benefit (37330 seconds)
RECOMMENDATION 5: Segment Tuning, 3.6% benefit (30594 seconds)

ADDM recommendations may include the following:

• Hardware changes: The ADDM may recommend that you add more CPUs to your system or
change the way you configure your I/O subsystem.

• Database and application changes: In some cases, the ADDM may recommend that you
change the setting of some of your initialization parameters, instead of rewriting your appli-
cation code.

• Space configuration changes: The ADDM may sometimes make major recommendations,
such as using the new Automatic Storage Management feature, in order to fix certain perfor-
mance problems.

• Use of performance advisors: In several cases, the ADDM will recommend that you use a
performance advisor, like the SQL Tuning Advisor or the Segment Advisor, to fix your perfor-
mance problems.

Recommendations may also have action and rationale components, with actions showing you
the various things you need to do to implement the recommendation, while rationales explain the
reason for the recommendation. Here’s part of an ADDM report that shows an action and the ratio-
nale for the recommendation you saw earlier in this section:

ACTION: Investigate application logic for possible use of bind variables
 instead of literals. Alternatively, you may set the parameter
 "cursor_sharing" to "force".
RATIONALE: SQL statements with PLAN_HASH_VALUE 2094286255 were found to be
 using literals. Look in V$SQL for examples of such SQL statements.

Note that a recommendation may have one or more actions attached to it. Similarly, you may
have one or more rationale items.

Managing the ADDM
Oracle manages the ADDM with the help of the new MMON background process. Each time the
AWR takes a snapshot (every hour by default), the MMON process tells the ADDM to analyze the
interval between the last two AWR snapshots. Thus, by default, the ADDM automatically runs each
time the AWR snapshot is taken. As mentioned earlier, you can use the OEM Database Control to
view the ADDM’s performance analysis and action recommendations.

Configuring the ADDM

Oracle enables the ADDM feature by default, and your only task is to make sure that the STATISTICS_
LEVEL initialization parameter is set to TYPICAL or ALL in order for the AWR to gather its performance
statistics. If you set STATISTICS_LEVEL to BASIC, you can still use the AWR to collect statistics by using
the DBMS_WORKLOAD_REPOSITORY package, but you won’t be able to collect several important
types of performance statistics.

882 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

You can control the volume of statistics collected by the AWR by adjusting either or both of two
variables:

• Snapshot interval: The default snapshot interval is 60 minutes. Oracle assumes that hourly
snapshots are frequent enough for diagnosis and infrequent enough that they won’t influ-
ence performance.

• Snapshot retention period: By default, Oracle retains all snapshots for eight days in the AWR,
after which it purges the outdated snapshots.

■Note Please refer to Chapter 18 for a detailed discussion of the management of the AWR.

You can change the snapshot interval and snapshot retention periods by using the INTERVAL and the
RETENTION parameters of the MODIFY_SNAPSHOT_SETTINGS procedure of the DBMS_WORKLOAD_
REPOSITORY package. Chapter 18 shows you how to modify the AWR snapshot interval and reten-
tion period.

■Note The ADDM runs automatically after each AWR snapshot, and you can run it whenever you choose, such
as when an alert recommends that you do so. You can also run it manually when you want an ADDM analysis across
multiple snapshots, rather than over the two most recent snapshots, which is the default interval for analysis.

Oracle automatically runs the ADDM following an AWR snapshot, but you can also produce
custom ADDM reports by manually running the ADDM if you want to examine, for example, the
period between 8 a.m. and 5 p.m., which encompasses multiple AWR snapshots. You just provide the
beginning and ending snapshot information, and ADDM will generate a report for the entire period.

Configuring the ADDM Under RAC

If you’re using Oracle Real Application Clusters (RAC), you can run the ADDM in multiple modes, as
explained here:

• Database mode: Analyzes all instances of RAC

• Instance mode: Analyzes a single instance of RAC

• Partial mode: Analyzes a subset of the instances of RAC

Of course, in a single-instance database, only the instance mode of analysis is available. In the
database mode, the ADDM analyzes the performance of all instances of a database. It considers the
DB time for the database as the sum of the DB times from all instances. The database analysis report
shows you instance-level findings if the findings affect the entire instance. Thus, if a single instance
is causing an excessive CPU load, you can find that out with the database analysis report.

Enabling the ADDM

By default, the ADDM is enabled. You can control the running of the ADDM by specifying the initial-
ization parameters CONTROL_MANAGEMENT_PACK_ACCESS and STATISTICS_LEVEL. To enable the ADDM, you
must set the CONTROL_MANAGEMENT_PACK_ACCESS parameter to either DIAGNOSTIC or DIAGNOSTIC+TUNING.
Since the default value of this parameter is DIAGNOSTIC+TUNING, the ADDM is enabled by default. You
can disable the ADDM by setting this parameter in the following way:

CONTROL_MANAGEMENT_PACK_ACCESS=NONE

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 883

You can disable the ADDM by setting the STATISTICS_LEVEL parameter to BASIC.

The Three Modes of the ADDM

In this section, I show how to run the ADDM in the three modes I described earlier. Execute the
DBMS_ADDM.ANALYZE_DB procedure to run the ADDM in the database mode, as shown here:

BEGIN
DBMS_ADDM.ANALYZE_DB (
 task_name IN OUT VARCHAR2,
 begin_snapshot IN NUMBER,
 end_snapshot IN NUMBER,
 db_id IN NUMBER := NULL);
END;
/

The BEGIN_SNAPSHOT and the END_SNAPSHOT parameter values determine the span of the ADDM
analysis. The DB_ID parameter is optional and defaults to the DBID of the database to which you’re
connected.

The following example shows how to execute a database-wide ADDM analysis for the period
between snapshots 99 and 120:

VAR tname VARCHAR2(30);
BEGIN
 :tname := 'ADDM for 8 AM to 10 AM'';
 DBMS_ADDM.ANALYZE_DB(:tname, 99,120);
END;
/

You can run the ADDM in instance mode by executing the ANALYZE_INST procedure, shown next:

BEGIN
DBMS_ADDM.ANALYZE_INST (
 task_name IN OUT VARCHAR2,
 begin_snapshot IN NUMBER,
 end_snapshot IN NUMBER,
 instance_number IN NUMBER := NULL,
 db_id IN NUMBER := NULL);
END;
/

Note the INSTANCE_NUMBER parameter, which enables you to specify the instance number. Here’s
an example that shows how to specify the various mandatory parameters:

VAR tname VARCHAR2(30);
BEGIN
 :tname := 'my ADDM for 8 AM to 10 AM';
 DBMS_ADDM.ANALYZE_INST(:tname, 99,120, 1);
END;
/

To run the ADDM in partial mode, you must execute the ANALYZE_PARTIAL procedure, which
is shown here:

BEGIN
DBMS_ADDM.ANALYZE_PARTIAL (
 task_name IN OUT VARCHAR2,
 instance_numbers IN VARCHAR2,

884 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

 begin_snapshot IN NUMBER,
 end_snapshot IN NUMBER,
 db_id IN NUMBER := NULL);
END;
/

Here’s an example that shows how to run a partial ADDM analysis for four instances of a database:

VAR tname VARCHAR2(30);
BEGIN'
 :tname := 'my ADDM for 8 AM to 10 AM';
 DBMS_ADDM.ANALYZE_PARTIAL(:tname, '1,2,3,4', 99, 101);
END;
/

The example shown here runs the ADDM analysis for instances 1, 2, 3, and 4 between snapshots 99
and 101.

Displaying an ADDM Report

Execute the GET_REPORT function to view a text report of a completed ADDM task, as shown here:

SET LONG 1000000 PAGESIZE 0;
SELECT DBMS_ADDM.GET_REPORT(:tname) FROM DUAL;

Determining Optimal I/O Performance

If your I/O system performs at a certain speed, your system can read a database block in a specific
number of milliseconds; the DBIO_EXPECTED parameter (which is not an initialization parameter)
indicates I/O performance, and the default value for this parameter is 10 milliseconds.

You can find out the current value of the DBIO_EXPECTED parameter by querying the DBA_ADVISOR_
DEF_PARAMETERS view as follows:

SQL> SELECT parameter_value
 FROM dba_advisor_def_parameters
 WHERE advisor_name='ADDM'
 AND parameter_name='DBIO_EXPECTED';

PARAMETER_VALUE

10000
SQL>

You can use the SET_DEFAULT_TASK_PARAMETER procedure of the DBMS_ADVISOR package
to modify the default value of the DBIO_EXPECTED parameter, as shown here:

SQL> SHO USER
USER is "SYS"

SQL> EXECUTE DBMS_ADVISOR.SET_DEFAULT_TASK_PARAMETER(-
 > 'ADDM', 'DBIO_EXPECTED', 6000);

PL/SQL procedure successfully completed.
SQL>

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 885

Running the ADDM

The Oracle background process MMON schedules the ADDM to run every time the AWR collects its
most recent snapshot. Oracle, therefore, automatically generates ADDM reports throughout the
day, which you can view through the Database Control.

One of the reasons for invoking the ADDM manually is because an alert might recommend you
do it. You can perform an ad hoc ADDM analysis to find out details about a performance problem
that’s currently occurring in the database. You can create a new AWR snapshot manually and run the
ADDM using this and the preceding snapshot.

You can also request that the ADDM analyze past instance performance by examining AWR
snapshot data that falls between any two nonadjacent snapshots. The only requirements regarding
the selection of the AWR snapshots are these:

• The snapshots must not contain any errors.

• There can’t be a database shutdown between the two snapshots. The AWR holds only cumu-
lative database statistics, and once you shut down the database, all the cumulative data will
lose its meaning.

■Note Although the addmrpt.sql script indicates that you can specify the number of days of snapshots, you
really aren’t given that choice. The script really just lists the last three days of completed snapshots, as you can see here:

Specify the number of days of snapshots to choose from
Entering the number of days (n) will result in the most recent
(n) days of snapshots being listed. Pressing <return> without
specifying a number lists all completed snapshots.
Listing the last 3 days of Completed Snapshots

Viewing Detailed ADDM Reports

You can view the ADDM analysis reports in three different ways:

• You can use the Oracle-provided addmrpt.sql script (located in the $ORACLE_HOME/rdbms/
admin directory) to create an ad hoc ADDM report for a time period covered by any pair of
snapshots.

• You can use the DBMS_ADVISOR package and create an ADDM report by using the CREATE_
REPORT procedure.

• You can use the OEM to view the performance findings of the stored ADDM reports, which
are proactively created each hour after the AWR snapshots.

The following sections discuss each of these three methods, but first we’ll look at how to read an
ADDM report.

Reading an ADDM Report

The ADDM presents the results of its analysis to you in a standard format that consists of the following
components:

• The definition of the performance problem

• The root cause of the performance problem

886 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

• Recommendation(s) for fixing the problem

• The rationale for the proposed recommendations

Listing 17-2 shows a condensed version of an ADDM report.

Listing 17-2. An Abbreviated ADDM Report

DETAILED ADDM REPORT FOR TASK 'TASK_4028' WITH ID 4028
 Analysis Period: 01-JUL-2008 from 06:00:11 to 21:00:37
 Database ID/Instance: 866170026/1
 Database/Instance Names: FINANCE/finance
 Host Name: prod5
 Database Version: 11.1.0.0.0
 Snapshot Range: from 3068 to 3076
 Database Time: 687974 seconds
 Average Database Load: 23.9 active sessions

FINDING 1: 42% impact (287205 seconds)
Individual database segments responsible for significant physical I/O were found.

RECOMMENDATION 1: Segment Tuning, 15% benefit (102631 seconds)
 ACTION: Run "Segment Advisor" on TABLE "FIN.UNIT_REGISTR"
 with object id 1817.
 RELEVANT OBJECT: database object with id 1817

 ACTION: Investigate application logic involving I/O
 on TABLE "FIN.UNIT_REGIST" with object id 1817.
 RELEVANT OBJECT: database object with id 1817
 RATIONALE: The SQL statement with SQL_ID "dvycj85pfmb1b" spent
 significant time waiting for User I/O on the hot object.
 RELEVANT OBJECT: SQL statement with SQL_ID dvycj85pfmb1b
 UPDATE UNIT_REGISTR UR SET UR.CARD_PRINTED_FLAG = 'Y'
. . .

RECOMMENDATION 2: Segment Tuning, 6.7% benefit (56805 seconds)
 ACTION: Run "Segment Advisor" on TABLE "APPOWNER.CAMP_POS"
 with object id 1381.
 RELEVANT OBJECT: database object with id 1381
 ACTION: Investigate application logic involving I/O on TABLE
 "APPOWNER.CAMP_POS" with object id 1381.
 RELEVANT OBJECT: database object with id 1381
 RATIONALE: The SQL statement with SQL_ID "gfjfc1g8t2a64" spent
. . .

FINDING 2: 29% impact (202802 seconds)
Individual database segments responsible for significant user I/O wait were found.

RECOMMENDATION 1: Segment Tuning, 12% benefit (84451 seconds)
 ACTION: Run "Segment Advisor" on TABLE "APPOWNER.COM_ORGS" with
 object id 1412.
 RELEVANT OBJECT: database object with id 1412
 ACTION: Investigate application logic involving I/O on TABLE
 "APPOWNER.COM_ORGS" with object id 1412.
 RELEVANT OBJECT: database object with id 1412

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 887

FINDING 3: 23% impact (160643 seconds)
The buffer cache was undersized causing significant additional read I/O.

RECOMMENDATION 1: DB Configuration, 23% benefit (160643 seconds)
 ACTION: Increase SGA target size by increasing the value of
 parameter "sga_target" by 2128 M.
 SYMPTOMS THAT LED TO THE FINDING: Wait class "User I/O" was consuming
 significant database time.

FINDING 4: 16% impact (134639 seconds)
SQL statements consuming significant database time were found.

RECOMMENDATION 1: SQL Tuning, 4.9% benefit (41134 seconds)
 ACTION: Run SQL Tuning Advisor on the SQL statement with SQL_ID
 "dvycj85pfmb1b".

FINDING 5: 6.1% impact (51563 seconds)
The throughput of the I/O subsystem was significantly lower than expected.

RECOMMENDATION 1: Host Configuration, 6.1% benefit (51563 seconds)
 ACTION: Consider increasing the throughput of the I/O subsystem.
 Oracle's recommended solution is to stripe all data file using the
 SAME methodology. You might also need to increase the number of disks
 for better performance. Alternatively, consider using Oracle's
 Automatic Storage Management solution.

 SYMPTOMS THAT LED TO THE FINDING:
 Wait class "User I/O" was consuming significant database time. (71%
 impact [604143 seconds])

. . .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

          ADDITIONAL INFORMATION
          ----------------------

Wait class "Administrative" was not consuming significant database time.
Wait class "Application" was not consuming significant database time.
Wait class "Cluster" was not consuming significant database time.
Wait class "Commit" was not consuming significant database time.
Wait class "Configuration" was not consuming significant database time.
CPU was not a bottleneck for the instance.
Wait class "Network" was not consuming significant database time.
Wait class "Scheduler" was not consuming significant database time.
Wait class "Other" was not consuming significant database time.

The analysis of I/O performance is based on the default assumption that the
average read time for one database block is 10000 micro-seconds.

An explanation of the terminology used in this report is available when you
run the report with the 'ALL' level of detail.



888 CH AP T E R  1 7  ■  A U TO M A T I C  M AN A G E M E N T AN D  O N L I N E  C AP AB IL I T I E S

In an ADDM report, each finding is followed by one or more recommendations. Thus, you might 
see a Recommendation 1, Recommendation 2, and so on, under each of the findings. For any partic-
ular finding, the sum of the benefit that follows the implementation of all recommendations under 
a finding equals that finding’s impact (DB time).

Note the following about the ADDM report shown in Listing 17-2:

• Findings 1 and 2 state that individual database segments responsible for significant physical 
I/O wait were found. ADDM recommends that you run the Segment Advisor to find out whether 
you can shrink the problem segments.

• Finding 3 reports an undersized buffer cache and recommends that you increase the SGA_TARGET 
parameter by 2,128MB.

• For Finding 4, the recommendation is to run the SQL Tuning Advisor on a specific SQL statement.

• For Finding 5, you’re asked to look into disk striping and adopting the Automatic Storage 
Management solution, since the user I/O wait event was taking up considerable DB time.

■Note  The ADDM’S I/O performance analysis is based on the assumption that the average read time for one 
database block is 10,000 microseconds.

At the end of the detailed ADDM Report, you’ll see a section called Additional Information, 
which usually shows insignificant wait information.

■Tip  Oracle enables the ADDM by default, as long as you set the STATISTICS_LEVEL parameter to TYPICAL or 
ALL. If you set the STATISTICS_LEVEL parameter to BASIC, you’ll disable many automatic performance-tuning 
and statistics-gathering activities, including the AWR and ADDM.

Using the addmrpt.sql Script

You can create an ADDM report by using the addmrpt.sql script, found in the $ORACLE_HOME/rdbms/
admin directory. The example in Listing 17-3 shows how to get the ADDM report for the period between 
6 a.m. and 2 p.m. To do so, I specified the snapshot numbers corresponding to the 6 a.m. and 2 p.m. 
snapshot collection times—the addmrpt.sql script makes this easy by displaying a list of snapshot 
numbers and the corresponding dates and times. (In the script, you can see that snapshot ID 3068 
was captured at 6:00 a.m. and 3076 was captured at 2:00 p.m.)

Listing 17-3. Producing an ADDM Report with the addmrpt.sql Script

$ sqlplus /nolog

SQL*Plus: Release 11.1.0.6.0 - Production on Thu Apr 10 09:21:48 2008
Copyright (c) 1982, 2007, Oracle.  All rights reserved.

SQL> CONNECT sys/syspasswd AS SYSDBA
Connected.
SQL> @/u03/app/oracle/rdbms/admin addmrpt.sql
Current Instance
~~~~~~~~~~~~~~~~
DB Id DB Name Inst Num Instance

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 889

----------- ------------ -------- ------------
877170026 FINANCE 1 finance

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DB Id       Inst Num DB Name       Instance     Host
------------ -------- ------------ ------------ ----
866170026          1 FINANCE        finance    prod5

Using  866170026 for database Id
Using          1 for instance number
Specify the number of days of snapshots to choose from
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Entering the number of days (n) will result in the most recent
(n) days of snapshots being listed. Pressing <return> without
specifying a number lists all completed snapshots.
Listing the last 3 days of Completed Snapshots
 Snap
Instance DB Name Snap Id Snap Started Level
------------ ------------ --------- ------------------ -----
finance FINANCE 3067 22 Jul 2008 05:00 1
 3068 22 Jul 2008 06:00 1
 3069 22 Jul 2008 07:01 1
 3070 22 Jul 2008 08:00 1
 3071 22 Jul 2008 09:00 1
 3072 22 Jul 2008 10:00 1
 3073 22 Jul 2008 11:00 1
 3074 22 Jul 2008 12:01 1
 3075 22 Jul 2008 13:00 1
 3076 22 Jul 2008 14:00 1

Specify the Begin and End Snapshot Ids
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Enter value for begin_snap: 3068
Begin Snapshot Id specified: 3068
Enter value for end_snap: 3076
End   Snapshot Id specified: 3076

Specify the Report Name
~~~~~~~~~~~~~~~~~~~~~~~
The default report file name is addmrpt_1_3068_3076.txt.
To use this name, press <return> to continue, otherwise enter an alternative.
Enter value for report_name:
Using the report name addmrpt_1_3068_3076.txt
Running the ADDM analysis on the specified pair of snapshots . . .
. . .
SQL>

You’ve seen how to get an ADDM report covering a past period, but suppose you are experiencing
a performance problem at 2:40 p.m., and the last snapshot is from 2 p.m.—the next snapshot won’t
be taken until 3 p.m., so your last ADDM report is of no use to you in this case. You can create an ad
hoc ADDM report by manually creating a snapshot, as shown here:

SQL> EXECUTE dbms_workload_repository.create_snapshot();
PL/SQL procedure successfully completed.

890 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

Within a few seconds of the creation of this AWR snapshot, Oracle automatically generates an
ADDM report (using the period between the snapshot you just executed and the preceding snap-
shot), which you can view through the OEM Database Control interface.

Using the DBMS_ADVISOR Package

The DBMS_ADVISOR package helps you manage the attributes of the ADDM, as well as perform jobs
like creating tasks and retrieving ADDM reports using SQL. ADDM is part of the advisory framework
in Oracle Database 11g. A non-DBA user needs the ADVISOR privilege to use the DBMS_ADVISOR
package.

The following are the main procedures and functions of the DBMS_ADVISOR package, and they
apply not just to the ADDM, but also to all the other database advisors. In this case, of course, we are
interested in how to use this package for managing ADDM.

• CREATE_TASK: Creates a new advisor task

• SET_DEFAULT_TASK: Helps you modify default values of parameters within a task

• DELETE_TASK: Deletes a specific task from the repository

• EXECUTE_TASK: Executes a specific task

• GET_TASK_REPORT: Displays the most recent ADDM report

• SET_DEFAULT_TASK_PARAMETER: Modifies a default task parameter

You can get an ADDM report identical to the one we got with the addmrpt.sql script in the previous
section by using the GET_TASK_REPORT procedure of the DBMS_ADVISOR package. The GET_TASK_
REPORT procedure lets you get an XML, text, or HTML report for a specified task, including an ADDM
task. Here’s how you get a text report:

SQL> SET LONG 1000000
SQL> SELECT dbms_advisor.get_task_report(
 2 task_name, 'TEXT', 'ALL')
 3 FROM dba_advisor_tasks
 4 WHERE task_id=(
 5 SELECT max(t.task_id)
 6 FROM dba_advisor_tasks t, dba_advisor_log l
 7 WHERE t.task_id = l.task_id
 8 AND t.advisor_name='ADDM'
 9* AND l.status= 'COMPLETED');
SQL>

Using the OEM Database Control to View ADDM Reports

You can also view ADDM reports via the OEM interface, using either the Database Control or the
Grid Control. Let’s look at how to use the Database Control interface to get the ADDM findings.

First, go the ADDM page by following these steps:

1. On the Database Control home page, click the Advisor Central link, which is under the
Related Links section at the bottom of the page.

2. On the Advisor Central page, you’ll see the Results section at the bottom (see Figure 17-1).
The latest ADDM auto-run results (based on the two latest snapshots) are available from this
page. From this page you can also get the results of any other advisors you may have run.

Figure 17-1 shows the Advisor Central page with the latest ADDM report shown at the bottom
of the page, in the Results section. This automatically run ADDM report was completed just after 10 a.m.

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 891

on March 26, 2005, using the most recent pair of consecutive snapshots, 3167 and 3168. Click the
report name link to view the detailed ADDM report, as shown in Figure 17-2. You can also save the
ADDM results to a file or print the report.

Figure 17-1. Locating the latest ADDM report on the Advisor Central page of the Grid Control

■Tip Note that you can also view an ADDM report straight from the Database Control home page. Simply go to
the Diagnostic Summary section and click the ADDM Findings link, which is a number that shows how many ADDM
findings are available for viewing. If your instance doesn’t have any ADDM problem findings, this number will be 0.

For each problem identified by the ADDM, its performance findings are displayed in the form
of three columns: the Impact column, the Finding column, and the Recommendations column. The
Impact column lists the performance problems in the order of their impact on their system. The Impact
column is thus very important, because you can start working on fixing the most serious problem
that is currently affecting database performance. Even if your guess is that SQL parsing issues are the
most pressing issues right now, if the Impact column ranks I/O problems as number one, you should take
care of the I/O problems first. The Finding column lists a brief description of the problem, and one or
more recommendations are presented in the Recommendations column. For example, the “SQL
statements consuming significant database time were found” finding has an impact of 48.33 percent on
DB time, and SQL tuning is the recommended action.

In addition to the impact, problem, and recommendations information, the detailed report
includes a listing of the symptoms that led to each particular finding. For some problems, the ADDM
report also includes a Rationale section that explains the reasoning behind its recommendations.
You can drill down the findings to get the rationale and the detailed recommendations. For example,
Figure 17-3 shows the rationale behind a certain recommendation.

892 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

Figure 17-2. Viewing the latest ADDM report in the OEM Grid Control

Figure 17-3. Viewing the rationale for a recommendation in the ADDM report

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 893

Using the Database Control to Run the ADDM

In the previous section, I showed how to use the Database Control to view existing ADDM reports.
As explained earlier, ADDM automatically runs by default every hour, immediately after the hourly
(default value) AWR snapshot completes. However, you can also manually run the ADDM to produce an
ad hoc report if you see a spike in instance activity or you notice excessive waits in the database.
Here are the steps to do this:

1. From the Database Control home page, click the Advisor Central link.

2. Click the ADDM link.

3. You will now be in the Run ADDM page, shown in Figure 17-4. You can make one the following
choices and then click OK:

• To analyze current instance performance, create an immediate AWR snapshot and run
the ADDM analysis on it and the most recent snapshot.

• To analyze past instance performance, select either the Period Start Time or the Period
End Time option and click one of the snapshot icons under the Active Sessions graph.

Figure 17-4. Running an ad hoc ADDM report using the Database Control

Using ADDM-Related Dictionary Views

The following data dictionary views will help you manage the ADDM:

• The DBA_ADVISOR_RECOMMENDATIONS view shows all the ADDM recommendations in
the database.

• The DBA_ADVISOR_FINDINGS view shows the findings of all the advisors in your database.

894 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

• The DBA_ADVISOR_RATIONALE view shows the rationale behind all the recommendations.

• The DBA_ADVISOR_ACTIONS view shows all the actions that are necessary to implement the
ADDM recommendations.

Automatic Memory Management
It isn’t always easy to adjust the system global area (SGA), which is the memory that Oracle assigns
to every instance to hold data and control information. You may have a situation where OLTP trans-
actions dominate the database all day, and then you run heavy-duty batch jobs during the night. In
such a situation, you’d need a higher allocation for the buffer cache during the day, and an increase
in the large pool component of the SGA for the nightly batch jobs.

You can, of course, dynamically change several SGA components, as well as use scripts to change
SGA allocations before and after batch jobs, but the fact remains that you are directly responsible for
adjusting the SGA components to match instance needs. Problems like the ORA-4031 (“out of shared
pool memory”) error are all too common when you’re manually tuning various parameters. If you try
to be extra careful and allocate a lot of SGA memory, you’ll run the risk of wasting critical resources
and also potentially contributing to paging and other problems, which will affect your database
performance.

In Oracle Database 11g, you can make the often-tricky issue of memory management completely
automatic. This is one of the more significant improvements in Oracle Database 11g, and it contrib-
utes considerably to Oracle’s goal of automatic database management. Under automatic memory
management, Oracle will automatically allocate and deallocate memory for both the SGA and the
PGA based on changing database workloads. Oracle uses internal views and statistics to decide on
the best way to allocate memory among the SGA components.

These are some of the benefits of using automatic memory management:

• Reduces the chance of running out of shared pool memory

• Uses available memory optimally

• Improves database performance by constantly matching memory allocations and instance
memory needs

You can continue to manually manage the shared memory components in Oracle Database 11g
if you wish.

Different Types of Memory Management
Oracle provides several memory management methods, as summarized here:

• Automatic memory management: This new option in Oracle Database 11g lets the database
manage the SGA and PGA components of memory completely automatically.

• Automatic shared memory management: This option automates the management of the SGA
but not the PGA.

• Automatic PGA memory management: This option automates just the PGA memory.

• Manual shared memory management: You set the sizes of the individual components of the
SGA such as the shared pool and the buffer cache.

• Manual PGA memory management: You set the PGA memory manually.

Oracle recommends that you use automatic memory management, under which the database
dynamically adjusts the levels of the individual SGA components as well as the PGA allocations.

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 895

The database will redistribute memory from the SGA to the PGA and vice versa, depending on what’s
needed. Your job is to set the initial level of memory you want to allocate to the database and then
let the database handle the day-to-day management of that memory.

■Note As of this writing, the Linux, Solaris, Windows, HP-UX, and AIX platforms support automatic memory
management.

Enabling Automatic Memory Management
You can enable automatic memory management when creating a database through the Database
Configuration Assistant (DBCA). The DBCA offers you a choice of automatic memory management
and other types of memory management. You can set the initialization parameters that control
automatic memory management by using the Memory tab of the Initialization Parameters page.
Select automatic memory management by checking the Use Automatic Memory Management box
in the Typical section.

In order to switch to automatic memory management, you must set the MEMORY_TARGET parameter,
which sets the target memory for the instance. You can also set the maximum memory size for an
instance by specifying a value for the MEMORY_MAX_TARGET initialization parameter.

Before you can allocate the appropriate amount of memory you should assign to the database under
the new automatic memory management feature, you must first find out how much memory the data-
base is currently using for its SGA and PGA memory allocations. Your goal is to allocate an amount
of memory that’s about the same as the sum of the SGA and PGA memory that the database currently
consumes. However, this doesn’t mean that you can simply sum up the values of the SGA_TARGET and
PGA_TARGET parameters to arrive at the total memory requirements of the database. The reason for this is
that unlike in the case of the SGA_TARGET parameter, the database doesn’t immediately take over the
memory you assign for the PGA_TARGET parameter. The database only bases its PGA allocation to each
session on the value for the PGA_TARGET parameter. Thus, you can assign a very large value for the
PGA_TARGET parameter, but the database might be using only a miniscule portion of this at any given time.

In order to enable automatic memory management for an existing database, follow these
simple steps:

1. Find out the current value of the SGA by issuing the following command:

SQL> SHOW PARAMETER SGA_TARGET

NAME TYPE VALUE
------------- ----------- ------
sga_target big integer 600M

You may also query the VSGA_STAT view (SELECT SUM(BYTES) FROM V$SGA_STAT) to get the size
of the current SGA.

SQL>

2. Find out the maximum allocation of PGA at any given time by issuing the following query:

 SQL> SELECT VALUE FROM V$PGASTAT
 2 WHERE name='maximum PGA allocated';

VALUE

581000192

SQL>

896 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

3. The query shows that the database allocated about 580MB of memory to the PGA at its
maximum level. If you issue the following query, however, you’ll get the wrong estimate
for the PGA:

SQL> SHOW PARAMETER PGA_AGGREGATE_TARGET

NAME TYPE VALUE
---------------------- -------------- ----------
pga_aggregate_target big integer 5000000000

SQL>

About 6GB was allocated to the PGA memory, but the database made use of a maximum of about
580MB at a single time. Therefore, adding the SGA_TARGET and the PGA_AGGREGATE_TARGET parameters
is likely to give you an overly large estimate of the memory you need to assign to the database for the
automatic allocation of SGA and PGA.

4. Choose the value for the MEMORY_TARGET parameter by adding the values of the SGA_TARGET
parameter and the value of the maximum PGA allocated since the instance was started. In
our example, this is 600MB (SGA) + 581MB (highest PGA usage in the instance). That is, you’d
need about 1200MB or so as the target for the automatic memory allocation to the database.

You can optionally also set the MEMORY_MAX_TARGET parameter if you want. If you don’t set a value
for this parameter, the database assigns it the same value as that assigned to the MEMORY_TARGET
parameter.

After choosing your values, make the necessary changes in the SPFILE, as shown here:

SQL> ALTER SYSTEM SET MEMORY_MAX_TARGET=1200M SCOPE=SPFILE;
SQL> ALTER SYSTEM SET MEMORY_TARGET=2000M SCOPE=SPFILE;
SQL> ALTER SYSTEM SET SGA_TARGET=O SCOPE=SPFILE;
SQL> ALTER SYSTEM SET PGA_AGGREGATE_TARGET=0 SCOPE=SPFILE;

By setting the SGA_TARGET and the PGA_AGGREGATE_TARGET parameters to zero, you are giving
complete control to the database in adjusting the values of the SGA and the PGA based on the
requirements of the database workload.

■Note You can also enable automatic memory management by using the Enterprise Manager. Go to the Database
Home page ➤ Server ➤ Memory Advisors. Click the Enable button on the Memory Advisor page to enable auto-
matic memory management.

Tuning Automatic Memory Management
You can use the view V$MEMORY_DYNAMIC_COMPONENTS to examine the current sizes of memory
components such as the SGA and the PGA. You can get tuning advice for setting the MEMORY_TARGET
parameter from the V$MEMORY_TARGET_ADVICE view, as shown in the following example:

SQL> SELECT * FROM v$memory_target_advice ORDER BY memory_size;

MEMORY_SIZE MEMORY_SIZE_FACTOR ESTD_DB_TIME ESTD_DB_TIME_FACTOR VERSION
----------- ------------------ ------------ ------------------- ----------
 410 .5 34994 1.0085 0
 615 .75 34699 1 0
 820 1 34699 1 0
 1025 1.25 34699 1 0

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 897

 1230 1.5 34699 1 0
 1435 1.75 34699 1 0
 1640 2 34699 1 0

7 rows selected.

SQL>

The row where the value of the MEMORY_SIZE_FACTOR is 1 shows the current size of the memory
allocation to the instance, made by setting the MEMORY_TARGET parameter. The values for all columns
correspond to alternative hypothetical levels of the MEMORY_TARGET parameter. In our example, there
is no benefit to increasing the size of the MEMORY_TARGET parameter beyond its current value of 615MB,
based on the current database workload.

Automatic Memory Parameter Dependency
Once you set the MEMORY_TARGET parameter, the database will allocate the memory to the SGA and
PGA components based on the demands on the database workload. The MEMORY_TARGET parameter is
dynamic, and therefore you can change it easily while the database is running. You can set the SGA_
TARGET and/or the PGA_AGGREGATE_TARGET parameters even after enabling automatic memory alloca-
tion in the database by setting the MEMORY_TARGET parameter.

If you ignore the MEMORY_MAX_TARGET parameter but set the MEMORY_TARGET parameter, the former
defaults to the value you set for the latter parameter. If, on the other hand, you just set the MEMORY_
MAX_TARGET parameter, the value of the MEMORY_TARGET parameter defaults to zero, meaning auto-
matic memory management is disabled.

Following is the relationship among the various memory sizing parameters when you set the
MEMORY_TARGET parameter:

• If you don’t set the SGA_TARGET and the PGA_AGGREGATE_TARGET parameters, the database will
automatically tune them without setting any minimum values for either the SGA or the PGA.

• If you also set the SGA_TARGET and the PGA_AGGREGATE_TARGET parameters, they are treated as
minimum values for the SGA and the PGA.

• If you set only the SGA_TARGET parameter and not the PGA_AGGREGATE_TARGET parameter, you
can still auto-tune both SGA and PGA.

• If you set just the PGA_AGGEGATE_TARGET parameter, the database auto-tunes both SGA and PGA.

If you don’t set the MEMORY_TARGET parameter, it will default to a value of zero and the following
will be true of the SGA and PGA allocations:

• If you set neither the SGA_TARGET nor the PGA_AGGREGATE_TARGET parameters, the database
doesn’t auto-tune the SGA, meaning that you must set the sizes of the individual components
of the SGA. However, the database auto-tunes the PGA.

• If you set only the SGA_TARGET parameter, the database auto-tunes the subcomponents of the SGA.

• The database always auto-tunes the PGA, regardless of whether you set the PGA_AGGREGATE_
TARGET parameter or not.

Automatic Optimizer Statistics Collection
In an Oracle database, the query optimizer plays a critical role in executing SQL statements in the
most efficient manner. You can execute a given SQL statement in several ways, and it is the query
optimizer’s job to come up with the fastest and most efficient way to perform each database query.

898 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

To arrive at the best plan of execution for any SQL statement, the optimizer first evaluates the
available access paths, join orders, and so on, and selects several candidate execution plans. Next, it
computes the cost of the alternative plans, based on their use of I/O, CPU, and memory. During this step,
the optimizer uses optimizer statistics—crucial statistics that tell the optimizer about data distribution
and storage characteristics of tables and indexes, among other things. The optimizer finally compares
the costs of the alternative plans and picks the least costly plan.

■Note Oracle recommends that you let the database collect optimizer statistics automatically.

Automatically Collecting Optimizer Statistics
Oracle Database 10g introduced the automatic optimizer-statistics collection feature. You thus don’t
have to deal with questions about the frequency of statistics collection or the objects to include in
the collection process, because Oracle will take care of all that for you.

■Note There are some situations where manually collecting optimizer statistics still makes sense, and these are
discussed in the “Manually Collecting Optimizer Statistics” section of this chapter.

It’s very easy to enable automatic statistics collection in Oracle Database 11g—Oracle automatically
starts collecting statistics when you create a new Oracle Database 11g database or upgrade to the
Oracle Database 11g Release. Oracle uses the DBMS_STATS package to collect optimizer statistics on
an automatic basis.

■Tip Make sure that the STATISTICS_LEVEL initialization parameter is set to TYPICAL or ALL, in order to
ensure the automatic statistics collection feature is enabled.

The Scheduler and the GATHER_STATS_JOB

When you create a new database or upgrade one to the Oracle Database 11g release, Oracle automati-
cally creates a database job called GATHER_STATS_JOB, and Oracle Scheduler automatically schedules
the job to run during the maintenance window. Here’s how you verify that the automatic statistics-
collection job is running:

SQL> SELECT job_name
 FROM dba_scheduler_jobs
 WHERE job_name LIKE 'GATHER_STATS%';

JOB_NAME

GATHER_STATS_JOB
SQL>

Oracle schedules the GATHER_STATS_JOB job for automatic execution using the Oracle Scheduler
tool. As of Oracle Database 10g, the Scheduler replaces and enhances the old job-scheduling capa-
bility that used the DBMS_JOB package (I explain the Scheduler in detail in Chapter 18).

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 899

■Note I provide more details about automatic optimizer statistics collection, including checking the results of the
GATHER_STATS_JOB job, in Chapter 19.

The Oracle Scheduler has two default operation windows:

• The weeknight window covers the time between 10:00 p.m. and 6:00 a.m., Monday through
Friday.

• The weekend window covers the time between 12:00 a.m. Saturday and 12:00 a.m. Monday.

Together, the weeknight and the weekend windows are known as the maintenance window.
Oracle automatically schedules the GATHER_STATS_JOB job to run when the maintenance window opens.

You can disable the automatic collection of statistics in this way:

SQL> BEGIN
 2 dbms_scheduler.disable('gather_stats_job');
 3 END;
 4 /
PL/SQL procedure successfully completed.
SQL>

The GATHER_STATS_JOB job calls the DBMS_STATS.GATHER_DATABASE_STATS_JOB_PROC
procedure to gather the optimizer statistics. The job collects statistics only for objects that fall into
one of the following classes:

• Objects with missing statistics: Any object without statistics is a candidate for statistics collection.

• Objects with stale statistics: Oracle considers an object’s statistics stale if 10 percent or more
of the object’s rows have been modified since the last time statistics were collected for that
object.

By default, Oracle monitors the modifications (DML changes) in database objects, so long as
you set the STATISTICS_LEVEL initialization parameter to TYPICAL or ALL (TYPICAL is the default value).
The GATHER_DATABASE_STATS_JOB_PROC procedure sets priorities among the database objects
based on the extent of DML activity in each object. The procedure will analyze the objects that have
had the most DML changes first, so that even if it doesn’t finish the entire statistics-collection job
before the maintenance window closes, it ensures that it collects the most-needed statistics. Note
that, by default, the Scheduler will terminate the GATHER_STATS_JOB job if it’s still running when the
maintenance window closes. The objects for which statistics couldn’t be collected before the close
of the maintenance window will be processed automatically the next time the job runs. You can,
however, use the setting FALSE for the STOP_ON_WINDOW_CLOSE attribute of the GATHER_STATS_JOB job.
Chapter 18, which discusses the Oracle Scheduler, explains how to do this.

Using the Database Control to Manage the GATHER_STATS_JOB Schedule

You can always modify the default maintenance window using SQL*Plus. You can also use the OEM
Database Control to change the current schedule of the GATHER_STATS_JOB schedule. Here are the steps:

1. From the Database Control home page, click the Administration tab.

2. Go to the Scheduler Group, and click the Windows link.

3. Click the Edit button. You’ll then be able to edit the weeknight or the weekend window timings.

900 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

Manually Collecting Optimizer Statistics
You can use the DBMS_STATS package to manually collect optimizer statistics at the table, schema,
or database level, as well as to gather system statistics, and I show how to do this in Chapter 19. As of
Oracle Database 10g, the recommended way to collect optimizer statistics, however, is to let the data-
base automatically do it for you. Under some situations, such as the following, however, you must
use the traditional DBMS_STATS package to gather statistics, instead of relying on Oracle’s automatic
statistics collection:

• When using external tables

• When collecting system statistics

• For collecting statistics on fixed objects, such as the dynamic performance tables

• Immediately after you run a bulk load job, since this will make your existing statistics
unrepresentative

Automatic Storage Management
DBAs sometimes maintain thousands of datafiles for each database they manage, so an Oracle storage
solution should provide both high-performance I/O and failure-proof storage hardware. In fact, file
and I/O management is what usually takes up a large part of an Oracle DBA’s time. With Oracle’s
new ASM feature, you can automate traditional file management tasks. Under an ASM system, the
Oracle DBA is in charge of the management of physical storage from within Oracle’s framework, instead
of relying on the system administrator. Using the ASM disk groups, you can address sets of disks
simultaneously, instead of individual disks, and the database can dynamically configure storage based
on changing workloads. By allowing the Oracle DBA the flexibility to manage complex storage-
management devices across various server and storage platforms, ASM becomes a crucial part of
Oracle’s grid computing initiative.

ASM is built on OMF, which means you don’t have to worry about specifying filenames and
locations when creating new databases—all you have to do is identify an ASM disk group, which
consists of a set of disks. When you create a database or add a file, you can use familiar CREATE, ALTER,
and DROP SQL statements to allocate disk space. ASM acts as Oracle’s built-in Logical Volume Manager
by handling striping and mirroring functions previously managed by third-party tools. Under ASM,
disks are grouped and managed by the database itself and made available for creating tablespaces.
You don’t have to mount the files as with the normal Linux or UNIX file systems. You also can’t use
the traditional tools, such as cp and tar, to copy the ASM files, nor can you describe them using the
ls command. The database holds all information regarding ASM files. If you use ASM for an Oracle
file, the operating system can’t see it, but RMAN and Oracle’s other tools can.

For example, issue the following command:

SQL> ALTER DATABASE BACKUP CONTROLFILE TO TRACE AS <filename>;

The file generated by the previous statement will display the names of any ASM files. If ASM uses
fully qualified names, you can see datafiles in views such as V$DATAFILE and V$LOGFILE.

When assigning a file to a tablespace or other object in an ASM file system, you don’t need to
know its name. You can refer to a disk group, and ASM automatically generates the filename.

Instead of learning to utilize a whole set of commands to manage ASM databases, you can just
use the OEM Database Control to manage virtually all ASM operations. You can create a new ASM
instance with the DBCA or with the Oracle Universal Installer (which uses the DBCA behind the
scenes), and you can migrate an existing database to an ASM system with the Database Control.

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 901

Benefits of ASM
By using ASM, you can manage data by selecting reliability and performance characteristics for data
classes, rather than working with large storage systems on a per-file basis. An ASM file system offers
the following benefits:

• ASM provides automatic load balancing over all the available disks, thus reducing hot spots
in the file system.

• ASM prevents fragmentation of disks, so you don’t need to manually relocate data to tune I/O
performance.

• Adding disks is straightforward—ASM automatically performs online disk reorganization
when you add or remove storage.

• ASM uses redundancy features available in intelligent storage arrays.

• The ASM storage system stores all types of database files.

• ASM makes your file management tasks easier, because you will be dealing with just a few
groups of disks, rather than a multitude of database files. ASM automatically creates the data-
base files and places them in appropriate disk groups.

• ASM does mirroring and striping, which in turn increases reliability and performance. You
can select different reliability and performance characteristics for various types of data. For
example, you can use fine-grained striping for redo log files and a coarser-grained striping for
regular datafiles.

• ASM is free!

■Tip ASM and non-ASM files can coexist in the same Oracle database.

Examining the ASM Architecture
The three major components of ASM are the ASM instance, ASM disk groups, and ASM files. Let’s
look briefly at these important ASM components.

The ASM instance is a special Oracle instance—it does not have its own datafiles like a regular Oracle
database does. A single ASM instance on a server can manage the ASM file systems for all the Oracle data-
bases on that server. The ASM instance looks after disk groups and gives the database access to the ASM
files. The database makes the initial contact with the ASM instance to get information on the datafiles, but
it accesses those files directly. The ASM instance must be running for an Oracle database to use the ASM
file system, and the ASM instance can’t be shut down while the other Oracle databases using ASM file
systems are still running, since those databases will crash without the ASM instance.

ASM disk groups are somewhat analogous to logical volumes created by a Logical Volume Manager.
Unlike the usual Oracle database files, you don’t access ASM files directly. Disks in an ASM context
are rather loosely defined and can include a partition of a disk spindle or the entire disk spindle itself.
This depends on how the storage system represents the logical unit number (LUN) to the operating
system. Any LUN or a disk represented to the operating system is called a disk. Since each operating
system could have a different disk-naming system, check your disk-naming system.

ASM files are part of an ASM disk group, which contains all your database files. ASM manages a
disk group consisting of several disk drives as a single unit, and it spreads the data evenly among all
the disks in the group. You don’t have to change the management of your database if you want to
switch to an ASM system, because you can use your operating system–based files with the new ASM files.
Logical concepts such as extents, segments, and tablespaces work the same way under an ASM system.

902 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

Here’s a summary of an ASM storage system:

• A database is allowed to have multiple disk groups.

• You can store all of your Oracle database files as ASM files because Oracle sets up a one-to-
one mapping between an Oracle database file (datafiles and control files, for example) and an
ASM file.

• An ASM disk group comprises a set of disk drives.

• ASM disk groups are permitted to contain files from more than one disk.

• ASM files always spread over every disk in an ASM disk group and belong to one disk group only.

• ASM allocates disk space in allocation units of 1MB.

■Note You can continue to use your existing operating system file systems, raw devices, or OMF files as usual,
along with ASM files, or you can migrate all existing file systems to an ASM-based file system.

In the current release, Oracle recommends that you create the OSASM operating system group
and grant the SYSASM system privilege to members of this group. In future releases, Oracle intends
to make the OSASM group mandatory. For now, the default operating system group for ASM admin-
istrators continues to be the dba group. If a user is part of this group, the user can connect to ASM by
issuing the following command:

SQL> CONNECT / AS sysasm

You can grant the SYSASM privilege to a user in this way:

SQL> GRANT SYSASM TO salapati;

You can revoke the SYSASM privilege by issuing the REVOKE SYSASM statement. When you log into
an ASM instance using the traditional SYSDBA system privilege, the database issues a warning that
it records in the alert log.

Installing ASM
If you’re creating an ASM instance on a server with just a single Oracle database, you probably don’t
need a separate Oracle home for the ASM instance. However, if you’re running multiple Oracle data-
bases on that server, Oracle recommends that you install ASM in a separate Oracle home. To do so,
you use the Oracle Universal Installer and the Database Configuration Assistant to install the Oracle
software and configure and create the ASM instance. In the example that follows, we will create an
ASM instance in the same home as the existing Oracle database, so we don’t have to install anything
new.

ASM and Cluster Synchronization Service
An ASM storage system requires the use of an additional specialized instance called ASM, which will
actually manage the storage for a set of Oracle databases. In order to use ASM storage for your Oracle
databases, you must first ensure that you have Oracle’s Cluster Synchronization Service (CSS) running
on your databases.

CSS is responsible for synchronizing ASM instances and your database instances, and is installed as
part of your Oracle software. When you start an ASM instance, it registers itself and the disk groups
it manages with the CSS, and when an RDBMS needs to get to a disk group, it relies on the CSS to
provide the name of the ASM instance that is managing that disk group.

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 903

CSS also synchronizes recovery from an ASM instance failure. You can find out if the CSS service
is running by using the following command:

$ ps -ef | grep css
 oracle 5506 1 1 Apr 11 ? 630:05 /u03/app/oracle/bin/ocssd.bin
 oracle 12791 10525 2 16:38:39 pts/11 0:00 grep css
$

The preceding output of the ps -ef command shows that the CSS service is running. If you get
the following result instead, it means that your CSS service hasn’t been started:

$ ps -ef | grep css
 oracle 2207 19736 0 18:12:39 pts/6 0:00 grep css
$

■Tip You can’t use ASM until the Oracle CSS service is started.

You can also check for the CSS process with the CRSCTL utility, as shown here:

$ crsctl check cssd
Failure 1 contacting CSS daemon
$

If your CSSD daemon isn’t running, as in the preceding example, you must start it by following
these steps:

1. Log in as the root user.

2. Make sure you add the Oracle home directory to your path, as shown here:

export PATH=$PATH:/u01/app/oracle/product/11.1.0/bin

3. Run the following command to start the CSS daemon:

localconfig add
/etc/oracle does not exist. Creating it now.
Successfully accumulated necessary OCR keys.
Creating OCR keys for user 'root', privgrp 'root'..
Operation successful.
Configuration for local CSS has been initialized

Adding to inittab
Startup will be queued to init within 30+60 seconds.
Checking the status of new Oracle init process . . .
Expecting the CRS daemons to be up within 600 seconds.
CSS is active on these nodes.
localhost
CSS is active on all nodes
Oracle CSS service is installed and running under init(1M)
#

4. Now, check for the CSS daemon again:

crsctl check css
CSS appears healthy
#

904 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

You can also check to make sure that the CSS processes are running, as shown here:

ps -ef | grep css
root 24871 1 0 07.59 ? 00:00:00 /bin/su -1 oracle c exec
root 24945 24871 0 08.00 ?
00:00:021/app/oracle/product/11.1.0/db_1/bin/ocssd.bin
#

The init.cssd script, which acts as the control script for the CSS daemon, starts and stops the
CSS service. It is located in the $ORACLE_HOME/css/admin directory. The localconfig add command
will automatically add the init.cssd script to your system’s /etc/inittab file, as shown here:

h1:3:respawn:/sbin/init.d/init.cssd run >/dev/null 2>&1 </dev/null

If you create an ASM instance using the DBCA, the CSS daemon is automatically started. The
localconfig command and the CRSCTL utility work the same way in a Windows server. However,
refer to the documentation for more details on configuring the CSS service on a Windows server.

■Tip Since an ASM instance acts as the storage manager for all databases on a server, you’ll need a single ASM
instance on a node to service all the Oracle databases running there.

Creating an ASM Instance
Before you can create an ASM file system, you must create an ASM instance on your server. To create
an ASM instance, you follow the same process you would when creating any other Oracle instance,
with the big difference that you use a small number of initialization parameters. It should be noted
that the ASM instance won’t mount any Oracle database files. The ASM instance’s main function
is to maintain ASM file metadata, which the regular Oracle databases will use to access the ASM-
based database files. An ASM instance usually requires only about 100MB of memory.Unlike normal
Oracle databases, ASM instances don’t have data dictionaries, so you must connect as an adminis-
trator, either using operating system authentication as SYSDBA or SYSOPER, or by using a password
file, if you’re working over a remote connection. In Oracle Database 11g, you can use the new role,
SYSASM, to manage ASM operations. Oracle has introduced the SYSASM role to separate ASM adminis-
trative tasks from regular DBA administration. To create the ASM instance, you have to have the
SYSDBA privilege. You can perform most management tasks (apart from creating the instance and a
few other tasks) with just the SYSOPER privilege, but connecting as SYSDBA means you’ll have complete
administrative privileges.

■Note If you choose to create a new Oracle database during the Oracle Database software installation, or you
use the DBCA to create a database, all you have to do to use ASM is choose an ASM storage system from the three
storage choices that you’re offered (raw devices, OS file systems, and ASM). The DBCA will automatically create the
ASM instance for you, along with the Oracle database.

Working with the ASM Instance’s Initialization Parameters

You have to create an initialization parameter file with the following parameters before you can
create the new instance:

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 905

• INSTANCE_TYPE: In an Oracle Database 11g database, you have two types of Oracle instances:
RDBMS and ASM. RDBMS, of course, refers to the normal Oracle databases, and ASM refers
to the new ASM instance. Set the INSTANCE_TYPE parameter to ASM.

• ASM_POWER_LIMIT: The parameter controls the speed of a rebalance operation by controlling
the number of ARB processes that can perform the rebalance operation. Rebalancing data
redistributes the datafiles evenly and balances I/O load across the disks. The default is 1 and
the range is from 1 to 11 (1 is slowest and 11 is fastest).

• ASM_DISKSTRING: This is the location where Oracle should look during a disk-discovery process.
The format of the disk string may vary according to your operating system. You can specify a
list of values as follows; this example limits the ASM discovery to disks whose names end in c2
and c3 only:

ASM_DISKSTRING = '/dev/rdsk/*c2', '/dev/rdsk/*c3'

• ASM_DISKGROUPS: Here you specify the name of any disk group that you want to mount auto-
matically at instance startup; the default value for this parameter is NULL.

To start an ASM instance off, you first have to create an init.ora file (init+asm.ora) that contains
the ASM-related initialization parameters. Here it is:

INSTANCE_TYPE=ASM
ASM_POWER_LIMIT =2
ASM_DISKSTRING = '/dev/rdsk/*s1', '/dev/rdsk/*s2'
ASM_DISKGROUPS = dgroupA, dgroupB

Oracle will issue an error after the ASM instance is created because we’ve included the ASM_
DISKGROUPS parameter, but no disk groups have yet been created for this new instance. We can create
the disk groups after the ASM instance comes up.

Once you have the init.ora file ready, export the new ASM instance’s SID just as you would for
any regular Oracle database, and start up the new ASM instance, as shown in Listing 17-4.

■Note If your CSS instance wasn’t started, you’ll see the following error when you try to create your ASM instance:

ORA-29701: unable to connect to Cluster Manager

If this happens, simply start up the CSS daemon as explained in the “ASM and Cluster Synchronization Service”
section earlier in this chapter, and then start up the ASM instance as shown in Listing 17-4.

Listing 17-4. Starting an ASM Instance

 [finance] $ export ORACLE_SID=+ASM
 [+ASM] $ sqlplus /nolog
SQL*Plus: Release 11.1.0.6.0 - Production on Thu Apr 10 09:21:48 2008
Copyright (c) 1982, 2007, Oracle. All rights reserved.

SQL> CONNECT / AS SYSDBA
Connected to an idle instance.
SQL> STARTUP PFILE=initasm+.ora
ASM instance started

906 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

Total System Global Area 79691776 bytes
Fixed Size 1216820 bytes
Variable Size 53309132 bytes
ASM Cache 25165824 bytes
ORA-15110: no diskgroups mounted
SQL>

Note the new SGA component, ASM Cache, which is sized at about 25MB. In most cases, the
total SGA memory allocated to the entire ASM instance remains small, usually less than 100MB.

In the preceding example, we also ended up with the ORA-15110 error, because the disk groups
specified in the init.ora file don’t exist yet, and the new instance can’t mount them. We’ll create the
disk groups later on and then mount them with the ALTER DISKGROUP . . . MOUNT command. You
can avoid the error message by taking out the ASM_DISKGROUPS parameter from the initialization
parameter file.

■Tip Once you create an ASM instance, you must set the ORACLE_SID environment variable for the ASM instance
before you can connect to it, just as you would do for a normal Oracle database instance. The default ASM instance
name is +ASM.

You can confirm the name of your new ASM instance with the following query:

SQL> SELECT instance_name FROM v$instance;

INSTANCE_NAME

+ASM
SQL>

If you run the LSNRCTL STATUS command from the command line, you’ll see that the listener has
automatically registered the new ASM instance:

Service "+ASM" has one instance(s).

You can check the newly created ASM instance processes in the following way:

 [+ASM] $ ps –ef | grep asm
 oracle 3201 1 0 Jul 3 ? 0:00:00 oracleasm+ (DESCRIPTION =
(LOCAL=YES) (ADDRESS=(PROTOCOL=beq)))
 oracle 11977 1 0 12:56 ? 0:00: 05 asm_pmon_+asm
 oracle 11979 1 0 12:56 ? 0:00: 02 asm_psp0_+asm
 oracle 11981 1 0 12:56 ? 0:00: 02 asm_mman_+asm
 oracle 11985 1 0 12:56 ? 0:00: 02 asm_dbw0_+asm
 oracle 11973 1 1 12:56 ? 0:00: 02 asm_lgwr_+asm
 oracle 11987 1 0 12:56 ? 0:00: 03 asm_ckpt_+asm
 oracle 11989 1 0 12:56 ? 0:00: 02 asm_smon_+asm
 oracle 11991 1 0 12:56 ? 0:00: 02 asm_rbal_+asm
 oracle 11995 1 0 12:56 ? 0:00: 02 asm_gmon_+asm
 [+ASM] $

All the background processes shown in the preceding output are standard Oracle Database 11g
processes, with the exception of a couple of background processes specific to an ASM instance. The
following section explains the important ASM-specific background processes.

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 907

■Tip You don’t need to back up an ASM database, since you don’t have any physical ASM datafiles to back up!
This is also why you can’t use the OPEN option while starting an ASM instance. All ASM metadata is either stored in
the SGA while the ASM instance is running or stored on the disk groups and mirrored, to provide high availability.

Examining an ASM Instance’s Architecture

An ASM instance uses several regular Oracle background processes, such as SMON, PMON, and
LGWR. In addition, ASM utilizes two new ones: ASM rebalance master (RBAL) and ASM rebalance
(ARBn). The RBAL process coordinates disk activity, and the ARBn processes perform the rebal-
ancing work, which can include moving data extents.

In addition to ASM’s RBAL and ARBn, any Oracle database instance that uses ASM will have two
ASM-related background processes: RBAL and ASM background (ASMB). RBAL performs global
opens of the disks that are part of the ASM disk group, and ASMB connects to the ASM instance as a
foreground process and links the ASM instance and your database instance, sending information
such as notifications when a datafile is created or deleted, and when statistics are updated.

You can use the OEM Database Control to manage an ASM instance. Its main page shows your
ASM instance’s status. From here, click the Configuration tab to visit the ASM Configuration page,
where you can modify the ASM instance’s parameters. You can also go to the ASM main page and
check your instance’s performance.

Let’s review the manual ASM startup and shutdown procedures.

Starting an ASM Instance

The STARTUP command for an ASM instance is quite similar to the STARTUP command for regular
Oracle databases, with a couple of interesting differences.

During the mount phase of the normal Oracle STARTUP command, an Oracle database reads the
control file and mounts the datafiles specified there. An ASM instance doesn’t have any datafiles to
mount; it instead mounts the disk groups that you specify in the ASM_DISKGROUPS initialization parameter.
The NOMOUNT command is similar to the regular Oracle NOMOUNT command: it starts an ASM instance, but
doesn’t mount any disk groups. Listing 17-5 shows how the STARTUP NOMOUNT and STARTUP MOUNT
commands work in an ASM instance.

Listing 17-5. The STARTUP NOMOUNT and STARTUP MOUNT Commands in an ASM Instance

SQL> STARTUP NOMOUNT;
ASM instance started

Total System Global Area 79691776 bytes
Fixed Size 1216820 bytes
Variable Size 53309132 bytes
ASM Cache 25165824 bytes

SQL> SELECT name FROM v$database;
select name from v$database
 *
ERROR at line 1:
ORA-01507: database not mounted
SQL> ALTER DATABASE MOUNT;
alter database mount
*

908 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

ERROR at line 1:
ORA-15000: command disallowed by current instance type
SQL>
SQL> ALTER DATABASE OPEN;
alter database open
*
ERROR at line 1:
ORA-15000: command disallowed by current instance type
SQL>

To use ASM, you have to have a running ASM instance, and since there aren’t any datafiles in an
ASM instance, you can’t use the STARTUP command’s MOUNT or OPEN options. When you issue a STARTUP
FORCE command, the ASM instance is first shut down with an internal SHUTDOWN ABORT command and
the instance is restarted. You can prevent any client Oracle database instances from connecting to
the ASM instance by using the STARTUP RESTRICT command.

The ASM Fast Mirror Resync Feature
If there’s a transient disk failure due to a bad cable or a controller, ASM fails to complete writing
extents to the failed disk. Traditionally, you fixed the problem by offlining the disk and re-creating
the disk’s extents on a different disk using redundant extent copies and then dropping the failed
disk. Or, you fixed the failed disk and reused it instead of using a different disk. In either case, the
migration of extents to the new or the fixed disk took time to complete.

You can use the new ASM fast mirror resync feature in Oracle Database 11g to quickly resyn-
chronize disk groups following a transient disk failure. Under this feature, the database will rewrite
only those extents that were modified during the outage, instead of copying the entire disk after offlining
it and bringing it back online after repairs. You do take the disk offline but don’t drop it under this
method. You set the DISK_REPAIR_TIME attribute to control the length of time ASM will wait for you to
complete a disk repair and still resynchronize the disk. You save considerable time using the fast
mirror resync feature because the database doesn’t have to wipe off the contents of the repaired disk
before adding it back to the disk group. In addition, ASM doesn’t have to perform a lengthy rebalance
operation after adding the repaired disk back to the disk group.

Here is an example showing how to set up the fast mirror resync capability by specifying the
DISK_REPAIR_TIME attribute in an ALTER DISKGROUP command:

 SQL> ALTER DISKGROUP dgroupA
 SET ATTRIBUTE 'disk_repair_time'='4h';

If you have to take any of the disks that belong to the disk group DGROUPA offline due to failure,
you have 4 hours to fix the problem and bring the disk back online. After waiting for 4 hours, ASM
drops the disks you took offline to fix. If you bring the disk back online within 4 hours, however, ASM
will copy the extents that were on the bad blocks, using the mirrored data from another disk. The
point is that ASM avoids the copying of an entire disk’s contents whenever there is a transient failure
of a disk.

Once you repair the disk, bring the disk online with the following command:

SQL> ALTER DISKGROUP dgroupA ONLINE;

The default value of the DISK_REPAIR_TIME attribute is 3.6 hours. If you want, you can override
the DISK_REPAIR_TIME attribute by specifying the DROP AFTER clause in an ALTER DISKGROUP . . .
OFFLINE command:

SQL> ALTER DISKGROUP dgroupA
 OFFLINE DISKS IN FAILUREGROUP controller1
 DROP AFTER 4h;

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 909

You can specify the FORCE option to drop an offlined disk that you are unable to repair, as
shown here:

SQL> alter diskgroup dgroupA
 drop disks in failuregroup controller1 force;

Once you drop the offlined disk group, ASM reconstructs the data in the dropped disk from its
redundant copies and stores the same on other disks from the same disk group.

ASM Preferred Mirror Read
ASM provides different levels of mirroring, to support various mirroring strategies. You can create
an ASM disk group with the following types of redundancy levels:

• Normal provides two-way mirroring.

• High provides three-way mirroring.

• External bypasses ASM mirroring, and is ideal when you wish to configure hardware RAID to
provide redundancy.

The redundancy level you choose determines the amount of disk failure the database will tolerate
before it loses data. External redundancy doesn’t require any failure groups since it doesn’t use
mirroring. Normal redundancy requires two failure groups. High redundancy requires at least three
failure groups. ASM stores copies of data in different failure groups. In a normal redundancy file,
ASM always allocates a primary copy and a secondary copy when it allocates a new extent and stores
the two copies in different failure groups

By default, ASM always reads the primary copy of a mirrored extent in both normal and high-
redundancy disk groups. However, at times, it may be more efficient to read from a local copy of an
extent, even if it isn’t in the primary failure group. You can use ASM’s preferred mirror read feature
to make an ASM instance read from specific failure groups instead of automatically reading from the
primary failgroup. This feature is especially useful when dealing with a stretch cluster, in which the
individual nodes are spread out.

You must set the ASM_PREFERRED_READ_FAILURE_GROUPS initialization parameter to specify a list of
preferred mirrored read failure group names, as shown in this example:

asm_preferred_read_failure_groups=data.locationA,data.locationB

Once you set up a list of preferred failure group names, ASM will prefer to read from disks in
those failure groups. The result is that all nodes will read from their local extents, thus leading to
improved performance.

You can query the V$ASM_DISK view to find out which disks are in a preferred read failure group:

SQL> select preferred_read from v$asm_disk;

The value of the PREFERRED_READ column will be Y if a disk belongs to a preferred read failure
group.

Changing ASM Disk Group Attributes
You use the ATTRIBUTE clause to specify or change disk group attributes, as I explain in the following
sections.

Allocation Unit Size

You can specify multiple allocation unit (AU) sizes such as 1-, 2-, 4-, 8-, 16-, 32-, and 64MB when
creating a disk group.

910 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

RDBMS Compatibility

Specify the COMPATIBLE.RDBMS parameter for the RDBMS compatibility level. This is the minimum
compatible level of the database instance that would allow the instance to mount the ASM disk group.

ASM Compatibility

Specify the COMPATIBLE.ASM parameter to define the format of the ASM metadata. Note that the ASM
compatibility level must be at least the same or greater than the RDBMS compatibility level of a disk
group.

Disk Repair Time

As you know, the default value of the DISK_REPAIR_TIME attribute is 3.6 hours. You can execute the
ALTER DISKGROUP statement to specify an alternative value for this attribute.

Template Redundancy

Specify the TEMPLATE.TNAME.REDUNDANCY attribute to set the template redundancy, which can take the
values unprotect, mirror, and high.

Template Striping

You can specify the TEMPLATE.TNAME.STRIPING attribute to specify striping attributes for a template.
You can choose either COARSE or FINE as the values for this parameter.

The following example shows how to specify the value for the ASM compatibility level by using
the ATTRIBUTE clause in a CREATE DISKGROUP statement:

SQL> CREATE DISKGROUP data1 NORMAL REDUNDANCY
 DISK '/dev/raw/raw1', '/dev/raw/raw2'
 ATTRIBUTE 'compatible.asm'='11.1';

The default ASM compatibility for an Oracle Database 11g ASM instance is 11.1, and the default
database compatibility level is 10.1.

Shutting Down an ASM Instance

To shut down an ASM instance, you run the same commands you would if you were shutting down
a normal Oracle database instance:

$ sqlplus /nolog
SQL> CONNECT / AS SYSDBA
Connected.
SQL> SHUTDOWN
ASM instance shutdown
SQL>

Each Oracle database connected to an ASM instance depends on the status of the ASM instance.
If you shut down your ASM instance, every connected Oracle database will also shut down. (This is
similar to how all Oracle instances will shut down if you shut down the LVM on the operating system.)
When you shut down an ASM instance, it forwards the SHUTDOWN command, in the same mode, to any
Oracle databases that are connected to it.

Oracle recommends that you first shut down all database instances (managed by an ASM instance)
before shutting down the ASM instance. If you shut down your ASM instance in NORMAL mode, it will
wait for every connected Oracle database instance to close their ASM connections before shutting

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 911

down. If you shut down in IMMEDIATE or TRANSACTIONAL mode, the ASM instance waits until the
connected databases have finished all SQL operations before shutting down, but it doesn’t wait for
them to disconnect. Issuing the SHUTDOWN ABORT command causes the following events to occur:

• The ASM instance terminates immediately.

• All open Oracle connections are automatically terminated.

• All dependent Oracle databases will also terminate immediately. This is why you should be
careful about shutting down the ASM instance abruptly.

The asmcmd Command-Line Tool
You can also manage ASM using a command-line tool, which gives you more flexibility than having
to use SQL*Plus or the Database Control. The asmcmd utility enables you to view and manage files
and directories within an ASM disk group. To invoke this command-line administrative tool, enter
this command (after the ASM instance is started):

$ asmcmd

ASMCMD>

You can issue various asmcmd commands from the ASMCMD> prompt shown here. The asmcmd
tool has about a dozen commands you can use to manage ASM file systems, and it includes familiar
UNIX/Linux commands such as du, which checks ASM disk usage. To get a complete list of commands,
type help at the command prompt (ASMCMD>). By typing help followed by a command, you can get
details about that command.

You can execute asmcmd from the command line by typing in asmcmd at the operating system
prompt. You can also incorporate asmcmd commands within operating system scripts. Some asmcmd
commands such as LSDSK don’t require the ASM instance to be running, but most of the commands
require a running ASM instance.

You can specify the –a option when executing the asmcmd command to select the type of
connection. You can connect either as SYSASM or using the familiar SYSDBA privilege. The default
is to connect as SYSASM. The SYSASM privilege is new in Oracle Database 11g, and its goal is to
demarcate ASM-related administrative tasks from general database administrative tasks. You can
continue to connect as SYSDBA, but each time you do so, the database will issue a warning that it
records in the alert log file.

■Note There is also a new operating system group called OSASM, as mentioned earlier, to which you must
assign all users to whom you want to grant ASM-related administrative privileges.

The asmcmd utility implements commands such as cp, which helps you copy files from ASM to
the operating system file system and vice versa. The two most important asmcmd commands that
you must know about are the md_backup and the md_restore commands, which together form what
Oracle calls ASM Backup and Recovery (AMBR). Using the md_backup and the md_restore options of
the asmcmd utility, you can re-create ASM disk groups with identical alias directory structures and
templates. The ASM backup functionality gathers disk group and failure configuration details and
information about templates and alias directory structures. The md_backup command stores this
backup-related metadata in a text file. The md_restore option uses the information in the text file to
reconstruct disk groups. I discuss the md_backup and the md_restore commands in more detail in the
following sections.

912 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

md_backup

You can make backups of the ASM metadata for a disk group with the help of the md_backup command.
These backups help ASM easily re-create ASM disk groups following the loss of a disk group. Here’s
the syntax of the md_backup command:

md_backup [-b <backup_file>]
[-g '<diskgroup_name>,<diskgroup_name>, . . .']

The –b option specifies a name for the backup text file, which is named ambr_backup_
intermediate by default. By default, the md_backup command backs up all ASM disk groups, but you
can specify the disk groups you want by using the –g option.

Here’s an example showing how to back up a single disk group by executing this command:

ASMCMD> md_backup -b /tmp/asmbkp1 -g admdsk1

The –g option specifies that a single disk group be backed up, and the –b option specifies the file
asmbkp1 as the backup text file.

md_restore

Before you can execute the md_restore command to restore the ASM metadata for a disk group, you
must first restore the disk group. Once you do that, you can run the md_restore command, the syntax
of which is shown here:

md_restore -b <backup_file> [-li]
 [-t (full)|nodg|newdg] [-f <sql_script_file>]
 [-g '<diskgroup_name>,<diskgroup_name>, . . .']
 [-o '<old_diskgroup_name>:<new_diskgroup_name>, . . .']

Of the various options you can specify with the md_restore command, the -t option bears some
explanation. You can specify the backup type using this option, as explained here:

• full creates the disk group and restores the metadata.

• nodg restores the metadata only.

• newdg creates the disk group with a different name and restores the metadata.

The following example shows how to restore a disk group and create a new disk group by
specifying -t newdg:

ASMCMD> md_restore -t newdg -o 'DGNAME=asmdsk1:asmdsk2'
 -i backup_file

The md_recover command can’t restore the actual data stored on the ASM disks. However, it
restores the disk groups, modifies templates, and creates the directories. Once you restore the disk
group metadata, you can use the RMAN backups to restore the data in the re-created disk groups.

■Tip Execute the md_restore command with the -f option regularly, to keep a record of ASM metadata.

Backup and Restore Example

In the following example, I show how to use the md_backup and md_restore commands to restore
lost data:

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 913

1. Back up the users tablespace:

RMAN> BACKUP TABLESPACE users;

2. Create a directory named test in the disk group DGROUPA. Also create an alias called
+DGROUPA/test/users.f that points to the ASM datafile that contains the users tablespace:

ASMCMD> mkdir +DGROUPA/test
ASMCMD> mkalias TBSSRA.123.123456789 +DGROUPA/test/users.f

3. Back up the metadata for the disk group DGROUPA using the md_backup command:

ASMCMD> md_backup –g dgroupA

The md_backup command stores the backup metadata in the text file named ambr_backup_
intermediate in the current directory.

4. Simulate a disk failure by dropping the disk group DGROUPA:

SQL> ALTER DISKGROUP dgroup1 DISMOUNT FORCE;
SQL> DROP DIKSGROUP dgroup1 FORCE INCLUDING CONTENTS;

The DISMOUNT FORCE clause in the ALTER DISKGROUP command dismounts the disk group and
force drops it.

5. Execute the md_restore command to restore the ASM metadata for the dropped disk group:

ASMCMD> md_restore –b ambr_backup_intermediate_file
 –t full –g data

6. Using the backup of the users tablespace from step 1, restore the users tablespace:

RMAN>RESTORE TABLESAPCE users;

7. Exit from RMAN once the restore is completed.

Managing ASM Disk Groups
An ASM disk group is a collection of disks analogous to the logical volumes that an LVM creates from
the underlying physical disks. This means that you have to manage the underlying disks indirectly
by managing the disk group.

If you have large numbers of disks, you can group them into a small number of easily managed
disk groups, and if you add storage to your ASM system, you simply add disks to an ASM disk group.
This is good news, because if your database grows quickly, the total storage space increases, but the
number of disk groups remains the same.

Adding Performance and Redundancy with Disk Groups
Two major reasons for using ASM file management are the additional performance and protection,
and the decreased management overhead. Of course, these are the same advantages third-party
vendors claim for their LVM tools, but the major advantage of ASM is that you as an Oracle DBA can
do most of the disk management using ASM. There’s no need for you to be an expert in file systems,
RAID, or logical volumes to use ASM; all you need is an understanding of ASM’s disk-management
system and Oracle’s processes for accessing database files spread over the ASM disks.

ASM gives you performance and redundancy through striping and mirroring, so let’s look at
these two features.

914 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

■Note The OEM Database Control is the best way to administer the ASM instance, once you create it. Refer to
the Oracle Database 11g Release 1 manual Oracle Database 2 Day DBA for details about using the Database Control
to manage disk groups, as well as all other aspects of an ASM instance.

Examining ASM Striping

ASM systems store your database files on ASM disks. The manner in which you place your database
files on ASM disks plays a critical role in the resulting performance. For optimal I/O performance,
ASM stripes its files across every disk that is part of its disk group. This means that all the disks in a
disk group must be of the same type and performance capacity.

ASM offers two types of striping, with the choice depending on the type of database file. Coarse
striping uses a stripe size of 1MB, and you can use coarse striping for every file in your database,
except for the control files, online redo log files, and flashback files. Fine striping uses a stripe size of
128KB. You can use fine striping for control files, online redo log files, and flashback files.

Examining ASM Mirroring

Disk mirroring gives us data redundancy. This means that, should you lose a disk, you can use the
mirror disk to continue operations. This process is not like an OS-level mirroring scheme, but they
both provide redundancy for your database. The difference is that OS-based LVMs mirror entire
disks, whereas ASM mirrors extents. This means that when ASM allocates an extent (the primary
extent, in contrast to a mirrored extent), it also allocates a mirror copy to one of the disks in the same
disk group.

When a disk in a group fails, ASM rebuilds the failed disk using the mirrored extents from other
disks in the group. When ASM reconstructs a failed disk, the storage system takes a small perfor-
mance hit, because ASM requires some extra I/O to reconstruct the failed device.

Failure Groups

Disk failure is not the only way in which you can lose a disk. You can also lose a disk if shared resources,
such as SCSI disk controllers, fail. When one of these fails, you cannot access any of the connected
disks. A set of disks that fail because they all share a common resource, such as a disk controller, is a
failure group. You ensure redundancy by mirroring disks on a separate failure group.

To avoid problems, ASM will not place a primary extent and its mirror copy in the same failure
group. This means that even if a failure group loses several disks, ASM can survive the disaster and
reconstruct the lost disks from the mirror copies that are in a different failure group.

Types of ASM Mirroring

ASM supports three forms of disk mirroring, each with a different level of data redundancy. External
redundancy doesn’t have failure groups, and thus is effectively a no-mirroring strategy. Normal redun-
dancy provides two-way mirroring of all fields in a disk group. High redundancy provides three-way
mirroring, which results in three failure groups, with a disk controller for each.

Creating a Disk Group
The OEM Database Control is the best tool for performing most ASM tasks, including creating a disk
group. Using the Disk Group Administration page, you can select redundancy levels, disk-group
names, and lists of disks that are members of a disk group. Once you create disk groups, the ASM

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 915

instance will mount them each time you start the instance, and you won’t receive the ORA-15110
error (“No diskgroups mounted”) as you did when you first started the ASM instance.

You can also create a disk group with the CREATE DISKGROUP command. Suppose you have three
disk controllers and twelve disks. The first four disks are on a separate controller from the second
four disks, and so on. You could create three failure groups, each of which has four disks. To start
with, you need to start the ASM instance in nomount mode. (If you want to access existing disk
groups, you have to use mount mode.) You can then create the disk groups corresponding with the
three groups. To do so, you would issue the CREATE DISKGROUP command, as shown in Listing 17-6.

Listing 17-6. Creating Disk Groups with the CREATE DISKGROUP Command

$ sqlplus /nolog
SQL> CONNECT / AS SYSDBA
Connected to an idle instance.
SQL> STARTUP NOMOUNT
SQL> CREATE DISKGROUP group1 HIGH REDUNDANCY 2
 2 failgroup group1 disk
 3 '/devices/disk1',
 4 '/devices/disk2',
 5 '/devices/disk3',
 6 '/devices/disk4',
 7 failgroup group2 disk
 8 '/devices/disk5',
 9 '/devices/disk6',
 10 '/devices/disk7',
 11 '/devices/disk8',
 12 failgroup group3 disk
 13 '/devices/disk9',
 14 '/devices/disk10',
 15 '/devices/disk11',
 16 '/devices/disk12';
SQL>

In order to find the disks, Oracle uses a search string in the following format:

/devices/diskname

The FAILGROUP and REDUNDANCY keywords are optional, but if you omit FAILGROUP, each disk in the
group will be in its own failure group. Specifying the HIGH REDUNDANCY setting creates the following
setup:

• There are three failure groups, each defined by FAILGROUP (you must have at least three failure
groups to specify HIGH REDUNDANCY).

• Each failure group has four disks.

• Oracle writes data simultaneously to all three disks in the three failure groups.

Adding Disks to a Disk Group
The ALTER DISKGROUP command can be used to add a new disk, as shown here:

SQL> ALTER DISKGROUP group1 ADD DISK
 '/devices/disk5' name disk5,
 '/devices/disk6' name disk6,

916 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

Dropping Disks and Disk Groups
The ALTER DISKGROUP command can be used to drop a disk, as shown here:

SQL> ALTER DISKGROUP group1 DROP DISK disk5;

You can use the following command to remove a disk group, after putting the database in the
MOUNT state:

SQL> DROP DISKGROUP group1 INCLUDING CONTENTS

The UNDROP clause keeps a pending DROP DISK command from happening. If the disk has already
dropped, there is no way for you to retrieve it, even using UNDROP.

The optional FORCE clause means you can’t use the UNDROP clause and you can never UNDROP a
whole disk group. Here’s an example of the UNDROP clause:

SQL> ALTER DISKGROUP group1 UNDROP DISKS;

This cancels the pending drop of all disks from the group1 disk group.

Rebalancing Disk Groups
When ASM rebalances a disk group, it does so automatically and dynamically. It does this whenever
you change the status of a disk in a disk group, whether you are adding or removing a disk from the
disk group—it attempts to maintain an I/O balance across all the disks in a disk group. So, when you
add or remove disks, you disturb the I/O balance, but ASM sets it right automatically by moving data
appropriately for the space you added or removed.

■Note Since there will be a performance hit on your system while ASM rebalances a disk group, you should
consolidate the times when you add and remove disks so that you reduce the number of times that ASM has to
rebalance.

You can also manually rebalance the disk groups if you wish, using the following command; you
can assign a value of 1 through 11 for the POWER clause:

SQL> ALTER DISKGROUP dgroup1 REBALANCE POWER 5;

The POWER clause specifies how fast ASM performs the REBALANCE command. Setting the POWER
clause high increases the speed of the rebalancing. The default is 1 (the default value for the ASM_
POWER_LIMIT parameter). Specifying POWER means you are overriding the value you assigned to the
ASM_POWER_LIMIT initialization parameter when you started the ASM instance. Of course, it would be
nice to rebalance disks quickly rather than slowly, but due to the overhead involved, there’s a trade-off
between rebalancing speed and database performance.

Managing ASM Files
The datafiles you create in a regular database aren’t like the ones in an ASM setup. ASM file manage-
ment takes over your normal operating system files, which become ASM files and, when you create
a new datafile, control file, or redo log, you simply specify an ASM group and not an operating
system filename.

So, to create a new tablespace on an ASM disk group, you would run a command like the following:

SQL> CREATE TABLESPACE tbsp1 DATAFILE '+group1';

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 917

In this example, DATAFILE takes a file type (DATAFILE), which indicates that we’re going to use the
file as a datafile. Here, CREATE TABLESPACE works with a disk group and not with a disk in that group.
Note that we don’t even refer to a datafile.

The ASM system does indeed create a datafile, though it doesn’t compare to regular datafiles.
ASM spreads its files across every disk in the disk group, so you can’t rely on a backup of a single disk
to hold the entire datafile.

It should also be noted that ASM files have a permanent redundancy level and striping policy,
which is different from normal datafiles.

ASM files are OMF files, and Oracle will remove them when you don’t need them. Note that if
you give an ASM file a user alias, Oracle doesn’t consider that file an OMF file, so it can’t automati-
cally delete it.

■Note Administrative files such as trace files, audit files, alert logs, tar files, and core files can’t be on an ASM
file system. ASM filenames are stored in control files and the RMAN recovery catalog, the same way filenames of
regular operating system–based files or OMF-based files are.

Types of ASM Filenames
ASM naming conventions depend on whether you’re creating a new file, or referring to an existing
file. Here are the usage guidelines for the different file-naming conventions:

• Fully qualified ASM filenames are used when referencing existing ASM files (for example,
+dgroupA/db2/controlfile/CF.123.456789).

• Numeric ASM filenames are also only used when referencing existing ASM files (for example,
+dgroupA.123.456789).

• Alias ASM filenames employ user-friendly names and are used when you create new files, as
well as when you refer to existing files (for example, +dgroupA/myfiles/control_file1).

• Alias filenames with templates are strictly for creating new ASM files (for example, +dgroupA/
config1(spfile)).

• Incomplete ASM filenames consist of a disk group name only and are used only for file
creation. Incomplete ASM filenames may be used with or without a template (for example,
here is an incomplete filename with a template: +dgroupA(datafile)).

Creating Diskgroup Directories for Alias Filenames

The fully qualified filenames in a disk group are held in a hierarchical directory structure. To use
aliases, you have to create a directory structure to support the alias naming conventions. The following
example shows how to create a hierarchical directory for a disk group named dgroup1:

SQL> ALTER DISKGROUP dgroup1 ADD DIRECTORY '+dgroup1/dir1';

After creating the +dgroup1/dir1 directory, you can create alias ASM filenames, such as +dgroup1/
dir1/control_file1, for example.

Using Templates with Aliases

Templates are used to apply a set of file attributes, like those referring to file mirroring and striping,
to each of the files created in a disk group. There are default templates for each file type (datafile,
control file, and so on), and you can create custom file templates.

918 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

■Note Templates are discussed in detail in the “ASM File Templates” section of this chapter.

Using a template, you can create an alias ASM filename when you create a new file. Here’s the
syntax of a template-based alias ASM filename:

diskgroup/alias(template)

And here’s an example:

dgroup1/config1(spfile)

Adding and Dropping Aliases

If you create a file and don’t use an alias, you can later add an alias with the ADD ALIAS or RENAME
ALIAS clauses of the ALTER DISKGROUP statement. The following example replaces a fully qualified
ASM filename with an alias:

SQL> ALTER DISKGROUP dgroup1 ADD ALIAS '+dgroup1/dir/second.dbf'
 FOR '+dgroup2/ datafile/table.763.1';

To delete an alias, use the DROP ALIAS clause.

Dropping Files from a Disk Group

ASM files are often OMF files, but you may sometimes want to use your own aliases for some ASM
files. If you use your own aliases, Oracle won’t automatically delete the aliases when there is a need
to do so. To accomplish this, you have to use ALTER DISKGROUP . . . DROP FILE to delete them:

SQL> ALTER DISKGROUP dgroup1 DROP FILE '+dgroup1/payroll/compensation.dbf';

Working with ASM Filenames
Here’s a brief summary of ASM filename usage:

• When referring to an existing file, use a fully qualified name, a numeric name, or an alias. This
cannot be an alias with a template, or an incomplete filename with or without a template.

• When creating a single file, use any filename, but not a fully qualified filename.

• When creating multiple files, only use incomplete filenames or incomplete filenames with
templates.

You must avoid using ASM filenames if you can, since one of the main goals in using ASM is to
simplify file management by just referring to the disk groups instead.

ASM File Templates
It is easy to specify file attributes in Oracle. You can simply use templates to specify attributes when
you create files. Oracle applies templates to individual files, but associates them with the newly
created file’s disk group.

If you create a disk group, Oracle creates system default templates for that disk group, and these
templates contain specific file attributes.

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 919

For example, suppose we want to create a new tablespace called tbsp01 in an ASM file system.
This tablespace will use datafiles, so we can use the ASM DATAFILE template:

SQL> CREATE TABLESPACE tbsp01 DATAFILE '+group1';

The tablespace datafile will inherit the attributes such as the striping level of the DATAFILE
template.

Creating an ASM-Based Database
To create an ASM-based Oracle database (not an ASM instance, which we created earlier in the
chapter), specify the DB_CREATE_FILE_DEST, DB_RECOVERY_FILE_DEST, and the DB_RECOVERY_FILE_
DEST_SIZE parameters in your initialization parameter file, as shown here:

DB_CREATE_FILE_DEST = '+dgroup1'
DB_RECOVERY_FILE_DEST = '+dgroup2'
DB_RECOVERY_FILE_DEST_SIZE = 100G

These three parameters are also used to create an OMF file system, which I discuss in detail in
the “Easy File Management with OMF” section, later in this chapter.

Once the preceding parameters have been set up, you simply issue the database creation state-
ment. You don’t need to specify datafiles when creating an ASM database, so it’s a very straightforward
process. Here’s how:

SQL> CREATE DATABASE;

In this example, Oracle will create a System tablespace and a Sysaux tablespace in the disk group
dgroup1. In addition, it will create a multiplexed redo log file group and a control file in both dgroup1
and dgroup2. If you configure Automatic Undo Management, an undo tablespace will be created in
dgroup1, as well.

Creating new tablespaces and adding various files to the database also become trivial chores, as
shown by the next two examples. Here’s how you would create a new tablespace:

SQL> CREATE TABLESPACE new_tbsp;

In order to create a redo log file, use the following statement:

SQL> ALTER DATABASE ADD LOGFILE;

Migrating Your Database to ASM
You can migrate a database to an ASM system, either by using the OEM Database Control (or the
Grid Control) or by using RMAN. You can use RMAN even if you don’t use it to back up your current
database.

Migrating with RMAN

Here’s a brief summary of how to use RMAN to migrate a database to ASM:

1. Shut down the database in a consistent mode by using the SHUTDOWN IMMEDIATE command.

2. Add the DB_CREATE_FILE_DEST and DB_CREATE_ONLINE_LOG_DEST_n parameters, as well as
the new flash recovery area initialization parameters, DB_RECOVERY_FILE_DEST and DB_
RECOVERY_FILE_DEST_SIZE, to your database parameter file so you can use an OMF-based file
system. (I explain OMF files shortly in the “Easy File Management with OMF” section of this
chapter.) Make sure that the two OMF parameters refer to the disk groups that you want to
use in your ASM system.

920 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

3. Delete the control file parameter from the SPFILE, since Oracle will create new control files in
the OMF file destinations by restoring them from the non-ASM database control files.

4. Start the database with the STARTUP NOMOUNT command:

RMAN> CONNECT TARGET;
RMAN> STARTUP NOMOUNT;

5. Restore the old control file in the new location, as shown here:

RMAN> RESTORE CONTROLFILE from '/u01/orcl/oradata/control1.ctl';

6. Mount the database:

RMAN> ALTER DATABASE MOUNT;

7. Use the following command to copy your database files into an ASM disk group:

RMAN> BACKUP AS COPY DATABASE FORMAT +dgroup1;

8. Use the SWITCH command (discussed in Chapter 16) to switch all datafiles into the ASM disk
group dgroup1:

RMAN> SWITCH DATABASE TO COPY;

At this point, all datafiles will be converted to the ASM type. You still have your original
datafile copies on disk, which you can use to restore your database if necessary.

9. Open the database with the following command:

RMAN> ALTER DATABASE OPEN;

10. For each redo log member, use the following command to move it to the ASM system:

RMAN> SQL "alter database rename '/u01/test/log1' to '+dgroup1' ";

11. Archive the current online redo logs, and delete the old non-ASM redo logs. Since RMAN
doesn’t migrate temp files, you must manually create a temporary tablespace using the
CREATE TEMPORARY TABLESPACE statement.

You’ll now have an ASM-based file system. You still have your old non-ASM files as backups in
the RMAN catalog, and you can delete them if you need the space.

Migrating with Database Control

Instead of going through the cumbersome RMAN migration exercise shown in the previous section,
you can simply use the Database Control interface to easily convert your current database to an ASM
database. Here are the first few steps:

1. From the Database Control home page, click the Administration tab.

2. In the Change Database group, click the Migrate to ASM link.

3. You’ll now be on the Migrate to ASM Database page, as shown Figure 17-5. At this point, make
sure you have an ASM instance running on your server. After that, provide the necessary
information on the pages that follow to convert your database to ASM.

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 921

Figure 17-5. Using the Database Control to migrate to ASM

Automatic Space Management
Oracle Database 11g provides several automatic space-management features. These features elimi-
nate the need for manually performing several traditional space-management chores. In this section,
you’ll learn about the following automatic space-management features:

• Automatic Undo Management

• Resumable Space Allocation

• Automatic Online Segment Shrinking

Automatic Undo Management
Undo refers to the before-image of data as it existed before the start of a transaction. All the concur-
rent transactions running in your database need to be able to fit into the undo space allocated for
them, or you’re going to have transaction failures. Rollback segment contention and space manage-
ment used to be big database management issues, but when you use Oracle’s recommended Automatic
Undo Management (AUM) mode, you don’t have to worry about these problems anymore.

Under manual rollback management, you manually manage the rollback segments and have to
worry about specifying large segments for large transactions to avoid snapshot-too-old errors. In
addition, you have to worry about contention for rollback segments, proper sizing of the segments,
and the correct number of segments. When you choose AUM mode, you simply create a dedicated
undo tablespace, select the undo retention period, and Oracle will do the rest.

922 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

Oracle introduced AUM in the Oracle9i release. Under AUM, the rollback segments are inter-
nally created and are called undo segments. Oracle handles issues such as the number and size of the
rollback segments, block contention, and maintenance of read consistency. When you create the
undo tablespace during database creation, Oracle creates a set of undo segments, and Oracle auto-
matically increases the number and size of these segments according to an internal algorithm, based
on database workload.

■Note Chapter 8 discusses the setting up and management of Automatic Undo Management in detail.

Easy File Management with OMF
OMF makes managing datafiles, control files, redo log files, and RMAN backup files a lot easier than
managing the various files at the operating system level. Normally, if you drop a datafile, the data-
base won’t have any references to the datafile, but the physical file still exists in the old location—
you have to explicitly remove the physical file yourself. If you use OMF, Oracle will remove the file
for you when you drop it from the database. According to Oracle, OMF file systems are most useful
for databases using Logical Volume Managers that support RAID and extensible file systems. Smaller
databases benefit the most from OMF, because of the reduced file-management tasks. Test data-
bases are another area where an OMF file system will cut down on management time.

You have to use operating system–based files if you want to use the OMF feature; you can’t use
raw files. You do lose some control over the placement of data in your storage system when you use
OMF files, but even with these limitations, the benefits of OMF file management can outweigh its
limitations in some circumstances.

Benefits of Using OMF

You can create tablespaces with OMF-based files. You can also specify that your online redo log files
and your control files are in the OMF format. OMF files offer several advantages over user-managed files:

• Oracle automatically creates and deletes OMF files.

• You don’t have to worry about coming up with a naming convention for the files.

• It’s easy to drop datafiles by mistake when you’re managing them. With OMF files, you don’t
run the risk of accidentally deleting database files.

• Oracle automatically deletes a file when it’s no longer needed.

• You can have a mix of traditional files and OMF files in the same database.

In the following sections we’ll look at the OMF feature in some detail.

Creating Oracle Managed Files

You can create OMF files when you create the database, or you can add them to your traditionally
created database later on. Either way, you need to set some initialization parameters to enable OMF
file creation.

Initialization Parameters for OMF

You need to set four initialization parameters to enable the use of OMF files. You can set these three
parameters in your parameter file, and you can change them online with the ALTER SYSTEM or ALTER

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 923

SESSION statement. You can use each of these parameters to specify the file destination for different
types of OMF files:

• DB_CREATE_FILE_DEST: This parameter specifies the default location of datafiles, block-change
tracking files, and temporary files. If you don’t use any of the DB_CREATE_ONLINE_LOG_DEST_n
parameters, Oracle uses the DB_CREATE_FILE_DEST parameter value as the default location for
all Oracle managed control files and online redo logs. You can also specify a control file loca-
tion if you wish. Unfortunately, the DB_CREATE_FILE_DEST parameter can take only a single
directory as its value; you can’t specify multiple file systems for the parameter. If the assigned
directory for file creation fills up, you can always specify a new directory, because the DB_
CREATE_FILE_DEST parameter is dynamic. This enables you to place Oracle datafiles anywhere
in the file system without any limits whatsoever.

• DB_RECOVERY_FILE_DEST_SIZE: This parameter specifies the size of your flash recovery area.

• DB_CREATE_ONLINE_LOG_DEST_n: You can use this parameter to specify the default location of
online redo log files and control files. In this parameter, n refers to the number of redo log files
or control files that you want Oracle to create (n = 1, 2, 3, . . . 5).

• DB_RECOVERY_FILE_DEST: This parameter defines the default location for RMAN backups, flash-
back logs, and archived redo logs. If you omit the DB_CREATE_ONLINE_LOG_DEST_n parameter,
this parameter will determine the location of the online redo log files and control files. The
directory location you specify using this parameter is also known as the flash recovery area,
and I explain it in detail in Chapter 15.

If you don’t specify any of these initialization parameters in your init.ora file or SPFILE, you can
still use the ALTER SYSTEM command to dynamically enable the creation of OMF files, as shown in the
following example:

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST =
 2 '/test01/app/oracle/oradata/finance1';
System altered.
SQL>

As long as you specify the DB_CREATE_FILE_DEST parameter, you can have Oracle create OMF files
for you, and you can use both the user-managed and OMF files simultaneously without a problem.

File-Naming Conventions

Oracle uses the OFA standards in creating filenames, so filenames are unique and datafiles are easily
identifiable as belonging to a certain tablespace. Table 17-1 shows the naming convention for various
kinds of OMF files and an example of each type. Note that the letter t stands for a unique tablespace
name, g stands for an online redo group, and u is an 8-character string.

Table 17-1. OMF File-Naming Conventions

OMF File Type Naming Convention Example

Datafile ora_t%_u.dbf ora_data_Y2ZV8P00.dbf

Temp file
(default size is 100MB)

ora_%t_u.tmp ora_temp_Y2ZWGD00.tmp

Online redo log file
(default size is 100MB)

ora_%g_%u.log ora_4_Y2ZSQK00.log

Control file ora_u%.ctl ora_Y2ZROW00.ctl

924 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

Different Types of Oracle Managed Files

You can use OMF to create all three types of files that the Oracle database requires: control files, redo
log files, and, of course, datafiles. However, there are interesting differences in the way OMF requires
you to specify (or not specify) each of these types of files. The following sections cover how Oracle
creates the three different types of files.

Control Files

As you have probably noticed already, there is no specific parameter that you need to include in your
init.ora file to specify the OMF format. If you specify the CONTROL_FILES parameter, you will, of
course, have to specify a complete file location for those files, and obviously they will not be OMF
files—they are managed by you. If you don’t specify the CONTROL_FILES parameter, and you use the
DB_CREATE_
FILE_DEST or the DB_CREATE_ONLINE_LOG_DEST_n parameter, your control files will be OMF files.

If you are using a traditional init.ora file, you need to add the control file locations to it. If you
are using an SPFILE, Oracle automatically adds the control file information to it.

Redo Log Files

OMF redo log file creation is similar to control file creation. If you don’t specify a location for the
redo log files, and you set either of the DB_CREATE_FILE_DEST or the DB_CREATE_ONLINE_LOG_DEST_n
parameters in the init.ora file, Oracle automatically creates OMF-based redo log files.

Datafiles

If you don’t specify a datafile location in the CREATE or ALTER statements for a regular datafile, or a
temp file for a temporary tablespace, temp file, or undo tablespace datafile, but instead specify the
DB_CREATE_FILE_DEST parameter, all these files will be OMF files.

Simple Database Creation Using OMF

Let’s look at a small example to see how OMF files can really simplify database creation. When you
create a new database, you need to provide the control file, redo log file, and datafile locations to
Oracle. You specify some file locations in the initialization file (control file locations) and some file
locations at database creation (such as redo log locations). However, if you use OMF-based files,
database creation can be a snap, as you’ll see in the sections that follow.

Setting Up File Location Parameters

For the new OMF-based database, named NICKO, let’s use the following initialization parameters:

db_name=nicko
DB_CREATE_FILE_DEST = '/u01/app/oracle/oradata'
DB_RECOVERY_FILE_DEST_SIZE = 1000M
DB_RECOVERY_FILE_DEST = '/u04/app/oracle/oradata'
LOG_ARCHIVE_DEST_1 = 'LOCATION = USE_DB_RECOVERY_FILE_DEST'

Note that of the four OMF-related initialization parameters, I chose to use only the DB_CREATE_
FILE_DEST, DB_RECOVERY_FILE_DEST_SIZE, and DB_RECOVERY_FILE_DEST parameters. I didn’t have to
use the fourth parameter, DB_CREATE_ONLINE_LOG_DEST_n, in this example. When this parameter is left

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 925

out, Oracle creates a copy of the redo log file in the locations specified for the DB_CREATE_FILE_DEST
and the DB_RECOVERY_FILE_DEST parameters. I thus have two copies of the control file and the online
redo log files.

The setting for the last parameter, LOG_ARCHIVE_DEST_1, tells Oracle to send the archived redo
logs for storage in the flash recovery area specified by the DB_RECOVERY_FILE_DEST parameter.

Starting the Instance

Using the simple init.ora file in the preceding section, you can start an instance as shown in
Listing 17-7.

Listing 17-7. Creating the OMF-Based Instance

$ export ORACLE_SID=nicko
 [nicko] $ sqlplus /nolog
SQL*Plus: Release 11.1.0.6.0 - Production on Thu Apr 10 11:52:13 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.
SQL> connect sys/sys_passwd as sysdba
Connected to an idle instance.
SQL> STARTUP NOMOUNT PFILE='initnicko.ora';
ORACLE instance started.
Total System Global Area 188743680 bytes
Fixed Size 1308048 bytes
Variable Size 116132464 bytes
Database Buffers 67108864 bytes
Redo Buffers 4194304 bytes
SQL>

Creating the Database

Now that you’ve successfully created the new Oracle instance, you can create the new database
NICKO with this simple command:

SQL> CREATE DATABASE nicko;
 Database created.
SQL>

That’s it! Just those two simple lines are all you need to create a functional database with the
following structures:

• A System tablespace created in the default file system specified by the DB_CREATE_FILE_DEST
parameter (/u01/app/oracle/oradata)

• A Sysaux tablespace created in the default file system (/u01/app/oracle/oradata)

• Two duplexed redo log groups

• Two copies of the control file

• A default temporary tablespace

• An undo tablespace automatically managed by the Oracle database

You must remember to update the initialization parameter file (initnicko.ora in our example)
with the names and the locations of the control file copies generated by the CREATE DATABASE state-
ment shown here.

926 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

Where Are the OMF Files?

You can see the various files within the database by looking in the alert log for the new database,
alert_nicko.log, which you’ll find in the _$ORACLE_HOME/rdbms/log directory, since we didn’t specify
the BACKGROUND_DUMP_DEST directory in the init.ora file. If you’re using the new Oracle Database 11g
parameter DIAGNOSTIC_DEST, you’ll find the alert log in the <adr-home>/alert directory.

In the following segment from the alert log file for the database, you can see how the various files
necessary for the new database were created. First, Oracle creates the control files and places them
in the location you specified for the DB_CREATE_ONLINE_LOG_DEST_n parameter.

create database nicko
default temporary tablespace temp

WARNING: Default passwords for SYS and SYSTEM will be used.
 Please change the passwords.
Created Oracle managed file /u01/app/oracle/oradata/NICKO/controlfile/o1_mf_150w
. . .

Completed: create database nicko
default temporary tablespace
MMNL started with pid=13, OS id=28939

Here’s what the alert log shows regarding the creation of the control files:

Created Oracle managed file /u01/app/oracle/oradata/NICKO/controlfile/o1_mf_150w
h3r1_.ctl
Created Oracle managed file /u04/app/oracle/oradata/NICKO/controlfile/o1_mf_150w
h3xx_.ctl

Next, the Oracle server creates the duplexed online redo log files. Oracle creates the minimum
number of groups necessary and duplexes them by creating a set of online log files (two) in the loca-
tions specified by the DB_CREATE_ONLINE_LOG_DEST and the DB_RECOVERY_FILE_DEST parameters:

Created Oracle managed file /u01/app/oracle/oradata/NICKO/onlinelog/o1_mf_1_150w
h48m_.log
Created Oracle managed file /u04/app/oracle/oradata/NICKO/onlinelog/o1_mf_1_150w
hf07_.log
Created Oracle managed file /u01/app/oracle/oradata/NICKO/onlinelog/o1_mf_2_150w
honc_.log
Created Oracle managed file /u04/app/oracle/oradata/NICKO/onlinelog/o1_mf_2_150w
hwh0_.log

The System tablespace is created next, in the location you specified for the DB_CREATE_FILE_DEST
parameter:

create tablespace SYSTEM datafile /* OMF datafile */
 default storage (initial 10K next 10K) EXTENT MANAGEMENT DICTIONARY online
Created Oracle managed file /u01/app/oracle/oradata/NICKO/datafile/o1_mf_system_
150wj4c3_.dbf
Completed: create tablespace SYSTEM datafile /* OMF datafile

The default Sysaux tablespace is created next, as seen here:

create tablespace SYSAUX datafile /* OMF datafile */
 EXTENT MANAGEMENT LOCAL SEGMENT SPACE MANAGEMENT AUTO online

Created Oracle managed file /u01/app/oracle/oradata/NICKO/datafile/o1_mf_sysaux_
150wkk9n_.dbf
Completed: create tablespace SYSAUX datafile /* OMF datafile

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 927

The undo tablespace is created next, with the default name of SYS_UNDOTS in the location
specified by the DB_CREATE_FILE_DEST parameter. A temporary tablespace named TEMP is also created
in the same directory:

CREATE UNDO TABLESPACE SYS_UNDOTS DATAFILE SIZE 10M AUTOEXTEND ON
Created Oracle managed file
/test01/app/oracle/oradata/ora_omf/finDATA/ora_sys_undo_yj5mg123.dbf
. . .
Successfully onlined Undo Tablespace 1.
Completed: CREATE UNDO TABLESPACE SYS_UNDOTS DATAFILE SIZE 1
CREATE TEMPORARY TABLESPACE TEMP TEMPFILE
Created Oracle managed file
/test01/app/oracle/oradata/ora_omf/finDATA/ora_temp_yj5mg592.tmp
Completed: CREATE TEMPORARY TABLESPACE TEMP TEMPFILE

Adding Tablespaces

Adding other tablespaces and datafiles within an OMF file system is easy. All you have to do is invoke
the CREATE TABLESPACE command without the DATAFILE keyword. Oracle will automatically create the
datafiles for the tablespace in the location specified in the DB_CREATE_FILE_DEST parameter. The
example that follows shows how to create the tablespace:

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST =
 2 '/test01/app/oracle/ora_omf/finance1';
System altered.

SQL> CREATE TABLESPACE omftest;
Tablespace created.

SQL> SELECT file_name FROM dba_data_files
 2 WHERE tablespace_name='OMFTEST';

FILE_NAME

/test01/app/oracle/oradata/ora_omf/ora_omftest_yj7590bm.dbf
SQL>

Compare the OMF tablespace-creation statement shown previously with the typical tablespace-
creation statement, and you’ll see how OMF simplifies database administration. Adding datafiles is
also simple with OMF, as shown by the following example:

SQL> ALTER TABLESPACE omftest ADD DATAFILE;

OMF files, as you can see, simplify file administration chores and let you create and manage
databases with a small number of initialization parameters. You can easily set up the necessary
number of locations for your online redo log files, control files, and archive log files by specifying the
appropriate value for the various OMF parameters. Oracle’s ASM-based file system relies on the
OMF file system.

Online Segment Shrinking and the Segment Advisor
Oracle recommends that you use online segment shrinking to compact segments that become frag-
mented over time due to the update and delete operations. A segment’s high-water mark (HWM)
shows the highest point of space usage ever reached by that segment. If you have unused space
above the HWM, that means that this space has never been used by a table or an index segment.

928 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

You can use the DBMS_SPACE package, as shown in Chapter 5, to find out the amount of
unused space in a segment. You can then deallocate the unused space in a segment by using the
ALTER TABLE (or ALTER INDEX) . . . DEALLOCATE . . . statement, as shown here:

SQL> ALTER TABLE persons DEALLOCATE UNUSED KEEP 1000M;

Once you execute the preceding statement, Oracle will take everything over 1,000MB from the
persons segment and makes the newly free space available for other segments in the tablespace.

For example, if you have used 80 percent of a table segment’s space by inserting rows into that
segment, the HWM for that segment will be at 80 percent. Later on, even if you delete half the rows,
the table’s HWM remains at 80 percent. This has a detrimental effect on full-table scans and index
scans, because Oracle will scan the table all the way to the HWM, even if there is currently very little
data in the table.

A table segment with a large number of deletions will lead to fragmentation, leaving several gaps
below its HWM. You can, of course, reclaim the space you allotted to a table by creating a new table,
copying all the existing data into it, and dropping the old table. In previous versions of Oracle, you
could also compact the unused pockets of space in table or index segments by reorganizing the
object, which usually involved the MOVE command. These reorganizations, which basically re-create
the object in the same or a different tablespace, are sometimes very time consuming, and they also
require additional space. Also, contrary to Oracle’s assurances, online availability for DML opera-
tions is sometimes diminished.

As of Oracle Database 10g, you can use the segment-shrinking capability to make sparsely popu-
lated segments give their space back to their parent tablespace. You can reduce the HWM, thereby
compacting the data within the segments. Also as of Oracle Database 10g, you can shrink tables
(including index-organized tables), partitions and subpartitions of a table, indexes, and materialized
views (and materialized view logs).

■Note The segment-shrinking capability is termed an online and in-place operation. It’s online because users
can continue to access the tables during the shrinking operation. The operation is in-place because you don’t need
any duplicate or temporary database space during the segment-shrinking operations.

Oracle handles the shrinking operation internally as an insert/delete operation. Since you are
only moving data and not modifying it, triggers on the tables will not fire when you perform the shrink
operations. When you shrink a table to compact space, the indexes on the table remain usable after
the shrinking operation.

■Tip A tablespace must both be locally managed as well as use Automatic Segment Space Management for its
segments to be eligible for segment-shrinking operations.

Manual Segment Shrinking
You can use simple SQL commands to shrink segments. The segment-shrinking operation compacts
fragmented space in the segments and optionally frees the space.

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 929

Before shrinking the segments, you must first enable row movement for any segment that you
want to shrink. You can enable row movement by using the ENABLE ROW MOVEMENT clause of the ALTER
TABLE command, as shown here:

SQL> ALTER TABLE test ENABLE ROW MOVEMENT;

Of course, if you’ve already specified the ENABLE ROW MOVEMENT clause at table-creation time, you
won’t need to issue any commands to enable row movement before starting the segment-shrinking
operation. By default, row movement is disabled at the segment level.

There are two phases in a segment-shrinking operation:

• Compaction phase: During the compaction phase, the rows in a table are compacted and
moved toward the left side of the segment. You thus make the segment dense, but the HWM
remains where it was. The recovered space isn’t immediately released back as free space. You
can continue to issue DML statements and queries on a segment while it is being shrunk.
Oracle holds locks only on the packets of the rows involved in the DML operations. If you
have any long-running queries, Oracle can read from all the blocks that have technically been
reclaimed during the shrinking operation. Of course, this capability is dependent on the time
interval you specified for your undo retention parameter.

• Adjustment of the HWM/releasing-space phase: In the second phase, which lasts for a very
short period of time, Oracle lowers the HWM and releases the recovered free space under the
old HWM back to the parent tablespace. Oracle locks the object in an exclusive mode while
the HWM is being lowered, meaning that you can’t issue any INSERT, UPDATE, or DELETE DML
statements against the segment.

■Caution During the compacting phase, the object is online and available, but during the second phase, the
object becomes briefly unavailable, due to Oracle’s exclusive locking of the segment.

The basic statement for shrinking segments performs both phases of the segment-shrinking
operation (first compacting, then resetting the HWM and releasing the space) in sequence. Here’s
the statement (the name of the table being shrunk is test):

SQL> ALTER TABLE test SHRINK SPACE;

Once you issue this command, Oracle will first compact the segment and then reset the HWM
level and yield the freed space to the tablespace.

Since the second phase, the resetting of the HWM, will affect DML operations, you may not want
to use it when a large number of users are connected to the database. Instead, you may want to issue
the following command, which only compacts the space in the segment:

SQL> ALTER TABLE test SHRINK SPACE COMPACT;

This way, during peak hours, the database will merely compact the space in the segment. During
off-peak hours, you can issue the ALTER TABLE table_name SHRINK SPACE command, and this will
finish the shrinking process by performing the second phase.

If you use the CASCADE option during a segment-shrinking operation, all the dependent segments
will be shrunk as well. For example, if you shrink a table, all the dependent index segments will be
automatically shrunk. Here’s how you specify the CASCADE option:

SQL> ALTER TABLE test SHRINK SPACE CASCADE;

930 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

Using the Segment Advisor to Shrink Segments
Using the new Segment Advisor, you can easily identify the segments that are good candidates for
shrinking. The Segment Advisor bases its recommendations on the amount of fragmentation within
an object. It determines whether objects have enough space to be reclaimed, taking into account the
future space requirements. It bases its estimates of the future space requirements of an object on
historical trends. Besides helping you select candidates for shrinking, the Segment Advisor is also
helpful in sizing new database objects. The following sections describe how to use the advisor for
both purposes.

■Note You can use the Segment Advisor only for Oracle Database 10.1 and 10.2, and Oracle Database 11g
Release 1 and later versions. In order to run the Segment Advisor, you must have the ADVISOR privilege in addition
to the CREATE ANY JOB (or CREATE JOB) privilege.

Choosing Candidate Objects for Shrinking

You can invoke the Segment Advisor at either the individual segment level or the tablespace level.
You can call the Segment Advisor from the Database Control’s Advisor Central page (which you can
get to from the Database Control home page by clicking Advisor Central in the Related Links section,
and then clicking Segment Advisor). Figure 17-6 shows the main Segment Advisor page.

The Segment Advisor can generate advice at three levels: object, segment, and tablespace. The
Segment Advisor’s recommendations can be to either a shrink or a reorganization operation, based
on the following criteria:

• If you created the objects in the default locally managed tablespaces with Automatic Segment
Space Management, the Segment Advisor recommends shrinking the segments.

• If you used manual segment space management, or the object isn’t eligible for a shrink oper-
ation, the Segment Advisor will recommend an object reorganization.

You can run the Segment Advisor in two modes:

• Comprehensive analysis: The Segment Advisor will perform an analysis regardless of whether
there are prior statistics or not. If there aren’t any prior statistics, the Segment Advisor will sample
the objects before generating its recommendations. This analysis is more time consuming.

• Limited analysis: This analysis is based strictly on the statistics collected on the segment. If
there aren’t any statistics for an object, the advisor won’t perform any analysis.

The AWR collects all space-usage statistics during its regular snapshot collection. The Segment
Advisor, to estimate future segment-space needs, uses the growth-trend report based on the AWR
space-usage data. You can view the Segment Advisor recommendations through OEM by clicking
the Segment Advisor Recommendations link on the Segment Advisor page.

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 931

Figure 17-6. The Database Control Segment Advisor page

Automatic Segment Advisor Job
In Oracle Database 10.2 and later, Oracle provides an automatic Segment Advisor job called AUTO_
SPACE_ADVISOR_JOB, which automatically detects segment-space related issues. Here are the job
details, which you can see using the DBA_SCHEDULER_JOBS view:

• JOB_NAME: AUTO_SPACE_ADVISOR_JOB

• PROGRAM_NAME: AUTO_SPACE_ADVISOR_JOB

• SCHEDULER_NAME: MAINTENANCE_WINDOW_GROUP

The Segment Advisor job automatically runs during the maintenance window, identifying
candidates for a segment-shrinking operation based on the amount of space fragmentation within
an object. You can view the automatic Segment Advisor job recommendations in the same way as
any other manually invoked Segment Advisor recommendations, as shown in the previous section.
You’ll see a list of the Segment Advisor recommendations, from the last time it ran, by clicking the
Segment Advisor Recommendations link on the Segment Advisor page. Figure 17-7 shows the
Recommendations page.

932 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

Figure 17-7. The Segment Advisor Recommendations page

Automatic Checkpoint Tuning
Oracle is capable of recovering from an unexpected database crash without losing any data. Remember
that when the database crashes, there are two phases to the ensuing recovery:

• Redo or roll-forward phase: In the first phase, the database applies to the datafiles all changes,
including both committed as well as uncommitted changes, that haven’t yet been made a
part of the datafiles. These transactions are recovered from the redo log.

• Undo or rollback phase: In the second phase, all uncommitted transactions that are written to
the datafiles in the previous step are undone.

After a crash, the database can’t be opened unless it performs recovery. However, here’s the
interesting part: Oracle lets you open the database before the second phase is completed. As soon as
the redo or roll-forward phase is over, the database is opened for the users, while the SMON process
performs the undo in the background. When a user’s process runs into a transaction locked for roll-
back, it rolls back the transaction quickly. These intermittent rollbacks don’t have a discernible impact on
the user’s query performance. This means that the database is open far more quickly after a crash
than if you waited for both phases of recovery to complete.

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 933

■Note The time it takes for the second phase (the rollback) to complete depends on how much undo information
you have to roll back.

As of Oracle Database 10g, you can automate checkpoint tuning by completely avoiding the
setting of any checkpoint-related initialization parameters and by setting the FAST_START_MTTR_
TARGET parameter to a nonzero value. By default, the value of this parameter is 0. Oracle will automatically
tune database checkpointing, balancing recovery needs with the overhead on database throughput.

Online Capabilities of Oracle Database 11g
In addition to the automatic database management features, Oracle Database 11g offers you oppor-
tunities to perform many common tasks online, thus reducing the work that you would otherwise
perform only after the database was shut down or an object was taken offline. In some cases (such as
the MOVE command), DML operations are prevented until the table is moved. These features offer
you continuous online availability, making it easier for you to perform the reorganization tasks. In
the sections that follow, you’ll examine some of the important online capabilities of the Oracle Data-
base 11g database.

Online Data Reorganization
Oracle provided several online reorganization features, such as the ability to create partitions, move
tables, and add constraints, in older versions of its software. The Oracle Database 11g version goes
much further and provides more online options for DBAs, including online database reorganization,
object validation, and index rebuilding.

Online Database Reorganization with OEM Database Control

You can easily perform offline or online reorganization of database objects using the OEM Data-
base Control. Often you’ll see a need to change the storage attributes of a table or an index, and the
Database Control makes it easy to perform these reorganizations.

To perform database reorganization with the Database Control, go to the Database Control
home page and choose Administration ➤ Reorganize Objects. Figure 17-8 shows the main page of
the Database Control Data Reorganization feature. You can choose either offline or online reorgani-
zation. Online reorganization is slower, but it provides access to the objects being reorganized.

Once you choose the online reorganization method, OEM will ask you for the list of objects to
be reorganized. It then generates an impact report and job summary, which is a summary of the
actual reorganization script. In the next step, you decide whether to perform the online reorganiza-
tion right away or to schedule it for some other time.

934 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

Figure 17-8. The main Database Control Data Reorganization page

Using SQL Commands to Perform Online Data Reorganization

In addition to the online data redefinition feature, which I explain shortly in the “Online Data Redef-
inition” section, you can reorganize data in tables and indexes online, using various SQL commands.
Let’s briefly look at the important data reorganization methods, first looking at an object validation
command.

Validating an Object Online

You can validate the structure of an object while users are making changes to the table, by using the
ANALYZE TABLE . . . VALIDATE STRUCTURE statement, as shown in the following example:

SQL> ANALYZE TABLE persons
 2 VALIDATE STRUCTURE ONLINE;

Table analyzed.
SQL>

Rebuilding an Index Online

You can rebuild indexes online, thus improving the availability of large database tables. Note that
while users can change the table data, they can’t use the parallel DML options during an online
index rebuild. Users can, however, perform normal DML operations against the base table.

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 935

You can rebuild many kinds of indexes, including function-based indexes and reverse-key
indexes, online. Here’s an online index rebuilding example:

SQL> ALTER INDEX test_idx REBUILD ONLINE;

Creating an Index Online

You can also create indexes online, with the following statement:

SQL> CREATE INDEX test_idx ON persons(person_id) ONLINE;

Coalescing an Index Online

You can coalesce an index online with this statement:

SQL> ALTER INDEX test_idx COALESCE;

Moving a Table Online

You can move a table from one tablespace to another, with this command:

SQL> ALTER TABLE test MOVE TABLESPACE new_tbsp

Online Data Redefinition
Oracle offers the online table redefinition feature, which lets you redefine objects like database tables
online while users continue reading from and writing to them. You can use online data redefinition
to create new tables with more efficient physical storage parameters, move tables to different
tablespaces, reduce fragmentation in tables, and change a heap table into an index-organized table
and vice versa, all while maintaining database availability and performance.

The online data redefinition feature can enhance both data availability and disk usage. Both the
newly redefined table and the original table continue to exist together until the DBA decides to switch
over to the newly redefined table. The length of the switching process is extremely brief and doesn’t
depend on table or index size or the complexity of the object redefinition.

If you have materialized views and materialized logs defined on a table, you can’t redefine them
online. During the redefinition process, local materialized logs are maintained and changes to the
master table are tracked using snapshot logs.

■Note Whenever possible, use the Segment Advisor for shrinking segments and reclaiming unused space below
the HWM. However, if a segment doesn’t qualify for the use of the Segment Advisor, as is the case when you use
dictionary-managed tablespaces or manual segment space management, use the online table redefinition tech-
nique to reorganize segment data. You also use online table redefinition if you plan on making logical or physical
changes to any table attributes during the reorganization.

What Can Online Redefinition Do?

You can use online redefinition to perform a number of tasks that would have necessitated taking
tables offline in early versions of Oracle. Using the online table redefinition feature, you can do the
following:

• Add, drop, or rename columns.

• Transform table data.

936 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

• Change data types of the columns.

• Rename table constraints.

• Change the original storage parameters.

• Reduce fragmentation in tables.

• Create a partitioned table out of a regular table online.

• Create an index-organized table (IOT) out of a regular table.

• Move a table to a different tablespace.

The list of tasks you can perform using online redefinition is truly impressive, because you don’t
have to keep users from accessing the tables while you’re performing these common tasks.

The online table redefinition involves a simple sequence of steps:

1. Determine whether a table is a candidate for redefinition.

2. Decide on the structure of the new table, and create a new image of the table.

3. Start the redefinition process by using the DBMS_REDEFINITION package.

4. Create necessary constraints and triggers on the new table.

5. Perform periodic synchronization and validation of data in the new table.

6. Complete the redefinition of the table.

You can perform online table redefinition using one of two methods: a primary key method and
a ROWID method. The ROWID method is more complex, and Oracle recommends you use the easier
primary key method, which requires that the original and the redefined tables have the same primary key
columns. In the following sections, you’ll see how to perform online table redefinition using the
default primary key method.

An Online Table Redefinition Example

In this example, we’ll reorganize the employees table in the HR schema, which has the structure
shown in Listing 17-8. For this example, our goal is to drop the salary column in the employees table.

Listing 17-8. The Structure of the employees Table

Name Null? Type
 --------------- -------- ------------
 EMPLOYEE_ID NOT NULL NUMBER(6)
 FIRST_NAME VARCHAR2(20)
 LAST_NAME NOT NULL VARCHAR2(25)
 EMAIL NOT NULL VARCHAR2(25)
 PHONE_NUMBER VARCHAR2(20)
 HIRE_DATE NOT NULL DATE
 JOB_ID NOT NULL VARCHAR2(10)
 SALARY NUMBER(8,2)
 COMMISSION_PCT NUMBER(2,2)
 MANAGER_ID NUMBER(6)
 DEPARTMENT_ID NUMBER(4)

The goal is to remove the salary column in the employees table and partition the table using a
range scheme based on the employee_id column. Once we have completed the online redefinition,
we can drop the temporary table. The new table will have all the attributes of the temporary table.

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 937

Verifying the Eligibility of the Table

The first step in the online redefinition process is to ensure that the employees table is a candidate
for the process by using the DBMS_REDEFINITION package. If your table is not eligible, Oracle will
issue an error message. The following example shows the use of the package for verifying the employees
table:

SQL> BEGIN
 2 DBMS_REDEFINITION.CAN_REDEF_TABLE('hr','employees');
 3 END;
 4 /
PL/SQL procedure successfully completed.
SQL>

In the DBMS_REDEFINITION.CAN_REDEF_TABLE procedure, you can specify the method of
online redefinition as the third parameter, in addition to the schema owner name (hr) and the table
name (employees). This third parameter is called the options_flag, and it can take two possible values:
DBMS_REDEFINITION.CONS_USE_PK if you want to use the primary key method or DBMS_REDEFINITION.
CONS_USE_ROWID if you want to use ROWIDs to do the redefinition. Because you’re using the default
primary key method, you don’t have to specify this third parameter for your procedure.

■Note A table doesn’t need a primary key for it to be eligible for online redefinition.

Now that the employees table has indeed been verified as an eligible candidate for redefinition,
we’ll move to the next step, where we’ll create an interim table.

Creating the Temporary Table

When you’re redefining a production table, you don’t want to change the table directly. It’s a lot less
risky if you can view the results and check the redefinition first. Then you can swap the interim table
for the existing production table. In our example, the interim table, hr.employees_temp, will not
have the salary column. It will also be partitioned on the employee_id column, as shown in Listing 17-9.
These two things—removing the salary column and partitioning the table—are the goals of our
redefinition exercise.

Listing 17-9. Creating the Temporary Table for Online Redefinition

SQL> CREATE TABLE hr.employees_temp
 2 (employee_id number(6),
 3 first_name varchar2(20) not null,
 4 last_name varchar2(25) not null,
 5 email varchar2(25) not null,
 6 phone_number varchar2(20),
 7 hire_date date not null,
 8 job_id varchar2(10) not null,
 9 commission_pct number(2,2),
 10 manager_id number(6),
 11 department_id number(4))
 12 PARTITION BY RANGE(employee_id)
 13 (PARTITION employees1
 VALUES LESS THAN (100) tablespace TEST01,

938 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

 14* PARTITION employees2
 VALUES LESS THAN (300) tablespace TEST02);

Table created.
SQL>

Redefining the Table

You can now start the redefinition process by using the DBMS_REDEFINITION.START_REDIF_TABLE
procedure, as shown in Listing 17-10. The START_REDIF_TABLE procedure has the following
parameters:

• UNAME: This is the schema name (hr).

• ORIG_TABLE: This is the table you’re redefining (employees).

• INT_TABLE: This is the name of the interim table.

• COL_MAPPING: This specifies the mapping between the interim and the original table’s columns.
If you don’t supply any values for this column-mapping parameter, all the columns of the
original table will be included in the interim table.

• OPTIONS_FLAG: This specifies the method of redefinition. In this example, because we’re using
the default primary key method, we can omit this parameter.

■Tip When you perform table redefinition, you should be logged in as the schema owner. Make sure the schema
owner is granted execute privileges on the DBMS_REDEFINITION package. The schema owner should also be
granted the privileges to select, create, alter, drop, and lock any table. Otherwise, you’ll encounter the ORA-01031
“Insufficient privileges” error.

Listing 17-10. Starting the Online Redefinition Process

SQL> BEGIN
 2 dbms_redefinition.start_redef_table('hr','employees',
 3 'employees_temp',
 4 'employee_id employee_id,
 5 first_name first_name,
 6 last_name last_name,
 7 email email,
 8 phone_number phone_number,
 9 hire_date hire_date,
 10 job_id job_id,
 11 commission_pct commission_pct,
 12 manager_id manager_id,
 13 department_id department_id');
 14 END;
 15 /

PL/SQL procedure successfully completed.
SQL>

Make sure the interim and master tables have the same number of rows by running the
following queries:

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 939

SQL> SELECT COUNT(*) FROM employees_temp;

 COUNT(*)

 107
SQL> SELECT COUNT(*) FROM employees;

 COUNT(*)

 107
SQL>

Copying the Dependent Objects

You need to execute the DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS procedure next, to
automatically create any existing triggers, indexes, grants, and constraints on the HR.EMPLOYEES_
TEMP table. Here’s how you do it:

SQL> DECLARE
SQL> num_errors PLS_INTEGER;
SQL> BEGIN
 DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS('hr', 'employees',
 'employees_temp',
 DBMS_RE
DEFINITION.CONS_ORIG_PARAMS, TRUE, TRUE, TRUE, TRUE, num_errors);
 END;

■Tip You can improve the performance of the redefinition process by running the redefinition job in parallel. To
do this, you must first execute the following statements before executing the START_REDEF_TABLE procedure to
start the table redefinition process:

SQL> alter session force parallel dml parallel 8;
SQL> alter session force parallel query parallel 8;

What Happens During the Redefinition Process?

Using the DBMS_REDEFINITION package is easy, but a lot is going on behind the scenes. When you
execute the DBMS_REDEFINITION.START_REDEF_TABLE procedure, two new tables are created: a
temporary table and a permanent table. The temporary table is called RUPD$_Employee, and it lasts
for the duration of the session. The permanent table is a snapshot table that holds all the changes
made to the master employees table once you execute the START_REDEF_TABLE procedure. The
master table’s rows are copied to the interim table, and users will be able to update the master table
during this process. The changes made by the users are logged in the materialized log during this
process.

Listing 17-11 shows a query on DBA_OBJECTS that indicates our new table has been partitioned
based on our redefinition. The query also shows the two new tables created during the online redef-
inition process.

940 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

Listing 17-11. Checking That the New Table Has Been Partitioned Based on Our Redefinition

SQL> SELECT object_type, object_name
 2 FROM dba_objects
 3 WHERE object_name LIKE '%EMPLOYEES%';

OBJECT_TYPE OBJECT_NAME
---------------- ----------------
TABLE EMPLOYEES
TABLE PARTITION EMPLOYEES_TEMP
TABLE PARTITION EMPLOYEES_TEMP
TABLE EMPLOYEES_TEMP
TABLE EMPLOYEES_NEW
SEQUENCE EMPLOYEES_SEQ
TABLE MLOG$_EMPLOYEES
TABLE RUPD$_EMPLOYEES
TRIGGER SECURE_EMPLOYEES
9 rows selected.
SQL>

Checking for Errors

You can use the DBA_REDEFINITION_ERRORS view to check for any errors during the redefinition
process, as shown here:

SQL> SELECT OBJECT_NAME, BASE_TABLE_NAME, DDL_TXT
 FROM DBA_REDEFINITION_ERRORS;

Synchronizing the Interim and Source Tables

You can use the SYNC_INTERIM_TABLE procedure to synchronize the data in the interim and the
source table. This is an optional step. Here’s how you execute the procedure:

SQL> EXECUTE dbms_redefinition.sync_interim_table ('hr', -
 > 'employees','employees_temp');
PL/SQL procedure successfully completed.
SQL>

You should use this procedure only if you have reason to believe that a large number of updates
have taken place in the source table after you started the redefinition process (by executing the
START_REDEF_TABLE procedure). By using the SYNC_INTERIM_TABLE procedure, you save time
in the last phase of the redefinition process if a large number of updates have taken place. Otherwise,
you can safely ignore this step, because the last procedure you run, the FINISH_REDEF_TABLE
procedure, will perform the synchronization anyway.

Completing the Redefinition Process

Once you’re done creating triggers and constraints, and granting privileges on the interim table, it’s
time to complete the process by running the FINISH_REDEF_TABLE procedure. The interim table at
this point has all the data of the source table, but the source table still has its old structure. In our
example, the employees table is still not partitioned, and it still contains the salary column.

SQL> EXECUTE DBMS_REDEFINITION.FINISH_REDEF_TABLE ('hr', -
 > 'employees', 'employees_temp');

PL/SQL procedure successfully completed.
SQL>

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 941

When you run the FINISH_REDEF_TABLE procedure, the following things happen:

• Oracle reads the materialized log on the master table so the contents can be added to the
interim table.

• The employees table is redefined so it has all the attributes, indexes, constraints, and grants
of the interim table, employees_temp.

• Any referential constraints involving the employees_temp table are enabled.

• Any new triggers that you defined on the employees_temp table are also on the newly rede-
fined table and are enabled now.

• The two tables are briefly locked in exclusive mode to make the necessary changes in the data
dictionary.

• The materialized view and the log are dropped.

You can confirm that your original table, employees, has indeed been partitioned, by running
this query:

SQL> SELECT object_type, object_name
 2 FROM dba_objects
 3* WHERE object_name ='EMPLOYEES';

OBJECT_TYPE OBJECT_NAME
--------------- -----------
TABLE PARTITION EMPLOYEES
TABLE PARTITION EMPLOYEES
TABLE EMPLOYEES
SQL>

If you look at the structure of the employees table (say, by issuing the DESCRIBE command),
you’ll notice that it doesn’t have the salary column.

Once you finish the table redefinition, you can drop the employees_temp table. When you drop
the interim table, all the indexes, triggers, and constraints on the original table are dropped also,
because the original table has become the interim table. The new table has all the necessary triggers,
grants, indexes, and (referential) constraints of the interim table.

If you see any significant errors during the preceding process, it is easy to abort the redefinition
by using the DBMS_REDEFINITION.ABORT_REDEF_TABLE procedure. This procedure drops the
temporary table and logs created during the redefinition process. You can then manually drop the
interim table.

Dynamic Resource Management
Traditionally, once any user started a transaction in the database, he or she had to be given the same
priority as all the other sessions in the database. This would sometimes lead to a single user monop-
olizing the database resources and consequently slowing down the database. In Chapter 12, you saw
how the Database Resource Manager can help you control resource use within the database by using
resource groups and resource plans to allocate critical resources.

In addition to its resource-allocation capabilities, the Database Resource Manager has the
following features that help in online management of transactions:

• You can automatically move a long-running operation from a high-priority consumer group
to a low-priority group.

• You can limit the number of concurrent long transactions.

• You can prevent any transaction from running if its estimated time for completion exceeds a
preset execution limit set by the DBA.

942 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

The following sections cover how you can perform each of these tasks using the Database
Resource Manager.

Switching Long-Running Transactions

The Database Resource Manager lets you use plan directives, which can specify limits on resource
usage. Plan directives include the following parameters, which you can use to shift the priority of
consumer groups:

• SWITCH_TIME

• SWITCH_GROUP

• SWITCH_ESTIMATE

• SWITCH_IO_MEGABYTES

• SWITCH_IO_REGS

• SWITCH_FOR_CALL

A user will be assigned to a certain consumer group at the beginning of a transaction. If the user’s
transaction is active for more than the number of seconds specified by the SWITCH_TIME parameter,
the transaction is automatically switched to a lower priority group specified by the SWITCH_GROUP
parameter.

You can have the Database Resource Manager determine whether it should switch a user session
even before an operation starts by setting the SWITCH_ESTIMATE parameter to true. In this case, the
Database Resource Manager will estimate the time it will take for the operation to complete, and
based on that time estimate, the Database Resource Manager will determine whether it should
switch the user’s consumer group right away.

The SWITCH_IO_MEGABYTES attribute in a resource plan directive lets you specify the amount of I/O (in
megabytes) that a session can issue before the database takes an action such as switching the session
to a different resource group or terminating it. The SWITCH_IO_REQS parameter lets you specify the
number of I/O requests that a session can issue before the database takes an action to limit the I/O
usage. By setting the SWITCH_FOR_CALL parameter to TRUE, you can make the database return a session
that was switched to its original group after the top call completes. Chapter 12 shows examples of
how to control user sessions by specifying values for the various parameters I described in this section.

Limiting the Number of Long Transactions with Operation Queuing

When you create resource consumer groups using the Database Resource Manager, you can set the
active session pool for each group. An active session is one where a transaction or a select operation
is currently active. Once the consumer group’s active session pool limit is reached, new sessions
belonging to the group can’t become active. They’re queued by the Database Resource Manager and
allowed to become active as the current active sessions complete.

You can set an optional time-out period for the queued sessions in each group. If a session is
queued past this time-out period, it will abort with an error message. The user then has the choice of
resubmitting the job or ignoring it.

Limiting the Maximum Execution Times for Transactions

All DBAs dread the possibility of a very large job that could take up most of the database’s resources
and bring it to its knees. Most times, you’re left to decide whether you should kill the long-running
job. The Database Resource Manager helps you avoid such stressful situations by allowing you to set
limits on the execution times of operations—it allows you to run only those jobs that fall within a
maximum run-time limit that you set.

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 943

You have two ways to limit the execution times of a transaction in the database: using the
MAX_ESTIMATED_EXEC_TIME resource plan directive or the UNDO_POOL resource plan directive.

■Note You can use the DBMS_APPLICATION.SET_SESSION_LONGOPS procedure to track long-running opera-
tions. The procedure will populate the V$SESSION_LONGOPS view.

Using the MAX_ESTIMATED_EXEC_TIME Resource Plan Directive

You can limit the maximum execution times for transactions by using the MAX_ESTIMATED_EXEC_TIME
resource plan directive. When you set this parameter, the Database Resource Manager will estimate
the operation’s execution time and will abort the operation if it exceeds the maximum estimated
execution time you set.

Using the UNDO_POOL Resource Plan Directive

You can control long-running transactions by limiting the amount of undo space that a resource
consumer group can use. Long-running transactions in general tend to need a large amount of undo
space to maintain a consistent image of the old data and to enable the session to roll back the
transaction.

By default, an active session can use an unlimited amount of undo space, but you can specify a
limit to the undo space for a consumer group by using the UNDO_POOL resource plan directive. Once
all the sessions in a consumer group use up the allotted undo space specified by the UNDO_POOL param-
eter, all insert, update, and delete transactions on behalf of any session transaction within that group
will abort with an error.

Online Database Block-Size Changes
Suppose you have a tablespace that has a block size of 8KB, as shown in the following example:

SQL> SELECT NAME, VALUE FROM V$SPPARAMETER
 2 WHERE NAME='db_block_size';

NAME VALUE
-------------- -----
db_block_size 8192
SQL>

Because the block size is 8KB and you have only a single block size, all your tablespaces are
created with this default size. Suppose that you now want to create a tablespace with a higher block
size—for example, 16KB. Creating a database consisting of tablespaces with different block sizes is
easy—each of the tablespace block sizes in the database should correspond to a DB_nK_CACHE_SIZE
parameter value. Thus, if you want five tablespaces with different sized blocks, you must have all five
of the buffer cache sizes configured.

In Listing 17-12, which shows the results of a query in my test database, you don’t see any values
under any of the five possible DB_nK_CACHE_SIZE parameters. This is because I chose only one block size,
the standard block size of 8KB, and none of the other optional cache sizes. My total DB_CACHE_SIZE value
is shown as 25MB (25,165,824 bytes) in the listing, and it’s composed of the standard 8KB blocks.

944 CH AP T E R 1 7 ■ A U TO M A T I C M AN A G E M E N T AN D O N L I N E C AP AB IL I T I E S

Listing 17-12. The Buffer Cache nK Size Components

SQL> SELECT NAME, VALUE FROM V$PARAMETER
 2 WHERE NAME LIKE '%cache_size%';

 NAME VALUE
---------------------- ----------
db_keep_cache_size 0
db_recycle_cache_size 0
db_2k_cache_size 0
db_4k_cache_size 0
db_8k_cache_size 0
db_16k_cache_size 0
db_32k_cache_size 0
db_cache_size 25165824
8 rows selected.
SQL>

You can easily create a new buffer cache size of 16KB online and create a new tablespace with
that block size. You can then create your objects in this new tablespace or move any existing objects
into this tablespace, all online.

Here’s what you have to do. First, create a new 16KB buffer cache, so you can create a tablespace
with a 16KB block size.

SQL> ALTER SYSTEM SET DB_16K_CACHE_SIZE =1024M;
System altered.
SQL>

Now you can create your new tablespace with the 16KB block size, because you have a matching
16KB buffer cache size. Here’s the CREATE TABLESPACE statement:

SQL> CREATE TABLESPACE big_block
 3 DATAFILE '/test01/app/oracle/big_block_01.dbf' SIZE 1000M
 4* BLOCKSIZE 16K;
Tablespace created.
SQL>

If you have a table that you want to move to the new big_block tablespace with the 16KB block
size, all you have to do is use the MOVE command:

SQL> ALTER TABLE test MOVE TABLESPACE big_block;
Table altered.
SQL>

Of course, you can also use the online table redefinition method to move your table to the new
tablespace.

Using Database Quiescing for Online Maintenance
Suppose you want to change the schema of a table. If a transaction is currently using this table, you
can’t perform this task. If a PL/SQL procedure is later updated to reflect the change in the schema,
users currently trying to execute the procedure will receive an error. Fortunately, Oracle has a great
quiescing feature, whereby you don’t have to shut down the database and open it in restricted mode.

You can use this feature when you need to perform actions that require that no active transac-
tions are running in the database. Users will remain logged in, and they can continue to execute their
requests that are in progress, while the database is in the quiesced state. The database, however, will
block all new transactional requests except those made by the users SYS and SYSTEM. Since current

CH A PT E R 1 7 ■ A U TO M A T I C M AN AG E M E N T AN D O N L I N E CAP A B IL I T I E S 945

queries in progress are allowed to complete, the database is more available than a database in
restricted mode. Quiescing thus puts the database in a partially available state. When you take the
database out of the quiesced state, any user requests that were blocked are processed automatically.

The following commands perform the quiescing and unquiescing of the database:

SQL> ALTER SYSTEM QUIESCE RESTRICTED;
SQL> ALTER SYSTEM UNQUIESCE;

■Note Not every user with DBA privileges can quiesce the database. Only the SYS and SYSTEM users can use
this feature.

Users can continue to log into the system unless you’re using the shared server architecture.
Typical maintenance operations that can require the use of the quiesce database feature are those
that need the exclusive use of an object, such as an ALTER TABLE, DROP TABLE, or CREATE PROCEDURE
operation. Any DDL statement that a DBA might want to execute in a live database will need exclu-
sive locks, and it will fail if other transactions are using the table.

While the database is in the quiesced state, users other than SYS and SYSTEM won’t be able to
start any new transactions or queries. Any inactive sessions will be prevented from becoming active.
While it is quiesced, Oracle waits for all transactions and queries to commit or roll back, and the data-
base waits for the release of all shared resources, such as enqueues. Upon unquiescing the database,
all the blocked actions are allowed to proceed to execution.

Users won’t get any error messages during this process. When they try to execute a transaction
on a quiesced database, their transaction simply hangs until the database is put into a normal
mode again.

Suspending the Database
In addition to the restricted start-up and database quiesce modes, you can run the database in the
suspend mode to perform certain tasks (such as a backup) without any user activity. You use the
following commands to suspend the database and, later, resume it so all users can access the database:

SQL> ALTER SYSTEM SUSPEND;
System altered.
SQL> ALTER SYSTEM RESUME;
System altered.

When you suspend a database, all transactions will be suspended until the database resumes
normal operation mode.

The ability to suspend a database comes in handy when you need to back up a database using
a mirrored set of disks. You can suspend the database, split the mirror, and back up the database. You
don’t have to contend with I/O during the online backup of the split mirror.

947

■ ■ ■

C H A P T E R 1 8

Managing and Monitoring the
Operational Database

This chapter deals primarily with the day-to-day management of Oracle databases and covers
several major features that help you manage your database:

• Server-generated alerts are automatically raised by the database to let you know when
problems occur.

• The Automatic Workload Repository (AWR) is the new infrastructure that automatically collects
and maintains numerous performance statistics for self-tuning purposes. The Automatic
Database Diagnostic Monitor (ADDM) that you saw in Chapter 17 uses the AWR data for
its analyses.

• The Active Session History (ASH) deals with recent session activity, and the database uses it
to tune its own performance.

• The advisory framework provides a common framework for various database advisors that
supply information about resource utilization and performance. You’ve seen several of these
advisors in other chapters, such as the ADDM, the SQL Access Advisor, and the SQL Tuning
Advisor. I explain the common infrastructure of the advisory framework in this chapter.

• The DBMS_FILE_TRANSFER package lets you transfer operating system files directly through
the database.

• The Oracle Scheduler provides a very powerful way to schedule complex database jobs.

• Automatic maintenance tasks take care of routine DBA tasks such as collecting optimizer
statistics.

• The new diagnostic framework includes several tools, such as the Automatic Diagnostic
Repository (ADR), the Support Workbench, incident packaging service (IPS), and the SQL
Repair Advisor, that help you diagnose and repair database failures.

In this chapter, I also discuss the management of redo logs as well as the creation of database
links to connect to remote databases from your database.

The preceding topics cover most of the Oracle DBA’s daily management tasks, and familiarity
with them is essential to performing typical data movement, space organization, performance tuning,
and other database management tasks.

948 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

Types of Oracle Performance Statistics
Oracle DBAs regularly collect several types of performance statistics in order to analyze database
bottlenecks and other performance issues. In Oracle Database 11g, DBAs now have access to several
new types of performance statistics. Besides database statistics at the system and session levels (such
as wait statistics, segment usage statistics, and so on), there are also operating system statistics (such
as CPU statistics, disk usage statistics, and memory usage statistics) and network statistics. Based on
how the various performance statistics are collected and aggregated, you can divide these statistics
into two groups: cumulative statistics and database metrics. While cumulative statistics show the
accumulated values of key database statistics, metrics measure the rate of change in the cumulative
performance statistics.

Cumulative Statistics
Cumulative statistics are the accumulated total value of particular statistics since the start of an
Oracle instance. The total logons statistic, for example, is a cumulative statistic. Oracle collects
several types of cumulative statistics, including statistics for segments and SQL statements, as well
as session-wide and system-wide statistics. By comparing the delta values—the change in the value
of the cumulative statistics between a beginning and an ending period—Oracle analyzes database
performance during a specific interval of time.

The Automatic Workload Repository stores important cumulative statistics. I discuss the AWR
in the “The Automatic Workload Repository” section of this chapter.

Sample Data
Sample data represents a sample of the total amount of data available. The Active Session History
feature automatically collects session sample data, which represents a sample of the current state of
all active sessions. ASH collects the data in memory, where you can view it with the help of V$ views.
The AWR helps save the ASH data permanently by collecting it as part of its regular snapshots.

I discuss the ASH feature in detail in the “Active Session History” section of this chapter.

Baseline Data
A good way to evaluate database performance is by comparing database performance statistics from
two periods, where the first period reflects “good” performance. The statistics from the period when
the database performed well are called baseline data. By comparing current performance with the
base period’s performance, you can check whether the database is doing better or worse.

ORACLE DATABASE PREMIUM FUNCTIONALITY LICENSING

Several important Oracle performance tools need separate licensing from Oracle Corporation, in addition to the
licensing you purchased for the Oracle Database server software. Oracle divides most of its performance function-
ality into sets of products called Oracle Management Packs, each of which covers several key diagnostic and other
management tools. So be aware that while the tools are enabled with the installation of the Oracle Database server
software, their production use requires additional licensing.

You can purchase the Management Packs only with the Enterprise Edition, and you can access their features through
the OEM Database Control, Grid Control, and API provided by Oracle. You can purchase licensing for just one or for
all of these Management Packs. I summarize the functionality of the Management Packs as follows:

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 949

Oracle Diagnostics Pack

The Oracle Diagnostics Pack allows you to set up automatic processes to monitor performance and system functionality. It
contains a number of features:

• An Automatic Workload Repository

• An Automatic Database Diagnostic Monitor

• An event-notification system

• A history of events and metrics on the database and the host

• Performance monitoring for the database and the host

Oracle Tuning Pack

The Oracle Tuning Pack is only available if you have the Oracle Diagnostic Pack, and it helps you tune the perfor-
mance of your database. It includes the following features:

• The SQL Access Advisor

• The SQL Tuning Advisor

• SQL tuning sets

• Database object reorganization help

Oracle Configuration Management Pack

The Oracle Configuration Management Pack automates software configuration, software and hardware inventory
tracking, patching, and policy management. The Configuration Management Pack facilitates the following:

• Configuring databases and hosts

• Managing deployments

• Staging and viewing of database patches

• Cloning databases and cloning Oracle home

• Searching and comparing configuration

• Managing security and other enterprise policies

Oracle Change Management Pack

The Oracle Change Management Pack lets you evaluate and implement database schema changes. You can track
changes, compare and synchronize objects and schemas, modify schema objects and evaluate the changes, and
even undo the changes. The Change Management Pack lets you do the following things:

• Reverse-engineer database capability

• Compare databases and schemas, or baselines

• Copy database objects

• Update database object definitions

• Synchronize objects and schemas

• Evaluate the impact of changes

• Clone application schemas

950 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

Database Metrics
Database metrics, statistics that measure the rate of change in a cumulative performance statistic,
are also important Oracle performance statistics. In previous Oracle versions, you needed to collect
data at various periods to calculate the rate of change of various statistics. Now, Oracle places precom-
puted metrics at your fingertips. For example, you may be interested in a metric like the number of
transactions per second during peak times. Dynamic performance views hold these metrics, and the
AWR can also store them in its repository.

You can consider statistics such as the number of user transactions and the number of physical
reads in the system as the base statistics from which database metrics are derived. The manageability
monitor (MMON) background process updates metric data on a minute-by-minute basis after collecting
the necessary base statistics.

All the Oracle management advisors use database metrics for diagnosing performance problems
and making tuning recommendations. Database metrics can be used to check the health of various
resources like the CPU, memory, and I/O. The OEM Database Control’s All Metrics page, shown in
Figure 18-1, offers an excellent way to view metrics. To access this page, start at the Database Control
home page and click All Metrics under the Related Links heading. For details about the metrics, click
the Expand All link in the left corner of the page. From here, you can drill down to the details of any
metric by simply clicking a specific metric.

Figure 18-1. The All Metrics page of the Database Control

Oracle Database 11g uses several metric groups, with each group representing items like a wait
event, service, or session. Table 18-1 lists the basic metric groups in Oracle Database 11g.

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 951

You can view the Oracle metrics in two ways: by using V$ dynamic views, you can view the in-
memory metrics; by using the DBA_HIST* views, you can view the metrics that are stored by the
AWR. I explain these two types of views in the following sections.

In-Memory Metrics

The MMON background process collects database metrics and saves them in the SGA for one hour
by default. You can adjust this time by changing the AWR snapshot settings. You can view system-
related metrics by using views like V$SYSMETRIC_HISTORY and V$SYSMETRIC.

Here are some of the system metrics maintained in the V$SYSMETRIC view:

• Buffer cache hit ratio

• CPU usage per second

• Database CPU time ratio

• Database wait time ratio

• Disk sort per second

• Hard parse count per second

• Host CPU utilization percent

• Library cache hit ratio

• SQL service response time

• Shared pool free percent

The V$SERVICEMETRIC and V$SERVICEMETRIC_HISTORY views provide details about service-
level metrics. V$SERVICEMETRIC shows metric values measured on the most recent time interval
for database services, in five-second and one-minute intervals, and V$SERVICEMETRIC_HISTORY
gives the recent history of the metric values measured in five-second and one-minute intervals for
the services running inside the database.

Table 18-1. Oracle Database 11g Metric Groups

Metric Description

Event class metrics Metrics collected at the wait event class level, such as
DB_TIME_WAITING

Event metrics Metrics collected on various wait events

File metrics long duration Metrics collected at the file level, such as
AVERAGE_FILE_WRITE_TIME

Service metrics Metrics collected at the service level, such as
CPU_TIME_PER_CALL

Session metrics short duration Metrics collected at the session level, such as
BLOCKED_USERS

System metrics long duration Metrics collected at the system level

Tablespace metrics long duration Metrics collected at the tablespace level, such as
TABLESPACE_PCT_FULL

952 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

Saved Metrics

Using the AWR snapshots, Oracle saves the metric information that is being continuously placed in
the SGA by the MMON process. After saving performance metrics in memory for an hour, the MMON
process flushes metric data from the SGA to disk, where it is stored permanently in the DBA_HIST_*
views, such as DBA_HIST_SUMMARY_HISTORY, DBA_HIST_SYSMETRIC_HISTORY, and DBA_HIST_
METRICNAME. Each of these views actually represents snapshots of the corresponding V$ view,
with, for example, the DBA_HIST_SYSMETRIC_HISTORY view containing snapshots of the
V$SYSMETRIC_HISTORY view.

Oracle metrics serve as the foundation of the server-generated alerts feature, which is the next topic.

Server-Generated Alerts
Oracle DBAs generally use SQL scripts to alert them when abnormal conditions occur. Oracle Database
11g provides a built-in system of alerts, formally called server-generated alerts, which automatically
alert you when problem conditions occur. The database generates alerts based on the occurrence of
specific events, or when certain database metrics exceed their threshold values.

Oracle calls the threshold-based alerts stateful alerts, and they can be set off at either a warning
threshold or a critical threshold. Threshold-based alerts thus are based on metrics, not events. Unlike
in the old OEM alert-notification system, the database itself collects all alert-related metrics instead
of the OEM. The warning and critical threshold values can be set by the DBA, or you can accept Oracle’s
internal settings for the thresholds.

The nonthreshold Oracle alerts are problem-related alerts, and they are based on the occurrence
of certain predetermined events (usually bad ones) occurring in the database. Oracle calls these
stateless alerts—here are some examples:

• Recovery area space usage exceeded

• Resumable session suspended

• Snapshot too old

Thus, there are altogether three situations when a database can send an alert:

• A metric crosses a critical threshold value

• A metric crosses a warning threshold value

• A nonthreshold (problem) type of alert occurs

When you use threshold-based alerts, Oracle distinguishes between a warning alert (severity
level 5) and a critical alert (severity level 1). For example, by default, the database will send you a
warning alert when any tablespace hits an 85 percent space use threshold. When the usage reaches
the 97 percent level, you get a critical alert.

Default Server-Generated Alerts
Oracle provides several server-generated default alerts, which could be either threshold-based or
problem alerts. These are some of the out-of-the-box server-generated alerts in an Oracle Database
11g database:

• Snapshot too old

• Tablespace space usage (warning alert at 85 percent usage; critical alert at 97 percent usage)

• Resumable session suspended

• Recovery area running out of free space

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 953

■Note Oracle automatically sets thresholds on all metrics with the object type SYSTEM.

In addition to the default alerts, you can choose to use other alerts, and you can also change the
thresholds for the default alerts. You can perform these tasks with the help of the OEM Database
Control or with Oracle-supplied PL/SQL packages. You can also use the Database Control to set up
notification rules; for example, you could specify a blackout period for the alerts, during which no
alerts would be sent out by the database.

When the database issues an alert, you can see it in the Database Control Alerts table (see
Figure 18-2), which is located at the bottom of the Database Control home page, and you’ll receive
a notification if you’ve configured the system to send you one. The alert data is, by default, updated
every 60 seconds. To get the details of an alert, click the alert message in the Message column of the
Alerts table. The alerts usually are accompanied by a recommendation to fix the problem as well.

Figure 18-2. The Database Control Alerts table

Make sure you set the STATISTICS_LEVEL parameter to TYPICAL or ALL in order to use the server-
generated alerts feature. In addition, you can display alerts directly by subscribing to the alert queue.

Baseline Metrics and Adaptive Thresholds
You can use the AWR baseline metrics for setting alert thresholds. Alert thresholds tell the database
when to issue an alert, because a certain performance metric is at an unexpected value. In order to
set alert thresholds, you must know how to tell that a certain metric’s value is at an unexpected level.

954 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

You use a baseline to capture the metric values for a specific period, and the database uses the base-
line to set the threshold values for various metrics. A static baseline computes metric value statistics
manually over a time period. A system moving window automatically captures the metric value
statistics.

You can use baseline metrics for computing alert thresholds. You can use three different methods
to compare baseline statistics to current activity in the database:

• Significance level: Thresholds based on significance level use a statistical level to determine
whether current levels of a metric are unusual. For example, if you set the significance level
to 0.99 for a critical threshold, the database will issue an alert when more than 1% percent of
the current metric values fall outside the metric value.

• Percentage of maximum: These are thresholds that are calculated based on the maximum
value captured by the baseline.

• Fixed values: Fixed values are those set by the DBA, independent of any baselines.

Adaptive thresholds, which use AWR baselines as sources of metric statistics, are ideal for creating
alert thresholds. Once you select a group of metrics that represent your database workload, the data-
base automatically configures and evolves adaptive thresholds by basing them on the SYSTEM_
MOVING_WINDOW baseline.

Managing Alerts
The best way to manage database alerts and related metrics is to use the OEM Database Control. You
can also use the DBMS_SERVER_ALERT package to manage alerts, or you can access the alert queue
directly. The following sections explain the default server-generated alerts and how to manage them.

Using the Database Control to Manage Alerts

Oracle automatically sends an alert message to a persistent queue named ALERT_QUE, and OEM reads
this queue and sends out notifications about the outstanding server alerts. The Database Control (as
well as the Grid Control) displays the alerts and can also send e-mail or pager notifications regarding
the alerts.

If you’ve used the Oracle9i OEM, you’re familiar with the Enterprise Manager alerts. Server-
generated alerts work in a similar fashion. In addition to having Oracle send alerts, now you can
configure alert thresholds as well.

Setting Alert Thresholds

It is very easy to set your own warning and critical thresholds for any database metric. To set alert
thresholds, go to the Database Control home page and click the Manage Metrics link, which you’ll
find under the Related Links group. On the Manage Metrics page, click the Edit Thresholds button.
You’ll see the Edit Thresholds page, as shown in Figure 18-3. For each metric on the Edit Thresholds
page, you can set the following:

• Warning and critical thresholds: You can set an arbitrary threshold or compute a threshold
based on a set of baselines for a metric. For example, you might specify that the database
should generate a threshold alert if use of a particular resource is 15 percent higher than its
normal baseline values. You can also specify multiple thresholds.

• Response action: This action can be a SQL script or an operating system command. Oracle will
automatically execute this response action immediately when the alert is generated. Make
sure that you provide the complete path to the SQL script or operating system command, so
the OEM Agent can find it.

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 955

Figure 18-3. Using the OEM Database Control to set alert thresholds

Setting Notification Rules

Notification rules enable you to control the conditions under which you want to receive a message
from the OEM. For example, you may not want to be awakened at 2:00 a.m. just because a tablespace
with 100GB of allocated space has reached an 80 percent usage level. On the other hand, you would
surely want to know immediately when a 200MB tablespace has crossed the 97 percent usage level.

You can use the OEM Database Control to set notification rules through the Preferences page.
On the Database Control home page, click the Preferences link (at the very bottom of the page) to go
to the Preferences page. Then click the Rules link in the Notification section. Select any metric, such
as Listener Availability, and click the Edit button. From here, you can set notification rules for a
selected event.

Using the DBMS_SERVER_ALERT Package to Manage Alerts

Although the OEM Database Control interface provides an easy way to manage database alerts, there
may be times when you need to incorporate certain changes inside a PL/SQL program. At times like
this, you can use the Oracle-supplied DBMS_SERVER_ALERT package to set up and modify thresh-
olds on various database metrics. The DBMS_SERVER_ALERT package has two main procedures:
GET_THRESHOLD and SET_THRESHOLD.

You use the SET_THRESHOLD procedure to define threshold settings for a database metric.
Listing 18-1 shows the structure of the SET_THRESHOLD procedure.

956 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

Listing 18-1. The SET_THRESHOLD Procedure of the DBMS_SERVER_ALERT Package

SQL> DESC DBMS_SERVER_ALERT.SET_THRESHOLD

PROCEDURE dbms_server_alert.set_threshold
 Argument Name Type In/Out Default?
 ------------------------- -------------- --------- ---------
 METRICS_ID BINARY_INTEGER IN
 WARNING_OPERATOR BINARY_INTEGER IN
 WARNING_VALUE VARCHAR2 IN
 CRITICAL_OPERATOR BINARY_INTEGER IN
 CRITICAL_VALUE VARCHAR2 IN
 OBSERVATION_PERIOD BINARY_INTEGER IN
 CONSECUTIVE_OCCURRENCES BINARY_INTEGER IN
 INSTANCE_NAME VARCHAR2 IN
 OBJECT_TYPE BINARY_INTEGER IN
 OBJECT_NAME VARCHAR2 IN

■Tip You can turn off all metric-based alerts by setting both the warning value and the critical value to NULL.

In the SET_THRESHOLD procedure described in Listing 18-1, the WARNING_VALUE and CRITICAL_VALUE
refer to the warning and critical threshold values for an alert. To find out the current warning and
critical thresholds for a database metric, you use the DBMS_ALERT.GET_THRESHOLD procedure.

Using the Alert Queue Directly

In addition to using the DBMS_SERVER_ALERT package, you can also use procedures from the
DBMS_AQ and DBMS_AQADM packages to directly access and read alert messages in the alert
queue. The DBMS_AQADM package lets you subscribe to the alert queue, set thresholds, and display
alert notifications using various procedures. The DBMS_AQ package lets you manage alert notifica-
tions. See the Oracle documentation for more details. Besides displaying alerts on the database home
page, the Database Control also will send you e-mail notifying you about alerts, so long as you set up
your e-mail information using the Setup link in the Database Control.

Proactive Tablespace Alerts
All Oracle Database 11g tablespaces have built-in alerts that will notify you if their free space drops
below a set threshold. The two default thresholds are critical and warning. The MMON background
process monitors the free space in each tablespace and sends out the alerts.

Oracle will, by default, alert you with a warning when your tablespace is at 85 percent of capacity
and will send a critical alert when the tablespace is at 97 percent of capacity. However, you can turn
the alerting mechanism off if you want. To view information on your thresholds, see the DBA_
THRESHOLDS view.

■Tip If you are migrating to Oracle Database 11g, Oracle turns off the automatic tablespace alerting mechanism
by default. If you want to set the alert thresholds, use the DBMS_SERVER_ALERT package.

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 957

Here’s a simple example that shows how to use the DBMS_SERVER_ALERT package to set warning
and critical thresholds and trigger alerts when either of the thresholds is crossed. You’ll see how to
set, view, and clear an alert.

1. Create a small tablespace to use for testing the Oracle alert mechanism:

SQL> CREATE TABLESPACE test DATAFILE 'test01.dbf' size 10M
 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 3M;

Tablespace created.

2. Set your tablespace alert thresholds as follows (warning alert at 80 percent full and critical at
95 percent full):

SQL> EXECUTE DBMS_SERVER_ALERT.SET_THRESHOLD(-
 > dbms_server_alert.tablespace_pct_full,dbms_server_alert.operator_ge,'80',-
 > dbms_server_alert.operator_ge,'95',1,1,null,-
 > dbms_server_alert.object_type_tablespace,'TEST');

PL/SQL procedure successfully completed.
SQL>

3. Create a new table using the following SQL statement. (This will set off an alert because the
MINEXTENTS 3 clause for the new table will cause the tablespace to cross its warning threshold
of 80 percent full.)

SQL> CREATE TABLE test_table (name varchar2(30))
 TABLESPACE test
 STORAGE (MINEXTENTS 3);

Table created.
SQL>

4. You can verify the tablespace alert as follows (though you may not see the alert immediately,
since the MMON process has to gather the alert information first):

SQL> SELECT reason FROM dba_outstanding_alerts;

REASON

Tablespace [TEST] is [88 percent] full
SQL>

5. You can clear the alert by increasing the size of the datafile that is part of the test tablespace
and see what happens to the alert by querying the DBA_OUTSTANDING_ALERTS view. You’ll
find that the alert is gone from that view, since it has been cleared.

SQL> ALTER TABLESPACE test ADD DATAFILE 'test02.dbf' size 5M;

Tablespace altered.
SQL>
SQL> SELECT reason FROM dba_outstanding_alerts;

no rows selected
SQL>

958 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

6. All cleared alerts will show up in the DBA_ALERT_HISTORY view. You can verify that the
cleared tablespace alert is in that view by using the following query:

SQL> SELECT reason, resolution FROM dba_alert_history;

REASON RESOLUTION
-------------------------------------- -----------
Tablespace [TEST] is [88 percent] full cleared
SQL>

Using the Alert Logs and Trace Files for Monitoring
You can use the database alert log and trace files for monitoring errors in the data set. Server and
background processes write error information to trace files, which can be used by Oracle Support to
help you. The alert log contains informational messages such as database startup and shutdown
statement processing as well as tablespace creation statement processing. In addition, the alert log
contains messages regarding internal errors and corruption errors.

You can check the alert log as well as the instance trace files to investigate background process
errors. For example, when the log writer process is unable to write to a log group, it creates a trace
file and puts a message in the alert log at the same time.

You can control the size of the individual trace files by setting the initialization parameter
MAX_DUMP_FILE_SIZE. The database appends new data to the alert log. You can copy and move the
alert log to tape periodically and delete the alert log after it reaches a certain limit. The database auto-
matically creates a new alert log in the place of the deleted alert log.

Data Dictionary Views Related to Metrics and Alerts
There are several data dictionary views that provide information about database metrics and alerts.
I’ve already mentioned the V$SYSMETRIC, V$SERVICEMETRIC, and V$SYSMETRIC_HISTORY
views earlier in this chapter. Following are some of the other key views:

• V$METRICNAME shows the mapping of metric names to metric IDs.

• V$ALERT_TYPES displays information about server alert types.

• DBA_HIST_SYSMETRIC_HISTORY contains snapshots of V$SYSMETRIC_HISTORY.

• DBA_ALERT_HISTORY provides a history of alerts that are no longer outstanding; that is, all
alerts that you have already resolved.

• DBA_OUTSTANDING_ALERTS contains all the threshold alerts that have yet to be resolved.

• DBA_THRESHOLDS shows the names as well as the critical and warning values for all thresholds
in the database.

I’ll describe a couple of the important views in more detail in the following sections.

V$ALERT_TYPES

The V$ALERT_TYPES view provides information about all system alert types. Three columns in this
view are noteworthy:

• STATE: Holds two possible values: stateful or stateless. Stateful alerts are those alerts that
clear automatically when the alert threshold that prompted the alert is cleared. The database
considers all nonthreshold alerts as stateless alerts. A stateful alert first appears in the DBA_
OUTSTANDING_ALERTS view and goes to the DBA_ALERT_HISTORY view when it is cleared. A
stateless alert goes straight to DBA_ALERT_HISTORY.

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 959

• SCOPE: Classifies alerts into database-wide and instance-wide.

• GROUP_NAME: Oracle aggregates the various database alerts into some common groups:
space, performance, and configuration.

DBA_THRESHOLDS

The DBA_THRESHOLDS view provides the current threshold settings for all alerts. This view is
useful when you want to find out the current threshold settings for any alert:

SQL> SELECT metrics_name, warning_value, critical_value,
 consecutive_occurrences
 FROM DBA_THRESHOLDS
 WHERE metrics_name LIKE '%CPU Time%';

■Tip If you get a snapshot-too-old alert, you may need to increase the size of your undo tablespace. In addition,
you may consider increasing the length of the undo retention period. Note that you’ll get a maximum of only one
undo alert during any 24-hour period.

The Automatic Workload Repository
The dynamic performance views V$SYSSTAT and V$SESSSTAT hold many of the important cumula-
tive statistics for the Oracle database. Dynamic performance views are very useful in judging database
performance, but unfortunately, when you shut down the database, the data in the dynamic perfor-
mance views disappears completely! If you wish to track database performance over time, or if you
wish to compare the performance effects of database changes, you need to store the performance
data in a repository, which is where the Automatic Workload Repository comes in.

AWR automatically collects and stores database performance statistics relating to problem
detection and tuning, and it lies at the heart of the new database self-tuning mechanisms. The AWR
was designed by Oracle as a replacement for the traditional Statspack utility, which helps you gather
database performance statistics (the Statspack utility is still available, but Oracle strongly recom-
mends using the AWR instead). Note that you must pay additional licensing fees if you want to use AWR.

The AWR generates snapshots of key performance data, such as system and session statistics,
segment-usage statistics, time-model statistics, and high-load-SQL statistics, and it stores the snap-
shots in the Sysaux tablespace. By default, the database will generate a performance snapshot every
hour. You can customize the snapshot interval, the types of statistics the AWR collects, and the length
of time the snapshots are retained in the AWR.

AWR provides performance statistics in two formats:

• A temporary in-memory collection of statistics in the SGA, accessible through dynamic perfor-
mance (V$) views or the OEM interface.

• A persistent type of performance data in the form of regular AWR snapshots, which you access
either through data dictionary (DBA_*) views or the OEM Database Control. The persistent
data in the AWR snapshots helps in historical comparisons of performance.

MMON is a background process that performs mostly management-related tasks, including
issuing database alerts and capturing statistics for recently modified database objects. The MMON
process transfers the memory version of AWR statistics to disk on a regular basis (in the form of
snapshots).

960 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

Oracle DBAs traditionally have needed to maintain special database tables to collect historical
performance data. The AWR automatically collects performance statistics for you and maintains
historical data for analysis. You can view the data in the snapshots with the help of the V$ views or
create reports to examine the data in detail. Various database components and features use the data
from these AWR snapshots to monitor and diagnose performance issues. For example, as you saw in
Chapter 17, the ADDM relies on these snapshots for the diagnosis of performance problems. In addi-
tion, the SQL Tuning Advisor, the Undo Advisor, and the Segment Advisor all use AWR data.

Types of Data Collected by the AWR
The AWR facility collects a large number of performance statistics, including the following:

• Base statistics that are also part of the V$SYSSTAT and V$SESSSTAT views

• SQL statistics that aid in the identification of resource-intensive SQL statements

• Database object-usage statistics that inform you about how the database is currently
accessing various objects

• Time-model statistics, which tell you how much time each database activity is taking

• Wait statistics, which provide information about session waits (In previous versions, you
needed to join the V$SESSION view with the V$SESSION_WAIT view to gather information on
session waits; now several new columns have been added to the V$SESSION view, so you can
query the view directly.)

• ASH statistics, which are flushed to the AWR on a regular basis

• Database feature-usage statistics that tell you whether and how intensively your database is
utilizing various features

• The results of various management advisory sessions, such as the Segment Advisor and the
SQL Access Advisor

• Operating system statistics such as disk I/O and memory usage within the database

As explained in Chapter 17, the ADDM will automatically run after each AWR snapshot, analyzing
the time period between the last two snapshots. By comparing the difference in statistics between
snapshots, for example, the ADDM knows which SQL statements are contributing significantly to
your system load. It then focuses on these SQL statements.

AWR Data Handling
It is important to understand that the AWR isn’t a permanent repository for Oracle performance
statistics. By default, the AWR captures performance statistics on an hourly basis and retains them
for eight days. Oracle estimates that with about ten concurrent sessions, these default settings would
require about 200–300MB of storage space for AWR data.

The space used by AWR depends on the following:

• Data-retention period: The longer the retention period, the more space is used.

• Snapshot interval: The more frequently the snapshots are taken, the more space is used.

• Number of active sessions: The higher the number of user sessions, the more data is collected
by the AWR.

By default, the AWR saves the data for a period of eight days, but you can modify this period.
Oracle recommends that you retain the AWR data to cover at least one complete workload cycle.

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 961

Managing the AWR
Snapshots provide you values for key performance statistics at a given point in time. By comparing
snapshots from different periods, you can compute the rate of change of a performance statistic.
Most of the Oracle advisors depend on these AWR snapshots for their recommendations.

Managing the AWR essentially involves managing the regular snapshots that AWR collects from
your database. The default interval for snapshot collection is 60 minutes, and the minimum interval
is 10 minutes. If you think this isn’t an appropriate length of time for your purposes, you can easily
change the default snapshot interval by changing the INTERVAL parameter.

■Note You can take manual snapshots of the system any time you wish.

To make good use of the AWR feature, you need to select a truly representative baseline, which
is a pair or range of AWR snapshots. When database performance is slow, you can compare the base-
line snapshot statistics with current performance statistics and figure out where the problems are.

You can manage the AWR snapshots either with the help of the OEM Database Control or with
the Oracle-supplied DBMS_WORKLOAD_REPOSITORY package, which lets you manage snapshots
and baselines. Let’s first look at how you can use this package to manage AWR snapshots.

Using the DBMS_WORKLOAD_REPOSITORY Package to Manage AWR Snapshots

You can use the DBMS_WORKLOAD_REPOSITORY package to create, drop, and modify snapshots,
as well as to create and drop snapshot baselines.

To create a snapshot manually, use the CREATE_SNAPSHOT procedure, as follows:

SQL> BEGIN
 dbms_workload_repository.create_snapshot ();
 END;

In order to drop a range of snapshots, use the DROP_SNAPSHOT procedure. When you drop a
set of snapshots, Oracle automatically purges the AWR data that is part of this snapshot range. The
following example drops all snapshots whose snap IDs fall in the range of 40 to 60:

SQL> BEGIN
 dbms_workload_repository,drop_snapshot_range(
 low_snap_id => 40,
 high_snap_id => 60, dbid => 2210828132);
 END;

■Tip If you set the snapshot interval to 0, the AWR will stop collecting snapshot data. Of course, this means that
the ADDM, the SQL Tuning Advisor, the Undo Advisor, and the Segment Advisor will all be adversely affected,
because they depend on the AWR data.

Using the Database Control to Manage AWR Snapshots

You can manage AWR snapshots from the AWR page of the OEM Database Control, shown in
Figure 18-4. To access this page, go to the Database Control home page, click the Administration
link, and click the Automatic Workload Repository link, which is under the Statistics Management
group. This page has two main sections: the General section and the Manage Snapshots and
Preserved Snapshot Sets section.

962 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

Figure 18-4. The main AWR page

If you want to change the general settings of the AWR, you can do so by clicking the Edit button
in the General section. This will take you to the Edit Settings page, where you can modify the following:

• Snapshot retention intervals

• Snapshot collection intervals

• Snapshot collection levels (Typical or All)

Under the Manage Snapshots and Baselines section on the main AWR page, the first line lists the
total number of snapshots. This listing is a link, which you click to get to the Manage Snapshots page,
which lists all the snapshots in the AWR. You can click an individual snapshot to view complete details
about it, including the capture time and the collection level. Figure 18-5 shows the snapshot details
for a single AWR snapshot. If you have established an AWR baseline (which is a representative time
period), you’ll also see how a particular snapshot compares with that baseline.

From the Manage Snapshots page, you can do the following:

• Create a snapshot spontaneously (using the Create button).

• View a list of the snapshots collected over a specific period.

• Establish a range of snapshots to use as a baseline (using the Create Preserved Snapshot Set
button).

• Delete a defined range of snapshots from the list of snapshots collected over a period of time
(using the Delete Snapshot Range button).

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 963

Figure 18-5. Viewing the details of an AWR snapshot

■Note The range of snapshots you use for a baseline is the same as a preserved snapshot set.

Creating and Deleting AWR Snapshot Baselines

AWR baselines enable you to perform comparative performance analysis between two periods. An AWR
baseline consists of a set of AWR snapshots for a reference period. The purpose of using baselines is
to have a valid measuring stick for acceptable database performance, as well as to have a reference
point for various system statistics. When you say database performance is bad, you must know that
it’s bad compared to something you know to be good performance. If your database processes a certain
number of transactions during a representative (baseline) period, it becomes easy to tell whether
your current performance is normal or not. AWR baselines are defined by default, as long as you
make sure that the STATISTICS_LEVEL initialization parameter is set to TYPICAL or ALL. You define an
AWR baseline on a pair of snapshots taken when you know that the period covered represents typical
good database performance. The baseline then serves as a valid representative sample to compare
with current system database performance. When you create a baseline, the AWR retains the base-
line snapshots indefinitely (it won’t purge these snapshots after the default period of seven days),
unless you decide to drop the baseline itself.

You can create a new snapshot baseline by using the CREATE_BASELINE procedure of the DBMS_
WORKLOAD_REPOSITORY package. You identify the snapshots to use with the snap ID, which uniquely
and sequentially identifies each snapshot. You can get the snap IDs you need to create baselines
from the DBA_HIST_SNAPSHOT view.

The following example creates a snapshot baseline named PEAK_TIME baseline:

964 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

SQL> BEGIN
 DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE
 (START_SNAP_ID => 125,
 END_SNAP_ID => 185,
 BASELINE_NAME => 'peak_time baseline',
 DBID => 2210828132);
 END;

You can drop a snapshot baseline by using the DROP_BASELINE procedure of the
DBMS_WORKLOAD_REPOSITORY package, as shown here:

SQL> BEGIN
 DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE(BASELINE_NAME => 'peak_time
 baseline',
 CASCADE => FALSE, DBID => 2210828132);
 END;

By setting the CASCADE parameter to TRUE, you can drop the actual snapshots as well.

Purging AWR Snapshots

As you know, the AWR runs every hour by default, and the AWR statistics are saved for a default
period of eight days. After the eight-day period, Oracle removes the snapshots, starting with the
oldest ones first (excluding the baseline snapshots). Oracle estimates that if you have ten concurrent
sessions, it will take between 200MB and 300MB of disk space to store the data that it saves over the
standard seven-day period. You must therefore ensure that your Sysaux tablespace has at least this
much free space. The number of user sessions is a key determinant of the space required for the
AWR statistics.

■Note If your Sysaux tablespace runs out of space, Oracle will automatically delete the oldest set of snapshots
to make room for new snapshots.

As mentioned earlier, in addition to the number of active user sessions, the period of time for
which you want to retain the AWR data and the snapshot interval are the key determinants of the
volume of statistics retained in the Sysaux tablespace. You can change the retention time period with
the RETENTION parameter and the snapshot interval with the INTERVAL parameter. Here are some details
on the role of these two important parameters in snapshot creation and maintenance:

• RETENTION: As you know, the default retention period for AWR statistics is eight days. The
minimum retention period is one day. The longer the retention period, the more space the
AWR will need in the Sysaux tablespace. However, if there is no room in the Sysaux tablespace,
that fact will override all other retention settings. Oracle will start deleting snapshots, over-
writing the oldest ones first with new data.

• INTERVAL: By default, the AWR collects data every 60 minutes, and the minimum interval value
is 10 minutes. The more frequently you schedule the AWR snapshots, the more data the AWR
will collect; the less frequent the AWR snapshots, the greater the chance that you may miss
short bursts in disk or memory usage that may occur in your database.

You can use the DBMS_WORKLOAD_REPOSITORY package to modify the snapshot settings, as
shown here:

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 965

SQL> BEGIN
 DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS(
 RETENTION => 43200,
 INTERVAL => 30,
 DBID => 3310949047);
 END;

Oracle recommends that you make the retention period the same as your database workload
cycle. If your database is like many typical OLTP databases, you probably have OLTP transactions
throughout the weekdays, with batch jobs scheduled during nights and weekends. If this is the case,
your workload is considered to span a week, in which case the default AWR retention period of eight
days is just fine.

■Note If you set the value of the RETENTION parameter to 0, you disable the automatic purging of the AWR. If
you set the value of the INTERVAL parameter to 0, you disable the automatic capturing of AWR snapshots.

Moving Window Baselines
The database always maintains a system-defined moving window baseline. The window size of the
moving window baseline matches the current AWR baseline period, which is eight days by default.
You can resize moving window baselines by setting the number of days in the moving widow equal
to or less than the AWR retention period. You must first increase the AWR retention period before
you can adjust the size of the moving window baseline

AWR Baseline Templates
Your ability to use AWR baselines isn’t limited to already existing snapshots that you can compare.
You can also create templates for how the data set should create baselines for time periods in the
future. You can schedule the creation of AWR baselines by using baseline templates. You can create
templates that create baselines for a single time period or according to a schedule. For example, if
you know that a holiday weekend is coming up, you can use a single-baseline template to schedule
the creation of a baseline for that period. Or, you can use a repeating-baseline template for creating
a baseline every Friday afternoon from 3 p.m. to 5 p.m., for example. The background process MMON
creates the baselines called for all the baseline templates you create.

You can create AWR baselines through the Enterprise Manager. I explain how to create them
manually in the following sections.

Single-Baseline Templates

A single-baseline template creates a single baseline with a fixed time interval, for example, from
January 1, 2008, at 10:00 a.m., to January 1, 2009, at 12:00 p.m. I show how to create a single baseline
template in the following example, using the CREATE_BASELINE_TEMPLATE procedure:

 SQL> begin
 2 dbms_workload_repository.create_baseline_template (
 3 start_time => '2008-12-31 22:00:00 CST',
 4 end_time => '2009-01-01 08:00:00 CST',
 5 baseline_name => 'test_baseline1',
 6 template_name => 'test_template1',
 7 expiration => 30);
 8* end;
SQL> /

966 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

The one-time baseline template will create an AWR baseline covering the period between 10 p.m. on
December 31, 2008, and 8 a.m. on January 1, 2009. The example shown here creates a template for a
single time period in the future. By default, AWR baselines never expire. You can, however, specify
the EXPIRATION parameter to set the expiration duration, which is the number of days the database
will maintain a baseline. In the example, the EXPIRATION parameter has a value of 30 days.

Repeating-Baseline Templates

A repeating-baseline template creates a repeating baseline, with a time interval that repeats over a
time period, for example, every Friday from 10:00 a.m. to 12:00 p.m. during the year 2008. Here’s
how you create a repeating baseline template:

SQL> begin
dbms_workload_repository.create_baseline_template(
day_of_week => 'Friday',
hour_in_day => 15,
duration => 4,
expiration => 30,
start_time => '2008-10-01 22:00:00 PST'.
end_time => '2007812-31 22:00:00 PST',
baseline_name_prefix => 'Friday_Baseline',
template_name => Friday_Template',
dbid => 1234567899);
 end;
SQL> /

Again, you specify the EXPIRATION parameter to set the length of time for which to retain a
baseline.

Creating AWR Reports

Oracle provides a script named awrrpt.sql (located in the $ORACLE_HOME/rdbms/admin directory) to
generate summary reports about the statistics collected by the AWR facility. The results of running
the awrrpt.sql script are very similar to the output of the traditional Statspack reports. In order to
run an AWR report, you must have the DBA privilege.

■Caution Make sure you don’t confuse the AWR report with the ADDM report that you obtain by running the
addmrpt.sql script. The ADDM report is also based on the AWR snapshot data, but it highlights both the problems
in the database and the recommendations for resolving them.

When you run the awrrpt.sql script, you’ll need to make the following choices:

• Choose between an HTML or plain text report.

• Specify the beginning and ending snap IDs.

If you prefer, you can use the awrsqrpt.sql SQL script, located in the $ORACLE_HOME/rdbms/admin
directory, to generate a report focusing on the performance of a single SQL statement over a range of
snapshot IDs. This may be the right script to run if you’re trying to analyze the performance of a specific
SQL statement, instead of the entire database.

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 967

■Tip You can also use the functions AWR_REPORT_TEXT and AWR_REPORT_HTML (both belonging to the
DBMS_WORKLOAD_REPOSITORY package) to get AWR reports in text and HTML format, respectively. However,
Oracle recommends that you use the awrrpt.sql script (which uses the preceding two functions) to get your
reports instead of directly using these functions.

The AWR reports include voluminous information, including the following:

• Load profile

• Top five timed events

• Wait events and latch activity

• Time-model statistics

• Operating system statistics

• SQL ordered by elapsed time

• Tablespace and file I/O statistics

• Buffer pool and PGA statistics and advisories

Here’s how you create a typical AWR report. First, run the awrrpt.sql script as shown here:

SQL> @$ORACLE_HOME/rdbms/admin/awrrpt.sql

Current Instance
~~~~~~~~~~~~~~~~
   DB Id    DB Name   Inst Num Instance
----------- -------- -------- ------------
877170029   ORCL        1       orcl

In the next step, specify the report type, as shown in Listing 18-2.

Listing 18-2. Specifying the Report Type for an AWR Report

Specify the Report Type
~~~~~~~~~~~~~~~~~~~~~~~
Would you like an HTML report, or a plain text report?
Enter 'html' for an HTML report, or 'text' for plain text
Defaults to 'html'
Enter value for report_type: text
Type Specified: text
Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   DB Id     Inst Num DB Name      Instance     Host
------------ -------- ------------ ------------ ------------
* 877170029         1 ORCL         orcl         prod5
Using  877170029 for database Id
Using          1 for instance number

Next, you must specify the range you want the AWR report to cover by specifying the beginning 
and ending snapshots for the time period you chose, as in Listing 18-3.



968 CH AP T E R  1 8  ■  M A N A G IN G  AN D  M ON I T OR I N G  T H E  O P E R AT IO N A L  D AT AB A SE

Listing 18-3. Specifying the Report Range for an AWR Report

Specify the number of days of snapshots to choose from
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=============
Entering the number of days (n) will result in the most recent
(n) days of snapshots being listed. Pressing <return> without
specifying a number lists all completed snapshots.
Listing the last 3 days of Completed Snapshots
Instance DB Name Snap Id Snap Started Snap Level
------------ ------------ --------- ----------------------- -----
orcl ORCL 3254 30 Mar 2008 00:00 1
 3307 01 Apr 2008 05:00 1
 3308 01 Apr 2008 06:00 1
 3309 01 Apr 2008 07:00 1
 3310 01 Apr 2008 08:01 1
 3311 01 Apr 2008 09:00 1
 3312 01 Apr 2008 10:00 1
 3313 01 Apr 2008 11:00 1
Specify the Begin and End Snapshot Ids
Specify the Begin and End Snapshot Ids
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Enter value for begin_snap: 3309
Begin Snapshot Id specified: 3309
Enter value for end_snap: 3313
End   Snapshot Id specified: 3313
Specify the Report Name

Finally, select a name for the report, as shown in Listing 18-4. You can either choose the default 
name that’s offered or specify your own name for the AWR report.

Listing 18-4. Specifying the Report Name for an AWR Report

The default report file name is awrrpt_1_3309_3313.txt.  To use this name,
press <return> to continue, otherwise enter an alternative.
Enter value for report_name:
Using the report name awrrpt_1_3309_3313.txt
WORKLOAD REPOSITORY report for
DB Name       DB Id        Instance      Inst Num    Release    Cluster   Host
------------ ----------- ------------ ------------  ----------- ------- ------------
ORCL        877170026       orcl          1        11.1.0.6.0    NO      prod2

Snap Id          Snap Time                 Sessions    Curs/Sess
            --------- ------------------- -------- -------------
Begin Snap:      3309 01-Apr-08 07:00:28        480      7,795.3
  End Snap:      3313 01-Apr-08 11:00:58      1,179      3,239.7
   Elapsed:              240.49 (mins)
   DB Time:            7,999.88 (mins)

The first meaningful part of the AWR report shows the size of the buffer cache and the shared 
pool, as shown here:

Cache Sizes (end)
~~~~~~~~~~~~~~~~~
Buffer Cache: 2,304M Std Block Size: 8K
Shared Pool Size: 1,424M Log Buffer: 4,096K

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 969

The Load Profile segment of the AWR report, shown in Listing 18-5, indicates the amount of
logical and physical reads in the database between the two snapshots you chose, as well as the number
of parses, executions, and transactions. The load analysis is shown both on a per-second and per-
transaction basis. This section should give you a quick idea about the load being carried by the
instance, and it will be more useful if you have some baseline figures from a representative period to
compare it with.

Listing 18-5. The Load Profile Section of an AWR Report

Load Profile Per Second Per Transaction
--------------------- ----------- ----------------
Redo size: 209,042.04 19,549.50
Logical reads: 181,753.19 16,997.46
Block changes: 1,470.90 137.56
Physical reads: 6,473.32 605.38
Physical writes: 46.45 4.34
User calls: 2,189.05 204.72
Parses: 225.36 21.08
Hard parses: 1.93 0.18
Sorts: 2,462.09 230.25
Logons: 0.91 0.09
Executes: 2,224.24 208.01
Transactions: 10.69

The Instance Efficiency segment, shown next, displays the buffer cache, library cache hit ratios,
and the percentage of sorting in memory. If this value is low, you should investigate why disk sorting
is high.

Instance Efficiency Percentages (Target 100%)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
            Buffer Nowait %:   99.91       Redo NoWait %:  100.00
            Buffer  Hit   %:   96.44    In-memory Sort %:  100.00
            Library Hit   %:   99.81        Soft Parse %:   99.14
         Execute to Parse %:   89.87         Latch Hit %:   99.55
Parse CPU to Parse Elapsd %:   29.23     % Non-Parse CPU:   99.04

The Top 5 Timed Events section shows the wait situation in your instance during the specified 
period. In the following example, user I/O is contributing a vast majority of the instance waits:

Top 5 Timed Events

~~~~~~~~~~~~~~~~~~                                        % Total
Event Waits Time (s) DB Time Wait Class
------------------------------ ------------ ----------- --------- ------------
db file sequential read 30,650,078 308,185 64.21 User I/O
CPU time 63,520 13.23
db file scattered read 3,641,607 34,740 7.24 User I/O
read by other session 2,256,127 15,262 3.18 User I/O
wait for SGA component shrink 14,012 14,079 2.93 Other

The Time Model Statistics section shows what the instance is spending its time on, as you can
see in Listing 18-6.

970 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

Listing 18-6. The Time Model Statistics Section of an AWR Report

Time Model Statistics DB/Inst: ORCL/orcl Snaps: 3309-3313
-> ordered by Time (seconds) desc
 Time % Total
Statistic Name (seconds) DB Time
--- -------------- -----------
DB time 10,860.27 100.00
sql execute elapsed time 9,989.24 91.98
DB CPU 6,605.53 60.82
background elapsed time 1,693.64 15.59
parse time elapsed 991.06 9.13
hard parse elapsed time 977.66 9.00
background cpu time 837.48 7.71
PL/SQL compilation elapsed time 385.77 3.55
Java execution elapsed time 268.49 2.47
PL/SQL execution elapsed time 246.51 2.27
failed parse elapsed time 84.06 .77
inbound PL/SQL rpc elapsed time 43.14 .40
connection management call elapsed time 17.47 .16
hard parse (sharing criteria) elapsed time 4.25 .04
hard parse (bind mismatch) elapsed time .50 .00

You can review SQL statements in the SQL Ordered by Elapsed Time section. This section of the
report, shown in Listing 18-7, shows the top SQL statements during the period of analysis, ranked
according to the total elapsed time, the CPU time consumed, and the percentage of total DB time used.

Listing 18-7. The SQL Ordered by Elapsed Time Section of an AWR Report

SQL ordered by Elapsed Time DB/Inst: ORCL/orcl Snaps: 3309-3313
-> Resources reported for PL/SQL code includes the resources used by all SQL
 statements called by the code.
-> % Total DB Time is the Elapsed Time of the SQL statement divided
 into the Total Database Time multiplied by 100
 Elapsed CPU Elap per % Total
 Time (s) Time (s) Executions Exec (s) DB Time SQL Id
---------- ---------- ------------ ---------- ------- -------------
 15,970 3,769 24 665.4 3.3 dvycj85pfmb1b
Module: PRNTREPORT
UPDATE UNIT_USERS UR SET UR.CARD_PRINTED_FLAG = 'Y' WHERE UR.CHARTER_ID IN
(SELECT DISTINCT CHARTER_ID FROM PS_LASER_CARDS WHERE BATCH_ID = :B1) AND UR.P
OSNTYP_CODE IN ('V','M','O') AND UR.POSN_CODE NOT IN ('AP','IH') AND UR.REGISTRA
NT_STATUS IN ('X','R','N') AND UR.CARD_PRINTED_FLAG = 'N'

Operating system statistics are listed next:

Operating System Statistics
Statistic Name Value
----------------------------------- ------------------
AVG_BUSY_TICKS 989,293
AVG_IDLE_TICKS 1,971,976
AVG_IOWAIT_TICKS 125,186
AVG_SYS_TICKS 447,993
AVG_USER_TICKS 540,353
BUSY_TICKS 15,845,441
IDLE_TICKS 31,567,835

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 971

The Segments by Physical Reads section, shown in Listing 18-8, lists the database objects (tables
and indexes) that have the highest percentage of physical reads.

Listing 18-8. The Segments by Physical Reads Section of an AWR Report

Segments by Physical Reads DB/Inst: ORCL/orcl Snaps: 3309-3313
 Tablespace Subobject Obj. Physical
Owner Name Object Name Name Type Reads %Total
---------- ---------- -------------------- ---------- ----- ------------ -------
PAS UNIT_REGIS UNIT_REGISTRANTS TABLE 18,003,616 21.08
PAS CAMPAIGN_P CAMPAIGN_POSITIONS TABLE 15,319,556 17.94
PAS OT_D01 PAYMENT_CATEGORY_BAT TABLE 11,799,007 13.81
PAS PERSONNEL_D PERSONNEL TABLE 7,189,914 8.42

. . .
End of Report

■Note I only highlighted a few of the categories of information contained in a typical AWR report. Run the
awrrpt.sql script to get a full picture of your instance performance over a specified period of time. In addition to
the information listed previously, you get important wait information, as well as detailed logical and physical reads
analysis based on SQL statements and on a per-datafile basis.

Managing AWR Statistics with Data Dictionary Views

The best way to view AWR data is by using the OEM Database Control. Of course, you can also run
the awrrpt.sql script, as shown earlier, to view a summary of the AWR data.

The following data dictionary views are very helpful in viewing AWR data:

• The DBA_HIST_SNAPSHOT view shows all snapshots saved in the AWR.

• The DBA_HIST_WR_CONTROL view displays the settings to control the AWR.

• The DBA_HIST_BASELINE view shows all baselines and their beginning and ending snap
ID numbers.

Active Session History
AWR snapshots are very useful, but Oracle takes the snapshots only every 60 minutes by default. If
you are interested in analyzing a performance problem that happened 10 minutes ago, the AWR
snapshots aren’t of any help to you. However, you do have a way to get that information. Oracle
Database collects the new Active Session History statistics (mostly the wait statistics for different
events) for all active sessions every second, and stores them in a circular buffer in the SGA. Thus, ASH
records very recent session activity (within the past five or ten minutes).

The MMNL process (Oracle calls this manageability monitor light, although this process shows
up as “manageability monitor process 2” when you query the V$BGPROCESS view) performs light-
weight manageability tasks, including computing metrics and capturing session history information
for the ASH feature under some circumstances. For example, MMNL will flush ASH data to disk if the
ASH memory buffer fills up before the one-hour interval that would normally cause the MMON to
flush it.

ASH analysis provides you with effective performance data, since it focuses strictly on active
sessions. You can perform an analysis of the current active sessions by using the V$ACTIVE_SESSION_
HISTORY view and older session history by using the DBA_HIST_ACTIVE_SESSION_HISTORY view.

972 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

■Note The extra statistics in Oracle Database described in this chapter won’t have a detrimental effect on perfor-
mance, since the statistics mostly come directly from the SGA via background processes. The ASH feature uses
about 2MB of SGA memory per CPU.

Current Active Session Data
As you are aware, the V$SESSION view holds all the session data for all current sessions. It contains
72 columns of information, so it’s unwieldy when you are trying to analyze session data. That’s why
ASH samples the V$SESSION view and gets the most critical wait information from it. Oracle provides
the new V$ACTIVE_SESSION_HISTORY view, which contains one row for each active session that
ASH samples and returns the latest session rows first.

The V$ACTIVE_SESSION_HISTORY view is where the database stores a sample of all active
session data. In this view, there’s a column called SESSION_STATE, which indicates whether a session
is active. The SESSION_STATE column can take two values: ON CPU or WAITING. A session is defined as
an active session in the following cases:

• The session state is ON CPU, meaning that it is actively using the CPU to perform a database
chore.

• The session state is WAITING, but the EVENT column indicates that the session isn’t waiting for
any event in the IDLE class.

Note that ASH is really a rolling buffer in the SGA; it is an in-memory active session history. Thus,
in a busy database, older information is frequently overwritten, since ASH collects data every second
from the V$SESSION view.

■Note Chapter 20 shows you how to use ASH statistics to tune instance performance.

Older Active Session History Data
The DBA_HIST_ACTIVE_SESSION_HISTORY data dictionary view provides historical information
about recent active session history. In other words, this view is nothing but a collection of snapshots
from the V$ACTIVE_SESSION_HISTORY view, which itself is a sample of active session data.

There are two ways in which the DBA_HIST_ACTIVE_SESSION_HISTORY view is populated:

• During the course of the regular (by default, hourly) snapshots performed by the AWR, the
MMON background process flushes the ASH data to the AWR.

• Oracle may also need to transfer data to the DBA_HIST_ACTIVE_SESSION_HISTORY view in
between the regular snapshots if the memory buffer is full and the database can’t write new
session activity data to it. In this case, the new MMNL background process will perform the
flushing of data from the memory buffer to the data dictionary view.

Producing an ASH Report
You can use the ashrpt.sql script, located in the $ORACLE_HOME/rdbms/admin directory, to get an
ASH report. The use of the script is similar to the AWR script awrrpt.sql described earlier in this
chapter. The script generates information about the SQL that ran during the time you specify, and it
includes blocking and wait details. Here’s how you run the ashrpt.sql script to get an ASH report:

$ $ORACLE_HOME/rdbms/admin/ashrpt.sql

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 973

You are prompted for the time frame for collecting ASH information, whether you’d like an
HTML or text report, and the name of the report. Listing 18-9 shows a portion of an ASH report.

Listing 18-9. The Beginning of an ASH Report

ASH Report For NICKO/nicko
DB Name DB Id Instance Inst Num Release Cluster Host
------------ ----------- ------------ -------- ----------- -------
NICKO 1974138210 nicko 1 11.1.0 NO localhost
CPUs SGA Size Buffer Cache Shared Pool ASH Buffer Size
---- ------------------ ------------------ ------------------ -----
 1 304M (100%) 100M (32.9%) 184M (60.5%) 2.0M (0.7%)
 Analysis Begin Time: 28-Jun-08 12:29:55
 Analysis End Time: 28-Jun-08 13:30:00
 Elapsed Time: 60.1 (mins)
 Sample Count: 81
 Average Active Sessions: 0.02
 Avg. Active Session per CPU: 0.02
 Report Target: None specified

The first section of the ASH report provides information about the top user events, as shown in
Listing 18-10.

Listing 18-10. The Top User Events Part of the ASH Report

Top User Events DB/Inst: NICKO/nicko (Jun 28 12:29 to 13:30)
 Avg Active
Event Event Class % Activity Sessions
----------------------------------- --------------- ---------- ----------
null event Other 19.75 0.00
CPU + Wait for CPU CPU 18.52 0.00
SQL*Net break/reset to client Application 18.52 0.00
log file switch completion Configuration 1.23 0.00
log file sync Commit 1.23 0.00

The Top Background Events section, shown in Listing 18-11, shows the wait events in the
database.

Listing 18-11. The Top Background Events Part of the ASH Report

Top Background Events DB/Inst: NICKO/nicko (Jun 28 12:29 to 13:30)
 Avg Active
Event Event Class % Activity Sessions
----------------------------------- --------------- ---------- ----------
os thread startup Concurrency 20.99 0.00
control file parallel write System I/O 9.88 0.00
CPU + Wait for CPU CPU 6.17 0.00
db file sequential read User I/O 1.23 0.00
log file parallel write System I/O 1.23 0.00

The Top Service/Module section, shown in Listing 18-12, displays the activity broken down
according the services or modules in the instance.

974 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

Listing 18-12. The Top Service/Module Part of the ASH Report

Top Service/Module DB/Inst: NICKO/nicko (Jun 28 12:29 to 13:30)
 Avg Active
Service Module % Activity Sessions
-------------------- ------------------------------ ---------- ----------
SYS$BACKGROUND UNNAMED 35.80 0.01
nicko OEM.SystemPool 20.99 0.00
SYS$USERS UNNAMED 17.28 0.00
nicko OEM.BoundedPool 7.41 0.00
SYS$USERS EM_PING 6.17 0.00

Listing 18-13 shows information on the top SQL command types executed in the database
during the last hour.

Listing 18-13. The Top SQL Command Types Part of the ASH Report

Top SQL Command Types DB/Inst: NICKO/nicko (Jun 28 12:29 to 13:30)
 Avg Active
SQL Command Type % Activity Sessions
-- ---------- ----------
PL/SQL EXECUTE 19.75 0.00
SELECT 9.88 0.00
INSERT 1.23 0.00
UPDATE 1.23 0.00

Listing 18-14 identifies the top SQL statements during the time period of the ASH analysis.

Listing 18-14. The Top SQL Statements Part of the ASH Report

Top SQL Statements DB/Inst: NICKO/nicko (Jun 28 12:29 to 13:30)

 SQL ID % Activity Event % Event
--------------- ---------- ---------------------------- ----------
 2b064ybzkwf1y 18.52 SQL*Net break/reset to client 18.52
BEGIN EMD_NOTIFICATION.QUEUE_READY(:1, :2, :3); END;

After this, you’ll also see a section called Top SQL Using Literals that helps you identify SQL
that’s not using bind variables.

The next two segments, shown in Listing 18-15, relate to Top Sessions and Top Blocking Sessions
based on enqueue waits and buffer busy wait statistics.

Listing 18-15. The Top Sessions and Blocking Sessions Part of the ASH Report

Top Sessions DB/Inst: NICKO/nicko (Jun 28 12:29 to 13:30)
-> '# Samples Active' shows the number of ASH samples in which the session
 was found waiting for that particular event. The percentage shown
 in this column is calculated with respect to wall clock time
 and not total database activity.
Top Blocking Sessions DB/Inst: NICKO/nicko (Jun 28 12:29 to 13:30)
-> Blocking session activity percentages are calculated with respect to
 waits on Enqueues and "buffer busy" only

The next three segments summarize the top database objects, the top database files, and the top
latches in the instance. In the end, the ASH report provides a summary of the wait events in the data-
base, distributed over smaller time slots than the aggregate period of analysis, as shown in Listing 18-16.

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 975

In this example, the one-hour time period is broken up into ten six-minute intervals. This analysis
helps you pinpoint performance deterioration more accurately.

Listing 18-16. Summary of Wait Events over Time Intervals

Activity Over Time DB/Inst: NICKO/nicko (Jun 28 12:29 to 13:30)
-> Analysis period is divided into smaller time slots
-> Top 3 events are reported in each of those slots
-> 'Slot Count' shows the number of ASH samples in that slot
-> 'Event Count' shows the number of ASH samples waiting for
 that event in that slot
-> '% Event' is 'Event Count' over all ASH samples in the analysis period
 Slot Event
Slot Time (Duration) Count Event Count % Event
-------------------- -------- ------------------------------ -------- -------
 12:30:00 (6.0 min) 6 SQL*Net break/reset to client 3 3.70
 null event 2 2.47
 os thread startup 1 1.23
 12:36:00 (6.0 min) 4 CPU + Wait for CPU 3 3.70
 null event 1 1.23
 12:42:00 (6.0 min) 7 CPU + Wait for CPU 2 2.47
 null event 2 2.47
 os thread startup 2 2.47
 12:48:00 (6.0 min) 9 SQL*Net break/reset to client 3 3.70
 CPU + Wait for CPU 2 2.47
 control file parallel write 2 2.47
 12:54:00 (6.0 min) 13 control file parallel write 4 4.94
 os thread startup 4 4.94
 CPU + Wait for CPU 2 2.47
 13:00:00 (6.0 min) 16 CPU + Wait for CPU 5 6.17
 SQL*Net break/reset to client 4 4.94
 null event 3 3.70
 13:06:00 (6.0 min) 9 CPU + Wait for CPU 3 3.70
 SQL*Net break/reset to client 2 2.47
 os thread startup 2 2.47
 13:12:00 (6.0 min) 5 null event 2 2.47
 CPU + Wait for CPU 1 1.23
 SQL*Net break/reset to client 1 1.23
 13:18:00 (6.0 min) 4 SQL*Net break/reset to client 1 1.23
 control file parallel write 1 1.23
 null event 1 1.23
 13:24:00 (6.0 min) 8 os thread startup 4 4.94
 CPU + Wait for CPU 2 2.47
 SQL*Net break/reset to client 1 1.23
End of Report

The Management Advisory Framework
Oracle Database 11g includes several management advisors to provide you with automatic perfor-
mance details about various subsystems of the database. These advisors are specialized tools that
help in the performance tuning of various database components, identifying bottlenecks and suggesting
optimal sizes for key database resources. For example, the Undo Advisor tells you what the optimal

976 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

undo tablespace size might be for your database. Each of these advisors bases its actions on a specific
Oracle PL/SQL package like the DBMS_ADVISOR package.

Each time an advisor runs a task, it performs an analysis and provides you with recommenda-
tions. Note that the ADDM and the Automatic Segment Advisor are the only advisors that are scheduled
to run automatically. To get recommendations from any of the other advisors, you must manually
schedule or perform an advisor task.

The management advisory framework offers you a uniform interface for all Oracle advisors. Some
of these advisors have been around since Oracle9i. What is new is that Oracle has built a common
management advisory framework to make it easy to manage the advisors. The new framework allows
you to use a similar method to invoke all the advisors, and the advisors provide their reports in a
consistent format as well. All the advisors get their raw data from the AWR and store their analysis
results in the AWR.

The advisory framework’s primary function is to help the database improve its performance.
The ADDM recommends using the management advisors on an ad hoc basis, whenever a perfor-
mance problem needs a deeper analysis. DBAs can also use the advisors for performing what-if
analyses.

The Management Advisors
You can group the automatic advisors into the following groups: memory-related, tuning-related,
and space-related. Let’s briefly look at the advisors that fall into these three groups.

Memory- and Instance-Related Advisors

There are two memory- and instance-related management advisors:

• Memory Advisor: This advisor provides recommendations regarding the optimal sizing of
total memory allocation as well as SGA and the PGA memory. The Allocation History chart
shows the history of the memory allocation for the various SGA components over time.

• MTTR Advisor: This advisor lets you configure instance recovery by enabling you to adjust the
mean time to recover (MTTR) setting for an instance.

■Tip Obviously, if you are using automatic shared memory and program global area management, you don’t need
the Memory Advisor to tell you how to size these memory components, since the database will manage these by itself.

Tuning-Related Advisors

The ADDM, of course, is the most important all-around tuning advisor in the database, and it provides
access to the automatic diagnostic capabilities of the Oracle database. Apart from the ADDM, there
are two purely SQL-tuning-related and SQL-performance-related advisors:

• SQL Tuning Advisor: This advisor analyzes complex SQL statements and recommends ways
to improve performance. The SQL Tuning Advisor bases all its work on internal statistics and
may include suggestions to collect new statistics as well as to restructure SQL code. In Oracle
Database 11g, the SQL Tuning Advisor runs automatically during the daily maintenance
windows. This advisor is referred to as the Automatic SQL Tuning Advisor during these runs,
and it selects high-load SQL statements and generates recommendations on tuning them. I
discuss the SQL Tuning Advisor in Chapter 19.

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 977

• SQL Access Advisor: This advisor mainly provides you advice on creating new indexes, mate-
rialized views, or materialized view logs. You provide the advisor with a representative workload
in order to get its advice. I discuss the SQL Access Advisor in Chapter 7.

■Note Most of the database alert messages in the OEM also contain a link to specific management advisors.
Thus, you can invoke a management advisor directly from the alert message itself.

Space-Related Advisors

Oracle Database 11g has two space-related advisors:

• Segment Advisor: This advisor allows you to perform growth-trend analyses on various data-
base objects. This advisor also helps you perform object shrinkage, thus helping you reclaim
unused space in your database. The Segment Advisor automatically runs during the mainte-
nance window and recommends candidate objects for shrinking, as well as objects that are
candidates for a reorganization operation due to issues such as excessive row chaining.

• Undo Advisor: This advisor bases its activities on system usage statistics, including the length
of the queries as well as the rate of undo generation. The Undo Advisor facilitates Oracle’s
Automatic Undo Management (AUM) feature. It helps you to correctly size your undo tablespace
and to correctly size the undo retention interval.

Managing the Advisory Framework
You can manage all aspects of the management advisory framework easily using the Database
Control interface. You can also use the DBMS_ADVISOR package to create and manage tasks for
each of the management advisors.

Using the DBMS_ADVISOR Package

You can invoke any of the management advisors through the OEM interface, using various wizards
like the SQL Access Advisor Wizard, and this is my suggested way to use any of the advisors. However,
there are times when you may need to invoke an advisor programmatically, in which case you can
use the DBMS_ADVISOR package to manage modules in the advisory framework. The methods for
creating a task, adjusting task parameters, performing the analysis, and reviewing the recommenda-
tions are common to all advisors.

■Note You must grant a user the ADVISOR privilege for the user to use the DBMS_ADVISOR package.

These are the steps you must follow to use the DBMS_ADVISOR package to manage various
advisors:

1. Create a task.

2. Set the task parameters.

3. Generate the recommendations.

4. Review the advisor’s recommendations.

I describe these steps in detail in the following sections.

978 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

Creating a Task

The first step in using an advisor is creating a task. A task is where the advisor stores all its
recommendation-related information.

You create a task using the CREATE_TASK procedure, as shown here:

SQL> VARIABLE task_id NUMBER;
SQL> VARIABLE task_name VARCHAR2(255);
SQL> EXECUTE DBMS_ADVISOR.CREATE_TASK ('SQL Access Advisor', :task_id, :task_name);

Setting the Task Parameters

After you create a new task, the next step is to set the parameters for this task. The task parameters
control the recommendation process. The parameters that you can modify belong to four groups:
workload filtering, task configuration, schema attributes, and recommendation options.

Here is an example showing how you can set various task parameters using the SET_TASK_
PARAMETER procedure:

SQL> EXECUTE DBMS_ADVISOR.SET_TASK_PARAMETER (-
 'TEST_TASK', 'VALID_TABLE_LIST', 'SH.SALES, SH.CUSTOMERS');

In this example, the VALID_TABLE_LIST parameter belongs to the workload-filtering group of
parameters. You are instructing the advisor (the SQL Access Advisor) to exclude all tables from the
analysis except the sales and customers tables from the SH schema.

The following example uses the STORAGE_CHANGE parameter from the recommendation-options
group to add 100MB of space to the recommendations:

SQL> EXECUTE DBMS_ADVISOR.SET_TASK_PARAMETER('TEST_TASK',
 'STORAGE_CHANGE', 100000000);

■Tip The V$ADVISOR_PROGRESS view lets you monitor the progress of advisor tasks as they execute.

Generating the Recommendations

To generate a set of recommendations by any advisor, you execute the task that you created earlier,
using the EXECUTE_TASK procedure of the DBMS_ADVISOR package. The EXECUTE_TASK proce-
dure will generate recommendations, which consist of one or more actions. For example, executing
the SQL Access Advisor may provide a recommendation to create a materialized view and a materi-
alized view log.

Here’s how you execute a task named TEST_TASK:

SQL> EXECUTE DBMS_ADVISOR.EXECUTE_TASK('TEST_TASK');

Viewing the Recommendations

You can view the recommendations made by a certain task by using the GET_TASK_REPORT proce-
dure. You can also use the DBA_ADVISOR_RECOMMENDATIONS view to check the recommendations
related to a particular advisor task name:

SQL> SELECT rec_id, rank, benefit
 FROM DBA_ADVISOR_RECOMMENDATIONS
 WHERE task_name = 'TEST_TASK';

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 979

 REC_ID RANK BENEFIT
---------- ---------- ---------
 1 2 2754
 2 3 1222
 3 1 5499
 4 4 594

In this example, the RANK column shows how the four recommendations stack up against
each other. The BENEFIT column shows the decrease in the execution cost for each of the four
recommendations.

Using the OEM Database Control to Manage the Advisory Framework

The best way to use the management advisors is through the OEM Database Control. All you need to
do is click the Advisor Central link on the Database Control home page. From the Advisor Central
page, shown in Figure 18-6, you can select any of the management advisors in the database.

Figure 18-6. The Advisor Central page in the Database Control

The Advisor Central page is your starting point to using the advisory framework through the
OEM Database Control or Grid Control. You use the Advisor Tasks sections to review the results of
running an advisor task. The Results table on the main Advisor Central page shows the output of the
last run of the advisor.

After creating a new database, the first time you check this page you’ll see a single ADDM task
result. This is because the ADDM runs automatically after you create the database. As you invoke the
other advisors, the Results table will gather other results.

980 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

Using Data Dictionary Views to Manage the Advisory Framework

Several new data dictionary views provide information about managing tasks and recommenda-
tions made by the various advisors. These are the main advisor-related dictionary views:

• DBA_ADVISOR_TASKS: This view shows information about all tasks in the database, including
the task name, data of creation, and frequency of usage. The ACTIVITY_COUNTER column indi-
cates whether useful work is being done by a task.

• DBA_ADVISOR_PARAMETERS: This view shows the names and values of all parameters for all
advisor tasks in the database.

• DBA_ADVISOR_FINDINGS: This view shows the findings reported by all the advisors, including
the finding’s impact value.

• DBA_ADVISOR_RECOMMENDATIONS: This view contains an analysis of all the recommen-
dations in the database. You can also view the benefits of implementing each recommendation
and a ranking of all recommendations based on their benefit value.

• DBA_ADVISOR_ACTIONS: This view shows the remedial actions associated with each advisor
recommendation.

• DBA_ADVISOR_RATIONALE: This view shows you the rationale for all advisor
recommendations.

USING THE SEGMENT ADVISOR

The Segment Advisor is automatically scheduled to run during the default maintenance window by the Scheduler. The
Segment Advisor will provide you with recommendations regarding objects that might need compacting to reclaim
unused space, as well as recommendations about object reorganization to eliminate problems such as excessive
row chaining.

You can view the details of the Segment Advisor’s recommendations through the DBA_AUTO_SEGADV_CTL view. By
using the ASA_RECOMMENDATIONS built-in pipelined function (located in the DBMS_SPACE package), you can find
out which segments have reclaimable space and excessive row chaining. Here’s how you would use it:

SELECT * FROM TABLE (DBMS_SPACE.ASA_RECOMMENDATIONS());

You can also view the Segment Advisor’s recommendations and the reasons for them by going to the Advisor Central
page in the Database Control and clicking the Segment Advisor Recommendations link at the top of the page. At the
bottom of the Segment Advisor Recommendations page, click the link entitled Recommendations from Last Run of
the Automatic Segment Advisor Job.

Working with the Undo and the MTTR Advisors
I’ve discussed how to use the most important advisors like the ADDM, SQL Tuning Advisor, SQL
Access Advisor, and Segment Advisor in other chapters. I’ll briefly summarize the use of the Undo
and MTTR Advisors here.

Using the Undo Advisor
The database automatically tunes undo retention to ensure the successful completion of the longest
running queries. However, you can set your own undo threshold value, which then becomes the
minimum value, below which Oracle can’t set its automatically tuned undo retention period.

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 981

You can get to the Undo Advisor by following these steps:

1. From the Database Control home page, click the Advisor Central link.

2. On the Advisor Central page, click the Undo Management link.

3. Click the Undo Advisor button at the top of the page.

Using the Undo Advisor, you can do the following:

• Set the low threshold value for undo retention.

• Figure out the size of the undo tablespace size you’ll need for a new undo retention setting.

• Use different analysis time periods representing different levels of system activity to get
recommendations, in the form of a graph, about the right undo tablespace size for varying
undo retention length.

Using the MTTR Advisor
To control database recovery time, you use the FAST_START_MTTR_TARGET initialization parameter
to set the MTTR from a crash. To optimize performance, set the size of the redo log files so they are
just large enough that Oracle isn’t performing more checkpoints than required by the value of FAST_
START_MTTR_TARGET.

■Note The FAST_START_MTTR_TARGET parameter is discussed in detail in Chapter 16.

If your log files are small, Oracle may perform incremental checkpointing more often than the
MTTR value specifies. As has been mentioned, frequent log switching tends to promote incremental
checkpoint activity, meaning that the database writer will perform excessive disk I/O. In an ideal
setup, the MTTR target should govern this activity.

You can access the MTTR Advisor through the Database Control, as follows:

1. From the Database Control home page, click the Advisor Central link under the Related
Links section.

2. Click the MTTR Advisor link under the Advisors group.

The main page of the MTTR Advisor is titled Configure Recovery Settings. You can do the
following things with the help of the MTTR Advisor:

• Look up the tradeoff between a certain MTTR and total I/O in the Instance Recovery section.

• Turn archive logging on and off and enable and disable the automatic archiving of the redo
logs, both through the Media Recovery section.

• Manage the flash recovery area (discussed in detail in Chapter 15), including its location and
size, and enable and disable Flashback Database logging for fast database point-in-time
recovery. You do all this from the Flash Recovery Area section.

Managing Online Redo Logs
The online redo logs are Oracle’s means of ensuring that all the changes made by the users are logged, in
case there’s a failure before those changes can be written to permanent storage. Thus, redo logs are
fundamental for the recovery process.

982 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

Oracle organizes its redo log files in redo log groups, and you need to have at least two different
groups of redo logs with at least one member in each. You need to have at least two redo groups,
because even when one redo log is being archived, the log writer should be able to write to an active
redo log.

Although your database will run just fine with only one member in each redo log group, Oracle
strongly recommends that you multiplex the online redo logs. Multiplexing simply means that you
maintain more than one member in each of your redo log groups. All members of a redo log group
are identical—multiplexing is designed to protect against the loss of a single copy of a log file. When
you multiplex the online redo log files, the log writer writes simultaneously to all the members of
a group.

■Tip Always multiplex the online redo log, as you can lose data if one of the active online redo logs is lost due
to a disk problem. The multiplexed redo logs should ideally be located on different disk drives under different disk
controllers.

Hardware Mirroring vs. Oracle Multiplexing
Mirroring will protect you from a disk failure, but it will not protect you against an accidental dele-
tion of files. Multiplexing ensures that your files are protected soundly against such errors.

If you lose an online redo log, you may lose valuable data, so under a multiplexed redo log
system, the LGWR background process, which is in charge of writing redo log data from the redo log
buffer, writes simultaneously to all the (identical) members of a multiplexed group. If there are problems
writing to one member of a multiplexed group of redo logs, the writes to the other members continue
unhindered.

Online Redo Log Groups
When you multiplex redo log files, you are maintaining identical copies of the same files. Let’s say
you create two copies of a redo log file. You need to create a redo log group to contain these two iden-
tical files, which are called members of the group. At any given time, the LGWR process will write to
a single group of redo log files, and the members of that group are then said to be current.

Here are some basic conditions for Oracle redo log groups:

• All redo log files in a group must be identically sized.

• Although you can put both members of an online redo log group on the same physical disk,
it’s smart to locate them on different disks so one identical member can survive a disk crash
that involves another member of the same group. Oracle will continue to write to the surviving
members of the online redo log group when one member is not writable (perhaps due to a
problem involving the disk drive).

Creating Online Redo Log Groups
You can create online redo log groups when you create a database for the first time. Here’s an example
showing just the redo log creation statement as part of the database creation process. Note that the
three redo log groups each have only a single member—they are not multiplexed at this point.

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 983

SQL> CREATE DATABASE
 . . .
 LOGFILE GROUP 1 ('/u01/app/oracle/nicko/redo01.log') SIZE 100M,
 GROUP 2 ('/u01/app/oracle/nicko/redo02.log') SIZE 100M,
 GROUP 3 ('/u01/app/oracle/nicko/redo03.log') SIZE 100M,
 . . .
Database created.
SQL>

Adding Redo Log Groups
Although you need a minimum of two online redo log groups, the ideal number of online redo log
groups for your database can only be worked out from the transaction activity in your database.

■Tip Start with two or three online redo log groups and monitor your alert log for any redo log errors. If the alert
log frequently shows that the log writer was waiting to write to an online redo log, you have to increase the number
of redo groups.

The following statement, which uses the ADD LOGFILE GROUP syntax, adds a new group of redo
logs to your database. Note that this new redo log group is duplexed; two redo log files are being
created in the group, not one:

SQL> ALTER DATABASE
 ADD LOGFILE GROUP 4 ('/u01/app/oracle/nicko/log4a.rdo',
 ('/u01/app/oracle/nicko/log4b.rdo') SIZE 500M;
Database altered.
SQL>

In the example in the previous section, we created three online log groups, but each of them had
only a single member. To duplex those groups to provide additional safety, we need to add a member
to each group. To add a single member to an existing group, you use the ADD LOGFILE MEMBER statement:

SQL> ALTER DATABASE ADD LOGFILE MEMBER
 '/u01/app/oracle/nicko/log1b.rdo'
 TO GROUP 2;
Database altered.
SQL>

Note that we didn’t have to specify a size for the new redo log member being added to group 2—
the new member will simply be sized the same as the existing members of the group.

Renaming Redo Log Files
If you need to rename your redo log file, follow these steps:

1. Shut down the database and start it up in mount mode:

SQL> STARTUP MOUNT

2. Move the files to the new location with an operating system command:

SQL> host mv /u10/app/oracle/oradata/nina/log01.rdo
 /a10/app/oracle/oradata/nina/log01.rdo

984 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

3. Use the ALTER DATABASE RENAME datafile TO command to rename the file within the control
file (you must rename the database after renaming the file):

SQL> ALTER DATABASE RENAME
 '/u10/app/oracle/oradata/nina/log01.rdo' TO
 '/a10/app/oracle/oradata/nina/log01.rdo';

Dropping Online Redo Logs
You can drop an entire redo log group by using the following command:

SQL> ALTER DATABASE DROP LOGFILE GROUP 3;

To drop a single member of an online redo log group, use this command:

SQL> ALTER DATABASE DROP LOGFILE MEMBER
 '/u01/app/oracle/oradata/nina/log01.rdo';

If the redo log file you want to drop is active or current, Oracle won’t let you drop it. You need to
use the following command to switch the log file first, after which you can drop it:

SQL> ALTER SYSTEM SWITCH LOGFILE;

Online Redo Log Corruption
You can set the DB_BLOCK_CHECKSUM initialization parameter to on to make sure Oracle checks for
corruption in the redo logs before they’re archived. If the online redo logs are corrupted, the file
can’t be archived, and one solution is to just drop and re-create them. But if there are only two log
groups, you can’t do this, as Oracle insists on having a minimum of two online redo log groups at all
times. However, you can create a new (third) redo log group, and then drop the corrupted redo log
group.

Also, you can’t drop an online redo log file if the log file is part of the current group. Your strategy
then would be to reinitialize the log file by using the following statement:

SQL> ALTER DATABASE CLEAR LOGFILE GROUP 1;

If the log group has not been archived yet, you can use the following statement:

SQL> ALTER DATABASE CLEAR UNARCHIVED LOGFILE GROUP 1;

Monitoring the Redo Logs
You can use two key dynamic views, V$LOG and V$LOGFILE, to monitor the online redo logs.

The V$LOGFILE view provides the full filename of the redo logs, their status, and type, as
shown here:

SQL> SELECT * FROM V$LOGFILE;
 GROUP # STATUS TYPE MEMBER
-------- -------- ------ --------------------------------------
 3 STALE ONLINE /u10/app/oracle/oradata/nina/log01.rdo
 2 ONLINE /u10/app/oracle/oradata/nina/log01.rdo
 1 ONLINE /u10/app/oracle/oradata/nina/log01.rdo
3 rows selected.

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 985

The V$LOG view gives detailed information about the size and status of the redo logs, as well as
showing whether the logs have been archived:

SQL> SELECT group#, sequence#, bytes, archived, members, status
 2* FROM V$LOG;

 GROUP# SEQUENCE# BYTES ARCHIVED MEMBERS STATUS
---------- ---------- ---------- --- ---------- -------------
 1 8 104857600 NO 1 INACTIVE
 2 10 104857600 NO 1 CURRENT
 3 7 104857600 NO 1 INACTIVE
 4 9 10485760 NO 3 INACTIVE
SQL>

Managing Database Links
A database link enables a one-way connection to a remote database from a local database. The link
is one-way only. The remote database users can’t use this link to connect to the local database—they
must create a separate database link for that.

A database link allows you to gain access to a different database though a remote database user
account; you don’t have to be a user in the remote database. Your privileges on that database will be
identical to the privileges of the user account you use when creating the database link. Database
links are useful when you want to query a table in a distributed database or even insert data from
another database’s table into a local table. Database links allow users to access multiple databases
as a single logical database.

You can create private and public database links. In the following sections, we’ll look at examples of
how to create both types of database links.

Creating a Private Database Link
A private database link is owned by the user that creates the link. In the following statement, the
SYSTEM user creates a private database link. The database link enables a connection to the remote
database using the hr user’s username and password in that database.

SQL> CONNECT system/system_passwd@finance
Connected.
SQL>
SQL> CREATE DATABASE LINK MONITOR
 2 CONNECT TO hr IDENTIFIED BY hr
 3 USING 'monitor';

Database link created.
SQL>

After the link is created, the SYSTEM user can query the hr.employees table in the remote
database.

SQL> SELECT COUNT(*) FROM hr.employees@monitor;

 COUNT(*)

 107
SQL>

986 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

■Note To create a database link, a user must have the CREATE PRIVATE DATABASE LINK privilege or the CREATE
PUBLIC DATABASE LINK privilege in the local database.

In the preceding statement, note that the database link’s name is MONITOR, which is the same
as the remote database’s TNS name alias (Oracle Net Service alias), but it could be anything you
want. The CONNECT TO . . . IDENTIFIED BY clause means that the user of this database link will use
that username and password to enter the remote database. The USING 'monitor' clause simply specifies
the TNS name alias for the linked remote database.

Because this is a private database link, only the SYSTEM user can use it. When the hr user tries
to use this link to a remote database, this is what happens:

SQL> CONNECT hr/hr;
Connected.
SQL> SELECT count(*) FROM hr.employees@monitor;
select count(*) from hr.employees@monitor
 *
ERROR at line 1:
ORA-02019: connection description for remote database not found
SQL>

Creating a Public Database Link
A public database link, unlike a private database link, enables any user or any PL/SQL program unit
to access the remote database objects. The creation statement is very similar to that for a private
database link. You just add the PUBLIC keyword to the CREATE DATABASE LINK statement:

SQL> connect system/system_passwd as sysdba;
Connected.
SQL> CREATE PUBLIC DATABASE LINK MONITOR
 2 CONNECT TO hr IDENTIFIED BY hr
 3 USING 'monitor';
Database link created.
SQL>

■Tip You can create a public database link if several users require access to a remote Oracle database from a
local database. Otherwise, create a private database link, which will allow only the owner of the private database
link to access database objects in the remote database.

Once the public MONITOR link is created, any user can log into a remote database using that
link. In the following example, the user tester uses the public database link to query the remote data-
base, MONITOR.

SQL> CONNECT tester/tester1;

Connected.
SQL> SELECT COUNT(*) FROM hr.employees@monitor;

 COUNT(*)

 107
SQL>

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 987

■Note The user tester can access the remote database, even without being a user in the remote database,
because tester is using a public database link, which enables any user to use the hr user’s username/password
combination to access the remote database. Of course, from a security point of view, a public database link isn’t a
great idea, and it is bound to be frowned upon by your database auditors!

Using the Database Control to Create Database Links
It’s very easy to create a database link using the OEM Database Control. On the Database Control
home page, click the Administration tab. Then click the Database Links link in the Schema group.
You can create a database link from this page by answering various prompts.

Comparing and Converging Database Objects
It’s typical for replication environments to share database objects such as tables and indexes. These
objects are known as shared database objects, since multiple databases share them. Shared database
objects are commonly used by materialized views and Oracle Streams components, which maintain
copies of the same tables and other objects in multiple databases. Replication environments such as
these strive to keep the common database objects synchronized at the multiple sites. However, it’s
not uncommon for shared database objects to become unsynchronized, with the result that a table
will have a different number of rows and/or different data in the rows when compared to the same
table in another database. These data divergences, caused by network problems, user errors, config-
uration changes, materialized view refresh problems, and so on, may result in a failure to capture
data changes on a database or to successfully transfer them to all databases in the configuration.

Oracle Database 11g provides the new DBMS_COMPARISION package, which lets you compare
database objects on different objects. If the comparison process shows there are important differ-
ences in data between two databases, you can use the same package to converge the data in both
databases so the two databases are consistent datawise. You can compare and converge the following
types of data:

• Tables

• Views on single tables

• Materialized views

• Synonyms for the previous three types of objects

In an example a little later, I compare two tables on different databases that have the same name
and the same columns. However, you can compare two tables that have different names, as well as
tables that have different columns, as long as the columns share the same data type. You can also
compare (and converge) a subset of columns and rows, instead of an entire table or materialized view.

Comparing Data
In the following example, we compare a simple shared database object (table employees) which is a
table in the user HR’s schema. To ensure that we can show how to converge data, we first change the
data in three rows of the shared database object (table departments) in the remote database. We
then use the DBMS_COMPARE package to perform a comparison of the two tables on the two data-
bases, and then use the same package to merge the differences so the two tables are in sync once again.

988 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

The only requirement for using the DBMS_COMPARE package is that the two tables we’re
comparing have at least one column that the package can identify as an index column. This index
column must uniquely identify each row that’s part of the comparison, meaning the index has to be
either a primary key constant or a unique constraint on a non-null column. Otherwise, the package
can’t compare the two objects. The table employees has a primary key column in both databases, so
we’re OK here.

1. Create a database link from the primary database (or11) to the secondary database (tenner).
In the example, we use the user system as the owner of the database link to ensure that the
user has the necessary privileges to execute the procedures in the DBMS_COMPARISION
package and the privileges to access and modify tables in both databases. The remote database
is named tenner and so is our database link to that database from the primary database or11.

SQL> create database link tenner
 connect to system identified by sammyy1
 using 'tenner';
Database link created.
SQL>

The next step is to create a divergence between the data in an identical table on the two
databases.

2. On the secondary table, make some changes in the hr.employees table so the data diverges
from the hr.employees table on the secondary database:

SQL> delete from hr.employees where ename='MILLER';
1 row deleted.
SQL> update hr.employees set sal=10000 where ename='FORD';
1 row updated.
SQL> insert into hr.employees values (9999,'ALAPATI','DBA',7792,'20-JUN-
 00',50000,10000,30);
1 row created.
SQL> commit;
Commit complete.
SQL>

Now that we made sure the hr.employees table in the two databases diverges, it’s time to run
the CREATE_COMPARISON procedure to trap the data divergence between the two tables.

3. Create a comparison for the hr.employees table on the two databases by running the
CREATE_COMPARISON procedure, as shown here:

SQL> begin
 2 dbms_comparison.create_comparison(
 3 comparison_name => 'compare1',
 4 schema_name => 'hr',
 5 object_name => 'employees',
 6 dblink_name => 'tenner');
 7* end;
SQL> /

PL/SQL procedure successfully completed.
SQL>

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 989

4. Execute the COMPARE function to see whether the CREATE_COMPARISON procedure has
found any differences between the two tables.

SQL> declare
 2 consistent boolean;
 3 scan_info dbms_comparison.comparison_type;
 4 begin
 5 consistent := dbms_comparison.compare(
 6 comparison_name => 'comp1',
 7 scan_info => scan_info,
 8 perform_row_dif => TRUE);
 9 DBMS_OUTPUT.PUT_LINE('Scan ID: '||scan_info.scan_id);
 10 IF consistent=TRUE THEN
 11 DBMS_OUTPUT.PUT_LINE('No differences were found.');
 12 ELSE
 13 DBMS_OUTPUT.PUT_LINE('Differences were found.');
 14 end if;
 15* end;
SQL> /
Scan ID: 4
Differences were found.

PL/SQL procedure successfully completed.

SQL>

The compare function uses the scan ID 4 and prints the statement “Differences were found.”

5. Since there are differences, you can run the following query, which uses the views DBA_
COMPARISON and DBA_COMPARISION_SCAN_SUMMARY to tell how many differences
were found during the table comparison:

SQL> select c.owner,
 2 c.comparision_name,
 3 c.schema_name,
 4 c.object_name,
 5 s.current_diff_count
 6 from dba_comparison , dba_comparison_scan_summary s
 7 where c.comparison_name = s.comparison_name and
 8 c.owner = s.owner and
 9 s.scan_id = 1;

OWNER COMP_NAME SCHEMA_NAME OBJECT_NAME CURRENT_DIF_COUNT
------- ---------- ------------- ------------ -----------------
SYSTEM COMP1 HR EMPLOYEES 3

SQL>

The current_diff_count column from the DBA_COMPARISON_SCAN_SUMMARY shows that
there are three rows that are different between the hr.employees table in the or11 database and the
hr.employees table in the tenner database. The differences could be because a row is present in one
but not the other database, or the row is present in both databases but with different data in the row.

990 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

Converging Data
Since we’ve discovered a data divergence between the local and the remote databases, we may want
to synchronize the hr.employees table in the two databases so they have identical data. You do this
by using the CONVERGE procedure of the DBMS_COMPARISON package, as shown here:

1. Connect to the remote database from the local database as the system owner, who happens
to be the owner of the database link that we created earlier between the two databases:

$ sqlplus sytem/sammyy1@or11
SQL>

2. Execute the converge procedure of the DBMS_COMPARISON package to synchronize the
data between the two databases:

SQL> declare
 2 scan_info DBMS_COMPARISON.COMPARISON_TYPE;
 3 begin
 4 DBMS_COMPARISON.CONVERGE(
 5 comparison_name => 'comp1',
 6 scan_id => 4,
 7 scan_info => scan_info,
 8 converge_options => DBMS_COMPARISON.CMP_CONVERGE_LOCAL_WINS);
 9 DBMS_OUTPUT.PUT_LINE('Local Rows Merged:
 '||scan_info.loc_rows_merged);
 10 DBMS_OUTPUT.PUT_LINE('Remote Rows Merged:
 '||scan_info.rmt_rows_merged);
 11 DBMS_OUTPUT.PUT_LINE('Local Rows Deleted:
 '||scan_info.loc_rows_deleted);
 12 DBMS_OUTPUT.PUT_LINE('Remote Rows Deleted:
 '||scan_info.rmt_rows_deleted);
 13* end;
SQL> /
Local Rows Merged: 0
Remote Rows Merged: 2
Local Rows Deleted: 0
Remote Rows Deleted: 1

PL/SQL procedure successfully completed.

SQL>

In this example, we chose to replace the data in the hr.employees table at the remote database
with the data from the hr.employees table on the local database. That way, we use cmp_converge_
local_wins as the converge option, meaning that the data from the local database trumps that in the
remote database. However, we could also have chosen to do the reverse by specifying cmp_converge_
remote_wins instead, which would have required that the remote database table’s data replace the
local database table’s data.

The converge procedure may modify or delete data from one of the databases to synchronize
the data in both databases. The output that is printed after the converge procedure finished its
execution shows that two rows in the remote database were merged, because they were different
from the rows in the local database. Merging here means the local table’s rows replace the rows in
the remote table. One row shows up under the Remote Rows Deleted column. This was a row that
was found in the remote database, but not in the local database. Since we chose to make the remote
database data conform to the local database data, the converge procedure deletes that row from the

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 991

remote database. Assuming there were no further changes made during the data synchronization
process, the two tables in the local and remote databases are now completely synchronized.

Note that you can also compare and converge different types of database objects at two data-
bases. For example, you can compare and converge a table at one database and a materialized view
on the other.

Copying Files with the Database Server
 You can copy binary files directly by using the database server, bypassing the operating system. The
DBMS_FILE_TRANSFER package allows you to copy binary files in the same server or transfer them
between different Oracle databases.

Requirements for the File Copy
There are some conditions to using the DBMS_FILE_TRANSFER package to copy files:

• The source files must be of the same type as the destination files. That is, the files on the two
systems should all be operating system files or all be ASM files.

• The files can’t be larger than 2 terabytes, and each file’s size has to be a multiple of 512 bytes.

• You can’t perform a character set conversion while you copy the files.

• You must grant explicit privileges to all nonprivileged users of the database before they can
use files transferred by the DBMS_FILE_TRANSFER package.

Copying Files on a Local System
You copy files between directories on the same server using the DBMS_FILE_TRANSFER package’s
COPY_FILE procedure. Suppose you wanted to copy a file named example.txt from the /u01/app/
oracle directory to the /u01/app/oracle/dba directory. Here are the steps you would follow:

1. Create a source directory object that points to a source directory (source_dir):

SQL> CREATE DIRECTORY source_dir AS '/u01/app/oracle';
Directory created.

2. Create a destination directory object that points to the destination directory (dest_dir):

SQL> CREATE DIRECTORY dest_dir AS '/u01/app/oracle/test';
Directory created.
SQL>

3. Use COPY_FILE to copy the example.txt file (DESTINATION_FILE_NAME) from the source directory
to the destination directory (and you can rename the file during the copy process if you wish):

SQL> BEGIN
 DBMS_FILE_TRANSFER.COPY_FILE(
 SOURCE_DIRECTORY_OBJECT => 'source_dir',
 SOURCE_FILE_NAME => 'example.txt',
 DESTINATION_DIRECTORY_OBJECT => 'dest_dir',
 DESTINATION_FILE_NAME => 'example.txt');
 END;
SQL> /
PL/SQL procedure successfully completed.
SQL>

992 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

If you now check in the destination directory (/u01/app/oracle/test), you’ll find a copy of the
original file from the source directory (/u01/app/oracle).

■Tip You must have the READ privilege on the source directory and the WRITE privilege on the destination directory to
execute the DBMS_FILE_TRANSFER.COPY_FILE procedure.

The new OEM Database Control Load Data Wizard automates the process of creating SQL*Loader
control files. You specify the datafiles and provide information about their structure, and the Load
Data Wizard uses this information to automatically generate a SQL*Loader control file, as well as
create the SQL*Loader job for loading the datafile into the database.

Transferring a File to a Different Database
The DBMS_FILE_TRANSFER package can send copies of files on a server to a remote server using
the PUT_FILE procedure. You follow the same steps as in the previous section, but you use an addi-
tional parameter, DESTINATION_DATABASE, to point to the remote server:

SQL> BEGIN
 DBMS_FILE_TRANSFER.PUT_FILE(
 SOURCE_DIRECTORY_OBJECT => 'source_dir',
 SOURCE_FILE_NAME => 'example.txt',
 DESTINATION_DIRECTORY_OBJECT => 'dest_dir',
 DESTINATION_FILE_NAME => 'e.txt',
 DESTINATION_DATABASE => 'finance');
 END;
SQL> /
PL/SQL procedure successfully completed.
SQL>

■Tip You must first ensure that a database link exists between the local and the remote server before using the
PUT_FILE procedure to send files to the remote server.

The PUT_FILE procedure first reads the specified file on the local server. It then creates a copy
of that file on the remote server you specify in the DESTINATION_DATABASE parameter. Thus, the source
directory is on the local server, and the destination directory will be located on the remote server.

The GET_FILE procedure is analogous to the PUT_FILE procedure, and it enables you to copy
files on remote servers to your local server. In this procedure, the destination directory and the desti-
nation file are on the local server, and the source directory and the source file are on the remote
server. Here’s the structure of GET_FILE:

DBMS_FILE_TRANSFER.GET_FILE(
SOURCE_DIRECTORY_OBJECT IN VARCHAR2,
SOURCE_FILE_NAME IN VARCHAR2,
SOURCE_DATABASE IN VARCHAR2,
DESTINATION_DIRECTORY_OBJECT IN VARCHAR2,
DESTINATION_FILE_NAME IN VARCHAR2);

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 993

Mapping Oracle Files to Physical Devices
If your Oracle files are operating system files or if you’re using a raw file system, it’s no big deal to
map datafiles to the devices that host them. If you aren’t mapping UNIX mount points directly to
physical disks, however, it’s hard to tell where in the disk system a particular Oracle datafile is located.
More commonly, organizations use Logical Volume Managers (LVMs) and RAID-based storage systems,
and if you’re interested in finding out where particular files are located in the storage system, you’re
normally out of luck.

You can use the V$DATAFILE and V$TABLESPACE dynamic views, along with some other views,
to glean information about datafiles. When you’re using host-based LVMs and RAID-based storage
systems, you’ll quickly find out that an I/O on a datafile can involve multiple storage devices that are
part of a complex storage system. As a DBA, it’s impossible for you to tell where your objects are
located in the I/O stack.

However, you can come up with a physical mapping of all the datafiles in your database using
the Oracle file-mapping feature. Oracle provides storage-mapping APIs, which are used by the storage
vendors to provide corresponding mapping libraries that provide a complete mapping of the data-
files. Using the file-mapping feature, you can link datafiles to the logical devices and the physical
drives. You can also map individual objects, including their file and the specific blocks on which they
reside. This kind of detailed information helps you really understand and evaluate I/O performance.

Architecture of File Mapping
When you use the file-mapping feature, there will be an additional Oracle background process, FMON,
that will run as part of your instance background processes. This FMON background process will run
only if you set the FILE_MAPPING initialization parameter to TRUE in the init.ora file or SPFILE. You
can also set this parameter dynamically by using the ALTER SYSTEM statement.

The FMON process starts an operating system process called FMPUTL, which communicates
with mapping libraries that contain detailed information about where the files are located. Vendors
of the storage systems provide mapping libraries, although Oracle provides the mapping library for
storage systems made by EMC, a leading storage vendor. The FMPUTL process supplies FMON with
the mapping information for various levels of the I/O stack, and FMON stores this information in the
Oracle data dictionary.

Oracle uses mapping structures to map datafiles to their physical counterparts. At the founda-
tion of the mapping structure are components that Oracle calls elements, which can be RAID 0, RAID 1,
or RAID 5 disks or just whole disks. The FMON process gathers information about files and their
elements through the FMPUTL process, and it saves this information in the SGA and some data
dictionary views. Whenever you add, drop, or change the size of a datafile, FMON changes the infor-
mation in the SGA and in the related V$ tables.

Setting Up File Mapping
Now let’s look at the steps that are necessary to set up file mapping in your database.

Providing the Mapping Library

You must first have a mapping library from your storage system vendor, if it is not EMC (EMC’s
mapping library is supplied by Oracle). Then you should edit the filemap.ora file, which is located
in the $ORACLE_HOME/rdbms/filemap/etc directory, to make it specific to your system. The mapping
library path and the vendor name should be added to the filemap.ora file using a line like the following:

lib:vendor_name:mapping_library_path

994 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

For example, you might use the following line for a VERITAS mapping library:

Lib=VERITAS:/opt/VRTSdbed/lib/libvxoramap_32.so

Once you edit the filemap.ora file, either restart the database (if you are using the init.ora file
instead of the SPFILE), or use the ALTER SYSTEM command to set the FILE_MAPPING initialization parameter
to TRUE.

SQL> ALTER SYSTEM SET FILE_MAPPING=TRUE;

Starting the File Mapping

When you set the FILE_MAPPING initialization parameter to TRUE, Oracle doesn’t automatically start
mapping the files. You do this by invoking the DBMS_STORAGE_MAP package, which, by commu-
nicating with the Oracle FMON background process, invokes mapping operations that populate
mapping views. If you invoke the MAP_ALL procedure in this package, mapping information about
all the datafiles in your database will be collected.

Three dynamic performance tables, VMAP_FILE, VMAP_ELEMENT, and V$MAP_FILE_
IO_STACK, can then be joined to see the mapping between Oracle datafiles and physical elements in
the storage system. You can see the storage hierarchy all the way from an individual table down to a
disk in any storage system.

Using the Oracle Scheduler
Oracle Database 11g offers the new built-in Scheduler feature that helps you automate jobs from
within the Oracle database. The DBMS_SCHEDULER package contains various functions and proce-
dures that help manage the Scheduler, although you can also schedule jobs very easily through the
Database Control interface as well. The most important architectural feature of the Scheduler is its
modular approach to managing tasks, which enables the reuse of similar jobs.

You can also use the Scheduler along with the Database Resource Manager to fine-tune the allo-
cation of resources among various jobs. The Scheduler is not only a job-specification tool; it also
helps you control resource usage and prioritize jobs within the database.

One of the limitations of the DBMS_JOB package is that it can only schedule PL/SQL-based jobs,
and you can’t use it to schedule operating system scripts or an executable. To run these non-database-
type jobs, you must use the crontab in UNIX or the AT facility in Windows servers, or a third-party
tool. The Oracle Scheduler lets you use PL/SQL scripts, operating system shell scripts, Java programs,
and native binary executables to perform scheduled jobs.

Basic Scheduler Components
The Scheduler consists of five basic components—jobs, schedules, programs, events, and chains.
Jobs are pretty similar to the jobs used in the DBMS_JOB package, but schedules, programs, events,
and chains are new concepts, leading to a modular approach to the management of tasks. A program,
for example, enables several users to perform similar tasks.

Let’s examine the basic Scheduler components in more detail.

Jobs

A job is a task that you schedule to run one or more times A job contains a specification of what is to
be executed, and when it should be executed. A Scheduler job can execute a PL/SQL block of code, a
native binary executable, a Java application, or a shell script. You can create a new job by specifying
the job details such as the actions that the job performs and time and frequency of the execution,

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 995

just as you can with the traditional DBMS_JOB package. In the Scheduler, you can abstract all the job
execution and timing details by using the program and schedule modules.

Schedules

A schedule is a specification of when and how frequently the database executes a job. You can use the
same schedule for several jobs. You can also have schedules that specify job execution when a specific
event occurs in the database.

Programs

A program contains metadata about a Scheduler job. A program includes the program name, the
program type (PL/SQL code or a UNIX shell script, for example), and the program action, which is
the actual name of a procedure or executable script, for example. Several jobs can use the same
program. Note that a job can specify what the job is executing directly in the job definition, or it can
use a preexisting program for that purpose.

Events

The Scheduler uses the Oracle Streams Advanced Queuing feature to raise events and start database
jobs based on the events. An event is a message sent by an application or process when it notices
some action or occurrence.

There are two types of events—Scheduler-raised events and application-raised events. Scheduler-
raised events are caused by changes in the functioning of the Scheduler, so the successful comple-
tion of a job by the Scheduler may be an event. Application-raised events are “consumed” or used by
the Scheduler to start a job. In fact, you have the option of using just an event instead of a schedule
as the means of starting a job. You can also base a schedule on an event, in which case the schedule is
known as an event schedule.

Chains

You can use the concept of a Scheduler chain to link related programs together. Thus, the running of
a specific program could be made contingent on the successful running of certain other programs.
You can also start a job based on a chain rather than on a single scheduler program. When you have
interrelated jobs, a chain makes it easy to run all the programs necessary to complete the entire
transaction.

Types of Scheduler Jobs
The Scheduler offers you a choice of the following types of jobs: database jobs, chain jobs, external
jobs, detached jobs, and lightweight jobs. Let’s take a closer look at these job types.

Database Jobs

Database jobs are the most common Scheduler jobs, and I refer to them as just jobs in this chapter.
A database job runs program units such as a PL/SQL anonymous block or a stored procedure, in
addition to Java stored procedures. You must set the JOB_TYPE attribute to PLSQL_BLOCK or STORED_
PROCEDURE. You must specify the anonymous block or the stored procedure name as a value for the
JOB_ACTION attribute.

996 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

Chain Jobs

Chain jobs enable you to use dependency-based scheduling. A chain defines a set of programs and
their dependencies. Your job can point to a chain, thus setting off a set of jobs.

External Jobs

You use external jobs to run operating system executables outside the database. You specify the
JOB_TYPE as EXECUTABLE for external jobs.

Detached Jobs

You use a detached job to run a script or application as an independent process. The program for a
detached job has the DETACHED attribute set to TRUE.

Lightweight Jobs

Lightweight jobs are different from regular Scheduler jobs in that they depend on a template to
derive their privileges and the job metadata. Lightweight jobs involve less overhead and are quick to
create and drop, thus making them ideal when you have a large number of short jobs to run.

Unless otherwise specified, when I refer to a database job (regular jobs), I mean the regular
Scheduler job and not a specialized type of job such as an external or lightweight job. I explain the
various types of Scheduler jobs in more detail in this chapter.

Advanced Scheduler Components
In addition to the five basic Scheduler components—jobs, schedules, programs, chains, and
events—the Scheduler also uses several advanced concepts: job classes, windows, and window
groups. These advanced features set apart the Scheduler from its predecessor, the DBMS_JOB
package. It’s these advanced concepts that enable the prioritizing of jobs in the database and the
allocation of resources in accordance with the organization’s priorities. Let’s look at the advanced
Scheduler components briefly.

Job Classes

A job class groups a set of jobs that share common characteristics, such as resource requirements.
Job classes enable you to allocate resources among jobs by grouping similar types of jobs together.
You use job classes to do a couple of things:

• Assign job priority levels for individual jobs, with a higher-priority job always starting before
a lower-priority job.

• Specify common attributes for a set of jobs.

You use the Database Resource Manager in coordination with the Scheduler to allocate scarce
resources in your database. In the Database Resource Manager, the concept of a resource consumer
group lets you group users according to their resource usage. Oracle controls resource allocation by
assigning each job class to a specific resource consumer group. By default, a job class is assigned to
the default consumer group.

Windows

Scheduler windows offer a link to the Oracle Resource Manager. A window represents an interval of
time during which you can schedule jobs, and the purpose of using windows is to change resource

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 997

allocation during specific time periods. Each window is associated with a specific resource plan, which
you create through the Database Resource Manager. Using windows, you can activate different
resource plans during different time periods, thus providing differential prioritizing for jobs.

Window Groups

A window group is a collection of similar windows. For example, you can create a window for your
weekends and a window for your holidays, and group both these windows into a single maintenance
window group.

Scheduler Architecture
The Scheduler architecture consists of the job table, job coordinator, and the job workers (or slaves,
as Oracle calls them).

The job table contains information about jobs, such as the job name, program name, and job
owner. You can examine the job table by using the DBA_SCHEDULER_JOBS view. The job coordinator
regularly looks in the job table to find out what jobs to execute. The job coordinator creates and
manages the job worker processes, which actually execute the job.

When you create a new job or execute a job, a background process (cjqnnn) wakes up and coor-
dinates the running of the job. When the job coordinator tells a job worker to execute a job, the worker
process starts a new database session and starts a transaction. It executes the job, and once completed, it
commits and ends the transaction and terminates the database session. The job worker updates the
job table, the run count, and the job log table.

Scheduler Privileges
Oracle creates all jobs, programs, and schedules in the schema of the user that creates these objects,
but it creates all the advanced Scheduler components, like job classes, windows, and window groups, at
the database level, and their owner is the SYS schema.

The SCHEDULER_ADMIN role contains all Scheduler system privileges, with the WITH ADMIN
OPTION clause. The DBA role contains the SCHEDULER_ADMIN role.

The MANAGE SCHEDULER system privilege lets you do the following:

• Create, drop, and alter job classes, windows, and window groups.

• Stop any job.

• Start and stop windows prematurely.

■Note All Scheduler objects are of the form [schema.]name. By default, all scheduler object names are in upper-
case, unless you wrap the lowercase names in double quotes, as in "test_job".

You must have the CREATE JOB privilege to create Scheduler components (jobs, schedules,
programs, chains, and events). To use the advanced Scheduler components (windows, window
groups, and job classes), you need the MANAGE SCHEDULER system privilege.

You can assign other users the right to use one of your components by giving them EXECUTE
privileges on that component:

• The EXECUTE ANY PROGRAM privilege lets a user execute any program under any schema.

• The EXECUTE ANY CLASS privilege lets you assign a job to any job class.

998 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

In order for users to modify Scheduler components, they must use the GRANT ALTER SQL state-
ment for each Scheduler component.

■Note To be able to create a job in a job class you generate, you must have a separate EXECUTE privilege on that
job class.

Note the following basic points regarding Scheduler privileges:

• To create a job, you must have the CREATE JOB privilege.

• You don’t need any special privileges to specify a schedule, a window or window group, or a
program that you own.

• If you specify a program owned by a different user, you must have the EXECUTE privilege on
that program, or the EXECUTE ANY PROGRAM system privilege.

Managing the Basic Scheduler Components
The basic Scheduler components—jobs, programs, schedules, chains, and events—have several
common manageability features. You create, alter, and drop all the components with the same
procedure from the DBMS_SCHEDULER package. The following sections describe how to manage
these components.

Managing Jobs

Creating and managing jobs is at the heart of the Scheduler feature. You can create and run jobs
independently, or you can create a job using schedules and programs. Using saved programs and
schedules saves you having to redefine a program or schedule each time you create a new job.

Creating Jobs

You create a Scheduler job using the CREATE_JOB procedure of the DBMS_SCHEDULER package.
Listing 18-17 shows a simple example of how to create a basic Scheduler job, without using a program
or schedule. This is the most straightforward way to specify a job, with all pertinent information
being specified in the job-creation statement itself, without using programs and schedules.

Listing 18-17. Creating a Basic Scheduler Job Without a Program or Schedule

SQL> BEGIN
 2 DBMS_SCHEDULER.CREATE_JOB(
 3 JOB_NAME => 'test_job',
 4 JOB_TYPE => 'PLSQL_BLOCK',
 5 JOB_ACTION => 'insert into persons select * from new_persons;',
 6 START_DATE => '28-JUNE-08 07.00.00 PM ',
 7 REPEAT_INTERVAL => 'FREQ=DAILY; INTERVAL=2',
 8 END_DATE => '20-NOV-08 07.00.00 PM ',
 9 COMMENTS => 'Insert new customers into the persons table',
 10 ENABLED => TRUE,
 11* END;
/
PL/SQL procedure successfully completed.
SQL>

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 999

■Note You’ll be the owner of a job if you create it in your own schema. However, if you create it in another
schema, that schema owner will be the owner of the job. Thus, the fact that you create a job doesn’t mean that you
are necessarily its owner.

Let’s look at the parameters of the CREATE_JOB procedure:

• JOB_NAME: Provides a way to specify a name for your job.

• JOB_TYPE: Specifies the type of job that you’re creating. Jobs can include a PL/SQL block, a
stored procedure, an executable, or a Java program.

• JOB_ACTION: Specifies the exact procedure, command, or script that the job will execute.

• START_DATE and END_DATE: Specifies the date that a new job should start and end. (If a job is
ongoing, it may not have an END_DATE parameter.)

• REPEAT_INTERVAL: Specifies how often a job should be executed by the Scheduler. In Listing 18-17,
the repeat interval is 'FREQ=DAILY; INTERVAL=2', which means that you run the job every
other day. There are two ways to specify a repeat interval (both of which are discussed in the
next section):

• Use a database calendaring expression.

• Use a PL/SQL date/time expression.

• COMMENTS: Allows you to include any comments about the scheduled job.

• ENABLED: Specifies whether the job is enabled or not when it is created. The default value is
FALSE, meaning it is not enabled; to enable the job immediately, set this to TRUE.

Setting the Repeat Interval

Let’s look at the two ways of specifying a repeat interval. A calendaring expression is a straightfor-
ward, English-like expression consisting of the following three components:

• Frequency: This is a mandatory component of a calendaring expression, identified by the
keyword FREQ. Possible values are YEARLY, MONTHLY, WEEKLY, DAILY, HOURLY, MINUTELY, and
SECONDLY.

• Repeat interval: This interval is identified by the INTERVAL keyword, and it specifies how often
the database must repeat the job.

• Specifiers: These provide detailed information about when a job should be run; the possible
values are BYMONTH, BYWEEKNO, BYYEARDAY, BYMONTHDAY, BYDAY, BYHOUR, BYMINUTE, and BYSECOND.
For example, BYMONTHDAY specifies the day of the month when a job should be run, and BYDAY
specifies the day of the week.

Note that specifiers are optional, but the repeat interval and frequency components of a calen-
daring expression are mandatory. Here are some typical calendaring expressions:

• FREQ=DAILY; INTERVAL=3: Executes a job every three days

• FREQ=HOURLY; INTERVAL=2: Executes a job every other hour

• FREQ=WEEKLY; BYDAY=MON: Executes a job every Monday

• FREQ=WEEKLY; INTERVAL=2; BYDAY=FRI: Executes a job every other Friday

• FREQ=MONTHLY; BYMONTHDAY=1: Executes a job on the last day of the month

1000 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

You can also create more complex repeat intervals using PL/SQL expressions, with the proviso
that all such expressions must evaluate to a date or a timestamp data type. When you use a date/time
expression for specifying the repeat interval, you end up with a date/time data type as the value of
the interval, as shown here:

repeat_interval => 'FREQ=MINUTELY INTERVAL=30'

The preceding PL/SQL expression states that Oracle will execute the job every half hour.

Administering Jobs

You use the DBMS_SCHEDULER package to perform job-related administrative tasks.
You can enable, and thus activate, a job as follows:

SQL> EXEC DBMS_SCHEDULER.ENABLE('TEST_JOB1');
PL/SQL procedure successfully completed.

You disable a job this way:

SQL> EXEC DBMS_SCHEDULER.DISABLE('TEST_JOB1');
PL/SQL procedure successfully completed.

You drop a job by using the DROP_JOB procedure, as shown here:

SQL> BEGIN
 DBMS_SCHEDULER.DROP_JOB(JOB_NAME => 'TEST_JOB1');
 END;

You can run a job manually (at other than the regularly scheduled times) using the RUN_JOB
procedure, as shown here:

SQL> EXEC DBMS_SCHEDULER.RUN_JOB('TEST_JOB');

Finally, you can stop a job immediately using the STOP_JOB procedure, as shown here:

SQL> EXEC DBMS_SCHEDULER.STOP_JOB('TEST_JOB');

■Tip In both the STOP_JOB and RUN_JOB procedures, you can use the FORCE attribute, which will determine
whether an active job can be stopped or dropped. By setting FORCE=TRUE, you can stop or drop a running job. The
default for the FORCE attribute is FALSE.

Managing Lightweight Jobs
When you need to use the Scheduler to execute a short running job frequently, you can use light-
weight jobs instead of the default database jobs, to gain performance benefits. Lightweight jobs
aren’t free-standing jobs. Since lightweight jobs aren’t really schema objects, you incur far less over-
head in creating and dropping them. You can also create lightweight jobs quicker than regular jobs;
the lightweight jobs also take up less space for storing their metadata and runtime data. Thus, you
gain in both time and space available when you use lightweight jobs for jobs that you run thousands
of times in the database. Regular jobs do offer more flexibility and more job execution choices, and
therefore, if you’re going to execute a job only infrequently, you should use a regular job instead of a
lightweight job.

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 1001

You must use a job template when creating a lightweight job, with the template containing the
metadata for the lightweight job as well as the privileges to be inherited by the lightweight job. You
can use a stored procedure or a Scheduler program as a job template. You must reference a Scheduler
program in order to specify a job action. The program type must be a PLSQL_BLOCK or STORED_
PROCEDURE. If a user has privileges on the program, that user will automatically have privileges on the
lightweight job.

You can use the following query to find out the details about lightweight jobs in your database:

SQL> SELECT job_name, program_name FROM dba_scheduler_jobs
 WHERE job_style='LIGHTWEIGHT';

JOB_NAME PROGRAM_NAME
----------- -------------

TEST_JOB1 TEST_PROG1

Unlike the regular database jobs, lightweight jobs aren’t shown in the DBA_SCHEDULER_JOBS
view, since lightweight jobs aren’t schema objects like regular jobs.

You create a lightweight job in a manner similar to how you create a regular job, by executing
the CREATE_JOB procedure. Just specify the value LIGHTWEIGHT for the JOB_STYLE parameter, instead
of REGULAR, the default value for this parameter. Here’s an example showing how to create a light-
weight job:

begin
dbms_scheduler.create_job (
job_name => 'test_ltwtjob1',
program_name => 'test_prog',
repeat_interval => 'freq=daily,by_hour=10',
end_time => '31-DEC-08 06:00:00 AM Australia/Sydney',
job_style_ => 'lightweight',
comments => 'A lightweight job based on a program');
end;

In this example, the program test_prog serves as the template for the lightweight job TEST_
LTWTJOB1. You can also specify a schedule instead of the REPEAT_INTERVAL and the END_TIME attributes

You can use a job array to create a set of Scheduler lightweight jobs. The job array comes in
handy when you have to create a large number of Scheduler jobs. The following example shows how
to create a set of lightweight jobs using a job array:

1. Create two variables, one to define the Scheduler job and the other for the job array definition.

declare
testjob sys.job;
testjobarr sys.job_array;

2. Use the sys.job_array constructor to initialize the job array.

begin
testjobarr := sys.job_array();

When you initialize the job array testjobarr, which is an array of JOB object types, the database
creates a slot for a single job in that array.

1002 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

3. You must set the size of the job array to the number of jobs you expect to create.

testjobarr.extend(500);

The statement shown here allocates space in the job array to hold information for 500 jobs.

4. The following code creates the 500 jobs and places them in the job array:

for I in 1 . . . 500 loop
testjob := sys.job(job_name => 'TESTJOB'||TO_CHAR(I),
job_style => 'LIGHTWEIGHT',
job_template => 'TEST_PROG',
enabled => TRUE);
testjobarr(i) := TESTJOB;
end loop;

The code shown here creates all 500 jobs using the TEST_PROG template. The jobs are added
to the job array by the assignment operator testjobarr(i).

5. Use the CREATE_JOBS procedure to submit the array consisting of 500 jobs.

dbms_scheduler.create_jobs (testjobarr, 'transactional');

The CREATE_JOBS procedure creates all 500 jobs at once. In this example, I chose to create
lightweight jobs as part of the array, by specifying LIGHTWEIGHT as the value for the JOB_STYLE param-
eter when I created the job array. By not specifying the JOB_STYLE parameter, I can create a job array
of regular database jobs instead of lightweight jobs. This is so, because the default value of the JOB_STYLE
parameter is REGULAR.

Managing External Jobs
External jobs are operating system executables that you run outside the database. You specify
EXECUTABLE as the value for the JOB_TYPE parameter for an external job. If you use a named program
for an external job, you must specify the complete directory path, for example, /usr/local/bin/perl,
where you stored the executable, either in the JOB_ACTION attribute or the PROGRAM_ACTION attribute.

You can create local external jobs and remote external jobs. A local external job runs on the same
server as the job-originating database, and a remote external job runs on a remote host. You can use
remote external jobs to manage jobs across your entire network from a single database. The inter-
esting thing about remote external jobs is that you don’t need to have an Oracle database instance
running on the remote hosts. You’ll just need to install a Scheduler Agent on each of the remote hosts
where you wish to run external jobs, to accept job requests from the job-originating database, execute
them on the remote host, and transmit the job results to the job-originating database.

Running local external jobs is straightforward. All you need to do is to specify EXECUTABLE as the
value for the JOB_TYPE or PROGRAM_TYPE arguments. To run remote external jobs, you’ll need to install
and configure the Scheduler Agent as well as assign credentials for executing the remote jobs. I explain
the steps involved in setting up remote external jobs in the following sections.

Setting Up the Database

You must set up the database from where you want to issue external job requests by doing the following:

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 1003

1. Since you’ll need the Oracle XML DB to run a remote external job, first check whether the
Oracle XML DB option has been successfully installed in your database by issue the following
DESCRIBE command:

 SQL> desc resource_view

 Name Null? Type
 ----------------- ----- ----------------------------
RES
XMLTYPE (XMLSchema "http://xm
 lns.oracle.com/xdb/XDBResour
 ce.xsd" Element "Resource")
ANY_PATH VARCHAR2(4000)
RESID RAW(16)

SQL>

The DESCRIBE command shows that the Oracle XML DB option is correctly installed. If the
query shows that Oracle XML DB isn’t an option, you must install it before you can proceed.

2. Execute the Oracle-provided prvtsch.plb script, located in the $ORACLE_HOME/rdbms/admin
directory.

SQL> connect sys/sammyy1 as sysdba
SQL> @$ORACLE_HOME/rdbms/admin/prvtrsch.plb
PL/SQL procedure successfully completed.
. . .
PL/SQL procedure successfully completed.
no rows selected
Package created.
Package body created.
No errors.
. . .
User altered.

SQL>

3. Finally, set a registration password for the Scheduler Agent.

SQL> EXEC dbms_scheduler.set_agent_registration_pass(
registration_password => 'sammyy1'.-
expiration_date => systimestamp + interval '7' day,-
max_uses => 25)

PL/SQL procedure successfully completed.

SQL>

The Scheduler Agent uses the password to register with the database. The EXPIRATION_DATE and
the MAX_USES parameters show the date when the password expires and the number of times the
password can be used, respectively.

1004 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

Installing and Configuring the Scheduler Agent

You must install the Scheduler Agent on every remote host where you plan on running external jobs.
You can either download the software for installation from Oracle or use the Database CD pack. In
either case, you’ll need to use the installation media for the Oracle Database Gateway. Here are the
steps to install the Scheduler Agent:

1. Log in as the Oracle software owner (usually the user Oracle).

2. Go to where the Oracle Database Gateway installation files are stored and issue the following
command to start up the Oracle Universal Installer:

$ /oracle11g/gateways/runInstaller

3. On the Welcome screen, click Next.

4. On the Select a Product page, select Oracle Scheduler Agent 11.1.0.6.0, and click Next.

5. On the Specify Home Details page, select a name and provide the directory path for the
Oracle Scheduler Agent home. Click Next.

6. On the Oracle Scheduler Agent page, provide the host name and the port number the agent
must use to communicate with the external job request originating database. Click Next.

7. On the Summary page, review the selections you made and click Install.

■Note You can also use a silent install to automate the installation of the Scheduler Agent on a larger number
of hosts.

8. When the installer prompts you to run the root.sh script as the root user, do so and click OK.

9. Click Exit after you see the End of Installation page.

You need to use the schagent executable to invoke the Scheduler Agent. But first, you must
register the agent with the database from where you want run an external job on the host where you
installed the Scheduler Agent. Here’s how you register the Scheduler Agent with a database:

$ schagent –registerdatabase prod1 1522

In the example, the database host is named prod1, and the port number assigned to the Scheduler
Agent is 1522. Once you issue this command, you’ll be prompted to supply the agent registration
password you created earlier:

$./schagent -registerdatabase localhost.localdomain 1522
Agent Registration Password ? ******
$

You start the Scheduler Agent by issuing the following command:

$./schagent –start
Scheduler agent started
$

Stop the agent by issuing the following command:

$./schagent –stop
Scheduler agent stopped
$

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 1005

The preceding examples show how to work with the Scheduler Agent on a UNIX/Linux system.
You must install the OracleSchedulerExecutionAgent service before you can use the agent. You can
install the service in the following way:

$ schagent –installagentservice

The OracleSchedulerExecutionAgent service is different from the Oracle service that you use to
start and stop an Oracle instance on a Windows server.

Creating and Enabling Remote External Jobs

Since an external job must execute as an operating system user’s job, the Scheduler lets you assign
operating system credentials to an external job. You use a credential, which is a schema object that
contains a username and password combination, to designate the credentials for an external job.
Use the CREDENTIAL_NAME attribute when you create an external job to specify the credentials for
executing that job.

You aren’t required to specify credentials for a local external job, although Oracle recommends
that you do so. Before you can create a remote external job, you must first create a credential. You
can then assign that credential object to the user under whose account the remote external executable
will be run. Note that a user must have the execute privilege on a credential object before the user
can use that credential to execute a job.

Here are the steps you must follow to create a remote external job:

1. First, execute the CREATE_CREDENTIAL procedure to create a credential object.

SQL> exec dbms_scheduler.create_credential('hrcredential,
 'hr','sammyy1');

2. Grant privileges on the newly created credential to the user who’ll need to use the credential.

SQL> grant execute on system.hrcrdential to sam;

You can query the DBA_SCHEDULER_VIEW to examine all credentials in the database.

3. Create a remote external job by executing the CREATE_JOB procedure.

SQL> begin
 2 dbms_scheduler.create_job(
 3 job_name => 'remove_logs',
 4 job_type => 'executable',
 5 job_action => '/u01/app/oracle/logs/removelogs',
 6 repeat_interval => 'freq=daily; byhour=23',
 7 enabled => false);
 8* end;
SQL> /

PL/SQL procedure successfully completed.
SQL>

4. Once you create the remote external job REMOVE_LOGS, set the CREDENTIAL_NAME attribute
of the remote job by executing the SET_ATTRIBUTE procedure.

SQL> exec dbms_scheduler.set_attribute('remove_logs',
 'credential_name','hrcredential');

PL/SQL procedure successfully completed.

SQL>

1006 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

5. Execute the SET_ATTRIBUTE procedure again, this time to set the DESTINATION attribute.

SQL> exec dbms_scheduler.set_attribute('remove_logs',

 'destination', 'localhost.localdomain:1521');

PL/SQL procedure successfully completed.

SQL>

6. Execute the ENABLE procedure to enable the external job.

SQL> exec dbms_scheduler.enable('remove_logs');

PL/SQL procedure successfully completed.
SQL>

You can disable the capability to run external jobs in a database by dropping the user remote_
scheduler_agent, who is created by the prvtsch.plb script that you ran earlier.

SQL> drop user remote_scheduler_agent cascade;

You must reexecute the prvtrch.plb script for the database to run a remote external job, once
you drop the remote_scheduler_agent.

Managing Programs

A program contains metadata about what the Scheduler will run, including the name and type of the
program, and what a job will execute. Different jobs can share a single program.

Creating a Program

You create a new program using the CREATE_PROGRAM procedure of the DBMS_SCHEDULER
package, as shown here:

SQL> BEGIN
 2 DBMS_SCHEDULER.CREATE_PROGRAM(
 3 PROGRAM_NAME => 'MY_PROGRAM',
 4 PROGRAM_ACTION => 'UPDATE_SCHEMA_STATS',
 5 PROGRAM_TYPE => 'STORED_PROCEDURE',
 6 enabled => TRUE);
 7* end;
 SQL> /
PL/SQL procedure successfully completed.
SQL>

Once you create a program, you can simplify your job creation statement by replacing the
JOB_TYPE and JOB_ACTION attributes with the name of the program that already contains the specifi-
cation of these attributes. The PROGRAM_TYPE and PROGRAM_ACTION attributes thus replace the job
attributes that you normally provide when creating a new job. You can see why this type of modular
approach is beneficial—different jobs can use the same program, thus simplifying the creation of
new jobs.

The following example re-creates the TEST_JOB job that was created in Listing 18-17, but using
the program component this time:

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 1007

SQL> BEGIN
 2 DBMS_SCHEDULER.CREATE_JOB(
 3 JOB_NAME => 'TEST_JOB',
 4 PROGRAM_NAME => 'TEST_PROGRAM',
 5 REPEAT_INTERVALl => 'FREQ=DAILY;BYHOUR=12',ENABLED => TRUE);
 7* END;
SQL> /
PL/SQL procedure successfully completed.
SQL>

In the preceding example, using a program lets you avoid specifying the JOB_TYPE and JOB_ACTION
parameters in the CREATE_JOB statement.

Administering Programs

You can enable, disable, and drop Scheduler programs using various procedures from the DBMS_
SCHEDULER package, as shown in the following examples.

The ENABLE procedure is used to enable a Scheduler program:

SQL> EXEC DBMS_SCHEDULER.ENABLE('TEST_PROGRAM');
PL/SQL procedure successfully completed.

You use the DISABLE procedure to disable a program:

SQL> EXEC DBMS_SCHEDULER.DISABLE('TEST_PROGRAM');
PL/SQL procedure successfully completed.
SQL>

The DROP_PROGRAM procedure is used to drop a program:

SQL> EXEC DBMS_SCHEDULER.DROP_PROGRAM('TEST_PROGRAM');
PL/SQL procedure successfully completed.
SQL>

Managing Schedules

Let’s say you have a number of jobs, all of which execute at the same time. By using a common
schedule, you can simplify the creation and managing of such jobs. The following sections explain
how you can manage schedules.

Creating a Schedule

You use the CREATE_SCHEDULE procedure of the DBMS_SCHEDULER package to create a schedule,
as shown here:

SQL> BEGIN
 2 DBMS_SCHEDULER.CREATE_SCHEDULE(
 3 SCHEDULE_NAME => 'TEST_SCHEDULE',
 4 START_DATE => SYSTIMESTAMP,
 5 END_DATE => SYSTIMESTAMP + 90,
 6 REPEAT_INTERVAL => 'FREQ=HOURLY;INTERVAL= 4',
 7 COMMENTS => 'Every 4 hours');
 8* END;
SQL> /
PL/SQL procedure successfully completed
SQL>

1008 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

The TEST_SCHEDULE schedule states that a job with this schedule will be executed immedi-
ately and then be reexecuted every 4 hours, for a period of 90 days. Note the following things about
this new schedule:

• The CREATE_SCHEDULE procedure has three important parameters: START_DATE, END_DATE,
and REPEAT_INTERVAL.

• You specify the start and end times using the TIMESTAMP WITH TIME ZONE data type.

• You must use a calendaring expression when creating the repeat interval.

Once you create the TEST_SCHEDULE schedule, you can simplify the job creation process even
further by using both a program and a schedule when creating a new job, as shown here:

SQL> BEGIN
 2 DBMS_SCHEDULER.CREATE_JOB(
 3 JOB_NAME => 'MY_JOB',
 4 PROGRAM_NAME => 'MY_PROGRAM',
 5 SCHEDULE_NAME => 'MY_SCHEDULE');
 6 END;
 7 /
PL/SQL procedure successfully completed.
SQL>

As you can see, using saved schedules and programs makes creating new jobs a breeze.

Administering Schedules

You can alter various attributes of a schedule by using the SET_ATTRIBUTE procedure of the DBMS_
SCHEDULER package. You can alter all attributes except the name of the schedule itself.

You can drop a schedule by using the DROP_SCHEDULE procedure, as shown here:

SQL> BEGIN
 2 DBMS_SCHEDULER.DROP_SCHEDULE (SCHEDULE_NAME => 'TEST_SCHEDULE');
 3 END;
 4 /
PL/SQL procedure successfully completed.
SQL>

If a job or window is using the schedule you want to drop, your attempt to drop the schedule will
result in an error instead, by default. You can force the database to drop the schedule anyway, by
using an additional FORCE parameter in the preceding example and setting it to TRUE.

■Tip When you create a schedule, Oracle provides access to PUBLIC, thus letting all users use your schedule by
default.

Managing Chains

A Scheduler chain consists of a set of related programs that run in a specified sequence. The succes-
sive positions in the chain are referred to as “steps” in the chain, and each step can point to another
chain, a program, or an event. The chain includes the “rules” that determine what is to be done at
each step of the chain.

We’ll create a simple Scheduler chain by first creating a Scheduler chain object, and then the
chain steps and the chain rules.

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 1009

Creating a Chain

Since Scheduler chains use Oracle Streams Rules Engine objects, a user must have both the CREATE
JOB privilege and the Rules Engine privileges to create a chain. You can grant all the necessary Rules
Engine privileges by using a statement like this, which grants the privileges to the user nina:

SQL> BEGIN
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE(DBMS_RULE_ADM.CREATE_RULE_OBJ, 'nina'),
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE (
 DBMS_RULE_ADM.CREATE_RULE_SET_OBJ, 'nina'),
 DBMS_RULE_ADM.GRANT_SYSTEM_PRIVILEGE (
 DBMS_RULE_ADM.CREATE_EVALUATION_CONTEXT_OBJ, 'nina')
 END;

Now that you have the necessary privileges, let’s create a Scheduler chain called TEST_CHAIN
using the CREATE_CHAIN procedure:

SQL> BEGIN
 DBMS_SCHEDULER.CREATE_CHAIN (
 chain_name => 'test_chain',
 rule_set_name => NULL,
 evaluation_interval => NULL,
 comments => NULL);
 END;

Next, define the steps for the new chain using the DEFINE_CHAIN_STEP procedure. Note that
a chain step can point to a program, an event, or another chain:

SQL> BEGIN
 DBMS_SCHEDULER.DEFINE_CHAIN_STEP('test_chain', 'step1', 'program1');
 DBMS_SCHEDULER.DEFINE_CHAIN_STEP('test_chain', 'step2', 'program2');
 DBMS_SCHEDULER.DEFINE_CHAIN_STEP('test_chain', 'step3', 'program3');
 END;

Finally, to make the chain operative, you must add rules to the chain using the DEFINE_CHAIN_
RULE procedure. Chain rules determine when a step is run and specify the conditions under which
a step is run. Usually, a rule specifies that a step be run based on the fulfillment of a specific condition.
Here’s an example:

SQL> BEGIN
 DBMS_SCHEDULER.DEFINE_CHAIN_RULE('test_chain', 'TRUE', 'START step1');
 DBMS_SCHEDULER.DEFINE_CHAIN_RULE('test_chain', 'step1 COMPLETED',
 'Start step2, step3');
 DBMS_SCHEDULER.DEFINE_CHAIN_RULE('test_chain',
 'step2 COMPLETED AND step3 COMPLETED', 'END');
 END;

The first rule in the preceding example specifies that step1 be run, which means that the Sched-
uler will start program1. The second rule specifies that step2 (program2) and step3 (program3) be run
if step1 has completed successfully ('step1 COMPLETED'). The final rule says that when step2 and
step3 finish, the chain will end.

Enabling a Chain

You must enable a chain before you can use it. Here’s how to do so:

SQL> BEGIN
 DBMS_SCHEDULER.ENABLE ('test_chain');
 END;

1010 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

Embedding Jobs in Chains

In order to run a job within a Scheduler chain, you must create a job with the JOB_TYPE attribute set
to CHAIN, and the JOB_ACTION attribute pointing to the name of the particular chain you wish to use.
Of course, this means that you must first create the chain.

Here’s the syntax for creating a job for a Scheduler chain:

SQL> BEGIN
 DBMS_SCHEDULER.CREATE_JOB (
 JOB_NAME => 'test_chain_job',
 JOB_TYPE => 'CHAIN',
 JOB_ACTION => 'test_chain',
 REPEAT_INTERVAL => 'freq=daily;byhour=13;byminute=0;bysecond=0',
 ENABLED => TRUE);
 END;

You also have the option of using the RUN_CHAIN procedure to run a chain without creating a
job first. The procedure will create a temporary job and immediately run the chain. Here’s how you
do this:

SQL> BEGIN
 DBMS_SCHEDULER.RUN_CHAIN (
 CHAIN_NAME => 'my_chain1',
 JOB_NAME => 'quick_chain_job',
 START_STEPS => 'my_step1, my_step2');
 END;

As with the other components of the Scheduler, there are procedures that enable you to drop a
chain, drop rules from a chain, disable a chain, alter a chain, and so on. For the details, please refer
to the section about the DBMS_SCHEDULER package in the Oracle manual, PL/SQL Packages and
Types Reference.

Managing Events

So far, you’ve seen how to create jobs with and without a schedule. When you create a job without a
schedule, you’ll have to provide the start time and the frequency, whereas using a schedule enables
you to omit these from a job specification. In both cases, the job timing is based on calendar time.
However, you can create both jobs and schedules that are based strictly on events, not calendar
time. We’ll briefly look at event-based jobs and schedules in the following sections.

Creating Event-Based Jobs

The following example shows how to create a Scheduler job using a program and an event. The job
will start when the event, FILE ARRIVAL, occurs:

SQL> BEGIN
 dbms_scheduler.create_job(
 JOB_NAME => test_job,
 PROGRAM_NAME => test_program,
 START_DATE => '01-AUG-08 5.00.00AM US/Pacific',
 EVENT_CONDITION => 'tab.user_data.event_name = ''FILE_ARRIVAL''',
 QUEUE_SPEC => 'test_events_q'
 ENABLED => TRUE,
 COMMENTS => 'An event based job');
 END;

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 1011

There are two unfamiliar attributes in the preceding CREATE_JOB procedure, both of which are
unique to event-based jobs:

• EVENT_CONDITION: The EVENT_CONDITION attribute is a conditional expression that takes its
values from the event source queue table and uses Oracle Streams Advanced Queuing rules.
You specify object attributes in this expression and prefix them with tab.user_data. Review
the DBMS_AQADM package to learn more about Oracle Streams Advanced Queuing and
related rules.

• QUEUE_SPEC: The QUEUE_SPEC attribute determines the queue into which the job-triggering
event will be queued. In the preceding example, test_events_q is the name of the queue.

Creating Event-Based Schedules

The following example shows how to create an event-based schedule. Whenever an event (FILE_ARRIVAL)
occurs, the Scheduler will start a job based on the schedule created in this example. In this case, the
event indicates that a file has arrived before noon.

SQL> BEGIN
 dbms_scheduler.create_event_schedule(
 SCHEDULE_NAME => 'appowner.file_arrival',
 START_DATE => systimestamp,
 EVENT_CONDITION => 'tab.user_data.object_owner = ''APPOWNER''
 AND tab.user_data.event_name = ''FILE_ARRIVAL''
 AND extract hour FROM tab.user_data.event_timestamp < 12',
 QUEUE_SPEC => 'test_events_q');
 END;

You were introduced to the EVENT_CONDITION and QUEUE_SPEC attributes in the previous example.

Managing Advanced Scheduler Components
So far, you’ve learned how to manage the basic Scheduler components—jobs, programs, schedules,
chains, and events. In this section, let’s look at how to manage the advanced Scheduler components—
job classes and windows (and window groups).

You’ll also learn how the Scheduler makes good use of the Database Resource Manager features,
such as resource consumer groups and resource plans, to efficiently allocate scarce OS and database
resources. Too often, heavy batch jobs run past their window and spill over into the daytime, when
OLTP transactions demand the lion’s share of the resources. Prioritizing jobs to ensure that they
are guaranteed adequate resources to perform along accepted lines is an essential requirement in
production databases. The Scheduler uses the concepts of job classes and windows to prioritize jobs.

Managing Job Classes

Using job classes helps you prioritize jobs by allocating resources differently among various groups
of jobs. The scheduler associates each job class with a resource consumer group, which lets the
Scheduler determine the appropriate resource allocation for each job class. The ability to associate
job classes with the resource consumer groups created by the Database Resource Manager helps in
prioritizing jobs.

■Note All jobs must belong to a job class. There is a default job class, DEFAULT_JOB_CLASS, to which all jobs
will belong by default, if they aren’t assigned to any other job class. A job class will be associated with the DEFAULT_
CONSUMER_GROUP by default if you don’t expressly assign it to a specific resource consumer group.

1012 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

Creating a Job Class

All job classes are created in the SYS schema, regardless of which user creates it. The following
example uses the CREATE_JOB_CLASS procedure to create a new job class called ADMIN_JOBS.

SQL> BEGIN
 DBMS_SCHEDULER.CREATE_JOB_CLASS(
 JOB_CLASS_NAME => 'admin_jobs'
 RESOURCE_CONSUMER_GROUP => 'admin_group',
 LOGGING_LEVEL => dbms_scheduler.logging_runs
 LOG_HISTORY => 15);
 END;

These are the attributes in the preceding example:

• JOB_CLASS_NAME: This is the name of the job class.

• RESOURCE_CONSUMER_GROUP: This attribute specifies that all jobs that are members of this class
will be assigned to the ADMIN_GROUP resource consumer group.

• LOGGING_LEVEL: This attribute can take the following three values:

• DBMS_SCHEDULER.LOGGING_OFF: Specifies no logging of any kind for the jobs in the job class

• DBMS_SCHEDULER.LOGGING_RUNS: Specifies detailed log entries for each run of a job

• DBMS_SCHEDULER.LOGGING_FULL: Specifies detailed entries for each run of a job in the job
class, as well as for all other operations on the jobs, including the creation, dropping,
altering, enabling, or disabling of jobs

■Note The DBMS_SCHEDULER.LOGGING_FULL value for the LOGGING_LEVEL attribute provides the most infor-
mation about jobs in a job class; the default logging level is DBMS_SCHEDULER.LOGGING_RUNS.

• LOG_HISTORY: This attribute specifies the number of days that the database will retain the logs
before purging them using the automatically scheduled PURGE_LOG job. You can also manually
clear the logs using the PURGE_LOG procedure of the DBMS_SCHEDULER package.

The PURGE_LOG procedure of the DBMS_SCHEDULER package takes two important parame-
ters—LOG_HISTORY and WHICH_LOG. You use the LOG_HISTORY parameter to specify the number of days
to keep logs before the Scheduler purges them. The WHICH_LOG parameter enables you to specify
whether you want to purge job or window logs. For example, to purge all job logs more than 14 days
old, you would use the following statement:

SQL> EXEC DBMS_SCHEDULER.PURGE_LOG(LOG_HISTORY=14, WHICH_LOG='JOB_LOG');

Dropping a Job Class

You drop a job class using the DROP_JOB_CLASS procedure, as shown here:

SQL> BEGIN
 DBMS_SCHEDULER.DROP_JOB_CLASS('TEST_CLASS');
 END;

■Tip You must specify the force=true option to drop job classes with jobs in them. If the job is already running,
it will be allowed to complete before the dropped job class is disabled.

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 1013

Changing Job Class Attributes

You can change job class attributes with the ALTER_ATTRIBUTES procedure. The following example
will change the START_DATE attribute, and its new value is specified by the VALUE parameter:

SQL> BEGIN
 2 DBMS_SCHEDULER.ALTER_ATTRIBUTES(
 3 NAME => 'ADMIN_JOBS',
 4 ATTRIBUTE => 'START_DATE',
 5 VALUE => '01-JUL-2008 9:00:00 PM US/Pacific');
 6* END;
SQL>

Changing Resource Plans Using Windows

A window is an interval with a specific start and end time, such as “from 12 midnight to 6:00 a.m.”
However, a window is not merely a chronological device like a schedule, specifying when a job will
run; every window is associated with a resource plan. When you create a window, you specify a resource
plan as a parameter. This ability to activate different resource plans at different times is what makes
windows special scheduling devices that enable you to set priorities.

The basic purpose of a window is to switch the active resource plan during a certain time frame.
All jobs that run during a window will be controlled by the resource plan that’s in effect for that window.
Without windows, you would have to manually switch the resource manager plans. Windows enable
the automatic changing of resource plans based on a schedule.

■Note All windows are created in the SYS schema, no matter which user creates them. To manage windows,
you must have the MANAGE SCHEDULER system privilege.

A Scheduler window consists of the following three major attributes:

• Start date, end date, and repeat interval attributes: These determine when and how frequently
a Window will open and close (thus, these attributes determine when a window is in effect).

• Duration: This determines the length of time a window stays open.

• Resource plan: This determines the resource priorities among the job classes.

■Note TheV$RSRC_PLAN view provides information on currently active resource plans in your database.

On the face of it, both a schedule and a window seem to be serving the same purpose, since both
enable you to specify the start and end times and the repeat interval for a job. However, it’s the resource
plan attribute that sets a window apart from a simple schedule. Each time a window is open, a specific
active resource plan is associated with it. Thus, a given job will be allocated different resources if it
runs under different windows.

You can specify what resources you want to allocate to various job classes during a certain time
period by associating a resource plan with the window you create for this period. When the window
opens, the database automatically switches to the associated resource plan, which becomes the
active resource plan. The systemwide resource plan associated with the window will control the
resource allocation for all jobs and sessions that are scheduled to run within this window. When the
window closes, there will be another switch to the original resource plan that was in effect, provided
no other window is in effect at that time.

1014 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

You can see which window is currently active and which resource plan is associated with that
window by using the following query:

SQL> SELECT window_name, resource_plan, enabled, active
 2 FROM DBA_SCHEDULER_WINDOWS;

WINDOW_NAME RESOURCE_PLAN ENABLED ACTIVE
-------------------- ------------------ -------- -------
TEST_WINDOW TEST_RESOURCEPLAN TRUE FALSE
. . .
SQL>

You can see that the window TEST_WINDOW is enabled, but not currently active.

Creating a Window

You create a window by using the CREATE_WINDOW procedure. Let’s look at two examples using
this procedure, one with an inline specification of the start and end times and the repeat interval,
and the other where you use a saved schedule instead to provide these three scheduling attributes.

In the first example, the window-creation statement specifies the schedule for the window:

SQL> BEGIN
 DBMS_SCHEDULER.CREATE_WINDOW(
 WINDOW_NAME => 'MY_WINDOW',
 START_DATE => '01-JUN-08 12:00:00AM',
 REPEAT_INTERVAL => 'FREQ=DAILY',
 RESOURCE_PLAN => 'TEST_RESOURCEPLAN',
 DURATION => interval '60' minute,
 END_DATE => '31-DEC-08 12:00:00AM',
 WINDOW_PRIORITY => 'HIGH',
 COMMENTS => 'Test Window');
 END;

Let’s look at the individual attributes of the new window created by the preceding statement:

• RESOURCE_PLAN: This attribute specifies that while this window is open, resource allocation to
all the jobs that run in this window will be guided by the resource plan directives in the
TEST_RESOURCEPLAN resource plan.

• WINDOW_PRIORITY: This attribute is set to HIGH, and the default priority level is LOW; these are the
only two values possible. If two windows overlap, the window with the high priority level has
precedence. Since only one window can be open at a given time, when they overlap, the high-
priority window will open and the low-priority window doesn’t open.

• START_DATE: The setting for this attribute specifies that the window first becomes active at
12:00 a.m. on June 1, 2008. You can also say that the window will open at this time.

• DURATION: This attribute is set so that the window will remain open for a period of 60 minutes,
after which it will close.

• REPEAT_INTERVAL: This attribute specifies the next time the window will open again. In this
example, it is 12:00 a.m. on June 2, 2008.

• END_DATE: This attribute specifies that this window will open for the last time on December 31,
2008, after which it will be disabled and closed.

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 1015

■Note Since the Scheduler doesn’t check to make sure that there are prior windows for any given schedule,
windows can overlap sometimes.

The following example creates a window using a saved schedule. Obviously, it is much simpler
to create a window this way:

SQL> BEGIN
 DBMS_SCHEDULER.CREATE_WINDOW(
 WINDOW_NAME => 'TEST_WINDOW',
 SCHEDULE_NAME => 'TEST_SCHEDULE',
 RESOURCE_PLAN => 'TEST_RESOURCEPLAN',
 DURATION => interval '180' minute,
 COMMENTS => 'Test Window');
 END;

In the preceding CREATE_WINDOW procedure, the use of the TEST_SCHEDULE schedule lets you
avoid specifying the START_DATE, END_DATE, and REPEAT_INTERVAL parameters.

■Tip A window is automatically enabled upon creation.

Once you create a window, you must associate it with a job or job class, so the jobs can take
advantage of the automatic switching of the active resource plans.

Managing Windows

You can open, close, alter, enable, disable, or drop a window using the appropriate procedure in the
DBMS_SCHEDULER package, and you need the MANAGE SCHEDULER privilege to perform any
of these tasks. Note that since all windows are created in the SYS schema, you must always use the
[SYS].window_name syntax when you reference any window.

A window will automatically open at a time specified by its START_TIME attribute. You can also
open a window manually anytime you wish by using the OPEN_WINDOW procedure. Even when
you manually open a window, that window will still open at its regular opening time as specified by
its interval.

Here’s an example that shows how you can open a window manually:

SQL> EXECUTE DBMS_SCHEDULER.OPEN_WINDOW(
 WINDOW_NAME => 'BACKUP_WINDOW',
 DURATION => '0 12:00:00');
SQL>

Look at the DURATION attribute in the preceding statement. When you specify the duration, you
can specify days, hours, minutes, and seconds, in that order. Thus, the setting means 0 days, 12 hours,
0 minutes, and 0 seconds.

You can also open an already open window. If you do this, the window will remain open for the
time specified in its DURATION attribute. That is, if you open a window that has been running for
30 minutes, and its duration is 60 minutes, that window will last be open for the initial 30 minutes
plus an additional 60 minutes, for a total of 90 minutes.

To close a window, you use the CLOSE_WINDOW procedure, as illustrated by the following
example:

SQL> EXECUTE DBMS_SCHEDULER.CLOSE_WINDOW('BACKUP_WINDOW');

1016 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

If a job is running when you close a window, the job will continue to run to its completion.
However, if you created a job with the STOP_ON_WINDOW_CLOSE attribute set to TRUE, that running job
will close upon the closing of its window.

To disable a window, you use the DISABLE procedure, as shown here:

SQL> EXECUTE DBMS_SCHEDULER.DISABLE (NAME => 'BACKUP_WINDOW');

You can only disable a window if no job uses that window or if the window isn’t open. If the
window is open, you can disable it by using the DISABLE procedure with the FORCE=TRUE attribute.

You can drop a window by using the DROP_WINDOW procedure. If a job associated with a
window is running, a DROP_WINDOW procedure will continue to run through to completion, and
the window is disabled after the job completes. If you set the job’s STOP_ON_WINDOW_CLOSE attribute to
TRUE, however, the job will immediately stop when you drop an associated window. If you use the
FORCE=TRUE setting, you’ll disable all jobs that use that window.

Prioritizing Jobs

You can map each Scheduler job class to a specific resource consumer group. A resource plan is
assigned to a resource consumer group, and thus indirectly to each job class as well, by the Database
Resource Manager. The active resource plan (as determined by the currently open window) will
apportion resources to groups, giving different levels of resources to different jobs, based on their
job class.

The Scheduler works closely with the Database Resource Manager to ensure proper resource
allocation to the jobs. The Scheduler will start a job only if there are enough resources to run it.

Within each Scheduler window, you can have several jobs running, with varying degrees of
priority. You can prioritize jobs at two levels—class and job. The prioritization at the class level is
based on the resources allocated to each resource consumer group by the currently active resource
plan. For example, the FINANCE_JOBS class might rank higher than the ADMIN_JOBS class, based on the
resource allocations dictated by its active resource plan.

Within the FINANCE_JOBS and ADMIN_JOBS classes, there will be several individual jobs. Each of
these jobs has a job priority, which can range from 1 to 5, with 1 being the highest priority. You can
use the SET_ATTRIBUTES procedure to change the job priority of any job, as shown here:

SQL> BEGIN
 dbms_scheduler.SET_ATTRIBUTE(
 NAME => 'test_job',
 ATTRIBUTE => 'job_priority',
 VALUE => 1);
 END;

The default job priority for a job is 3, which you can verify with the following query:

SQL> SELECT job_name, job_priority FROM dba_scheduler_jobs;

JOB_NAME JOB_PRIORITY
------------------------------ ---------------------
ADV_SQLACCESS1523128 3
ADV_SQLACCESS5858921 3
GATHER_STATS_JOB 3
PURGE_LOG 3
TEST_JOB03 3
TEST_JOB1 3
6 rows selected
SQL>

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 1017

When you have more than one job within the same class scheduled for the same time, the
job_priority of the individual jobs determines which job starts first.

Window Priorities

Since windows might have overlapping schedules, you may frequently have more than one window
open at the same time, each with its own resource plan. At times like this, the Scheduler will close all
windows except one, using certain rules of precedence. Here is how the precedence rules work:

• If two windows overlap, the window with the higher priority opens and the window with the
lower priority closes.

• If two windows of the same priority overlap, the active window remains open.

• If you are at the end of a window and you have other windows defined for the same time period
with the same priority, the window that has the highest percentage of time remaining will
open.

Window Groups

A window group is a collection of windows, and it is part of the SYS schema. Window groups are
optional entities, and you can make a window a part of a window group when you create it, or you
can add windows to a group at a later time. You can specify either a single window or a window
group as the schedule for a job.

As explained earlier in this chapter, you can take two or more windows that have similar char-
acteristics—for example, some night windows and a holiday window—and group them together to
create a downtime window group. Window groups are used for convenience only, and their use is
purely optional.

Managing Scheduler Attributes
In earlier sections in this chapter, you’ve seen how you can use the SET_ATTRIBUTE procedure to
modify various components of the Scheduler. Attributes like JOB_NAME and PROGRAM_NAME are unique
to the job and program components. You can retrieve the attributes of any Scheduler component
with the GET_SCHEDULER_ATTRIBUTE procedure of the DBMS_SCHEDULER package.

Unsetting Component Attributes

You can use the SET_ATTRIBUTE_NULL procedure to set a Scheduler component’s attributes to
NULL. For example, to unset the COMMENTS attribute of the TEST_PROGRAM program, you can use the
following code:

SQL> EXECUTE dbms_scheduler.SET_ATTRIBUTE_NULL('TEST_PROGRAM', 'COMMENTS');

Altering Common Component Attributes

There are some attributes that are common to all Scheduler components. The SET_SCHEDULER_
ATTRIBUTE procedure lets you set these common, or global, attribute values, which affect all
Scheduler components. The common attributes include the default time zone, the log history reten-
tion period, and the maximum number of job worker processes.

Monitoring Scheduler Jobs

There are several dynamic performance views you can use to monitor Scheduler jobs, and I briefly
discuss the important views here.

1018 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

DBA_SCHEDULER_JOBS

The DBA_SCHEDULER_JOBS view provides the status and general information about scheduled
jobs in your database. Here’s a simple query using the view:

SQL> SELECT job_name, program_name
 2 FROM DBA_SCHEDULER_JOBS;

JOB_NAME PROGRAM_NAME
----------------- -----------------
PURGE_LOG PURGE_LOG_PROG
GATHER_STATS_JOB GATHER_STATS_PROG
. . .
SQL>

DBA_SCHEDULER_RUNNING_JOBS

The DBA_SCHEDULER_RUNNING_JOBS view provides information regarding currently running jobs.

DBA_SCHEDULER_JOB_RUN_DETAILS

You can use the DBA_SCHEDULER_JOB_RUN_DETAILS view to check the status and the duration
of execution for all jobs in your database, as the following example shows:

SQL> SELECT job_name, status, run_duration
 2* FROM DBA_SCHEDULER_JOB_RUN_DETAILS;

JOB_NAME STATUS RUN_DURATION
----------------- ---------- -------------
PURGE_LOG SUCCEEDED +000 00:00:02
PURGE_LOG SUCCEEDED +000 00:00:04
GATHER_STATS_JOB SUCCEEDED +000 00:31:18
SQL>

DBA_SCHEDULER_SCHEDULES

The DBA_SCHEDULER_SCHEDULES view provides information on all current schedules in your
database, as shown here:

SQL> SELECT schedule_name, repeat_interval
 2* FROM dba_scheduler_schedules;

SCHEDULE_NAME REPEAT_INTERVAL
--------------------- --
DAILY_PURGE_SCHEDULE freq=daily;byhour=12;byminute=0;bysecond=0
SQL>

DBA_SCHEDULER_JOB_LOG

The DBA_SCHEDULER_JOB_LOG view enables you to audit job-management activities in your data-
base. The data that this view contains depends on how you set the logging parameters for your jobs
and job classes.

In the “Creating a Job Class” section, earlier in the chapter, you saw how to set the logging level
for a job at the job class level. In order to set the logging levels at the individual job level, you use the

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 1019

SET_ATTRIBUTE procedure of the DBMS_SCHEDULER package. In the SET_ATTRIBUTE procedure,
you can set the LOGGING_LEVEL attribute to two different values:

DBMS_SCHEDULER.LOGGING_FULL
DBMS_SCHEDULER.LOGGING_RUNS

The DBMS_SCHEDULER.LOGGING_RUNS option will merely record the job runs, while the DBMS_
SCHEDULER.LOGGING_FULL option turns on full job logging.

Here is an example showing how you can turn on full job logging at the job level:

SQL> EXECUTE dbms_scheduler.set_attribute ('TESTJOB',
 'LOGGING_LEVEL', dbms_scheduler.LOGGING_FULL);

Purging Job Logs
By default, once a day, the Scheduler will purge all window logs and job logs that are older than 30 days.
You can also manually purge the logs by executing the PURGE_LOG procedure, as shown here:

SQL> EXECUTE DBMS_SCHEDULER.PURGE_LOG(
 LOG_HISTORY => 1,
 JOB_NAME => 'TEST_JOB1');

Default Scheduler Jobs
By default, all Oracle Database 11.1 databases use the Scheduler to run the following jobs, though
you can, of course, disable any of these jobs if you wish:

SQL> SELECT owner, job_name, job_type FROM dba_scheduler_jobs;

OWNER JOB_NAME JOB_TYPE
------------------------------ ------------------------------ ----------------
SYS ADV_SQLACCESS1821051 PLSQL_BLOCK
SYS XMLDB_NFS_CLEANUP_JOB STORED_PROCEDURE
SYS FGR$AUTOPURGE_JOB PLSQL_BLOCK
SYS BSLN_MAINTAIN_STATS_JOB
SYS DRA_REEVALUATE_OPEN_FAILURES STORED_PROCEDURE
SYS HM_CREATE_OFFLINE_DICTIONARY STORED_PROCEDURE
SYS ORA$AUTOTASK_CLEAN
SYS PURGE_LOG
ORACLE_OCM MGMT_STATS_CONFIG_JOB STORED_PROCEDURE
ORACLE_OCM MGMT_CONFIG_JOB STORED_PROCEDURE
EXFSYS RLM$SCHDNEGACTION PLSQL_BLOCK
EXFSYS RLM$EVTCLEANUP PLSQL_BLOCK

12 rows selected.
SQL>

The Scheduler is a welcome addition to the Oracle DBA’s arsenal of tools. By providing a sophis-
ticated means of scheduling complex jobs, it does away with the need for third-party tools or complex
shell scripts to schedule jobs within the database.

Automated Maintenance Tasks
Automated maintenance tasks are jobs that run automatically in the database to perform mainte-
nance operations. Following are the automated maintenance tasks in Oracle Database 11g:

1020 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

• Automatic Optimizer Statistics Collection

• Automatic Segment Advisor

• Automatic SQL Tuning Advisor

All three automated maintenance tasks run during the default system maintenance window on
a nightly basis. I discuss predefined maintenance windows next.

Predefined Maintenance Windows
In Oracle Database 11g, there are seven predefined maintenance windows, as shown here:

MONDAY_WINDOW Starts and 10 P.M. on Monday and ends at 2 A.M.
TUESDAY_WINDOW Starts and 10 P.M. on Tuesday and ends at 2 A.M.
WEDNESDAY_WINDOW Starts and 10 P.M. on Wednesday and ends at 2.A.M.
THURSDAY_WINDOW Starts and 10 P.M. on Thursday and ends at 2 A.M.
FRIDAY_WINDOW Starts and 10 P.M. on Friday and ends at 2 A.M.
SATURDAY_WINDOW Starts at 6 A.M on Saturday and ends at 2 A.M.
SUNDAY_WINDOW Starts and 6 A.M. on Sunday and ends at 2 A.M.

The weekday maintenance windows are open for 4 hours and the weekend windows for 20 hours.
The seven maintenance windows come under the group named
MAINTENANCE_WINDOW_GROUP. You can manage the maintenance windows by altering their
start and end times. You can also create new maintenance widows and remove or disable the default
maintenance windows. I explain these tasks in the following sections.

Managing Automated Maintenance Tasks
Since the database doesn’t assign permanent Scheduler jobs to the three automated maintenance
tasks, you can’t manage these tasks with the DBMS_SCHUDULER package. If you want to perform
fine-grained management tasks that modify the automated maintenance tasks, you must use the
DBMS_AUTO_TASK_ADMIN package.

Monitoring Automated Maintenance Tasks
Query the DBA_AUTOTASK_CLIENT and the DBA_AUTOTASK_OPERATION views to get details
about the automated maintenance task execution in the database. The two views share several
columns. Here’s a query on the DBA_AUTOTASK_CLIENT view:

SQL> SELECT client_name, status,
 2 attributes, window_group,service_name
 3 FROM dba_autotask_client;

CLIENT_NAME STATUS ATTRIBUTES
-------------------- -------- -------------------------------------
auto optimizer ENABLED ON BY DEFAULT, VOLATILE, SAFE TO KILL
statistics collection
auto space advisor ENABLED ON BY DEFAULT, VOLATILE, SAFE TO KILL
sql tuning advisor ENABLED ONCE PER WINDOW, ON BY DEFAULT;
 VOLATILE, SAFE TO KILL
SQL>

The ATTRIBUTES column shows that all three automated maintenance tasks are enabled by
default, as evidenced by the attribute ON BY DEFAULT. When a maintenance window opens, the data-
base automatically creates the three automated maintenance tasks and executes those jobs. However,

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 1021

only the SQL Tuning Advisor task shows the ONCE PER WINDOW attribute. This is because the database
executes both the Automatic Optimizer Statistics Collection and the Auto Space Advisor tasks more
than once, if the maintenance window is long enough, while it executes the SQL Tuning Advisor just
once during any maintenance window.

The database assigns a client name to each of the three automated maintenance tasks, which it
deems clients. The Scheduler job associated with the three clients is given an operation name, since
the jobs are considered operations. Here are the operation names associated with each of the three
automated maintenance tasks:

SQL> SELECT client_name, operation_nameFROM dba_autotask_operation;

CLIENT_NAME OPERATION_NAME
--------------------------------- ------------------------
auto optimizer stats collection auto optimizer stats job
auto space advisor auto space advisor job
sql tuning advisor automatic sql tuning task

SQL>

Enabling a Maintenance Task

Execute the ENABLE procedure to enable a previously disabled client or operation, as shown here:

SQL> begin
 2 dbms_auto_task_admin.enable
 3 (client_name => 'sql tuning advisor',
 4 operation => 'automatic sql tuning task',
 5 window_name => 'monday_window');
 6* end;
SQL> /

PL/SQL procedure successfully completed.
SQL>

You can retrieve the CLIENT_NAME and the OPERATION_NAME attributes by querying the DBA_
AUTOTASK-CLIENT and the DBA_AUTOTASK_OPERATION views.

Disabling a Maintenance Task

You can disable any of the three automated maintenance jobs during a specific maintenance
window by executing the DISABLE procedure.

SQL> begin
 2 dbms_auto_task_admin.disable
 3 (client_name => 'sql tuning advisor',
 4 operation => 'automatic sql tuning task',
 5 window_name => 'monday_window');
 6* end;
SQL> /

PL/SQL procedure successfully completed.

SQL>

The example shown here disables the SQL Tuning Advisor task only during the MONDAY_
WINDOW but keeps the task enabled during all other windows.

1022 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

Implementing Automated Maintenance Tasks

The Autotask Background Process (ABP) is responsible for implementing the three automated main-
tenance tasks by converting the tasks into Scheduler jobs. For each automated task, ABP creates a
task list and assigns a priority. The three priority levels are high, medium, and urgent. The Scheduler
also creates job classes and maps a consumer group to the appropriate job class. The ABP assigns
jobs to each of the job classes, and the job classes map the jobs to a consumer group based on the
job priority level. The MMON background process spawns restarts and monitors the ABP process.
The DBA_AUTOTASK view shows the tasks stored in the ABP repository, which is in the SYSAUX
tablespace.

You can view the ABP repository by querying the DBA_AUTOTASK_TASK view.

Resource Allocation for Automatic Tasks

The default resource plan assigned to all maintenance windows is the DEFAULT_MAINTENANCE _
PLAN. When a maintenance window opens, the database actives the DEFAULT_MAINTENANCE_PLAN
to control the CPU resources used by the automated maintenance tasks. The three automated
maintenance tasks are run under the ORA$AUTOTASK_SUB_PLAN, a subplan for the DEFAULT_
MAINTENANCE_PLAN. You can change the resource allocation for automated tasks by changing
the resource allocations for this subplan in the resource plan for a specific maintenance window.

Fault Diagnosability
Oracle Database 11g uses a built-in fault diagnosability infrastructure that helps you detect, diag-
nose, and resolve problems in your database. The fault diagnosability infrastructure focuses on
trapping and resolving critical errors such as data corruption and database code bugs. The goal is to
proactively detect problems and limit damage to the databases, while reducing the time it takes to
diagnose and resolve problems. The fault diagnosability feature also contains elements that make it
easier to interact with Oracle Support. Here are the key components of the new fault diagnosability
infrastructure:

• Automatic Diagnostic Repository: This is a file-based repository for storing database diagnostic
data. You can access the ADR through the command line or the Enterprise Manager. It includes
trace files, alert logs, and health monitor reports, among other things. Each database instance
has its own ADR home directory, but the directory structure is uniform across instances
and products, thus enabling Oracle Support to correlate and analyze diagnostic data from
multiple products and instances. Immediately after a problem occurs in the database, the
diagnostic information is captured and stored within the ADR. You use this diagnostic data to
send what are called incident packages to Oracle Support.

• The ADR Command Interpreter (ADRCI): This is a command-line tool to manage diagnostic
information and create and manage incident reports.

• Health Monitor: This tool runs automatic diagnostic checks following database errors. You
can also run manual health checks.

• The Support Workbench: This is an Enterprise Manager wizard that helps you diagnose critical
errors and process and package diagnostic data for transmittal to Oracle Support and filing of
technical assistance requests.

• Incident packaging service: This is a brand-new tool that enables you to easily create, edit, and
modify incident information into physical packages for transmittal to Oracle Support for
diagnosing purposes.

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 1023

• Data Recovery Advisor: This tool automatically diagnoses data failures such as missing or
corrupt datafiles and reports appropriate repair options. I discuss this in Chapter 16, so I
won’t include a section on it in this chapter.

• SQL Repair Advisor: This is a new tool that generates a failed SQL statement and recommends
a patch to repair it.

• SQL Test Case Builder: This tool helps Oracle Support reproduce a failure.

Automatic Diagnostic Repository
Database instances as well as other Oracle products and components store various types of diag-
nostic data in the ADR. You can always access the ADR, even when the instance is down, thus leading
some to compare the ADR to a plane’s black box, which helps diagnose plane crashes.

Setting the Automatic Diagnostic Repository Directory

You set the location of the ADR with the initialization parameter DIAGNOSTIC_DEST. Setting the
DIAGNOSTIC_DEST parameter means you don’t have to set the traditional initialization parameters
such as CORE_DUMP_DEST. If you omit the DIAGNOSTIC_DEST parameters, the database assigns the
default location of the ADR base directory in the following manner:

• If you’ve set the ORACLE_BASE variable, the ADR base will be the same as the directory you
assigned for the ORACLE_BASE directory.

• If you haven’t set the ORACLE_BASE variable, the value of the DIAGNOSTIC_DEST parameter
defaults to $ORACLE_HOME/log.

The DIAGNOSTIC_DEST parameter sets the location of the ADR base on a server. An ADR home
represents the ADR home directory for an individual database instance. An ADR base may consist of
multiple ADR homes, each for a different database instance or Oracle product.

The ADR home for an instance is relative to the ADR base. The following is the general directory
structure of the ADR home for an instance, starting from the ADR base:

diag/product_type/product_id/instance_id

So, if your database has a database name and SID of orcl1, and the ADR base is /u01/app/oracle/
, the ADR home for the database orcl1 would be

/u01/app/oracle/diag/rdbms/orcl1/orcl1

Structure of the ADR

The various subdirectories under the ADR home for an instance store different types of diagnostic
data, such as alert logs, Health Monitor reports, incident reports, and trace files for errors. Note that
you have two types of alert logs in Oracle Database 11g: a normal text file and an XML-formatted log.
You can query the V$DIAG_INFO view to see the different subdirectories of the ADR for an instance:

SQL> select * from v$diag_info;

INST_ID NAME VALUE
------- -------------- ----------------------------------
1 Diag Enabled TRUE
1 ADR Base /u01/app/oracle
1 Diag Trace /u01/app/oracle/diag/rdbms/orcl2/
 orcl2/trace

1024 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

1 Diag Alert /u01/app/oracle/diag/rdbms/orcl2/
 orcl2/alert
1 Diag Incident /u01/app/oracle/diag/rdbms/orcl2/
 orcl2/incident
1 Diag Cdump /u01/app/oracle/diag/rdbms/orcl2/
 orcl2/cdump
1 Health Monitor /u01/app/oracle/diag/rdbms/orcl2/
 orcl2/hm1
1 Def Trace File /u01/app/oracle/diag/rdbms/orcl2/
 orcl2/trace
 /orcl2_ora_4813.trc
1 Active Problem Count 2
1 Active Incident Count 4

11 rows selected.

SQL>

The following directories bear examination:

• ADR Base is the directory path for the ADR base.

• ADR Home is the ADR home for the instance.

• Diag Trace contains the text-based alert log.

• Diag Alert contains the XML-formatted alert log.

• Diag Incident is the directory for storing incident packages that you create.

ADRCI
The new ADRCI is a command-line utility to help you interact with the ADR. You can use ADRCI to
view diagnostic data, create incident packages, and view Health Monitor reports.

You invoke ADRCI by simply typing adrci at the command line:

$ adrci

ADRCI: Release 11.1.0.6.0 - Beta on Thu Sep 27 16:59:27 2007
Copyright (c) 1982, 2007, Oracle. All rights reserved.

ADR base = "/u01/app/oracle"

adrci>

Type the help command to view the commands you can use at the ADRCI prompt. When you
would like to leave the ADRCI utility, type exit or quit.

You can also use ADRCI in batch mode, which lets you use ADRCI commands within shell
scripts and batch files. You must use the command-line parameters exec and script to execute
ADRCI in batch mode, as shown here:

adrci exec 'command [; comamnd]. . . '
adrci script=file_name

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 1025

The ADR Homepath

If you have multiple Oracle instances, all of them will be current when you log into ADRCI. There are
some ADRCI commands that work when you have multiple ADR homes current, but others require
only a single instance to be current. The default behavior for the ADR homepath is for it to be null
when you start up ADRCI. When the ADR home is null, all ADR homes are current. Here’s an example:

adrci> show homes
adrci>
ADR Homes:
diag/rdbms/orcl/orcl
diag/rdbms/orcl2/orcl2
diag/rdbms/eleven/eleven
diag/rdbms/nina/nina

adrci>

All ADR homes are always shown relative to the ADR base. Thus, if the ADR base is /u01/app/
oracle and the database name and SID are both named orcl1, the ADR homepath’s complete directory
path would be /u01/app/oracle/diag/rdbms/orcl1/orcl1.

In the example shown here, the ADR homepath indicates that multiple ADR homes are current.
You can set the ADR path to point to a single instance by executing the SET HOMEPATH command.

■Tip Always set the ADR homepath as the first thing after logging into ADRCI.

adrci> set homepath diag/rdbms/orcl1/orcl1
adrci> show homes
ADR Homes:
diag/rdbms/orcl1/orcl1
adrci>

Now, when you issue an adrci command, the database will fetch diagnostic data only from the
orcl1 instance.

Viewing the Alert Log

You can view the alert log using the ADRCI utility, as shown here:

adrci> show alert –tail

2008-10-17 16:49:50.579000 -
Starting background process FBDA
Starting background process SMCO
. . .
Completed: ALTER DATABASE OPEN
adrci>

Before you issue this command, make sure you set the homepath for the correct instance. You
can return to the ADRCI prompt by pressing Ctrl+C.

1026 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

Besides ADRCI, there are other ways to view the contents of the alert log. You can view the tradi-
tional text-based alert log by going to the directory path listed under the Diag Trace entry in the
V$DIAG_INFO view. Of course, you can also view the alert log contents from the database home page
in Enterprise Manager. Click Alert Log Contents under Related Links to view the alert log.

Incident Packaging Service
Oracle bases its diagnostic infrastructure on two key concepts: problems and incidents. A problem is
a critical error such as the one accompanied by the Oracle error ORA-4031, which is issued when
there isn’t enough shared memory. An incident is a single occurrence of a problem; thus, if a problem
occurs multiple times, there will be different incidents to mark the events, each identified by a unique
incident ID. When an incident occurs in the database, the database collects diagnostic data for it and
attaches an incident ID to the event and stores it a subdirectory in the ADR. An incident is connected
to a problem with the help of a problem key. The database creates incidents automatically when a
problem occurs, but you can also create your own incidents when you want to report errors that
don’t raise and send a critical error alert to Oracle Support.

The ADR uses a flood-controlled incident system, which allows a limited number of incidents
for a given problem. This is done to avoid a large number of identical incidents from flooding the
ADR with identical information. The database allows each problem to log the diagnostic data for
only a certain number of incidents in the ADR. For example, after 25 incidents occur for the same
problem during a day, the ADR won’t record any more incidents for the same problem key. The ADR
employs two types of retention policies, one governing the retention of the incident metadata and
the other governing the retention of incident and dump files. By default, the ADR retains the incident
metadata for a month and the incident and dump files for a period of one year.

Viewing Incidents

You can check the current status of an incident by issuing the SHOW INCIDENT command, as shown here:

adrci> show incident

ADR Home = /u01/app/oracle/diag/rdbms/orcl1/orcl1:
**

INCIDENT_ID PROBLEM_KEY CREATE_TIME
------------ --------------- -----------------------------------
17060 ORA 1578 2007-09-25 17:00:18.019731 -04:00
14657 ORA 600 2007-09-09 07:01:21.395179 -04:00

2 rows fetched

adrci>

You can view detailed incident information by issuing the SHOW INCIDENT . . . MODE DETAIL
command as shown here:

adrci> show incident -mode DETAIL -p "incident_id=1234"

The previous command shows detailed information for the incident with the ID 1234.
An incident package contains all diagnostic data relating to an incident or incidents (it can cover

one or more problems). An incident package enables you to easily transmit diagnostic information

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 1027

to Oracle Support. You can create incident packages with either the Support Workbench or from the
command line using the ADRCI tool. You send an incident package to Oracle Support when you are
seeking Oracle’s help in resolving problems and incidents. After creating an incident package, you
can edit the package by adding and deleting diagnostic files to it.

Creating an Incident Package

The incident packaging service enables you to create an incident package. Using IPS, you gather
diagnostic data for an error, such as trace files, dump files, and health-check reports, SQL test cases,
and other information, and package this data into a zip file for sending to Oracle Support. IPS tracks
and gathers diagnostic information for an incident by using incident numbers. You may add, delete,
or scrub the diagnostic files before transmitting the zip file to Oracle Support. Here are the key things
you must know about incident packages:

• An incident package is a logical entity that contains problem metadata only. By default, the
database includes the first and the last three incidents for a problem in a zip package.

• The zip file that you’ll actually send to Oracle is, of course, a physical package and contains
the diagnostic files specified by the metadata in the logical incident package.

• You can send incremental or complete zip files to Oracle Support.

Here are the steps you must follow to create an incident packaging service using IPC commands
in the ADRCI:

1. Create a logical package that’ll be used to store incident metadata. You can create an empty
or a non-empty logical package. A non-empty package requires an incident number, problem
number, or problem key and will automatically contain diagnostic information for the spec-
ified incident or problem. In the following example, I create an empty package using the IPS
CREATE PACKAGE command:

adrci> ips create package

Created package 4 without any contents,

correlation level typical

adrci>

In order to create a non-empty package, specify the incident number, as shown here:

adrci> ips create package incident 17060

Created package 5 based on incident id 17060,
correlation level typical

adrci>

You may also choose to create a package that spans a time interval:

adrci> ips create package time '2007-09-20 00:00:00 -12:00' to
 '2007-09-30 00:00:00 -12:00'

1028 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

2. If you’ve created an empty logical package in the first step, you must add diagnostic data to
it as shown here:

adrci> ips add incident 17060 package 4

Added incident 17060 to package 4

adrci>

You can add diagnostic files to the package in the following way:

adrci> ips add file <file_name> package <package_number>

3. Generate the physical package that you’ll be transmitting to Oracle Support.

adrci> ips generate package 4 in /u01/app/oracle/support

Generated package 4 in file
/u01/app/oracle/diag/IPSPKG_20070929163401_COM_1.zip,
mode complete

adrci>

The COM_1 in the filename indicates that it’s a complete file, not incremental, in order to
create an incremental physical incident package. Use the following command:

adrci> ips generate package 4 in /u01/app/oracle/diag
 incremental
Generated package 4 in file
/u01/app/oracle/diag/IPSPKG_20070929163401_INC_2.zip,
mode incremental

adrci>

4. Before you can send your incident package to Oracle Support for diagnosis and help, you
must formally finalize the incident package, as shown here:

adrci> ips finalize package 4

Finalized package 4

adrci>

You can now transmit the finalized zip file to Oracle Support by manually uploading it. In the
next section, which discusses the Support Workbench, I’ll show how to automate the transmission
of incident packages to Oracle Support.

The Support Workbench
The Support Workbench, which you can access from Enterprise Manager, enables you to automate
the management of incidents including the process of filing service requests with Oracle Support
and tracing their progress. Besides viewing problems and incidents, you can also generate diagnostic
data for a problem as well as run advisors to fix the problem. You can create incident packages easily
with the Support Workbench and automatically send them in to Oracle Support.

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 1029

In order to enable the Support Workbench to upload IPS zip files to Oracle Support, you must
install and configure the Oracle Configuration Manager. You can install the Oracle Configuration
Manager during the installation of the Oracle software, as shown in Figure 18-7.

Figure 18-7. Registering the Oracle Configuration Manager

You can install and configure the Oracle Configuration Manager after the server installation as
well, by invoking the Oracle Universal Installer.

The following sections summarize how you can use the Support Workbench to resolve problems.

■Tip Although the database automatically tracks all critical errors by storing the diagnostic data in the ADR, you
can also create a user-created problem through the Support Workbench for errors that aren’t automatically tracked
by the database as critical errors. To do this, click Create User-Reported Problems under Related Links.

Viewing Error Alerts

You can view outstanding problems from the Support Workbench home page. You can check for
critical alerts on the Database Home page in the Diagnostic Summary section by clicking the Active
Incidents link there or by going to the Critical Alerts section under the Alerts section. To access the
Support Workbench, click the Software and Support link and then click the Support Workbench link
under the Support section. Figure 18-8 shows the Support Workbench page.

On the Support Workbench home page, select All from the View list to examine all problems.

1030 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

Figure 18-8. The Support Workbench page

Examining Problem Details

To view the details of any problem, click View Incident Details on the Incident page.

Collecting Additional Data

Besides the automatic collection of diagnostic data following a critical error in the database, you can
also use the Support Workbench to invoke a health check to collect additional diagnostic data. I explain
health checks later in this chapter in the section “Running a Health Check.”

Creating Service Requests

From the Support Workbench, you can create service requests with MetaLink. For further reference,
you may note down the service request number.

Creating Incident Packages

You can choose either the Quick Packaging method or the Custom Packaging method to create and
submit incident packages. The Quick Packaging method is simpler but won’t let you edit or customize
the diagnostic data you’re sending to Oracle Support. The Custom Packaging method is more elab-
orate but enables you customize your incident package.

Following are the steps you must take to create an incident package and send it to Oracle
Support using the Custom Packaging method:

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 1031

1. On the Incident Details page, click the Package link.

2. In the Select Packaging Mode page, select Custom Packaging and click OK.

3. On the Select Package page, select the Create New Package option. Enter the package name
and click OK.

4. The Support Workbench takes you to the Customize Package page, confirming that your
package was created. Figure 18-9 shows the Customize Package page.

Figure 18-9. The Customize Package page

5. Once you finish tasks such as editing the package contents or adding diagnostic data,
finalize the package by clicking Finish Contents Preparation under the Send to Oracle
Support section (in the Packaging Tasks section of the Customize Package page).

6. Generate an upload file by clicking Generate Upload File. Click Immediately or Later fol-
lowed by Submit to schedule the incident package submission for Oracle Support.

7. Once you submit the package to Oracle Support, IPS processes the zip file and confirms it,
before returning you to the Custom Package page. Click Send to Oracle to send the confirmed
zip file to Oracle. You must then fill in your MetaLink credentials and choose whether to
create a new service request. Click Submit to send the file to Oracle Support.

Tracking Service Requests

After submission of an incident package to Oracle Support, you can still add new incidents to the
package. You can also let the other DBAs at your organization get the details of the incident package
by adding comments to the problem activity log.

1032 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

Implementing Repairs and Closing Incidents

If the recommendations for repair involve the use of an Oracle advisor, you can make the repair
directly from the Support Workbench itself. For example, you can run the Data Recovery Advisor
and the SQL Repair Advisor (which I explain later in this chapter in the section “Repairing SQL State-
ments with the SQL Repair Advisor”) from the Support Workbench.

You can close a resolved incident, or let Oracle purge it; Oracle purges all incidents after 30 days
by default.

The Health Monitor
The Health Monitor is a diagnostic framework in the database that runs automatic diagnostic checks
when the database encounters critical errors. In addition to these reactive checks, you can also run
manual checks whenever you want. You can use either the Enterprise Manager or the DBMS_HM
package to run manual health checks. In response to a reactive or a manual check, the database
examines components such as memory and transaction integrity and reports back to you.

The following query on the V$HM_CHECK view shows the various types of health checks that
can be run:

SQL> SELECT name, description FROM v$hm_check;

NAME DESCRIPTION
--------------------- ---------------------------
HM Test Check Check for HM Functionality
DB Structure Integrity Check Checks integrity of all
 Database files
Data Block Integrity Check Checks integrity of a
 datafile block
Redo Integrity Check Checks integrity of redo
 log content
Logical Block Check Checks logical content of
 a block
Transaction Integrity Check Checks a transaction for
 corruptions
Undo Segment Integrity Check Checks integrity of an
 undo segment
All Control Files Check Checks all control files
 in the database
CF Member Check Checks a multiplexed copy
 of the control file
All Datafiles Check Check for all datafiles
 in the database
Single Datafile Check Checks a datafile
Log Group Check Checks all members of a
 log group
Log Group Member Check Checks a particular member
 of a log group
Archived Log Check Checks an archived log
Redo Revalidation Check Checks redo log content
IO Revalidation Check Checks file accessibility
Block IO Revalidation Check Checks file accessibility
Txn Revalidation Check Revalidate corrupted txn
Failure Simulation Check Creates dummy failures

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 1033

Dictionary Integrity Check Checks dictionary
 integrity

21 rows selected.

SQL>

You can run all checks except the redo check and the data cross-check when the database is in
the open or mount mode.

Running a Health Check

You can run a health check from the Health Monitor interface in the Enterprise Manager console,
which you can access by clicking the Checkers tab in the Advisor Central page. You can also run a
health check by using the DBMS_HM package. The following example shows how to run a health
check with the RUN_CHECK procedure:

BEGIN

dbms_hm run_check (
 check_name => 'Transaction Integrity Check',
 run_name => 'testrun1',
 input_params => 'TXN_ID=9.44.1');
END;
/
PL/SQL procedure successfully completed.

SQL>

The example shown here runs a transaction integrity check for a specified transaction.

Viewing the Results of a Health Check

The Health Monitor stores all its execution results in the ADR. You can query the V$HM_
RECOMMENDATION, V$HM_FINDING, and the V$HM_RUN views to view the recommendations
and findings of a health check. But the easiest way to view a health check result is through the GET_
RUN_REPORT function, as shown in the following example:

SQl> SET LONG 100000

SQL> SELECT dbms_hm.get_run_report('TestCheck1') FROM DUAL;

 DBMS_HM.GET_RUN_REPORT('TESTCHECK1')
--
Basic Run Information
 Run Name : TestCheck1
 Run Id : 42721
 Check Name : Dictionary Integrity Check
 Mode : MANUAL
 Status : COMPLETED
 Start Time : 2008-10-03 16:40:47.464989 -04:00
 End Time : 2008-10-03 16:41:23.068746 -04:00
 Error Encountered : 0
 Source Incident Id : 0
 Number of Incidents Created : 0

1034 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

Input Paramters for the Run
 TABLE_NAME=ALL_CORE_TABLES
 CHECK_MASK=ALL

Run Findings And Recommendations
 Finding
 Finding Name : Dictionary Inconsistency
 Finding ID : 42722
 Type : FAILURE
 Status : OPEN
 Priority : CRITICAL
 Message : SQL dictionary health check:
 dependency$.dobj# fk 126 on object DEPENDENCY$ failed
 Message : Damaged rowid is AAAABnAABAAAOiHABI –
description: No further damage description available

 SQL>

You can also use ADRCI to view the results of a Health Monitor check. First, issue the SHOW
HM_RUN command to view the results of a health check:

adrci> SHOW hm_run

**
HM RUN RECORD 2131
**
 RUN_ID 42721
 RUN_NAME TestCheck1
 CHECK_NAME Dictionary Integrity Check
 NAME_ID 24
 MODE 0
 START_TIME 2008-10-03 16:40:47.4649 -04:00
 RESUME_TIME <NULL>
 END_TIME 2008-10-03 16:41:23.0687 -04:00
 MODIFIED_TIME 2008-10-03 16:41:59.7867 -04:00
 TIMEOUT 0
 FLAGS 0
 STATUS 5
 SRC_INCIDENT_ID 0
 NUM_INCIDENTS 0
 ERR_NUMBER 0
 REPORT_FILE
 /u01/app/oracle/diag/rdbms/orcl2/orcl2/hm/HMREPORT_TestCheck1
2131 rows fetched

adrci>

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 1035

In this example, the SHOW HM_RUN command shows the report filename under the REPORT_FILE
column. Once you see the filename, you can view the report itself by issuing the SHOW REPORT HM_RUN
command, as shown here:

adrci> SHOW REPORT hm_run TestCheck1

If the REPORT_FILE column shows a NULL value, you must first generate the report file in the
following manner:

adrci> CREATE REPORT hm_run TestCheck1

Once you generate the report as shown here, you can use the SHOW REPORT HM_RUN command to
view the report’s contents.

Repairing SQL Statements with the SQL Repair Advisor
The SQL Repair Advisor is a new tool that helps you navigate situations where a SQL statement fails
with a critical error. For example, if there’s a known bug that’s causing a critical error, you can use
the SQL Repair Advisor. Contrary to what its name indicates, the SQL Repair Advisor doesn’t really
rewrite or repair the offending SQL statement—it recommends a patch that’ll keep the SQL state-
ment from erroring out. In other words, the advisor provides you a workaround for a problem SQL
statement. Note that a SQL patch in this case is very similar to a SQL profile, and adopting the patch
results in a change in the query execution plan. You can invoke the SQL Repair Advisor from the
Support Workbench or with the help of the DBMS_SQLDIAG package. I explain both methods in the
following sections.

Invoking the SQL Repair Advisor from the Support Workbench

Follow these steps to invoke the SQL Repair Advisor from the Support Workbench:

1. In the Support Workbench home page, click the ID of the problem you’re trying to fix.

2. In the Problem Details page, click the problem message from the failed SQL statement.

3. In the Investigate and Resolve section on the Self Service tab, click SQL Repair Advisor.

4. Select the schedule for running the advisor and click Submit. Click View in the SQL Repair
results page to view the Report Recommendations page.

5. Click Implement if you want the advisor to implement its recommendations. The SQL
Repair Advisor presents a confirmation page after it implements the recommendations.

When you migrate to a new release of the database, you can easily drop the patches you applied
through the SQL Repair Advisor.

Invoking the SQL Repair Advisor with the DBMS_SQLDIAG Package

The following example illustrates how to create a SQL Repair Advisor task and to apply a SQL patch
recommended by the advisor to fix a bad SQL statement.

1036 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

A WORD ABOUT THE FOLLOWING EXAMPLE

I have adapted the following example from the Oracle University course materials. If you try to execute the example
as is, you won’t really see any errors. In the Oracle course, an error is induced by using the fix control mechanism,
which lets you turn off fixes for optimizer-related bugs. You control the fix control mechanism by setting the undoc-
umented initialization parameter _FIX_CONTROL.

You can query the V$SESSION_FIX_CONTROL view to find out for which bugs you can turn the fixes off. You’d
use the query SELECT DISTINCT BUGNO FROM V$SESSION_FIX_CONTROL to do this. Once you decide for
which bugs you want to turn the fixes off for testing purposes, you can issue the query ALTER SESSION SET
"_FIX_CONTROL"='4728348:OFF'; to turn the bug fix off temporarily while you’re testing the code in our example.

Once you finish testing, don’t forget to execute the statement ALTER SESSION SET "_FIX_CONTROL"=
'4728348:ON'; to turn the bug fix on again. As you can tell, this is a somewhat cumbersome procedure, besides
requiring you to use an undocumented parameter on your own without Oracle Support helping you along. I’ve mentioned
the testing strategy here if you want to test the following code, but it may be smarter not to use any undocumented
initialization parameter, due to potential harm to your database.

Let’s say you identify the following SQL statement as the one responsible for a critical error in
the database:

SQL> DELETE FROM t t1
 WHERE t1.a = 'a'
 AND rowid <> (select max(rowid)
 FROM t t2 WHERE t1.a= t2.a AND t1.b = t2.b AND t1.d=t2.d);

You can use the SQL Repair Advisor to fix this problem by following these steps:

1. Execute the CREATE_DIAGNSOTIC_TASK procedure from the DBMS_SQLDIAG package to
create a SQL Repair Advisor task.

SQL> declare
 2 report_out clob;
 3 task_id varchar2(50);
 4 begin
 5 task_id := dbms_sqldiag.create_diagnosis_task(
 6 sql_text=>' delete from t t1 where t1.a = ''a''
 and rowid <> (select max(rowid) from t t2
 where t1.a= t2.a and t1.b = t2.b
 and t1.d=t2.d)',
 8 task_name =>'test_task1',
 9 problem_type=>dbms_sqldiag.problem_type_compilation
 _error);
 10* end;
SQL> /

PL/SQL procedure successfully completed.
SQL>

I chose PROBLEM_TYPE_COMPILATION as the value for the PROBLEM_TYPE parameter in the
CREATE_DIAGNOSIS_TASK procedure. You can also choose PROBLEM_TYPE_EXECUTION as
the value for the PROBLEM_TYPE parameter.

CH A PT E R 1 8 ■ M AN A G IN G AN D M ON IT O R IN G TH E O P E R A T I ON AL D AT AB ASE 1037

2. Execute the SET_TUNING_TASK_PARAMETERS procedure to supply the task parameters
for the new task you created in the previous step.

SQL> exec dbms_sqltune.set_tuning_task_parameter('task_id,
 '-SQLDIAG_FINDING_MODE', dbms_sqldiag.SQLDIAG_FINDING_
 FILTER_PLANS);

3. Execute the new task, after supplying a task name as the parameter to the EXECUTE_
DIAGNOSTIC_TASK procedure.

SQL> exec dbms_sqlldiag.execute_diagnosis_task('test_task1');

PL/SQL procedure successfully completed.

SQL>

Note that you only need the TASK_NAME parameter to execute the EXECUTE-DIAGNOSTIC_
TASK procedure.

4. You can get the report of the diagnostic task by executing the REPORT_DIAGNOSTIC_TASK function.

SQL> declare rep_out clob;
 2 begin
 3 rep_out := dbms_sqldiag.report_diagnosis_task
 4 ('test_task1',dbms_sqldiag.type_text);
 5 dbms_output.put_line ('Report : ' || rep_out);
 6*end;
SQL> /

Report : GENERAL INFORMATION
SECTION

Tuning Task Name : test_task1
Tuning Task Owner : SYS
Tuning Task ID : 3219
Workload Type : Single SQL Statement
Execution Count : 1
Current Execution : EXEC_3219
Execution Type : SQL DIAGNOSIS
Scope : COMPREHENSIVE
Time Limit(seconds) : 1800
Completion Status : COMPLETED
Started at : 10/20/2007 06:33:42
Completed at : 10/20/2007 06:36:45
Schema Name : SYS
SQL ID : 44wx3x03jx01v
SQL Text : delete from t t1 where t1.a = 'a'
 and rowid <> (select max(rowid)
 from t t2 where t1.a= t2.a
 and t1.b = t2.b and t1.d=t2.d)
. . .
PL/SQL procedure successfully completed.

SQL>

1038 CH AP T E R 1 8 ■ M A N A G IN G AN D M ON I T OR I N G T H E O P E R AT IO N A L D AT AB A SE

5. You can accept the patch recommended by the SQL Repair Advisor by executing the
ACCEPT_SQL_PATCH procedure.

SQL> exec dbms_sqldiag.accept_sql_patch (
 task_name => 'test_task1',
 task_owner => 'SYS')

If you execute the SQL statement after accepting the recommended patch, you’ll see a different
execution plan for the statement. Use the DBA_SQL_PATCHES view to find out the names of all
patch recommendations made by the SQL Repair Advisor. You can drop a patch by executing the
DROP_SQL_PATCH procedure. You can also export a SQL patch to a different database by using a
staging table.

The SQL Test Case Builder
You can quickly create a test case for submission to Oracle Support by using the new SQL Test Case
Builder. The SQL Test Case Builder provides information about the SQL query, object definitions,
procedures, functions and packages, optimizer statistics, and initialization parameter settings. The
SQL Test Case Builder creates a SQL script that you can run in a different system to re-create the
database objects that exist in the source database. You can invoke the SQL Test Case Builder by
executing the DBMS_SQLDIAG.EXPORT_SQL_TESTCASE_DIR_BY_INC function. This function will generate
a SQL Test Case corresponding to the incident ID you pass to the function. You can instead use the
DBMS_SQLDIAG.EXPORT_SQL_TESTCASE_DIR_BY_TEXT function to generate a SQL test case that corresponds
to the SQL text you pass as an argument. However, as usual, it’s a lot easier to access the SQL Test
Case Builder through the Enterprise Manager, where you can get to it from the Support Workbench
page by following these steps:

1. Go to the Problem Details page by clicking the relevant problem ID.

2. Click Oracle Support.

3. Click Generate Additional Dumps and Test Cases.

4. Click the icon in the Go to Task column in the Additional Dumps and Test Cases page. This’ll
start the SQL Test Case Builder analysis for the relevant SQL statement.

■ ■ ■

P A R T 7

Performance Tuning

1041

■ ■ ■

C H A P T E R 1 9

Improving Database Performance:
SQL Query Optimization

Performance tuning is the one area in which the Oracle DBA probably spends most of his or her
time. If you’re a DBA helping developers to tune their SQL, you can improve performance by suggesting
more efficient queries or table- and index-organization schemes. If you’re a production DBA, you’ll
be dealing with user perceptions of a slow database, batch jobs taking longer and longer to complete,
and so on.

Performance tuning focuses primarily on writing efficient SQL, allocating appropriate computing
resources, and analyzing wait events and contention in the system. This chapter focuses on SQL
query optimization in Oracle. You’ll learn about the Oracle optimizer and how to collect statistics for
it. You’ll find an introduction to the new Automatic Optimizer Statistics Collection feature. You can
also manually collect statistics using the DBMS_STATS package, and this chapter shows you how to
do that. You’ll learn the important principles that underlie efficient code. I present a detailed discus-
sion of the various tools, such as the EXPLAIN PLAN and SQL Trace utilities, with which you analyze
SQL and find ways to improve performance.

Oracle provides several options to aid performance, such as partitioning large tables, using
materialized views, storing plan outlines, and many others. This chapter examines how DBAs can
use these techniques to aid developers’ efforts to increase the efficiency of their application code.
This chapter introduces the SQL Tuning Advisor to help you tune SQL statements. You can then use
the recommendations of this advisor to rewrite poorly performing SQL code. I begin the chapter with
a discussion of how to approach performance tuning. More than the specific performance improve-
ment techniques you use, your approach to performance tuning determines your success in tuning
a recalcitrant application system.

An Approach to Oracle Performance Tuning
Performance tuning is the 800-pound gorilla that is constantly menacing you and that requires every
bit of your ingenuity, knowledge, and perseverance to keep out of harm’s way. Your efforts to increase
performance or to revive a bogged-down database can have a major impact on your organization,
and users and management will monitor and appreciate your results.

Unlike several other features of Oracle database management, performance tuning isn’t a cut-
and-dried subject with clear prescriptions and rules for every type of problem you may face. This is
one area where your technical knowledge must be used together with constant experimentation and
observation. Practice does make you better, if not perfect, in this field.

Frustrating as it is at times, performance tuning is a rewarding part of the Oracle DBA’s tasks.
You can automate most of the mundane tasks such as backup, export and import, and data loading—
the simple, everyday tasks that can take up so much of your valuable time. Performance tuning is one

1042 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

area that requires a lot of detective work on the part of application programmers and DBAs to see
why some process is running slower than expected, or why you can’t scale your application to a
larger number of users without problems.

A Systematic Approach to Performance Tuning
It’s important to follow a systematic approach to tuning database performance. Performance prob-
lems commonly come to the fore only after a large number of users start working on a new production
database. The system seems fine during development and rigorous testing, but it slows down to a
crawl when it goes to production. This could be because the application isn’t easily scalable for a
number of reasons.

The seeds of the future performance potential of your database are planted when you design
your database. You need to know the nature of the applications the database is going to support. The
more you understand your application, the better you can prepare for it by creating your database
with the right configuration parameters. If major mistakes were made during the design stage and
the database is already built, you’re left with tuning application code on one hand and the database
resources such as memory, CPU, and I/O on the other. Oracle suggests a specific design approach
with the following steps:

1. Design the application correctly.

2. Tune the application SQL code.

3. Tune memory.

4. Tune I/O.

5. Tune contention and other issues.

Reactive Performance Tuning
Although the preceding performance tuning steps suggest that you can follow the sequence in an
orderly fashion, the reality is completely different. Performance tuning is an iterative process, not a
sequential one where you start at the top and end up with a fully tuned database as the product. As a
DBA, you may be involved in a new project from the outset, when you have just the functional require-
ments. In this case, you have an opportunity to be involved in the tuning effort from the beginning
stages of the application, a phase that is somewhat misleadingly dubbed proactive tuning by some.
Alternatively, you may come in after the application has already been designed and implemented,
and is in production. In this case, your performance efforts are categorized as reactive performance
tuning. What you can do to improve the performance of the database depends on the stage at which
you can have input, and on the nature of the application itself.

In general, developers are responsible for writing the proper code, but the DBA has a critical
responsibility to ensure that the SQL is optimal. Developers and QA testers may test the application
conscientiously, but the application may not scale well when exposed to heavy-duty real-life production
conditions. Consequently, DBAs are left scrambling to find solutions to a poorly performing SQL
statement after the code is running in production. Reactive performance tuning comprises most of
the performance tuning done by most DBAs, for the simple reason that most problems come to light
only after real users start using the application.

In many cases, you’re experiencing performance problems on a production instance that was
designed and coded long ago. Try to fix the SQL statements first if that’s at all possible. Many people
have pointed out that if the application is seriously flawed, you can do little to improve the overall
performance of the database, and they’re probably correct. Still, you can make a significant differ-
ence in performance, even when the suboptimal code can’t be changed for one reason or another.
You can use several techniques to improve performance, even when the code is poorly written but

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1043

can’t be changed in the immediate future. The same analysis, more or less, applies to performance-
tuning packaged systems such as PeopleSoft and SAP, where you can’t delve into the code that underlies
the system. You can make use of the SQL Advisor tool’s SQL Profiles to improve performance, even
though you can’t touch the underlying SQL code. SQL tuning, which is the topic of this chapter, is
how you improve the performance in both of the aforementioned situations. In the next chapter,
you’ll learn ways to tune database resources such as memory, disks, and CPU.

Optimizing Oracle Query Processing
When a user starts a data-retrieval operation, the user’s SQL statement goes through several sequen-
tial steps that together constitute query processing. One of the great benefits of using the SQL language is
that it isn’t a procedural language in which you have to specify the steps to be followed to achieve the
statement’s goal. In other words, you don’t have to state how to do something; rather, you just state
what you need from the database.

Query processing is the transformation of your SQL statement into an efficient execution plan to
return the requested data from the database. Query optimization is the process of choosing the most
efficient execution plan. The goal is to achieve the result with the least cost in terms of resource usage.
Resources include the I/O and CPU usage on the server where your database is running. This also
means that the goal is to reduce the total execution time of the query, which is simply the sum of the
execution times of all the component operations of the query. This optimization of throughput may
not be the same as minimizing response time. If you want to minimize the time it takes to get the first
n rows of a query instead of the entire output of the query, the optimizer may choose a different plan.
If you choose to minimize the response time for all the query data, you may also choose to parallelize
the operation.

A user’s SQL statement goes through the parsing, optimizing, and execution stages. If the SQL
statement is a query, data has to be retrieved, so there’s an additional fetch stage before the SQL
statement processing is complete. In the next sections you’ll examine what Oracle does during each
of these steps.

Parsing
Parsing primarily consists of checking the syntax and semantics of the SQL statements. The end
product of the parse stage of query compilation is the creation of the parse tree, which represents the
query’s structure.

The SQL statement is decomposed into a relational algebra query that’s analyzed to see whether
it’s syntactically correct. The query then undergoes semantic checking. The data dictionary is consulted
to ensure that the tables and the individual columns that are referenced in the query do exist, as well
as all the object privileges. In addition, the column types are checked to ensure that the data matches
the column definitions. The statement is normalized so it can be processed more efficiently. The
query is rejected if it is incorrectly formulated. Once the parse tree passes all the syntactic and semantic
checks, it’s considered a valid parse tree, and it’s sent to the logical query plan generation stage. All
these operations take place in the library cache portion of the SGA.

Optimization
During the optimization phase, Oracle uses its optimizer—the Cost-Based Optimizer (CBO)—to
choose the best access method for retrieving data for the tables and indexes referred to in the query.
Using statistics that you provide and any hints specified in the SQL queries, the CBO produces an
optimal execution plan for the SQL statement.

1044 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

The optimization phase can be divided into two distinct parts: the query rewrite phase and the
physical execution plan generation phase. Let’s look at these two optimization phases in detail.

Query Rewrite Phase

In this phase, the parse tree is converted into an abstract logical query plan. This is an initial pass at
an actual query plan, and it contains only a general algebraic reformulation of the initial query. The
various nodes and branches of the parse tree are replaced by operators of relational algebra. Note
that the query rewriting here isn’t the same as the query rewriting that’s involved in using material-
ized views.

Execution Plan Generation Phase

During this phase, Oracle transforms the logical query plan into a physical query plan. The optimizer
may be faced with a choice of several algorithms to resolve a query. It needs to choose the most effi-
cient algorithm to answer a query, and it needs to determine the most efficient way to implement the
operations. In addition to deciding on the best operational steps, the optimizer determines the order
in which it will perform these steps. For example, the optimizer may decide that a join between table
A and table B is called for. It then needs to decide on the type of join and the order in which it will
perform the table join.

The physical query or execution plan takes into account the following factors:

• The various operations (for example, joins) to be performed during the query

• The order in which the operations are performed

• The algorithm to be used for performing each operation

• The best way to retrieve data from disk or memory

• The best way to pass data from one operation to another during the query

The optimizer may generate several valid physical query plans, all of which are potential execution
plans. The optimizer then chooses among them by estimating the cost of each possible physical plan
based on the table and index statistics available to it, and selecting the plan with the lowest estimated
cost. This evaluation of the possible physical query plans is called cost-based query optimization. The
cost of executing a plan is directly proportional to the amount of resources such as I/O, memory, and
CPU necessary to execute the proposed plan. The optimizer passes this low-cost physical query plan
to Oracle’s query execution engine. The next section presents a simple example to help you under-
stand the principles of cost-based query optimization.

A Cost Optimization Example

Let’s say you want to run the following query, which seeks to find all the supervisors who work in
Dallas. The query looks like this:

SQL> SELECT * FROM employee e, dept d
 WHERE e.dept_no = d.dept_no
 AND(e.job = 'SUPERVISOR'
 AND d.city = 'DALLAS');
SQL>

Now, you have several ways to arrive at the list of the supervisors. Let’s consider three ways to
arrive at this list, and compute the cost of accessing the results in each of the three ways.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1045

Make the following simplifying assumptions for the cost computations:

• You can only read and write data one row at a time (in the real world, you do I/O at the block
level, not the row level).

• The database writes each intermediate step to disk (again, this may not be the case in the
real world).

• No indexes are on the tables.

• The employee table has 2,000 rows.

• The dept table has 40 rows. The number of supervisors is also 40 (one for each department).

• Ten departments are in the city of Dallas.

In the following sections, you’ll see three different queries that retrieve the same data, but that
use different access methods. For each query, a crude cost is calculated, so you can compare how the
three queries stack up in terms of resource cost. The first query uses a Cartesian join.

Query 1: A Cartesian Join

First, form a Cartesian product of the employee and dept tables. Next, see which of the rows in the
Cartesian product satisfies the requirement. Here’s the query:

 WHERE e.job=supervisor AND d.dept=operations AND e.dept_no=d.dept_no.

The following would be the total cost of performing the query:

The Cartesian product of employee and dept requires a read of both tables: 2,000 + 40 = 2,040 reads

Creating the Cartesian product: 2,000 * 40 = 80,000 writes

Reading the Cartesian product to compare against the select condition: 2,000 * 40 = 80,000 reads

Total I/O cost: 2,040 + 80,000 + 80,000 = 162,040

Query 2: A Join of Two Tables

The second query uses a join of the employee and dept tables. First, join the employee and dept tables on
the dept_no column. From this join, select all rows where e.job=supervisor and city=Dallas.

The following would be the total cost of performing the query:

Joining the employee and dept tables first requires a read of all the rows in both tables:
2,000 + 40 = 2,040

Creating the join of the employee and dept tables: 2,000 writes

Reading the join results costs: 2,000 reads

Total I/O cost: 2,040 + 2,000 + 2,000 = 6,040

Query 3: A Join of Reduced Relations

The third query also uses a join of the employee and dept tables, but not all the rows in the two
tables—only selected rows from the two tables are joined. Here’s how this query would proceed to
retrieve the needed data. First, read the employee table to get all supervisor rows. Next, read the dept
table to get all Dallas departments. Finally, join the rows you derived from the employee and the
dept tables.

1046 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

The following would be the total cost of performing the query:

Reading the employee table to get the supervisor rows: 2,000 reads

Writing the supervisor rows derived in the previous step: 40 writes

Reading the dept table to get all Dallas departments: 40 reads

Writing the Dallas department rows derived from the previous step: 10 writes

Joining the supervisor rows and department rows derived in the previous steps of this query
execution: A total of 40 + 10 = 50 writes

Reading the join result from the previous step: 50 reads

Total I/O cost: 2,000 + 2(40) + 10 + 2(50) = 2,190

This example, simplified as it may be, shows you that Cartesian products are more expensive
than more restrictive joins. Even a selective join operation, the results show, is more expensive than
a selection operation. Although a join operation is in query 3, it’s a join of two reduced relations; the
size of the join is much smaller than the join in query 2. Query optimization often involves early
selection (picking only some rows) and projection (picking only some columns) operations to reduce
the size of the resulting outputs or row sources.

Heuristic Strategies for Query Processing

The use of the cost-based optimization technique isn’t the only way to perform query optimization.
A database can also use less systematic techniques, known as heuristic strategies, for query processing. A
join operation is called a binary operation, and an operation such as selection is called a unary oper-
ation. A successful strategy in general is to perform the unary operation early on, so the more complex
and time-consuming binary operations use smaller operands. Performing as many of the unary
operations as possible first reduces the row sources of the join operations. Here are some of the
common heuristic query-processing strategies:

• Perform selection operations early so you can eliminate a majority of the candidate rows early
in the operation. If you leave most rows in until the end, you’re going to do needless compar-
isons with the rows that you’re going to get rid of later anyway.

• Perform projection operations early so you limit the number of columns you have to deal with.

• If you need to perform consecutive join operations, perform the operation that produces the
smaller join first.

• Compute common expressions once and save the results.

Query Execution
During the final stage of query processing, the optimized query (the physical query plan that has been
selected) is executed. If it’s a SELECT statement, the rows are returned to the user. If it’s an INSERT,
UPDATE, or DELETE statement, the rows are modified. The SQL execution engine takes the execution
plan provided by the optimization phase and executes it.

Of the three steps involved in SQL statement processing, the optimization process is the crucial
one because it determines the all-important question of how fast your data will be retrieved. Under-
standing how the optimizer works is at the heart of query optimization. It’s important to know what
the common access methods, join methods, and join orders are in order to write efficient SQL. The
next section presents a detailed discussion of the all-powerful Oracle CBO.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1047

Query Optimization and the Oracle CBO
In most cases, you have multiple ways to execute a SQL query. You can get the same results from
doing a full table scan or using an index. You can also retrieve the same data by accessing the tables
and indexes in a different order. The job of the optimizer is to find the optimal or best plan to execute
your DML statements such as SELECT, INSERT, UPDATE, and DELETE. Oracle uses the CBO to help deter-
mine efficient methods to execute queries.

The CBO uses statistics on tables and indexes, the order of tables and columns in the SQL state-
ments, available indexes, and any user-supplied access hints to pick the most efficient way to access
them. The most efficient way, according to the CBO, is the least costly access method, cost being
defined in terms of the I/O and the CPU expended in retrieving the rows. Accessing the necessary rows
means Oracle reads the database blocks on the file system into the buffer pool. The resulting I/O cost
is the most expensive part of SQL statement execution because it involves reading from the disk. You
can examine these access paths by using tools such as the EXPLAIN PLAN. The following sections
cover the tasks you need to perform to ensure that the optimizer functions efficiently.

Choosing Your Optimization Mode
In older versions of Oracle, you had a choice between a rule-based and a Cost-Based Optimizer. In a
rule-based approach, Oracle used a heuristic method to select among several alternative access paths
with the help of certain rules. All the access paths were assigned a rank, and the path with the lowest
rank was chosen. The operations with a lower rank usually executed faster than those with a higher
rank. For example, a query that uses the ROWID to search for a row has a cost of 1. This is expected
because identifying a row with the help of the ROWID, an Oracle pointer-like mechanism, is the
fastest way to locate a row. On the other hand, a query that uses a full table scan has a cost of 19, the
highest possible cost under rule-based optimization. The CBO method almost always performs
better than the older rule-based approach because, among other things, it takes into account the
latest statistics about the database objects.

Providing Statistics to the Optimizer
By default, the database itself automatically collects the necessary optimizer statistics. Every night,
the database schedules a statistics collection job during the maintenance window of the Oracle
Scheduler. The maintenance window, by default, extends from 10 p.m. to 6 a.m. on weekdays and all
weekend as well. The job is named GATHER_STATS_JOB and runs by default in every Oracle Database
11g database. You have the ability to disable the GATHER_STATS_JOB if you wish. You can get details
about this default GATHER_STATS_JOB by querying the DBA_SCHEDULER_JOBS view.

The GATHER_STATS_JOB collects statistics for all tables that either don’t have optimizer statistics
or have stale (outdated) statistics. Oracle considers an object’s statistics stale if more than 10 percent
of its data has changed since the last time it collected statistics for that object. By default, Oracle
monitors all DML changes such as inserts, updates, and deletes made to all database objects. You
can also view the information about these changes in the DBA_TAB_MODIFICATIONS view. Based
on this default object monitoring, Oracle decides whether to collect new statistics for an object.

To check that the GATHER_STATS_JOB is indeed collecting statistics on a regular basis, use the
following:

SQL> SELECT last_analyzed, table_name, owner, num_rows, sample_size
 2 FROM dba_tables
 3* ORDER by last_analyzed;

1048 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

TABLE_NAME LAST_ANALYZED OWNER NUM_ROWS SAMPLE_SIZE
----------- ----------------------- -------- -------- -----------
iR_LICENSE 22/JUN/2008 12:38:56 AM APSOWNER 142 142
ROLL_AUDIT 06/JUN/2008 11:34:29 PM APSOWNER 8179264 5444
HISTORY_TAB 04/JUN/2008 07:28:40 AM APSOWNER 388757 88066
YTDM_200505 04/JUN/2008 07:23:21 AM APSSOWNER 113582 6142
REGS163X_200505 04/JUN/2008 07:23:08 AM APSSOWNER 115631 5375
UNITS 07/JUN/2008 01:18:48 AM APSOWNER 33633262 5144703
CAMPAIGN 16/JUN/2008 02:01:45 AM APSOWNER 29157889 29157889
FET$ 30/JUN/2008 12:03:50 AM SYS 5692 5692
. . .
SQL>

Note the following points about the preceding output:

• The job collects statistics during the maintenance window of the database, which is, by
default, scheduled between 10 p.m. and 6 a.m. during weekdays and all weekend.

• The statistics are collected by the nightly GATHER_STATS_JOB run by the Scheduler.

• If a table is created that day, the job uses all the rows of the table the first time it collects statistics
for the table.

• The sampling percentage varies from less than 1 percent to 100 percent.

• The size of the table and the percentage of the sample aren’t correlated.

• The job doesn’t collect statistics for all the tables each day.

• If a table’s data doesn’t change after it’s created, the job never collects a second time.

Oracle determines the sample size for each object based on its internal algorithms; there is no
standard sample size for all objects. Once you verify the collection of statistics, you can pretty much
leave statistics collection to the database and focus your attention elsewhere. This way, you can
potentially run huge production databases for years on end, without ever having to run a manual
statistics collection job using the DBMS_STATS package. Of course, if you load data during the day,
or after the GATHER_STATS_JOB starts running, you’ll miss the boat and the object won’t have any
statistics collected for it. Therefore, keep any eye on objects that might undergo huge changes during
the day. You might want to schedule a statistics collection job right after the data changes occur.

In addition, you can provide the necessary statistics to the optimizer with the DBMS_STATS
package yourself (the automatic statistics collection process managed by the GATHER_STATS_JOB uses
the same package internally to collect statistics), which you’ll learn about later on in this chapter. The
necessary statistics are as follows:

• The number of rows in a table

• The number of rows per database block

• The average row length

• The total number of database blocks in a table

• The number of levels in each index

• The number of leaf blocks in each index

• The number of distinct values in each column of a table

• Data distribution histograms

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1049

• The number of distinct index keys

• Cardinality (the number of columns with similar values for each column)

• The minimum and maximum values for each column

• System statistics, which include I/O characteristics of your system; and CPU statistics, which
include CPU speed and other related statistics

The key to the CBO’s capability to pick the best possible query plan is its capability to correctly
estimate the cost of the individual operations of the query plan. These cost estimates are derived
from the knowledge about the I/O, CPU, and memory resources needed to execute each operation
based on the table and index statistics. The estimates are also based on the operating system statistics
that I enumerated earlier, and additional information regarding the operating system performance.

The database stores the optimizer statistics that it collects in its data dictionary. The
DBA_TAB_STATISTICS table shows optimizer statistics for all the tables in your database. You can
also see column statistics by querying the DBA_TAB_COL_STATISTICS view, as shown here:

 SQL> SELECT column_name, num_distinct
 FROM dba_tab_col_statistics
 WHERE table_name='PERSONNEL';

COLUMN_NAME NUM_DISTINCT
------------------------------ ------------
PERSON_ID 22058066
UPDATED_DATE 1200586
DATE_OF_BIRTH 32185
LAST_NAME 7281
FIRST_NAME 1729
GENDER 2
HANDICAP_FLAG 1
CREATED_DATE 2480278
MIDDLE_NAME 44477
SQL>

As you can see, more than 22 million PERSON_ID numbers are in the PERSONNEL table. However,
there are only 7,281 distinct last names and 1,729 distinct first names. Of course, the GENDER column
has only two distinct values. The optimizer takes into account these types of information regarding
your table data, before deciding on the best plan of execution for a SQL statement that involves the
table’s columns.

■Tip Optimizer statistics include both object (table and index) statistics and system statistics. Without accurate
system statistics, the optimizer can’t come up with valid cost estimates to evaluate alternative execution plans.

Setting the Optimizer Mode
Oracle optimizes the throughput of queries by default. Optimizing throughput means using the fewest
resources to process the entire SQL statement. You can also ask Oracle to optimize the response
time, which usually means using the fewest resources to get the first (or first n) row(s). For batch
jobs, response time for individual SQL statements is less important than the total time it takes to
complete the entire operation. For interactive applications, response time is more critical.

1050 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

You can use any of the following three modes for the optimizer with the CBO. The value you set
for the OPTIMIZER_MODE initialization parameter is the default mode for the Oracle optimizer. The
rule-based optimizer is a deprecated product, and I don’t even mention it here.

• ALL_ROWS: This is the default optimizer mode, and it directs Oracle to use the CBO whether you
have statistics on any of the tables in a query (derived by you through using the DBMS_STATS
package or automatically by the Oracle database) or not, with the express goal of maximizing
throughput.

■Tip In the case of all three values for the optimizing mode discussed here, I state that cost optimization is used
regardless of whether there are any statistics on the objects that are being accessed in a query. What this means is
that in the absence of any statistics collected with the help of the DBMS_STATS package, Oracle uses dynamic
sampling techniques to collect the optimizer statistics at run time. For certain types of objects, such as external
tables and remote tables, Oracle uses simple default values, instead of dynamic sampling, for the optimizer statis-
tics. For example, Oracle uses a default value of 100 bytes for row length. Similarly, the number of rows in a table
is approximated by using the number of storage blocks used by a table and the average row length. However,
neither dynamic sampling nor default values give results as good as using comprehensive statistics collected
using the DBMS_STATS package. Whether you collect statistics manually, or rely on Oracle’s Automatic Optimizer
Statistics Collection feature (which uses the DBMS_STATS package internally), optimizer statistics are collected
through the DBMS_STATS package.

• FIRST_ROWS_n: This optimizing mode uses cost optimization regardless of the availability of
statistics. The goal is the fastest response time for the first n number of rows of output, where
n can take the value of 10, 100, or 1000.

• FIRST_ROWS: The FIRST_ROWS mode uses cost optimization and certain heuristics (rules of
thumb), regardless of whether you have statistics or not. You use this option when you want
the first few rows to come out quickly so response time can be minimized. Note that the
FIRST_ROWS mode is retained for backward compatibility purposes only, with the FIRST_ROWS_n
mode being the latest version of this model.

Setting the Optimizer Level
You can set the optimizer mode at the instance, session, or statement level. You set the optimizer
mode at the instance level by setting the initialization parameter OPTIMIZER_MODE to ALL_ROWS,
FIRST_ROWS_n, or FIRST_ROWS, as explained in the previous section. For example, you can set the goal
of the query optimizer for the entire instance by adding the following line in your initialization
parameter file:

OPTIMIZER_MODE = ALL_ROWS

Setting the initialization parameter OPTIMIZER_MODE to ALL_ROWS ensures that we can get the
complete result set of the query as soon as feasible.

You can also set the optimizer mode for a single session by using the following ALTER SESSION
statement:

SQL> ALTER SESSION SET optimizer_mode = first_rows_10;
Session altered.
SQL>

The previous statement directs the optimizer to base its decisions on the goal of the best
response time for getting the first ten rows of the output of every SQL statement that is executed.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1051

■Tip Note that the optimizer mode you choose applies only to SQL statements that are issued directly. If you use
an ALTER SESSION statement to change the optimizer mode for SQL that’s part of a PL/SQL code block, it’ll be
ignored. You must use optimizer hints, which I discuss in the section titled “Using Hints to Influence the Execution
Plan,” to set the optimizer mode for any SQL statement that’s part of a PL/SQL block.

To determine the current optimizer mode for your database, you can run the following query:

SQL> SELECT name, value FROM V$PARAMETER
 2 WHERE name = 'optimizer_mode';

NAME VALUE
--------------- --------
optimizer_mode ALL_ROWS
SQL>

Any SQL statement can override the instance- or session-level settings with the use of optimizer
hints, which are directives to the optimizer for choosing the optimal access method. By using hints,
you can override the instance-wide setting of the OPTIMIZER_MODE initialization parameter. See the
section “Using Hints to Influence the Execution Plan” later in this chapter for an explanation of opti-
mizer hints.

What Does the Optimizer Do?
The CBO performs several intricate steps to arrive at the optimal execution plan for a user’s query.
The original SQL statement is most likely transformed, and the CBO evaluates alternative access
paths (for example, full-table or index-based scans). If table joins are necessary, the optimizer eval-
uates all possible join methods and join orders. The optimizer evaluates all the possibilities and
arrives at the execution plan it deems the cheapest in terms of total cost, which includes both I/O
and CPU resource usage cost.

SQL Transformation

Oracle hardly ever executes your query in its original form. If the CBO determines that a different
SQL formulation will achieve the same results more efficiently, it transforms the statement before
executing it. A good example is where you submit a query with an OR condition, and the CBO trans-
forms it into a statement using UNION or UNION ALL. Or your statement may include an index hint, but
the CBO might transform the statement so it can do a full table scan, which can be more efficient
under some circumstances. In any case, it’s good to remember that the query a user wishes to be
executed may not be executed in the same form by Oracle, but the query’s results are still the same.
Here are some common transformations performed by the Oracle CBO:

• Transform IN into OR statements.

• Transform OR into UNION or UNION ALL statements.

• Transform noncorrelated nested selects into more efficient joins.

• Transform outer joins into more efficient inner joins.

• Transform complex subqueries into joins, semijoins, and antijoins.

• Perform star transformation for data warehouse tables based on the star schema.

• Transform BETWEEN to greater than or equal to and less than or equal to statements.

1052 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

Choosing the Access Path

Oracle can often access the same data through different paths. For each query, the optimizer evaluates
all the available paths and picks the least expensive one in terms of resource usage. The following
sections present a summary of the common access methods available to the optimizer. If joins are
involved, then the join order and the join method are evaluated to finally arrive at the best execution
plan. You’ll take a brief look at the steps the optimizer goes through before deciding on its choice of
execution path.

Full Table Scans

Oracle scans the entire table during a full table scan. Oracle reads each block in the table sequen-
tially, so the full table scan can be efficient if the database uses a high default value internally for the
DB_FILE_MULTIBLOCK_READ_COUNT initialization parameter. The parameter determines the maximum
number of blocks the database reads during a sequential scan. However, for large tables, full table
scans are inefficient in general.

Table Access by ROWID

Accessing a table by ROWID retrieves rows using unique ROWIDs. ROWIDs in Oracle specify the
exact location in the datafile and the data block where the row resides, so ROWID access is the fastest
way to retrieve a row in Oracle. Often, Oracle obtains the ROWID through an index scan of the table’s
indexes. Using these ROWIDs, Oracle swiftly fetches the rows.

Index Scans

An index stores two things: the column value of the column on which the index is based and the
ROWID of the rows in the table that contain that column value. An index scan retrieves data from an
index using the values of the index columns. If the query requests only the indexed column values,
Oracle will return those values. If the query requests other columns outside the indexed column,
Oracle will use the ROWIDs to get the rows of the table.

Choosing the Join Method

When you need to access data that’s in two or more tables, Oracle joins the tables based on a common
column. However, there are several ways to join the row sets returned from the execution plan steps.
For each statement, Oracle evaluates the best join method based on the statistics and the type of
unique or primary keys on the tables. After Oracle has evaluated the join methods, the CBO picks the
join method with the least cost.

The following are the common join methods used by the CBO:

• Nested loop join: A nested loop join involves the designation of one table as the driving table
(also called the outer table) in the join loop. The other table in the join is called the inner table.
Oracle fetches all the rows of the inner table for every row in the driving table.

• Hash join: When you join two tables, Oracle uses the smaller table to build a hash table on the
join key. Oracle then searches the larger table and returns the joined rows from the hash table.

• Sort-merge join: The sort join operation sorts the inputs on the join key, and the merge join
operation merges the sorted lists. If the input is already sorted by the join column, there’s no
need for a sort join operation for that row source.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1053

Choosing the Join Order

Once the optimizer chooses the join method, it determines the order in which the tables are joined.
The goal of the optimizer is always to join tables in such a way that the driving table eliminates the
largest number of rows. A query with four tables has a maximum of 4 factorial, or 24, possible ways
in which the tables can be joined. Each such join order would lead to a number of different execution
plans, based on the available indexes and the access methods. The search for an optimal join strategy
could take a long time in a query with a large number of tables, so Oracle depends on an adaptive
search strategy to limit the time it takes to find the best execution plan. An adaptive search strategy
means that the time taken for optimization is always a small percentage of the total time that is taken
for execution of the query itself.

Drawbacks of the CBO
The CBO is systematic, but the optimizer is not guaranteed to follow the same plan in similar cases.
However, the CBO isn’t always perfect, and you need to watch out for the following:

• The CBO isn’t fixed across Oracle versions. Execution plans can change over time as versions
change. Later in this chapter, you’ll see how to use stored outlines so the optimizer always
uses a known plan to maintain plan stability.

• Application developers may know more than the CBO when it comes to choosing the best
access path. Application developers know the needs of the users, of which the CBO is completely
unaware. This could lead to a situation where the CBO may be optimizing throughput, when
the users would rather have a quick set of results on their screen. By using hints such as
FIRST_ROWS_n, you can overcome this drawback in the CBO.

• The CBO depends enormously on correct statistics gathering. If the statistics are absent or
outdated, the optimizer can make poor decisions.

Providing Statistics to the CBO
The CBO can follow optimal execution paths only if it has detailed knowledge of the database objects.
Starting with Oracle Database 10g, the recommended way to provide these statistics is by letting the
database automatically collect statistics for you. This is known as the Automatic Optimizer Statistics
Collection feature, which I explained in Chapter 17. You can also manually provide statistics to the
optimizer with the DBMS_STATS package. Note that whether you rely on automatic collection of
statistics or collect them yourself manually, Oracle uses the DBMS_STATS package to collect statistics.

Using DBMS_STATS to Collect Statistics

Although letting the database automatically collect optimizer statistics is the recommended approach,
you can still manually collect optimizer statistics using the DBMS_STATS package.

■Tip For large tables, Oracle recommends just sampling the data, rather than looking at all of it. Oracle lets you
specify row or block sampling, and it sometimes seems to recommend sampling sizes as low as 5 percent. The default
sampling size for an estimate is low too. Oracle also recommends using the DBMS_STATS automatic sampling proce-
dure. However, statistics gathered with sampled data aren’t reliable. The difference between collecting optimizer
statistics with the estimate at 30 percent and 50 percent is startling at times in terms of performance. Always choose
the option of collecting full statistics for all your objects, even if the frequency is not as high as it could be if you just
sampled the data.

1054 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

As I explained in Chapter 17, you must manually collect optimizer statistics under the following
conditions:

• When you use external tables

• When you need to collect system statistics

• To collect statistics on fixed objects, such as the dynamic performance tables (For dynamic
tables, you should use the GATHER_FIXED_OBJECTS_STATS procedure to collect optimizer
statistics.)

• Immediately after you run a bulk load job, because this makes your automatically collected
statistics unrepresentative

The following sections show you how to make use of the DBMS_STATS package to gather statistics.

■Note Oracle recommends that you not use the older ANALYZE statement to collect statistics for the optimizer,
but rather use the DBMS_STATS package. The ANALYZE command is retained for backward compatibility, and
you must use it for non-optimizer statistics collection tasks, such as verifying the validity of an object (using the
VALIDATE clause), or identifying migrated and chained rows in a table (using the LIST CHAINED ROWS clause).

Storing the Optimizer Statistics

You use various DBMS_STATS package procedures to collect optimizer statistics. Most of these
procedures have three common attributes—STATOWN, STATTAB, and STATID—which enable you to
save the collected statistics in a database table owned by a user. By default, these attributes are null,
and you shouldn’t provide a value for any of these attributes if your goal is to collect statistics for the
optimizer. When you ignore these attributes, optimizer statistics you collect are stored in the data
dictionary tables by default, where they’re accessible to the Oracle optimizer.

Collecting the Statistics

The DBMS_STATS package has several procedures that let you collect data at different levels. The
main data collection procedures for database table and index data are as follows:

• GATHER_DATABASE_STATISTICS gathers statistics for all objects in the database.

• GATHER_SCHEMA_STATISTICS gathers statistics for an entire schema.

• GATHER_TABLE_STATISTICS gathers statistics for a table and its indexes.

• GATHER_INDEX_STATISTICS gathers statistics for an index.

Let’s use the DBMS_STATS package to collect statistics first for a schema, and then for an indi-
vidual table.

• Collecting statistics at the schema level:

SQL> EXECUTE DBMS_STATS.GATHER_SCHEMA_STATS (ownname => 'hr');
PL/SQL procedure successfully completed.
SQL>

• Collecting statistics at the table level:

SQL> EXECUTE DBMS_STATS.GATHER_TABLE_STATS ('hr','employees');
PL/SQL procedure successfully completed.
SQL>

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1055

The GATHER_DATABASE_STATISTICS procedure collects optimizer statistics for the entire
database. This is probably the most common way of using the DBMS_STATS package, as you can use
this procedure to collect statistics for all database objects with a single statement. Here’s an example:

SQL> EXECUTE dbms_stats.gather_database_stats (-
 > ESTIMATE_PERCENT => NULL, -
 > METHOD_OPT => 'FOR ALL COLUMNS SIZE AUTO', -
 > GRANULARITY => 'ALL', -
 > CASCADE => 'TRUE',-
 > OPTIONS => 'GATHER AUTO');

PL/SQL procedure successfully completed.
SQL>

■Tip Although you can use the ESTIMATE_PERCENT attribute to collect optimizer statistics for a sample ranging
from 0.000001 to 100 percent of the rows in a table, you should strive to collect statistics for all the rows (by using
null as the value for this attribute). Collecting statistics based on a sample is fraught with dangers. Unless the tables
are so huge that you can’t collect all statistics within your maintenance window, strive to collect full statistics on all
objects, especially those that have heavy DML changes.

Let me explain the preceding GATHER_DATABASE_STATS procedure briefly here:

• The example shows only some of the various attributes or parameters that you can specify.
You can see the complete list of attributes by typing in this command:

SQL> DESCRIBE DBMS_STATS.GATHER_DATABASE_STATS

• If you don’t specify any of the attributes, Oracle uses the default values for those attributes.
Even when I use a default value, I list the attribute here, for exposition purposes.

• The ESTIMATE_PERCENT attribute refers to the percentage of rows that should be used to esti-
mate the statistics. I chose null as the value. Null here, contrary to intuition, means that Oracle
collects statistics based on all rows in a table. This is the same as using the COMPUTE STATISTICS
option in the traditional ANALYZE command. The default for this attribute is to let Oracle esti-
mate the sample size for each object, using the DBMS_STATS.AUTO_SAMPLE_SIZE procedure.

• You can use the METHOD_OPT attribute to specify several things, including whether histograms
should be collected. Here, I chose FOR ALL COLUMNS SIZE AUTO, which is the default value for
this attribute.

• The GRANULARITY attribute applies only to tables. The ALL value collects statistics for subparti-
tions, partitions, and global statistics for all tables.

• The CASCADE=>YES option specifies that statistics be gathered on all indexes, along with the
table statistics.

• The OPTIONS attribute is critical. The most important values for this attribute are as follows:

• GATHER gathers statistics for all objects, regardless of whether they have stale or fresh statistics.

• GATHER AUTO collects statistics for only those objects that Oracle deems necessary.

• GATHER EMPTY collects statistics only for objects without statistics.

• GATHER STALE results in collection of statistics for only stale objects, the determination as
to the object staleness being made by checking the DBA_TAB_MODIFICATIONS view.

1056 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

Note that you could also execute the GATHER_DATABASE_STATS procedure in the following
format, which produces equivalent results:

SQL> BEGIN
 dbms_stats.gather_database_stats (ESTIMATE_PERCENT => NULL, METHOD_OPT =>
 'FOR ALL COLUMNS SIZE AUTO',
 GRANULARITY => 'ALL', CASCADE => 'TRUE', OPTIONS => 'GATHER AUTO');
 END;
PL/SQL procedure successfully completed.

SQL>

You can check when a table has last been analyzed by using the following query:

SQL> SELECT table_name, last_analyzed FROM dba_tables;

TABLE_NAME LAST_ANALYZED
----------- --------------
TEST1 07/08/2008
TEST2 07/08/2008
TEST3 07/08/2008
. . .
SQL>

You can use a similar query for indexes, using the DBA_INDEXES view.

■Tip Make sure you have the initialization parameter JOB_QUEUE_PROCESSES set to a positive number. If this param-
eter isn’t set, it takes the default value of 0, and your DBMS_STATS.GATHER_SYSTEM_STATS procedure won’t work. You
can do this dynamically; for example, issue the command ALTER SYSTEM SET JOB_QUEUE_PROCESSES = 20.

Deferred Statistics Publishing
By default, the database publishes the statistics it collects for immediate use by the optimizer. However,
there may be times when you don’t want this to happen. Instead, you may wish to first test the statis-
tics and release them for public use only if you’re satisfied with them. Oracle lets you save new statistics
collected by the database as pending statistics, which you can publish or not ultimately, based on
your testing of the statistics. Current or published statistics are meant to be used by the optimizer,
and pending or deferred statistics are private statistics, which are kept from the optimizer.

Determining and Setting the Status of the Statistics

Execute the DBMS_STATS.GET_PREFS procedure to determine the publishing status of statistics in
your database:

SQL> select dbms_stats.get_prefs('PUBLISH') publish from dual;

PUBLISH

TRUE

SQL>

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1057

The value TRUE indicates that the database automatically publishes all statistics after it collects
them. This is the default behavior of the database. If the query had returned the value FALSE, it means
that the database will keep new statistics pending until you decide to formally publish them. You can
also execute the GET_PREFS function to find out the publishing mode for a single table:

SQL> SELECT dbms_stats.get_prefs('PUBLISH','stats','test_table')
 FROM dual;

You can change the publishing settings for objects at the database or at the object (table) level
by executing the SET_TABLE_PREFS function. For example, to keep the database from automatically
publishing the statistics it collects for the table EMPLOYEES, execute this function:

SQL> exec dbms_stats.set_table_prefs ('HR','EMPLOYEES',
 'PUBLISH','FALSE');

The database stores pending statistics in the DBA_TAB_PENDING_STATS view and it stores the
published statistics in the DBA_TAB_STATS view.

Making Pending Statistics Public

You can test any pending statistics in your database to see how they affect performance. If they help
performance, you can publish them for use by the optimizer; otherwise, just drop the statistics. You
publish the pending statistics, that is, make them available to the optimizer for testing purposes, by
setting the initialization parameter OPTIMIZER_USE_PENDING_STATISTICS. By default, this parameter is
set to FALSE, which means the optimizer will bypass the pending statistics, as shown here:

SQL> show parameter optimizer_use_pending_statistics

NAME TYPE VALUE
-------------------------------- ------- ------
optimizer_use_pending_statistics boolean FALSE

SQL>

You can make the optimizer take the pending statistics into account by setting the OPTIMIZER_
USE_PENDING_STATISTICS parameter to TRUE, as shown here:

SQL> ALTER SESSION SET optimizer_use_pending_statistics=TRUE ;

The optimizer will use the pending statistics once you run the previous statement. Once your
tests confirm that the new statistics are OK, you can make the pending statistics public by executing
the PUBLISH_PENDING_STATS procedure:

SQL> EXEC dbms_stats.publish_pending_stats (NULL,NULL);

If you want to publish statistics for a single table, you can do so as well:

SQL> EXEC dbms_stats.publish_pending_stats('HR','EMPLOYEES');

If you conclude, on the other hand, that the pending statistics aren’t helpful, delete them by
executing the DELETE_PENDING_STATS procedure:

SQL> EXEC dbms_stats.delete_pending_stats ('HR','EMPLOYEES');

You can also test the pending statistics you collect in one database in another database, by using
the EXPORT_PENDING_STATS procedure:

SQL> EXEC dbms_stats.export_pending_stats ('HR', 'EMPLOYEES');

1058 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

Extended Statistics
The statistics that the database collects are sometimes unrepresentative of the true data. Oracle
provides the capability for collecting extended statistics under some circumstances to mitigate the
problems in statistics collection. Extended statistics include the collection of multicolumn statistics
for groups of columns and expression statistics that collect statistics on function-based columns. I
explain both types of extended optimizer statistics in the following sections.

Multicolumn Statistics

When Oracle collects statistics on a table, it estimates the selectivity of each column separately, even
when two or more columns may be closely related. Oracle assumes that the selectivity estimates of
the individual columns are independent of each other and simply multiplies the independent
predicates’ selectivity to figure out selectivity of the group of predicates. This approach leads to an
underestimation of the true selectivity of the group of columns. You can collect statistics for a group
of columns to avoid this underestimation.

I use a simple example to show why collecting statistics for column groups instead of individual
columns is a good idea when the columns are related. In the SH.CUSTOMERS table, the CUST_
STATE_PROVINCE and the COUNTRY_ID columns are correlated, with the former column deter-
mining the value of the latter column. Here’s a query that shows the relationship between the two
columns:

SQL> SELECT count(*)
 FROM sh.customers
 WHERE cust_state_province = 'CA';

COUNT(*)

 3341

SQL>

The previous query uses only a single column, CUST_STATE_PROVINCE, to get a count of
the number of customers from the province named “CA.” The following query also involves the
COUNTRY_ID column, but returns the same count, 3341.

SQL> SELECT count(*)
 FROM customers
 WHERE cust_state_province = 'CA'
 AND country_id=52790;

COUNT(*)

 3341

SQL>

Obviously, the same query with a different value for the COUNTRY_ID column will return a
different count (most likely zero, since CA stands for California and it’s unlikely that a city of the
same name is present in other countries). You can collect statistics on a set of related columns such
as CUST_STATE_PROVINCE and COUNTRY_ID by estimating the combined selectivity of the two
columns. The database can collect statistics for column groups based on the database workload, but
you create column groups by using the DBMS_STATS.CREATE_EXTENDED_STATS function, as I explain next.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1059

Creating Column Groups

You create a column group by executing the CREATE_EXTENDED_STATS function, as shown in this example:

declare
 cg_name varchar2(30);
begin
 cg_name := dbms_stats.create_extended_stats(null,'customers',
 '(cust_state_province,country_id)');
end;
/

Once you create a column group as shown here, the database will automatically collect statistics
for the column group instead of the two columns as individual entities. The following query verifies
the successful creation of the new column group:

SQL> SELECT extension_name, extension
 FROM dba_stat_extensions
 WHERE table_name='CUSTOMERS';

EXTENSION_NAME EXTENSION
----------------------------- -----------------------------------
SYS_STU#S#WF25Z#QAHIHE#MOFFMM_ ("CUST_STATE_PROVINCE","COUNTRY-ID")

SQL>

You can drop a column group by executing the DROP_EXTENDED_STATS function:

SQL> exec dbms_stats.drop_extended_stats('sh','customers','
 (cust_state_province, country_id)');

Collecting Statistics for Column Groups

You can execute the GATHER_TABLE_STATS procedure with the METHOD_OPT argument set to the
value for all columns . . . to collect statistics for column groups. By adding the FOR COLUMNS clause,
you can have the database create the new column group as well as collect statistics for it, all in one
step, as shown here:

SQL> exec dbms_Stats.gather_table_stats(
 ownname=>null,-
 tabname=>'customers',-
 method_opt=>'for all columns size skewonly,-
 for columns (cust_state_province,country_id) size skewonly');

PL/SQL procedure successfully completed.
SQL>

Expression Statistics

If you apply a function to a column, the column value changes. For example, the LOWER function in
the following example returns a lowercase string:

SQL> SELECT count(*)
 FROM customers
 WHERE LOWER(cust_state_province)='ca';

Although the LOWER function transforms the values of the CUST_STATE_PROVINCE column by
making them lowercase, the optimizer has only the original column estimates and not the changed

1060 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

columns estimates. So, the optimizer really doesn’t have an accurate idea about the true selectivity
of the transformed values of the column. You can collect expression statistics on some types of column
expressions, in those cases where the function preserves the original data distribution characteris-
tics of the original column. This is true when you apply a function such as TO_NUMBER to a column. You
can use function-based expressions for user-defined functions as well as function-based indexes.

The expression statistics feature relies on Oracle’s virtual column capabilities. You execute the
CREATE_EXTENDED_STATS function to create statistics on column expressions, as shown here:

SQL> SELECT
 dbms_stats.create_extended_stats(null,'customers',
 '(lower(cust_state_province))')
 FROM dual;

Alternatively, you can execute the GATHER_TABLE_STATS function to create expression
statistics:

SQL> exec dbms_stats.gather_table_stats(null,'customers',
 method_opt=>'for all columns size skewonly,
 for columns (lower(cust_state_province)) size skewonly');

As with the column group statistics, you can query the DBA_STAT_EXTENSIONS view to find
out details about expression statistics.

The Cost Model of the Oracle Optimizer
The cost model of the optimizer takes into account both I/O cost and CPU cost, both in units of time. The
CBO evaluates alternative query costs by comparing the total time it takes to perform all the I/O
operations, as well as the number of CPU cycles necessary for the query execution. The CBO takes
the total number of I/Os and CPU cycles that will be necessary according to its estimates, and converts
them into execution time. It then compares the execution time of the alternative execution paths
and chooses the best candidate for execution.

For the CBO to compute the cost of alternative paths accurately, it must have access to accurate
system statistics. These statistics, which include items such as I/O seek time, I/O transfer time, and
CPU speed, tell the optimizer how fast the system I/O and CPU perform. It’s the DBA’s job to provide
these statistics to the optimizer. I show how to collect system statistics in the following section.

Collecting System Statistics
Although Oracle can automatically collect optimizer statistics for you regarding your tables and
indexes, you need to collect operating system statistics with the GATHER_SYSTEM_STATS proce-
dure. When you do this, Oracle populates the SYS.AUX_STATS$ table with various operating system
statistics, such as CPU and I/O performance. Gathering system statistics at regular intervals is critical,
because the Oracle CBO uses these statistics as the basis of its cost computations for various queries.
System statistics enable the optimizer to compare more accurately the I/O and CPU costs of alterna-
tive execution. The optimizer is also able to figure out the execution time of a query more accurately
if you provide it with accurate system statistics.

You can run the GATHER_SYSTEM_STATS procedure in different modes by passing values to
the GATHERING_MODE parameter. There’s a no-workload mode you can specify to quickly capture the
I/O system characteristics. You can also specify a workload-specific mode by using the INTERVAL,
START, and STOP values for the GATHERING_MODE parameter. Here’s a brief explanation of the different
values you can specify for the GATHERING_MODE parameter:

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1061

• No-workload mode: By using the NOWORKLOAD keyword, you can collect certain system statistics
that mostly pertain to general I/O characteristics of your system, such as I/O seek time
(IOSEEKTIM) and I/O transfer speed (IOTFRSPEED). You should ideally run the GATHER_
SYSTEM_STATS procedure in no-workload mode right after you create a new database. The
procedure takes only a few minutes to complete and is suitable for all types of workloads.

■Note If you collect both workload and no-workload statistics, the optimizer will use the workload statistics.

• Workload mode: To collect representative statistics such as CPU and I/O performance, you
must collect system statistics during a specified interval that represents a typical workload for
your instance. You can use the INTERVAL keyword to specify statistics collection for a certain
interval of time. You can alternatively use the START and STOP keywords to collect system statis-
tics for a certain length of time. Under both workload settings for the GATHERING_MODE parameter
(INTERVAL, or START and STOP), the database collects the following statistics: MAXTHR, SLAVETHR,
CPUSPEED, SREADTIM, MREADTIM, and MBRC.

Here’s what the various system statistics I mentioned stand for:

• IOTFRSPEED: I/O transfer speed (bytes per millisecond)

• IOSEEKTIM: Seek time + latency time + operating system overhead time (milliseconds)

• SREADTIM: Average time to (randomly) read a single block (milliseconds)

• MREADTIM: Average time to (sequentially) read an MBRC block at once (milliseconds)

• CPUSPEED: Average number of CPU cycles captured for the workload (statistics collected using
the INTERVAL or START and STOP options)

• CPUSPEEDNW: Average number of CPU cycles captured for the no-workload mode (statistics
collected using NOWORKLOAD option)

• MBR: Average multiblock read count for sequential read, in blocks

• MAXTHR: Maximum I/O system throughput (bytes/second)

• SLAVETHR: Average slave I/O throughput (bytes/second)

Here’s the structure of the GATHER_SYSTEM_STATS procedure:

DBMS_STATS.GATHER_SYSTEM_STATS (
 gathering_mode VARCHAR2 DEFAULT 'NOWORKLOAD',
 interval INTEGER DEFAULT NULL,
 stattab VARCHAR2 DEFAULT NULL,
 statid VARCHAR2 DEFAULT NULL,
 statown VARCHAR2 DEFAULT NULL);

Here’s an example that shows how to use the procedure to collect system statistics:

SQL> EXECUTE dbms_stats.gather_system_stats('start');
PL/SQL procedure successfully completed.
SQL>
SQL> EXECUTE dbms_stats.gather_system_stats('stop');
PL/SQL procedure successfully completed.
SQL>
SQL> SELECT * FROM sys.aux_stats$;

1062 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

SNAME PNAME PVAL1 PVAL2
------------- ------------- ---------- ----------------
SYSSTATS_INFO STATUS COMPLETED
SYSSTATS_INFO DSTART 04-25-2008 10:44
SYSSTATS_INFO DSTOP 04-26-2008 10:17
SYSSTATS_INFO FLAGS 1
SYSSTATS_MAIN CPUSPEEDNW 67.014
SYSSTATS_MAIN IOSEEKTIM 10.266
SYSSTATS_MAIN IOTFRSPEED 10052.575
SYSSTATS_MAIN SREADTIM 5.969
SYSSTATS_MAIN MREADTIM 5.711
SYSSTATS_MAIN CPUSPEED 141
SYSSTATS_MAIN MBRC 18
SYSSTATS_MAIN MAXTHR 17442816
SYSSTATS_MAIN SLAVETHR

13 rows selected.
SQL>

■Note You can view system statistics by using the GET_SYSTEM_STATISTICS procedure of the DBMS_STATS
package.

Collecting Statistics on Dictionary Objects
You should collect optimizer statistics on data dictionary tables to maximize performance. The two
types of dictionary tables are fixed and real. You can’t change or delete dynamic performance tables,
which means they are fixed. Real dictionary tables belong to schemas such as sys and system.

Collecting Statistics for Fixed Objects

Oracle recommends that you gather statistics for dynamic performance tables (fixed objects) only
once for every database workload, which is usually a week for most OLTP databases. You can collect
fixed object statistics in a couple ways, as follows:

• You can use the DBMS_STATS_GATHER_DATABASE_STATS procedure and set the GATHER_
SYS argument to TRUE (the default is FALSE).

• You can use the GATHER_FIXED_OBJECTS_STATS procedure of the DBMS_STATS package,
as shown here:

SQL> SHO USER
USER is "SYS"
SQL> EXECUTE DBMS_STATS.GATHER_FIXED_OBJECTS_STATS;

■Tip Before you can analyze any dictionary objects or fixed objects, you need the SYSDBA or ANALYZE ANY
DICTIONARY system privilege.

You can use the procedures from the DBMS_STATS package that enable table-level statistics
collection to collect statistics for an individual fixed table.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1063

Collecting Statistics for Real Dictionary Tables

You can use the following methods to collect statistics for real dictionary tables:

• Set the GATHER_SYS argument of the DBMS_STATS.GATHER_DATABASE_STATS procedure to
TRUE. You can also use the GATHER_SCHEMA_STATS ('SYS') option.

• Use the DBMS_STATS.GATHER_DICTIONARY_STATS procedure, as shown here:

SQL> SHO user
USER is "SYS"
SQL> EXECUTE dbms_stats.gather_dictionary_stats;

The GATHER_DICTIONARY_STATS procedure helps you collect statistics for tables owned by
the SYS and SYSTEM users as well as the owners of all database components.

■Note You can also use the DBMS_STATS package to delete, import, restore, and set optimizer statistics that
you have previously collected.

Frequency of Statistics Collection
Theoretically, if your data is static, you may only need to collect statistics once. If your database
performs only a small amount of DML activities, you may collect statistics at relatively longer intervals,
say weekly or monthly. However, if your database objects go through changes on a daily basis, you
need to schedule the statistics collection jobs much more frequently, say daily or even more often.
You can avoid having to decide on the frequency of the statistics collection by letting the database
itself decide when to collect new statistics. Remember that the database bases its statistics collection
on whether the statistics are “fresh” or “stale.” Thus, you can relax and let the database be the arbiter
of how often to collect statistics.

What Happens When You Don’t Have Statistics
You’ve seen how the Oracle database can automatically collect optimizer statistics for you. You’ve
also learned how to use the DBMS_STATS package to collect the statistics manually yourself. But
what happens if you disable the automatic statistics collection process, or if you don’t collect statis-
tics in a timely fashion? Even with automatic statistics collection, under which necessary statistics
are collected on a nightly basis, you may have a situation where table data is altered after the statistics
collection process is over. In situations such as this, Oracle uses data, such as the number of blocks
taken up by the table data and other ancillary information, to figure out the optimizer execution plan.

You can also use the initialization parameter OPTIMIZER_DYNAMIC_SAMPLING to let Oracle estimate
optimizer statistics on the fly, when no statistics exist for a table, or when the statistics exist but are
too old or otherwise unreliable. Of course, sampling statistics dynamically would mean that the compile
time for the SQL statement involved would be longer. Oracle smartly figures out if the increased
compile time is worth it when it encounters objects without statistics. If it’s worth it, Oracle will
sample a portion of the object’s data blocks to estimate statistics. Note that the additional compile
time is really not relevant because it happens only once at the initial parsing stage and not for all the
subsequent executions for a SQL statement. You need to set the value of the OPTIMIZER_DYNAMIC_
SAMPLING initialization parameter to 2 or higher to enable dynamic sampling of all unanalyzed tables.
Because the default for this parameter is 2, dynamic sampling is turned on by default in your data-
base. Thus, you need not spend sleepless nights worrying about objects with missing or outdated
statistics. In any case, if you adhere to Oracle’s recommendation and use the Automatic Optimizer
Statistics Collection feature, the GATHER_STATS_JOB will automatically collect your database’s statistics.

1064 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

The GATHER_STATS_JOB is created at database creation time and is managed by the Oracle Scheduler,
which runs the job when the maintenance window is opened. By default, the maintenance window
opens every night from 10 p.m. to 6 a.m., and all day on weekends. Oracle will collect statistics for all
objects that need them if you adopt the Automatic Optimizer Statistics Collection feature. The
feature is turned on by default in a new Oracle 11g database or when you upgrade to the 11g release
from an older release–based database.

Using the OEM to Collect Optimizer Statistics
As with so many other DBA tasks in Oracle Database 11g, you’re better off simply using the OEM
Database Control or the Grid Control to schedule the collection of optimizer statistics. Here are the
steps to collect optimizer statistics using the Database Control or Grid Control interfaces of the OEM:

1. From the Database Control home page, click the Administration tab.

2. In the Administration page, click the Manage Optimizer Statistics link under the Statistics
Management group.

3. You’re now in the Manage Optimizer Statistics page. Click the Gather Statistics link to start
collecting statistics and follow the instructions for the five steps you must implement.

Figure 19-1 shows part of the optimizer statistics collection process using the OEM Grid Control
interface.

Figure 19-1. Collecting optimizer statistics through the OEM

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1065

■Note Oracle strongly recommends that you just use the Oracle-created GATHER_STATS_JOB, run by the Scheduler
during the scheduled maintenance window, to collect optimizer statistics. You may want to collect optimizer statis-
tics manually under an extreme situation, such as the database not being up during the scheduled maintenance
window, or if you want to analyze a newly created table right away.

Writing Efficient SQL
One of the trickiest and most satisfying aspects of a DBA’s job is helping to improve the quality of
SQL code in the application. Efficient code means fast performance, and an easy way to decrease the
I/O your query requires is to try to lower the number of rows that the optimizer has to examine. The
optimizer is supposed to find the optimal plan based on your query. This means the optimizer won’t
rewrite an inefficiently written query—it only produces the execution plan for that query. Also, even
if your query is efficiently written, the optimizer may not always end up producing the best execu-
tion plan. You have better knowledge of your application and data than the optimizer does, and you
can, with hints, force the optimizer to use that knowledge. The following sections cover some of the
best guidelines for writing good SQL.

Efficient WHERE Clauses
Selective criteria in your WHERE clauses can dramatically decrease the amount of data Oracle has to
consider during a query. You can follow some simple principles to ensure that the structure of your
SQL statements is not inherently inefficient. Your join methods may be fine, but overlooking some
of these principles could doom your statement from a performance point of view.

Careful specification of WHERE conditions can have a significant bearing on whether the optimizer
will choose existing indexes. The principle of selectivity—the number of rows returned by a query as
a percentage of the total number of rows in a table—is the key idea here. A low percentage means
high selectivity and a high percentage means the reverse. Because more selective WHERE clauses mean
fewer I/Os, the CBO tends to prefer to choose those kinds of WHERE clauses over others in the same
query. The following example makes this clear:

SQL> SELECT * FROM national_employees
 WHERE ss_no = 515086789
 AND city='DALLAS';

Two WHERE clauses are in this example, but you can see that the first WHERE clause that uses ss_no
requires fewer I/Os. The column ss_no is the primary key and is highly selective—only one row with
that ss_no is in the entire table. The optimizer determines the selectivity of each of the two columns
in the query by looking at the index statistics, which tell it how many rows in the table contain each
of the two column values in the query. If neither of the columns has an index, Oracle will use a full
table scan to retrieve the answer to the query. If both of them have indexes, it will use the more selec-
tive (and hence more efficient) index on the ss_no column.

If you think that the optimizer should have used an index instead of doing a full table scan, then
perform the following steps:

1. Views in a query sometimes prevent the use of indexes. Check to make sure that the exe-
cution plan shows that the correct indexes are being used.

1066 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

2. If you think heavy data skew is in the table, use histograms to provide Oracle with a more
accurate representation of the data distribution in the table. The CBO assumes a uniform
distribution of column data. The CBO may forego the use of an index even when a column
value is selective, because the column itself is unselective in nature. Histograms help by pro-
viding the CBO with an accurate picture of the column data distribution. I discuss histograms
later in this chapter, in the section “Using Histograms.”

3. If Oracle is still refusing to use the index, force it to do so by using an index hint, as explained
in the section “Using Hints to Influence the Execution Plan” later in this chapter.

■Note It isn’t always obvious why Oracle doesn’t use an index. For example, Oracle may not use an index
because the indexed columns are part of an IN list, and the consequent transformation prevents the use of an index.

If you use a WHERE clause such as WHERE last_name LIKE '%MA%', the optimizer might just decide
to skip the index and do a full scan of the table because it needs to perform a pattern match of the
entire LAST_NAME column to retrieve data. The optimizer correctly figures that it will go ahead and
look up just the table, instead of having to read both the index and the table values. For example, if a
table has 1,000 rows placed in 200 blocks, and you perform a full table scan assuming that the data-
base has set the DB_FILE_MULTIBLOCK_READ_COUNT to 8, you’ll incur a total of 25 I/Os to read in the
entire table. If your index has a low selectivity, most of the index has to be read first. If your index has
40 leaf blocks and you have to read 90 percent of them to get the indexed data first, your I/O is already
at 32. On top of this, you have to incur additional I/O to read the table values. However, a full table
scan costs you only 25 I/Os, making that a far more efficient choice than using the index. Be aware
that the mere existence of an index on a column doesn’t guarantee that it will be used all the time.

You’ll look at some important principles to make your queries more efficient in the following
sections.

Using SQL Functions

If you use SQL functions in the WHERE clause (for example, the SUBSTR, INSTR, TO_DATE, and TO_NUMBER
functions), the Oracle optimizer will ignore the index on that column. Make sure you use a function-
based index if you must use a SQL function in the WHERE clause.

Using the Right Joins

Most of your SQL statements will involve multitable joins. Often, improper table-joining strategies
doom a query. Here are some pointers regarding joining tables wisely:

• Using the equi join leads to a more efficient query path than otherwise. Try to use equi joins
wherever possible.

• Performing filtering operations early reduces the number of rows to be joined in later steps.
Fop example, a WHERE condition applied early reduces the row source that needs to be joined
to another table. The goal is to use the table that has the most selective filter as the driving
table, because this means fewer rows are passed to the next step.

• Join in the order that will produce the least number of rows as output to the parent step.

Using the CASE Statement

When you need to calculate multiple aggregates from the same table, avoid writing a separate query
for each aggregate. With separate queries, Oracle has to read the entire table for each query. It’s

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1067

more efficient to use the CASE statement in this case, as it enables you to compute multiple aggre-
gates from the table with just a single read of the table.

Efficient Subquery Execution

Subqueries perform better when you use IN rather than EXISTS. Oracle recommends using the IN
clause if the subquery has the selective WHERE clause. If the parent query contains the selective WHERE
clause, use the EXISTS clause rather than the IN clause.

Using WHERE Instead of HAVING

Wherever possible, use the WHERE clause instead of the HAVING clause. The WHERE clause restricts the
number of rows retrieved at the outset. The HAVING clause forces the retrieval of a lot more rows than
necessary. It then also incurs the additional overhead of sorting and summing.

Minimizing Table Lookups

One of the primary mottos of query writing is “Visit the data as few times as possible.” This means
getting rid of SQL that repeatedly accesses a table for different column values. Use multicolumn
updates instead.

Using Hints to Influence the Execution Plan
The assumption that underlies the use of the CBO is that the optimizer knows best. That is, by eval-
uating the various statistics, the CBO will come to the best decision in terms of choosing the optimal
execution plan. However, the optimizer is based on rules, and a good application developer has
knowledge about the application and data that the CBO can’t exploit. You can provide hints to the
optimizer to override the CBO’s execution plans. For example, if you know that a certain index is
more selective than another, you can force Oracle to use that index by providing the hint in your query.

Hints can alter the join method, join order, or access path. You can also provide hints to paral-
lelize the SQL statement operations. The following are some of the common hints that you can use
in SQL statements:

• ALL_ROWS: The ALL_ROWS hint instructs Oracle to optimize throughput (that is, minimize total
cost), not optimize the response time of the statement.

• FIRST_ROWS(n): The FIRST_ROWS(n) hint dictates that Oracle return the first n rows quickly.
Low response time is the goal of this hint.

■Note When you specify ALL_ROWS or the FIRST_ROWS(n) hint, it overrides the current value of the
OPTIMIZER_MODE parameter, if it’s different from that specified by the hint.

• FULL: The FULL hint requires that a full scan be done on the table, ignoring any indexes that
may be present. You would want to do this when you have reason to believe that using an
index in this case will be inefficient compared to a full table scan. To force Oracle to do a full
table scan, you use the FULL hint.

• ORDERED: This hint forces the join order for the tables in the query.

• INDEX: This hint forces the use of an index scan, even if the optimizer was going to ignore the
indexes and do a full table scan for some reason.

1068 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

• INDEX_FFS: An index fast full scan (INDEX_FFS) hint forces a fast full scan of an index, just as if
you did a full table scan that scans several blocks at a time. INDEX_FFS scans all the blocks in
an index using multiblock I/O, the size of which is determined by the DB_FILE_MULTIBLOCK_
READ_COUNT parameter. You can also parallelize an INDEX_FFS hint, and it’s generally prefer-
able to a full table scan.

The OPTIMIZER_MODE settings determine the way the query optimizer performs optimization
throughout the database. However, at times, due to lack of accurate statistics, the optimizer can be
mistaken in its estimates, leading to poor execution plans. In cases such as this, you can use optimizer
hints to override this database optimization setting at the individual SQL statement level. Oracle
Database 11g also provides the SQL Profile feature. This feature enables you to collect auxiliary infor-
mation using sampling and partial execution techniques, thereby avoiding the use of optimizer
hints. I discuss SQL profiles in the section titled “Using the SQL Tuning Advisor on SQL Statements,”
later in this chapter.

Selecting the Best Join Method
Choose a join method based on how many rows you expect to be returned from the join. The opti-
mizer generally tries to choose the ideal join condition, but it may not do so for various reasons. It’s
up to you to see what join method the optimizer will adopt and change it if necessary. The following
guidelines will help you when you’re analyzing output produced by an EXPLAIN PLAN.

Avoiding Cartesian Joins

Cartesian joins usually aren’t the result of intentional planning; rather, they happen due to logical
mistakes in the query. Cartesian joins are produced when your joins don’t have any WHERE clauses. If
you’re joining several tables, make sure that each table in the join is referenced by a WHERE condition.
Even if the tables being joined are small, avoid Cartesian joins because they’re inefficient. For example,
if the employee table has 2,000 rows and the dept table has 100 rows, a Cartesian join of employee
and dept will have 2,000 * 100 = 200,000 rows.

Nested Loops

If you’re joining small subsets of data, the nested loop (NL) method is ideal. If you’re returning fewer
than, say, 10,000 rows, the NL join may be the right join method. If the optimizer is using hash joins
or full table scans, force it to use the NL join method by using the following hint:

SELECT /*+ USE_NL (TableA, TableB) */

Hash Join

If the join will produce large subsets of data or a substantial proportion of a table is going to be joined,
use the hash join hint if the optimizer indicates it isn’t going to use it:

SELECT /* USE_HASH */

Merge Join

If the tables in the join are being joined with an inequality condition (not an equi join), the merge
join method is ideal:

SELECT /*+ USE_MERGE (TableA, TableB) */

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1069

Using Bitmap Join Indexes
Bitmap join indexes (BJIs) prestore the results of a join between two tables in an index, and thus do
away with the need for an expensive runtime join operation. BJIs are specially designed for data
warehouse star schemas, but any application can use them as long as there is a primary key/foreign
key relationship between the two tables.

Typically, in a data warehouse setting, the primary key is in a dimension table and the fact table
has the foreign key. For example, customer_id in the customer dimension table is the primary key,
and customer_id in the fact table is the foreign key. Using a BJI, you can avoid a join between these
two tables because the rows that would result from the join are already stored in the BJI. Let’s look at
a simple example of a BJI here.

Say you expect to use the following SQL statement frequently in your application:

SQL> SELECT SUM((s.quantity)
 FROM sales s, customers c
 WHERE s.customer_id = c.customer_id
 AND c.city = 'DALLAS';

In this example, the sales table is the fact table with all the details about product sales, and the
customers table is a dimension table with information about your customers. The column customer_id
acts as the primary key for the customers table and as the foreign key for the sales table, so the table
meets the requirement for creating a BJI.

The following statement creates the BJI. Notice line 2, where you’re specifying the index on the
city column (c.city). This is how you get the join information to place in the new BJI. Because the
sales table is partitioned, you use the clause LOCAL in line 5 to create a locally partitioned index:

SQL> CREATE BITMAP INDEX cust_city_BJI
 2 ON city (c.city)
 3 FROM sales s, customers c
 4 WHERE c.cust_id = s.cust_id
 5 LOCAL
 6*TABLESPACE users;

Index created.
SQL>

You can confirm that the intended index has been created with the help of the following query.
The first index is the new BJI index you just created:

SQL> SELECT index_name, index_type, join_index
 2 FROM dba_indexes
 3 *WHERE table_name='SALES';

INDEX_NAME INDEX_TYPE JOIN_INDEX
----------------- ---------- ----------
CUST_CITY_BJI BITMAP YES
SALES_CHANNEL_BIX BITMAP NO
SALES_CUST_BIX BITMAP NO

3 rows selected.
 SQL>

Being a bitmap index, the new BJI uses space extremely efficiently. However, the real benefit of
using this index is that when you need to find out the sales for a given city, you don’t need to join the
sales and customers tables. You only need to use the sales table and the new BJI that holds the join
information already.

1070 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

Selecting the Best Join Order
When your SQL statement includes a join between two or more tables, the order in which you join
the tables is extremely important. The driving table in a join is the first table that comes after the
WHERE clause. The driving table in the join should contain the filter that will eliminate the most rows.
Choose the join order that gives you the least number of rows to be joined to the other tables. That
is, if you’re joining three tables, the one with the more restrictive filter should be joined first to one
of the other two tables. Compare various join orders and pick the best one after you consider the
number of rows returned by each join order.

Indexing Strategy
An index is a data structure that takes the value of one or more columns of a table (the key) and
returns all rows (or the requested columns in a row) with that value of the column quickly. The effi-
ciency of an index comes from the fact that it lets you find necessary rows without having to scan all
the rows of a table. As a result, indexes are more efficient in general, because they need fewer disk I/Os
than if you had to scan the table.

■Note For a quick summary of indexing guidelines, please refer to the section “Guidelines for Creating Indexes”
in Chapter 7.

Developers are content when the EXPLAIN PLAN indicates that a query was using indexes.
However, there’s more to query optimization than simply using an index for speeding up your queries.
If you don’t use good indexes, your queries could slow down the database significantly. Important
things to consider are whether you have the right indexes or even if the index is necessary in a certain
query. In the next sections you’ll look at some of the issues you should consider regarding the use
of indexes.

■Caution A common problem is that an index that performs admirably during development and testing phases
simply won’t perform well on a production database. Often, this is due to the much larger amounts of data in the
“real” system than in the development system. Ideally, you should develop and test queries on an identical version
of the production database.

When to Index

You need to index tables only if you think your queries will be selecting a small portion of the table.
If your query is retrieving rows that are greater than 10 or 15 percent of the total rows in the table,
you may not need an index. Remember that using an index prevents a full table scan, so it is inher-
ently a faster means to traverse a table’s rows. However, each time you want to access a particular
row in an indexed table, first Oracle has to look up the column referenced in your query in its index.
From the index, Oracle obtains the ROWID of the row, which is the logical address of its location
on disk.

If you choose to enforce uniqueness of the rows in a table, you can use a primary index on that
table. By definition, a column that serves as a primary index must be non-null and unique. In addition
to the primary index, you can have several secondary indexes. For example, the attribute LAST_NAME may
serve as a primary index. However, if most of your queries include the CITY column, you may choose
to index the CITY column as well. Thus, the addition of secondary indexes would enhance query

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1071

performance. However, a cost is associated with maintaining additional secondary indexes. In addi-
tion to the additional disk space needed for large secondary indexes, remember that all inserts and
updates to the table require that the indexes also be updated.

If your system involves a large number of inserts and deletes, understand that too many indexes
may be detrimental, because each DML causes changes in both the table and its indexes. Therefore,
an OLTP-oriented database ought to keep its indexes to a minimum. A data warehouse, on the other
hand, can have a much larger number of indexes because there is no penalty to be paid. That’s because
the data warehouse is a purely query-oriented database, not a transactional database.

What to Index

Your goal should be to use as few indexes as possible to meet your performance criteria. There’s a
price to be paid for having too many indexes, especially in OLTP databases. Each INSERT, UPDATE, and
DELETE statement causes changes to be made to the underlying indexes of a table, and can slow down
an application in some cases. The following are some broad guidelines you can follow to make sure
your indexes help the application instead of hindering it:

• Index columns with high selectivity. Selectivity here means the percentage of rows in a table
with a certain value. High selectivity, as you learned earlier in this chapter, means that there
are few rows with identical values.

• Index all important foreign keys.

• Index all predicate columns.

• Index columns used in table joins.

Proper indexing of tables involves carefully considering the type of application you’re running,
the number of DML operations, and the response time expectations. Here are some additional tips
that can aid you in selecting appropriate indexes for your application:

• Try to avoid indexing columns that consist of long character strings, unless you’re using the
Oracle Text feature.

• Wherever possible, use index-only plans, meaning a query that can be satisfied completely by
just the data in the index alone. This requires that you pay attention to the most common
queries and create any necessary composite indexes (indexes that include more than one
column attribute).

• Use secondary indexes on columns frequently involved in ORDER BY and GROUP BY operations,
as well as sorting operations such as UNION or DISTINCT.

Using Appropriate Index Types

The B-tree index (sometimes referred to as the B*tree index) is the default or normal type of Oracle
index. You’re probably going to use it for almost all the indexes in a typical OLTP application. Although
you could use the B-tree index for all your index needs, you’ll get better performance by using more
specialized indexes for certain kinds of data. Your knowledge of the type of data you have and the
nature of your application should determine the index type. In the next few sections, you’ll see
several alternative types of indexes.

Bitmap Indexes

Bitmap indexes are ideal for column data that has a low cardinality, which means that the indexed
column has few distinct values. The index is compact in size and performs better than the B-tree
index for these types of data. However, the bitmap index is going to cause some problems if a lot of
DML is going on in the column being indexed.

1072 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

Index-Organized Tables

Index-organized tables (IOTs) are explained in Chapter 7. The traditional Oracle tables are called
heap-organized tables, where data is stored in the order in which it is inserted. Indexes enable fast
access to the rows. However, indexes also mean more storage and the need for accessing both the
index and the table rows for most queries (unless the query can be selected just by the indexed
columns themselves). IOTs place all the table data in its primary key index, thus eliminating the
need for a separate index.

IOTs are more akin to B-tree indexes than tables. The data in an IOT is sorted, and rows are
stored in primary key order. This type of organization of row values gives you faster access in addi-
tion to saving space. To limit the size of the row that’s stored in the B-tree leaf blocks, IOTs use an
overflow area to store infrequently accessed non-key columns, which leads to lower space consump-
tion in the B-tree.

Concatenated Indexes

Concatenated or composite indexes are indexes that include more than one column, and are excel-
lent for improving the selectivity of the WHERE predicates. Even in cases where the selectivity of the
individual columns is poor, concatenating the index improves selectivity. If the concatenated index
contains all the columns in the WHERE list, you’re saved the trouble of looking up the table, thus reducing
your I/O. However, you have to pay particular attention to the order of the columns in the composite
index. If the WHERE clause doesn’t specify the leading column of the concatenated index first, Oracle
may not use the index at all.

Up until recently, Oracle used a composite index only if the leading column of the index was
used in the WHERE clause or if the entire index was scanned. The index skip scan feature lets Oracle use
a composite index even when the leading column isn’t used in the query. Obviously, this is a nice
feature that eliminates many full table scans that would have resulted in older versions of Oracle.

Function-Based Indexes

A function-based index contains columns transformed either by an Oracle function or by an expres-
sion. When the function or expression used to create the index is referenced in the WHERE clause of a
query, Oracle can quickly return the computed value of the function or expression directly from the
index, instead of recalculating it each time. Function-based indexes are efficient in frequently used
statements that involve functions or complex expressions on columns. For example, the following
function-based index lets you search for people based on the last_name column (in all uppercase
letters):

SQL> CREATE INDEX upper_lastname_idx ON employees (UPPER(last_name));

Reverse-Key Indexes

If you’re having performance issues in a database with a large number of inserts, you should consider
using reverse-key indexes. These indexes are ideal for insert-heavy applications, although they suffer
from the drawback that they can’t be used in index range scans. A reverse-key index looks like this:

Index value Reverse_Key Index Value
----------- -----------------------
9001 1009
9002 2009
9003 3009
9004 4009

When you’re dealing with columns that sequentially increase, the reverse-key indexes provide
an efficient way to distribute the index values more evenly and thus improve performance.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1073

Partitioned Indexing Strategy

As you saw in Chapter 7, partitioned tables can have several types of indexes on them. Partitioned
indexes can be local or global. In addition, they can be prefixed or nonprefixed indexes. Here’s a
brief summary of important partitioned indexes:

• Local partitioned indexes correspond to the underlying partitions of the table. If you add a
new partition to the table, you also add a new partition to the local partitioned index.

• Global partitioned indexes don’t correspond to the partitions of the local table.

• Prefixed indexes are partitioned on a left prefix on the index columns.

• Nonprefixed indexes are indexes that aren’t partitioned on the left prefix of the index
columns.

In general, local partitioned indexes are a good indexing strategy if the table has been indexed
primarily for access reasons. If your queries include columns that aren’t a part of the partitioned
table’s key, global prefixed indexes are a good choice. Using global prefixed indexes is a good indexing
strategy if the table has been indexed primarily for access reasons. Local nonprefixed indexes are
good if you’re using parallel query operations.

■Note In Chapter 5, I showed how to use the SQL Access Advisor to get advice concerning the creation of indexes
and materialized views (and materialized view logs). Use the SQL Access Advisor on a regular basis to see if you
need to create any new indexes or materialized views (or materialized view logs).

Monitoring Index Usage
You may have several indexes on a table, but that in itself is no guarantee that they’re being used in
queries. If you aren’t using indexes, you might as well get rid of them, as they just take up space and
time to manage them. You can use the V$OBJECT_USAGE view to gather index usage information.
Here’s the structure of the V$OBJECT_USAGE view:

SQL> DESC V$OBJECT_USAGE
 Name Null? Type
----------------- -------- ------------
 INDEX_NAME NOT NULL VARCHAR2(30)
 TABLE_NAME NOT NULL VARCHAR2(30)
 MONITORING VARCHAR2(3)
 USED VARCHAR2(3)
 START_MONITORING VARCHAR2(19)
 END_MONITORING VARCHAR2(19)
SQL>

Chapter 7 shows how to use the V$OBJECT_USAGE view to find out if a certain index is being used.

Removing Unnecessary Indexes
The idea of removing indexes may seem surprising in the beginning, but you aren’t being asked to
remove just any index on a table. By all means, keep the indexes that are being used and that are also
selective. If an index is being used but it’s a nonselective index, you may be better off in most cases
getting rid of it, because the index will slow down the DML operations without significantly increasing
performance. In addition, unnecessary indexes just waste space in your system.

1074 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

Using Similar SQL Statements
As you know by now, reusing already parsed statements leads to a performance improvement,
besides conserving the use of the shared pool area of the SGA. However, the catch is that the SQL
statements must be identical in all respects, white space and all.

Reducing SQL Overhead Via Inline Functions
Inline stored functions can help improve the performance of your SQL statements. Here’s a simple
example to demonstrate how you can use an inline function to reduce the overhead of a SQL state-
ment. The following code chunk shows the initial SQL statement without the inline function:

SQL> SELECT r.emp_id,
 e.name, r.emp_type,t.type_des,
 COUNT(*)
 FROM employees e, emp_type t, emp_records r
 WHERE r.emp_id = e.emp_id
 AND r.emp_type = t.emp_type
 GROUP BY r. emp_id, e.name, r.emp_type, t.emp_des;

You can improve the performance of the preceding statement by using an inline function call.
First, you create a couple of functions, which you can call later on from within your SQL statement.
The first function is called SELECT_EMP_DETAIL, and it fetches the employee description if you provide
emp_type as an input parameter. Here’s how you create this function:

SQL> CREATE OR REPLACE FUNCTION select_emp_detail (type IN) number
 2 RETURN varchar2
 3 AS
 4 detail varchar2(30);
 5 CURSOR a1 IS
 6 SELECT emp_detail FROM emp_type
 7 WHERE emp_type = type;
 8 BEGIN
 9 OPEN a1;
 10 FETCH a1 into detail;
 11 CLOSE a1;
 12 RETURN (NVL(detail,'?'));
 13 END;
Function created.
SQL>

Next, create another function, SELECT_EMP, that returns the full name of an employee once you
pass it employee_id as a parameter:

SQL> CREATE OR REPLACE FUNCTION select_emp (emp IN number) RETURN varchar2
 2 AS
 3 emp_name varchar2(30);
 4 CURSOR a1 IS
 5 SELECT name FROM employees
 6 WHERE employee_id = emp;
 7 BEGIN
 8 OPEN a1;
 9 FETCH a1 INTO emp_name;
 10 CLOSE a1;
 11 RETURN (NVL(emp_name,'?'));
 12 END;

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1075

 Function created.
SQL>

Now that you have both your functions, it’s a simple matter to call them from within a SQL state-
ment, as the following code shows:

SQL> SELECT r.emp_id, select_emp(r.emp_id),
 2 r.emp_type, select_emp_desc(r.emp_type),
 3 COUNT(*)
 4 FROM emp_records r
 5* GROUP BY r.emp_id, r.emp_type;
SQL>

Using Bind Variables
The parsing stage of query processing consumes resources, and ideally you should parse just once
and use the same parsed version of the statement for repeated executions. Parsing is a much more
expensive operation than executing the statement. You should use bind variables in SQL statements
instead of literal values to reduce the amount of parsing in the database. Bind variables should be
identical in terms of their name, data type, and length. Failure to use bind variables leads to heavy
use of the shared pool area and, more often than not, contention for latches and a general slowing
down of the database when a large number of queries are being processed. Sometimes your applica-
tion may not be changeable into a form where bind variables are used.

In Chapter 20, you’ll see how to use Oracle configuration parameters to force statements that
fail to use bind variables to do so.

Avoiding Improper Use of Views
Views have several benefits to offer, but faster performance may not necessarily be one of them.
Views are useful when you want to present only the relevant portions of a table to an application or
a user. Whenever you query a view, it has to be instantiated at that time. Because the view is just a
SQL query, it has to perform this instantiation if you want to query the view again. If your query uses
joins on views, it could lead to substantial time for executing the query.

Avoiding Unnecessary Full Table Scans
Full table scans can occur sometimes, even when you have indexed a table. The use of functions on
indexed columns is a good example for when you unwittingly can cause Oracle to skip indexes and
go to a full table scan. You should avoid the use of inequality and the greater than or equal to predi-
cates, as they may also bypass indexes.

How the DBA Can Help Improve SQL Processing
Performance tuning involves the optimization of SQL code and the calibration of the resources used
by Oracle. The developers generally perform SQL tuning, and the DBA merely facilitates their tuning
efforts by setting the relevant initialization parameters, turning tracing on, and so on. Nevertheless,
the DBA can implement several strategies to help improve SQL processing in his or her database.

In some cases, you and the developers might be working together to optimize the application.
What if you can’t modify the code, as is the case when you’re dealing with packaged applications?
Alternatively, what if even the developers are aware that major code changes are needed to improve
performance, but time and budget constraints make the immediate revamping of the application
difficult? There are several ways you can help without having to change the code itself.

1076 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

It’s common for DBAs to bemoan the fact that the response times are slow because of poorly
written SQL. I’ve heard this in every place I’ve worked, so I assume this is a universal complaint of
DBAs who have to manage the consequences of bad code. A perfectly designed and coded applica-
tion with all the right joins and smart indexing strategies would be nice, but more often than not, that
perfect state of affairs doesn’t happen. The theory of the next best option dictates that you should do
everything you can to optimize within the limitations imposed by the application design.

That said, let’s look at some of the important ways in which you can help improve query perfor-
mance in an application, even when you can’t change the code right away.

Using Partitioned Tables
Partitioned tables usually lead to tremendous improvements in performance, and they’re easy to
administer. By partitioning a table into several subpartitions, you’re in essence limiting the amount
of data that needs to be examined to satisfy your queries. If you have large tables, running into tens
of millions of rows, consider partitioning them.

Five table partitioning schemes are available to you in Oracle Database 11g, and I explain them
in Chapter 7. You can index partitioned tables in a variety of ways, depending on the needs of the
application. Partition maintenance is also easy, and it’s well worth the additional effort when you
consider the tremendous gains partitioned tables provide.

Using Compression Techniques
The Oracle database lets you use table compression to compress tables, table partitions, and materi-
alized views. Table compression helps reduce space requirements for the tables and enhances query
performance. Oracle compresses the tables by eliminating the duplicate values in a data block and
replacing those values with algorithms to re-create the data when necessary. The table compression
technique is especially suitable for data warehouse and OLAP databases, but OLTP databases can
also use the technique fruitfully. The larger the table that is compressed, the more benefits you’ll
achieve with this technique. Here’s a simple table compression statement:

SQL> CREATE table sales_compress
 2 COMPRESS
 3 AS SELECT * FROM sh.sales;
Table created.
SQL>

You can also use index key compression to compress the primary key columns of IOTs. This
compression not only saves you storage space, but also enhances query performance. Index
compression works by removing duplicate column values from the index.

To compress an index, all you have to do is add the keyword COMPRESS after the index-creation
statement, as shown here:

SQL> CREATE INDEX item_product_x
 2 ON order_items(product_id)
 3 TABLESPACE order_items_indx_01
 4 COMPRESS;
Index created.
SQL>

Perform some tests to confirm the space savings and the time savings during the creation state-
ments. Later, you can test query performance to measure the improvement.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1077

Using Materialized Views
If you’re dealing with large amounts of data, you should seriously consider using materialized views
to improve response time. Materialized views are objects with data in them—usually summary data
from the underlying tables. Expensive joins can be done beforehand and saved in the materialized
view. When users query the underlying table, Oracle automatically rewrites the query to access the
materialized view instead of the tables.

Materialized views reduce the need for several complex queries because you can precalculate
aggregates with them. Joins between large tables and data aggregation are expensive in terms of
resource usage, and materialized views significantly reduce the response time for complex queries
on large tables. If you aren’t sure which materialized views to create, not to worry—you can use the
DBMS_OLAP package supplied by Oracle to get recommendations on ideal materialized views.

Chapter 7 discusses materialized views in more detail, and also shows you how to use the SQL
Access Advisor tool to get recommendations for creating materialized views and materialized view
logs.

Using Stored Outlines to Stabilize the CBO
As I mentioned earlier in this chapter, the CBO doesn’t always use the same execution strategies.
Changes in Oracle versions or changes in the initialization parameters concerning memory alloca-
tion may force the CBO to modify its plans. You can use Oracle’s plan stability feature to ensure that
the execution plan remains stable regardless of any changes in the database environment.

The plan stability feature uses stored outlines to preserve the current execution plans, even if
the statistics and optimizer mode are changed. The CBO uses the same execution plan with identical
access paths each time you execute the same query. The catch is that the query must be exactly iden-
tical each time if you want Oracle to use the stored plan.

■Caution When you use stored outlines to preserve a currently efficient execution plan, you’re limiting Oracle’s
capability to modify its execution plans dynamically based on changes to the database environment and changes
to the statistics. Ensure you use this feature for valid purposes, such as maintaining similar plans for distributed
applications.

On the face of it, the stored outline feature doesn’t seem impressive. Let’s consider a simple
example to see how a stored outline could be useful in a real production environment.

Suppose you have a system that’s running satisfactorily and, due to a special need, you add an
index to a table. The addition of the new index could unwittingly modify the execution plans of the
CBO, and your previously fast-running SQL queries may slow down. It could conceivably take a lot
of effort, testing, and time to fix the problem by changing the original query. However, if you had
created stored outlines, these kinds of problems wouldn’t arise. Once Oracle creates an outline, it
stores it until you remove it. In the next section you’ll examine how to implement planned stability
in a database.

When to Use Outlines

Outlines are useful when you’re planning migrations from one version of Oracle to another. The
CBO could behave differently between versions, and you can cut your risk down by using stored
outlines to preserve the application’s present performance. You can also use them when you’re
upgrading your applications. Outlines ensure that the execution paths the queries used in a test
instance successfully carry over to the production instance.

1078 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

Stored outlines are especially useful when the users of an application have information about
the environment that the Oracle CBO doesn’t possess. By enabling the direct editing of stored outlines,
Oracle lets you tune SQL queries without changing the underlying application. This is especially
useful when you’re dealing with packaged applications where you can’t get at the source code.

Implementing Plan Stability

Implementing plan stability is a simple matter. You have to ensure that the following initialization
parameters are consistent in all the environments. You must set the value of the first two parameters
to TRUE. The default value for OPTIMIZER_FEATURES_ENABLE is 11.1.0.6, and if you change it, make sure
it’s the same in all environments. Here are the relevant initialization parameters:

• QUERY_REWRITE_ENABLED

• STAR_TRANSFORMATION_ENABLED

• OPTIMIZER_FEATURES_ENABLE

Creating Outlines

The outlines themselves are managed through the DBMS_OUTLN and DBMS_OUTLN_EDIT Oracle
packages. To create outlines for all your current SQL queries, you simply set the initialization parameter
CREATE_STORED_OUTLINES to TRUE.

The OUTLN user is part of the database when it is created and owns the stored outlines in the
database. The outlines are stored in the table OL$. Listing 19-1 shows the structure of the OL$ table.

Listing 19-1. The OL$ Table

SQL> DESC OL$
 Name Null? Type
 ------------ ----- ------------
 OL_NAME VARCHAR2(30)
 SQL_TEXT LONG
 TEXTLEN NUMBER
 SIGNATURE RAW(16)
 HASH_VALUE NUMBER
 HASH_VALUE2 NUMBER
 CATEGORY VARCHAR2(30)
 VERSION VARCHAR2(64)
 CREATOR VARCHAR2(30)
 TIMESTAMP DATE
 FLAGS NUMBER
 HINTCOUNT NUMBER
 SPARE1 NUMBER
 SPARE2 VARCHAR2(1000)
SQL>

The SQL_TEXT column has the SQL statement that is outlined. In addition to the OL$ table, the
user OUTLN uses the OL$HINTS and OL$NODES tables to manage stored outlines.

Create a special tablespace for the user OUTLN and the tables OL$, OL$HINTS, and OL$NODES. By
default, they’re created in the System tablespace. After you create a new tablespace for user OUTLN,
you can use the export and import utilities to move the tables.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1079

Creating Outlines at the Database Level

To let Oracle automatically create outlines for all SQL statements, use the CREATE_STORED_OUTLINES
initialization parameter, as shown here:

CREATE_STORED_OUTLINES = TRUE

You can also dynamically enable the creation of stored outlines for the entire database by using
the ALTER SYSTEM statement, as shown here:

SQL> ALTER SYSTEM SET CREATE_STORED_OUTLINES=TRUE;
System altered.
SQL>

In both the preceding cases, the outlines that Oracle creates are assigned to a category called
DEFAULT. You also have the option of specifying a named category for your stored outlines. Setting the
CREATE_STORED_OUTLINES parameter means that the database creates a stored outline for every distinct
SQL statement. This means that the System tablespace could potentially run out of space if you have
a large number of SQL statements that are being processed. For this reason, use the CREATE_STORED_
OUTLINES initialization parameter with care. To keep the overhead low, you may instead use the
option to create stored outlines at the session level, or just for a lone SQL statement, as shown in the
next section.

Creating Outlines for Specific Statements

You can create outlines for a specific statement or a set of statements by using the ALTER SESSION
statement, as shown here:

SQL> ALTER SESSION SET create_stored_outlines = true;
Session altered.
SQL>

Any statements you issue after the ALTER SESSION statement is processed will have outlines
stored for them.

To create a stored outline for a specific SQL statement, you use the CREATE OUTLINE statement.
The user issuing this command must have the CREATE OUTLINE privilege. The following statement
shows how to create a simple outline for a SELECT operation on the employees table:

SQL> CREATE OUTLINE test_outline
 2 ON SELECT employee_id, last_name
 3 FROM hr.employees;
Outline created.
SQL>

You can use the DROP OUTLINE statement to drop an outline, as shown here:

SQL> DROP OUTLINE test_outline;
Outline dropped.
SQL>

Using the Stored Outlines

After you create the stored outlines, Oracle won’t automatically start using them. You have to use the
ALTER SESSION or ALTER SYSTEM statement to set USE_STORED_OUTLINES to TRUE. The following example
uses the ALTER SYSTEM statement to enable the use of the stored outlines at the database level:

1080 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

SQL> ALTER SYSTEM SET use_stored_outlines=true;
System altered.
SQL>

You can also set the initialization parameter USE_STORED_OUTLINES to TRUE, to enable the use of
the stored outlines. Otherwise, the database won’t use any stored outlines it has created.

Editing Stored Outlines

You can easily change the stored access paths while using the plan stability feature. You can use
either the DBMS_OUTLN_EDIT package or OEM to perform the changes.

SQL Plan Management
Changes such as database upgrades, or even minor changes such as adding or deleting an index,
could affect SQL execution plans. I explained the Oracle stored outlines feature earlier in this chapter
as a way to preserve SQL execution plans to prevent performance deterioration when the database
undergoes major changes such as a database upgrade. Oracle recommends that you use the new
feature called SQL Plan Management (SPM) to keep performance from being affected by major
system changes. SQL Plan Management preserves database performance under the following types
of system changes:

• Database upgrades

• New optimizer version

• Changes in optimizer parameters

• Changes in system settings

• Changes in schema and metadata definitions

• Deployment of new application modules

Although you can tune SQL statements using the SQL Tuning Advisor and ADDM, that’s at best
a reactive mechanism and requires the DBA to intervene. SPM is designed as a preventative mecha-
nism. The database controls the evolution of SQL plans using the new SQL plan baselines, which are
sets of efficient execution plans captured by the database over a period of time. The database allows
a new execution plan to become part of a SQL plan baseline for a statement only if the new plan doesn’t
cause a regression in performance. The database uses only those execution plans that are part of a
SQL plan baseline to execute SQL statements, and thus the database achieves the key goal of preserving
database performance in the face of major system changes such as database upgrades.

The SPM comes in very handy when you’re upgrading to Oracle Database 11g. After you upgrade to
Oracle Database 11g from, say, the Oracle Database 10g release, first leave the OPTIMIZER_FEATURES_
ENABLE parameter at 10.2. Once the SPM mechanism collects the execution plans and stores them as
SQL plan baselines, you can switch to the 11.1 setting for the OPTIMIZER_FEATURES_ENABLE parameter.
This way, you ensure that you’re using all the new capabilities of the 11g release, without compro-
mising SQL performance: performance is safeguarded through the use of SQL plan baselines, which
are similar in this regard to the stored outlines maintained by the database.

SQL Plan Baselines
Under SQL Plan Management, the database maintains a plan history, which is a record of all SQL
plans generated over time for a SQL statement by the optimizer. The optimizer uses the plan history
to figure out the optimal execution plan for a statement. Not all plans in the plan history for a statement

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1081

are acceptable plans, however. The database defines as acceptable only those execution plans that
don’t lead to deterioration in performance relative to other plans in the plan history. The SQL plan
baseline for a SQL statement is the set of all accepted plans in the plan history for a statement.

The very first plan for a statement is always an accepted plan, because there’s nothing to compare
it with. So, the SQL plan baseline and the plan history for a new SQL statement are identical at this
point. Newer execution plans for the statement will automatically be a part of the statement’s plan
history, but are added to the SQL plan baseline for the statement only if the new plans are verified
not to cause a regression in performance. The Automatic SQL Tuning Adviser task, which is a part of
the automate maintenance tasks, verifies SQL plans. The advisor looks for high-load SQL statements
and stores the accepted plans for those statements in that’s statement’s SQL plan baseline.

You can manage SQL plan baselines by using the DBMS_SPM package or through Enterprise
Manager. I explain the steps in the following sections.

Capturing SQL Plan Baselines
There are two ways to capture the SQL plan baselines: have the database automatically capture the
plans or load them in the database yourself. I explain both techniques in this section.

Capturing Plans Automatically

By default, the database doesn’t maintain a plan history for SQL statements you execute. You must
set the initialization parameter OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES to TRUE (the default value is
FALSE) for the database to start capturing the SQL plan baselines. When you set the parameter to
TRUE, the database automatically creates and maintains a plan history for all repeatable SQL state-
ments that are executed in the database.

■Tip By using the SQL Performance Analyzer (see Chapter 20), you can find out which SQL statements are likely
to regress following a database upgrade to, say, Oracle Database 11g Release 1 from Oracle Database 10g Release
2. You can capture the execution plans for these statements and load them into the SQL management base of the
upgraded database, thus avoiding the performance regression.

Manual Plan Loading

You can also load SQL plans manually into the SQL plan baselines. When you load plans manually,
the database loads them automatically as accepted plans, without verifying the performance of the
plans. You can bulk load SQL plans you captured before upgrading the database into a SQL plan
baseline after upgrading your database to a new release.

You can use either a SQL Tuning Set (STS) or load the plans from the database cursor cache. I
show both techniques in the following sections.

Execute the DBMS_SPM function LOAD_PLANS_FROM_SQLSET in order to load SQL plans from an
STS. First create an empty STS as shown here:

begin
dbms_sqltune.create_sqlset(
sqlset_name => 'testset1',
description => 'Test STS to capture AWR Data');
end;
/

Next, load the new STS with SQL statements from the Automatic Workload Repository (AWR)
snapshots.

1082 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

declare
baseline_cur dbms_sqltune.sqlset_cursor;
begin
open baseline_cur for
select value(p) from table (dbms_sqltune.select_workload_repository(
'peak baseline',null,null,'elapsed_time',null,null,null,20)) p;
dbms_sqltune.load_sqlset (
sqlset_name => 'testset1',
populate_cursor => baseline_cur);
end;
/

The STS shown in this example includes the top 20 statements from the AWR peak baseline,
selected based in the criterion of elapsed time. The ref cursor and the table function help select the
top 20 statements from the AWR baseline.

Load the SQL plans from the STS into the SQL plan baseline by executing the
LOAD_PLANS_FROM_SQLSET function.

declare
test_plans pls_integer;
begin
test_plans := dbms_spm.load_plans_from_sqlset(
sqlset_name => 'testset1');
end;
/

You can also use the cursor cache instead of an STS as the source of the SQL plans you want to
load into a SQL plan baseline. The following example shows how to load SQL plans from the cursor
cache using the LOAD_PLANS_FROM_CURSOR_CACHE function.

declare
test_plans pls_integer;
begin
test_plans := dbms_spm.load_plans_from_cursor_cache (
sql_id => '123456789999')
return pls_integer;
end;
/

Selecting SQL Plan Baselines

Regardless of whether you collect SQL plans using the AWR as a source or from the cursor cache of the
database, you must enable the use of those plans by setting the initialization parameter OPTIMIZER_
USE_SQL_PLAN_BASELINES to TRUE. Since the parameter’s default value is TRUE, it means the plan base-
lines are enabled by default.

When the database encounters a new repeatable SQL statement, it sees whether it can match it
to a plan in the SQL plan baseline. If there’s a match, it uses the best cost plan to execute the state-
ment. If there’s no match, the database adds the new plan to the plan history as a nonaccepted plan.
The database will then choose the least costly plan from the set of accepted plans in the SQL plan
baseline and execute the statement using that plan. If the database can’t reproduce an accepted plan
for some reason (such as the dropping of an index), it selects the least costly plan to execute the SQL
statement.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1083

■Tip Execute the DBMS_XPLAN DISPLAY_SQL_PLAN_BASELINE function to view the execution plan for a
specific SQL_HANDLE in a SQL plan baseline.

The end result is that the optimizer will always produce an execution plan that’s either the best
cost plan or an accepted plan from the SQL plan baseline. The OTHER_XML column in the PLAN_
TABLE’s EXPLAIN PLAN output reveals the exact final strategy adopted by the optimizer

Evolving SQL Plan Baselines

The database routinely checks new plans so as to evolve the SQL plan baselines, which involves
changing a nonaccepted plan into an accepted plan and this part of the SQL plan baseline. As
mentioned earlier, a nonaccepted plan must show superior performance to an accepted plan in
order to be converted into an accepted plan in the baseline. If you’re manually loading SQL plans,
there is no need to formally evolve the plans, as every plan you load is automatically deemed an
accepted plan. However, any plans that the database captures automatically must be formally evolved
into the SQL plan baseline.

You can evolve SQL plan baselines either by executing the EVOLVE_SQL_PLAN_BASELINE function
or with the help of the SQL Tuning Advisor. The following example shows how to execute the EVOLVE_
SQL_PLAN_BASELINE function to add new accepted plans to the baseline.

SQL> exec dbms_spm.evolve_sql_plan_baseline (sql_handle =>
'123456789111');

The example uses the SQL_HANDLE attribute to specify the plan for a specific SQL statement, but
by ignoring this attribute, you can make the database evolve all nonaccepted plans in the database.
You can also submit a list of SQL plans if you wish, by specifying the PLAN_LIST attribute.

■Tip You can export SQL plan baselines from one database to another by using a staging table.

The SQL Tuning Advisor evolves SQL plan baselines by automatically adding all plans for which
you have implemented the advisor’s SQL profile recommendations to the SQL plan baseline for a
statement.

Fixed SQL Plan Baselines

You can limit the set of possible accepted plans for SQL statements by setting the FIXED attribute to
YES for a SQL plan. When you fix a plan in a baseline, the optimizer prefers it to other nonfixed plans
in the baseline, even if some of the other plans are actually cheaper to execute. The database stops
evolving a fixed SQL plan baseline, but you can always evolve the baseline by adding a new plan to
the baseline.

The following query on the DBA_SQL_PLAN_BASELINES view shows important attributes of
SQL plans in the baseline:

SQL> SELECT sql_handle, sql_text, plan_name, origin, enabled, accepted,
 fixed, autopurge
 FROM dba_sql_plan_baselines;

1084 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

SQL_HANDLE SQL_TEXT PLAN_NAME ORIGIN ENA ACC FIX AUT
---------- ----------- ------------- --------------- ---- --- --- ---
SYS_SQL_02a delete from... SYS_SQL_PLAN_930 AUTO-CAPTURE YES YES NO YES
SYS_SQL_a6f SELECT... SYS_SQL_PLAN_ael AUTO-CAPTURE YES YES NO YES
 SQL>

The optimizer only uses those plans that are enabled and have the accepted status.

Managing SQL Plan Baselines

Execute the DISPLAY_SQL_PLAN_BASELINE function of the DBMS_XPLAN package to view all the SQL
plans stored in the SQL plan baseline for a SQL statement. Here’s an example:

SQL> set serveroutput on

SQL> set long 100000
SQL> SELECT * FROM table(
 2 dbms_xplan.display_sql_plan_baseline(
 3 sql_handle => 'SYS_SQL_ba5e12ccae97040f',
 4* format => 'basic'));
PLAN_TABLE_OUTPUT

SQL handle: SYS_SQL_ba5e12ccae97040f
SQL text: select t.week_ending_day, p.prod_subcategory, sum(s.amount_sold) as
 dollars, s.channel_id,s.promo_id from sales s,times t, products p where
 s.time_id = t.time_id and s.prod_id = p.prod_id and s.prod_id>10 and
 s.prod_id <50 group by t.week_ending_day, p.prod_subcategory,
PLAN_TABLE_OUTPUT

s.channel_id,s.promo_id

Plan name: SYS_SQL_PLAN_ae97040f6b60c209
Enabled: YES Fixed: NO Accepted: YES Origin: AUTO-CAPTURE
Plan hash value: 1944768804

PLAN_TABLE_OUTPUT

| Id | Operation | Name |

| 0 | SELECT STATEMENT | |
| 1 | HASH GROUP BY | |
| 2 | HASH JOIN | |
| 3 | TABLE ACCESS FULL | TIMES |
| 4 | HASH JOIN | |
| 5 | TABLE ACCESS BY INDEX ROWID| PRODUCTS |
| 6 | INDEX RANGE SCAN | PRODUCTS_PK |
| 7 | TABLE ACCESS FULL | SALES |

29 rows selected.

SQL>

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1085

The output shows that the SQL plan was captured automatically and is enabled and accepted.
It also reveals that the plan isn’t fixed.

■Tip When the SQL Tuning Advisor finds execution plans that are superior to the plans in the SQL plan baseline
for that statement, it recommends a SQL profile. Once you accept the recommendation for implementing the SQL
profile, the SQL Tuning Advisor adds the tuned plan to the SQL plan baseline.

The SQL Management Base
The database stores SQL plan baseline information in the SQL Management Base (SMB), which is
stored in the Sysaux tablespace. You can control the sizing and retention period of the SMB by setting the
parameters SPACE_BUDGE_PERCENT and PLAN_RETENTION_WEEKS, using the DBMS_SPM package. The
following query reveals the current values of the two parameters:

SQL> SELECT parameter_name, parameter_value
 FROM dba_sql_management_config;

PARAMETER_NAME PARAMETER_VALUE
----------------------- ------------------
SPACE_BUDGET_PERCENT 30
PLAN_RETENTION_WEEKS 53

SQL>

The SPACE_BUDGET_PERCENT parameter controls the percentage of space the SMB can occupy in
the Sysaux tablespace. The default is 10 percent, and you can set it anywhere between 1 and 50 percent.
You can purge outdated SQL plan baselines or SQL profiles from the SMB to clear up space, or you
can increase the size of the Sysaux tablespace. You can change the value of the SPACE_BUDGET_PERCENT
parameter by executing the CONFIGURE parameter, as shown here:

SQL> EXEC dbms_spm.configure ('space_budget_percent', 40);

The CONFIGURE procedure specifies that the SPM can use up to 40 percent of the space in the
Sysaux tablespace.

The database executes a weekly purging job to remove unused SQL baselines. The database
removes any SQL baselines that it hasn’t used in over a year (53 weeks). You can adjust the plan
retention period by executing the CONFIGURE procedure as shown here:

SQL> exec dbms_spm.configure ('plan_retention_weeks', 105);

You can also remove specific baselines from the SMBA, as shown in the following example:

SQL> exec
dbms_spm.purge_sql_plan_baseline(''SYS_SQL_PLAN_b5429511dd6ab0f');

You can query the DBA_SQL_MANAGEMENT_CONFIG view for the current space and retention
settings of the SMB.

Using Parallel Execution
Parallel execution of statements can make SQL run more quickly, and it’s especially suitable for large
warehouse-type databases. You can set the parallel option at the database or table level. If you increase
the degree of parallelism of a table, Oracle could decide to perform more full table scans instead of

1086 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

using an index, because the cost of a full table scan may now be lower than the cost of an index scan.
If you want to use parallel operations in an OLTP environment, make sure you have enough processors
on your machine so the CPU doesn’t become a bottleneck.

Other DBA Tasks
The DBA must perform certain tasks regularly to optimize the performance of the application. Some
of these fall under the routine administrative chores, and the following sections cover some of the
important DBA tasks related to performance tuning.

Collecting System Statistics

Even if you’re using the Automatic Optimizer Statistics Collection feature, Oracle won’t collect system
statistics. As explained earlier in this chapter, you must collect system statistics yourself, so the Oracle
optimizer can accurately evaluate alternate execution plans.

Refreshing Statistics Frequently

This section applies only if you have turned off the automatic statistics collection process for some
reason. Refreshing statistics frequently is extremely important if you’re using the CBO and your data
is subject to frequent changes.

How often you run the DBMS_STATS package to collect statistics depends on the nature of your
data. For applications with a moderate number of DML transactions, a weekly gathering of statistics
will suffice. If you have reason to believe that your data changes substantially daily, schedule the
statistics collection on a daily basis.

Using Histograms

Normally, the CBO assumes that data is uniformly distributed in a table. There are times when data
in a table isn’t distributed in a uniform way. If you have an extremely skewed data distribution in a
table, you’re better off using histograms to store the column statistics. If the table data is heavily
skewed toward some values, the presence of histograms provides more efficient access methods.
Histograms use buckets to represent distribution of data in a column, and Oracle can use these
buckets to see how skewed the data distribution is.

You can use the following types of histograms in an Oracle database:

• Height-based histograms divide column values into bands, with each band containing a roughly
equal number of rows. Thus, for a table with 100 rows, you’d create a histogram with 10 buckets if
you wanted each bucket to contain 10 rows.

• Frequency-based histograms determine the number of buckets based on the distinct values in
the column. Each bucket contains all the data that has the same value.

Creating Histograms

You create histograms by using the METHOD_OPT attribute of the DBMS_STATS procedure such as
GATHER_TABLE_STATS, GATHER_DATABASE_STATS, and so on. You can either specify your own
histogram creation requirements by using the FOR COLUMNS clause, or use the AUTO or SKEWONLY values
for the METHOD_OPT attribute. If you choose AUTO, Oracle will decide which columns it should collect
histograms for, based on the data distribution and workload. If you choose SKEWONLY, Oracle will
base the decision only on the data distribution of the columns. In the two examples that follow, I use
the FOR COLUMNS clause to specify the creation of the histograms.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1087

The following example shows how to create a height-based histogram while collecting the
optimizer statistics:

SQL> BEGIN
 DBMS_STATS.GATHER_table_STATS (OWNNAME => 'HR', TABNAME => 'BENEFITS',
 METHOD_OPT => 'FOR COLUMNS SIZE 10 Number_of_visits');
 END;

The following example shows how to create a frequency-based histogram:

SQL> BEGIN
 DBMS_STATS.GATHER_table_STATS(OWNNAME => 'HR', TABNAME => 'PERSONS',
 METHOD_OPT => 'FOR COLUMNS SIZE 20 department_id');
 END;

Viewing Histograms

You can use the DBA_TAB_COL_STATISTICS view to view histogram information. Following are
the two queries that show the number of buckets (num_buckets) and the number of distinct values
(num_distinct), first for the height-balanced and then for the frequency-based histogram created in
the previous section:

SQL> SELECT column_name, num_distinct, num_buckets, histogram
 FROM USER_TAB_COL_STATISTICS
 WHERE table_name = 'BENEFITS' AND column_name = 'NUMBER_OF_VISITS';

COLUMN_NAME NUM_DISTINCT NUM_BUCKETS HISTOGRAM
----------------- ------------- ------------ ---------------
NUMBER_OF_VISITS 320 10 HEIGHT BALANCED

SQL> SELECT column_name, num_distinct, num_buckets, histogram
 FROM USER_TAB_COL_STATISTICS
 WHERE table_name = 'PERSONS' AND column_name = 'DEPARTMENT_ID';

COLUMN_NAME NUM_DISTINCT NUM_BUCKETS HISTOGRAM
-------------- ------------ ------------ ----------
DEPARTMENT_ID 8 8 FREQUENCY

Adaptive Cursor Sharing
Although using bind variables improves performance and scalability by reducing parse time and
memory usage, literal values actually produce better execution plans than bind values for variables.
When you force cursor sharing in the database by setting the CURSOR_SHARING parameter to EXACT or
SIMILAR, some SQL statements end up with suboptimal plans for some bind variable values. The Cost-
Based Optimizer may very well create a suboptimal plan if it happens to peek at the bind values and if the
bind values used by the first SQL statements to go into the shared pool are unrepresentative of the true
values of the variable. Developers and DBA’s sometimes resort to setting the unofficial Oracle initializa-
tion parameter _OPTIM_PEEK_USER_BINDS (ALTER SESSION SET "_optim_peek_user_binds"=FALSE;)
to prevent the database from peeking at the bind values. Adaptive cursor sharing provides a much
more elegant way to prevent the optimizer from creating suboptimal execution plans caused by
bind peeking.

Oracle relies on its “bind peeking” technique when it first parses a SQL statement. The optimizer
will always hard parse a new statement and peek at the bind variable values to get a sense of what the
values look like. The initial bind values it sees during the bind peeking have an inordinate influence

1088 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

on the execution plan it chooses for the statement. If, for example, the bind peeking dictates using
an index, Oracle will continue to do so, even if later values would actually dictate a full scan instead.
Since bind peeking actually leads to suboptimal execution plans in cases such as these, hard-coded
variable values would be preferable to bind values.

As the preceding discussion indicates, cursor sharing using bind variables may not always lead
to the best (optimal) execution plans. Hard-coded values for variables may actually provide more
optimal execution plans than using bind variables, especially when dealing with heavily skewed
data. Oracle provides you the adaptive cursor sharing feature, which is an attempt to resolve the
conflict between cursor sharing using bind variables and query optimization. Using adaptive cursor
sharing, whenever the database estimates that it’s cheaper to produce a new execution plan for a
statement than reusing the same cursors, it’ll do so, generating new child cursors for the statement.
The database strives to minimize the number of child cursors to take advantage of cursor sharing.
However, the database won’t blindly try to reuse cursors.

■Tip Adaptive cursor sharing is automatic, and it’s always on and you can’t switch it off.

How Adaptive Cursor Sharing Works
Two concepts—the bind sensitivity of a cursor and a bind-aware cursor—play a critical role in how
adaptive cursor sharing works. If changing a bind variable’s values leads to different execution
plans, a cursor is called a bind-sensitive cursor. Whenever the database figures that it must create
new execution plans because the bind values vary considerably, the variable is deeded bind sensitive.
Once the database marks a cursor as bind sensitive, the cursor is termed bind aware.

■Note The adaptive cursor sharing feature is independent of the cursor sharing feature.

Here’s an example that illustrates how adaptive cursor sharing works. Suppose you execute the
following query several times in your database:

SQL> select * from hr.employees where salary = :1
 and department_id = :2;

The SQL statement uses two bind variables, SALARY and DEPARTMENT_ID.
During the very first execution of a new SQL statement, the database makes the cursor bind

sensitive if it peeks at the bind values and computes the selectivity of the predicate. The database
assigns each execution plan with a set of selectivity values such as (0.25, 0.0050), which indicates the
selectivity range of the execution plan. If new bind variables fall within the selectivity range, the opti-
mizer reuses the execution plan, and if not, it creates a new execution plan.

The next step is to evaluate whether the cursor is a bind-aware cursor. After the first hard parse,
the database performs soft parses for the subsequent executions and compares the execution statis-
tics with the hard parse execution statistics. If the database decides that the cursor is bind aware, it
uses bind-aware cursor matching when it executes the query again. If the new pair of bind values
falls inside the selectivity range, the database reuses the plan; otherwise, it performs a hard parse,
thus generating a new child cursor with a different plan. If the new execution produces a similar
plan, the database merges the child cursors, which means that if the bind values are roughly the
same, the statements will share the execution plan.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1089

Monitoring Adaptive Cursor Sharing
The V$SQL view contains two columns, named IS_BIND_SENSITIVE and IS_BIND_AWARE, that
help you monitor adaptive cursor sharing in the database. The IS_BIND_SENSITIVE column lets you
know whether a cursor is bind sensitive, and the IS_BIND_AWARE column shows whether the data-
base has marked a cursor for bind-aware cursor sharing. The following query, for example, tells you
which SQL statements are binds sensitive or bind aware:

SQL> SELECT sql_id, executions, is_bind_sensitive, is_bind_aware
 FROM v$sql;

SQL_ID EXECUTIONS I I
-------------- ----------- --- ---
57pfs5p8xc07w 21 Y N
1gfaj4z5hn1kf 4 Y N
1gfaj4z5hn1kf 4 N N
...
294 rows selected.

SQL>

In this query, the IS_BIND_SENSITIVE column shows whether the database will generate
different execution plans based on bind variable values. Any cursor that shows an IS_BIND_SENSITIVE
column value of Y is a candidate for an execution plan change. When the database plans to use multiple
execution plans for a statement based on the observed values of the bind variables, it marks the
IS_BIND_AWARE column Y for that statement. This means that the optimizer realizes that different
bind variable values would lead to different data patterns, which requires the statement to be hard-
parsed during the next execution. In order to decide whether to change the execution plan, the data-
base evaluates the next few executions of the SQL statement. If the database decides to change a
statement’s execution plan, it marks the cursor bind aware and puts a value of Y in the IS_BIND_
AWARE column for that statement. A bind-aware cursor is one for which the database has actually
modified the execution plan based on the observed values of the bind variables.

You can use the following views to manage the adaptive cursor sharing feature:

• V$SQL_CS_HISTOGRAM: Shows the distribution of the execution count across the execution
history histogram

• V$SQL_CS_SELECTIVITY: Shows the selectivity ranges stored in cursors for predicates with
bind variables

• V$SQL_CS_STATISTICS: Contains the execution statistics of a cursor using different bind sets
gathered by the database

Rebuilding Tables and Indexes Regularly

The indexes could become unbalanced in a database with a great deal of DML. It’s important to
rebuild such indexes regularly so queries can run faster. You may want to rebuild an index to change
its storage characteristics or to consolidate it and reduce fragmentation. Use the ALTER INDEX . . .
REBUILD statement, because the old index is accessible while you’re re-creating it. (The alternative is
to drop the index and re-create it.)

When you rebuild the indexes, include the COMPUTE STATISTICS statement so you don’t have to
gather statistics after the rebuild. Of course, if you have a 24/7 environment, you can use the ALTER
INDEX . . . REBUILD ONLINE statement so that user access to the database won’t be affected. It is
important that your tables aren’t going through a lot of DML operations while you’re rebuilding

1090 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

online, because the online feature may not work as advertised under such circumstances. It might
even end up unexpectedly preventing simultaneous updates by users.

Reclaiming Unused Space

The Segment Advisor runs automatically during the scheduled nightly maintenance and provides
you with recommendations about objects you can shrink to reclaim wasted space. Just remember
that you need to use locally managed tablespaces with Automatic Segment Space Management in
order to use the Segment Advisor. Shrinking segments saves space, but more importantly, improves
performance by lowering the high-water mark of the segments and eliminating the inevitable frag-
mentation that occurs over time in objects with heavy update and delete operations.

Caching Small Tables in Memory

If the application doesn’t reuse a table’s data for a long period, the data might be aged out of the SGA
and need to be read from disk. You can safely pin small tables in the buffer cache with the following:

SQL> ALTER TABLE hr.employees CACHE;
Table altered.
SQL>

SQL Performance Tuning Tools
SQL performance tuning tools are extremely important. Developers can use the tools to examine
good execution strategies, and in a production database they’re highly useful for reactive tuning.
The tools can give you a good estimate of resource use by queries. The SQL tools are the EXPLAIN
PLAN, Autotrace, SQL Trace, and TKPROF utilities.

Using EXPLAIN PLAN
The EXPLAIN PLAN facility helps you tune SQL by letting you see the execution plan selected by the
Oracle optimizer for a SQL statement. During SQL tuning, you may have to rewrite your queries and
experiment with optimizer hints. The EXPLAIN PLAN tool is great for this experimentation, as it
immediately lets you know how the query will perform with each change in the code. Because the
utility gives you the execution plan without executing the code, you save yourself from having to run
untuned software to see whether the changes were beneficial or not. Understanding an EXPLAIN
PLAN is critical to understanding query performance. It provides a window into the logic of the Oracle
optimizer regarding its choice of execution plans.

The output of the EXPLAIN PLAN tool goes into a table, usually called PLAN_TABLE, where it
can be queried to determine the execution plan of statements. In addition, you can use GUI tools,
such as OEM or TOAD, to get the execution plan for your SQL statements without any fuss. In OEM,
you can view the explain statements from the Top Sessions or the Top SQL charts.

A walkthrough of an EXPLAIN PLAN output takes you through the steps that would be under-
taken by the CBO to execute the SQL statement. The EXPLAIN PLAN tool indicates clearly whether
the optimizer is using an index, for example. It also tells you the order in which tables are being
joined and helps you understand your query performance. More precisely, an EXPLAIN PLAN output
shows the following:

• The tables used in the query and the order in which they’re accessed.

• The operations performed on the output of each step of the plan. For example, these could be
sorting and aggregation operations.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1091

• The specific access and join methods used for each table mentioned in the SQL statement.

• The cost of each operation.

Oracle creates the PLAN_TABLE as a global temporary table, so all the users in the database can
use it to save their EXPLAIN PLAN output. However, you can create a local plan table in your own
schema by running the utlxplan.sql script, which is located in the $ORACLE_HOME/rdbms/admin direc-
tory. The script, among other things, creates the plan table, where the output of the EXPLAIN PLAN
utility is stored for your viewing. You are free to rename this table. Here’s how you create the plan
table so you can use the EXPLAIN PLAN feature:

SQL> @$ORACLE_HOME/rdbms/admin/utlxplan.sql
Table created.
SQL>

Creating the EXPLAIN PLAN

To create an EXPLAIN PLAN for any SQL data manipulation language statement, you use a SQL
statement similar to that shown in Listing 19-2.

Listing 19-2. Creating the EXPLAIN PLAN

SQL> EXPLAIN PLAN
 2 SET statement_id = 'test1'
 3 INTO plan_table
 4 FOR select p.product_id,i.quantity_on_hand
 5 FROM oe.inventories i,
 6 oe.product_descriptions p,
 7 oe.warehouses w
 8 WHERE p.product_id=i.product_id
 9 AND i.quantity_on_hand > 250
 10 AND w.warehouse_id = i.warehouse_id;
Explained.
SQL>

Producing the EXPLAIN PLAN

You can’t easily select the columns out of the PLAN_TABLE table because of the hierarchical nature
of relationships among the columns. Listing 19-3 shows the code that you can use so the EXPLAIN
PLAN output is printed in a form that’s readable and shows clearly how the execution plan for the
statement looks.

Listing 19-3. Producing the EXPLAIN PLAN

SQL> SELECT lpad(' ',level-1)||operation||' '||options||' '||
 2 object_name "Plan"
 3 FROM plan_table
 4 CONNECT BY prior id = parent_id
 5 AND prior statement_id = statement_id
 6 START WITH id = 0 AND statement_id = '&1'
 7 ORDER BY id;
Enter value for 1: test1
old 6: START WITH id = 0 AND statement_id = '&1'
new 6: START WITH id = 0 AND statement_id = 'test1'
Plan

1092 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

--
SELECT STATEMENT
 HASH JOIN
 NESTED LOOPS
 TABLE ACCESS FULL INVENTORIES
 INDEX UNIQUE SCAN WAREHOUSES_PK
 INDEX FAST FULL SCAN PRD_DESC_PK
6 rows selected.
SQL>

Other Ways of Displaying the EXPLAIN PLAN Results

You can also use the DBMS_XPLAN package to display the output of an EXPLAIN PLAN statement in
an easily readable format. You use a table function from this package to display the EXPLAIN PLAN
output. You use the DISPLAY table function of the DBMS_XPLAN package to display the output of
your most recent EXPLAIN PLAN. You can use the table function DISPLAY_AWR to display the output
of the SQL statement’s execution plan from the AWR. Here’s an example that shows how to use the
DBMS_XPLAN package to produce the output of the most recent EXPLAIN PLAN statement.

First, create the EXPLAIN PLAN for a SQL statement:

SQL> EXPLAIN PLAN FOR
 2 SELECT * FROM persons
 3 WHERE PERSONS.last_name LIKE '%ALAPATI%'
 4 AND created_date < sysdate -30;
Explained.
SQL>

Make sure you set the proper line size and page size in SQL*Plus:

SQL> SET LINESIZE 130
SQL> SET PAGESIZE 0

Display the EXPLAIN PLAN output:

SQL> SELECT * FROM table (DBMS_XPLAN.DISPLAY);

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

| 0 | SELECT STATEMENT | | 1 | 37 | 3 (0) | 00:00:01 |
|* 1 | TABLE ACCESS FULL| PERSONS | 1 | 37 | 3 (0) | 00:00:01 |

Predicate Information (identified by operation id) :
__
- filter ("ENAME" LIKE '%ALAPATI%' AND "CREATED_DATE">SYSDATE@!-30)

13 rows selected.
SQL>

If you wish, you can use the Oracle-provided utlxpls.sql script to get nicely formatted output.
The utlxpls.sql script is an alternative to using the DBMS_XPLAN package directly, and it relies on
the same package. The utlxpls.sql script is located in the $ORACLE_HOME/rdbms/admin directory, as I
mentioned earlier, and uses the DBMS_XPLAN package to display the most recent EXPLAIN PLAN
in the database. Of course, you must make sure that the table PLAN_TABLE exists before you can use
the utlxpls.sql script. Here’s how you’d run this script:

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1093

$ @$ORACLE_HOME/rdbms/admin/utlxpls.sql

The output of the utlxpls.sql script is exactly identical to that of the DBMS_XPLAN.DISPLAY,
which was presented a few paragraphs prior.

Interpreting the EXPLAIN PLAN Output

Reading an EXPLAIN PLAN is somewhat confusing in the beginning, and it helps to remember these
simple principles:

• Each step in the plan returns output in the form of a set of rows to the parent step.

• Read the plan outward starting from the line that is indented the most.

• If two operations are at the same level in terms of their indentation, read the top one first.

• The numbering of the steps in the plan is misleading. Start reading the EXPLAIN PLAN output
from the inside out. That is, read the most indented operation first.

In the example shown earlier in Listing 19-3 (I reproduce the plan output after the code), Oracle
uses the INVENTORIES table as its driving table and uses the following execution path:

SELECT STATEMENT
 HASH JOIN
 NESTED LOOPS
 TABLE ACCESS FULL INVENTORIES
 INDEX UNIQUE SCAN WAREHOUSES_PK
 INDEX FAST FULL SCAN PRD_DESC_PK

The plan output is as follows:

1. Oracle does a full table scan of the INVENTORIES table.

2. Oracle performs an index unique scan of the WAREHOUSES table using its primary key
index.

3. Oracle performs a nested loop operation to join the rows from steps 1 and 2.

4. Oracle performs an index fast full scan of the product_descriptions table using its primary
key, PRD_DESC_PK.

5. In the final step, Oracle performs a hash join of the set from step 3 and the rows resulting
from the index full scan of step 4.

Using the output of the EXPLAIN PLAN, you can quickly see why some of your queries are taking
much longer than anticipated. Armed with this knowledge, you can fine-tune a query until an
acceptable performance threshold is reached. The wonderful thing about the EXPLAIN PLAN is that
you never have to execute any statement in the database to trace the execution plan of the statement.
The next section presents a few examples so you can feel more comfortable using the EXPLAIN PLAN
utility.

More Plan Examples

In this section, you’ll learn how to interpret various kinds of execution plans derived by using the
EXPLAIN PLAN utility.

In the first example, consider what happens when you use a function on an indexed column.
Oracle completely ignores the index! As you can see, the optimizer can make mistakes. Good program-
mers can help the optimizer get it right by using methods such as proper indexing of tables, optimizer
hints, and so on.

1094 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

SQL> EXPLAIN PLAN set statement_id = 'example_plan1'
 2 FOR
 3 SELECT last_name FROM hr.employees
 4 WHERE upper(last_name) = 'FAY';

Explained.
SQL>

example_plan1

SELECT STATEMENT
 TABLE ACCESS FULL EMPLOYEES
SQL>

The next example is a query similar to the preceding one, but without the upper function on
last_name. This time, Oracle uses the index on the last_name column:

SQL> EXPLAIN PLAN SET statement_id = 'example_plan1'
 2 FOR
 3 SELECT last_name FROM hr.employees
 4*WHERE last_name='FAY';
Explained.

SQL>
example_plan1

SELECT STATEMENT
 INDEX RANGE SCAN EMP_NAME_IX
SQL>

In the third example, two tables (customers and orders) are joined to retrieve the query results:

SQL> EXPLAIN PLAN SET statement_id 'newplan1'
 2 FOR
 3 SELECT o.order_id,
 4 o.order_total,
 5 c.account_mgr_id
 6 FROM customers c,
 7 orders o
 8 WHERE o.customer_id=c.customer_id
 9 AND o.order_date > '01-JUL-05'
Explained.
SQL>

Listing 19-4 shows the EXPLAIN PLAN from the plan table.

Listing 19-4. Another EXPLAIN PLAN Output

 SQL> SELECT lpad(' ',level-1)||operation||' '||options||' '||
 2 object_name "newplan"
 3 FROM plan_table
 4 CONNECT BY prior id = parent_id
 5 AND prior statement_id = statement_id
 6 START WITH id = 0 AND statement_id = '&1'
 7* ORDER BY id;
Enter value for 1: newplan1
old 6: START WITH id = 0 AND statement_id = '&1'

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1095

new 6: START WITH id = 0 AND statement_id = 'newplan1'
newplan
SELECT STATEMENT
 HASH JOIN /* step 4 */
 TABLE ACCESS FULL CUSTOMERS /* step 2 */
 TABLE ACCESS BY INDEX ROWID ORDERS /* step 3 */
 INDEX RANGE SCAN ORD_ORDER_DATE_IX /* step 1 */
Elapsed: 00:00:00.01
SQL>

In step 1, the query first does an index range scan of the orders table using the ORD_ORDER_
DATE_IX index. Why an index range scan? Because this index isn’t unique—it has multiple rows with
the same data value—the optimizer has to scan these multiple rows to get the data it’s interested in.
For example, if the indexed column is a primary key, it will be unique by definition, and you’ll see the
notation “Unique Scan” in the EXPLAIN PLAN statement.

In step 2, the customers table is accessed through a full table scan, because account_
manager_id in that table, which is part of the WHERE clause, isn’t indexed.

In step 3, the query accesses the orders table by INDEX ROWID, using the ROWID it derived in the
previous step. This step gets you the order_id, customer_id, and order_total columns from the orders
table for the date specified.

In step 4, the rows from the orders table are joined with the rows from the customers table based
on the join condition WHERE o.customer_id=c.customer_id.

As you can see from the preceding examples, the EXPLAIN PLAN facility provides you with a
clear idea as to the access methods used by the optimizer. Of course, you can do this without having
to run the query itself. Often, the EXPLAIN PLAN will provide you with a quick answer as to why your
SQL may be performing poorly. The plan’s output can help you determine how selective your
indexes are and let you experiment with quick changes in code.

Using Autotrace
The Autotrace facility enables you to produce EXPLAIN PLANs automatically when you execute a
SQL statement in SQL*Plus. You automatically have the privileges necessary to use the Autotrace
facility when you log in as SYS or SYSTEM.

First, if you plan to use Autotrace, you should create a plan table in your schema. Once you
create this plan table, you can use it for all your future executions of the Autotrace facility. If you
don’t have this table in your schema, you’ll get an error when you try to use the Autotrace facility,
as shown here:

SQL> SET AUTOTRACE ON SP2-0618: Cannot find the Session Identifier
. Check PLUSTRACE role is enabled
SP2-0611: Error enabling STATISTICS report
SQL>

You can create the PLAN_TABLE table by using the CREATE TABLE statement, as shown in
Listing 19-5. You can also create this table by executing the utlxplan.sql script, as I explained
earlier.

Listing 19-5. Manually Creating the Plan Table

SQL> CREATE TABLE PLAN_TABLE(
 2 STATEMENT_ID VARCHAR2(30), TIMESTAMP DATE,
 3 REMARKS VARCHAR2(80), OPERATION VARCHAR2(30),
 4 OPTIONS VARCHAR2(30), OBJECT_NODE VARCHAR2(128),
 5 OBJECT_OWNER VARCHAR2(30), OBJECT_NAME VARCHAR2(30),

1096 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

 6 OBJECT_INSTANCE NUMERIC, OBJECT_TYPE VARCHAR2(30),
 7 OPTIMIZER VARCHAR2(255),SEARCH_COLUMNS NUMBER,
 8 ID NUMERIC, PARENT_ID NUMERIC,
 9 POSITION NUMERIC, COST NUMERIC,
 10 CARDINALITY NUMERIC, BYTES NUMERIC,
 11 OTHER_TAG VARCHAR2(255),PARTITION_START VARCHAR2(255),
 12 PARTITION_STOP VARCHAR2(255),PARTITION_ID NUMERIC,
 13 OTHER LONG, DISTRIBUTION VARCHAR2(30));
Table created.
SQL>

Next, the SYS or SYSTEM user needs to grant you the PLUSTRACE role, as shown here:

SQL> GRANT PLUSTRACE TO salapati;
 *
ERROR at Line 1:
ORA-1919: role 'PLUSTRACE' does not exist.

If, as in the preceding case, the PLUSTRACE role doesn’t already exist in the database, the SYS
user needs to run the plustrace.sql script, as shown in Listing 19-6, to create the PLUSTRACE role.

Listing 19-6. Creating the PLUSTRACE Role

SQL> @ORACLE_HOME/sqlplus/admin/plustrce.sql
SQL> DROP ROLE plustrace;
drop role plustrace
 *
ERROR at line 1:
ORA-01919: role 'PLUSTRACE' does not exist
SQL> CREATE ROLE plustrace;
Role created.
SQL>
SQL> GRANT SELECT ON v_$sesstat TO plustrace;
Grant succeeded.
SQL> GRANT SELECT ON v_$statname TO plustrace;
Grant succeeded.
SQL> GRANT SELECT ON v_$mystat TO plustrace;
Grant succeeded.
SQL> GRANT plustrace TO dba WITH ADMIN OPTION;
Grant succeeded.
SQL>

Third, the user who intends to use Autotrace should be given the PLUSTRACE role, as shown here:

SQL> GRANT plustrace TO salapati;
Grant succeeded.
SQL>

The user can now set the Autotrace feature on and view the EXPLAIN PLAN for any query that is
used in the session. The Autotrace feature can be turned on with different options:

• SET AUTOTRACE ON EXPLAIN: This generates the execution plan only and doesn’t execute the
query itself.

• SET AUTOTRACE ON STATISTICS: This shows only the execution statistics for the SQL statement.

• SET AUTOTRACE ON: This shows both the execution plan and the SQL statement execution
statistics.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1097

All SQL statements issued after the Autotrace feature is turned on will generate the execution
plans (until you turn off the Autotrace facility with the command SET AUTOTRACE OFF), as shown in
Listing 19-7.

Listing 19-7. Using the Autotrace Utility

SQL> SET AUTOTRACE ON;
SQL> SELECT * FROM EMP;
no rows selected
Execution Plan
 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=2 Card=1 Bytes=74)
 1 0 TABLE ACCESS (FULL) OF 'EMP' (Cost=2 Card=1 Bytes=74)
Statistics
 0 recursive calls
 0 db block gets
 3 consistent gets
 0 physical reads
 0 redo size
 511 bytes sent via SQL*Net to client
 368 bytes received via SQL*Net from client
 1 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 0 rows processed
SQL>

After showing the execution plan for the SQL statement, the Autotrace feature shows the details
about the number of SQL recursive calls incurred in executing the original statement; the number of
physical and logical reads, in memory and on disk sorts; and the number of rows processed.

I provide a few simple examples to show how Autotrace helps you optimize SQL queries. In the
following examples, the same query is used twice in the courses table, once without an index and
once with an index. After the table is indexed, you run the query before you analyze the table. The
results are instructive.

In the first example, whose output is shown in Listing 19-8, you run the test query before you
create an index on the courses table.

Listing 19-8. The Execution Plan for a Query Without an Index

SQL> SET AUTOTRACE ON
SQL> SELECT COUNT(*) FROM courses
 2 WHERE course_subject='medicine'
 3* AND course_title = 'fundamentals of human anatomy';
 COUNT(*)
 98304
Execution Plan

 0 SELECT STATEMENT Optimizer=CHOOSE
 1 0 SORT (AGGREGATE)
 2 1 TABLE ACCESS (FULL) OF 'COURSES'
Statistics

 0 recursive calls
 0 db block gets
 753 consistent gets

1098 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

 338 physical reads
 0 redo size
 381 bytes sent via SQL*Net to client
 499 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 1 rows processed
SQL>

As you can see, the query used a full table scan because there are no indexes. There were a total
of 338 physical reads. Note that the total number of rows in the courses table is 98,384. Out of this
total, the courses with medicine as the course subject were 98,304. That is, the table values aren’t
distributed evenly among the courses at all. Now let’s see what happens when you use an index.

The following example uses a query with an index. However, no statistics are collected for either
the table or the index. When you create an index on the courses table and run the same query, you’ll
see some interesting results. Listing 19-9 tells the story.

Listing 19-9. The Execution Plan for a Query with an Index

SQL> CREATE INDEX title_idx ON courses (course_title);
Index created.
SQL> SELECT count(*) FROM courses
 2 WHERE course_subject='medicine'
 3 AND course_title = 'fundamentals of human anatomy';
 COUNT(*)
 98304
Execution Plan
--
 0 SELECT STATEMENT Optimizer=CHOOSE
 1 0 SORT (AGGREGATE)
 2 1 TABLE ACCESS (BY INDEX ROWID) OF 'COURSES'
 3 2 INDEX (RANGE SCAN) OF 'TITLE_IDX' (NON-UNIQUE)
Statistics
--
 0 recursive calls
 0 db block gets
 1273 consistent gets
 1249 physical reads
 0 redo size
 381 bytes sent via SQL*Net to client
 499 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 1 rows processed
SQL>

After you created the index, the physical reads went from 338 to 1,249! The EXPLAIN PLAN
shows that Oracle is indeed using the index, so you would expect the physical reads to be lower when
compared to the no-index case. What happened here is that even if a table has an index, this doesn’t
mean that it’s always good to use it under all circumstances. The CBO always figures the best way to
get a query’s results, with or without using the index. In this case, the query has to look at almost all
the rows of the table, so using an index isn’t the best way to go. However, you haven’t collected statis-
tics for the table and the index, so Oracle has no way of knowing the distribution of the actual data

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1099

in the courses table. Lacking any statistics, it falls back to a rule-based approach. Under a rule-based
optimization, using an index occupies a lower rank and therefore indicates that this is the optimal
approach here. Let’s see the results after analyzing the table.

The third example is a query with an index executed after collecting optimizer statistics for the
table. Oracle has the complete statistics, and it uses the CBO this time around. The CBO decides to
use an index only if the cost of using the index is lower than the cost of a full table scan. The CBO
decides that it won’t use the index, because the query will have to read 98,304 out of a total of 98,384
rows. It rightly decides to do a full table scan instead. The results are shown in Listing 19-10.

Listing 19-10. The Execution Plan with an Index After Analyzing the Table

SQL> ANALYZE TABLE courses COMPUTE STATISTICS;
Table analyzed.
SQL> SELECT count(*) FROM courses
 2 WHERE course_subject='medicine'
 3 AND course_title = 'fundamentals of human anatomy';
 COUNT(*)

 98304
Execution Plan
--
 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=74 Card=1 Bytes=39)
 1 0 SORT (AGGREGATE)
 2 1 TABLE ACCESS (FULL) OF 'COURSES' (Cost=74 Card=24596 Bytes=959244)
Statistics
--
 290 recursive calls
 0 db block gets
 792 consistent gets
 334 physical reads
 0 redo size
 381 bytes sent via SQL*Net to client
 499 bytes received via SQL*Net from client
 2 SQL*Net roundtrips to/from client
 6 sorts (memory)
 0 sorts (disk)
 1 rows processed
SQL>

In this listing, the first item, recursive calls, refers to additional statements Oracle needs to make
when it’s processing a user’s SQL statement. For example, Oracle issues recursive calls (or recursive
SQL statements) to make space allocations or to query the data dictionary tables on disk. In our
example, Oracle made 290 internal calls during the SQL Trace period.

Using SQL Trace and TKPROF
SQL Trace is an Oracle utility that helps you trace the execution of SQL statements. TKPROF is another
Oracle utility that helps you format the trace files output by SQL Trace into a readable form. Although the
EXPLAIN PLAN facility gives you the expected execution plan, the SQL Trace tool gives you the
actual execution results of a SQL query. Sometimes, you may not be able to identify the exact code,
say, for dynamically generated SQL. SQL Trace files can capture the SQL for dynamic SQL. Among
other things, SQL Trace enables you to track the following variables:

1100 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

• CPU and elapsed times

• Parsed and executed counts for each SQL statement

• Number of physical and logical reads

• Execution plan for all the SQL statements

• Library cache hit ratios

■Tip If your application has a lot of dynamically generated SQL, the SQL Trace utility is ideal for tuning the
SQL statements.

Although the EXPLAIN PLAN tool is important for determining the access path that the optimizer
will use, SQL Trace gives you a lot of hard information on resource use and the efficacy of the state-
ments. You’ll get a good idea of whether your statement is being parsed excessively. The statement’s
execute and fetch counts illustrate its efficiency. You get a good sense of how much CPU time is
consumed by your queries and how much I/O is being performed during the execution phase. This
helps you identify the resource-guzzling SQL statements in your application and tune them. The
EXPLAIN PLAN, which is an optional part of SQL Trace, gives the row counts for the individual steps
of the EXPLAIN PLAN, helping you pinpoint at what step the most work is being done. By comparing
resource use with the number of rows fetched, you can easily determine how productive a particular
statement is.

In the next sections you’ll use SQL Trace to trace a simple SQL statement and interpret it with
the TKPROF utility. You start by setting a few initialization parameters to ensure tracing.

Setting the Trace Initialization Parameters

Collecting trace statistics imposes a performance penalty, and consequently the database doesn’t
automatically trace all sessions. Tracing is purely an optional process that you turn on for a limited
duration to capture metrics about the performance of critical SQL statements. You need to look at
four initialization parameters to set up Oracle correctly for SQL tracing, and you have to restart the
database after checking that the following parameters are correctly configured. Three of these parame-
ters are dynamic session parameters, and you can change them at the session level.

STATISTICS_LEVEL

The STATISTICS_LEVEL parameter can take three values. The value of this parameter has a bearing on
the TIMED_STATISTICS parameter. You can see this dependency clearly in the following summary:

• If the STATISTICS_LEVEL parameter is set to TYPICAL or ALL, timed statistics are collected auto-
matically for the database.

• If STATISTICS_LEVEL is set to BASIC, then TIMED_STATISTICS must be set to TRUE for statistics
collection.

• Even if STATISTICS_LEVEL is set to TYPICAL or ALL, you can keep the database from tracing by
using the ALTER SESSION statement to set TIMED_STATISTICS to FALSE.

TIMED_STATISTICS

The TIMED_STATISTICS parameter is FALSE by default, if the STATISTICS_LEVEL parameter is set to
BASIC. In a case like this, to collect performance statistics such as CPU and execution time, set the
value of the TIMED_STATISTICS parameter to TRUE in the init.ora file or SPFILE, or use the ALTER

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1101

SYSTEM SET TIMED_STATISTICS=TRUE statement to turn timed statistics on instance-wide. You can
also do this at the session level by using the ALTER SESSION statement as follows:

SQL> ALTER SESSION SET timed_statistics = true;
Session altered.
SQL>

USER_DUMP_DEST

USER_DUMP_DEST is the directory on your server where your SQL Trace files will be sent. By default you
use the $ORACLE_HOME/admin/database_name/udump directory as your directory for dumping SQL trace
files. If you want non-DBAs to be able to read this file, make sure the directory permissions authorize
reading by others. Alternatively, you can set the parameter TRACE_FILES_PUBLIC=TRUE to let others
read the trace files on UNIX systems. Make sure the destination points to a directory that has plenty
of free space to accommodate large trace files. USER_DUMP_DEST is a dynamic parameter, so you can
also change it using the ALTER SYSTEM command, as follows:

SQL> ALTER SYSTEM SET user_dump_dest='c:\oraclent\oradata';
System altered.
SQL>

■Note In Oracle Database 11g, if you set the new DIAGNSOTIC_DEST initialization parameter, the database
ignores the USER_DUMP_DEST setting. The directory you set for the DIAGNOSTIC_DEST parameter determines
where the database will place the trace files.

MAX_DUMP_FILE_SIZE

Some traces could result in large trace files in a big hurry, so make sure your MAX_DUMP_FILE_SIZE
initialization parameter is set to a high number. The default size of this parameter may be too small
for some traces. If the trace fills the dump file, it won’t terminate, but the information in the file will
be truncated.

Enabling SQL Trace

To use SQL Trace and TKPROF, first you need to enable the Trace facility. You can do this at the
instance level by using the ALTER SESSION statement or the DBMS_SESSION package. You can trace
the entire instance by either including the line SQL_TRACE=TRUE in your init.ora file or SPFILE or by
using the ALTER SYSTEM command to set SQL_TRACE to TRUE. Tracing the entire instance isn’t recom-
mended, because it generates a huge amount of tracing information, most of which is useless for
your purpose. The statement that follows shows how to turn tracing on from your session using the
ALTER SESSION statement:

SQL> ALTER SESSION SET sql_trace=true;
Session altered.
SQL>

The following example shows how you set SQL_TRACE to TRUE using the DBMS_SESSION
package:

SQL> EXECUTE sys.dbms_session.set_sql_trace(true);
PL/SQL procedure successfully completed.
SQL>

1102 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

Often, users request the DBA to help them trace their SQL statements. You can use the DBMS_
SYSTEM.SET_SQL_TRACE_IN_SESSION procedure to set tracing on in another user’s session. Note
that usage of the DBMS_SYSTEM package has never actually been supported by Oracle. The recom-
mended way is to use the DBMS_MONITOR package to trace a session. Regardless of the method you
use, once you start tracing a session, all statements are traced until you use the ALTER SESSION state-
ment or the DBMS_SESSION package to turn tracing off (replace true with false in either of the
preceding statements). Alternatively, when the user logs off, tracing is automatically stopped for
that user.

Interpreting the Trace Files with TKPROF

Once you set tracing on for a session, any SQL statement that is issued during that session is traced
and the output stored in the directory (udump) specified by the USER_DUMP_DEST parameter in your
init.ora file or SPFILE. The filename has the format db_name_ora_nnnnn.trc, where nnnnn is usually
a four- or five-digit number. For example, the sample trace file in our example is named pasx_ora_
16340.trc. If you go to the user dump destination directory immediately after a trace session is
completed, the most recent file is usually the session trace file you just created.

You can also differentiate the trace file output by a SQL Trace execution from the other files in
the dump directory, by its size—these trace files are much larger in general than the other files
output to the directory. These trace files are detailed and complex. Fortunately, the easy-to-run
TKPROF utility formats the output into a readable format. The TKPROF utility uses the trace file as
the input, along with several parameters you can specify.

Table 19-1 shows the main TKPROF parameters you can choose to produce the format that suits
you. If you type tkprof at the command prompt, you’ll see a complete listing of all the parameters
that you can specify when you invoke TKPROF.

Let’s trace a session by a user who is executing two SELECT statements, one using tables with
indexes and the other using tables without any indexes. In this example, you’re using only a few
parameters, choosing to run TKPROF with default sort options. The first parameter is the name of
the output file and the second is the name for the TKPROF-formatted output. You’re specifying that
you don’t want any analysis of statements issued by the user SYS. You’re also specifying that the
EXPLAIN PLAN for the statement be shown in addition to the other statistics.

Table 19-1. TKPROF Command-Line Arguments

Parameter Description

FILENAME The input trace file produced by SQL Trace

EXPLAIN The EXPLAIN PLAN for the SQL statements

RECORD Creates a SQL script with all the nonrecursive SQL statements

WAITS Records a summary of wait events

SORT Presents sort data based on one or more items, such as PRSCPU (CPU time
parsing), PRSELA (elapsed time parsing), and so on

TABLE Defines the name of the tables into which the TKPROF utility temporarily puts
the execution plans

SYS Enables and disables listing of SQL statements issued by SYS

PRINT Lists only a specified number of SQL statements instead of all statements

INSERT Creates a script that stores the trace information in the database

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1103

■Tip By just typing tkprof at the operating system prompt, you can get a quick help guide to the usage of the
TKPROF utility.

$ tkprof finance_ora_16340.trc test.txt sys=no explain=y

TKPROF: Release 11.1.0.6.0 - Production on Mon Apr 28 12:49:38 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.
$

The test.txt file contains the output of the SQL trace, now nicely formatted for you by the
TKPROF utility.

Examining the Formatted Output File

Listing 19-11 shows the top portion of the test.txt file, which explains the key terms used by the
utility.

Listing 19-11. The Top Part of the TKPROF-Formatted Trace File

TKPROF: Release 11.1.0.6.0 - Production on Mon Apr 28 12:49:38 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.
Trace file: finance_ora_16340.trc
Sort options: default
**
count = number of times OCI procedure was executed
cpu = cpu time in seconds executing
elapsed = elapsed time in seconds executing
disk = number of physical reads of buffers from disk
query = number of buffers gotten for consistent read
current = number of buffers gotten in current mode (usually for update)
rows = number of rows processed by the fetch or execute call
**

Each TKPROF report shows the following information for each SQL statement issued during the
time the user’s session was traced:

• The SQL statement

• Counts of parse, execute, and fetch (for SELECT statements) calls

• Count of rows processed

• CPU seconds used

• I/O used

• Library cache misses

• Optional execution plan

• Row-source operation listing

• A report summary analyzing how many similar and distinct statements were found in the
trace file

1104 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

Let’s analyze the formatted output created by TKPROF. Listing 19-12 shows the parts of the
TKPROF output showing the parse, execute, and fetch counts.

Listing 19-12. The Parse, Execute, and Fetch Counts

SQL> select e.last_name,e.first_name,d.department_name
 from teste e,testd d
 where e.department_id=d.department_id;
call count cpu elapsed disk query current rows
------- ------ ------ ---------- -- ---------- ---------- --------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 17322 1.82 1.85 3 136 5 259806
------- ------ -------- ---------- ---------- ---------- ----------
total 17324 1.82 1.85 3 136 5 259806

Misses in library cache during parse: 0
Optimizer goal: CHOOSE
Parsing user id: 53

In Listing 19-12

• CPU stands for total CPU time in seconds.

• Elapsed is the total time elapsed in seconds.

• Disk denotes total physical reads.

• Query is the number of consistent buffer gets.

• Current is the number of database block gets.

• Rows is the total number of rows processed for each type of call.

From Listing 19-12, you can draw the following conclusions:

• The SQL statement shown previously was parsed once, so a parsed version wasn’t available in
the shared pool before execution. The Parse column shows that this operation took less than
0.01 seconds. Note that the lack of disk I/Os and buffer gets indicates that there were no data
dictionary cache misses during the parse operation. If the Parse column showed a large number
for the same statement, it would be an indicator that bind variables weren’t being used.

• The statement was executed once and execution took less than 0.01 seconds. Again, there
were no disk I/Os or buffer gets during the execution phase.

• It took me a lot longer than 0.01 seconds to get the results of the SELECT statement back. The
Fetch column answers this question of why that should be: it shows that the operation was
performed 17,324 times and took up 1.82 seconds of CPU time.

• The Fetch operation was performed 17,324 times and fetched 259,806 rows. Because the
number of rows is far greater than the number of fetches, you can deduce that Oracle used
array fetch operations.

• There were three physical reads during the fetch operation. If there’s a large difference between
CPU time and elapsed time, it can be attributed to time taken up by disk reads. In this case, the
physical I/O has a value of only 3, and it matches the insignificant gap between CPU time and
elapsed time. The fetch required 136 buffer gets in the consistent mode and only 5 DB block gets.

• The CBO was being used, because the optimizer goal is shown as CHOOSE.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1105

The following output shows the execution plan that was explicitly requested when TKPROF was
invoked. Note that instead of the cost estimates that you get when you use the EXPLAIN PLAN tool,
you get the number of rows output by each step of the execution.

 Rows Row Source Operation
------- -----------------------
 259806 MERGE JOIN
 1161 SORT JOIN
 1161 TABLE ACCESS FULL TESTD
 259806 SORT JOIN

Finally, TKPROF summarizes the report, stating how many SQL statements were traced. Here’s
the summary portion of the TKPROF-formatted output:

Trace file: ORA02344.TRC
Trace file compatibility: 9.00.01
Sort options: default
 2 sessions in trace file.
 18 user SQL statements in trace file.
 104 internal SQL statements in trace file.
 72 SQL statements in trace file.
 33 unique SQL statements in trace file.
 18182 lines in trace file.

The TKPROF output makes it easy to identify inefficient SQL statements. TKPROF can order the
SQL statements by elapsed time (time taken for execution), which tells you which of the SQL state-
ments you should focus on for optimization.

The SQL Trace utility is a powerful tool in tuning SQL, because it goes far beyond the informa-
tion produced by using EXPLAIN PLAN. It provides you with hard information about the number of
the various types of calls made to Oracle during statement execution, and how the resource use was
allocated to the various stages of execution.

■Note It’s easy to trace individual user sessions using the OEM Database Control. I explain how you can trace
and view user sessions using the Database Control in the section “Using the Database Control for End-to-End
Tracing.” You can trace a session as well as read the output file directly from the Database Control.

End-to-End Tracing
In multitier environments, the middle tier passes a client’s request through several database sessions.
It’s hard to keep track of the client across all these database sessions. Similarly, when you use shared
server architecture, it’s hard to identify the user session that you’re tracing at any given time. Because
multiple sessions may use the same shared server connection, when you trace the connection, you
can’t be sure who the user is exactly at any given time—the active sessions using the shared server
connection keep changing throughout.

In the cases I described earlier, tracing a single session becomes impossible. Oracle Database
10g introduced end-to-end tracing, with which you can uniquely identify and track the same client
through multiple sessions. The attribute CLIENT_IDENTIFIER uniquely identifies a client and remains
the same through all the tiers. You can use the DBMS_MONITOR package to perform end-to-end

1106 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

tracing. You can also use the OEM Database Control to set up end-to-end tracing easily. Let’s look at
both approaches in the following sections.

Using the DBMS_MONITOR Package
You use the Oracle PL/SQL package DBMS_MONITOR to set up end-to-end tracing. You can trace a
user session through multiple tiers and generate trace files using the following three attributes:

• Client identifier

• Service name

• Combination of service name, module name, and action name

You can specify a combination of service name, module name, and action name. You can also
specify service name alone, or a combination of service name and module name. However, you can’t
specify an action name alone. Your application must use the DBMS_APPLICATION_INFO package
to set module and action names. The service name is determined by the connect string you use to
connect to a service. If a user’s session isn’t associated with a service specifically, the sys$users service
handles it.

Let’s use two procedures belonging to the DBMS_MONITOR package. The first one, SERV_
MOD_ACT_TRACE_ENABLE, sets the service name, module name, and action name attributes. The
second, CLIENT_ID_TRACE_ENABLE, sets the client ID attribute. Here’s an example:

SQL> EXECUTE dbms_monitor.serv_mod_act_trace_enable
 (service_name=>'myservice', module_name=>'batch_job');
PL/SQL procedure successfully completed.
SQL> EXECUTE dbms_monitor.client_id_trace_enable
 (client_id=>'salapati');
PL/SQL procedure successfully completed.
SQL>

You can use the SET_IDENTIFIER procedure of the DBMS_SESSION package to get a client’s
session ID. Here’s an example showing how you can use a logon trigger and the SET_IDENTIFIER
procedure together to capture the user’s session ID immediately upon the user’s logging into the
system:

SQL> CREATE OR REPLACE TRIGGER logon_trigger
 AFTER LOGON
 ON DATABASE
 DECLARE
 user_id VARCHAR2(64);
 BEGIN
 SELECT ora_login_user ||':'||SYS_CONTEXT('USERENV','OS_USER')
 INTO user_id
 FROM dual;
 dbms_session.set_identifier(user_id);
 END;

Using the value for the client_id attribute, you can get the values for the SID and SERIAL# columns
in the V$SESSION view for any user and set up tracing for that client_id. Here’s an example:

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1107

SQL> EXECUTE dbms_monitor.session_trace_enable
 (session_id=>111, serial_num=>23, waits=>true, binds=>false);

You can now ask the user to run the problem SQL and collect the trace files so you can use the
TKPROF utility to analyze them. In a shared server environment especially, there may be multiple
trace files. By using the trcsess command-line tool, you can consolidate information from multiple
trace files into one single file. Here’s an example (first navigate to your user dump or udump directory):

$ trcsess output="salapati.trc" service="myservice
 "module="batch job" action="batch insert"

You can then run your usual TKPROF command against the consolidated trace file, as shown
here:

$ tkprof salapati.trc output=salapati_report SORT=(EXEELA, PRSELA, FCHELA)

■Note In this chapter, you saw how to enable SQL tracing using the SQL Trace facility, the DBMS_SESSION
package, and the DBMS_MONITOR package. You should use one of the two packages, rather than SQL Trace, to
trace SQL statements. You can use any one of these three methods to set up a session-level or instance-wide trace.
Be careful about tracing the entire instance, because it’ll lead to excessive load on your instance, as well as produce
too many voluminous trace files.

Using the Database Control for End-to-End Tracing

The best approach, as well as the recommended one, to end-to-end tracing is to use the OEM Data-
base Control. This way, you don’t have to bother with manual runs of the DBMS_MONITOR
package. Here are the steps:

1. From the Database Control home page, click the Performance link.

2. In the Performance page, click the Top Consumers link under the Additional Management
Links section.

3. In the Top Consumers page, you’ll see the tabs for Top Services, Top Modules, Top Actions,
Top Clients, and Top Sessions, as shown in Figure 19-2. Click the Top Clients tab.

4. To enable aggregation for a client, select the client and click Enable Aggregation.

If you wish, you can use the Database Control to trace a normal SQL session instead of using the
SET_TRACE command and the TKPROF utility. To trace a user command, in step 3 of the preceding
sequence, click the Top Sessions tab. You then click the Enable SQL Trace button. You can then use
the Disable SQL Trace button to stop the session tracing and view the output by clicking the View
SQL Trace File button.

■Note You can view all outstanding trace information in your instance by examining the DBA_ENABLED_TRACES
view, or use a trace report generated through the Database Control.

1108 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

Figure 19-2. Using the Database Control for tracing

Using the V$SQL View to Find Inefficient SQL
The V$SQL view is an invaluable tool in tracking down wasteful SQL code in your application. The
V$SQL view gathers information from the shared pool area on every statement’s disk reads and
memory reads, in addition to other important information. The view holds all the SQL statements
executed since instance startup, but there’s no guarantee that it will hold every statement until you
shut down the instance. For space reasons, the older statements are aged out of the V$SQL view. It’s
a good idea for you to grant your developers select rights on this view directly if you haven’t already
granted them the “select any catalog” role. You can use the V$SQL view to perform ad hoc queries on disk
and CPU usage, but remember that the AWR report includes summaries of these kinds of information.

The V$SQL view includes, among other things, the following columns, which help in assessing
how many resources a SQL statement consumes:

• rows_processed gives you the total number of rows processed by the statement.

• sql_text is the text of the SQL statement (first 1,000 characters).

• sql_fulltext is a CLOB column that shows the full text of a SQL statement.

• buffer_gets gives you the total number of logical reads (indicates high CPU use).

• disk_reads tells you the total number of disk reads (indicates high I/O).

• sorts gives the number of sorts for the statement (indicates high sort ratios).

• cpu_time is the total parse and execution time.

• elapsed_time is the elapsed time for parsing and execution.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1109

• parse_calls is the combined soft and hard parse calls for the statement.

• executions is the number of times a statement was executed.

• loads is the number of times the statement was reloaded into the shared pool after being
flushed out.

• sharable_memory is the total shared memory used by the cursor.

• persistent_memory is the total persistent memory used by the cursor.

• runtime_memory is the total runtime memory used by the cursor.

■Note In previous versions, DBAs used the V$SQLAREA view to gather information shown earlier. However, the
V$SQL view supplants the V$SQLAREA view by providing all information in that view, plus other important tuning-
related information as well.

Finding SQL That Uses Most of Your Resources

You can query the V$SQL view to find high-resource-using SQL. You can determine resource-inten-
sive SQL on the basis of the number of logical reads or buffer gets, or high disk reads, high parse calls,
large number of executions, or combinations of these factors. It’s obvious that a high number of disk
reads is inefficient because a high amount of physical I/O slows query performance. However, a high
number of memory reads (buffer gets) is also expensive because they consume CPU resources. You
normally have high buffer gets because you’re using the wrong index, the wrong driving table in a
join, or a similar SQL-related error. One of the primary goals of SQL tuning should be to lower the
number of unnecessary logical reads. If buffer gets and disk reads are at identical levels, it could indi-
cate a missing index. The reasoning is this: if you don’t have an index, Oracle is forced to do a full
table scan. However, full table scans can’t be kept in the SGA for too long because they might force a
lot of other data to be cleared out. Consequently, the full table won’t get to stay in the SGA for too
long unless it’s a small table.

The following simple query shows how the V$SQL view can pinpoint problem SQL statements;
both high disk reads and high logical reads are used as the criteria for flagging down poor SQL state-
ments captured by the V$SQL view. The SQL_TEXT column shows the exact SQL statement that’s
responsible for the high disk reads and logical reads:

SQL> SELECT sql_text, executions, buffer_gets, disk_reads,
 2 FROM V$SQL
 3 WHERE buffer_gets > 100000
 4 OR disk_reads > 100000
 5 ORDER BY buffer_gets + 100*disk_reads DESC;

SQL_TEXT EXECUTIONS BUFFER_GETS DISK_READS
----------- ----------- ----------- ---------- --------------
BEGIN dbms_job.run(1009133); 726216 1615283234 125828
BEGIN label_sc_pkg.launch_sc; 34665 1211625422 3680242
SELECT COUNT(*) AV_YOUTHS... 70564 152737737 7186125
SELECT UC.CHART_ID... 37849 96590083 5547319
SELECT MAX(REC_NUM) FROM... 5163242 33272842 6034715
SQL>

The following query is a slight variation on the preceding query. It seeks to find out the number
of rows processed for each statement:

1110 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

SQL> SELECT sql_text, rows_processed,
 2 buffer_gets, disk_reads, parse_calls
 3 FROM V$SQL
 4 WHERE buffer_gets > 100000
 5 OR disk_reads > 100000
 6*ORDER BY buffer_gets + 100*disk_reads DESC;

SQL_TEXT ROWS_PROCESSED BUFFER_GETS DISK_READS PARSE_CALLS
---------------------------- ----------- ----------- --------- --------------
BEGIN dbms_job.run(1009133); 9659 1615322749 125830 2078
BEGIN label_sc_pkg.launch_sc; 3928 1214405479 3680515 4
SELECT COUNT(*) AV_YOUTHS... 70660 152737737 7186125 3863
SELECT UC.CHART_ID... 37848 96590083 5547319 5476
SELECT MAX(REC_NUM) FROM... 5163236 33272842 6034715 606
SQL>

The V$SQL view helps you find out which of your queries have high logical I/O (LIO) and high
physical I/O (PIO). By also providing the number of rows processed by each statement, it tells you
whether a statement is efficient or not. By providing the disk reads and the number of executions per
statement, the view helps you determine whether the number of disk reads per execution is reason-
able. If CPU usage is your concern, look at the statements that have a high number of buffer gets. If
I/O is your primary concern, focus on the statements that perform the most disk reads. Once you
settle on the statement you want to investigate further, examine the complete SQL statement and see
whether you (or the developers) can improve it.

One of the best ways to find poorly performing SQL queries is by using the Oracle wait interface,
which I explain in detail in Chapter 20.

Here’s a query that uses the V$SQL view to sort the top five queries that are taking the most CPU
time and the most elapsed time to complete:

SQL> SELECT sql_text, executions,
 2 ROUND(elapsed_time/1000000, 2) elapsed_seconds,
 3 ROUND(cpu_time/1000000, 2) cpu_secs from
 4 (select * from v$sql order by elapsed_time desc)
 5* WHERE rownum <6;
SQL_TEXT EXECUTIONS ELAPSED_SECONDS CPU_SECS
---------------------------- ---------- --------------- ---------
DELETE MS_DASH_TRANLOGS... 2283 44.57 43.04
UPDATE PERSONS SET... 14132 19.74 20.52
SELECT /*+ INDEX(ud)... 9132 9.95 9
SELECT PROG_ID FROM UNITS ... 14132 5.26 5.81
SELECT NVL(SUM(RECHART),0)... 2284 4.13 4.43
SQL>

Using Other Dictionary Views for SQL Tuning

The V$SQL_PLAN and V$SQL_PLAN_STATISTICS views are highly useful for tracking the efficiency
of execution plans. You should be wary of quick changes in code to fix even the worst-performing
query in the system. Let’s say you create an extra index on a table or change the order of columns in
a composite key to fix this problem query. How do you know these aren’t going to impact other queries
in the application adversely? This happens more often than you think, and therefore you must do
your due diligence to rule out unintended consequences of your fixes.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1111

The SQL Tuning Advisor
You can use the SQL Tuning Advisor to improve poorly performing SQL statements. The SQL Tuning
Advisor provides the following to help you tune bad SQL statements:

• Advice on improving the execution plan

• Reasons for the SQL improvement recommendations

• Benefits you can expect by following the Advisor’s advice

• Details of the commands to tune the misbehaving SQL statements

Using the SQL Tuning Advisor
The SQL Tuning Advisor can use the following sources:

• New SQL statements. When working with a development database, this may be your best
source of SQL statements.

• High-load SQL statements.

• SQL statements from the AWR.

• SQL statements from the database cursor cache.

The Advisor can tune sets of SQL statements called SQL Tuning Sets. An STS is a set of SQL state-
ments combined with execution information, which includes the average elapsed time. An STS has
the advantage of capturing the information about a database’s workload as well as allowing you to
tune several large SQL statements at once.

How the SQL Tuning Advisor Works
As mentioned previously, the optimizer will try to find the optimal execution plan for each state-
ment you provide. However, this process happens under production conditions, so the optimizer
can only devote a short amount of time to working out a solution. The optimizer uses heuristics to
generate an estimate of the best solution. This is called the normal mode of the optimizer.

You can also run the optimizer in tuning mode, which means that the optimizer carries out in-
depth analysis to come up with ways to optimize execution plans. While in this mode, the optimizer
can take several minutes and produces recommendations instead of the best SQL execution plan.
You, in turn, use these recommendations to optimize the SQL statements’ execution plans. You get
the added advantage of advice that details the rationale behind the recommendations and what you
will gain from implementing them. The Oracle optimizer running in tuning mode is called the Auto-
matic Tuning Optimizer (ATO). The ATO does the following tasks:

• Statistics analysis

• SQL profiling

• Access path analysis

• SQL structure analysis

I describe each of these tasks in the following sections, along with the types of recommenda-
tions that the SQL Tuning Advisor makes.

1112 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

Statistics Analysis

The ATO makes sure that there are representative, up-to-date statistics for all the objects in the SQL
statement, which you need for efficient execution plans. If the ATO finds any statistics that are missing
or stale, it suggests that you collect new statistics for the objects in question. During this process, the
ATO collects other information that it can use to fill in any missing statistics. It can also correct stale
statistics.

SQL Profiling

At this stage the ATO tries to verify the validity of its estimates of factors such as column selectivity
and cardinality of database objects. It can use three methods to verify its estimates:

• Dynamic data sampling: The ATO can use a data sample to check its estimates. The ATO can
apply correction factors if the data-sampling process shows its estimates to be significantly
wrong.

• Partial execution: The ATO can carry out the partial execution of a SQL statement. This process
allows it to check whether its estimates are close to what really happens. It does not check
whether its estimates are correct, but rather it checks whether a plan derived from those
statistics is the best possible plan.

• Past execution history statistics: The ATO can use the SQL statement’s execution history to
help with its work.

If there’s enough information from statistics analysis or SQL profiling, the ATO suggests you
create a SQL profile, which is supplementary information about a SQL statement.

If you accept this advice and are running the optimizer in tuning mode, Oracle will store the SQL
profile in the data dictionary. Once you have done this, the optimizer uses it to produce optimal
execution plans, even when it is running in normal mode.

■Tip Remember that a SQL profile is not the same thing as a stored execution plan.

The SQL profile will continue to apply if you make small changes to your database and allow
your objects to grow normally. One of the big advantages of SQL profiles is the ability to tune pack-
aged applications. These are hard to tune because you can’t easily access and modify the code. Because
SQL profiles are saved in the data dictionary, you can use them to tune packaged applications.

Analyzing Access Paths

The ATO analyzes how using an improved access method, such as working with an index, will affect
queries. These are important considerations, because adding an index can substantially increase the
speed of a query. However, adding new indexes can adversely affect other SQL statements; the SQL
Advisor knows this and makes its recommendations as follows:

• If an index is effective, it will advise you to create it.

• It can advise you to run the SQL Access Advisor (see Chapter 7 for details) to analyze the
wisdom of adding the new index.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1113

SQL Structure Analysis

The ATO can make recommendations to modify the structure (both the syntax and semantics) of
poorly performing SQL statements. The ATO considers issues such as the following:

• Design mistakes; for example, performing full table scans because you didn’t create indexes.

• Using inefficient SQL; for example, the NOT IN construct, which is known to be much slower
than the NOT EXISTS construct in general.

■Note The ATO only identifies poorly written SQL, but it won’t rewrite it for you. You will know your application
better than the ATO, so Oracle only provides advice, which you can implement or not.

Recommendations

Here are some recommendations that the SQL Tuning Advisor will give you:

• Creating indexes will speed up access paths.

• Using SQL profiles will allow you to generate a better execution plan.

• Gathering optimizer statistics for objects that do not have any, or renewing stale statistics,
will be of benefit.

• Rewriting SQL as advised will improve its performance.

The SQL Tuning Advisor in Practice
You can use the SQL Tuning Advisor through packages or through the web interface of the OEM
Database Control.

Using the DBMS_SQLTUNE Package to Run the SQL Tuning Advisor

The main SQL package for tuning SQL statements is DBMS_SQLTUNE. The first example will be
creating and managing tasks that tune SQL statements.

■Note You must have the ADVISOR privilege to use the DBMS_SQLTUNE package. Ensure that you do before
running any of the following examples.

Performing Automatic SQL Tuning

Here’s how to tune SQL statements using the DBMS_SQLTUNE package:

1. Create a task: The CREATE_TUNING_TASK procedure creates a task to tune a single statement
or several statements (a SQL tuning set or STS). You can also use a SQL statement (using the
SQL identifier) from the AWR or from the cursor cache. In the following example, I show how
to create a task using a single SQL statement as input. First, I pass the SQL statement as a
CLOB argument, as shown here:

1114 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

DECLARE
 my_task_name VARCHAR2(30);
 my_sqltext CLOB;
BEGIN
 my_sqltext := 'SELECT /*+ ORDERED */ *
 FROM employees e, locations l, departments d
 WHERE e.department_id = d.department_id AND
 l.location_id = d.location_id AND
 e.employee_id < :bnd';

Next, I create the following tuning task:

my_task_name := DBMS_SQLTUNE.CREATE_TUNING_TASK(
 sql_text => my_sqltext,
 bind_list => sql_binds(anydata.ConvertNumber(90)),
 user_name => 'HR',
 scope => 'COMPREHENSIVE',
 time_limit => 60,
 task_name => 'my_sql_tuning_task',
 description => 'Task to tune a query on a specified employee');
END;
/

In the preceding task, sql_text refers to the single SQL statement that I’m tuning. The bind_list
shows that 90 is the value of the bind variable bnd. The tuning task’s scope is comprehensive,
meaning that it analyzes the SQL Profile, and the task_limit parameter sets a limit of 60
seconds on the total time for analysis.

2. Execute the task: To execute the task, run the EXECUTE_TUNING_TASK procedure:

BEGIN
 DBMS_SQLTUNE.EXECUTE_TUNING_TASK(task_name => 'my_sql_tuning_task');
END;
/

3. Get the tuning report: You can view the tuning process with the REPORT_TUNING_TASK
procedure:

SQL> SET LONG 1000
SQL> SET LONGCHUNKSIZE 1000
SQL> SET LINESIZE 100
SQL> SELECT DBMS_SQLTUNE.REPORT_TUNING_TASK('my_sql_tuning_task')
 FROM DUAL;

The report consists of findings and recommendations. The Tuning Advisor provides the
rationale and the expected benefits for each recommendation. It also provides you with the
SQL to implement the recommendations.

You can use the following views to manage your automatic SQL tuning efforts:

• DBA_ADVISOR_TASKS

• DBA_ADVISOR_FINDINGS

• DBA_ADVISOR_RECOMMENDATIONS

• DBA_ADVISOR_RATIONALE

• DBA_SQLTUNE_STATISTICS

• DBA_SQLTUNE_PLANS

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1115

Managing SQL Profiles

Once the ATO has made its recommendations, you can accept its findings and run the DBMS_
SQLTUNE.ACCEPT_SQL_PROFILE procedure to create an appropriate SQL profile, though you
must ensure you have the CREATE_ANY_PROFILE privilege first.

The preceding may seem to say that a SQL profile is an inevitable consequence of an ATO
process, but it will only recommend that you create a SQL profile if it has built one as a result of its
scan. However, it will only do this if it collected auxiliary information while analyzing statistics and
profiling SQL (as detailed previously). Oracle will apply the new profile to the SQL statement when
you execute it.

Managing SQL Tuning Categories

You may find that you have a number of different SQL profiles for a single SQL statement. Oracle has
to manage them in some way, so it assigns each one to a SQL tuning category. The same process
occurs when a user logs in, meaning that Oracle will assign a user to a tuning category. The category
is selected according to the SQLTUNE_CATEGORY initialization parameter.

If you do not change it, SQLTUNE_CATEGORY takes the value DEFAULT. This means that any SQL
profiles belonging to the default category apply to everyone who logs in. You can alter the SQL tuning
category for every user with the ALTER SYSTEM command. You can also alter a session’s tuning cate-
gory with the ALTER SESSION command. For example, take the PROD and DEV categories. To change the
SQL tuning category for every user, do the following:

SQL> ALTER SYSTEM SET SQLTUNE_CATEGORY = PROD;

If you wanted to change a session’s tuning category, you could do this:

SQL> ALTER SESSION SET SQLTUNE_CATEGORY = DEV;

■Note You may also use the DBMS_SQLTUNE.ALTER_SQL_PROFILE procedure to alter the SQL tuning category.

Using the OEM to Run the SQL Tuning Advisor

To use the OEM to run the Advisor, click Related Links ➤ Advisor Central ➤ SQL Tuning Advisor.
This is the SQL Tuning Advisor page. Here you can specify the SQL statements that the SQL Advisor
will analyze, which can be one of two kinds:

• Top SQL: These SQL statements could be top SQL from the cursor cache or saved high-load
SQL statements that have come from the AWR.

• SQL Tuning Sets: You can create an STS from any set of SQL statements.

Choosing one of the four links on the SQL Tuning Advisor page will take you to your selected
data source. You can now launch the SQL Tuning Advisor if you wish.

The Automatic SQL Tuning Advisor
I explained the Automatic Tuning Optimizer earlier in this chapter. This is what Oracle calls the opti-
mizer when it runs in tuning mode. The Automatic Tuning Optimizer performs the following types
of analysis for high-load SQL statements, with a goal of isolating poorly written SQL statements and
making recommendations to improve them: statistics analysis, SQL profiling, access path analysis,
and SQL structure analysis. When you execute a SQL Tuning Advisor session, it invokes the Automatic
Tuning Optimizer to tune the SQL statements. The SQL Tuning Advisor provides recommendations, but
can’t implement them for you.

1116 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

The Automatic Tuning Optimizer also runs regularly as an automated maintenance task called
the (Automatic) SQL Tuning Advisor task. The advisor can identify poorly running SQL statements
by picking them from the AWR, make recommendations to improve them, and also implement any
recommendations that invoke the use of SQL profiles. The SQL Tuning Advisor task conducts statistics
analysis, SQL profiling, access path analysis, and SQL structure analysis.

The Automatic SQL Tuning process consists of the identification of candidates for tuning, tuning
the statements and making recommendations, testing the recommendations, and automatic imple-
mentation of the SQL profile recommendations. I describe each of the steps in the following sections.

Identifying SQL Tuning Candidates

The Automatic SQL Tuning Advisor uses the AWR Top SQL identification process for selecting candi-
dates for automatic tuning. The database takes into account the CPU time and I/O time utilized by
SQL statements to select these candidates. The goal is to select statements that offer a large potential
for improvement. The advisor prepares a list of candidate statements by organizing the top SQL
queries in the past week into the following “buckets”:

• Top for the week

• Top for any day in the week

• Top for any hour during the week

• Highest average single execution

By assigning weights to each of the buckets, the SQL Tuning Advisor combines the four buckets
into a single group of statements and ranks the statements according to their impact on performance.
Subsequently, during the maintenance window, the advisor automatically tunes each of the candi-
date SQL statements selected by it.

A SQL profile consists of addition statistics beyond those collected by the optimizer, to help
evolve better execution plans. The additional information gathered via SQL profiles may include
customized optimizer settings, adjustments to compensate for missing or stale statistics, and adjust-
ments for estimation errors in optimization statistics. Since you don’t need to change the SQL query
when you implement a SQL profile, they are ideal for use in packaged applications. Implementation
of a SQL profile would normally lead to the generation of more efficient execution plans for SQL
statements.

Tuning and Making Recommendations

The SQL Tuning Advisor tunes statements in the order of their performance impact. If the advisor
finds stale or missing statistics, it lets the GATHER_STATS_JOB know about this fact, so it can collect
statistics for it when the database collects statistics the next time.

The advisor makes different types of recommendations to improve the poorly performing SQL
statements, including the creation of indexes, refreshing of the optimizer statistics, restructuring
SQL statements, and creation of SQL profiles. The advisor can automatically implement only the SQL
profile creation recommendations. The advisor creates and tests the SQL profiles it recommends
before implementing them. You can decide whether to retain the new SQL profiles that are automatically
implemented by the advisor or not, based on an analysis of the SQL Tuning Advisor report.

Testing the Recommendations for New SQL Profiles

For any SQL profile recommendation it makes, the SQL Tuning Advisor runs the statement with and
without the profile and compares the performance. The advisor will recommend adopting a profile
only if implementing the profile leads to at least a threefold increase in improvement in performance, as
shown by a reduction in the sum of the CPU and I/O usage.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1117

Implementing the SQL Profiles

The setting of the ACCEPT_SQL_PROFILES attribute of the SET_TUNING_TASK_PARAMETERS view
determines whether the database automatically accepts the SQL profile recommendations made
by the Automatic SQL Tuning Advisor. The DBA_SQL_PROFILES view shows all the automatically
implemented SQL profiles. If a SQL profile was automatically implemented, it’ll have a value of AUTO
in the TYPE column.

Limitations

You can’t tune the following types of statements with the Automatic SQL Tuning Advisor:

• Parallel queries

• Ad hoc queries

• Recursive statements

• SQL statements that use the INSERT and DELETE statements

• SQL statements that use DDL statements such as CREATE TABLE AS SELECT

If a query takes a long time to execute after implementing a SQL profile, the advisor will reject
the implementation of the SQL profile, since it can’t test-execute the query. Note that with the excep-
tion of ad hoc statements, you can manually tune all the preceding types of statements with a manual
invocation of the SQL Tuning Advisor.

Configuring Automatic SQL Tuning

Use the DBMS_SQLTUNE package to configure and manage the automatic SQL tuning task. Manage
the SYS_AUTO_TUNING_TASK, which controls the automatic SQL tuning job, with the following
procedures:

• SET_TUNING_TASK_PARAMETERS: Use this procedure to test task parameters controlling
items such as whether to automatically implement SQL profiles.

• EXECUTE_TUNING_TASK: Use this procedure to run the tuning task in the foreground.

• EXPORT_TUNING_TASK: This procedure helps produce a task execution report.

The Automatic SQL Tuning Advisor job runs for a maximum of one hour by default, but you can
change the execution time limit by executing the SET_TUNING_TASK_PARAMETERS procedure, as
shown here:

SQL> exec dbms_sqltune.set_tuning_task_parameter
 ('SYS_AUTO _SQL_TUNING_TASK', 'TIME_LIMIT', 14400);

The previous example shows how to raise the maximum run time for the SQL tuning task to four
hours, from its default value of one hour.

The SET_TUNING_TASK_PARAMETERS procedure enables you to configure the tuning task by
specifying the following parameters:

• ACCEPT_SQL_PROFILES determines whether the database must automatically accept a SQL profile.

• REPLACE_USER_SQL_PROFILES determines whether the task should replace the SQL profiles
created by the user.

• MAX_SQL_PROFILES_PER_EXEC specifies the maximum number of SQL profiles that can be
accepted for a single automatic SQL tuning task.

1118 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

• MAX_AUTO_SQL_PROFILES determines the total number of SQL profiles that are accepted by
the database.

• EXECUTION_DAYS_TO_EXPIRE specifies the maximum number of days for which the database
saves the task history. The default is 30 days.

The following example shows how to configure a SQL tuning task that’ll automatically accept all
SQL profile recommendations:

SQL> begi
 2 dbms_sqltune.set_tuning_task_parameters(
 3 task_name => 'SYS_AUTO_SQL_TUNING_PROG',
 4 parameter => 'accept_sql_profiles', value => 'true');
 5* end;

SQL> /

The previous example sets the value for the ACCEPT_SQL_PROFILES parameter to TRUE, which
makes the advisor automatically accept SQL profile recommendations.

The SYS_AUTO_SQL_TUNING_TASK procedure runs the automatic SQL tuning job every night
during the maintenance window of the Oracle Scheduler. It tunes SQL statements according to the
priority ranking in the SQL candidates. It creates necessary SQL profiles for a statement and tests
them before tuning the next statement in the candidate list.

Managing Automatic SQL Tuning

Use the DBMS_AUTO_TASK_ADMIN package to enable and disable the Automatic SQL Tuning
Advisor job during the Scheduler maintenance window. The ENABLE procedure helps you enable
the Automatic SQL Tuning Advisor task:

begin
dbms_auto_task_admin.enable (
client_name => 'sql tuning advisor',
operation => 'NULL',
window_name='NULL');
end;

The value NULL for the WINDOW_NAME parameter will enable the task in all maintenance windows.
To specify the task in a specific maintenance window, specify a window name, as shown here:

begin
dbms_auto_task_admin.enable (
client_name => 'sql tuning advisor',
operation => 'NULL',
window_name='monday_night_window');
end;

To disable the Automatic SQL Tuning Advisor task, execute the DISABLE procedure, as shown
here:

begin
dbms_auto_task_admin.disable (
client_name => 'sql tuning advisor',
operation => 'NULL',
window_name='NULL');
end;

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1119

The previous code will disable the automatic SQL tuning tasks in all maintenance windows,
since I didn’t specify a value for the WINDOW_NAME parameter.

■Tip By setting the TEST_EXECUTE parameter when you execute the SET_TUNING_TASK_PARAMETER proce-
dure, you can run the SQL Tuning Advisor in test execute mode to save time.

You can also configure all Automatic SQL Tuning parameters easily through the Database control
(or the Grid Control). Go to the Automatic SQL Tuning Settings page, accessible by clicking the
Configure button in the Automated Maintenance Tasks page. You can configure all automated tasks
from the Automated Maintenance Tasks configuration page. Here’s a simple example that shows
how to get recommendations for fixing a SQL statement:

1. Click the finding with the highest impact on database time in the Database Home page.

2. Click Schedule SQL Tuning Advisor on the SQL Details page.

3. Click Submit on the Scheduler Advisor page.

4. Click Implement if you want to adopt the advisor’s recommendations.

5. Click Yes on the Confirmation page, and the database creates a new SQL profile.

6. View the tuning benefits by going to the Performance page after the database executes the
tuned statement again.

Go to the Automated Maintenance Task page to view information about the latest executions of
the Automatic SQL Tuning Advisor. Click the Server tab in the Database Control home page first.
Click the Automated Maintenance Tasks link under the Tasks section in the Server page, and then
click the most recent execution icon or the Automatic SQL Tuning task link to view the Automatic
SQL Tuning Result Summary page.

Interpreting Automatic SQL Tuning Reports
You can get a report of the Automatic SQL Tuning Advisor tasks by executing the
REPORT_AUTO_TUNING_TASK function, as shown here:

SQL> begin
 2 :test_report :=dbms_sqltune. report_auto_tuning_task (
 3 type => 'text',
 4 level => 'typical',
 5 section => 'all');
 6* end;
SQL> /
PL/SQL procedure successfully completed.
SQL>
print :test_report

The report produced by the previous code contains information about all the statements analyzed
by the advisor in its most recent execution and includes both the implemented and unimplemented
advisor recommendations. The report also contains EXPLAIN PLANs before and after implementing
the tuning recommendations.

1120 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

You can use the following views to get information about the Automatic SQL Tuning Advisor jobs:

• DBA_ADVISOR_EXECUTIONS: Shows metadata information for each task

• DBA_ADVISOR_SQLSTATS: Shows a list of all SQL compilation and execution statistics

• DBA_ADVISOR_SQLPLANS: Shows a list of all SQL execution plans

The following code, for example, provides information about all Automatic SQL Tuning
Advisor tasks:

SQL> SELECT execution_name, status, execution_start, execution_end
 FROM dba_advisor_executions
 WHERE task_name='SYS_AUTO_SQL_TUNING_TASK';

Using Other GUI Tools
The EXPLAIN PLAN and SQL Trace utilities aren’t the only tools you have available to tune SQL
statements. Several GUI-based tools provide the same information much more quickly. Just make
sure that statistics collection is turned on in the initialization file before you use these tools. One of
the well-known third-party tools is the free version of TOAD software, which is marketed by Quest
Software (http://www.quest.com). From this tool you get not only the execution plan, but also memory
usage, parse calls, I/O usage, and a lot of other useful information, which will help you tune your
queries. The use of GUI tools helps you avoid most of the drudgery involved in producing and reading
EXPLAIN PLANs. Note that whether you use GUI tools or manual methods, the dynamic perfor-
mance views that you use are the same. How you access them and use the data makes the difference
in the kind of tool you use.

Using the Result Cache
You can improve the response times of frequently executed SQL queries by using the result cache.
The result cache stores results of SQL queries and PL/SQL functions in a new component of the SGA
called the Result Cache Memory. The first time a repeatable query executes, the database caches its
results. On subsequent executions, the database simply fetches the results from the result cache
instead of executing the query again. The database manages the result cache. You can turn result
caching on only at the database level. If any of the objects that are part of a query are modified, the
database invalidates the cached query results. Ideal candidates for result caching are queries that
access many rows to return a few rows, as in many data warehousing solutions.

The result cache consists of two components, the SQL Query Result Cache that stores SQL query
results and the PL/SQL Function Result Cache that stores the values returned by PL/SQL functions,
with both components sharing the same infrastructure. I discuss the two components of the result
cache in the following sections.

Managing the Result Cache
The result cache is always enabled by default, and its size depends on the memory the database allo-
cates to the shared pool. If you specify the MEMORY_TARGET parameter for allocating memory, Oracle
allocates 0.25% of the MEMORY_TARGET parameter value to the result cache. If you specify the SGA_TARGET
parameter instead, Oracle allocates 0.5% of the SGA_TARGET value to the result cache.

You can change the memory allocated to the result cache by setting the RESULT_CACHE_MAX_SIZE
initialization parameter. This parameter can range from a value of zero to a system-dependent
maximum. You disable result caching by setting the parameter to zero, as shown here:

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1121

SQL> ALTER SYSTEM SET result_cache_max_size=0;

Since result caching is enabled by default, it means that the RESULT_CACHE_MAX_SIZE parameter
has a positive default value as well, based on the size of the MEMORY_TARGET parameter (or the SGA_TARGET
parameter if you have that parameter instead).

In addition to the RESULT_CACHE_MAX_SIZE parameter, two other initialization parameters have a
bearing on the functioning of the result cache: the RESULT_CACHE_MAX_RESULT parameter specifies the
maximum amount of the result cache a single result can use. By default, a single cached result can
occupy up to 5 percent of the result cache, and you can specify a percentage between 1 and 100. The
RESULT_CACHE_REMOTE_EXPIRATION parameter determines the length of time for which a cached result
that depends on remote objects is valid. By default, this parameter is set to zero, meaning you aren’t
supposed to use the result cache for queries involving remote objects. The reason for this is over time
remote objects could be modified, leading to invalid results in the cache.

Setting the RESULT_CACHE_MODE Parameter
Whether the database caches a query result or not depends on the value of the RESULT_CACHE_MODE
initialization parameter, which can take two values: MANUAL or FORCE. Here’s how the two values
affect result caching behavior in the database:

• If you set the parameter to FORCE, the database will try to use the cache for all results, wherever
it’s possible to do so. You can, however, skip the cache by specifying NO_RESULT_CACHE hint
within a query.

• If you set the parameter to MANUAL, the database caches the results of a query only if you
include the RESULT_CACHE hint in the query.

By default, the RESULT_CACHE_MODE parameter is set to MANUAL and you can change the value
dynamically as shown here:

SQL> alter session set result_cache_mode=force scope=spfile;

Using the RESULT_CACHE and NO_RESULT_CACHE Hints

Using the RESULT_CACHE hint as a part of a query adds the ResultCache operator to a query’s execution
plan. The ResultCache operator will search the result cache to see whether there’s a stored result in
there for the query. It retrieves the result if it’s already in the cache; otherwise, the ResultCache oper-
ator will execute the query and store its results in the result cache. The no_result_cache operator
works the opposite way. If you add this hint to a query, it’ll lead the ResultCache operator to bypass
the result cache and reexecute the query to get the results.

The following example shows how to incorporate the RESULT_CACHE hint in a SQL query:

SQL> select /*+ result_cache +*/
 2 department_id, avg(salary)
 3 from hr.employees
 4* group by department_id;

SQL>

The RESULT_CACHE hint in line 1 of the query adds the ResultCache operator, which looks in the
result cache for the cached results and, if they aren’t there already, executes the query and stores its
results in the result cache. The EXPLAIN PLAN for the query shows that the query will utilize the
result cache:

1122 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

SQL> EXPLAIN PLAN FOR select /*+ result_cache +*/
 2 department_id,avg(salary)
 3 from hr.employees
 4* group by department_id
SQL> /
Explained.

SQL>
SQL> SELECT plan_table_output FROM table(DBMS_XPLAN.DISPLAY());
PLAN_TABLE_OUTPUT
--
Plan hash value: 1192169904
--
| Id | Operation | Name | Rows | Bytes | Cost
(%CPU)| Time |
--
PLAN_TABLE_OUTPUT
--
| 0 | SELECT STATEMENT || 11 | 77 | 4
 (25)| 00:00:01 |
| 1 | RESULT CACHE | 8nk7a7rfhymzy0s0b89ksn9bfz | ||
| 2 | HASH GROUP BY | | 11 | 77 | 4
 (25)| 00:00:01 |
| 3 | TABLE ACCESS FULL| EMPLOYEES | 107 | 749 | 3
 (0)| 00:00:01 |
PLAN_TABLE_OUTPUT
--
--
Result Cache Information (identified by operation id):
--
 1 - column-count=2; dependencies=(HR.EMPLOYEES);
name="select /*+ result_cache +*/
department_id,avg(salary)
from hr.employees
group by department_id"

15 rows selected.

SQL>

■Tip The RESULT_CACHE and the NO_RESULT_CACHE hints always take precedence over the value you set for
the RESULT_CACHE_MODE initialization parameter.

The EXPLAIN PLAN output reveals the use of the result cache by the query in our example. Since
I used the RESULT_CACHE hint to use the result cache, the RESULT_CACHE_MODE parameter is set to MANUAL. If
it is set to FORCE, I don’t have to set the RESULT_CACHE hint inside the queries. The database will simply
cache results for all repeatable SQL statements, unless I specify the NO_RESULT_CACHE hint in a query.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1123

Managing the Result Cache
Use the DBMS_RESULT_CACHE package to manage the result cache, such as checking the status of
the cache and flushing the cache. The following example shows how to check the memory allocation
to the cache by executing the MEMORY_REPORT function:

SQL> set serveroutput on
SQL> exec dbms_result_cache.memory_report
R e s u l t C a c h e M e m o r y R e p o r t
[Parameters]
Block Size = 1K bytes
Maximum Cache Size = 672K bytes (672 blocks)
Maximum Result Size = 33K bytes (33 blocks)
[Memory]
Total Memory = 5132 bytes [0.005% of the Shared Pool]
... Fixed Memory = 5132 bytes [0.005% of the Shared Pool]
... Dynamic Memory = 0 bytes [0.000% of the Shared Pool]

PL/SQL procedure successfully completed.
SQL>

Execute the STATUS function to check the current status of the result cache, which could be ENABLED
or DISABLED. You can purge the contents of the result cache by executing the FLUSH procedure or the
FLUSH function. You may have to purge the result cache if the database ends up filling up the result
cache, as the result cache doesn’t automatically flush its contents. If you load a new version of a func-
tion, for example, you can get rid of the older function’s results from the result cache by purging
the results with the FLUSH procedure or function. Before you execute the FLUSH procedure or FLUSH
function, you must first put the result cache in bypass mode by executing the BYPASS procedure with
the TRUE value. Once you purge the result cache, execute the BYPASS procedure again, now with the
FALSE value, as shown here:

 BEGIN
 EXEC dbms_result_cache.bypass (FALSE);
 END;
 /
PL/SQL procedure successfully completed.
SQL>

You can use the following views to manage the result cache:

• V$RESULT_CACHE_STATISTICS: Lists cache settings and memory usage statistics

• V$RESULT_CACHE_OBJECTS: Lists all cached objects and their attributes

• V$RESULT_CACHE_DEPENDENCY: Lists the dependency information between the cached
results and dependencies

• V$RESULT_CACHE_MEMORY: Lists all memory blocks and their statistics

• V$RESULT_CACHE_OBJECTS: Lists both cached results and all dependencies

For example, you can use the following query on the V$RESULT_CACHE_OBJECTS view to find
out which results are part of the result cache:

1124 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

SQL> select type,status,name from v$result_cache_objects;

TYPE STATUS NAME
------------ ----------- ------------------------------------
Dependency Published HR.COUNT_EMP
Result Published select /* + result_cache
 query name(q1) */
 last_name, salary from hr.employees
 order by salary
SQL>

The previous query shows there are currently two results in the result cache.

Restrictions on Using the SQL Query Result Cache

You can’t cache results in the SQL Query Result Cache for the following objects:

• Temporary tables

• Dictionary tables

• Nondeterministic PL/SQL functions

• The curval and nextval pseudo functions

• The SYSDATE, SYS_TIMESTAMP, CURRENT_DATE, CURRENT_TIMESTAMP, LOCAL_TIMESTAMP, USERENV,
SYS_CONTEXT, and SYS_QUID functions

You also won’t be able to cache subqueries, but you can use the RESULT_CACHE hint in an inline view.

The PL/SQL Function Result Cache
The SQL Query Result Cache shares the result cache infrastructure with the PL/SQL Function Result
Cache, which caches the results of PL/SQL functions. Candidates for PL/SQL function caching are
those functions that the database uses frequently that depend on fairly static information. You can
choose to specify that the database invalidate the cached results of a PL/SQL function when there’s
a change in any of the objects the functions depends on.

Creating a Cacheable Function

Include the RESULT_CACHE clause in a PL/SQL function definition to make the database cache the
function results in the PL/SQL Function Result Cache. Here’s an example:

SQL> CREATE OR REPLACE function
 get_dept_info (dept_id number) RETURN dept_info_record
 result_cache relies_on (employees)
 IS
 rec dept_info_record;
 BEGIN
 SELECT AVG(salary), COUNT(*) INTO rec
 FROM employees
 WHERE department_id = dept_id;
 RETURN rec;
 END get_dept_info;
/

The RELIES ON clause is optional. The clause specifies that the database must invalidate the function
results if any of the tables or other objects that the function depends on undergoes a modification.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1125

The first time the database executes the GET_DEPT_INFO function, the function will execute as usual.
On subsequent executions of the function, the database fetches the function values directly from the
PL/SQL Function Result Cache instead of reexecuting the function. The database reexecutes the function
only when

• You bypass the result cache by not specifying the RESULT_CACHE hint.

• You execute the DBMS_RESULT_CACHE_BYPASS procedure to make functions and queries
bypass the result cache, regardless of the setting of the RESULT_CACHE_MODE parameter or the
specification or the RESULT_CACHE hint.

• Any of the objects underlying a function change and you’ve specified the RELIES_ON clause in
the function definition.

• The database ages out cached results because the system needs additional memory.

Restrictions

A PL/SQL function must satisfy the following requirements in order for the database to cache its
results. A function cannot

• Have any IN/OUT parameters

• Be an anonymous block

• Be defined in a module that has invoker’s rights

• Have parameters that belong to the collection, object, ref cursor, or LOB types

• Be a pipelined table function

Besides meeting these requirements, the function must not depend on session-specific settings
or application contexts and must also not have any side effects.

The Client Query Result Cache
If you are using any OCI applications and drivers such as JDBC and ODP.NET, you can also use Oracle’s
client-side caching of SQL result sets in the Client Query Result Cache that’s located on the server.
The database keeps the result sets consistent with changes in session attributes. If you’ve frequently
repeated statements in your applications, client-side caching could offer tremendous improvement
in query performance benefits. Since the database caches results on the clients, server round-trips
are minimized and scalability improves as a result, with lower I/O and CPU load.

Unlike server-side caching, client-side caching isn’t enabled by default. If your applications
produce small result sets that are static over a period of time, client-side caching may be a good thing
to implement. Frequently executed queries and queries involving lookup tables are also good candi-
dates for client-side caching.

Enabling and Disabling the Client Query Result Cache

As with server-side caching, you use the RESULT_CACHE_MODE initialization parameter to enable and
disable client-side caching. The RESULT_CACHE and the NO_RESULT_CACHE hints work the same way as
they do for server-side caching. If you choose to specify the MANUAL setting for the RESULT_CACHE_MODE
parameter, you must use the RESULT_CACHE hint in a query for the query’s results to be cached. Also,
the two hints override the setting of the RESULT_CACHE_MODE parameter, as in the case of server-side
caching. You pass the RESULT_CACHE and the NO_RESULT_CACHE hints to SQL statements by using the
OCIStatementPrepare() and the OCIStatementPrepare2() calls.

1126 CH AP T E R 1 9 ■ I M P R OV IN G DA TA B AS E P E R F O R M AN CE : SQ L Q U E R Y O P T I M I ZA T I O N

Managing the Client Result Cache

There are two initialization parameters that control how the Client Query Result Cache works.
Here’s a brief description of these parameters:

• CLIENT_RESULT_CACHE_SIZE: Determines the maximum client per-process result set cache size
(in bytes). If you set this parameter to zero, you disable the Client Query Result Cache. The
database allocates the maximum-size memory to every OCI client process by default.

■Tip You can override the setting of the CLIENT_RESULT_CACHE_SIZE parameter with the server-side parameter
OCI_RESULT_CACHE_MAX_SIZE. By setting the latter to zero, you can disable the Client Query Result Cache.

• CLIENT_RESULT_CACHE_LAG: Determines the Client Query Result Cache lag time. A low value
means more round-trips to the database from the OCI client library. Set this parameter to a
low value if your application accesses the database infrequently.

An optional client configuration file overrides any client caching configuration parameters you
set. You can set the client-side configuration parameters in the sqlnet.ora file on the client. You can
set the following client-side configuration parameters:

• OCI_RESULT_CACHE_MAX_SIZE: Specifies the maximum size of the query cache for a single process

• OCI_RESULT_CACHE_MAX_RSET_SIZE: Enables you to specify the maximum size of a single result
in bytes for a process

• OCI_RESULT_CACHE_MAX_RST_ROWS: Sets the maximum size of a query result in rows for a single
process

You can also insert the RESULT_CACHE and NO_RESULT_CACHE hints in OCI applications. Use the
CLIENT_RESULT_CACHE view to see the settings of the result cache and the usage statistics for the
Client Query Result Cache.

Restrictions

You can’t cache queries that use the following types of objects, even though you may be able to
cache them in a server-side result cache:

• Views

• Remote objects

• Complex types in the select list

• Flashback queries

• Queries that include PL/SQL functions

• Queries that reference VPD policies on the tables

A Simple Approach to Tuning SQL Statements
Whether you use manual methods such as EXPLAIN PLAN, SQL Trace, and TKPROF, or more
sophisticated methods such as the SQL Tuning Advisor, you need to understand that optimizing
SQL statements can improve performance significantly. In the following sections, I summarize a
simple methodology you can follow to tune your SQL statements.

CH AP T E R 1 9 ■ IM PR OV I N G DA TA B AS E P E R F OR M AN C E : S Q L QU E R Y O P T I M IZ A T I ON 1127

Identify Problem Statements
This chapter has shown you many ways you can identify your slow-running or most resource-inten-
sive SQL statements. For instance, you can use dynamic performance views such as V$SQL to find
out your worst SQL statements, as shown earlier. Statements with high buffer gets are the CPU-inten-
sive statements and those with high disk reads are the high I/O statements. Alternatively, you can
rely on the AWR report and the ADDM analysis to figure out which of your SQL statements need to
be written more efficiently. Obviously, you want to start (and maybe end) with tuning these problem
statements.

Locate the Source of the Inefficiency
The next step is to locate the inefficiency in the SQL statements. To do this, you need to collect infor-
mation on how the optimizer is executing the statement. That is, you must first walk through the
EXPLAIN PLAN for the statement. This step helps you find out if there are any obvious problems,
such as full table scans due to missing indexes.

In addition to analyzing the EXPLAIN PLAN output or using the V$SQL_PLAN view, collect the
performance information, if you can, by using the SQL Trace and TKPROF utilities.

Review each EXPLAIN PLAN carefully to see that the access and join methods and the join order
are optimal. Specifically, check the plans with the following questions in mind:

• Are there any inefficient full table scans?

• Are there any unselective range scans?

• Are the indexes appropriate for your queries?

• Are the indexes selective enough?

• If there are indexes, are all of them being used?

• Are there any later filter operations?

• Does the driving table in the join have the best filter?

• Are you using the right join method and the right join order?

• Do your SQL statements follow basic guidelines for writing good SQL statements (see the
section “Writing Efficient SQL” in this chapter)?

In most cases, a structured analysis of the query will reveal the source of the inefficiency.

Tune the Statement
Use the Database Control’s SQL Access Advisor to get index and materialized view recommenda-
tions. Review the access path for the tables in the statement and the join order. Consider the use of
hints to force the optimizer to use a better execution plan. You can also use the SQL Tuning Advisor
to get recommendations for more efficient SQL statements.

Compare Performance
Once you generate alternative SQL, it’s time to go through the first three steps again. Use the EXPLAIN
PLAN facility and performance statistics to compare the new statement with the older one. After you
ensure that your new statements perform better, it’s time to replace the inefficient SQL. Oracle Data-
base 11g has a much wider array of automatic SQL tuning capabilities than ever before. Once you get
familiar with the various automatic tuning tools, such as the SQL Tuning Advisor and the ADDM,
you should be able to harness the database’s capabilities to tune your recalcitrant SQL statements.

1129

■ ■ ■

C H A P T E R 2 0

Performance Tuning:
Tuning the Instance

In the previous chapter, you learned how to write efficient SQL to maximize an application’s perfor-
mance. The use of optimal SQL and efficient design of the layout of the database objects are parts of
a planned or proactive tuning effort. This chapter focuses on the efficient use of the resources Oracle
works with: memory, CPU, and storage disks.

The chapter discusses how to monitor and optimize memory allocation for the Oracle instance.
In this context, you’ll learn about the traditional database hit ratios, such as the buffer cache hit
ratios. However, focusing on the hit ratios isn’t necessarily the smartest way to maintain efficient
Oracle databases because you need to focus on the user’s response time. Investigating factors that
are causing processes to spend excessive time waiting for resources is a better approach to perfor-
mance tuning. This chapter provides you with a solid introduction to Oracle wait events and tells you
how to interpret them and reduce the incidence of these wait events in your system.

A fairly common problem in many production systems is that of a database hang, when things
seem to come to a standstill for some reason. This chapter shows you what to do during such events.

The chapter explains the key dynamic performance tables that you need to be familiar with to
understand instance performance issues. Although you’ve encountered the Automatic Database
Diagnostic Monitor (ADDM) and Automatic Workload Repository (AWR) in earlier chapters, this
chapter reviews their role in instance tuning. You can also use the Active Session History (ASH)
feature to understand recent session history. Analyzing ASH information helps solve numerous
performance issues in a running instance.

Although it’s nice to be able to design a system proactively for high performance, more often
than not, the DBA has to deal with reactive tuning when performance is unsatisfactory and a fix
needs to be found right away. The final part of this chapter deals with a simple methodology to follow
when your system performance deteriorates and you need to fine-tune the Oracle instance.

I begin this chapter with a short introduction to instance tuning and then turn to cover in detail
the tuning of crucial resources such as memory, disk, and CPU usage. Later on in the chapter, I
review the important Oracle wait events, which will help you get a handle on several kinds of data-
base performance issues.

An Introduction to Instance Tuning
Oracle doesn’t give anything but minimal and casual advice regarding the appropriate settings of
key resources, such as total memory allocation or the sizes of the components of memory. Oracle
has some general guidelines about the correct settings for several key initialization parameters that
have a bearing on performance. However, beyond specifying wide ranges for the parameters, the
company’s guidelines aren’t helpful to DBAs deciding on the optimal levels for these parameters.

1130 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

Oracle says this is because all these parameters are heavily application dependent. All of this
means that you as a DBA have to find out the optimal sizes of resource allocations and the ideal
settings of key initialization parameters through trial and error. As a DBA, you’re often called in to
tune the instance when users perceive slow response caused by a bottleneck somewhere in the
system. This bottleneck can be the result of either an excessive use of or insufficient provision of
some resource. In addition, database locks and latches may cause a slowdown. You have to remember,
though, that in most cases, the solution isn’t simply to increase the resource that seems to be getting
hit hard—that may be the symptom, not the cause of a problem. If you address the performance
slowdown by fixing the symptoms, the root causes will remain potential troublemakers.

Performance tuning an Oracle database instance involves tuning memory and I/O as well as
operating system resources such as CPU, the operating system kernel, and the operating system
memory allocation. When you receive calls from the help desk or other users of the system complaining
that the system is running slowly, you can only change what’s under your direct control—mainly, the
allocation of memory and its components and some dynamic initialization parameters that have a
bearing on instance performance. Depending on what the various indicators tell you, you may adjust
the shared pool and other components of memory to improve performance. You can also change the
operating system priority of some processes, or quickly add some disk drives to your system.

One of the main reasons for a slow response time in a production system is due to user processes
waiting for a resource. Oracle provides several ways of monitoring waits, but you need to understand
their significance in your system. Long wait times aren’t the problem themselves; they’re symptoms
of deep-seated problems. The DBA should be able to connect different types of waits with possible
causes in the application or in the instance.

Although some manuals tell you that you should do performance tuning before application
tuning—before you proceed to tuning areas such as memory, I/O, and contention—real life isn’t so
orderly. Most of the time, you don’t have the opportunity to have the code revised, even if there are
indications that it isn’t optimal. Instead of being an orderly process, tuning databases is an iterative
process, where you may have to go back and forth between stages.

More often than not, DBAs are forced to do what they can to fix the performance problem that’s
besetting them at that moment. In this sense, most performance tuning is a reactive kind of tuning.
Nevertheless, DBAs should endeavor to understand the innards of wait issues and seek to be proactive
in their outlooks.

There are two big advantages to being in a proactive mode of tuning. First, you have fewer sudden
performance problems that force hurried reactions. Second, as your understanding of your system
increases, so does your familiarity with the various indicators of poor performance and the likely
causes for them, so you can resolve problems that do occur much more quickly.

If you’re fortunate enough to be associated with an application during its design stages, you can
improve performance by performing several steps, including choosing automatic space manage-
ment and setting correct storage options for your tables and indexes. Sizing the table and indexes
correctly doesn’t hurt, either. However, if you’re stuck with a database that has a poor design, all is
not lost. You can still tune the instance using techniques that I show later in this chapter to improve
performance.

When response time is slower than usual, or when throughput falls, you’ll notice that the Oracle
instance isn’t performing at its usual level. If response times are higher, obviously there’s a problem
somewhere in one of the critical resources Oracle uses. If you can rule out any network slowdowns,
that leaves you with memory (Oracle’s memory and the system’s memory), the I/O system, and CPUs.
One of these resources is usually the bottleneck that’s slowing down your system.

In the next few sections, you’ll learn how to tune key system resources such as memory, I/O, and
CPU to improve performance. You’ll also see how to measure performance, detect inefficient waits
in the system, and resolve various types of contention in an Oracle database. The next section pres-
ents a discussion of how tuning Oracle’s memory can help improve database performance.

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1131

PATCHES AND NEW VERSIONS OF SOFTWARE

Oracle Corp., like the other software vendors, releases periodic patches or patch sets, which are a set of fixes for
bugs discovered by either Oracle or its customers. When you get in touch with Oracle technical support, one of the
things the technical support representative will commonly ask you to do is make sure you have applied the latest
patch set to your Oracle software. Similarly, UNIX operating systems may have their own patch sets that you may
have to apply to fix certain bugs.

Each of Oracle’s patch sets could cover fixes for literally hundreds of bugs. My recommendation is to apply a patch
set as soon as it’s available. One of the primary reasons for this is to see whether your bug is unique to your database
or if a general solution has already been found for the problem. When you ask Oracle technical support to resolve a
major problem caused by a bug, Oracle usually provides you with a workaround. Oracle recommends that you upgrade
your database to the latest versions and patch sets because some Oracle bugs may not have any workarounds or
fixes. Oracle will continue to support older versions of its server software throughout their support life cycle, which
is usually about two to three years after the next major release. Many organizations see no urgency to move to newer
versions, as Oracle continues to support the older versions after the release of the new versions.

The question regarding how quickly you should convert to a new version is somewhat tricky to answer. Traditionally,
people have shied away from being early adopters of new Oracle software versions. Oracle, like most other software
companies, has a reputation for buggy initial releases of its major software versions. DBAs and managers in general
prefer to wait a while until a “stable version” comes out. Although the logic behind this approach is understandable,
you must also figure in the cost of not being able to use the many powerful features Oracle introduces in each of its
major releases.

Because nobody likes to jeopardize the performance of a production system, the ideal solution is to maintain a test
server where the new software is tested thoroughly before being moved into production as early as possible. However,
don’t wait forever to move to a new version—by the time some companies move to the new version, an even newer
Oracle version is already out!

Some of your good SQL statements may not be so good after you migrate to a new version, due to the way a hint
might behave in the new version, for example. That’s why it’s extremely important to test the whole system on the
new version before cutting over production systems. A smart strategy is to collect a set of performance statistics that
can serve as a baseline before you make any major changes in the system. These system changes may include the
following:

• Migrating or upgrading a database

• Applying a new database or operating system patch set

• Adding a new application to your database

• Substantially increasing the user population

Automatic Performance Tuning vs. Dynamic
Performance Views
Traditionally, Oracle DBAs relied heavily on the use of dynamic performance views (V$ views) to
gather performance statistics and diagnose instance performance problems. You have access to
all the traditional views in Oracle Database 11g. However, you now also have powerful automatic
performance tuning features that provide a faster and more painless way to approach instance
performance tuning. Most of these tools use the same V$ dynamic performance views that you use
in manual performance tuning. Although I provide several examples of manual performance tuning
in this chapter, I must emphasize the importance of understanding and using the powerful set of

1132 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

automatic performance features that are already a part of your database. Here’s a brief summary of
the automatic performance tuning features:

• The AWR collects all the performance data necessary for tuning as well as diagnosing instance
problems.

• The ADDM automatically diagnoses database performance by analyzing the AWR data.

• The Automatic SQL Tuning Advisor provides SQL tuning recommendations.

• The database automatically runs the statistics collection job, thus keeping all statistics up
to date.

• The Segment Advisor runs automatically during the maintenance interval and makes
recommendations about which segments to shrink and which to reorganize (for example,
due to excessive row chaining).

• The SQL Access Advisor provides recommendations about the ideal indexes and materialized
views to create.

• The Memory Advisor, MTTR Advisor, and Undo Advisor help you tune memory, redo logs,
and undo segments, respectively.

In this chapter, I present the major dynamic performance views that you can use to diagnose
instance performance. Traditionally, Oracle DBAs relied heavily on scripts using these views to monitor
and tune instance performance. However, the best way to diagnose and tune Oracle performance
issues is through the OEM Database Control (or Grid Control). I thus show you a simple approach to
tuning using the OEM Database Control.

■Note The AWR and ADDM are Oracle products that need special licensing through the purchase of the Diagnostic
Pack. If you haven’t purchased this licensing, you aren’t supposed to use these features.

Tuning Oracle Memory
A well-known fact of system performance is that fetching data that’s stored in memory is a lot faster
than retrieving data from disk storage. Given this, Oracle tries to keep as much of the recently accessed
data as possible in its SGA. In addition to data, shared parsed SQL code and necessary data dictionary
information are cached in memory for quick access. You can easily adjust the memory allocation of
Oracle, by simply changing a single initialization parameter—MEMORY_TARGET.

There’s a two-way relationship between memory configuration and the application’s use of that
memory. The correct memory allocation size depends on the nature of your application, the number
of users, and the size of transactions. If there isn’t enough memory, the application will have to
perform time-consuming disk I/Os. However, the application itself might be using memory unnec-
essarily, and throwing more memory at it may not be the right strategy. As a DBA, you must not view
memory and its sizing in isolation. This can lead to some poor choices, as you address the symptoms
instead of the causes for what seems like insufficient memory. The tendency on a DBA’s part is to
allocate as much memory as possible to the shared pool, hoping that doing so will resolve the problem.
However, sometimes this only exacerbates the problem. It’s wise to manage the database with as
little memory as necessary, and no more. The system can always use the free memory to ensure
there’s no swapping or paging. Performance slowdowns caused by paging outweigh the benefits of
a larger SGA under most operating systems.

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1133

Tuning the Shared Pool
In a production database, the shared pool is going to command most of your attention because of its
direct bearing on application performance. The shared pool is a part of the SGA that holds almost all
the necessary elements for execution of the SQL statements and PL/SQL programs. In addition to
caching program code, the shared pool caches the data dictionary information that Oracle needs to
refer to often during the course of program execution.

Proper shared pool configuration leads to dramatic improvements in performance. An improperly
tuned shared pool leads to problems such as the following:

• Increased latch contention with the resulting demand for more CPU resources

• Greater I/O because executable forms of SQL aren’t present in the shared pool

• Higher CPU usage because of unnecessary parsing of SQL code

The general increase in shared pool waits and other waits observed during a severe slowdown
of the production database is the result of SQL code that fails to use bind variables (I explain the
important concept of bind variables in the following section).

As the number of users increases, so does the demand on shared pool memory and latches, which
are internal locks for memory areas. If there are excessive latches, the result might be a higher wait
time and a slower response time. Sometimes the entire database seems to hang.

The shared pool consists of two major areas: the library cache and the data dictionary cache.
You can’t allocate or decrease memory specifically for one of these components. If you increase the
total shared pool memory size, both components will increase in some ratio that Oracle determines.
Similarly, when you decrease the total shared pool memory, both components will decrease in size.
Let’s look at these two important components of the shared pool in detail.

The Library Cache

The library cache holds the parsed and executable versions of SQL and PL/SQL code. As you may
recall from Chapter 19, all SQL statements undergo the following steps during their processing:

• Parsing, which includes syntactic and semantic verification of SQL statements and checking
of object privileges to perform the actions.

• Optimization, where the Oracle optimizer evaluates how to process the statement with the
least cost, after it evaluates several alternatives.

• Execution, where Oracle uses the optimized physical execution plan to perform the action
stated in the SQL statement.

• Fetching, which only applies to SELECT statements where Oracle has to return rows to you.
This step isn’t necessary in any nonquery-type statements.

Parsing is a resource-intensive operation, and if your application needs to execute the same SQL
statement repeatedly, having a parsed version in memory will reduce contention for latches, CPU, I/O,
and memory usage. The first time Oracle parses a statement, it creates a parse tree. The optimization
step is necessary only for the first execution of a SQL statement. Once the statement is optimized, the
best access path is encapsulated in the access plan. Both the parse tree and the access plan are stored
in the library cache before the statement is executed for the first time. Future invocation of the same
statement will need to go through only the last stage, execution, which avoids the overhead of parsing
and optimizing as long as Oracle can find the parse tree and access plan in the library cache. Of course,
if the statement is a SQL query, the last step will be the fetch operation.

1134 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

The library cache, being limited in size, discards old SQL statements when there’s no more room
for new SQL statements. The only way you can use a parsed statement repeatedly for multiple execu-
tions is if a SQL statement is identical to the parsed statement. Two SQL statements are identical if
they use exactly the same code, including case and spaces. The reason for this is that when Oracle
compares a new statement to existing statements in the library cache, it uses simple string compar-
isons. In addition, any bind variables used must be similar in data type and size. Here are a couple of
examples that show you how picky Oracle is when it comes to considering whether two SQL state-
ments are identical.

In the following example, the statements aren’t considered identical because of an extra space
in the second statement:

SELECT * FROM employees;
SELECT * FROM employees;

In the next example, the statements aren’t considered identical because of the different case
used for the table Employees in the second statement. The two versions of employees are termed
literals because they’re literally different from each other.

SELECT * FROM employees;
SELECT * FROM Employees;

Let’s say users in the database issue the following three SQL statements:

SELECT * FROM persons WHERE person_id = 10
SELECT * FROM persons WHERE person_id = 999
SELECT * FROM persons WHERE person_id = 6666

Oracle uses a different execution plan for the preceding three statements, even though they
seem to be identical in every respect, except for the value of person_id. Each of these statements has
to be parsed and executed separately, as if they were entirely different. Because all three are essen-
tially the same, this is inherently inefficient. As you can imagine, if hundreds of thousands of such
statements are issued during the day, you’re wasting database resources and the query performance
will be slow. Bind variables allow you to reuse SQL statements by making them “identical,” and thus
eligible to share the same execution plan.

In our example, you can use a bind variable, which I’ll call :var, to help Oracle view the three
statements as identical, thus requiring a single execution instead of multiple ones. The person_id
values 10, 99, and 6666 are “bound” to the bind variable, :var. Your replacement SQL statement
using a bind variable, then, would be this:

SELECT * FROM persons WHERE person_id = :var

Using bind variables can dramatically increase query performance, and I explain in the section
“Using the CURSOR_SHARING (Literal Replacement) Parameter” how you can “force” Oracle to use
bind variables, even if an application doesn’t use them.

The Dictionary Cache

The dictionary cache, as mentioned earlier, caches data dictionary information. This cache is much
smaller than the library cache, and to increase or decrease it you modify the shared pool accordingly.
If your library cache is satisfactorily configured, chances are that the dictionary cache is going to be
fine too. You can get an idea about the efficiency of the dictionary cache by using the following query:

SQL> SELECT (sum(gets - getmisses - fixed)) / SUM(gets)
 2 "data dictionary hit ratio" from v$rowcache;
data dictionary hit ratio

 .936781093
SQL>

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1135

Usually, it’s a good idea to shoot for a dictionary hit ratio as high as 95 to 99 percent, although
Oracle itself sometimes seems to refer to a figure of 85 percent as being adequate. To increase the
library cache ratio, you simply increase the shared pool size for the instance.

Hard Parsing and Soft Parsing
You may recall from the last chapter that all SQL code goes through the parse, optimize, and execute
phases. When an application issues a statement, Oracle first sees whether a parsed version of the
statement already exists. If it does, the result is a so-called soft parse and is considered a library cache hit.
If, during a parse phase or the execution phase, Oracle isn’t able to find the parsed version or the
executable version of the code in the shared pool, it will perform a hard parse, which means that the
SQL statement has to be reloaded into the shared pool and parsed completely.

During a hard parse, Oracle performs syntactic and semantic checking, checks the object and
system privileges, builds the optimal execution plan, and finally loads it into the library cache. A hard
parse involves a lot more CPU usage and is inefficient compared to a soft parse, which depends on
reusing previously parsed statements. Hard parsing involves building all parse information from
scratch, and therefore it’s more resource intensive. Besides involving a higher CPU usage, hard parsing
involves a large number of latch gets, which may increase the response time of the query. The ideal
situation is where you parse once and execute many times. Otherwise, Oracle has to perform a hard
parse.

■Caution High hard parse rates lead to severe performance problems, so it’s critical that you reduce hard parse
counts in your database.

A soft parse simply involves checking the library cache for an identical statement and reusing it.
The major step of optimizing the SQL statement is completely omitted during a soft parse. There’s
no parsing (as done during a hard parse) during a soft parse, because the new statement is hashed
and its hash value is compared with the hash values of similar statements in the library cache. During
a soft parse, Oracle only checks for the necessary privileges. For example, even if there’s an identical
statement in the library cache, your statement may not be executed if Oracle determines during the
(soft) parsing stage that you don’t have the necessary privileges. Oracle recommends that you treat
a hard parse rate of more than 100 per second as excessive.

Using SQL Trace and TKPROF to Examine Parse Information

In Chapter 19, you learned how to use the SQL Trace and TKPROF utilities to trace SQL statement
execution. One of the most useful pieces of information the SQL Trace utility provides concerns the
hard and soft parsing information for a query. The following simple example demonstrates how you
can derive the parse information for any query:

1. Enable tracing in the session by using the following command:

SQL> ALTER SESSION SET SQL_TRACE=TRUE;
Session altered.
SQL>

To make sure none of your queries were parsed before, flush the shared pool, which removes
all SQL statements from the library cache:

SQL> ALTER SYSTEM FLUSH SHARED_POOL;
System altered.
SQL>

1136 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

2. Use the following query to create a trace in the user dump directory:

SQL> SELECT * FROM comp_orgs WHERE created_date > SYSDATE-5;

The SQL Trace output shows the following in the output file:

PARSING IN CURSOR #1 len=63 dep=0 uid=21 oct=3
lid=21 tim=1326831345 hv=71548308
SELECT * FROM comp_orgs WHERE created_date > SYSDATE-:"SYS_B_0"
END OF STMT
PARSE #1:c=4,e=4,p=0,cr=57,cu=3,mis=1,r=0,dep=0,og=0,tim=1326831345

Note that mis=1 indicates a hard parse because this SQL isn’t present in the library cache.

3. Use a slightly different version of the previous query next. The output is the same, but Oracle
won’t use the previously parsed version, because the statements in steps 2 and 3 aren’t identical.

SQL> SELECT * FROM comp_orgs WHERE created_date > (SYSDATE -5);

Here’s the associated SQL Trace output:

PARSING IN CURSOR #1 len=77 dep=0 uid=21 oct=3 lid=21 tim=1326833972
SELECT /* A Hint */ * FROM comp_orgs WHERE
created_date > SYSDATE-:"SYS_B_0"
END OF STMT
PARSE #1:c=1,e=1,p=0,cr=0,cu=0,mis=1,r=0,dep=0,og=0,tim=1326833972

Again, a hard parse, indicated by mis=1, shows a library cache miss. This isn’t a surprise, as
this statement isn’t identical to the one before, so it has to be parsed from scratch.

4. Use the original query again. Now Oracle performs only a soft parse, because the statements
here and in the first step are the same. Here’s the SQL Trace output:

PARSING IN CURSOR #1 len=63 dep=0 uid=21 oct=3 lid=21 tim=1326834357
SELECT * FROM comp_orgs WHERE created_date > SYSDATE-:"SYS_B_0"
END OF STMT
PARSE #1:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=1326834357

The statement in step 4 is identical in all respects to the statement in step 1, so Oracle reuses the
parsed version. Hence mis=0 indicates there wasn’t a hard parse but merely a soft parse, which is a
lot cheaper in terms of resource usage.

If you now look at the TKPROF output, you’ll see the following section for the SQL statements
in step 2 and step 4 (identical statements):

**
SELECT * FROM comp_orgs WHERE created_date > SYSDATE - 5
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ----------
Parse 2 0.03 0.01 0 1 3 0
Execute 2 0.00 0.00 0 0 0 0
Fetch 4 0.07 0.10 156 166 24 10
total 8 0.10 0.11 156 167 27 10
Misses in library cache during parse: 1
**

As you can see, there was one miss in the library cache when you first executed the statement.
The second time around, there was no hard parse and hence no library cache miss.

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1137

Measuring Library Cache Efficiency

You can use simple ratios to see if your library cache is sized correctly. The V$LIBRARYCACHE data
dictionary view provides you with all the information you need to see whether the library cache is
efficiently sized. Listing 20-1 shows the structure of the V$LIBRARYCACHE view.

Listing 20-1. The V$LIBRARYCACHE View

SQL> DESC V$LIBRARYCACHE
 Name Null? Type
 --- -------- ------------
 NAMESPACE VARCHAR2(15)
 GETS NUMBER
 GETHITS NUMBER
 GETHITRATIO NUMBER
 PINS NUMBER
 PINHITS NUMBER
 PINHITRATIO NUMBER
 RELOADS NUMBER
 INVALIDATIONS NUMBER
 DLM_LOCK_REQUESTS NUMBER
 DLM_PIN_REQUESTS NUMBER
 DLM_PIN_RELEASES NUMBER
 DLM_INVALIDATION_REQUESTS NUMBER
 DLM_INVALIDATIONS NUMBER
SQL>

The following formula provides you with the library cache hit ratio:

SQL> SELECT SUM(pinhits)/sum(pins) Library_cache_hit_ratio
 2 FROM V$LIBRARYCACHE;

LIBRARY_CACHE_HIT_RATIO

 .993928013
SQL>

The formula indicates that the library cache currently has a higher than 99 percent hit ratio,
which is considered good. However, be cautious about relying exclusively on high hit ratios for the
library cache and the buffer caches, such as the one shown here. You may have a hit ratio such as
99.99 percent, but if significant waits are caused by events such as excessive parsing, you’re going to
have a slow database. Always keep an eye on the wait events in your system, and don’t rely blindly
on high hit ratios such as these.

Listing 20-2 shows how to determine the number of reloads and pinhits of various statements
in your library cache.

Listing 20-2. Determining the Efficiency of the Library Cache

SQL> SELECT namespace, pins, pinhits, reloads
 2 FROM V$LIBRARYCACHE
 3 ORDER BY namespace;

1138 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

NAMESPACE PINS PINHITS RELOADS
------------------ ------ ---------- -------
BODY 25 12 0
CLUSTER 248 239 0
INDEX 31 0 0
JAVA DATA 6 4 0
JAVA RESOURCE 2 1 0
JAVA SOURCE 0 0 0
OBJECT 0 0 0
PIPE 0 0 0
SQL AREA 390039 389465 14
TABLE/PROCEDURE 3532 1992 0
TRIGGER 5 3 0
11 rows selected.
SQL>

If the RELOADS column of the V$LIBRARYCACHE view shows large values, it means that many
SQL statements are being reloaded into the library pool after they’ve been aged out. You might want
to increase your shared pool, but this still may not do the trick if the application is large, the number
of executions is large, or the application doesn’t use bind variables. If the SQL statements aren’t
exactly identical and/or if they use constants instead of bind variables, more hard parses will be
performed, and hard parses are inherently expensive in terms of resource usage. You can force the
executable SQL statements to remain in the library cache component of the shared pool by using the
Oracle-provided DBMS_SHARED_POOL package. The package has the KEEP and UNKEEP procedures;
using these you can retain and release objects in the shared pool.

You can use the V$LIBRARY_CACHE_MEMORY view to determine the number of library cache
memory objects currently in use in the shared pool and to determine the number of freeable library
cache memory objects in the shared pool. The V$SHARED_POOL_ADVICE view provides you with
information about the parse time savings you can expect for various sizes of the shared pool.

Optimizing the Library Cache

You can configure some important initialization parameters so the library cache areas are used effi-
ciently. You’ll look at some of these initialization parameters in the following sections.

Using the CURSOR_SHARING (Literal Replacement) Parameter

The key idea behind optimizing the use of the library cache is to reuse previously parsed or executed
code. One of the easiest ways to do this is to use bind variables rather than literal statements in the
SQL code. Bind variables are like placeholders: they allow binding of application data to the SQL
statement. Using bind variables enables Oracle to reuse statements when the only things changing
in the statements are the values of the input variables. Bind variables enable you to reuse the cached,
parsed versions of queries and thus speed up your application. Here’s an example of the use of bind
variables. The following code sets up a bind variable as a number type:

SQL> VARIABLE bindvar NUMBER;
SQL> BEGIN
 2 :bindvar :=7900;
 3 END;
 4 /
PL/SQL procedure successfully completed.
SQL>

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1139

You can now issue the following SQL statement that makes use of the bind variable you just created:

SQL> SELECT ename FROM scott.emp WHERE empid = :bindvar;
ENAME
JAMES

You can execute this statement multiple times with different values for the bind variable. The
statement is parsed only once and executes many times. Unlike when you use a literal value for the
emp_id column (7499, for example), Oracle reuses the execution plan it created the first time, instead
of creating a separate execution plan for each such statement. This cuts hard parsing (and high latch
activity) and the attendant CPU usage drastically, and dramatically reduces the time taken to retrieve
data. For example, all the following statements can use the parsed version of the query that uses the
bind variable:

SELECT ename FROM scott.emp WHERE empid = 7499;
SELECT ename FROM scott.emp WHERE empid = 7788;
SELECT ename FROM scott.emp WHERE empid = 7902;

Unfortunately, in too many applications, literal values rather than bind values are used. You can
alleviate this problem to some extent by setting up the following initialization parameter:

CURSOR_SHARING=FORCE

Or you could use the following parameter:

CURSOR_SHARING=SIMILAR

By default, the CURSOR_SHARING initialization parameter is set to EXACT, meaning that only state-
ments that are identical in all respects will be shared among different executions of the statement.
Either of the alternative values for the CURSOR_SHARING parameter, FORCE or SIMILAR, ensures Oracle
will reuse statements even if they aren’t identical in all respects.

For example, if two statements are identical in all respects and differ only in literal values for
some variables, using CURSOR SHARING=FORCE will enable Oracle to reuse the parsed SQL statements
in its library cache. Oracle replaces the literal values with bind values to make the statements identical.
The CURSOR_SHARING=FORCE option forces the use of bind variables under all circumstances, whereas
the CURSOR SHARING=SIMILAR option does so only when Oracle thinks doing so won’t adversely affect
optimization. Oracle recommends the use of CURSOR_SHARING=SIMILAR rather than
CURSOR_SHARING=FORCE because of possible deterioration in the execution plans. However, in reality,
the benefits provided by the CURSOR_SHARING=FORCE parameter far outweigh any possible damage to
the execution plans. You can improve the performance of your database dramatically when you
notice a high degree of hard parsing due to failing to use bind variables by moving from the default
CURSOR_SHARING=EXACT option to the CURSOR_SHARING=FORCE option. You can change the value of this
parameter in the init.ora file or SPFILE, or you can do so dynamically by using the ALTER SYSTEM
(instance-wide) statement or the ALTER SESSION (session-level) statement.

By allowing users to share statements that differ only in the value of the constants, the CURSOR_
SHARING parameter enables the Oracle database to scale easily to a large number of users who are
using similar, but not identical, SQL statements. This major innovation started in the Oracle8i version.

Sessions with a High Number of Hard Parses

The query in Listing 20-3 enables you to find out how the hard parses compare with the number of
executions since the instance was started. It also tells you the session ID for the user using the SQL
statements.

1140 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

Listing 20-3. Determining Sessions with a High Number of Parses

SQL> SELECT s.sid, s.value "Hard Parses",
 2 t.value "Executions Count"
 3 FROM v$sesstat s, v$sesstat t
 4 WHERE s.sid=t.sid
 5 AND s.statistic#=(select statistic#
 6 FROM v$statname where name='parse count (hard)')
 7 AND t.statistic#=(select statistic#
 8 FROM v$statname where name='execute count')
 9 AND s.value>0
 10* ORDER BY 2 desc;

 SID Hard Parses Executions Count
---------- ----------- ----------------
 1696 70750 3638104
 1750 12188 262881
 1759 3555 5895488
 1757 3265 2758185
 1694 1579 2389953
. . .
SQL>

Using the CURSOR_SPACE_FOR_TIME Parameter

By default, cursors can be deallocated even when the application cursors aren’t closed. This forces
an increase in Oracle’s overhead because of the need to check whether the cursor is flushed from the
library cache. The parameter that controls whether this deallocation of cursors takes place is the
CURSOR_SPACE_FOR_TIME initialization parameter, whose default value is FALSE. If you set this param-
eter to TRUE, you ensure that the cursors for the application cannot be deallocated while the application
cursors are still open. The initialization parameter in the init.ora file should be as follows:

CURSOR_SPACE_FOR_TIME=TRUE

■Tip If you want to set this parameter, make sure that you have plenty of free shared pool memory available,
because this parameter will use more shared pool memory for saving the cursors in the library cache.

Using the SESSION_CACHED_CURSORS Parameter

Ideally, an application should have all the parsed statements available in separate cursors, so that if
it has to execute a new statement, all it has to do is pick the parsed statement and change the value
of the variables. If the application reuses a single cursor with different SQL statements, it still has to
pay the cost of a soft parse. After opening a cursor for the first time, Oracle will parse the statement,
and then it can reuse this parsed version in the future. This is a much better strategy than re-creating
the cursor each time the database executes the same SQL statement. If you can cache all the cursors,
you’ll retain the server-side context, even when clients close the cursors or reuse them for new SQL
statements.

You’ll appreciate the usefulness of the SESSION_CACHED_CURSORS parameter in a situation where
users repeatedly parse the same statements, as happens in an Oracle Forms-based application when
users switch among various forms. Using the SESSION_CACHED_CURSORS parameter ensures that for

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1141

any cursor for which more than three parse requests are made, the parse requests are automatically
cached in the session cursor cache. Thus new calls to parse the same statement avoid the parsing
overhead. Using the initialization parameter SESSION_CACHED_CURSORS and setting it to a high number
makes the query processing more efficient. Although soft parses are cheaper than hard parses, you
can reduce even soft parsing by using the SESSION_CACHED_CURSORS parameter and setting it to a
high number.

You can enforce session caching of cursors by setting the SESSION_CACHED_CURSORS in your
initialization parameter file, or dynamically by using the following ALTER SESSION command:

SQL> ALTER SESSION SET SESSION_CACHED_CURSORS = value;

You can check how good your SESSION_CACHED_CURSORS parameter value is by using the V$SYSSTAT
view. If the value of session cursor cache hits is low compared to the total parse count for a session,
then the SESSION_CACHED_CURSORS parameter value should be bumped up.

The perfect situation is where a SQL statement is soft parsed once in a session and executed
multiple times. For a good explanation of bind variables, cursor sharing, and related issues, please
read the Oracle white paper “Efficient use of bind variables, cursor_sharing and related cursor
parameters” (http://otn.oracle.com/deploy/performance/pdf/cursor.pdf).

Parsing and Scaling Applications

When the number of users keeps increasing, some systems have trouble coping. Performance slows
down dramatically in many systems as a result of trying to scale to increased user populations. When
your user counts are increasing, focus on unnecessary parsing in your system. A high level of parsing
leads to latch contention, which slows down the system. Here are some guidelines that help summarize
the previous discussion about the library cache, parsing, and the use of special initialization parameters:

• A standard rule is to put as much of the code as possible in the form of stored code—packages,
procedures, and functions—so you don’t have the problems caused by ad hoc SQL. Use of ad
hoc SQL could wreak havoc with your library cache, and it’s an inefficient way to run a large
application with many users. Using stored code guarantees that code is identical and thus
reused, thereby enhancing scalability.

• Lower the number of hard parses, as they could be expensive. One way to convert a hard parse
to a soft parse is to use bind variables, as you saw earlier in this chapter. Reducing hard parsing
reduces shared-pool latch contention.

• If bind variables aren’t being used in your system, you can use the CURSOR_SHARING=FORCE
parameter to force the sharing of SQL statements that differ only in the value of literals.

• Pay attention to the amount of soft parsing, not the per unit cost, which is much lower than
that of a hard parse. A high amount of soft parsing increases contention for the library cache
latch and could lead to a slow-performing database. The point to note here is to avoid any
unnecessary soft parsing, which will end up costing you.

• Use the SESSION_CACHED_CURSORS initialization parameter to reuse the open cursors in a session.
If repeated parse calls are used for a SQL statement, Oracle moves the session cursor for that
statement into the session cursor cache. This, as you’ve seen, reduces the amount of soft
parsing. Set the value of this parameter to somewhere between the value of the OPEN_CURSORS
initialization parameter and the number of cursors that are being used in the session.

• Use the CURSOR_SPACE_FOR_TIME initialization parameter (set it to TRUE) to prevent the early
deallocation of cursors. If you don’t mind the extra cost of using more memory, this feature
will enhance your application’s scalability level.

1142 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

• Reduce the amount of session logging on/off activity by users. This may reduce scalability
due to the increased amount of overhead involved in authenticating the user, verifying privileges,
and so on, leading to a waste of time and resources. Furthermore, the users may be spending
more time trying to log into the system than executing their SQL statements. Frequent logging off
and logging back on might also cause contention for the web server and other resources, and
increase the time it takes to log into your system.

• To increase scalability, you must also ensure that applications share sessions. If you only have
shared SQL, your hard parses will go down, but your soft parses might still be high. If an appli-
cation program can maintain a persistent connection to the Oracle server, it doesn’t have to
perform repeated soft parsing to reuse code.

Sizing the Shared Pool

The best way to set the size of the shared pool in Oracle Database 11g is to let Oracle do all the work
for you by using the MEMORY_TARGET initialization parameter, thus automating the management of
SGA. You can initially set the SGA_TARGET parameter at something close to the total SGA you would
have allocated under a manual management mode. Review the material in Chapter 17 for guidance
on setting your initial MEMORY_TARGET value.

Pinning Objects in the Shared Pool

As I have discussed, if code objects have to be repeatedly hard-parsed and executed, database
performance will deteriorate eventually. Your goal should be to see that as much of the executed
code remains in memory as possible so compiled code can be reexecuted. You can avoid repeated
reloading of objects in your library cache by pinning objects using the DBMS_SHARED_POOL package.
(The library cache is a component of the shared pool, as you’ve seen earlier.) Listing 20-4 shows how
you can determine the objects that should be pinned in your library cache (shared pool).

Listing 20-4. Determining the Objects to Be Pinned in the Shared Pool

SQL> SELECT type, COUNT(*) OBJECTS,
 2 SUM(DECODE(KEPT,'YES',1,0)) KEPT,
 3 SUM(loads) - count(*) reloads
 4 FROM V$DB_OBJECT_CACHE
 5 GROUP BY type
 6* ORDER BY objects DESC;

TYPE OBJECTS KEPT RELOADS
---------------------------- ---------- ---------- ----------
CURSOR 41143 0 136621
NOT LOADED 37522 0 54213
TABLE 758 24 133742
PUB_SUB 404 0 135
SYNONYM 381 0 7704
JAVA CLASS 297 296 317
VIEW 181 0 11586
INVALID TYPE 139 48 11
PACKAGE 137 0 8352
TRIGGER 136 0 8515
PACKAGE BODY 121 0 218
SEQUENCE 81 0 3015
INDEX 61 7 0
PROCEDURE 41 0 219

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1143

FUNCTION 35 0 825
NON-EXISTENT 31 0 1915
TYPE 13 0 1416
CLUSTER 10 6 6
TYPE BODY 3 0 5
LIBRARY 2 0 99
RSRC CONSUMER GROUP 2 0 0
QUEUE 2 0 96
JAVA SHARED DATA 1 1 0
JAVA SOURCE 1 0 0
24 rows selected.
SQL>

If the number of reloads in the output shown in Listing 20-4 is high, you need to make sure that
the objects are pinned using the following command:

SQL> EXECUTE SYS.DBMS_SHARED_POOL.KEEP(object_name,object_type);

You can use the following statements to pin a package first in the shared pool and then remove
it, if necessary:

SQL> EXECUTE SYS.DBMS_SHARED_POOL.KEEP(NEW_EMP.PKG, PACKAGE);
SQL> EXECUTE SYS.DBMS_SHARED_POOL.UNKEEP(NEW_EMP.PKG,PACKAGE);

Of course, if you shut down and restart your database, the shared pool won’t retain the pinned
objects. That’s why most DBAs use scripts with all the objects they want to pin in the shared pool and
schedule them to run right after every database start. Most of the objects usually are small, so there’s
no reason to be too conservative about how many you pin. For example, I pin all my packages, including
Oracle-supplied PL/SQL packages.

Look at the following example, which gives you an idea about the total memory taken up by a
large number of packages. This query shows the total number of packages in my database:

SQL> SELECTCOUNT(*)
 2 FROM V$DB_OBJECT_CACHE
 3* WHERE type='PACKAGE';

 COUNT(*)

 167
SQL>

The following query shows the total amount of memory needed to pin all my packages in the
shared pool:

SQL> SELECT SUM(sharable_mem)
 2 FROM V$DB_OBJECT_CACHE
 3* WHERE type='PACKAGE';

 SUM(SHARABLE_MEM)

 4771127
SQL>

As you can see, pinning every single package in my database takes up less than 5MB of a total of
several hundred megabytes of memory allocated to the shared pool.

1144 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

Tuning the Buffer Cache
When users request data, Oracle reads the data from the disks (in terms of Oracle blocks) and stores
it in the buffer cache so it may access the data easily if necessary. As the need for the data diminishes,
eventually Oracle removes the data from the buffer cache to make room for newer data. Note that
some operations don’t use the buffer cache (SGA); rather, they read directly into the PGA area. Direct
sort operations and parallel reads are examples of such operations.

How to Size the Buffer Cache

As with the shared pool component, the best way to manage the buffer cache is to choose automatic
SGA management. However, if you choose to manage the SGA manually, you can use a process of
trial and error to set the buffer cache size. You assign an initial amount of memory to the pool and
watch the buffer cache hit ratios to see how often the application can retrieve the data from memory,
as opposed to going to disk. The terminology used for calculating the buffer hit ratio can be some-
what confusing on occasion. Here are the key terms you need to understand:

• Physical reads: These are the data blocks that Oracle reads from disk. Reading data from disk
is much more expensive than reading data that’s already in Oracle’s memory. When you issue
a query, Oracle always first tries to retrieve the data from memory—the database buffer cache—
and not disk.

• DB block gets: This is a read of the buffer cache, to retrieve a block in current mode. This most
often happens during data modification when Oracle has to be sure that it’s updating the
most recent version of the block. So, when Oracle finds the required data in the database
buffer cache, it checks whether the data in the blocks is up to date. If a user changes the data
in the buffer cache but hasn’t committed those changes yet, new requests for the same data
can’t show these interim changes. If the data in the buffer blocks is up to date, each such data
block retrieved is counted as a DB block get.

• Consistent gets: This is a read of the buffer cache, to retrieve a block in consistent mode. This
may include a read of undo segments to maintain the read consistency principle (see Chapter 8
for more information about read consistency). If Oracle finds that another session has updated
the data in that block since the read began, then it will apply the new information from the
undo segments.

• Logical reads: Every time Oracle is able to satisfy a request for data by reading it from the data-
base buffer cache, you get a logical read. Thus logical reads include both DB block gets and
consistent gets.

• Buffer gets: This term refers to the number of database cache buffers retrieved. This value is
the same as the logical reads described earlier.

The following formula gives you the buffer cache hit ratio:

1 - ('physical reads cache') /
 ('consistent gets from cache' + 'db block gets from cache')

You can use the following query to get the current values for all three necessary buffer cache
statistics:

SQL> SELECT name, value FROM v$sysstat
 WHERE where name IN ('physical reads cache',
 'consistent gets from cache',
 'db block gets from cache');

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1145

NAME VALUE
--------------------------- -----------
db block gets from cache 103264732
consistent gets from cache 5924585423
physical reads cache 50572618
3 rows selected.
SQL>

The following calculation, based on the statistics I derived in the preceding code from the
V$SYSSTAT view, show that the buffer cache hit ratio for my database is a little over 91 percent:

1 - (505726180)/(103264732 + 5924585494) = .916101734

As you can see from the formula for the buffer cache hit ratio, the lower the ratio of physical
reads to the total logical reads, the higher the buffer cache hit ratio.

You can use the V$BUFFER_POOL_STATISTICS view, which lists all buffer pools for the instance,
to derive the hit ratio for the buffer cache:

SQL> SELECT NAME, PHYSICAL_READS, DB_BLOCK_GETS, CONSISTENT_GETS,
 1 - (PHYSICAL_READS/(DB_BLOCK_GETS + CONSISTENT_GETS)) "HitRatio"
 FROM V$BUFFER_POOL_STATISTICS;

NAME PHYSICAL_READS DB_BLOCK_GETS CONSISTENT_GETS HitRatio
------- --------------- -------------- ----------------- ----------
DEFAULT 50587859 103275634 5924671178 .991607779

SQL>

In addition, you can use the Database Control’s Memory Advisor to get advice regarding the
optimal buffer cache size. The advice is presented in a graphical format, showing the trade-off
between increasing the SGA and the reduction in DB time. You can use the V$DB_CACHE_ADVICE
view (use V$SGA_TARGET_ADVICE to size the SGA_TARGET size) to see how much you need to
increase the buffer cache to lower the physical I/O by a certain amount. Essentially, the output of the
V$DB_CACHE_ADVICE view shows you how much you can increase your buffer cache memory
before the gains in terms of a reduction in the amount of physical reads (estimated) are insignificant.
The Memory Advisor simulates the miss rates in the buffer cache for caches of different sizes. In this
sense, the Memory Advisor can keep you from throwing excess memory in a vain attempt at lowering
the amount of physical reads in your system.

Oracle blocks used during a full table scan involving a large table are aged out of the buffer cache
faster than Oracle blocks from small-table full scans or indexed access. Oracle may decide to keep
only part of the large table in the buffer cache to avoid having to flush out its entire buffer cache.
Thus, your buffer cache hit ratio would be artificially low if you were using several large-table full
scans. If your application involves many full table scans for some reason, increasing the buffer cache
size isn’t going to improve performance. Some DBAs are obsessed about achieving a high cache hit
ratio, such as 99 percent or so. A high buffer cache hit ratio is no guarantee that your application
response time and throughput will also be high. If you have a large number of full table scans or if
your database is more of a data warehouse than an OLTP system, your buffer cache may be well
below 100 percent, and that’s not a bad thing. If your database consists of inefficient SQL, there will
be an inordinately high number of logical reads, making the buffer cache hit ratio look good (say
99.99 percent), but this may not mean your database is performing efficiently. Please read the interesting
article by Cary Millsap titled “Why a 99%+ Database Buffer Cache Hit Ratio Is Not Ok” (http://
www.hotsos.com/e-library/abstract.php?id=6).

1146 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

Using Multiple Pools for the Buffer Cache

You don’t have to allocate all the buffer cache memory to a single pool. As Chapter 10 showed you,
you can use three separate pools: the keep buffer pool, the recycle buffer pool, and the default buffer
pool. Although you don’t have to use the keep and default buffer pools, it’s a good idea to configure
all three pools so you can assign objects to them based on their access patterns. In general, you follow
these rules of thumb when you use the multiple buffer pools:

• Use the recycle cache for large objects that are infrequently accessed. You don’t want these
objects to occupy a large amount of space unnecessarily in the default pool.

• Use the keep cache for small objects that you want in memory at all times.

• Oracle automatically uses the default pool for all objects not assigned to either the recycle or
keep cache.

Since version 8.1, Oracle has used a concept called touch count to measure how many times an
object is accessed in the buffer cache. This algorithm of using touch counts for managing the buffer
cache is somewhat different from the traditional modified LRU algorithm that Oracle used to employ
for managing the cache. Each time a buffer is accessed, the touch count is incremented. A low touch
count means that the block isn’t being reused frequently, and therefore is wasting database buffer
cache space. If you have large objects that have a low touch count but occupy a significant proportion of
the buffer cache, you can consider them ideal candidates for the recycle pool. Listing 20-5 contains
a query that shows you how to find out which objects have a low touch count. The TCH column in
the x$bh table owned by the user SYS indicates the touch count.

Listing 20-5. Determining Candidates for the Recycle Buffer Pool

SQL> SELECT
 2 obj object,
 3 count(1) buffers,
 4 (count(1)/totsize) * 100 percent_cache
 5 FROMx$bh,
 6 (select value totsize
 7 FROM v$parameter
 8 WHERE name ='db_block_buffers')
 9 WHERE tch=1
 10 OR (tch = 0 and lru_flag <10)
 11 GROUP BY obj, totsize
 12* HAVING (count(1)/totsize) * 100 > 5

 OBJECT BUFFERS PERCENT_CACHE
 ---------- ------- -------------
 1386 14288 5.95333333
 1412 12616 5.25666667
 613114 22459 9.35791667
SQL>

The preceding query shows you that three objects, each with a low touch count, are taking up
about 20 percent of the total buffer cache. Obviously, they’re good candidates for the recycle buffer
pool. In effect, you’re limiting the number of buffers the infrequently used blocks from these three
tables can use up in the buffer cache.

The following query on the DBA_OBJECTS view gives you the names of the objects:

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1147

SQL> SELECT object_name FROM DBA_OBJECTS
 2 WHERE object_id IN (1386,1412,613114);

OBJECT_NAME

EMPLOYEES
EMPLOYEE_HISTORY
FINANCE_RECS
SQL>

You can then assign these three objects to the reserved buffer cache pool. You can use a similar
criterion to decide which objects should be part of your keep buffer pool. Say you want to pin all
objects in the keep pool that occupy at least 25 buffers and have an average touch count of more than
5. Listing 20-6 shows the query that you should run as the user SYS.

Listing 20-6. Determining Candidates for the Keep Buffer Cache

 SQL> SELECT obj object,
 2 count(1) buffers,
 3 AVG(tch) average_touch_count
 4 FROM x$bh
 5 WHERE lru_flag = 8
 6 GROUP BY obj
 7 HAVING avg(tch) > 5
 8* AND count(1) > 25;

 OBJECT BUFFERS AVERAGE_TOUCH_COUNT
---------- ---------- --------------------
 1349785 36 67
4294967295 87 57.137931
SQL>

Again, querying the DBA_OBJECTS view provides you with the names of the objects that are
candidates for the keep buffer cache pool.

Here’s a simple example to show how you can assign objects to specific buffer caches (keep and
recycle). First, make sure you configure the keep and recycle pools in your database by using the
following set of initialization parameters:

DB_CACHE_SIZE=256MB
DB_KEEP_CACHE_SIZE=16MB
DB_RECYCLE_CACHE_SIZE=16MB

In this example, the keep and recycle caches are 16MB each. Once you create the keep and
recycle pools, it’s easy to assign objects to these pools. All tables are originally in the default buffer
cache, where all tables are cached automatically unless specified otherwise in the object creation
statement.

You can use the ALTER TABLE statement to assign any table or index to a particular type of buffer
cache. For example, you can assign the following two tables to the keep and recycle buffer caches:

SQL> ALTER TABLE test1 STORAGE (buffer_pool keep);
Table altered.

SQL> ALTER TABLE test2 STORAGE (buffer_pool recycle);
Table altered.
SQL>

1148 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

■Note For details about Oracle’s touch-count buffer management, please download Craig A. Shallahamer’s inter-
esting paper “All About Oracle’s Touch-Count Data Block Buffer Algorithm” using this URL: http://
resources.orapub.com/product_p/tc.htm.

Tuning the Large Pool, Streams Pool, and Java Pool
You mainly use the large pool, an optional component of the SGA, in shared server systems for
session memory, for facilitating parallel execution for message buffers, and for backup processes for
disk I/O buffers. Oracle recommends the use of the large pool if you’re using shared server processes
so you can keep the shared pool fragmentation low. If you’re using shared server configurations, you
should configure the large pool. The streams pool is relevant only if you’re using the Oracle Streams
feature. You don’t have to bother with tuning the Java pool allocation unless you’re using heavy Java
applications.

■Note You size the large pool based on the number of active simultaneous sessions in a shared server environ-
ment. Remember that if you’re using the shared server configuration and you don’t specify a large pool, Oracle will
allocate memory to the shared sessions out of your shared pool.

Tuning PGA Memory
Each server process serving a client is allocated a private memory area, the PGA, most of which is
dedicated to memory-intensive tasks such as group by, order by, rollup, and hash joins. The PGA
area is a nonshared area of memory created by Oracle when a server process is started, and it’s auto-
matically deallocated upon the end of that session. Operations such as in-memory sorting and
building hash tables need specialized work areas. The memory you allocate to the PGA determines
the size of these work areas for specialized tasks, such as sorting, and determines how fast the system
can finish them. In the following sections you’ll examine how you can decide on the optimal amount
of PGA for your system.

Automatic PGA Memory Management

The management of the PGA memory allocation is easy from a DBA’s point of view. You can set a
couple of basic parameters and let Oracle automatically manage the allocation of memory to the
individual work areas. You need to do a couple things before Oracle can automatically manage the
PGA. You need to use the PGA_AGGREGATE_TARGET parameter to set the memory limit, and you need
to use the V$PGA_TARGET_ADVICE view to tune the target’s value. In the next sections I discuss
those tasks.

Using the PGA_AGGREGATE_TARGET Parameter

The PGA_AGGREGATE_TARGET parameter in the init.ora file sets the maximum limit on the total memory
allocated to the PGA. Oracle offers the following guidelines on sizing the PGA_AGGREGATE_TARGET
parameter:

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1149

• For an OLTP database, the target should be 16 to 20 percent of the total memory allocated
to Oracle.

• For a DSS database, the target should be 40 to 70 percent of the total memory allocated
to Oracle.

The preceding guidelines are just that—guidelines. The best way to determine the ideal size of
the PGA_AGGREGATE_TARGET parameter is to use the V$PGA_TARGET_ADVICE or V$PGASTAT view,
which I explain in the following sections.

Using the V$PGA_TARGET_ADVICE View

Once you’ve set the initial allocation for the PGA memory area, you can use the V$PGA_TARGET_
ADVICE view to tune the target’s value. Oracle populates this view with the results of its simulations
of different workloads for various PGA target levels. You can then query the view as follows:

SQL> SELECT ROUND(pga_target_for_estimate/1024/1024) target_mb,
 2 estd_pga_cache_hit_percentage cache_hit_perc,
 3 estd overalloc_count
 4* FROM V$PGA_TARGET_ADVICE;

Using the estimates from the V$PGA_TARGET_ADVICE view, you can then set the optimal level
for PGA memory.

Setting the Value of the PGA_AGGREGATE_TARGET Parameter

Remember that the memory you provide through setting the PGA_AGGREGATE_TARGET parameter is
what determines the efficiency of sorting and hashing operations in your database. If you have a
large number of users who perform heavy-duty sort or hash operations, your PGA_AGGREGATE_TARGET
must be set at a high level. When you set the SGA_TARGET at, say 2GB, the instance takes the 2GB from
the total OS memory as soon as you start it. However, the PGA_AGGREGATE_TARGET is merely a target.
Oracle doesn’t take all the memory you assign to the PGA_AGGREGATE_TARGET when the instance starts.
The PGA_AGGREGATE_TARGET only serves as the upper bound on the total private or work-area memory
the instance can allocate to all the sessions combined.

The ideal way to perform sorts is by doing the entire job in memory. A sort job that Oracle
performs entirely in memory is said to be an optimal sort. If you set the PGA_AGGREGATE_TARGET too
low, some of the sort data is written out directly to disk (temporary tablespace) because the sorts are
too large to fit in memory. If only part of a sort job spills over to disk, it’s called a one-pass sort. If the
instance performs most of the sort on disk instead of in memory, the response time will be high.
Luckily, as long as you have enough memory available, you can monitor and avoid problems due to
the undersizing of the PGA memory (PGA_TARGET).

You can examine the PGA usage within your database by using the following query. The value
column shows, in bytes, the amount of memory currently allocated to the various users:

SQL> SELECT
 2 s.value,s.sid,a.username
 3 FROM
 4 V$SESSTAT S, V$STATNAME N, V$SESSION A
 5 WHERE
 6 n.STATISTIC# = s.STATISTIC# and
 7 name = 'session pga memory'
 8 AND s.sid=a.sid
 9* ORDER BY s.value;

1150 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

 VALUE SID USERNAME
---------- ------- ---------
 5561632 1129 BSCOTT
 5578688 1748 VALAPATI
 5627168 878 DHULSE
 5775296 815 MFRIBERG
 5954848 1145 KWHITAKE
 5971904 1182 TMEDCOFF . . .
SQL>

An important indicator of the efficiency of the PGA_TARGET parameter is the PGA “hit ratio,”
shown in the last row of the following query, which uses the V$PGASTAT view:

SQL> SELECT * FROM V$PGASTAT;

NAME VALUE UNIT
------------------------------------- --------- ------
aggregate PGA target parameter 49999872 bytes
aggregate PGA auto target 4194304 bytes
global memory bound 2499584 bytes
total PGA inuse 67717120 bytes
total PGA allocated 161992704 bytes
maximum PGA allocated 244343808 bytes
total freeable PGA memory 16121856 bytes
PGA memory freed back to OS 6269370368 bytes
total PGA used for auto workareas 0 bytes
maximum PGA used for auto 6843392 bytes
total PGA used for manual workareas 0 bytes
maximum PGA used for manual workareas 530432 bytes
over allocation count 1146281 bytes
processed 4.4043E+10 bytes
extra bytes read/written 7744561152 bytes
cache hit percentage 85.04 percent

16 rows selected.
SQL>

In this example, the cache hit percentage (PGA) is more than 85 percent, which is good enough
for an OLTP or data warehouse application. In fact, if you have a large data-warehousing type of
database, you may even have to be content with a much smaller PGA cache hit ratio.

Another way to look at PGA efficiency is by using the following query, which involves the
V$SQL_WORKAREA_HISTOGRAM view. The view contains information about the number of work
areas executed with optimal, one-pass, and multipass memory size. The work areas are divided into
groups, whose optimal requirement varies from 0KB to 1KB, 1KB to 2KB, 2KB to 4KB—and so on.
Listing 20-7 shows the results of a query using the V$SQL_WORKAREA_HISTOGRAM view.

Listing 20-7. Using the V$SQL_WORKAREA_HISTOGRAM View

SQL> SELECT
 2 low_optimal_size/1024 "Low (K)",
 3 (high_optimal_size + 1)/1024 "High (K)",
 4 optimal_executions "Optimal",
 5 onepass_executions "1-Pass",
 6 multipasses_executions ">1 Pass"
 7 FROM v$sql_workarea_histogram
 8* WHERE total_executions <> 0;

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1151

 Low (K) High (K) Optimal 1-Pass >1 Pass
---------- ---------- ---------- ---------- -----------
 2 4 7820241 0 0
 32 64 0 2 0
 64 128 9011 1 0
 128 256 4064 14 0
 256 512 3782 13 0
 512 1024 18479 58 4
 1024 2048 3818 53 0
 2048 4096 79 241 67
 4096 8192 1 457 26
 8192 16384 0 11 44
 16384 32768 3 1 2
 32768 65536 0 2 0
 65536 131072 0 0 1
 131072 262144 0 0 1

14 rows selected.
SQL>
SQL>

An overwhelming number of the sorts in this instance were done optimally, with only a few sorts
using the one-pass approach. This why you have the 85 percent PGA hit ratio in the previous example.
Here’s an instance that’s in trouble, as shown by the significant number of sorts in the one-pass and
the multipass (> 1 Pass) group. Right now, most of your customers will be complaining that the data-
base is slow.

Note that the query is the same as in the previous example. Here’s the output:

 Low (K) High (K) Optimal 1-Pass >1 Pass
---------- ---------- ---------- ---------- ----------
 2 4 2 3 0
 4 8 2 7 5
 8 16 129866 3 19
 16 32 1288 21 3
 64 128 2 180 61
 128 256 6 2 44
 256 512 44 0 16
 512 1024 1063 0 35
 1024 2048 31069 11 12
 2048 4096 0 0 18
 8192 16384 986 22 0
16384 32768 0 0 2

As you can see, there are significant multiple pass sorts in this example, and you can bet that the
cache hit ratio is going to be low, somewhere in the 70 percent range. Fortunately, all you have to do
to speed up the instance is to increase the value of the PGA_AGGREGATE_TARGET parameter in the
following manner:

SQL> ALTER SYSTEM SET pga_aggregate_target=500000000;
System altered.
SQL>

The new V$PROCESS_MEMORY view lets you view dynamic PGA memory usage for each Oracle
process, and shows the PGA usage by each process for categories such as Java, PL/SQL, OLAP, and
SQL. Here’s a simple query on that view:

1152 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

SQL> SELECT pid, category, allocated, used from v$process_memory;

PID CATEGORY ALLOCATED USED
---- --------- ---------- -----
22 PL/SQL 2068 136
22 Other 360367
27 SQL 23908 15120
. . .
SQL>

You can also use the V$PROCESS view to monitor PGA usage by individual processes. If you’re
running out of memory on your server, it’s a good idea to see whether you can release some PGA
memory for other uses. Here’s a query that shows you the allocated, used, and freeable PGA memory
for each process currently connected to the instance:

SQL> SELECT program, pga_used_mem, pga_alloc_mem,
 pga_freeable_mem,pga_max_mem V$PROCESS;

You can use the following SQL statement to estimate quickly the proportion of work areas since
you started the Oracle instance, using optimal, one-pass, and multipass PGA memory sizes:

SQL> SELECT name PROFILE, cnt COUNT,
 DECODE(total, 0, 0, ROUND(cnt*100/total)) PERCENTAGE
 FROM (SELECT name, value cnt, (sum(value) over ()) total
 FROM V$SYSSTAT
 WHERE name like 'workarea exec%');

PROFILE COUNT PERCENTAGE
------------------------------- --------- ----------
workarea executions - optimal 7859595 100
workarea executions - onepass 853 0
workarea executions - multipass 145 0

SQL>

In the preceding example, the PGA cache hit percentage for optimal executions is 100 percent,
which, of course, is excellent. Oracle DBAs have traditionally paid a whole lot more attention to
tuning the SGA memory component because the PGA memory tuning in its present format is rela-
tively new. DBAs in charge of applications requiring heavy-duty hashing and sorting requirements
are well advised to pay close attention to the performance of the PGA. It’s easy to tune the PGA, and
the results of a well-tuned PGA show up in dramatic improvements in performance.

Evaluating System Performance
The instance-tuning efforts that you undertake from within Oracle will have only a limited impact
(they may even have a negative impact) if you don’t pay attention to the system performance as a
whole. System performance includes the CPU performance, memory usage, and disk I/O. In the
following sections you’ll look at each of these important resources in more detail.

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1153

CPU Performance
You can use operating system utilities such as System Activity Reporter (sar) or vmstat to find out
how the CPU is performing. Don’t panic if your processors seem busy during peak periods—that’s
what they’re there for, so you can use them when necessary. If the processors are showing a heavy
load during low usage times, you do need to investigate further. Listing 20-8 shows a sar command
output indicating how hard your system is using the CPU resources right now.

Listing 20-8. sar Command Output Showing CPU Usage

$ sar -u 10 5
HP-UX finance1 B.11.00 A 9000/800 07/03/05
13:39:17 %usr %sys %wio %idle
13:39:27 34 23 7 36
13:39:37 37 17 8 38
13:39:47 34 18 6 41
13:39:57 31 16 9 44
13:40:07 38 19 11 32
Average 35 19 8 38

In the preceding listing, the four columns report on the following CPU usage patterns:

• %usr shows the proportion of total CPU time taken up by the various users of the system.

• %sys shows the proportion of time the system itself was using the CPU.

• %wio indicates the percentage of time the system was waiting for I/O.

• %idle is the proportion of time the CPU was idle.

If the %wio or %idle percentages are near zero during nonpeak times, it indicates a CPU-bound
system.

Remember that an intensive CPU usage level may mean that an operating-system process is
hogging CPU, or an Oracle process may be doing the damage. If it is Oracle, a background process
such as PMON may be the culprit, or an Oracle user process may be running some extraordinarily
bad ad hoc SQL query on the production box. You may sometimes track down such a user and inform
the person that you’re killing the process in the interest of the welfare of the entire system. Imagine
your surprise when you find that the user’s Oracle process is hale and hearty, while merrily continuing
to devastate your system in the middle of a busy day. This could happen because a child process or
a bequeath process continued to run even after you killed this user. It pays to double-check that the
user is gone—lock, stock, and barrel—instead of assuming that the job has been done.

That said, let’s look at some of the common events that could cause CPU-related slowdowns on
your system.

The Run Queue Length

One of the main indicators of a heavily loaded CPU system is the length of the run queue. A longer
run queue means that more processes are lined up, waiting for CPU processing time. Occasional
blips in the run-queue length aren’t bad, but prolonged high run-queue lengths indicate that the
system is CPU bound.

1154 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

CPU Units Used by Processes

You can determine the number of CPU units a UNIX process is using by using the simple process
(ps) command, as shown here:

$ ps -ef | grep f60
 UID PID PPID C STIME TTY TIME CMD
 oracle 20108 4768 0 09:11:49 ? 0:28 f60webm
 oracle 883 4768 5 17:12:21 ? 0:06 f60webm
 oracle 7090 4768 16 09:18:46 ? 1:08 f60webm
 oracle 15292 4768 101 15:49:21 ? 1:53 f60webm
 oracle 18654 4768 0 14:44:23 ? 1:18 f60webm
 oracle 24316 4768 0 15:53:33 ? 0:52 f60webm
$

The key column to watch is the fourth one from the left, which indicates the CPU units of
processing that each process is using. If each CPU on a server has 100 units, the Oracle process with
PID 15292 (the fourth in the preceding list) is occupying more than an entire CPU’s processing power. If
you have only two processors altogether, you should worry about this process and why it’s so CPU
intensive.

Finding High CPU Users

If the CPU usage levels are high, you need to find out which of your users are among the top CPU
consumers. Listing 20-9 shows how you can easily identify those users.

Listing 20-9. Identifying High CPU Users

SQL> SELECT n.username,
 2 s.sid,
 3 s.value
 4 FROM v$sesstat s,v$statname t, v$session n
 5 WHERE s.statistic# = t.statistic#
 6 AND n.sid = s.sid
 7 AND t.name='CPU used by this session'
 8 ORDER BY s.value desc;

USERNAME SID VALUE
--------------- ----- --------
JOHLMAN 152 20745
NROBERTS 103 4944
JOHLMAN 167 4330
LROLLINS 87 3699
JENGMAN 130 3694
JPATEL 66 3344
NALAPATI 73 3286
SQL>

Listing 20-9 shows that CPU usage isn’t uniformly spread across the users. You need to investi-
gate why one user is using such a significant quantity of resources. If you need to, you can control
CPU usage by a single user or a group of users by using the Database Resource Manager. You can also
find out session-level CPU usage information by using the V$SESSTAT view, as shown in Listing 20-10.

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1155

Listing 20-10. Determining Session-Level CPU Usage

SQL> SELECT sid, s.value "Total CPU Used by this Session"
 2 FROM V$SESSTAT S
 3 WHERE S.statistic# = 12
 4* ORDER BY S,value DESC;

 SID Total CPU Used by this Session
 ----- ------------------------------
 496 27623
 542 21325
 111 20814
 731 17089
 424 15228
SQL>

What Is the CPU Time Used For?

It would be a mistake to treat all CPU time as equal. CPU time is generally understood as the processor
time taken to perform various tasks, such as the following:

• Loading SQL statements into the library cache

• Searching the shared pool for parsed versions of SQL statements

• Parsing the SQL statements

• Querying the data dictionary

• Reading data from the buffer cache

• Traversing index trees to fetch index keys

The total CPU time used by an instance (or a session) can be viewed as the sum of the following
components:

total CPU time = parsing CPU usage + recursive CPU usage + other CPU usage

Ideally, your total CPU usage numbers should show a small proportion of the first two categories of
CPU usage—parsing and recursive CPU usage. For example, for a session-wide estimate of CPU
usage, you can run the query shown in Listing 20-11.

Listing 20-11. Decomposition of Total CPU Usage

 SQL> SELECT name,value FROM V$SYSSTAT
 2 WHERE NAME IN ('CPU used by this session',
 3 'recursive cpu usage',
 4 *'parse time cpu');

 NAME VALUE
------------------------- ---------
recursive cpu usage 4713085
CPU used by this session 98196187
parse time cpu 132947
3 rows selected.
SQL>

1156 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

In this example, the sum of recursive CPU usage and parse time CPU usage is a small proportion
of total CPU usage. You need to be concerned if the parsing or recursive CPU usage is a significant
part of total CPU usage. Let’s see how you can go about reducing the CPU usage attributable to these
various components.

■Note In the following examples, you can examine CPU usage at the instance level by using the V$SYSSTAT view
or at an individual session level by using the V$SESSTAT view. Just remember that the column “total CPU used by
this session” in the V$SYSSTAT view refers to the sum of the CPU used by all the sessions combined.

Parse Time CPU Usage

As you learned at the beginning of this chapter, parsing is an expensive operation that you should
reduce to a minimum. In the following example, the parse time CPU usage is quite low as a percentage
of total CPU usage. The first query tells you that the total CPU usage in your instance is 49159124:

SQL> SELECT name, value FROM V$SYSSTAT
 2* WHERE name LIKE '%CPU%';

NAME VALUE
--------------------------- --------
CPU used when call started 13220745
CPU used by this session 49159124
2 rows selected.
SQL>

The next query shows that the parse time CPU usage is 96431, which is an insignificant proportion
of total CPU usage in your database:

SQL> SELECT name, value FROM V$SYSSTAT
 2 WHERE name LIKE '%parse%';

NAME VALUE
-------------------- --------
parse time cpu 96431
parse time elapsed 295451
parse count (total) 3147900
parse count (hard) 29139
4 rows selected.
SQL>

Listing 20-12 shows an example of a session whose CPU usage is predominantly due to high
parse time.

Listing 20-12. Determining Parse Time CPU Usage

SQL> SELECT a.value " Tot_CPU_Used_This_Session",
 2 b.value "Total_Parse_Count",
 3 c.value "Hard_Parse_Count",
 4 d.value "Parse_Time_CPU"
 5 FROM v$sysstat a,
 6 v$sysstat b,
 7 v$sysstat c,
 8 v$sysstat d

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1157

 9 WHERE a.name = 'CPU used by this session'
 10 AND b.name = 'parse count (total)'
 11 AND c.name = 'parse count (hard)'
 12* AND d.name = 'parse time cpu';

Tot_CPU_Used Total_Parse_Count Hard_Parse_Count Parse_Time_CPU
This_Session
------------- ----------------- ------------------ ---------------
 2240 53286 281 1486
SQL>

Parse time CPU in the preceding example is fully two-thirds of the total CPU usage. Obviously,
you need to be concerned about the high rates of parsing, even though most of the parses are soft
parses. The next section shows you what you can do to reduce the amount of parsing in your
database.

Reducing Parse Time CPU Usage

If parse time CPU is the major part of total CPU usage, you need to reduce this by performing the
following steps:

1. Use bind variables and remove hard-coded literal values from code, as explained in the
“Optimizing the Library Cache” section earlier in this chapter.

2. Make sure you aren’t allocating too much memory for the shared pool. Remember that even
if you have an exact copy of a new SQL statement in your library cache, Oracle has to find it
by scanning all the statements in the cache. If you have a zillion relatively useless statements
sitting in the cache, all they’re doing is slowing down the instance by increasing the parse
time.

3. Make sure you don’t have latch contention on the library cache, which could result in increased
parse time CPU usage.

4. If your TKPROF output or one of the queries shown previously indicates that total parse time
CPU is as high as 90 percent or more, check to make sure all the tables in the queries have
been analyzed recently. If you don’t have statistics on some of the tables, the parsing process
generates the statistics, but the parse CPU usage time goes up dramatically.

Recursive CPU Usage

Recursive CPU usage is mostly for data dictionary lookups and for executing PL/SQL programs.
Thus, if your application uses a high number of packages and procedures, you’ll see a significant
amount of recursive CPU usage.

In the following example, there’s no need for alarm, because the percentage of recursive CPU
usage is only about 5 percent of total CPU usage:

SQL> SELECT name, value FROM V$SYSSTAT
 2 WHERE name IN ('CPU used by this session',
 3* 'recursive cpu usage');

NAME VALUE
-------------------------- ---------
recursive cpu usage 4286925
CPU used by this session 84219625
2 rows selected.
SQL>

1158 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

If the recursive CPU usage percentage is a large proportion of total CPU usage, you may want to
make sure the shared pool memory allocation is adequate. However, a PL/SQL-based application
will always have a significant amount of recursive CPU usage.

■Note A high number of recursive SQL statements may also indicate that Oracle is busy with space management
activities, such as allocating extents. This has a detrimental effect on performance. You can avoid this problem
by increasing the extent sizes for your database objects. This is another good reason to choose locally managed
tablespaces, which cut down on the number of recursive SQL statements.

Memory
Operating system physical memory holds all the data and programs by loading them from disk.
System CPU executes programs only if they’re loaded into the physical memory. If excessive memory
usage occurs, the operating system will use virtual memory, which is storage space on secondary
storage media such as disks, to hold temporarily some of the data and/or programs being used. The
space for the virtual memory is called swap space. When the system needs room in the physical or
main memory, it “swaps out” some programs to the swap area, thus freeing up additional physical
memory for an executing program.

The operating system swaps out data in units called pages, which are the smallest units of memory
that can be used in transferring memory back and forth between physical memory and the swap
area. When the operating system needs a page that has been swapped out to the swap area, a page
fault is said to occur. Page faults are commonly referred to as simply “paging,” and involve the transfer of
data from virtual memory back to the physical memory. An excessive amount of paging results in
degradation of operating system performance, and thus affects Oracle instance performance as well.

One of the best ways to check operating system memory performance is by using the vmstat
utility, which was explained in Chapter 3.

Disk I/O
The way you configure your disk system has a profound impact on your I/O rates. You have to address
several issues when you’re planning your disk system. Important factors that have a bearing on your
I/O are as follows:

• Choice of RAID configuration: Chapter 3 covered RAID system configuration in detail. Just
remember that a RAID 5 configuration doesn’t give you ideal I/O performance if your application
involves a large number of writes. For faster performance, make sure you use a configura-
tion that involves striping your disks, preferably according to the Oracle guidelines.

• Raw devices or operating system file systems: Under some circumstances, you can benefit by
using raw devices, which bypass the operating system buffer cache. Raw devices have their
own drawbacks, though, including limited backup features, and you want to be sure the
benefits outweigh the drawbacks. Raw devices in general provide faster I/O capabilities and
give better performance for a write-intensive application. You might also want to consider
alternative file systems such as VERITAS’s VXFSS, which helps large I/O operations through
its direct I/O option.

• I/O size: I/O size is in terms of the Oracle block size. The minimum size of I/O depends on
your block size, and the maximum size depends on the DB_FILE_MULTIBLOCK_READ_COUNT
initialization parameter. If your application is OLTP based, the I/O size needs to be small, and
if your application is oriented toward a DSS, the I/O size needs to be much larger. As of Oracle
Database 10.2, the database automatically tunes this parameter, if you don’t set it.

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1159

• Logical volume stripe sizes: Stripe size (or stripe width) is a function of the stripe depth and the
number of drives in the striped set. If you stripe across multiple disks, your database’s I/O
performance will be higher and its load balancing will be enhanced. Make sure that the stripe
size is larger than the average I/O request; otherwise, you’ll be making multiple I/Os for a
single I/O request by Oracle. If you have multiple concurrent I/O requests, your stripe size
should be much larger than the I/O size. Most modern LVMs can dynamically reconfigure the
stripe size.

• Number of controllers and disks: The number of spindles and the number of controllers are
both important variables in determining disk performance. Even if you have a large number
of spindles, you could conceivably run into contention at the controller level.

• Distribution of I/O: Your goal should be to avoid a lopsided distribution of I/O in your disk
system. If you’re using an LVM or using striping at the hardware level, you don’t have a whole
lot to worry about in this area. However, if you aren’t using an LVM or using striping at the
hardware level, you should manually arrange your datafiles on the disks such that the I/O rate
is fairly even across the system. Note that your tables and indexes are usually required to be
in different tablespaces, but there is no rule that they have to be placed on different disks.
Because the index is read before the table, they can coexist on the same disk.

Measuring I/O Performance
You have a choice of several excellent tools to measure I/O performance. Several operating system
utilities are easy to use and give you information about how busy your disks are. Iostat and sar are
two of the popular operating system utilities that measure disk performance. I explained how to use
both these tools in Chapter 3.

Is the I/O Optimally Distributed?
From the sar output, you can figure out whether you’re using the storage subsystem heavily. If the
number of waits is higher than the number of CPUs, or if the service times are high (say, greater than
20 milliseconds), then your system is facing contention at the I/O level. One of the most useful
pieces of information you can get is by using the sar –d command to find out if you’re using any of
your disks excessively compared to other disks in the system. Once you identify such hot spots, you
can move the datafiles to less busy drives, thereby spreading the load more evenly.

The following is the output of a sar –d command that shows extremely high queue values. Even
at peak levels, the avque column value should be less than 2. Here, it is 61.4. Obviously, something is
happening on the file system named c2t6d0 that’s showing up as a high queue value:

$ sar -d 10 5
HP-UX finance1 B.11.00 A 9000/800 07/03/08
17:27:13 device %busy avque r+w/s blks/s avwait avserv
17:27:23 c2t6d0 100 61.40 37 245 4.71 10.43
 c5t6d0 20.38 0.50 28 208 4.92 9.54
 c2t6d0 100 61.40 38 273 4.55 9.49
 c5t6d0 18.28 0.50 27 233 4.46 7.93
 c0t1d0 0.10 0.50 4 33 4.99 0.81
. . .
$

You can obtain an idea about the I/O distribution in your system by using the query in Listing 20-13.

1160 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

Listing 20-13. Determining I/O Distribution in the Database

SQL> SELECT d.name,
 2 f.phyrds reads,
 3 f.phywrts wrts,
 4 (f.readtim / decode(f.phyrds,0,-1,f.phyrds)) readtime,
 5 (f.writetim / decode(f.phywrts,0,-1,phywrts)) writetime
 6 FROM
 7 v$datafile d,
 8 v$filestat f
 9 WHERE
 10 d.file# = f.file#
 11 ORDER BY
 12* d.name;

NAME READS WRTS READTIME WRITETIME
----------------------------- ----- ---- ---------- ----------
/pa01/oradata/pa/lol_i_17.dbf 23 9 .608695652 .222222222
/pa01/oradata/pa/lol_i_18.dbf 18 7 .277777778 0
. . .
SQL>

■Caution Excessive reads and writes on some disks indicate that there might be disk contention in your I/O system.

Reducing Disk Contention
If there’s severe I/O contention in your system, you can undertake some of the following steps,
depending on your present database configuration:

• Increase the number of disks in the storage system.

• Separate the database and the redo log files.

• For a large table, use partitions to reduce I/O.

• Stripe the data either manually or by using a RAID disk-striping system.

• Invest in cutting-edge technology, such as file caching, to avoid I/O bottlenecks.

• Consider using the new Automatic Storage Management system, which is discussed in
Chapter 17.

The Oracle SAME Guidelines for Optimal Disk Usage
Oracle provides you with the Stripe and Mirror Everything (SAME) guidelines for optimal disk usage.
This methodology advocates striping all files across all disks and mirroring all data to achieve a
simple, efficient, and highly available disk configuration. Striping across all the available disks aims
to spread the load evenly and avoid hot spots. The SAME methodology also recommends placing
frequently accessed data on the outer half of the disks. The goal of the SAME disk storage strategy is
to eliminate I/O hot spots and maximize I/O bandwidth.

Network Performance
You may want to rule out the network as the culprit during a poor performance period by checking
whether it’s overloaded and exhibiting excessive latency. You can use the operating system tool

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1161

netstat to check your network performance, as I explained in Chapter 3. Excessive network round-trips
necessitated by client messages could clog your network and increase the latency, thus indirectly
affecting the CPU load on your system. In cases such as this, you must try and reduce the network
round-trips by using array inserts and array fetches.

Measuring Instance Performance
One of the trickiest parts of the DBA’s job is to judge the performance of the Oracle instance accu-
rately. Trainers and the manuals advise you to perform diligent proactive tuning, but in reality most
tuning efforts are reactive—they’re intensive attempts to fix problems that perceptibly slow down a
database and cause user complaints to increase. You look at the same things whether you’re doing
proactive or reactive tuning, but proactive tuning gives you the luxury of making decisions in an
unhurried and low-stress environment. Ideally, you should spend more than two-thirds of your total
tuning time on proactive planning. As you do so, you’ll find that you’re reacting less and less over
time to sudden emergencies.

Oracle Database 11g uses the concept of DB time (discussed in detail in Chapter 17) to deter-
mine how well the instance is performing. You can look at some statistics to see how well the database is
performing. These statistics fall into two groups: database hit ratios and database wait statistics. If
you’re consistently seeing numbers in the high 90s for the various hit ratios you saw earlier in this
chapter, you’re usually doing well, according to this approach.

However, the big question is this: Do high hit ratios automatically imply a perfectly tuned and
efficient database? The surprising answer is no. To understand this confusing fact, you need to look
at what hit ratios indicate. The following sections examine the two main groups of performance
statistics.

Database Hit Ratios
Database hit ratios are the most commonly used measures of performance. These include the buffer
cache hit ratio, the library cache and dictionary cache hit ratios, the latch hit ratio, and the disk sort
ratios. These hit ratios don’t indicate how well your system is performing. They’re broad indicators
of proper SGA allocation, and they may be high even when the system as a whole is performing poorly.
The thing to remember is that the hit ratios only measure such things as how physical reads compare
with logical reads, and how much of the time a parsed version of a statement is found in memory. As
to whether the statements themselves are efficient or not, the hit ratios can’t tell you anything. When
your system is slow due to bottlenecks, the hit ratios are of little help, and you should turn to a careful
study of wait statistics instead.

■Caution Even if you have a 99.99 percent buffer cache hit ratio, you may still have major inefficiencies in your
application. What if you have an extremely high number of “unnecessary” logical reads? This makes your buffer
cache hit ratio look good, as that hit ratio is defined as physical reads over the sum of logical reads. Although you
may think your application should run faster because you’re doing most of your reads from memory instead of disk,
this may well not happen. The reason is that even if you’re doing logical reads, you’re still burning up the CPU units
to do the unnecessary logical reads. In essence, by focusing zealously on the buffer cache hit ratio to relieve the I/O
subsystem, you could be an unwitting party to a CPU usage problem. Please read Cary Millsap’s interesting article,
“Why You Should Focus on LIOs Instead of PIOs” (http://www.hotsos.com/e-library/abstract.php?id=7),
which explains why a high logical I/O level could be a major problem.

When faced with a slow-performing database or a demand for shorter response times, Oracle
DBAs have traditionally looked to increase their database hit ratios and tune the database by adjusting

1162 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

a host of initialization parameters (such as SGA allocations). More recently, there’s been awareness
that the key area to focus on is clearing up database bottlenecks that contribute to a higher response time.

The total response time for a query is the time Oracle takes to execute it, plus the time the process
spends waiting for resources such as latches, data buffers, and so on. For a database instance to
perform well, ideally your application should spend little time waiting for access to critical resources.

Let’s now turn to examining the critical wait events in your database, which can be real show-
stoppers on a busy day in a production instance.

Database Wait Statistics
When your users complain that the database is crawling and they can’t get their queries returned
fast enough, there’s no use in your protesting that your database is showing high hit ratios for the
shared pool and the buffer cache (and the large pool and redo log buffer as well). If the users are
waiting for long periods of time to complete their tasks, then the response time will be slow, and you
can’t say that the database is performing well, the high hit ratios notwithstanding.

■Note For an interesting review of the Oracle wait analysis (the wait interface), please read one of the early
papers in this area, titled “Yet Another Performance Profiling Method (or YAPP-Method),” by Anjo Kolk, Shari Yamaguchi,
and Jim Viscusi. It’s available at the OraPerf web site at http://www.oraperf.com (a free registration is required).

Once it starts executing a SQL statement, an Oracle process doesn’t always get to work on the
execution of the statement without any interruptions. Often, the process has to pause or wait for
some resource to be released before it can continue its execution. Thus, an active Oracle process is
doing one of the following at any given time:

• The process is executing the SQL statement.

• The process is waiting for something (for example, a resource such as a database buffer or a
latch). It could be waiting for an action such as a write to the buffer cache to complete.

That’s why the response time—the total time taken by Oracle to finish work—is correctly
defined as follows:

response time = service time + wait time

When you track the total time taken by a transaction to complete, you may find that only part
of that time was taken up by the Oracle server to actually “do” something. The rest of the time, the
server may have been waiting for some resource to be freed up or waiting for a request to do some-
thing. This busy resource may be a slow log writer or a database writer process. The wait event may
also be due to unavailable buffers or latches. The wait events in the V$SYSTEM_EVENT view (instance-
level waits) and the V$SESSION_EVENT view (session-level waits) tell you what the wait time is due
to (full table scans, high number of library cache latches, and so on). Not only do the wait events tell
you what the wait time in the database instance is due to, but they also tell you a lot about bottlenecks
in the network and the application.

■Note It’s important to understand that the wait events are only the symptoms of problems, most likely within
the application code. The wait events show you what’s slowing down performance, but not why a certain wait event
is showing up in large numbers. It’s up to you to investigate the SQL code to find out the real cause of the perfor-
mance problems.

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1163

Four dynamic performance views contain wait information: V$SESSION, V$SYSTEM_EVENT,
V$SESSION_EVENT, and V$SESSION_WAIT. These four views list just about all the events the instance
was waiting for and the duration of these waits. Understanding these wait events is essential for
resolving performance issues.

Let’s look at the common wait events in detail in the following sections. Remember that the four
views show similar information but focus on different aspects of the database, as you can see from
the following summary. The wait events are most useful when you have timed statistics turned on.
Otherwise, the wait events only have the number of times they occurred, not the length of time they
consumed. Without timing the events, you can’t tell if a wait event was indeed a contributing factor
in a system slowdown.

■Tip Use the wait event views (wait interface) for examining current and recent performance issues in your
instance. For comprehensive analysis of most performance problems, you need to use the ADDM, which analyzes
the AWR hourly snapshots.

Oracle wait interface analysis has garnered quite a bit of attention in the last few years. There are
entire books dedicated to Oracle waits. I discuss the important performance topic of Oracle wait
analysis later in this chapter, in the section “Analyzing Instance Performance.” Ideally, all sessions
should be on the CPU, with zero time spent waiting for resources such as I/O. However, remember
that every working instance will have some kind of wait. It’s unrealistic to expect to work toward a
zero wait system. The key question should not be whether you have any Oracle wait events occur-
ring, but rather if there are excessive waits.

Wait Events and Wait Classes
Any time a server process waits for an event to complete, it’s classified as a wait event. There are
more than 950 Oracle wait events in Oracle Database 11g. The most common wait events are those
caused by resource contention such as latch contention, buffer contention, and I/O contention.

A wait class is a grouping of related wait events, and every wait event belongs to a wait class.
Important wait classes include Administrative, Application, Concurrency, Configuration, Idle,
Network, System I/O, and User I/O. For example, the Administrative wait class includes lock waits
caused by row-level locking. The User I/O class of waits refers to waits for blocks to be read off a disk.
Using wait classes helps you move quickly to the root cause of a problem in your database by limiting
the focus of further analysis. Here’s a summary of the main wait classes in Oracle Database 11g:

• Administrative: Waits caused by administrative commands, such as rebuilding an index,
for example.

• Application: Waits due to the application code.

• Cluster: Waits related to Real Application Cluster management.

• Commit: The single wait event log file sync, which is a wait caused by commits in the database.

• Concurrency: Waits for database resources that are used for locking, for example, latches.

• Idle: Waits that occur when a session isn’t active, for example, the 'SQL*Net message from
client' wait event.

• Network: Waits incurred during network messaging.

• Other: Miscellaneous waits.

• Scheduler: Resource Manager–related waits.

1164 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

• System I/O: Waits for background-process I/O, including the database writer background
process’s wait for the db file parallel write event. Also included are archive-log–related
waits and redo log read-and-write waits.

• User I/O: Waits for user I/O. Includes the db file sequential read and db file scattered
read events.

Analyzing Instance Performance
One of the first things you can do to measure instance performance efficiency is to determine the
proportion of total time the database is spending working compared to the proportion of time it’s
merely waiting for resources. The V$SYSMETRIC view displays the system metric values for the most
current time interval. The following query using the V$SYSMETRIC view reveals a database instance
where waits are taking more time than the instance CPU usage time:

SQL> SELECT METRIC_NAME, VALUE
 FROM V$SYSMETRIC
 WHERE METRIC_NAME IN ('Database CPU Time Ratio',
 'Database Wait Time Ratio') AND
 INTSIZE_CSEC =
 (select max(INTSIZE_CSEC) from V$SYSMETRIC);

METRIC_NAME VALUE
------------------------ ------
Database Wait Time Ratio 72
Database CPU Time Ratio 28
SQL>

Once you realize that the total instance wait time ratio is much higher than the CPU time ratio,
you can explore things further. Wait classes provide a quick way to figure out why the database instance
is performing poorly. In the example shown in Listing 20-14, you can easily see that user I/O waits
are responsible for most of the wait time. You can establish this fact by looking at the PCT_TIME
column, which gives you the percentage of time attributable to each wait class. Total waits are often
misleading, as you can see by looking at the NETWORK wait class. In percentage terms, network waits
are only 1 percent, although total network waits constitute more than 51 percent of total waits in this
instance.

Listing 20-14. Determining Total Waits and Percentage Waits by Wait Class

SQL> SELECT WAIT_CLASS,
 2 TOTAL_WAITS,
 3 round(100 * (TOT_WAITS / SUM_WAITS),2) PCT_TOTWAITS,
 4 ROUND((TIME_WAITED / 100),2) TOT_TIME_WAITED,
 5 round(100 * (TOT_TIME_WAITED / SUM_TIME),2) PCT_TIME
 6 FROM
 7 (select WAIT_CLASS,
 8 TOT_WAITS,
 9 TOT_TIME_WAITED
 10 FROM V$SYSTEM_WAIT_CLASS
 11 WHERE WAIT_CLASS != 'Idle'),
 12 (select sum(TOT_WAITS) SUM_WAITS,
 13 sum(TOT_TIME_WAITED) SUM_TIME
 14 from V$SYSTEM_WAIT_CLASS
 15 where WAIT_CLASS != 'Idle')
 16* ORDER BY PCT_TIME DESC;

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1165

WAIT_CLASS TOTAL_WAITS PCT_TOT_WAITS TOT_TIME_WAITED PCT_TIME
------------- ----------- ------------- --------------- --------
User I/O 6649535191 45.07 46305770.5 84.42
Other 394490128 2.67 5375324.17 9.8
Concurrency 78768788 .53 1626254.9 2.96
Network 7546925506 51.15 547128.66 1
Application 2012092 .01 449945.5 .82
Commit 15526036 .11 351043.3 .64
Configuration 12898465 .09 116029.85 .21
System I/O 53005529 .36 78783.64 .14
Administrative 25 0 7.6 0
Scheduler 1925 0 .15 0
10 rows selected.
SQL>

Using V$ Tables for Wait Information

The key dynamic performance tables for finding wait information are the V$SYSTEM_EVENT,
V$SESSION_EVENT, V$SESSION_WAIT, and the V$SESSION views. The first two views show the
waiting time for different events.

The V$SYSTEM_EVENT view shows the total time waited for all the events for the entire system
since the instance started up. The view doesn’t focus on the individual sessions experiencing waits,
and therefore it gives you a high-level view of waits in the system. You can use this view to find out
what the top instance-wide wait events are. You can calculate the top n waits in the system by dividing
the event’s wait time by the total wait time for all events.

The three key columns of the V$SYSTEM_EVENT view are total_waits, which gives the total
number of waits; time_waited, which is the total wait time per session since the instance started; and
average_wait, which is the average wait time by all sessions per event.

The V$SESSION_EVENT view is similar to the V$SYSTEM_EVENT view, and it shows the total
time waited per session. All the wait events for an individual session are recorded in this view for the
duration of that session. By querying this view, you can find out the specific bottlenecks encountered
by each session.

The third dynamic view is the V$SESSION_WAIT view, which shows the current waits or just-
completed waits for sessions. The information on waits in this view changes continuously based on
the types of waits that are occurring in the system. The real-time information in this view provides you
with tremendous insight into what’s holding up things in the database right now. The V$SESSION_WAIT
view provides detailed information on the wait event, including details such as file number, latch
numbers, and block number. This detailed level of information provided by the V$SESSION_WAIT
view enables you to probe into the exact bottleneck that’s slowing down the database. The low-level
information helps you zoom in on the root cause of performance problems.

The following columns from the V$SESSION_WAIT view are important for troubleshooting
performance issues:

• EVENT: These are the different wait events described in the next section (for example, latch free
and buffer busy waits).

• P1, P2, P3: These are the additional parameters that represent different items, depending on
the particular wait event. For example, if the wait event is db file sequential read, P1 stands
for the file number, P2 stands for the block number, and P3 stands for the number of blocks.
If the wait is due to a latch free event, P1 stands for the latch address, P2 stands for the latch
number, and P3 stands for the number of attempts for the event.

• WAIT_CLASS_ID: This identifies the wait class.

1166 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

• WAIT_CLASS#: This is the number of the wait class.

• WAIT_CLASS: This is the name of the wait class.

• WAIT_TIME: This is the wait time in seconds if the state is waited known time.

• SECONDS_IN_WAIT: This is the wait time in seconds if the state is waiting.

• STATE: The state could be waited short time, waited known time, or waiting, if the session is
waiting for an event.

The fourth wait-related view is the V$SESSION view. Not only does this view provide many details
about the session, it also provides significant wait information as well. The V$SESSION view contains
all the columns of the V$SESSION_WAIT view, plus a number of other important session-related
columns. Because of this overlap of wait information in the V$SESSION and the V$SESSION_WAIT
views, you can use the V$SESSION view directly to look for most of the wait-related information,
without recourse to the V$SESSION_WAIT view. You can start analyzing the wait events in your
system by first querying the V$SYSTEM_EVENT view to see if any significant wait events are occur-
ring in the database. You can do this by running the query shown in Listing 20-15.

Listing 20-15. Using the V$SYSTEM_EVENT View to View Wait Events

 SQL> SELECT event, time_waited, average_wait
 2 FROM V$SYSTEM_EVENT
 3 GROUP BY event, time_waited, average_wait
 4* ORDER BY time_waited DESC;

EVENT TIME_WAITED AVERAGE_WAIT
---------------------------- ------------ ---------------
rdbms ipc message 24483121 216.71465
SQL*Net message from client 18622096 106.19049
PX Idle Wait 12485418 205.01844
pmon timer 3120909 306.93440
smon timer 3093214 29459.18100
PL/SQL lock timer 3024203 1536.68852
db file sequential read 831831 .25480
db file scattered read 107253 .90554
free buffer waits 52955 43.08787
log file parallel write 19958 2.02639
latch free 5884 1.47505
. . .
58 rows selected.
SQL>

This example shows a simple system with hardly any waits other than the idle type of events and
the SQL*Net wait events. There aren’t any significant I/O-related or latch-contention–related wait events
in this database. The db file sequential read (caused by index reads) and the db file scattered
read (caused by full table scans) wait events do seem somewhat substantial, but if you compare the
total wait time contributed by these two events to the total wait time since the instance started, they
don’t stand out. Furthermore, the AVERAGE_WAIT column shows that both these waits have a low
average wait time (caused by index reads). I discuss both these events, along with several other Oracle
wait events, later in this chapter, in the section “Important Oracle Wait Events.” However, if your
query on a real-life production system shows significant numbers for any nonidle wait event, it’s
probably a good idea to find out the SQL statements that are causing the waits. That’s where you
have to focus your efforts to reduce the waits. You have different ways to obtain the associated SQL
for the waits, as explained in the following section.

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1167

Obtaining Wait Information

Obtaining wait information is as easy as querying the related dynamic performance tables. For example,
if you wish to find out quickly the types of waits different user sessions (session-level wait informa-
tion) are facing and the SQL text of the statements they’re executing, you can use the following query:

SQL> SELECT s.username,
 2 t.sql_text, s.event
 3 FROM V$SESSION s, V$SQLTEXT t
 4 WHERE s.sql_hash_value = t.hash_value
 5 AND s.sql_address = t.address
 6 AND s.type <> 'BACKGROUND'
 7* ORDER BY s.sid,t.hash_value,t.piece;

■Note You need to turn on statistics collection by either setting the initialization parameter TIMED_STATISTICS
to TRUE or setting the initialization parameter STATISTICS_LEVEL to TYPICAL or ALL.

If you want a quick instance-wide wait event status, showing which events were the biggest
contributors to total wait time, you can use the query shown in Listing 20-16 (several idle events are
listed in the output, but I don’t show them here).

Listing 20-16. Instance-Wide Waits Sorted by Total Wait Time

SQL> SELECT event, total_waits,time_waited
 2 FROM V$SYSTEM_EVENT
 3 WHERE event NOT IN
 4 ('pmon timer','smon timer','rdbms ipc reply','parallel deque
 5 wait','virtual circuit','%SQL*Net%','client message','NULL event')
 6* ORDER BY time_waited DESC;

EVENT TOTAL_WAITS TIME_WAITED
------------------------ ----------- ------------
db file sequential read 35051309 15965640
latch free 1373973 1913357
db file scattered read 2958367 1840810
enqueue 2837 370871
buffer busy waits 444743 252664
log file parallel write 146221 123435
SQL>

The preceding query shows that waits due to the db file scattered read wait event account for
most of the waits in this instance. The db file sequential read wait event, as you’ll learn shortly, is
caused by full table scans. It’s somewhat confusing in the beginning when you’re trying to use all the
wait-related V$ views, which all look similar. Here’s a quick summary of how you go about using the
key wait-related Oracle Database 11g dynamic performance views.

First, look at the V$SYSTEM_EVENT view and rank the top wait events by the total amount of
time waited, as well as the average wait time for that event. Start investigating the top waits in terms
of the percentage of total wait time. You can also look at any AWR reports you may have, because the
AWR also lists the top five wait events in the instance.

Next, find out more details about the specific wait event that’s at the top of the list. For example,
if the top event is buffer busy waits, look in the V$WAITSTAT view to see which type of buffer block
(data block, undo block, and so on) is causing the buffer busy waits (a simple SELECT * from V$WAITSTAT

1168 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

gets you all the necessary information). For example, if the undo-block buffer waits make up most of
your buffer busy waits, then the undo segments are at fault, not the data blocks.

 Finally, use the V$SESSION view to find out the exact objects that may be the source of a problem.
For example, if you have a high amount of db file scattered read–type waits, the V$SESSION view
will give you the file number and block number involved in the wait events. In the following example,
the V$SESSION view is used to find out who is doing the full table scans showing up as the most
important wait events right now. As explained earlier, the db file scattered read wait event is
caused by full table scans.

SQL> SELECT sid, sql_address, sql_hash_value
 FROM V$SESSION WHERE event = 'db file scattered read';

Here’s an example that shows how to find out the current wait event for a given session:

SQL> SELECT sid, state, event, wait_time, seconds_in_wait
 2 FROM v$session
 3*WHERE sid=1418;

SID STATE EVENT WAIT_TIME SECONDS_IN_WAIT
--- ------ ----------------------- --------- ---------------
1418 WAITING db file sequential read 0 0
SQL>

The value of 0 under the WAIT_TIME column indicates that the wait event db file sequential
read is occurring for this session. When the wait event is over, you’ll see values for the WAIT_TIME
and the SECONDS_IN_WAIT columns.

You can also use the V$SQLAREA view to find out which SQL statements are responsible for high
disk reads. If latch waits predominate, you should be looking at the V$LATCH view to gain more
information about the type of latch that’s responsible for the high latch wait time:

SQL> SELECT sid, blocking_session, username,
 2 event, seconds_in_wait siw
 3 FROM V$SESSION
 4* WHERE blocking_session_status = 'VALID';

 SID BLOCKING_SESS USERNAME EVENT SIW
---- ------------- -------- ----------------------------- -----
1218 1527 UCR_USER enq: TX - row lock contention 23
1400 1400 APPOWNER latch free 0
SQL>

The V$SESSION_WAIT_HISTORY View

The V$SESSION_WAIT_HISTORY view holds information about the last ten wait events for each active
session. The other wait-related views, such as the V$SESSION and the V$SESSION_WAIT, show you
only the wait information for the most recent wait. This may be a short wait, thus escaping your scrutiny.
Here’s a sample query using the V$SESSION_WAIT_HISTORY view:

SQL> SELECT seq#, event, wait_time, p1, p2, p3
 2 FROM V$SESSION_WAIT_HISTORY
 3 WHERE sid = 988
 4* ORDER BY seq#;

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1169

SEQ# EVENT WAIT_TIME P1 P2 P3
---- ----------------------- --------- ----- ----- ------
 1 db file sequential read 0 52 21944
 2 db file sequential read 0 50 19262
 3 latch: shared pool 0 1.3835E+19 198 0
 4 db file sequential read 0 205 21605
 5 db file sequential read 4 52 13924
 6 db file sequential read 1 49 29222
 7 db file sequential read 2 52 14591
 8 db file sequential read 2 52 12723
 9 db file sequential read 0 205 11883
 10 db file sequential read 0 205 21604
10 rows selected.
SQL>

Note that a zero value under the WAIT_TIME column means that the session is waiting for a
specific event. A nonzero value represents the time waited for the last event.

Analyzing Waits with Active Session History

The V$SESSION_WAIT view tells you what resource a session is waiting for. The V$SESSION view
also provides significant wait information for active sessions. However, neither of these views
provides you with historical information about the waits in your instance. Once the wait is over, you
can no longer view the wait information using the V$SESSION_WAIT view. The waits are so fleeting
that by the time you query the views, the wait in most times is over. The new Active Session History
feature, by recording session information, enables you to go back in time and review the history of a
performance bottleneck in your database. Although the AWR provides hourly snapshots of the instance
by default, you won’t be able to analyze events that occurred five or ten minutes ago, based on AWR
data. This is where the ASH information comes in handy. ASH samples the V$SESSION view every
second and collects the wait information for all active sessions. An active session is defined as a session
that’s on the CPU or waiting for a resource. You can view the ASH session statistics through the view
V$ACTIVE_SESSION_HISTORY, which contains a single row for each active session in your instance.
ASH is a rolling buffer in memory, with older information being overwritten by new session data.

Every 60 minutes, the MMON background process flushes filtered ASH data to disk, as part of
the hourly AWR snapshots. If the ASH buffer is full, the MMNL background process performs the
flushing of data. Once the ASH data is flushed to disk, you won’t be able to see it in the V$ACTIVE_
SESSION_HISTORY view. You’ll now have to use the DBA_HIST_ACTIVE_SESS_HISTORY view to
look at the historical data.

In the following sections, I show how you can query the V$ACTIVE_SESSION_HISTORY view to
analyze current (recent) Active Session History.

Using the V$ACTIVE_SESSION_HISTORY View

The V$ACTIVE_SESSION_HISTORY view provides a window on the ASH data held in memory by the
Oracle instance before it’s flushed as part of the hourly AWR snapshots. You can use it to get infor-
mation on things such as the SQL that’s consuming the most resources in the database, the particular
objects causing the most waits, and the identities of the users who are waiting the most.

In the following sections I show how to use the ASH information to gain valuable insights into
the nature of the waits in your instance, including answering such questions as the objects with the
highest waits, the important wait events in your instance, and the users waiting the most.

1170 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

Objects with the Highest Waits

The following query identifies the objects causing the most waits and the type of events the objects
waited for during the last 15 minutes:

 SQL> SELECT o.object_name, o.object_type, a.event,
 2 SUM(a.wait_time +
 3 a.time_waited) total_wait_time
 4 FROM v$active_session_history a,
 5 dba_objects o
 6 WHERE a.sample_time between sysdate - 30/2880 and sysdate
 7 AND a.current_obj# = o.object_id
 8 GROUP BY o.object_name, o.object_type, a.event
 9* ORDER BY total_wait_time;

OBJECT_NAME OBJECT_TYPE EVENT TOTAL_WAIT_TIME
------------ ----------- ------------------------- ----------------
UC_ADDRESS TABLE SQL*Net message to client 2
PERS_PHONES TABLE db file sequential read 8836
PAY_FK_I INDEX db file sequential read 9587
UC_STAGING TABLE log file sync 23633
PERSONNEL TABLE db file sequential read 43612
SQL>

Most Important Wait Events

The following query lists the most important wait events in your database in the last 15 minutes:

SQL> SELECT a.event,
 2 SUM(a.wait_time +
 3 a.time_waited) total_wait_time
 4 FROM v$active_session_history a
 5 WHERE a.sample_time between
 6 sysdate - 30/2880 and sysdate
 7 GROUP BY a.event
 8* ORDER BY total_wait_time DESC;

EVENT TOTAL_WAIT_TIME
------------------------------ ------------------
wait for SGA component shrink 878774247
smon timer 300006992
PL/SQL lock timer 210117722
SQL*Net message from client 21588571
db file scattered read 1062608
db file sequential read 105271
log file sync 13019
latch free 274
SQL*Net more data to client 35
null event 6
17 rows selected.
SQL>

Users with the Most Waits

The following query lists the users with the highest wait times within the last 15 minutes:

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1171

SQL> SELECT s.sid, s.username,
 2 SUM(a.wait_time +
 3 a.time_waited) total_wait_time
 4 FROM v$active_session_history a,
 5 v$session s
 6 WHERE a.sample_time between sysdate - 30/2880 and sysdate
 7 AND a.session_id=s.sid
 8 GROUP BY s.sid, s.username
 9* ORDER BY total_wait_time DESC;

 SID USERNAME TOTAL_WAIT_TIME
 ---- --------- ---------------
 1696 SYSOWNER 165104515
 885 SYSOWNER 21575902
 1087 BLONDI 5019123
 1318 UCRSL 569723
 1334 REBLOOM 376354
 1489 FRAME 395
15 rows selected.
SQL>

Identifying SQL with the Highest Waits

Using the following query, you can identify the SQL that’s waiting the most in your instance. The
sample time covers the last 15 minutes.

SQL> SELECT a.user_id,d.username,s.sql_text,
 2 SUM(a.wait_time + a.time_waited) total_wait_time
 3 FROM v$active_session_history a,
 4 v$sqlarea s,
 5 dba_users d
 6 WHERE a.sample_time between sysdate - 30/2880 and sysdate
 7 AND a.sql_id = s.sql_id
 8 AND a.user_id = d.user_id
 9* GROUP BY a.user_id,s.sql_text, d.username;

 USER_ID USERNAME SQL_TEXT TOTAL_WAIT_TIME
---------- -------- ---------------------------- ----------------
 0 SYS BEGIN dbms_stats . . .; END; 9024233
. . .
SQL>

Wait Classes and the Wait-Related Views

The V$SESSION_WAIT view shows the events and resources that active sessions are waiting for.
Using the V$SESSION_WAIT view, you can also see what types of wait classes your session waits
belong to. Here’s an example:

SQL> SELECT wait_class, event, sid, state, wait_time, seconds_in_wait
 FROM v$session_wait
 ORDER BY wait_class, event, sid;

1172 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

WAIT_CLASS EVENT SID STATE WAIT_TIM SEC_IN_WAIT
---------- -------------------- ---------- ------- -------- -----------
Application enq: TX - 269 WAITING 0 73
 row lock contention
Idle Queue Monitor Wait 270 WAITING 0 40
Idle SQL*Net message from client 265 WAITING 0 73
Idle jobq slave wait 259 WAITING 0 8485
Idle pmon timer 280 WAITING 0 73
Idle rdbms ipc message 267 WAITING 0 184770
Idle wakeup time manager 268 WAITING 0 40
Network SQL*Net message to client 272 WAITED SHORT TIME 1
SQL>

The previous query indicates that the most important wait lies within the Application wait class.
The V$SYSTEM_WAIT_CLASS view gives you a breakdown of waits by wait classes, as shown here:

 SQL> SELECT wait_class, time_waited
 FROM v$system_wait_class
 ORDER BY time_waited DESC;

WAIT_CLASS TIME_WAITED
-------------------- ------------
Idle 1.0770E+11
User I/O 4728148400
Other 548221433
Concurrency 167154949
Network 56271499
Application 46336445
Commit 35742104
Configuration 11667683
System I/O 8045920
Administrative 760
Scheduler 16
11 rows selected.
SQL>

The V$SESSION_WAIT_CLASS view shows the total time spent in each type of wait class by an
individual session. Here’s an example:

SQL> SELECT wait_class, time_waited
 2 FROM v$session_wait_class
 3 WHERE sid = 1053
 4* ORDER BY time_waited DESC;

WAIT_CLASS TIME_WAITED
----------------- -----------
Idle 21190
User I/O 8487
Other 70
Concurrency 13
Application 0
Network 0
6 rows selected.
SQL>

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1173

The V$WAITCLASSMETRIC view shows metric values of wait classes for the most recent 60-second
interval. The view keeps information for up to one hour. Here’s an example of using the query:

SQL> SELECT WAIT_CLASS#, WAIT_CLASS_ID
 2 dbtime_in_wait,time_waited,wait_count
 3 FROM v$waitclassmetric
 4* ORDER BY time_waited DESC;

WAIT_CLASS# DBTIME_IN_WAIT TIME_WAITED WAIT_COUNT
----------- -------------- ----------- ----------
 6 2723168908 170497 51249
 0 1893977003 5832 58
 8 1740759767 717 1351
 5 3386400367 11 68
 7 2000153315 8 52906
 9 4108307767 6 99
 1 4217450380 0 4
 2 3290255840 0 0
 3 4166625743 0 0
 11 3871361733 0 0
 10 2396326234 0 0
 4 3875070507 0 0
12 rows selected.

SQL>

As you can see, WAIT_CLASS 6 tops the list, meaning that idle class waits currently account for
most of the wait time in this instance.

Looking at Segment-Level Statistics

Whether you use the AWR or the wait-related V$ views, you’re going to find no information about
where a certain wait event is occurring. For example, you can see from the V$SYSTEM_EVENT view that
buffer busy waits are your problem, and you know that you reduce these waits by switching from manual
segment space management to Automatic Segment Space Management (ASSM). However, neither
AWR nor the V$ view indicates which tables or indexes you should be looking at to fix the high wait
events. Oracle provides three V$ views to help you drill down to the segment level.

The segment-level dynamic performance views are V$SEGSTAT_NAME, V$SEGSTAT, and
V$SEGMENT_STATISTICS. Using these, you can find out which of your tables and indexes are being
subjected to high resource usage or high waits. Once you’re aware of a performance problem due to
high waits, you can use these segment-level views to find out exactly which table or index is the culprit
and fix that object to reduce the waits and increase database performance. The V$SEGMENT_NAME
view provides you with a list of all the segment levels that are being collected, and tells you whether
the statistics are sampled or not.

Let’s see how you can use these segment-level views to your advantage when you’re confronted
with a high number of wait events in your system. Say you look at the V$SYSTEM_EVENT view and
realize that there are a large number of buffer busy waits. You should now examine the V$SEGMENT_
STATISTICS view with a query such as the following to find out which object is the source of the high
buffer busy waits. You can then decide on the appropriate corrective measures for this wait event, as
discussed in the section “Important Oracle Wait Events” later in this chapter.

1174 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

SQL> SELECT owner, object_name, object_type, tablespace_name
 2 FROM V$SEGMENT_STATISTICS
 3 WHERE statistic_name='buffer busy waits'
 4* ORDER BY value DESC;

OWNER OBJECT_NAME OBJECT_TYPE TABLESPACE_NAME
--------- -------------- ----------- ---------------
SYSOWNER LAB_DATA TABLE LAB_DATA_D
SYSOWNER LAB_ADDR_I INDEX LAB_DATAS_I
SYSOWNER PERS_SUMMARIES TABLE PERS_SUMMARIES_D
. . .
SQL>

Collecting Detailed Wait Event Information

Selecting data from V$ dynamic performance views and interpreting them meaningfully isn’t always
so easy to do. Because the views are dynamic, the information that they contain is constantly changing
as Oracle updates the underlying tables for each wait event. Also, the wait-related dynamic perfor-
mance views you just examined don’t provide crucial data such as bind variable information. For a
more detailed level of wait information, you can use one of the methods described in the following
sections.

Method 1: Using the Oracle Event 10046 to Trace SQL Code

You can get all kinds of bind variable information by using a special trace called the 10046 trace, which
is much more advanced than the SQL Trace utility you saw in Chapter 19. The use of this trace causes
an output file to be written to the trace directory. You can set the 10046 trace in many ways by spec-
ifying various levels, and each higher level provides you with more detailed information. (Level 12 is
used in the following case as an example only—it may give you much more information than necessary.
Level 4 gives you detailed bind value information, and Level 8 gives you wait information.)

You can use the ALTER SESSION statement as follows:

SQL> ALTER SESSION SET EVENTS '10046 trace name context forever level 12';
Session altered.
SQL>

You can also incorporate the following line in your init.ora file:

event = 10046 trace name context forever, level 12

Method 2: Using the Oradebug Utility to Perform the Trace

You can use the oradebug utility as shown in the following example:

SQL> ORADEBUG SETMYPID
Statement processed.
SQL> ORADEBUG EVENT 10046 TRACE NAME CONTEXT FOREVER LEVEL 8;
Statement processed.
SQL>

In this example, SETMYPID indicates that you want to trace the current session. If you want a
different session to be traced, you replace this with SETOSPID <Process Id>.

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1175

Method 3: Using the DBMS_SYSTEM Package to Set the Trace

Use the SET_EV procedure of the DBMS_SYSTEM package so you can set tracing on in any session, as
shown in the following example:

SQL> EXECUTE SYS.DBMS_SYSTEM.SET_EV (9,271,10046,12,'');

PL/SQL procedure successfully completed.
SQL>

Method 4: Using the DBMS_MONITOR Package

The DBMS_MONITOR package provides you with an easy way to collect extended session trace
information. You enable tracing of a user’s session using the
DBMS_MONITOR.SESSION_TRACE_ENABLE package. Here’s the structure of the procedure:

DBMS_MONITOR.SESSION_TRACE_ENABLE(
 session_id IN BINARY_INTEGER DEFAULT NULL,
 serial_num IN BINARY_INTEGER DEFAULT NULL,
 waits IN BOOLEAN DEFAULT TRUE,
 binds IN BOOLEAN DEFAULT FALSE)

If you set the WAITS parameter to TRUE, the trace will contain wait information. Similarly, setting
the BINDS parameter to TRUE will provide bind information for the session being traced.

If you don’t set the SESSION_ID parameter or set it to NULL, your own session will be traced. Here’s
how you trace your session using the DBMS_MONITOR package:

SQL> EXECUTE dbms_monitor.session_trace_enable (waits=>TRUE, binds=>TRUE);

In addition to all the preceding methods of gathering wait information, you have the handy
OEM Database Control tool, which lets you drill down to various items from the Database Control
home page.

■Note Both the AWR report that you can obtain by using the awrrpt.sql script and the ADDM report that you
can obtain with the addmrpt.sql script contain copious amounts of wait information.

Important Oracle Wait Events

The wait events listed in the sections that follow have a significant impact on system performance by
increasing response times. Each of these events (and several other events) indicates an unproductive
use of time because of an excessive demand for a resource, or contention for Oracle structures such
as tables or the online redo log files.

■Note The query SELECT NAME FROM V$EVENT_NAME gives you the complete list of all Oracle wait events.

Buffer Busy Waits

The buffer busy waits event occurs in the buffer cache area when several processes are trying to access
the same buffer. One session is waiting for another session’s read of a buffer into the buffer cache.
This wait could also occur when the buffer is in the buffer cache, but another session is changing it.

1176 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

■Note Starting with the Oracle Database 10.2 release, the buffer busy wait has been divided into several events:
you can have very few buffer busy waits, but a huge number of read by other session waits, which were previously
reported as buffer busy waits.

You should observe the V$SESSION_WAIT view while this wait is occurring to find out exactly
what type of block is causing the wait.

Two of the common causes of high buffer busy waits are contention on data blocks belonging
to tables and indexes, and contention on segment header blocks. If you’re using dictionary managed
tablespaces or locally managed tablespaces with manual segment space management (see Chapter 7),
you should proceed as follows:

• If the waits are primarily on data blocks, try increasing the PCTFREE parameter to lower the
number of rows in each data block. You may also want to increase the INITRANS parameter to
reduce contention from competing transactions.

• If the waits are mainly in segment headers, increase the number of freelists or freelist groups
for the segment in question, or consider increasing the extent size for the table or index.

The best way to reduce buffer busy waits due to segment header contention is to use locally
managed tablespaces with ASSM. ASSM also addresses contention for data blocks in tables and
indexes.

Besides the segment header and data block contention, you could also have contention for rollback
segment headers and rollback segment blocks. However, if you’re using Automatic Undo Manage-
ment (AUM), you don’t have to do anything other than make sure you have enough space in your
undo management tablespace to address the rollback (undo) headers and blocks, leaving table and
index data blocks and segment headers as the main problem areas. The following query clearly shows
that in this database, the buffer busy waits are in the data blocks:

SQL> SELECT class, count FROM V$WAITSTAT
 2 WHERE COUNT > 0
 3* ORDER BY COUNT DESC;

CLASS COUNT
--------------- ----------
data block 519731
undo block 5829
undo header 2026
segment header 25
SQL>

If data-block buffer waits are a significant problem even with ASSM, this could be caused by
poorly chosen indexes that lead to large index range scans. You may try using global hash-partitioned
indexes, and you can also tune SQL statements as necessary to fix these waits. Oracle seems to indicate
that if you use AUM instead of traditional rollback segments, then two types of buffer busy waits,
undo block and undo header, will go away. However, that’s not the case in practice, as the following
example from a database with AUM shows:

CLASS COUNT
--------------- ---------
undo header 29891
data block 52
segment header 1

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1177

Occasionally, you may have a situation where the buffer busy waits spike suddenly, seemingly
for no reason. The sar utility (use the sar –d option) might indicate high request queues and service
times. This often happens when the disk controllers get saturated by a high amount of I/O. Usually,
you see excessive core dumps during this time, and if core dumps are choking your I/O subsystem,
do the following:

• Move your core dump directory to a less busy file system, where it resides by itself.

• Use the following init.ora or SPFILE parameters to control core dumps in your system.
Setting these parameters’ values could reduce the size of a core dump to a few megabytes
from a gigabyte or more:

SHADOW_CORE_DUMP = PARTIAL /* or NONE */
BACKGROUND_CORE_DUMP = PARTIAL /* or NONE */

• Investigate the core dumps and see whether you can fix them by applying necessary Oracle
and operating-system patch sets.

Checkpoint Completed

The CHECKPOINT COMPLETED wait event means that a session is waiting for a checkpoint to complete.
This could happen when you’re shutting the database down or during normal checkpoints.

Db File Scattered Read

The db file scattered read wait event indicates that full table scans (or index fast full scans) are
occurring in the database. The initialization parameter DB_FILE_MULTIBLOCK_READ_COUNT sets the
number of blocks read at one time by Oracle. The database will automatically tune this parameter if
you don’t set any value for it in your parameter file. Although Oracle reads data in multiblock chunks,
it scatters the data into noncontiguous cache buffers. If you don’t have many full table scans and if
they mainly consist of smaller tables, don’t worry about it.

However, if this event is showing up as an important wait event, you need to look at it as an I/
O-related problem—the database isn’t able to cope with an excessive request for physical I/Os. There
are two possible solutions. You can either reduce the demand for physical I/Os or increase the capacity
of the system to handle more I/Os. You can reduce the demand for physical I/O by drilling down
further to see whether one of the following solutions will work. Raising the buffer cache component
of the SGA would normally contribute to lowering physical I/Os. However, I’m assuming that you’re
using Automatic Shared Memory Management by setting the SGA_TARGET initialization parameter, in
which case your buffer cache is already optimally set by the database:

• Add missing indexes on key tables (unlikely in a production system).

• Optimize SQL statements if they aren’t following an efficient execution plan.

If you don’t see any potential for reducing the demand for physical I/O, you’re left with no
choice but to increase the number of disks on your system. You also need to make sure you’re
reducing the hot spots in your system by carefully distributing the heavily hit tables and indexes
across the available disks. You can identify the datafiles where the full table or index fast full scans
are occurring with the help of a query using the V$FILESTAT view. In this view, two columns are of
great use:

• phyrds: The number of physical reads done

• phyblkrd: The number of physical blocks read

Obviously, the number of phyrds is equal to or close to the number of phyblkrds because almost
all reads are single block reads. If the column phyrds shows a much smaller value than the phyblkrds

1178 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

column, Oracle is reading multiple blocks in one read—a full table scan or an index fast full scan, for
example. Here’s a sample query on the V$FILESTAT view:

SQL> SELECT file#, phyrds,phyblkrd
 2 FROMV$FILESTAT
 3* WHERE phyrds != phyblkrd;

 FILE# PHYRDS PHYBLKRD
---------- ------ --------
 1 4458 36533
 7 67923 494433
 15 28794 378676
 16 53849 408981
SQL>

Db File Sequential Read

The db file sequential read wait event signifies that a single block is being read into the buffer
cache. This event occurs when you’re doing an indexed read and you’re waiting for a physical I/O
call to return. This is nothing to be alarmed about, because the database has to wait for file I/O.
However, you should investigate disk I/O if this statistic seems extraordinarily high. If disk sorts are
high, you can make them lower by increasing the value of the PGA_AGGREGATE_TARGET initialization
parameter. Because the very occurrence of this event proves that your application is making heavy
use of an index, you can’t do much to reduce the demand for physical I/Os in this case, unlike in the
case of the db file scattered read event. Increasing the number of disks and striping indexes across
them may be your best bet to reduce db file sequential read waits. If the objects aren’t too large,
you can use the DEFAULT and KEEP buffer pools to retain them in memory. However, if the objects are
large, you may not have this option. Indexed reads are going to show up in most systems as a wait,
and it’s not necessarily a bad thing, because indexes are required in most cases for faster data retrieval.

Direct Path Read and Direct Path Write

The direct path read and direct path write events are waits that occur while performing a direct
read or write into the PGA, bypassing the SGA buffer cache. Direct path reads indicate that sorts are
being done on disk instead of in memory. They could also result from a busy I/O system. If you use
automatic PGA tuning, you shouldn’t encounter this problem too often.

Automatic tuning of the PGA by Oracle should reduce your disk sorts due to a low PGA memory
allocation. Another solution may be to increase the number of disks, as this problem also results in
an I/O system that can’t keep up with the increased requests for reading blocks into the PGA. Of
course, tuning the SQL statements themselves to reduce sorting wouldn’t hurt in this case.

Free Buffer Waits

Free buffer waits usually show up when the database writer process is slow. The database writer
process is simply unable to keep up with the requests to service the buffer cache. The number of
dirty buffers in cache waiting to be written to disk is larger than the number of buffers the database
writer process can write per batch. Meanwhile, sessions have to wait because they can’t get free
buffers to write to. First, you need to rule out whether the buffer cache is too small, and check the I/O
numbers on the server, especially the write time, using an operating system tool. A check of the data-
base buffer cache and a quick peek at the Database Control’s Memory Advisor will show you the
pattern of usage of the various memory components and if you’re below the optimal buffer cache
level, in which case you can increase the size of the buffer cache. Of course, if you’re using Automatic
Shared Memory Management, the database will size the SGA allocations for you.

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1179

The other reason for a high number of free buffer waits in your system is that the number of
database writer processes is inadequate to perform the amount of work your instance needs to get
done. As you know, you can add additional database writer processes to the default number of processes,
which is one database writer process for every eight processors on your host machine. If your data-
base performs heavy data modifications and you determine that the database writer is responsible
for wait events, you can reduce these waits in most cases by increasing the number of database writer
processes. You can choose a value between 2 and 20 for the DB_WRITER_PROCESSES initialization
parameter. Oracle recommends that you use one database writer process for every four CPUs on
your system. You can’t change this variable on the fly, so you’ll need to perform a system restart to
change the number of database writer processes.

Enqueue Waits

Enqueues are similar to locks in that they are internal mechanisms that control access to resources.
High enqueue waits indicate that a large number of sessions are waiting for locks held by other
sessions. You can query the dynamic performance view V$ENQUEUE_STAT to find out which of the
enqueues have the most wait times reported. You can do this by using the cum_wait_time (shows
the cumulative time spent waiting for the enqueue) column of the view.

Note that the use of locally managed tablespaces eliminates several types of enqueues such as
space transactions (ST) enqueues. In a system with a massive concurrent user base, most common
enqueues are due to infrequent commits (or rollbacks) by transactions that force other transactions
to wait for the locks held by the early transactions. In addition, there may be a problem with too few
interested transactions list (ITL) slots, which also show up as transaction (TX) enqueues. Locally
managed tablespaces let you avoid the most common types of space-related enqueues.

Latch Free

Latches are internal serialization mechanisms used to protect shared data structures in Oracle’s
SGA. You can consider a latch as a type of lock that’s held for an extremely short time period. Oracle
has several types of latches, with each type guarding access to a specific set of data. The latch free
wait event is incremented when a process can’t get a latch on the first attempt. If a required Oracle
latch isn’t available, the process requesting it keeps spinning and retrying to gain the access. This
spinning increases both the wait time and the CPU usage in the system. Oracle uses about 500 latches,
but two of the important latches that show up in wait statistics are the shared pool latch (and the
library cache latches) and the cache buffers LRU chain. It’s normal to see a high number of latch
free events in an instance. You should worry about this wait event only if the total time consumed by
this event is high.

High latch waits will show up in your AWR reports, or you can use the query shown in Listing 20-17
to find out your latch hit ratio.

Listing 20-17. Determining the Latch Hit Ratio

SQL> SELECT a.name "Latch Name",
 a.gets "Gets (Wait)",
 a.misses "Misses (Wait)",
 (1 - (misses / gets)) * 100 "Latch Hit Ratio %"
 FROM V$LATCH a
 WHERE a.gets != 0
 UNION
 SELECT a.name "Latch Name",
 a.gets "Gets (Wait)",
 a.misses "Misses (Wait)",
 100 "Latch Hit Ratio"

1180 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

 FROM V$LATCH a
 WHERE a.gets = 0
 ORDER BY 1;
SQL>

If the ratio isn’t close to 1, it’s time to think about tuning the latch contention in your instance.
There’s only one shared pool latch for the database, and it protects the allocation of memory in the
library cache. The library cache latch regulates access to the objects present in the library cache. Any
SQL statement, PL/SQL code, procedure, function, or package needs to acquire this latch before
execution. If the shared pool and library cache latches are high, more often than not that’s because
the parse rates in the database are high. The high parse rates are due to the following factors:

• An undersized shared pool

• Failure to use bind variables

• Using dissimilar SQL statements and failing to reuse statements

• Users frequently logging off and logging back into the application

• Failure to keep cursors open after each execution

• Using a shared pool size that’s too large

The cache buffers LRU chain latch free wait is caused by high buffer cache throughput, either
due to full table scans or the use of unselective indexes, which lead to large index range scans. Unse-
lective indexes can also lead to yet another type of latch free wait: the cache buffer chain latch free
wait. These wait events are often due to the presence of hot blocks, so you need to investigate why
that might be happening. If you see a high value for row cache object latch waits, it indicates conten-
tion for the dictionary cache, and you need to increase the shared pool memory allocation.

In most instances, latch waits tend to show up as a wait event, and DBAs sometimes are alarmed
by their very presence in the wait event list. As with the other Oracle wait events, ask yourself this
question: “Are these latch waits a significant proportion of my total wait time?” If the answer is no,
don’t worry about it—your goal isn’t to try and eliminate all waits in the instance, because you can’t
do it.

Log Buffer Space

The log buffer space wait event indicates that a process waited for space in the log buffer. Either
the log buffer is too small or the redo is being written faster than the log writer process can write it to
the redo log buffer. If the redo log buffer is already large, then investigate the I/O to the disk that
houses the redo log files. There’s probably some contention for the disk, and you need to work on
reducing the I/O contention. This type of wait usually shows up when the log buffer is too small, in
which case you increase the log buffer size. A large log buffer tends to reduce the redo log I/O in
general. Note that Oracle’s default value for this parameter is several megabytes in size. If you have
a large number of huge transactions, you might want to bump up the value of the LOG_BUFFER initial-
ization parameter from its default value, although too high a value means that too much data may
have to be written to the redo log files at one time.

Log File Switch

The log file switch wait event can occur when a session is forced to wait for a log file switch because
the log file hasn’t yet been archived. It can also occur because the log file switch is awaiting the
completion of a checkpoint.

If the problem isn’t due to the archive destination getting full, it means that the archive process
isn’t able to keep up with the rate at which the redo logs are being archived. In this case, you need to
increase the number of archiver (ARCn) processes to keep up with the archiving work. The default

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1181

for the ARCn process is 2. This is a static parameter, so you can’t use this fix to resolve a slowdown
right away.

You also need to investigate whether too-small redo log files are contributing to the wait for the log
file switch. If the log file switch is held up pending the completion of a checkpoint, obviously the
log files are too small and hence are filling up too fast. You need to increase the size of the redo log files
in this case. Redo log files are added and dropped online, so you can consider this a dynamic change.

If you see high values for redo log space requests in V$SYSSTAT, that means that user processes
are waiting for space in the redo log buffer. This is because the log writer process can’t find a free redo
log file to empty the contents of the log buffer. Resize your redo logs, with the goal of having a log
switch every 15 to 30 minutes.

Log File Sync

You’ll see a high number of waits under the log file sync category if the server processes are
frequently waiting for the log writer process to finish writing committed transactions (redo) to the
redo log files from the log buffer. This is usually the result of too-frequent commits, and you can
reduce it by adopting batch commits instead of a commit after every single transaction. This wait
event may also be the result of an I/O bottleneck.

Idle Events

You can group some wait events under the category idle events. Some of these may be harmless in
the sense that they simply indicate that an Oracle process was waiting for something to do. These
events don’t indicate database bottlenecks or contention for Oracle’s resources. For example, the
system may be waiting for a client process to provide SQL statements for execution. The following
list presents some common idle events:

• Rdbms ipc message: This is used by the background process, such as the log writer process and
PMON, to indicate they are idle.

• SMON timer: The SMON process waits on this event.

• PMON timer: This indicates the PMON process idle event.

• SQL*Net message from client: This is the user process idle event.

You should ignore many idle events during your instance performance tuning. However, some
events, such as the SQL*Net message from client event, may indicate that your application isn’t
using an efficient database connection strategy. In this case, you need to see how you can reduce
these waits, maybe by avoiding frequent logging on and off by applications.

Examining System Performance
You can use the various operating system tools, such as vmstat, to examine system performance.
You can also use the new V$OSSTAT dynamic view to figure out the performance characteristics
of your system. The V$OSSTAT view provides operating system statistics in the form of busy ticks.

Here are some of the key system usage statistics:

• NUM_CPUS: Number of processors

• IDLE_TICKS: Number of hundredths of a second that all processors have been idle

• BUSY_TICKS: Number of hundredths of a second that all processors have been busy executing
code

• USER_TICKS: Number of hundredths of a second that all processors have been busy executing
user code

1182 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

• SYS_TICKS: Number of hundredths of a second that all processors have been busy executing
kernel code

• IOWAIT_TICKS: Number of hundredths of a second that all processors have been waiting for
I/O to complete

The AVG_IDLE_WAITS, AVG_BUSY_TICKS, AVG_USER_TICKS, AVG_SYS_TICKS, and AVG_
IOWAIT_TICKS columns provide the corresponding information average over all the processors.
Here’s a simple example that shows how to view the system usage statistics captured in the
V$OSSTAT view:

SQL> SELECT * FROM V$OSSTAT;

STAT_NAME VALUE OSSTAT_ID
----------------------- ---------- ---------
NUM_CPUS 16 0
IDLE_TICKS 17812 1
BUSY_TICKS 2686882247 2
USER_TICKS 1936724603 3
SYS_TICKS 750157644 4
IOWAIT_TICKS 1933617293 5
AVG_IDLE_TICKS 545952047 7
AVG_BUSY_TICKS 167700614 8
AVG_USER_TICKS 120815895 9
AVG_SYS_TICKS 46655696 10
AVG_IOWAIT_TICKS 120621649 11
OS_CPU_WAIT_TIME 5.3432E+13 13
RSRC_MGR_CPU_WAIT_TIME 0 14
IN_BYTES 6.2794E+10 1000
OUT_BYTES 0 1001
AVG_IN_BYTES 1.7294E+19 1004
AVG_OUT_BYTES 0 1005

17 rows selected.

SQL>

Know Your Application
Experts rely on hit ratios or wait statistics, or sometimes both, but there are situations in which both
the hit ratios and the wait statistics can completely fail you. Imagine a situation where all the hit
ratios are in the 99 percent range. Also, imagine that the wait statistics don’t show any significant
waiting for resources or any contention for latches. Does this mean that your system is running opti-
mally? Well, your system is doing what you asked it to do extremely well, but there’s no guarantee
that your SQL code is processing things efficiently. If a query is performing an inordinate number of
logical reads, the hit ratios are going to look wonderful. The wait events also won’t show you a whole
lot, because they don’t capture the time spent while you were actually using the CPU. However,
you’ll be burning a lot of CPU time, because the query is making too many logical reads.

This example shows why it’s important not to rely only on the hit ratios or the wait statistics, but
also to look at the major consumers of resources on your instance with an intense focus. Check the
Top Sessions list (sorted according to different criteria) on your instance and see if there’s justifica-
tion for the major consumers to be in that list.

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1183

Above all, try not to confuse the symptoms of poor performance with the causes of poor perfor-
mance. If your latch rate is high, you might want to adjust some initialization parameters right away—
after all, isn’t Oracle a highly configurable database? You may succeed sometimes by relying solely
on adjusting the initialization parameters, but it may be time to pause and question why exactly the
latch rate is so high. More than likely, the high latch rate is due to application coding issues rather
than a specific parameter setting. Similarly, you may notice that your system is CPU bound, but the
reason may not be slow or inadequate CPU resources. Your application may again be the real culprit
because it’s doing too many unnecessary I/Os, even if they’re mostly from the database buffer cache
and not disk.

When you’re examining wait ratios, understand that your goal isn’t to make all the wait events
go away, because that will never happen. Learn to ignore the unimportant, routine, and unavoidable
wait events. As you saw in the previous section, wait events such as the SQL*Net message from client
event reflect waits outside the database, so don’t attribute these waits to a poorly performing database.
Focus on the total wait time rather than the number of wait events that show up in your performance
tables and AWR reports. Also, if the wait events make up only a small portion of response time, there’s no
point in fretting about them. As Einstein might say, the significance of wait events is relative—rela-
tive to the total response time and relative to the total CPU execution time.

Recently, there has been a surge in publications expounding the virtues of the wait event anal-
ysis-based performance approach (also called the wait interface approach). You can always use the
buffer hit ratios and the other ratios for a general idea about how the system is using Oracle’s memory
and other resources, but an analysis of wait events is still a better bet in terms of improving perfor-
mance. If you take care of the wait issues, you’ll have taken care of the traditional hit ratios as well.
For example, if you want to fix a problem that’s the result of a high number of free buffer waits, you
may need to increase the buffer cache. Similarly, if latch free wait events are troublesome, one of the
solutions is to check whether you need to add more memory to the shared pool. You may fix a problem
due to a high level of waits caused by the direct path reads by increasing the value of the PGA_
AGGREGATE_TARGET parameter.

EXAMINING SQL RESPONSE TIME WITH THE DATABASE CONTROL

You can use the OEM Database Control to examine quickly the current SQL response time compared to a normal
“baseline” SQL response time. The Database Control computes the SQL response time percentage by dividing the
baseline SQL response time by the current SQL response time, both expressed in microseconds. If the SQL response
time percentage exceeds 100 percent, then the instance is processing SQL statements slower than the baseline
times. If the percentage is approximately equal to 100 percent, then the current response time and the baseline
response time are equal, and your instance is performing normally. The SQL Response Time section is right on the
Database Control home page.

Using the ADDM to Analyze Performance Problems
There’s no question that the new ADDM tool should be the cornerstone of your performance-tuning
efforts. In Chapter 17, I showed how you can manually get an ADDM report or use the OEM Database
Control to view the ADDM analysis. Use the findings and recommendations of the ADDM advisor to
fine-tune database performance. Here’s the partial output from an ADDM analysis (invoked by
running the addmrpt.sql script located in the $ORACLE_HOME/rdbms/admin directory). Listing 20-18
shows part of an ADDM report.

1184 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

Listing 20-18. An Abbreviated ADDM Report

 DETAILED ADDM REPORT FOR TASK 'TASK_1493' WITH ID 1493

 Analysis Period: 22-JUL-2008 from 07:01:02 to 17:00:36
 Database ID/Instance: 877170026/1
 Database/Instance Names: NINA/nina
 Host Name: finance1
 Database Version: 10.2.0.0
 Snapshot Range: from 930 to 940
 Database Time: 801313 seconds
 Average Database Load: 22.3 active sessions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
FINDING 1: 24% impact (193288 seconds)
--------------------------------------
The buffer cache was undersized causing significant additional read I/O.

   RECOMMENDATION 1: DB Configuration, 24% benefit (193288 seconds)
      ACTION: Increase SGA target size by increasing the value of parameter
         "sga_target" by 1232 M.
   SYMPTOMS THAT LED TO THE FINDING:
      Wait class "User I/O" was consuming significant database time. (54%
      impact [436541 seconds])
FINDING 2: 19% impact (150807 seconds)
--------------------------------------
SQL statements consuming significant database time were found.
   RECOMMENDATION 1: SQL Tuning, 4.4% benefit (34936 seconds)
      ACTION: Run SQL Tuning Advisor on the SQL statement with SQL_ID
         "b3bkjk3ybcp5p".
         RELEVANT OBJECT: SQL statement with SQL_ID b3bkjk3ybcp5p and
         PLAN_HASH 954860671
. . .

ADDM may sometimes recommend that you run the Segment Advisor for a certain segments, 
or the Automatic SQL Advisor for a specific SQL statement. See Chapter 17 for a detailed analysis of 
an ADDM performance report.

Using AWR Reports for Individual SQL Statements
In Chapter 17, you learned how to use AWR reports to analyze the performance of the database 
during a time period encompassed by a pair of snapshots. As explained in that chapter, AWR reports 
are an excellent source of information for wait-related as well as other instance performance indica-
tors. You can also use the AWR to produce reports displaying performance statistics for a single SQL 
statement, over a range of snapshot IDs. Listing 20-19 shows how you can get an AWR report for a 
particular SQL statement.

■Note  The awrsqrpt.sql script seems to run slower than the instance-wide report-generating AWR script, 
awrrpt.sql, that you encountered in Chapter 17 during the introduction to AWR.



CH A PT E R  2 0  ■  P E R F O R M AN CE  TU N I N G :  TU N IN G  TH E  I N S TA N CE 1185

Listing 20-19. Producing an AWR Report for a Single SQL Statement

SQL> @$ORACLE_HOME/rdbms/admin/awrsqrpt.sql
Current Instance
~~~~~~~~~~~~~~~~
 DB Id DB Name Inst Num Instance
----------- ------------ -------- ------------
 877170026 PASPROD 1 pasprod
Specify the Report Type
~~~~~~~~~~~~~~~~~~~~~~~
Would you like an HTML report, or a plain text report?
Enter 'html' for an HTML report, or 'text' for plain text
Defaults to 'html'
Enter value for report_type:  text

Type Specified:                  text
Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 DB Id Inst Num DB Name Instance Host
------------ -------- ------------ ------------ ------------
* 877170026 1 PASPROD pasprod prod1
Using 877170026 for database Id
Using 1 for instance number
Specify the number of days of snapshots to choose from
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Entering the number of days (n) will result in the most recent
(n) days of snapshots being listed.  Pressing <return> without
specifying a number lists all completed snapshots.

Enter value for num_days: 3
Listing the last 3 days of Completed Snapshots
Instance  DB Name  Snap Id    Snap Started          Level
------------ ------------ --------- ------------------ -----
pasprod   PASPROD   1     3829 23 Apr 2008 00:01      1
                          3830 23 Apr 2008 02:00      1
                          3832 23 Apr 2008 03:00      1
                          3833 23 Apr 2008 04:00      1
                          3834 23 Apr 2008 05:00      1
                          3835 23 Apr 2008 06:00      1
                    Specify the Begin and End Snapshot Ids
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Enter value for begin_snap: 3830
Begin Snapshot Id specified: 3830
Enter value for end_snap: 3835
End Snapshot Id specified: 3835
Specify the Report Name
~~~~~~~~~~~~~~~~~~~~~~~
The default report file name is 1_3830_3835.  To use this name,
press <return> to continue, otherwise enter an alternative.
Enter value for report_name
Using the report name 1_3830_3835
Specify the SQL Id
~~~~~~~~~~~~~~~~~~
Enter value for sql_id: 9a64dvpzyrzza:

1186 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

Operating System Memory Management
You can use the vmstat utility, as explained in Chapter 3, to find out whether enough free memory is
on the system. If the system is paging and swapping, database performance will deteriorate and you
need to investigate the causes. If the heavy consumption of memory is due to a non-Oracle process,
you may want to move that process off the peak time for your system. You may also want to consider
increasing the size of the total memory available to the operating system. You can use the vmstat
command to monitor virtual memory on a UNIX system. The UNIX tool top shows you CPU and
memory use on your system.

Analyzing Recent Session Activity with an ASH Report
The V$ACTIVE_SESSION_HISTORY view records active session activity by sampling all active sessions
on a per-second basis. The V$ACTIVE_SESSION_HISTORY view’s column data is similar to that of
the V$SESSION history view, but contains only sample data from active sessions. An active session
could be on the CPU, or could be waiting for a wait event that’s not part of the idle wait class. When
the AWR performs its snapshot, the data in the V$ACTIVE_SESSION_HISTORY view is flushed to
disk as part of the AWR snapshot data. However, the data in the V$ACTIVE_SESSION_HISTORY
VIEW isn’t permanently lost when the AWR flushes the view’s contents during its snapshots. Another
view, the DBA_HIST_ACTIVE_SESS_HISTORY, stores snapshots of the
V$ACTIVE_SESSION_HISTORY view.

You don’t have to use either of the two ACTIVE_SESSION_HISTORY–related views to analyze
session history. You can simply produce an ASH report, which contains both the current active
session data from the V$ACTIVE_SESSION_HISTORY view as well as the historical active session
data stored in the DBA_HIST_ACTIVE_SESS_HISTORY view. The ASH report shows you the SQL
identifier of SQL statements, object information, session information, and relevant wait event
information.

You can produce an ASH report by simply going to the OEM Database Control, or by running an
Oracle-provided script. In fact, Oracle provides you with two ASH-related scripts, as follows:

• The ashrpt.sql script produces an ASH report for a specified duration for the default database.

• The ashrpti.sql script produces the same report as the ashrpt.sql script, but lets you specify
a database instance.

Actually, the ashrpt.sql script defaults the DBID and instance number to those of the current
instance, and simply runs the ashrpti.sql script. Both of the preceding described scripts are avail-
able in the $ORACLE_HOME/rdbms/admin directory. Here’s how you get an ASH report for your instance:

SQL> @ORACLE_HOME/rdbms/admin/ashrpt.sql

You can then look at the ASH report, which is placed in the directory from which you ran the
ashrpt.sql script. Chapter 18 explains a typical ASH report, in the section titled “Producing an ASH
Report.”

When a Database Hangs
So far in this chapter, you’ve looked at ways to improve performance—how to make the database go
faster. Sometimes, however, your problem is something much more serious: the database seems to
have stopped all of a sudden! The following sections describe the most important reasons for a hanging
or an extremely slow-performing database, and how you can fix the problem ASAP.

One of the first things I do when the database seems to freeze is check and make sure that the
archiver process is doing its job. The following sections describe the archiver process.

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1187

Handling a Stuck Archiver Process
If your archive log destination is full and there isn’t room for more redo logs to be archived, the
archiver process is said to be stuck. The database doesn’t merely slow down—it freezes in its tracks.
As you are aware, in an archive log mode the database simply won’t overwrite redo log files until
they’re archived successfully. Thus, the database starts hanging when the archive log directory is
full. It stays in that mode until you move some of the archive logs off that directory manually.

The Archiver Process

The archiver process is in charge of archiving the filled redo logs. It reads the control files to find out
if there are any unarchived redo logs that are full, and then it checks the redo log headers and blocks
to make sure they’re valid before archiving them. You may have archiving-related problems if you’re
in the archive log mode but the archiver process isn’t running for some reason. In this case, you need
to start the archiver process by using the following command:

SQL> ALTER SYSTEM ARCHIVE LOG START;

If the archiver process is running but the redo logs aren’t being archived, then you may have
a problem with the archive log destination, which may be full. This causes the archiver process to
become stuck, as you’ll learn in the next section.

Archiver Process Stuck?

When the archiver process is stuck, all database transactions that involve any changes to the tables
can’t proceed any further. You can still perform SELECT operations, because they don’t involve the
redo logs.

If you look in the alert log, you can see the Oracle error messages indicating that the archiver
process is stuck due to lack of disk space. You can also query the V$ARCHIVE view, which holds infor-
mation about all the redo logs that need archiving. If the number of these logs is high and increasing
quickly, you know your archiver process is stuck and that you need to clear it manually. Listing 20-20
shows the error messages you’ll see when the archiver process is stuck.

Listing 20-20. Database Hang Due to Archive Errors

$ sqlplus system/system_passwd
ERROR:
ORA-00257: archiver error. Connect internal only, until freed.
$
$ oerr ora 257
00257, 00000, "archiver error. Connect internal only, until freed."
//*Cause: The archiver process received an error while trying to
// archive a redo log. If the problem is not resolved soon, the
// database will stop executing transactions. The most likely cause
// of this message is the destination device is out of space to
// store the redo log file.
// *Action: Check archiver trace file for a detailed description
// of the problem. Also verify that the device specified in the
// initialization parameter ARCHIVE_LOG_DEST is set up properly for
// archiving.
$

1188 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

You can do either of the following in such a circumstance:

• Redirect archiving to a different directory.

• Clear the archive log destination by removing some archive logs. Just make sure you back up
the archive logs to tape before removing them.

Once you create more space in the archive log directory, the database resumes normal opera-
tions, and you don’t have to do anything further. If the archiver process isn’t the cause of the hanging
or frozen database problem, then you need to look in other places to resolve the problem.

If you see too many “checkpoint not complete” messages in your alert log, then the archiver
process isn’t causing the problem. The redo logs are causing the database slowdown, because they’re
unable to keep up with the high level of updates. You can increase the size of the redo logs online
to alleviate the problem.

■Note The database logs all connections as SYS in the default audit trail, which is usually the $ORACLE_HOME/
rdbms/audit directory. If you don’t have adequate space in that directory, it may fill up eventually, and you’ll
get an error when you try logging in as the SYS user. Delete the old audit trail files or choose an alternative location
for them.

System Usage Problems
You need to check several things to make sure there are no major problems with the I/O subsystem
or with the CPU usage. Here are some of the important things you need to examine:

• Make sure your system isn’t suffering from a severe paging and swapping problem, which
could result in a slower-performing database.

• Use top, sar, vmstat, or similar operating-system–level tools to check resource usage. Large
queries, sorting, and space management operations could all lead to an increase in CPU usage.

• Runaway processes and excessive snapshot processes (SNPs) could gobble excessive CPU
resources. Monitor any replication (snapshot) processes or DBMS_JOB processes, because
they both use resource-hungry SNP processes. If CPU usage spikes, make sure no unexpected
jobs are running in the database. Even if no jobs are executing currently, the SNP processes
consume a great deal of CPU because they have to query the job queue constantly.

• High run queues indicate that the system is CPU bound, with processes waiting for an available
processor.

• If your disk I/O is close to or at 100 percent and you’ve already killed several top user sessions,
you may have a disk controller problem. For example, the 100 percent busy disk pack might
be using a controller configured to 16-bit, instead of 32-bit like the rest of the controllers,
causing a severe slowdown in I/O performance.

Excessive Contention for Resources
Usually when people talk about a database hang, they’re mistaking a severe performance problem
for a database hang. This is normally the case when there’s severe contention for internal kernel-level
resources such as latches and pins. You can use the following query to find out what the contention
might be:

SQL> SELECT event, count(*)
 2 from v$session_wait
 3 group by event;

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1189

EVENT COUNT(*)
---------------------------- --------
PL/SQL lock timer 2
Queue Monitor Wait 1
SQL*Net message from client 61
SQL*Net message to client 1
jobq slave wait 1
pmon timer 1
rdbms ipc message 11
smon timer 1
wakeup time manager 1

9 rows selected.

SQL>

The previous query doesn’t reveal any significant contention for resources—all the waits are for
idle events.

If your database is performing an extremely high number of updates, contention for resources
such as undo segments and latches could potentially be a major source of database-wide slowdowns,
making it seem sometimes like the database is hanging. In the early part of this chapter, you learned
how to analyze database contention and wait issues using the V$SESSION_WAIT view and the AWR
output. On Windows servers, you can use the Performance Monitor and Event Monitor to locate
possible high resource usage.

Check for excessive library cache contention if you’re confronted by a database-wide slowdown.

Locking Issues
If a major table or tables are locked unbeknownst to you, the database could slow down dramatically
in short order. Try running a command such as SELECT * FROM persons, for example, where persons
is your largest table and is part of just about every SQL statement. If you aren’t sure which tables (if
any) might be locked, you can run the following statement to identify the table or index that’s being
locked, leading to a slow database:

SQL> SELECT l.object_id, l.session_id,
 2 l.oracle_username, l.locked_mode,
 3 o.object_name
 4 FROM V$LOCKED_OBJECT l,
 5 DBA_OBJECTS o
 6* WHERE o.object_id=l.object_id;

OBJECT_ID SESSION_ID ORACLE_USERNAME LOCKED_MODE OBJECT_NAME
--------- ---------- --------------- ----------- -----------
 6699 22 NICHOLAS 6 EMPLOYEES
SQL>

As the preceding query and its output show, user Nicholas has locked up the Employees table. If this
is preventing other users from accessing the table, you have to remove the lock quickly by killing the
locking user’s session. You can get the locking user’s SID from the session_id column in the preceding
output, and the V$SESSION view gives you the SERIAL# that goes with it. Using the ALTER SYSTEM KILL .
. . command, you can then kill the offending session. The same analysis applies to a locked index, which
prevents users from using the base table. For example, an attempt to create an index or rebuild it when
users are accessing the table can end up inadvertently locking up the table.

If there’s a table or index corruption, that could cause a problem with accessing that object(s).
You can quickly check for corruption by running the following statement:

1190 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

SQL> ANALYZE TABLE employees VALIDATE STRUCTURE CASCADE;
Table analyzed.
SQL>

Abnormal Increase in Process Size
On occasion, there might be a problem because of an alarming increase in the size of one or more
Oracle processes. You have to be cautious in measuring Oracle process size, because traditional
UNIX-based tools can give you a misleading idea about process size. The following sections explain
how to measure Oracle process memory usage accurately.

What Is Inside an Oracle Process?

An Oracle process in memory has several components:

• Shared memory: This is the SGA that you’re so familiar with.

• The executable: Also known as TEXT, this component consists of the machine instructions.
The TEXT pages in memory are marked read-only.

• Private data: Also called DATA or heap, this component includes the PGA and the User Global
Area (UGA). The DATA pages are writable and aren’t shared among processes.

• Shared libraries: These can be private or public.

When a new process starts, it requires only the DATA (heap) memory allocation. Oracle uses the
UNIX implementation of shared memory. The SGA and TEXT components are visible to and shared
by all Oracle processes, and they aren’t part of the cost of creating new Oracle processes. If 1,000
users are using Oracle Forms, only one set of TEXT pages is needed for the Forms executable.

Unfortunately, most operating system tools such as ps and top give you a misleading idea as to
the process size, because they include the common shared TEXT sizes in individual processes. Some-
times they may even include the SGA size. Solaris’s pmap and HP’s glance are better tools from this
standpoint, as they provide you with a more accurate picture of memory usage at the process level.

■Note Even after processes free up memory, the operating system may not take the memory back, indicating
larger process sizes as a result.

Measuring Process Memory Usage

As a result of the problems you saw in the previous section, it’s better to rely on Oracle itself for a true
indication of its process memory usage. If you want to find out the total DATA or heap memory size
(the biggest nonsharable process memory component), you can do so by using the following query:

SQL> SELECT value, n.name|| '('||s.statistic#||')', sid
 FROM v$sesstat s, v$statname n
 WHERE s.statistic# = n.statistic#
 AND n.name like '%ga memory%'
 ORDER BY value;

If you want to find out the total memory allocated to the PGA and UGA memory together, you
can issue the command in the next example. The query reveals that a total of more than 367MB of
memory is allocated to the processes. Note that this memory is in addition to the SGA memory allo-
cation, so you need to make allowances for both types of memory to avoid paging and swapping issues.

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1191

SQL> SELECT SUM(value)
 FROM V$SESSSTAT s, V$STATNAME n
 WHERE s.statistic# = n.statistic#
 AND n.name like '%ga memory%';

SUM(VALUE)

3674019536
1 row selected.
SQL>

If the query shows that the total session memory usage is growing abnormally over time, you
might have a problem such as a memory leak. A telltale sign of a memory leak is when Oracle’s memory
usage is way outside the bounds of the memory you’ve allocated to it through the initialization
parameters. The Oracle processes are failing to return the memory to the operating system in this
case. If the processes continue to grow in size, eventually they may hit some system memory barriers
and fail with the ora 4030 error:

$ oerr ora 4030
04030, 00000, "out of process memory when trying to allocate %s bytes (%s,%s)"
// *Cause: Operating system process private memory has been exhausted
$

Note that Oracle tech support may request that you collect a heap dump of the affected Oracle
processes (using the oradebug tool) to fix the memory leak problem.

If your system runs out of swap space, the operating system can’t continue to allocate any more
virtual memory. Processes fail when this happens, and the best way to get out of this mess is to see
whether you can quickly kill some of the processes that are using a heavy amount of virtual memory.

Delays Due to Shared Pool Problems
Sometimes, database performance deteriorates dramatically because of inadequate shared pool
memory. Low shared pool memory relative to the number of stored procedures and packages in your
database could lead to objects constantly aging out of the shared pool and having to be executed
repeatedly.

Problems Due to Bad Statistics
As you know by now, the Oracle Cost-Based Optimizer (CBO) needs up-to-date statistics so it can
pick the most efficient method of processing queries. If you’re using the Automatic Optimizer Statis-
tics Collection feature, Oracle will naturally keep optimizer statistics up to date for you without any
effort on your part. However, if you have deactivated the automatic statistics collection process, you
could run the risk of not providing representative statistics to the CBO.

If you don’t collect statistics regularly while lots of new data is being inserted into tables, your
old statistics will soon be out of date, and the performance of critical SQL queries could head south.
DBAs are under time constraints to collect statistics overnight or over a weekend. Sometimes, they
may be tempted to use a small sample size while using the DBMS_STATS package to collect statistics.
This could lead to unreliable statistics, resulting in the slowing down of query processing.

Collecting Information During a Database Hang
It can sometimes be downright chaotic when things come to a standstill in the database. You might
be swamped with phone calls and anxious visitors to your office who are wondering why things are
slow. Oftentimes, especially when serious unknown locking issues are holding up database activity,

1192 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

it’s tempting just to bounce the database because usually that clears up the problem. Unfortunately,
you don’t know what caused the problem, so when it happens again, you’re still just as ignorant as
you were the first time. Bouncing the database also means that you’re disconnecting all active users,
which may not always be a smart strategy.

It’s important that you collect some information quickly for two reasons. First, you might be
able to prevent the problem next time or have someone in Oracle tech support (or a private firm)
diagnose the problem using their specialized tools and expertise in these matters. Second, most
likely a quick shutdown and restart of the database will fix the problem for sure (as in the case of
some locking situations, for example). But a database bounce is too mighty a weapon to bring to bear
on every similar situation. If you diagnose the problem correctly, simple measures may prevent the
problem or help you fix it when it does occur. The following sections describe what you need to do
to collect information on a slow or hanging database.

Using the Database Control’s Hang Analysis Page
You can use OEM’s Database Control during an instance slowdown to see a color-coded view of all
sessions in the database. The Hang Analysis page provides the following information:

• Instantaneously blocked sessions

• Sessions in a prolonged wait state

• Sessions that are hung

Figure 20-1 shows the Database Control Hang Analysis page, which you can access from the
Performance page. Click the Hang Analysis link under the Additional Monitoring Links section.

Figure 20-1. The Database Control Hang Analysis page

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1193

Gathering Error Messages

The first thing you do when you find out the database suddenly slowed down or is hanging is to look
in some of the log files where Oracle might have sent a message. Quickly look in the alert log file to
see whether there are any Oracle error messages or any other information that could pinpoint any
problems. You can check the directory for background dumps for any other trace files with error
messages. I summarize these areas in the following discussion.

Getting a Systemstate Dump

A systemstate dump is simply a trace file that is output to the user dump directory. Oracle (or a qualified
expert) can analyze these dumps and tell you what was going on in the database when the hanging situ-
ation occurred. For example, if logons are slow, you can do a systemstate dump during this time, and it
may reveal that most of the waits are for a particular type of library cache latch. To get a system-
state dump (for level 10), run the following command:

SQL> ALTER SESSION SET EVENTS ‘immediate trace name systemstate level 10’;
Session altered.
SQL>

■Caution Oracle Corp. strongly warns against customers setting events on their own. You may sometimes end
up causing more severe problems when you set events. Please contact Oracle technical support before you set any
event. For example, the event 10235 has been known to cause heavy latch contention.

You can send the resulting output to Oracle so it can analyze the output for you. Note that at this
stage, you need to open a technical assistance request (TAR) with Oracle technical support through
MetaLink (http://metalink.oracle.com). (The hanging database problem gets you a priority level 1
response, so you should hear from an analyst within minutes.) Oracle technical support may ask you
for more information, such as a core dump, and ask you to run a debugger or another diagnostic tool
and FTP the output to them.

Using the Hanganalyze Utility

The systemstate dumps, although useful, have several drawbacks, including the fact that they dump
out too much irrelevant information and take too much time to complete, leading to inconsistencies
in the dump information. The newer hanganalyze utility is more sophisticated than a systemstate
dump. Hanganalyze provides you with information on resources each session is waiting for, and
what is blocking access to those resources. The utility also provides you with a dependency graph
among the active sessions in the database. This utility isn’t meant to supplant the systemstate
dumps; rather, you should use it to help make systemstate dumps more meaningful. Again, use this
utility in consultation with Oracle technical support experts. Here’s a typical HANGANALYZE command:

SQL> ALTER SESSION SET EVENTS 'immediate trace name HANGANALYZE level 3';

THE PROMISE AND THE PERFORMANCE

A few years ago, the Immigration and Naturalization Service (INS) of the United States created a new $36 million
Student and Exchange Visitor Information System (SEVIS) to replace the old paper-based methods the INS had used
for years to track foreign students in U.S. educational institutions. More than 5,400 high schools, colleges, and
universities have to use SEVIS to enter the necessary information about enrolled students from other countries.

1194 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

The INS had imposed a deadline by which all educational institutions had to switch over fully to the SEVIS system.
However, it extended the deadline by at least two weeks amid several complaints about the system working slowly,
if at all. Here are a few of those complaints from users across the country:

• Some employees in Virginia could enter data only in the mornings, before the West Coast institutions logged
onto the system. In the afternoons, the system slowed to a crawl.

• From the University of Minnesota came complaints that that the officials were “completely unable” to use the
system at all. The users mentioned that the system “was really jammed with users trying to get on.” They also
complained that the system was “unbelievably slow.” An INS spokesperson admitted that the system had
been “somewhat sluggish” and that schools were having trouble using the SEVIS system.

• The University of North Carolina complained that the situation, if it continued any further, was going to be “a
real nightmare” and that it was already “starting to cause some problems.”

• One worker at a college in Michigan was quoted as saying this in frustration: “Please tell me what I’m doing
wrong, or I am going to quit.”

The INS realized the colleges and universities weren’t going to meet the deadline, and they announced a grace period
after saying that “upgrades to the system” had greatly improved performance.

Behind the SEVIS system is an Oracle database that was performing awfully slowly. The system apparently couldn’t
scale well enough. When a large number of users got on, it ground to a halt. Obviously, the system wasn’t configured
to handle a high number of simultaneous operations. Was the shared server approach considered, for example? How
were the wait statistics? I don’t know the details. I do know that the Oracle database is fully capable of meeting the
requirements of an application such as this. I picked this example to show that even in high-profile cases, DBAs
sometimes have to eat humble pie when the database isn’t tuned properly and consequently performance doesn’t
meet expectations.

A Simple Approach to Instance Tuning
Most of the instance tuning that DBAs perform is in response to a poorly performing database. The
following sections present a brief summary of how you can start analyzing the instance to find out
where the problem lies.

First, examine all the major resources such as the memory, CPUs, and storage subsystem to
make sure your database isn’t being slowed down by bottlenecks in these critical areas.

■Note Collecting baseline data about your database statistics, including wait events, is critically important for
troubleshooting performance issues. If you have baseline data, you can immediately check whether the current
resource-usage patterns are consistent with the load on the system.

What’s Happening in the Database?
It isn’t rare for a single user’s SQL query to cause an instance-wide deterioration in performance if
the query is bad enough. SQL statements are at the root of all database activity, so you should look
at what’s going on in the database right now. The following are some of the key questions to which
you need to find answers:

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1195

• Who are the top users in your Top Sessions display?

• What are the exact SQL statements being executed by these users?

• Is the number of users unusually high compared to your baseline numbers for the same time
period?

• Is the load on the database higher than what your baseline figures show for the time of the day
or the time of the week or month?

• What top waits can you see in the V$SESSION or the V$SESSION_WAIT view? These real-time
views show the wait events that are happening right now or that have just happened in the
instance. You have already seen how you can find out the actual users responsible for the
waits by using other V$ views.

A critical question here is whether the performance problem du jour is something that’s sudden
without any forewarnings or if it’s caused by factors that have been gradually creeping up on you.
Under the latter category are things such as a growing database, a larger number of users, and a larger
number of DML operation updates than what you had originally designed the system for. These
types of problems may mean that you need to redesign at least some of your tables and indexes with
different storage parameters, and other parameters such as freelists. If, on the other hand, the data-
base has slowed down suddenly, you need to focus your attention on a separate set of items.

Your best bet for analyzing what’s happening in the database currently is to probe the ASH. You
can easily find out the users, the objects, and the SQL causing the waits in your instance by using the
queries based on V$ACTIVE_SESSION_HISTORY, which I explained in the section “Using the
V$ACTIVE_SESSION_HISTORY View” earlier in this chapter. You can also run a quick ASH report
encompassing the past few minutes to see where the bottlenecks may lie, and who is causing them.

■Tip The OEM Database Control provides the Gather Statistics Wizard, which you can use if there are perfor-
mance issues due to out-of-date statistics for fixed and dictionary objects.

Using the OEM Database Control to Examine
Database Performance
I reviewed the OEM Database Control and Grid Control in Chapter 19. It’s nice to learn about all the
different V$ views regarding waits and performance, but nothing beats the Database Control when
it comes to finding out quickly what’s happening in your database at any given time. I present a simple
approach to using the Database Control’s various performance-related pages in the following sections.

The Database Control Home Page

Start your performance analysis by looking at the following three instance performance charts on
the Database Control’s home page. Figure 20-2 shows the Database Control home page.

1196 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

Figure 20-2 the OEM Database Control home page

Host CPU

The CPU consumption on the host server is shown in the form of a bar chart. The chart shows two
categories: the instance and another category called other, which represents all the processes that
don’t belong to the database instance.

Active Sessions

The Active Sessions chart is a key chart, because it shows the extent of performance bottlenecks in
your database instance. The chart consists of three components:

• CPU

• User I/O

• Wait

The Active Sessions chart shows the time consumed by the three items: CPU, User I/O, and
Wait. You can drill down to each of these categories by clicking on the respective links. Note that the
Wait category includes all waits in the instance except User I/O, which is shown in a separate cate-
gory by itself.

SQL Response Time

The SQL Response Time chart provides a quick idea about how efficiently the instance is executing
SQL statements. If the current SQL response ratio exceeds the baseline response ratio of 100 percent,
then the SQL statements are executing slower than “normal.” If the SQL Response Time shows a
small response percentage, then you have inefficient SQL statement processing in the instance.

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1197

■Note If you have a pre-Oracle Database 10g database, you may have to configure certain things for the SQL
activity metrics to show up in the SQL Response Time chart. You do this by using the Database Configuration wizard,
which you activate by clicking the Configure button in the SQL Activity Monitoring file under the Diagnostic Summary.

Using the ADDM Analysis in the Performance Analysis Section

The Performance Analysis section of the Database Control home page summarizes the most recent
ADDM analysis. Figure 20-3 shows the Performance Analysis section. From here, you can click any
of the findings to analyze any performance issues further. ADDM reports, which use the AWR statistics,
provide you with a quick top-down analysis of instance activity.

Figure 20-3. Summary of ADDM findings

Using the Database Performance Page

The Database Performance page is your jump-off point for evaluating instance performance. This
page helps you do the following:

• Check for problems both within the database and the system.

• Run the ASH report to get a quick session-sampling data-based performance diagnostic report.

• Quickly see what bottlenecks exist within the system.

• Run ADDM reports.

• For slow or hung systems, access the Memory Access Mode.

1198 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

Using the Memory Access Mode

You can view the Performance page in the default mode, which is called the SQL Access Mode, or the
new Memory Access Mode. The SQL Access Mode works through SQL statements that mostly query
the V$ dynamic performance view to obtain instance performance data. However, when the data-
base is running painfully slowly, or is completely hung, running in the SQL Access Mode puts further
stress due to the additional parsing and execution load of the SQL statements run by the OEM inter-
face to diagnose instance performance. If your instance is already facing heavy library cache contention,
your attempt to diagnose the problem will exacerbate the situation.

Oracle recommends that you switch to the Memory Access Mode while diagnosing slow or hung
systems. Under this mode, the database gets its diagnostic information straight from the SGA, using
more lightweight system calls than the resource-intensive SQL statements that are employed during
the default SQL Access Mode. Because the data is sampled more frequently under the Memory
Access Mode, you’re less likely to miss events that span short intervals of time as well. Figure 20-4
shows how to use the drop-down window to switch between the Memory Access Mode and the SQL
Access Mode.

Figure 20-4. Using the Performance page in the Memory Access Mode

The following sections describe the main charts you’ll see on the Database Performance page.

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1199

Host

The Host chart indicates whether there is a CPU bottleneck. If the number of users is low while the
Host section shows a high run-queue length, it means that the database users may not be the main
contributing factor for high CPU consumption. Look at what else may be running on your system
and consuming the CPU resources.

Average Active Sessions

The Average Active Sessions chart shows performance problems within your instance, by focusing on the
wait events in your instance. This is the key chart in the Performance page and should be the starting
point of a performance analysis using the OEM. Figure 20-5 shows the Average Active Sessions chart. The
chart shows you which of the active sessions are waiting on CPU and which are waiting on an event.

Figure 20-5. The Average Active Sessions page of the Database Control

The Average Active Sessions chart is color coded for your benefit. Green represents users on the CPU
and the other colors show users waiting on various events such as disk I/O, locks, or network communi-
cations. Here’s how you can tell whether you have too many waits in your instance: if the level of waits is
twice the Max CPU line, you have too many waits, and should look at tuning the instance.

1200 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

To the right of the Average Active Sessions screen, you can see the breakdown of the compo-
nents that contribute to session time. For example, if you see user I/O as the main culprit for high
waits, you can click this component to find out details about the wait. Figure 20-5 also shows the
buttons you can click to run the ADDM or get an ASH report.

You can also click the link for Top Activity to find out details about the sessions that are most
responsible for waits in your instance right now. Figure 20-6 shows the Top Activity page of the Data-
base Control. Database activity is ranked into Top SQL and Top Sessions. You can run the SQL Tuning
Advisor from here to get tuning recommendations about the top SQL statements.

Figure 20-6. The Top Activity page of the Database Control

If you suspect that an individual session is wait bound or you get complaints from particular
users that their sessions are running slowly, you can examine the Top Sessions page. You can go the
Top Sessions page by clicking the Top Sessions link under the Additional Monitoring Links group on
the Performance page. Once you get to the Top Sessions page, click the username and SID you’re
interested in. That takes you to the Session Details page for that session. By clicking the Wait Event
History tab in the Session Details page, you can see the nature of the recent waits for that session.
Figure 20-7 shows the Wait Event History for a session.

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1201

Figure 20-7. The Wait Event History for a session

The Performance Data Report Page

You can get to the Performance Data Report page by clicking the Create ASH Report button in the
Average Active Sessions screen on the Database Control’s Performance home page. The AWR reports
are good for analyzing instance performance, but they’re usually collected at 30-minute or 1-hour
intervals. What if you have a three-to-four-minute performance spike that’s not shown in the aggre-
gated AWR report? ASH reports focus on session-sampling data over a recent period of time.

When you click the Create ASH Report button, you’re given a choice as to the time period over
which you want to create your ASH report. You can choose a time period that lies within the last
seven days, because that’s how long the AWR saves its statistics. Remember that ASH statistics are
saved in the AWR repository. Figure 20-8 shows the ASH report, which relies on the V$ACTIVE_
SESSION_HISTORY view. This is the same ASH report that you can produce by running the ashrpt.sql
script. It contains information about the following items:

• Top Events

• Load Profile

• Top SQL

• Top Sessions, including Top Blocking Sessions

• Other entities causing contention in the instance, including Top Database Objects, Top
Database Files, and Top Latches

• Activity Over Time

1202 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

Figure 20-8. The ASH report

Are There Any Long-Running Transactions?
You can use the V$SQL view, as shown in the following example, to find out which of the SQL state-
ments in the instance are taking the most time to finish and are the most resource intensive. The
query ranks the transactions by the total number of elapsed seconds. You can also rank the state-
ments according to CPU seconds used.

SQL> SELECT hash_value, executions,
 2 ROUND (elapsed_time/1000000, 2) total_time,
 3 ROUND (cpu_time/1000000, 2) cpu_seconds
 4 FROM (SELECT * FROM V$SQL
 5 ORDER BY elapsed_time desc);

HASH_VALUE EXECUTIONS TOTAL_TIME CPU_SECONDS
---------- ---------- ---------- -----------
 238087931 168 9.51 9.27
1178035321 108 4.98 5.01
. . .
SQL>

Once you have the value for the HASH_VALUE column from the query you just ran, it’s a simple
matter to find out the execution plan for this statement, which is in your library cache. The following
query uses the V$SQL_PLAN view to get you the execution plan for your longest-running SQL statements:

SQL> SELECT * FROM V$SQL_PLAN WHERE hash_value = 238087931;

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1203

Is Oracle the Problem?
Just because your database users are complaining, you shouldn’t be in a hurry to conclude that the
problem lies within the database. After all, the database doesn’t work in a vacuum—it runs on the
server and is subject to the resource constraints and bottlenecks of that server. If the non-Oracle
users on the server are using up critical resources such as CPU processing and disk I/O, your data-
base may be the victim of circumstances, and you need to look for answers outside the database.
That’s why it’s critical that DBAs understand how to measure general system performance, including
memory, the disk storage subsystem, the network, and the processors. In the following sections
you’ll take a look at the system resources you should focus on.

Is the Network Okay?
One of the first things you need to do when you’re investigating slowdowns is to rule out network-
related problems. Quite often, users complain of being unable to connect to the system, or being
abruptly disconnected from the system. Check your round-trip ping times and the number of colli-
sions. Your network administrator should check the Internet connections and routers.

On the Oracle end, you can check the following dynamic views to find out if there’s a slowdown
due to a network problem. The V$SESSION_EVENT view shows the average amount of time Oracle
waits between messages in the average wait column. The V$SESSION_WAIT view, as you’ve seen,
shows what a session is waiting for, and you can see whether waits for network message transport are
higher than normal.

If the time for SQL round-trips is extremely long, it could reflect itself as a high amount of network-
related wait time in the V$ views. Check to see whether your ping time for network round-trips has
gone up appreciably. You should discuss with your network administrator what you can do to decrease
the waits for network traffic.

You may explore the possibility of setting the parameter TCP,NODELAY=TRUE in your sqlnet.ora
file. This results in TCP sending packets without waiting, thus increasing response time for real-time
applications.

If the network seems like one of your constant bottlenecks, you may want to investigate the
possibility of using the shared server approach instead of the dedicated server approach for connecting
users to your database. By using a shared server and its connection pooling feature, you can reduce
the number of physical network connections and thus help your application scale more efficiently
to large user bases.

Is the System CPU Bound?
Check the CPU performance to make sure a runaway process or a valid Oracle process isn’t hogging
one or more processes and contributing to the system slowdown. Often, killing the runaway processes
or the resource-hogging sessions will bring matters to a more even keel. Using the OEM Database
Control, you can get a quick idea about the breakdown of CPU usage among parse, recursive, and
other usage components.

Normally, you should expect to see no more than 20 to 25 percent of total CPU usage by the
system itself, and about 60 to 65 percent usage by the Oracle application. If the system usage is close
to 50 percent, it’s an indication that there are too many system calls, for example, which leads to
excessive use of the processors.

As you learned earlier in this chapter, the V$SESSTAT view shows CPU usage by session. Using
the following query, you can find out the top CPU-using Oracle sessions. You may want to look into
the actual SQL that these sessions are executing.

1204 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

SQL> SELECT a.sid,a.username, s.sql_text
 FROM V$SESSION a, V$SQLTEXT s
 WHERE a.sql_address = s.address
 AND a.sql_hash_value = s.hash_value
 AND a.username = '&USERNAME'
 AND A.STATUS='ACTIVE'
 ORDER BY a.username,a.sid,s.piece;

Is the System I/O Bound?
Before you go any further analyzing other wait events, it’s a good idea to rule out whether you’re
limited by your storage subsystem by checking your I/O situation. Are the read and write times on
the host system within the normal range? Is the I/O evenly distributed, or are there hot spots with
one or two disks being hit hard? If your normal, healthy I/O rates are 40–50/ms and you’re seeing an
I/O rate of 80/ms, obviously something is amiss. The AWR and ASH reports include I/O times (disk
read and disk write) by datafile. This will usually tip you off about what might be causing the spike.
For example, if the temporary tablespace datafiles are showing up in the high I/O list often, that’s
usually an indication that disk sorting is going on, and you need to investigate that further.

You can use the V$SYSTEM_EVENT view to verify whether the top wait events include events
such as db file scattered read, db file sequential read, db file single write, and Logfile
parallel write, which are database file, log file, and redo log file-related wait events. You can run an
AWR report and identify the tablespaces and datafiles causing the I/O contention. Use the V$SQLAREA
view, as shown in this chapter, to identify SQL statements that lead to high disk reads and have them
tuned.

Too often, a batch program that runs into the daytime could cause spikes in the I/O rates. Your
goal is to see whether you can rule out the I/O system as the bottleneck. Several of the wait events
that occur in the Oracle database, such as the db file sequential read and db file scattered read
waits, can be the result of extremely heavy I/O in the system. If the average wait time for any of these
I/O-related events is significant, you should focus on improving the I/O situation. You can do two
things to increase the I/O bandwidth: reduce the I/O workload or increase the I/O bandwidth. In
Chapter 21, you learned how you can reduce physical I/Os by proper indexing strategies and the use
of efficient SQL statements.

Improving SQL statements is something that can’t happen right away, so you need to do other
things to help matters in this case. This means you need to increase the I/O bandwidth by doing
either or both of the following:

• Make sure that the key database objects that are used heavily are spread evenly on the disks.

• Increase the number of disks.

Storage disks are getting larger and larger, but the I/O rates aren’t quite keeping up with the
increased disk sizes. Thus, servers are frequently I/O bound in environments with large databases.
Innovative techniques such as file caching might be one solution to a serious I/O bottleneck. On
average, about 50 percent of I/O activity involves less than 5 percent of the total datafiles in your
database, so caching this limited number of hot files should be a win. Caching gives you the benefit
of read/write operations at memory speeds, which could be 200 times faster than disk speed. You can
include your temp, redo log, and undo tablespace files, as well as the most frequently used table and
index datafiles on file cache accelerators.

It’s possible for large segments to waste a lot of disk space due to fragmentation caused by
update and delete operations over time. This space fragmentation could cause severe performance
degradation. You can use the Segment Advisor to find out which objects are candidates for a space
reclamation exercise due to excessive fragmentation within the segment.

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1205

Is the Database Load Too High?
If you have baseline numbers for the database load, you can see whether the current load on the
database is relatively too high. Pay attention to the following data, which you can obtain from the
V$SYSSTAT view: physical reads and writes, redo size, hard and soft parse counts, and user calls. You
can also check the Load Profile section of the AWR report for load data that’s normalized over trans-
actions and over time.

Checking Memory-Related Issues
As you saw earlier in this chapter, high buffer cache and shared pool hit ratios aren’t guarantees of
efficient instance performance. Sometimes, an excessive preoccupation with hit ratios can lead you
to allocate too much memory to Oracle, which opens the door to serious problems such as paging
and swapping at the operating-system level. Make sure that the paging and swapping indicators
don’t show anything abnormal. High amounts of paging and swapping slow down everything, including
the databases on the server.

Due to the virtual memory system used by most operating systems, a certain amount of paging
is normal and to be expected. If physical memory isn’t enough to process the demand for memory,
the operating system will go to the disk to use its virtual memory, and this results in a page fault.
Processes that result in high page faults are going to run slowly.

When it comes to Oracle memory allocation, don’t forget to pay proper attention to PGA memory
allocation, especially if you’re dealing with a DSS-type environment. Databases that perform a large
number of heavy sorting and hashing activities need a high amount of PGA memory allocation. The
database self-tunes the PGA, but you still have to ensure that the pga_aggregate_target value is high
enough for Oracle to perform its magic.

■Tip Unlike the SGA, the PGA memory allocation isn’t immediately and permanently allocated to the Oracle data-
base. Oracle is allowed to use PGA memory up to the limit specified by the PGA_TARGET parameter. Once a user’s
job finishes executing, the PGA memory used by the job is released back to the operating system. Therefore, you
shouldn’t hesitate to use a high value for the PGA_TARGET initialization parameter. There’s absolutely no downside
to using a high number, and it guarantees that your instance won’t suffer unnecessary disk sorting and hashing.

See whether you can terminate a few of the Top Sessions that seem to be consuming inordinate
amounts of memory. It’s quite possible that some of these processes are orphan or runaway
processes.

Are the Redo Logs Sized Correctly?
If the redo logs are too few or if they are too small relative to the DML activity in the database, the
archiver process will have to work extra hard to archive the filled redo log files. This may cause a
slowdown in the instance. It’s easy to resize the redo logs or add more redo log groups. When you use
the FAST_START_MTTR_TARGET parameter to impose a ceiling on instance recovery time, Oracle will
checkpoint as frequently as necessary to ensure the instance can recover from a crash within the
MTTR setting. You must ensure that the redo logs are sized large enough to avoid additional check-
pointing. You can get the optimal redo log size from the OPTIMAL_LOGFILE_SIZE column from the
V$INSTANCE_RECOVERY view. You can also use the Database Control’s Redo Log Groups page to
get advice on sized redo logs. As a rule of thumb, Oracle recommends that you size the log files so
they switch every 20 minutes.

1206 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

Is the System Wait Bound?
If none of the previous steps indicated any problems, chances are that your system is suffering from
a serious contention for some resource such as library cache latches. Check to see whether there’s
contention for critical database resources such as locks and latches. For example, parsing similar
SQL statements leads to an excessive use of CPU resources and affects instance performance by
increasing the contention for the library cache or the shared pool. Contention for resources manifests
itself in the form of wait events. The wait event analysis earlier in this chapter gave you a detailed
explanation of various critical wait events. You can use AWR and ASH reports to examine the top
wait events in your database.

The V$SESS_TIME_MODEL (and the V$SYS_TIME_MODEL) view is useful in finding out accu-
mulated time for various database operations at the individual session level. This view helps you
understand precisely where most of the CPU time is being spent. As explained in Chapter 17, the
V$SESS_TIME_MODEL view shows the following things, among others:

• DB time, which is the elapsed time spent in performing database user-level calls.

• DB CPU is the amount of CPU time spent on database user-level calls.

• Background CPU time is the amount of CPU time used by the background processes.

• Hard parse elapsed time is the time spent hard parsing SQL statements.

• PL/SQL execution elapsed time is the amount of time spent running the PL/SQL interpreter.

• Connection management call elapsed time is the amount of time spent making session
connect and disconnect calls.

You can use segment data in the V$SEGMENT_STATISTICS view to find out the hot table and
index segments causing a particular type of wait, and focus on eliminating (or reducing, anyway) that
wait event.

The Compare Periods Report
Let’s say you encounter a situation where one of your key nightly batch jobs is running past its time
window and continuing on into the daytime, where it’s going to hurt the online OLTP performance.
You know the batch job used to finish within the stipulated time, but now it’s tending to take a much
longer time. As of Oracle Database 10g Release 2, you can use the Database Control’s Compare Periods
Report to compare the changes in key database metrics between two time intervals. As you know, an
AWR snapshot captures information between two points in time. However, you can use the Time
Periods Comparison feature to examine the difference in database metrics between two different
time intervals or periods, by analyzing performance statistics captured by two sets of AWR snapshots. If
your nightly batch job ran just fine on Tuesday but was slow on Wednesday, you can find out why,
using the Compare Periods Report.

To use the Compare Periods Report, use the following steps:

1. In the Database Control home page, click the Performance tab.

2. Under the Additional Monitoring Links group, click the Snapshots link.

3. In the drop-down list for Actions, select Compare Periods and click Go.

4. The Compare Periods: First Period End page appears. You must select the start time for the
comparison analysis by selecting an ending snapshot ID for the first period. You may also
choose a time period, if you wish, instead of the ending snapshot ID. Click Next.

5. The Compare Periods: Second Period Start page is next. You must select a snapshot ID to
mark the beginning of the second period. Click Next.

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1207

6. The Compare Periods: Second Period End page is next. You select the ending snapshot for
the second period on this page and click Next.

7. The Compare Periods: Review page is next, as shown in Figure 20-9. It shows the first period
and second period beginning and ending snapshot IDs. After confirming that the first and
second period ranges are correct, click Finish.

Figure 20-9.The Compare Periods: Review page

8. You’ll now get the Compare Period: Results page, which summarizes the differences in key
database metrics between the two periods.

Going through the differences in key database metrics between the two periods helps you iden-
tify the root causes of the performance slowdown in the latter period when compared to the earlier
“good” period. You can also view the database configuration differences between the two periods
as well.

To compare the two periods in detail and to drill down into various items such as SQL state-
ments executed, SGA usage, and so on, click the Report link in the Compare Periods: Results page.
You can see a nicely formatted report comparing the two periods on the basis of configuration, top
five timed events, and the load profile. By viewing the various statistics for the two periods, you can
determine whether there was excessive load or some such thing during the second period.

At the bottom of the report, you’ll find the Report Details section, with links for various items
like wait events, I/O statistics, segment statistics, and SGA statistics. You can click any of these links
to drill down into what exactly went on inside the database during the two periods. For example, by
clicking the SQL Statistics link, you can get to the top ten SQL statements compared by execution
time, CPU time, buffer gets, physical reads, and so on. For example, Figure 20-10 shows the top ten
SQL statements compared on the basis of physical reads during each period.

1208 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

Figure 20-10. The top 10 SQL comparison report

Instead of running myriad SQL scripts and manually examining various statistics, as is the tradi-
tion, you can use the Compare Periods feature to zoom in quickly on the reasons for deterioration in
recent database performance compared to a past period of time.

Eliminating the Contention
Once you identify wait events due to contention in the system, you need to remove the bottleneck.
Of course, this is easier said than done in the short run. You may be able to fix some contention
problems right away, whereas you may need more time with others. Problems such as high db file
scattered read events, which are due to full table scans, may indicate that the I/O workload of the
system needs to be reduced. However, if the reduction in I/O requires creating new indexes and
rewriting SQL statements, obviously you can’t fix the problem right away. You can’t add disks and
rearrange objects to reduce hot spots right away either. Similarly, most latch contention requires
changes at the application level. Just make sure you don’t perform a whole bunch of changes at once—
you’ll never be able to find out what fixed the problem (or in some cases, what made it worse).

The trick, as usual, is to go after the problems you can fix in the short run. Problems that you can
fix by changing the memory allocation to the shared pool or the buffer cache you can easily handle
almost immediately by dynamically adjusting the cache values. You can also take care of any changes
that concern the redo logs right away. If you notice one or two users causing a CPU bottleneck, it may
be a smart idea to kill those sessions so the database as a whole will perform better. As you know,
prevention is much better than a cure, so consider using the Oracle Database Resource Manager tool
(Chapter 12 shows you in detail how to use the Database Resource Manager) to create resource groups
and prevent a single user or group from monopolizing the CPU usage.

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1209

If intense latch contention is slowing your database down, you probably should be setting the
CURSOR_SHARING initialization parameter’s value to FORCE or SIMILAR to ameliorate the situation.

Most other changes, though, may require more time-consuming solutions. Some changes may
even require major changes in the code or the addition or modification of important indexes. However,
even if the problem isn’t fixed immediately, you have learned your craft, and you’re on the right path
to improving instance performance.

Although I’ve discussed various methods and techniques that use SQL scripts to analyze instance
performance, try to make the OEM Database Control (or Grid Control) the center of your database
performance monitoring, and use Oracle’s powerful tools, such as the ADDM, to save time. The AWR
and ASH reports are also highly useful when searching for root causes of performance problems.

Real Application Testing
One of the biggest problems facing a DBA is how to figure out the potential performance impact of a
major system change, such as an upgrade to a new release of the database server, for example. Several
third-party tools can help you test the changes, but Oracle provides you the new Real Application
Testing option, also known as Total Recall, which is an easy-to-use solution that enables you to test
the impact of system changes in a test environment before introducing those changes in the produc-
tion system. You can thus safely introduce changes into your system without any adverse impact.
Real Application Testing consists of two distinct features, Database Replay and the SQL Performance
Analyzer, that together provide a complete solution to assess the impact of major system changes. I
explain these features in the following sections.

Database Replay
When you’re planning a major system change, you spend a significant amount of time testing your
system before cutting over to production. No matter how much prior testing you perform, there’s no
guarantee that the production cutover to the new system will be trouble free, as you’ve never had
the chance to “test” in the production environment itself. Oracle offers two brand-new tools called
Database Replay and the SQL Performance Analyzer as part of the new Real Application Testing, or
Total Recall, feature, to help you test your application performance before an actual system change,
thus providing you great change management support. I discuss the Database Replay feature first in
this section and explain the SQL Performance Analyzer feature toward the end of the chapter.

Database Replay offers you a way to test your system changes on a test system where you can
simulate the actual production workload. You first capture the actual production workload over a
representative period such as a peak period and replay it on a test system, thus re-creating your
production system on a test system. The replay adheres to the original production concurrency and
timing characteristics. The replay executes the RDBMS code in a way similar to how it was executed
on the production system. The way it does this is by replaying all external client requests made to the
RDBMS. The testing process will reveal whether there are any significant performance differences or
errors between the before and after system change performance. Database Replay will also recom-
mend fixes to the problems it encounters during the production workload replay. Database Replay
offers a powerful, easy-to-implement system that lets you test system changes with confidence. If
you’re moving from a single instance to an Oracle RAC environment, for example, you can test the
database performance on a test system first before making the production cut over.

You can use Database Replay to test operating system and database upgrades, configuration
changes such as a switch to a RAC system from a single-instance system and changes in the storage
system. Database Replay captures all external requests such as SQL queries, PL/SQL code blocks,
logins and logoffs, and DML/DDL statements. It ignores background jobs and requests made by

1210 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

internal clients such as the Enterprise Manager. Database Replay ignores the following types of
client requests:

• SQL*Loader direct path load of data

• Oracle Streams

• Data Pump Import and Export

• Advanced replication streams

• Non–PL/SQL-based Advanced Queuing (AQ)

• Flashback Database and Flashback Queries

• Distributed transactions and remote describe/commit operations

• Shared server

You can use either Enterprise Manager or APL/SQL APIs to run Database Replay. I show the
manual steps in the following sections.

Capturing the Production Workload

Use the DBMS_WORKLOAD_CAPTURE package to capture the database workload. The database
uses binary files called capture files to stop all captured external client requests to the database. The
capture files hold client request–related information such as SQL statements and bind values. Here
are the steps you must follow to capture the database workload:

1. Restart the database; although this isn’t mandatory, it will minimize the errors and data diver-
gence due to uncommitted or partial transactions at the time of the start of the data capture.
You want to restart the database in restricted mode. Once you start the workload capture, the
database automatically switches to an unrestricted mode of operation.

■Tip You can use a physical restore method using an SCN or a point in time, a logical restore method, or a flash-
back or snapshot standby technique to re-create the production system on the test server.

2. Define workload filters. You can use exclusion or inclusion filters to capture only a part of the
actual workload and ignore the rest, as shown in the following example:

SQL> begin

 dbms_workload_capture.add_filter (
 fname => 'user_salapati',
 fattribute => 'USER',
 fvalue => 'salapati'
 end;

 /

In this example, I restrict the workload capture to external calls made by the user SALAPATI.

3. Set up a capture directory before starting the workload capture, making sure this directory is
large enough to hold the workload. You can use a new or a preexisting directory.

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1211

4. Capture the production workload using a representative period. Execute the START_CAPTURE
procedure to capture the workload:

begin

 dbms_workload_capture.start_capture (name => '2008Jan',
 dir => 'jan08',
 duration => 1200);

end;

Only the DIR parameter, which specifies the capture directory, is mandatory. If you omit
the DURATION parameter, the workload capture will continue until you manually stop it as
shown here:

begin
 dbms_workload.capture.finish_capture ();
end;
;
/

You can use the DBA_WORKLOAD_CAPTURES view to get information about the workload
capture.

Preprocessing the Workload

You must preprocess the captured workload before you can replay it. Preprocessing is the step that
converts the captured workload into replay files. As long as the database version is identical, you can
preprocess the workload on the production system or a test system. Here’s how to preprocess the
workload:

begin
dbms_workload_replay.process_capture (capture_dir => 2008jan');
end;

Preprocessing the workload produces the metadata for the captured workload and transforms
the captured workload datafiles into replay streams called replay files.

Making the System Change

At this point, make the system change you want to test on the test system. Once you make the change
such as upgrading the database release, you can replay the captured production workload in the
changed system to test the impact of the system change on performance, errors, and other related
areas.

Replaying the Captured Workload

Create a test system that’s identical in every respect to the production system to run the captured
production workload. You can duplicate the database on a test server to do this. Replaying the work-
load on the test system involves the following steps:

Setting Up the Test System Restore the production system on the test server, making sure it has the
same application state as the production system. To avoid date-related errors, make sure the system
time on the test system is set to the same time as prevailed at the start of the workload capture. Start
the test system in the restricted mode to avoid errors.

1212 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

Resolving External References External references include objects such as database links, directory
objects, and URLs. Before starting the replay, resolve all external references from the database. For
example, all database links must be fully functional on the test system and point to the test system
instead of the production database.

Setting Up the Replay Clients

Database Replay relies on a special application called the replay driver to send workload replay
requests to the database. The replay driver is made up of replay clients that connect to the test
system and simulate the external requests. So, the replay clients replace all external client interac-
tions by sending requests that seem as if they came from the external clients themselves. You can
have more than one replay client to share the replay workload, in which case it’s best to install the
multiple replay clients on separate servers.

After ensuring that you’ve moved the workload files to the appropriate replay directory, start the
replay client as shown here:

$ wrc [user/password[$server]] mode=[value] [keyword=[value]]

You can execute the wrc executable in different modes such as REPLAY, CALIBRATE, or LIST_HOSTS,
by setting the MODE parameter. The parameter KEYWORD lets you specify execution options. You can
find out the options available to you by typing in wrc at the command line:

$ wrc

Workload Replay Client: Release 11.1.0.6.0 - Production on Wed
April 30 12:45:01 2007
Copyright (c) 1982, 2007, Oracle. All rights reserved.
FORMAT:
=======
 wrc [user/password[@server]] [MODE=mode-value] KEYWORD=value
Example:
========
 wrc REPLAYDIR=.
 wrc scott/tiger@myserver REPLAYDIR=.
 wrc MODE=calibrate REPLAYDIR=./capture
 The default privileged user is: SYSTEM

Mode:
=====
wrc can work in different modes to provide additional
Functionalities.
The default MODE is REPLAY.

Mode Description
--
REPLAY Default mode that replays the workload in REPLAYDIR
CALIBRATE Estimate the number of replay clients and CPUs
 needed to replay the workload in REPLAYDIR.
LIST_HOSTS List all the hosts that participated in the capture
 or replay.

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1213

Options (listed by mode):
=========================
MODE=REPLAY (default)

Keyword Description
--
USERID username (Default: SYSTEM)
PASSWORD password (Default: default password of SYSTEM)
SERVER server connection identifier (Default: empty string)
REPLAYDIR replay directory (Default:.)
WORKDIR work directory (Default:.)
DEBUG FILES, STDOUT, NONE (Default: NONE)
 FILES (write debug data to files at WORKDIR)
 STDOUT (print debug data to stdout)
 BOTH (print to both files and stdout)
 NONE (no debug data)
CONNECTION_OVERRIDE TRUE, FALSE (Default: FALSE)
 TRUE All replay threads connect using SERVER,
 settings in DBA_WORKLOAD_CONNECTION_MAP
 will be ignored!
 FALSE Use settings from DBA_WORKLOAD_CONNECTION_MAP
SERIALIZE_CONNECTS TRUE, FALSE (Default: FALSE)
 TRUE All the replay threads will connect to
 the database in a serial fashion one after
 another. This setting is recommended when
 the replay clients use the bequeath protocol
 to communicate to the database server.
 FALSE Replay threads will connect to the database
 in a concurrent fashion mimicking the
 original capture behavior.
MODE=CALIBRATE
,,,
MODE=LIST_HOSTS
. . .

If you have a large number of user sessions, you’ll need multiple wrc clients on different hosts.
Each replay thread from a replay client represents a single stream from the captured workload.

Although the default mode is REPLAY, it may be a good idea to first execute the wrc in CALIBRATE
mode to estimate the number of replay clients and hosts you’ll need to replay the workload. After you
run the wrc in CALIBRATE mode, you can execute wrc in REPLAY mode, as shown here:

 $ wrc system/<system_password> mode=replay replay_dir=./test_dir

Initializing the Replay Data

Your next step is to initialize the workload data by executing the INITIALIZE_REPLAY procedure:

SQL> exec dbms_workload_replay.initialize_replay(replay_name =>
 'test_replay',replay_dir => 'test_dir');

Initializing the data loads the metadata into tables that are used by Database Replay.

1214 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

Remapping External Connections

Before you start the workload replay, you must remap all external connections by executing the
REMAP_CONNECTION procedure as shown here.

SQL> exec dbms_workload_replay.remap_connection (connection_id =>999,
 replay_connection => 'prod1:1521/testdb');

Remapping connections ensures users can connect to all the external databases. If you leave
the REPLAY_CONNECTION parameter out, all replay sessions will automatically try connecting to the
default host.

Setting Workload Options

The next step is the setting of various workload replay options. You can select from one of the following
four options:

• SYNCHRONIZATION: The default for this parameter is true. This option preserves the commit
order of the workload during the replay. With this parameter set to true, you can eliminate
data divergence caused by not following the commit order among dependent transactions.

• CONNECTION_TIME_SCALE: This parameter lets you adjust the time between the beginning of the
workload capture and the time when a session connects with the specified value. By adjusting
this parameter, you can control the number of concurrent users during the replay.

• THINK_TIME_SCALE: This parameter enables you to calibrate the elapsed time between user
calls in the same session. The smaller the value, the faster the client requests are sent to the
database.

■Note During a workload capture, elapsed time consists only of user time and user think time, whereas during
a workload replay, elapsed time also includes the synchronization time component.

• THINK_TIME_AUTO_CORRECT: If you set this parameter to true, the database automatically corrects
the think time specified by the THINK_TIME_SCALE parameter. For example, if the replay is moving
slowly, the database reduces the value of the THINK_TIME_SCALE parameter. By default, this
parameter is set to false.

Preparing the Workload for Replay

Before replaying the captured workload, prepare the workload by executing the PREPARE_REPLAY
procedure:

SQL> dbms_workload_replay.prepare_replay (replay_name =>
 'replay1',replay_dir => 'test_dir',
 synchronization= FALSE);

If the workload consists mostly of independent transactions, it’s better to ignore the commit
order by setting the SYNCHRONIZATION parameter to false, as shown in the example.

Starting the Workload Replay

Execute the START_REPLAY procedure to begin the workload replay, as shown here:

SQL> exec dbms_workload_replay.start_replay();

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1215

You can cancel the workload replay in midstream by doing this:

SQL> exec dbms_workload_replay.cancel_replay();

Analyzing Workload Capture and Replay

Once the database completes the workload replay, you can analyze the replay report to find out
about any errors and performance differences, as well as possible data anomalies between the
original workload and the replayed workload. Here’s how you’d get a replay report by executing
the GET_REPLAY_INFO function:

declare
 cap_id number;
 rep_id number;
 rep_rpt clob;
begin
 cap_id := dbms_workload_replay.get_replay_info (dir =>
 'mytestdir');
 select max(id) into rep_id
 from dba_workload_replays
 where capture_id = cap_id;
 rep_rpt := dbms_workload_replay.report(
 replay_id => rep_id,
 format => dbms_workload_replay.type_text);
end;
/

The REPLAY_REPORT function produces the following text report:

Error Data

(% of total captured actions)
New errors:
 12.3%
Not reproduced old errors: 1.0%
Mutated errors:
 2.0%
Data Divergence

Percentage of row count diffs:
 7.0%
Average magnitude of difference (% of captured):
4.0%
Percentage of diffs because of error (% of diffs):
20.0%
Result checksums were generated for 10% of all
actions(% of checKSUMS)
Percentage of failed checksums:
0.0%
Percentage of failed checksums on same row count:
0.0%
Replay Specific Performance Metrics
Total time deficit (-)/speed up (+):
-32 min

1216 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

Total time of synchronization:
44 min
Average elapsed time difference of calls:
0.1 sec
Total synchronization events:

3675119064

You can also get a report in the HTML or XML format. You can query the DBA_WORKLOAD_
REPLAYS view for the history of the replays performed by the database.

You must pay attention to any significant divergence between the captured workload and the
replay of that workload. Any data divergence such as a smaller or larger result set in one of the two
executions of the analyzer is a serious issue and merits further investigation. You must also check the
performance deviation between the replay and the original workload. If the replay is taking longer to
complete, you must consider this a serious issue. Any errors during the workload replay are good
things for you to focus on as well. You can also use the ADDM to analyze the performance differences
between the capture and the replay systems. Note that the presence of any of the following in the
workload will exacerbate data or error divergence:

• Implicit session dependencies due to things such as the use of the DBMS_PIPE package

• Multiple commits within PL/SQL

• User locks

• Using nonrepeatable functions

• Any external interaction with URLs or database links

Use the following views to manage Database Replay:

• DBA_WORKLOAD_CAPTURES shows all workload captures you performed in a database.

• DBA_WORKLOAD_FILTERS shows all workload filters you defined in a database.

• DBA_WORKLOAD_REPLAYS shows all workload replays you performed in a database.

• DBA_WORKLOAD_REPLAY_DIVERGENCE helps monitor workload divergence.

• DBA_WORKLOAD_THREAD helps monitor the status of external replay clients.

• DBA_WORKLOAD_CONNECTION_MAP shows all connection strings used by workload replays.

Database Replay tests almost all of the database workload, unlike third-party tools, which can
only simulate part of the real workload in an Oracle database. Compared to the third-party tools, the
Database Replay tool is faster, and therefore you can compile the replay in a much shorter time period.

SQL Performance Analyzer
The SQL Performance Analyzer, which together with the Database Replay feature forms the Total
Replay feature offered by Oracle, enables you to test the impact of major system changes such as a
database upgrade on SQL workload response time. The SQL Performance Analyzer analyzes and
compares SQL performance before and after the system change and provides suggestions to improve
any deterioration in performance. You can use the SQL Performance Analyzer to analyze potential
changes in SQL performance following system changes such as database, application, operating
system, or hardware upgrades; changes in initialization parameter settings; SQL tuning actions; and
statistics gathering and schema changes.

The SQL Performance Analyzer lets you know, ahead of an actual database upgrade, which of
your SQL statements is possibly going to regress in performance, so you can take care of them. You

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1217

can take steps to preserve SQL performance by using SQL Plan Management (SPM), which I discussed
in Chapter 19. Or, you can employ the SQL Tuning Advisor to tune the potentially negatively impacted
SQL statements.

You can use either the production system or a test system to run the SQL Performance Analyzer.
Of course, if you run the analysis on a test system, you can avoid overhead on your production system.
You can capture the SQL workload on a production system and run the analyzer on the test system.
You can use either the Enterprise Manger or components of the DBMS_SQLPA package to use the
SQL Performance Analyzer. You capture the SQL workload in the production system by using a SQL
Tuning Set (STS). Once you capture SQL information in the STS, you can export the STS to the test
system to provide the data for the SQL Performance Analyzer analysis. You can use any of the following
as sources of the statements you load into the STS:

• AWR snapshots

• AWR baselines

• A cursor cache

• Another STS

The SQL Performance Analyzer executes SQL serially on the test server, ignoring the concur-
rency characteristics. It analyzes performance differences in the before- and after-change SQL
workloads. The analyzer is integrated with the SQL Tuning Advisor for easy tuning of regressed
statements.

I explain the workflow of a SQL Performance Analyzer analysis by showing how to predict
changes in SQL performance following an upgrade to Oracle Database 11g from Oracle Database
Release 10.2.

Capturing the Production SQL Workload

Select a representative period to capture the SQL workload from the production database. The work-
load that you collect consists of the SQL text and information pertaining to bind variable values and
execution frequency. Following are the steps in capturing the production SQL workload:

Creating the SQL Tuning Set

Create the STS by executing the CREATE_SQLSET procedure as shown here:

SQL> exec dbms_sqltune.create_sqlset(sqlset_name => 'test_set',
 description => '11g upgrade workload';

The next step is to load the empty STS you created in this step.

Loading the SQL Tuning Set
Execute the DBMS_SQLTUNE SELECT_CURSOR_CACHE procedure to load the empty STS.

declare
 mycur dbms_sqltune.sqlset_cursor;
begin
 open mycur for
 select value (P)
 from table (dbms_sqltune.select_cursor_cache(
 'parsing_schema_name <> ''SYS'' AND elapsed_time >
 2500000',null,null,null,null,1,null,
 'ALL')) P;

1218 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

 dbms_sqltune.load_sqlset(sqlset_name => 'upgrade_set',
 populate_cursor => cur);
end;
/

PL/SQL procedure successfully completed.
SQL>

The database incrementally loads the STS from the cursor cache over a period of time.

Transporting the SQL Tuning Set

Create a staging table first, in order to transport the STS to the test system.

SQL> exec dbms_sqltune.create_stgtb_sqlset (table_name =>
 'stagetab');

Export the STS to the staging table using the PACK_STGTAB_SQLSEET procedure.

SQL> exec dbms_sqltune.pack_stgtab_sqlset(sqlset_name =>
 'test_sts',
 staging_table_name => 'stagetab');

In the next step, you’ll import the staging table you created into the test system. Use Data Pump
to import the staging table stagetab into the test system. Execute the UNPACK_STGTAB_SQLSET
procedure to the import the STS into the test database.

SQL> exec dbms_sqltune.unpack_stgtab_sqlset (sqlset_name = '%',
 replace => true, staging_table_name => ('stagetab');

Next, you’ll create the SQL Performance Analyzer task.

Creating the SQL Performance Analyzer Task

Use the CREATE_ANALYSIS_TASK procedure to create a new SQL Performance Analyzer task, as
shown here:

SQL> exec dbms_sqlpa.create_analysis_task(sqlset_name => 'sts1',
 task_name => 'spa_task1');

The procedure you execute here enables you to create an analyzer job to analyze one or more
SQL statements.

Analyzing the Prechange SQL Workload

The before-change SQL workload analysis analyzes the performance of SQL statements in an Oracle 10.2
environment. Make sure that the OPTIMIZER_FEATURES_ENABLE initialization parameter is correctly
set.

optimizer_features_enable=10.2.0

Execute the EXECUTE_ANALYSIS_TASK procedure to analyze the preupgrade performance of
the SQL workload, as shown here:

SQL> exec dbms_sqlpa.execute_analysis_task (task_name =>
 'spa_task1',
 execution_type => 'test_execute',
 execution_name= 'before_change');

CH A PT E R 2 0 ■ P E R F O R M AN CE TU N I N G : TU N IN G TH E I N S TA N CE 1219

Note that the value of the EXECUTION_TYPE parameter is set to TEST_EXECUTE. This value ensures
that the database executes all SQL statements in the workload and generates both the execution plans
and execution statistics such as disk reads. You can assign two other values for the EXECUTION_TYPE
parameter. The COMPARE_PERFORMANCE parameter will compare the performance based on a comparison
of two different analyses. The value EXPLAIN_PLAN will generate SQL plans without executing them.

Get a report of the preupgrade SQL performance by executing the REPORT_ANALYSIS_TASK function:

SQL> select dbms_sqlpa.report_analysis_task (task_name =>
 'spa_task1',
 type => 'text',
 section=> 'summary') from dual;

You now have a performance baseline with which to compare the after-upgrade SQL performance.

Analyzing the After-Upgrade SQL Workload

Set the value of the OPTIMIZER_FEATURES_ENABLE parameter to match the Oracle Database 11g release:

 optimizer_features_enable=11.1

Execute the SPA task again, this time to analyze the after-upgrade performance of the SQL workload.

SQL> exec dbms_sqlpa.execute_analysis_task (task_name => 'spa_task2',
 execution_type => 'test_execute',
 execution_name => 'after_change')

Get a report of the after-upgrade performance as shown here:

SQL> select dbms_sqlpa.report_analysis_task (task_name => 'spa_task2',
 type => 'text', section=> 'summary') from dual;

Comparing the SQL Performance

Execute the EXECUTE_ANALYSIS_TASK procedure once again, but with the value COMPARE_
PERFORMANCE for the EXECUTION_TYPE parameter, in order to analyze and compare the SQL perfor-
mance data before and after the database upgrade.

SQL> exec dbms_sqltune.execute_analysis_task (task_name =>
 'spa_task3',
 execution_type => 'compare performance',
 execution_params =>
 dbms_advisor.arglist('execution_name1','before_change',
 execution_name2','after_change''comparision_metric',
 'disk_reads',)

In addition to DISK READS, you can specify metrics such as ELAPSED_TIME, PARSE TIME, or BUFFER
GETS when comparing the performance.

Generating the Analysis Report

Execute the REPORT_ANALYSIS_TASK function to get a report of the performance comparison:

var report clob;

exec :report := dbms_sqlpa.report_analysis_task('spa_task1',
 'text',
 'typical','summary');

1220 CH AP T E R 2 0 ■ P E R F OR M AN CE T U N I N G : TU N I N G TH E I N ST A N CE

set long 100000 longchunksize 100000 linesize 120

print :report

During the compare and analysis phase, you can do the following:

• Calculate the impact of the change on specific SQL statements.

• Calculate the impact of the change on the SQL workload as a whole.

• Assign weights to important SQL statements in the workload.

• Detect performance regression and improvements.

• Detect changes in the execution plans of the SQL statements.

• Recommend the running of the SQL Tuning Advisor to tune regressed SQL statements.

You can use the following views when working with the SQL Performance Analyzer:

• DBA_ADVISOR_TASKS shows details about the analysis task.

• DBA_ADVISOR_FINDINGS shows analysis findings, which are classified as performance
regression, symptoms, informative messages, and errors.

• DBA_ADVISOR_EXECUTIONS shows metadata information for task executions.

• DBA_ADVISOR_SQLPLANS shows a list of SQL execution plans.

• DBA_ADVISOR_SQLSTATS shows a list of SQL compilation and execution statistics.

Analyzing the Performance Report

The SQL Performance Analyzer contains both a result summary and a result details section. The
former shows quickly whether the database upgrade in our example will result in any performance
deterioration or improvement. The advisor also provides recommendations to avoid any potential
performance deterioration.

Since the SQL Performance Analyzer is an integral part of the Oracle database, it can take advantage
of tools such as the SQL Tuning Advisor as well as features such as SQL Plan Management to fine-
tune database performance.

1221

■ ■ ■

A P P E N D I X

Oracle Database 11g SQL and PL/SQL:
A Brief Primer

I’m sure most of you are already familiar with SQL to some extent. However, I present in this appendix
a quick introduction to Oracle Database 11g SQL and its programmatic cousin, PL/SQL, as a starting
point for those new to programming Oracle databases. My goal here is simply to present a short
summary of the classic DML and DDL commands and to discuss the newer SQL and PL/SQL concepts
in greater detail.

Your need to know SQL or PL/SQL depends somewhat on the type of DBA you are—a production
support DBA won’t need to know as much about Oracle programming as a DBA assisting in develop-
mental efforts. It’s becoming increasingly important, however, for DBAs to learn a number of advanced
SQL and PL/SQL concepts, including the new Java and XML-based technologies. The reason is simple:
even when you aren’t developing applications yourself, you’re going to be assisting people who are
doing so, and it helps to know what they’re doing.

This appendix aims to summarize some of the most important Oracle Database 11g SQL and
PL/SQL features so you and the developers you work with can take advantage of them. Oracle SQL
and PL/SQL represent an enormously broad topic, so this appendix lightly covers several important
topics without attempting any detailed explanation due to space considerations. Please refer to the
Oracle manuals Application Developer’s Guide—Fundamentals and PL/SQL User’s Guide and Reference
for a comprehensive introduction to SQL and PL/SQL.

The Oracle Database 11g Sample Schemas
The examples in this appendix use the demo schemas provided by Oracle as part of the Oracle Data-
base 11g server software. The demo data is for a fictitious company and contains the following five
schemas:

• HR is the human resources division, which contains information on employees. It is the most
commonly used schema, with its familiar employees and dept tables. The schema uses scalar
data types and simple tables with basic constraints.

• OE is the order entry department, which contains inventory and sales data. This schema
covers a simple order-entry system and includes regular relational objects as well as object-
relational objects. Because the OE schema contains synonyms for HR tables, you can query
HR’s objects from the OE schema.

• PM is the product media department, which covers content management. You can use this
schema if you’re exploring Oracle’s Multimedia option. The tables in the PM schema contain
audio and video tracks, images, and documents.

1222 AP P E N D I X ■ O R AC L E D AT AB A SE 1 1 G S QL A N D P L / SQ L : A B R I E F P R I M E R

• IX is the information exchange department in charge of shipping using various B2B applications.

• SH is the sales history department in charge of sales data. It is the largest sample schema, and
you can use it for testing examples with large amounts of data. The schema contains parti-
tioned tables, an external table, and Online Analytical Processing (OLAP) features. The SALES
and COSTS tables contain 750,000 rows and 250,000 rows, respectively, as compared to 107
rows in the employees table from the HR schema.

In order to install the SH schema, you must have the partitioning option installed in your Oracle
database; this option lets you use table and index partitioning in your database. Ideally, you should
install the Oracle demo schemas in a test database where you can safely practice the parts of SQL you
aren’t familiar with. The Oracle Sample Schemas documentation manual provides detailed informa-
tion about the sample schemas.

If you’ve created a starter database using the Database Configuration Assistant (DBCA) as part
of your Oracle software installation (the Basic Installation option), it will have automatically created
the sample schemas in the new starter database.

If you’ve chosen to not create the starter database (by selecting a Software Only installation
option), you can run the DBCA to install the sample schemas. Choose the Sample Schemas option
when you use the DBCA to create the sample schemas in an existing database. By default, all the
sample schema accounts are locked, and you must use the ALTER USER . . . ACCOUNT UNLOCK state-
ment to unlock them.

If you want to create the sample schemas in a database without using the DBCA, you can run
Oracle-provided scripts to install the sample schemas.

Oracle Data Types
Data in an Oracle database is organized in rows and columns inside tables. The individual columns
are defined with properties that limit the values and format of the column contents. Let’s review the
most important Oracle built-in data types before we look at Oracle SQL statements.

Character Data Types
The CHAR data type is used for fixed-length character literals:

SEX CHAR(1)

The VARCHAR2 data type is used to represent variable-length character literals:

CITY VARCHAR2 (20)

The CLOB data type is used to hold large character strings and the BLOB and BFILE data types are
used to store large amounts of binary data.

Numeric Data Types
There are two important SQL data types used to store numeric data:

• The NUMBER data type is used to store real numbers, either in a fixed-point or floating-point format.

• The BINARY FLOAT and BINARY DOUBLE data types store data in a floating-point format.

A PP E N DI X ■ O R A CL E D AT A B ASE 1 1 G S Q L AN D P L / S QL : A B R I E F P R IM E R 1223

Date and Time Data Types
There are a couple of special data types that let you handle date and time values:

• The DATE data type stores the date and time (such as year, month, day, hours, minutes,
and seconds).

• The TIMESTAMP data type stores time values that are precise to fractional seconds.

Conversion Functions
Oracle offers several conversion functions that let you convert data from one format to another. The
most common of these functions are the TO_CHAR, TO_NUMBER, TO_DATE, and TO_TIMESTAMP functions.
The TO_CHAR function converts a floating number to a string, and the TO_NUMBER function converts a
floating number or a string to a number. The TO_DATE function converts character data to a DATE data
type. Here are some examples:

SQL> SELECT TO_CHAR(TO_DATE('20-JUL-08', 'DD-MON-RR') ,'YYYY') "Year" FROM DUAL;

Year

2008
SQL>

SQL> SELECT TO_CHAR(SYSDATE, 'DD-MON-YYYY')
 FROM DUAL;

TO_CHAR(SYSDATE

20-JUL-2008
SQL>

SQL
In Chapter 7 you saw how Oracle SQL statements include DDL, DML, and other types of statements.
Let’s begin with a review of the basic SQL statements.

The SELECT Statement
The SELECT statement is the most common SQL statement (it is also called a projection). A SELECT
statement retrieves all or some of the data in a table, based on the criteria that you specify.

The most basic SELECT statement is one that retrieves all the data in the table:

SQL> SELECT * FROM employees;

To retrieve only certain columns from a table, you specify the column names after the SELECT
keyword, as shown in the following example:

SQL> SELECT first_name, last_name, hiredate FROM employees;

If you want only the first ten rows of a table, you can use the following statement:

SQL> SELECT * FROM employees WHERE rownum <11;

1224 AP P E N D I X ■ O R AC L E D AT AB A SE 1 1 G S QL A N D P L / SQ L : A B R I E F P R I M E R

If you want just a count of all the rows in the table, you can use the following statement:

SQL> SELECT COUNT(*) FROM employees;

If a table has duplicate data, you can use the DISTINCT clause to eliminate the duplicate values,
as shown here:

SQL> SELECT DISTINCT username FROM V$SESSION;

The optional WHERE clause in a SELECT statement uses conditions to help you specify that only
certain rows be returned. Table A-1 lists some of the common conditions you can use in a WHERE clause.

Here are some examples of using the WHERE clause:

SQL> SELECT employee_id WHERE salary = 50000;
SQL> SELECT employee_id WHERE salary < 50000;
SQL> SELECT employee_id WHERE salary > 50000;
SQL> SELECT employee_id WHERE salary <= 50000;
SQL> SELECT employee_id WHERE salary >= 50000;
SQL> SELECT employee_id WHERE salary ! 50000;

The LIKE Condition

The LIKE condition uses pattern matching to restrict rows in a SELECT statement. Here’s an example:

SQL> SELECT employee_id, last_name FROM employees
 2* WHERE last_name LIKE 'Fa%';
EMPLOYEE_ID LAST_NAME
----------- ----------
 109 Faviet
 202 Fay
SQL>

The pattern that you want the WHERE clause to match should be enclosed in single quotes (' ').
In the preceding example, the percent sign (%) indicates that the letters Fa can be followed by any
character string. Thus, the percent sign acts as a wildcard for one or more characters, performing the
same job as the asterisk (*) in many operating systems. Note that a single underscore character (_)
acts as a wildcard for one and only one character.

Table A-1. Common Conditions Used in WHERE Clauses

Symbol Condition

= Equal

> Greater than

< Less than

<+ Less than or equal to

>= Greater than or equal to

<> or ! Not equal to

A PP E N DI X ■ O R A CL E D AT A B ASE 1 1 G S Q L AN D P L / S QL : A B R I E F P R IM E R 1225

The INSERT Statement
The INSERT statement enables you to add new data to a table, including duplicate data if there are no
unique requirements enforced by a primary key or an index. The general form of the INSERT state-
ment is as follows:

INSERT INTO <table> [(<column i, . . . , column j>)]
VALUES (<value i, . . . ,value j>);

Here is an example of the insert command:

SQL> INSERT INTO employees(
 2 employee_id,last_name,email,hire_date,job_id)
 3 VALUES
 4* (56789,'alapati','salapati@netbsa.org', sysdate,98765);
1 row created.
SQL>

In the preceding list, the column names were specified because only some columns were being
populated in the row being inserted. The rest of them are left blank, which is okay, provided the
column isn’t defined as a “not null” column.

If you’re inserting values for all the columns of a table, you can use the simpler INSERT statement
shown here:

SQL> INSERT INTO department
 VALUES
 (34567, 'payroll', 'headquarters', 'dallas');
 1 row created.
SQL>

If you want to insert all the columns of a table into another table, you can use the following
INSERT statement:

SQL> INSERT INTO b SELECT * FROM a
 WHERE city='DALLAS';

If table b doesn’t exist, you can use the CREATE TABLE table_name AS SELECT * FROM (CTAS) state-
ment, as shown here:

SQL> CREATE table b as SELECT * FROM a;

The DELETE Statement
You use the DELETE statement to remove rows from a table. The DELETE statement has the following
structure:

DELETE FROM <table> [WHERE ,condition>];

For example, if you want to delete employee Fay’s row from the employees table, you would use
the following DELETE statement:

SQL> DELETE FROM employees
 2* WHERE last_name='Fay';
1 row deleted.

If you don’t have a limiting WHERE condition, the DELETE statement will result in the removal of
all the rows in the table, as shown here:

SQL> DELETE FROM X;

1226 AP P E N D I X ■ O R AC L E D AT AB A SE 1 1 G S QL A N D P L / SQ L : A B R I E F P R I M E R

You can also remove all rows in a table using the TRUNCATE command, but you can’t undo or roll
back the TRUNCATE command’s effects. You can undo a delete by using the ROLLBACK statement:

SQL> ROLLBACK;

The UPDATE Statement
The UPDATE statement changes the value (or values) of one or more columns of a row (or rows) in a
table. The expression to which a column is being set or modified can be a constant, arithmetic, or
string operation, or the product of a SELECT statement.

The general structure of the UPDATE statement is as follows (note that the elements in square
brackets are optional):

UPDATE <table>
SET <column i> = <expression i>, . . . , <column j> = <expression j>
[WHERE <condition>];

If you want to change or modify a column’s values for all the rows in the table, you use an UPDATE
statement without a WHERE condition:

SQL> UPDATE persons SET salary=salary*0.10;

If you want to modify only some rows, you need to use the WHERE clause in your UPDATE
statement:

SQL> UPDATE persons SET salary = salary * 0.10
 WHERE review_grade > 5;

Filtering Data
The WHERE clause in a SELECT, INSERT, DELETE, or UPDATE statement lets you filter data. That is, you can
restrict the number of rows on which you want to perform a SQL operation. Here’s a simple example:

SQL> INSERT INTO a
 SELECT * FROM b
 WHERE city='DALLAS';

Sorting the Results of a Query
Frequently, you’ll have to sort the results of a query in some order. The ORDER BY clause enables you
to sort the data based on the value of one or more columns. You can choose the sorting order (ascending
or descending) and you can choose to sort by column aliases. You can also sort by multiple columns.
Here’s an example:

 SQL> SELECT employee_id, salary FROM employees
 ORDER BY salary;

Changing the Sorting Order

Be default, an ORDER BY clause sorts in ascending order. If you want to sort in descending order, you
need to specify the DESC keyword:

SQL> SELECT employee_id, salary FROM employees
 ORDER BY salary desc;

A PP E N DI X ■ O R A CL E D AT A B ASE 1 1 G S Q L AN D P L / S QL : A B R I E F P R IM E R 1227

Sorting by Multiple Columns

You can sort results based on the values of more than one column. The following query sorts on the
basis of two columns, salary and dept:

SQL> SELECT employee_id, salary FROM employees
 ORDER BY salary, dept;

Operators
SQL provides you with a number of operators to perform various tasks, such as comparing column
values and performing logical operations. The following sections outline the important SQL opera-
tors: comparison operators, logical operators, and set operators.

Comparison Operators

Comparison operators compare a certain column value with several other column values. These are
the main comparison operators:

• BETWEEN: Tests whether a value is between a pair of values

• IN: Tests whether a value is in a list of values

• LIKE: Tests whether a value follows a certain pattern, as shown here:

SQL> SELECT employee_id from employees
 WHERE dept LIKE 'FIN%';

Logical Operators

The logical operators, also called Boolean operators, logically compare two or more values. The main
logical operators are AND, OR, NOT, GE (greater than or equal to), and LE (less than or equal to). Here’s
an example that illustrates the use of some of the logical operators:

SQL> SELECT last_name, city
 WHERE salary GT 100000 and LE 200000;

When there are multiple operators within a single statement, you need rules of precedence.
Oracle always evaluates arithmetical operations such as multiplication, division, addition, and
subtraction before it evaluates conditions. The following is the order of precedence of operators in
Oracle, with the most important first:

=, !=, <, >, <=, >=
IS NULL, LIKE, BETWEEN, IN, EXISTS
NOT
AND
OR

The Set Operators

Sometimes your query may need to combine results from more than one SQL statement. In other
words, you need to write a compound query. Set operators facilitate compound SQL queries. Here
are the important Oracle set operators:

1228 AP P E N D I X ■ O R AC L E D AT AB A SE 1 1 G S QL A N D P L / SQ L : A B R I E F P R I M E R

• UNION: The UNION operator combines the results of more than one SELECT statement after
removing any duplicate rows. Oracle will sort the resulting set of data. Here’s an example:

SQL> SELECT emp_id FROM old_employees
 UNION
 SELECT emp_id FROM new_employees;

• UNION ALL: The UNION ALL operator is similar to UNION, but it doesn’t remove the duplicate
rows. Oracle doesn’t sort the result set in this case, unlike the UNION operation.

• INTERSECTION: The INTERSECTION operator gets you the common values in two or more result
sets derived from separate SELECT statements. The result set is distinct and sorted.

• MINUS: The MINUS operator returns the rows returned by the first query that aren’t in the second
query’s results. The result set is distinct and sorted.

SQL Functions
Oracle functions manipulate data items and return a result, and built-in Oracle functions help you
perform many transformations quickly, without your having to do any coding. In addition, you can
build your own functions. Functions can be divided into several groups: single-row functions, aggre-
gate functions, number and date functions, general and conditional functions, and analytical functions.

Single-Row Functions

Single-row functions are typically used to perform tasks such as converting a lowercase word to
uppercase or vice versa, or replacing a portion of text in a row. Here are the main single-row functions
used in Oracle:

• CONCAT: The CONCAT function concatenates or puts together two or more character strings into
one string.

• LENGTH: The LENGTH function gives you the length of a character string.

• LOWER: The LOWER function transforms uppercase letters into lowercase, as shown in the
following example:

SQL> SELECT LOWER('SHANNON ALAPATI') from dual;

LOWER('SHANNONALAPATI')

shannon alapati
SQL>

• SUBSTR: The SUBSTR function returns part of a string.

• INSTR: The INSTR function returns a number indicating where in a string a certain string
value starts.

• LPAD: The LPAD function returns a string after padding it for a specified length on the left.

• RPAD: The RPAD function pads a string on the right side.

• TRIM: The TRIM function trims a character string.

• REPLACE: The REPLACE function replaces every occurrence of a specified string with a specified
replacement string.

A PP E N DI X ■ O R A CL E D AT A B ASE 1 1 G S Q L AN D P L / S QL : A B R I E F P R IM E R 1229

Aggregate Functions

You can use aggregate functions to compute things such as averages and totals of a selected column
in a query. Here are the important aggregate functions:

• MIN: The MIN function returns the smallest value. Here’s an example:

SELECT MIN(join_date) FROM employees;

• MAX: The MAX function returns the largest value.

• AVG: The AVG function computes the average value of a column.

• SUM: The SUM function computes the sum of a column:

SQL> SELECT SUM(bytes) FROM dba_free_space;

• COUNT: The COUNT function returns the total number of columns.

• COUNT(*): The COUNT(*) function returns the number of rows in a table.

Number and Date Functions

Oracle includes several number functions, which accept numeric input and return numeric values.
The date functions help you format dates and times in different ways. Here are some of the impor-
tant number and date functions:

• ROUND: This function returns a number rounded to the specified number of places to the right
of the decimal point.

• TRUNC: This function returns the result of a date truncated in the specified format.

• SYSDATE: This commonly used function returns the current date and time:

SQL> SELECT sysdate FROM dual;

SYSDATE

07/AUG/2008
SQL>

• TO_TIMESTAMP: This function converts a CHAR or VARCHAR(2) data type to a timestamp data type.

• TO_DATE: You can use this function to change the current date format. The standard date format
in Oracle is DD-MMM-YYYY, as shown in the following example:

07-AUG-2008

• The TO_DATE function accepts a character string that contains valid data and converts it into
the default Oracle date format. It can also change the date format, as shown here:

SQL> SELECT TO_DATE('August 20,2008', 'MonthDD,YYYY') FROM dual;

TO_DATE('AUGUST20,2008'

08/20/2008
SQL>

1230 AP P E N D I X ■ O R AC L E D AT AB A SE 1 1 G S QL A N D P L / SQ L : A B R I E F P R I M E R

• TO_CHAR: This function converts a date into a character string, as shown in the following example:

SQL> SELECT SYSDATE FROM dual;

SYSDATE

04-AUG-2008
SQL>

SQL> SELECT TO_CHAR(SYSDATE, 'DAY, DDTH MONTH YYYY') FROM DUAL;

TO_CHAR(SYSDATE,'DAY,DDTHMON

THURSDAY , 04TH AUGUST 2008

SQL>

• TO_NUMBER: This function converts a character string to a number format:

SQL> UPDATE employees SET salary = salary +
 TO_NUMBER('100.00', '9G999D99')
 WHERE last_name = 'Alapati';

General and Conditional Functions

Oracle provides some very powerful general and conditional functions that enable you to extend the
power of simple SQL statements into something similar to a traditional programming language
construct. The conditional functions help you decide among several choices. Here are the important
general and conditional Oracle functions:

• NVL: The NVL function replaces the value in a table column with the value after the comma if
the column is null. Thus, the NVL function takes care of column values if the column values are
null and converts them to non-null values:

SQL> SELECT last_name, title,
 salary * NVL (commission_pct,0)/100 COMM
 FROM employees;

• COALESCE: This function is similar to NVL, but it returns the first non-null value in the list:

SQL> COALESCE(region1, region2, region3, region4)

• DECODE: This function is used to incorporate basic if-then functionality into SQL code. The
following example assigns a party name to all the voters in the table based on the value in the
affiliation column. If there is no value under the affiliation column, the voter is listed as an
independent:

SQL> SELECT DECODE(affiliation, 'D', 'Democrat',
 'R', 'Republican', 'Independent') FROM voters;

• CASE: This function provides the same functionality as the DECODE function, but in a much
more intuitive and elegant way. Here’s a simple example of using the CASE statement, which
helps you incorporate if-then logic into your code:

SQL> SELECT ename,
 (CASE deptno
 WHEN 10 THEN 'Accounting'
 WHEN 20 THEN 'Research'
 WHEN 30 THEN 'Sales'

A PP E N DI X ■ O R A CL E D AT A B ASE 1 1 G S Q L AN D P L / S QL : A B R I E F P R IM E R 1231

 WHEN 40 THEN 'Operations'
 ELSE 'Unknown'
 END)
 department
 FROM employees;

Analytical Functions

Oracle’s SQL analytical functions are powerful tools for business intelligence applications. Oracle
claims a potential improvement of 200 to 500 percent in query performance with the use of the SQL
analytical functions. The purpose behind using analytical functions is to perform complex summary
computations without using a lot of code. Here are the main SQL analytical functions of the Oracle
database:

• Ranking functions: These enable you to rank items in a data set according to some criteria.
Oracle has several types of ranking functions, including RANK, DENSE_RANK, CUME_DIST, PERCENT_
RANK, and NTILE. Listing A-1 shows a simple example of how a ranking function can help you
rank some sales data.

Listing A-1. An Example of a Ranking Function

SQL> SELECT sales_type,
 TO_CHAR(SUM(amount_sold), '9,999,999,999') SALES,
 RANK() OVER (ORDER BY SUM(amount_sold)) AS original_rank,
 RANK() OVER (ORDER BY SUM(amount_sold)
 DESC NULLS LAST) AS derived_rank
 FROM sales, products, customers, time_frame, sales_types
 WHERE sales.prod_id=products.prod_id AND
 sales.cust_id=customers.cust_id AND
 sales.time_id=time_frame.time_id AND
 sales.sales_type_id=sales_types.sales_type_id AND
 timeframe.calendar_month_desc IN ('2008-07', '2008-08')
 AND country_id='INDIA'
 GROUP BY sales_type;

SALES_TYPE SALES ORIGINAL_RANK DERIVED_RANK
------------- --------- -------------- ------------
Direct Sales 5,744,263 5 1
Internet 3,625,993 4 2
Catalog 1,858,386 3 3
Partners 1,500,213 2 4
Tele Sales 604,656 1 5
SQL>

• Moving-window aggregates: These functions provide cumulative sums and moving averages.

• Period-over-period comparisons: These functions let you compare two periods (for example,
“How does the first quarter of 2008 compare with the first quarter of 2006 in terms of percentage
growth?”).

• Ratio-to-report comparisons: These make it possible to compare ratios (for example, “What is
August’s enrollment as a percentage of the entire year’s enrollment?”).

• Statistical functions: These functions calculate correlations and regression functions so you
can see cause-and-effect relationships among data.

• Inverse percentiles: These help you find the data corresponding to a percentile value (for
example, “Get me the names of the salespeople who correspond to the median sales value.”).

1232 AP P E N D I X ■ O R AC L E D AT AB A SE 1 1 G S QL A N D P L / SQ L : A B R I E F P R I M E R

• Hypothetical ranks and distributions: These help you figure out how a new value for a column
fits into existing data in terms of its rank and distribution.

• Histograms: These functions return the number of the histogram data appropriate for each
row in a table.

• First/last aggregates: These functions are appropriate when you are using the GROUP BY clause
to sort data into groups. Aggregate functions let you specify the sort order for the groups.

Hierarchical Retrieval of Data
If a table contains hierarchical data (data that can be grouped into levels, with the parent data at
higher levels and child data at lower levels), you can use Oracle’s hierarchical queries. Hierarchical
queries typically use the following structure:

• The START WITH clause denotes the root row or rows for the hierarchical relationship.

• The CONNECT BY clause specifies the relationship between parent and child rows, with the
prior operator always pointing out the parent row.

Listing A-2 shows a hierarchical relationship between the employees and manager columns.
The CONNECT BY clause describes the relationship. The START WITH clause specifies where the state-
ment should start tracing the hierarchy.

Listing A-2. A Hierarchical Relationship Between Data

SQL> SELECT employee_id, last_name, manager_id
 FROM employees
 START WITH manager_id = 100
 CONNECT BY PRIOR employee_id = manager_id;

 EMPLOYEE_ID LAST_NAME MANAGER_ID
----------- -------------- ----------
 101 Reddy 100
 108 Greenberg 101
 109 Faviet 108
 110 Colon 108
 111 Chowdhary 108
 112 Urman 108
 113 Singh 108
 200 Whalen 101
SQL>

Selecting Data from Multiple Tables
So far, we’ve mostly looked at how to perform various DML operations on single tables, including
using SQL functions and expressions. However, in real life, you’ll mostly deal with query output
retrieved from several tables or views. When you need to retrieve data from several tables, you need
to join the tables. A join is a query that lets you combine data from tables, views, and materialized
views. Note that a table can be joined to other tables or to itself.

The Cartesian product or Cartesian join is simply a join of two tables without a selective WHERE
clause. Therefore, the query output will consist of all rows from both tables. Here’s an example of a
Cartesian join:

SQL> SELECT * FROM employees, dept;

A PP E N DI X ■ O R A CL E D AT A B ASE 1 1 G S Q L AN D P L / S QL : A B R I E F P R IM E R 1233

Cartesian products of two large tables are almost always the result of a mistaken SQL query that
omits the join condition. By using a join condition when you’re combining data from two or more
tables, you can limit the number of rows returned. A join condition can be used in the WHERE clause
or the FROM clause, and it limits the data returned by selecting only data that satisfies the condition
stipulated by the join condition.

Here’s an example of a join statement that uses a join condition:

SQL> SELECT * FROM employees, dept
 WHERE dept='HR';

Types of Oracle Joins

Oracle offers various types of joins based on the way you combine rows from two or more tables or
views. The next sections discuss the most commonly used types of Oracle joins.

Equi-Join

With an equi-join, two or more tables are joined based on an equality condition between two columns.
In other words, the same column has the same value in all the tables that are being joined. Here’s an
example:

SQL> SELECT e.last_name, d.dept
 FROM emp e, dept d WHERE e.emp_id = d.emp_id;

You can also use the following new syntax for the preceding join statement:

SQL> SELECT e.last_name, d.dept
 FROM emp e JOIN dept d
 USING (emp_id);

If you want to join multiple columns, you can do so by using a comma-delimited list of column
names, as in USING (dept_id, emp_name).

Natural Join

A natural join is an equi-join where you don’t specify any columns to be matched for the join. Oracle
will automatically determine the columns to be joined, based on the matching columns in the two
tables. Here’s an example:

SQL> SELECT e.last_name, d.dept
 FROM emp e NATURAL JOIN dept d;

In the preceding example, the join is based on identical values for the last_name column in both
the emp and dept tables.

Self Join

A self join is a join of a table to itself through the use of table aliases. In the following example, the
employees table is joined to itself using an alias. The query deletes duplicate rows in the employees
table.

SQL> DELETE FROM employees X WHERE ROWID >
 2 (select MIN(rowid) FROM employees Y
 3 where X.key_values = Y.key_values);

1234 AP P E N D I X ■ O R AC L E D AT AB A SE 1 1 G S QL A N D P L / SQ L : A B R I E F P R I M E R

Inner Join

An inner join, also known as a simple join, returns all rows that satisfy the join condition. The tradi-
tional Oracle inner join syntax used the WHERE clause to specify how the tables were to be joined.
Here’s an example:

 SQL> SELECT e.flast_name, d.dept
 FROM emp e, dept d WHERE e.emp_id = d.emp_id;

The newer Oracle inner joins (or simply joins) specify join criteria with the new ON or USING
clause. Here’s a simple example:

SQL> SELECT DISTINCT NVL(dname, 'No Dept'),
 COUNT(empno) nbr_emps
 FROM emp JOIN DEPT
 ON emp.deptno = dept.deptno
 WHERE emp.job IN ('MANAGER', 'SALESMAN', 'ANALYST')
 GROUP BY dname;

Outer Join

An outer join returns all rows that satisfy the join condition, plus some or all of the rows from the
table that doesn’t have matching rows that meet the join condition. There are three types of outer
joins: left outer join, right outer join, and full outer join. Usually, the word “outer” is omitted from
the full outer join statement.

Oracle provides the outer join operator, wherein you use a plus sign (+) to indicate missing
values in one table, but it recommends the use of the newer ISO/ANSI join syntax. Here’s a typical
query using the full outer join:

SQL> SELECT DISTINCT NVL(dept_name, 'No Dept') deptname,
 COUNT(empno) nbr_emps
 FROM emp FULL JOIN dept
 ON dept.deptno = emp.deptno
 GROUP BY dname;

Grouping Operations
Oracle provides the GROUP BY clause so you can group the results of a query according to various
criteria. The GROUP BY clause enables you to consider a column value for all the rows in the table
fulfilling the SELECT condition.

A GROUP BY clause commonly uses aggregate functions to summarize each group defined by the
GROUP BY clause. The data is sorted on the GROUP BY columns, and the aggregates are calculated.
Here’s an example:

SQL> SELECT department_id, MAX(salary)
 2 FROM employees
 3* GROUP BY department_id;

 DEPARTMENT_ID MAX(SALARY)
 ------------- -----------
 10 4400
 20 13000
 30 11000
 40 6500
 50 8200
 5 rows selected.
SQL>

A PP E N DI X ■ O R A CL E D AT A B ASE 1 1 G S Q L AN D P L / S QL : A B R I E F P R IM E R 1235

Oracle also allows you to nest group functions. The following query gets you the minimum
average budget for all departments (the AVG function is nested inside the MIN function here):

SQL> SELECT MIN(AVG(budget))
 FROM dept_budgets
 GROUP BY dept_no;

The GROUP BY Clause with a ROLLUP Operator

You’ve seen how you can derive subtotals with the help of the GROUP BY clause. The GROUP BY clause
with a ROLLUP operator gives you subtotals and total values. You can thus build subtotal aggregates
at any level. In other words, the ROLLUP operator gets you the aggregates at each group by level. The
subtotal rows and the grand total row are called the superaggregate rows.

Listing A-3 shows an example of using the ROLLUP operator.

Listing A-3. A GROUP BY Clause with a ROLLUP Operator

SQL> SELECT Year,Country,SUM(Sales) AS Sales
 FROM Company_Sales
 GROUP BY ROLLUP (Year,Country);

 YEAR COUNTRY SALES
 -------- -------- -------
 1997 France 3990
 1997 USA 13090
 1997 17080
 1998 France 4310
 1998 USA 13900
 1998 18210
 1999 France 4570
 1999 USA 14670
 1999 19240
 54530 /*This is the grand total */
SQL>

The GROUP BY Clause with a CUBE Operator

You can consider the CUBE operator to be an extension of the ROLLUP operator, as it helps extend the
standard Oracle GROUP BY clause. The CUBE operator computes all possible combinations of subtotals
in a GROUP BY operation. In the previous example, the ROLLUP operator gave you yearly subtotals. Using
the CUBE operator, you can get countrywide totals in addition to the yearly totals. Here’s a simple
example:

SQL> SELECT department_id, job_id, SUM(salary)
 4 FROM employees
 5 GROUP BY CUBE (department_id, job_id);

DEPARTMENT_ID JOB_ID SUM(SALARY)
------------- --------- -----------
 10 AD_ASST 44000
 20 MK_MAN 130000
 20 MK_REP 60000
 30 PU_MAN 110000
 30 PU_CLERK 139000
. . .
SQL>

1236 AP P E N D I X ■ O R AC L E D AT AB A SE 1 1 G S QL A N D P L / SQ L : A B R I E F P R I M E R

The GROUP BY Clause with a GROUPING Operator

As you’ve seen, the ROLLUP operator gets you the superaggregate subtotals and grand totals. The
GROUPING operator in a GROUP BY clause helps you distinguish between superaggregated subtotals
and the grand total column from the other row data.

The GROUP BY Clause with a GROUPING SETS Operator

The GROUPING SETS operator lets you group multiple sets of columns when you’re calculating aggre-
gates such as sums. Here’s an example that shows how you can use this operator to calculate aggregates
over three groupings: (year, region, item), (year, item), and (region, item). The GROUPING SETS
operator eliminates the need for inefficient UNION ALL operators.

SQL> SELECT year, region, item, sum(sales)
 FROM regional_salesitem GROUP BY
 GROUPING SETS ((year, region, item),
 (year, item), (region, item));

The GROUP BY Clause with a HAVING Operator

The HAVING operator lets you restrict or exclude the results of a GROUP BY operation, in essence putting a
WHERE condition on the GROUP BY clause’s result set. In the following example, the HAVING operator
restricts the query results to only those departments that have a maximum salary greater than 20,000:

SQL> SELECT department_id, max(salary)
 2 FROM employees
 3 GROUP BY department_id
 4* HAVING MAX(salary)>20000;

DEPARTMENT_ID MAX(SALARY)
------------- -----------
 90 24000
SQL>

Writing Subqueries
Subqueries resolve queries that have to be processed in multiple steps—where the final result depends
on the results of a child query or subquery to the main query. If the subquery occurs in the WHERE
clause of the statement, it’s called a nested subquery.

Top-N Analysis

The following query gives you the top ten employees in a firm ranked by salary. You can just as easily
retrieve the bottom ten employees by using the ORDER BY clause instead of the ORDER BY DESC clause.

SQL> SELECT emp_id, emp_name, job, manager, salary
 FROM
 (SELECT emp_id, emp_name, job, manager, salary,
 RANK() OVER
 (ORDER BY SALARY DESC NULLS LAST) AS Employee_Rank
 FROM employees
 ORDER BY SALARY DESC NULLS LAST)
 WHERE employee_Rank < 5;

Subqueries can be single-row or multiple-row SQL statements. Let’s take a quick look at both
types of subqueries.

A PP E N DI X ■ O R A CL E D AT A B ASE 1 1 G S Q L AN D P L / S QL : A B R I E F P R IM E R 1237

Single-Row Subqueries

Subqueries are useful when you need to answer queries on the basis of as-yet unknown values, such
as “Which employees have a salary higher than the employee with the employee ID 9999?” To answer
such a question, a subquery or inner query is executed first (and only once). The result of this subquery
is then used by the main or outer query. Here’s the query:

SQL> SELECT first_name||last_name, dept
 2 FROM employee
 3 WHERE sal >
 4 (SELECT sal
 5 FROM emp
 6 WHERE empno= 9999);

Multiple-Row Subqueries

A multiple-row subquery returns multiple rows in the output, so you need to use multiple-row
comparison operators, such as IN, ANY, and ALL. Using a single-row operator with a multiple-row
subquery returns this common Oracle error:

ERROR:
ORA-01427: single-row subquery returns more than one row

Multiple-Column Subqueries

Multiple-column subqueries are queries where the inner query retrieves the values of more than one
column. The rows in the subquery are then evaluated in the main query in pair-wise comparison,
column by column and row by row.

Advanced Subqueries

Correlated subqueries are more complex than regular subqueries and answer questions such as
“What are the names of all employees whose salary is below the average salary of their department?”
The inner query computes the average salary, and the outer or main query gets the employee infor-
mation. However, for each employee in the main (outer) query, the inner query has to be computed,
because department averages depend on the department number of the employee in the outer query.

The Exists and Not Exists Operators

The EXISTS operator tests for the existence of rows in the inner query or subquery when you’re using
subqueries. The NOT EXISTS operator tests for the nonexistence of rows in the inner query. In the
following statement, the EXISTS operator will be TRUE if the subquery returns at least one row:

SQL> SELECT department_id
 FROM departments d
 WHERE EXISTS
 (SELECT * FROM employees e
 WHERE d.department_id
 = e.department_id);

Using Regular Expressions
Oracle Database 11g provides support for regular expressions that you can use as part of SQL state-
ments. Regular expressions let you use special operators to manipulate strings or carry out a search.

1238 AP P E N D I X ■ O R AC L E D AT AB A SE 1 1 G S QL A N D P L / SQ L : A B R I E F P R I M E R

Traditionally, developers used operators such as LIKE, REPLACE, and SUBSTRING in their search expres-
sions. However, these expressions forced you to write lengthy SQL and PL/SQL code when performing
complex searches. Oracle Database 11g lets you perform complex searches and string manipulations
easily with regular expressions.

■Note Oracle’s regular expression features follow the popular POSIX standards.

A regular expression searches for patterns in character strings. The character string has to be
one of CHAR, VARCHAR2, NCHAR, or NVARCHAR2, and the regular expression function can be one of the
following:

• REGEXP_LIKE

• REGEXP_REPLACE

• REGEXP_INSTRING

• REGEXP_SUBSTRING

The REGEXP_LIKE function evaluates strings using a specified set of characters. The regular expres-
sion function searches for a pattern in a string, which is specified with the SOURCE_STRING parameter
in the function. The PATTERN variable represents the actual regular expression, which is the pattern to
search for. A regular expression is usually a text literal; it can be one of CHAR, VARCHAR2, NCHAR, or NVARCHAR2,
and it can be a maximum of 512 bytes long. You can also specify an optional match parameter to
modify the matching behavior. For example, a value of i specifies case-insensitive matching, while
c specifies case-sensitive matching.

Here is the syntax of the REGEXP_LIKE function:

REGEXP_LIKE(source_string, pattern [,match_parameter])

If you want to carry out string-manipulation tasks, you can use the REGEXP_INSTR, REGEXP_
REPLACE, or REGEXP_SUBSTR built-in functions. These are really extensions of the normal SQL INSTR,
REPLACE, and SUBSTR functions.

Regular expression features use characters like the period (.), asterisk (*), caret (^), and dollar
sign ($), which are common in UNIX and Perl programming. The caret character (^), for example,
tells Oracle that the characters following it should be at the beginning of the line. Similarly, the $
character indicates that a character or a set of characters must be at the very end of the line. Here’s
an example using the REGEXP_LIKE function that picks up all names with consecutive vowels:

SQL> SELECT last_name
 FROM employees
 WHERE REGEXP_LIKE (last_name, '([aeiou])\1', 'i');

LAST_NAME

Freedman
Greenberg
Khoo
Gee
Lee
. . .
SQL>

A PP E N DI X ■ O R A CL E D AT A B ASE 1 1 G S Q L AN D P L / S QL : A B R I E F P R IM E R 1239

Here’s another example that quickly searches for employees who were hired between the
years 2000 and 2008.

SQL> SELECT emp_name, salary,
 2 TO_CHAR(hire_date,'yyyy') year_of_hire
 3 FROM emp
 4* WHERE REGEXP_LIKE (TO_CHAR (hire_date, 'yyyy'), '^200[0-8]$');

LAST_NAME FIRST_NAME SALARY YEAR
---------- ----------- ---------- ----
Austin David 4800 2007
Chen John 8200 2007
Alapati Shannon 7700 2007
Baida Shelli 2900 2007
Tobias Sigal 2800 2007
Weiss Matthew 8000 2007

Abstract Data Types
This section briefly reviews the important Oracle features that facilitate object-oriented programming.
Abstract types, also called object types, are at the heart of Oracle’s object-oriented programming.
Unlike a normal data type, an abstract data type contains a data structure along with the functions
and procedures needed to manipulate the data; thus, data and behavior are coupled.

Object types are like other schema objects, and they consist of a name, attributes, and methods.
Object types are similar to the concept of classes in C++ and Java. Oracle support for object-oriented
features, such as types, makes it feasible to implement object-oriented features, such as encapsula-
tion and abstraction, while modeling complex real-life objects and processes. Oracle also supports
single inheritance of user-defined SQL types.

The CREATE TYPE Command
Object types are created by users and stored in the database like Oracle data types such as VARCHAR2,
for example. The CREATE TYPE command lets you create an abstract template that corresponds to a
real-world object. Here’s an example:

SQL> CREATE TYPE person AS object
 2 (name varchar2(30),
 3 phone varchar2(20));

Type created.
SQL>

Object Tables
Object tables contain objects such as the person type that was created in the previous section. Here’s
an example:

SQL> CREATE TABLE person_table OF person;

Table created.
SQL>

Here’s the interesting part. The person_table table doesn’t contain single-value columns like
a regular Oracle table—its columns are types, which can hold multiple values. You can use object

1240 AP P E N D I X ■ O R AC L E D AT AB A SE 1 1 G S QL A N D P L / SQ L : A B R I E F P R I M E R

tables to view the data as a single-column table or a multicolumn table that consists of the compo-
nents of the object type. Here’s how you would insert data into an object table:

SQL> INSERT INTO person_table
 2 VALUES
 3 ('john smith', '1-800-555-9999');

1 row created.
SQL>

Collections
Collections are ideal for representing one-to-many relationships among data. Oracle offers you two
main types of collections: varrays and nested tables. We’ll look at these two types of collections in
more detail in the following sections.

Varrays

A varray is simply an ordered collection of data elements. Each element in the array is identified by
an index, which is used to access that particular element. Here’s how you declare a VARRAY type:

SQL> CREATE TYPE prices AS VARRAY (10) OF NUMBER (12,2);

Nested Tables

A nested table consists of an ordered set of data elements. The ordered set can be of an object type or
an Oracle built-in type. Here’s a simple example:

SQL> CREATE TYPE lineitem_table AS TABLE OF lineitem;

To access the elements of a collection with SQL, you can use the TABLE operator, as shown in the
following example. Here, history is a nested table and courses is the column you want to insert data
into:

SQL> INSERT INTO
 TABLE(SELECT courses FROM department WHERE name = 'History')
 VALUES('Modern India');

Type Inheritance
You can create not just types, but also type hierarchies, which consist of parent supertypes and child
subtypes connected to the parent types by inheritance. Here’s an example of how you can create a
subtype from a supertype. First, create the supertype:

SQL> CREATE TYPE person_t AS OBJECT (
 name varchar2(80),
 social_sec_no number,
 hire_date date,
 member function age() RETURN number,
 member function print() RETURN varchar2) NOT FINAL;

Next, create the subtype, which will inherit all the attributes and methods from its supertype:

A PP E N DI X ■ O R A CL E D AT A B ASE 1 1 G S Q L AN D P L / S QL : A B R I E F P R IM E R 1241

SQL> CREATE TYPE employee_t UNDER person_t
 (salary number,
 commission number,
 member function wages () RETURN number,
 OVERRIDING member function print () RETURN varchar2);

The Cast Operator
The CAST operator enables you to do two things. It lets you convert built-in data types and also
convert a collection-type value into another collection-type value.

Here’s an example of using CAST with built-in data types:

SQL> SELECT product_id,
 CAST(description AS VARCHAR2(30))
 FROM product_desc;

PL/SQL
Although SQL is easy to learn and has a lot of powerful features, it doesn’t allow the procedural
constructs of third-generation languages such as C. PL/SQL is Oracle’s proprietary extension to SQL,
and it provides you the functionality of a serious programming language. One of the big advantages
of using PL/SQL is that you can use program units called procedures or packages in the database,
thus increasing code reuse and performance.

The Basic PL/SQL Block
A PL/SQL block is an executable program. A PL/SQL code block, whether encapsulated in a program
unit such as a procedure or specified as a free-form anonymous block, consists of the following
structures, with a total of four key statements, only two of which are mandatory:

• DECLARE: In this optional section, you declare the program variables and cursors.

• BEGIN: This mandatory statement indicates that SQL and PL/SQL statements will follow it.

• EXCEPTION: This optional statement specifies error handling.

• END: This mandatory statement indicates the end of the PL/SQL code block.

Here’s an example of a simple PL/SQL code block:

SQL> DECLARE isbn NUMBER(9)
 BEGIN
 isbn := 123456789;
 insert into book values (isbn, 'databases', 59.99);
 COMMIT;
 END;
SQL>

Declaring Variables
You can declare both variables and constants in the DECLARE section. Before you can use any variable,
you must first declare it. A PL/SQL variable can be a built-in type such as DATE, NUMBER, VARCHAR2, or
CHAR, or it can be a composite type such as VARRAY. In addition, PL/SQL uses the BINARY_INTEGER and
BOOLEAN data types.

1242 AP P E N D I X ■ O R AC L E D AT AB A SE 1 1 G S QL A N D P L / SQ L : A B R I E F P R I M E R

Here are some common PL/SQL variable declarations:

hired_date DATE;
emp_name VARCHAR2(30);

In addition to declaring variables, you can also declare constants, as shown in the following
example:

tax_rate constant number := 0.08;

You can also use the %TYPE attribute to declare a variable that is of the same type as a specified
table’s column, as shown here:

emp_num employee.emp_id%TYPE;

The %ROWTYPE attribute specifies that the record (row) is of the same data type as a database
table. In the following example, the DeptRecord record has all the columns contained in the depart-
ment table, with identical data types and length:

declare
v_DeptRecord department%ROWTYPE;

Writing Executable Statements
After the BEGIN statement, you can enter all your SQL statements. These look just like your regular
SQL statements, but notice the difference in how you handle a SELECT statement and an INSERT state-
ment in the following sections.

A SELECT Statement in PL/SQL

When you use a SELECT statement in PL/SQL, you need to store the retrieved values in variables, as
shown here:

DECLARE
name VARCHAR2(30);
BEGIN
SELECT employee_name INTO name FROM employees WHERE emp_id=99999;
END;
/

DML Statements in PL/SQL

Any INSERT, DELETE, or UPDATE statements in PL/SQL work just as they do in regular SQL. You can use
the COMMIT statement after any such operation, as shown here:

BEGIN
DELETE FROM employee WHERE emp_id = 99999;
COMMIT;
END;
/

Handling Errors
In PL/SQL, an error or a warning is called an exception. PL/SQL has some internally defined errors,
and you can also define your own error conditions. When any error occurs, an exception is raised

A PP E N DI X ■ O R A CL E D AT A B ASE 1 1 G S Q L AN D P L / S QL : A B R I E F P R IM E R 1243

and program control is handed to the exception-handling section of the PL/SQL program. If you
define your own error conditions, you have to raise exceptions by using a special RAISE statement.

The following example shows an exception handler using the RAISE statement:

DECLARE
 acct_type INTEGER := 7;
BEGIN
 IF acct_type NOT IN (1, 2, 3) THEN
 RAISE INVALID_NUMBER; -- raise predefined exception
 END IF;
EXCEPTION
 WHEN INVALID_NUMBER THEN
 ROLLBACK;
END;
/

PL/SQL Control Structures
PL/SQL offers you several types of control structures, which enable you to perform iterations of code
or conditional execution of certain statements. The various types of control structures in PL/SQL are
covered in the following sections.

Conditional Control

The main type of conditional control structure in PL/SQL is the IF statement, which enables condi-
tional execution of statements. You can use the IF statement in three forms: IF-THEN, IF-THEN-ELSE,
and IF-THEN-ELSEIF. Here’s an example of a simple IF-THEN-ELSEIF statement:

BEGIN
 . . .
 IF total_sales > 100000 THEN
 bonus := 5000;
 ELSEIF total_sales > 35000 THEN
 bonus := 500;
 ELSE
 bonus := 0;
 END IF;
 INSERT INTO new_payroll VALUES (emp_id, bonus . . .);
END;
/

PL/SQL Looping Constructs

PL/SQL loops provide a way to perform iterations of code for a specified number of times or until a
certain condition is true or false. The following sections cover the basic types of looping constructs.

The Simple Loop

The simple loop construct encloses a set of SQL statements between the keywords LOOP and END
LOOP. The EXIT statement ends the loop. You use the simple loop construct when you don’t know
how many times the loop should execute. The logic inside the LOOP and END LOOP statements decides
when the loop is terminated.

1244 AP P E N D I X ■ O R AC L E D AT AB A SE 1 1 G S QL A N D P L / SQ L : A B R I E F P R I M E R

In the following example, the loop will be executed until a quality grade of 6 is reached:

LOOP
 . . .
 if quality_grade > 5 then
 . . .
 EXIT;
 end if;
END LOOP;

Another simple loop type is the LOOP . . . EXIT . . . WHEN construct, which controls the dura-
tion of the loop with a WHEN statement. A condition is specified for the WHEN statement, and when this
condition becomes true, the loop will terminate. Here’s a simple example:

DECLARE
 count_num NUMBER(6);
BEGIN
 count_num := 1;
 LOOP
 dbms_output.put_line(' This is the current count '|| count_num);
 count_num := count_num + 1;
 Exit when count_num > 100;
 END LOOP;
END;

The WHILE Loop

The WHILE loop specifies that a certain statement be executed while a certain condition is true. Note
that the condition is evaluated outside the loop. Each time the statements within the LOOP and END
LOOP statements are executed, the condition is evaluated. When the condition no longer holds true,
the loop is exited. Here’s an example of the WHILE loop:

WHILE total <= 25000
LOOP
 . . .
 SELECT sal INTO salary FROM emp WHERE . . .
 total := total + salary;
END LOOP;

The FOR Loop

The FOR loop is used when you want a statement to be executed a certain number of times. The FOR
loop emulates the classic do loop that exists in most programming languages. Here’s an example of
the FOR loop:

BEGIN
 FOR count_num IN 1..100
 LOOP
 dbms_output.put_line('The current count is : '|| count_num);
 END LOOP;
END;

PL/SQL Records
Records in PL/SQL let you treat related data as a single unit. Records contain fields, with each field
standing for a different item. You can use the %ROWTYPE attribute to declare a table’s columns as a

A PP E N DI X ■ O R A CL E D AT A B ASE 1 1 G S Q L AN D P L / S QL : A B R I E F P R IM E R 1245

record, which uses the table as a cursor template, or you can create your own records. Here’s a
simple example of a record:

DECLARE
 TYPE MeetingTyp IS RECORD (
 date_held DATE,
 location VARCHAR2(20),
 purpose VARCHAR2(50));

To reference an individual field in a record, you use dot notation, as shown here:

MeetingTyp.location

Using Cursors
An Oracle cursor is a handle to an area in memory that holds the result set of a SQL query, enabling
you to individually process the rows in the result set. Oracle uses implicit cursors for all DML state-
ments. Explicit cursors are created and used by application coders.

Implicit Cursors
Implicit cursors are automatically used by Oracle every time you use a SELECT statement in PL/SQL.
You can use implicit cursors in statements that return just one row. If your SQL statement returns
more than one row, an error will result.

In the following PL/SQL code block, the SELECT statement makes use of an implicit cursor:

DECLARE
 emp_name varchar2(40);
 salary float;
BEGIN
 SELECT emp_name, salary FROM employees
 WHERE employee_id=9999;
 dbms_output.put_line('employee_name : '||emp_name||'
 salary :'||salary);
END;
/

Explicit Cursors
Explicit cursors are created by the application developer, and they facilitate operations with a set of
rows, which can be processed one by one. You always use explicit cursors when you know your SQL
statement will return more than one row. Notice that you have to declare an explicit cursor in the
DECLARE section at the beginning of the PL/SQL block, unlike an implicit cursor, which you never
refer to in the code.

Once you declare your cursor, the explicit cursor will go through these steps:

1. The OPEN clause will identify the rows that are in the cursor and make them available for the
PL/SQL program.

2. The FETCH command will retrieve data from the cursor into a specified variable.

3. The cursor should always be explicitly closed after your processing is completed.

Listing A-4 shows how a cursor is first created and then used within a loop.

1246 AP P E N D I X ■ O R AC L E D AT AB A SE 1 1 G S QL A N D P L / SQ L : A B R I E F P R I M E R

Listing A-4. Using an Explicit Cursor

DECLARE
/* The cursor select_emp is explicitly declared */
 CURSOR select_emp IS
 select emp_id, city
 from employees
 where city = 'DALLAS';
 v_empno employees.emp_id%TYPE;
 v_empcity employees.city%TYPE;
BEGIN
 /* The cursor select_emp is opened */
 Open select _emp;
 LOOP
 /* The select_emp cursor data is fetched into v_empno variable */
 FETCH select_emp into v_empno;
 EXIT WHEN select_emp%NOTFOUND;
 dbms_output.put_line(v_empno|| ','||v_empcity);
 END LOOP;
 /* The cursor select_emp is closed */
 Close select_emp;
END;
/

Cursor Attributes
In the example shown in Listing A-4, a special cursor attribute, %NOTFOUND, is used to indicate when
the loop should terminate. Cursor attributes are very useful when you’re dealing with explicit cursors.
Here are the main cursor attributes:

• %ISOPEN is a Boolean attribute that evaluates to false after the SQL statement completes
execution. It returns true as long as the cursor is open.

• %FOUND is a Boolean attribute that tests whether the SQL statement matches any row—that is,
whether the cursor has any more rows to fetch.

• %NOTFOUND is a Boolean attribute that tells you that the SQL statement doesn’t match any row,
meaning there are no more rows left to fetch.

• %ROWCOUNT gives you the number of rows the cursor has fetched so far.

Cursor FOR Loops
Normally when you use explicit cursors, cursors have to be opened, the data has to be fetched, and
finally the cursor needs to be closed. A cursor FOR loop automatically performs the open, fetch, and
close procedures, which simplifies your job. Listing A-5 shows an example that uses a cursor FOR
loop construct.

Listing A-5. Using the Cursor FOR Loop

DECLARE
 CURSOR emp_cursor IS
 SELECT emp_id, emp_name, salary
 FROM employees;
 v_emp_info employees%RowType;

A PP E N DI X ■ O R A CL E D AT A B ASE 1 1 G S Q L AN D P L / S QL : A B R I E F P R IM E R 1247

Begin
 FOR emp_info IN emp_cursor
 LOOP
 dbms_output.put_line ('Employee id : '||emp_id||'Employee
 name : '|| emp_name||'Employee salary :'||salary);
 END LOOP;
END;
/

Cursor Variables
Cursor variables point to the current row in a multirow result set. Unlike a regular cursor, though,
a cursor variable is dynamic—that is, you can assign new values to a cursor variable and pass it to
other procedures and functions. Let’s look at how you can create cursor variables in PL/SQL.

First, define a REF CURSOR type, as shown here:

 DECLARE
 TYPE EmpCurTyp IS REF CURSOR RETURN dept%ROWTYPE;

Next, declare cursor variables of the type DeptCurTyp in an anonymous PL/SQL code block or in
a procedure (or function), as shown in the following code snippet:

DECLARE
 TYPE EmpRecTyp IS RECORD (
 Emp_id NUMBER(9),
 emp_name VARCHAR2(3O),
 sal NUMBER(7,2));
 TYPE EmpCurTyp IS REF CURSOR RETURN EmpRecTyp;
 emp_cv EmpCurTyp; -- declare cursor variable

Procedures, Functions, and Packages
A PL/SQL procedure can be used to perform various DML operations. The following is a simple
Oracle procedure:

create or replace procedure new_employee (emp_id number,
last_name varchar(2), first_name varchar(2))
is
begin
 insert into employees values (emp_id, last_name, first_name);
end new_employee;
/

Unlike a PL/SQL procedure, a function returns a value, as shown in the following example:

CREATE OR REPLACE FUNCTION sal_ok (salary REAL, title VARCHAR2) RETURN BOOLEAN IS
 min_sal REAL;
 max_sal REAL;
BEGIN
 SELECT losal, hisal INTO min_sal, max_sal FROM sals
 WHERE job = title;
 RETURN (salary >= min_sal) AND (salary <= max_sal);
END sal_ok;

Oracle packages are objects that usually consist of several related procedures and functions, and the
package is usually designed to perform an application function by invoking all the related procedures

1248 AP P E N D I X ■ O R AC L E D AT AB A SE 1 1 G S QL A N D P L / SQ L : A B R I E F P R I M E R

and functions within the package. Packages are extremely powerful, because they can contain large
amounts of functional code and be repeatedly executed by several users.

A package usually has two parts: a package specification and a package body. The package spec-
ification declares the variables, cursors, and subprograms (procedures and functions) that are part
of the package. The package body contains the actual cursors and subprogram code.

Listing A-6 shows a simple Oracle package.

Listing A-6. A PL/SQL Package

/* First, the Package Specification /*
 create or replace package emp_pkg as
 type list is varray (100) of number (5);
 procedure new_employee (emp_id number, last_name
 varchar2, first_name varchar2);
 procedure salary_raise (emp_id number, raise number);
end emp_pkg;
/
/* The Package Body follows */
create or replace package body emp_pkg as
procedure new_employee (emp_id number,
last_name varchar(2), first_name varchar(2) is
 begin
 insert into employees values (emp_id, last_name, first_name);
 end new_employee;
 procedure salary_raise (emp_num number, raise_pct real) is
 begin
 update employees set salary = salary * raise_pct
 where emp_id = emp_num;
 end salary_raise;
end emp_pkg;
/

If you want to use emp_pkg to award a raise to an employee, all you have to do is execute the
following:

SQL> EXECUTE emp_pkg.salary_raise(99999, 0.15);

Oracle XML DB
A typical organization has information stored in multiple formats, some of which may be organized
in relational databases, but most of which is stored outside the database. The nondatabase information
may be stored in application-specific formats, such as Excel spreadsheets. Storing the nondatabase
information in XML format instead makes it easier to access and update nonstructured organiza-
tional information.

Oracle XML DB isn’t really a special type of database for XML. It simply refers to the set of built-in
XML storage and retrieval technologies for the manipulation of XML data. Oracle XML DB provides the
advantages of object-relational database technology and XML technology. For example, one of the
major problems involved in dealing with XML data from within a relational database is that most
XML data is hierarchical in nature, whereas the Oracle database is based on the relational model.
Oracle manages to deal effectively with the hierarchical XML data by using special SQL operators and
methods that let you easily query and update XML data in an Oracle database. Oracle XML DB builds

A PP E N DI X ■ O R A CL E D AT A B ASE 1 1 G S Q L AN D P L / S QL : A B R I E F P R IM E R 1249

the XML Document Object Model (DOM) into the Oracle kernel. Thus, most XML operations are
treated as part of normal database processing.

Oracle XML DB provides the ability to view both structured and nonstructured information as
relational data. You can view the data as either rows in a table or nodes in an XML document.

Here is a brief list of the benefits offered by Oracle XML DB:

• You can access XML data using regular SQL queries.

• You can use Oracle’s OLTP, data warehousing, test, spatial data, and multimedia features to
process XML data.

• You can generate XML from an Oracle SQL query.

• You can transform XML into HTML format easily.

Storing XML in Oracle XML DB
Oracle uses a special native data type called XMLType to store and manage XML data in a relational
table. XMLType and XDBURIType, which is another built-in type for XML data, enable you to leave the
XML parsing, storage, and retrieval to the Oracle database. You can use the XMLType data type just as
you would the usual data types in an Oracle database. You can now store a well-formed XML docu-
ment in the database as an XML test using the CLOB base data type.

Here’s an example of using the XMLType data type:

SQL> CREATE TABLE sales_catalog_table
 2 (sales_num number(18),
 3 sales_order xmltype);
Table created.
SQL> DESC sales_catalog_table
 Name Null? Type
 --------------------- ----- --------
 SALES_NUM NUMBER(18)
 SALES_ORDER XMLTYPE
SQL>

The XMLType data type comes with a set of XML-specific methods, which you use to work with
XMLType objects. You can use these methods to perform common database operations, such as
checking for the existence of a node and extracting a node. The methods also support several oper-
ators that enable you to access and manipulate XML data as part of a regular SQL statement. These
operators follow the emerging SQL/XML standard. Using the well-known XPath notation, the SQL/
XML operators traverse XML structures to find the node or nodes on which they should use the SQL
operations. Here are some of the important SQL/XML operators:

• Extract() extracts a subset of the nodes contained in the XMLType.

• ExistsNode() checks whether a certain node exists in the XMLType.

• Validating() validates the XMLType contents against an XML schema.

• Transform() performs an XSL transformation.

• ExtractValue() returns a node corresponding to an XPath expression.

XML is in abstract form compared to the normal relational table entries. To optimize and
execute statements that involve XML data, Oracle uses a query-rewrite mechanism to transform an
XPath expression into an equivalent regular SQL statement. The optimizer then processes the trans-
formed SQL statement like any other SQL statement.

1250 AP P E N D I X ■ O R AC L E D AT AB A SE 1 1 G S QL A N D P L / SQ L : A B R I E F P R I M E R

You can store XML in Oracle XML DB in the following ways:

• You can use SQL or PL/SQL to insert the data. Using XMLType constructors, you must first
convert the sourced data into an XMLType instance.

• You can use the Oracle XML DB repository to store the XML data.

Here’s a simple example using the sales_catalog_table table to demonstrate how to perform
SQL-based DML operations with an XML-enabled table. In Listing A-7, an XML document is inserted
into sales_catalog_table.

Listing A-7. Inserting an XML Document into an Oracle Table

SQL> INSERT INTO sales_catalog_table
 2 VALUES (123456,
 3 XMLTYPE(
 4 '<SalesOrder>
 5 <Reference>Alapati - 200302201428CDT</Reference>
 6 <Actions/>
 7 <Reject/>
 8 <Requestor>Nina U. Alapati</Requestor>
 9 <User>ALAPATI</User>
 10 <SalesLocation>Dallas</SalesLocation>
 11 <ShippingInstructions/>
 12 <DeliveryInstructions>Bicycle Courier</DeliveryInstructions>
 13 <ItemDescriptions>
 14 <ItemDescription ItemNumber="1">
 15 <Description>Expert Oracle DB Administration</Description>
 16 <ISBN Number="1590590228"Price="59.95"Quantity="5"/>
 17 </ItemDescription>
 18 </ItemDescriptions>
 19* </SalesOrder>'));
1 row created.
SQL>

You can query the sales_catalog_table table’s sales_order column, as shown in Listing A-8, to
view the XML document in its original format.

Listing A-8. Viewing XML Data Stored in an Oracle Table

SQL> SELECT sales_order FROM
 2 sales_catalog_table;
 <SalesOrder>
 <Reference>Alapati - 200302201428CDT</Reference>
 <Actions/>
 <Reject/>
 <Requestor>Sam R. Alapati</Requestor>
 <User>ALAPATI</User>
 <SalesLocation>Dallas</SalesLocation>
 <ShippingInstructions/>
 <DeliveryInstructions>Bicycle Courier</DeliveryInstructions>
 <ItemDescriptions>
 <ItemDescription ItemNumber="1">
 <Description>Expert Oracle DB Administration</Description>
 <ISBN Number="9999990228" Price="59.95" Quantity="2"/>
 </ItemDescription>

A PP E N DI X ■ O R A CL E D AT A B ASE 1 1 G S Q L AN D P L / S QL : A B R I E F P R IM E R 1251

 </ItemDescriptions>
</SalesOrder>
SQL>

Once you create the sales_catalog_table table, it’s very easy to retrieve data using one of the
methods I just described. The following example shows how to query the table using the extract()
method. Note that the query includes XPath expressions and the SQL/XML operators extractValue
and existsNode to find the requestor’s name where the value of the /SalesOrder/SalesLocation/
text() node contains the value Dallas.

 SQL> SELECT extractValue(s.sales_order,'/SalesOrder/Requestor')
 2 FROM sales_catalog_table s
 3 WHERE existsNode(s.SALES_ORDER,
 4* '/SalesOrder[SalesLocation="Dallas"]') = 1;

EXTRACTVALUE(S.SALES_ORDER,'/SALESORDER/REQUESTOR')

Nina U. Alapati
SQL>

The Oracle XML DB Repository
The best way to process XML documents in Oracle XML DB is to first load them into a special repos-
itory called the Oracle XML DB repository. The XML repository is hierarchical, like most XML data,
and it enables you to easily query XML data. The paths and URLs in the repository represent the rela-
tionships among the XML data, and a special hierarchical index is used to traverse the folders and
paths within the repository. The XML repository can hold non-XML data such as JPEG images, Word
documents, and more.

You can use SQL and PL/SQL to access the XML repository. XML authoring tools can directly
access the documents in the XML repository using popular Internet protocols such as HTTP, FTP,
and WebDAV. For example, you can use Windows Explorer, Microsoft Office, and Adobe Acrobat to
work with the XML documents that are stored in the XML repository. XML is by nature document-
centric, and the XML repository provides applications with a file abstraction when dealing with
XML data.

Setting Up an XML Schema
Before you can start using Oracle XML DB to manage XML documents, you need to perform the
following tasks:

1. Create an XML schema. For example, SalesOrder, shown in Listing A-7, is a simple XML schema
that reflects a simple XML document. Within the SalesOrder schema are elements such as
ItemDescription, which provides details about the attributes of the component items.

2. Register the XML schema. After the XML schema is created, you must register it with the Oracle
database using a PL/SQL procedure. When you register the XML schema, Oracle will create
the SQL objects and the XMLType tables that are necessary to store and manage the XML doc-
uments. For the example shown in Listing A-6, registering the XML schema will create a table
called SalesOrder automatically, with one row in the table for each SalesOrder document
loaded into the XML repository. The XML schema is registered under the URL http://
localhost:8080/home/SCOTT/xdb/salesorder.xsd, and it contains the definition of the
SalesOrder element.

1252 AP P E N D I X ■ O R AC L E D AT AB A SE 1 1 G S QL A N D P L / SQ L : A B R I E F P R I M E R

Creating a Relational View from an XML Document
Even if a developer doesn’t know much XML, he or she can use the XML documents stored in the
Oracle database by creating relational views based on the XML documents. The following example
maps nodes in an XML document to columns in a relational view called salesorder_view:

 SQL> CREATE OR REPLACE VIEW salesorder_view
 2 (requestor,description,sales_location)
 3 AS SELECT
 4 extractValue(s.sales_order,'/SalesOrder/Requestor'),
 5 extractValue(s.sales_order,'/SalesOrder/Sales_Location')
 6* FROM sales_Catalog_Table s ;

 View created.
SQL>

You can query salesorder_view like you would any other view in an Oracle database, as shown
here:

SQL> SELECT requestor,sales_location FROM salesorder_view;

REQUESTOR
SALES_LOCATION
Aparna Alapati
Dallas
SQL>

Oracle and Java
You can use both PL/SQL and Java to write applications that need Oracle database access. Although
PL/SQL has several object-oriented features, the Java language is well known as an object-oriented
programming language. If your application needs heavy database access and must process large
amounts of data, PL/SQL is probably a better bet. However, for open distributed applications, Java-
based applications are more suitable.

The Oracle database contains a Java Virtual Machine (JVM) to interpret Java code from within
the database. Just as PL/SQL enables you to store code on the server and use it multiple times, you
can also create Java stored procedures and store them in the database. These Java stored procedures
are in the form of Java classes. You make Java files available to the Oracle JVM by loading them into
the Oracle database as schema objects.

You can use the Java programming language in several ways in an Oracle database. You can
invoke Java methods in classes that are loaded in the database in the form of Java stored procedures.
You can also use two different application programming interfaces (APIs), Java Database Connec-
tivity (JDBC) or SQLJ, to access the Oracle database from a Java-based application program. In the
sections that follow, we’ll briefly look at the various ways you can work with Java and the Oracle
database.

Java Stored Procedures
Java stored procedures are, of course, written using Java, and they facilitate the implementation of
data-intensive business logic using Java. These procedures are stored within the database like PL/SQL
stored procedures. Java stored procedures can be seen as a link between the Java and non-Java
environments.

A PP E N DI X ■ O R A CL E D AT A B ASE 1 1 G S Q L AN D P L / S QL : A B R I E F P R IM E R 1253

You can execute Java stored procedures just as you would PL/SQL stored procedures. Here’s a
summary of the steps involved in creating a Java stored procedure:

1. Define the Java class.

2. Using the Java compiler, compile the new class.

3. Load the class into the Oracle database. You can do this by using the loadjava command-line
utility.

4. Publish the Java stored procedure.

Once you’ve completed these steps, you can invoke the Java stored procedure.

JDBC
JDBC is a popular method used to connect to an Oracle database from Java. Chapter 10 contains a
complete example of a Java program. JDBC provides a set of interfaces for querying databases and
processing SQL data in the Java programming language.

Listing A-9 shows a simple JDBC program that connects to an Oracle database and executes a
simple SQL query.

Listing A-9. A Simple JDBC Program

import java.sql.*;
public class JDBCExample {
 public static void main(String args[]) throws SQLException
/* Declare the type of Oracle Driver you are using */
 {DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
/* Create a database connection for the JDBC program */
Connection conn=
DriverManager.getConnection(
 "jdbc:oracle:thin:@nicholas:1521:aparna","hr","hr");
Statement stmt = conn.createStatement();
/* Pass a query to SQL and store the results in the result set rs */
ResultSet rs =
stmt.executeQuery("select emp_id, emp_name,salary from employees");
/* Using the while loop, result set rs is accessed row by row */
while(rs.next()){
int number = rs.getInt(1);
String name= rs.getString(2);
System.out.println(number+" "+name+" "+salary);
 }
/* Close the JDBC result set and close the database connection */
rs.close();
conn.close();
 }
}

JDBC is ideal for dynamic SQL, where the SQL statements aren’t known until run time.

SQLJ
SQLJ is a complementary API to JDBC, and it’s ideal for applications in which you’re using static SQL
(SQL that’s known before the execution). Being static, SQLJ enables you to trap errors before they

1254 AP P E N D I X ■ O R AC L E D AT AB A SE 1 1 G S QL A N D P L / SQ L : A B R I E F P R I M E R

occur during run time. Keep in mind that even with SQLJ, you still use JDBC drivers to access the
database.

There are three steps involved in executing a SQLJ program:

1. Create the SQLJ source code.

2. Translate the SQLJ source code into Java source code using a Java compiler.

3. Execute the SQLJ runtime program after you connect to the database.

Listing A-10 contains a simple SQLJ example that shows how to execute a SQL statement from
within Java.

Listing A-10. A Simple SQLJ Program

import java.sql.*;
import sqlj.runtime.ref.DefaultContext;
import oracle.sqlj.runtime.Oracle;
/* Declare the variables here */
/* Define an Iterator type to store query results */
#sql iterator ExampleIter (int emp_id, String emp_name,float salary);
public class MyExample
/* The main method */
 { public static void main (String args[]) throws SQLException
 {
/* Establish the database connection for SQLJ */
 Oracle.connect
 ("jdbc:oracle:thin:@shannon:1234:nicholas1", "hr", "hr");
/* Insert a row into the employees table */
 #sql { insert into employees (emp_id, emp_name, salary)
 values (1001, 'Nina Alapati', 50000) };
/* Create an instance of the iterator ExampleIter */
 ExampleIter iter;
/* Store the results of the select query in the iterator ExampleIter */
 #sql iter={ select emp_id, emp_name, salary from employees };
/* Access the data stored in the iterator, using the next() method */
 while (iter.next()) {
 System.out.println
 (iter.emp_id,()+" "+iter.emp_name()+" "+iter.salary());
 }
 }
}

As you can see from the SQLJ example in Listing A-10, SQLJ is nothing more than embedded SQL
in a Java program. Using SQLJ, you can easily make calls to the database from Java. For a wealth of
information on Oracle and Java, please visit Oracle’s Java Center web site (http://otn.oracle.com/
tech/java/content.html).

This appendix just provided a very brief introduction to the Oracle Database 11g SQL and PL/
SQL capabilities. Although Oracle DBAs aren’t always expected be very proficient in SQL and PL/SQL, the
more you know about them, the better off you’ll be as a professional Oracle DBA.

1255

Index

■Symbols
! (bang, or exclamation point)

using operating system commands from
SQL*Plus, 120

$ (dollar sign) character, SQL, 1238
$ sign, UNIX, 53, 55, 69
% (percent sign) character, SQL, 1224
& prefixing variable names, SQL*Plus, 126
* (asterisk) character, SQL, 1238
. (period) character, SQL, 1238
/ (slash) command, 126, 128
/* ... */, comments SQL*Plus, 128
@@commandfile notation, SQL, 129
^ (caret) character, SQL, 1238
_ (underscore) character, SQL, 1224
| (pipe) command, UNIX/Linux, 52, 57

■Numerics
1:1 (one-to-one) relationship, 26
1:M (one-to-many) relationship, 26
10446 trace event, SQL, 1174
1NF (First Normal Form), 30–31
2NF (Second Normal Form), 31–33
3NF (Third Normal Form), 33
4NF (Fourth Normal Form), 34
5NF (Fifth Normal Form), 34

■A
abnormal program failure, 338
ABORT option, SHUTDOWN command,

503, 908
ABORT_REDEF_TABLE procedure, 941
ABP (Autotask Background Process), 1022
absolute path, UNIX, 47, 62
abstract data types, 1239–1241

CAST operator, 1241
collections, 1240
CREATE TYPE command, 1239
nested tables, 1240
object tables, 1239
table functions, 664
type inheritance, 1240
user-defined data types, 264
VARRAY type, 1240

ACCEPT command, SQL*Plus, 121
accepted addresses, securing network, 614
ACCEPT_SQL_PATCH procedure, 1038
ACCEPT_SQL_PROFILE procedure, 1115
ACCEPT_SQL_PROFILES parameter, 1117, 1118
Access Advisor see SQL Access Advisor

access control
fine-grained network access control,

615–618
server-side access controls, 614

access control list (ACL), 615, 616, 617
access drivers, 648, 650
ACCESS PARAMETERS clause, 647
access path

ATO analyzing, 1112
CBO choosing, 1052

access plan, SQL processing, 1133
accessing database see database access
ACCOUNT LOCK option, 548
ACID properties, transactions, 340
acl parameter, CREATE_ACL procedure, 616
action components, ADDM, 881
Active Session History see ASH
active session management, 554
active session pool

Database Resource Manager, 555, 942
Active Sessions chart, Database Control, 1196
active/inactive pages, memory

management, 81
ACTIVE_SESSION_POOL parameter, 560
ACTIVE_SESS_POOL_MTH parameter, 560
adaptive cursor sharing, 1087–1090
adaptive search strategy, 1053
adaptive thresholds, 954
ADD command, ALTER TABLE, 271
ADD LOGFILE GROUP syntax, 983
ADD PARTITION command, ALTER TABLE, 291
ADD_FILE command, Data Pump, 702, 703,

704, 713
ADDFILE procedure, DBMS_LOGMNR, 844
ADD_FILTER procedure

DBMS_WORKLOAD_CAPTURE package, 1210
Additional Information section, ADDM

reports, 888
ADD_LOGFILE procedure, DBMS_LOGMNR,

844, 845
ADDM (Automatic Database Diagnostic

Monitor), 146, 209, 877–894
analyzing performance problems, 1183–1184
automatic performance-tuning features, 1132
AWR and, 878
configuring, 881–882
data dictionary views, 893
determining optimal I/O performance, 884
enabling, 882
findings, 880
modes, 882, 883–884

1256 ■IN D E X

performance tuning, 877
problems diagnosed by, 878–880
pronouncing ADDM, 877
purpose of ADDM, 878
reasons for invoking ADDM manually, 885
recommendations, 878, 880–881
running ADDM, 885

using Database Control, 893
time-model statistics, 879–880
tuning-related advisors, 976
when ADDM runs, 882

ADDM analysis
Performance Analysis section, Database

Control, 1197
ADDM reports

abbreviated ADDM report, 886
components of report, 885
confusing with AWR reports, 966
content of, 879
displaying, 884
viewing, 885–891

using Database Control, 890–891
using DBMS_ADVISOR, 890

addmrpt.sql script, 885, 888–890
ADD_POLICY procedure, DBMS_FGA, 594, 595
ADD_POLICY procedure, DBMS_RLS, 584,

585, 586
ADD_POLICY_CONTEXT procedure, 584
ADD_PRIVILEGE procedure, 616
ADD_SQLWKLD_REF procedure, 323
ADD_TABLE_RULES procedure, 674
adhoc directory, 397
admin class, Oracle Secure Backup, 788
ADMIN privilege, 612
ADMINISTER_RESOURCE_MANAGER

privilege, 555
administrative context, 537
administrative directories, 397
administrative domain, Oracle Secure

Backup, 786
administrative files, 394, 397, 399
Administrative wait class, 1163
Administrators page, Database Control, 148
ADMIN_RESTRICTIONS parameter,

listener.ora, 614
ADR (Automatic Diagnostic Repository), 178,

211, 1022, 1023–1024
alert directory, 178
core directory, 178
DIAGNOSTIC_DEST parameter, 449
flood-controlled incident system, 1026
OFA guidelines, 396
trace directory, 178
viewing results of health check, 1033

ADR Base directory, 1024
ADR Command Interpreter see ADRCI
ADR Home directory, 1024
ADRCI, 208, 211, 1022, 1024–1026

ADR homepath, 1025
creating incident package, 1027

Advanced Installation option, Universal
Installer, 416

Advanced Queuing (AQ), Oracle Streams, 670
Advanced Security option, 535, 603, 618
ADVISE FAILURE command, Data Recovery

Advisor, 831
Advisor Central page

Database Control, 150, 323, 979
Grid Control, 890

Advisor Mode section, SQL Access Advisor, 323
advisors, 976–977

advisory framework, 212
comparing AWR snapshots, 961
database metrics, 950
instance-related advisor, 976
Memory Advisor, 976
MTTR Advisor, 976, 981
Segment Advisor, 212, 977
space-related advisors, 977
SQL Access Advisor, 212, 977
SQL Tuning Advisor, 212, 976
tuning-related advisors, 976
Undo Advisor, 977, 980–981

advisory framework, 212, 947, 975–980
creating tasks, 978
data dictionary views managing, 980
Database Control managing, 979
DBMS_ADVISOR package managing,

977–979
after-image records, redo log files, 176
AFTER SUSPEND system event, 386
aggregate functions, SQL, 1229, 1232
aggregations, materialized views, 315
alert directory, ADR, 178

Diag Alert directory, 1024
alert log files, 16, 177

creating database, 482
location of file, 178
managing flash recovery area, 740
monitoring using, 958
starting Oracle instance, 479
viewing alert log using ADRCI, 1025

alert queue, 956
alert thresholds

AWR baseline metrics, 953
tablespace, 226–227

ALERT_QUE queue, 954
alerts

alert queue managing, 956
bytes remaining alert, 226
critical alert thresholds, 952, 954, 956
Database Control managing, 954–955
DBA_ALERT_HISTORY view, 958
DBA_OUTSTANDING_ALERTS view, 957
DBMS_SERVER_ALERT package, 955–956
invoking advisors from alert messages, 977
managing database alerts, 954, 956
managing/monitoring database, 214
monitoring system with Grid Control, 160
operation suspended alerts, 386

1257■I N D E X

out-of-space warning and critical alerts, 741
percent full alert, 226
problem-related alerts, 952
response action, 954
security alerts, 617
server-generated alerts, 211, 386, 952–953
setting alert thresholds, 954
setting notification rules, 955
situations causing alerts, 952
snapshot-too-old alert, 959
stateful/stateless alerts, 952
tablespace alerts, 226–227, 956–958
threshold-based alerts, 226, 227, 952
V$ALERT_TYPES view, 958
viewing error alerts, 1029
warning alert thresholds, 952, 954, 956

Alerts page, Grid Control, 159
Alerts table, Database Control, 953
algebra, relational, 21–22
algorithms, encryption, 608
alias ASM filenames, 917, 918
aliases for objects see synonyms
All Metrics page, Database Control, 950
ALL PRIVILEGES option, 568
ALL value, STATISTICS_LEVEL parameter, 461
ALL views, data dictionary views, 204
ALLOCATE CHANNEL command, RMAN,

753, 757
allocation methods see resource allocation
alloc_bytes attribute

CREATE_INDEX_COST procedure, 299
ALLOW n CORRUPTION recovery option, 865
ALL_ROWS hint, 1067
ALL_ROWS value, OPTIMIZER_MODE, 1050
ALTER DATABASE command, 224, 232

DATAFILE option, 364
OPEN option, 821

ALTER DISKGROUP command
adding/dropping disks, 915, 916
DISK_REPAIR_TIME attribute, 908
DISMOUNT FORCE clause, 913

ALTER FLASHBACK ARCHIVE statement, 871
ALTER INDEX command

COALESCE option, 935
INVISIBLE clause, 304
modifying type of buffer pool, 189
MONITORING USAGE clause, 305
REBUILD ONLINE option, 935
REBUILD option, 217, 303, 305

ALTER MATERIALIZED VIEW statement, 319
ALTER PROFILE command, 552, 599
ALTER RESOURCE COST statement, 549
ALTER SESSION command

changing dynamic parameter values,
447, 448

ENABLE RESUMABLE clause, 384, 385
NAME parameter, 385
Resumable Space Allocation, 383
SET option, 262

SET SCHEMA option, 327
TIMEOUT clause, 384

ALTER SYSTEM command, 262
activating Database Resource Manager, 565
activating parameter limits in user

profiles, 553
changing dynamic parameter values,

447, 448
creating Oracle Wallet, 241, 242, 609
DEFERRED option, 448
dynamic parameter changes, SPFILE, 496
SCOPE clause, 496

ALTER TABLE command
ADD, 271
ADD PARTITION, 291
COALESCE PARTITION, 292
COMPRESS, 275
COMPRESS FOR ALL OPERATIONS, 275, 276
COMPRESS FOR DIRECT_LOAD

OPERATIONS, 275
DISABLE NOVALIDATE/VALIDATE, 309
DROP, 271
DROP PARTITION, 291
ENABLE NOVALIDATE/VALIDATE, 309
ENABLE ROW MOVEMENT, 929
EXCHANGE PARTITION, 291
MERGE PARTITION, 291
migrating tablespaces, 217
modifying type of buffer pool, 189
MOVE, 273, 275
MOVE TABLESPACE, 935
PURGE, 244
READ ONLY, 273
READ WRITE, 274
RENAME COLUMN, 272
RENAME, 272
RENAME PARTITION, 291
SHRINK SPACE, 929
SPLIT PARTITION, 291
UNCOMPRESS, 275

ALTER TABLESPACE command
altering temporary tablespaces, 231
AUTOEXTEND parameter, 224
expanding tablespaces, 223
FLASHBACK OFF option, 856
KEEP clause, 231, 232
managing availability of tablespaces,

228, 229
renaming tablespaces, 228
RETENTION GUARANTEE clause, 363
SHRINK SPACE clause, 231–232
temporary tablespace groups, 234

ALTER USER command, 547
ACCOUNT LOCK option, 548
changing user’s password, 547
IDENTIFIED BY clause, 547
password expiration, 599
QUOTA clause, 545

ALTER_ATTRIBUTES procedure, 1013

1258 ■IN D E X

ALTER_PARAM procedure, 533
ALTER_SQL_PROFILE procedure, 1115
ALWAYS log group, 843
ambr_backup_intermediate file, 912
analytical functions, SQL, 1231–1232
ANALYZE command

collection of optimizer statistics, 1054
COMPUTE STATISTICS option, 1055
detecting data block corruption, 796
INDEX_STATS view, 334
managing/monitoring database, 213

ANALYZE TABLE statement
LIST CHAINED ROWS clause, 279
VALIDATE STRUCTURE clause, 934

ANALYZE_DB/INST/PARTIAL procedures, 883
ancestor incarnation, 822, 823
APM (Application Performance Monitoring)

tools, 138
APPEND clause, SQL*Loader, 629
APPEND command, SQL*Plus, 131
APPEND option, SQL*Plus

SAVE command, 124
SPOOL command, 120
STORE command, 116

application attributes
fine-grained data access, 579

application contexts
creating, 580, 581, 582–583
fine-grained data access, 579–581

Application Express, 401
Application Performance Monitoring

(APM), 138
application security, 618
Application Server Control, 139
Application wait class, 1163
ARBn (ASM rebalance) process, 907
arch directory, 397
architecture

backup and recovery architecture, 201–202
dedicated server architecture, 512
Optimal Flexible Architecture, 393–400
Oracle Database 11g architecture, 165–214
RMAN architecture, 743–744
shared server architecture, 512

archival (long-term) backups, RMAN, 780–782
ARCHIVE LOG command, SQL*Plus, 135

confirming archive log mode, 491
archived redo logs, 175, 184

database recovery with RMAN, 815
log%t_%s_%r.arc format, 823
not needed for recovery, 867

archivelog deletion policy parameters,
RMAN, 766

archivelog destination, 491
ARCHIVELOG keyword, CREATE

DATABASE, 459
archivelog mode, 184, 459, 726

see also noarchivelog mode
backing up redo log files, 775
benefits of, 726

Flashback Database limitations, 861
noarchivelog/archivelog modes, 176,

491, 492
partial database backups, 794
whole database backups, 790

archivelog parameters, 459–460
archivelog retention policy

out-of-space warning and critical alerts, 741
archivelogs

archiving redo log files, 135
backing up with RMAN, 775
DBCA changing archive logging mode,

491–493
defining archivelog destinations, 459
LIST ARCHIVELOG ALL command, 761
turning on, 492
viewing details about, 135

archiver (ARCn) process, 181, 184
database hangs, 1187–1188
flash recovery area, 735
multiple archiver processes, 184

archiving data
backup guidelines, 730
Flashback Data Archive, 202, 870–874
flashback data archiver (FBDA) process, 186
partitioned tables, 281

archiving, UNIX, 76
ARCHVIELOG parameter, RMAN, 766
ARCn see archiver (ARCn) process
arguments, UNIX, 70
arrays

transforming array data with rules, 668–670
user-defined data types, 264

ARRAYSIZE variable, SQL*Plus, 107
AS clause

materialized views, 319
privileged SQL*Plus sessions, 99

AS OF clause, SELECT statement
Flashback Query, 367–368
Flashback Versions Query, 370, 372

ASA_RECOMMENDATIONS function, 980
ASH (Active Session History), 210, 947, 971–975

analyzing database activity, 1195
analyzing waits, 1169
current active session data, 972
manageability monitor light (MMNL)

process, 185
objects with highest waits, 1170
older active session history data, 972
sample data, 948
V$ACTIVE_SESSION_HISTORY view, 1169

ASH reports, 972–975, 1201
analyzing recent session activity with, 1186
wait events, 975

ashrpt.sql script, 972, 1186
ashrpti.sql script, 1186
ASM (Automatic Storage Management), 94, 209,

900–920
architecture, 901–902
benefits of, 901

1259■I N D E X

Cluster Synchronization Service (CSS) and,
902–904

COMPATIBLE parameters, 910
Database Control managing, 900
disk space allocation units, 902
DISK_REPAIR_TIME attribute, 910
fast mirror resync feature, 908–909
file templates, 917, 918
installing, 902
Logical Volume Manager, 900
OSASM group, 408
preferred mirror read feature, 909
specifying database or ASM instance, 452
storage, 902, 904
SYSASM privilege, 570
TEMPLATE.TNAME attributes, 910

ASM background (ASMB) process, 185, 907
ASM Cache component, SGA, 906
ASM databases

backing up ASM database, 907
creating ASM-based database, 919
migrating with Database Control, 920–921
migrating with RMAN, 919–920

ASM disk groups, 900, 901, 902
adding disks to, 915
adding performance/redundancy with,

913–914
ALTER DISKGROUP command, 908
ASM compatibility level, 910
asmcmd managing files/directories

within, 911
ASM_DISKGROUPS parameter, 905, 906, 907
changing ASM disk group attributes, 909–911
creating, 914–915
creating diskgroup directories for alias

filenames, 917
creating new tablespace on, 916
disk repair time, 910
dropping disks and, 916
dropping files from, 918
failure groups, 914
managing, 913
mirroring for redundancy, 914
no diskgroups mounted error, 906
RDBMS compatibility level, 910
rebalancing disk groups, 916
redundancy levels, 909
specifying allocation unit (AU) sizes, 909
striping for performance, 914
template redundancy, 910
template striping, 910

ASM files, 901, 902, 916, 917–918
ASM instances, 900, 901, 902, 903, 904–908

Database Control managing, 907, 914
shutting down, 908, 910

ASM mirroring, 901, 909, 914
ASM rebalance (ARBn) processes, 185

asmcmd command-line tool, 911–913
md_backup command, 911, 912, 913
md_restore command, 911, 912, 913
requiring ASM instances, 911

ASM_DISKGROUPS parameter, 905, 906, 907
ASM_DISKSTRING parameter, 905
ASM_POWER_LIMIT parameter, 905, 916
ASM_PREFERRED_READ_FAILURE_GROUPS

parameter, 909
ASM-related background processes, 185
AS_OF clause, Flashback Data Archive, 873–874
ASSIGN_ACL procedure, 616
asterisk (*) character, SQL, 1238
asynchronous I/O, DBWn process, 182
at (@) sign, SQL*Plus, 124, 125
at command, UNIX/Linux, 78
at scheduling utility, Windows, 126
ATO (Automatic Tuning Optimizer),

1111–1113, 1115
atomicity property, transactions, 340
ATTACH parameter

Data Pump Export utility, 688, 700, 701,
702, 703

ATTRIBUTE clause, ASM, 909–911
attributes, relational database model, 20

entity-relationship (ER) modeling, 25, 27
AUD$ table, 611
audit files, default location for, 587
AUDIT SESSION statement, 553, 589
audit trails, 596, 587
audit_column parameter, 594
audit_column_opts parameter, 594, 595
audit_condition parameter, 594
AUDIT_FILE_DEST parameter, 451, 587, 588
auditing

audit levels, 587
autonomous transactions, 382
database auditing, 612
database security, 611
database usage, 586–596
DBA_AUDIT_TRAIL view, 588
default location for audit file, 587
fine-grained auditing, 593–596
limiting data written to audit trail, 587
NOAUDIT keyword, 589
standard auditing, 587–593
SYS.AUD$ table, 588, 596

audit-related parameters, 450–451
AUDIT_SYS_OPERATIONS parameter, 451, 458,

588, 612
AUDIT_TRAIL parameter, 450, 587, 588, 611
audit_trail parameter, 594
AUM (Automatic Undo Management), 200,

356–362, 921
creating default undo tablespace, 460
reducing buffer busy wait events, 1176
snapshot-too-old error, 364

1260 ■IN D E X

undo segments, 361
UNDO_MANAGEMENT parameter, 357
UNDO_RETENTION parameter, 359–362
UNDO_TABLESPACE parameter, 357–359

authentication
see also passwords; security
database authentication, 596–601

connecting to RMAN, 745–746
locking accounts, 598

denying remote client authentication, 615
external authentication, 601–602
password authentication, 602
proxy authentication, 602
users, 596–602

AUTHENTICATION_SERVICES parameter, 526
AUTHID clause, CREATE PROCEDURE, 573
authorization

see also database access
centralized user authorization, 602
database creation, 446
role authorization, 575–576

AUTO option/parameter
segment space management, 217, 219, 220

AUTO value, OPTIONS attribute
GATHER_DATABASE_STATS procedure, 1055

AUTOALLOCATE option
creating tablespaces, 222
extent sizing, 216, 219, 220
locally managed tablespaces, 219
managing extent sizes, 237
tablespace storage parameters, 221
temporary tablespaces, 233

AUTOBACKUP option
CONTROLFILE parameter, RMAN, 765, 770

AUTOCOMMIT variable, 107, 133, 339
AUTOEXTEND clause, 224, 227, 230, 238,

358, 362
automated maintenance tasks, 1019–1022
automated tasks feature, 211
automatic checkpoint tuning, 183, 932–933
automatic consumer group switching, 555, 560
Automatic Database Diagnostic Monitor

see ADDM
automatic database management, 208–209
automatic database startup, 499–501
Automatic Diagnostic Repository see ADR
Automatic Disk-Based Backup and

Recovery, 734
Automatic Maintenance Tasks page, 488
automatic memory management, 195–196,

894–897
memory-related initialization

parameters, 457
Automatic Optimizer Statistics Collection, 209,

212, 213, 897–899
providing statistics to CBO, 1053

automatic performance tuning, 1131–1132
automatic PGA memory management, 194, 894
automatic secure configuration, 611

Automatic Segment Advisor, 212
Automatic Segment Space Management, 218,

928, 1173, 1176
automatic service registration, 521–522
Automatic Shared Memory Management,

894, 1178
automatic space management, 921–933

see also space management
Automatic SQL Tuning Advisor, 209, 212,

1115–1120
SQL plan baselines, 1081

Automatic Storage Management see ASM
Automatic Undo Management see AUM
automatic undo retention tuning, 209
Automatic Workload Repository see AWR
AUTOMATIC_ORDER

transforming array data with rules, 670
autonomous transactions, Oracle, 380–382
AUTO_SAMPLE_SIZE procedure, 1055
AUTO_SPACE_ADVISOR_JOB, 931
Autotask Background Process (ABP), 1022
AUTO_TASK_CONSUMER_GROUP, 558
Autotrace utility, SQL, 1095–1099
auxiliary database

using RMAN for TSPITR, 840, 841
AUX_STATS$ table, 1060
availability

benefits of archivelog mode, 726
disk configuration strategies, 87

Availability page, Database Control, 146
Available Targets, Database Control roles, 150
Average Active Sessions chart, 1199
AVERAGE_WAIT column,

V$SYSTEM_EVENT, 1166
AVG function, SQL, 1229
AVG_XYZ_TICKS statistic, 1182
avm, vmstat utility, 82
AWR (Automatic Workload Repository), 210,

947, 959–971
ADDM and, 878
automatic performance tuning features, 1132
baseline metrics, 953
baseline templates, 965–971
configuring ADDM, 882
controlling volume of statistics collected, 882
data handling, 960
data retention period, 960
determining number of undo segments, 359
DISPLAY_AWR function, 1092
loading SQL plans manually, 1081
managing AWR statistics with data

dictionary views, 971
moving window baselines, 965
performance statistics, 877, 878
performance statistics for SQL

statements, 1184
performance statistics formats, 959
statistics retention period, 960
storage space requirement, 960, 964

1261■I N D E X

time-model statistics, 880
types of data collected by AWR, 960

AWR page, Database Control, 962
AWR reports, 966–971, 1201
AWR snapshots, 878, 959

comparing, 961
CREATE_SNAPSHOT procedure, 961
creating/deleting snapshot baselines,

963–964
Database Control managing, 961–963
DBMS_WORKLOAD_REPOSITORY

managing, 961
DROP_SNAPSHOT procedure, 961
managing, 961
preserved snapshot set, 963
purging, 964–965
retention time period, 964
running ADDM, 885
setting snapshot interval to zero, 961
snapshot interval, 964
Time Periods Comparison feature, 1206

AWR_REPORT_HTML function, 967
AWR_REPORT_TEXT function, 967
awrrpt.sql script, 966, 967, 971
awrsqrpt.sql script, 1184

■B
background CPU time

V$SESS_TIME_MODEL view, 1206
background processes, 179, 180–186

archiver (ARCn) process, 181, 184
ASM background (ASMB) process, 185
ASM rebalance (ARBn) processes, 185
change-tracking writer (CTWR), 185
checkpoint (CKPT) process, 181, 183
database writer (DBWn) process, 180,

181–182
flashback data archiver (FBDA), 186
getting complete list of, 184
job queue coordination (CJQO) process,

181, 185
key Oracle background processes, 180
lock (LCKn) process, 186
log writer (LGWR) process, 180, 182–183
manageability monitor (MMON) process,

181, 185
manageability monitor light (MMNL)

process, 181, 185
memory manager (MMAN) process, 181, 185
process monitor (PMON) process, 181, 183
rebalance master (RBAL) process, 185
recoverer (RECO), 185
recovery writer (RVWR) process, 185
result cache background (RCBG), 186
system monitor (SMON) process, 181, 184
viewing all available processes, 186

background processes, UNIX, 75
BACKGROUND_DUMP_DEST parameter, 178

Backout feature see Flashback Transaction
Backout feature

BACKUP command, 792
BACKUP commands, RMAN, 755–757

backing up online with scripts, 775
BACKUP ARCHIVELOG ALL, 775
BACKUP AS BACKUPSET, 754
BACKUP AS BACKUPSET DATABASE, 755
BACKUP AS COMPRESSED

BACKUPSET, 780
BACKUP AS COPY, 735, 752, 754, 756, 757
BACKUP BACKUPSET, 754
BACKUP CONTROLFILE, 785
BACKUP CURRENT CONTROLFILE, 776
BACKUP DATABASE, 742, 755, 756, 774, 777
BACKUP DATABASE PLUS

ARCHIVELOG, 775
BACKUP DATAFILE, 777
BACKUP INCREMENTAL LEVEL, 778
BACKUP RECOVERY AREA, 739, 741
BACKUP RECOVERY FILES, 739
BACKUP TABLESPACE USERS, 777
BACKUP VALIDATE, 783, 784
cumulative backup, 756, 757
differential backup, 756, 757
DURATION clause, 777
FORMAT clause, 754
incremental backups, 756–757
KEEP clause, 780
KEEP FOREVER clause, 780, 781
KEEP UNTIL TIME clause, 780, 781
making multiple copies of backup sets, 754
RESTORE POINT clause, 780
resynchronizing recovery catalog, 769
specifying limits for backup duration,

777–778
specifying multiple copies, 754

backup files, RMAN, 178
backup formats, RMAN, 753
backup levels, 728
BACKUP OPTIMIZATION parameter,

RMAN, 765
backup pieces, RMAN, 752, 754
backup retention policy parameters, RMAN,

762–763
backup schedules, 733
backup sets, RMAN, 752

BACKUP DATABASE command, 755
making multiple copies of, 754
RMAN storing metadata, 744
VALIDATE BACKUPSET command, 761, 783

Backup Solutions Program (BSP), 745
backup tags, RMAN, 753
backup, DBA role, 3, 6, 95
backups, 728–730

see also flash recovery area; recovery; RMAN;
RMAN backups

architecture, 201–202
archivelog mode, 726–727

1262 ■IN D E X

backing up control file, 784–785
backing up Oracle databases, 725–734
backup levels, 728
backup schedules, 733
benefits of tablespaces, 171
change-tracking writer (CTWR) process, 185
classifying backup media, Oracle Secure

Backup, 789
cloning databases, 833–840
closed/cold backups, 728
consistent backups, 727
control file, 201
Data Pump technology, 679
Data Recovery Advisor, 829–833
database backups, 201
Database Control tool, 146
database corruption detection, 795–798
database failures, 801–804
datafile backups, 728
disaster recovery, 798–800
Flashback Data Archive, 870–874
flashback recovery techniques, 202
Flashback techniques, 847–861
frequency of backups, 732
HARD initiative, 798
inconsistent backups, 727
incremental backups, 732, 733
incrementally updated backups, RMAN, 778
logical backups, 728
loss of data since previous backup, 726
manual database upgrade process, 437, 439
noarchivelog mode, 726–727
open backups, 726
open/warm/hot backups, 728
Oracle Secure Backup, 202, 785–790
partial database backups, 727
physical backups, 728
RAID, 92
redo logs, 201
redundancy set, maintaining, 730–731
RMAN, 774
service level agreements (SLAs), 731–732
setting record keep time in control file, 454
SHUTDOWN ABORT command, 504
strategies, 731–734
system change number (SCN), 200, 727
tablespace backups, 728
terminology, 726
testing backups, 730
undo records, 201
UNIX utilities, 76–77
upgrading with DBUA, 432, 433
user-managed backups, 201, 790–795
ways of performing physical backups, 725
whole database backups, 727, 728

BAD FILE parameter, 648
BAD parameter, SQL*Loader, 635
balanced tree index see B-tree indexes

bandwidth
performance monitoring, UNIX, 81

base recovery catalog, RMAN, 772
baselines

AWR baseline templates, 965–971
AWR snapshots, 961, 963–964
baseline metrics, 953–959
CREATE_BASELINE procedure, 963
DROP_BASELINE procedure, 964
performance statistics, 948
SQL plan baselines, 1080–1085

BASH (Bourne Again Shell), 45
see also shells, UNIX

.bash_profile file, 55, 410, 413

.bashrc file, 55
BASIC value, STATISTICS_LEVEL

parameter, 462
batch command, UNIX/Linux, 78
batch jobs, 554
batch mode, UNIX, 54
BATCH option, 339
batch script, Windows, 126
BATCH_GROUP resource consumer group, 558
before-image records, 176, 197, 198, 356
BEGIN BACKUP command, 792
BEGIN statement, PL/SQL, 1241, 1242
BEGINDATA clause, SQL*Loader, 628, 630
BEGIN_DISCRETE_TRANSACTION

procedure, 380
BEGIN_SNAPSHOT parameter, ADDM, 883
benefits, ADDM findings, 880
BETWEEN operator, SQL, 1227
BFILE data type, 1222
BFT (bigfile tablespace), 172, 236–238
bin directory, ORACLE_HOME, 395
bin directory, UNIX, 48
binary compression feature, RMAN, 742
BINARY data types, 1222
binary dumps, data blocks, 167
binary files, 253, 254
binary large objects (BLOBs), 40
binary operations, relational algebra, 21
bind array, SQL*Loader, 634
bind peeking technique, parsing, 1087
bind variables

converting hard parse to soft parse, 1141
cursor sharing using, 1087
efficient SQL, 1075
identical SQL statements, 1134
optimizing library cache, 1138–1139
reducing parse time CPU usage, 1157

binding, 343
adaptive cursor sharing, 1087, 1088, 1089

bind-sensitive cursors, 1088
BINDSIZE parameter, SQL*Loader, 634
bitmap indexes, 301, 1071
bitmap join indexes (BJI), 1069
BITMAP keyword, CREATE INDEX, 301

1263■I N D E X

BITMAP_AREA_SIZE parameter, 194
bitmaps, 172, 217
BJI (bitmap join index), 1069
Blackouts page, Database Control tool, 148
BLOB data type, 1222
block checking, 470, 471
block corruption, 167
block dumps, 167
block media recovery (BMR), 742, 808, 864–865
BLOCK option, RECOVER command, 864
block special files, UNIX, 57
block-change tracking, RMAN, 779
BLOCKED status, Oracle listener, 522
blocking locks, 351–352
blocking sessions, 354
BLOCKRECOVER command, RMAN, 864
blocks see data blocks
BLOCKSIZE clause, 223
BLOCKTERMINATOR variable, SQL, 130, 132
Boolean operators, SQL, 1227
bouncing the database, 448
Bourne Again Shell (BASH), 45
Bourne shell, 45
Boyce-Codd normal form (BCNF), 33
bps column, iostat command, 82
branch blocks, B-tree index, 298
bread column, sar command, 83
BREAK command, SQL*Plus, 122

CLEAR BREAKS command, 115
BSP (Oracle Backup Solutions Program), 745
BTITLE command, SQL*Plus, 123, 124
B-tree indexes, 298, 301

BLEVEL column, 333
index organized tables, 278
using appropriate index types, 1071

buffer busy wait events, 1175–1177
buffer cache, 187, 188–189

aging out blocks, 1145
assign table or index to, 1147
buffer busy wait events, 1175
buffer cache hit ratio, 1144, 1145
buffer gets, 1144
consistent gets, 1144
database writer (DBWn) process, 199
DB block gets, 1144
description, 456
faster instance startup, 805
high buffer cache hit ratio, 1161
hit ratio, 190
how Oracle processes transactions, 197
logical reads, 1144
multiple database block sizes and, 189–190
physical reads, 1144
sizing, 1144–1145

increasing buffer cache size, 1145
nonstandard-sized, 456, 458
optimal buffer cache size, 1145
standard-sized, 456

specifying values for subcaches, 190
total size of, 190

tuning, 1144–1148
using multiple pools for buffer cache,

1146–1148
buffer cache pools, 188–189

behavior of, 457
keep pool, 189, 457
listing, 1145
main types, 189
recycle pool, 189, 457
setting size of default buffer pool, 457
using multiple block size feature, 223

buffer gets, 1144
buffer_gets column, V$SQL view, 1108
buffers

CLEAR BUFFER command, SQL*Plus, 115
dirty buffers, 188
free buffers, 188
least recently used (LRU) algorithm, 188
memory buffers, 187, 188
pinned buffers, 188
redo log buffer, 176, 187, 192–193
saving SQL buffer contents to file, 124

BUILD DEFERRED/IMMEDIATE clauses
CREATE MATERIALIZED VIEW

statement, 319
BUILD procedure, DBMS_LOGMNR_D, 844
Burleson Consulting, 14
Business Copy XP, 746
business rules, 36, 37

application logic or integrity constraints, 306
BUSY_TICKS system usage statistic, 1181
bwrit column, sar command, 83
BYDAY/BYHOUR/BYXYZ keywords, jobs, 999
BYPASS procedure, 1123, 1125
bytes remaining tablespace alert, 226, 227

■C
C shell, 45, 55

see also shells, UNIX
cache

buffer cache pools, 188–189
cache misses affecting performance, 192
Client Query Result Cache, 1125–1126
CLIENT_RESULT_CACHE_XYZ

parameters, 458
creating cacheable function, 1124
creating SQL cache, 321
data block sizes and tablespaces, 171
data dictionary cache, 191
DB_XYZ parameters, 457, 458
library cache, 191
measuring library cache efficiency,

1137–1138
PL/SQL Function Result Cache, 1124–1125
result cache, 192, 1120–1126
result cache background (RCBG)

process, 186
RESULT_CACHE_XYZ parameters, 464
SQL Query Result Cache, 1124

cache buffer chain latch free wait, 1180

1264 ■IN D E X

cache recovery, 804, 806
Cache Sizes section, AWR reports, 968
calculus, relational, 22
calendaring expression, Scheduler, 999
cancel-based recovery, 824
CANCEL_REPLAY procedure, 1215
CANCEL_SQL switch group, 561, 555
candidate keys, 26
CAN_REDEF_TABLE procedure, 937
capacity planning, DBA role, 6
capture process, Oracle Streams, 671
cardinality, ER modeling, 26, 28
caret (^) character, SQL, 1238
Cartesian product/join, SQL, 21, 1045, 1232
CASCADE CONSTRAINTS clause

DROP TABLESPACE statement, 225
CASCADE clause

DROP PROFILE statement, 553
DROP TABLE statement, 276
DROP USER statement, 548, 853
GATHER_DATABASE_STATS

procedure, 1055
TRANSACTION_BACKOUT procedure,

380, 869
case command, UNIX/Linux, 74
CASE statement, SQL, 1066, 1230
CAST operator, abstract data types, 1241
cat command, UNIX/Linux, 52, 56, 58
CATALOG command, RMAN, 752, 759, 768, 770
CATALOG START WITH command, 760, 770
catalog.sql script, 485, 486

data dictionary creation, 204
cataloging backups, RMAN, 770
catblock.sql script, 353
catdwgrd.sql script, 434, 442
catproc.sql script, 485, 486
catupgrd.sql script, 434, 438, 440
catuppst.sql script, 438, 439
CBO (Cost-Based Optimizer), 205, 1047–1053

application developer knowledge, 1053
automatic optimizer statistics collection, 209
Automatic Tuning Optimizer (ATO), 1111
Autotrace utility, 1098, 1099
cost-based query optimization, 1044–1046
cost model of optimizer, 1060
dependence on correct statistics

gathering, 1053
drawbacks of CBO, 1053
heavy data skew in table, 1066
how CBO optimizes queries, 1051–1053
IN list, 1066
inefficiently written queries, 1065
materialized views, 314
normal mode, 1111
Oracle version differences, 1053
plan stability feature, 1077
providing statistics to CBO, 1053–1056
providing statistics to optimizer, 1047–1049
query processing optimization phase, 1043

query rewriting, 315
rule-based optimization compared, 1047
selectivity, 1065
setting optimizer level, 1050–1051
setting optimizer mode, 1049–1050
specifying use of pending statistics, 463
stored outlines improving SQL processing,

1077–1080
storing optimizer statistics, 1054
TKPROF utility output, 1104
tuning mode, 1111, 1115
understanding logic of, 1090
views in query, 1065
WHERE clauses, 1065

cd command, UNIX/Linux, 48, 62
CDs

installing Oracle software using staging
directory, 416

Oracle Enterprise Edition CDs, 414–415
using explicit command to load, 414

centralized configuration, Oracle Net
Services, 512

centralized user authorization, 602
certification, DBA, 10, 11–13
chained rows, Flashback Transaction

Query, 374
chains, Oracle Scheduler, 995, 996, 1008–1010
CHANGE command, SQL*Plus, 129
change management, 212–213

DBA role, 7
Oracle Change Management Pack, 149, 949
Schema page, Database Control, 147

change vectors, redo log files, 176
change-based SCN

incomplete recovery using RMAN, 820
user-managed incomplete recovery, 824

change-tracking file, RMAN, 779
change-tracking writer (CTWR) process, 185
channel configuration parameters, RMAN, 764
CHANNEL parameter, RMAN, 764
channels, RMAN, 753
CHAR/character data types, 1222
character large objects (CLOBs), 40
character sets, 481, 488
character special files, UNIX, 57
CHECK constraint, 37, 307, 313
CHECK LOGICAL clause

VALIDATE command, RMAN, 784
CHECK_OBJECT procedure, 797
checkpoint (CKPT) process, 175, 181, 183, 479
CHECKPOINT clause, 271
checkpoint completed wait event, 1177
“checkpoint not complete” messages, 1188
checkpoints

automatic checkpoint tuning, 183, 932–933
Fast Start Checkpointing, 805

CHECK_PRIVILEGE function, 617
checksumming, detecting corruption, 470, 796
CHECKSYNTAX parameter, RMAN, 749

1265■I N D E X

Chen, Peter, 25
chgrp command, UNIX/Linux, 62
child nodes, B-tree index, 298
child processes, UNIX, 54
Childs, D.L., 20
chmod command, UNIX/Linux, 60, 61, 70
Choosing Database Backup Procedure window,

DBUA, 432
chsh command, UNIX/Linux, 46
classes, object-oriented database model, 39
CLEAR command, SQL*Plus, 115
clear_pending_area procedure, 556
client authentication, 615
client host server, administrative domain, 786
client processes, Data Pump, 686
Client Query Result Cache, 1125–1126
client software

Instant Client software, 519–520
Oracle Client software, 517–519

client/server model, database connectivity, 511
CLIENT_IDENTIFIER attribute, 1105
CLIENT_ID_TRACE_ENABLE package, 1106
CLIENT_RESULT_CACHE view, 1126
CLIENT_RESULT_CACHE_XYZ parameters,

458, 1126
CLOB data type, 1222
cloning databases, 833–840

Database Control, 148, 838–839
Grid Control, 148
Oracle software cloning, 148

closed backups, 728
whole closed backups, 790–791

closed recovery, 807
CLOSE_WINDOW procedure, 1015
CLUSTER clause, CREATE TABLE, 295
Cluster Synchronization Service see CSS
Cluster wait class, 1163
clustered tables, 266
clusters, 295–296

hash clusters, 296
Oracle Real Application Clusters (RACs), 173

CMON (Connection Monitor) process, 532
COALESCE function, SQL, 1230
COALESCE option, ALTER INDEX, 935
COALESCE PARTITION command, 292
coalescing indexes online, SQL, 935
Codd, E.F., 20, 21, 29
cold backups see closed backups
collection types, ORDBMS model, 40
collections, abstract data types, 1240
COLSEP variable, SQL*Plus, 107
COLUMN command, SQL*Plus, 123
column groups, 1058, 1059
column specifications, data types, 36
COLUMNARRAYROWS parameter,

SQL*Loader, 641
column-level object privileges, 572
column-level security, 312
column-level VPD, 585–586

columns
adding to/dropping from tables, 271
CLEAR COLUMNS command, 115
creating tables, 265
DBA_CONS_COLUMNS view, 311
DBA_IND_COLUMNS view, 333
DBA_TAB_COLUMNS view, 293, 332
default values for, 270
indexing strategy, 1071
listing table columns and specifications, 119
ordering of columns in tables, 20
partitioning, 281
renaming, 272
setting as unused, 271
showing properties of, 123
virtual columns, 270–271

COMMAND column, top command, 84
command files, SQL*Plus, 124–129
command interpreters, UNIX, 46
command line

Data Pump Export utility using, 687
command line arguments, UNIX

executing shell scripts with, 70
command line parameters, SQL*Loader,

633–636
command line utilities

Data Pump components, 680
command-line options, SQL*Plus, 113–115
commands

listener commands, 522–523
operating system file executing RMAN

commands, 749
commands, list of see SQL*Plus commands,
list of
commands, SQL*Plus see SQL*Plus commands,

list of
commands, UNIX see UNIX commands
COMMENT parameter

creating resource consumer groups, 557
comments

adding comments to scripts, SQL*Plus, 132
init.ora file, 496
SPFILE (server parameter file), 496
using comments in SQL*Plus, 128

COMMENTS attribute, CREATE_JOB
procedure, 999

commit method, JDBC conn, 540
COMMIT statement, 133, 197, 263,

338–339, 1242
Commit wait class, 1163
COMMIT_LOGGING parameter,

transactions, 339
committing transactions, 196, 197–198

fast commit mechanism, 183
log writer (LGWR) process, 199
redo log buffer, 182

COMMIT_WAIT parameter, transactions, 339
common manageability infrastructure, 210–213
communication protocol, connect

descriptors, 515

1266 ■IN D E X

compaction phase, segment shrinking, 929
Companion CD, Oracle Enterprise Edition, 414
COMPARE function, DBMS_COMPARISION

package, 989
Compare Periods Report, Database Control,

1206–1208
COMPARE_PERFORMANCE parameter, 1219
comparison operators, SQL, 1227

WHERE clause, 1224
COMPATIBLE parameter, 452

database compatibility level, 429
Pre-Upgrade Information Tool, 428
setting up Oracle Streams, 673

compensation transactions, 868
COMPLETE option, materialized views, 316
complete recovery, 807
composite indexes, 297, 298, 1072
composite keys, 31, 334
composite partitioning, 281, 287–290
COMPOSITE_LIMIT parameter, 549
comprehensive analysis mode, Segment

Advisor, 930
COMPRESS clause, ALTER TABLE, 275, 276
COMPRESS keyword, 1076
compressed backups, RMAN, 780
compression

key-compressed indexes, 301
table compression, 274–276
tablespace compression, 274

COMPRESSION parameter
Data Pump Export utility, 691
populating external tables, 652
RMAN, 764

compression techniques, SQL tables, 1076
COMPUTE command, SQL*Plus, 123
COMPUTE STATISTICS option

ANALYZE command, 1055
CREATE INDEX statement, 299

CONCAT function, SQL, 1228
CONCATENATE clause, SQL*Loader, 630
concatenated indexes, 297, 1072
concurrency see data concurrency
Concurrency wait class, 1163
conditional branching, UNIX, 71–72
conditional control, PL/SQL, 1243
conditional functions, SQL, 1230
configuration

database management, 146, 148
enterprise-wide with Grid Control, 158
Oracle Configuration Management Pack,

149, 949
RMAN configuration parameters, 761–766
Setup page, Database Control tool, 148–149

Configuration Assistants window, 155
Configuration Manager

products installed with 11.1 release, 401
Configuration Options window, 419

CONFIGURE command, RMAN, 762
BACKUP COPIES option, 754
configuration parameters, 761–766
default device types, 753

CONFIGURE procedure, DBMS_SPM
package, 1085

CONFIGURE_POOL procedure, 533
CONNECT BY clause, SQL, 1232
CONNECT CATALOG command, RMAN, 767
CONNECT command, SQL*Plus, 100
connect descriptors, Oracle networking, 514
connect identifiers, Oracle networking, 515

net service names, 525
CONNECT privilege, 616
CONNECT role, 430, 574
connect strings, Oracle networking, 515

TWO_TASK environment variable, 519
CONNECT_IDENTIFIER variable, SQL*Plus,

118, 119, 127
connection architecture, 512
connection broker, DRCP, 180
connection management call elapsed

time, 1206
Connection Manager feature, 512
Connection Mode tab, DBCA, 488
Connection Monitor process (CMON), 532
connection naming

directory naming method, 534–537
easy connect naming method, 529–530
external naming method, 533–534
local naming method, 525–529

connection pooling, 180, 531–533
connectionless SQL*Plus session with

NOLOG, 101
connections

concurrent connection requests, 523
connecting to RMAN, 745–746
database links, 985–987
naming, 525
operating system authentication method, 99
securing network, 614
starting SQL*Plus session from command

line, 98–100
CONNECTION_TIME_SCALE parameter, 1214
connectivity, 511

see also Oracle networking
database resident connection pooling

(DRCP), 531–533
establishing Oracle connectivity, 516–517
Instant Client software, 519–520
Java Database Connectivity see JDBC
naming, 525
net service names, 525
Oracle Client software, 517–519
Oracle Internet Directory (OID), 535
Oracle listener see listeners
Oracle Net Services, 511–512, 516
Oracle networking, 513–516
web applications connecting to Oracle, 513

1267■I N D E X

CONNECT_TIME parameter, 549
CONNECT_TIME_FAILOVER parameter, 523
consistency see data consistency
consistency property, transactions, 340
consistent backups, 727
consistent gets, 1144
CONSTANT parameter, SQL*Loader, 636
constraints

built-in database constraints, 37
CASCADE CONSTRAINTS clause, 225
CHECK constraint, 307
DBA_CONS_COLUMNS view, 311
DBA_CONSTRAINTS view, 310
deferrable constraints, 310
DISABLE VALIDATE command, 309
disabling, 308
domain constraints, 37
dropping tables, 276
ENABLE VALIDATE command, 309
ENABLED VALIDATED constraints, 316
ensuring data integrity, 36
immediate constraints, 310
integrity constraints, 306–310
NOT NULL constraint, 306, 307
orderid_refconstraint, 285
primary key constraints, 306
referential integrity constraints, 225, 308
RELY constraints, 310
SQL*Loader direct-path loading, 641
temporary tables, 277
UNIQUE constraint, 307

CONSTRAINTS parameter, export utility, 692
consumer groups see resource consumer

groups
CONSUMER_GROUP parameter, 557
consumption, Oracle Streams architecture, 671
CONTENT parameter

Data Pump Export utility, 692, 704
Data Pump Import utility, 708

context-sensitive security policy, 584
context switches, 80
contexts, 536, 537
continuation characters, SQL*Plus, 102, 133
CONTINUE_CLIENT parameter, Data Pump,

703, 713
CONTINUEIF clause, SQL*Loader, 630
CONTINUOUS_MINE procedure, 847
control files, 173, 174–175

auto-backups, flash recovery area, 735
backing up control file, 784–785
backing up with RMAN, 765–766, 776
backup and recovery architecture, 201
backup guidelines, 729
checkpoint (CKPT) process, 175
configuration parameters contained, 447
creating database, 481
creating/locating OMF files, 251, 926
database files, 398
database integrity, 175

default file locations, 738
flash recovery area, 738
getting names of all control files, 175
managing RMAN, 744
multiplexing, 453, 455
naming conventions, 398
OMF file-naming conventions, 249, 923
Oracle Managed Files (OMF), 250, 924

creating/locating OMF files, 252
recovering from loss of control files, 824–828
RMAN repository data (metadata), 766
setting record keep time before

overwriting, 454
specifying default location for OMF files, 455
SQL*Loader, 628–636
system change number, 174
V$CONTROLFILE view, 175
whole closed backups, 790
whole database backups, 791

CONTROL parameter, SQL*Loader, 633
control structures, PL/SQL, 1243
CONTROLFILE parameter, RMAN, 765, 766

backing up recovery catalog, 770
BACKUP command, 785
CREATE command, 826, 827
RESTORE command, 825

CONTROL_FILE_RECORD_KEEP_TIME
parameter, 454, 770

CONTROL_FILES parameter, 453
Oracle Managed Files (OMF), 250

controllers, disk I/O, 1159
CONTROL_MANAGEMENT_PACK_ACCESS

parameter, 459, 882
conventional data loading

direct-path loading compared, 640
SQL*Loader, 627, 628, 639

CONVERGE procedure,
DBMS_COMPARISION, 990

conversion functions, Oracle data types, 1223
CONVERT TABLESPACE command, 721
COPY command, Oracle, 757
COPY command, RMAN, 758

resynchronizing recovery catalog, 769
COPY command, SQL*Plus, 132–133
copy command, Windows, 790
COPYCOMMIT variable, SQL*Plus, 107
COPY_FILE procedure, 253, 991
copying files, RMAN, 752–753, 754
copying files, UNIX, 59, 79
COPY_TABLE_DEPENDENTS procedure, 939
coraenv script, 424, 425
core directory, ADR, 178
correlated subqueries, SQL, 1237
corruption

data blocks, 167
database corruption detection, 795–798
detecting physical/logical corruption,

RMAN, 783

1268 ■IN D E X

enabling detection of, 470
monitoring and verifying RMAN jobs, 782
repairing datafiles with RMAN, 742

corruption-checking parameters, 470–472
Cost-Based Optimizer see CBO
cost-based query optimization, 1044–1046
COUNT function, SQL, 1229
cp command, UNIX/Linux, 59

physical database backups, 725, 790
cpio command, UNIX/Linux, 76, 77
CPU column, top command, 84
CPU method

creating plan directives, 560, 561
Database Resource Manager, 555

CPU performance, 1153–1158
CPU usage

causes of intensive CPU usage, 1153
cost model of Oracle optimizer, 1060
CPU units used by processes, 1154
determining session-level CPU usage, 1155
eliminating wait event contention, 1208
enforcing per-session CPU limits, 564–565
finding inefficient SQL, 1109, 1110
identifying high CPU users, 1154
parse time CPU usage, 1156–1157
performance monitoring, UNIX, 80
production database problems, 554
recursive CPU usage, 1157
reducing parse time CPU usage, 1157
run queue length, 1153
sar command output showing, 1153
SQL Trace tool showing, 1100
system performance, 1203
system usage problems, 1188
tuning shared pool, 1133
uses of CPU time, 1155–1158
V$SESSTAT view, 1203

CPU_MTH parameter, 557, 560
CPU_PER_CALL parameter, 549
CPU_PER_SESSION parameter, 549
CPUSPEED statistic, 1061
CPUSPEEDNW statistic, 1061
cpu_time column, V$SQL view, 1108
crash recovery, Oracle, 804–805
CREATE ANY DIRECTORY privilege, 683
CREATE ANY TABLE privilege, 268
CREATE BIGFILE statement, 237
CREATE CATALOG command, RMAN, 768
CREATE CLUSTER statement, 295, 296
CREATE CONTROLFILE statement, 826, 827
CREATE DATABASE statement, 480–481

DEFAULT TABLESPACE clause, 236
SYSAUX clause, 239

create directory, 397
CREATE DISKGROUP command, 915
CREATE FLASHBACK ARCHIVE statement, 871
CREATE GLOBAL SCRIPT command,

RMAN, 750

CREATE INDEX statement, 299–300
BITMAP keyword, 301
B-tree index, 298
COMPUTE STATISTICS option, 299
GLOBAL PARTITION BY option, 302
INVISIBLE clause, 304
PARTITION BY HASH option, 303
PRIMARY KEY constraint, 300

CREATE JOB privilege, Scheduler, 997
CREATE MATERIALIZED VIEW statement,

318–319
CREATE option

SPOOL command, SQL*Plus, 120
STORE command, SQL*Plus, 116

CREATE OR REPLACE VIEW statement, 313
CREATE OUTLINE statement, 1079
CREATE PROCEDURE statement

AUTHID clause, 573
CREATE PROFILE statement, 548
Create Role Administrators page, Database

Control, 150
Create Role Properties page, Database

Control, 150
CREATE ROLE statement, 575, 576
CREATE SCHEMA statement, 264, 265
CREATE SCRIPT statement, RMAN, 748, 750
CREATE SESSION privilege, 568, 569

creating users, 545
CREATE SYNONYM statement, 324, 326
CREATE TABLE privilege, 268
CREATE TABLE statement, 269

CLUSTER clause, 295
CREATE TABLE AS SELECT (CTAS)

command, 273
creating external table layer, 647
ENABLE ROW MOVEMENT clause, 286
ENCRYPT clause, 269
FOREIGN KEY REFERENCES clause, 285
INCLUDING clause, 279, 280
INTERVAL clause, 283
LOGGING clause, 227
ORGANIZATION INDEX phrase, 279
PARTITION BY HASH clause, 283
PARTITION BY LIST clause, 284
PARTITION BY RANGE clause, 282
PARTITION BY REFERENCE clause, 285
PARTITIONED BY SYSTEM clause, 287
PCTTHRESHOLD clause, 279, 280
PRIMARY KEY constraint, 300, 306
STORE IN clause, 283
SUBPARTITION BY HASH clause, 288
SUBPARTITION BY LIST clause, 288
SUBPARTITION BY RANGE clause, 289, 290
UNIQUE constraint, 300
VALUES LESS THAN clause, 281

CREATE TABLESPACE statement, 218
AUTOEXTEND ON clause, 230
creating permanent tablespaces, 219
creating temporary tablespaces, 230–231

1269■I N D E X

ENCRYPTION clause, 242, 610
EXTENT MANAGEMENT clause, 230
EXTENT MANAGEMENT LOCAL clause, 220
NOLOGGING clause, 227
SIZE clause, 230
TABLESPACE GROUP clause, 233
TEMPORARY clause, 230
UNDO keyword, 358
UNIFORM SIZE clause, 230

CREATE TRIGGER statement, 328
CREATE TYPE statement, 1239
CREATE UNDO TABLESPACE statement, 218

AUTOEXTEND keyword, 358
RETENTION GUARANTEE clause, 460

CREATE UNIQUE INDEX statement, 299
CREATE USER statement, 544–547

DEFAULT TABLESPACE clause, 547
IDENTIFIED BY clause, 544
QUOTA clause, 546
RMAN clause, 767

CREATE VIEW statement/privilege, 312
CREATE VIRTUAL CATALOG command,

RMAN, 773
CREATE_ACL procedure, 616
CREATE_ANALYSIS_TASK procedure, 1218
CREATE_BASELINE procedure, 963
CREATE_BASELINE_TEMPLATE

procedure, 965
CREATE_CHAIN procedure, 1009
CREATE_COMPARISON procedure, 988
create_consumer_group procedure, 557
CREATE_CREDENTIAL procedure, 1005
CREATE_DIAGNSOTIC_TASK procedure, 1036
CREATE_EXTENDED_STATS function,

1059, 1060
CREATE_INDEX_COST procedure, 298, 299
CREATE_JOB procedure, 998

attributes, 999
events, 1011
external jobs, 1005
lightweight jobs, 1001, 1002
programs, 1007

CREATE_JOB_CLASS procedure, 1012
create_pending_area procedure, 556
CREATE_PLAN procedure, 560
CREATE_PLAN_DIRECTIVE procedure,

561, 565
CREATE_POLICY_GROUP procedure, 584
CREATE_PROGRAM procedure, 1006
CREATE_REPORT procedure, 885
CREATE_SCHEDULE procedure, 1007, 1008
CREATE_SNAPSHOT procedure, 961
CREATE_SQLSET procedure, 1217
CREATE_SQLWKLD procedure, 323
createStatement method, JDBC conn, 539
CREATE_STGTAB_SQLSET procedure, 1218
CREATE_STORED_OUTLINES parameter,

1078, 1079

CREATE_TABLE_COST procedure, 268
CREATE_TASK procedure, 323, 890, 978
CREATE_TUNING_TASK procedure, 1113
CREATE_WINDOW procedure, 1014, 1015
Creation Options window, DBCA, 488
CREDENTIAL_NAME attribute,

Scheduler, 1005
Credentials window, Database Upgrade

Assistant, 432
critical alert thresholds, 226, 952, 954, 956
Critical Patch Updates, 617
critical_value attribute, 227
crontab command, 77–78
CROSSCHECK command, RMAN, 758, 761, 783
CRSCTL utility, 903
csh (C shell), 45, 55

see also shells, UNIX
.cshrc file, UNIX, 55
CSS (Cluster Synchronization Service), 902–904
CTAS (CREATE TABLE AS SELECT)

command, 273
deriving data from existing tables, 657
LONG columns, 133
managing logging of redo data, 227
using with large tables, 132
writing to external tables, 651

CUBE operator, SQL, 1235
cumulative backup, RMAN, 756, 757
cumulative statistics, 948
current incarnation, database recovery, 823
current_user attribute, 580
currval pseudo-column, sequences, 327
cursors

bind-sensitive cursors, 1088
cursor sharing, 466, 1087–1090
description, 343
maximum number of cursors in session, 194
open cursors, 194, 456, 1141
preventing early deallocation of

cursors, 1141
cursors, PL/SQL, 1245–1247
CURSOR_SHARING parameter, 466, 1087, 1138,

1139, 1141, 1209
CURSOR_SPACE_FOR_TIME parameter,

1140, 1141
Custom installation, Oracle software, 417
custom option, installing Oracle Client, 518
custom.rsp response file template, 422
cut command, UNIX/Linux, 66

■D
data

database triggers ensuring validity of, 37
modifying data on disk, 181
separating table and index data, 170

data access see database access
data anomalies, 29

denormalization, 34

1270 ■IN D E X

data blocks, 166–169
allocating to objects, 172
bigfile tablespace (BFT), 236
binary dumps, 167
block corruption, 167
block dumps, 167
buffer busy wait events, 1176
changing block size, 467
checking for corrupted data blocks, 471
creating tablespaces with nonstandard block

sizes, 223
DB_BLOCK_SIZE parameter, 466
detecting data block corruption, 795–798
determining size of, 166–167
dumping contents, 167, 168
extents, 166, 169
free space section, 167
identifying file and block IDs, 168
inner workings, 167–169
keeping track of space in blocks, 172
multiple data block sizes, 167
multiple sizes and buffer cache, 189–190
online database block-size changes, 943–944
operating system disk block size, 166
querying data, 466
repairing corrupted data blocks, 864
row data section, 167
segment space management, 217–218
setting block size, 466
size units, 166
specifying maximum number read during

full table scan, 467
tablespaces and block sizes, 171–172
using multiple block size feature, 223

data buffer cache see buffer cache
data center disasters, 802
data concurrency, 198–200, 341–342

allowing DDL locks to wait for DML
locks, 350

data consistency and, 346
dirty reads problem, 341
explicit locking in Oracle, 351–352
explicit table locking, 350–351
implementing concurrency control, 347–355
isolation levels, 342–346
isolation property, 340
locking, 341, 347, 348–350
locks affecting, 386
lost-update problem, 341
managing Oracle locks, 353–355
multiversion concurrency control

system, 347
nonrepeatable (fuzzy) read problem, 342
phantom reads problem, 341
serializable schedules, 342
time-stamping methods, 347
validation methods, 347

data consistency, 198–200
read consistency, 199
redo log files, 176

system monitor (SMON) process, 184
transactions, 196, 340, 341, 342, 346
transaction-set consistent data, 199
undo management, 200
undo segments, 199
Workspace Manager, 386

data corruption, 864–866
data decryption, 604
data dictionary, 191, 203, 204

extracting, LogMiner utility, 843
monitoring database status, 507
protecting, database security, 613

data dictionary cache, 191, 1134–1135
data dictionary locks, 351
data dictionary objects, 485
data dictionary tables, 203, 204
data dictionary views, 204

see also DBA views; V$ views
ADDM related, 893
AWR snapshots, 959
INDEX_STATS view, 334
listing, 203
managing advisory framework, 980
managing AWR statistics with, 971
managing Database Resource Manager, 566
managing tables, 292–295
managing tablespaces, 243–246
managing undo space information, 365
managing users/roles/privileges, 577
metrics and alerts, 958–959
using dictionary views for SQL tuning,

1108, 1110
viewing object information, 329

data encryption, 603–608
ENCRYPT keyword, 604
encrypting table columns, 607–608
encryption algorithms, 608
generating master encryption key, 607
Oracle Wallet, 604, 605–606

data extraction see ETL (extraction,
transformation, loading)

Data Guard see Oracle Data Guard
data integrity, 36, 37
data loading see ETL (extraction,

transformation, loading)
data manipulation statements, 313, 314
Data Migration Assistant, 427
data modeling, 25, 27, 38
Data Movement page, Database Control, 148
DATA pages, Oracle process component, 1190
DATA parameter, SQL*Loader, 634
data protection, 798–800

Oracle Streams, 672
Data Pump utilities (Export, Import), 677

accessing Data Pump utilities, 678
API creating export/import jobs, 715
attaching to running Data Pump job,

679, 688
benefits of Data Pump technology, 678–679
compatibility, 677

1271■I N D E X

components, 680
correcting human error, 802
Data Pump technology, 677–686
data-access methods, 680–681
DBMS_DATAPUMP package, 680
DBMS_METADATA package, 680
description, 808
directory objects, 681–684
estimating space requirements, 679
Export parameters, 689–704

ADD_FILE, 702, 703, 704
ATTACH, 700, 701, 702, 703
COMPRESSION, 691
CONTENT, 692, 704
CONTINUE_CLIENT, 703
DATA_OPTIONS, 694
DIRECTORY, 690
DUMPFILE, 690, 705
encryption parameters, 694–696, 698
estimate parameters, 696–697
EXCLUDE, 692–693, 704
EXIT_CLIENT, 703, 704
export filtering parameters, 692–694
export mode parameters, 691
file and directory parameters, 690–691
FILESIZE, 690, 705
FLASHBACK_SCN, 699
FLASHBACK_TIME, 700
FULL, 688
HELP, 703, 704
INCLUDE, 692–693
interactive mode parameters, 701–704
job parameters, 699–701
JOB_NAME, 699, 705
KILL_JOB, 703, 704
LOGFILE, 690
NETWORK_LINK, 698, 717
NOLOGFILE, 691
PARALLEL, 700–705
PARFILE, 690
QUERY, 694, 704
REMAP_DATA, 693
REUSE_DUMPFILE, 691
SAMPLE, 694
SCHEMAS, 688, 705
START_JOB, 703, 704
STATUS, 699, 703, 704
STOP_JOB, 702, 703, 704
TABLES, 688
TABLESPACES, 688
TRANSPORTABLE, 694
TRANSPORT_FULL_CHECK, 691, 717, 721
TRANSPORT_TABLESPACES, 688, 718
USERID, 718

Export utility, 207
backup guidelines, 730
creating export dump file, 704
dpdump directory containing files, 397
export prompt, interactive mode, 688
exporting metadata using, 721

exporting tables from schema, 705
generating transportable tablespace

set, 717
initiating network export, 698
interactive commands, 703
logical backups, 728
methods, 687–688
modes, 688–689
read-only database, 698
schema mode, 688, 705
using parameter file, 704

files, 681–685
fine-grained data import capability, 679
Import parameters, 705–713

CONTENT, 708
CONTINUE_CLIENT, 713
DATA_OPTIONS, 710
DIRECTORY, 706
DUMPFILE, 706
EXCLUDE, 708
EXIT_CLIENT, 713
file and directory parameters, 706–707
filtering parameters, 708
FLASHBACK_XYZ parameters, 713
FULL, 708
HELP, 713
import mode parameters, 708–709
INCLUDE, 708
interactive import parameters, 713
job parameters, 708
JOB_NAME, 708
KILL_JOB, 713
LOGFILE, 706
NETWORK_LINK, 711–713
NOLOGFILE, 706
PARALLEL, 708, 713
PARFILE, 706
QUERY, 708
remapping parameters, 709–711
REUSE_DATAFILES, 707
SCHEMAS, 708
SQLFILE, 706–707
START_JOB, 713
STATUS, 708, 713
STOP_JOB, 713
TABLE_EXISTS_ACTION, 708
TABLES, 708
TABLESPACES, 708
TRANSFORM, 710–711
TRANSPORTABLE, 710
TRANSPORT_XYZ parameters, 705, 708

Import utility, 207
disabling constraints, 308
import modes, 705
import prompt, interactive mode, 688
import types, 705
importing metadata using, 723
performing transportable tablespace

import, 719–720
SQLFILE parameter, 681

1272 ■IN D E X

managing/monitoring database, 213
manual upgrade process, 427
mechanics of Data Pump job, 685–686
metadata filtering, 692
monitoring Data Pump jobs, 713–714
network mode of operation, 679
nonprivileged users using, 683
order of precedence for file locations, 684–685
parallel execution, 678
performance, 678
performing exports and imports, 686–713
privileges, 685
processes, 685–686
remapping capabilities, 679
restarting jobs, 678
roles, 574
tasks performed by Data Pump

technology, 677
transportable tablespaces, 171, 716–723
uses for, 679–680
using Data Pump API, 715

Data Recovery Advisor, 211, 829–833, 1023
ADVISE FAILURE command, 831
data block corruption, 167
data repair, 803
failure properties, 830
LIST FAILURE command, 830
REPAIR commands, 832, 833

data redefinition online, 935–941
data reorganization online, 933–935

Database Control, 933
SQL commands performing, 934–935

Data Reorganization page, Database
Control, 934

data replication, Oracle Streams, 670
data storage technologies, 93–95

RAID systems for disks, 88–93
data transfer element (dte), 789
data transformation see transforming data
data types

abstract data types, 1239–1241
column specifications, 36
Oracle data types, 1222–1223
ORDBMS model, 40
SQL*Loader control file, 632
user-defined object types, 264
XMLType, 1249

data warehousing
Automatic Workload Repository (AWR), 210
bitmap join indexes (BJI), 1069
building, 27
DB_BLOCK_SIZE parameter, 466
detail tables, 314
external tables, 280, 646
indexing strategy, 1071
loading, Oracle Streams, 670
program global area (PGA), 187
table compression, 1076
transportable tablespaces, 716
using indexes, 296

database access, 567–586
see also authorization
application contexts, 580, 581
auditing database usage, 586–596
authenticating users, 596–602
DBA views managing users/roles/

privileges, 577
definer’s rights, 573
denying users access to database, 548
fine-grained data access, 578–586

application contexts, 579–581
column-level VPD, 585–586
fine-grained access control, 582–585

invoker’s rights, 573
privileges, 567–574

object privileges, 570–573
system privileges, 567–570

restricting database access, 501–502
roles, 574–577
SQL Access Advisor, 212
views and stored procedures, 577

database administration commands, SQL*Plus,
134–135

database admistrator see DBA
database alerts see alerts
database architecture, 165–178
database auditing, 612
database authentication see authentication
database availability, 171
database backups, 201
database buffers

see also buffer cache
committing transactions, 198
least recently used (LRU) algorithm, 181
modifying data via Oracle memory, 181

database concurrency see data concurrency
Database Configuration Assistant see DBCA
database connections

OID making, 535–536
setting upper limit for OS processes, 455

database connectivity see connectivity
database consistency see data consistency
Database Content page, DBCA, 487
Database Control, 137, 139, 140–153

accessing, 143–144
accessing MTTR Advisor, 981
Alerts table, 953
automatic optimizer statistics collection, 899
cloning databases, 838–839
cloning Oracle home, 148
Compare Periods Report, 1206–1208
configuring and using, 140–143
configuring automatic SQL tuning

parameters, 1119
configuring automatically, 140
configuring Flashback Database, 855, 856
configuring manually, 141–143
creating database links, 987
creating roles, 150
Data Grid, OEM alternative, 206

1273■I N D E X

Data Pump Export and Import
operations, 688

database management, 146
database usage metrics, 151–153
DBMS_ADVISOR package and, 320
default port, 140
default URL, 140
emca utility, 141
end-to-end tracing, 1107
estimating table size before creating, 266
examining database feature-usage

statistics, 152
examining database performance,

1195–1201, 1206–1208
examining SQL response time with, 1183
GATHER_STATS_JOB, 899
introductory tour, 144
investigating waits, 145
invoking SQL Access Advisor, 320–323
linking to MetaLink, 150
logging in, 144
login screen, 142
managing advisory framework, 979
managing alerts, 954–955
managing ASM instances, 907
managing ASM operations, 900
managing AWR snapshots, 961–963
managing database, 213
managing session locks, 354–355
managing users, 567
migrating databases to ASM, 920–921
online database reorganization with, 933
policy-based configuration framework, 151
running ADDM using, 893
setting alert thresholds, 954
setting notification rules, 955
starting, 490
SYSMAN (super administrator account), 148
tracing individual user sessions, 1105
upgrading with DBUA, 432
versions, 137
viewing ADDM reports, 890–891

Database Control Memory Advisor see Memory
Advisor

Database Control pages
Administrators page, 148
Advisor Central page, 150, 979
All Metrics page, 950
AWR page, 962
Availability page, 146
Blackouts page, 148
Data Movement page, 148
Data Reorganization page, 934
Database Performance page, 1197–1200
Dictionary Comparisons page, 147
Edit Thresholds page, 954, 955
Hang Analysis page, 1192–1194
home page, 145, 1195–1197

Manage Policy Library page, 151
Management Pack Access page, 149
Notification Methods page, 148
Patching Setup page, 148
Performance Data Report page, 1201–1202
Performance page, 145–146
performing RMAN backup and recovery

tasks, 813
physical database backups, 725, 726
Policy Violations page, 151
Related Links section, 150
Schema page, 147
Segment Advisor page, 931
Segment Advisor Recommendations

page, 980
Server page, 146–147
Setup page, 148–149
Software and Support page, 148

database corruption detection, 795–798
database creation, 474–493

authorizations, 446
creating file system, 444–445
creating parameter files, 446–474
Database Configuration Assistant (DBCA),

486–493
default memory management option, 196
ensuring sufficient memory allocation, 445
installing Oracle software, 444
introduction, 443
locating files, 445
manual database creation, 474–486
Oracle Managed Files (OMF), 250–253,

924–927
server parameter file (SPFILE), 493–497
setting OS environment variables, 446
sizing file system, 444–445

Database Credentials window, 432, 487
database design

attribute dependence on primary key, 31, 33
business rules and data integrity, 36
DBA role, 3, 7–8
designing different types of tables, 35
entity-relationship (ER) modeling, 24–26
ER modeling tools, 34
functional dependencies, 33
importance of, 20
logical database design, 24–34
lossless-join dependency, 34
multivalued dependencies, 34
normal forms, 29–34
normalization, 28–29
performance, 36
performance tuning, 1042
physical database design, 34–37
repeating groups, 30
requirements gathering, 23–24
transforming ER diagrams into relational

tables, 35

1274 ■IN D E X

database directories, creating, 410
database failures, 801

data center disasters, 802
data repair, 803–804
hardware-related recovery, 802
human error, 802, 803
media failures, 802, 803
Oracle recovery process, 804–809
recovery with RMAN, 809–814
system failures, 802
Transparent Application Failover

feature, 802
Database File Locations window, 155, 487
database files, 398–400

making transactions permanent, 181
database hangs, 1186–1194

abnormal increase in process size,
1190–1191

archiver process stuck, 1187–1188
bad statistics, 1191
collecting information during database

hang, 1191
gathering error messages, 1193
getting systemstate dump, 1193
locking issues, 1189
severe contention for resources, 1188
shared pool problems, 1191
system usage problems, 1188
using Database Control’s Hang Analysis

page, 1192–1194
using hanganalyze utility, 1193

database hit ratios, 1161–1162
Database Identification window, 155, 487
database incarnations, recovery through, 822
database installation see installing Oracle

Database 11g
database instance names, 514
database instances see instances
database integrity see integrity
database jobs, Oracle Scheduler, 995
database links, 985–987

DBA_DB_LINKS view, 329
Related Links, Database Control, 150

database load affecting performance, 1205
database maintenance, quiescing

databases, 505
database management

see also OEM (Oracle Enterprise Manager)
automatic database management, 208–209
database management tools, 137

database metrics see metrics
database mode, ADDM, 882
database models, 38–41

nonrelational database models, 20
database mounted statement, 484
database names, global, 514
database objects, 987–991

comparing data, 987–989
configuring, Oracle Secure Backup, 789

converging data, 990–991
initial extent, 169
segments, 169
storage allocation to, 222

database operations see also Oracle processes
Database page, Grid Control, 153
database parameter files see parameter files
database passwords

DBCA changing passwords for default users,
490–491

Database Performance page, Database Control,
1197–1200

database quiescing, 505, 944–945
database recovery see recovery
Database Replay, 213, 1209–1216

change management, 7
database management, 148

database resident connection pooling (DRCP),
180, 531–533

Database Resource Manager, 208, 554–567,
941–943

activating, 565
allocating scarce resources with

Scheduler, 996
data dictionary views managing, 566
deactivating, 566
limiting transactions with operation

queuing, 942
limiting execution times for transactions,

942–943
managing, 555
managing resources, 554
managing undo space information, 365
OEM administering, 566–567
pending area, 556, 562
plan directives, 942
privileges for, 555
resource allocation methods, 555
resource consumer groups, 554, 555, 556,

557–559
assigning users to, 562–565
automatic assignment to session, 564
enforcing per-session CPU and I/O limits,

564–565
managing job classes, 1011

resource plan directives, 555, 556, 560–562
resource plans, 554, 555, 556, 559–560
steps when starting to use, 556
switching long-running transactions, 942

database schemas, 20
database security see security
database server

copying files with, 991–992
database service names

connect descriptors, 515
Oracle networking, 514

database sessions, terminating, 75
database shutdown command, 492
database sizing, 37
database startup triggers, 591

1275■I N D E X

database storage
creating database directories,

preinstallation, 410
implementing physical database design, 37

Database Storage window, 488
database structures see Oracle database

structures
Database Templates window, 487
database transaction management, 337
database transactions see transactions
database triggers see triggers
database types, 9–10
Database Upgrade Assistant see DBUA
database usage metrics, Database Control,

151–153
Database Usage Statistics property sheet,

152, 153
Database Vault, 401, 430
database wait statistics see wait statistics
database writer (DBWn), 180, 181–182, 183

how Oracle processes transactions, 197
starting Oracle instance, 479
write ahead protocol and, 199

DATABASE_PROPERTIES view, 544
bigfile tablespace information, 238
monitoring current status of instance, 507

databases
see also Oracle database; relational databases
audit parameters, 450
auditing database usage, 586–596
backing up Oracle databases see backups
bouncing, 448
changing into read-only mode, 502
changing to restricted mode, 501
cloning, 833–840
communicating with database, 205–207
copying files between, 253–255
creating stored outlines for, 1079
dropping, 506
migrating to ASM, 919–921
monitoring database status, 507
mounting database, 482
Oracle XML DB, 1248–1252
preserving database performance, 1080
quiescing, 505
recovering Oracle databases see recovery
restoring pre-upgrade database, 433
reverse engineering, 38
shutting down database from SQL*Plus,

502–505
starting database from SQL*Plus, 497–499
suspending databases, 505, 945
variable naming database connected to, 127

database-sizing spreadsheets, 392
DATA_CACHE parameter, SQL*Loader, 641
datafile backups, 728

DATAFILE clause
creating Sysaux tablespace, 239
creating tablespaces, 219
Oracle Managed Files (OMF), 247, 253

datafiles, 173–174, 394
accidentally dropping datafiles, 248
adding within OMF file system, 253
allocating data blocks to objects, 172
backing up with RMAN, 777
converting to match endian format, 721
database files, 398
DBA_DATA_FILES view, 245
dropping, 806
dumping data block, 167
expanding tablespaces, 223
extent allocation/deallocation, 220
flash recovery area, 735
Flashback Database restoring, 853
free and used space in, 172
increasing size of, 174
making plain copy of, 757
making whole closed backups, 790
mount points, 394, 404
names and locations of, 174
naming conventions, 398
OFA guidelines, 396
Oracle Managed Files (OMF), 247, 249, 250,

923, 924
recovering datafiles, 818–820
recovering datafiles without backup,

828–829
repairing corrupt datafiles, 742
RESIZE clause, 219
restoring vs. recovering, 806
REUSE_DATAFILES parameter, 707
separation from logical objects, 174
setting location for, 239
sizing for database creation, 444
specifying default location for, 455
SQL*Loader utility, 628
tablespaces, 166, 219–220
tablespaces and, 170, 173
V$DATAFILE view, 246

data-flow diagrams (DFDs), 23
DATA_OPTIONS parameter, Data Pump,

694, 710
DATA_PUMP_DIR objects, 682, 684, 685
datasets, Oracle Secure Backup, 789
date and time data types, 1223
date command, UNIX/Linux, 48
DATE data type, 1223
date functions, SQL, 1229
DATE variable, SQL*Plus, 119, 127
dates, 449, 453
DB block gets, 1144
db file scattered read wait event, 1166, 1167,

1168, 1177, 1204
db file sequential read wait event, 1165, 1166,

1167, 1168, 1178, 1204

1276 ■IN D E X

db file single write wait event, 1204
DB time metric, 878, 1206
DBA (database admistrator)

asking experts (non-DBA), 16
avoid making problems worse, 17
certification, 11–13
changing user’s password, 547
connecting to Oracle database, 99
daily routine, 15–16
database design role, 7–8
database security with multiple DBAs, 613
development DBA, 8
different organizational roles, 8
general advice, 16–17
hands-on learning, 10
help, knowing when to ask for, 16
improving SQL processing, 1075–1080
job classifications, 8
managing users, 544
performance tuning tasks, 1086–1087
production database problems, 554
production DBA, 8
resources, 13–14
responsibility of DBA, 3–8
security role, 4
system administration and Oracle DBA,

12–13
system management role, 5–7
terminating database sessions, 75
thinking outside the box, 17
training, 10, 11, 12, 13, 14, 15
UNIX/Linux for DBA, 43–95

dba (default name) see OSDBA group
DBA role, 574
DBA views, 204

DBA_ADVISOR_ACTIONS, 894, 980
DBA_ADVISOR_DEF_PARAMETERS, 884
DBA_ADVISOR_EXECUTIONS, 1120, 1220
DBA_ADVISOR_FINDINGS, 893, 980, 1220
DBA_ADVISOR_PARAMETERS, 980
DBA_ADVISOR_RATIONALE, 894, 980
DBA_ADVISOR_RECOMMENDATIONS,

893, 978, 980
DBA_ADVISOR_SQLXYZ views, 1120, 1220
DBA_ADVISOR_TASKS, 980, 1220
DBA_ALERT_HISTORY, 958
DBA_ALL_TABLES, 330
DBA_AUDIT_TRAIL, 588, 596
DBA_AUTO_SEGADV_CTL, 980
DBA_AUTOTASK_XYZ views, 1020, 1022
DBA_BLOCKERS, 351, 354
DBA_COL_PRIVS, 577
DBA_COMMON_AUDIT_TRAIL, 594, 596
DBA_COMPARISION_XYZ views, 989
DBA_CONS_COLUMNS, 311
DBA_CONSTRAINTS, 310
DBA_DATA_FILES, 245
DBA_DATAPUMP_XYZ views, 713, 714
DBA_DB_LINKS, 329

DBA_ENABLED_TRACES, 1107
DBA_EXTENTS, 255
DBA_EXTERNAL_TABLES, 330
DBA_FGA_AUDIT_TRAIL, 594, 596
DBA_FLASHBACK_ARCHIVE, 872
DBA_FLASHBACK_TRANSACTION_XYZ

views, 870
DBA_FREE_SPACE, 243, 850
DBA_HIST_ACTIVE_SESS_HISTORY, 971,

972, 1169, 1186
DBA_HIST_BASELINE, 971
DBA_HIST_SNAPSHOT, 963, 971
DBA_HIST_SYSMETRIC_HISTORY, 958
DBA_HIST_WR_CONTROL, 971
DBA_HIST_XYZ views, 952
DBA_IND_COLUMNS, 333
DBA_INDEXES, 333
DBA_MVIEWS, 333
DBA_OBJECTS, 329, 1146, 1147
DBA_OUTSTANDING_ALERTS, 740,

957, 958
DBA_PART_TABLES, 331
DBA_PROFILES, 258
DBA_RECYCLEBIN, 850
DBA_REDEFINITION_ERRORS, 940
DBA_REGISTRY, 427
DBA_RESUMABLE, 386
DBA_ROLE_PRIVS, 577
DBA_ROLES, 577
DBA_ROLLBACK_SEGS, 361, 365
DBA_RSRC_CONSUMER_GROUP_

PRIVS, 566
DBA_RSRC_CONSUMER_GROUPS, 557, 559
DBA_RSRC_PLANS, 566
DBA_SCHEDULER_JOB_XYZ views, 1018
DBA_SCHEDULER_JOBS, 931, 997, 1001,

1018, 1047
DBA_SCHEDULER_XYZ views, 1018
DBA_SEGMENTS, 244, 255
DBA_SEQUENCES, 329
DBA_SERVER_REGISTRY, 427, 429, 440
DBA_SQL_MANAGEMENT_CONFIG, 1085
DBA_SQL_PATCHES, 1038
DBA_SQL_PLAN_BASELINES, 1083
DBA_SQL_PROFILES, 1117
DBA_STAT_EXTENSIONS, 1060
DBA_SYNONYMS, 326, 329
DBA_SYS_PRIVS, 577
DBA_TAB_COL_STATISTICS, 1049, 1087
DBA_TAB_COLUMNS, 293, 332
DBA_TABLES, 292, 330
DBA_TABLESPACE_GROUPS, 235, 246
DBA_TABLESPACES, 238, 243, 365, 610
DBA_TAB_MODIFICATIONS, 331, 1047
DBA_TAB_PARTITIONS, 292, 330
DBA_TAB_PRIVS, 577
DBA_TAB_STATISTICS table, 1049
DBA_TEMP_FILES, 230, 246
DBA_THRESHOLDS, 956, 958, 959

1277■I N D E X

DBA_TRIGGERS, 329
DBA_TS_QUOTAS, 546
DBA_UNDO_EXTENTS, 365
DBA_USERS, 235, 258, 577, 619
DBA_VIEWS, 332
DBA_WORKLOAD_CAPTURES, 1211
DBA_WORKLOAD_XYZ views, 1216

DBAsupport.com, 14
DB_BLOCK_CHECKING parameter, 470,

471, 796
DB_BLOCK_CHECKSUM parameter, 470, 796,

853, 984
DB_BLOCK_SIZE parameter, 166, 167, 189,

223, 466
DBCA (Database Configuration Assistant),

486–493
creating Sysaux tablespace, 239
enabling automatic memory management,

895–896
managing/monitoring database, 213
memory management configuration

options, 196
uninstalling Oracle, 425

DBCA Operations window, 487
dbca.rsp response file template, 422
DB_CACHE_SIZE parameter, 189, 195, 457

creating tablespaces with nonstandard block
size, 223

Oracle’s guidelines, 456
dbconsole process, 141, 143
DB_CPOOL_INFO view, 533
DB_CREATE_FILE_DEST parameter, 455, 919

OMF, 247, 249, 250, 251, 252, 253, 738, 739,
923, 925, 926, 927

DB_CREATE_ONLINE_LOG_DEST
parameter, 926

DB_CREATE_ONLINE_LOG_DEST_n
parameter, 455, 738, 739

OMF, 247, 249, 250, 251, 252, 923, 924, 926
DB_DOMAIN parameter, 452
DB_FILE_MULTIBLOCK_READ_COUNT

parameter, 467, 1052, 1158, 1177
DB_FILE_NAME_CONVERT parameter, 721,

722, 834, 836
DB_FLASHBACK_RETENTION_TARGET

parameter, 469, 855, 858
DB_ID parameter, ADDM, 883
DBIO_EXPECTED parameter, ADDM, 884
DB_KEEP_CACHE_SIZE parameter, 189,

195, 457
DB_LOST_WRITE_PROTECT parameter, 470
DBMS_ADDM package, 883, 884
DBMS_ADVISOR package, 320, 323–324

CREATE_REPORT procedure, 885
CREATE_TASK procedure, 890, 978
DELETE_TASK procedure, 890
EXECUTE_TASK procedure, 890, 978
GET_TASK_REPORT procedure, 890, 978
invoking SQL Access Advisor, 323

managing advisory framework, 977–979
QUICK_TUNE procedure, 320, 324
SET_DEFAULT_TASK procedure, 890
SET_DEFAULT_TASK_PARAMETER

procedure, 884, 890
SET_TASK_PARAMETER procedure, 978
viewing ADDM reports, 890

DBMS_APPLICATION package, 943
DBMS_APPLICATION_INFO package, 1106
DBMS_AQ package, 956
DBMS_AQADM package, 956, 1011
DBMS_AUTO_TASK_ADMIN package, 1020,

1021, 1118–1119
DBMS_COMPARISION package, 987, 988,

989, 990
DBMS_CONNECTION_POOL package, 532, 533
DBMS_CRYPTO package, 240, 603, 608
DBMS_DATAPUMP package, 680, 715
DBMS_FGA package, 594, 595
DBMS_FILE_TRANSFER package, 253–255, 947,

991–992
DBMS_FLASHBACK package, 368–369

TRANSACTION_BACKOUT procedure, 379,
868, 869

DBMS_HM package, 1033
DBMS_JOB package, 994, 996
DBMS_JOBS package, 208
DBMS_LOGMNR package, 842, 844, 845,

846, 847
DBMS_LOGMNR_D package, 842, 844
DBMS_METADATA package, 294, 295, 680
DBMS_MONITOR package, 1102,

1106–1107, 1175
DBMS_MVIEW package, 316, 317
DBMS_NETWORK_ACL_ADMIN package, 615,

616, 617
DBMS_NETWORK_ACL_UTILITY package, 615
DBMS_NETWORK_ADMIN package, 616
DBMS_OBFUSCATION_TOOLKIT package,

240, 603, 608
DBMS_OLAP package, 1077
DBMS_OUTLN package, 1078
DBMS_OUTLN_EDIT package, 1078, 1080
DBMS_OUTPUT package, 109
DBMS_PIPE package, 745
DBMS_REDEFINITION package, 275, 937, 938,

939, 940, 941
DBMS_REPAIR package, 797, 864
DBMS_RESOURCE_MANAGER package,

555, 560
assigning users to consumer groups, 563
CLEAR_PENDING_AREA procedure, 556
CREATE_CONSUMER_GROUP

procedure, 557
CREATE_PENDING_AREA procedure, 556
CREATE_PLAN procedure, 560
CREATE_PLAN_DIRECTIVE procedure,

561, 565
determining profile parameter limits, 553

1278 ■IN D E X

SET_CONSUMER_GROUP_MAPPING
procedure, 564

SET_CONSUMER_MAPPING_PRI
procedure, 564

SET_INITIAL_CONSUMER_GROUP
procedure, 563

SUBMIT_PENDING_AREA procedure, 562
VALIDATE_PENDING_AREA procedure, 562

DBMS_RESULT_CACHE package, 1123,
1124, 1125

DBMS_RESUMABLE package, 385, 386
DBMS_RLS package, 584
DBMS_RULE_ADM package, 1009
DBMS_SCHEDULER package, 994

administering Scheduler jobs, 1000
ALTER_ATTRIBUTES procedure, 1013
CLOSE_WINDOW procedure, 1015
CREATE_CHAIN procedure, 1009
CREATE_CREDENTIAL procedure, 1005
CREATE_JOB procedure, 998, 999, 1001,

1002, 1005, 1007, 1011
CREATE_JOB_CLASS procedure, 1012
CREATE_PROGRAM procedure, 1006
CREATE_SCHEDULE procedure, 1007, 1008
CREATE_WINDOW procedure, 1014
DEFINE_CHAIN_RULE procedure, 1009
DEFINE_CHAIN_STEP procedure, 1009
DISABLE procedure, 1016, 1007
DROP_JOB procedure, 1000
DROP_JOB_CLASS procedure, 1012
DROP_PROGRAM procedure, 1007
DROP_SCHEDULE procedure, 1008
DROP_WINDOW procedure, 1016
ENABLE procedure, 1006, 1007, 1009
GET_SCHEDULER_ATTRIBUTE

procedure, 1017
LOGGING_XYZ values, 1012, 1019
OPEN_WINDOW procedure, 1015
PURGE_LOG procedure, 1012
RUN_CHAIN procedure, 1010
RUN_JOB procedure, 1000
SET_ATTRIBUTE procedure, 1005,

1008, 1018
SET_ATTRIBUTE_NULL procedure, 1017
SET_ATTRIBUTES procedure, 1016
SET_SCHEDULER_ATTRIBUTE

procedure, 1017
STOP_JOB procedure, 1000

DBMS_SERVER_ALERT package, 227,
955–956, 957

DBMS_SERVER_REGISTRY view, 439
DBMS_SESSION package, 1101, 1106, 1107
DBMS_SHARED_POOL package, 1138, 1142
DBMS_SPACE package, 255–256

ASA_RECOMMENDATIONS function, 980
CREATE_INDEX_COST procedure, 298, 299
estimating size of index, 298–299
estimating space requirements, 268
finding unused space in segments, 928

FREE_BLOCKS procedure, 255
SPACE_USAGE procedure, 255, 268
UNUSED_SPACE procedure, 255

DBMS_SPACE_ADMIN package, 218
DBMS_SPM package, 1081, 1082, 1083, 1085
DBMS_SQLDIAG package, 1035–1038
DBMS_SQLPA package, 1217
DBMS_SQLTUNE package

ACCEPT_SQL_PROFILE procedure, 1115
ALTER_SQL_PROFILE procedure, 1115
configuring automatic SQL tuning,

1117–1118
CREATE_ANALYSIS_TASK procedure, 1218
CREATE_SQLSET procedure, 1217
CREATE_STGTAB_SQLSET procedure, 1218
CREATE_TUNING_TASK procedure, 1113
EXECUTE_ANALYSIS_TASK procedure,

1218, 1219
EXECUTE_TUNING_TASK procedure,

1114, 1117
EXPORT_TUNING_TASK procedure, 1117
interpreting automatic SQL tuning

reports, 1119
managing SQL profiles, 1115
PACK_STGTAB_SQLSET procedure, 1218
performing automatic SQL tuning,

1113–1114
REPORT_ANALYSIS_TASK function, 1219
REPORT_AUTO_TUNING_TASK

function, 1119
REPORT_TUNING_TASK procedure, 1114
running SQL Tuning Advisor, 1113–1115
SELECT_CURSOR_CACHE procedure, 1217
SET_TUNING_TASK_PARAMETERS

procedure, 1117
SYS_AUTO_SQL_TUNING_TASK

procedure, 1118
UNPACK_STGTAB_SQLSET procedure, 1218

DBMS_STATS package
automatic optimizer statistics collection, 898
AUTO_SAMPLE_SIZE procedure, 1055
collecting statistics, 1053–1056
CREATE_EXTENDED_STATS function,

1059, 1060
DELETE_PENDING_STATS procedure, 1057
DROP_EXTENDED_STATS function, 1059
EXPORT_PENDING_STATS procedure, 1057
frequency for refreshing statistics, 1086
GATHER_DATABASE_STATS procedure,

1055–1056, 1062, 1063
GATHER_DATABASE_STATS_JOB_PROC

procedure, 899
GATHER_DICTIONARY_STATS

procedure, 1063
GATHER_FIXED_OBJECTS_STATS

procedure, 1062
gathering statistics, 1048
GATHER_TABLE_STATS procedure,

1059, 1060

1279■I N D E X

GATHER_XYZ_STATISTICS procedures, 1086
GATHER_XYZ_STATS procedures, 1054
GET_PREFS procedure, 1056
managing/monitoring database, 213
manually collecting optimizer statistics, 900
METHOD_OPT attribute, 1086
PUBLISH_PENDING_STATS procedure, 1057
SET_TABLE_PREFS function, 1057

DBMS_STORAGE_MAP package, 994
DBMS_STREAMS_ADM package, 674
DBMS_STREAMS_AUTH package, 674
DBMS_SYSTEM package, 1102, 1175
DBMS_TRANSACTION package, 380
DBMS_TTS package, 717, 721
DBMS_WORKLOAD_CAPTURE package, 1210

ADD_FILTER procedure, 1210
CANCEL_REPLAY procedure, 1215
FINISH_CAPTURE procedure, 1211
GET_REPLAY_INFO function, 1215
INITIALIZE_REPLAY procedure, 1213
PREPARE_REPLAY procedure, 1214
PROCESS_CAPTURE procedure, 1211
REMAP_CONNECTION procedure, 1214
REPLAY_REPORT function, 1215
START_CAPTURE procedure, 1211
START_REPLAY procedure, 1214

DBMS_WORKLOAD_REPOSITORY package
AWR_REPORT_XYZ functions, 967
configuring ADDM, 881
CREATE_BASELINE procedure, 963
CREATE_BASELINE_TEMPLATE

procedure, 965
CREATE_SNAPSHOT procedure, 961
DROP_BASELINE procedure, 964
DROP_SNAPSHOT procedure, 961
managing AWR snapshots, 961
modifying snapshot settings, 964
MODIFY_SNAPSHOT_SETTINGS

procedure, 882
DBMS_XPLAN package, 1083, 1084, 1092
db_name attribute, USERENV namespace, 580
DB_NAME parameter, 398, 451, 452, 446
db_name_restore.sh script, 432
DB_nK_CACHE_SIZE parameter, 190, 196,

458, 943
DB_RECOVERY_FILE_DEST parameter,

469, 738
creating ASM databases, 919
flash recovery, 400, 410, 737, 738, 739
OMF, 247, 249, 250, 252, 923, 926

DB_RECOVERY_FILE_DEST_SIZE parameter,
469, 741, 919

flash recovery area, 249, 250, 400, 737, 923
DB_RECYCLE_CACHE_SIZE parameter, 189,

195, 458
DB_SECUREFILE parameter, 472
dbshut.sh script, 423, 499, 500
DBSNMP account, 490, 596
dbstart.sh script, 423, 499, 500

DBUA (Database Upgrade Assistant), 428, 429,
430–433

creating Sysaux tablespace, 239
managing/monitoring database, 213

DB_ULTRA_SAFE parameter, 470, 796
DB_UNIQUE_NAME parameter, 451
DBVERIFY utility, 797
DBWn see database writer
DB_WRITER_PROCESSES parameter, 455, 1179

SPFILE, 182
dd command, UNIX/Linux, 76, 725, 752, 790
DDL (data definition language)

DBMS_METADATA package extracting, 294
DDL statements, 22
executing SQL statements, JDBC, 539–540
locks, 350
pending transactions, 134
resumable database operations, 383
SQL statements, 264
transaction processing of, 337, 338
triggers, 591, 592
using ROLLBACK command with, 272

ddl_lock_timeout parameter, 350
DDL_LOG table, 592
DDL_LOG_TRIG trigger, 592
deadlocks, 340, 346, 352
DEALLOCATE UNUSED option, 220, 928
decision-support system (DSS), 9
declarative referential integrity, 36
DECLARE statement, PL/SQL, 1241, 1245
DECODE function, SQL, 1230
DECRYPT keyword, 608
decryption, data, 604
dedicated server architecture, 512
dedicated server configuration, 180
default accounts, 491
default auditing, 588
default buffer pool, 189, 1146
DEFAULT DEVICE TYPE parameter,

RMAN, 763
DEFAULT DIRECTORY clause, 648
default file location, 738
default permanent tablespaces, 235–236

creating/managing users, 544
database creation, 444, 482

default profile, users, 550–551
default role, 574
DEFAULT TABLESPACE clause, 236, 547
default tablespaces, 237, 544
default temporary tablespaces, 232, 444, 482

creating/managing users, 544
default trace directory (UDUMP), 168
DEFAULT_CONSUMER_GROUP, 558,

563, 1011
DEFAULTIF parameter, SQL*Loader, 642
DEFAULT_JOB_CLASS, Scheduler, 1011
DEFAULT_MAINTENANCE_PLAN, 559, 1022
DEFAULT_PLAN resource plan, 559
deferrable constraints, 310

1280 ■IN D E X

deferred statistics publishing, 1056–1057
DEFINE command, SQL*Plus, 107, 126, 127
DEFINE_CHAIN procedure, 1009
DEFINE_CHAIN_RULE procedure, 1009
definer’s rights, 573
degree of parallelism see parallelism
DEL command, SQL*Plus, 131
delete anomaly, 29, 32, 33
DELETE clause, MERGE statement, 660
DELETE command, RMAN, 758

EXPIRED option, 758
OBSOLETE option, 741, 758, 759
SCRIPT option, 750

DELETE statement, 263, 272, 287
PL/SQL, 1242
SQL, 1225–1226

DELETE_CATALOG_ROLE, 569
DELETE_PENDING_STATS procedure, 1057
DELETE_TASK procedure, 890
deleting files, UNIX, 59
DELETION POLICY option, RMAN, 766
DELIMITED BY clause, 648
delimiters, SQL*Loader, 632
delta values, 948
denormalization, 29, 34
dependencies, transportable tablespaces,

716, 717
Deployment Procedure Manager, 148
Deployments page, Grid Control, 159
DESC keyword, ORDER BY clause, SQL, 1226
DESCRIBE command, 293

Scheduler managing external jobs, 1003
SQL*Plus, 119
viewing object information, SQL, 329

detached jobs, Oracle Scheduler, 996
detail tables, materialized views, 314
/dev directory, UNIX, 63
/dev/null, UNIX, 56
development databases, 9
development DBA, 8
device column, iostat command, 82
device files, UNIX, 63
DEVICE TYPE parameter, RMAN, 763, 764, 765
devices, Oracle Secure Backup, 789
df command, UNIX/Linux, 81, 86, 219
DFDs (data-flow diagrams), 23
Diag Alert/Incident/Trace directories, ADR,

1024, 1026
diagnostic framework, 947
diagnostic pack, 459
Diagnostic Summary, Database Control, 145
DIAGNOSTIC_DEST parameter, 178, 449

ADR, 396, 1023
OMF, 926

diagnostics
see also ADDM (Automatic Database

Diagnostic Monitor)
ADR, 178, 211, 396, 1022, 1023–1024
ADRCI, 1022, 1024–1026
application knowledge for diagnosis, 1182

Data Recovery Advisor, 803, 829, 1023
fault diagnosability infrastructure, 210–211,

1022–1038
Health Monitor, 1022, 1032–1035
incident packaging service (IPS), 1022,

1026–1028
Oracle Diagnostics Pack, 149, 949
performance- and diagnostics-related

parameters, 461–468
SQL Repair Advisor, 1023, 1035–1038
SQL Test Case Builder, 1023, 1038
Support Workbench, 1022, 1028–1032

dictionary cache, 191, 1134–1135
Dictionary Comparisons page, Database

Control, 147
dictionary-managed tablespaces, 217
dictionary tables, 1062–1063
DICTIONARY value, extent management, 221
DICTIONARY_ACCESSIBILITY parameter, 613
diff command, UNIX/Linux, 53
difference operation, 21
differential backup, RMAN, 756, 757
dimensions

MODEL clause creating multidimensional
arrays, 668, 670

DIRECT clause, SQL*Loader, 641
direct hand-off to dispatcher, 512
DIRECT parameter, SQL*Loader, 634
Direct Path API, 680
direct path read/write wait events, 1178
directories, Oracle

administrative directories, 397
creating directories for database files, 399
creating directories, preinstallation, 409–410
directory structure, OFA guidelines, 395
mount points, 394
naming conventions, OFA guidelines, 394
Oracle base, 395
Oracle home, 395, 396
Oracle Inventory directory, 396

directories, UNIX
bin directory, 48
changing directories, 48
creating, 62
device files, 63
directory management, 62
file types, 57
home directory, 46, 63
indicating file is directory, 60
individual directories described, 63
listing files in directory, 58
locating directories, 52
mount points, 86
navigating directory structure, 62
present working directory, 49
removing directories, 62
root directory, 63
system configuration files, 63
temporary files, 63

1281■I N D E X

directory administration tools, OID, 535
Directory Information Tree (DIT), 536
directory management, UNIX, 62
directory naming context, 537
directory naming method, 525, 534–537
directory objects, 178, 682

creating external table layer, 648–649
Data Pump utilities using, 681–685

DIRECTORY parameter, Data Pump, 683, 684,
690, 706

directory privileges, 571
directory services, 534
directory structure, OFA-compliant, 399
directory structure, UNIX, 47
DIRECTORY_PATH parameter, NAMES, 530
direct-path loading, SQL*Loader, 627, 628,

639–642
dirty buffers, 188
dirty reads problem, 341, 344, 345
disable no validate state, 309
DISABLE procedure

DBMS_AUTO_TASK_ADMIN, 1021, 1118
DBMS_SCHEDULER, 1007, 1016

disable validate state, 309
disaster recovery, 798–800

see also recovery
DISCARD FILE parameter, 648
DISCARD parameter, SQL*Loader, 635
DISCARDMAX parameter, SQL*Loader, 635
discrete transactions, Oracle, 380
disk allocation/layout, OFA, 393
disk blocks, 166
disk cache for tape, flash recovery area, 735
disk configuration strategies, 85–88, 93–95

RAID systems, 88–93
disk fragmentation, ASM, 901
disk groups, ASM see ASM disk groups
disk I/O see I/O
disk mirroring see mirroring
DISK PARALLELISM parameter, RMAN,

764, 765
disk partitioning, 87
disk reads, 1109
disk space, 403
disk storage requirements, Oracle Database

11g, 392
disk storage, UNIX, 85–88

performance monitoring, 81
RAID systems, 88–93

disk striping, 87, 88
Disk-Based Backup and Recovery, 734
disk_reads column, V$SQL view, 1108
DISK_REPAIR_TIME attribute, 908, 910
disks

configuring physical disks, 88
cost of disk I/O, 186
disk I/O, 1159
modifying data on, 181
monitoring disk usage, UNIX, 86

RAID systems, 88–93
recovering from damaged disk drive, 849

DISMOUNT FORCE clause, ALTER
DISKGROUP, 913

dispatchers, 512
shared server processes, 180

DISPLAY environment variable, DBCA, 486
DISPLAY function, DBMS_XPLAN package, 1092
DISPLAY variable, 411, 412, 414, 416, 422
DISPLAY_AWR function, 1092
DISPLAY_SQL_PLAN_BASELINE function,

1083, 1084
DISTINCT operation, indexing strategy, 1071
distinguished names (DNs), 536, 537
distributed locks, 351
distribution files, OFA guidelines, 399
distribution functions, SQL, 1232
DIT (Directory Information Tree), OID, 536
DML (data manipulation language)

DML statements, 22, 263
executing SQL statements, JDBC, 539–540
indexing strategy, 1071
locks, 349–350
making DML changes permanent, 133
PL/SQL, 1242
resumable database operations, 383
row- and table-level locks, 349
transaction processing of, 337, 338
triggers, 590–591
VERSIONS_OPERATION pseudo-

column, 371
view showing DML changes, 331

DMnn processes, Data Pump, 685
DNs (distinguished names), 536, 537
documentation review, Oracle Database 11g, 392
dollar sign ($) character, SQL, 1238
domain component, DNs, 537
domain constraints, 37
domains, 20, 514
DOUBLE data type, 1222
double failure protection mode, Oracle Data

Guard, 800
downgrading from Oracle Database 11g, 441
downloading Oracle software, 415–416

Oracle Client software, 517
dpdump directory, 397
d_predicate predicate, 583
DRCP (database resident connection pooling),

180, 531–533
DriverManager class, JDBC, 538
drivers see JDBC drivers
DROP CATALOG command, RMAN, 768,

772, 774
DROP command, ALTER TABLE statement, 271
DROP DATABASE command, 506
DROP DATAFILE command, 806
DROP FLASHBACK ARCHIVE command, 872
DROP MATERIALIZED VIEW command, 320
DROP OUTLINE command, 1079

1282 ■IN D E X

DROP PARTITION command, 291, 302
DROP PROFILE command, 553
DROP ROLE command, 577
DROP STORAGE command, 220
DROP SYNONYM command, 326
DROP TABLE command, 116, 224, 276, 548, 849
DROP TABLE PURGE command, 116
DROP TABLESPACE command, 224, 225,

248, 364
DROP UNUSED COLUMNS command, 271
DROP USER command, 547–548

CASCADE option, 548, 853
DROP VIEW command, 313
DROP_ACL procedure, 617
DROP_BASELINE procedure, 964
DROP_EXTENDED_STATS function, 1059
DROP_JOB procedure, 1000
DROP_JOB_CLASS procedure, 1012
dropped tables, restoring, 851–852
dropping databases, 506
DROP_PROGRAM procedure, 1007
DROP_SCHEDULE procedure, 1008
DROP_SNAPSHOT procedure, 961
DROP_SQL_PATCH procedure, 1038
DROP_WINDOW procedure, 1016
dte (data transfer element), Oracle Secure

Backup, 789
du command, UNIX/Linux, 81, 86
dual table, 102, 265
dual-mode encryption, 763, 782
dump files

COMPRESSION parameter, Data Pump, 691
creating export dump file, 704
Data Pump utilities, 678, 680, 681
importing metadata from, 719
matching degree of parallelism, 700
REUSE_DUMPFILE parameter, Data

Pump, 691
DUMPFILE parameter, Data Pump, 690, 700,

705, 706
dumping data block contents, 167, 168
duplexing, redo log groups, 983
DUPLICATE command, RMAN, 810, 834–837
durability property, transactions, 340
DWnn processes, Data Pump, 686
dynamic data sampling, ATO, 1112
dynamic initialization parameters, 177
dynamic parameters, 448, 493, 496–497
dynamic performance tables, 203, 204

collecting fixed object statistics, 1062
dynamic performance views, 203, 204

see also V$ views
automatic performance tuning compared,

1131–1132
database metrics, 950, 959
temporary statistics, 959

dynamic resource management, 941–943
dynamic sampling, 1063
dynamic security policy, 584

dynamic service registration, 183
Oracle PMON process, 521

dynamic-access predicates, row-level
security, 583

■E
easy connect method, 98, 100, 206
easy connect naming method, 525, 529–530
echo command, UNIX/Linux, 48, 53, 55
ECHO variable, SQL*Plus, 107
ed command, SQL*Plus, 130
EDIT command, SQL*Plus, 106
Edit Thresholds page, Database Control,

954, 955
EDITFILE variable, SQL*Plus, 107
editing files with vi editor, UNIX, 63–65
editing within SQL*Plus, 129–134
EDITOR variable, SQL*Plus, 128
editors, SQL*Plus default, 124
egrep command, UNIX/Linux, 66
elapsed_time column, V$SQL view, 1108
elementstape libraries, Oracle Secure

Backup, 789
else keyword, UNIX, 72
Emacs text editor, UNIX, 65
e-mail notifications, Database Control, 148
embedded SQL statements, 262
emca utility, 141
emca.rsp response file template, 422
emctl utility, 143, 156, 157
EMPHASIS method, resource plans, 560, 561
emulators, UNIX, 46
enable no validate state, 309
enable parameter, ADD_POLICY

procedure, 594
ENABLE procedure

DBMS_AUTO_TASK_ADMIN, 1021, 1118
DBMS_SCHEDULER, 1006, 1007, 1009

ENABLE QUERY REWRITE clause, 319
ENABLE RESUMABLE clause, 384, 385
ENABLE ROW MOVEMENT clause, 286, 929
ENABLE TRIGGERS clause, 377
enable validate state, 309
ENABLE_AT_SYSTEM_CHANGE_NUMBER

procedure, 369
ENABLE_AT_TIME procedure, 368
ENABLED attribute, CREATE_JOB

procedure, 999
ENABLED VALIDATED constraints, 316
encapsulation, 39
ENCLOSED BY clause, SQL*Loader, 632
ENCRYPT clause, creating tables, 269
ENCRYPT keyword, 604, 607–608
encrypted passwords, database

authentication, 601
encrypted tablespaces, 240–243
encryption

data decryption, 604
data encryption, 603–608

1283■I N D E X

dual-mode encryption, 763
generating master encryption key, 607
password-based encryption, 763
tablespace encryption, 608–610
transparent data encryption, 604–608
transparent encryption, 763

encryption algorithms, 608
ENCRYPTION clause, creating tablespaces,

242, 610
ENCRYPTION parameter

Data Pump Export utility, 695
populating external tables, 652
RMAN, 763, 764

encryption wallet
creating Oracle Wallet, 241–242

encryption, RMAN, 781, 782
ENCRYPTION_ALGORITHM parameter, Data

Pump, 695
ENCRYPTION_MODE parameter, Data

Pump, 695
ENCRYPTION_PASSWORD parameter, Data

Pump, 695, 696, 698
ENCRYPTION_WALLET_LOCATION

parameter, 241, 609
END BACKUP command, 792
End of Installation window, 420
END statement, PL/SQL, 1241
END_DATE attribute

CREATE_JOB procedure, 999
CREATE_WINDOW procedure, 1014

endian format, 720–723
END_SNAPSHOT parameter, ADDM, 883
end-to-end tracing, 1105–1107
ENFORCED mode, 316
enforced value, 465
enqueue waits event, 1179
Enterprise Edition, 417, 422
Enterprise Manager, 15
enterprise user security, 603–611

data encryption, 603–608
LDAP, 603
shared schemas, 603
Single Sign-On feature, 603
tablespace encryption, 608–610

enterprise.rsp response file template, 422
entity-relationship (ER) diagrams, 27–28

transforming ER diagrams into relational
tables, 35

entity-relationship (ER) modeling, 24–26
business rules and data integrity, 36
ER modeling tools, 34

entryID attribute, USERENV namespace, 580
env command, UNIX/Linux, 54
environment variables

see also SQL*Plus environment variables
OEM versions managing, 139
Oracle user’s home directory, 413
setting, post-installation, 424
setting, preinstallation, 410–413

setting for database creation, 446
UNIX, 54, 55

equi joins, 1066, 1233
error handling

Java programs, 540
PL/SQL, 1242

error logging
autonomous transactions, 381
SQL*Plus error logging, 111–112

error messages, database hangs, 1193
errors

benefits of RMAN, 742
common resumable errors, 383
data block corruption, 167
Flashback error correction using undo data,

366–368
normal program conclusion without, 338
ORA-00257: Archiver error, 741
ORA-00376: file # cannot be read ..., 868
ORA-01031: insufficient privileges error, 938
ORA-01078: failure to process system

parameters, 478
ORA-01152: file # was not restored ..., 867
ORA-01194: file # needs more

recovery …, 866
ORA-01536: space quota error, 383
ORA-01555: snapshot-too-old error, 209,

356, 359, 364
ORA-01588: must use RESETLOGS

option ..., 866
ORA-01589: must use RESETLOGS or ..., 866
ORA-01628: maximum extents error, 383
ORA-01653: out of space error, 383
ORA-01756: quoted string not properly

terminated, 132
ORA-15110: no diskgroups mounted, 906
ORA-19804: cannot reclaim string

bytes …, 741
ORA-19809: limit exceeded for recovery

file, 741
ORA-19815: WARNING:

db_recovery_file_dest_size, 740
ORA-29701: unable to connect to Cluster

Manager, 905
ORA-30032: the statement has timed out, 384
ORA-30036: unable to extend segment, 385
ORA-30393: a query block in the statement

did not write, 316
ORA-4031: out of shared pool memory, 894
recovery errors, 866–870
REWRITE_OR_ERROR hint, 315
sec_protocol_error_xyz_action

parameters, 615
SHOW ERRORS command, 118
standard error, UNIX, 56
viewing error alerts, Support

Workbench, 1029
ERRORS parameter, SQL*Loader, 634

1284 ■IN D E X

esac keyword, case command, UNIX/Linux, 74
ESTIMATE parameter, Data Pump, 696
Estimate Table Size page, Database

Control, 266
ESTIMATE_ONLY parameter, Data Pump, 697
/etc directory, UNIX, 63, 67
ETL (extraction, transformation, loading),

625, 626
see also transforming data
data loading, 627
external tables, loading data using, 645–656
multitable inserts, 660–662
Oracle Streams, 671–675
populating external tables, 650
SQL*Loader utility, 627–645

evaluation mode, SQL Access Advisor, 321
event class metrics, 951
event management and notification, Oracle

Streams, 670
event metrics, 951
events

event 10046, tracing SQL code, 1174
Oracle Streams, 670
setting events, caution when, 1193
wait events, 1163

events, Oracle Scheduler, 995, 1010–1011
EVOLVE_SQL_PLAN_BASELINE function, 1083
EXCEPTION statement, PL/SQL, 1241, 1243
exceptions, UTL_FILE package, 258
EXCHANGE PARTITION command, 291
exclamation point (!)

using operating system commands from
SQL*Plus, 120

EXCLUDE parameter
Data Pump Export utility, 692–693, 704
Data Pump Import utility, 708

excluded addresses, securing network, 614
exclusive locks, 199, 349
executable files

components of Oracle process, 1190
Oracle home directory, 177, 395

EXECUTE command, SQL*Plus, 121
execute permission, UNIX files, 59
EXECUTE privileges, Scheduler, 997
EXECUTE SCRIPT command, RMAN, 749
EXECUTE_ANALYSIS_TASK procedure,

1218, 1219
EXECUTE_CATALOG_ROLE, 569, 717
EXECUTE_DIAGNOSTIC_TASK

procedure, 1037
executeQuery method, JDBC, 539
EXECUTE_TASK procedure, 324, 890, 978
EXECUTE_TUNING_TASK procedure,

1114, 1117
executeUpdate method, JDBC, 539
execution history, ATO, 1112
execution phase

SQL processing, 343, 1133
TKPROF utility output, 1104

execution plan generation phase, 1044
execution plans, 343

Autotrace utility, SQL, 1097
EXPLAIN PLAN tool, 1090–1095
query processing, 1043
query with index, 1098

after analyzing table, 1099
query without index, 1097
SQL plan baselines, 1080–1085
SQL Plan Management (SPM), 1080–1087
TKPROF utility output, 1105
using hints to influence, 1067–1068

execution stage, query processing, 1046
execution time, query optimization, 1043
execution time limit method, 555
execution times, limiting, 942
EXECUTION_DAYS_TO_EXPIRE

parameter, 1118
EXECUTION_TYPE parameter, 1219
EX_FAIL/EX_FTL, SQL*Loader return

codes, 639
EXISTS operator, subqueries, SQL, 1237
existsNode operator, SQL/XML, 1249, 1251
exit code, finding, 69
exit command, RMAN, 745
EXIT command, SQL*Plus, 102, 134
exit command, UNIX/Linux, 48
EXIT_CLIENT parameter, Data Pump, 703,

704, 713
exp utility, 680
expdp utility, 678, 680, 687
EXP_FULL_DATABASE privilege, 685
EXP_FULL_DATABASE role, Data Pump,

574, 703
EXPIRATION parameter, AWR, 966
EXPIRATION_DATE parameter,

Scheduler, 1003
expired account, database authentication, 597
EXPLAIN parameter, TKPROF utility, 1102
EXPLAIN PLAN tool, SQL, 319, 1090–1095

indexing strategy, 1070
monitoring index usage, 304

EXPLAIN PLANs
Autotrace utility, 1095, 1096, 1098
comparing SQL statements, 1127
RESULTCACHE hint, 1121
SQL Trace tool using, 1100

EXPLAIN_MVIEW procedure, 317
EXPLAIN_REWRITE procedure, 316, 317
explicit capture, Oracle Streams, 671
explicit cursors, 1245
explicit locking, 350–352
export command, UNIX/Linux, 51, 53, 54
export modes, Data Pump, 688–689
export parameters, Data Pump, 689–704
export prompt, Data Pump, 688
export utilities

CONSTRAINTS parameter, 692
continued support for, 677

1285■I N D E X

FILE parameter, 690
GRANTS parameter, 692
INDEXES parameter, 692
manual upgrade process, 427

Export utility see under Data Pump utilities
(Export, Import)

EXPORT_PENDING_STATS procedure, 1057
EXPORT_SQL_TESTCASE_DIR_BY_XYZ

function, 1038
EXPORT_TUNING_TASK procedure, 1117
EXPRESSION parameter, SQL*Loader, 636
expression statistics, 1059
EX_SUCC, SQL*Loader return codes, 639
extended optimizer statistics, 1058–1060
EXTENT MANAGEMENT clause, 230
EXTENT MANAGEMENT LOCAL clause, 220
extents, 166, 169

allocating data blocks to objects, 172
amalgamating free extents, 184
ASM mirroring, 914
AUTOALLOCATE option, 216, 221, 222
deallocating unused space, 268
default for tablespace extent

management, 216
default number of, 221
extent allocation/deallocation, 220–222
extent management, 219, 221
extent sizing, 216, 219

determining sizing, 220–222
temporary tablespaces, 230

INITIAL_EXTENT parameter, 221
NEXT_EXTENT parameter, 221, 222
operating system files, 220
performance, 220
segments, 166, 169
UNIFORM option, 216, 221
UNIFORM SIZE clause, 221
using bigfile tablespaces, 237

external authentication, 601–602
external authorization, roles, 576
external data loading, SQL*Loader, 627
external jobs

local/remote external jobs, 1002
Oracle Scheduler, 996, 1002–1006

external naming method, 525, 533–534
external redundancy level, ASM, 909, 914
external tables, 280

creating external table layer, 646–649
access drivers, 648

directory objects and locations, 648–649
ETL components, 626
existence of, 645
indexing, 646
loading data using, 645–656
manual collection of statistics required, 1054
populating external tables, 649–652
SQL*Loader, 625, 646
using external tables, 652–653
using SQL*Loader with, 653–656
writing to external tables, 651–652

external tables feature, 207
Data Pump data access, 680
data warehousing, 646
SQL*Loader, 627

external_name attribute, USERENV
namespace, 580

EXTERNAL_TABLE parameter, 653
EXTPROC functionality, PL/SQL, 614
extract operator, SQL/XML, 1249, 1251
extracting data see ETL (extraction,

transformation, loading)
extractValue operator, SQL/XML, 1249, 1251
EX_WARN, SQL*Loader return codes, 639
EZ Connect string, DRCP connection, 532
EZCONNECT method, 530

■F
FAILED_LOGIN_ATTEMPTS parameter, 550,

599, 612
FAILGROUP keyword, ASM disk groups, 915
failure code, SQL*Loader return codes, 639
failure grouping, Data Recovery Advisor, 830
failure groups, ASM disk groups, 914
failure priority, Data Recovery Advisor, 830
failure status, Data Recovery Advisor, 830
failures, database, 801–804

Transparent Application Failover, 802
FAN (Fast Application Notification) events, 101
fast commit mechanism, 183, 199
fast mirror resync feature, ASM, 908–909
FAST option, materialized views, 317, 318, 319
Fast Start Checkpointing, 805
Fast Start Fault Recovery, 804, 805
FAST_START_MTTR_TARGET parameter, 805

automatic checkpoint tuning, 933
MTTR Advisor, 981
redo log sizing, 1205

fatal error code, SQL*Loader return codes, 639
fault diagnosability infrastructure, 210–211,

1022–1038
Automatic Diagnostic Repository, 211, 1022,

1023–1024
ADRCI, 211, 1022, 1024–1026
Data Recovery Advisor, 211, 1023
Health Monitor, 1022, 1032–1035
health monitor, 211
incident packaging service (IPS), 211, 1022,

1026–1028
SQL Repair Advisor, 1023, 1035–1038
SQL Test Case Builder, 211, 1023, 1038
Support Workbench, 211, 1022, 1028–1032

FCLOSE/FCLOSE_ALL procedures,
UTL_FILE, 258

FEEDBACK variable, SQL*Plus, 107, 108
FETCH command, explicit cursors, PL/SQL, 1245
Fetch operation, TKPROF utility, 1104
fetching, SQL processing steps, 1133
FGAC (fine-grained access control), 578,

582–585
DBA_FGA_AUDIT_TRAIL, 596

1286 ■IN D E X

fgrep command, UNIX/Linux, 66
field list, SQL*Loader, 629
Fifth Normal Form (5NF), 34
FILE ARRIVAL event, 1010, 1011
file deletion policy, flash recovery area, 740
file directory, UTL_FILE package creating, 256
file locations, flash recovery area, 738
file management

see also ASM (Automatic Storage
Management)

Oracle Managed Files (OMF), 247–253,
922–927

file mapping, 993–994
file metrics, 951
FILE parameter, export utility, 690
file systems

alias for file system directory, 178
database creation, 444–445
disk configuration strategies, 87
Oracle Managed Files (OMF) managing, 247

filemap.ora file, 993
FILE_MAPPING parameter, 993, 994
FILENAME parameter, TKPROF utility, 1102
filename.lst file, 120
filenames, ASM, 917–918
file-related parameters, 453–454
files

administrative files, 397
alert log file, 177
backup files, 178
control files, 173, 174–175
copying files between databases, 253–255
database files, 398–400
datafiles, 173–174
FCLOSE procedure, 258
FCLOSE_ALL procedure, 258
FOPEN function, 257
initialization files, 173
locating for database creation, 445
naming conventions, OFA guidelines, 394
network administration files, 173
operating system files, 256–259
password file, 177
product files, 397
recovering, SQL*Plus, 134
redo log files, 173, 175–176
setting file permissions, preinstallation, 409
SPFILE (server parameter file), 177
trace files, 178
UTL_FILE package, 256–259

files, UNIX, 57–62
changing filename, 59
changing group, 62
comparing files, 53
copying, 59
creating file without data, 63
device files, 63
directory management, 62
editing files with vi, 65

editing text with vi, 63
file types, 57
indicating file is directory, 60
joining files, 67
linking files, 57–58
listing files in directory, 58
locating files, 52
location of executable files, 49
locations and paths, 47
managing files, 58–59
moving around files, 65
moving file location, 59
outputting columns, 66
pattern matching, 65
permissions, 59–62
protecting files from overwriting, 57
reading contents of files, 52
removing directories containing files, 62
removing duplicate lines of text, 68
removing files, 59
sending and receiving files using FTP, 79
shell scripts, 68–74
sorting text, 68
special files, 57
system configuration files, 63
temporary files, 63
text extraction utilities, 65
viewing contents of, 58

FILESIZE parameter, Data Pump, 690, 705
FILE_TYPE, UTL_FILE package, 257
Filter Options page, SQL Access Advisor, 322
filtering

metadata filtering, 692
WHERE clause, SQL 1066, 1226

find command, UNIX/Linux, 52
findings, ADDM, 880

ADDM reports, 888, 891
fine-grained auditing, 586, 593–596
fine-grained data access, 578–586

application contexts, 579–581
column-level VPD, 585–586
fine-grained access control (FGAC), 578,

582–585
fine-grained network access control, 615–618
fine-grained recovery, 840–847
FINISH_CAPTURE procedure, 1211
FINISH_REDEF_TABLE procedure, 940, 941
Finnegan, Peter, 614
firewalls, 614
First Normal Form (1NF), 30–31
FIRST_ROWS value, OPTIMIZER_MODE, 1050
FIRST_ROWS(n) hint, 1067
FIX_CONTROL parameter, 1036
FIXED clause, external table layer, 647
fixed dictionary tables, 1062
fixed record format, SQL*Loader, 631
fixed SQL plan baselines, 1083
fixed value thresholds, 954
FIXED_DATE parameter, 449

1287■I N D E X

flash recovery area, 201, 734–741
Automatic Disk-Based Backup and

Recovery, 734
backing up, 739
configuring, 737
contents of, 735
control files, 738
creating, 400, 736–739
creating, preinstallation, 410
database creation log, 485
DB_RECOVERY_FILE_DEST parameters, 249
default file location, 738
description, 468
disabling, 737
dynamically defining, 737
Flashback Database, 854, 857, 858
LOG_ARCHIVE_DEST_10 destination, 736
managing, 740–741
managing/monitoring database, 213
OFA guidelines, 396
Oracle Managed Files (OMF), 734, 738
out-of-space warning and critical alerts, 741
parameters, setting up, 739
redo log files, 738
sizing, 736
sizing for database creation, 445
specifying default location for, 469
specifying size of, 469
upgrading with DBUA, 432

Flashback Data Archive feature, 202, 870–874
Flashback techniques, 848

flashback data archiver (FBDA) process, 186
Flashback Database, 202, 469, 853–861

block media recovery (BMR), 864
brief comment, 367
configuring, 854–856
data repair, 803
database-level Flashback techniques, 848
disabling, 856–857
enabling, 855
example using, 859–861
flash recovery area, 735, 854, 857, 858
flashback database logs, 854
limitations, 861
privileges, 857
restore points, 863
RVWR (recovery writer), 857
storage limits, 857–858

FLASHBACK DATABASE statement, 854, 857
Flashback Database logs

flash recovery area, 857
Flashback Drop, 202, 276, 848, 849–853

description, 367, 376, 377
flashback features, 200

using flashback features for auditing, 593
flashback levels, 848
flashback logs, flash recovery area, 735
Flashback Query, 202, 366, 367–368

correcting human error, 802
RETENTION GUARANTEE clause, 374

row-level Flashback techniques, 848
using flashback features for auditing, 593

flashback recovery techniques, 202
Flashback Table, 202, 366, 376–378, 848
FLASHBACK TABLE statement, 377, 378, 852
Flashback techniques, 808, 848
FLASHBACK TO BEFORE DROP statement, 116
Flashback Transaction, 366, 379–380
Flashback Transaction Backout, 202, 848,

868–870
Flashback Transaction Query, 366, 372–375,

593, 848
Flashback Versions Query, 366, 369–372,

375–376, 593, 848
FLASHBACK_RETENTION_TARGET

parameter, 857
flashbacks

DBMS_FLASHBACK package, 368–369
error correction using undo data, 366–368
Oracle Database 11g features, 366
specifying flashback time, 469
undo tablespaces, 367
UNDO_RETENTION parameter, 359

FLASHBACK_SCN parameter, Data Pump,
699, 713

FLASHBACK_TIME parameter, Data Pump,
700, 713

FLASHBACK_TRANSACTION_QUERY view,
372, 373

FLOAT data type, 1222
flow control structures, UNIX, 71–74
FLUSH clause, ALTER SYSTEM, 1135
FLUSH procedure, DBMS_RESULT_

CACHE, 1123
FLUSH variable, SQL*Plus, 108
FMON process, file mapping, 993
FMPUTL process, file mapping, 993
footers, SQL*Plus, 123
FOPEN function, UTL_FILE package, 257
FOR LOOP statement, PL/SQL, 1244, 1246
FORCE attribute, Scheduler jobs, 1000
FORCE option

refreshing materialized views, 317
starting ASM instances, 908

FORCE value
CURSOR_SHARING parameter, 466, 1139
QUERY_REWRITE_ENABLED parameter, 315

for-do-done loop, UNIX, 73
FOREIGN KEY REFERENCES clause, 285
foreign keys, 35, 36, 308, 1071
FORMAT clause

BACKUP command, RMAN, 754
SET SERVEROUTPUT command,

SQL*Plus, 109
FORMAT parameter

converting datafiles to match endian
format, 721

RMAN backup file locations, 755
formatting, SQL*Plus, 118, 122–124
forName method, java.lang, 538

1288 ■IN D E X

%FOUND attribute, PL/SQL, 1246
Fourth Normal Form (4NF), 34
fractured block problem, whole open

backups, 792
fragmentation, segment space

management, 928
free buffer waits event, 1178
free buffers, 188
free space, 255–256

alerts, 226
database writer (DBWn) process, 199
datafiles, 219
DBA_FREE_SPACE view, 243
extent allocation/deallocation, 220
preinstallation checks, 403, 404
Recycle Bin, 244
segment space management, 217

free space section, data blocks, 167
free, vmstat utility, 82
FREE_BLOCKS procedure, DBMS_SPACE, 255
freelists, segment space management, 217
FREQ keyword, Oracle Scheduler, 999
FROM clause, SELECT statement

necessity for dual table in Oracle’s SQL, 102
subqueries, 263

FTP (File Transfer Protocol), 79
full export mode, Data Pump, 688
FULL hint, 1067
FULL parameter, Data Pump, 688, 708
full table scans

avoiding unnecessary full table scans, 1075
guidelines for creating indexes, 297
INDEX_FFS hint, 1068
query optimization, 1052

fully qualified name, 452
function-based indexes, 302, 1066, 1072
function privileges, 571
functional dependence, 29, 33
functions, SQL see SQL functions
fuzzy-read problem, data concurrency, 342

■G
Gather Statistics Wizard, 1195
GATHER_DATABASE_STATS procedure,

1055–1056, 1062, 1063
GATHER_DATABASE_STATS_JOB_PROC

procedure, 899
GATHER_DICTIONARY_STATS

procedure, 1063
GATHER_FIXED_OBJECTS_STATS procedure,

1054, 1062
GATHERING_MODE parameter, 1060
GATHER_STATS_JOB, 898–899, 1047–1049, 1065
GATHER_SYSTEM_STATS procedure,

1060–1062
GATHER_TABLE_STATS procedure, 1059, 1060
GATHER_XYZ_STATISTICS procedures, 1086
GATHER_XYZ_STATS procedures, 1054

GENERATED ALWAYS AS clause, 270
GET command, SQL*Plus, 106, 128
get command, UNIX/Linux, 79, 80
getConnection method, JDBC drivers, 538
GET_DDL procedure, 295
GET_FILE procedure, 253, 254, 992
GET_LINE procedure, 257
GET_PREFS procedure, 1056
GET_REPLAY_INFO function, 1215
GET_REPORT function, 884
GET_RUN_REPORT function, 1033
GET_SCHEDULER_ATTRIBUTE procedure, 1017
GET_SYSTEM_CHANGE procedure, 369
GET_TASK_REPORT procedure, 890, 978
GET_THRESHOLD procedure, 956
glance command, UNIX/Linux, 85
GlancePlus package, performance

monitoring, 84
global authorization, roles, 576
global database names, Oracle networking, 514
global partitioned indexes, 302, 1073
global preferences file, SQL*Plus, 110
GLOBAL QUERY REWRITE privilege, 317
GLOBAL SCRIPT command, RMAN, 750
GLOBALLY clause, CREATE ROLE, 576
GLOBAL_NAMES parameter, Oracle

Streams, 673
glogin.sql file, 110, 111
gpm command, UNIX/Linux, 85
GRANT ANY OBJECT privilege, 569, 573
GRANT ANY PRIVILEGE privilege, 569
GRANT command, SQL*Plus, 136
GRANT statement, 567, 568–569, 572
GRANT_ADMIN_PRIVILEGE procedure, 674
granting privileges, 612, 618

to users with UTL_FILE package, 257
granting roles, recovery catalog, 767
GRANTS parameter, export utility, 692
granular recovery techniques, 840–847

LogMiner utility, 841–847
tablespace point-in-time recovery, 840–841

granularity
autonomous transactions, 381
Data Pump technology, 679
locks, 348

GRANULARITY attribute, 1055
grep command, UNIX/Linux, 49, 65, 75
Grid Control, 139, 153–161

alerts, 160
analyzing page performance, 160
components of Grid Control framework, 154
configuring automatic SQL tuning

parameters, 1119
connecting to, 157
critical patch advisories, 159
Database Control, OEM alternative, 206
database management, 158, 213
deployments summary, 159
enterprise configuration management, 158

1289■I N D E X

features, 158–159
grouping targets, 159
installing, 154–156
logging into, 157
Management Repository, 154
managing enterprise using, 159
managing groups, 161
monitoring and managing enterprise

configuration, 158
monitoring application servers, 160
monitoring host performance, 160
monitoring host/databases/services, 154
monitoring system with, 159–161
monitoring web applications, 160
obtaining host and database configuration

information, 158
OEM Management Agent, 154, 156
Oracle Management Service (OMS), 154, 157
Oracle software cloning, 148
resource center, 159
status information, 159
transaction performance, 160
upgrading with DBUA, 432
user interface for, 154
versions, 137
viewing ADDM reports, 890–892

Grid Control pages, 159–160
Database page, 153

GROUP BY clauses
guidelines for creating indexes, 297
indexing strategy, 1071
program global area (PGA), 193
SQL, 1234–1236

group commits, log writer (LGWR) process, 199
grouping operations, SQL, 1234–1236
groups, Grid Control, 159, 161
groups, UNIX, 62, 406–408
guaranteed restore points, 862, 863
guaranteed undo retention, 362–365

■H
handler_xyz parameters, ADD_POLICY

procedure, 594, 595
Hang Analysis page, Database Control, 355,

1192–1194
hanganalyze utility, database hangs, 1193
hangs see database hangs
HARD (Hardware Assisted Resilient Data),

95, 798
hard links, UNIX, 57
hard parse elapsed time,

V$SESS_TIME_MODEL, 1206
hard parsing, 191, 343, 1135, 1136

converting to soft parsing, 1141
reducing number of, 1141
resources used, 1138
sessions with lots of, 1139

hardware, ADDM recommendations, 881

Hardware Assisted Resilient Data (HARD),
95, 798

hash clusters, 296
hash joins, 1052, 1068
hash partitioning, 283–284, 288
HASH_AREA_SIZE parameter, 194
HASHKEYS value, CREATE CLUSTER, 296
hash-partitioned global indexes, 303
HAVING clause, 1067
HAVING operator, GROUP BY clause, SQL, 1236
head command, UNIX/Linux, 65
headers, SQL*Plus, 123
HEADING variable, SQL*Plus, 108
Health Monitor, 211, 1022, 1032–1035
heap, 1190
heap indexes, 300
heap-organized tables, 265, 1072
help

man command, UNIX/Linux, 50
showing help topics, SQL*Plus, 106

HELP command, Data Pump, 703, 704, 713
help command, lsnrctl utility, 522
HELP INDEX command, SQL*Plus, 106
Help page, Grid Control, 159
heuristic strategies, query processing, 1046
hidden Oracle parameters, 177
hierarchical queries, SQL, 1232
High Availability, Database Control

Performance page, 145
high redundancy level, ASM, 909, 914
high water mark see HWM
High Water Marks page, 153
high-availability systems, 798–799
hints

NO_RESULT_CACHE hint, 1122
optimizer hints, 1051
optimizing queries, 205
RESULT_CACHE hint, 1121, 1122
REWRITE_OR_ERROR hint, 315
using hints to influence execution plans,

1067–1068
histogram functions, SQL, 1232
histograms, 1086–1087
history

Active Session History (ASH), 210, 971–975
history command, UNIX/Linux, 49
hit ratios

buffer cache hit ratio, 190, 1144
database hit ratios, 1161–1162
latch hit ratio, 1179
library cache hit ratio, 1137
not relying on, 1182

HM_RUN command, 1034
Home Details window, Oracle Universal

Installer, 417
home directories

naming conventions, OFA guidelines, 394
home directory, UNIX, 46, 63
HOME shell variable, UNIX, 54

1290 ■IN D E X

host attribute, USERENV namespace, 580
Host chart, Database Performance page, 1199
HOST command, SQL*Plus, 105, 106, 119
Host CPU chart, Database Control, 1196
Host home page, Grid Control, 160
host names

connect descriptors, 515
precedence order for evaluating, 617

host parameter
easy connect naming method, 529

hosts, Oracle Secure Backup, 786, 788
hot backups see open backups
hot restore, RMAN, 816
hot spares, RAID systems, 88
hot swapping, RAID systems, 88
Hotsos, DBA resources, 14
HR (human resources) schema, 1221
HWM (high water mark)

Database Control, 151, 153
determining free space, 255
manual segment shrinking, 929
online segment shrinking, 927
reclaiming unused space below HWM, 935

hyphen pair notation (--), SQL*Plus, 128
hypothetical ranks and distribution functions,

SQL, 1232

■I
IDENTIFIED BY clause, 544, 547, 575
IDENTIFIED EXTERNALLY clause, 576
IDENTIFIED GLOBALLY clause, 576
IDENTIFIED USING clause, role

authorization, 575
identifiers see keys
idle events, 1181
idle time method, Database Resource

Manager, 555
Idle wait class, 1163
IDLE_TICKS system usage statistic, 1181
IDLE_TIME parameter, 549, 553
idle-time-limit resource directive, 560, 561
IE (information exchange) schema, 1222
iee (import-export element), Oracle Secure

Backup, 789
IFILE parameter, 453
IF-THEN statements, PL/SQL, 1243
if-then-else-if structure, UNIX, 71
image copies, RMAN, 743, 752–753, 754,

756, 780
immediate constraints, 310
IMMEDIATE option

committing transactions, 339
SHUTDOWN command, 503

imp utility, 680
Impact column, ADDM reports, 891
impact estimate, ADDM findings, 880
impdp utility, 678, 680
IMP_FULL_DATABASE privilege, 685
IMP_FULL_DATABASE role, 574, 703

implementation, 3, 37
implicit capture, Oracle Streams, 671
implicit commit, 338, 339
implicit cursors, PL/SQL, 1245
implicit locking, 351
IMPORT CATALOG command, RMAN, 771, 772
import modes, Data Pump, 705
import parameters, Data Pump, 705–713
import prompt, Data Pump interactive

mode, 688
import types, Data Pump, 705
import utilities, 677

see also Data Pump utilities (Export, Import)
INDEXFILE parameter, 706

Import utility see under Data Pump utilities
(Export, Import)

import-export element (iee), Oracle Secure
Backup, 789

IMPORT_FULL_DATABASE role, Data
Pump, 705

IN clause, SQL subqueries, 1067
in memory metrics, 951
IN operator, SQL, 1227
INACTIVITY TIMEOUT parameter, DRCP,

532, 533
INCARNATION option, LIST command,

RMAN, 823
incarnations, database, 822
incident, 1026
incident packages

creating, Support Workbench, 1030–1031
Diag Incident directory, ADR, 1024

incident packaging service (IPS), 211, 1022,
1026–1028

INCLUDE parameter, Data Pump, 692–693, 708
INCLUDING clause, CREATE TABLE, 279, 280
INCLUDING CONTENTS clause, DROP

TABLESPACE, 224, 225, 853
incomplete recovery, 807, 820–824
inconsistent backups, 727
incremental backups, 732, 733

flash recovery area, 735
RMAN, 742, 756–757, 778, 779

INDEX hint, 1067
index key compression, 1076
index-organized tables see IOTs
index range scans, 1095
index scans, query optimization, 1052
index segments, 169
index skip scan feature, 1072
indexes

ALTER INDEX REBUILD command, 217
bitmap indexes, 1071
bitmap join indexes (BJI), 1069
coalescing indexes online, 935
column data with low cardinality, 1071
concatenated indexes, 1072
creating indexes online, 935
creating tablespaces first, 215

1291■I N D E X

data block sizes and tablespaces, 171
efficient SQL indexing strategy, 1070–1073
EXPLAIN PLAN tool examples, 1093, 1094
function-based indexes, 1066, 1072
index-only plans, 1071
index-organized tables (IOTs), 1072
monitoring index usage, 1073
moving from development to

production, 1070
partitioned indexes, 1073
primary indexes, 1070
rebuilding indexes online, 934
rebuilding indexes regularly, 1089
removing unnecessary indexes, 1073
reverse key indexes, 1072
secondary indexes, 1070, 1071
separating table and index data, 170
sizing for database creation, 444
SQL*Loader utility, 644
using appropriate index types, 1071–1073
views in query preventing use of, 1065
what to index, 1071
when to use indexes, 1070–1071

INDEXES parameter, 692
indexes, Oracle, 296–300

bitmap indexes, 301
B-tree index, 298, 301
creating an index, 299–300
DBA_IND_COLUMNS view, 333
DBA_INDEXES view, 333
dropping tables, 276
estimating size of index, 298–299
extracting DDL statements for, 294
function-based indexes, 302
global partitioned indexes, 302
guidelines for creating, 297–298
heap indexes, 300
invisible indexes, 303–304
key-compressed indexes, 301
keys compared, 297
locally partitioned indexes, 303
maintaining, 305
materialized views, 314
monitoring usage, 304–305
OPTIMIZER_USE_INVISIBLE_INDEXES

parameter, 463
Oracle index schemes, 298
partitioned indexes, 302–303
performance enhancement

recommendations, 320
performance trade-off using, 296, 301
rebuilding, 305
reverse-key indexes, 301
special types of, 300–304
SQL Access Advisor recommendations, 303
transparency of, 296
types, 297

INDEX_FFS hint, 1068
INDEXFILE parameter, 706

index-organized tables see IOTs
INDEX_STATS view, 334
INFILE parameter, SQL*Loader, 628, 630
InfiniBand, 94
Information Lifecycle Management (ILM)

applications, 874
inheritance, 39
init.cssd script, 904
init.ora file

see also initialization files; PFILE
activating parameter limits in user

profiles, 553
automatic service registration, 521
backup guidelines, 729
cloning databases with RMAN, 834
creating new database, 177
creating OMF-based instance, 251
database instance names, 514
DB_BLOCK_SIZE parameter, 166
manual database upgrade process, 437
OMF redo log files, 250
Oracle Managed Files (OMF), 250
post-upgrade actions, 441
REMOTE_OS_AUTHENT parameter, 615
setting initialization parameters,

post-installation, 424
upgrading with DBUA, 430

init+asm.ora file, 905
INITCAP function, 657
initial extent, database objects, 169
Initial Options page, SQL Access Advisor, 322
INITIAL_EXTENT parameter, 221
initialization files, 173, 447, 448–449

see also init.ora file; PFILE
nesting initialization files, 453
Oracle looking for correct file, 494, 497
setting up flash recovery parameters, 739

initialization parameter file see PFILE
initialization parameters, 449–473

ADDM recommendations, 881
archivelog parameters, 459–460
audit-related parameters, 450–451
BACKGROUND_DUMP_DEST, 178
changing for session only, 262
corruption-checking parameters, 470–472
creating Oracle Managed Files, 922–923
detecting data block corruption, 796
DIAGNOSTIC_DEST, 178
dynamic initialization parameters, 177
file-related parameters, 453–454
memory allocation parameters, 456–459
modifying, 262
optimal settings for, 1129
Oracle licensing parameters, 461
Oracle Managed Files (OMF), 248–249,

454–455
performance- and diagnostics-related

parameters, 461–468
Pre-Upgrade Information Tool, 428

1292 ■IN D E X

process-related parameters, 455
recovery-related parameters, 468–470
security-related parameters, 472
session-related parameters, 456
setting security-related initialization

parameters, 615
setting, post-installation, 424
undocumented initialization

parameters, 473
undo-related parameters, 460–461
upgrading with DBUA, 430
V$SPPARAMETER data dictionary, 177
viewing current values, 473–474

Initialization Parameters page, DBCA, 487
initialization parameters, list of

AUDIT_FILE_DEST, 451
AUDIT_SYS_OPERATIONS, 451, 458
AUDIT_TRAIL, 450
CLIENT_RESULT_CACHE_XYZ

parameters, 458
COMPATIBLE, 452
CONTROL_FILE_RECORD_KEEP_TIME, 454
CONTROL_FILES, 453
CONTROL_MANAGEMENT_PACK_

ACCESS, 459
CURSOR_SHARING, 466
DB_BLOCK_CHECKING, 471
DB_BLOCK_CHECKSUM, 470
DB_BLOCK_SIZE, 466
DB_CACHE_SIZE, 457
DB_CREATE_FILE_DEST, 455
DB_CREATE_ONLINE_LOG_DEST_n, 455
DB_DOMAIN, 452
DB_FILE_MULTIBLOCK_READ_

COUNT, 467
DB_FLASHBACK_RETENTION_

TARGET, 469
DB_KEEP_CACHE_SIZE, 457
DB_LOST_WRITE_PROTECT, 470
DB_NAME, 451
DB_nK_CACHE_SIZE, 458
DB_RECOVERY_FILE_DEST, 469
DB_RECYCLE_CACHE_SIZE, 458
DB_SECUREFILE, 472
DB_ULTRA_SAFE, 470
DB_UNIQUE_NAME, 451
DB_WRITER_PROCESSES, 455
DIAGNOSTIC_DEST, 449
FIXED_DATE, 449
IFILE, 453
INSTANCE_XYZ parameters, 452
LARGE_POOL_SIZE, 459
LDAP_DIRECTORY_SYSAUTH, 451
LICENSE_MAX_SESSIONS, 461
LICENSE_MAX_USERS, 461
LOG_ARCHIVE_DEST_n, 459
LOG_ARCHIVE_FORMAT, 460
MEMORY_MAX_TARGET, 456
MEMORY_TARGET, 457

NLS_DATE_FORMAT, 453
OPEN_CURSORS, 456
OPTIMIZER_CAPTURE_SQL_PLAN_

BASELINES, 462
OPTIMIZER_DYNAMIC_SAMPLING, 463
OPTIMIZER_FEATURES_ENABLE, 463
OPTIMIZER_MODE, 462
OPTIMIZER_USE_INVISIBLE_INDEXES, 463
OPTIMIZER_USE_PENDING_

STATISTICS, 463
OPTIMIZER_USE_SQL_PLAN_

BASELINES, 464
OS_AUTHENT_PREFIX, 472
PARALLEL_MAX_SERVERS, 467
PLSQL_CODE_TYPE, 464
PLSQL_OPTIMIZE_LEVEL, 468
PROCESSES, 455
QUERY_REWRITE_ENABLED, 465
QUERY_REWRITE_INTEGRITY, 465
REMOTE_LOGIN_PASSWORDFILE, 472
RESULT_CACHE_XYZ parameters, 464
RESUMABLE_TIMEOUT, 470
SEC_XYZ parameters, 465
SERVICE_NAME, 452
SQL_TRACE, 467
STATISTICS_LEVEL, 461
TIMED_STATISTICS, 468
UNDO_XYZ parameters, 460
UTL_FILE_DIR, 454

INITIALIZE_REPLAY procedure, 1213
INITRANS parameter, 346, 1176
inline stored functions, 1074–1075
inline view, 263
inner join, SQL, 1234
INPUT command, SQL*Plus, 130, 131
input/output (I/O)

ADDM determining optimal I/O
performance, 884

assigning objects to multiple buffer
pools, 189

asynchronous I/O for DBWn process, 182
block size and I/O performance, 1158
cost model of Oracle optimizer, 1060
cost of disk I/O, 186
data block sizes and tablespaces, 171
db file scattered read wait event, 1177
disk I/O, 246, 1158–1159
distribution of I/O, 1159
eliminating wait event contention, 1208
enforcing per-session I/O limits, 564–565
excessive reads and writes on some

disks, 1160
finding inefficient SQL, 1109, 1110
measuring I/O performance, 1159–1161
performing text input and output,

UTL_FILE, 258
rebalancing ASM disk groups, 916
reducing I/O contention, 1160
SAME guidelines for optimal disk usage, 1160

1293■I N D E X

saving output to operating system,
SQL*Plus, 120

saving user input in variable, SQL*Plus, 121
silent option, SQL*Plus output, 115
specifying directory for processing I/O, 454
system performance, 1204
system usage problems, 1188
tuning shared pool, 1133
viewing output screen by screen,

SQL*Plus, 121
input/output redirection, UNIX, 56–57
input/output statistics, UNIX, 82
INSERT ALL statement, 661
insert anomaly, 29
INSERT clause, SQL*Loader, 629
INSERT FIRST statement, 661
INSERT INTO PARTITION clause, 287
INSERT parameter, TKPROF utility, 1102
INSERT statement, SQL, 1225

creating tables, 269
DML statements, 263
table functions, 662, 666

INSERT statement, PL/SQL, 1242
inserting data into tables, 660–662
Install window, Oracle Universal Installer, 420
Installation Guide, Oracle, 392
Installation Type window, Oracle Universal

Installer, 417
installations

Instant Client software, 519–520
Oracle Client software, 518
Oracle Internet Directory (OID), 537

installing Oracle Database 11g, 414–422
disk storage requirements, 392
downloading Oracle software, 391, 414,

415–416
final checklist, 413–414

DISPLAY variable, 414
kernel parameters, 413
swap space, 413
temporary space, 413
X Window System emulation, 414

installing on multihomed computer, 398
installing Oracle software, 414–416, 420–422

creating response files, 421
installation types, 417
kernel parameters, 418
operating system requirements, 418
Oracle Universal Installer, 416–420
restarting installation process, 418
runInstaller script, 416
using response files, 421–422
using response files in silent mode,

421, 422
using response files in suppressed mode,

421, 422
using staging directory, 416

introduction, 391
logging in as oracle not root, 414

memory requirements, 393
OFA-compliant directory structure, 399
Optimal Flexible Architecture, 393–400
Oracle Enterprise Edition CDs, 414–415
Oracle home directory, 396
Oracle Installation Guide, 392
post-installation tasks, 422–425

Oracle owner tasks, 424–425
system administrator tasks, 423–424

preinstallation tasks, 400–413
checking preinstallation requirements,

400–401
Oracle owner tasks, 410–413
system administrator tasks, 401–410

products installed with 11.1 release, 401
README files, 392
Release Notes and Addendums, 392
reviewing documentation, 392
uninstalling Oracle, 425–426

instance attribute, USERENV namespace, 580
Instance Efficiency section, AWR reports, 969
instance failure, benefits of archivelog

mode, 726
instance mode, ADDM, 882
instance performance

analyzing instance performance, 1164–1181
analyzing waits with Active Session

History, 1169
collecting wait event information, 1174–1175
Compare Periods Report, 1206
Database Control examining, 1195–1201
database hit ratios, 1161–1162
database load affecting, 1205
database wait statistics, 1162–1163
eliminating wait event contention, 1208
long-running transactions affecting, 1202
measuring instance performance, 1161–1194
memory affecting, 1205
objects with highest waits, 1170
obtaining wait information, 1167–1168
redo logs affecting, 1205
segment-level statistics, 1173
SQL statements affecting, 1194
using V$ tables for wait information,

1165–1166
V$ACTIVE_SESSION_HISTORY view, 1169
V$SESSION_WAIT_HISTORY view, 1168
wait classes and wait events, 1163
wait classes and wait-related views, 1171
wait events affecting, 1206

instance recovery
Oracle recovery process, 804–805

instance tuning, 1129–1130, 1194–1209
see also instance performance

INSTANCE_NAME parameter, 452
automatic service registration, 521
database instance names, 514

INSTANCE_NUMBER parameter, ADDM, 883

1294 ■IN D E X

instances, 173
see also instance performance
altering properties of, 262
creating OMF-based instance, 251
database consistency on restart, 184
database instance names, 514
faster instance startup, 805
memory allocation, 187
object-oriented database model, 39
specifying database or ASM instance, 452
starting Oracle instance, 477–480

INSTANCE_TYPE parameter, 452
ASM, 905

Instant Client software, 518, 519–520
instant protection mode, Oracle Data

Guard, 800
INSTR function, SQL, 1228
integrated systems management, OEM, 139
integrity, 306–310

control files, 175
integrity constraint states, 308–309
integrity constraints, 306–310
integrity rules, enforcing, 465
interactive mode, Data Pump, 687–688,

701–705
interactive mode, UNIX, 54
interinstance locking, 186
internal locks, 351
INTERNAL_XYZ resource plans, 559
International Oracle Users Group (IOUG), 13
interrupts, 80
intersection operation, 21
INTERSECTION operator, SQL, 1228
INTERVAL clause, CREATE TABLE, 283
INTERVAL keyword

collecting operating system statistics, 1061
jobs, Oracle Scheduler, 999

INTERVAL parameter, AWR snapshots, 961,
964, 965

interval partitioning, 282–283
interval-list partitioning, 289
interval-range partitioning, 290
INTO TABLE clause, SQL*Loader, 629
invalid objects

manual database upgrade process, 439
upgrading with DBUA, 431

INVENTORIES table
interpreting EXPLAIN PLAN output, 1093

Inventory Contents tab, Oracle Universal
Installer, 426

inverse percentile functions, SQL, 1231
INVISIBLE clause, CREATE INDEX, 304
invisible indexes, 303–304, 463
invited addresses, securing network, 614
invoker’s rights, stored procedures, 573
I/O see input/output (I/O)
IOSEEKTIM statistic, 1061
iostat utility, UNIX, 82, 1159
IOTFRSPEED statistic, 1061

IOTs (index-organized tables), 265, 278–280
Flashback Transaction Query, 371, 374

IOWAIT_TICKS system usage statistic, 1182
IP (Internet Protocol) address, 47, 78
ip_address attribute, USERENV

namespace, 580
IPS (incident packaging service), 211
IPS CREATE PACKAGE command, 1027
is_grant parameter, CREATE_ACL

procedure, 616
ISO transaction standard, 342
isolation levels, transactions, 342–346
isolation property, transactions, 340
%ISOPEN attribute, PL/SQL, 1246
Ixora, 14

■J
Java, Oracle and, 1252–1254
Java Database Connectivity see JDBC
Java pool, 187, 193, 1148
Java programs, error handling, 540
Java stored procedures, 1252
java.lang class, 538
JAVA_POOL_SIZE parameter, 193, 195
JDBC (Java Database Connectivity),

537–542, 1253
JDBC drivers, 538
JDBC Supplement, Instant Client packages, 520
Job Activity page, Grid Control, 159
job classes, Oracle Scheduler, 996, 1011–1013
job commands, RMAN, 757–758
job coordinator, Oracle Scheduler, 997
job queue coordination (CJQO) process,

181, 185
job scheduling, 77, 554
job table, Oracle Scheduler, 997
job worker processes, Oracle Scheduler, 997
JOB_ACTION attribute

CREATE_JOB procedure, 999
embedding jobs in chains, 1010
Scheduler managing external jobs, 1002
Scheduler managing programs, 1006

JOB_CLASS_NAME attribute,
CREATE_JOB, 1012

JOB_NAME attribute, CREATE_JOB, 999
JOB_NAME parameter, Data Pump, 699,

705, 708
JOB_QUEUE_PROCESSES parameter, 673, 1056
jobs, Data Pump viewing, 713, 714
jobs, Oracle Scheduler, 994

administering, 1000
assigning job priority levels, 996
belonging to job classes, 1011
CREATE_JOB procedure, 1005
creating, 998–999
creating event-based jobs, 1010
default scheduler jobs, 1019
embedding jobs in chains, 1010
frequency (FREQ keyword), 999

1295■I N D E X

grouping sets of jobs, 996
managing, 998–1000
managing external jobs, 1002–1006
monitoring Scheduler jobs, 1017–1019
prioritizing jobs, 1016–1017
purging job logs, 1019
repeat interval (INTERVAL keyword), 999
resource plans and windows, 1013
specifying repeat interval, 999–1000
types of Scheduler jobs, 995–996

JOB_TYPE attribute
CREATE_JOB procedure, 999
embedding jobs in chains, 1010
Scheduler managing external jobs, 1002
Scheduler managing programs, 1006

join command, UNIX/Linux, 67
join operations, 21

heuristic strategies for query
processing, 1046

using correct joins in WHERE clauses, 1066
join views, 313
joins, 1233–1234

bitmap join indexes (BJI), 1069
Cartesian joins, 1068, 1232
CBO choosing join method, 1052
CBO choosing join order, 1053
equi joins, 1066, 1233
EXPLAIN PLAN tool examples, 1094
guidelines for creating indexes, 297
hash join, 1052, 1068
indexing strategy, 1071
inner join, 1234
lossless-join dependency, 34
MERGE join, 1068
natural join, 1233
nested loop join, 1052
outer join, 1234
selecting best join method, 1068
selecting best join order, 1070
self join, 1233
sort-merge join, 1052

JVM (Java Virtual Machine), 1252

■K
keep buffer pool, 189, 1146, 1147
KEEP clause, ALTER TABLESPACE, 231, 232
keep pool, 457
KEEP procedure, DBMS_SHARED_POOL, 1138
KEEP XYZ clauses, BACKUP command, RMAN,

780, 781
kernel, UNIX, 45

preinstallation, 401, 402, 404–406, 413
key-compressed indexes, 301
keys, 26

indexes compared, 297
multivalued/composite keys, 31
tables, 20

keyword variables see shell variables, UNIX
kill command, UNIX/Linux, 75, 620

KILL SESSION command, 620
KILL_JOB command, Data Pump, 686, 703,

704, 713
KILL_SESSION switch group, 555, 561, 565
ksh (Korn shell), 45

see also shells, UNIX

■L
-L option (no-prompt logon), SQL*Plus, 115
label-based security policy, 586
large objects, ORDBMS model, 40
large pool, 187, 193, 1148
LARGE_POOL_SIZE parameter, 193, 195, 459
LAST_DDL_TIME value, 329
latch contention

eliminating contention, 1208, 1209
parsing, 1141
reducing parse-time CPU usage, 1175
soft parsing, 1141
tuning shared pool, 1133
wait events, 1206

latch free wait events, 1179–1180
latch hit ratio, 1179
latch rate, 1183
latches, 343, 351, 1179

library cache latch, 1180
shared pool latch, 1180
tuning shared pool, 1133
V$LATCH view, 1168

LDAP (Lightweight Directory Access Protocol),
512, 534, 602, 603

LDAP_DIRECTORY_SYSAUTH parameter,
451, 615

LD_LIBRARY_PATH variable, 446, 475
leaf blocks, B-tree index, 298
least recently used (LRU) algorithm, 181, 188
Legato Single Server Version (LSSV), 746
LENGTH function, SQL, 1228
LGWR see log writer
library cache, 191

aging out SQL statements, 1134
avoiding ad hoc SQL, 1141
measuring library cache efficiency, 1137–1138
optimizing library cache, 1138–1142
pinning objects in shared pool, 1142–1143
tuning shared pool, 1133–1134

library cache hit ratio, 1137
library cache latch, 1180
LICENSE_MAX_XYZ parameters, 461
licensing, 149, 948
Lightweight Directory Access Protocol see LDAP
lightweight jobs, Oracle Scheduler, 996,

1000–1002
LIKE operator, SQL, 1224, 1227
limited analysis mode, Segment Advisor, 930
limits.conf file, 406
LINESIZE variable, SQL*Plus, 108
linking files, UNIX, 57–58
links see database links

1296 ■IN D E X

Linux, 43, 44, 45
see also UNIX

Linux commands see UNIX commands
LIST ARCHIVELOG ALL command, RMAN, 761
LIST BACKUP command, RMAN, 760, 810
LIST CHAINED ROWS clause, 279
LIST command, RMAN, 810
LIST command, SQL*Plus, 128
LIST COPY command, RMAN, 760, 810
LIST FAILURE command, Data Recovery

Advisor, 830
LIST GLOBAL SCRIPT NAMES command,

RMAN, 761
LIST INCARNATION command, RMAN, 823
list partitioning, 284, 288–289
LIST SCRIPT NAMES command, RMAN,

750, 761
listener commands, 522–523
listener.ora file, 206, 520, 521, 523

ADMIN_RESTRICTIONS parameter, 614
cloning databases with RMAN, 835
dynamic service registration and, 183
post-upgrade actions, 441
removing EXTPROC functionality, 614

listeners, 524
automatic service registration, 521–522
BLOCKED status, 522
connecting to Oracle, 206
default password, 524
described, 513
dynamic service registration, 183
establishing Oracle connectivity, 517
failed attempt to stop, 524
lsnrctl checking listener status, 521
lsnrctl commands, 521–523
multiple listeners, 523
Oracle networking and, 520
QUEUESIZE parameter, 523
READY status, 522
script to start and stop, 500
securing, 614
setting password for, 524–525
setting queue size, 523
UNKNOWN status, 522
upgrading with DBUA, 432

listing commands, RMAN, 760–761
listing files, UNIX, 58
LIVE workspace, 387
ln command, UNIX/Linux, 58
load balancing, ASM, 901
LOAD DATA keywords, SQL*Loader, 629
LOAD parameter, SQL*Loader, 634
Load Profile section, AWR reports, 969, 1205
LOAD WHEN clause, 648
loading data see ETL (extraction,

transformation, loading)
LOAD_PLANS_FROM_CURSOR_CACHE

function, 1082
LOAD_PLANS_FROM_SQLSET function, 1081

loads column, V$SQL view, 1109
load-then-transform method, ETL process, 626
LOBs (large objects)

data block sizes and tablespaces, 171
transportable tablespaces, 716
treating large objects as SecureFiles, 472

local commands, SQL*Plus, 103
LOCAL extent management, 219, 220
local external jobs, 1002
local naming method, connections, 525–529
local partitioned indexes, 1073
local servers, copying files from/to, 254
LOCAL value, extent management, 221
localconfig command, 904
locally managed tablespaces, 172

AUTOALLOCATE option, 219
automatic segment space management, 219
managing storage extents, 222
MAXEXTENTS parameter, 221
migrating from dictionary-managed, 217
proactive space alerts, 226
specifying default storage parameters, 220
using bigfile tablespaces, 237

locally partitioned indexes, 302, 303
LOCATION parameter, external table layer, 648
location transparency

Oracle Net Services features, 511
using synonyms, 325

lock (LCKn) process, 186
lock conversion, 348
lock escalation, 347, 348
LOCK TABLE statement, 263, 350, 351
locking

committing transactions, 339
data concurrency, 199, 341
database authentication, 597, 598
exclusive lock mode, 199
explicit locking in Oracle, 351–352
explicit table locking, 350–351
how Oracle processes transactions, 197
interinstance locking, 186
locking issues, 1189
locking-related views, 353
optimistic locking methods, 347
Oracle locking, 347, 348
page-level locking, 348
pessimistic locking methods, 347
queries, 349
SELECT statement, 349
serializable isolation level, 344, 346
share lock mode, 199
temporary tables, 278

locks
blocking locks, 351–352
data dictionary locks, 351
Database Control managing session locks,

354–355
DDL locks, 350
deadlocks, 352

1297■I N D E X

distributed locks, 351
DML locks, 349–350
exclusive locks, 349
granularity, 348
identifying sessions holding locks, 353
identifying source of lock, 354
internal locks, 351
latches, 351
locks on suspended operations, 385
managing long transactions, 386
managing Oracle locks, 353, 355
Oracle lock types, 348–350
Oracle locks, 347
releasing locks, 348
row exclusive locks, 349
row-level locks, 349
table-level locks, 349
using SQL to analyze locks, 353–354
views analyzing locks, 354

log buffer space wait event, 1180
LOG FILE parameter, 648
log file switch wait event, 1180
log file sync wait event, 1181
log files

alert log file, 16, 177
archiving redo log files, SQL*Plus, 135
create materialized view log, 318
Data Pump utilities, 681
flashback database logs, 854
managing logging of redo data, 227
Pre-Upgrade Information Tool, 428
RMAN redirecting output to, 747
SQL*Loader utility, 638–639

LOG parameter
RMAN redirecting output to log files, 747
SQL*Loader control file, 635

log sequence-based recovery
Flashback Database example, 860
incomplete recovery using RMAN, 821
log%t_%s_%r format, archived redo logs, 823

log writer (LGWR), 180, 182–183
background process, 982
committing transactions, 198, 199
group commits, 199
how Oracle processes transactions, 197
redo log buffer, 192
starting Oracle instance, 479

LOG_ARCHIVE_DEST parameter, 738
LOG_ARCHIVE_DEST_n parameter, 459,

485, 492
flash recovery, 735, 736, 738, 739
Oracle Managed Files (OMF), 250, 925
Oracle Streams, 673

LOG_ARCHIVE_DUPLEX_DEST parameter, 738
LOG_ARCHIVE_FORMAT parameter, 460,

492, 823
LOG_ARCHIVE_MAX_PROCESSES

parameter, 184
LOG_ARCHIVE_MIN_SUCCEED_DEST

parameter, 729

LOG_ARCHIVE_START parameter, 493
LOG_BUFFER parameter, 192, 196, 1180
Logfile parallel write wait event, 1204
LOGFILE parameter, Data Pump, 690, 706
LOG_FILE_NAME_CONVERT parameter,

RMAN, 834, 836
logging

default Oracle logging, 588
Flashback Transaction Query, 374
supplemental logging, 842

LOGGING clause, CREATE TABLE, 227
logging in/out, Oracle

enabling/disabling password case
sensitivity, 465

FAILED_LOGIN_ATTEMPTS parameter,
550, 599

locking accounts, 598
performance-related issues, 1142
sec_max_failed_login_attempts

parameter, 615
security when logging in as different

user, 620
settings from CREATE PROFILE

statement, 548
Single Sign-On feature, 603
specifying maximum number of attempts

at, 465
logging in/out, UNIX, 46, 48

remote login (Rlogin), 78
running processes after logging out, 75

logging in, SQL*Plus, 103, 115
LOGGING_LEVEL attribute, 1012, 1019
LOGGING_XYZ values, DBMS_

SCHEDULER, 1012
LOG_HISTORY attribute, 1012
logical backups, 728
logical change record (LCR), Oracle

Streams, 671
logical database design, 24–34

converting into physical design, 34, 35
entity-relationship (ER) modeling, 24–26
ER modeling tools, 34
normal forms, 29–34
normalization, 28–29
transforming ER diagrams into relational

tables, 35
logical database structures, 165–172

data blocks, 166–169
extents, 166, 169
links to datafiles, 174
schema, 165
segments, 166, 169
tablespaces, 166, 170–172

logical DBA, 8
LOGICAL keyword, RMAN, 756
logical operators, SQL, 1227
logical reads, 1144

finding inefficient SQL, 1109
logical standby databases, 799
logical time stamp, 199

1298 ■IN D E X

logical unit number (LUN), 901
Logical Volume Manager (LVM), 88, 170, 900
logical volume stripe sizes, disk I/O, 1159
logical volumes, UNIX, 88
LOGICAL_READS_PER_XYZ parameters,

549, 553
.login file, UNIX, 54, 55, 406
login screen, Database Control, 142
login scripts, changing preinstallation, 406
login.sql file, 110–111, 114, 119
LogMiner utility, 207, 841–847

analyzing redo logs, 845–847
archived redo logs, 184
correcting human error, 802
description, 808
extracting data dictionary, 843
LogMiner session, 844–845
naming transactions, 340
precision recovery using, 841
supplemental logging, 842–843
undoing SQL statements, 373

logon/logoff triggers, 591
Logout page, Grid Control, 159
logs see log files
LONG variable, SQL*Plus, 108
long-term backups, RMAN, 780
lookup tables, 35
LOOP/END LOOP statements, PL/SQL, 1243
looping, PL/SQL, 1243–1244
looping, UNIX, 72–73
lossless-join dependency, 5NF, 34
lost-update problem, 341, 345
LOWER function, SQL, 302, 1228
LOW_GROUP resource consumer group,

558, 565
LPAD function, SQL, 1228
lread column, sar command, 83
LRU (least recently used) algorithm, 181, 188
ls command, UNIX/Linux, 58, 59
LSNRCTL STATUS command, ASM, 906
lsnrctl utility, Oracle listener, 516, 520

checking listener status, 521
listener commands, 522–523
set password clause, 524

LUN (logical unit number), 901
LVM (Logical Volume Manager), 88, 170, 900
lwrit column, sar command, 83

■M
-M option (markup), SQL*Plus, 115
M:M (many-to-many) relationship, 26
machine name, UNIX, 47
mail program, UNIX, 71
main memory, 186–187
maintenance, 1019–1022

quiescing databases, 505
man command, UNIX/Linux, 48, 50
Manage Policy Library page, Database

Control, 151

MANAGE SCHEDULER privilege, 997,
1013, 1015

manageability monitor see MMON
manageability monitor light (MMNL), 181,

185, 971
managed files

Oracle Managed Files (OMF), 247–253
management advisors see advisors
management advisory framework see advisory

framework
Management Agent, OEM, 154, 156
Management Options window

Database Upgrade Assistant, 432
DBCA creating database, 487

Management Pack Access page, Database
Control, 149

Management Packs, licensing, 149
Management Repository, OEM, 154, 157, 159
Management Service (OMS), 154, 157
Management System page, Grid Control, 159
manager_policy security policy, 585
managing resources see resource management
managing users, 544, 619, 620
manual database creation, 474–486

creating data dictionary objects, 485
creating database, 480–485
init.ora file, 475–477
privileges, 475
quick way to create database, 485–486
setting OS variables, 474–475
starting Oracle instance, 477–480

manual database upgrade process, 427,
434–441

backing up database, 437
catdwgrd.sql script, 434, 442
catupgrd.sql script, 434, 438, 440
catuppst.sql script, 438, 439
checking for invalid objects, 439
copying init.ora (parameter) file, 437
creating spool file, 434
ending spool file, 441
list of steps for upgrading, 434
ORACLE_HOME variable, 437
password file, 437
Post-Upgrade Status tool, 440–441
Pre-Upgrade Information Tool, 435–437
recompiling and validating invalidated

objects, 439
restarting instance, 438
restarting new database, 441
running post upgrade actions script, 439
running upgrade actions script, 438
starting up new database, 437–438
STARTUP UPGRADE command, 437
Sysaux tablespace, 438
upgrade and downgrade scripts, 434
upgrade.log spool file, 435
utlrp.sql script, 434, 439, 440
utlu111i.sql script, 434, 435

1299■I N D E X

utlu111s.sql script, 434, 440
utluppset.sql script, 434

manual management mode, PGA memory, 195
manual optimizer statistics collection, 900
MANUAL parameter, segment space

management, 217
manual PGA memory management, 894
manual segment shrinking, 928–929
manual shared memory management, 894
manually cloning databases, 839–840
many-to-many (M:M) relationship, 26
MAP_ALL procedure, 994
mapping data, Data Pump, 693, 709–711
mapping files, 993–994
mapping structures, 993
MARKUP command, SQL*Plus, 134
markup option (-M), SQL*Plus, 115
master encryption key, 607
master process, Data Pump, 685–686
master tables

Data Pump, 685, 686
materialized views, 314

materialized views, 314–320
aggregations, 315
creating, 317–320
data manipulation statements, 314
DBA_MVIEWS view, 333
dropping, 320
EXPLAIN_XYZ procedures, 317
improving SQL processing, 1077
indexes, 314
optimizer statistics, 320
optimizing, 315
privileges, 571
query rewriting, 315
refresh modes/options, 316
refreshing, 314, 316–317
rewrite integrity, 316
REWRITE_OR_ERROR hint, 315
SQL Access Advisor, 320–324
TUNE_MVIEW procedure, 317
using DBMS_MVIEW package, 317
view resolution, 314

MAX function, SQL, 1229
MAX_AUTO_SQL_PROFILES parameter, 1118
MAX_DUMP_FILE_SIZE parameter, 958, 1101
MAX_ESTIMATED_EXEC_TIME directive, 943
MAXEXTENTS parameter, 221
MAX_IDLE_BLOCKER_TIME parameter,

560, 561
MAX_IDLE_TIME parameter, 560, 561
maximum availability mode, Oracle Data

Guard, 800
maximum extents errors, 383
maximum performance mode, Oracle Data

Guard, 800
maximum protection mode, Oracle Data

Guard, 800
MAX_LIFETIME_PER_SESSION parameter, 532

MAXSETSIZE parameter, RMAN backups, 781
MAX_SIZE parameter, DRCP, 533
MAXSIZE parameter, tablespaces, 224
MAX_SQL_PROFILES_PER_EXEC

parameter, 1117
MAX_THINK_TIME parameter, DRCP, 533
MAXTHR statistic, 1061
MAX_USES parameter, Scheduler, 1003
MAX_USES_PER_SESSION parameter,

DRCP, 532
MBRC statistic, 1061
MCP (Master Control Process), 685–686
md_backup/md_restore commands, 911,

912, 913
media corruption, detecting, 795
media failures, 802, 803
media families, Oracle Secure Backup, 789
Media Management Layer, (MML), 742,

744, 745
media management solutions, 745, 746
media managers

Oracle Secure Backup, 785
RMAN, 743

media recovery, 806–808
block media recovery (BMR), 808, 864–865
data repair, 804

media recovery scenarios
control file recovery, 824–828
datafile recovery, 818–820

without backup, 828–829
incomplete recovery, 820–824
tablespace recovery, 817–818
whole database recovery, 814–817

media server, 786
medium transport element (mte), 789
memory

see also buffers
cost of disk I/O, 186
creating SPFILE or PFILE from, 497
in memory metrics, 951
instance performance, 1205
least recently used (LRU) algorithm, 188
measuring process memory usage, 1190–1191
memory allocation, 187
modifying data, 181
operating system physical memory, 1158
program global area, 187, 193–196
SHOW SGA command, 117
system global area (SGA), 187, 187–193
tuning buffer cache, 1144–1148
tuning Java pool, 1148
tuning large pool, 1148
tuning Oracle memory, 1132–1152

hard parsing and soft parsing, 1135–1143
tuning PGA memory, 1148–1152
tuning shared pool, 1133–1135
tuning streams pool, 1148
understanding main memory, 186–187
virtual memory, 1158

1300 ■IN D E X

Memory Access Mode, 1198
Memory Advisor, 976, 1132, 1145, 1178
memory allocation, 194, 457
memory allocation parameters, 456–459
memory buffers, 187, 188

CLEAR BUFFER command, SQL*Plus, 115
writing data to disk, 183

memory management
automatic, 456, 195–196, 894–897

PGA memory management, 1148–1149
operating system, 1186

memory management, UNIX, 81, 82
memory manager (MMAN), 181, 185
memory requirements

ensuring sufficient memory allocation, 445
estimating, preinstallation, 400
installing Oracle Database 11g, 393

memory structures see Oracle memory
structures

Memory window, DBCA, 488
MEMORY_MAX_TARGET parameter, 456, 895,

896, 897
MEMORY_REPORT function, 1123
MEMORY_TARGET parameter, 195, 457

adjusting memory allocation, 1132
automatic memory management, 456, 895,

896, 897
defining maximum value of, 456
ensuring sufficient memory allocation, 446
managing result cache, 1120
managing/monitoring database, 214
sizing shared pool, 1142
system global area (SGA), 187

MERGE join, 1068
MERGE PARTITION command, 291
MERGE statement, 263, 656, 658–660

upserts, 626, 658
workspaces, 388

merging
sort-merge join, 1052

messages
object-oriented database model, 39
Oracle Streams Advanced Queuing, 670
sending message to screen, SQL*Plus, 121

metadata
data dictionary, 203, 204
DBMS_METADATA package, 294, 680
exporting dictionary metadata for

tablespaces, 718
exporting using Data Pump, 721
exporting using external tables, 653
importing from dump file, 719
importing using Data Pump, 723
RMAN, 744, 766

metadata filtering, 692
METADATA_ONLY value, Data Pump, 691,

692, 695

MetaLink
database security, 617
DBA training, 15
linking Database Control to, 150

METHOD_OPT attribute, 1055, 1086
methods

object-oriented database model, 39
ORDBMS model, 40

metric groups, 950
metrics, 950–952

baseline metrics, 953–959
data dictionary views, 958

midrange servers, 45
migrating databases to ASM, 919–921
Millsap, Cary, 1145, 1161
MIN function, SQL, 1229
MINEXTENTS parameter, 221, 957
MINIMIZE XYZ options, RMAN, 777
MIN_SIZE parameter DRCP, 533
MINUS operator, SQL, 1228
mirroring

ASM mirroring, 901, 909, 914
fast mirror resync feature, ASM, 908–909
mirroring vs. multiplexing, 982
RAID 0+1: striping and mirroring, 90
RAID 1: mirroring, 89

MIXED_WORKLOAD_PLAN resource plan, 558
mkdir command, UNIX/Linux, 62
mkstore command, creating Oracle Wallet,

241, 609
MML (Media Management Layer), RMAN, 742,

744, 745
MMNL (manageability monitor light), 181,

185, 971
MMON (manageability monitor), 181, 185

ABP process, 1022
AWR statistics, 959
database metrics, 950
in memory metrics, 951
managing ADDM, 881
proactive tablespace alerts, 956
running ADDM, 885
saved metrics, 952
tablespace space alerts, 226

MODE parameter, LOCK TABLE statement, 351
MODEL clause, transforming data, 656,

667–670
modeling, entity-relationship (ER), 24–26
modes

archivelog mode, 184, 459
normal mode, 502
OPTIMIZER_MODE parameter, 462
restricted database mode, 501

MODIFY_SNAPSHOT_SETTINGS
procedure, 882

monitoring, 138
DBA role, 5, 15
efficient monitoring, 213–214
system monitor (SMON) process, 184

1301■I N D E X

MONITORING USAGE clause, 305
more command, UNIX/Linux, 52, 58
MOUNT option, STARTUP command

configuring Flashback Database, 855
starting ASM instances, 907
starting up database from SQL*Plus, 498

mount points, 86, 394
creating databases, 174
creating, preinstallation, 404
OFA guidelines, 394, 396, 399, 404

mounting database, 482, 492
MOVE command, 273, 275
MOVE TABLESPACE option, 935
moving-window aggregate functions, SQL, 1231
MREADTIM statistic, 1061
msps column, iostat command, 82
mte (medium transport element), 789
MTTR (mean time to recover), 805
MTTR Advisor, 976, 981, 1132
multicolumn statistics, 1058
multidimensional arrays, 668
multiplexing

backup guidelines, 729
Connection Manager feature, 512
flash recovery area, 735
mirroring vs. multiplexing, 982
online redo logs, 982
redo log files, 176, 182, 184, 444, 729
session multiplexing, 180
shared server architecture, 512

multitable inserts, 626, 660–662
MULTITHREADING parameter,

SQL*Loader, 641
multivalued dependency, 4NF, 34
multiversion concurrency control system, 347
manual upgrade process, 429
mv command, UNIX/Linux, 59

■N
NAME parameter, ALTER SESSION, 385
NAMES parameter,

TRANSACTION_BACKOUT, 379
naming connections, 525

directory naming method, 534–537
easy connect naming method, 529–530
external naming method, 533–534
local naming method, 525–529

naming context, 536
NAS (Networked Attached Storage), 94
natural join, SQL, 21, 1233
NCA Configuration Assistant), 516, 528–529
NDMP (Network Data Management

Protocol), 788
nested loop (NL) method, 1068
nested loop join, 1052
nested subquery, 263
nested table, abstract data types, 1240
Net Configuration Assistant see NCA

Net Service Name Configuration page, 528
net service names, 100, 525
Net Services see Oracle Net Services
netca.rsp response file template, 422
netstat utility, UNIX, 85
network administration files, 173
Network Configuration window, DBUA, 432
Network Data Management Protocol

(NDMP), 788
network directory, ORACLE_HOME, 395
network export, Data Pump initiating, 698
Network Information Service (NIS), 533, 534
network mode, Data Pump, 679
network monitoring, UNIX, 85
network performance, 1160
Network wait class, 1163, 1164
Networked Attached Storage (NAS), 94
NetWorker, 745
networking see Oracle networking
NETWORK_LINK parameter, 698, 711–713, 717
networks

fine-grained network access control,
615–618

problems affecting performance, 1203
securing, 614

NEVER option, materialized views, 317
NEWFILE procedure, DBMS_LOGMNR, 844
NEW_LINE procedure, UTL_FILE, 257
NEWPAGE variable, SQL*Plus, 108
NEXT_EXTENT storage parameter, 221, 222
nextval pseudo-column, sequences, 327
NFS file systems, 394
NI column, top command, 84
NIS (Network Information Service), 533, 534
NLS_DATE_FORMAT parameter, 453
NLS_TERRITORY parameter, 453
NO LOGGING option, backup guidelines, 729
NO SALT option, ENCRYPT keyword, 608
no workload mode, 1061
noarchivelog mode, 176, 491, 492

see also archivelog mode
partial database backups, 794
reasons for using, 726
whole database backups, 790

NOAUDIT keyword, 589
nobody, verifying unprivileged user exists, 408
nocascade/nocascade_force options, 869
noclobber shell variable, 57
noconflict_only option, 869
nodes, B-tree index, 298
NOFILENAMECHECK option, RMAN, 835
nohup option, shell programs, 75
NOLOG option, connectionless SQL*Plus, 101
NOLOGFILE parameter, Data Pump, 691, 706
NOLOGGING clause

CREATE TABLESPACE statement, 227
CREATE TABLE AS SELECT command, 273
deriving data from existing tables, 657
SQL*Loader utility, 644

1302 ■IN D E X

nologging option, redo log buffer, 193
NOMOUNT option, STARTUP command, 477

starting ASM instances, 907
starting up database from SQL*Plus, 498

NONE value, AUDIT_TRAIL parameter, 587
nonprefixed indexes, 1073
nonrepeatable (fuzzy) read problem

data concurrency, 342
isolation levels, 344, 345, 346

nonunique indexes, 297
no-prompt logon option (-L), SQL*Plus, 115
NO_RESULT_CACHE hint, 1122, 1125
normal forms, 29–34

Boyce-Codd normal form (BCNF), 33
Fifth Normal Form (5NF), 34
First Normal Form (1NF), 30–31
Fourth Normal Form (4NF), 34
Second Normal Form (2NF), 31–33
Third Normal Form (3NF), 33

normal mode, Oracle optimizer, 1111
NORMAL option, SHUTDOWN command, 502
normal program conclusion, 338
normal redundancy level, ASM, 909, 914
normalization, 28–29

attribute dependence on primary key, 31, 33
denormalization, 34
functional dependencies, 33
lossless-join dependency, 34
multivalued dependencies, 34
non-normalized data, 30
partial dependencies, 31
performance issues, 36
repeating groups, 30

NOT EXISTS operator, subqueries, SQL, 1237
NOT NULL constraint, 306, 307
%NOTFOUND attribute, PL/SQL, 1246
Notification Methods page, Database

Control, 148
notification rules, setting, 955
NOWAIT option, 339, 351
NOWORKLOAD keyword, 1061
null values, 269, 306
NULLIF parameter, SQL*Loader, 642
NUMBER data type, 1222
number functions, SQL, 1229
numberofxids parameter, 869
NUM_CPUS system usage statistic, 1181
numeric data types, 1222
NUMTXNS parameter, 379
NUMWIDTH variable, SQL*Plus, 108
NVL function, SQL, 1230

■O
ob host, Oracle Secure Backup, 788
object database management system

(ODBMS), 38, 39
object privileges, 570–573
object tables, 265, 1239
object transparency, 325

object types see abstract data types
object-level audit, 587
object_name parameter, 594
object-oriented databases, 39–40
object-oriented programming, 1239
object-relational database management system

see ORDBMS
object-relational database model, 38, 39–40
objects, 329

see also database objects
aliases for objects see synonyms
object-oriented database model, 39

object_schema parameter, 594
observiced process, 788
obsolete files, 758, 759, 762
obtar command-line tool, 790
obtool command-line interface, 788
OCA (Oracle Certified Associate), 10, 12
OCI_RESULT_CACHE_MAX_XYZ

parameters, 1126
OCM (Oracle Certified Master), 10, 12
OCP (Oracle Certified Professional), 10, 12
octal numbers method, 60, 61
ODBC Supplement, Instant Client packages, 520
ODBMS (object database management

system), 38, 39
ODS user, granting privileges, 572
OE (order entry) schema, 1221
OEM (Oracle Enterprise Manager),

136–161, 206
accessing key performance data, 207
accessing UNIX system, 46
administering Database Resource Manager,

566–567
Application Server Control, 139
benefits of RMAN, 743
benefits of using OEM, 137–139
database management, 137
description, 516
installing OID, 537
managing undo data, 365–366
performance, 206
Resource Plan Wizard, 556
running SQL Tuning Advisor, 1115
security, 138
setting tablespace alert thresholds, 227
using OEM to collect optimizer statistics,

1064–1065
versions, 137, 139
viewing ADDM reports, 885
viewing explain statements, 1090

OEM Database Control see Database Control
OEM Grid Control see Grid Control
OEM Management Agent, 154, 156
OEM Management Repository, 154, 157, 159
OEM Management Service, Grid Control, 159
OFA (Optimal Flexible Architecture), 393–400

locating files, database creation, 445
OFA-compliant directory structure, 399

1303■I N D E X

OFA guidelines, 393–394
administrative files, 397
ADR (Automatic Diagnostic Repository), 396
database files, 398–400
datafiles, 396
directories, 394, 395, 396
flash recovery area, 396, 400
installing on multihomed computer, 398
mount points, 394, 404
naming conventions, 393, 398
product files, 397

OFF option, SPOOL command, SQL*Plus, 120
OFFLINE clauses, tablespaces, 228, 229
OFFLINE IMMEDIATE clause, media

failures, 803
OID (Oracle Internet Directory), 534–535

enterprise user security, 611
installing, 537
making database connections, 535–536
organization of, 536–537

OID option, Data Pump Import, 711
oinstall (default name), 407, 408
OL$/OL$HINTS/OL$NODES tables, 1078
OLTP databases

block sizes and tablespaces, 172
DB_BLOCK_SIZE parameter, 466
DML statements, 263
indexing strategy, 1071
program global area (PGA), 193
system global area (SGA), 187
table compression, 275, 1076
using indexes, 296
write ahead protocol, 199

OMF (Oracle Managed Files), 247–253
accidentally dropping datafiles, 248
adding tablespaces, 927
adding tablespaces and datafiles, 253
benefits of using, 248, 922
bigfile tablespaces (BFTs), 236
control files, 250, 251, 252, 924
creating database, 250–253, 924–927
creating OMF files, 248–249, 251, 922–923
creating OMF-based instance, 251
creating Sysaux tablespace, 239, 252
creating/locating tablespaces, 252
datafiles, 250, 924
deleting unwanted files, 734
description, 174
file management, 922–927
file types, 250, 924
flash recovery area, 738
init.ora file, 250
initialization parameters, 248–249, 454–455,

922–923
limitations, 248
locating OMF files, 926–927
naming conventions, 922, 923
naming files, 248, 249
operating system files, 248

redo log files, 250, 252, 924
setting up file location parameters, 250, 924
small and test databases, 248
specifying default location for OMF files, 455
starting database instance, 925

OMF parameters
DB_CREATE_FILE_DEST parameter, 247,

249, 250, 923
DB_CREATE_ONLINE_LOG_DEST_n

parameter, 247, 249, 250, 923
DB_RECOVERY_FILE_DEST parameter, 247,

249, 250, 923
OMS (Oracle Management Service), 154, 157
ON clause, BREAK command, SQL*Plus, 122
ON COMMIT DELETE/PRESERVE ROWS

options, 278
ON COMMIT mode, refreshing materialized

views, 316, 319
ON DEMAND mode, refreshing materialized

views, 316
ON PREBUILT TABLE clause, 319
one-pass sort, 1149
one-to-many (1:M) relationship, 26
one-to-one (1:1) relationship, 26
online backups, RMAN, 742, 775
online capabilities, Oracle Database 11g,

933–945
data redefinition, 935–941
data reorganization, 933–935
database quiescing for online maintenance,

944–945
dynamic resource management, 941–943
online database block-size changes, 943–944
suspending database, 945

online redo log files, 175, 868, 981–985
creating database, 481
creating/locating OMF files, 926
flash recovery area, 735
making whole closed backups, 791
OMF file-naming conventions, 249, 923

online segment shrinking, 927–928
online table redefinition, 935, 936–941

activity during redefinition process, 939
checking for errors, 940
completing redefinition process, 940–941
copying dependent objects, 939
creating temporary tables, 937
errors occurring during, 941
redefining temporary tables, 938
synchronizing interim and source tables, 940
verifying eligibility of tables, 937

ONLY keyword, encrypting RMAN backups, 782
open account, database authentication, 597
open backups, 726, 728, 792–793
OPEN clause, explicit cursors, PL/SQL, 1245
OPEN option, STARTUP command, 499
open recovery, 807
OPEN_CURSORS parameter, 194, 456
OPEN_WINDOW procedure, 1015

1304 ■IN D E X

operating system authentication, 601
connecting to RMAN, 746
database security, 612
Oracle Net, 602

operating system copies, RMAN, 752
operating system files

extents, 220
opening operating system file, 257
Oracle Managed Files (OMF), 248
tablespaces, 215
UTL_FILE package, 256–259

Operating System Statistics section, AWR
reports, 970

operating systems
applying OS packages, 403
audit parameters, 450, 451
automatic database startup on OS restart, 499
bigfile tablespaces, 237
checking memory and physical space, 403
checking OS packages, 403
checking version, 402
collecting statistics, 1060–1062, 1086
creating additional accounts, 424
creating groups, 406–408
disk I/O performance, 1158
manual collection of statistics, 1054
memory management, 1186

evaluating performance, 1158
Oracle installation requirements, 418
preinstallation checks, 401
saving output to, 120
setting permissions, 613
setting upper limit for OS processes, 455
UNIX/Linux for DBA, 43–95
usage of commands from SQL*Plus, 105,

115, 119
verifying software, 402–403

operations
grouping SQL operations, 1234–1236
resumable database operations, 383, 385
table operations, 267

operator class, Oracle Secure Backup, 788
operators

set operators, 263
SQL/XML operators, 1249

operators, SQL, 1227–1228
LIKE operator, 1224, 1227

OPS$ prefix, authenticated usernames, 472
OPS$ORACLE database account, 602
opt parameter, COPY command, SQL*Plus, 133
optimal mode operation, 194
optimal sort, 1149
optimistic locking methods, 347
optimization

see also query optimization
CBO (Cost-Based Optimizer), 1047–1053
cost-based query optimization, 1044–1046
materialized views, 315
PLSQL_OPTIMIZE_LEVEL parameter, 468

optimization phase
query processing, 1043–1046
SQL processing steps, 1133

optimizer see CBO (Cost-Based Optimizer)
optimizer hints, 1051
optimizer statistics

automated tasks feature, 211
automatic collection, 209, 212, 213, 897–899
default values, 1050
description, 1049
dynamic collection of, 1050
extended optimizer statistics, 1058–1060
manual collection, 900
materialized views, 320
Oracle recommendation, 898
providing statistics to optimizer, 1047–1049
using OEM to collect optimizer statistics,

1064–1065
when manual collection is required, 1054

OPTIMIZER_CAPTURE_SQL_PLAN_
BASELINES parameter, 462, 1081

OPTIMIZER_DYNAMIC_SAMPLING
parameter, 463, 1063

OPTIMIZER_FEATURES_ENABLE parameter,
315, 463, 1078, 1080, 1218, 1219

OPTIMIZER_MODE parameter, 462,
1049–1050, 1051, 1068

OPTIMIZER_USE_INVISIBLE_INDEXES
parameter, 463

OPTIMIZER_USE_PENDING_STATISTICS
parameter, 463, 1057

OPTIMIZER_USE_SQL_PLAN_BASELINES
parameter, 464, 1082

OPTIM_PEEK_USER_BINDS parameter, 1087
OPTIONS attribute,

GATHER_DATABASE_STAT, 1055
OPTIONS clause, SQL*Loader, 633
OPTIONS parameter,

TRANSACTION_BACKOUT, 380, 869
OR REPLACE clause, 313
ORA$AUTOTASK_HIGH_SUB__PLAN resource

plan, 559
ORA$AUTOTASK_SUB__PLAN resource

plan, 558
Oracle

dual table, necessity for, 102
Java and, 1252–1254
product_user_profile table, 103, 104
setting environment for SQL*Plus, 98

Oracle administrative files see administrative files
Oracle Advanced Security, 535, 603, 618
Oracle advisors see advisors
Oracle Application Express, 401
Oracle Application Server Single Sign-On, 535
Oracle Backup Solutions Program (BSP), 745
Oracle Backup Web Interface, 785, 788
Oracle base directory, 395, 399, 409
Oracle blocks see data blocks

1305■I N D E X

Oracle by Example (OBE), 14
Oracle Certification Program, 11
Oracle Certified Associate (OCA), 10, 12
Oracle Certified Master (OCM), 10, 12
Oracle Certified Professional (OCP), 10, 12
Oracle Change Management Pack, 149, 949
oracle class, Oracle Secure Backup, 788
Oracle Client, 391, 517–519
Oracle Cluster Synchronization Service (CSS),

902–904
Oracle Collaboration Suite, 535
Oracle Configuration Management Pack,

149, 949
Oracle Configuration Manager, 401, 1029
Oracle Connection Manager, 512
Oracle connectivity see connectivity
Oracle context, 536
Oracle data dictionary see data dictionary
Oracle Data Guard

see also standby databases
avoiding data center disasters, 802
DB_LOST_WRITE_PROTECT parameter, 470
creating Oracle Wallet, 241
data protection modes, 800
high-availability systems, 798
standby databases and, 799–800

Oracle Data Guard Broker, 799
Oracle Data Migration Assistant, 427
Oracle Data Pump utility see Data Pump utilities

(Export, Import)
Oracle data types, 1222–1223
Oracle database, 173

connecting to, 205
connecting using CONNECT command, 100
efficient managing and monitoring, 213–214
ensuring database compatibility, 452
preparing database for upgrading, 430
providing name for database service, 452
remotely connecting to, 98
script to start and stop, 500
setting database name, 451
setting environment for SQL*Plus, 98
starting SQL*Plus session from command

line, 98–100
Oracle Database 11g

downgrading from, 441
downloading Oracle software, 415–416
initialization parameters, 449–473

viewing current values, 473–474
installing Oracle software, 416–420
OFA-compliant directory structure, 399
Oracle Enterprise Edition CDs, 414–415
sample schemas, 1221–1222
SGA and PGA memory allocations, 456

Oracle Database 11g architecture, 165–214
automated tasks feature, 211
automatic database management, 208–209
common manageability infrastructure,

210–213

communicating with database, 205–207
efficient managing and monitoring, 213–214

Oracle Database 11g CD/Client CD, 414
Oracle Database 11g installation see installing

Oracle Database 11g
Oracle Database 11g upgrade see upgrading to

Oracle Database 11g
Oracle Database Two-Day DBA course, 14
Oracle Database Configuration Assistant

see DBCA
Oracle database connectivity see connectivity
Oracle database files see database files
Oracle Database Resource Manager see

Database Resource Manager
Oracle database structures, 165–178

alert log file, 177
backup files, 178
control files, 173, 174–175
data blocks, 166–169
datafiles, 173–174
extents, 166, 169
initialization files, 173
logical database structures, 165–172
network administration files, 173
password file, 177
physical database structures, 173–176
redo log files, 173, 175–176
segments, 166, 169
SPFILE (server parameter file), 177
tablespaces, 166, 170–172
trace files, 178

Oracle database transactions see transactions
Oracle database upgrade see upgrading to

Oracle Database 11g
Oracle Database Vault, 401, 430
Oracle datafiles see datafiles
Oracle DBA see DBA (database administrator)
Oracle Diagnostic Pack, 149, 949
Oracle Directory Manager, 516, 535
Oracle directory replication server, 535
Oracle directory server, 535
Oracle Enterprise Edition CDs, 414
Oracle Enterprise Manager see OEM
Oracle Enterprise Manager CD, 414
Oracle FAQ, 14
Oracle home directory, 395–396, 399, 410, 417
Oracle iLearning, 11
Oracle indexes see indexes, Oracle
Oracle installation see installing Oracle

Database 11g
Oracle installer see Oracle Universal Installer
Oracle instance see instances
Oracle Internet Directory see OID
Oracle Inventory directory, 396, 409
Oracle Inventory group, 407
Oracle Label Security feature, 586
Oracle licensing parameters, 461
Oracle listener see listeners
Oracle LogMiner utility see LogMiner utility

1306 ■IN D E X

Oracle Managed Files see OMF
Oracle Management Service (OMS), 154, 157
Oracle memory see memory
Oracle memory structures, 186–196

automatic memory management, 195–196
database buffer cache, 187, 188–189
Java pool, 187, 193
large pool, 187, 193
memory management configuration

options, 196
multiple database block sizes and buffer

cache, 189–190
program global area (PGA), 187, 193–196
redo log buffer, 187, 192–193
shared pool, 187, 191–192
Streams pool, 187, 193
system global area (SGA), 187, 187–193
understanding main memory, 186–187

Oracle MetaLink, 15
Oracle Names, OID and, 535
Oracle Net, 511, 513, 516

connecting to Oracle, 205
copying files between databases, 253
operating system authentication, 602

Oracle Net Configuration Assistant (NCA), 516,
528–529

Oracle Net configuration files, 412
Oracle Net Listener see listeners
Oracle Net Manager, 516, 537
Oracle Net Services, 206, 511–512, 513

configuring, post-installation, 425
Oracle components using OID, 535
Oracle home directory, 395
tools, 516

Oracle Network Foundation Layer, 513
Oracle networking, 513–516

see also connectivity
LDAP-compliant directory server, 512
listener and, 520

Oracle online learning program, 11
Oracle optimizer see CBO (Cost-Based

Optimizer)
Oracle owner

post-installation tasks, 424–425
preinstallation tasks, 410–413

Oracle performance statistics see performance
statistics, Oracle

Oracle PMON process, 521
Oracle Policy Manager, 586
Oracle processes, 179–186

archiver, 184
ASM background (ASMB), 185
ASM rebalance (ARBn), 185
background processes, 179, 180–186
change-tracking writer (CTWR), 185
checkpoint (CKPT), 183
continuous processes, 179
database writer (DBWn), 181–182
flashback data archiver (FBDA), 186
job queue coordination (CJQO), 185

lock (LCKn), 186
log writer (LGWR), 182–183
manageability monitor (MMON), 185
manageability monitor light (MMNL), 185
memory manager (MMAN), 185
process monitor (PMON), 183
rebalance master (RBAL) process, 185
recoverer (RECO), 185
recovery writer (RVWR) process, 185
result cache background (RCBG), 186
server processes, 179–180
system monitor (SMON), 184
user and server process interaction, 179
user processes, 179

Oracle Protocol Support, 513
Oracle Real Application Clusters see RACs
Oracle recovery process see recovery
Oracle Resource Manager, 147, 996
Oracle Scheduler see Scheduler
Oracle schemas see schemas, Oracle
Oracle Secure Backup, 202, 785–790
Oracle sequences see sequences
Oracle server software, installing, 416–420
Oracle SQL Developer, 136, 401
Oracle Storage Compatibility Program

(OSCP), 95
Oracle Streams, 671–675

avoiding data center disasters, 802
description, 193
high-availability systems, 798

Oracle synonyms see synonyms
Oracle tables see tables, Oracle
Oracle tablespaces see tablespaces
Oracle Technology Network (OTN), 13
Oracle tools, 213–214
Oracle transaction management, 337
Oracle transactions see transactions
Oracle triggers see triggers
Oracle Tuning Pack, 149, 949
Oracle Universal Installer

choosing Basic/Advanced Installation, 416
End of Installation window, 420
Install window, 420
installing Grid Control, 155
installing OEM Management Agent, 156
installing OID, 537
installing Oracle server software, 415
installing Oracle software, 416–420
installing Oracle software using response

files, 421–422
invoking with runInstaller script, 416
prerequisite checks, 418
restarting installation process, 418
Select Configuration Options window, 419
Select Installation Type window, 417
Specify Home Details window, 417
Summary window, 419
uninstalling Oracle, 426
Welcome window, 416, 417

Oracle University, 11

1307■I N D E X

Oracle upgrade see upgrading to Oracle
Database 11g

oracle user
creating Oracle software owner, 408
installing Oracle Database 11g, 414
privileges, 409
setting environment variables, 413
tasks, post-installation, 424

Oracle views see views
Oracle Wallet

creating, 241–242
creating encrypted tablespaces, 242–243
creating with OWM, 605–606
creating, tablespace encryption, 609
data encryption, 604
ENCRYPTION_WALLET_LOCATION

parameter, 241
opening and closing, 606

Oracle Wallet Manager (OWM), 241, 605–606
Oracle Warehouse Builder (OWB), 401, 627
Oracle Web Conference (OWC), 15
Oracle XML DB, 1248–1252
Oracle-Base, 14
ORACLE_BASE variable, 71, 395, 396

setting OS environment variables, 446
setting preinstallation, 409, 411

ORACLE_DATAPUMP access driver, 627, 648,
650, 651

ORACLE_HOME directory, 177, 401, 447
ORACLE_HOME variable

creating database using SQL*Plus, 475
manual database upgrade process, 437
Oracle home directory, 395
remotely connecting to Oracle database, 98
setting environment for SQL*Plus, 98
setting environment variables,

preinstallation, 411, 413
setting OS environment variables, 446
upgrading with DBUA, 430

ORACLE_HOSTNAME variable, 398
ORACLE_LOADER access driver, 627, 648
ORACLE_PATH variable, 125
OracleSchedulerExecutionAgent service, 1005
ORACLE_SID variable, 71, 412

creating database using SQL*Plus, 475
DB_NAME parameter, 451
registering database in recovery catalog, 769
setting for ASM instances, 906
setting OS environment variables, 446
specifying database name at STARTUP, 499
starting session from command line, 98
starting SQL*Plus sessions, 99

oradebug utility, 1174
oraenv script, 424, 425
ORAENV_ASK variable, 412
oraInst.loc file, 421
orainstRoot.sh script, 155, 156, 420
OraInventory (Oracle Inventory directory),

396, 409

ORAINVENTORY group, 407, 408
ORAKILL utility, 621
OraPub, 14
orapwd command, 600
oratab file, 411, 423, 424, 425, 430
ORDBMS (object-relational database

management system), 19, 38, 39–40
ORDER BY clause, 193, 297, 1071, 1226
ORDER BY command, 263
ORDERED hint, 1067
orderid_refconstraint constraint, 285
O_RELEASE variable, SQL*Plus, 128
ORGANIZATION EXTERNAL clause, 647
ORGANIZATION INDEX clause, 279
OS value, AUDIT_TRAIL parameter, 587, 588
OSASM group, 407, 902
OS_AUTHENT_PREFIX parameter, 472,

601, 612
OSCP (Oracle Storage Compatibility

Program), 95
OSDBA group, 407, 408
OSOPER group, 407, 408
OS_USER attribute, USERENV namespace,

579, 580
Other wait class, 1163
OTHER_GROUPS resource consumer group,

558, 562
out-of-space errors, 383
OUT option, SPOOL command, SQL*Plus, 120
outer join, SQL, 1234
outlines, stored, 1077–1080
OUTLN account, 490, 596
OUTLN user, stored outlines, 1078
out-of-space alerts, 226
output see input/output (I/O)
O_VERSION variable, SQL*Plus, 128
overwriting, protecting files from, 57
OWB (Oracle Warehouse Builder), 401, 627
OWM (Oracle Wallet Manager), 241, 605–606
ownership

creating Oracle software owner user, 408–409

■P
package privileges, 571
packages

applying/checking OS packages, 403
executing, SQL*Plus, 121
GlancePlus package, 84
PL/SQL, 1247

packs
Server Manageability Packs, 459

PACK_STGTAB_SQLSET procedure, 1218
page command, UNIX/Linux, 53
page ins/outs, memory management, 81
page-level locking, 348
pages

analyzing page performance, Grid
Control, 160

swapping data, 1158

1308 ■IN D E X

PAGESIZE variable, SQL*Plus, 108
paging, 1188, 1205
PARALLEL parameter, Data Pump, 703, 713
parallel degree limit method, 555
parallel execution, 662, 1085
PARALLEL option, 273, 657
PARALLEL parameter

Data Pump, 678, 700–705, 708
populating external tables, 652
SQL*Loader control file, 635

parallel processes, setting number of, 467
parallel recovery feature, 807
PARALLEL_DEGREE_LIMIT_MTH

parameter, 560
parallelism

changing degree of parallelism, 700
creating plan directives, 560
Data Pump technology, 677
degree of parallelism parameters,

RMAN, 765
production database problems, 554

PARALLEL_MAX_SERVERS parameter, 467
parameter files

Data Pump Export utility, 687, 690, 704
database creation, 446–474
initialization parameter file (PFILE), 447–448

parameters
Data Pump Export parameters, 689–704
Data Pump Import parameters, 705–713
dynamic parameters, 448
hidden Oracle parameters, 177
setting security-related initialization

parameters, 615
SHOW PARAMETERS command, 117
static parameters, 448

parent nodes, B-tree index, 298
PARFILE parameter

Data Pump, 687, 690, 706
SQL*Loader utility, 637

parity, RAID, 90
Parse column, TKPROF utility, 1104
parse information, 1135–1136
parse tree, 1043, 1133
parsing

application scalability, 1141–1142
bind peeking technique, 1087
deriving parse information, 1135
hard parsing, 191, 1135, 1139

converting to soft parsing, 1141
latch contention, 1141
parse-time CPU usage, 1156–1157
soft parsing, 191, 1135
stages of SQL processing, 343
using parsed statement, 1134

parsing stage
bind variables, 1075
query processing, 1043
SQL processing steps, 1133

partial database backups, 727, 794

partial dependencies, 2NF, 31
partial execution of SQL statements

Automatic Tuning Optimizer (ATO), 1112
partial mode, ADDM, 882
PARTIAL option, DURATION clause,

RMAN, 777
PARTITION BY HASH clause, 283, 303
PARTITION BY LIST clause, 284
PARTITION BY RANGE clause, 282
PARTITION BY REFERENCE clause, 285
partition pruning, 280
PARTITIONED BY SYSTEM clause, 287
partitioned indexes, 302–303, 1073
partitioned tables, 266, 280–292

adding partitions, 291
archiving data, 281
coalescing partitions, 292
creating, 281
DBA_PART_TABLES view, 331
DBA_TAB_PARTITIONS view, 292, 330
dropping partitions, 291
exchanging partitions, 291
improving SQL processing, 1076
merging partitions, 291
partition independence, 281
partition maintenance operations, 290–292
performance, 280, 281
renaming partitions, 291
splitting partitions, 291

partitioning, 280
composite partitioning, 281, 287–290
disk partitioning, 87
hash partitioning, 283–284
interval partitioning, 282–283
interval-list partitioning, 289
interval-range partitioning, 290
list partitioning, 284
range partitioning, 281–282, 285
range-hash partitioning, 288
range-list partitioning, 288–289
reference partitioning, 284–286
system partitioning, 287
transition point, 282
VALUES LESS THAN clause, 281
virtual column-based partitioning, 286

partitioning keys, 281
partitions

MODEL clause creating multidimensional
arrays, 668, 670

passwd command, UNIX/Linux, 49
passwd file, UNIX, 67
PASSWORD command, SQL*Plus, 547
PASSWORD FILE option, RMAN, 835
password management function, 552
password protection features, 552
PASSWORD value, Data Pump, 695, 696
password verification function, 552
password-based encryption, 763

encrypting RMAN backups, 782

1309■I N D E X

password-related parameters, user profiles,
549, 550

passwords
see also authentication; security
case sensitivity, 465, 491, 597–598
changing another user’s password

temporarily, 620
changing passwords, 611
changing user’s password, 547
database security, 611
DBCA changing passwords for default users,

490–491
default values, 490
encrypted passwords, 601
ENCRYPTION_PASSWORD parameter, Data

Pump, 696
expiration, 599
hard-coding user passwords, 611
managing, 596–597
password aging and expiration policies, 612
password authentication, 602
password file, 177

backup guidelines, 729
database authentication, 599–600
manual database upgrade process, 437
orapwd command, 600

REMOTE_LOGIN_PASSWORDFILE
parameter, 472, 599

requirements for strong passwords, 552
resetting passwords, post-upgrade, 441
secure password support, 598
setting password for listener, 524–525
SYS user default password, 475
SYSTEM account default password, 475

PASSWORD_GRACE_TIME parameter, 550, 599
PASSWORD_XYZ parameters, 550
paste command, UNIX/Linux, 67
Patch Advisor, database management, 148
patches

ACCEPT_SQL_PATCH procedure, 1038
applying manually, 151
applying patch sets, 1131
applying, post-installation, 424
checking for latest security patches, 617
Critical Patch Updates, 617
DBA_SQL_PATCHES view, 1038
DROP_SQL_PATCH procedure, 1038
Grid Control, 159
linking to MetaLink, 150
preinstallation checks, 401

Patching Setup page, Database Control,
148, 151

PATH shell variable, UNIX, 54
PATH variable, setting, 411, 446
paths, UNIX, 47, 125
pattern matching, SQL*Plus, 129
pattern matching, UNIX, 65
pattern-recognition, grep command, UNIX, 49
PAUSE command, SQL*Plus, 121

PAUSE variable, SQL*Plus, 108
PCTFREE parameter, 217, 222, 1176
PCTSPACE option, Data Pump Import, 711
PCTTHRESHOLD clause, 279, 280
PCTUSED parameter, 217, 222
pending area, Database Resource Manager,

556, 562
pending statistics, making public, 1057
percent full alert, 226
percent sign (%) character, SQL, 1224
percentage of maximum thresholds, 954
performance

see also indexes; instance performance;
optimization; system
performance; tuning

abnormal increase in process size,
1190–1191

analyzing performance using ADDM,
1183–1184

ASH analyzing recent session activity, 1186
ASM disk groups, 914, 916
Automatic Database Diagnostic Monitor

(ADDM), 209
avoiding ad hoc SQL, 1141
AWR statistics for SQL statements, 1184
benefits of tablespaces, 171
bind variables, 1134
buffer cache sizing, 188
cache misses affecting, 192
collecting trace statistics, 1100
confusing symptoms and causes, 1183
cost of disk I/O, 186
Data Pump technology, 678
Database Control examining, 1195–1201
database design, 36
database hangs, 1186–1194
database hit ratios, 1161–1162
database wait statistics, 1162–1163
delays due to shared pool problems, 1191
disk configuration strategies, 87
dynamic performance (V$) views, 204
dynamic performance tables, 204
extent sizing, 216
extents, 220
inline stored functions, 1074–1075
isolation levels, 344
licensing performance tools, 948
locking issues, 1189
logging on and off affecting, 1142
measuring I/O performance, 1159–1161
measuring process memory usage,

1190–1191
minimizing downtime, 6
monitoring host with Grid Control, 160
monitoring system with Grid Control, 160
network performance, 1160
operating system memory

management, 1186
Oracle Enterprise Manager (OEM), 206

1310 ■IN D E X

paging affecting, 1205
partitioned tables, 280, 281
preserving database performance, 1080
problems due to bad statistics, 1191
RAID systems, 88
reclaiming unused space, 1090
reducing I/O contention, 1160
SAME guidelines for optimal disk

usage, 1160
scalability, 1141
segment space management, 218
severe contention for resources, 1188
SQL Performance Analyzer, 213, 1216–1220
swapping affecting, 1205
system global area (SGA), 187
system usage problems, 1188
temporary tables, 277
timing conversion to new version, 1131
tracing entire instance, 1107
wait classes and wait events, 1163
writing efficient SQL, 1065–1075

performance advisors, ADDM, 881
Performance Analysis section, Database

Control, 1197
performance- and diagnostics-related

parameters, 461–468
Performance Data Report page, Database

Control, 1201–1202
performance monitoring, UNIX, 80–85

analyzing read/write operations, 83
bandwidth, 81
CPU usage, 80
disk storage, 81
GlancePlus, 84
iostat command, 82
memory management, 81
memory use, 82
monitoring network with netstat utility, 85
monitoring performance with top

command, 84
monitoring system with GlancePlus, 84
netstat utility, 85
sar command, 83
top command, 84
viewing input/output statistics, 82
vmstat utility, 82

Performance page, Database Control, 145–146
performance statistics, 959

AWR, 210, 877, 878, 960
performance statistics, Oracle, 948–952
performance tuning, 1041–1043

see also tuning
adaptive cursor sharing, 1087–1090
ADDM and, 877
avoiding improper use of views, 1075
CBO (Cost-Based Optimizer), 1047–1053
database design, 1042
DBA improving SQL processing, 1075–1080
DBA role, 5, 1086–1087

description, 1130
end-to-end tracing, 1105–1107
identifying inefficiency in SQL

statements, 1127
indexing strategy, 1070–1073
instance tuning, 1129–1130, 1194–1209

see also instance performance
query optimization, 1047–1065
query processing optimization, 1043–1046
reactive performance tuning, 1042
removing unnecessary indexes, 1073
SQL Plan Management (SPM), 1080–1087
tuning-related advisors, 976
using result cache, 1120–1126

performance tuning tools, SQL, 1090–1105
Autotrace facility, 1095–1099
EXPLAIN PLAN tool, 1090–1095
SQL Trace utility, 1099–1102
TKPROF utility, 1102–1105

period (.) character, regular expressions,
SQL, 1238

period-over-period comparison functions,
SQL, 1231

permanent files, flash recovery area, 735
permanent tablespaces, 172

creating database, 482
default permanent tablespaces, 235–236
description, 215

permissions, UNIX files, 59–62
setting, database security, 613
setting, preinstallation, 409

pessimistic locking methods, 347
PFILE (initialization parameter file), 446, 447–448

see also init.ora file; initialization files; SPFILE
changing parameter values, 493
changing parameters dynamically, 447
comments in init.ora file, 496
creating init.ora file, 475–477

from SPFILE, 495
creating SPFILE from, 494
creating SPFILE or PFILE from memory, 497
init.ora file not saved in default location, 478
modifying, 495
Oracle looking for correct initialization

file, 494
quick way to create database, 485
reading init.ora file, 473
setting archivelog-related parameters, 491
using init.ora file as well as SPFILE, 495

pfile directory, 397
PGA (program global area), 187, 193–196

automatic memory management, 195–196,
894, 896

automatic PGA memory management,
194, 894

managing/monitoring database, 214
manual PGA memory management, 894
MEMORY_TARGET parameter, 457
total memory allocated to, 1190

1311■I N D E X

PGA memory, 1148–1152, 1205
PGA_AGGREGATE_TARGET parameter,

194, 195
automatic memory management, 896,

897, 1148
db file sequential read wait event, 1178
setting value of, 1149–1152

PGA_TARGET parameter, 895, 1150, 1205
phantom reads problem, 341, 344, 345, 346
physical database backups, 725, 728
physical database design, 34–37
physical database structures, 173–176

control files, 173, 174–175
datafiles, 173–174
redo log files, 173, 175–176

physical reads, 1144
physical standby databases, 799
PID (process ID), UNIX, 74
PID column, top command, 84
ping command, Oracle connectivity, 516
pinhits, determining number of, 1137
pinned buffers, 188
pinning objects in shared pool, 1142–1143
pipe (|) command, UNIX/Linux, 52, 57
pipelining, table functions, 662, 666
plan directives see resource plan directives
plan stability feature, 1077
PLAN_LIST attribute, 1083
PLAN_RETENTION_WEEKS parameter,

SMB, 1085
plans see execution plans
PLAN_TABLE table, 1090, 1091, 1095
PL/SQL, 97, 1241–1248

blocks, 1241
conditional control, 1243
creating cacheable function, 1124
cursors, 1245–1247
declaring variables, 1241
displaying output on screen, 109
ending SQL and PL/SQL commands, 103
error handling, 1242
explicit cursors, 1245
functions, 1247
implicit cursors, 1245
libraries, 464, 468
looping constructs, 1243–1244
packages, 1247
procedures, 1247
records, 1244
%ROWTYPE attribute, 1242
show errors command, 111
terminating PL/SQL block, 102
%TYPE attribute, 1242
writing executable statements, 1242

PL/SQL execution elapsed time, 1206
PL/SQL Function Result Cache, 1124–1125
PL/SQL statements

BEGIN, 1241, 1242
COMMIT, 1242
DECLARE, 1241

DELETE, 1242
DML statements, 1242
END, 1241
EXCEPTION, 1241, 1243
FETCH, 1245
FOR LOOP, 1244
IF-THEN, 1243
INSERT, 1242
LOOP/END LOOP, 1243
RAISE, 1243
SELECT, 1242
UPDATE, 1242
WHILE LOOP, 1244

PLSQL_CODE_TYPE parameter, 464
PLSQL_OPTIMIZE_LEVEL parameter, 468
PLUSTRACE role, 1096
plustrace.sql script, 1096
PM (product media) schema, 1221
PMON (process monitor), 181, 183, 479, 521
PMON timer idle event, 1181
point-in-time recovery (PITR), 802, 823, 853

tablespace point-in-time recovery (TSPITR),
808, 840–841

policy-based configuration framework,
Database Control, 151

policy functions, 582–585
policy groups, 586
Policy Violations page, Database Control, 151
policy_name parameter, ADD_POLICY, 594
POLICY_TYPE parameter, ADD_POLICY, 584
polymorphism, 39
pooling see connection pooling
port number, connect descriptors, 515
port parameter, easy connect naming

method, 529
portlist.ini file, 157
ports, 140, 614
POSITION clause, SQL*Loader, 632
post upgrade actions script, 439
post-installation tasks, Oracle Database 11g,

422–425
Oracle owner tasks, 424–425
system administrator tasks, 423–424

Post-Upgrade Status tool, 429, 440–441
POWER clause, REBUILD command, 916
predefined variables, SQL*Plus, 127
predicate columns, 1071
predicates, 583
Preferences page, Grid Control, 159
preferred mirror read feature, ASM, 909
prefixed indexes, 1073
preinstallation tasks, Oracle Database 11g,

400–413
checking preinstallation requirements,

400–401
final checklist, 413–414
Oracle owner tasks, 410–413
system administrator tasks see system

administrator
PreparedStatement object, 539

1312 ■IN D E X

PREPARE_REPLAY procedure, 1214
Pre-Upgrade Information Tool, 428–429,

435–437
PREVIEW option, RESTORE command,

RMAN, 811
PRI column, top command, 84
primary indexes, 297, 1070
primary key constraints, 300, 306
primary key method, 936
primary keys, 26, 31, 33, 35, 36

distinguished names (DNs), 536
guidelines for creating indexes, 297

principal parameter, CREATE_ACL, 616
PRINT parameter, TKPROF utility, 1102
PRINT SCRIPT command, RMAN, 750, 751
PRINT_PRETTY_SQL procedure, 846
private data, 1190
private database links, 985–986
private SQL area, PGA memory, 194
private synonyms, 324, 326
PRIVATE_SGA parameter, 549
privilege parameter, CREATE_ACL, 616
PRIVILEGE variable, SQL*Plus, 119, 128
privileged connections, SQL*Plus, 99
privileged users, 599
privilege-level audit, 587
privileges, 567

CHECK_PRIVILEGE function, 617
controlling database access, 567–574
CREATE ANY TABLE, 268
CREATE SESSION, 545
CREATE TABLE, 268
CREATE VIEW, 312
creating materialized views, 317
creating users, 545
Data Pump privileges, 685
DBA views managing, 577
directory privileges, 571
function privileges, 571
granting object privileges, 367
granting privileges, 567

database security, 612
through roles, 618
to PUBLIC, 569
to roles, 575
to users, 135, 257

how Oracle processes transactions, 197
manual database creation, 475
materialized view privileges, 571
object privileges, 570–573
package privileges, 571
procedure privileges, 571
sequence privileges, 571
showing privileges in prompt, 119
SQL*Plus security and Oracle, 103
SYSASM privilege, 570
SYSDBA privilege, 475, 570
SYSOPER privilege, 570
system privileges, 567–570

table privileges, 571
UNLIMITED TABLESPACE, 268
view privileges, 571
views and stored procedures managing, 577

privileges script, 420
proactive tuning, 1042
problem findings, ADDM, 880
procedure privileges, 571
procedures

see also stored procedures
executing, SQL*Plus, 121
Java stored procedures, 1252
PL/SQL functions compared, 1247

process monitor (PMON), 181, 183, 479, 521
process number, deriving, 621
process-related parameters, 455
PROCESS_CAPTURE procedure, 1211
processes, 179

abnormal increase in process size,
1190–1191

components of Oracle process, 1190
CPU units used by processes, 1154
freeing up resources from dead

processes, 183
measuring process memory usage,

1190–1191
setting number of parallel processes, 467
specifying number of writer processes, 455
system usage problems, 1188

PROCESSES parameter, 455
processes, Oracle see Oracle processes
processes, UNIX see UNIX processes
product files, 394, 397
production databases, 9, 554
product_user_profile table, 103, 104, 105, 493

disabling role using, 576
enabling role using, 577
restricting SQL*Plus usage, 618

.profile file, UNIX, 54, 55, 406
profiles see user profiles
program global area see PGA
PROGRAM_ACTION attribute, 1002, 1006
programs, Oracle Scheduler, 995, 1006–1007
PROGRAM_TYPE attribute, 1002, 1006
projection operations, 21, 1046, 1223
PROMPT command, SQL*Plus, 121
prompts, SQL*Plus, 99, 115, 118, 119
prompts, UNIX, 51
properties

ACID properties, transactions, 340
object-oriented database model, 39
showing properties of columns,

SQL*Plus, 123
protocol address, connect descriptors, 515
protocols

communication protocol, 515
Lightweight Directory Access Protocol, 534
write ahead protocol, 182, 199

Provisioning Software Library, 148

1313■I N D E X

proxy authentication, 602
proxy copies, RMAN, 753
prvtsch.plb script, 1003, 1006
ps command, UNIX/Linux, 74, 75, 81, 903
PS1 environment variable, 51
pseudo-columns, Flashback Versions

Query, 370
public database links, creating, 986–987
Public Key Infrastructure (PKI) credentials, 535
PUBLIC role, 613
public synonyms, 324, 325
PUBLIC user group, 569, 576, 615
PUBLISH_PENDING_STATS procedure, 1057
pupbld.sql script, 103, 493
PURGE INDEX command, 852
PURGE option, ALTER TABLE, 244
PURGE option, DROP TABLE, 276, 850, 852–853
PURGE RECYCLEBIN command, 853
PURGE TABLE command, 852
PURGE TABLESPACE command, 852
PURGE_LOG procedure, 1012
put command, UNIX/Linux, 80
PUT procedure, 257
PUT_FILE procedure, 253, 254, 992
PUT_LINE procedure, 109, 258
pwd command, UNIX/Linux, 49

■Q
queries

executing SQL statements, JDBC, 539
Flashback Query, 366, 367–368
Flashback Transaction Query, 366, 372–375
Flashback Versions Query, 366, 369–372
hierarchical SQL queries, 1232
locking, 349
optimizing, 205
resumable database operations, 383

query optimization, 1043, 1047–1065
see also CBO (Cost-Based Optimizer)
adaptive search strategy, 1053
choosing access path, 1052
choosing join method, 1052
choosing join order, 1053
choosing optimization mode, 1047
deferring publishing of statistics, 1056–1057
effect when statistics not collected, 1063
extended optimizer statistics, 1058–1060
how CBO optimizes queries, 1051–1053
multicolumn statistics, 1058
OEM collecting optimizer statistics,

1064–1065
providing statistics to CBO, 1053–1056
providing statistics to optimizer, 1047–1049
setting optimizer level, 1050–1051
setting optimizer mode, 1049–1050
specifying optimization type, 462
SQL transformation, 1051

QUERY parameter, Data Pump, 694, 704, 708
query processing, 1043–1046

query rewrite phase, optimizing
processing, 1044

QUERY REWRITE privilege, 317
query rewriting, 315, 465, 578
QUERY_REWRITE_ENABLED parameter, 315,

465, 1078
QUERY_REWRITE_INTEGRITY parameter,

316, 465
queue size, setting in listener.ora, 523
QUEUEING_MTH parameter, 560
queues

ALERT_QUE queue, 954
operation queuing, 942
system usage problems, 1188

QUEUESIZE parameter, listener, 523
QUEUE_SPEC attribute, 1011
QUICK_TUNE procedure, 320, 324
quiescing databases, 505, 944–945
QUIT command, SQL*Plus, 102, 134
QUOTA clause, ALTER USER, 545
QUOTA clause, CREATE USER, 546
quotas, tablespaces, 226, 545, 546

■R
-R option (restrict), SQL*Plus, 115
RACs (Real Application Clusters), 173

associating multiple instances to DB_NAME,
452, 514

avoiding database failures, 802
configuring ADDM under RAC, 882
creating SPFILE or PFILE from memory, 497
disk configuration strategies, 85
high-availability systems, 798

RAID (redundant array of independent disk),
88–93

backup guidelines, 729
disk I/O performance, 1158
file mapping, 993
HARD initiative, 798
reducing vulnerability to recoveries, 809

RAISE statement, PL/SQL, 1243
RAISE_APPLICATION_ERROR exception, 258
RAM (random access memory), 186, 403
range partitioning, 281–282

interval-range partitioning, 290
range-hash partitioning, 288
range-list partitioning, 288–289
rank functions, SQL, 1231, 1232
RATIO method, creating resource plans,

560, 561
rationale components, ADDM, 881
ratio-to-report comparison functions,

SQL, 1231
raw devices, disk I/O performance, 1158
RBAL (rebalance master) process, 185, 907
rc scripts, 423
rcache column, sar command, 83
RC_BACKUP_SET view, 744, 760
rcp command, UNIX/Linux, 79

1314 ■IN D E X

RDBMS (relational database management
system), 19, 452

RDBMS compatibility level, ASM disk
groups, 910

rdbms ipc message idle event, 1181
reactive performance tuning, 1042
read consistency, 199, 345, 356, 359
READ ONLY clause, ALTER TABLE, 273
READ ONLY clause, CREATE VIEW, 312
read permission, UNIX files, 59
READ WRITE clause, ALTER TABLE, 274
read/write operations, UNIX, 83
read-committed isolation level, 344, 345, 346
reader class, Oracle Secure Backup, 788
README files, Oracle Database 11g, 392
read-only mode, 273–274, 502
read-only tablespaces, 172, 229
read-uncommitted isolation level, 344
READY status, Oracle listener, 522
Real Application Clusters see RACs
Real Application Testing, 148, 1209

analyzing after-upgrade SQL workload, 1219
analyzing prechange SQL workload, 1218
capturing production SQL workload, 1217
capturing production workload, 1210–1211
creating SQL Tuning Set, 1217
Database Replay tool, 1209–1216
loading SQL Tuning Set, 1217
making system change, 1211
preprocessing workload, 1211
replaying captured workload, 1211
setting up replay clients, 1212
SQL Performance Analyzer, 1216–1220
transporting SQL Tuning Set, 1218

real dictionary tables, 1063
REBALANCE command, ASM disk groups, 916
rebalance master (RBAL) process, 185, 907
rebalancing disk groups, ASM, 916
REBUILD command

ALTER INDEX statement, 303, 305
POWER clause, 916
rebuilding indexes/tables regularly, 1089

rebuilding indexes online, 934, 935
RECNUM column specification,

SQL*Loader, 636
Recommendation Options/Types, SQL Access

Advisor, 322
recommendations, ADDM, 878, 880–881

ADDM reports, 888, 891, 892
recommendations, Segment Advisor, 932
Recompile Invalid Objects window, DBUA, 431
RECORD parameter, TKPROF utility, 1102
RECORD_FORMAT_INFO clause, 647
records, PL/SQL, 1244
RECOVER command, RMAN, 812, 813, 820
RECOVER command, SQL*Plus, 134
RECOVER BLOCK command, BMR, 864
RECOVER COPY command, 733, 778

RECOVER DATABASE command, 815, 816, 861
RECOVER DATAFILE command, RMAN, 819
RECOVER TABLESPACE command, RMAN, 818
recoverer (RECO), 185, 479
recovery

see also backups; flash recovery area
cache recovery, 804
cancel-based recovery, 824
change-based SCN recovery, 820, 824
checkpoint data in control files, 175
cloning databases, 833–840
closed recovery, 807
complete recovery, 807
control files, 174
crash and instance recovery, 804–805
Data Recovery Advisor, 211, 829–833
database failures, 801–804
errors, 866–870
Flashback Data Archive, 870–874
flashback recovery techniques, 202
Flashback techniques and, 847–861
granular recovery techniques, 840–847
incomplete recovery, 807
instance recovery, 468
log sequence-based recovery, 821
media recovery, 806–808
media recovery scenarios, 814–829
media vs. nonmedia recoveries, 808
open recovery, 807
Oracle recovery process, 804–809
parameters, 468–470
redo log files, 175
reducing vulnerability to recoveries, 809
repairing data corruption, 864–865
restore points, 861–864
restoring vs. recovering datafiles, 806
SHOW RECYCLEBIN command, 116
Simplified Recovery Through Resetlogs

feature, 823
SQL*Plus, 134
time-based recovery, 820, 824
traditional recovery techniques, 848
transaction recovery, 804
trial recovery, 865–866

recovery catalog, RMAN, 744
backing up recovery catalog, 769
base recovery catalog, 772
benefits of RMAN, 743
cataloging backups, 770
connecting to, 746
connecting to RMAN, 767–768
creating recovery catalog, 768
creating recovery catalog schema, 767
dropping recovery catalog, 772
getting rid of invalid entries, 760
granting roles, 767
importing recovery catalog, 771
maintaining, 769–772
moving recovery catalog, 772

1315■I N D E X

performing PITR, 766
recovering recovery catalog, 770
recovery catalog schema, 743
registering database, 768–769
resynchronizing recovery catalog, 769
upgrading recovery catalog, 771
working with, 766–769

Recovery Configuration window, 432, 487
recovery errors, 866–870
recovery files, OFA guidelines, 399
Recovery Manager see RMAN
recovery scenarios, 814–829

control file recovery, 824–828
datafile recovery, 818–820

recovering datafiles without backup,
828–829

incomplete recovery, 820–824
performing hot restore with RMAN, 816
tablespace recovery, 817–818
whole database recovery, 814–817

RECOVERY WINDOW option, RMAN, 762
recovery writer (RVWR) process, 185
RECOVERY_CATALOG_OWNER role, 773
recovery-related parameters, 468–470
recursive CPU usage, 1157
recursive relationships, 28
Recycle Bin, 850–851

DBA_RECYCLEBIN view, 850
DROP TABLE PURGE command, 116
Flashback Drop feature, 376, 849, 850–851
free space, 244
Oracle removing items from, 850
permanently removing objects from, 853
PURGE RECYCLEBIN command, 853
recovering dropped table/user objects, 548
removing items from, 852
removing tables without using, 852
removing tablespace without using, 853
security, 852
SHOW RECYCLEBIN command, 116, 850
USER_RECYCLEBIN view, 850

recycle buffer pool, 189, 1146
recycle pool, 457, 458
RECYCLEBIN parameter, Flashback Drop, 849
redirection, UNIX, 56–57
redo data, 227, 460
redo entries, SQL*Loader, 640
redo log buffer, 176, 187, 192–193

committing transactions, 182, 198
how Oracle processes transactions, 197
transferring contents to disk, 182

redo log files, 173, 175–176
see also online redo log files
ADD LOGFILE GROUP syntax, 983
after-image records, 176
applying redo logs during recovery, 867
arch directory containing, 397
archivelog mode, 176, 726, 775

archiver process, 1187
archiving, 135, 176, 184, 459
backup and recovery architecture, 201
backup guidelines, 729
benefits of temporary tables, 277
committing transactions, 198, 338, 339
creating database, 481
data consistency, 176
database creation log, 484
database files, 398
defining filename format for archived, 460
flash recovery area, 738
increasing size of, 445
instance performance, 1205
LogMiner utility analyzing, 845–847
making whole closed backups, 791
monitoring, 984
multiplexing, 176, 182, 184, 444, 455, 729
names and locations of, 174
naming conventions, 398
noarchivelog mode, 176, 726
optimizing size over time, 445
Oracle Managed Files (OMF), 250, 252,

455, 924
Oracle recommendations, 445
organization of, 982
Pre-Upgrade Information Tool, 428
renaming redo logs, 983
RESETLOGS option, 822
rolling back transactions, 198
sizing for database creation, 444
whole open backups, 792
write ahead protocol, 199

redo log groups, 176, 184, 982, 983, 984
redo log space requests, 1181
redo logs see redo log files
redo records, 176, 182, 339
redundancy, 729, 901, 914
REDUNDANCY attribute, ASM, 910, 915
redundancy levels, ASM, 909
REDUNDANCY option, RMAN, 762
redundancy set, 730–731, 809
REENABLE clause, SQL*Loader, 642
REF CURSOR type, PL/SQL, 664, 666, 1247
reference partitioning, 284–286
REFERENCES clause, CREATE TABLE, 285
referential integrity, 36
referential integrity constraints, 225, 308, 716
Reflections X-Client, 46
refresh options, materialized views, 316, 319
REGEXP_XYZ functions, SQL, 1238
REGISTER DATABASE command, RMAN, 769
registerDriver method, JDBC drivers, 538
registration, dynamic service, 183
regular expressions, SQL, 1237–1239
regular expressions, UNIX, 65
Related Links section, Database Control, 150
relational algebra, 21–22

1316 ■IN D E X

relational database life cycle, 23–37
logical database design, 24–34
physical database design, 34–37
requirements gathering, 23–24

relational database management system
(RDBMS), 19, 452

relational database model, 20–22, 38
object-relational database model, 39–40
transforming ER diagrams into relational

tables, 35
relational databases, 19–37
relational tables, 265
relationships, ER modeling, 25

building entity-relationship diagram, 28
cardinality of (1:1, 1:M, M:M), 26
recursive relationships, 28

relative distinguished names, 536
relative path, UNIX, 47, 62
Release Notes and Addendums, Oracle

Database 11g, 392
releases

ensuring database compatibility, 452
upgrade paths to Oracle Database 11g, 426
variable naming release number, 128

releasing-space phase, segment shrinking, 929
Reliaty backup software, Oracle Secure

Backup, 785
RELIES ON clause, result cache, 1124
reload command, lsnrctl utility, 523
reloads, determining number of, 1137
RELY constraints, 310
REMAP_CONNECTION procedure, 1214
REMAP_DATA parameter, Data Pump, 693, 710
REMAP_DATAFILE parameter, Data Pump, 709
REMAP_SCHEMA parameter, Data Pump,

679, 709
REMAP_TABLE parameter, Data Pump, 709
REMAP_TABLESPACE parameter, Data

Pump, 710
REMAP_XYZ parameters, Data Pump, 679
REMARK command, SQL*Plus, 128, 132
remote access to UNIX server, 78
remote client authentication, 615
remote external jobs, 1002
remote login (rlogin), 78, 79
remote servers, copying files to/from, 254
REMOTE_LOGIN_PASSWORDFILE parameter,

472, 599
REMOTE_OS_AUTHENT parameter, 612, 615
removing files, UNIX, 59
RENAME command, ALTER TABLE, 272
RENAME PARTITION command, 291
REPAIR XYZ commands, Data Recovery

Advisor, 832, 833
repeat interval, jobs, Oracle Scheduler,

999–1000
repeatable-read isolation level, 344
repeating groups, 1NF, 30
repeating-baseline templates, AWR, 966

REPEAT_INTERVAL attribute, 999, 1014
REPFOOTER/REPHEADER commands,

SQL*Plus, 123
REPLACE clause, SQL*Loader, 629
REPLACE function, SQL, 1228
REPLACE option, SQL*Plus, 116, 120, 124
REPLACE SCRIPT command, RMAN, 752
REPLACE_USER_SQL_PROFILES

parameter, 1117
replay driver, Database Replay, 1212–1216
REPLAY_REPORT function, 1215
REPORT SCHEMA command, RMAN, 759, 769
REPORT XYZ commands, RMAN, 759
REPORT_ANALYSIS_TASK function, 1219
REPORT_AUTO_TUNING_TASK function, 1119
REPORT_DIAGNOSTIC_TASK function, 1037
reporting commands, RMAN, 758–760
reports, AWR, 966–971
REPORT_TUNING_TASK procedure, 1114
repository

Management Repository, Grid Control, 154
RMAN, 743, 744

requirements gathering, 23–24
RES column, top command, 84
RESETLOGS option, 821, 822, 823

Flashback Database limitations, 861
user-managed control file recovery, 827

resident connection pooling, DRCP, 180
RESIZE clause, tablespaces, 223, 238
RESIZE command, 219, 364
RESOLVE privilege, 616
resource allocation, 554, 555
resource consumer groups

Database Resource Manager, 554, 555, 556,
557–559

assigning users to, 562–565
automatic assignment to session, 564
automatic group switching method,

555, 560
create_consumer_group procedure, 557
default Oracle database groups, 558
default Oracle resource plans, 558
enforcing per-session CPU and I/O limits,

564–565
groups granted to users or roles, 566
OEM administering, 567
sessions currently assigned to, 566
verifying user membership, 563

Oracle Scheduler, 1011, 1016–1017
SET_CONSUMER_GROUP_MAPPING

procedure, 564
SET_CONSUMER_MAPPING_PRI

procedure, 564
SET_INITIAL_CONSUMER_GROUP

procedure, 563
V$RSRC_CONSUMER_GROUP view, 566

resource management
Database Resource Manager, 554–567
dynamic resource management, 941–943

1317■I N D E X

Resource Manager, Oracle, 147, 996
Resource Monitors page, OEM, 566
resource parameters, 549, 553
resource plan directives, Database Resource

Manager, 555, 556, 560–562, 942
Resource Plan Wizard, OEM, 556
resource plans

Database Resource Manager, 554, 555, 556,
559–560

CREATE_PLAN procedure, 560
CREATE_PLAN_DIRECTIVE procedure,

561, 565
determining status of, 562
OEM administering, 567
showing plans, 566

resource allocation for automated
tasks, 1022

Scheduler, 997, 1013–1017
RESOURCE role, 574
RESOURCE_CONSUMER_GROUP

attribute, 1012
RESOURCE_LIMIT parameter, 552
RESOURCE_MANAGER_PLAN parameter, 565
RESOURCE_PLAN attribute, 1014
resources

ALTER RESOURCE COST statement, 549
controlling user’s use of, 548, 549
Database Resource Manager, 208
DBA resources, 13–14
freeing up resources from dead

processes, 183
Grid Control, 159
hard parsing, 1138
inefficient SQL using most resources,

1109–1110
query optimization, 1043
severe contention for, 1188
SQL Trace tool showing usage of, 1100
system usage problems, 1188

response action, alerts, 954
response directory, 421
response files, 421–422
RESTORE command, RMAN, 811, 812, 820
RESTORE CONTROLFILE command,

RMAN, 825
RESTORE DATABASE command, RMAN,

814, 815
RESTORE DATAFILE command, RMAN, 819
restore optimization, RMAN, 810
RESTORE POINT clause, RMAN, 780
restore points, 861–864
RESTORE TABLESPACE command, RMAN, 817
restore utilities, UNIX, 76–77
RESTORE_DEFAULTS procedure, 533
restoring database

performing hot restore with RMAN, 816
restoring vs. recovering datafiles, 806

restoring pre-upgrade database, DBUA, 433
RESTRICT command, SQL*Plus, 105

restrict option (-R), SQL*Plus, 115
RESTRICT option, STARTUP command, 908
restricted database mode, 501

quiescing database, 505
RESTRICTED SESSION privilege, 570
result cache, 192, 1120–1126

Client Query Result Cache, 1125–1126
Function Result Cache, 1124–1125
managing, 1120, 1123–1124
RESULT_CACHE_MODE parameter,

1121–1122
result cache background (RCBG) process, 186
Result Cache Memory, 1120
result code, finding, 69
RESULT_CACHE hint, 1121, 1122, 1125
RESULT_CACHE_MAX_RESULT parameter,

464, 1121
RESULT_CACHE_MAX_SIZE parameter,

464, 1120
RESULT_CACHE_MODE parameter, 192, 464,

1121–1122, 1125
RESULT_CACHE_REMOTE_EXPIRATION

parameter, 1121
Results for Task page, SQL Access Advisor, 323
ResultSet object, JDBC, 539
RESUMABLE parameter, SQL*Loader, 635
Resumable Space Allocation, 382–386

enabling/disabling, 470
expanding tablespaces, 224
user-quota-exceeded errors, 226

RESUMABLE_NAME parameter,
SQL*Loader, 636

RESUMABLE_TIMEOUT parameter, 384,
470, 636

RESYNC CATALOG command, RMAN, 769, 770
RETENTION GUARANTEE clause, 363, 367, 460

Flashback Query, 374
RETENTION NOGUARANTEE clause, 363
RETENTION parameter, 964, 965
retention period, Oracle Secure Backup, 789
RETENTION POLICY parameter, RMAN, 762
return codes, SQL*Loader utility, 639
REUSE parameter, 828
REUSE_DATAFILES parameter, Data

Pump, 707
REUSE_DUMPFILE parameter, Data Pump, 691
reverse engineering, databases, 38
reverse key indexes, 301, 1072
Review page, SQL Access Advisor, 323
REVOKE CATALOG command, RMAN, 774
REVOKE CREATE SESSION statement, 548
REVOKE statement, 568, 569
revoking object privileges, 573
rewrite integrity, materialized views, 316
REWRITE_OR_ERROR hint, 315
Risk Matrix, 618
rlogin command, UNIX/Linux, 78, 79
rm command, UNIX/Linux, 59, 62

1318 ■IN D E X

RMAN (Recovery Manager), 741–784, 809–814
advantages of, 810
architecture, 743–744
benefits of, 742–743
block media recovery (BMR), 808, 864
catalog reports, 759
change-tracking, 185
channels, 753, 764
cloning databases, 834–838
connecting to recovery catalog, 746
connecting to RMAN, 745–746, 767–768
control file recovery, 825–826
converting datafiles to match endian

format, 721
data block corruption, 167
datafile recovery, 819
ending RMAN session, 745
identifying necessary files for recovery, 812
image copies, 752–753
incomplete recovery, 820–823
large pool, 193
making RMAN output visible, 747
managing/monitoring database, 213
Media Management Layer (MML), 744, 745
migrating databases to ASM, 919–920
monitoring/verifying RMAN jobs,

782–784, 813
Oracle media recovery process, 807
performing hot restore with, 816
proxy copies, 753
recovering datafiles without backup,

828–829
recovery catalog, 744, 766–772
recovery with RMAN, 809–814
redirecting output to log file, 747
registering database, 768–769
restore optimization, 810
scripting with RMAN, 747–752
starting database using, 814
storing metadata, 744
tablespace point-in-time recovery (TSPITR),

840–841
tablespace recovery, 817–818
terminology, 752–753
user-managed recovery procedures, 813–814
virtual private catalogs, 772–774
whole database recovery, 814–816

RMAN backups
archival (long-term) backups, 780–782
archived logs, 775
backing up entire database, 774
backing up online with scripts, 775
backup and recovery architecture, 201
backup formats, 753
backup guidelines, 730
backup pieces, 735, 752
backup retention policy parameters,

762–763

backup sets, 752
backup tags, 753
block-change tracking, 779
compressed backups, 780
compressing, 780
checking if backup possible, 811
control file, 765–766, 776, 784–785
cross-checking backups made with

RMAN, 783
cumulative backup, 756, 757
datafiles, 777
detecting physical/logical corruption, 783
differential backup, 756, 757
encrypting RMAN backups, 781
examples of, 774–777
fast incremental backups, 779
file locations, 755
files, 178
image copy backups, 756
incremental backups, 756–757, 778, 812
limiting maximum size of, 781
logical check of backup files, 756
making copies of, 754
monitoring and verifying RMAN jobs,

782–784
open backups, 792
optimization parameters, 765
Oracle Secure Backup intermediary, 789
performing backup and recovery tasks, 813
physical database backups, 725
restarting RMAN backup, 777
specifying limits for backup duration,

777–778
tablespaces, 777
user-managed backups as alternative, 790

RMAN client, 743
rman command, 745
RMAN commands, 755–761

ALLOCATE CHANNEL, 757
BACKUP, 769, 755–757
BACKUP ARCHIVELOG ALL, 775
BACKUP AS COMPRESSED

BACKUPSET, 780
BACKUP AS COPY, 756, 757
BACKUP CONTROLFILE, 785
BACKUP CURRENT CONTROLFILE, 776
BACKUP DATABASE, 774, 775
BACKUP DATAFILE, 777
BACKUP INCREMENTAL LEVEL,

756–757, 778
BACKUP TABLESPACE USERS, 777
BACKUP VALIDATE, 783, 784
BLOCKRECOVER, 864
CATALOG, 759, 760, 770
CHECKSYNTAX parameter, 749
CONFIGURE, 753, 761–766
CONNECT CATALOG, 767
COPY, 758, 769
CREATE CATALOG, 768

1319■I N D E X

CREATE GLOBAL SCRIPT, 750
CREATE SCRIPT, 748, 750
CROSSCHECK, 758, 761, 783
DELETE, 758, 759
DELETE SCRIPT, 750
DROP CATALOG, 768, 772
DUPLICATE, 810, 834–837
EXECUTE SCRIPT, 749
exit, 745
FLASHBACK DATABASE, 854
IMPORT CATALOG, 771, 772
job commands, 757–758
LIST, 760–761, 810
LIST INCARNATION, 823
LIST SCRIPT NAMES, 750, 761
operating system file executing, 749
PRINT SCRIPT, 750, 751
RECOVER COPY, 778
RECOVER DATABASE, 815
REGISTER DATABASE, 769
REPLACE SCRIPT, 752
REPORT, 758–760
REPORT SCHEMA, 759, 769
RESTORE, 811
RESTORE DATABASE, 814, 815
RESYNC CATALOG, 769, 770
RUN, 749, 757
SET NEWNAME, 815
SHOW ALL, 761
SWITCH, 757
SWITCH DATABASE, 816
UPGRADE CATALOG, 771
USING clause, 747, 750, 751
VALIDATE, 761, 783–784
VALIDATE BACKUP, 810–811
VALIDATE BACKUPSET, 761, 811

RMAN configuration parameters, 761–766
archivelog deletion policy, 766
backup optimization, 765
backup retention policy, 762–763
channel configuration, 764
compression, 764
CONFIGURE command, 762
control file backups, 765–766
default device type, 763
default values, 761

viewing parameters changed from, 762
degree of parallelism, 765
encryption, 763, 764
optimization parameters, 765
RETENTION POLICY configuration, 762

RMAN executable, 743
RMAN repository, 743, 744
rmdir command, UNIX/Linux, 62
ROLE_ROLE_PRIVS view, 577
roles, 574–577

as alternative to granting privileges, 612
CONNECT role, 574
Create Role Properties page, 150

creating, 575
creating Database Control roles, 150
Data Pump Export/Import utility, 703
DBA role, 574
DBA views managing, 577
default role, 574
DELETE_CATALOG_ROLE, 569
disabling, 576, 618
dropping, 577
enabling, 577
EXECUTE_CATALOG_ROLE, 569
EXP_FULL_DATABASE role, 574
granting privileges through roles, 618
granting privileges to roles, 575
granting role to another user, 576
granting role WITH ADMIN OPTION, 576
granting roles, recovery catalog, 767
IMP_FULL_DATABASE role, 574
IMPORT_FULL_DATABASE role, 705
predefined roles, 574
PUBLIC role, 613
PUBLIC user group and roles, 576
RESOURCE role, 574
role authorization, 575–576
secure application roles, 618
SELECT_CATALOG_ROLE, 569

ROLE_SYS_PRIVS view, 577
ROLE_TAB_PRIVS view, 577
ROLLBACK command, 198, 200

exiting SQL*Plus session, 102
rollback method, conn, JDBC, 540
rollback phase, automatic checkpoint

tuning, 932
rollback segments

database creation log, 484
SET TRANSACTION USER … statement, 365
undo management, 921
using CTAS with large tables, 132
using traditional rollback segments, 356

ROLLBACK statement, 263, 338, 339–340
roll-forward phase, automatic checkpoint

tuning, 932
rolling back transactions, 196, 197, 198, 804, 806
rolling forward see cache recovery
ROLLUP operator, GROUP BY clause, SQL, 1235
root directory, UNIX, 47, 57, 63, 399
root user, Oracle Database 11g, 414
root.sh script

backing up, post-installation, 424
installing Grid Control, 154, 155
installing Oracle software, 420, 422

ROUND function, SQL, 1229
ROUND_ROBIN method, resource consumer

groups, 557
row data section, data blocks, 167
row exclusive locks, 349
%ROWCOUNT attribute, PL/SQL, 1246
ROWID, B-tree index, 298
ROWID method, online data redefinition, 936

1320 ■IN D E X

ROWID table access, query optimization, 1052
row-level access, VPD, 578
row-level Flashback techniques, 848
row-level locks, 347, 348, 349
row-level security, 583, 584, 585
rows

identifying changed row versions, 375
INSERT/DELETE/UPDATE statements, 263
row expiry time/SCN, 371
storing table rows, 267

ROWS parameter, SQL*Loader, 634, 641
%ROWTYPE attribute, PL/SQL, 1242, 1244
RPAD function, SQL, 1228
rule-based optimization, 1047
RULES keyword, 668–670
RUN command, RMAN, 749, 757
RUN command, SQL*Plus, 125, 126
run queue length, 1153
RUN_CHAIN procedure, 1010
RUN_CHECK procedure, 1033
runInstaller script, 415, 416, 418
RUN_JOB procedure, 1000
runnable process, UNIX, 80
runtime area, PGA memory, 194
runtime option, installing Oracle Client, 518
RUN_TO_COMPLETION method, 557
RVWR (recovery writer), 857
rwx group, file permissions, UNIX, 60, 61

■S
-S option (silent), SQL*Plus, 115
salt, encryption algorithms, 608
SAM tool, 408
SAME (stripe-and-mirror-everything),

399, 1160
sample data, performance statistics, 948
SAMPLE parameter, Data Pump, 694
sampling data dynamically, 463
SANs (Storage Area Networks), 93
sar command, UNIX, 83, 1153, 1159, 1177
SAVE command, SQL*Plus, 106, 124
saved metrics, 952
SAVEPOINT statement, 263, 339
savepoints, rolling back transactions, 198
scalability, 1141–1142

OEM, 139
Oracle Net Services features, 512

Schedule page, SQL Access Advisor, 323
Scheduler, 208, 994–1019

architecture, 997
attribute management, 1017
automated maintenance tasks, 1020
automatic optimizer statistics collection,

898–899
calendaring expression, 999
chain jobs, 996
chains, 995, 1008–1010
components, 994–995, 996–997

managing, 998–1000, 1011–1017

CREATE JOB privilege, 997
database jobs, 995
database management, 147, 211
DBMS_JOB package compared, 996
default operation windows, 899
detached jobs, 996
events, 995, 1010–1011
EXECUTE privileges, 997
external jobs, 996
gathering statistics, 1047
GATHER_STATS_JOB, 898–899
job classes, 996, 1011–1013
job table, 997
jobs, 994

administering, 1000
creating, 998–999
default scheduler jobs, 1019
managing, 998–1000
managing external jobs, 1002–1006
monitoring scheduler jobs, 1017–1019
specifying repeat interval, 999–1000

lightweight jobs, 996, 1000–1002
linking to Resource Manager, 996
MANAGE SCHEDULER privilege, 997,

1013, 1015
managing Scheduler attributes, 1017
managing/monitoring database, 213
object naming, 997
privileges, 997–998
programs, 995, 1006–1007
purging job logs, 1019
resource consumer groups, 1011
SCHEDULER_ADMIN role, 997
schedules, 995, 1007–1008
slaves, 997
types of Scheduler jobs, 995–996
window groups, 997, 1017
windows, 996, 1013–1017

Scheduler Agent
creating/enabling remote external jobs,

1005–1006
installing/configuring, 1004–1005
managing external jobs, 1002
setting registration password for, 1003

Scheduler wait class, 1163
SCHEDULER_ADMIN role, 997
schedules, Oracle Scheduler, 995, 1007–1008

creating event-based schedules, 1011
windows compared, 1013

scheduling
large jobs, Oracle, 554
performing backups with Oracle Secure

Backup, 789
serializable schedules, 342
specifying limits for backup duration, 777
UNIX jobs, 77

schema mode, Data Pump Export, 688, 705
schema owner, 264

granting object privileges, 572

1321■I N D E X

Schema page, Database Control, 147
schema-independent users, 603
schemas

database schemas, 20
logical database structures, 165
Oracle Database 11g sample schemas,

1221–1222
SET SCHEMA statement, 327
shared schemas, LDAP, 603

SCHEMAS parameter, Data Pump, 688, 705, 708
schemas, Oracle, 264–265, 327
SCN (system change number), 199

committing transactions, 198
consistent database backups, 727
control files, 174
converting between time stamps and

SCNs, 847
ENABLE_AT_SYSTEM_CHANGE_NUMBER

procedure, 369
Flashback Database, 859, 860
Flashback Versions Query, 372
incomplete recovery using RMAN, 820, 822
TO SCN clause, FLASHBACK TABLE, 378
undo records, 356
user-managed incomplete recovery, 824
VERSIONS_STARTSCN pseudo-column, 371

SCNHINT parameter, 380, 869
SCN_TO_TIMESTAMP function, 847
scope, SPFILE dynamic parameter changes, 496
SCOPE clause, ALTER SYSTEM, 496
scp command, UNIX/Linux, 79
scripting with RMAN, 747–752
scripts

see also SQL scripts
coraenv script, 424
dbshut.sh script, 423
dbstart.sh script, 423
oraenv script, 424
post upgrade actions script, 439
updating shutdown/start up scripts, 423
upgrade actions script, 438
upgrade script, 438

SDK Instant Client packages, 520
se (storage element), Oracle Secure Backup, 789
SEC_CASE_SENSITIVE_LOGON parameter,

465, 491, 597, 615
SEC_MAX_FAILED_LOGIN_ATTEMPTS

parameter, 465, 615
Second Normal Form (2NF), 31–33
secondary indexes, 297, 1070, 1071
second-generation database management

systems see RDBMS
sec_protocal_error_xyz_action parameters, 615
SEC_RELEVANT_COLS parameter, 585
SECTION SIZE parameter, RMAN, 781, 784
secure application roles, 618
secure configuration, automatic, 611
SecureFiles, 472

security
see also authentication; passwords
access control lists, 616, 617
Advanced Security option, 618
alerts, 617
altering profiles, 619
application security, 618
aspects of database security, 543
auditing database usage, 586–596
authenticating users, 596–602
automatic secure configuration, 611
centralized user authorization, 602
checking for latest security patches, 617
column-level security, 312
controlling database access, 567–586
Critical Patch Updates, 617
data encryption, 603–608
database auditing, 612
database management, 147
DBA role, 3, 4
DBA views managing users/roles/

privileges, 577
default auditing, 611
determining user’s currently executing

SQL, 619
directory naming method, 534
disabling roles, 618
enhancing database security, 611–622
enterprise user security, 603–611
fine-grained data access, 578–586
granting privileges, 612
granting privileges through roles, 618
implementing physical database design, 37
killing user’s session, 620
listing user information, 619
logging in as different user, 620
managing users, 619
MetaLink, 617
multiple DBAs, 613
OEM, 138
OID (Oracle Internet Directory), 611
operating system authentication, 612
Oracle Advanced Security, 535
Oracle Backup Web Interface tool, 788
password-related parameters, user profiles,

549, 550
password-specific security settings, 611
Peter Finnegan’s Oracle security web site, 614
privileges, 567–574
protecting data dictionary, 613
PURGE option, DROP TABLE command, 852
RAID systems, 88
recovery catalog, 770
restricting SQL*Plus usage, 618
Risk Matrix, 618
roles, 574–577
schemas, 165
securing listener, 614

1322 ■IN D E X

securing network, 614
setting security-related initialization

parameters, 615
setting UNIX permissions, 613
stored procedures, 577
tablespace encryption, 608–610
underlying objective, 543
user accounts, 611
value-based security, 312
views, 312, 577

security policies, 583–585
Security Settings window, DBCA, 488
security, SQL*Plus see SQL*Plus security
security-related parameters, 472
Segment Advisor, 212

advice levels, 930
automatic performance tuning

features, 1132
Automatic Segment Advisor, 212, 931
choosing candidate objects for

shrinking, 930
Database Control Segment Advisor page, 931
description, 977
managing/monitoring database, 214
modes, 930
segment shrinking using, 930, 935
using, 980

Segment Advisor Recommendations page,
932, 980

SEGMENT ATTRIBUTES option, Data
Pump, 711

segment-level statistics, 1173
segment shrinking, 927–930
segment space management, 217–218, 219, 221
segments, 166, 169

analyzing segment growth, 268
DBA_SEGMENTS view, 244
extent allocation/deallocation, 220
segment growth, 219
tablespace space alerts, 226
tablespaces, 166, 170
types of, 220
unable to extend segment error, 385

Segments by Physical Reads section, AWR, 971
sel clause, COPY command, SQL*Plus, 133
Select a Product to Install window, Grid

Control, 155
SELECT ANY DICTIONARY privilege, 569
Select Configuration Options window, 419
Select Installation Type window, 417
SELECT statement

AS OF clause, 367–368
CTAS command, 273
DML statements, 263
locking, 349
VERSIONS BETWEEN clause, 370

SELECT statement, PL/SQL, 1242
SELECT statement, SQL, 1223–1224, 1226
SELECT_CATALOG_ROLE, 569, 570

SELECT_CURSOR_CACHE procedure, 1217
Selecting Database Instance window,

DBUA, 431
selection operations, 21, 1046
selectivity, 1065
self join, SQL, 1233
self-managing database, 877
semantic data models, 25
Semantic Web, The, 25
semaphores, 404
semi-structured data models, 40
SEMMNS kernel parameter, 413
SEQUEL (structured English query

language), 22
SEQUENCE function, SQL*Loader, 637
SEQUENCE option, SET UNTIL command, 821
sequence privileges, 571
sequences, 327–328, 329

SQL*Loader utility, 643
SEQUENTIAL_ORDER, rules, 670
serializable isolation level, 344, 346
serializable schedules, data concurrency, 342
server configurations, 180
server error triggers, 591
server file, 493
Server Generated Alerts, 386
Server Manageability Packs, 459
Server page, Database Control, 146–147
server parameter file see SPFILE
server processes, 179–180, 197

see also Oracle processes
server processes, RMAN, 744
server software, installing, 416–420
server-executed commands, SQL, 103
server-generated alerts, 211, 952–953
SERVEROUTPUT variable, SQL*Plus, 108,

109–110
servers, 45, 47
server-side access controls, securing

network, 614
service level agreements see SLAs
service metrics, 951
Service Name Configuration page, 528
service names, database, 514
service registration, dynamic, 183
SERVICE_NAME parameter, 452, 529
SERVICE_NAMES parameter, 514, 521
services command, lsnrctl utility, 522
Services Summary, checking listener status, 522
SERV_MOD_ACT_TRACE_ENABLE

procedure, 1106
session metrics, 951
session multiplexing, 180
session-related parameters, 456
session sample data, 948
session switching, 561
session variables, SQL*Plus, 126
SESSION_CACHED_CURSORS parameter,

1140, 1141

1323■I N D E X

session-control statements, SQL, 262
SESSION_PRIVS/ROLES views, 577
sessions

Active Session History (ASH), 210, 971–975
ACTIVE_SESSION_POOL parameter, 560
ACTIVE_SESS_POOL_MTH parameter, 560
altering properties of user sessions, 262
audit by session, 587
creating plan directives, 560
creating session temporary table, 278
determining session-level CPU usage, 1155
killing user sessions, 620
LICENSE_MAX_SESSIONS parameter, 461
LogMiner utility, 844–845
QUEUEING_MTH parameter, 560
specifying maximum number of, 461
sys_context discovering session

information, 579
terminating database sessions, 75
Top Sessions page, 1200
UNIX session, 47
using Database Control to manage session

locks, 354–355
V$ACTIVE_SESSION_HISTORY view, 1169
viewing Data Pump sessions, 714

SESSIONS parameter, 455
sessions, SQL*Plus see SQL*Plus sessions
SESSIONS_PER_USER parameter, 549
SESSION_TRACE_ENABLE procedure, 1175
SESSION_USER attribute, USERENV

namespace, 579, 580
SET command, SQL*Plus, 106–107

ALTER SESSION command, 262
controlling security via SET ROLE

command, 105
getting list of environment variables, 107
SET ERRORLOGGING command, 111
SET SERVEROUTPUT command, 109–110
SET SQLPROMPT command, 118

SET NEWNAME command, RMAN, 815
set operations, 21
set operators, 263, 1227
set password clause, lsnrctl utility, 524
SET ROLE command, 105, 618
SET SCHEMA statement, 327
SET TRANSACTION statement, 263

Automatic Undo Management (AUM), 357
USER ROLLBACK SEGMENT clause, 365

SET UNTIL command, 820, 821, 822
SET UNUSED command, 271
SET_ATTRIBUTE procedure, 1005, 1008, 1018
SET_ATTRIBUTE_NULL procedure, 1017
SET_ATTRIBUTES procedure, 1016
setAutoCommit method, conn, JDBC, 540
SET_CONSUMER_GROUP_MAPPING

procedure, 564
SET_CONSUMER_MAPPING_PRI

procedure, 564

SET_DEFAULT_TASK procedure, 890
SET_DEFAULT_TASK_PARAMETER procedure,

884, 890
setenv command, UNIX/Linux, 54
SET_EV procedure, 1175
SET_IDENTIFIER procedure, 1106
SET_INITIAL_CONSUMER_GROUP

procedure, 563
set-oriented relational model, 20
SET_SCHEDULER_ATTRIBUTE procedure, 1017
SET_SESSION_LONGOPS procedure, 943
SET_SESSION_TIMEOUT procedure, 385, 386
SET_SQL_TRACE procedure, 1101
SET_SQL_TRACE_IN_SESSION procedure, 1102
SET_TABLE_PREFS function, 1057
SET_TASK_PARAMETER procedure, 324, 978
SET_THRESHOLD procedure, 955
settings, SQL*Plus, 115
SET_TUNING_TASK_PARAMETERS procedure,

1037, 1117
SET_TUNING_TASK_PARAMETERS view, 1117
SETUID files, 613
Setup page

Database Control, 148–149
Grid Control, 159

Setup Privileges window, Grid Control, 156
setupinfo file, connecting to Grid Control, 157
SEVIS (Student and Exchange Visitor

Information System), 1193
SGA (system global area), 187–193

ASM Cache component, 906
automatic memory management, 195–196,

894, 896
components, 187
database buffer cache, 187, 188–189, 190
Java pool, 187, 193
large pool, 187, 193
managing/monitoring database, 214
memory allocation, 194
memory management, 894
memory-configuration parameters, 456
MEMORY_TARGET parameter, 457
multiple database block sizes, 189–190
PRIVATE_SGA parameter, 549
redo log buffer, 187, 192–193
Result Cache Memory, 1120
shared pool, 187, 191–192
SHOW SGA command, 117
sizing buffer cache, 1144
Streams pool, 187, 193
tuning shared pool, 1133

SGA_TARGET parameter, 195, 196
automatic memory management, 895,

896, 897
db file scattered read wait event, 1177
managing result cache, 1120
setting size of, 1142

sh (Bourne shell), 45
see also shells, UNIX

1324 ■IN D E X

SH (sales history) schema, 1222
shadow process, Data Pump, 686
Shallahamer, Craig A., 1148
share lock mode, 199
shared context sensitive security policy, 584
shared database objects, 987–991

comparing data, 987–989
converging data, 990–991

shared libraries, 1190
shared memory, 894, 1190
shared pool, 187, 191–192

components, 1133
delays due to shared pool problems, 1191
dictionary cache, 1134–1135
flushing, 1135
how Oracle processes transactions, 197
LARGE_POOL_SIZE parameter freeing

memory in, 459
library cache, 191, 1133–1134
Oracle’s guidelines, 456
pinning objects in, 1142–1143
reducing parse-time CPU usage, 1157
sizing, 1142
tuning, 1133–1135

shared pool latch, 1180
shared schemas, LDAP, 603
shared server architecture, 512
shared server configuration, 180
shared static security policy, 584
SHARED_POOL_SIZE parameter, 195
shell scripts, UNIX, 45, 68–74

evaluating expressions, 69
executing with arguments, 70
flow control structures, 71–74
making variables available to, 54

shells, UNIX, 45–46
changing shell limits, preinstallation, 406
changing shell prompt, 51
customizing environment, 55
running programs with nohup option, 75
shell prompts, 47
shell variables, 53, 54, 55, 69

ship.db.cpio.gz file, 415
SHMMAX kernel parameter, 413
SHOW ALL command, RMAN, 761
SHOW command, SQL*Plus, 116–118
SHOW ERRORS command, SQL*Plus, 111
SHOW HM_RUN command, 1034
SHOW INCIDENT command, 1026
SHOW PARAMETER command, 474
SHOW PARAMETER UNDO command, 364
SHOW RECYCLEBIN command, 850
SHRINK SPACE clause

ALTER TABLE command, 929
ALTER TABLESPACE command, 231–232

shrinking segments, online, 927–928
SHUTDOWN ABORT command, 503

crash and instance recovery, 804
system change number (SCN), 200

SHUTDOWN command, ASM instances, 908,
910, 911

SHUTDOWN command, SQL*Plus, 502–505
SHUTDOWN IMMEDIATE command, 492, 503
SHUTDOWN NORMAL command, 502
shutdown scripts, updating post-

installation, 423
SHUTDOWN TRANSACTIONAL command, 503
shutting down database from SQL*Plus,

502–505
SID see ORACLE_SID variable
significance level thresholds, 954
SIGTERM signal, 76
silent mode, DBUA, 430
silent mode, Oracle Universal Installer, 421, 422
silent option (-S), SQL*Plus, 115
SILENT parameter, SQL*Loader, 635
Simplified Recovery Through Resetlogs

feature, 823
simulated backups and restores, RMAN, 743
Single Sign-On feature, 603
single-baseline templates, AWR, 965
single-pass operation, 194
single-row functions, SQL, 1228
site profile file, SQL*Plus, 110
SIZE clause, 216, 230
Sizing tab, DBCA, 488
sizing, database, 37
SKIP parameters, SQL*Loader, 636, 641, 642
SLAs (service level agreements), 468, 731–732
slash asterisk notation (/* ... */), SQL*Plus, 128
slaves, Oracle Scheduler, 997
SLAVETHR statistic, 1061
SMALLFILE keyword, 237
smallfile tablespaces, 172, 236, 238
SMB (SQL Management Base), 1085
system monitor (SMON) process, 181, 184

automatic checkpoint tuning, 932
starting Oracle instance, 479

SMON timer idle event, 1181
snapshot backup techniques, 730
snapshot variables, AWR, 882
snapshot-too-old error, 209, 356, 359, 360,

364, 959
snapshots see AWR snapshots
soft parsing, 191, 343, 1135, 1136

latch contention, 1141
Software and Support page, Database

Control, 148
sort command, UNIX/Linux, 68
SORT parameter, TKPROF utility, 1102
sort segment, temporary tablespaces, 230
SORT_AREA_SIZE parameter, 194
SORTED_INDEXES parameter, SQL*Loader,

641, 642
sorting data

by multiple columns, 1227
guidelines for creating indexes, 297
one-pass sort, 1149

1325■I N D E X

optimal sort, 1149
ORDER BY clause, 263, 1226

sort-merge join, 1052
source command, UNIX/Linux, 55
space

DBMS_SPACE package, 298–299
preinstallation checks, 401
user’s space quota errors, 383

space alerts, 226–227
space management

ADDM recommendations, 881
automatic checkpoint tuning, 932–933
automatic Segment Advisor job, 931
Automatic Segment Space Management, 928
automatic space management, 921–933
Automatic Undo Management (AUM), 921
Data Pump Export estimating, 696, 697
Data Pump technology, 679
DBA_FREE_SPACE view, 243
DBMS_SPACE package, 255–256, 268
deallocating unused space, 268, 928
estimating space requirements, 268
file management with OMF, 922–927
finding unused space in segments, 928
fragmentation, 928
free space, 255–256
managing flash recovery area, 740
manual segment shrinking, 928–929
monitoring resumable operations, 386
online segment shrinking, 927–928
preinstallation tasks, 400
reclaiming unused space, 1090
recursive CPU usage, 1158
removing objects from Recycle Bin, 850
Resumable Space Allocation, 382–386
segment shrinking using Segment

Advisor, 930
segment space management, 217–218
temporary tablespace groups, 233

Space Summary, Performance page, Database
Control, 145

SPACE_BUDGET_PERCENT parameter,
SMB, 1085

SPACE_USAGE procedure, 255, 268
specifiers of time interval, Scheduler jobs, 999
Specify File Locations window, 155
Specify Home Details window, 417
sperrorlog table, SQL*Plus, 111
SPFILE (server parameter file), 177, 446,

493–497
see also initialization files; PFILE
automatic service registration, 521
backup guidelines, 729
cloning databases with RMAN, 836, 837
DB_WRITER_PROCESSES parameter, 182
making changes permanent, 447
OMF control files, 250
post-upgrade actions, 441
reading SPFILE, 473

setting archivelog-related parameters, 491
setting initialization parameters,

post-installation, 424
spindles, disk I/O, 1159
SPLIT PARTITION command, 291
SPM (SQL Plan Management), 1080–1087

parallel execution, 1085
SQL Management Base (SMB), 1085
SQL plan baselines, 1080–1085

SPOOL command, SQL*Plus, 120, 121
restriction levels, 106

spool files, manual upgrade process, 434, 441
spool files, SQL*Plus, 120
sps column, iostat command, 82
SQL (structured query language)

see also PL/SQL
analyzing locks, 353–354
cursors, 1245–1247
determining user’s currently executing

SQL, 619
efficient SQL, 1065–1075

avoiding improper use of views, 1075
avoiding unnecessary full table scans, 1075
bind variables, 1075
bitmap join indexes (BJI), 1069
indexing strategy, 1070–1073
inline stored functions, 1074–1075
monitoring index usage, 1073
removing unnecessary indexes, 1073
selecting best join method, 1068
selecting best join order, 1070
using hints to influence execution plans,

1067–1068
using similar SQL statements, 1074
WHERE clauses, 1065–1067

ending SQL and PL/SQL commands, 103
grouping operations, 1234–1236
hierarchical retrieval of data, 1232
inefficient SQL, 1108–1110
introduction, 22
MODEL clause, 667–670
operators, 1227
optimal mode operation, 194
Oracle SQL Developer, 136
performing online data reorganization,

934–935
regular expressions, 1237–1239
selecting data from multiple tables,

1232–1234
server-executed commands, 103
single-pass operation, 194
transforming data, 658–667
using SQL to generate SQL, 135–136
wildcard characters, 1224
writing subqueries, 1236–1237
XML and SQL, 261

SQL Access Advisor, 212, 320–324, 977
automatic performance tuning features, 1132
creating materialized views, 317

1326 ■IN D E X

evaluation mode, 321
index recommendations, 303
invoking through Database Control, 320–323
invoking through DBMS_ADVISOR, 323
managing/monitoring database, 214
QUICK_TUNE procedure invoking, 324
tuning SQL statements, 1127

SQL Access Mode, 1198
SQL buffers, 125, 128
SQL Developer, 401
SQL files, Data Pump utilities, 681
SQL functions, 1228–1232

aggregate functions, 1229, 1232
analytical functions, 1231–1232
conditional functions, 1230
date functions, 1229
general functions, 1230
histograms, 1232
hypothetical ranks and distributions, 1232
inline stored functions for efficient SQL,

1074–1075
inverse percentiles, 1231
moving-window aggregates, 1231
number functions, 1229
period-over-period comparisons, 1231
ranking functions, 1231
ratio-to-report comparisons, 1231
single-row functions, 1228
statistical functions, 1231

SQL functions, list of
AVG, 1229
CASE, 1230
COALESCE, 1230
CONCAT, 1228
COUNT, 1229
DECODE, 1230
INSTR, 1228
LENGTH, 1228
LOWER, 1228
LPAD, 1228
MAX, 1229
MIN, 1229
NVL, 1230
RANK, 1231
REPLACE, 1228
ROUND, 1229
RPAD, 1228
SUBSTR, 1228
SUM, 1229
SYSDATE, 1229
TO_CHAR, 1230
TO_DATE, 1229
TO_NUMBER, 1230
TO_TIMESTAMP, 1229
TRIM, 1228
TRUNC, 1229

SQL hash value, 343
SQL Management Base (SMB), 1085
SQL MERGE command, 269

SQL Net Services see Oracle Net Services
SQL Ordered by Elapsed Time section, AWR, 970
SQL Performance Analyzer, 213, 1216–1220

change management, 7
database management, 148
database upgrade management, 1081

SQL performance tuning tools, 1090–1105
Autotrace utility, 1095–1099
EXPLAIN PLAN tool, 1090–1095
SQL Trace utility, 1099–1102
TKPROF utility, 1102–1105

SQL plan baselines, 1081–1085
SQL Plan Management see SPM
SQL plans

OPTIMIZER_XYZ_BASELINES parameters,
462, 464

SQL processing, improving, 1075–1080
materialized views, 1077
partitioned tables, 1076
stored outlines, 1077–1080
table compression, 1076

SQL Profile feature, 1068
SQL profiles, 1112, 1115, 1116, 1117
SQL queries see query optimization
SQL Query Result Cache, 1124
SQL Repair Advisor, 1023, 1035–1038
SQL Response Time chart, Database

Control, 1196
SQL scripts

@@commandfile notation, 129
catdwgrd.sql, 434, 442
catupgrd.sql, 434, 438, 439
catuppset.sql, 438, 439
caution when using /, 126, 128
create directory containing, 397
executing command scripts

consecutively, 129
executing in SQL*Plus, 124–126
utlrp.sql, 434
utlu111i/utlu111s.sql scripts, 429, 434
utluppset.sql, 434
viewing script before executing, 128

SQL statements, 261–264, 1223–1226
Automatic Tuning Optimizer (ATO), 1113
AWR performance statistics for, 1184
comparing performance of, 1127
creating stored outlines for, 1079
DDL statements, 264
deadlocks, 340
DELETE statement, 1225–1226
DML statements, 263
embedded SQL statements, 262
executing, JDBC, 539–540
identical statements, 1134
identifying inefficiency in, 1127
identifying problem statements, 1127
identifying SQL with highest waits, 1171
INSERT statement, 1225
instance performance, 1194

1327■I N D E X

object privileges, 570
performance tuning, 1042
processing steps, 1133
processing through JDBC, 538–540
query processing stages, 1043–1046
SELECT statement, 1223–1224
session-control statements, 262
stages of SQL processing, 343
statement-level rollback, 340
system-control statements, 262
terminating in SQL*Plus, 101
terminating, 130
TKPROF utility information on, 1103
transaction control statements, 263
transactions, 196
tuning, 1126–1127
types of, 262
undoing data changes, 374
UPDATE statement, 1226
using similar SQL statements, 1074
wait events, 1162

SQL Test Case Builder, 211, 1023, 1038
SQL Trace utility, 1099–1102

interpreting trace files with TKPROF,
1102–1103

monitoring index usage, 304
providing parse information, 1135–1136
tracing SQL statements, 1107
tuning SQL, 1105
turning on/off, 467

SQL transformation, CBO optimizing
queries, 1051

SQL tuning
configuring automatic tuning, 1117–1119
GUI-based tools, 1120
identifying inefficient SQL statements, 1127
interpreting automatic tuning reports, 1119
managing automatic tuning, 1118–1119
managing tuning categories, 1115
using dictionary views for, 1108, 1110
views managing automatic tuning, 1114

SQL Tuning Advisor, 212, 976, 1111–1115
automatic performance tuning

features, 1132
Automatic SQL Tuning Advisor, 209, 212,

1115–1120
Database Control, 1200
DBMS_SQLTUNE package, 1113–1115
evolving SQL plan baselines, 1083
managing SQL profiles, 1115
managing/monitoring database, 214
OEM running, 1115
performing automatic SQL tuning,

1113–1114
superior SQL plan baselines, 1085

SQL Tuning Sets (STS), 1115, 1217, 1218
SQL*Loader control file, 628–636

APPEND clause, 629
BAD parameter, 635

BEGINDATA clause, 628, 630
bind array, 634
BINDSIZE parameter, 634
command-line parameters, 633–636
CONCATENATE clause, 630
CONTINUEIF clause, 630
CONTROL parameter, 633
DATA parameter, 634
data transformation parameters, 633
data types, 632
datafile specification, 630
delimiters, 632
DIRECT parameter, 634
DISCARD parameter, 635
DISCARDMAX parameter, 635
ENCLOSED BY clause, 632
ERRORS parameter, 634
field list, 629
fixed record format, 631
INFILE parameter, 628, 630
input file field location, 632
INSERT clause, 629
INTO TABLE clause, 629
LOAD DATA keywords, 629
LOAD parameter, 634
LOG parameter, 635
logical records, 630
OPTIONS clause, 633
PARALLEL parameter, 635
physical records, 630
POSITION clause, 632
record format specification, 631
REPLACE clause, 629
RESUMABLE parameters, 635, 636
ROWS parameter, 634
SILENT parameter, 635
SKIP parameter, 636
stream record format, 631
table column name specification, 631
TERMINATED BY clause, 632
USERID parameter, 633
variable record format, 631

SQL*Loader utility, 207, 625, 627–645
COLUMNARRAYROWS parameter, 641
CONSTANT parameter, 636
control file, 628–636
conventional data loading, 639
data-loading techniques, 642–645
DATA_CACHE parameter, 641
datafiles, 628
DEFAULTIF parameter, 642
DIRECT clause, 641
direct-path loading, 639–642
disabling constraints, 308
dropping indexes before bulk data loads, 644
external tables compared, 646
EXPRESSION parameter, 636
EXTERNAL_TABLE parameter, 653
generating data during data load, 636

1328 ■IN D E X

generating external table creation
statements, 653–656

invoking, 637–638
loading data from table into ASCII file, 643
loading into multiple tables, 644
loading large data fields into a table, 643
loading sequence number into a table, 643
loading username into a table, 643
loading XML data into Oracle XML

database, 645
log files, 638–639
MULTITHREADING parameter, 641
NOLOGGING option, 644
NULLIF parameter, 642
optimizing use of, 642
PARFILE parameter, 637
password security, 638
RECNUM column specification, 636
redo entries, 640
REENABLE clause, 642
resumable database operations, 383
return codes, 639
ROWS parameter, 641
SEQUENCE function, 637
SKIP_INDEX_MAINTENANCE clause,

641, 642
SKIP_UNUSABLE_INDEXES clause, 641, 642
SORTED_INDEXES clause, 641, 642
steps when using, 628
STREAMSIZE parameter, 641
sysdate variable, 637
trapping error codes, 645
types of data loading using, 627
UNRECOVERABLE parameter, 640, 641, 642
user pseudo-variable, 643
viewing available parameters, 629
WHEN clause, 642

SQL*Net message from client idle event, 1181
SQL*Plus, 207

& prefixing variable names, 126
actions following commands, 123
adding comments to scripts, 132
archiving redo log files, 135
calculating statistics, 123
caution when using / command, 126, 128
continuation characters, 102
copying tables, 132–133
creating command files, 124–129
creating reports, 122, 123–124
creating web pages using, 134
creating Windows batch script, 126
creating/deleting session variables, 126
displaying environment variable values, 116
editing within SQL*Plus, 129–134
error logging, 111–112
establishing Oracle connectivity, 517
executing contents of SQL*Plus buffer, 125
executing packages/procedures, 121
executing previous command entered, 128

executing SQL command scripts
consecutively, 129

executing SQL scripts in, 124–126
formatting output, 122
Instant Client packages, 520
listing SQL commands, 128
listing table columns and specifications, 119
making DML changes permanent, 133
Oracle SQL*Plus interface, 97
predefined variables, 118, 127
preserving environment settings, 115
printing report footer text, 123
printing report header text, 123
privileged connections, 99
prompts, 99
reasons for using, 97
recovering database/files/tablespaces, 134
removing current settings, 115
restricting usage of, 618
rollback command, 102
saving output to operating system, 120
saving SQL buffer contents to file, 124
saving user input in variable, 121
sending messages to screen, 121
setting default editor’s name, 124
setting environment, 106–107
showing database instance name in

prompt, 118
showing help topics, 106
showing properties of columns, 123
shutting down database from, 502–505
specifying where formatting changes

occurs, 122
starting database from, 497–499
substitution variables, 126
terminating SQL statements, 101, 132
turning off messages after code

execution, 108
using comments in, 128
using operating system commands from, 119
using SQL to generate SQL, 135–136
viewing details about archive logs, 135
viewing output screen by screen, 121
viewing previous command, 128
viewing SQL script before executing, 128

SQL*Plus command files, 124–129
SQL*Plus command-line options, 113–115
SQL*Plus commands

administrative/management commands,
115–118

database administration commands,
134–135

disabling commands, 105
doing commands, 118–122
ending SQL*Plus commands, 103
formatting commands, 118, 122–124
list of available commands, 106
local commands, 103
restriction levels for, 106

1329■I N D E X

running commands sequentially, 124–129
show errors command, 111
terminating SQL*Plus commands, 102
types of commands, 103
working commands, 118–122

SQL*Plus commands, list of
ACCEPT, 121
APPEND, 131
ARCHIVE LOG, 135
BREAK, 122
BTITLE, 123
CHANGE, 129
CLEAR, 115
COLUMN, 123
COMPUTE, 123
CONNECT, 100
COPY, 132–133
DEFINE, 126
DEL, 131
DESCRIBE, 119
ed, 130
EDIT, 106
EXECUTE, 121
EXIT, 102
GET, 106, 128
GRANT, 136
HELP INDEX, 106
HOST, 105, 106, 119
INPUT, 130
LIST, 128
MARKUP, 134
PASSWORD, 547
PAUSE, 121
PROMPT, 121
QUIT, 102
RECOVER, 134
REMARK, 128, 132
REPFOOTER/REPHEADER, 123
RESTRICT, 105
RUN, 125, 126
SAVE, 106, 124
SET, 106–107
SET ERRORLOGGING, 111
SET SERVEROUTPUT, 109–110
SHOW, 116
SHUTDOWN, 502–505
SPOOL, 106, 120, 121
SQLPROMPT, 118
START, 106
STARTUP, 497–499
STORE, 106, 115
TTITLE, 123
UNDEFINE, 126

SQL*Plus environment variables, 107–108
AUTOCOMMIT, 133
BLOCKTERMINATOR, 132
changing, 109
creating/deleting session variables, 126
displaying all values, 116

execution order of glogin.sql and login.sql
file, 111

predefined variables, 127
preserving environment settings, 115
SERVEROUTPUT, 108, 109–110
setting SQL*Plus environment, 106–107
SHOW ALL command, 116
specifying global preferences, 110
specifying individual preferences, 110–111
SQLTERMINATOR, 132

SQL*Plus Instant Client, 98
SQL*Plus security, 103–106
SQL*Plus sessions

connecting through Windows GUI, 101
connecting using CONNECT command, 100
connectionless SQL*Plus session, 101
customizing session, 113
exiting session, 102
NOLOG option, 101
overriding environment variables

within, 111
preferred session settings, 108
privileged connections using AS clause, 99
rollback command, 102
setting Oracle environment for, 98
starting session from command line, 98–100
starting session, 97–101

SQLException method, Java error handling, 540
SQLFILE parameter, Data Pump, 681, 706–707
SQL_HANDLE attribute, 1083
SQLJ, 1253
SQLLDR command, SQL*Loader, 637–638
sqlnet.ora file

backup guidelines, 729
external naming method, 534
local naming method, connections, 526
OID making database connections, 535
securing network, 614

SQLPLUS command
receiving FAN events, 101

sqlplus command
easy connect naming method, 529
starting SQL*Plus session from command

line, 98
sqlplus.sql file, 116
SQLPLUS_RELEASE variable, 128
SQLPROMPT command, 118
SQLPROMPT variable, 108
SQLTERMINATOR variable, 132
SQL_TRACE parameter, 467, 1101
SQLTUNE_CATEGORY parameter, 1115
SQL/XML operators, 1249
SREADTIM statistic, 1061
ssh command, UNIX/Linux, 79
staging directory, Oracle installation, 416
staging element, Oracle Streams, 671
STALE_TOLERATED mode, 316, 465
standard auditing see auditing
Standard Edition, 417

1330 ■IN D E X

standard error/input/output, UNIX, 56
standard.rsp response file template, 422
standby databases

see also Oracle Data Guard
avoiding data center disasters, 802
high-availability systems, 798
Oracle Data Guard and, 799–800
physical and logical, 799

start command, lsnrctl utility, 523
START command, SQL*Plus, 106
START keyword, 1061
START WITH clause, SQL, 1232
START_CAPTURE procedure, 1211
START_DATE attribute, 999, 1014
starting database from SQL*Plus, 497–499
START_JOB parameter, Data Pump, 703,

704, 713
START-POOL procedure, 532
STAR_TRANSFORMATION_ENABLED

parameter, 1078
START_REDEF_TABLE procedure, 938, 939
START_REPLAY procedure, 1214
START_TIME attribute, CREATE_WINDOW, 1015
STARTUP command, ASM instances, 907, 908
STARTUP command, SQL*Plus, 497–499
STARTUP MOUNT command, 492, 498
startup scripts, post-installation update, 423
startup time, improving for instances, 805
STARTUP UPGRADE command, 427, 437
stateful/stateless alerts, 952
Statement object, JDBC, 539
statement timed out error, 384
statement-level audit, 587
statement-level read consistency, 345, 346, 356
statements see SQL statements
statement_types parameter, ADD_POLICY, 594
static data dictionary views, 204
static parameters, 448, 496
static security policy, 584
statistical functions, SQL, 1231
statistics

see also Automatic Optimizer Statistics
Collection

Active Session History (ASH), 971–975
automated tasks feature, 211
Automatic Tuning Optimizer (ATO), 1112
Automatic Workload Repository (AWR), 210
AUX_STATS$ table, 1060
calculating, SQL*Plus, 123
collecting fixed object statistics, 1062
collecting operating system statistics, 1086,

1060–1062
collecting optimizer statistics, 299
collecting real dictionary table statistics, 1063
collecting statistics for column groups,

1058, 1059
collecting statistics on dictionary tables,

1062–1063
COMPUTE STATISTICS option, 299

creating column groups, 1059
database usage metrics, 151
Database Usage Statistics property

sheet, 152
database wait statistics, 1162–1163
DBA_TAB_COL_STATISTICS view, 1049
DBA_TAB_STATISTICS table, 1049
DBMS_STATS package collecting, 1053–1056
deferring publishing of statistics, 1056–1057
determining publishing status of

statistics, 1056
dynamically sampling data, 463
effect when statistics not collected, 1063
examining database feature-usage

statistics, 152
expression statistics, 1059
extended optimizer statistics, 1058–1060
frequency of statistics collection, 1063
GATHER_STATS_JOB, 1047–1049
INDEX_STATS view, 334
making pending statistics public, 1057
manageability monitor (MMON)

process, 185
managing/monitoring database, 213
manual optimizer statistics collection, 900
multicolumn statistics, 1058
operating system statistics, 1061
OPTIMIZER_USE_PENDING_STATISTICS

parameter, 463
Oracle recommendation, 1065
problems due to bad statistics, 1191
providing statistics to CBO, 1053–1056
refreshing statistics frequently, 1086
sampling data, 1053
segment-level statistics, 1173
setting publishing status of statistics, 1057
specifying level of statistics collected, 461
specifying use of pending statistics, 463
statistics retention period, AWR, 960
system usage statistics, 1181
time-model statistics, 879–880
TIMED_STATISTICS parameter, 468
turning on statistics collection, 1167
using histograms, 1086–1087
using OEM to collect optimizer statistics,

1064–1065
V$CPOOL_CC_STATS view, 533
V$CPOOL_STAT view, 533
V$FILESTAT view, 246
V$SESSSTAT view, 959
V$SYSSTAT view, 959
when manual collection is required, 1054

statistics collection job, 1132
statistics management, 147
STATISTICS_LEVEL parameter, 461

ADDM, 881, 883, 888
automatic optimizer statistics collection,

898, 899
creating/deleting snapshot baselines, 963

1331■I N D E X

server-generated alerts feature, 953
setting trace initialization parameters, 1100

Statspack utility, 959
status command, lsnrctl utility, 521
STATUS command, Data Pump, 703, 704, 713
STATUS function, DBMS_RESULT_CACHE, 1123
status information, Grid Control, 159
STATUS parameter, Data Pump, 699, 708
status.sql script, 125
stop command, lsnrctl utility, 523
STOP keyword, operating system

statistics, 1061
STOP_JOB command, Data Pump, 686, 702,

703, 704, 713
STOP_JOB procedure, 1000
STOP_ON_WINDOW_CLOSE attribute, 1016
STOP_POOL procedure, 532
storage, 729

ASM (Automatic Storage Management),
900–920

Storage Area Networks (SANs), 93
storage element (se), Oracle Secure Backup, 789
STORAGE option, Data Pump Import, 711
Storage Options window, DBCA, 487
storage parameters, 220–222
storage, database

Automatic Storage Management (ASM), 209
database management, 146
disk storage requirements, 392
flash recovery area, 734
implementing physical database design, 37

storage, UNIX, 93–95
STORAGE_CHANGE parameter, 978
STORE command, SQL*Plus, 106, 115, 116
STORE IN clause, CREATE TABLE, 283
stored execution plan, 1112
stored functions, inline, 1074–1075
stored outlines, 1077–1080
stored procedures

database security, 577
definer’s rights, creating with, 573
displaying output on screen, 109
invoker’s rights, creating with, 573
Java stored procedures, 1252

stored scripts, RMAN, 747
stream record format, SQL*Loader, 631
streaming, table functions, 662
streams pool, 187, 193, 1148
STREAMSIZE parameter, SQL*Loader, 641
STREAMS_POOL_SIZE parameter, 193, 195, 673
stretch cluster, ASM, 909
stripe size, RAID systems, 88
stripe sizes, logical volumes, 1159
stripe-and-mirror-everything (SAME), 399, 1160
striping

ASM, 901, 914
disk striping, 88, 467
RAID options, 89–90

STRIPING attribute, ASM, 910

strong authentication
ldap_directory_sysauth parameter, 615

STS (SQL Tuning Sets), 1115, 1217, 1218
subclasses, object-oriented database model, 39
SUBMIT_PENDING_AREA procedure, 562
SUBPARTITION BY HASH clause, 288
SUBPARTITION BY LIST clause, 288
SUBPARTITION BY RANGE clause, 289, 290
SUB_PLAN parameter, resource plans, 560
subqueries, SQL, 263, 1067, 1236–1237
substitution variables, SQL*Plus, 126
SUBSTR function, SQL, 663, 1228
success code, SQL*Loader, 639
SUM function, SQL, 1229
summaries, materialized views, 314
Summary window, Oracle Universal

Installer, 419
super administrator account see SYSMAN
supplemental logging

Flashback Transaction Backout feature, 868
LogMiner utility, 842–843

Support Workbench, 211, 1022, 1028–1032
invoking SQL Repair Advisor from, 1035

suppressed mode, Oracle Universal Installer,
421, 422

suspended operations, 385, 386
suspending databases, 505, 945
swap ins/outs, memory management, 81
swap space

preinstallation checklist, 413
preinstallation checks, 401, 403
virtual memory, 1158

swapping
affecting performance, 1205
system usage problems, 1188

SWITCH command, RMAN, 757
using RMAN for TSPITR, 841

SWITCH DATABASE command, RMAN, 816
SWITCH_FOR_CALL parameter, 561, 565
SWITCH_GROUP parameter, 561
SWITCH_IO_MEGABYTES parameter, 561
SWITCH_IO_REQS parameter, 561
SWITCH_XYZ parameters, plan directives, 942
symbolic links, UNIX, 58

automatic database startup, 501
symbolic names, UNIX, 47, 49
symbolic notation, modifying permissions,

60, 61
synchronization

ASM and Cluster Synchronization Service,
902–904

fast mirror resync feature, ASM, 908–909
SYNCHRONIZATION parameter, 1214
SYNC_INTERIM_TABLE procedure, 940
synonyms, 265, 324–327

DBA_SYNONYMS view, 326, 329
SYS parameter, TKPROF utility, 1102
SYS schema, 569

1332 ■IN D E X

SYS user
AUDIT_SYS_OPERATIONS parameter, 588
creating database, 481
data dictionary tables, 203
default password, 475

SYS.AUD$ table, 588, 595, 596
sys.fga_aud$ table, 595
SYSASM privilege, 101, 570

OSASM group, 407
revoking, 902

SYS_AUTO_SQL_TUNING_TASK
procedure, 1118

SYSAUX clause, 239
Sysaux tablespace, 172, 215, 238–240

AWR storage space requirement, 964
creating database, 481
creating, OMF, 926
creating/locating OMF files, 252
database creation log, 484
manual database upgrade process, 438
Pre-Upgrade Information Tool, 428
removing tablespaces, 225, 240
renaming tablespaces, 228, 240
sizing for database creation, 444
various user quotas in, 546

sys_context function, 579
sysctl.conf file, 405
SYSDATE function, SQL, 449, 1229
sysdate variable, SQL*Loader, 637
SYSDBA privilege, 570, 613

ASM instances, 904
connecting using CONNECT command, 100
creating databases, 475
password file, 599
starting SQL*Plus session from command

line, 99
SYSDBA role, 451, 458, 451
SYS_DEFAULT_CONNECTION_POOL, 532
SYS_GROUP resource consumer group,

558, 563
SYSMAN (super administrator account), 148,

157, 158
SYSOPER privilege, 570

ASM instances, 904
connecting using CONNECT command, 100
password file, 599
starting SQL*Plus session from command

line, 99
SYSOPER role, 451, 458
SYSTEM account, 475, 481
System Activity Reporter see sar command, UNIX
system administration, Oracle DBA, 12–13
system administration, UNIX see UNIX system

administration, 76
system administrator

post-installation tasks, 423–424
creating additional operating system

accounts, 424
updating shutdown/startup scripts, 423

preinstallation tasks, 401–410
applying OS packages, 403
changing login scripts, 406
changing shell limits, 406
checking kernel version, 402
checking memory and physical space, 403
checking operating system version, 402
checking OS packages, 403
creating database directories, 410
creating directories, 409–410
creating flash recovery area, 410
creating groups, 406–408
creating mount points, 404
creating Oracle base directory, 409
creating Oracle home directory, 410
creating Oracle Inventory directory, 409
creating Oracle software owner user,

408–409
creating ORAINVENTORY group, 407
creating OSASM/OSDBA/OSOPER

groups, 407
reconfiguring kernel, 404–406
setting file permissions, 409
verifying operating system software,

402–403
verifying unprivileged user exists, 408

system change number see SCN
system configuration files, UNIX, 63
system failures, 802
system global area see SGA
System I/O wait class, 1164
system management, DBA role, 5–7
system metrics, 951
system monitor process see SMON
system monitoring

DBA role, 5, 15
GlancePlus package, 84

system partitioning, 287
system performance

application knowledge for diagnosis, 1182
CPU usage, 1203
database load affecting, 1205
eliminating wait event contention, 1208
evaluating system performance, 1152–1159

CPU performance, 1153–1158
disk I/O, 1158–1159
operating system physical memory, 1158

examining system performance, 1181–1182
I/O activity affecting, 1204
measuring I/O performance, 1159–1161
measuring system performance, 1203
memory affecting, 1205
network-related problems, 1203
Oracle wait events, 1175–1181
reducing I/O contention, 1160
SAME guidelines for optimal disk usage, 1160
wait events affecting, 1206

system privileges, 567–570
System Privileges page, Database Control, 150

1333■I N D E X

System tablespace, 172, 215
creating database, 481
creating, OMF, 926
creating/locating OMF files, 252
database creation log, 484
default tablespace, need for, 544
default temporary tablespaces, 232
removing tablespaces, 225
renaming tablespaces, 228
sizing for database creation, 444
storing undo data, 357
Sysaux tablespace and, 238
using multiple block size feature, 223

system usage statistic, 1181
system-control statements, SQL, 262
system-level triggers, 591–593
systems management, OEM, 139
systemstate dump, database hangs, 1193
SYS_TICKS system usage statistic, 1182

■T
table compression, 274–276, 1076
table functions, 662–667

ETL components, 626
table locks, explicit, 350–351
table lookups, minimizing, 1067
table mode, Data Pump Export, 688
table operations, 267
TABLE parameter, TKPROF utility, 1102
table privileges, 571
table scans, 467
table types

table functions, 664
user-defined data types, 264

table versioning, workspaces, 387
TABLE_EXISTS_ACTION parameter, Data

Pump, 708
table-level Flashback techniques, 848
table-level locks, 349
tables

ALTER TABLE command, 217
avoiding unnecessary full table scans, 1075
caching small tables in memory, 1090
copying tables, SQL*Plus, 132–133
creating tablespaces first, 215
data dictionary tables, 203
designing different types of, 35
dictionary tables, 1062
dropping tables, 224

recovering dropped table, 548
restoring dropped tables, 851–852

dynamic performance tables, 203
encrypting table columns, 607–608
fixed dictionary tables, 1062
Flashback Table, 366, 376–378
full table scans, 1052
heap-organized tables, 1072
indexing strategy, 1070–1073
keys, 20

listing columns and specifications of, 119
locking issues, 1189
multitable inserts, 660–662
naming conventions, 36
online table redefinition, 935, 936–941
ordering of columns, 20
partitioned tables improving SQL

processing, 1076
permanently removing, 852–853
real dictionary tables, 1063
rebuilding tables regularly, 1089
selecting data from multiple tables, SQL,

1232–1234
separating table and index data, 170
sizing for database creation, 444
SQL moving tables online, 935
table access by ROWID, 1052
table structures, 36
transforming ER diagrams into relational

tables, 35
TABLES parameter, Data Pump, 688, 708
tables, Oracle, 265–276

adding columns to, 271
clustered tables, 266
clusters, 295–296
creating, 268–269, 273
data dictionary views for managing, 292–295
database integrity constraints, 306–310
DBA_ALL_TABLES view, 330
DBA_EXTERNAL_TABLES view, 330
DBA_PART_TABLES view, 331
DBA_TAB_COLUMNS view, 332
DBA_TABLES view, 292, 330
DBA_TAB_MODIFICATIONS view, 331
DBA_TAB_PARTITIONS view, 330
default values for columns, 270
dropping columns from, 271
dropping tables, 276
dual table, 265
estimating size before creating, 266, 268
external tables, 280
extracting DDL statements for, 294
full table scans, 297
getting details about tables, 292
guidelines for creating indexes, 297
heap-organized tables, 265
index-organized tables, 265, 278–280
inserting data from another table, 269
moving tables between tablespaces, 273
null value, 269
object tables, 265
organizing tables, 265
partitioned tables, 266, 280–292
read-only mode, 273–274
relational tables, 265
removing all data from, 272
renaming columns, 272
renaming tables, 272
setting columns as unused, 271

1334 ■IN D E X

storing rows, 267
table compression, 274–276
temporary tables, 277–278
views and, 312
virtual columns, 270–271
virtual tables see views

tablespace alerts, 956–958
tablespace backups, 728, 794
tablespace compression, 274
tablespace encryption, 608–610
TABLESPACE GROUP clause, 233
tablespace metrics, 951
tablespace mode, Data Pump Export, 688
tablespace point-in-time recovery (TSPITR),

808, 840–841
tablespace space usage alert, 952
TABLESPACE_MIGRATE_TO_LOCAL

procedure, 218
tablespaces, 170–172

adding tablespaces, OMF, 253, 927
assigning tablespace quotas to new

users, 545
backing up with RMAN, 777
backup guidelines, 730
bigfile tablespaces (BFTs), 172, 236–238
block size, 167
changing default tablespace type, 238
CREATE TABLESPACE statement, 218
creating database, 481, 482
creating permanent tablespaces, 219
creating tables or indexes, 215
creating tablespaces, 218

clauses/options/parameters, 219–223
determining extent sizing and allocation,

220–222
NOLOGGING clause, 227
with nonstandard block sizes, 223

data block sizes and, 171–172
data dictionary views managing, 243–246
datafiles, 170, 173, 219–220
DBCA creating additional tablespaces, 489
default permanent tablespaces, 235–236
default tablespaces, 170
description, 166, 170, 215
encrypted tablespaces, 240–243
enlarging, 174
expanding tablespaces, 223–224
extent sizing, 216
free space, 255–256
locally managed tablespaces, 172
making tablespace offline, 228
managing availability of, 228, 229
mandatory tablespaces, 444
migrating tablespaces, 217
moving tables between, 273
multiple database block sizes and buffer

cache, 190
naming conventions, 398
OFFLINE clauses, 228, 229

operating system files, 215
Oracle Managed Files (OMF), 247–253
permanent tablespaces, 172, 215
Pre-Upgrade Information Tool, 428
read-only tablespaces, 172, 229
recovering tablespaces, 817–818
recovering, SQL*Plus, 134
removing tablespaces, 224–225
renaming tablespaces, 228
RESIZE clause, 219
revoking tablespace quotas to users, 546
segment space management, 221,

217–218, 219
separating table and index data, 170, 171
setting alert thresholds, 957
sizing for database creation, 444
smallfile tablespaces, 172, 236
storage allocation to database objects, 222
storage parameters, 220–222
Sysaux tablespace, 172, 215, 238–240
System tablespace, 172, 215
tablespace quotas, 226
tablespace space alerts, 226–227
temporary tablespace groups, 233–235
temporary tablespaces, 172, 215, 229–235
transportable tablespaces, 171, 716–723
undo tablespaces, 172, 215, 356
UNDO_TABLESPACE parameter, 460
UNLIMITED TABLESPACE privilege, 268
unlimited tablespace usage rights, 546
upgrading with DBUA, 430
user tablespaces, 225
users creating tablespaces, 546
using multiple block size feature, 223
viewing tablespace quotas, 546

TABLESPACES parameter, Data Pump, 688, 708
TAG parameter, RMAN, 756
tags, RMAN backup tags, 753
tail command, UNIX/Linux, 65
tape backups, 726, 729

RMAN (Recovery Manager), 742
tape library components, Oracle Secure

Backup, 789
tar command, UNIX/Linux, 76
target database, RMAN, 743, 840
Target Privileges, Database Control roles, 150
Targets page, Grid Control, 159
TCP/IP protocol, 517, 529
TCP/IP Protocol page, 528
TCP_INVITED_NODES parameter, 615
TDE (Transparent Data Encryption), 240,

241, 608
tee command, RMAN output, 747
telnet, 46, 78
temp files, OMF file-naming conventions,

249, 923
TEMPFILE clause

tablespaces, 219, 230
Oracle Managed Files (OMF), 247

1335■I N D E X

TEMPLATE.TNAME.XYZ attributes, ASM, 910
templates

baseline templates, AWR, 965–971
using templates with aliases, ASM, 917

TEMPORARY clause, CREATE
TABLESPACE, 230

temporary directory, 413, 415
temporary files, UNIX, 63
temporary segments, 169, 184
temporary space, 401, 413
temporary tables, 277–278
temporary tablespace groups, 233–235
temporary tablespaces, 172, 215, 229–235

altering, 231
AUTOALLOCATE clause, 233
creating database, 482
creating, 230–231
creating/locating OMF files, 252, 927
database creation log, 484
DBA_TEMP_FILES view, 246
default temporary tablespace, 232, 234
DEFAULT TEMPORARY TABLESPACE

clause, 232
dropping, 230
encrypted tablespaces, 241
extent sizing, 230
failure to assign default space, 232
managing users, 544
Oracle size recommendation, 231
shrinking, 231–232
sizing for database creation, 444
sort segment, 230
V$TEMPFILE view, 246

TERMINAL attribute, USERENV namespace,
579, 580

terminal emulators, UNIX, 46
TERMINATED BY clause, SQL*Loader, 632
terminating database sessions, 75
terminating processes with kill, UNIX, 75
TERMOUT variable, SQL*Plus, 108
test command, UNIX/Linux, 69, 71
test databases, 9
text editors, UNIX, 63–65
text extraction utilities, UNIX, 65
TEXT pages, Oracle process, 1190
text scripts, RMAN, 747
text, SQL*Plus, 130, 131
theta-join operation, 21
THINK_TIME_XYZ parameters, 1214
Third Normal Form (3NF), 33
threads

identifying user threads in Windows, 621
log%t_%s_%r format, archived redo logs, 823
PARALLEL parameter, Data Pump, 700

thresholds
adaptive thresholds, 954
alert thresholds, 226–227, 953
critical alert thresholds, 226, 952, 954, 956
Database Control setting alert

thresholds, 954

Edit Thresholds page, 954, 955
fixed values, 954
percentage of maximum, 954
proactive tablespace alerts, 956
setting for metrics, 953
significance level, 954
threshold-based alerts, 952
warning alert thresholds, 226, 952, 954, 956

time
CONNECT_TIME parameter, 549
ENABLE_AT_TIME procedure, 368
execution time limit resource allocation

method, 555
idle time resource allocation method, 555
IDLE_TIME parameter, 549
logical time stamp, 199
PASSWORD_XYZ_TIME parameters, 550
Pre-Upgrade Information Tool, 428
RESUMABLE_TIMEOUT parameter, 470

time-based recovery, RMAN, 821
TIME column, top command, 84
time-model statistics

ADDM, 879–880
data collected by AWR, 960
DB time metric, 878

Time Model Statistics section, AWR reports, 969
Time Periods Comparison feature, 1206
TIME variable, SQL*Plus, 108
time zone data type, 430
time-based recovery, 820, 824
TIMED_STATISTICS parameter, 468, 1100
TIMEHINT parameter, 379, 869
TIMEOUT clause, ALTER SESSION, 384
TIMESTAMP data type, 1223
time-stamping methods, data concurrency, 347
time stamps

Flashback Database example, 860
TIMESTAMP_TO_SCN function, 847

timing
CLEAR TIMING command, SQL*Plus, 115

TIMING variable, SQL*Plus, 108
titles

placing title on page, SQL*Plus, 123
TKPROF utility, SQL, 1099, 1101, 1102–1105

end-to-end tracing, 1107
examining parse information, 1136
reducing parse time CPU usage, 1157

/tmp directory, UNIX, 63, 403, 404
TMPDIR variable, 413
TNS_ADMIN variable, 412, 526
tnsnames map file, 533
tnsnames.ora file

backup guidelines, 729
cloning databases with RMAN, 836
connecting to database, 100
connecting to Oracle, 206
connecting to SQL*Plus through Windows

GUI, 101
connecting using CONNECT command, 100
directory naming method, 534

1336 ■IN D E X

easy connect naming method, 530
external naming method, 533
installing Oracle Client, 518
local naming method, connections, 525, 526
location of, 412
modifying manually, 526–528
modifying with NCA, 528–529
remotely connecting to Oracle database, 98
removing EXTPROC functionality, 614
specifying DRCP connection, 532
typical file, 526

TO SCN clause, FLASHBACK TABLE, 378
TOAD software, SQL tuning, 1120
TO_CHAR function, SQL, 1230
TO_DATE function, SQL, 1229
TO_NUMBER function, SQL, 1230
tools, Oracle, 213–214
Top 5 Timed Events section, AWR reports, 969
Top Activity page, Database Control, 1200
Top Background Events section, ASH

reports, 973
Top Blocking Sessions section, ASH reports, 974
top command, UNIX/Linux, 84, 1186
Top Service/Module section, ASH reports, 973
Top Sessions page, Database Control, 1200
Top Sessions section, ASH reports, 974
Top SQL Command Types section, ASH

reports, 974
Top SQL statements, 1115
Top SQL Statements section, ASH reports, 974
Top SQL Using Literals section, ASH

reports, 974
Top User Events section, ASH reports, 973
Top-N analysis, SQL subqueries, 1236
Total Recall, 1209
TO_TIMESTAMP function, SQL, 1229
touch command, UNIX/Linux, 63
touch count, buffer cache, 1146, 1148
TO_XYZ conversion functions, SQL, 1223
trace directory, ADR, 178, 1024
trace files, 178, 958
tracing

collecting timed statistics during, 468
creating trace in user dump directory, 1136
DBMS_MONITOR package, 1175
DBMS_SYSTEM package, 1175
enabling, 1135
end-to-end tracing, 1105–1107
event 10046 tracing SQL code, 1174
oradebug utility performing trace, 1174
sec_protocal_error_trace_action

parameter, 615
SQL Trace utility, 1099–1102
SQL_TRACE parameter, 467
TKPROF utility, SQL, 1102–1105

tracking block changes, RMAN, 779
training, DBA, 10–11

Oracle by Example (OBE), 14
Oracle Database Two-Day DBA course, 14

Oracle MetaLink, 15
Oracle online learning program, 11
Oracle Web Conference (OWC), 15
resources, 13–14

Transaction Backout see Flashback
Transaction Backout

transaction control statements, SQL, 263
transaction identifier, 371
transaction management, 337
Transaction Playback page, Grid Control, 160
transaction recovery, 804, 806
TRANSACTION_BACKOUT procedure, 379,

868, 869
transaction-level read consistency, 345, 346
transactions, 196–197, 337–340

abnormal program failure, 338
ACID properties, 340
automatic checkpoint tuning, 932
backing out transactions, 869–870
COMMIT statement, 338–339
COMMIT_LOGGING parameter, 339
committing transactions, 196, 197–198, 340
COMMIT_WAIT parameter, 339
compensation transactions, 868
creating transaction temporary table, 278
data concurrency, 341–342, 347–355
data consistency and, 196
database consistency, 342
DDL and DML statements, 338
fast commit mechanism, 199
Flashback error correction using undo data,

366–368
Flashback Transaction, 366, 379–380
Flashback Transaction Query, 366, 372–375
how Oracle processes transactions, 196
ISO transaction standard, 342
isolation levels, 342–346
limiting execution times, 942–943
locking and, 350
long-running transactions affecting

performance, 1202
making permanent in database files, 181
monitoring backout of, 380
monitoring performance with Grid

Control, 160
naming, 340
normal program conclusion, 338
processing, 196, 338
redo log files, 176
ROLLBACK statement, 338, 339–340
rolling back transactions, 196, 198
SAVEPOINT command, 339
SHUTDOWN command, 503
statement-level read consistency, 356
system change number (SCN), 200
undo data providing read consistency,

356–366

1337■I N D E X

undo management, 200, 921
undo segment, 338

TRANSACTIONS parameter, 455
transactions, Oracle

autonomous transactions, 380–382
DBMS_TRANSACTION package, 380
discrete transactions, 380
managing long transactions, 386–388
managing transactions, 380–382
Resumable Space Allocation, 382–386
Workspace Manager, 386–388

transaction-set consistent data, 199
transfer rate, RAID systems, 88
transform operator, SQL/XML, 1249
TRANSFORM parameter, Data Pump, 710–711
transformations, SQL, 1051
transforming data, 626, 656–670

see also ETL (extraction,
transformation, loading)

deriving data from existing tables, 657
MERGE statement, 658–660
MODEL clause, 667–670
SQL*Loader/external tables compared, 646
table functions, 662–667
using SQL to transform data, 658–667

transform-then-load method, 626
transform-while-loading method, 626

table functions, 662
transient files, flash recovery area, 735
transition point, partitioning, 282
transparency, synonyms, 325
Transparent Application Failover feature, 802
Transparent Data Encryption (TDE), 240, 241,

604–608
encrypting table columns, 607–608
encryption algorithms, 608
generating master encryption key, 607
Oracle Wallet, 605–606

transparent encryption, 763
TRANSPARENT value, Data Pump, 695, 696
TRANSPORTABLE parameter, Data Pump,

694, 710
transportable tablespaces, 171, 716–723

converting datafiles to match endian
format, 721

copying export/tablespace files to target, 719
copying files to target system, 722
Data Pump Import importing metadata, 723
determining endian format of platforms, 720
ensuring tablespaces are self contained, 721
ETL components, 626
exporting dictionary metadata for, 718
exporting metadata using Data Pump, 721
generating transportable tablespace set,

717–719
importing metadata from dump file, 719
making tablespace read-only, 721
performing tablespace import, 719–720
referential integrity constraints, 716
selecting tablespace to transport, 716

self-contained criteria, 716
TRANSPORT_FULL_CHECK parameter, 691
transporting tablespace across platforms,

720–723
transporting tablespaces between databases,

716–720
TRANSPORT_SET_CHECK procedure, 717
uses for, 716

TRANSPORTABLE_TABLESPACES
parameter, 705

TRANSPORT_DATAFILES parameter, 708
TRANSPORT_FULL_CHECK parameter, 691,

708, 717, 721
TRANSPORT_SET_CHECK procedure, 717, 721
TRANSPORT_TABLESPACE parameter, 718
TRANSPORT_TABLESPACES parameter,

688, 708
trees, B-tree index, 298
trial recovery, 864–866
triggers, 328–329, 590–593

deriving data from existing tables, 657
ensuring data validity, 37
SQL*Loader direct-path loading, 641

TRIM function, SQL, 1228
troubleshooting

alert log file, 178
recovery errors, 866–870

TRUNC function, SQL, 1229
TRUNCATE command, SQL, 272, 1226
TRUSTED mode

QUERY_REWRITE_INTEGRITY parameter,
316, 465

try ... catch blocks, Java, 540
TSPITR (tablespace point-in-time recovery),

808, 840–841
TTITLE command, SQL*Plus, 123, 116, 124
TTS_FULL_CHECK parameter, 718
TUNE_MVIEW procedure, 317
tuning

see also performance tuning
automatic checkpoint tuning, 932–933
Automatic SQL Tuning Advisor, 209, 212,

1115–1120
automatic undo retention tuning, 209
buffer cache, 1144–1148
hard parsing and soft parsing, 1135–1143
instance tuning, 1129–1130, 1194–1209

see also instance performance
Java pool, 1148
large pool, 1148
Oracle memory, 1132–1152
Oracle Tuning Pack, 149, 949
PGA memory, 1148–1152
proactive tuning, 1042
self-tuning mechanism, AWR, 959
shared pool, 1133–1135
SQL Tuning Advisor, 212, 1111–1115
streams pool, 1148
tuning SQL statements, 1126–1127

tuning mode, Oracle optimizer, 1111

1338 ■IN D E X

tuning pack, Server Manageability Packs, 459
tuples, 20, 21
TWO_TASK environment variable, 519
txnames parameter, 869
%TYPE attribute, PL/SQL, 1242
type inheritance, abstract data types, 1240
TYPICAL value, STATISTICS_LEVEL

parameter, 461

■U
UDUMP (default trace directory), 168
umask command, 409
UMASK variable, UNIX, 61, 613
uname command, UNIX/Linux, 49
unary operations, relational algebra, 21
UNASSIGN_ACL procedure, 617
UNCOMPRESS clause, ALTER TABLE, 275
UNDEFINE command, SQL*Plus, 126
underscore (_) character, SQL, 1224
Undo Advisor, 977, 980–981

automatic performance tuning
features, 1132

sizing undo tablespaces, 359, 362, 365
undo data, 356–366

active/inactive, 359
Automatic Undo Management (AUM),

356–362
backup and recovery architecture, 201
committed/uncommitted, 359
committing transactions, 338
determining default tablespace for, 460
Flashback error correction using, 366–368
Flashback Table, 376
Flashback Transaction, 379
Flashback Transaction Query, 373
insufficient data to flash back, 377
OEM managing, 365–366
retaining in undo tablespace, 359
RETENTION GUARANTEE clause, 367
storing, 460
storing in System tablespace, 357
undo records, 356
UNDO_RETENTION parameter, 373

Undo Generation and Tablespace Usage
graph, 366

UNDO keyword, CREATE TABLESPACE, 358
undo management, 200, 560

Automatic Undo Management (AUM), 921
undo pool method, Database Resource

Manager, 555
undo records see undo data
undo retention, 360

default, 361
guaranteed undo retention, 362–365
RETENTION GUARANTEE clause, 363

undo retention tuning, 209
undo segments, 169

AUM, 200, 361, 357, 922
AWR determining number of, 359

committing transactions, 198
data consistency, 199
fast ramping up of, 359
managing undo information in, 359
rolling back transactions, 198
transactions, 338

undo space
managing automatically, 357
managing undo space information, 364–365

undo tablespaces, 172, 215
adding space to, 358
auto-extensible undo tablespaces, 358

reason against auto-extensible, 362
automatic undo retention, 361
before-image records, 176, 197, 356
changing and editing, 365
CREATE UNDO TABLESPACE

statement, 218
creating, 358
creating database, 482
creating, OMF, 927
creating/locating OMF files, 252
database creation log, 484
default choice of, 358
dropping, 364
encrypted tablespaces, 241
inserting new row, 197
multiple undo tablespaces, 357, 358
RETENTION GUARANTEE clause, 374
rolling back transactions, 198
setting up Oracle Streams, 672
sizing, 358, 360, 362, 364

for database creation, 444
OEM Undo Advisor assisting, 365

system activity and usage statistics, 365
using Flashback features, 367

undocumented initialization parameters, 473
UNDO_MANAGEMENT parameter, 200,

357, 460
UNDO_POOL parameter, 365, 943
undo-related parameters, 460–461
UNDO_RETENTION parameter, 200,

359–362, 460
automatic undo retention tuning, 209
Flashback Query, 367
Flashback Table, 377
Flashback Transaction Query, 373
Flashback Versions Query, 370
guaranteed undo retention, 362, 367
setting up Oracle Streams, 673
snapshot-too-old error, 364

UNDO_TABLESPACE parameter, 357–359, 460
UNDROP clause, ALTER DISKGROUP, 916
UNIFORM extents option, 216, 221

using bigfile tablespaces, 237
UNIFORM SIZE clause, creating tablespaces,

221, 230
uninstalling Oracle, 425–426
UNION operation, 21, 1071

1339■I N D E X

UNION operator, SQL, 1228
uniq command, UNIX/Linux, 68
UNIQUE constraint, 300, 307
unique identifiers see primary keys
unique indexes, 297, 299
Universal Installer see Oracle Universal Installer
UNIX, 43

accessing UNIX system, 46–48
archiving, 76
backup and restore utilities, 76–77
changing shell prompt, 51
customizing environment, 55
directory structure, 47
disk availability, 87
disk partitioning, 87
disk performance, 87
disk striping, 88
displaying environment variables, 54
Emacs text editor, 65
file systems, creating, 87
files, 62
flow control structures, 71–74
input/output redirection, 56–57
kernel, 45
Linux compared, 43, 45
logical volumes, 88
monitoring disk usage, 86
operating system level permissions, 613
redirection operators, 56
remote access to UNIX server, 78
scheduling jobs, 77
session, 47
shell scripting, 68–74
starting SQL*Plus session from, 99
vi text editor, 63–65
Vim text editor, 65

UNIX boxes, 47
UNIX commands, 48–57

basic commands, 48
batch mode, 54
bin directory, 48
built-in commands, 48
controlling output of commands, 52
editing previous commands, 50
interactive mode, 54
passing output between commands, 52
retrieving previous commands, 50

UNIX commands, list of
at, 78
batch, 78
case, 74
cat, 52, 58
cd, 48, 62
chgrp, 62
chmod, 60, 61, 70
chsh, 46
cp, 59
cpio, 76, 77
crontab, 77–78

cut, 66
date, 48
dd, 76
df, 81, 86
diff, 53
du, 81, 86
echo, 48
egrep, 66
env, 54
exit, 48
export, 51, 53, 54
fgrep, 66
find, 52
ftp, 79
get, 79, 80
glance, 85
gpm, 85
grep, 49, 65
head, 65
history, 49
iostat, 82
join, 67
kill, 75
link, 57
ln, 58
ls, 58, 59
man, 48, 50
mkdir, 62
more, 52, 58
mv, 59
netstat, 85
nohup, 75
page, 53
passwd, 49
paste, 67
pipe (|), 52
ps, 74, 81
put, 80
pwd, 49
rcp, 79
rlogin, 78, 79
rm, 59, 62
rman, 745
rmdir, 62
sar, 83
scp, 79
setenv, 54
sort, 68
source, 55
ssh, 79
tail, 65
tar, 76
telnet, 78
test, 69, 71
top, 84
touch, 63
uname, 49
uniq, 68
vmstat, 82

1340 ■IN D E X

whatis, 51
whereis, 49
which, 49
who, 50
whoami, 50

UNIX directories see directories, UNIX
UNIX disk storage see disk storage, UNIX
UNIX files see files, UNIX
UNIX knowledge, DBA, 12
UNIX processes, 74–76

runnable process, 80
thread analogy, 179

UNIX shell scripts see shell scripts, UNIX
UNIX shells see shells, UNIX
UNIX system administration, 76

accessing remote computers, 78
backup and restore utilities, 76–77
crontab and automating scripts, 77–78
Oracle DBA and, 76
performance monitoring, 80–81
performance monitoring tools, 81–85
remote copying, 79
remote login (Rlogin), 78
scheduling database tasks, 77–78
Secure Shell (SSH), 79
sending and receiving files using FTP, 79
telnet, 78

UNIX variables, 53, 54
UNKEEP procedure, 1138
UNKNOWN status, Oracle listener, 522
UNLIMITED TABLESPACE privilege, 268, 546
UNLIMITED value, default profile, 550, 551
unloading data, populating external tables, 650
UNPACK_STGTAB_SQLSET procedure, 1218
unprivileged user, verifying existence of, 408
unrecoverable datafiles, 759
UNRECOVERABLE parameter

backup guidelines, 729
SQL*Loader utility, 640, 641, 642

until-do-done loop, UNIX, 73
unused block compression feature, RMAN, 742
UNUSED_SPACE procedure, 255
update anomaly, 29, 32, 33
UPDATE GLOBAL INDEXES option, 302
UPDATE statement, 263, 287, 1226, 1242
UPDATE-ELSE-INSERT operation, 658
updates

Critical Patch Updates, 617
lost-update problem, 341
RULES UPDATE specification, 669

upgrade actions script, 438
UPGRADE CATALOG command, RMAN, 771
Upgrade Results window, DBUA, 433
upgrade script, 438
Upgrade Summary window, DBUA, 432
upgrade.log spool file, 435
upgrading databases

see also manual database upgrade process
preserving database performance, 1080

upgrading to Oracle Database 11g, 426–441
case sensitivity of passwords, 491
Database Upgrade Assistant (DBUA), 428,

430–433
ensuring database compatibility, 452
manual database upgrade process, 427,

434–441
methods and tools, 427–430
post-upgrade actions, 441
Post-Upgrade Status Tool, 429
preparing database for upgrading, 430
Pre-Upgrade Information Tool, 428–429
resetting passwords, post-upgrade, 441
retaining behavior of older software

release, 463
upgrade paths, 426–427

upserts, 626, 658, 659, 669
used_bytes attribute, CREATE_INDEX_COST, 299
user accounts, database security, 611
user authentication, 596–602
user class, Oracle Secure Backup, 788
user-created variables, UNIX, 53
user-defined object types, 264
user-defined variables, UNIX, 54
user errors, 802, 803
User I/O wait class, 1163, 1164
user management, 544, 619, 620
user processes, 179
user profile file, 110–111
user profiles, 548–553

altering, 552, 619
FAILED_LOGIN_ATTEMPTS parameter, 612
managing resources, 554

user pseudo-variable, SQL*Loader, 643
user tablespaces, 225
USER variable, SQL*Plus, 118, 119, 127
USER views, 204
useradd command, 408
USER_ADVISOR_XYZ views, 324
USER_DUMP_DEST parameter, 1101, 1102
USERENV namespace, 579, 580
USERID parameter, SQL*Loader, 633, 718
user-managed backups, 790–795
user-managed control file recovery, 826–828
user-managed copies, RMAN, 752
user-managed datafile recovery, 819–820
user-managed incomplete recovery, 824
user-managed recovery without backup, 829
user-managed tablespace recovery, 818
user-managed whole database recovery,

816–817
USER_RECYCLEBIN view, 850
users

altering properties of user’s session, 262
altering users, 547
assigning users to consumer groups, 562
centralized user authorization, 602
changing another user’s password

temporarily, 620

1341■I N D E X

changing user’s password, 547
configuring, Oracle Secure Backup, 788
controlling use of resources, 548

COMPOSITE_LIMIT parameter, 549
creating Oracle software owner user, 408–409
creating users, 544–547

assigning tablespace quotas, 545
privileges, 545
temporary tablespace groups, 234

current system users, 50
DBA views managing, 577
DBCA changing passwords for default users,

490–491
denying access to database, 548
dropping users, 547–548
enterprise user security, 603–611
granting privileges to users with UTL_FILE

package, 257
granting role to another user, 576
identifying high CPU users, 1154
LICENSE_MAX_USERS parameter, 461
listing user information, 619
managing users, 544, 619, 620
password management function, 552
privileged users, 599
profiles see user profiles
program global area (PGA), 193
resource consumer groups, 557
revoking tablespace quotas, 546
saving user input in variable, 121
schema-independent users, 603
SHOW USER command, 117
specifying maximum number of, 461
unlimited tablespace usage rights, 546
users creating tablespaces, 546
users with most waits, 1170
verifying existence of nobody, 408
whoami command, 50

USERS tablespaces, 484
USER_TABLESPACES view, 238
USER_TICKS system usage statistic, 1181
USE_STORED_OUTLINES parameter, 1079
USING clause, RMAN commands, 747, 750, 751
USING clause, role authorization, 575
utilities, Oracle, 207–208
utl_dir directory, 257
UTL_FILE package, 256–259

setting permissions, 613
specifying directory for processing I/O, 454

UTL_FILE_DIR parameter, 257, 454, 613
utllockt.sql script, 353, 355
utlpwdmg.sql script, 552
UTL_RECOMP package, 439
utlrp.sql script, 432, 434, 439, 440
utlu111i.sql script, 429, 434, 435
utlu111s.sql script, 429, 434, 440
utluppset.sql script, 434
utlxplan.sql script, 1091, 1092, 1095
UTL_XYZ packages, 615

■V
V$ tables

using V$ tables for wait information,
1165–1166

V$ views
see also dynamic performance views
V$ACTIVE_SESSION_HISTORY, 971, 972,

1169, 1170, 1171, 1186
V$ADVISOR_PROGRESS, 978
V$ALERT_TYPES, 958
V$ARCHIVE, 1187
V$ARCHIVED_LOG, 795, 813, 844
V$ASM_DISK, 909
V$BACKUP, 795
V$BACKUP_CORRUPTION, 782, 864
V$BACKUP_DATAFILE, 779
V$BACKUP_FILES, 760, 780
V$BACKUP_SET, 744
V$BGPROCESS, 971
V$BLOCK_CHANGE_TRACKING, 779
V$BUFFER_POOL_STATISTICS view, 1145
V$CONTROLFILE, 175
V$COPY_CORRUPTION, 782, 864
V$CPOOL_CC_STATS, 533
V$CPOOL_STAT, 533
V$DATABASE, 507, 854
V$DATABASE_BLOCK_CORRUPTION, 865
V$DATAFILE, 246, 795, 812, 900, 993
V$DB_CACHE_ADVICE, 189, 1145
V$DIAG_INFO, 1023, 1026
V$ENCRYPTED_TABLESPACES, 243
V$ENQUEUE_STAT, 1179
V$EVENT_NAME, 1175
V$FILESTAT, 246, 1177
V$FLASHBACK_DATABASE_XYZ views, 858
V$FLASH_RECOVERY_AREA_USAGE, 740
V$HM_CHECK, 1032
V$HM_XYZ views, 1033
V$INSTANCE, 507
V$INSTANCE_RECOVERY, 805, 1205
V$LATCH, 1168
V$LIBRARYCACHE, 1137, 1138
V$LIBRARY_CACHE_MEMORY, 1138
V$LOCK_XYZ views, 354
V$LOG, 795, 985
V$LOGFILE, 900, 984
V$LOG_HISTORY, 795, 823
V$LOGMNR_CONTENTS, 842, 845, 847
V$MAP_XYZ views, 994
V$MEMORY_XYZ views, 896
V$METRICNAME, 958
V$OBJECT_USAGE, 305, 1073
V$OSSTAT, 1181
V$PARAMETER, 473, 494
V$PGASTAT, 1149, 1150
V$PGA_TARGET_ADVICE, 1149
V$PROCESS, 1152
V$PROCESS_MEMORY, 1151
V$PWFILE_USERS, 600

1342 ■IN D E X

V$RECOVERY_FILE_DEST, 740
V$RECOVERY_LOG, 813
V$RESTORE_POINT, 863
V$RESULT_CACHE_XYZ views, 1123
V$RMAN_COMPRESSION_ALGORITHM, 764
V$RMAN_CONFIGURATION, 762
V$RMAN_ENCRYPTION_ALGORITHM, 763
V$RMAN_OUTPUT, 764, 782, 813
V$RMAN_STATUS, 782, 813
V$ROLLSTAT, 365
V$RSRC_CONSUMER_GROUP, 566
V$RSRC_PLAN, 566, 1013
V$SEGMENT_NAME, 1173
V$SEGMENT_STATISTICS, 1173, 1206
V$SEGSTAT_XYZ views, 1173
V$SERVICEMETRIC_XYZ views, 951
V$SESSION, 352, 354, 566, 621, 960, 972,

1106, 1166, 1168, 1169, 1189, 1195
V$SESSION_EVENT, 1162, 1165, 1203
V$SESSION_FIX_CONTROL, 1036
V$SESSION_LONGOPS, 714, 783, 943
V$SESSION_WAIT, 386, 960, 1163, 1165,

1169, 1171, 1176, 1195, 1203
V$SESSION_WAIT_CLASS, 1172
V$SESSION_WAIT_HISTORY, 1168
V$SESSSTAT, 959, 1156, 1203
V$SESS_TIME_MODEL, 880, 1206
V$SGA_TARGET_ADVICE, 1145
V$SHARED_POOL_ADVICE, 1138
V$SORT_SEGMENT, 230
V$SORT_USAGE, 230
V$SPPARAMETER, 177, 494
V$SQL, 1089, 1108–1110
V$SQLAREA, 1109, 1168, 1204
V$SQL_CS_XYZ views, 1089
V$SQL_PLAN, 1110, 1127, 1202
V$SQL_PLAN_STATISTICS, 1110
V$SQL_WORKAREA_HISTOGRAM, 1150
V$SYSAUX_OCCUPANTS, 225
V$SYSMETRIC_XYZ views, 951, 1164
V$SYSSTAT, 959, 1141, 1156, 1181
V$SYSTEM_EVENT, 1162, 1165, 1166, 1167,

1173, 1204
V$SYSTEM_WAIT_CLASS, 1172
V$SYS_TIME_MODEL, 879, 1206
V$TABLESPACE, 238, 246, 812, 993
V$TEMPFILE, 230, 231, 246
V$TRANSACTION, 340, 365
V$UNDOSTAT, 360, 365
V$WAITCLASSMETRIC, 1173
V$WAITSTAT, 1167

VALIDATE BACKUP command, RMAN, 810–811
VALIDATE BACKUPSET command, RMAN, 761
VALIDATE BACKUPSET command, RMAN,

783, 811
VALIDATE clause, 309
VALIDATE command, RMAN, 783–784
VALIDATE option, RMAN, 811
VALIDATE STRUCTURE clause, 934
VALIDATE_PENDING_AREA procedure, 562

validating objects online, SQL, 934
validating operator, SQL/XML, 1249
validation commands, RMAN, 761
validation methods, data concurrency, 347
VALID_TABLE_LIST parameter, 978
value-based security, 312
values

default values for columns, 270
null value, 269

VALUES LESS THAN clause, CREATE TABLE, 281
VARCHAR2 data type, 1222
VARIABLE clause, 647
variable record format, SQL*Loader, 631
variables, SQL*Plus see SQL*Plus environment

variables
variables, UNIX, 53, 54
VARRAY type, 1240
VERIFY variable, SQL*Plus, 108
verify_function_11g function, 552
versions, 394

checking kernel version, 402
checking operating system version, 402
fixing bugs, 1131
Flashback Versions Query, 366, 369–372
identifying changed row versions, 375
locating product files, 397
multiple names for same version, 395
preinstallation checks, 401
Pre-Upgrade Information Tool, 428
retaining behavior of previous versions, 463
retrieving version of UNIX command, 49
table versioning and workspaces, 387
timing conversion to new version, 1131
variable naming Oracle database version, 128

VERSIONS BETWEEN clause, 370, 372
VERSIONS BETWEEN TIMESTAMP clause, 874
vi text editor, UNIX, 63–65
view privileges, 571
view resolution, 314
views, 312–314

see also data dictionary views
avoiding improper use of, 1075
database security, 577
getting part/full text of views, 332
managing database objects, 329
materialized views, 314–320, 1077

Vim text editor, UNIX, 65
virtual columns, 270–271

partitioning, 286
VIRTUAL keyword, 270
virtual memory, 1158
virtual private catalogs, RMAN, 772–774
virtual private database see VPD
virtual tables see views
vmstat utility, UNIX, 82, 1153, 1181, 1186
VNC (Virtual Network Computing), 46
volume identification sequence, 789
VPD (virtual private database), 578

column-level VPD, 585–586

1343■I N D E X

■W
wait classes, 1163, 1171

analyzing instance performance, 1164
breakdown of waits by, 1172
determining total waits and percentage waits

by, 1164
metric values of, 1173
time spent in each type, 1172

Wait Event History, Database Control, 1200
wait event views, 1163
wait events, 1163

analysis-based performance approach, 1183
ASH reports, 975
buffer busy wait events, 1175–1177
checkpoint completed wait event, 1177
collecting wait event information, 1174–1175
complete listing of, 1175
database wait statistics, 1162
db file scattered read wait event, 1177
db file sequential read wait event, 1178
DBMS_MONITOR package, 1175
DBMS_SYSTEM package, 1175
direct path read/write wait events, 1178
eliminating contention, 1208
enqueue waits event, 1179
event 10046 tracing SQL code, 1174
free buffer waits event, 1178
idle wait events, 1181
ignoring the unimportant, 1183
instance-wide wait event status, 1167
latch free wait events, 1179–1180
log buffer space wait event, 1180
log file switch wait event, 1180
log file sync wait event, 1181
most important recent wait events, 1170
Oracle wait events, 1175–1181
oradebug utility performing trace, 1174
system performance, 1206
V$SESSION_WAIT view, 1195
V$SESSION_WAIT_HISTORY view, 1168

wait information
analyzing with Active Session History, 1169
key dynamic performance tables

showing, 1165
obtaining, 1167–1168
using V$ tables for, 1165–1166

WAIT option
committing transactions, 339
MODE parameter, LOCK TABLE, 351

wait statistics
data collected by AWR, 960
dynamic performance views containing, 1163
identifying SQL with highest waits, 1171
measuring instance performance, 1162–1163
not relying on, 1182
objects with highest waits, 1170
segment-level statistics, 1173
users with most waits, 1170

waits
investigating waits, 145
tuning shared pool, 1133

WAITS parameter, TKPROF utility, 1102
wallet directory, 241
wallet-based encryption, RMAN backups, 782
Warehouse Builder, 401
WAREHOUSES table, 1093
warm backups, 728
warning alert thresholds, 226, 952, 954, 956
warning code, SQL*Loader, 639
warnings

out-of-space warnings, 741
warning_value attribute, 227
%wcache column, sar command, 83
web applications

connecting to Oracle, 513
monitoring with Grid Control, 160

web based management, OEM, 138
web pages, SQL*Plus generating, 115, 134
web services data, 666
whatis command, UNIX/Linux, 51
WHEN clause, SQL*Loader, 642
WHEN MATCHED THEN ... clauses, 659
WHENEVER [NOT] SUCCESSFUL auditing

option, 587
WHERE clauses

Cartesian product, 1068, 1232
conditions used in, 1224
efficient SQL, 1065–1067
filtering data, 1226
guidelines for creating indexes, 297
LIKE condition, 1224
subqueries, 263
using instead of HAVING clause, 1067
using SQL functions in, 1066

whereis command, UNIX/Linux, 49
which command, UNIX/Linux, 49
WHICH_LOG attribute, PURGE_LOG, 1012
WHILE LOOP statement, PL/SQL, 1244
while-do-done loop, UNIX, 72
who command, UNIX/Linux, 50
whoami command, UNIX/Linux, 50
whole closed backups, 790–791
whole database backups, 727, 728
whole database recovery, 814–817
whole disk configuration, 88
whole open backups, 792–793
wildcard characters, SQL, 1224
window groups, Oracle Scheduler, 997, 1017
WINDOW_PRIORITY attribute, 1014
Windows

at scheduling utility, 126
creating Windows batch script, 126
GUI connecting to SQL*Plus, 101

windows, Oracle Scheduler, 996, 1013
changing resource plans using windows,

1013–1017
creating, 1014–1015

1344 ■IN D E X

managing, 1015–1016
overlapping windows, 1015

precedence for, 1017
predefined maintenance windows, 1020
prioritizing jobs, 1016–1017

WITH ADMIN OPTION clause
granting roles, 570, 576
granting system privileges, 569

WITH READ ONLY clause, 312
WM$VERSIONED_TABLES table, 387
WM$VERSION_TABLE table, 387
WORD_WRAPPED option, FORMAT clause, 109
WORKAREA_SIZE_POLICY parameter, 194
worker process, Data Pump, 686
Workload Source page, SQL Access Advisor, 322
workloads

analyzing after-upgrade SQL workload, 1219
analyzing prechange SQL workload, 1218
Automatic Workload Repository, 210,

959–971
capturing production workload, 1210,

1211, 1217
collecting operating system statistics, 1061
Database Replay, 1214, 1215–1216
DBMS_WORKLOAD_CAPTURE

package, 1210
preprocessing workload, 1211
replaying captured workload, 1211

Workspace Manager, 386–388
workspaces, 386, 387, 388

WRAPPED option, FORMAT clause, 109
write-ahead protocol, 182, 199, 340
write permission, UNIX files, 59
write-allowed period, Oracle Secure

Backup, 789
writer processes, specifying number of, 455

■X
X Window emulation, 46, 414
X$ tables, 204
XDBURIType data type, 1249
xhost program, 412, 416
xids parameter, TRANSACTION_BACKOUT, 869
XML (Extensible Markup Language)

audit parameters, 450
semistructured database model, 41
SQL*Loader utility, 645
SQL/XML operators, 1249
viewing XML stored in Oracle table, 1250
XML and SQL, 261

XML DB, Oracle, 1248–1252
XML documents

creating relational view from, 1252
inserting into Oracle table, 1250

XML schema
setting up XML schema, 1251
user-defined data types, 264

XML value, AUDIT_TRAIL parameter, 587
XMLType data type, 1249

	cover-large.gif
	front-matter
	front-matter(1)
	fulltext(1)
	fulltext(2)
	fulltext(3)
	fulltext(4)
	front-matter(2)
	fulltext(5)
	fulltext(6)
	fulltext(7)
	fulltext(8)
	front-matter(3)
	fulltext(9)
	fulltext(10)
	front-matter(4)
	fulltext(11)
	fulltext(12)
	front-matter(5)
	fulltext(13)
	fulltext(14)
	fulltext(15)
	fulltext(16)
	front-matter(6)
	fulltext(17)
	fulltext(18)
	front-matter(7)
	fulltext(19)
	fulltext(20)
	back-matter

