
Leonid Nossov
Hanno Ernst
Victor Chupis

Formal 
SQL Tuning 
for Oracle 
Databases
Practical E�  ciency - E�  cient Practice

www.allitebooks.com

http://www.allitebooks.org


Formal SQL Tuning for Oracle Databases

www.allitebooks.com

http://www.allitebooks.org


ThiS is a FM Blank Page

www.allitebooks.com

http://www.allitebooks.org


Leonid Nossov • Hanno Ernst •
Victor Chupis

Formal SQL Tuning for
Oracle Databases
Practical Efficiency - Efficient Practice

www.allitebooks.com

http://www.allitebooks.org


Leonid Nossov
ORACLE Deutschland B.V. & Co. KG
M€unchen, Germany

Hanno Ernst
T-SYSTEMS INTERNATIONAL GMBH
Bamberg, Germany

Victor Chupis
Vodafone GmbH
D€usseldorf, Germany

ISBN 978-3-662-50416-1 ISBN 978-3-662-50417-8 (eBook)
DOI 10.1007/978-3-662-50417-8

Library of Congress Control Number: 2016950905

# Springer-Verlag Berlin Heidelberg 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

Translation from the German language edition “Formales SQL-Tuning f€ur Oracle-
Datenbanken”. # Springer-Verlag 2016.
Translated from the German by Jane Scorah and David Thackray.
Graphical Illustrations by Anna Nosova.

www.allitebooks.com

http://www.allitebooks.org


I know that I know nothing
Socrates

www.allitebooks.com

http://www.allitebooks.org


ThiS is a FM Blank Page

www.allitebooks.com

http://www.allitebooks.org


Foreword by Watson

The mantra I chant relentlessly is “you must understand your data; you must

understand your queries.” By this I mean that if a developer has a complete

understanding of the information he is processing, he will be able to write code

that will run efficiently. The critical decisions that Oracle’s cost-based optimizer

must make are join order, join method, and access method. Use of structures such as

DISTINCT to remove duplicates when none exist, or OUTER JOIN when INNER

JOIN will do, or needless functions around predicate columns, or inappropriate use

of NULL will force the CBO to develop plans that do not make the best decisions

and therefore cripple performance. There are more complex issues such as whether

views are mergeable or predicate pushable, whether correlated subqueries can be

factored out into common table expressions—any number of other optimizations.

The CBO (cost based optimizer) will do its best, but even though it is probably the

most complex software artifact with which you will ever work, all it can do is

follow rules. It does not have the knowledge of what is actually possible given the

business environment that a developer will (ideally) have.

If the developer has a thorough understanding of his data and queries, he will be

able to write code that lets the optimizer make the best decisions. However, this

knowledge may take an immense amount of time to acquire, and the necessary

information may not be available. Certainly an outside consultant on a short-term

contract has no chance of gaining it, and all too often the DBA (database

adminstrator) cannot do so either. The methodology presented in this book will

allow any competent DBA to tune SQL, even if he has minimal knowledge of the

environment. That is the power of this method: You do NOT need to have a

comprehensive understanding of the data or the SQL. You do not even need to

know what the SQL being executed is or be able to rewrite it.

The approach taken in this book is vital to the division of responsibilities in an

Oracle environment. Historically, Oracle’s approach to SQL tuning was that the

DBA should identify the statements that have (or are causing) problems and throw

them back to the developer for tuning. However, all too often when asked to tune a

statement, a developer would reply “how do I do that?” and as a result many DBAs

spend 8 hours a day tuning SQL. In later releases of the database, Uncle Oracle has

realized this, and now Oracle’s approach appears to be that developers should

concentrate on writing code that fulfills a business need and DBAs should be

vii

www.allitebooks.com

http://www.allitebooks.org


responsible for making it run efficiently. The formal method described will help

DBAs to do just that.

The step-by-step method will identify points in an execution plan that are

problematic for performance and suggest how to tune them. Comprehensive

instruction on how to capture, read, and interpret an execution plan is essential

for this, and the book delivers this in spades. Essential reading for all DBAs.

Oracle Certified Master DBA John Watson

Director of Database Services

Skillbuilders Inc.

Wakefield

RI, USA

June 2016

viii Foreword by Watson

www.allitebooks.com

http://www.allitebooks.org


Foreword by Gosejacob

Leonid Nossov’s current work deals specifically with the central aspect of perfor-

mance tuning for Oracle databases, the analysis and acceleration of SQL

statements. I was, of course, delighted when Leonid asked me to write a few

introductory lines for this book too.

I can well imagine some potential readers being somewhat deterred by the title

“Formal SQL Tuning,” which sounds very dry and theoretical. In my view,

however, it best reflects the nature of the method described. The term “formal

tuning” can also be seen here as a synonym for a structural approach.

The current version of the Oracle database provides a comprehensive arsenal of

analysis possibilities and tools, which simplify, or even automate, the tuning of

SQL statements. However, situations repeatedly occur in which these possibilities

can only be exploited to a limited extent or, in some cases, not at all. One of my

colleagues jokingly calls this the expert mode. We regularly encounter disbelieving

faces when this method achieves amazing runtime improvements. The colleague in

question has now been awarded the title Dr. SQL by some clients.

Particularly when swift action and, hopefully, positive results are expected,

stress levels for DBAs can increase sharply. From my own experience, I remember

situations in which the DBA was trying to solve performance problems in front of

the screen at the keyboard while the rest of the room was filled with a dozen people,

including the production manager. The consistent formal approach presented in this

book can be a lifeline in such a situation.

Leonid and his co-authors succeed in serving up this rather dry material in an

easily digestible and appetizing manner in the lively dialogues with Peter Smith,

with whom I, as a reader, can easily identify. This is made possible by the use of

numerous examples which present the material under consideration in a clear

manner and make the relevant information directly accessible to the reader. Possi-

ble solutions for the diagnosed problem are supplied at the same time.

ix

www.allitebooks.com

http://www.allitebooks.org


Let me congratulate you Leonid on another fine book, and I wish you the reader

an enjoyable reading experience and the time to learn formal SQL tuning at your

leisure, so that you can shine with this knowledge when the next critical situation

comes up.

Munich, Germany Martin Gosejacob

August 2015

x Foreword by Gosejacob



Foreword by Schwinn

I must admit that this is the first time I have held one of Leonid Nossov’s books in

my hands. I became aware of this book through my colleague Martin, as I myself

am often confronted with questions about SQL tuning or database monitoring. SQL

tuning is also “trendy” and has long been a popular topic in the database commu-

nity. Almost anyone who is anyone in this field has a blog on the subject of SQL

tuning. Especially after the release of new database patches or even a new version,

there is an increase in the amount of information on the Internet about new

optimization methods with associated tips and tricks.

Consequently, I was very curious about this book by Leonid and his co-authors

Victor Chupis and Hanno Ernst with the title “Formal SQL Tuning,” which was so

different from other books and articles I had read. I had no idea what to expect. As a

mathematician, I was, of course, familiar with formal methods. Mathematical

methods are often regarded as very “dry” and of little interest to nonscientists. I

was, therefore, all the more surprised by the relaxed, easily readable “question and

answer” style which Leonid uses in his book. This enables one to familiarize

oneself with the material quickly and with a minimum of effort. If you really read

every chapter—even those designated for beginners—you can even learn how

execution plans are interpreted. In this way, database administrators and developers

get a chance to gain positive, personal, hands-on experience of tuning tasks even

though they are not SQL tuning experts and do not possess a lot of previous

knowledge about data modeling. It is then also interesting to read what

co-authors Victor Chupis and Hanno Ernst have to say. They put the formal SQL

tuning method to the test and successfully solve real-life problems.

The three authors are very successful in focusing on the essentials of SQL

tuning. Equipped with formal SQL tuning methodology, one can then calmly and

confidently cope with changes to the database due to new optimizer releases or

in-house application changes. I hope all readers enjoy this book, which I heartily

recommend.

Munich, Germany Ulrike Schwinn

10 August 2015

xi



ThiS is a FM Blank Page



Preface

When I wrote the chapter “Formal SQL Tuning” in [1], I never thought that there

would be a sequel to it. In my opinion, the method was clear and obvious. For this

reason the above-mentioned chapter seemed more than adequate for the under-

standing and application of the proposed formal method.

As is often the case, things turned out differently in practice. Firstly, this method

is not at all common—at least not among the participants of the SQL tuning

workshop which I have been conducting for some time. Up to now I have never

found anyone who previously knew of this method, although there were enough

experienced specialists among the participants. Secondly, this method cannot be

quickly understood. I had to use a lot of examples and exercises in order to teach the

others formal SQL tuning. Thirdly, this method proved to be very efficient. I have to

admit that I prefer manual SQL tuning and don’t use Oracle’s automatic method.

Instead, I have been applying the above-mentioned method for years now, always

with success. Some of the workshop participants have said that this method has also

been of benefit to them. I have been pleased to hear that it helps them to analyze and

solve performance problems quickly.

To my amazement, I found no book which described this method. Perhaps I

missed something or perhaps other authors had neglected this simple method.

However, I now believe that this method is an important element of practical

SQL tuning.

Two excellent database specialists, Victor Chupis and Hanno Ernst, are also of

this opinion, and so the idea of writing a book together was born. I wrote the

chapters in which formal SQL tuning is described. In contrast to [1], this method is

presented here in a much more structured and detailed way. It was also very

important for us to present our practical experience. Victor Chupis and Hanno

Ernst were responsible for this part of the book.

Dortmund, Germany

25 May 2015

Leonid Nossov

xiii



ThiS is a FM Blank Page



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Aims and Target Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 An Overview of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Some Thoughts on the Term “SQL Tuning” . . . . . . . . . . . . . . . . . . 5

2.1 SQL Tuning: Definitions and Objectives . . . . . . . . . . . . . . . . . . 5

2.2 SQL Tuners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Developer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Database Administrator . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Minimum Minimorum on the Subject of the “Execution Plan” . . . 11

3.1 Can You Read Execution Plans? . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Some Important Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Sections of the Execution Plan . . . . . . . . . . . . . . . . . . . . 12

3.2.2 Optimizer Estimations and Costs . . . . . . . . . . . . . . . . . . 20

3.2.3 Runtime Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Approaches to Formal SQL Tuning . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 The Objective: Effective SQL Tuning . . . . . . . . . . . . . . . . . . . . 25

4.2 The Principle: Elimination of “Brakes” in the Execution Plan . . . 26

4.3 The Method: Analysis of Runtime Statistics in the Execution

Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 The Main Criterion: The Runtime Statistic “Cardinality” . . . . . . 27

4.5 The Procedure: An Iterative Process . . . . . . . . . . . . . . . . . . . . . 28

4.6 The Guideline: Tuning Without Changing the SQL Statement . . . 28

5 Bottlenecks in the Execution Plan . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 “Local” Problems in the Execution Plan . . . . . . . . . . . . . . . . . . 31

5.1.1 A Missing Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.2 A Nonselective Index . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.3 An Index with a Large Clustering Factor . . . . . . . . . . . . 38

xv



5.1.4 A Sparse Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.5 Nested Loop Join Instead of Hash Join and Vice Versa . . . . 43

5.2 “Global” Problems in the Execution Plan . . . . . . . . . . . . . . . . . . 48

5.2.1 Formal Rules for Changing the Table Order in a Join . . . 48

5.2.2 Joins with a Low Number of Hits . . . . . . . . . . . . . . . . . . 53

5.2.3 Joins with a Large Hit Quantity . . . . . . . . . . . . . . . . . . . 64

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Procedure of Formal SQL Tuning . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Practical Experience with Formal SQL Tuning . . . . . . . . . . . . . . . 79

7.1 Hanno’s Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.1.1 Statistics on Problem Categories . . . . . . . . . . . . . . . . . . . 80

7.1.2 A Small Synthetic Test Case in Respect of a Nonselective

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1.3 Practical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2 Victor’s Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2.1 The First Practical Example . . . . . . . . . . . . . . . . . . . . . . 88

7.2.2 The Second Practical Example . . . . . . . . . . . . . . . . . . . . 90

8 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Appendix: Application of the Formal Principle for the Analysis of

Performance Problems After an Oracle Migration . . . . . . . . . . . . . . . . 97

Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

xvi Contents



Introduction 1

This chapter contains a brief description of our aims and the readership to which

this book is addressed. A brief overview is provided here to help potential readers

decide whether to purchase the book. This overview will also provide a useful

orientation aid to those who already have a copy. A number of people assisted us in

writing this manuscript. We would like to take this opportunity to thank them for

their help.

Another important point to mention is that Peter Smith, a friend of Leonid’s, was

a character in his first book. Several chapters were written in the form of dialogues

with Peter. This had the effect of making the dry material a bit more palatable for

the reader. His questions, input, and suggestions were extremely helpful in

presenting a difficult topic like performance tuning in an easier and more compre-

hensible manner for the reader. In the meantime, Hanno and Victor have also made

friends with Peter. This gave us the idea of inviting Peter Smith to participate again.

As he had enjoyed his first performance in front of an audience so much, he agreed

to appear again. With the first book, he increased his knowledge of performance

tuning. Now it is the turn of SQL tuning. For those who are not yet acquainted with

Peter, he would like to introduce himself:

Peter: “As you already know, my name is Peter Smith. I am still working as an

Oracle database administrator for a medium-sized enterprise. As a result of my

participation in the book on performance tuning, I have developed a keen interest in

this topic. I have learned a great deal, and the difficult times when I was confronted

with two suboptimally performing databases and didn’t know what to do are a thing

of the past. Although I have improved my knowledge of SQL tuning, it is, unfortu-

nately, far from adequate. This is what prompted me to take on the role of

Dr. Watson once again.”

# Springer-Verlag Berlin Heidelberg 2016

L. Nossov et al., Formal SQL Tuning for Oracle Databases,
DOI 10.1007/978-3-662-50417-8_1

1



1.1 Aims and Target Groups

The main objective of this book is to popularize formal SQL tuning. This method

has a number of advantages:

– It is very simple. Even database specialists with minimal knowledge of perfor-

mance tuning can quickly master and successfully apply this technique.

– For experienced specialists, this method provides a structured, targeted

approach, which simplifies and accelerates SQL tuning considerably.

– Knowledge of data models is not a must for formal SQL tuning. The motto of the

book “I know that I know nothing” (as far as the data model is concerned)

reflects this advantage—even if somewhat exaggeratedly. This is especially

advantageous for people who are often involved with unfamiliar databases or

applications.

– By means of a few simple formal rules, one can quickly recognize problematical

steps in the execution plan and initiate appropriate improvement measures.

We, the authors, are fascinated by this method. Consider how often you have

been confronted by a SQL problem and didn’t know where to begin. Formal SQL

tuning offers an action plan, which normally provides a quick solution to the

problem.

A lot of books on SQL tuning don’t actually describe a tuning method, but more

a method for efficient SQL programming. This assumes good SQL skills and data

model knowledge. Such books are primarily aimed at developers because they

possess this knowledge. It is different with database administrators, who usually

know little or nothing about the relevant data model. Their SQL skills are often

relatively modest compared to that of developers.

The formal method enables database administrators to carry out SQL tuning too,

as the technique does not require knowledge of data models. Good SQL know-how

is always an advantage when carrying out SQL tuning. If, however, your knowledge

of SQL is not perfect, this is no major obstacle to the successful use of formal SQL

tuning because, in practice, most SQL problems can be solved by relatively simple

means. For this reason, this book is mainly directed at database administrators.

Each of the authors can name several examples of the successful use of formal

SQL tuning. Quite often the authors proved to be even faster and more efficient

tuners than the developers. Developers can therefore use formal SQL tuning to

supplement their own methods and, in some cases, as a better alternative.

1.2 An Overview of the Book

This is not a SQL tuning textbook. The authors try to present the idea of SQL tuning

in as concise and as comprehensible manner as possible. Before we begin with SQL

tuning, we have to clarify what we understand by SQL tuning, what aims we are

pursuing, etc. This is the topic of Chap. 2.

2 1 Introduction

http://dx.doi.org/10.1007/978-3-662-50417-8_2


It is not necessary to have any in-depth knowledge of SQL tuning to make a

successful start with the formal method. Basic knowledge is sufficient. It is, however,

essential to have a rough understanding of execution plans, as one has to analyze these

during formal SQL tuning. At the beginning, we thought that it was obvious that

database specialists would have a rough notion of execution plans. Actually, this is

true for most of them, but by no means all. When conducting a workshop on SQL

tuning, one of us got into difficulties:When he was explaining very simple details, the

participants were unable to follow him. He tried in vain to make them understand by

reformulating and giving various examples but finally realized that the participants

lacked even an elementary knowledge of execution plans. In order to avoid such cases,

we decided to include Chap. 3. As the name of the chapter implies, it contains the

essentials for understanding the formal method without difficulty.

Experienced readers can omit this chapter or perhaps leaf through it. Maybe they

will find something interesting there.

The next chapter (Chap. 4) deals with the “philosophy” of this method. Without

going into great detail, this chapter describes the objectives of the formal method,

what the method is based on, what criteria it uses, and how it is carried out.

Formal SQL tuning consists of several steps. The most important of these,

without doubt, is the analysis of the execution plan or, in other words, the recogni-

tion of bottlenecks in the execution plan. Such an analysis can be applied not only

when tuning individual SQL statements but also for other problems, such as

troubleshooting. For example, it can be used successfully for performance problems

after an Oracle release change. Chapter 5 deals with this analysis. There we

examine the bottlenecks involved in most practical cases encountered on a daily

basis. We deliberately limit these cases to their essentials, so that the description is

clear to the reader. Other cases can be analyzed according to the same principle.

In Chap. 6 the formal method is described in full.

Some practical experience is summarized in Chap. 7. In this chapter, some

statistical information on the categories of problems which have occurred in

practice is also presented.

In the appendix, an example is shown of how the same formal principle can be

used in the analysis of performance problems after an Oracle migration.

1.3 Acknowledgments

The authors would like to thank their families for the patience and understanding

they have shown.

We are very grateful to Anna Nosova for her creative and humorous illustrations.

We imagine muses to be females who gather around the authors and stimulate their

creative talents.Ourmuse is of a completely different kind. It ismale and heftily built but

is nevertheless an inexhaustible source of inspiration for us.Many thanks to Peter Smith!

Leonid Nossov would especially like to thank Wolfgang M€uller for his constant
support and motivation.

1.3 Acknowledgments 3

http://dx.doi.org/10.1007/978-3-662-50417-8_3
http://dx.doi.org/10.1007/978-3-662-50417-8_4
http://dx.doi.org/10.1007/978-3-662-50417-8_5
http://dx.doi.org/10.1007/978-3-662-50417-8_6
http://dx.doi.org/10.1007/978-3-662-50417-8_7


Some Thoughts on the Term “SQL Tuning” 2

Before we really get started, it makes sense to clarify what we mean by SQL tuning.

We will do that in this chapter.

2.1 SQL Tuning: Definitions and Objectives

Peter: “It is obvious what SQL tuning is.”

Author: “How would you define it then?”

P.: “SQL tuning is a process which optimizes execution plans in the best

way possible.”

A.: “What do you understand by optimization?”

P.: “Reducing the runtime of each SQL statement, of course.”

A.: “It is not as obvious as that. When several processes execute a SQL

statement simultaneously and compete for certain database resources,

one can decide in favor of a non-optimum execution plan in some

situations. In this way, the runtime of an execution deteriorates but the

waiting time decreases due to less competition, so that the total runtime

of the competing processes improves.”

P.: “If that’s your only comment. . .”
A.: “What I like even less is your best possible optimization.”

P.: “Why?”

A.: “For several reasons. Firstly, this criterion isn’t necessary for SQL

tuning. It is perfectly good enough to achieve an acceptable performance

with SQL tuning. With your definition, you could fall into a trap: Often

one doesn’t know what the best possible optimization is. As a result, one

doesn’t know if the tuning process has been completed or not. What is

more, something which is optimal on one system may not be optimal on

another. The definition must therefore refer to a certain system.”

P.: “You’ve completely ruined my definition.”

# Springer-Verlag Berlin Heidelberg 2016

L. Nossov et al., Formal SQL Tuning for Oracle Databases,
DOI 10.1007/978-3-662-50417-8_2

5



A.: “Wait a minute Peter, I’m not finished yet. We still have to make clear

that what we mean by SQL tuning in this book is the tuning of individual

SQL statements.”

P.: “Isn’t that obvious?”

A.: “No. Imagine that your system is performing suboptimally after an

Oracle migration. In this case it doesn’t help to tune the individual

SQL statements because there are usually too many of them. You have

to find a reason for this problem (often it is a new optimizer feature).

That is a different process, although you can use a similar principle to

formal SQL tuning for this analysis (see the example in the appendix).”

P.: “Could you please define what you understand by SQL tuning? Criticism

should be constructive.”

A.: “Before I do that, I’d like to mention one more aspect of SQL tuning.

The improvement measures for one executive plan must not be to the

detriment of another. This can be especially critical with acute perfor-

mance problems where there is no time to test the improvement

measures. Now I can formulate my understanding of SQL tuning. By

SQL tuning we mean a process by which an acceptable performance of a

SQL statement is achieved on a system. Improvement measures for one

SQL statement must not adversely affect another. Let’s begin directly

with a suboptimally performing SQL statement. How you identify the

problematical SQL statement as described in detail in [1].”

2.2 SQL Tuners

There are three categories of SQL tuners: Oracle, developers, and database

administrators. In this section we will briefly discuss how each of these tuners

operates.

2.2.1 Oracle

Peter: “Does Oracle do SQL tuning? That’s new to me.”

Author: “Oracle’s optimizer creates high-performance execution plans and, in

this way, makes life much easier for the other two SQL tuner groups.”

P.: “In my view that isn’t SQL tuning. We have agreed that SQL tuning is

responsible for improving suboptimal execution plans.”

A.: “The optimizer is being constantly upgraded with automatic tuning

elements.”

P.: “What exactly do you mean by that?”

A.: “For example, the statistics feedback feature (cardinality feedback in

Oracle 10 and 11). That is part of automatic reoptimization in 12c. When

6 2 Some Thoughts on the Term “SQL Tuning”



Oracle notices that the real cardinality in the first execution differs

greatly from the estimation, the optimizer calculates a new execution

plan in which the cardinality gained in the first execution is taken into

consideration. It then uses this plan in the next executions. Let’s consider

another feature: adaptive plans. At the time of execution, Oracle decides

which join method it is best to use (nested loop or hash join).”

P.: “Those are only a few elements of SQL tuning.”

A.: “Oracle also has SQL tuning advisor. This advisor can function in two

modes: automatic and manual. During tuning, Oracle makes some

improvement proposals (e.g., regarding access paths), calculates statis-

tics which are specific to the SQL statements in question (that is to say

for the relevant predicates), and saves these statistics in the form of

optimizer hints in a SQL profile. These statistics represent adjustments

or corrections to the optimizer estimations in the relevant execution plan.

We’ve already discussed SQL profiles in some detail in [1]. I assume

you’ve forgotten.”

P.: “Actually, I have forgotten. I take back my objection: Oracle does do

SQL tuning. Can you say something about the quality of this tuning?”

A.: “The quality of automatic tuning in Oracle 11 and 12 has improved

noticeably. The basic principle of calculating specific statistics is effec-

tive and absolutely correct. It is no wonder the same principle is used in

some other methods of SQL tuning (e.g., in [4]).”

P.: “What use are such methods if Oracle has already implemented that?”

A.: “These methods are similar but not identical to Oracle’s SQL tuning.

One shouldn’t forget that Oracle’s automatic SQL tuning requires a

license. The other methods can be used if one has no tuning pack license,

for example.”

P.: “If such methods are so good, why do you still need formal SQL

tuning?”

A.: “I can give you a couple of reasons. Firstly, every method has its

disadvantages and doesn’t always help. Secondly, calculating specific

optimizer statistics can take an unacceptably long time (e.g., in the case

of a join of many large tables). In our opinion, such gathering of statistics

can be avoided if runtime statistics are already available in the execution

plan. This saves a lot of time. There is another reason. Formal SQL

tuning is very easy. The analysis of runtime statistics in the execution

plan is based on some simple rules and can be carried out by any

developer or database administrator. For this reason, we go our own

way in SQL tuning (Fig. 2.1).”

2.2 SQL Tuners 7



2.2.2 Developer

Author: “A developer is in a very good position to achieve successful SQL

tuning. He is familiar with the relevant data model and often knows

immediately what an efficient execution plan should look like. If tuning

requires a reformulation of the SQL statement, this is also no great

problem for him because he normally has extensive SQL knowledge.”

Peter: “I agree with you completely. That’s why I often consult a developer

when a SQL statement is running suboptimally.”

A.: “Does that mean that you don’t even try to solve the problem yourself?”

P.: “My knowledge of SQL tuning is mostly inadequate. Anyway, I think

SQL tuning is really a job for developers.”

A.: “So you are sure that a developer can apply SQL tuning much better than

a database administrator?”

P.: “Yes, I think so.”

A.: “Then I’ll try to change your mind. In this section I’ll show you some

disadvantages of developers as SQL tuners. In the next section I’ll

explain why a database administrator can also be successful in SQL

tuning.”

P.: “What disadvantages do you mean? You yourself said that a developer

has a good basis for carrying out SQL tuning.”

A.: “If there is no developer on hand, that doesn’t help you. What will you

do in such a situation?”

P.: “Then I’m in trouble. But that’s no argument against the developer.”

A.: “It depends how you look at it. You would always have to have a

developer available for SQL tuning. That’s not always possible.”

Fig. 2.1 Different routes—

the same goal

8 2 Some Thoughts on the Term “SQL Tuning”



P.: “Obviously. But I hope you can list me a few more disadvantages.”

A.: “Imagine that software developed for relatively small companies is

being used at a large company. In this case, the data volume and data

distribution are different from the standard a developer is used to. Then

at least some of the advantages the developer has to offer for SQL tuning

are lost. I have often seen developers having problems in such situations.

They may then point out alleged hardware bottlenecks or incorrect

parameterization of the database. However, when a database administra-

tor is brought in, and the situation analyzed in more detail, it often

emerges that there are problems in the SQL area.”

P.: “That is something I have also experienced.”

A.: “It is not unusual for a developer to carry out unnecessary alterations to

the SQL text during SQL tuning.”

P.: “Is that bad?”

A.: “When a performance problem is acute, it has to be remedied as quickly

as possible. For organizational reasons, a program change usually

requires several days. As the person responsible for the database, you

have to survive these days somehow.”

P.: “How should SQL tuning be practiced then?”

A.: “I’ll explain that in the next section.”

2.2.3 Database Administrator

Author: “I often hear that no SQL tuning is possible without knowledge of data

models. Unfortunately, this opinion is very widespread. What do you

think, Peter?”

Peter: “Well, yes, you do have to know something about the data model.”

A.: “I, on the other hand, am sure that it is unnecessary. The formal method

which we describe in this book does not require any knowledge of data

models.”

P.: “I can’t imagine that.”

A.: “In practice I often see that database administrators are very keen to

leave SQL tuning to the developers because they are convinced that they

have no chance of succeeding with SQL tuning. The developers, on the

other hand, don’t mind if the database administrators perform this task

(Fig. 2.2).”

P.: “So who should carry out SQL tuning?”

A.: “The database administrator is responsible for the database. So it is

primarily in his interest for the database to run efficiently.”

P.: “So you think the database administrator should perform SQL tuning?”

A.: “The database administrator should start SQL tuning. That is particularly

important when there are no developers available or if the relevant

performance problem is acute. Formal SQL tuning enables him to

2.2 SQL Tuners 9



perform this task. In most cases, he can successfully complete SQL

tuning alone. It is only in very rare cases that this is impossible without

a developer.”

P.: “When is that?”

A.: “If one has to change the SQL statement for tuning purposes. It is also

possible that the data model is so unsuitable for the SQL statement that it

is hardly tunable at all. In this case, one either has to change the data

model or completely rewrite the SQL statement. Then it is necessary to

have a developer.”

P.: “I have to get used to the idea, and that’s not easy. Compared to a

developer, the database administrator is at a distinct disadvantage as

far as SQL tuning is concerned.”

A.: “What other disadvantages can you name, apart from lack of data model

knowledge, which is not necessary for SQL tuning anyway?”

P.: “An average database administrator is not very skilled in SQL. He’s only

able to program simple SQL statements.”

A.: “That is often totally adequate, because, in most cases, one can perform

tuning without any changes to the SQL statement.”

P.: “How is that possible?”

A.: “We’ll discuss that in the section “The Guideline: Tuning Without

Changing the SQL Statement.” I think we have talked enough about

the term “SQL tuning.” Now let’s begin with formal SQL tuning. First,

however, I have to say something about the execution plan.”

Fig. 2.2 After you

10 2 Some Thoughts on the Term “SQL Tuning”



Minimum Minimorum on the Subject
of the “Execution Plan” 3

3.1 Can You Read Execution Plans?

Ask yourself this question. If you can’t, or are unsure and hesitant with your answer,

this chapter is for you.

It has a single objective: To impart the minimum knowledge of the execution

plan necessary to enable you to read this book. In this respect, this chapter can be

regarded as an introduction to the topic of the “execution plan.” This minimum

knowledge is also sufficient to gain a command of the method of formal SQL

tuning.

3.2 Some Important Details

Imagine you have an execution plan in front of you. What do you see? What

information could be useful for SQL tuning? How can this be applied practically?

Let’s ask our helper Peter Smith.

Author: “Peter, how familiar are you with this material?”

Peter: “I think ‘to some extent’ would be an appropriate answer.”

A.: “Then let’s try to improve your knowledge. How do you visualize

execution plans?”

P.: “I normally use the DBMS_XPLAN package, but I have a question. You

are talking about the execution plan. Isn’t explain plan of any interest to

us?”

A.: “Yes, it is, but it plays a subordinate role because these two plans often

differ. So we have to start with an execution plan for SQL tuning. The

function DBMS_XPLAN.DISPLAY_CURSOR displays execution

plans for cursors from the SQL area. For example, the following SQL

statements can be used for this purpose:

# Springer-Verlag Berlin Heidelberg 2016

L. Nossov et al., Formal SQL Tuning for Oracle Databases,
DOI 10.1007/978-3-662-50417-8_3

11



sql_id and child_number of the respective cursor are to be found in

the view V$SQL.

If you want to display an execution plan of the SQL statement just

performed, you can initially execute this SQL statement followed by the

command below:

Let’s take the output of this function as a basis for our little study of

the execution plan as it’s relatively complete and contains practically all

useful details required for SQL tuning. With the argument FORMAT,

one can define the output of individual sections of the execution plan.

The value ‘ADVANCED’ triggers the output of all sections. We already

discussed this in [1]. I suggest that we start with these sections and

discuss the most important ones.”

3.2.1 Sections of the Execution Plan

3.2.1.1 Plan

Author: “This is the first section. What do you see there, Peter?”

Peter: “I thought the first section was the SQL text.”

A.: “You’re right of course, but an unformatted SQL text is not very

important for us. So let’s start with the plan.”

P.: “Alright. In this section the execution plan itself is shown.”

A.: “As you see, it is in the form of a table. The ‘operation’ column contains

the relevant operations or steps of the execution plan, e.g., ‘index range

scan’ or ‘table access full.’ These steps are in numerical order (see

column ‘Id’).”

P.: “Some operations are indented to the right.”

A.: “Yes, because the plan is hierarchical and is displayed accordingly.

An operation A (e.g., ‘index range scan’) is subordinate to the other

operation B (e.g., ‘table access by index rowid’) if it is located below B

in the execution plan, if it is further indented to the right, and if

no operation exists between A and B that is indented to the right as

far as B.”

P.: “To what extent is the hierarchy for SQL tuning important?”

12 3 Minimum Minimorum on the Subject of the “Execution Plan”



A.: “It determines the order of operations in the execution plan:

• When two operations are equally indented to the right and subordinated

to the same operation, the upper one is executed first. One can therefore

say that the order of operations is from top to bottom.

• When one operation is subordinated to another, the subordinated one

is executed first. As the subordinated operation is indented further to

the right, the order of operations in this case goes from right to left.

Let’s apply these rules to a simple example (see Fig. 3.1). Let’s start

with step 0. That is the select statement itself. ‘Table access by index

rowid’ is subordinate to this operation. The operation ‘index range scan,’

in turn, is subordinate to ‘table access by index rowid.’ As there is no

further subordinate operation, ‘index range scan’ is executed first.”

P.: “So you start with the operation that is indented the furthest to the right.”

A.: “Yes, following the ‘right to left’ rule. The order of operations in our

example (and, incidentally, in the next one too) can be seen in the ‘No.’

column. In Fig. 3.2, the order is displayed in a join. Can you understand

this sequence, Peter?”

P.: “If one combines two rules, ‘from top to bottom’ and from ‘right to left,’

one obtains the order. Do these rules always apply?”

A.: “You can find an exception in [2], for example.We have slightlymodified

this example and placed it in the ‘Runtime Statistics’ section. A second

example with scalar subquery expressions is shown in Fig. 3.3.”

P.: “I’m not really sure if I understand this example.”

A.: “Right at the top of this execution plan, there are two subqueries from the

table T2. According to the ‘top to bottom’ rule, they have to be executed

first. This is impossible, however, because they correlate to the main

query. So they only have to be executed after the ‘hash join’ (step 5 in the

execution plan).”

P.: “To be honest with you, I’m a bit unsure about this rule now.”

A.: “Normally it works (a few exceptions don’t represent any major

problems). Incidentally, I don’t know of any exceptions to the rule

‘from right to left.’”

P.: “When an execution plan is complex, it is not so easy to recognize how

far an operation is indented to the right.”

A.: “Yes, that’s right. If there had been an additional column ‘LEVEL’ for a

numerical degree of indentation in the output of DBMS_XPLAN.

DISPLAY_CURSOR, it would have been much easier. But let’s get

back to the execution plan. The next column there is ‘NAME.’ This

column contains object names for the respective operations. For ‘table

No Id Operation Name
03 0 SELECT STATEMENT            
02 1 TABLE ACCESS BY INDEX ROWID T1   
01 *  2 INDEX RANGE SCAN          I_T1 

Fig. 3.1 Order of operations in the case of table access via an index range scan

3.2 Some Important Details 13



access by index rowid,’ for example, one finds the appropriate table

name and an index name for ‘index range scan.’ In addition, there are

columns which are relevant for operations on partitioned objects, for

parallel operations, and for operations on remote databases. We refer to

some of these columns in the examples. The remaining columns contain

optimizer costs, optimizer estimates, and runtime statistics which are

described later. We’ve almost forgotten to mention the plan hash value.

Can you still remember how this value can be used in SQL tuning,

Peter?”

P.: “This value can be used to compare execution plans. When execution

plans have different hash values, they are in fact different. When the

hash values are the same, it is highly likely that the plans are identical.”

3.2.1.2 Query Block Name/Object Alias

Author: “Query block names and object aliases are listed in the next section of

the execution plan. One can name query blocks with the hint QB_NAME

(<Block-Name>). If one doesn’t do this, Oracle generates these names

automatically. The information from this section can be used for

No Id Operation Name
0 SELECT STATEMENT                      
… …

14 10 NESTED LOOPS OUTER
11 11 NESTED LOOPS OUTER
08 12 NESTED LOOPS
05 13 NESTED LOOPS
02 * 14 TABLE ACCESS BY INDEX ROWID PICKLISTEN
01 * 15 INDEX RANGE SCAN PIL_PK
04 16 TABLE ACCESS BY INDEX ROWID PICKRUND
03 * 17 INDEX RANGE SCAN PR_PL_FK_I
07 18 TABLE ACCESS BY INDEX ROWID PICKAUF
06 * 19 INDEX RANGE SCAN PI_PR_FK_I
10 * 20 TABLE ACCESS BY INDEX ROWID  QUANTEN 
09 * 21 INDEX RANGE SCAN QT_LE1_FK_I
13 * 22 TABLE ACCESS BY INDEX ROWID   PRUEFGRUENDE
12 * 23 INDEX RANGE SCAN PG_NR_LE_I

… …

Fig. 3.2 Order of operations in the join

SQL_ID  bvasuua44pqnu, child number 0
-------------------------------------
select (select max(b) from t2 where t2.a=t1.a) b, (select max(a) from
t2 where t2.b=t1.b) a from t1, t2 where t1.a=t2.a

Plan hash value: 970360602

Id Operation Name Rows Bytes Cost (%CPU) Time
0 SELECT STATEMENT   5 (100)
1 SORT AGGREGATE    1 26 

*  2 TABLE ACCESS FULL T2 1 26 2   (0) 00:00:01 
3 SORT AGGREGATE    1 26 

*  4 TABLE ACCESS FULL T2 1 26 2   (0) 00:00:01 
*  5 HASH JOIN         3 117 5  (20) 00:00:01 

6 TABLE ACCESS FULL T1 3 78 2   (0) 00:00:01 
7 TABLE ACCESS FULL T2 3 39 2   (0) 00:00:01 

Fig. 3.3 Order of operations in the execution plan. An exception to the rule

14 3 Minimum Minimorum on the Subject of the “Execution Plan”

www.allitebooks.com

http://www.allitebooks.org


optimizer hints. There is a detailed explanation of how to handle opti-

mizer hints in [1]. Here is a brief example to illustrate this. For this

purpose, let’s take the appropriate section of the execution plan from

Fig. 3.3.”

Peter: “Can we go through this list together please?”

A.: “The first query block at the top is SEL$2. It represents execution plan step

1. SEL$2 is therefore the first subquery and T2@SEL$2 is the alias of the

table T2 in this subquery. In the same way, the query block SEL$3 is the

second subquery and T2@SEL$3 is the alias of the table T2 in this

subquery. The query block SEL$1 is the hash join (i.e., the main query).

Accordingly, T1@SEL$1 and T2@SEL$1 are the aliases of the tables T1

and T2. Peter, see if you can use this information to change the order of

operations in this join.”

P.: “To do that I would use the hint LEADING. If I am not mistaken, the hint

should look like this: LEADING(@SEL$1 T2@SEL$1 T1@SEL$1).”

A.: “A quick check shows that you are right (Fig. 3.4).”

P.: “What do we actually need the query block name in this hint for?”

A.: “The alternative would be to put the hint in the appropriate query block

without a query block name. In this case, it is easy because the SQL

statement is short and transparent. In a complex SQL statement, it is

much more difficult to find the right query block. Use of the query block

name renders this unnecessary in such cases.”

P.: “Does one only need the information about the aliases from this section of

the execution plan for use in optimizer hints?”

A.: “With this information it is easier to relate predicates to the appropriate

tables. We will discuss predicates later in the section ‘Predicate Informa-

tion.’ This information will help us to analyze an execution plan in the

section ‘A Non-selective Index.’”

SQL_ID  c1bwsfup22scs, child number 0
-------------------------------------
select /*+ LEADING(@SEL$1 T2@SEL$1 T1@SEL$1) */ (select max(b) from t2
where t2.a=t1.a) b, (select max(a) from t2 where t2.b=t1.b) a from t1,
t2 where t1.a=t2.a

Plan hash value: 4105034908

Id Operation Name Rows Bytes Cost (%CPU) Time
0 SELECT STATEMENT   5 (100)
1 SORT AGGREGATE    1 26

*  2 TABLE ACCESS FULL T2 1 26 2   (0) 00:00:01
3 SORT AGGREGATE    1 26

*  4 TABLE ACCESS FULL T2 1 26 2   (0) 00:00:01
*  5 HASH JOIN         3 117 5  (20) 00:00:01

6 TABLE ACCESS FULL T2 3 39 2   (0) 00:00:01
7 TABLE ACCESS FULL T1 3 78 2   (0) 00:00:01

Fig. 3.4 Query block names and table aliases can be used for hints

3.2 Some Important Details 15



3.2.1.3 Outline Data

Author: “The section ‘Outline Data’ contains special optimizer hints (outlines),

which Oracle generates for fixing the relevant execution plan. Outlines

can look like this:”

Peter: “You can enter these outlines into a SQL statement as optimizer hints to fix

the relevant execution plan. Is that right?”

A.: “In principle, that’s right. One has to be careful with parallel operations,

however, because Oracle doesn’t normally generate any outlines for them.

In this case, you have to complete the outlines with the appropriate parallel

hints.”

P.: “In [1] we learned that one can either create outlines as stored outlines or

store them in a SQL profile. Can you use outlines in any other way for SQL

tuning?”

A.: “First of all, I’d like to point out that the stored outlines in 12c are no

longer supported. You can use the outlines from the section ‘Outline Data’

as patterns for your own hints. That is especially helpful when you only

need to modify the outlines slightly. There are outlines in execution plans

of cursors in the SQL area and in the AWR. They are missing in the

statspack, however.”

3.2.1.4 Peeked Binds

Author: “In this section bind values which have been used for bind peeking are

listed. We discussed the concept of bind peeking in detail in [1].”

Peter: “Yes, those are values that Oracle considered when creating the relevant

execution plan. Are they also of interest for SQL tuning?”

A.: “Of course. At least as a source of bind values. We’ll come to that in the

section ‘The Method: Analysis of Runtime Statistics in the Execution

Plan.’ An example of ‘Peeked Binds’ follows below (1 is the number or

the name of the bind variable):

16 3 Minimum Minimorum on the Subject of the “Execution Plan”



Bind values can be found in execution plans from the SQL area and

from the AWR. They are missing in the statspack.”

3.2.1.5 Predicate Information

Author: “This section of the execution plan is enormously important for SQL

tuning. Let’s take this section as an example. What do you see here

Peter?”

Peter: “Two lines: filter and access. I assume that a table access with the predicate

POINT_OF_SALE¼:B1 is being carried out. An index may be used for

access in the second step of the execution plan. All rows which have been

selected will be filtered out in the first step of the execution plan.

Predicates which belong to the filter are used for this purpose. For exam-

ple, in the case of a table access by rowid.”

A.: “Quite right, Peter. Please have a look below:”

P.: “But how does this help me with SQL tuning? I can take the relevant

predicates from the SQL statement.”

A.: “Not always. For example, Oracle can generate predicates from constraints.

In this case, they are missing in the SQL statement. If a SQL statement is

large and not transparent, and also contains a few views, this task is then

relatively complex. In this case, you can only assume which predicates

Oracle is using. The execution plan section ‘Predicate Information’ describes

this in precise detail.”

P.: “I see. How can I use this information for SQL tuning?”

A.: “You can assess how selective the various predicates are. It is important that

one uses selective predicates for accesses (in our example they are listed with

‘access’ in the execution plan). This accelerates these accesses and reduces

the number of hits. Predicates with filters can also reduce the number of hits,

which accelerates the subsequent execution plan steps. The performance of

the execution plan step in which the relevant filtering takes place is hardly

influenced by this, however. We will discuss this in detail when we describe

3.2 Some Important Details 17



formal SQL tuning. With exadata, predicates can also be allocated to storage

as well as filter and access. In this case, predicates are transferred to the

storage layer and the relevant data access optimized by means of exadata

features (e.g., with storage indexes).”

P.: “If I’m not mistaken, information about predicates is not maintained either in

the AWR or in the statspack.”

A.: “That’s right. You have to obtain this information from an execution plan of a

cursor from the SQL area. As a workaround against some Oracle bugs, the

parameter setting "_cursor_plan_unparse_enabled"¼false is used often. In

this case, Oracle does not generate any information about predicates. They

are then also missing in the SQL area. The same applies for the information

from the next section of the execution plan ‘Column Projection Information.’

And just one final important comment. You will no doubt have noticed

already that the execution plan steps with predicates are marked with an

asterisk in the ‘Id’ column.”

3.2.1.6 Column Projection Information

Author: “Here the tables or index columns selected in the relevant execution plan

step are listed. Let’s take the section ‘Column Projection Information’

from the execution plan above:”

Peter: “I find this information fairly useless.”

A.: “It may not be as important as the predicates, but it definitely isn’t useless.

I’ll try to demonstrate that using our example. In the second step of the

execution plan, there occurs an index range scan of the index

I_ARTICLE_WRITEOFF_1. Here Oracle uses the predicate

POINT_OF_SALE¼:B1. From the section ‘Column Projection Informa-

tion,’ one can gather that this index has at least one more column

COMMITED_AT_LOCALDATE, which is simply selected and not que-

ried because it does not occur in any predicate. In the first step of the

execution plan, another six table columns are selected: ID,

EXECUTED_BY, COMMITED_AT, EXPORTED_AT,

NOT_EXPORTED_AT, RESOLVED. If you want to avoid table access

by rowid, you have to extend the index I_ARTICLE_WRITEOFF_1 by

these six columns.”

P.: “That makes at least eight columns in this index. Isn’t that too many?”

A.: “Yes, I wouldn’t do that without a very good reason. But this is just an

example. If it had been possible to extend the index by a couple of columns

18 3 Minimum Minimorum on the Subject of the “Execution Plan”



to avoid the table access, that would have been no problem. The informa-

tion about the columns to be selected helps in making the right decision. I

hope this example has changed your opinion.”

3.2.1.7 Remote SQL Information

Author: “In this section of the execution plan, SQL statements which are

executed on a remote database are listed. For example:”

Peter: “In brackets there is a database link. Is that right?”

A.: “Yes, that’s right. If remote access proves problematical, the relevant SQL

statement can be found and tuned on the remote database.”

P.: “How does one recognize that remote access is problematical?”

A.: “You can recognize that from the runtime statistics, which we will discuss

in this chapter.”

P.: “It wouldn’t be bad if Oracle were to display the relevant SQL Id.”

A.: “You’re right. But one can calculate a signature for the displayed SQL text

and search for the appropriate SQL statement on the remote database via

this signature. What these signatures are, and how they are obtained, is

described in [1].”

3.2.1.8 Note

Author: “The section ‘Note’ is very easy to explain. It contains information

which can also be very useful for SQL tuning. For example, one can

establish whether dynamic sampling or user bind peeking has been

used.”

Peter: “What information is particularly important?”

A.: “In principle, it is all important. It depends on the specific case. For

example, I always check whether an inefficient execution plan is fixed

with a SQL profile or with the SQL plan baselines. During SQL tuning, it

makes sense to disable the relevant profile or the baselines, because they

tend to be more detrimental than helpful. Sometimes the optimizer finds

a better execution plan itself if no SQL profiles and SQL plan baselines

are used.”

3.2 Some Important Details 19



3.2.2 Optimizer Estimations and Costs

Author: “The CBO (cost-based optimizer) uses a numerical value (so-called

optimizer costs) to estimate the effectiveness of execution plans. This

value is calculated according to certain rules and is based on optimizer

statistics of objects involved in the relevant cursor. This value is cumu-

lative, i.e., it accumulates values of the execution steps which are

subordinate to the relevant step. In other words, the optimizer costs of

an execution plan step accumulate optimizer costs of all steps which are

performed before it. The smaller the optimizer costs of the whole

execution plan are, the more effective the execution plan is (at least for

the optimizer).”

Peter: “How can one use optimizer costs in SQL tuning?”

A.: “The optimizer costs help one to understand the decisions of the opti-

mizer. For this, however, one must know how the optimizer calculates

these costs. For SQL tuning, this value is normally of no interest, just like

the optimizer estimation ‘time.’”

P.: “Are there any optimizer estimations at all that can help with SQL

tuning?”

A.: “Definitely. For example, ‘rows’ which are especially important for

formal SQL tuning. These are the number of rows which are found in

an execution plan step.”

P: “So, not read but estimated on the basis of the statistics?”

A.: “Yes. That’s the number of rows after the use of predicates related to the

relevant execution plan step. This value is not cumulative. It is therefore

calculated separately for each step, like the optimizer estimation ‘bytes’

(see Fig. 3.4)”

P.: “How can the ‘row’ estimation help us?”

A.: “We can compare this estimation with the relevant runtime statistics. We

will discuss runtime statistics in the next section.”

P.: “Is this estimation calculated for just one or for all executions of the

relevant execution plan step?”

A.: “That’s a very good question. In order to carry out a comparison with

runtime statistics, we need to know the answer. This estimation refers to

one execution of the execution plan step.”

3.2.3 Runtime Statistics

Author: “Runtime statistics in the execution plan are extremely important for

formal SQL tuning.”

Peter: “You’ve already said that we can compare the runtime statistics with the

optimizer estimations.”

20 3 Minimum Minimorum on the Subject of the “Execution Plan”



A.: “That’s only one possibility in SQL tuning. What is much more impor-

tant is that the runtime statistics help to recognize a bottleneck in the

execution plan. We will discuss this in the chapter ‘Bottlenecks in the

Execution Plan.’ In Oracle there are a number of ways of obtaining

runtime statistics (we will describe these possibilities in the section ‘The

Method: Analysis of Runtime Statistics in the Execution Plan’). One of

these possibilities is that the runtime statistics are generated directly in

the execution plan. This does not occur per default because it is a costly

option. In the abovementioned section, we discuss how this is done. In

order to display all runtime statistics with the function DBMS_XPLAN.

DISPLAY_CURSOR, the argument FORMAT has to be supplemented

with the word ‘ALLSTATS’ (it is also possible to have these statistics

displayed singly). In order to display runtime statistics for the last

execution of a cursor, one has to supplement the argument FORMAT

with the word ‘LAST’ (otherwise the statistics will be listed summarily

for all executions). With the following command, you can identify an

execution plan with all runtime statistics for the last execution of a cursor

from the SQL area.”

P.: “Do you really need all runtime statistics for SQL tuning?”

A.: “It is difficult to say in advance what you need in a concrete case. For this

reason, I always display them all. When the optimizer estimations and the

relevant runtime statistics have the same name (like ‘rows’ and ‘time’), these

names are supplemented with ‘E-’ (estimated) and with ‘A-’ (actual). Unlike

the optimizer estimation ‘rows,’ the relevant runtime statistic is calculated for

all executions of the execution plan step it belongs to.”

P.: “But we want to compare these two values with each other. How is that

possible?”

A.: “The runtime statistic ‘starts’ makes this possible. That is the number of

executions for each execution plan step. If we divide the runtime statistic ‘A-

rows’ for a step, by the number of executions, we obtain the number of rows

for one execution of this step. We can compare this value with the relevant

estimation ‘rows.’ This applies to non-partitioned objects. With partitioned

objects it is somewhat more difficult because the statistic ‘starts’ includes

‘scanned’ partitions or sub-partitions. I think we can now present the example

from [2] which was promised in the section ‘Plan’ (Fig. 3.5).”

P.: “What does this example tell us?”

A.: “Step 6 of the above execution plan has to be executed after step 2 because

these steps are equally indented to the right and step 6 is below step 2. In fact,

this step is executed first.”

P.: “How can you see that?”

3.2 Some Important Details 21



A.: “From the runtime statistic ‘starts’: Step 6 has been executed once, whereas

step 2 has never been executed.”

P.: “Very interesting. Without runtime statistics it would have been impossible

to recognize that.”

A.: “One could have assumed that because the first subquery does not correlate

with the main query and can be executed first for this reason. That can easily

be recognized with the runtime statistics. Let’s continue with the runtime

statistics. The next 3 are ‘buffers,’ ‘reads,’ and ‘writes.’ That is the number of

data blocks which is respectively read from the buffer cache or from the hard

disk or is written on the hard disk. These statistics are cumulative. In addition

to the runtime statistics mentioned, some work area statistics are listed, e.g.,

‘used-tmp’—the size of the used temporary tablespace. These statistics refer

to the relevant execution plan steps and are not cumulative. I have forgotten

to mention that the runtime statistic ‘time’ displays runtime in hours, minutes,

and seconds and is cumulative.”

3.3 Summary

• Execution plans are hierarchical and are displayed accordingly. This hierarchy

determines the order of operations:

– When two operations are equally indented to the right, the upper of these two

is executed first. That is the “top to bottom” rule.

– When one operation is subordinate to another, the subordinate operation is

executed first. That is the “right to left” rule, because the subordinate opera-

tion is indented further to the right. There are a few exceptions to the “top to

bottom” rule, but in most cases it is correct.

SQL_ID  f4yzggva3jkuy, child number 0
-------------------------------------
select * from dual d1 where exists (select /*+ no_unnest */ * from dual
where dummy='Y') and exists (select /*+ unnest */ * from dual d2 where
d1.dummy = d2.dummy)

Plan hash value: 4062679786

Id Operation Name Starts A-Rows
0 SELECT STATEMENT     1 0

*  1 FILTER              1 0
2 NESTED LOOPS SEMI  0 0
3 TABLE ACCESS FULL DUAL    0 0

*  4 VIEW              VW_SQ_1 0 0
5 TABLE ACCESS FULL DUAL    0 0

*  6 TABLE ACCESS FULL  DUAL    1 0

Predicate Information (identified by operation id):
---------------------------------------------------

1 - filter( IS NOT NULL)
4 - filter("D1"."DUMMY"="ITEM_1")
6 - filter("DUMMY"='Y')

Fig. 3.5 Order of operations in the execution plan. An example from J. Lewis

22 3 Minimum Minimorum on the Subject of the “Execution Plan”



• Information from the section “Query Block Name/Object Aliases” of the execu-

tion plan can be used for optimizer hints.

• Outlines are special optimizer hints, which are designed to fix the relevant

execution plan. Oracle does not normally generate any hints in the outlines for

parallel operations. There are no outlines in the statspack.

• The section “Peeked Bind” can be used as a source of bind values for execution

of the relevant SQL statement. These bind values are missing in the statspack.

• There are two types of “predicate information”: access and filter. In access,

predicates are listed which Oracle uses when accessing data in the relevant

execution plan step. In contrast to access, predicates from filter are only used

for filtering the rows found. The section “Predicate Information” is very impor-

tant for formal SQL tuning.

• In the section “Column Projection Information,” the tables or index columns

which are to be selected in the relevant execution plan step are listed.

• The section “Note” contains some additional information, for example,

concerning the use of dynamic sampling or cardinality feedback.

3.3 Summary 23



Approaches to Formal SQL Tuning 4

This is the first of the three chapters in which the formal method is described. In this

chapter, we formulate the objective, principle, method, main criterion, approach,

and guideline for formal SQL tuning.

4.1 The Objective: Effective SQL Tuning

The objective of formal SQL tuning is an acceptable performance of a SQL

statement. We have already formulated this objective in the section “SQL Tuning:

Definition and Objectives.”

The formal character of this method, i.e., tuning according to formal rules,

enables tuning to be carried out without knowledge of data models. Perhaps this

is not so attractive for developers (although developers can also have certain

problems with large, complex SQL statements). For database administrators, this

method is a key to independent SQL tuning. They are not reliant on developers

when performing SQL tuning.

Formal SQL tuning deals with those cases which occur most often in practice.

Consequently, we can give a clear, concise formulation of the formal method. The

formal rules are so simple that even a beginner can master the method and use it

successfully. This method is also “extendable.” It can be developed further if

necessary.

The formal method is very effective in case of acute performance problems. It

very quickly helps to find an acceptable execution plan (even if the means used are

sometimes fairly “rough and ready”). A more refined analysis can be carried out at

leisure later.

# Springer-Verlag Berlin Heidelberg 2016

L. Nossov et al., Formal SQL Tuning for Oracle Databases,
DOI 10.1007/978-3-662-50417-8_4

25



4.2 The Principle: Elimination of “Brakes”
in the Execution Plan

Oracle’s optimizer always tries to generate the best execution plan. This is actually

unnecessary for SQL tuning. It is perfectly adequate to upgrade a poor execution

plan to an acceptable one. It is irrelevant whether the improved plan is the optimum

plan. This makes the task of SQL tuning easier.

This is precisely the principle by which formal SQL tuning functions: One finds

problematical steps in the execution plan and eliminates them. In this way, one very

often achieves astonishingly good solutions.

4.3 The Method: Analysis of Runtime Statistics
in the Execution Plan

In order to find problematical execution plan steps, one can either use optimizer

estimations or runtime statistics. In the case of optimizer estimations, one has to be

careful. They can be relatively imprecise for a number of reasons. If optimizer

statistics of the objects involved in the SQL statement are incorrect, then the

optimizer estimations are also far from realistic. It’s possible for optimizer statistics

to be exact but estimations not. This is because the optimizer makes assumptions in

some places. One must be particularly careful with optimizer estimations in poor

execution plans because it is often precisely these which cause suboptimal plans.

Optimizer estimations are, therefore, not a reliable basis for the analysis of

execution plans. The runtime statistics in execution plans are much more suitable.

They provide information on the actual course of individual execution plan steps.

How one can request Oracle to display runtime statistics in the execution plan has

already been described in the section “Runtime Statistics.” As the generation of

runtime statistics is expensive, this is omitted by default. It can, however, be activated

for test runs, either for one session (with the parameter setting statistics_level¼all) or

with the hint GATHER_PLAN_STATISTICS (also as a hidden hint, see [1]), for a

SQL statement.

The other possibility of accessing the statistics in the execution plan is the

feature “SQL monitoring,” which is available from Oracle 11 onward. SQL moni-

toring is described in detail in [1]. Unfortunately, no information is listed on

predicates and on column projections in the SQL monitoring reports. This has to

be obtained separately in the execution plans from the SQL area. It should not be

forgotten that SQL monitoring requires a license.

SQL tracing is another source of runtime statistics in the execution plan. As it is

relatively complicated to generate and analyze a SQL tracing (at least more

complicated than the other two features described above), this option is not used

as often as the others.

26 4 Approaches to Formal SQL Tuning



4.4 The Main Criterion: The Runtime Statistic “Cardinality”

Cardinality is the main criterion in the analysis of execution plans with the formal

method (Fig. 4.1). In the output of DBMS_XPLAN.DISPLAY_CURSOR, this

statistic is referred to as “A-rows”, in the SQL monitoring report as “rows (actual),”

and in SQL tracing as “rows.”

This statistic contains the number of rows which have been selected in the

relevant execution plan step. A high cardinality indicates the processing of a

large number of rows in an execution plan step. Accordingly, this step can be

expensive. That is the first reason why cardinality is selected as the main criterion.

The rows selected in an execution plan step are processed further in the subsequent

steps. If there are a large number of these, this makes the next execution plan steps

more expensive. That is the second reason.

It is possible for a large number of rows to be processed in one step although

its cardinality is low, e.g., if a full table scan (FTS) is used to find data about very

selective predicates from a large table. In such a case, one also has to consider

other runtime statistics for the analysis (e.g., buffer gets or buffers in the output

of DBMS_XPLAN.DISPLAY_CURSOR). But in this case too, cardinality is

very important for the analysis: In the case of an FTS on a large table with a

low cardinality, one can immediately assume that the relevant predicates are

selective, and one can create an index for the relevant columns as an improvement

measure.

Although the other runtime statistics play a subordinate role in the formal

method, they can also be helpful for the analysis of the execution plan.

Fig. 4.1 If Archimedes had used SQL tuning

4.4 The Main Criterion: The Runtime Statistic “Cardinality” 27



4.5 The Procedure: An Iterative Process

Unfortunately, it is seldom the case that the first improvement already results in an

acceptable execution plan. As a result, one has to be prepared for several executions

of the problematical SQL statement or the problematical process.

One can, for example, execute the problematical SQL statement in SQL*Plus. If

this statement contains bind variables, these can be defined as variables in

SQL*Plus and set to corresponding values. This is possible for some common

data types (e.g., VARCHAR2 or NUMBER).

When tuning a data manipulation language (DML) statement, it is sometimes

possible to extract a select statement, to tune it, and to use the results of the tuning

on the DML statement (see [1]). As a result, it is no longer necessary to execute this

DML statement for tuning purposes and to change the relevant data.

When one tunes a process which is executed repeatedly, it is often very practical

to use SQL monitoring for tuning (e.g., see [1]). In this case, no separate executions

of individual SQL statements of this process are necessary. This saves time and

effort.

Here we have outlined a number of possibilities of how problematical SQL

statements can be executed for the purpose of SQL tuning. When carrying out SQL

tuning, it is important to consider these possibilities in advance and to select a

suitable one.

4.6 The Guideline: Tuning Without Changing the SQL
Statement

With SQL tuning, one must also consider how to implement the relevant

improvements. Very often, changes to the SQL text are not possible because the

application developers are not readily available (e.g., in the case of a standard

application). If a performance problem is acute, one must act very quickly. In this

case, it does not help if the developers are in a neighboring office, because any code

change cannot be made immediately—mostly for organizational reasons.

It therefore makes sense if you are prepared for SQL tuning without changes to

the SQL statement from the outset. The following improvements are welcome in

SQL tuning:

1. Creation of new indexes. One has to be careful and only create an index when

there is no other solution possible because each new index influences other

execution plans and can, in some cases, affect them adversely.

2. Extension of existing indexes. Here there is also a risk that the extended index

could adversely affect other execution plans. However, this risk is generally

much lower than is the case with a completely new index.

3. Use of optimizer hints. One can use optimizer hints as hidden hints (see [1]).

Alternatively, the plan optimized with the hints can be fixed (some methods to

28 4 Approaches to Formal SQL Tuning



achieve this can be found in [1]). A change to the SQL statement is unnecessary

in either of these cases.

4. Change of database parameters. If one optimizes a SQL statement with database

parameters, it makes sense to fix the optimized plan instead of implementing the

relevant parameter settings throughout the system. Alternatively, one can try

setting the relevant parameters with the hint OPT_PARAM dedicated to a

problematical SQL statement (see [1]). According to the documentation, this is

only possible for a handful of parameters. In reality, this hint works for many

parameters.

5. Gathering of optimizer statistics. New optimizer statistics can also influence

other plans. The risk of other plans deteriorating is relatively low, however. In

order to gather optimizer statistics without any risk, one can generate new

statistics but not publish them (set preference PUBLISH to FALSE). In a

separate session, one can then allow these pending statistics with the parameter

setting optimizer_use_pending_statistics¼true and fix a plan optimized with

these statistics.

Some of these improvements are pure workarounds. However, they are

completely legitimate in the case of an acute performance problem. An ultimate

solution will be worked out later when the acute problem has been eliminated.

One might think that these improvements are only suitable for a relatively

limited group of cases. The reality looks different, however: In most practical

cases, SQL tuning can be carried out without changing the SQL statement. Only

rarely must the SQL statement in question be changed in order to achieve an

acceptable plan.

4.6 The Guideline: Tuning Without Changing the SQL Statement 29



Bottlenecks in the Execution Plan 5

In this chapter we will describe the core elements of the formal method: The

recognition of bottlenecks in the execution plan. Formal SQL tuning provides a

very simple procedure for recognizing bottlenecks (even for large, complex execu-

tion plans). One could say that this method is your Ariadne thread in the labyrinth of

execution plans (Fig. 5.1).

5.1 “Local” Problems in the Execution Plan

Local problems are those which are “localized” to one or more (as a rule two)

execution plan steps.

5.1.1 A Missing Index

Author: “Peter, how would you recognize that an index is missing in an execution

plan in case of an FTS?”

Peter: “A low cardinality of an FTS can be an indication of a possible selective

index.”

A.: “What do you mean by a low cardinality? 1, 2, or 100 maybe?”

P.: “I can’t give you a concrete figure.”

A.: “So when can you say that the cardinality of an FTS is low?”

P.: “Wait a minute. When the table in question is relatively large (and those

are the ones that interest us), Oracle has to do quite a lot of buffer gets or

physical reads with an FTS. I would compare the cardinality with the

number of buffer gets.”

A.: “Would you check every FTS in the execution plan in this way?”

P.: “Only the steps with a long runtime.”

# Springer-Verlag Berlin Heidelberg 2016

L. Nossov et al., Formal SQL Tuning for Oracle Databases,
DOI 10.1007/978-3-662-50417-8_5

31



A.: “Let’s use a test case to show how one identifies a missing index. For this

purpose, we will create a table T1 with 100,000 rows. After that we will

execute a SQL statement and display the relevant execution plan with

runtime statistics (Fig. 5.2).”

P.: “In the second execution plan step, an FTS was carried out. 185 buffer

gets were done and one row found. An index for column B is intended to

SQL_ID  8dwcq7z24k9xt, child number 0
-------------------------------------
select count(*) from t1 where b=4000

Plan hash value: 3724264953

Id Operation Name Starts A-Rows Buffers
0 SELECT STATEMENT   1 1 185
1 SORT AGGREGATE    1 1 185

*  2 TABLE ACCESS FULL T1 1 1 185
Predicate Information (identified by operation id):
---------------------------------------------------

2 - filter("B"=4000)

Fig. 5.2 An indication of a missing index: FTS with a low cardinality and a large number of

buffer gets

Fig. 5.1 Formal SQL tuning is your Ariadne thread in the labyrinth of execution plans

32 5 Bottlenecks in the Execution Plan



reduce the number of buffer gets and thereby improve the execution

plan.”

A.: “You took column B from the filter in the section ‘Predicate Informa-

tion,’ didn’t you?”

P.: “That wasn’t necessary in our simple example. If the SQL statement had

been much more complex, I would have done that.”

A.: “Let’s create the index:

Now we can execute the SQL statement (Fig. 5.3).”

P.: “The index access has reduced the number of buffer gets to two! But

weren’t we a bit premature in creating the index? Theoretically, it’s

possible that column B isn’t selective. The value of 4000 could be an

exception.”

A.: “The word ‘theoretically’ is very appropriate here. In practice, things

look rather different. When a SQL statement is problematical, it is

normally slow in several executions. During these executions, the FTS

is carried out several times with a low cardinality. In this case, the

creation of the relevant index is definitely helpful. But if you really

want to be on the safe side, you can check the selectivity of the relevant

predicates directly. I have a question for you too. Is a missing index the

only possible reason for an expensive FTS with a low cardinality?”

P.: “When you ask in that way, then presumably there is at least one further

reason, but I’ve no idea what it could be.”

A.: “Think about it, Peter. A large table is scanned and only a few rows

found. What could be the reason?”

P.: “Possibly that this table doesn’t contain many rows?”

A.: “Correct! What do we call a table with a lot of data blocks and with only

a few rows?”

P.: “A sparse table?”

A.: “Exactly. Now let’s drop the index and delete all rows apart from one in

our table:

SQL_ID  8dwcq7z24k9xt, child number 0
-------------------------------------
select count(*) from t1 where b=4000

Plan hash value: 3547404373

Id Operation Name Starts A-Rows Buffers
0 SELECT STATEMENT  1 1 2
1 SORT AGGREGATE   1 1 2

*  2 INDEX RANGE SCAN I_T1 1 1 2

Fig. 5.3 An index access substantially reduces the number of buffer gets

5.1 “Local” Problems in the Execution Plan 33



Let’s execute a SQL statement with another predicate (Fig. 5.4).”

P.: “The runtime statistics are exactly the same as in Fig. 5.2.”

A.: “What would you do to improve this execution plan?”

P.: “That’s obvious. You have to reorganize a sparse table.”

A.: “In principle you’re right, but imagine that the table is very large. Then

reorganizing the table will take a long time, but you need a quick solution.”

P.: “Could an index be useful here too?”

A.: “Very good Peter! Let’s test that (Fig. 5.5).”

P.: “Have you had such cases in practice?”

A.: “Yes, once I tuned a database with a lot of direct reads. There were some

sparse tables with a lot of data blocks, so that Oracle executed an FTS with

direct reads (i.e., not via the buffer cache, more information on this feature

can be found in [1]). I proposed the solution with indexes as a workaround.

With this workaround, all sparse tables were gradually reorganized.”

SQL_ID  5p7s1hq62rf59, child number 0
-------------------------------------
select count(*) from t1 where a=1

Plan hash value: 3724264953

Id Operation Name Starts A-Rows Buffers
0 SELECT STATEMENT   1 1 185
1 SORT AGGREGATE    1 1 185

*  2 TABLE ACCESS FULL T1 1 1 185
Predicate Information (identified by operation id):
---------------------------------------------------

2 - filter("A"=1)

Fig. 5.4 An FTS on a sparse table

SQL> create index i_t2 on t1(a);

Index created.

SQL_ID  5p7s1hq62rf59, child number 0
-------------------------------------
select count(*) from t1 where a=1

Plan hash value: 4157480490

Id Operation Name Starts A-Rows Buffers
0 SELECT STATEMENT  1 1 1
1 SORT AGGREGATE   1 1 1

*  2 INDEX RANGE SCAN I_T2 1 1 1

Fig. 5.5 An index as a quick source of help with FTS on a large sparse table

34 5 Bottlenecks in the Execution Plan



5.1.2 A Nonselective Index

Author: “In this section we will discuss a very important and interesting topic:

How does one recognize a nonselective index in the execution plan?

How would you do that, Peter?”

Peter: “When a nonselective index is used, the relevant index scan has to return

a large number of rows. The relevant cardinality must therefore be high.”

A.: “What do you regard as a high cardinality? How can you recognize that

an index isn’t selective and that something can be improved?”

P.: “You ask difficult questions. I don’t know.”

A.: “Let’s start with the high cardinality. It’s true that it isn’t possible to

say which cardinality is high when we talk about it abstractly and not

in relation to any execution plan. The cardinality therefore has to be

high for a concrete execution plan, for example, the highest one there.

How can one decide that the index in question isn’t selective? The

answer to this question can also be found in the execution plan. When

the SQL statement for a table access contains selective predicates,

and these predicates are only partly present in an index (which makes

this index nonselective), the remaining predicates have to be queried

elsewhere in the execution plan and the cardinality substantially

reduced. This normally occurs in the filter of the subsequent table

access by rowid.”

P.: “Stop, stop, stop! I can’t follow you.”

A.: “Basically, it’s very simple. I’ll demonstrate it using the following

example (Fig. 5.6).”

P.: “I can’t say that I understand it any better now.”

A.: “First let’s look for the steps with a high cardinality. Which are those,

Peter?”

P.: “Those are steps 16 and 14. There an index range scan of the index

IDX_PROCESS_PERSON has been executed and 10M and 12M rows

found, respectively.”

A.: “Is this index selective?”

P.: “In step 14, an average of approximately 24,000 rows (12M/500) are

selected per execution. That is no small value. We do not know, how-

ever, how large the table TA_PROCESS is. I don’t know if this index is

selective.”

A.: “But look what happens in the next execution plan step.”

P.: “The table TA_PROCESS is read by rowid. Oracle needed 7.53 seconds

for the index range scan and substantially longer 35.94 seconds for the

table access in step 13.”

A.: “It’s good that you noticed that. It often happens that a high cardinality

only really has an effect in one of the following execution plan steps.

5.1 “Local” Problems in the Execution Plan 35



Have you noticed that the cardinality in the 13th step falls from 12M to

41?”

P.: “Do you mean that that happens in this step due to the filter?”

A.: “Exactly.”

P.: “That indicates a strong selectivity of these filter predicates. I would

create an index for the relevant columns.”

A.: “That might solve the problem, but I have one objection to this solution.

In the section ‘The Guideline: Tuning Without Changing the SQL

Statement,’ we have already learned that a new index is more likely to

influence other execution plans than an extension of the existing index.”

P.: “So you are for an index extension?”

A.: “Yes, if that is possible, as it is in our case. The index

IDX_PROCESS_PERSON had two columns: PERSON_NUMBER

and CS_ID. It has been extended to include the column

PROCESS_CREATION because precisely this column was selective.

The extended index simultaneously improved step 16 (see the filter for

this step) and reduced the total runtime to a fraction of a second. Was this

analysis complicated for you?”

P.: “On the contrary.”

A.: “Then I suggest that you carry out the next analysis yourself. The next

example is interesting for two reasons. It shows that a ‘local’ problem in

the execution plan can have a very negative effect on the runtime. In

contrast to example 1, the second execution plan with runtime statistics

Id Operation Name Starts A-Rows A-Time   
0 SELECT STATEMENT                   1 3 00:01:01.99

*  1 COUNT STOPKEY                     1 3 00:01:01.99
2 VIEW                             1 3 00:01:01.99

*  3 SORT ORDER BY STOPKEY           1 3 00:01:01.99
4 VIEW                           1 133 00:01:01.99
5 UNION-ALL                     1 133 00:01:01.99
6 INLIST ITERATOR              1 1 00:00:00.01

*  7 TABLE ACCESS BY INDEX 
ROWID 

TA_PROCESS 2 1 00:00:00.01

*  8 INDEX RANGE SCAN           IDX_PROCESS_PROCESSSTATE 2 266 00:00:00.01
9 NESTED LOOPS ANTI            1 132 00:01:01.98
10 NESTED LOOPS ANTI           1 602 00:00:35.96

* 11 TABLE ACCESS BY INDEX 
ROWID

TA_PROCESS 1 643 00:00:00.01

* 12 INDEX RANGE SCAN          IDX_PROCESS_PROCESSSTATE 1 667 00:00:00.01
* 13 TABLE ACCESS BY INDEX 

ROWID
TA_PROCESS 500 41 00:00:35.94

* 14 INDEX RANGE SCAN          IDX_PROCESS_PERSON 500 12M 00:00:07.53
* 15 TABLE ACCESS BY INDEX 

ROWID 
TA_PROCESS 456 324 00:00:26.02

* 16 INDEX RANGE SCAN           IDX_PROCESS_PERSON 456 10M 00:00:06.09
Predicate Information (identified by operation id):
---------------------------------------------------
…
13 - filter((INTERNAL_FUNCTION("B"."PROCESS_STATE") AND 

"B"."PROCESS_CREATION"<"A"."PROCESS_CREATION" AND
"B"."PROCESS_CREATION">SYSDATE@!-:B2/24))

14 - access("B"."PERSON_NUMBER"="A"."PERSON_NUMBER" AND "B"."CS_ID"="A"."CS_ID")
15 - filter(("B"."PROCESS_STATE"<>8 AND "B"."PROCESS_STATE"<>5 AND "B"."PROCESS_STATE"<>10 AND

"B"."PROCESS_CREATION"<"A"."PROCESS_CREATION" AND "B"."PROCESS_CREATION">SYSDATE@!-
:B3/24))
16 - access("B"."PERSON_NUMBER"="A"."PERSON_NUMBER" AND "B"."CS_ID"="A"."CS_ID")

Fig. 5.6 A nonselective index. Example 1

36 5 Bottlenecks in the Execution Plan

www.allitebooks.com

http://www.allitebooks.org


was taken from a SQL monitoring report. The runtime of the following

execution plan was 770 seconds (Fig. 5.7).”

P.: “The differences between the SQL monitoring report and the output of

dbms_xplan.display_cursor are not so great. ‘Execs’ means ‘starts’ and

‘rows (actual)’ is equivalent to ‘A-rows.’ Where did you get the

predicates from?”

A.: “These predicates were obtained additionally with dbms_xplan.

display_cursor because they are missing in the SQL monitoring report.”

P.: “The step with the highest cardinality is 15. 1G rows with an index range

scan of FXBAL_FPFON_FK were found in this step. I assume that this

step is relatively expensive. Step 14, in which the table FX_BALANCE

is read by rowid, is even more expensive, however (at least according to

the information in the column ‘Activity (%)’). The cardinality of this

step falls from 1G to 1241. Therefore, the filter in step 14 should be very

selective. I would extend the index FXBAL_FPFON_FK by the relevant

columns. However, I don’t know which columns from the filter belong to

table FX_BALANCE.”

A.: “You can see from the plan section ‘Query Block Name/Object Alias’

that the table FX_BALANCE has the alias B. Accordingly, one must

extend the index to include the columns FXBAL_ID and KTABA_ID.

As the index FXBAL_FPFON_FK only had a single column

FPFON_ID, it was possible to extend this index by two columns without

difficulty. This improved the runtime to 0.2 seconds. Your analysis is

therefore correct.”

SQL Plan Monitoring Details (Plan Hash Value=2028435987)
Id Operation Name Execs Rows

(Actual)
Activity

(%)
0 INSERT STATEMENT                     1
1 LOAD TABLE CONVENTIONAL            1
2 NESTED LOOPS                      1
3 NESTED LOOPS                     1
4 NESTED LOOPS ANTI               1 0
5 NESTED LOOPS                   1 1241
6 NESTED LOOPS                  1 1241
7 NESTED LOOPS                 1 1241
8 TABLE ACCESS FULL           FX_TEMP_RISKFONDS 1 1241
9 TABLE ACCESS BY INDEX ROWID KT_AN_BAV_AKTEN   1241 1241
10 INDEX UNIQUE SCAN          KTABA_PK          1241 1241
11 TABLE ACCESS BY INDEX ROWID  AN_GRUPPEN        1241 1241
12 INDEX UNIQUE SCAN           ANGRU_PK          1241 1241
13 INDEX UNIQUE SCAN             FPFON_PK          1241 1241
14 TABLE ACCESS BY INDEX ROWID    FX_BALANCE        1241 1241 81.43
15 INDEX RANGE SCAN              FXBAL_FPFON_FK    1241 1G 18.44
16 INDEX RANGE SCAN  KTVAN_KTABA_FK_I  
17 TABLE ACCESS BY INDEX ROWID      KT_ANVERMKONTEN   
Query Block Name / Object Alias (identified by operation id):
-------------------------------------------------------------
…
14 - SEL$5DA710D3 / B@SEL$2
…

Predicate Information (identified by operation id):
---------------------------------------------------

…
14 - filter(("B"."FXBAL_ID"=:B2 AND "RISKFONDS"."KTABA_ID"="B"."KTABA_ID"))
15 – access("RISKFONDS"."FPFON_ID"="B"."FPFON_ID")
…

Fig. 5.7 A nonselective index. Example 2

5.1 “Local” Problems in the Execution Plan 37



5.1.3 An Index with a Large Clustering Factor

Author: “Peter, we discussed in [1] what the clustering factor is in detail. Could

you tell us briefly what clustering factor means and why it’s important

for SQL tuning?”

Peter: “I can try. The clustering factor is an optimizer statistic which Oracle

calculates with an index full scan for the relevant index as follows: When

two successive index entries refer to rows which are located in different

table blocks, the value of the clustering factor is increased by 1. If they

belong to the same block, this value remains unchanged. The initial

value of the clustering factor in this calculation is equal to 1.”

A.: “How can one use the clustering factor in SQL tuning?”

P.: “This statistic shows how far apart index entries and corresponding table

entries are.”

A.: “I think I know what you mean. But your interpretation is not quite right.

For which operations can the clustering factor be important?”

P.: “In [1] we see that the clustering factor is equal to the number of buffer

gets in table accesses by rowid after a full index scan. With the clustering

factor, one can assess the effectiveness of table accesses by rowid after a

full or range index scan. The larger the clustering factor, the less

effective such table accesses are.”

A.: “Correct. What is a good value and what is a bad value for the clustering

factor?”

P.: “A good value is close to the number of filled table blocks. A poor value

is close to the number of index entries.”

A.: “Very good, Peter. Can one recognize an index with a large clustering

factor in the execution plan?”

P.: “To do that, I would compare the cardinality of the index scan with the

number of buffer gets of the subsequent table access by rowid. If these

values are close together, the clustering factor of the index is presumably

large.”

A.: “The extract from an execution plan demonstrates that (Fig. 5.8). We

will describe this example in full in the section ‘Joins with a Large Hit

Quantity.’

P.: “The number of buffer gets in step 18 is even larger than the cardinality

in step 19. How is that possible?”

A.: “You’ve forgotten that the runtime statistic ‘buffers’ is cumulative (see

section ‘Runtime Statistics’). This means that only 4252K� 162K ¼
4090K buffer gets have occurred with table access by rowid. This

number is smaller than the cardinality of 4159K in step 19.”

P.: “Can one reduce the clustering factor of an index?”

38 5 Bottlenecks in the Execution Plan



A.: “Yes, if one enters the data into the table assorted in the same way as in

the index. This solution has some disadvantages and is not always

practicable (see [1]). In some situations, one can extend the relevant

index to render table access by rowid unnecessary (‘index only’ access).

This eliminates the problematical step in the execution plan.”

5.1.4 A Sparse Index

Author: “A sparse index has considerably more leaf blocks than necessary. Its

leaf blocks are sparsely filled with data. Some blocks may even be

empty. Sparse indexes, their identification, and performance problems

which they cause are described in [1]. Peter, during which operations can

sparse indexes cause performance problems?”

Peter: “During index scans, because Oracle has to read more blocks than

necessary.”

A.: “How can one identify whether an index has too many leaf blocks?”

P.: “That can be done by means of optimizer statistics. With these statistics

one can calculate the number of leaf blocks necessary for the index

and compare this number with the relevant index statistic ‘leaf

blocks.’ The script sparse_norm_idx9i.sql, which one can download

from the Internet website www.tutool.de/book, functions according

to this principle. There one can also find the second script

estimate_sparse_norm_idx10g.sql, which needs no optimizer statistics

but obtains all necessary data for the calculation itself. This script is

more precise than the first one but needs considerably more time and

resources. Both scripts are described in [1].”

A.: “One has to be careful with the index statistic ‘leaf blocks’ because it

only takes into account the filled index blocks. Leaf blocks which are

totally empty are omitted from this statistic (see [1]).”

P.: “When an index has a lot of empty leaf blocks, the difference between

the number of all allocated index blocks from the view

DBA_SEGMENTS for this index and the index statistic ‘leaf blocks’

must be considerable. One can identify such empty leaf blocks in this

way.”

Id Operation Name Starts A-Rows A-Time Buffers
0 SELECT STATEMENT                      1 28 00:09:22.19 5161K

…
18 TABLE ACCESS BY 

INDEX ROWID 
PICKAUF 137K 4159K 00:07:58.00 4252K

* 19 INDEX RANGE SCAN       PI_PR_FK_I 137K 4159K 00:00:06.51 162K
…

Fig. 5.8 The index PI_PR_FK_I presumably has a large clustering factor

5.1 “Local” Problems in the Execution Plan 39

http://www.tutool.de/book


A.: “Correct, Peter. But let’s return to the execution plan. How would you

recognize a sparse index in an index scan there?”

P.: “When an index has too many leaf blocks, Oracle has to read a large

number of blocks during the index scan. Normally, in this case, the

runtime statistic ‘buffers’ is relatively large compared to the

cardinality.”

A.: “I have a little bit to add to what you have just said. The statistic

cardinality contains the number of selected rows. It is also possible

that many rows are accessed in an index scan but only a few are

selected.”

P.: “I don’t completely understand that.”

A.: “Please think back to the predicates in ‘access’ and in ‘filter’ from the

section ‘Predicate Information.’ The data is accessed with the predicates

in ‘access.’ If no filter predicates exist to the relevant index scan, then the

cardinality is almost equal to the number of accessed rows. In this case,

one can compare the cardinality and the statistic ‘buffers’ in order to

identify a sparse index, as in a practical example shown in Fig. 5.9. Can

you recognize a sparse index there?”

P.: “That’s very easy. In step 4, 326 rows were found by the index range

scan. Oracle did 1751 buffer gets for that. The index

PROVIS_TRANSACTION_1IX seems to me to be a sparse index.

Does one have to check every index scan in the execution plan? That

could be quite a lot.”

A.: “Not each one, of course. Only problematical execution plan steps are

interesting for us. Those are steps with a large runtime (column ‘A-

Time’ in an execution plan with runtime statistics) or with a large

activity (column ‘Activity (%)’ in a SQL monitoring report).”

P.: “Has the index PROVIS_TRANSACTION_1IX been rebuilt?”

A.: “Yes, you can see the result in Fig. 5.10.”

P.: “Can one rebuild every sparse index without problems?”

A.: “When there is competing access to an index, its rebuilding can cause

serious waiting time on ‘latch: cache buffers chains’ (see [1]). This is not

the only possible negative effect of a rebuilding of an index, but pre-

cisely this can have a severely adverse effect on performance. Peter, I

have already indicated that a large number of buffer gets and a relatively

low cardinality in an index range scan don’t always indicate a sparse

index.”

Id Operation Name Starts A-Rows Buffers
0 SELECT STATEMENT              1 119 1774
1 SORT ORDER BY                1 119 1774

*  2 FILTER                      1 119 1774
*  3 TABLE ACCESS BY INDEX ROWID PROVIS_TRANSACTION     1 119 1774
*  4 INDEX RANGE SCAN          PROVIS_TRANSACTION_1IX 1 326 1751
Predicate Information (identified by operation id):
---------------------------------------------------

2 - filter(:B1>=:B0)
3 - filter(("GROUP_ID">=:B0 AND "GROUP_ID"<=:B1))
4 - access("PROCESS_IND"=:B2)

Fig. 5.9 The index PROVIS_TRANSACTION_1IX is presumably a sparse index

40 5 Bottlenecks in the Execution Plan



P.: “Unfortunately, I can’t give you any other explanation.”

A.: “When the relevant index scan also has filter predicates, precisely these

(i.e., no predicates with access) can be selective and contribute a great

deal to a low cardinality. In this case, it can have nothing to do with a

sparse index.”

P.: “What do you mean by that?”

A.: “I’ll show you with an example. We’ll create a table T1 and fill it with

data. All values in columnA are equal to 1.Wewill fill columnC in a way

that makes this column very selective. The values in the remaining

columns are not important for us. Let’s create an index for three columns:

After that we will execute the following SQL statement (Fig. 5.11).

As you can see, all leaf blocks have been read by the index range scan.

The number of selected rows is low thanks to the high selectivity of

column C. The rows have been filtered out by the filter ((C�110 AND

C�100)).”

P.: “It does actually look very similar to a sparse index. With the hint

NO_INDEX_SS, you have suppressed an index skip scan. Why?”

A.: “We are mainly concentrating on index range scan, because it occurs

more often than other index scans in practice. When the statistic ‘buffers’

is large in comparison to the cardinality of an index skip scan, this

normally also indicates that either the relevant index is a sparse index or

the index skip scan is simply not efficient, although the associated filter is

selective. Because each index skip scan has a filter, one has to check both

Id  Operation                     Name                   Starts A-Rows Buffers
0 SELECT STATEMENT              1 119 24
1 SORT ORDER BY                1 119 24

*  2 FILTER                      1 119 24
*  3 TABLE ACCESS BY INDEX ROWID PROVIS_TRANSACTION     1 119 24
*  4 INDEX RANGE SCAN          PROVIS_TRANSACTION_1IX 1 326 1

Fig. 5.10 The execution plan after the index rebuilding of PROVIS_TRANSACTION_1IX

select /*+ index(t1 i1_t1) no_index_ss(t1) */ count(*) from t1 where
a=1 and c between 100 and 110

Plan hash value: 2778874372

Id Operation Name Starts A-Rows Buffers
0 SELECT STATEMENT  1 1 160
1 SORT AGGREGATE   1 1 160

*  2 INDEX RANGE SCAN I1_T1 1 11 160
Predicate Information (identified by operation id):
---------------------------------------------------

2 - access("A"=1 AND "C">=100 AND "C"<=110)
filter(("C"<=110 AND "C">=100))

Fig. 5.11 Selective filter with index range scan

5.1 “Local” Problems in the Execution Plan 41



these possibilities. At the end of this section, I will demonstrate by means

of an example that, in some cases of the selective filter, an index skip scan

is more effective than an index range scan.”

P.: “Can one solve problems with a selective filter by creating an index for

the filter predicates?”

A.: “It’s possible that the selective index column can only be checked in

filter and not in access, due to a type conversion. Let’s change the type of

column C to VARCHAR2 and fill table T1 with data so that the values in

column C are numerical. In this example, index I1_T1 has only two

columns: A and C. Let’s execute the SQL statement (Fig. 5.12).

By creating an FBI (function-based index) for the filter predicates,

one can no doubt also reduce the number of buffer gets. However, it

makes more sense to change the problematical data type in the table.

One has to analyze each problematical index scan with a selective filter

separately and initiate appropriate improvement measures.”

P.: “You wanted to show me that an index skip scan can be more effective

than an index range scan.”

A.: “Exactly. Look at Fig. 5.13. Table T1 has an index for columns A and

B. Column A, which is the leading column in this index, is not selective

and has only four different values: 1, 2, 3, 4. Can you say why so many

index blocks have been scanned in comparison to cardinality?”

select /*+ index(t1 i1_t1) */ count(*) from t1 where
a=1 and c between 100 and 110

Plan hash value: 2778874372

Id Operation Name Starts A-Rows Buffers
0 SELECT STATEMENT  1 1 175
1 SORT AGGREGATE   1 1 175

*  2 INDEX RANGE SCAN I1_T1 1 11 175
Predicate Information (identified by operation id):
---------------------------------------------------

2 - access("A"=1)
filter((TO_NUMBER("C")>=100 AND TO_NUMBER("C")<=110))

Fig. 5.12 Selective filter with index range scan due to type conversion

select /*+ index(t1 i_t1) no_index_ss(t1 i_t1) gather_plan_statistics
*/  count(*) from t1 where a between 1 and 3 and b = 20000

Plan hash value: 3547404373

Id Operation Name Starts A-Rows Buffers
0 SELECT STATEMENT  1 1 105
1 SORT AGGREGATE   1 1 105

*  2 INDEX RANGE SCAN I_T1 1 3 105

Predicate Information (identified by operation id):
---------------------------------------------------

2 - access("A">=1 AND "B"=20000 AND "A"<=3)
filter("B"=20000)

Fig. 5.13 Selective filter with index range scan with a wide “between” interval for the leading

column in the index

42 5 Bottlenecks in the Execution Plan



P.: “As column A has only four different values, the interval between 1 and

3 is relatively wide, so Oracle has to read a lot of leaf blocks when

carrying out the index range scan. The data from these blocks are

filtered out with the filter predicate ‘B¼20000.’ The cardinality is

presumably so low because this filter is selective. But I don’t understand

how an index skip scan can help here. I would have created an index for

the column from the filter in such a situation.”

A.: “Imagine that the index I_T1 is quasi-partitioned for column A. Each of

these partitions has the same value for column A. In our example there

are four partitions. With index skip scan, Oracle executes an index range

scan in each of the partitions with ‘access (A¼<I> and B¼20000),’

whereby I¼ 1, 2, 3. As the condition B¼20000 is selective, this access

is very efficient. For index skip scan, Oracle only has to carry out three

such index range scans. This explains why the index skip scan is very

efficient (Fig. 5.14). I find this a much more elegant solution than to

create a new index.”

5.1.5 Nested Loop Join Instead of Hash Join and Vice Versa

Author: “In this section we will discuss how one can recognize in the execution

plan that a hash join is more effective than an applied nested loop join

and vice versa.”

Peter: “Doesn’t that happen automatically in Oracle?”

A.: “You are right. Oracle uses the ‘adaptive plan’ feature for this. Oracle

already calculates both variants (hash join and nested loop join) during

parsing and only decides on one of these variants during runtime. It is

important to know that these join methods are not always an alternative

to each other.”

P.: “Why?”

A.: “In contrast to nested loop join, the hash join can only be used with equi-

joins.”

Fig. 5.14 Index skip scan is more efficient than index range scan when there is a wide “between”

interval of the leading column in the index, if this column only has a few different values

5.1 “Local” Problems in the Execution Plan 43



P.: “Now I understand: The hash join is based on a hash algorithm for which

join conditions with equalities are the only option.”

A.: “Correct. Before we analyze the nested loop join and the hash join in the

execution plan, we have to agree on the terminology. A nested loop join

consists of two cycles: Outer loop and inner loop. In the first cycle, the

rows are read from the outer table. For each row selected in the first

cycle, the second cycle is executed. The data in the second cycle is

selected from the second table (inner table) with the join condition. In

the case of the hash join, this functions as follows: Firstly, a hash table is

formed for the join columns from the first table (build table) in the

memory. Then all rows from the second table (probe table) are checked

against the hash table. Peter, could you please tell me under which

conditions a nested loop join makes sense.”

P.: “I think the cardinality of the outer loop should be relatively low.

Otherwise, too many inner loops will be executed.”

A.: “That’s correct, but not enough.”

P.: “I think I know which condition is still missing. The cardinality of the

inner loop must also be low. The lower it is, the more effective the nested

loop join is.”

A.: “Very good, Peter. When the cardinality of the outer or inner loop is

high, the relevant nested loop join is not efficient. If it is an equi-join, one

can try to use the hash join instead of the nested loop join. Let’s take the

following execution plan of a SQL statement from Oracle’s SYSMAN

schema as an example (Fig. 5.15).

The runtime of the relevant SQL statement with this execution plan

was 573 seconds. Can you please analyze this plan, Peter?”

P.: “The problematical steps in this plan are 18 and 19. In step 19, 584

million rows were selected. For each of these rows, the table access to

the table EM_METRIC_ITEMS was done by rowid in step 18. The

cardinality sank to eight million. This step is the most expensive in the

execution plan. We could try to reduce the cardinality in step 19.”

A.: “Peter, I fear that your analysis is heading in the wrong direction. Even

though you’re right, we can’t reduce the cardinality in step 19 because

SYSMAN is a schema from Oracle itself, and we are not allowed to

make any changes there, such as index extension. Please concentrate on

nested loops.”

P.: “OK. Steps 18 and 19 belong to the nested loop join in step 6. In this

nested loop join, 966 rows from the join in step 7 were linked to the table

EM_METRIC_ITEMS. According to the relevant predicates, that is an

equi-join. The cardinality of the inner loop in this join was eight million

(see step 18). As that is a large value, one could try to replace the nested

loop by a hash join.”

44 5 Bottlenecks in the Execution Plan



SQL Plan Monitoring Details (Plan Hash Value=2535171835)
Id Operation Name Execs Rows

(Actual)
Activity

(%)
0 SELECT STATEMENT                         1 25
1 VIEW                                   GC_METRIC_LATEST           1 25
2 UNION-ALL                             1 25
3 FILTER                               1 23
4 NESTED LOOPS                        1 23
5 NESTED LOOPS                       1 23
6 NESTED LOOPS                      1 8M
7 NESTED LOOPS                     1 966
8 HASH JOIN    1 966
9 HASH JOIN                      1 966
10 TABLE ACCESS FULL             EM_METRIC_COLUMNS          1 1625
11 NESTED LOOPS                  1 3136
12 TABLE ACCESS BY 

INDEX ROWID  
EM_METRIC_GROUPS           1 12

13 INDEX RANGE SCAN            EM_METRIC_GROUPS_PK        1 12
14 INDEX RANGE SCAN             EM_METRIC_COLUMN_VER_PK    12 3136
15 TABLE ACCESS FULL              EM_METRIC_GROUP_VER        1 61661
16 TABLE ACCESS BY INDEX 

ROWID     
EM_METRIC_KEYS             966 966

17 INDEX RANGE SCAN               EM_METRIC_KEYS_PK          966 1932
18 TABLE ACCESS BY INDEX 

ROWID      
EM_METRIC_ITEMS            966 8M 41.36

19 INDEX RANGE SCAN                EM_METRIC_ITEMS_KEY_IDX    966 584M 23.73 
20 INLIST ITERATOR                   8M 23 0.52 
21 TABLE ACCESS BY INDEX 

ROWID      
EM_MANAGEABLE_ENTITIES     38M 23 1.40 

22 INDEX RANGE SCAN                EM_MANAGEABLE_ENTITIES_PK  38M 3M 24.78 
23 PARTITION RANGE ITERATOR           33 23
24 INDEX UNIQUE SCAN                 EM_METRIC_VALUES_PK        33 23
25 NESTED LOOPS                        
26 TABLE ACCESS BY INDEX 

ROWID        
EM_MEXT_TARGET_ASSOC       

27 INDEX UNIQUE SCAN                 MEXT_TARGET_ASSOC_UN       
28 INDEX UNIQUE SCAN                  MEXT_COLUMNS_PK            
29 FILTER                               1 2
30 NESTED LOOPS                        1 2
31 NESTED LOOPS                       1 2
32 NESTED LOOPS                      1 2
33 NESTED LOOPS                     1 652K
34 NESTED LOOPS                    1 89
35 HASH JOIN       1 89
36 HASH JOIN                     1 89
37 TABLE ACCESS FULL            EM_METRIC_COLUMNS          1 11
38 NESTED LOOPS                 1 3136
39 TABLE ACCESS BY 

INDEX ROWID 
EM_METRIC_GROUPS           1 12

40 INDEX RANGE SCAN           EM_METRIC_GROUPS_PK    1 12
41 INDEX RANGE SCAN            EM_METRIC_COLUMN_VER_PK    12 3136
42 TABLE ACCESS FULL             EM_METRIC_GROUP_VER        1 61661
43 TABLE ACCESS BY INDEX 

ROWID    
EM_METRIC_KEYS             89 89

44 INDEX RANGE SCAN              EM_METRIC_KEYS_PK          89 178
45 TABLE ACCESS BY INDEX 

ROWID     
EM_METRIC_ITEMS            89 652K 4.19 

46 INDEX RANGE SCAN               EM_METRIC_ITEMS_KEY_IDX    89 54M 1.22 
47 INLIST ITERATOR                  652K 2 0.17 
48 TABLE ACCESS BY INDEX 

ROWID     
EM_MANAGEABLE_ENTITIES 3M 2 0.35 

49 INDEX RANGE SCAN               EM_MANAGEABLE_ENTITIES_PK  3M 230K 2.27 
50 INDEX UNIQUE SCAN                 

EM_METRIC_STRING_LATEST_PK 
2 2

51 TABLE ACCESS BY INDEX 
ROWID     

EM_METRIC_STRING_LATEST    2 2

52 NESTED LOOPS                        
53 TABLE ACCESS BY INDEX 

ROWID        
EM_MEXT_TARGET_ASSOC       

Fig. 5.15 An inefficient nested loop join

5.1 “Local” Problems in the Execution Plan 45



A.: “The hash join can eliminate both problematical steps 18 and 19.

According to the optimizer statistics, table EM_METRIC_ITEMS had

approximately 7.5 million rows. As the table was not inordinately large,

access to this table with an FTS was tried. With these two optimizer

hints, the problematical nested loop join is replaced by a hash join:

In the execution plan, there is another similar nested loop join in step

33. Although this join was not as suboptimal as the first one, the decision

here was also to use a hash join. The following hints were used:

These hash joins reduced the runtime to one-tenth (i.e., to 30–50

seconds). The execution plan in question is shown in Fig. 5.16.”

P.: “I see that the two execution plans only differ in two joins. How is this

possible?”

A.: “For the second execution, the outlines from the first plan were used. In

these outlines, only the hints relevant to the nested loop joins were

replaced by the four hints listed above for hash joins. This example

shows how easy it is to accelerate a SQL statement tenfold. In the next

section, we will continue with the tuning of this SQL statement.”

P.: “I now know how an inefficient nested loop join can be recognized and

replaced by a hash join. How can you recognize an inefficient hash

join?”

A.: “Try to answer the question yourself.”

P.: “The cardinality in a hash join when accessing the build table must be

relatively low so that the outer loop of the nested loop join will be

efficient. The hits of the hash join must also be low, so that the

54 INDEX UNIQUE SCAN                 MEXT_TARGET_ASSOC_UN       
55 INDEX UNIQUE SCAN                  MEXT_COLUMNS_PK            
Query Block Name / Object Alias (identified by operation id):
-------------------------------------------------------------
…
12 - SEL$F32B35FB / G@SEL$2
…
18 - SEL$F32B35FB / I@GMVL
19 - SEL$F32B35FB / I@GMVL
…
21 - SEL$F32B35FB / ME@SEL$3
…
45 - SEL$E18A34F2 / I@GMSVL
46 - SEL$E18A34F2 / I@GMSVL
…

Predicate Information (identified by operation id):
---------------------------------------------------
…
18 - filter(("I"."METRIC_GROUP_ID">=1 AND "I"."METRIC_GROUP_ID"="G"."METRIC_GROUP_ID" AND 

("I"."IS_CURRENT"='1' OR "G"."KEYS_FROM_MULT_COLS"=1)

))
19 - access("I"."METRIC_KEY_ID"="K"."METRIC_KEY_ID")
…

Fig. 5.15 (continued)

46 5 Bottlenecks in the Execution Plan



cardinality of the inner join is also low. If these two conditions are

fulfilled, one can replace the respective hash join by a nested loop.”

A.: “Quite right. As this analysis is fairly simple, we don’t need to give an

example.”

SQL Plan Monitoring Details (Plan Hash Value=1326981145)

Id Operation Name Execs Rows
(Actual)

Activity
(%)

0 SELECT STATEMENT                          1 25 2.86
1 VIEW                                    GC_METRIC_LATEST           1 25
2 UNION-ALL                              1 25
3 FILTER                                1 23
4 NESTED LOOPS                         1 23
5 HASH JOIN                           1 23 45.71
6 HASH JOIN                          1 8M 20.00
7 NESTED LOOPS                      1 966
8 NESTED LOOPS                     1 1932
9 HASH JOIN                       1 966
10 HASH JOIN                      1 966
11 TABLE ACCESS FULL             EM_METRIC_COLUMNS          1 1625
12 NESTED LOOPS                  1 3136
13 TABLE ACCESS BY 

INDEX ROWID  
EM_METRIC_GROUPS           1 12

14 INDEX RANGE SCAN            EM_METRIC_GROUPS_PK        1 12
15 INDEX RANGE SCAN             EM_METRIC_COLUMN_VER_PK    12 3136
16 TABLE ACCESS FULL              EM_METRIC_GROUP_VER        1 61661
17 INDEX RANGE SCAN                EM_METRIC_KEYS_PK          966 1932
18 TABLE ACCESS BY INDEX 

ROWID      
EM_METRIC_KEYS             1932 966

19 TABLE ACCESS FULL                 EM_METRIC_ITEMS            1 8M 11.43
20 TABLE ACCESS FULL      EM_MANAGEABLE_ENTITIES     1 1
21 PARTITION RANGE ITERATOR            23 23
22 INDEX UNIQUE SCAN                  EM_METRIC_VALUES_PK        23 23
23 NESTED LOOPS             
24 TABLE ACCESS BY INDEX 

ROWID         
EM_MEXT_TARGET_ASSOC       

25 INDEX UNIQUE SCAN                  MEXT_TARGET_ASSOC_UN       
26 INDEX UNIQUE SCAN                 MEXT_COLUMNS_PK            
27 FILTER                                1 2
28 NESTED LOOPS                         1 2
29 NESTED LOOPS                        1 2
30 NESTED LOOPS                       1 2
31 HASH JOIN                         1 652K 2.86
32 NESTED LOOPS                     1 89
33 NESTED LOOPS                    1 178
34 HASH JOIN                      1 89
35 HASH JOIN                     1 89
36 TABLE ACCESS FULL            EM_METRIC_COLUMNS          1 11
37 NESTED LOOPS                 1 3136
38 TABLE ACCESS BY 

INDEX ROWID 
EM_METRIC_GROUPS           1 12

39 INDEX RANGE SCAN           EM_METRIC_GROUPS_PK        1 12
40 INDEX RANGE SCAN            EM_METRIC_COLUMN_VER_PK    12 3136
41 TABLE ACCESS FULL           EM_METRIC_GROUP_VER        1 61661
42 INDEX RANGE SCAN               EM_METRIC_KEYS_PK          89 178
43 TABLE ACCESS BY INDEX 

ROWID     
EM_METRIC_KEYS             178 89

44 TABLE ACCESS FULL        EM_METRIC_ITEMS            1 8M
45 INLIST ITERATOR                   652K 2
46 TABLE ACCESS BY INDEX 

ROWID      
EM_MANAGEABLE_ENTITIES     3M 2

47 INDEX RANGE SCAN       EM_MANAGEABLE_ENTITIES_PK  3M 228K 14.29
48 INDEX UNIQUE SCAN                  

EM_METRIC_STRING_LATEST_PK 
2 2

49 TABLE ACCESS BY INDEX 
ROWID         

EM_METRIC_STRING_LATEST    2 2

50 NESTED LOOPS           
51 TABLE ACCESS BY INDEX 

ROWID         
EM_MEXT_TARGET_ASSOC       

52 INDEX UNIQUE SCAN                  MEXT_TARGET_ASSOC_UN       
53 INDEX UNIQUE SCAN               MEXT_COLUMNS_PK            

Fig. 5.16 The execution plan after replacing the nested loop joins by hash joins

5.1 “Local” Problems in the Execution Plan 47



5.2 “Global” Problems in the Execution Plan

This section is dedicated to problems which normally have an adverse effect on

several execution plan steps. As a rule, they are not as localized as the problems

described in the previous section and therefore have a “global” character.

Author: “Peter, can you say which SQL statements or which execution plan steps

are affected by ‘global’ problems?”

Peter: “I assume that these problems can come up in a join of several tables.”

A.: “Absolutely correct. What can cause ‘global’ problems in a join of

several tables?”

P.: “An inappropriate table order in the execution plan of this join?”

A.: “Right again. Could you be a bit more concrete about what a ‘global’

problem looks like?”

P.: “The number of hits in some execution plan steps is unnecessarily large.

As this influences the performance of the subsequent execution plan

steps, one can describe such a problem as ‘global.’”

A.: “Thank you, Peter. In this section we will discuss problems which can

occur due to an inappropriate table order in the execution plan of a join.

We will learn how to recognize and change an inappropriate table order.

I would like to start with a change of a table order in a join.”

5.2.1 Formal Rules for Changing the Table Order in a Join

Author: “One must be careful when changing any table order in a join as one can

easily create a Cartesian product.”

Peter: “This happens when two tables are not joined.”

A.: “Yes, there are no join predicates for two tables. Oracle then has to join

each row of the first table with each row of the second table. The number

of hits of the Cartesian product is N1�N2 rows, whereby N1 and N2 are

the cardinalities of the first and second table, respectively.”

P.: “Is a Cartesian product in an execution plan always a bad thing?”

A.: “Not always. The optimizer sometimes decides on a Cartesian product

even if an execution plan would be possible without a Cartesian

product.”

P.: “In such a case, the cardinalities of the two tables involved in the

Cartesian must be very low.”

A.: “Correct. In most cases, however, a Cartesian product causes poor

performance because its result is usually high or very high. For this

reason, one should avoid this situation wherever possible. First let’s look

at inner joins and use a simple example to show how to move a table in

the join sequence without giving rise to a Cartesian product. In the

following SQL statement, table T4 is joined to T2 as well as T0

(Fig. 5.17).

48 5 Bottlenecks in the Execution Plan



You see, Peter, there is no Cartesian product in the execution plan in

Fig. 5.17. Can you please tell me why?”

P.: “Presumably because each table on the second, third position, etc. in this

join is joined to one of the preceding tables.”

A.: “Very good. Let’s try to move table 4 without producing a Cartesian

product. Can we move T4 to the third position (i.e., after table T1)?”

P.: “Yes, because it is joined to T0.”

A.: “The execution plan in Fig. 5.18 proves that you are right.”

SQL> explain plan set statement_id='TTT' into sys.plan_table for
2  select /*+ leading(t0 t1 t2 t3 t4 t5) */ * from t0, t1, t2, t3, t4, t5
3  where
4  t0.a = t1.a and
5  t1.b = t2.b and
6  t2.c = t3.c and
7  t2.d = t4.d and
8  t4.e = t5.e and
9  t4.h = t0.h and
10  t0.f = :b1 and
11  t4.j = :b2;

Plan hash value: 392760849

Id Operation Name Rows Bytes Cost (%CPU) Time
0 SELECT STATEMENT       1 624 15  (20) 00:00:01

*  1 HASH JOIN             1 624 15  (20) 00:00:01
*  2 HASH JOIN            1 520 12  (17) 00:00:01
*  3 HASH JOIN           1 416 10  (20) 00:00:01
*  4 HASH JOIN          1 312 7  (15) 00:00:01
*  5 HASH JOIN         1 208 5  (20) 00:00:01
*  6 TABLE ACCESS FULL T0 1 104 2   (0) 00:00:01

7 TABLE ACCESS FULL T1 82 8528 2   (0) 00:00:01
8 TABLE ACCESS FULL T2 82 8528 2   (0) 00:00:01
9 TABLE ACCESS FULL  T3 82 8528 2   (0) 00:00:01

* 10 TABLE ACCESS FULL   T4 1 104 2   (0) 00:00:01
11 TABLE ACCESS FULL    T5 82 8528 2   (0) 00:00:01

Fig. 5.17 Inner join without Cartesian product

SQL> explain plan set statement_id='TTT' into sys.plan_table for
2  select /*+ leading(t0 t1 t4 t2 t3 t5) */ * from t0, t1, t2, t3, t4, t5
3  where
4  t0.a = t1.a and
5  t1.b = t2.b and
6  t2.c = t3.c and
7  t2.d = t4.d and
8  t4.e = t5.e and
9  t4.h = t0.h and
10  t0.f = :b1 and
11  t4.j = :b2;

Plan hash value: 281742934

Id Operation Name Rows Bytes Cost (%CPU) Time
0 SELECT STATEMENT       1 624 15  (20) 00:00:01

*  1 HASH JOIN             1 624 15  (20) 00:00:01
*  2 HASH JOIN            1 520 12  (17) 00:00:01
*  3 HASH JOIN    1 416 10  (20) 00:00:01
*  4 HASH JOIN          1 312 7  (15) 00:00:01
*  5 HASH JOIN         1 208 5  (20) 00:00:01
*  6 TABLE ACCESS FULL T0 1 104 2   (0) 00:00:01

7 TABLE ACCESS FULL T1 82 8528 2   (0) 00:00:01
*  8 TABLE ACCESS FULL T4 1 104 2   (0) 00:00:01

9 TABLE ACCESS FULL  T2 82 8528 2   (0) 00:00:01
10 TABLE ACCESS FULL   T3 82 8528 2   (0) 00:00:01
11 TABLE ACCESS FULL    T5 82 8528 2   (0) 00:00:01

Fig. 5.18 Movement of a table in a join without a Cartesian product

5.2 “Global” Problems in the Execution Plan 49



P.: “I don’t think table sequences T0, T4, T1, T2, T3, T5 and T4, T0, T1, T2,

T3, T5 should cause any Cartesian product either.”

A.: “That’s true. You can check that yourself. Are you now able to formulate

a rule for the movement of a table in a join?”

P.: “I’ll try. One can move a table in a join without causing a Cartesian

product if this table is joined to a preceding table in the new position. One

can move a table to the first position if it is joined to the second table.”

A.: “Such a movement alone does not guarantee any improvement in per-

formance. In the next sections, we will learn how to move a table in a

join to achieve an improvement in performance.”

P.: “I have a question. In the case of a table chain in which each table is only

joined to the next one, there are not so many variants for table

movements. We can only reverse the table order. Is that right?”

A.: “Let’s look at that together. Let’s take the following table chain:

T0)T1)T2)T3)T4. Here the symbol ‘)’ means a join.

According to our rule, we can move T1 to the first position: T1, T0,

T2, T3, T4. We can then either move T2 to the first position too or to the

second position, i.e., T2, T1, T0, T3, T4 or T1, T2, T0, T3, T4, etc. As

you see, there are quite a lot of variants for a table movement in a table

chain. I therefore see no reason to regard table chains as a special case.

Figure 5.19 shows such a change in table sequence in a table chain.”

P.: “Agreed. Have we finished with inner joins?”

A.: “Yes, we can move on to outer joins. Can you remind us what those are

please, Peter?”

P.: “The result of a left outer join (or a left join) of two tables T1 and T2

consists of the result of the inner join of these tables and the remaining

rows of table T1, for which the inner join produces no result (in this case,

the column values of table T2 contain null values). A right outer join

(or a right join) of two tables T1 and T2 is a left join of T2 and T1. A full

outer join of two tables T1 and T2 is a combination of a left and a right

join of these tables.”

SQL> explain plan set statement_id='TTT' into sys.plan_table for
2  select /*+ leading(t3 t2 t1 t0 t4) */ * from t0, t1, t2, t3, t4
3  where
4  t0.a = t1.a and
5  t1.b = t2.b and
6  t2.c = t3.c and
7  t3.d = t4.d and
8  t0.e = :b1 and
9  t4.f = :b2;

Plan hash value: 3764228295
Id Operation Name Rows Bytes Cost (%CPU) Time
0 SELECT STATEMENT      1 520 12  (17) 00:00:01

*  1 HASH JOIN            1 520 12  (17) 00:00:01
*  2 HASH JOIN           1 416 10  (20) 00:00:01
*  3 TABLE ACCESS FULL  T0 1 104 2   (0) 00:00:01
*  4 HASH JOIN          82 25584 7  (15) 00:00:01

5 TABLE ACCESS FULL T1 82 8528 2   (0) 00:00:01
*  6 HASH JOIN         82 17056 5  (20) 00:00:01

7 TABLE ACCESS FULL T3 82 8528 2   (0) 00:00:01
8 TABLE ACCESS FULL T2 82 8528 2   (0) 00:00:01

*  9 TABLE ACCESS FULL   T4 1 104 2   (0) 00:00:01

Fig. 5.19 Change of table order in a table chain

50 5 Bottlenecks in the Execution Plan



A.: “So it’s enough if we only consider left and full outer join. A left join is a

rigid construction in which no change of table order is possible

(Fig. 5.20).”

P.: “What about the full outer join?”

A.: “One can change the table order there because that is a symmetrical

operation (see Fig. 5.21). This change doesn’t do anything to improve

performance, however.”

P.: “Then the change of table order is no option for outer joins. It is either

impossible or of no use.”

A.: “In principle you’re right. But if we have a combination of inner and

outer joins, there is quite a lot we can do. For example, we can move the

complete outer join in the join. This is demonstrated in Figs. 5.22 and

5.23.

It is also possible to insert a table between the tables of an outer join in

the table sequence. In the SQL statement in Fig. 5.24, table T4 is joined

SQL> explain plan set statement_id='TTT' into sys.plan_table for
2  select /*+ leading(t2 t1) */ t1.a, t2.a from t1 left join t2 on (t1.a=t2.a);

Plan hash value: 1823443478

Id Operation Name Rows Bytes Cost (%CPU) Time
0 SELECT STATEMENT   82 2132 5  (20) 00:00:01

*  1 HASH JOIN OUTER   82 2132 5  (20) 00:00:01
2 TABLE ACCESS FULL T1 82 1066 2   (0) 00:00:01
3 TABLE ACCESS FULL T2 82 1066 2   (0) 00:00:01

Fig. 5.20 Left join. No change in table order is possible

SQL> explain plan set statement_id='TTT' into sys.plan_table for
2  select /*+ LEADING(@"SEL$1" "T2"@"SEL$1" "T1"@"SEL$1") */ t1.a, t2.a from t1 full join t2 on 

(t1.a=t2.a);

Plan hash value: 3807180574

Id Operation Name Rows Bytes Cost (%CPU) Time
0 SELECT STATEMENT      82 2132 5  (20) 00:00:01
1 VIEW                 VW_FOJ_0 82 2132 5  (20) 00:00:01

*  2 HASH JOIN FULL OUTER 82 2132 5  (20) 00:00:01
3 TABLE ACCESS FULL  T2 82 1066 2   (0) 00:00:01
4 TABLE ACCESS FULL  T1 82 1066 2   (0) 00:00:01

Fig. 5.21 Full outer join

SQL> explain plan set statement_id='TTT' into sys.plan_table for
2  select /*+ leading(t1 t2 t3) */ * from t1 inner join t2 on (t1.a = t2.a) left join t3 on 

(t2.b = t3.b) where t1.c = :b1 and t2.c = :b2; 

Plan hash value: 133157483

Id Operation Name Rows Bytes Cost (%CPU) Time
0 SELECT STATEMENT    1 312 7  (15) 00:00:01

*  1 HASH JOIN OUTER    1 312 7  (15) 00:00:01
*  2 HASH JOIN         1 208 5  (20) 00:00:01
*  3 TABLE ACCESS FULL T1   1 104 2   (0) 00:00:01
*  4 TABLE ACCESS FULL T2   1 104 2   (0) 00:00:01

5 TABLE ACCESS FULL T3   82 8528 2   (0) 00:00:01

Fig. 5.22 Movement of outer join (1)

5.2 “Global” Problems in the Execution Plan 51



to table T1 with an inner join. We can therefore insert this table between

tables T2 and T3 (which are joined together with an outer join) without

producing a Cartesian product (see Fig. 5.25). If table T4 has a high

cardinality, however, I would advise against this movement: After table

T4 has been joined with T1 and T2, the outer join with T3 is executed

and produces at least as many rows as the cardinality of T4 in step 6. In

this way, we also obtain a high cardinality in a further step of the

execution plan (in step 7 in Fig. 5.25). This is precisely what happens

in a practical example in the section ‘Joins with a Large Number of Hits.’

To conclude this section, I would like to mention that Oracle replaces

outer joins with inner joins if possible (see an example in Fig. 5.26).”

SQL> explain plan set statement_id='TTT' into sys.plan_table for
2  select /*+ leading(t2 t3 t1) */ * from t1 inner join t2 on (t1.a = t2.a) left join t3 on 

(t2.b = t3.b) where t1.c = :b1 and t2.c = :b2;

Plan hash value: 910709849

Id Operation Name Rows Bytes Cost (%CPU) Time
0 SELECT STATEMENT    1 312 7  (15) 00:00:01

*  1 HASH JOIN          1 312 7  (15) 00:00:01
*  2 HASH JOIN OUTER   1 208 5  (20) 00:00:01
*  3 TABLE ACCESS FULL T2 1 104 2   (0) 00:00:01

4 TABLE ACCESS FULL T3 82 8528 2   (0) 00:00:01
*  5 TABLE ACCESS FULL T1 1 104 2   (0) 00:00:01

Fig. 5.23 Movement of outer join (2)

SQL> explain plan set statement_id='TTT' into sys.plan_table for
2  select /*+ leading(t1 t2 t3 t4) */ * from t1 inner join t2 on (t1.a = t2.a) left join t3 on 

(t2.b = t3.b) inner join t4 on (t1.c = t4.c) where t1.c = :b1 and t2.c = :b2;

Plan hash value: 2335041112

Id Operation Name Rows Bytes Cost (%CPU) Time
0 SELECT STATEMENT     1 416 10  (20) 00:00:01

*  1 HASH JOIN           1 416 10  (20) 00:00:01
*  2 HASH JOIN OUTER    1 312 7  (15) 00:00:01
*  3 HASH JOIN         1 208 5  (20) 00:00:01
*  4 TABLE ACCESS FULL T1 1 104 2   (0) 00:00:01
*  5 TABLE ACCESS FULL T2 1 104 2   (0) 00:00:01

6 TABLE ACCESS FULL T3 82 8528 2   (0) 00:00:01
*  7 TABLE ACCESS FULL  T4 1 104 2   (0) 00:00:01

Fig. 5.24 Placement of a table between the tables of an outer join (1)

SQL> explain plan set statement_id='TTT' into sys.plan_table for
2  select /*+ leading(t1 t2 t4 t3) */ * from t1 inner join t2 on (t1.a = t2.a) left join t3 on 

(t2.b = t3.b) inner join t4 on (t1.c = t4.c) where t1.c = :b1 and t2.c = :b2;

Plan hash value: 1892448498

Id Operation Name Rows Bytes Cost (%CPU) Time
0 SELECT STATEMENT     1 416 10  (20) 00:00:01

*  1 HASH JOIN OUTER     1 416 10  (20) 00:00:01
*  2 HASH JOIN          1 312 7  (15) 00:00:01
*  3 HASH JOIN         1 208 5  (20) 00:00:01
*  4 TABLE ACCESS FULL T1 1 104 2   (0) 00:00:01
*  5 TABLE ACCESS FULL T2 1 104 2   (0) 00:00:01
*  6 TABLE ACCESS FULL T4 1 104 2   (0) 00:00:01

7 TABLE ACCESS FULL  T3 82 8528 2   (0) 00:00:01

Fig. 5.25 Placement of a table between the tables of an outer join (2)

52 5 Bottlenecks in the Execution Plan



P.: “The condition ‘t2.b is not null’ changes a left join to an inner join.”

A.: “Quite right. There is another example shown in Fig. 5.27. The replace-

ment of outer joins by inner joins gives the optimizer more table

sequence variants to consider during parsing. This is also advantageous

for SQL tuning.”

5.2.2 Joins with a Low Number of Hits

Author: “First let’s consider joins with an inappropriate table order in the execu-

tion plan and with a low number of hits. The important thing is that this

low number of hits does not result from an aggregation or similar

operation.”

Peter: “And what if an aggregation reduces the number of hits of the join?”

A: “Then one has to analyze the number of hits immediately before this

aggregation.”

P.: “Which operation is to reduce the cardinality then?”

A.: “The cardinality is to be reduced by a join.”

P.: “Can a join with a small number of hits be accelerated?”

A.: “One can at least try. The chances of obtaining a considerable accelera-

tion are fairly good in this case.”

P.: “What do you have to do to achieve that?”

SQL> explain plan set statement_id='TTT' into sys.plan_table for
2  select t1.a, t2.a from t1 left join t2 on (t1.a=t2.a) where t2.b is not null;

Plan hash value: 2959412835

Id Operation Name Rows Bytes Cost (%CPU) Time
0 SELECT STATEMENT   4 104 5  (20) 00:00:01

*  1 HASH JOIN         4 104 5  (20) 00:00:01
*  2 TABLE ACCESS FULL T2 4 52 2   (0) 00:00:01

3 TABLE ACCESS FULL T1 82 1066 2   (0) 00:00:01

Fig. 5.26 Oracle replaces outer joins with inner joins if possible (1)

SQL> explain plan set statement_id='TTT' into sys.plan_table for
2  select t1.a, t2.a, t2.b, t3.b from t1 left join t2 on (t1.a=t2.a) inner join t3 on 

(t2.b=t3.b);

Plan hash value: 261998084

Id Operation Name Rows Bytes Cost (%CPU) Time
0 SELECT STATEMENT    82 4264 7  (15) 00:00:01

*  1 HASH JOIN          82 4264 7  (15) 00:00:01
*  2 HASH JOIN         82 3198 5  (20) 00:00:01

3 TABLE ACCESS FULL T1 82 1066 2   (0) 00:00:01
4 TABLE ACCESS FULL T2 82 2132 2   (0) 00:00:01
5 TABLE ACCESS FULL T3 82 1066 2   (0) 00:00:01

Fig. 5.27 Oracle replaces outer joins with inner joins if possible (2)

5.2 “Global” Problems in the Execution Plan 53



A.: “Change the table order in the join in such a way that the cardinality is as

low as possible in each execution plan step.”

P.: “That sounds a bit too general, though. According to what criterion

should one change the table order?”

A.: “I would like to propose a simple heuristic method for this. Let’s start

with a nested loop join of two tables. Here we take a nested loop join in

particular because fast joins mainly use this kind of join. What do you

notice in the execution plan in Fig. 5.28?”

P.: “The cardinality in step 4 is 8001. In step 5, it falls to 1.”

A.: “Can one achieve a low cardinality in each execution plan step (at least

considerably lower than 8001) by changing the table order in this join?”

P.: “I don’t know.”

A.: “That’s the right answer. The execution plan doesn’t provide us with

enough information to be able to say that for sure. We have to check.

How would you do that, Peter?”

P.: “If we change the table sequence, table T2 will be queried first. I would

check how high the cardinality of filter ‘T2.B¼40’ is. If it is low, one can

change the table order.”

A.: “As a rule, I prefer checking directly with the hint LEADING.”

P.: “Why?”

A.: “A direct check is easier and, for that reason, less error-prone for the

tuner. It also provides more information which one can use during SQL

tuning. So let’s check directly with the hint LEADING(T2 T1) to see if

the changed table order reduces the cardinality (Fig. 5.29).”

P.: “The cardinality is considerably lower.”

Id Operation Name Starts A-Rows
0 SELECT STATEMENT              1 1
1 SORT AGGREGATE               1 1
2 NESTED LOOPS                1 1
3 NESTED LOOPS               1 1

*  4 TABLE ACCESS FULL         T2 1 11
*  5 INDEX RANGE SCAN          T1_I1 11 1
*  6 TABLE ACCESS BY INDEX ROWID T1 1 1

Fig. 5.29 Change of table order in the join reduces the cardinality of the execution plan steps

Id Operation Name Starts A-Rows
0 SELECT STATEMENT              1 1
1 SORT AGGREGATE               1 1
2 NESTED LOOPS                1 1
3 NESTED LOOPS               1 1

*  4 TABLE ACCESS FULL         T1 1 8001
*  5 INDEX RANGE SCAN          T2_I1 8001 1
*  6 TABLE ACCESS BY INDEX ROWID T2 1 1
Predicate Information (identified by operation id):
---------------------------------------------------

4 - filter("T1"."B"=10)
5 - access("T1"."A"="T2"."A")
6 - filter("T2"."B"=40)

Fig. 5.28 Inappropriate table order in a join of two tables

54 5 Bottlenecks in the Execution Plan



A.: “Changing the table sequence in the join has been beneficial here. If the

cardinality of the filter ‘T2.B¼40’ had been high, the low cardinality of

the join could have been explained by a very high selectivity of the join

predicate ‘T1.A¼T2.A.’ In this case, changing the table sequence would

not have achieved anything.”

P.: “OK, nested loop join of two tables is clear now.”

A.: “Now let’s consider an inner join of several tables. Let’s look for the

table access in the execution plan with the highest cardinality. We can

call this one table A. If the cardinality of the join in which table A is

involved is also high and only falls in the next step or over a number of

steps, one can assume that the table order in this join is suboptimal. The

first table in the subsequent course of the execution plan in which the

cardinality falls when this table is joined can then be called table B. If

one inserts table B before table A in the join order, one can often reduce

the cardinalities of the relevant execution plan steps.”

P.: “You’re assuming that the cardinality of the joins will fall at some point.

Why?”

A.: “It must fall at some point because the number of hits for the whole join

is low.”

P.: “I don’t understand why the change in the table order described above

should reduce the cardinalities of the execution plan steps.”

A.: “Inner join’s hits remain unaffected by any change to the table order.

Let’s look at a part of the join from the beginning until the join to table

B. If we insert table B before table A, we don’t change the cardinality of

this join because we are remaining within the same join. If the cardinal-

ity of table B (and the cardinality of the subsequent tables in the join) is

low after this rearrangement, we have achieved the desired result. This is

very similar to the case of nested loop join of two tables, which we have

already discussed.”

P.: “In an inner join of two tables, one can change the table order without

causing a Cartesian product. In a join of several tables, this is not always

the case.”

A.: “Yes, we must therefore check whether this rearrangement is possible

without producing a Cartesian product.”

P.: “Could it be that we do not only have to move a table B, but several

tables, in order to avoid a Cartesian product?”

A.: “That’s possible. In practice, however, table B often follows immedi-

ately after table A in the join, so that one only has to move table B.”

P.: “I hope I understand how to handle an inner join now. What about outer

joins?”

A.: “When outer joins occur in the join of several tables, we regard each

outer join as an entity and take this into consideration when changing the

table order as described in the section ‘Formal Rules for Changing the

Table Order in a Join.’ I have prepared three typical examples which

clearly demonstrate the heuristic method. Let’s start with the example

5.2 “Global” Problems in the Execution Plan 55



we have already used in the section ‘Nested Loop Join Instead of Hash

Join and Vice Versa’ (see Fig. 5.15). Below is an extract from the

execution plan, with a list of the corresponding predicates:”

P.: “I’m sorry, but I can’t follow that.”

A.: “Wait a minute, Peter. First let’s find tables A and B. Would you do that

please.”

P.: “The highest cardinality of 584M occurs in step 19 with the join to table

EM_METRIC_ITEMS (alias I@GMVL). Although it falls to 8M during

access by rowid to table EM_METRIC_ITEMS in step 18, it still

remains high. Table EM_METRIC_ITEMS is therefore table A. In

step 21, the cardinality falls to 23 with the join to table

EM_MANAGEABLE_ENTITIES (alias ME@SEL3). This is table B.”

SQL Plan Monitoring Details (Plan Hash Value=2535171835)
Id Operation Name Execs Rows

(Actual)
Activity

(%)
0 SELECT STATEMENT                         1 25
1 VIEW                                   GC_METRIC_LATEST           1 25
2 UNION-ALL                             1 25
3 FILTER                               1 23
4 NESTED LOOPS                        1 23
5 NESTED LOOPS                       1 23
6 NESTED LOOPS                      1 8M
7 NESTED LOOPS                     1 966
8 HASH JOIN                       1 966
9 HASH JOIN                      1 966
10 TABLE ACCESS FULL             EM_METRIC_COLUMNS          1 1625
11 NESTED LOOPS                  1 3136
12 TABLE ACCESS BY 

INDEX ROWID  
EM_METRIC_GROUPS           1 12

13 INDEX RANGE SCAN            EM_METRIC_GROUPS_PK        1 12
14 INDEX RANGE SCAN             EM_METRIC_COLUMN_VER_PK    12 3136
15 TABLE ACCESS FULL              EM_METRIC_GROUP_VER        1 61661
16 TABLE ACCESS BY INDEX 

ROWID     
EM_METRIC_KEYS             966 966

17 INDEX RANGE SCAN               EM_METRIC_KEYS_PK          966 1932
18 TABLE ACCESS BY INDEX 

ROWID      
EM_METRIC_ITEMS            966 8M 41.36 

19 INDEX RANGE SCAN                EM_METRIC_ITEMS_KEY_IDX    966 584M 23.73 
20 INLIST ITERATOR                   8M 23 0.52 
21 TABLE ACCESS BY INDEX 

ROWID      
EM_MANAGEABLE_ENTITIES     38M 23 1.40 

22 INDEX RANGE SCAN                EM_MANAGEABLE_ENTITIES_PK  38M 3M 24.78 
…

Predicate Information (identified by operation id):
---------------------------------------------------

…
13 - access("G"."TARGET_TYPE"=:41)
filter(("G"."METRIC_GROUP_NAME"=:2 OR "G"."METRIC_GROUP_NAME"=:4 OR 

"G"."METRIC_GROUP_NAME"=:9 OR "G"."METRIC_GROUP_NAME"=:11 OR "G"."METRIC_GROUP_NAME"=:14 OR 
"G"."METRIC_GROUP_NAME"=:18 OR "G"."METRIC_GROUP_NAME"=:23 OR "G"."METRIC_GROUP_NAME"=:26 OR 
"G"."METRIC_GROUP_NAME"=:29

…
18 - filter(("I"."METRIC_GROUP_ID">=1 AND "I"."METRIC_GROUP_ID"="G"."METRIC_GROUP_ID" AND 

("I"."IS_CURRENT"='1' OR "G"."KEYS_FROM_MULT_COLS"=1)
19 - access("I"."METRIC_KEY_ID"="K"."METRIC_KEY_ID")
…
21 - filter(("ME"."ENTITY_TYPE"=:41 AND "ME"."ENTITY_NAME"=:40 AND 

"GV"."TYPE_META_VER"="ME"."TYPE_META_VER" AND ("GV"."CATEGORY_PROP_1"=' ' OR
"GV"."CATEGORY_PROP_1"="ME"."CATEGORY_PROP_1") AND ("GV"."CATEGORY_PROP_2"=' ' OR 
"GV"."CATEGORY_PROP_2"="ME"."CATEGORY_PROP_2") AND ("GV"."CATEGORY_PROP_3"=' ' OR 
"GV"."CATEGORY_PROP_3"="ME"."CATEGORY_PROP_3") AND ("GV"."CATEGORY_PROP_4"=' ' OR 
"GV"."CATEGORY_PROP_4"="ME"."CATEGORY_PROP_4") AND ("GV"."CATEGORY_PROP_5"=' ' OR 
"GV"."CATEGORY_PROP_5"="ME"."CATEGORY_PROP_5")))

…
22 - access("I"."TARGET_GUID"="ME"."ENTITY_GUID" AND (("ME"."MANAGE_STATUS"=0 OR 

"ME"."MANAGE_STATUS"=1 OR "ME"."MANAGE_STATUS"=2 OR "ME"."MANAGE_STATUS"=3 OR 
"ME"."MANAGE_STATUS"=5)))

…

56 5 Bottlenecks in the Execution Plan



A.: “Let’s try inserting table EM_MANAGEABLE_ENTITIES before table

EM_METRIC_ITEMS in the join. Is that possible without a Cartesian

product?”

P.: “For this, table EM_MANAGEABLE_ITEMS has to be joined to a

preceding table, but it isn’t.”

A.: “This table is implicitly joined to table EM_METRIC_GROUPS (alias

G@SEL@2)). In step 13, table EM_METRIC_GROUPS is accessed via

the predicate ‘G.TARGET_TYPE¼:41.’

Table EM_MANAGEABLE_ENTITIES also has a filter ‘ME.

ENTITY_TYPE¼:41’ (see the predicates to step 21). These two tables

are therefore joined via the bind variable 41.”

P.: “After that, we can insert table EM_MANAGEABLE_ENTITIES

immediately before table EM_MANAGEABLE_ITEMS in the join.”

A.: “Presumably this would have been enough for an adequate improvement

in performance. I took a different approach, however. As the cardinality

falls from 8M to 23 with the join to table

EM_MANAGEABLE_ENTITIES, I thought that the predicates ‘ME.

ENTITY_TYPE¼:41’ and ‘ME.ENTITY_NAME¼:40’ (see the

predicates to step 21) were so selective that we could begin the join

directly with access to the table EM_MANAGEABLE_ENTITIES. I

then joined table EM_MANAGEABLE_ENTITIES to table

EM_METRIC_GROUPS to demonstrate how Oracle converts an

implicit join to an explicit join. Only then was it the turn of table

EM_METRIC_ITEMS. As this table is joined to table

EM_METRIC_KEYS (see the predicates to step 19), which, in turn, is

joined to the others, no Cartesian products were to be expected. This was

confirmed by an explain plan, which I generated for the SQL statement

with the hint LEADING(@"SEL$F32B35FB" "ME"@"SEL$3"

"G"@"SEL$2" "I"@"GMVL"). I almost forgot that the relevant SQL

statement is a union of two joins which have an identical structure and

only differ in terms of bind variables. For this reason, I added a second

hint LEADING(@"SEL$E18A34F2" "ME"@"SEL$6" "G"@"SEL$5"

"I"@"GMSVL") and executed the SQL statement. The result can be

seen in Fig. 5.30.”

P.: “Great! The runtime is now approximately 14 seconds instead of

573 before.”

A.: “But I still wasn’t satisfied with this execution plan. Two unnecessarily

expensive hash joins (in steps 12 and 38) took 13.24 of the 13.89

seconds of runtime. It made sense to replace these hash joins with the

respective nested loop joins. For these nested loop joins to be efficient,

the relevant inner loops had to use index scans. For this reason, I

checked whether an index existed for the columns TARGET_GUID

and METRIC_GROUP_ID of table EM_METRIC_ITEMS:”

5.2 “Global” Problems in the Execution Plan 57



Plan hash value: 1717020805

Id Operation Name Starts A-Rows A-Time
0 SELECT STATEMENT                       1 25 00:00:13.89
1 VIEW                                  GC_METRIC_LATEST 1 25 00:00:13.89
2 UNION-ALL                            1 25 00:00:13.89

*  3 FILTER                              1 23 00:00:08.32
4 NESTED LOOPS     1 23 00:00:08.32
5 NESTED LOOPS                      1 23 00:00:08.32
6 NESTED LOOPS                     1 966 00:00:08.17

*  7 HASH JOIN                       1 23 00:00:08.08
*  8 TABLE ACCESS FULL              EM_METRIC_COLUMNS 1 1625 00:00:00.38
*  9 HASH JOIN                      1 11 00:00:07.70
10 TABLE ACCESS BY INDEX 

ROWID   
EM_METRIC_KEYS 1 2 00:00:00.01

* 11 INDEX RANGE SCAN            EM_METRIC_KEYS_PK 1 2 00:00:00.01
* 12 HASH JOIN                     1 11 00:00:07.69
* 13 HASH JOIN                    1 12 00:00:00.01
14 TABLE ACCESS BY 

INDEX ROWID 
EM_MANAGEABLE_ENTITIES 1 1 00:00:00.01

* 15 INDEX RANGE SCAN           EM_MANAGEABLE_ENTITIES_UK1 1 1 00:00:00.01
16 TABLE ACCESS BY 

INDEX ROWID 
EM_METRIC_GROUPS 1 12 00:00:00.01

* 17 INDEX RANGE SCAN           EM_METRIC_GROUPS_PK 1 12 00:00:00.01
* 18 TABLE ACCESS FULL            EM_METRIC_ITEMS 1 7572K 00:00:04.56
* 19 INDEX RANGE SCAN                EM_METRIC_COLUMN_VER_PK 23 966 00:00:00.09
* 20 TABLE ACCESS BY INDEX 

ROWID      
EM_METRIC_GROUP_VER 966 23 00:00:00.15

* 21 INDEX UNIQUE SCAN               EM_METRIC_GROUP_VER_U1 966 966 00:00:00.03
22 PARTITION RANGE ITERATOR          23 23 00:00:00.01

* 23 INDEX UNIQUE SCAN                EM_METRIC_VALUES_PK 23 23 00:00:00.01
24 NESTED LOOPS                       0 0 00:00:00.01
25 TABLE ACCESS BY INDEX 

ROWID       
EM_MEXT_TARGET_ASSOC 0 0 00:00:00.01

* 26 INDEX UNIQUE SCAN                MEXT_TARGET_ASSOC_UN 0 0 00:00:00.01
* 27 INDEX UNIQUE SCAN                 MEXT_COLUMNS_PK 0 0 00:00:00.01
* 28 FILTER                              1 2 00:00:05.56
29 NESTED LOOPS                       1 2 00:00:05.56
30 NESTED LOOPS                      1 2 00:00:05.56
31 NESTED LOOPS                     1 2 00:00:05.56
32 NESTED LOOPS                    1 84 00:00:05.56

* 33 HASH JOIN                      1 2 00:00:05.56
* 34 TABLE ACCESS FULL             EM_METRIC_COLUMNS 1 11 00:00:00.02
* 35 HASH JOIN                     1 11 00:00:05.55
36 TABLE ACCESS BY INDEX 

ROWID  
EM_METRIC_KEYS 1 2 00:00:00.01

* 37 INDEX RANGE SCAN            EM_METRIC_KEYS_PK 1 2 00:00:00.01
* 38 HASH JOIN                    1 11 00:00:05.55
* 39 HASH JOIN                   1 12 00:00:00.01
40 TABLE ACCESS BY 

INDEX ROWID
EM_MANAGEABLE_ENTITIES 1 1 00:00:00.01

* 41 INDEX RANGE SCAN          EM_MANAGEABLE_ENTITIES_UK1 1 1 00:00:00.01
42 TABLE ACCESS BY 

INDEX ROWID
EM_METRIC_GROUPS 1 12 00:00:00.01

* 43 INDEX RANGE SCAN          EM_METRIC_GROUPS_PK 1 12 00:00:00.01
* 44 TABLE ACCESS FULL           EM_METRIC_ITEMS 1 7572K 00:00:02.36
* 45 INDEX RANGE SCAN               EM_METRIC_COLUMN_VER_PK 2 84 00:00:00.01
* 46 TABLE ACCESS BY INDEX 

ROWID     
EM_METRIC_GROUP_VER 84 2 00:00:00.01

* 47 INDEX UNIQUE SCAN             EM_METRIC_GROUP_VER_U1 84 84 00:00:00.01
* 48 INDEX UNIQUE SCAN                EM_METRIC_STRING_LATEST_PK 2 2 00:00:00.01
49 TABLE ACCESS BY INDEX 

ROWID       
EM_METRIC_STRING_LATEST 2 2 00:00:00.01

50 NESTED LOOPS          0 0 00:00:00.01
51 TABLE ACCESS BY INDEX 

ROWID       
EM_MEXT_TARGET_ASSOC 0 0 00:00:00.01

* 52 INDEX UNIQUE SCAN                MEXT_TARGET_ASSOC_UN 0 0 00:00:00.01
* 53 INDEX UNIQUE SCAN                 MEXT_COLUMNS_PK 0 0 00:00:00.01

Predicate Information (identified by operation id):
---------------------------------------------------
…
12 - access("I"."METRIC_GROUP_ID"="G"."METRIC_GROUP_ID" AND 

"I"."TARGET_GUID"="ME"."ENTITY_GUID")
filter(("I"."IS_CURRENT"='1' OR "G"."KEYS_FROM_MULT_COLS"=1))

…
38 - access("I"."METRIC_GROUP_ID"="G"."METRIC_GROUP_ID" AND 

"I"."TARGET_GUID"="ME"."ENTITY_GUID")
filter(("I"."IS_CURRENT"='1' OR "G"."KEYS_FROM_MULT_COLS"=1))

Fig. 5.30 Example 1. The first improvement after changing the table order in the join

58 5 Bottlenecks in the Execution Plan



P.: “Where did you find these columns?”

A.: “Those are the columns from the predicates to the two hash joins. The

above output shows that the index EM_METRIC_ITEMS_PK was of

use for the inner loop.”

P.: “Wasn’t it also necessary to check that these columns are selective?”

A.: “Why? The cardinalities of the two joins were already known and were

both 11 (see steps 12 and 38 in Fig. 5.30). I have added the following hints:

• LEADING(@"SEL$F32B35FB" "ME"@"SEL$3" "G"@"SEL$2"

"I"@"GMVL")

• INDEX(@SEL$F32B35FB I@GMVL EM_METRIC_ITEMS_PK)

• USE_NL(@SEL$F32B35FB I@GMVL)

• LEADING(@"SEL$E18A34F2" "ME"@"SEL$6" "G"@"SEL$5"

"I"@"GMSVL")

• INDEX(@SEL$E18A34F2 I@GMSVL EM_METRIC_ITEMS_PK)

• USE_NL(@SEL$E18A34F2 I@GMSVL)

and executed the SQL statement (Fig. 5.31).”

P.: “Fantastic! The SQL statement has become approximately 1000 times

faster.”

A.: “You will no doubt have noticed how easily we managed to do that.

Let’s take another example (see Fig. 5.32). Try to analyze it.”

P.: “I first have to look for tables A and B. In this example, that’s not so

easy because several have the maximum cardinality of 24826. I don’t

know which step to take.”

A.: “You should take the first step in which this cardinality occurs.”

P.: “When you say the first you mean the first step that is executed.”

A.: “That’s right, Peter.”

P.: “The cardinality of 24826 first occurs in step 6, in which an index range

scan takes place via the index IQE_SV_CLIENT. As this index belongs

to the table QUEUE_ENTRY (alias A0), it is table A in the join. In step

8, the cardinality falls to 846 when joined with the table

PROCESSING_INFO (alias C0). This table is table B in the join.”

A.: “Can we put table B before table A in the join?”

5.2 “Global” Problems in the Execution Plan 59



Plan hash value: 2260856612

Id Operation Name Starts A-Rows A-Time
0 SELECT STATEMENT                        1 25 00:00:00.59
1 VIEW                                   GC_METRIC_LATEST 1 25 00:00:00.59
2 UNION-ALL                             1 25 00:00:00.59

*  3 FILTER                               1 23 00:00:00.57
4 NESTED LOOPS                        1 23 00:00:00.57
5 NESTED LOOPS                       1 23 00:00:00.56
6 NESTED LOOPS                      1 966 00:00:00.49

*  7 HASH JOIN                        1 23 00:00:00.39
*  8 TABLE ACCESS FULL  EM_METRIC_COLUMNS 1 1625 00:00:00.38
*  9 HASH JOIN                       1 11 00:00:00.01
10 TABLE ACCESS BY INDEX 

ROWID    
EM_METRIC_KEYS 1 2 00:00:00.01

* 11 INDEX RANGE SCAN              EM_METRIC_KEYS_PK 1 2 00:00:00.01
12 NESTED LOOPS                   1 11 00:00:00.01
13 NESTED LOOPS                  1 11 00:00:00.01

* 14 HASH JOIN                    1 12 00:00:00.01
15 TABLE ACCESS BY 

INDEX ROWID 
EM_MANAGEABLE_ENTITIES 1 1 00:00:00.01

* 16 INDEX RANGE SCAN           EM_MANAGEABLE_ENTITIES_UK1 1 1 00:00:00.01
17 TABLE ACCESS BY 

INDEX ROWID 
EM_METRIC_GROUPS 1 12 00:00:00.01

* 18 INDEX RANGE SCAN           EM_METRIC_GROUPS_PK 1 12 00:00:00.01
* 19 INDEX RANGE SCAN             EM_METRIC_ITEMS_PK 12 11 00:00:00.01
* 20 TABLE ACCESS BY 

INDEX ROWID   
EM_METRIC_ITEMS 11 11 00:00:00.01

* 21 INDEX RANGE SCAN                 EM_METRIC_COLUMN_VER_PK 23 966 00:00:00.10
* 22 TABLE ACCESS BY INDEX 

ROWID       
EM_METRIC_GROUP_VER 966 23 00:00:00.07

* 23 INDEX UNIQUE SCAN                EM_METRIC_GROUP_VER_U1 966 966 00:00:00.01
24 PARTITION RANGE ITERATOR           23 23 00:00:00.01

* 25 INDEX UNIQUE SCAN                 EM_METRIC_VALUES_PK 23 23 00:00:00.01
26 NESTED LOOPS                        0 0 00:00:00.01
27 TABLE ACCESS BY INDEX 

ROWID   
EM_MEXT_TARGET_ASSOC 0 0 00:00:00.01

* 28 INDEX UNIQUE SCAN                 MEXT_TARGET_ASSOC_UN 0 0 00:00:00.01
* 29 INDEX UNIQUE SCAN                  MEXT_COLUMNS_PK 0 0 00:00:00.01
* 30 FILTER                             1 2 00:00:00.02
31 NESTED LOOPS                        1 2 00:00:00.02
32 NESTED LOOPS                       1 2 00:00:00.02
33 NESTED LOOPS                      1 2 00:00:00.02
34 NESTED LOOPS           1 84 00:00:00.02

* 35 HASH JOIN                       1 2 00:00:00.02
* 36 TABLE ACCESS FULL              EM_METRIC_COLUMNS 1 11 00:00:00.01
* 37 HASH JOIN                      1 11 00:00:00.01
38 TABLE ACCESS BY 

INDEX ROWID   
EM_METRIC_KEYS 1 2 00:00:00.01

* 39 INDEX RANGE SCAN             EM_METRIC_KEYS_PK 1 2 00:00:00.01
40 NESTED LOOPS                  1 11 00:00:00.01
41 NESTED LOOPS     1 11 00:00:00.01

* 42 HASH JOIN                   1 12 00:00:00.01
43 TABLE ACCESS BY 

INDEX ROWID
EM_MANAGEABLE_ENTITIES 1 1 00:00:00.01

* 44 INDEX RANGE SCAN          EM_MANAGEABLE_ENTITIES_UK1 1 1 00:00:00.01
45 TABLE ACCESS BY 

INDEX ROWID
EM_METRIC_GROUPS 1 12 00:00:00.01

* 46 INDEX RANGE SCAN          EM_METRIC_GROUPS_PK 1 12 00:00:00.01
* 47 INDEX RANGE SCAN            EM_METRIC_ITEMS_PK 12 11 00:00:00.01
* 48 TABLE ACCESS BY 

INDEX ROWID  
EM_METRIC_ITEMS 11 11 00:00:00.01

* 49 INDEX RANGE SCAN                EM_METRIC_COLUMN_VER_PK 2 84 00:00:00.01
* 50 TABLE ACCESS BY INDEX 

ROWID      
EM_METRIC_GROUP_VER 84 2 00:00:00.01

* 51 INDEX UNIQUE SCAN               EM_METRIC_GROUP_VER_U1 84 84 00:00:00.01
* 52 INDEX UNIQUE SCAN                 EM_METRIC_STRING_LATEST_PK 2 2 00:00:00.01
53 TABLE ACCESS BY INDEX 

ROWID        
EM_METRIC_STRING_LATEST 2 2 00:00:00.01

54 NESTED LOOPS                        0 0 00:00:00.01
55 TABLE ACCESS BY INDEX 

ROWID        
EM_MEXT_TARGET_ASSOC 0 0 00:00:00.01

* 56 INDEX UNIQUE SCAN                 MEXT_TARGET_ASSOC_UN 0 0 00:00:00.01
* 57 INDEX UNIQUE SCAN                  MEXT_COLUMNS_PK 0 0 00:00:00.01

Fig. 5.31 Example 1. Improvement in execution plan after replacement of hash joins by nested

loop joins

60 5 Bottlenecks in the Execution Plan



P.: “Doesn’t that hinder the outer join in step 4?”

A.: “That’s not a problem because the table PROCESSING_INFO does not

belong to this join.”

P.: “Agreed. As table A is the first in the join, we have to move table B to

the first position. Table A is then the second in the join. These tables

have to be joined so that no Cartesian product occurs when the table

order is changed.”

A.: “Are they joined?”

P.: “According to the predicates to step 9, tables QUEUE_ENTRY and

PROCESSING_INFO are joined by the column

PROCESSING_INFO_ID. We can therefore change the table order

accordingly with the hint LEADING(C0 A0).”

A.: “One moment please. The relevant SQL statement is fast. It only runs

for 0.39 seconds with the poor execution plan. For this reason it makes

sense to use a nested loop join to join the tables QUEUE_ENTRY and

PROCESSING_INFO. For the inner loop to run this join optimally, the

Id Operation Name Starts A-Rows A-Time
1 SORT ORDER BY                       1 0 00:00:00.39

*  2 FILTER                             1 0 00:00:00.39
3 NESTED LOOPS             1 846 00:00:00.39
4 NESTED LOOPS OUTER               1 24826 00:00:00.15
5 TABLE ACCESS BY INDEX 

ROWID     
QUEUE_ENTRY 1 24826 00:00:00.05

*  6 INDEX RANGE SCAN               IQE_SV_CLIENT 1 24826 00:00:00.01
*  7 INDEX UNIQUE SCAN               PK_QUEUE 24826 24826 00:00:00.09
*  8 TABLE ACCESS BY INDEX 

ROWID      
PROCESSING_INFO 24826 846 00:00:00.21

*  9 INDEX UNIQUE SCAN PK_PROCESSING_INFO 24826 24826 00:00:00.11
10 NESTED LOOPS                      14 0 00:00:00.01

* 11 INDEX UNIQUE SCAN                PK_QUEUE_RECIPIENTS 14 0 00:00:00.01
* 12 INDEX UNIQUE SCAN                PK_USER_ 0 0 00:00:00.01
13 NESTED LOOPS                    14 0 00:00:00.01

* 14 INDEX UNIQUE SCAN              PK_QUEUE_RECIPIENTS_EXTERNAL 14 0 00:00:00.01
* 15 INDEX UNIQUE SCAN              PK_USER_ 0 0 00:00:00.01
16 NESTED LOOPS                  14 0 00:00:00.01
17 NESTED LOOPS                 14 42 00:00:00.01
18 NESTED LOOPS                14 42 00:00:00.01

* 19 INDEX UNIQUE 
SCAN          

PK_USER_ 14 14 00:00:00.01

20 TABLE ACCESS BY 
INDEX ROWID

GROUP_ALL_USERS 14 42 00:00:00.01

* 21 INDEX RANGE 
SCAN          

IDX_GRP_LL_SRS_BSTRCT_ACTOR_ID 14 42 00:00:00.01

* 22 INDEX UNIQUE SCAN           PK_GROUP_ 42 42 00:00:00.01
* 23 INDEX UNIQUE SCAN            PK_QUEUE_GROUPS 42 0 00:00:00.01
Predicate Information (identified by operation id):
---------------------------------------------------

2 - filter(("A0"."OWNER_ID"=:B1 OR ("A0"."OWNER_ID" IS NULL AND ( IS NOT NULL OR  IS NOT NULL 
OR  IS NOT NULL))))

6 - access("A0"."SERVICE_CLIENT_ID"=:B5)
7 - access("A0"."QUEUE_ID"="B0"."ABSTRACT_ACTOR_ID")
8 - filter("C0"."PROCESSING_STATE"=:B6)
9 - access("A0"."PROCESSING_INFO_ID"="C0"."PROCESSING_INFO_ID")
11 - access("B0_SUB"."ABSTRACT_ACTOR_ID"=:B1 AND "B0_SUB"."RECIPIENT_ID"=:B2)
12 - access("A0_SUB"."ABSTRACT_ACTOR_ID"=:B2)
14 - access("B0_SUB"."ABSTRACT_ACTOR_ID"=:B1 AND "B0_SUB"."RECIPIENT_ID"=:B3)
15 - access("A0_SUB"."ABSTRACT_ACTOR_ID"=:B3)
19 - access("A0_SUB_SUB"."ABSTRACT_ACTOR_ID"=:B4)
21 - access("B0_SUB_SUB"."ABSTRACT_ACTOR_ID"=:B4)
22 - access("B0_SUB_SUB"."GROUP_ID"="A0_SUB"."GROUP_ID")
23 - access("B0_SUB"."ABSTRACT_ACTOR_ID"=:B1 AND "B0_SUB"."GROUP_ID"="A0_SUB"."GROUP_ID")

Fig. 5.32 The second example of an inappropriate table order in a join with a small number

of hits

5.2 “Global” Problems in the Execution Plan 61



column PROCESSING_INFO_ID of the table QUEUE_ENTRY has to

be indexed. I checked this and discovered that the index

IQE_PROCINFO exists for this column. I then executed the SQL

statement with the following two hints: LEADING(C0 A0) and

INDEX(A0 IQE_POCINFO). The result can be seen in Fig. 5.33.”

P.: “The runtime has improved from 0.39 to 0.07 seconds. However, I see

that the optimizer has not taken the index IQE_PROCINFO. Instead of

the desired nested loop join, it has used a hash join.”

A.: “That’s true. With the additional hint USE_NL(C0 A0), I managed to

force the optimizer to do what I wanted it to do (Fig. 5.34).”

P.: “I am amazed once again. You have reduced the runtime to 0.02

seconds and improved the original runtime of 0.39 seconds approxi-

mately 20-fold.”

A.: “Now let’s take the last example in this section (see Fig. 5.35). The

relevant SQL statement ran for 10,044 seconds. What do you think of

the execution plan, Peter?”

P.: “Presumably that is an interim result because the arrows in column ‘Id’

indicate active execution plan steps. The relevant SQL statement was

not yet finished when the SQL monitoring report was created.”

A.: “You have interpreted that correctly. However, the runtime statistics in

this report are representative and adequate for the analysis.”

P.: “With the best will in the world, I don’t think that 15,069 rows are a

small number of hits.”

Plan hash value: 471755289

Id Operation Name Starts A-Rows A-Time
1 SORT ORDER BY                       1 0 00:00:00.07

*  2 FILTER                         1 0 00:00:00.07
3 NESTED LOOPS OUTER                1 840 00:00:00.07

*  4 HASH JOIN 1 840 00:00:00.06
5 TABLE ACCESS BY 

INDEX ROWID     
PROCESSING_INFO 1 840 00:00:00.01

*  6 INDEX RANGE SCAN               IPROC_INFO_PS 1 840 00:00:00.01
7 TABLE ACCESS BY 

INDEX ROWID     
QUEUE_ENTRY 1 24816 00:00:00.03

*  8 INDEX RANGE SCAN               IQE_SV_CLIENT 1 24816 00:00:00.01
*  9 INDEX UNIQUE SCAN                PK_QUEUE 840 840 00:00:00.01
10 NESTED LOOPS                      14 0 00:00:00.01

* 11 INDEX UNIQUE SCAN                PK_QUEUE_RECIPIENTS 14 0 00:00:00.01
* 12 INDEX UNIQUE SCAN                PK_USER_ 0 0 00:00:00.01
13 NESTED LOOPS                    14 0 00:00:00.01

* 14 INDEX UNIQUE SCAN              PK_QUEUE_RECIPIENTS_EXTERNAL 14 0 00:00:00.01
* 15 INDEX UNIQUE SCAN              PK_USER_ 0 0 00:00:00.01
16 NESTED LOOPS                  14 0 00:00:00.01
17 NESTED LOOPS                 14 42 00:00:00.01
18 NESTED LOOPS                14 42 00:00:00.01

* 19 INDEX UNIQUE 
SCAN          

PK_USER_ 14 14 00:00:00.01

20 TABLE ACCESS 
BY INDEX ROWID

GROUP_ALL_USERS 14 42 00:00:00.01

* 21 INDEX RANGE 
SCAN          

IDX_GRP_LL_SRS_BSTRCT_ACTOR_ID 14 42 00:00:00.01

* 22 INDEX UNIQUE 
SCAN           

PK_GROUP_ 42 42 00:00:00.01

* 23 INDEX UNIQUE 
SCAN            

PK_QUEUE_GROUPS 42 0 00:00:00.01

Fig. 5.33 Example 2. The first improvement

62 5 Bottlenecks in the Execution Plan



A.: “Compared to 780M in step 8, this number of hits is relatively small.

Now I really think it’s time you started your analysis.”

Plan hash value: 2113343020

Id Operation Name Starts A-Rows A-Time
1 SORT ORDER BY                       1 0 00:00:00.02

*  2 FILTER                             1 0 00:00:00.02
3 NESTED LOOPS OUTER                1 841 00:00:00.02
4 NESTED LOOPS                     1 841 00:00:00.02
5 TABLE ACCESS BY INDEX 

ROWID     
PROCESSING_INFO 1 841 00:00:00.01

*  6 INDEX RANGE SCAN               IPROC_INFO_PS 1 841 00:00:00.01
*  7 TABLE ACCESS BY INDEX 

ROWID     
QUEUE_ENTRY 841 841 00:00:00.01

*  8 INDEX RANGE SCAN               IQE_PROCINFO 841 841 00:00:00.01
*  9 INDEX UNIQUE SCAN                PK_QUEUE 841 841 00:00:00.01
10 NESTED LOOPS                      14 0 00:00:00.01

* 11 INDEX UNIQUE SCAN  PK_QUEUE_RECIPIENTS 14 0 00:00:00.01
* 12 INDEX UNIQUE SCAN                PK_USER_ 0 0 00:00:00.01
13 NESTED LOOPS                    14 0 00:00:00.01

* 14 INDEX UNIQUE SCAN              PK_QUEUE_RECIPIENTS_EXTERNAL 14 0 00:00:00.01
* 15 INDEX UNIQUE SCAN              PK_USER_ 0 0 00:00:00.01
16 NESTED LOOPS                  14 0 00:00:00.01
17 NESTED LOOPS                 14 42 00:00:00.01
18 NESTED LOOPS    14 42 00:00:00.01

* 19 INDEX UNIQUE 
SCAN          

PK_USER_ 14 14 00:00:00.01

20 TABLE ACCESS BY 
INDEX ROWID

GROUP_ALL_USERS 14 42 00:00:00.01

* 21 INDEX RANGE 
SCAN          

IDX_GRP_LL_SRS_BSTRCT_ACTOR_ID 14 42 00:00:00.01

* 22 INDEX UNIQUE SCAN           PK_GROUP_ 42 42 00:00:00.01
* 23 INDEX UNIQUE SCAN            PK_QUEUE_GROUPS 42 0 00:00:00.01

Fig. 5.34 Example 2. A 20-fold improvement in runtime

SQL Plan Monitoring Details (Plan Hash Value=3720417339)
Id Operation Name Execs Rows

(Actual)
Activity

(%)

0 SELECT STATEMENT                          1 15069
1 FILTER                                  1 15069
2 NESTED LOOPS 1 15069
3 NESTED LOOPS                          1 15139

-> 4 NESTED LOOPS                         1 15504
-> 5 NESTED LOOPS                        1 1M 0.01
-> 6 PARTITION RANGE ITERATOR           1 1M
-> 7 TABLE ACCESS BY LOCAL INDEX ROWID BCA_CN_LINK 74 1M 64.48
-> 8 INDEX RANGE SCAN                 BCA_CN_LINK~S01 74 780M 25.20
-> 9 PARTITION RANGE ITERATOR           1M 1M 0.05
-> 10 TABLE ACCESS BY LOCAL INDEX ROWID BCA_CNSP_ACCT 1M 1M 0.97
-> 11 INDEX RANGE SCAN                 BCA_CNSP_ACCT~0 1M 1M 0.09

12 PARTITION RANGE ITERATOR            1M 15504 0.04
-> 13 TABLE ACCESS BY LOCAL INDEX ROWID  BCA_CONTRACT 1M 15504 6.41
-> 14 INDEX RANGE SCAN                  BCA_CONTRACT~0 1M 4M 2.73

15 INDEX UNIQUE SCAN                    BCA_PAYREF~0 29135 15139 0.02
-> 16 TABLE ACCESS BY INDEX ROWID           BCA_PAYREF 24056 15069
Predicate Information (identified by operation id) :
---------------------------------------------------

1 - filter(:A6>=:A5)
7 - filter(("T_02"."FUNCTION"=:A9 AND "T_02"."OBJECT_TYP"=:A8))
8 - access("T_02"."CLIENT"=:A1 AND "T_02"."VALID_TO_REAL"=:A7)
8 - filter("T_02"."VALID_TO_REAL"=:A7)
10 - filter("T_01"."VALID_TO_REAL"=:A7)
11 - access("T_01"."CLIENT"=:A0 AND "T_02"."CONTRACT_INT"="T_01"."CONTRACT_INT")
13 - filter(("T_00"."VALID_TO_REAL"=:A7 AND "T_00"."PRODINT"=:A4 AND "T_00"."STATUS">=:A5 AND 

"T_00"."STATUS"<=:A6))
14 - access("T_00"."CLIENT"=:A3 AND "T_01"."CONTRACT_INT"="T_00"."CONTRACT_INT")
15 - access("T_03"."CLIENT"=:A2 AND "T_03"."PAYREF_INT"="T_02"."OBJECT_ID")

Fig. 5.35 The third example of an inappropriate table order in a join with a low number of hits

5.2 “Global” Problems in the Execution Plan 63



P.: “The high cardinality of 780Moccurs in step 8with an index access. In the

next step, 7, it falls to 1M with the table access by rowid for the table

BCA_CN_LINK (alias T_02). The nested loop join in step 5 has the same

cardinality. This table is tableA in this plan. In step 13, the cardinality falls

to 15504 with the join to table BCA_CONTRACT (alias T_00). That is

table B. However, I cannot place table BCA_CONTRACT before table

BCA_CN_LINK in the table order, without causing a Cartesian product,

because they don’t have any join conditions.”

A.: “That’s no problem. The tables in this join are joined together as follows:

T_00) T_01) T_02) T_03. This is a table chain. The table order in

the join is T_02, T_01, T_00, T_03. Previously, we saw that it may not

only be necessary to move just one table B, but several tables. We have

precisely such a case here. Which table do we also have to move?”

P.: “Table T_01, which is joined to T_02.”

A.: “Exactly. With the hint LEADING(T_00 T_01 T_02 T_03), I defined the

desired table order and executed the SQL statement again (Fig. 5.36).”

P.: “Why did you mark three lines in red in the execution plan in Fig. 5.36?”

A.: “I wanted to point out that this execution plan has further potential for

improvement. In step 7, one could try using an index range scan instead of

an FTS. Steps 12 and 13 show that the selectivity of the index

BCA_CN_LINK~S01 can be improved if one extends this index with

the columns from the predicates to the table access by rowid. I didn’t do

any further tuning because the runtime of approximately 5 minutes was

perfectly acceptable.”

5.2.3 Joins with a Large Hit Quantity

Author: “In this section we will discuss joins with a large hit quantity. The

relevant SQL statement has to process a large amount of data, which

requires a certain amount of work. One can, therefore, not expect that

Id Operation Name Starts A-Rows A-Time
0 SELECT STATEMENT                        1 24731 00:04:53.90 

*  1 FILTER                                 1 24731 00:04:53.90 
2 NESTED LOOPS                          1 24731 00:04:53.88 
3 NESTED LOOPS                         1 24731 00:04:17.84 
4 NESTED LOOPS                        1 25255 00:03:38.67 
5 NESTED LOOPS                       1 27884 00:01:00.26 
6 PARTITION RANGE ITERATOR          1 27884 00:00:50.95 

*  7 TABLE ACCESS FULL                BCA_CONTRACT 120 27884 00:00:50.93 
8 PARTITION RANGE ITERATOR          27884 27884 00:00:09.27 

*  9 TABLE ACCESS BY LOCAL INDEX 
ROWID

BCA_CNSP_ACCT 27884 27884 00:00:09.14 

* 10 INDEX RANGE SCAN                BCA_CNSP_ACCT~0 27884 27884 00:00:00.45 
11 PARTITION RANGE ITERATOR           27884 25255 00:02:38.38 

* 12 TABLE ACCESS BY LOCAL INDEX 
ROWID 

BCA_CN_LINK 27884 25255 00:02:38.28 

* 13 INDEX RANGE SCAN                 BCA_CN_LINK~S01 27884 625K 00:01:07.13 
* 14 INDEX UNIQUE SCAN                   BCA_PAYREF~0 25255 24731 00:00:39.13 
15 TABLE ACCESS BY INDEX ROWID        BCA_PAYREF 24731 24731 00:00:36.01 

Fig. 5.36 Example 3. Improvement after moving the two tables in the join

64 5 Bottlenecks in the Execution Plan



such a SQL statement will run as fast as lightning after tuning. Let’s

begin again with an inappropriate table order. How would you recognize

this in the execution plan of a join with a large hit quantity, Peter?”

Peter: “Some joins with especially high cardinalities can indicate this.”

A.: “You have joins with high as well as relatively low cardinality in the

execution plan?”

P.: “Exactly.”

A.: “In the section ‘Joins with a Low Number of Hits,’ we’ve already seen

what an adverse effect a high cardinality of some joins can have on the

performance of a join of several tables, and this was mainly using nested

loop joins. Could you tell me how severely this can affect the hash

joins?”

P.: “As the build table of a hash join is built in the memory, if possible it has

to fit into the memory. If it is larger, it complicates processing severely

and increases the runtime of the hash join. In a hash join of several tables,

the hits of a hash join are, at the same time, the build table of the next hash

join. For this reason, I would smooth out the existing cardinality peaks.”

A.: “How would you do that?”

P.: “Can’t one use the same heuristic method that we discussed in the

section ‘Joins with a Low Number of Hits’?”

A.: “Yes, you can. We have already shown enough examples of how to work

with this method. Assuming we have used this method and have no more

serious peaks, can we now be sure that the table order in the join is more

or less correct?”

P.: “Difficult to say.”

A.: “I don’t have any general suggestions in connection with formal SQL

tuning either. In any case, it’s worth examining the execution plan again

in detail. Our first example shows how one can recognize an inappropri-

ate table order in a join without cardinality peaks.”

P.: “Whenwe have eliminated all ‘brakes’ in the execution plan, what else can

we do to improve performance if it is necessary to improve it further?”

A.: “Oracle offers a range of methods for this purpose: Materialized views,

star schemas, etc. If we don’t want to intervene so deeply in the existing

database processes and SQL statements, we can very successfully use

parallelization (parallel query) for the problematical SQL statements.

One can leave the decision regarding parallelization completely to

Oracle (using the feature ‘Automatic Degree of Parallelism’), or one

can define the degree of parallelism for the entire SQL statement oneself.

In this case, Oracle decides which objects are to be parallelized in which

execution plan steps. If one sees from the runtime statistics in the

execution plan that some steps are particularly expensive, then it

makes sense to parallelize precisely these steps manually with the

relevant hints. One can use parallelization both after and before formal

SQL tuning (if the relevant performance problem is so acute that one

needs a solution immediately and the SQL tuning can be performed

5.2 “Global” Problems in the Execution Plan 65



later). One has to be careful with parallelization because this feature can

take up a lot of resources. However, as we do not wish to focus on

parallelization in this book, we won’t investigate this interesting topic

any further.”

P.: “Can you please show me how one can use parallelization in connection

with the runtime statistics in the execution plan.”

A.: “I’ll show you with the second example in this section. We’ll start with

the first example. An execution plan of a join with a large hit quantity is

shown in Fig. 5.37. One can see that the cardinality in step 19 rises to

4159K and increases the cardinality of the nested loop join in step

12 accordingly. This cardinality remains unchanged in outer joins in

steps 10 and 11.”

Peter: “Is that an example from the section ‘An Index with a Large Clustering

Factor’?”

A.: “What a mammoth memory you’ve got! Yes, I did actually use a part

from this execution plan.”

P.: “Doesn’t this example come from the section ‘Joins with a Low Hit

Quantity’? The number of hits of the join is small, only 28 rows.”

A.: “Your question proves that it wasn’t a compliment after all when I said you

had a mammoth memory. Mammoths didn’t become extinct without

reason, did they? Do you remember that cardinality mustn’t fall as a result

of an aggregation? But in step 9 it does fall after an aggregation, sowe have

to consider the cardinality before this operation. That is 4159K. In this

execution plan, we don’t see any cardinality peaks with individual joins.”

P.: “The cardinality of 4159K initially occurs with access to the table

PICKAUF. This table isn’t the last in the join. It is followed by the

tables QUANTEN and PRUEFGRUENDE. These two tables do not

have any join predicates for the table PICKAUF, however.”

A.: “That’s true. They are joined to the table PICKRUND (alias R) with an

outer join. As they come after the table PICKAUF in the join, the

cardinality of the relevant joins must be at least as high as the cardinality

of the table PICKAUF, i.e., 4159K.”

P.: “We can, however, place the tables QUANTEN and PRUEFGRUENDE

before the table PICKAUF in the join.”

A.: “Correct. This shows us that the table order in this join is not quite

optimal after all. One could have changed this table order as you have

just suggested. This change in the table order would have improved the

runtime by approximately 45 seconds at best (30.05 + 15.40 ~ 45). I

noticed that the table access by rowid for the table PICKAUF took

approx. 8 minutes. This table access was so expensive because the

index PI_PR_FK_I had a large clustering factor. Initially, I wanted to

try to do without table access by rowid. To achieve this, I had to extend

the index PI_PR_FK_I by a few columns. Peter, can you remember how

to find these columns?”

66 5 Bottlenecks in the Execution Plan



Plan hash value: 2555052906 
 
Id Operation Name Starts A-

Rows 
A-Time Buffers 

   0   SELECT STATEMENT                                                      1 28 00:09:22.19 5161K 
   1    NESTED LOOPS                                                         1 1 00:00:00.01 0 
   2     FIXED TABLE FULL                     X$KCCDI2 1 1 00:00:00.01 0 
*  3     FIXED TABLE FULL                     X$KCCDI 1 1 00:00:00.01 0 
   4    MERGE JOIN                             1 28 00:09:22.19 5161K 
   5     SORT JOIN                             1 28 00:09:22.01 5161K 
   6      VIEW                                V_CRA_002_STATUS_KO_EINH 1 28 00:09:22.01 5161K 
   7       SORT GROUP BY                       1 28 00:09:22.01 5161K 
   8        VIEW                               1 96 00:09:22.01 5161K 
   9         SORT GROUP BY                     1 96 00:09:21.91 5161K 
  10          NESTED LOOPS 

OUTER              
 1 4159K 00:09:07.70 5161K 

  11           NESTED LOOPS 
OUTER             

 1 4159K 00:08:48.53 4696K 

  12            NESTED 
LOOPS                  

 1 4159K 00:08:13.51 4278K 

  13             NESTED 
LOOPS                 

 1 137K 00:00:13.45 25696 

* 14              TABLE 
ACCESS BY INDEX ROWID 

PICKLISTEN 1 122K 00:00:05.19 7210 

* 15               INDEX 
RANGE SCAN           

PIL_PK 1 122K 00:00:00.39 311 

  16              TABLE 
ACCESS BY INDEX ROWID 

PICKRUND 122K 137K 00:00:08.05 18486 

* 17               INDEX 
RANGE SCAN           

PR_PL_FK_I 122K 137K 00:00:01.77 2788 

  18             TABLE 
ACCESS BY INDEX ROWID  

PICKAUF 137K 4159K 00:07:58.00 4252K 

* 19              INDEX 
RANGE SCAN            

PI_PR_FK_I 137K 4159K 00:00:06.51 162K 

* 20            TABLE 
ACCESS BY INDEX ROWID   

QUANTEN 4159K 832K 00:00:30.05 418K 

* 21             INDEX 
RANGE SCAN             

QT_LE1_FK_I 4159K 832K 00:00:10.86 405K 

* 22           TABLE ACCESS 
BY INDEX ROWID    

PRUEFGRUENDE 4159K 4277 00:00:15.40 465K 

* 23            INDEX RANGE 
SCAN              

PG_NR_LE_I 4159K 359K 00:00:07.91 396K 

* 24     SORT JOIN                             28 28 00:00:00.18 119 
  25      VIEW                                V_CRA_002_STATUS_KO_EINH_NLS 1 1 00:00:00.18 119 
  26       FAST DUAL                                                         1 1 00:00:00.01 0 

Query Block Name / Object Alias (identified by operation id):
-------------------------------------------------------------
…
16 - SEL$10       / R@SEL$10
17 - SEL$10       / R@SEL$10
18 - SEL$10       / P@SEL$10
19 - SEL$10       / P@SEL$10
20 - SEL$10       / Q@SEL$10
21 - SEL$10       / Q@SEL$10
22 - SEL$10       / PG@SEL$10
23 - SEL$10       / PG@SEL$10
…

Predicate Information (identified by operation id):
---------------------------------------------------
…
17 - access("R"."LAGER_PICKL"="PL"."LAGER" AND "R"."NR_PICKL"="PL"."NR_PICKL")
19 - access("P"."LAGER_RUNDF"="R"."LAGER" AND "P"."NR_RUNDF"="R"."NR_RUNDF")
20 - filter(("Q"."ID_ARTIKEL" NOT LIKE 'VST%' AND "Q"."ID_ARTIKEL"<>'LEER'))
21 - access("Q"."LAGER_NR_LE_1"="R"."LAGER_PACK" AND "Q"."NR_LE_1"="R"."NR_LE_PACK")
22 - filter("PG"."STAT"='10')
23 - access("PG"."NR_LE"="R"."NR_LE_PACK")
…

Column Projection Information (identified by operation id):
-----------------------------------------------------------
…
18 - "P"."STAT"[VARCHAR2,2], "P"."MNG_SOLL"[NUMBER,22]
…

Fig. 5.37 A join with a large hit quantity and an index with a large clustering factor

5.2 “Global” Problems in the Execution Plan 67



P.: “I would look for these columns in predicates and in projections belong-

ing to step 18. As there are no predicates to this step, we only have

projections. There we can find two columns, STAT and MNG_SOLL.”

A.: “As the index PI_PR_FK_I only had two columns, it was possible to add

two columns without the index becoming too wide. For test purposes, a

new index, PI_PR_FK_LR_I, was created with these four columns parallel

to index PI_PR_FK_I and the SQL statement executed again (Fig. 5.38).”

P.: “The runtime is now 15.32 seconds. That really is an improvement! I notice,

however, that the table order has been changed by the optimizer: The table

PICKAUF is now in the last position, where it belongs in my opinion. Do

you have an explanation for this optimization of the table order?”

A.: “Clustering factor has a strong weighting as far as optimizer costs are

concerned. The appropriate formulae can be found in [2]. This seriously

affects the table order. We have eliminated the clustering factor in the

optimizer costs for an index because we have dispensed with table access

by rowid (precisely in this operation, the optimizer takes the clustering

factor into account as far as costs are concerned). Consequently, the

optimizer has changed the table order.”

P.: “Was it really worthwhile analyzing whether the table order in the join

was optimal? The change in this order only reduced the runtime by

45 seconds.”

A.: “Yes, that really isn’t a very large proportion of the runtime, which was

originally over 9 minutes. However, it could have been different if the

table order had remained unchanged after the index extension. Now let’s

Plan hash value: 355660978

Id Operation Name Starts A-Rows A-Time
0 SELECT STATEMENT                      1 28 00:00:15.32
1 NESTED LOOPS                         1 1 00:00:00.01
2 FIXED TABLE FULL                    X$KCCDI2 1 1 00:00:00.01

*  3 FIXED TABLE FULL                    X$KCCDI 1 1 00:00:00.01
4 MERGE JOIN                           1 28 00:00:15.32
5 SORT JOIN                      1 28 00:00:15.32
6 VIEW                               V_CRA_002_STATUS_KO_EINH 1 28 00:00:15.32
7 SORT GROUP BY                     1 28 00:00:15.32
8 VIEW                             1 96 00:00:15.32
9 SORT GROUP BY                   1 96 00:00:15.31
10 NESTED LOOPS                   1 4159K 00:00:06.80
11 NESTED LOOPS OUTER            1 137K 00:00:02.95
12 NESTED LOOPS OUTER           1 137K 00:00:02.13
13 NESTED LOOPS                1 137K 00:00:01.17

* 14 TABLE ACCESS BY 
INDEX ROWID

PICKLISTEN 1 122K 00:00:00.27

* 15 INDEX RANGE SCAN          PIL_PK 1 122K 00:00:00.06
16 TABLE ACCESS BY 

INDEX ROWID
PICKRUND 122K 137K 00:00:00.77

* 17 INDEX RANGE SCAN          PR_PL_FK_I 122K 137K 00:00:00.43
* 18 TABLE ACCESS BY 

INDEX ROWID 
QUANTEN 137K 13350 00:00:00.79

* 19 INDEX RANGE SCAN           QT_LE1_FK_I 137K 13362 00:00:00.57
* 20 TABLE ACCESS BY 

INDEX ROWID  
PRUEFGRUENDE 137K 102 00:00:00.69

* 21 INDEX RANGE SCAN            PG_NR_LE_I 137K 14055 00:00:00.50
* 22 INDEX RANGE SCAN              PI_PR_FK_LR_I 137K 4159K 00:00:02.32
* 23 SORT JOIN                           28 28 00:00:00.01
24 VIEW                               V_CRA_002_STATUS_KO_EINH_NLS 1 1 00:00:00.01
25 FAST DUAL                         1 1 00:00:00.01

Fig. 5.38 “Index-Only” access optimizes the table order in the join

68 5 Bottlenecks in the Execution Plan



SQL Plan Monitoring Details (Plan Hash Value=1597604708)
Id Operation Name Time

Active(s)
Execs Rows

(Actual)

0 SELECT STATEMENT                                  574 1 559K
1 NESTED LOOPS OUTER                              574 1 559K
2 VIEW                                           V_M_F_SUBTR_AGG_DETAIL_2 574 1 559K
3 WINDOW SORT                      715 1 559K
4 WINDOW SORT                                  294 1 559K
5 WINDOW SORT                                 250 1 559K
6 WINDOW SORT                                252 1 559K
7 HASH JOIN                                 2744 1 559K
8 TABLE ACCESS STORAGE 

FULL                
I_ITCAMTM_I_SERVICETIME 1 1 413

9 HASH JOIN                                350 1 559K
10 HASH JOIN                   2723 1 559K
11 TABLE ACCESS STORAGE 

FULL              
I_ITCAMTM_I_COUNTRY 1 1 1

12 HASH JOIN                              2723 1 559K
13 TABLE ACCESS 

STORAGE FULL             
I_ITCAMTM_I_COUNTRY_REGION 1 1 10

14 HASH JOIN                             2715 1 559K
15 VIEW                                 1 1 508
16 HASH GROUP BY                       1 1 508
17 NESTED LOOPS 1 1 110K
18 NESTED LOOPS                      1 1 110K
19 VIEW                             1 1 508
20 HASH GROUP BY                   9 1 508
21 HASH JOIN 

OUTER                
9 1 9M

22 INDEX 
STORAGE FAST FULL SCAN  

IX_TR2AG_ROOTUUID_STATUS 1 1 508

23 PARTITION 
RANGE ALL           

9 1 14M

24 PARTITION 
RANGE SINGLE  

9 97 14M

25 TABLE 
ACCESS STORAGE FULL   

M_F_SUBTRANSACTION_DETAIL 12 97 14M

26 PARTITION 
RANGE ALL              

1 898 110K

27 INDEX RANGE 
SCAN                

IX_FACT_LAST_DML_DATE 1 10550 110K

28 TABLE ACCESS BY 
LOCAL INDEX ROWID 

I_ITCAMTM_I_SUBTRANS_FACT 2 111K 110K

29 HASH JOIN                            2715 1 350M
30 TABLE ACCESS 

STORAGE FULL           
I_ITCAMTM_I_SUBTRANSACTION 1 1 1911

31 HASH JOIN                           2715 1 3G
32 HASH JOIN                          1 1 6877
33 TABLE ACCESS 

STORAGE FULL         
I_ITCAMTM_I_LOCATIONS 1 1 173

34 HASH JOIN                         1 1 6877
35 TABLE ACCESS 

STORAGE FULL        
I_ITCAMTM_I_AGENTS 1 1 243

36 HASH JOIN                        1 1 6877
37 TABLE ACCESS 

STORAGE FULL       
I_ITCAMTM_I_TRANSACTION2AG

ENT
1 1 832

38 HASH JOIN                       1 1 441
39 HASH JOIN                      1 1 59
40 HASH JOIN                     1 1 42
41 NESTED 

LOOPS                 
1 1 13

42 NESTED 
LOOPS                

1 1 13

43 TABLE 
ACCESS STORAGE FULL  

I_ITCAMTM_I_CUSTOMER 1 1 1

44 INDEX 
RANGE SCAN           

ITCAMTM_CUST2SUBCUST_FK 1 1 13

45 TABLE 
ACCESS BY INDEX ROWID 

I_ITCAMTM_I_SUBCUSTOMER 1 13 13

46 TABLE 
ACCESS STORAGE FULL    

I_ITCAMTM_I_APPLICATION 1 1 42

47 TABLE
ACCESS STORAGE FULL     

I_ITCAMTM_I_TRANSACTION 1 1 59

48 TABLE ACCESS 
STORAGE FULL      

I_ITCAMTM_I_SUBTRANS_GROUP 1 1 441

49 PARTITION RANGE 
ALL                

2715 1 351M

50 TABLE ACCESS
STORAGE FULL         

I_ITCAMTM_I_SUBTRANS_FACT 2715 20 351M

51 TABLE ACCESS STORAGE 
FULL               

B_DATEDIMENSION 22 1 69762

52 TABLE ACCESS BY GLOBAL INDEX 
ROWID             

M_F_SUBTRANSACTION_DETAIL 574 559K 507K

53 INDEX UNIQUE SCAN                             M_F_SUBTRANS_DEATIL_PK 574 559K 507K
Query Block Name / Object Alias (identified by operation id):
-------------------------------------------------------------
…
50 - SEL$C8360722 / FACT@SEL$4

…

Fig. 5.39 Parallelization based on the runtime statistics in the execution plan

5.2 “Global” Problems in the Execution Plan 69



discuss the second example in Fig. 5.39. The runtime of the relevant

SQL statement was 3837 seconds and had to be improved urgently. What

can you recognize in this execution plan, Peter?”

P.: “Step 50 is problematical. 351M rows are found there. This causes an

expensive hash join with a cardinality of 3G in step 31. Initially, this

cardinality falls to 350M in step 29 and then to 559K with the next join in

step 14. I think the table order in this join is suboptimal.”

A.: “Correct. It was possible to tune this plan. However, as a quick solution

was required and there wasn’t a heavy load on the system, I decided to

parallelize the problematical step 50. For this purpose, I used the hint

PARALLEL(@SEL$C8360722 FACT@SEL$4 8), which reduced the

runtime to 315 seconds.”

5.3 Summary

Table 5.1 Problem categories: identification and solution

Global/

local Problem category

Identification in execution

plan Solution

Local FTS due to a

missing index

FTS with a large number of

buffer gets or disk reads and

a low cardinality

Creation of the relevant

index

Local FTS on a sparse

table

FTS with a large number of

buffer gets or disk reads and

a low cardinality

Table reorganization. As a

temporary solution, the

creation of the relevant

index is possible

Local Index scan with a

nonselective index

An index scan with a high

cardinality which falls in the

following step with table

access by rowid

Extend the index by the

addition of selective

columns from the filter from

table access by rowid

Local Index scan with an

index with a large

clustering factor

The cardinality of an index

scan is comparable with the

number of buffer gets in the

following table access by

rowid

Check the optimizer

statistics “clustering factor”

and, if the figure really is

large, try the following:

– Extend the index with the

columns from the filter and

from the projection

belonging to table access by

rowid to render this table

access superfluous, or

– Enter the data into the

relevant table in the same

order as in the index

Local Index scan with a

sparse index or a

selective filter in the

index scan

The number of buffer gets

resulting from the index scan

is large and the cardinality

relatively low. If there is no

filter in the index scan, this is

most likely a sparse index. If

Rebuild the sparse index. If a

selective filter belongs to the

index scan, one must clarify

the reasons why selective

predicates land in the filter

instead of in the access. If

(continued)

70 5 Bottlenecks in the Execution Plan



a filter belongs to the index

scan, this can be either a

sparse index or a selective

filter. One then has to check

both possibilities

necessary, create an index

for the selective columns

from the filter

Local Nested loop join

instead of hash join

in an equi-join

The cardinality of the outer

or inner loop is high

Use hash join instead of

nested loop join in the

execution plan. For this

purpose, one can use the hint

USE_HASH

Local Hash join instead of

nested loop join in

an equi-join

Both the cardinality of

access to the build table and

the hit quantity of the hash

join are low

Use nested loop join instead

of hash join in the execution

plan. For this purpose, one

can use the hint USE_NL

(normally in combination

with the hint LEADING)

Global Inappropriate table

order in the join

with a small number

of hits

Some table accesses and

joins with which the relevant

tables are involved have a

high cardinality

Good chances of achieving a

significant improvement in

performance. Try to change

the table order in such a way

that the cardinality is low in

every execution plan step.

The following heuristic

method often helps here:

– Find the table A in the

execution plan which, when

accessed, has a high

cardinality. The cardinality

of the relevant join must also

be high

– Find the table B in the

subsequent course of the

execution plan for which the

cardinality falls when it is

joined

– Try inserting table B

before table A in the table

order

When changing the table

order, take care to ensure

that no Cartesian products

occur

Global Inappropriate table

order in the join

with a large hit

quantity

High cardinality peaks in

some joins in the join

Try to eliminate the

cardinality peaks with the

heuristic method described

above. If the runtime is still

not acceptable after this,

parallelize the relevant SQL

statement

5.3 Summary 71



Procedure of Formal SQL Tuning 6

In this chapter we will discuss what is, in our view, a sensible formal SQL tuning

process. Some steps of this process can facilitate or even eliminate the need for

tuning. We also feel it is important to clarify which problems have a higher priority

during tuning if several problems occur in an execution plan at the same time.

Author: “Peter, where would you begin with SQL tuning?”

Peter: “That’s a very good question. After so much new information, I am a bit

confused.”

A.: “Then we’ll clarify the matter together and organize this information

systematically. Before I begin with SQL tuning, I always check whether

SQL tuning is really necessary.”

P.: “How do you do that?”

A.: “It may be possible to find a good execution plan for the relevant SQL

statement, either in the AWR or in the SQL area. If this is the case, one

can fix this plan (the methods for this can be found in [1]). If, however,

one has to improve a bad execution plan, then I would hesitate a

moment.”

P.: “And wait for a miracle?”

A.: “I appreciate your humor, Peter. It makes sense to check if the relevant

SQL statement may be badly programmed.”

P.: “So you suggest analyzing the SQL statement. But that’s exactly what I

try to avoid doing because I’m mostly not able to do it.”

A.: “Some other authors recommend familiarizing oneself with the SQL

statement first and getting to know its structure. I don’t go that far

because I don’t think it’s necessary. On the other hand, it is wrong to

approach tuning with your eyes closed. Some serious errors are very

conspicuous. It is better to correct these with a developer instead of

tuning the SQL statement. With the next example, I will show you that

this is not at all difficult in some cases. The following SQL statement

# Springer-Verlag Berlin Heidelberg 2016

L. Nossov et al., Formal SQL Tuning for Oracle Databases,
DOI 10.1007/978-3-662-50417-8_6

73



was running relatively well. From time to time, however, it changed to a

suboptimal execution plan, as shown in Fig. 6.1.”

P.: “In step 17, a Cartesian product is created with a cardinality of 19M. This

is probably the reason for the poor performance. What did you do with

this Cartesian product?”

A.: “Nothing at all. I noticed that the good plan also had a Cartesian product

in it. Table CO_EL_PRDV was also involved in the relevant join. For

this reason, I assumed that this table had no join predicates. I verified this

directly in the SQL text. You can try that too, Peter.”

SQL Plan Monitoring Details (Plan Hash Value=2648737676)

Id Operation Name Time
Active(s)

Execs Rows
(Actual)

0 INSERT STATEMENT                1
1 LOAD TABLE CONVENTIONAL       1
2 HASH UNIQUE                  1514 1 0
3 HASH JOIN                   1528 1 42296
4 TABLE ACCESS FULL          CO_PRM                     1 1 4727
5 HASH JOIN                  1528 1 79305
6 INDEX FULL SCAN           TE_PRM_PRM_PRDV_RULE_PK    1 1 4727
7 HASH JOIN                 1614 1 79305
8 INDEX RANGE SCAN         TE_001_PROM_INTERVAL_PK001 1 1 25225
9 HASH JOIN                1614 1 12M
10 TABLE ACCESS FULL       TE_ITEM_CO_MRHRC_GP        15 1 145K
11 HASH JOIN               456 1 7M
12 TABLE ACCESS FULL      CO_EL_MRST_PRDV            1 1 4448
13 HASH JOIN              456 1 18M
14 TABLE ACCESS FULL     TE_PROMOTION_PRDV_RULE     1 1 4718
15 HASH JOIN             456 1 18M
16 TABLE ACCESS 

FULL    
RU_PRDV                    1 1 4244

17 MERGE JOIN 
CARTESIAN 

456 1 19M

18 TABLE ACCESS 
FULL   

CO_EL_PRDV                 456 1 5287

19 BUFFER SORT         456 5287 19M
20 TABLE ACCESS 

FULL  
RU_PRDV_ITM                1 1 3671

Fig. 6.1 A poor execution plan with MERGE JOIN CARTESIAN

74 6 Procedure of Formal SQL Tuning



P.: “This table only has one predicate CO_EL_PRDV.TY_EL_PRDV¼ :20. It is

not actually joined to any other table. Nor do I notice any columns from this

table in the select list. Its only function in the join is to multiply the result.

With the operator DISTINCT, these multiplied rows are then removed again.

That really is a strange SQL statement!”

A.: “That’s clearly a badly programmed SQL statement. After removal of the

table CO_EL_PRDV from the join, there were no further problems with this

SQL statement. Did you find this analysis complicated?”

P.: “I must admit it was very easy. But I was wondering why you didn’t fix the

good plan.”

A.: “It wasn’t possible. You probably noticed the comment at the beginning of

the SQL text. That is the name of the relevant database schema. As there were

hundreds of identically designed database schemas in this database, there

were, accordingly, a large number of problematical SQL statements which

only differ in these comments. One would therefore have had to fix hundreds

of execution plans of these SQL statements.”

P.: “I see.”

A.: “Now we’ll discuss

• how one can identify bottlenecks in an execution plan,

• which problems one should eliminate first, and which solutions are

preferable.”

6 Procedure of Formal SQL Tuning 75



P.: “The bottlenecks are very easy to find. The execution plan step with the

longest runtime is also a bottleneck, isn’t it?”

A.: “Not always. For example, if a step with an FTS instead of an index access

has the longest runtime, then this FTS is a bottleneck in the execution plan.

Often a problem in a long runtime only becomes visible in the subsequent

execution plan steps. We have already discussed this in the section “A

Non-selective Index.”

P.: “How should one proceed, then? Look for the highest cardinality in the

execution plan?”

A.: “One can look for the step with the longest runtime, as you suggested earlier.

But then you must try to find out what kind of problem it is. If the problem

belongs to one of the following categories:

• FTS due to a missing index

• FTS on a sparse table

• Index scan with a sparse index

• A selective filter in an index scan

Then the step with the longest runtime is a bottleneck in the execution

plan. A long runtime is a fairly precise indication of a problematical join from

the category ‘nested loop instead of hash join and vice-versa.’ If a problem

occurs regarding a high cardinality, this problem is not normally caused in the

step with the longest runtime, but in one of the preceding steps where a large

volume of data has to be processed (i.e., in a step with a high cardinality).

These are problems from the following categories:

• Index scan with a nonselective index

• Index scan with an index with a large clustering factor

• Inappropriate table order in the join

One can also proceed differently: First of all, find the steps with a high

cardinality and then identify and solve the associated problems. According to

our statistics on the problem cases in the section ‘Statistics on Problem

Categories,’ one can solve most problems in this way. After that, in any

case, one must check the steps with long runtimes. This is the approach I

prefer. ‘Cardinality’ is a magic word in SQL tuning (Fig. 6.2). It plays a

decisive role when analyzing problems from the second group of categories.

In conjunction with the other runtime statistics, it is also extremely important

for the first group.”

P.: “What should I do if I have several problems in an execution plan?”

A.: “If these problems occur at different points in the execution plan, you can

solve them one after another. It is far more interesting when these problems

occur at practically the same point. Then one must decide how to start.”

P.: “I would start with the problem which poses the greatest threat to

performance.”

76 6 Procedure of Formal SQL Tuning



A.: “So you’re acting on the basis of runtime again: The problem which causes

the longest runtime is solved first. In many cases, this is the best way. In

Fig. 5.37, for example, we had two problems: an inappropriate table order in

the join and an index scan with an index with a large clustering factor and

subsequent table access by rowid. The first caused a runtime of approx.

45 seconds and the second approx. 8 minutes. For this reason, I solved the

second problem first, and this improved the table order at the same time.

However, there are cases in which the decision is not so easy to make because

it depends on a number of factors.”

P.: “Have we already had an example of this?”

A.: “Of course. That’s the example in Fig. 5.15. There you can see several

problems, for example, an inefficient nested loop join. It was, however,

difficult to say in advance what this nested loop join would cost exactly.

Only after using hash join instead of nested loop join did it become clear that

the nested loop join was fairly expensive (the runtime was reduced from

573 to approx. 30–50 seconds). In the second problem which is recognizable,

there is a nonselective index in step 19. We have already discussed this

problem in the section ‘Nested Loop Join Instead of Hash Join and Vice-

Versa.’ Could you analyze this problem again please, Peter?”

P.: “The cardinality in the case of index scan with the index

EM_METRIC_ITEMS_KEY_IDX is 584M in step 19. It falls to 8M in the

next step, step 18, with table access by rowid. This points to a selective filter

in step 18. If one extends the index EM_METRIC_ITEMS_KEY_IDX by the

Fig. 6.2 If “Open Sesame!”

doesn’t work, try

“Cardinality”

6 Procedure of Formal SQL Tuning 77

http://dx.doi.org/10.1007/978-3-662-50417-8_5
http://dx.doi.org/10.1007/978-3-662-50417-8_5


addition of selective columns from this filter, the cardinality is already

reduced in step 19 and the runtime is improved.”

A.: “Such a change is not allowed in one of Oracle’s schemas (SYSMAN). But

let us assume that this is not one of Oracle’s schemas and that the relevant

index extension is legitimate. It is, again, difficult to say howmuch this would

improve performance (I would anticipate a runtime of 1–2 minutes with this

solution). However, we have a third problem in the execution plan: an

inappropriate table order in the join. After this problem was solved, the

runtime fell to 0.59 seconds. When analyzing the problem, one could already

assume that this might be the fastest solution. A fall in cardinality from 8M in

step 6 to 23 in step 5 looked very promising. Which of these three solutions is

the best, Peter?”

P.: “The fastest, obviously.”

A.: “That’s not so obvious. If one requires a solution very quickly, one must

concentrate on a solution which can be implemented as quickly as possible.

The solution with a runtime of 1–2 minutes might have been perfectly

adequate.”

P.: “So what’s wrong with the fastest solution?”

A.: “As usual with formal SQL tuning, in this case one needs a hint for the

relevant change in the execution plan. One can explicitly add this hint to the

SQL text, but this involves a program code change. It is also possible to add

this hint implicitly as a hidden hint. For this, a database administrator uses

either stored outlines (before Oracle 12c), SQL profile, SQL patch, or SQL

plan baselines (see [1]). There are companies where you need authorization

for this. This is precisely the situation that Hanno Ernst mentions in the

section ‘Hanno’s Experience’. In such cases, he often uses an index exten-

sion. In the case of index extensions, the clustering factor of the index

changes, and this can also change the table order in the join. In his systems,

Hanno observes that such changes in table order are usually advantageous,

and, for this reason, he prefers index extensions to other solutions where

possible.”

P.: “So you mean that the best solution is one that has to suit the situation in

hand.”

A.: “That’s right.”

78 6 Procedure of Formal SQL Tuning



Practical Experience with Formal SQL
Tuning 7

7.1 Hanno’s Experience

The “formal method” developed from an idea of how one can successfully help

someone tune a very complex execution plan in a blog using pure text ping-pong.

“Formal method”—what does that actually mean? That’s what I asked myself

when I first heard of it. “Formal”—referring to form not content! If we draw

parallels between the meaning of the word and the approach, then I would describe

it as follows: The form defines the rules. Regardless of the data model or data

content, we apply these rules and achieve our goal in a very efficient manner.

In order to be able to carry out tuning effectively, one must understand execution

plans—to some extent at least. Chapter 3 is relatively detailed, as it should be.

As someone with personal practical experience, I can say that the use of runtime

statistics opens up totally new possibilities. They show you what is really happen-

ing. One can also compare them with optimizer estimations. In the past, to find the

causes of problems, we often carried out analyses by counting value distributions or

uniqueness and comparing them with optimizer statistics. To some extent, we had

to put ourselves in the position of a developer, i.e., to acquire knowledge of data

models. This takes quite a long time, however, and this book is specifically

designed to provide assistance here. Runtime statistics are what I always missed,

and, in retrospect, I’m not surprised that analysis was often so difficult and based on

“trial and error.”

I’ll just give you a brief outline of my personal approach, Peter.

Hanno: “Let’s assume that we have found a problematical cursor. This is

described in detail in [1]. Now the problem has to be made reproducible,

without changing the productive data, of course.”

Peter: “You find the SQL text and, if present, the bind variables. Then you

execute the SQL statement in order to obtain the important runtime

statistics.”

# Springer-Verlag Berlin Heidelberg 2016

L. Nossov et al., Formal SQL Tuning for Oracle Databases,
DOI 10.1007/978-3-662-50417-8_7

79

http://dx.doi.org/10.1007/978-3-662-50417-8_3


H.: “That’s right. I prepare all the basic conditions for execution. The SQL

statement is then executed and the plan with the function

DBMS_STATS.DISPLAY_CURSOR, including further sections, is

displayed.”

P.: “Then we have everything we need for the analysis?!”

H.: “Normally, yes. But there are a few exceptions. For example, with ‘bind

peeking,’ if the binds are not representative because they were originally

used for parsing the cursor, and Oracle is using the cursor again.”

P.: “That means it is the same plan but with completely different

cardinalities in each step?”

H.: “Exactly. It’s quite possible that that can happen. With the data I have

obtained, I then begin the analysis as discussed in the chapters

‘Bottlenecks in the Execution Plan’ and ‘Approaches to Formal SQL

Tuning’. I identify the bottleneck and think about a solution. As licenses

for EM packs are seldom available in my working environment, I am

often unable to access the AWR or use SQL monitoring. Nor am I able to

create any SQL profiles. If possible, therefore, I try to make structural

changes to schema objects. For example, extending an index can solve

some of our problem categories.”

7.1.1 Statistics on Problem Categories

During the preparation phase for this book, for statistical purposes, the authors

recorded real cases involving acute performance problems. This data from practical

applications resulted in several problem categories and their percentage

distributions (Fig. 7.1).

Problem category Frequency

a missing index <5%

a non-selective index 47%

an index with a large clustering factor 10%

a sparse index <5%

a sparse table <5%

an inefficient nested loop join instead of a hash join <5%

an inappropriate table order in a join of several tables 20%

a badly programmed SQL statement. No need for SQL tuning <5%

other problems 7%

Fig. 7.1 Problem categories and their occurrence in practice

80 7 Practical Experience with Formal SQL Tuning



These statistics were collected from both OLTP and DWH systems. They

confirm that formal SQL tuning covers most practical problems. Only 7% belong

to the “other problems” category, and even these were successfully analyzed and

eliminated using the same formal principle.

There are usually enough indexes in the schemata of the applications. There is,

therefore, only a small percentage of “missing indexes” in the statistics.

There are often a lot of single columns indexed, and, therefore, most cases

belong to the problem category “nonselective index.” This means that two columns

are singly indexed, are not very selective, but are often queried together in SQL. A

combined index of these columns can increase selectivity and solve the problem. It

is therefore essential for a DBA to be able to analyze and remedy these problems.

Below is a simple test case, which anyone can try out for themselves.

The second biggest problem category is “an inappropriate table order in a join.” I

would just briefly like to mention my own experience here. As this is a global

problem, the solution is not quite so simple. One reason for the incorrect order is the

fact that the optimizer wrongly estimates the cardinality of a table join (or of a table

access). In my experience, one also often finds a nonselective index in such a case.

If one improves (extends) the index, the order of the join also often changes for the

better.

Sparse objects only occur when the application is in production. The objects are

fragmented due to inserts, updates, and deletes, possibly resulting in large gaps

which still have to be read. Indexes are very susceptible to this, for example, in the

case of columns with sequential numbers, status change, or time fields.

The two largest categories in our table account for 67% of all cases. A DBA can

be fairly successful with SQL tuning if he can cope with these problems.

7.1.2 A Small Synthetic Test Case in Respect of a Nonselective
Index

This case occurs very often in practice and is very easy to recognize. The solution is

easy to implement following the rules of formal SQL tuning and without changing

the SQL statement.

Hanno: “Could you comment on this, Peter. . ..”

7.1 Hanno’s Experience 81



Peter: “There’s nothing to say here. The table without an index is read with an

FTS.”

H.: “Then let’s create an index. What do you say now?”

P.: “The predicates show ‘access’ by the index. After that, the 1000 rows in the

table are filtered. In the process, 1000 table blocks are accessed (1031�31).

Here, however, one can also see that the clustering factor is very high. 1000

rows—1000 buffers. . ..”
H.: “Yes, that’s true. A poor clustering factor + a poor optimizer estimation of

cardinality or a low selectivity of the index ¼ a big performance problem.”

create index tab1_ii on tab1 (a,b);
select a,b,c from tab1 where a=1 and b between 40 and 300;

Id  Operation                    Name    Cost (%CPU) A-Rows Buffers 
0 SELECT STATEMENT     398 (100) 390 420 
1 TABLE ACCESS BY INDEX ROWID TAB1    398   (0) 390 420 

*  2 INDEX RANGE SCAN           TAB1_II 4   (0) 390 30 

Predicate Information (identified by operation id):
---------------------------------------------------

2 - access("A"=1 AND "B">=40 AND "B"<=300)

Column Projection Information (identified by operation id):
-----------------------------------------------------------

1 - "A"[NUMBER,22], "B"[NUMBER,22], "C"[NUMBER,22]
2 - "TAB1".ROWID[ROWID,10], "A"[NUMBER,22], "B"[NUMBER,22]

82 7 Practical Experience with Formal SQL Tuning



P.: “Now the FILTER on ‘b’ has disappeared. All predicates are used in access

with the index. That means that the table is now only accessed due to the

projection of column ‘c.’ As you said, the index extension resulted in a

reduction of the cardinality (nonselective index) in step 2 and in a reduction

of the buffers in step 1.”

H.: “Now let’s add column ‘c’ to the index.”

create index tab1_iii on tab1 (a,b,c);
select a,b,c from tab1 where a=1 and b between 40 and 300;

Id  Operation         Name     Cost (%CPU) A-Rows Buffers
0 SELECT STATEMENT 4 (100) 390 30

*  1 INDEX RANGE SCAN TAB1_III 4   (0) 390 30

Predicate Information (identified by operation id):
---------------------------------------------------

1 - access("A"=1 AND "B">=40 AND "B"<=300)

Column Projection Information (identified by operation id):
-----------------------------------------------------------

1 - "A"[NUMBER,22], "B"[NUMBER,22], "C"[NUMBER,22]

P.: “That’s great! Now the 390 blocks (420�30) are no longer necessary for

table access either, and only 30 remain. The improvements are quite consid-

erable. Is that only possible in the example or is it the same in practice?”

H.: “In my personal experience, it often works in practice. I use it very often, at

least up to the first index extension in the test (tab1_ii). In order to squeeze the

last drop out of it and use an index-only access, the conditions must be right.”

P.: “And what are they. . .?”
H.: “(1) Only a few or very narrow columns, so that the index doesn’t grow very

much. (2) If the index increases into the double-digit percent range due to the

change, there have to be good reasons, for example, if the SQL statements

which undergo the improvements shown above are executed thousands of

times per minute.”

7.1.3 Practical Example

This example shows the evaluation by a technical administrator with two potential

improvements and one special feature that he hadn’t expected. As the data is mostly

not in the cache at the moment of execution, I also simulate that accordingly with

the command “alter system flush buffer_cache” before each execution.

The SQL statement:

7.1 Hanno’s Experience 83



select 
tp.produktionsplan_typname,
tp.tai_typname,
to_char(t.letzteausfuehrung,'YYYY-MM-DD HH24') std ,
count(*) 
from
tai t, tai_produktionsplan tp 
where
t.letzteausfuehrung > to_timestamp('2014.10.27 00:00:00', 'YYYY-MM-DD HH24:MI:SS')  
and t.letzteausfuehrung <= to_timestamp('2014.11.02 23:59:59', 'YYYY-MM-DD HH24:MI:SS') 
and t.kennung = tp.tai_kennung
group by tp.produktionsplan_typname,tp.tai_typname,to_char(t.letzteausfuehrung,'YYYY-MM-DD HH24')
order by tp.produktionsplan_typname,tp.tai_typname,to_char(t.letzteausfuehrung,'YYYY-MM-DD 
HH24');

We see the following conspicuous features in the execution plan.

– The “index range scan” in step 5 has a very high cardinality.

– After that, in step 4, access by rowid occurs almost four million times, and a

large number of blocks are read in the process.

The conclusion is therefore as follows. A poor clustering factor + high cardinal-

ity on index access ¼ a very big performance problem (Fig. 7.2).

Let’s return briefly to the section “Sections of the Execution Plan.”

If “access” were used in an "INDEX RANGE SCAN" operation, and it was then

still necessary to use a further filter by rowid, there would be an asterisk in the plan

step for "TABLE ACCESS BY ROWID" before the “Id.” In this case, it would be

possible to extend the index by column(s) which belong to the filter. To avoid the

access by rowid, one can expand the index by column(s) from the section “Column

Projection Information” (these columns are queried in select).

Ideally, I would now try to prevent table access (step 4), so that Oracle can only

work with index-only access. This assumes that all columns of the table which are

required as filter criteria and projection are present in the index! Let’s check which

columns are already present in the index.

SQL> select COLUMN_NAME,COLUMN_POSITION from dba_ind_columns where
index_name='IDX_TAI_LETZTEAUSF_KENN' order by COLUMN_POSITION;

COLUMN_NAME COLUMN_POSITION
--------------- ---------------
SYS_NC00037$ 1
KENNUNG 2

Now we come to a special feature. Let’s look at the details for the plan above. As

expected, we have an asterisk in step 5. We don’t have an asterisk in step 4. Conse-

quently, step 4 can only have a projection (no predicates).

Id Operation Name A-Rows A-Time Buffers Reads
0 SELECT STATEMENT               21916 01:04:52.62 6035K 5069K
1 SORT GROUP BY                 21916 01:04:52.62 6035K 5069K

*  2 FILTER                       3955K 01:04:34.66 6035K 5069K
*  3 HASH JOIN                   3955K 01:04:33.41 6035K 5069K

4 TABLE ACCESS BY 
INDEX ROWID

TAI 3955K 00:57:03.52 3849K 2883K

*  5 INDEX RANGE SCAN          IDX_TAI_LETZTEAUSF_KENN 3955K 00:00:30.94 27601 31626
6 TABLE ACCESS FULL          TAI_PRODUKTIONSPLAN 160M 00:09:14.98 2185K 2185K

Fig. 7.2 Practical example: the problematical execution plan

84 7 Practical Experience with Formal SQL Tuning



Predicate Information:
2 - filter(SYS_EXTRACT_UTC(TIMESTAMP' 2014-11-02 

23:59:59.000000000')>SYS_EXTRACT_UTC(TIMESTAMP' 2014-10-27 00:00:00.000000000'))
3 - access("T"."KENNUNG"="TP"."TAI_KENNUNG")
5 - access("T"."SYS_NC00037$">SYS_EXTRACT_UTC(TIMESTAMP' 2014-10-27 00:00:00.000000000') AND

"T"."SYS_NC00037$"<=SYS_EXTRACT_UTC(TIMESTAMP' 2014-11-02 23:59:59.000000000'))

Column Projection Information:
4 - "T"."KENNUNG"[NUMBER,22], "LETZTEAUSFUEHRUNG"[TIMESTAMP WITH TIME ZONE,13]
5 - "T".ROWID[ROWID,10], "T"."SYS_NC00037$"[TIMESTAMP,11], "T"."KENNUNG"[NUMBER,22]

What is conspicuous is the use of the function SYS_EXTRACT_UTC, because

it is not even specified in the SQL statement. In addition, the column name

“SYS_NC00037$” indicates an FBI (function-based index).

Here we have a special case. The column "LETZTEAUSFUEHRUNG" is of the

type “TIMESTAMP WITH TIME ZONE.” As this is not an absolute value, Oracle

stores it in UTC format (and uses the function SYS_EXTRACT_UTC for this

purpose). An index on such a column is automatically generated as an FBI.

This is also demonstrated by a short test (Fig. 7.3).

The values to be displayed in the SQL statement TO_CHAR

("LETZTEAUSFUEHRUNG",’YYYY-MM-DD HH24’) cannot then be calculated

from the index. It is therefore also necessary to access rowid in step 4 to enable

projection.

Note: An FBI with SYS_EXTRACT_UTC is implicitly generated only for

TIMESTAMP WITH TIME ZONE (not for local time zone).

7.1.3.1 The First Improvement
The existing index is extended with the column TO_CHAR

("LETZTEAUSFUEHRUNG",’YYYY-MM-DD HH24’). This completely

dispenses with the need to access the table.

CREATE INDEX IDX_TAI_LETZTEAUSF_KENN2 ON TAI ("LETZTEAUSFUEHRUNG", "KENNUNG", 
TO_CHAR("LETZTEAUSFUEHRUNG",'YYYY-MM-DD HH24'));

As a result, table access to TAI is totally eliminated. The projection of the

timestamp now occurs in step 4. In this example, the column T.SYS_NC00040$

belongs to the FBI (Fig. 7.4).

In principle, the improvement in runtime from 1 hour 4 minutes to 11 minutes

was great progress, but I also wanted to try to accelerate the FTS.

7.1.3.2 The Second Improvement
An access to the table TAI_PRODUKTIONSPLAN only with index would have

meant adding three columns to the index.

Fig. 7.3 Test case: index on a column of the type “TIMESTAMP WITH TIME ZONE”

7.1 Hanno’s Experience 85



Predicate Information (identified by operation id):
---------------------------------------------------
3 - access("T"."KENNUNG"="TP"."TAI_KENNUNG")

Column Projection Information (identified by operation id):
-----------------------------------------------------------
5 - "TP"."TAI_KENNUNG"[NUMBER,22], "TP"."TAI_TYPNAME"[VARCHAR2,200], 
"TP"."PRODUKTIONSPLAN_TYPNAME"[VARCHAR2,200]

This index would have become too large, and, as it was not a case of a high-

frequency SQL query but of a kind of ad hoc report, I decided on parallelizing the

FTS by means of the hint PARALLEL(TP 8) (Fig. 7.5).

My colleague was amazed to see the result of approximately 1-minute runtime

instead of the 1 hour he had expected.

Id Operation Name A-Rows A-Time Buffers Reads
0 SELECT STATEMENT     21916 00:11:33.09 2218K 2218K
1 SORT GROUP BY       21916 00:11:33.09 2218K 2218K

*  2 FILTER             3955K 00:11:20.52 2218K 2218K
*  3 HASH JOIN         3955K 00:11:19.29 2218K 2218K
*  4 INDEX RANGE SCAN IDX_TAI_LETZTEAUSF_KENN2 3955K 00:00:10.04 32165 32448

5 TABLE ACCESS 
FULL

TAI_PRODUKTIONSPLAN 160M 00:08:55.33 2185K 2185K

Predicate Information (identified by operation id):
---------------------------------------------------

2 - filter(SYS_EXTRACT_UTC(TIMESTAMP' 2014-11-02 
23:59:59.000000000')>SYS_EXTRACT_UTC(TIMESTAMP' 2014-10-27 00:00:00.000000000'))

3 - access("T"."KENNUNG"="TP"."TAI_KENNUNG")
4 - access("T"."SYS_NC00037$">SYS_EXTRACT_UTC(TIMESTAMP' 2014-10-27 00:00:00.000000000') AND 

"T"."SYS_NC00037$"<=SYS_EXTRACT_UTC(TIMESTAMP' 2014-11-02 23:59:59.000000000'))

Column Projection Information (identified by operation id):
-----------------------------------------------------------

1 - (#keys=3) "TP"."PRODUKTIONSPLAN_TYPNAME"[VARCHAR2,200], "TP"."TAI_TYPNAME"[VARCHAR2,200], 
"T"."SYS_NC00040$"[VARCHAR2,13], COUNT(*)[22]

2 - "T"."SYS_NC00040$"[VARCHAR2,13], "TP"."PRODUKTIONSPLAN_TYPNAME"[VARCHAR2,200], 
"TP"."TAI_TYPNAME"[VARCHAR2,200]

3 - (#keys=1) "T"."SYS_NC00040$"[VARCHAR2,13], "TP"."PRODUKTIONSPLAN_TYPNAME"[VARCHAR2,200], 
"TP"."TAI_TYPNAME"[VARCHAR2,200]

4 - "T"."KENNUNG"[NUMBER,22], "T"."SYS_NC00040$"[VARCHAR2,13]
5 - "TP"."TAI_KENNUNG"[NUMBER,22], "TP"."TAI_TYPNAME"[VARCHAR2,200], 

"TP"."PRODUKTIONSPLAN_TYPNAME"[VARCHAR2,200]

Fig. 7.4 Practical example: the first improvement

Id
Operation Name A-Rows A-Time

0 SELECT STATEMENT           15337 00:01:16.53 
*  1 PX COORDINATOR                15337 00:01:16.53 

2 PX SEND QC (ORDER)           :TQ10003 0 00:00:00.01 
3 SORT ORDER BY               14525 00:00:00.09 
4 PX RECEIVE                 13503 00:00:00.06 
5 PX SEND RANGE             :TQ10002 0 00:00:00.01 
6 SORT GROUP BY            15337 00:00:00.21 
7 PX RECEIVE              57299 00:00:00.06 
8 PX SEND HASH           :TQ10001 0 00:00:00.01 
9 HASH GROUP BY         42271 00:10:04.35 

* 10 FILTER               2888K 00:10:00.34 
* 11 HASH JOIN           2888K 00:09:59.18 
12 BUFFER SORT        25M 00:05:43.39 
13 PX RECEIVE        22M 00:04:06.98 
14 PX SEND BROADCAST :TQ10000 0 00:00:00.01 

* 15 INDEX RANGE SCAN IDX_TAI_LETZTEAUSF_KENN2 3224K 00:00:32.82 
16 PX BLOCK ITERATOR  13M 00:03:05.19 

* 17 TABLE ACCESS FULL TAI_PRODUKTIONSPLAN 10M 00:03:27.23 

Fig. 7.5 Practical example: the second improvement

86 7 Practical Experience with Formal SQL Tuning



7.2 Victor’s Experience

I had been working with Oracle database operations at a large company for a long

time when Leonid came to give a talk on formal SQL tuning at the beginning of

2013. As my special area was precisely the field of optimization and

troubleshooting, I was all ears. I knew full well how much effort was involved in

optimization by the “trial and error” method. I often spent many hours unsuccess-

fully trying to optimize complex queries because my assumptions were incorrect.

Even in relatively simple execution plans, I was not always sure if an index access

was really a good idea at that point. I was only able to improve execution after a

detailed, time-consuming data distribution analysis. The method Leonid presented

promised to save a lot of time and I was quite excited about it. I have developed

some auxiliary programs for use with this method, and I always employ them for

SQL tuning.

Whenever an acute database incident has to be dealt with, or a repeated or

constant performance issue occurs, formal SQL evaluation is employed sooner or

later. It’s amazing how much time this saves! Sometimes optimum plans are found

for problematical queries, and sometimes index structures can be improved. If no

improvement is possible without changing the relevant SQL statement, concrete

optimization recommendations are prepared for development. Sometimes it is

evident that the problem cannot be solved either by SQL optimization or by

redesigning the application (data model design error). Thanks to the formal method,

the analysis can be done very quickly.

Inefficient plans occur suddenly and have various causes, such as massive data

changes, increase in data volume, introduction of new software, outdated or missing

optimizer statistics, etc. In case of strong fluctuations in data volume, the optimizer

generates a large number of different plans for the same SQL statement. That’s why

I first of all check whether it is possible to find another, better execution plan for the

problematical SQL statement in the AWR. If so, the better plan can be activated.

The optimization process is often completed after this step.

If it is not possible to find a suitable plan in the AWR, I prepare test versions of

the SQL statement for the purpose of SQL tuning. With my auxiliary programs, I

find the relevant SQL text in the database; I draw up a summary of the segments and

index structures involved. (This can be useful for the analysis.) If necessary, I

correct the SQL text so that my tests do not create or delete any database objects or

change or lock their data. For this purpose, I extract the relevant selects from the

DDL and DML commands and remove any existing “FOR UPDATE” clauses from

the commands “select for update.” It is worth formatting the SQL text. (There are a

lot of tools available for this free of charge.)

I then check the parameter settings which are relevant for the optimizer (primar-

ily those not documented). An inappropriately set parameter of this sort can hinder

the optimizer in the search for an optimum plan. When testing, I reset some of these

parameters to their default values and check the execution plan. The optimization

process is often successfully completed after this step.

7.2 Victor’s Experience 87

www.allitebooks.com

http://www.allitebooks.org


In practice, I use the SQL Tuning Advisor (SQLT advisor) from Oracle. If the

SQLT advisor finds an alternative plan, then it is a good reason to test this plan.

However, I would not advise activating an automatically generated plan without

testing it. Even if the SQLT advisor promises a substantial improvement, this does

not always materialize. If the SQLT advisor does a good job and saves me a lot of

work, I am very pleased.

If manual SQL tuning is necessary, I follow the formal method as described in

this book. I find this method very effective and hope that it will also help our

readers. In order to change the order of accesses and access methods, I almost

exclusively use hints from outlines as a template. Compared to “classical” hints,

they take some getting used to at first. They refer directly to query blocks and can

therefore be placed in any query block (e.g., at the beginning of the SQL statement).

It is no longer necessary to distribute hints throughout the SQL text. This makes

hints easier to use. In the case of views in SQL statements, this is the only

possibility to address the relevant query blocks without changing these views.

I use mostly hidden hints for SQL tuning because it is not usually possible to

change the SQL statement. As a rule, I employ the OSP method for this (Outlines in

SQL Profiles) as described in [1].

Once the new plan has been activated, I monitor its effect over a lengthy period.

If this plan does not prove to be as effective as expected, I have a “drop profile”

command ready. This happens from time to time when certain nonrelevant bind

values have been used in tests, for example, when they refer to yesterday’s data

(instead of up-to-date data). One has to be careful with bind values when tuning.

7.2.1 The First Practical Example

A small example of formal SQL tuning. A SQL statement was running on a number

of instances and was using the lion’s share of CPU resources, mostly without

returning a single row. Below is the formatted text of this SQL statement.

SELECT   business_activity_id, type_rd, status_rd, NAME, priority_rd, root_business_activity_id
FROM business_activity t
WHERE workflow_template_id = '.bF6exCIlPAi079H'
AND NAME = 'Deaktivieren'
AND status_rd = 'InProg'
AND external_system_indicator_rd = 'ERROR'
AND service_order_stp_id IN (

SELECT so.service_order_stp_id
FROM service_order so

, service_property sp
, property_value pv

WHERE so.service_order_stp_id = sp.service_order_stp_id
AND sp.service_property_id = pv.service_property_id
AND pv.value_string = 'ffmaems2')

ORDER BY business_activity_id

Figure 7.6 shows the problematical execution plan.

598K rows are read from the table PROPERTY_VALUE. The joining of this

table with the table SERVICE_PROPERTY (alias SP) results in no hits. This makes

a case for changing the table order in this join. The table SERVICE_PROPERTY

has an index SP_IDX1 for the column SERVICE_ORDER_STP_ID which can be

used for this change.

88 7 Practical Experience with Formal SQL Tuning



Table Name                     Index Name      Column List                             
------------------------------ --------------- -----------------------------------
SERVICE_PROPERTY               SP_IDX1         SERVICE_ORDER_STP_ID                    
SERVICE_PROPERTY               SP_PK1          SERVICE_PROPERTY_ID,SERVICE_ORDER_STP_ID

If we change the order with the hint LEADING (in this case, exceptionally, I

didn’t use any outlines), we get a completely different execution schema (Fig. 7.7).

Id Operation Name Starts A-Rows A-Time Buffers
0 SELECT STATEMENT                1 0 00:44:14.49 3321K
1 SORT ORDER BY                  1 0 00:44:14.49 3321K
2 NESTED LOOPS SEMI             1 0 00:44:14.49 3321K

*  3 TABLE ACCESS BY INDEX ROWID  BUSINESS_ACTIVITY 1 1 00:00:00.12 19
*  4 INDEX RANGE SCAN            BA_NAME_IND 1 15 00:00:00.04 4

5 VIEW PUSHED PREDICATE        VW_NSO_1 1 0 00:44:14.37 3321K
6 NESTED LOOPS                1 0 00:44:14.37 3321K
7 TABLE ACCESS BY INDEX 

ROWID
PROPERTY_VALUE 1 598K 00:17:18.26 547K

*  8 INDEX RANGE SCAN          PV_IND2 1 598K 00:00:02.45 4476
*  9 INDEX UNIQUE SCAN          SP_PK1 598K 0 01:38:30.37 2773K

Predicate Information (identified by operation id):
---------------------------------------------------

3 - filter(("WORKFLOW_TEMPLATE_ID"='.bF6exCIlPAi079H' AND 
"EXTERNAL_SYSTEM_INDICATOR_RD"='ERROR' AND "STATUS_RD"='InProg'))

4 - access("NAME"='Deaktivieren')
8 - access("PV"."VALUE_STRING"='ffmaems2')
9 - access("SP"."SERVICE_PROPERTY_ID"="PV"."SERVICE_PROPERTY_ID" AND 

"SP"."SERVICE_ORDER_STP_ID"="SERVICE_ORDER_STP_ID")

Fig. 7.6 Example 1: A suboptimal execution plan

SELECT   business_activity_id, type_rd, status_rd, NAME, priority_rd, root_business_activity_id
FROM business_activity t
WHERE workflow_template_id = '.bF6exCIlPAi079H'
AND NAME = 'Deaktivieren'
AND status_rd = 'InProg'
AND external_system_indicator_rd = 'ERROR'
AND service_order_stp_id IN (

SELECT /*+ leading(sp) use_nl(sp pv) */ 
so.service_order_stp_id

FROM service_order so
, service_property sp
, property_value pv

WHERE so.service_order_stp_id = sp.service_order_stp_id
AND sp.service_property_id = pv.service_property_id
AND pv.value_string = 'ffmaems2')

ORDER BY business_activity_id

Id Operation Name Starts A-Rows A-Time Buffers
0 SELECT STATEMENT                 1 0 00:00:00.68 393
1 SORT ORDER BY                   1 0 00:00:00.68 393
2 NESTED LOOPS SEMI              1 0 00:00:00.68 393

*  3 TABLE ACCESS BY INDEX 
ROWID   

BUSINESS_ACTIVITY 1 1 00:00:00.01 19

*  4 INDEX RANGE SCAN    BA_NAME_IND 1 15 00:00:00.01 4
5 VIEW PUSHED PREDICATE         VW_NSO_1 1 0 00:00:00.67 374
6 NESTED LOOPS                 1 0 00:00:00.67 374
7 NESTED LOOPS                1 177 00:00:00.61 319
8 TABLE ACCESS BY 

INDEX ROWID
SERVICE_PROPERTY 1 100 00:00:00.06 12

*  9 INDEX RANGE SCAN          SP_IDX1 1 100 00:00:00.03 6
* 10 INDEX RANGE SCAN           PV_PK 100 177 00:00:00.56 307
* 11 TABLE ACCESS BY 

INDEX ROWID 
PROPERTY_VALUE 177 0 00:00:00.06 55

Predicate Information (identified by operation id):
---------------------------------------------------

3 - filter(("WORKFLOW_TEMPLATE_ID"='.bF6exCIlPAi079H' AND 
"EXTERNAL_SYSTEM_INDICATOR_RD"='ERROR' AND "STATUS_RD"='InProg'))

4 - access("NAME"='Deaktivieren')
9 - access("SP"."SERVICE_ORDER_STP_ID"="SERVICE_ORDER_STP_ID")
10 - access("SP"."SERVICE_PROPERTY_ID"="PV"."SERVICE_PROPERTY_ID")
11 - filter("PV"."VALUE_STRING"='ffmaems2')

Fig. 7.7 Example 1: The execution plan after optimization

7.2 Victor’s Experience 89



An interesting aspect of this example is the fact that the table SERVICE_ORDER

does not appear once in the plan. This enables the foreign key

SERVICE_PROPERTY. SERVICE_ORDER_STP_ID -> SERVICE_ORDER.

SERVICE_ORDER_STP_ID. At Oracle, this type of optimization is called join

elimination and is available from version 10.2 onward. One indication that Oracle

uses this optimization is the hint ELIMINATE_JOIN in the outlines.

The small test case which is based on our practical example reproduces this

behavior.

create table parent (
a number, b number, 
constraint parent_pk primary key (a));

create table child (
a number, b number, 
constraint child_pk primary key (a), 
constraint child_fk foreign key (a) references parent (a));

The query

select * from child where a in (select a from parent);

runs with the following plan:

Id Operation Name Rows Bytes Cost
0 SELECT STATEMENT  2
1 TABLE ACCESS FULL CHILD 1 26 2

Outline Data
-------------

/*+
... 
ELIMINATE_JOIN(@"SEL$5DA710D3" "PARENT"@"SEL$2")
...

*/

If the foreign key is a non-validated condition (e.g., after a table reorganization),

this optimization can no longer be used by Oracle:

alter table child enable novalidate constraint child_fk;

select * from child where a in (select a from parent);

Id Operation Name Rows Bytes Cost
0 SELECT STATEMENT             2
1 NESTED LOOPS                1 39 2
2 INDEX FULL SCAN            PARENT_PK 1 13 1
3 TABLE ACCESS BY INDEX ROWID CHILD 1 26 1

*  4 INDEX UNIQUE SCAN         CHILD_PK 1 1

7.2.2 The Second Practical Example

In this section I would like to present another interesting example. I would be very

grateful if Peter Smith would help me.

Peter: “Of course I’ll help you. I welcome any opportunity to practice SQL

tuning.”

Victor: “Fig. 7.8 shows an execution plan. This plan has caused a serious

performance problem in a system. How would you improve this plan,

Peter?”

90 7 Practical Experience with Formal SQL Tuning



P.: “Both the highest cardinality of 8016K and the longest runtime of

1½minutes occur in step 17. After the join with the view VW_NSO_1,

the cardinality falls to 55. I would change the table order in the join in

such a way that the table SENSORDATA follows the view VW_NSO_1.

But. . ..”
V.: “What?”

P.: “I’ve just noticed that that isn’t possible because this view and the table

SENSORDATA are joined with a right outer join.”

V.: “You have fallen into the same trap as me. Where do you see an outer

join?”

P.: “In step 1.”

V.: “But that isn’t a right outer join. It’s a hash join right semi! The word

‘semi’ tells us that it is a join with a subquery as an inline view. The word

‘right’ indicates that this inline view plays the role of the build table in the

hash join. As this is not an outer join, I have used the hint LEADING

(@"SEL$CC7EC59E" "VW_NSO_1"@"SEL$CC7EC59E"

"SENSORDATA"@"SEL$1") and obtained a runtime of approx.

5 seconds. As it was not possible to change the SQL statement. . ..”
P.: “You probably used the OSP method and created a SQL profile?”

Plan hash value: 931175730

Id Operation Name Starts E-Rows A-Rows A-Time
0 SELECT STATEMENT                 1 55 00:01:50.54

*  1 HASH JOIN RIGHT SEMI            1 1 55 00:01:50.54
2 VIEW                           VW_NSO_1 1 102 102 00:00:11.57
3 HASH GROUP BY                 1 102 102 00:00:11.57
4 INDEX FAST FULL SCAN         SENSORDATA_IDX 1 8300K 8421K 00:00:03.99
5 NESTED LOOPS                   1 70553 8016K 00:01:33.21
6 NESTED LOOPS                  1 1 55 00:00:00.01
7 NESTED LOOPS                 1 1 55 00:00:00.01
8 MERGE JOIN                  1 1 55 00:00:00.01

*  9 TABLE ACCESS BY INDEX ROWID HIERARCHY 1 1 7 00:00:00.01
10 INDEX FULL SCAN           HIERARCHY_PK 1 120 120 00:00:00.01

* 11 SORT JOIN                  7 120 55 00:00:00.01
12 TABLE ACCESS FULL         HIERARCHY 1 120 120 00:00:00.01
13 TABLE ACCESS BY INDEX ROWID SENSOR 55 1 55 00:00:00.01

* 14 INDEX UNIQUE SCAN          SENSOR_PK 55 1 55 00:00:00.01
15 TABLE ACCESS BY INDEX ROWID  ITEM 55 1 55 00:00:00.01

* 16 INDEX UNIQUE SCAN           ITEM_PK 55 1 55 00:00:00.01
* 17 INDEX FAST FULL SCAN          SENSORDATA_IDX 55 69170 8016K 00:01:30.29
Outline Data
-------------

/*+
…
LEADING(@"SEL$CC7EC59E" "HIERARCHY"@"SEL$3" "HIERARCHY"@"SEL$1" "SENSOR"@"SEL$1" 

"ITEM"@"SEL$1" "SENSORDATA"@"SEL$1" "VW_NSO_1"@"SEL$CC7EC59E")
…

*/

Predicate Information (identified by operation id):
---------------------------------------------------

1 - access("SENSORDATA"."ID"="MAX(SENSORDATA.ID)")
9 - filter("HIERARCHY"."PARENT"=52)
11 - access("HIERARCHY"."PARENT"="HIERARCHY"."ID")

filter("HIERARCHY"."PARENT"="HIERARCHY"."ID")
14 - access("HIERARCHY"."ID"="SENSOR"."ID")
16 - access("HIERARCHY"."ID"="ITEM"."ID")
17 - filter("HIERARCHY"."ID"="SENSORDATA"."SENSORID")

Fig. 7.8 Example 2: The problematical execution plan

7.2 Victor’s Experience 91



V.: “Yes, and I was immediately asked whether there was another solution

without hidden hints.”

P.: “Why?”

V.: “SQL profiles (like SQL plan baselines) have to be maintained. If the

database is transferred to another computer, for example, one mustn’t

forget to transfer all created SQL profiles. Although I personally do not

regard this as any great effort, I have tried to find another solution.”

P.: “What’s that?”

V.: “I noticed that the optimizer does not correctly estimate the cardinality

when the table HIERARCHY is accessed in step 9. It assumes that this

cardinality is 1. In fact, it was 7. As the predicate ‘HIERARCHY.

PARENT¼52’ was used for access to the table HIERARCHY, I checked

if the column PARENT had histograms. I checked this in the view

DBA_TAB_COL_STATISTICS.”

P.: “I presume you didn’t find any histograms.”

V.: “You’re right. After creating histograms for the column PARENT, the

execution plan improved immediately (see Fig. 7.9). The optimizer

selected the same plan as I forced with the hint LEADING.”

P.: “In this case, the creation of histograms was a good alternative to the

formal method. Is that always the case? Can one always generate new or

additional optimizer statistics instead of using formal SQL tuning?”

V.: “In some situations that is possible, but certainly not in all. For example,

if the optimizer estimates the cardinality of a join badly with a skewed

distribution of data, as a rule, no statistics will help.”

Plan hash value: 1387967720

Id Operation Name Starts E-Rows A-Rows A-Time
0 SELECT STATEMENT             1 55 00:00:05.19

*  1 HASH JOIN                   1 33 55 00:00:05.19
*  2 HASH JOIN 1 33 55 00:00:05.19
*  3 HASH JOIN                 1 39 55 00:00:05.19
*  4 HASH JOIN                1 102 102 00:00:05.18

5 NESTED LOOPS            1 102 102 00:00:05.18
6 VIEW                   VW_NSO_1 1 102 102 00:00:05.18
7 HASH UNIQUE           1 102 102 00:00:05.18
8 HASH GROUP BY        1 102 102 00:00:05.17
9 INDEX FAST FULL SCAN SENSORDATA_IDX 1 7718K 7744K 00:00:01.93

* 10 INDEX RANGE SCAN       SENSORDATA_IDX 102 1 102 00:00:00.01
11 TABLE ACCESS FULL       HIERARCHY 1 120 120 00:00:00.01

* 12 TABLE ACCESS FULL        HIERARCHY 1 7 7 00:00:00.01
13 TABLE ACCESS FULL         SENSOR 1 102 102 00:00:00.01
14 TABLE ACCESS FULL          ITEM 1 120 120 00:00:00.01

Fig. 7.9 Example 2: The execution plan after generation of histograms for the column PARENT

92 7 Practical Experience with Formal SQL Tuning



Closing Remarks 8

That is the end of the book. We would be pleased if you decide to add formal SQL

tuning to your arsenal and use it in everyday practice. Do that and you will be amazed

how easy and effective this method is. With this figure, we take our leave (Fig. 8.1).

In the appendix we use an example to describe how one can use the formal

principle for the analysis of performance problems after an Oracle migration. Such

problems are considerably more complicated than the SQL tuning of individual

SQL statements because several SQL statements are usually affected. When

analyzing these problems, one has to determine what has caused the degradation

in performance (e.g., new optimizer features). The formal principle can be very

helpful here. If you would like to study the formal method in more detail, the

following material will be of interest to you.

Before you close the book and put it down, we would like to take a final

opportunity to clarify any outstanding questions. Peter may be able to help us

again here. He is full of questions and doesn’t give up until he receives a satisfac-

tory answer. We hope that his questions are also of interest to you.

Peter: “I must admit that I do have some questions. These don’t refer directly to

the formal method itself, which I have understood (at least I hope so).

They are of a more peripheral nature. First I would like to ask what

formal SQL tuning is. Is it a method at all or is it simply a collection of

empirical rules, which one can use when tuning?”

Author: “If we define a method as a systematic procedure for achieving an

objective, then formal SQL tuning is a method. In this book, we have

tried to systematize formal SQL tuning. The objective is also clear.

Where do you see a problem?”

P.: “Formal SQL tuning doesn’t cover all problems that can occur during

tuning.”

A.: “That’s true. Most practical cases of acute performance problems are

dealt with, however. If necessary, one can develop the method further

using the same principle.”

# Springer-Verlag Berlin Heidelberg 2016

L. Nossov et al., Formal SQL Tuning for Oracle Databases,
DOI 10.1007/978-3-662-50417-8_8

93



P.: “Can one algorithmize and program this procedure?”

A.: “Theoretically, one can create an algorithm for the formal method, but I

would not program this procedure.”

P.: “Why not?”

A: “I can give you a couple of reasons. The analysis of predicates plays a

very important role in this method. Unfortunately, Oracle does not

always generate predicates correctly in the execution plan. In most

cases, one can obtain the correct predicates from the relevant explain

plan. This complicates the program, however. Analysis of predicates is

generally complicated. In [4] you can find scripts in which predicates are

extracted and analyzed. Unfortunately, this does not always work

because some cases are not covered.”

P.: “I understand. The relevant program must be quite complicated. Are

there any other reasons?”

A.: “Formal SQL tuning is a fairly simple method, which even beginners can

master without difficulty. I really don’t think that a program is

necessary.”

Fig. 8.1 Formal tuning

exceeds your expectations

94 8 Closing Remarks



P.: “Are there cases where the formal method doesn’t work?”

A.: “Every method has its limits, Peter. I must say, however, that formal

SQL tuning is very reliable, at least for the categories of problem

described in this book.”

P.: “I am particularly interested in problems with an inappropriate table

order in the join. Can it ever happen that no table order change made

according to the rules described is capable of bringing about an appre-

ciable improvement in performance?”

A.: “There are cases in which it is generally not possible to achieve any

improvement by changing the table order in the join. This is normally

due to the data model, which is unsuitable for the particular query.”

P.: “Do you mean that formal SQL tuning has absolutely no

disadvantages?”

A.: “Not at all. For example, formal SQL tuning doesn’t consider any Oracle

transformations and optimizations, because it is very problematical to

formalize them in an easy manner and to incorporate them into the

formal method. An experienced specialist may be able to take into

account such Oracle features when tuning. An inexperienced person

will generally not succeed in doing this. I must say, however, that

transformations and optimizations seldom play a decisive role in SQL

tuning (as, e.g., in the case in the appendix). For this reason, I do not see

this as any major disadvantage.”

P.: “I have no further questions. Thank you very much.”

A.: “Then I wish you every success using the formal method.”

8 Closing Remarks 95



Appendix: Application of the Formal Principle
for the Analysis of Performance Problems
After an Oracle Migration

The method described in this book is helpful in most cases which a database

specialist is likely to encounter in everyday practice. It is also relatively simple.

With this method, we have tried to achieve a compromise between comprehensi-

bility and usefulness. We will leave it to you, our readers, to judge how successful

we have been.

Here we would like to present an example of how one can use the formal

principle for analyzing performance problems after an Oracle migration.

Peter: “Why are you describing this in the appendix and not in a chapter?”

Author: “This is a special case because one relatively seldom encounters such

problems (one doesn’t migrate Oracle databases every day!). So, for

practical reasons, we are putting this example in the appendix.”

P.: “Why do you find this example so interesting?”

A.: “First of all, this example demonstrates that the formal method described

here has its limitations; secondly, it shows how one can analyze rela-

tively complex problems using the same principle. Shall we get started?”

P.: “Yes, all right. I hope I can follow you.”

A.: “After an Oracle migration from 10.2.0.5 to 11.2.0.4, several SQL

statements became suboptimal. They had a similar structure. Below is

an example:

# Springer-Verlag Berlin Heidelberg 2016

L. Nossov et al., Formal SQL Tuning for Oracle Databases,
DOI 10.1007/978-3-662-50417-8

97



The relevant execution plan was as follows (Fig. A.1).

98 Appendix: Application of the Formal Principle for the Analysis of Performance. . .



Can you see anything special about this execution plan, Peter?”

P.: “I assume that Oracle has transformed the two subqueries into inline views

and joined them to the main query.”

A.: “Quite right, Peter. Oracle has generated two names for these views:VW_SQ_1

and VW_SQ_2. The abbreviation ‘SQ’ means subquery. Notice that Oracle uses

the operation ‘VIEW PUSHED PREDICATE’ for these two views. This means

that the join predicates are pushed into the inline view (predicate push down). In

our case, this happens in a natural way because these predicates are already

contained in the subqueries. The view VW_SQ_2 corresponds to the second

subquery. The join predicate which is pushed into this view is ‘S.SOC¼SOC.

SOC.’ We find this predicate in the section ‘Predicate Information’:

We also have this predicate in the second subquery.”

P.: “The problematical step in the execution plan above is step 17, in which

1861K rows were found. The optimizer estimated the cardinality for this step

as 1. Actually, however, it was approx. 1000 (1861K/1980). I would have

checked the optimizer statistics of the table SOC.”

A.: “Wait a minute, Peter. I don’t think that this measure would have reduced the

runtime to 0.07 seconds (that’s what it was in 10.2.0.5). In addition, all

Id  Operation Name Starts E-
Rows

A-
Rows

A-Time

0 SELECT STATEMENT                         1 23 00:00:06.99 
1 SORT ORDER BY      1 1 23 00:00:06.99 
2 NESTED LOOPS                           1 1 23 00:00:06.99 
3 NESTED LOOPS                          1 1 23 00:00:06.99 
4 NESTED LOOPS OUTER                   1 1 1980 00:00:00.04 
5 NESTED LOOPS                        1 1 1980 00:00:00.03 
6 PARTITION RANGE SINGLE             1 1 23 00:00:00.01 

*  7 TABLE ACCESS BY LOCAL 
INDEX ROWID 

SERVICE_AGREEMENT     1 1 23 00:00:00.01 

*  8 INDEX RANGE SCAN                 SERVICE_AGREEMENT_3IX 1 1 36 00:00:00.01 
*  9 MAT_VIEW ACCESS BY 

INDEX ROWID     
SOC                   23 1 1980 00:00:00.03 

* 10 INDEX RANGE SCAN                  SOC_99IX              23 18 9811 00:00:00.01 
11 MAT_VIEW ACCESS BY 

INDEX ROWID      
PROMOTION_TERMS       1980 1 0 00:00:00.01 

* 12 INDEX UNIQUE SCAN                  PROMOTION_TERMS_PK    1980 1 0 00:00:00.01 
* 13 VIEW PUSHED PREDICATE                VW_SQ_2               1980 1 23 00:00:06.95 
* 14 FILTER                              1980 1980 00:00:06.94 
15 SORT AGGREGATE                     1980 1 1980 00:00:06.94 

* 16 MAT_VIEW ACCESS BY 
INDEX ROWID    

SOC                   1980 1 370K 00:00:06.76 

* 17 INDEX RANGE SCAN                 SOC_PK                1980 1 1861K 00:00:02.74 
* 18 VIEW PUSHED PREDICATE                 VW_SQ_1               23 1 23 00:00:00.01 
* 19 FILTER                               23 23 00:00:00.01 
20 SORT AGGREGATE                      23 1 23 00:00:00.01 

* 21 FILTER                             23 23 00:00:00.01 
22 PARTITION RANGE 

SINGLE            
23 1 23 00:00:00.01 

* 23 TABLE ACCESS BY 
LOCAL INDEX ROWID

SERVICE_AGREEMENT     23 1 23 00:00:00.01 

* 24 INDEX RANGE SCAN                SERVICE_AGREEMENT_PK  23 1 36 00:00:00.01 

Fig. A.1 The suboptimal execution plan after the Oracle migration

17 - access("S"."SOC"="SOC"."SOC")
filter(TO_CHAR(INTERNAL_FUNCTION("S"."EFFECTIVE_DATE"),'YYYYMMDD')<='20150102')

Appendix: Application of the Formal Principle for the Analysis of Performance. . . 99



optimizer statistics on this database were locked. There was, therefore, no

possibility of solving the problem by changing the statistics. The real problem

was that several SQL statements became suboptimal after the migration. It

was necessary to find out the reason.”

P.: “I would have tried the parameter setting optimizer_features_enable

¼‘10.2.0.5’.”

A.: “This parameter setting brought performance to the status of 10.2.0.5. The

parameter setting “_optimizer_push_pred_cost_based”¼false produced the

same result. These parameter settings could only have been used as a tempo-

rary solution, however, because the first is too hard (this would mean

forgoing optimizer features from Oracle 11) and the second can negatively

influence other execution plans. For this reason, I requested an execution plan

from 10.2.0.5, which looked like this (Fig. A.2):

Do you see the difference between these two plans, Peter?”

P.: “In the second plan, subqueries are processed as subqueries. But I don’t

understand why the first subquery was only executed 23 times, at least

Id Operation Name Starts E-
Rows

A-
Rows

A-Time

0 SELECT STATEMENT                       1 23 00:00:00.07 
1 SORT ORDER BY                         1 1 23 00:00:00.07 

*  2 FILTER                               1 23 00:00:00.07 
3 NESTED LOOPS OUTER                  1 1 1980 00:00:00.04 
4 NESTED LOOPS               1 1 1980 00:00:00.03 
5 PARTITION RANGE SINGLE            1 1 23 00:00:00.01 

*  6 TABLE ACCESS BY LOCAL 
INDEX ROWID

SERVICE_AGREEMENT     1 1 23 00:00:00.01 

*  7 INDEX RANGE SCAN                SERVICE_AGREEMENT_3IX 1 1 36 00:00:00.01 
*  8 MAT_VIEW ACCESS BY INDEX 

ROWID    
SOC                   23 1 1980 00:00:00.03 

*  9 INDEX RANGE SCAN                 SOC_99IX              23 18 9811 00:00:00.01 
10 MAT_VIEW ACCESS BY INDEX 

ROWID     
PROMOTION_TERMS       1980 1 0 00:00:00.01 

* 11 INDEX UNIQUE SCAN                 PROMOTION_TERMS_PK    1980 1 0 00:00:00.01 
12 SORT AGGREGATE                      23 1 23 00:00:00.01 
13 PARTITION RANGE SINGLE             23 1 23 00:00:00.01 

* 14 TABLE ACCESS BY LOCAL 
INDEX ROWID 

SERVICE_AGREEMENT     23 1 23 00:00:00.01 

* 15 INDEX RANGE SCAN     SERVICE_AGREEMENT_PK  23 1 36 00:00:00.01 
16 SORT AGGREGATE                      18 1 18 00:00:00.03 

* 17 MAT_VIEW ACCESS BY INDEX 
ROWID     

SOC                   18 1 1398 00:00:00.03 

* 18 INDEX RANGE SCAN                  SOC_PK                18 1 7281 00:00:00.01 
Predicate Information (identified by operation id):
---------------------------------------------------

2 - filter(("SA"."SOC_SEQ_NO"= AND 
DECODE(RTRIM("SOC"."TARGET_TARIFF"),'VF_FUN_10',0,'VF_FUN',1,'ALLTO',2)=))

6 - filter(("SA"."EXPIRATION_DATE"<=TO_DATE(' 2015-01-02 00:00:00', 'syyyy-mm-dd hh24:mi:ss') 
AND INTERNAL_FUNCTION("SA"."TARIFF_OPTION")))

7 - access("SA"."SUBSCRIBER_NO"=' XXXXXXXXXXXX' AND "SA"."BAN"=116)
8 - filter((TO_CHAR(INTERNAL_FUNCTION("SOC"."EFFECTIVE_DATE"),'YYYYMMDD')<='20150102' AND 

NVL("SOC"."EXPIRATION_DATE",TO_DATE(' 4700-12-31 00:00:00', 'syyyy-mm-dd
hh24:mi:ss'))>TO_DATE(' 2015-01-02 00:00:00', 'syyyy-mm-dd hh24:mi:ss')))

9 - access("SA"."SOC"="SOC"."SOC")
11 - access("PRMT"."SOC"="SOC"."SOC" AND "PRMT"."TARGET_TARIFF"="SOC"."TARGET_TARIFF" AND 

"PRMT"."EFFECTIVE_DATE"="SOC"."EFFECTIVE_DATE")
filter("PRMT"."SOC"="SOC"."SOC")

14 - filter("SA2"."EXPIRATION_DATE"=:B1)
15 - access("SA2"."BAN"=:B1 AND "SA2"."SUBSCRIBER_NO"=:B2 AND "SA2"."SOC"=:B3)
17 - filter(NVL("S"."EXPIRATION_DATE",TO_DATE(' 4700-12-31 00:00:00', 'syyyy-mm-dd 

hh24:mi:ss'))>TO_DATE(' 2015-01-02 00:00:00', 'syyyy-mm-dd hh24:mi:ss'))
18 - access("S"."SOC"=:B1)

filter(TO_CHAR(INTERNAL_FUNCTION("S"."EFFECTIVE_DATE"),'YYYYMMDD')<='20150102')

Fig. A.2 The execution plan before the Oracle migration

100 Appendix: Application of the Formal Principle for the Analysis of Performance. . .



according to execution plan step 12. It should have been executed as many

times as the cardinality in step 3, i.e., 1980 times.”

A.: “In step 5, 23 rows from table SERVICE_AGREEMENT (alias SA) were

found. In the next step, the cardinality increased to 1980 after the join with

the table SOC. The subsequent outer join did not change the number of hits.

What is important for us is the fact that this number of hits only contains

23, or even fewer, rows with various values from SA.SUBSCRIBER_NO,

SA.BAN, SA.EXPIRATION_DATE, SA.SOC. Precisely, these values are

queried in the first subquery (see steps 14 and 15). I assume that Oracle is

using a kind of subquery caching here and has thereby optimized the number

of executions of this subquery or reduced them to 23. In [2], the author refers

to this as filter optimization. We will discuss this optimization later. I have

noticed another peculiarity in the second subquery.”

P.: “What’s that? I don’t notice anything.”

A.: “In the execution plan in Fig. A.1, the view VW_SQ_2, which corresponds to

the second subquery, was executed 1980 times (see step 13). Only 23 rows

were found there.”

P.: “Is this subquery so selective?”

A.: “I assumed that the reason would be different. The function DECODE, the

result of which is compared with the subquery in the SQL statement, returns a

null value if the value of the column TARGET_TARIFF differs from 0,1,2.”

P.: “I don’t quite understand that.”

A.: “An ‘ELSE’ condition is missing in this function. This simple example shows

that:

I assumed (and a direct check confirmed this) that the result of the function

DECODE consisted mainly of null values. In the case of a null value, one can

spare the execution of the subquery because an equality condition for a null

value is always wrong. Oracle uses such optimization for subqueries. There is

also a similar optimization for joins. We will discuss these optimizations

(let’s call them filter ‘IS NOT NULL’) in detail later.”

P.: “Why didn’t Oracle use this optimization in the first execution plan, i.e., in

the case of nested loop join?”

A.: “That’s a fair question. At the moment we do not know enough to be able to

answer this question. First we have to examine the optimization in detail. We

will do that and then we’ll give you an answer.”

P.: “In what way did the fact that the DECODE function mostly returns null

values actually help you?”

SQL> select nvl(decode(dummy,'A','a','B','b'),'NULL') from dual;

NVL(
----
NULL

Appendix: Application of the Formal Principle for the Analysis of Performance. . . 101



A.: “I extended the SQL statement by adding a condition, requesting that the

result of the DECODE function should be ‘not null’:

SELECT 
FROM    SERVICE_AGREEMENT SA,SOC ,PROMOTION_TERMS PRMT
WHERE   SA.BAN = 116
AND     SA.SUBSCRIBER_NO = ' XXXXXXXXXXXX'
AND     SA.EXPIRATION_DATE <= TO_DATE('20150102', 'YYYYMMDD')
AND     SA.SOC_SEQ_NO = (SELECT --+ index(SA2 SERVICE_AGREEMENT_PK)

MAX(SA2.SOC_SEQ_NO)
FROM   SERVICE_AGREEMENT SA2
WHERE  SA2.BAN = SA.BAN
AND    SA2.SUBSCRIBER_NO = SA.SUBSCRIBER_NO
AND    SA2.SOC = SA.SOC
AND    SA2.EXPIRATION_DATE = SA.EXPIRATION_DATE)

AND     SA.SOC = SOC.SOC
AND     SA.TARIFF_OPTION IN ('VF_FUN_10', '000000000')
AND  DECODE(RTRIM(SOC.TARGET_TARIFF),

RTRIM('VF_FUN_10'), 0,
RTRIM('VF_FUN'), 1,
'ALLTO', 2) = (SELECT --+ index(S SOC_PK)

MIN(DECODE(RTRIM(S.TARGET_TARIFF),
RTRIM('VF_FUN_10'), 0,
RTRIM('VF_FUN'), 1,
'ALLTO', 2))

FROM  SOC S
WHERE S.SOC = SOC.SOC
AND  '20150102' >= TO_CHAR(S.EFFECTIVE_DATE, 'YYYYMMDD')
AND  TO_DATE('20150102', 'YYYYMMDD') < NVL(S.EXPIRATION_DATE, 

TO_DATE('47001231', 'YYYYMMDD')))
AND  '20150102' >= TO_CHAR(SOC.EFFECTIVE_DATE, 'YYYYMMDD')
AND  TO_DATE('20150102', 'YYYYMMDD') < NVL(SOC.EXPIRATION_DATE, TO_DATE('47001231', 

'YYYYMMDD')) 
AND  PRMT.SOC(+) = SOC.SOC
AND  PRMT.SOC(+) = SOC.SOC
AND  PRMT.TARGET_TARIFF(+) = SOC.TARGET_TARIFF
AND  PRMT.EFFECTIVE_DATE(+) = SOC.EFFECTIVE_DATE

AND DECODE(RTRIM(SOC.TARGET_TARIFF),
RTRIM('VF_FUN_10'), 0,
RTRIM('VF_FUN'), 1,
'ALLTO', 2) is not null

ORDER BY DECODE(SA.SERVICE_TYPE,
'P', 1,
'M', 2, 3),

SA.EFFECTIVE_DATE;

The relevant execution plan then became almost exactly as fast as the

‘good’ plan in Fig. A.2 (Fig. A.3).”

102 Appendix: Application of the Formal Principle for the Analysis of Performance. . .



Id Operation Name Starts E-
Rows

A-
Rows

A-Time

0 SELECT STATEMENT  1 23 00:00:00.08
1 SORT ORDER BY                           1 1 23 00:00:00.08
2 NESTED LOOPS                           1 1 23 00:00:00.08
3 NESTED LOOPS                          1 1 23 00:00:00.08
4 NESTED LOOPS OUTER                   1 1 25 00:00:00.03
5 NESTED LOOPS                        1 1 25 00:00:00.03
6 PARTITION RANGE SINGLE             1 1 23 00:00:00.01

*  7 TABLE ACCESS BY LOCAL 
INDEX ROWID 

SERVICE_AGREEMENT     1 1 23 00:00:00.01

*  8 INDEX RANGE SCAN           
SERVICE_AGREEMENT_3IX 

1 1 36 00:00:00.01

*  9 MAT_VIEW ACCESS BY 
INDEX ROWID     

SOC                   23 1 25 00:00:00.03

* 10 INDEX RANGE SCAN                  SOC_99IX              23 18 9811 00:00:00.01
11 MAT_VIEW ACCESS BY INDEX 

ROWID      
PROMOTION_TERMS       25 1 0 00:00:00.01

* 12 INDEX UNIQUE SCAN                  PROMOTION_TERMS_PK    25 1 0 00:00:00.01
* 13 VIEW PUSHED PREDICATE                VW_SQ_2               25 1 23 00:00:00.05
* 14 FILTER                              25 25 00:00:00.05
15 SORT AGGREGATE                     25 1 25 00:00:00.05

* 16 MAT_VIEW ACCESS BY 
INDEX ROWID    

SOC      25 1 2178 00:00:00.05

* 17 INDEX RANGE SCAN                 SOC_PK                25 1 11065 00:00:00.02
* 18 VIEW PUSHED PREDICATE                 VW_SQ_1               23 1 23 00:00:00.01
* 19 FILTER           23 23 00:00:00.01
20 SORT AGGREGATE                      23 1 23 00:00:00.01

* 21 FILTER                             23 23 00:00:00.01
22 PARTITION RANGE SINGLE            23 1 23 00:00:00.01

* 23 TABLE ACCESS BY LOCAL 
INDEX ROWID

SERVICE_AGREEMENT     23 1 23 00:00:00.01

* 24 INDEX RANGE SCAN                SERVICE_AGREEMENT_PK  23 1 36 00:00:00.01

Fig. A.3 An additional condition “is not null” improved the execution plan

P.: “Was this solution implemented?”

A.: “No. There were too many SQL statements of this kind, which would have

necessitated a major code change.”

P.: “How was this problem solved then?”

A.: “Tracing with the event 10053 showed that Oracle didn’t even try to trans-

form the subqueries into inline views in 10.2.0.5 and to push the relevant join

predicates into these inline views. This gave me the idea of looking to see

what had been changed in Oracle 11 at this point. I very quickly discovered

that Oracle can only push join predicates into the subqueries with DISTINCT,

GROUP BY, etc. from 11.1.0.6 onward. As our two subqueries contain

aggregations (MIN and MAX functions), this feature should also be applied

to them. I immediately verified this with the parameter setting

“_optimizer_extend_jppd_view_types”¼false, which disables this Oracle

feature. Oracle generated the old plan from 10.2.0.5 with this parameter

setting. It was precisely this workaround which was implemented.”

P.: “You said that this example showed that the formal method was limited.

Where does it show it?”

A.: “Let’s return to the suboptimal execution plan in Fig. A.1. Formal SQL

tuning helps us to identify the problematical execution plan step 17 with

the highest cardinality. This cardinality is so high because this step is

executed 1980 times. This causes the cardinality of 1980 in step 4. The formal

method does not tell us how we can improve the runtime of this SQL

statement from 7 to 0.07 seconds. At best you notice that the hits in step

4 can be reduced by an additional condition ‘is not null.’”

P.: “Where do you see a limitation here?”

Appendix: Application of the Formal Principle for the Analysis of Performance. . . 103



A.: “Formal tuning tries to improve the existing execution plan. It doesn’t

consider any transformations and optimizations which could lead to a

completely different execution plan. It should be noted that it is problematical

to extend formal tuning in this way here. But I also have to say that the cases

in which transformations and optimizations play a decisive role for tuning are

relatively rare in practice. I think we can now examine the two optimizations

subquery caching and filter ‘IS NOT NULL’ in greater depth. For this

purpose, we use the script test_case_subquery_caching_filter_is_not_null.

sql, which you can download from the website www.tutool.de/book, Peter.

There you can also find all the test cases relating to [1]. In this test case, three

tables, T1, T2, and T3, are created and filled with data. No column statistics

are generated. The first test demonstrates subquery caching (Fig. A.4).

You have no doubt noticed that the function decode(t1.b,1,-1,2,-2,-100)

doesn’t return any null values. I have done that especially so that only an

optimization (namely, subquery caching) is used. Can you explain why the

subqueries were executed 70 and 20 times, respectively, although 1000 rows

were found in step 3?”

P.: “Both subqueries correlate to the main query. I assume that table T1 has only

70 different values in column C and 20 different values in column A. Oracle

stores the results of these two subqueries for the different values of columns C

and A in the subquery cache. The subquery is only executed when the

relevant result is missing in the subquery cache.”

A.: “Your assumption is correct:

SQL> select count(distinct c) from t1;

COUNT(DISTINCTC)
----------------

70

SQL> select count(distinct a) from t1;

COUNT(DISTINCTA)
----------------

20

select count(*) from t1 where decode(t1.b,1,-1,2,-2,-100) = (select /*+
no_unnest */ max(decode(t2.b,10,-1,15,-2)) from t2 where t2.a=t1.a) or
t1.c =  (select /*+ no_unnest index(t3) */ max(t3.b) from t3 where
t3.a=t1.c)

Plan hash value: 1147310957

Id Operation Name Starts E-Rows A-Rows A-Time

0 SELECT STATEMENT               1 1 00:00:00.03 
1 SORT AGGREGATE                1 1 1 00:00:00.03 

*  2 FILTER                       1 440 00:00:00.03 
3 TABLE ACCESS FULL           T1 1 1000 1000 00:00:00.01 
4 SORT AGGREGATE              70 1 70 00:00:00.01 
5 TABLE ACCESS BY INDEX ROWID T3 70 33 1000 00:00:00.01 

*  6 INDEX RANGE SCAN          I_T3 70 33 1000 00:00:00.01 
7 SORT AGGREGATE              20 1 20 00:00:00.01 
8 TABLE ACCESS BY INDEX ROWID T2 20 25 500 00:00:00.01 

*  9 INDEX RANGE SCAN          I_T2 20 25 500 00:00:00.01 

Fig. A.4 Subquery caching (filter optimization)

104 Appendix: Application of the Formal Principle for the Analysis of Performance. . .

http://www.tutool.de/book


I must say, however, that Oracle uses a hash algorithm for subquery

caching (see [2]). When hash collisions occur, the relevant subquery is

executed more often. The parameter ‘_query_execution_cache_max_size’

determines the size of the subquery cache. Let’s deactivate subquery caching

with the parameter setting “_query_execution_cache_max_size”¼0:

SQL> alter session set "_query_execution_cache_max_size"=0;

Session altered.

Then we will execute the SQL statement again (Fig. A.5).”

select count(*) from t1 where decode(t1.b,1,-1,2,-2,-100) = (select /*+
no_unnest index(t2) */ max(decode(t2.b,10,-1,15,-2)) from t2 where
t2.a=t1.a) or t1.c =  (select /*+ no_unnest index(t3) */ max(t3.b) from
t3 where t3.a=t1.c)

Plan hash value: 1147310957

Id Operation Name Starts E-Rows A-Rows A-Time
0 SELECT STATEMENT               1 1 00:00:00.46 
1 SORT AGGREGATE                1 1 1 00:00:00.46 

*  2 FILTER                       1 440 00:00:00.46 
3 TABLE ACCESS FULL           T1 1 1000 1000 00:00:00.01 
4 SORT AGGREGATE   1000 1 1000 00:00:00.26 
5 TABLE ACCESS BY INDEX ROWID T3 1000 33 14670 00:00:00.21 

*  6 INDEX RANGE SCAN          I_T3 1000 33 14670 00:00:00.11 
7 SORT AGGREGATE              560 1 560 00:00:00.18 
8 TABLE ACCESS BY INDEX ROWID T2 560 25 14000 00:00:00.14 

*  9 INDEX RANGE SCAN          I_T2 560 25 14000 00:00:00.05 

Fig. A.5 Subquery caching (filter optimization) is deactivated

P.: “I don’t understand why there is a difference in the frequency with which

subqueries are executed.”

A.: “Unlike our practical example, the operator OR is between the subqueries

here. It therefore makes sense only to execute the second subquery for those

rows for which the first subquery does not provide any result.”

SQL> select count(*) from t1 where not exists (select /*+ no_unnest index(t3) */ * from t3 where 
t3.a=t1.c);

COUNT(*)
----------

560

P.: “Another small optimization!”

A.: “Now let’s examine the optimization filter ‘IS NOT NULL.’ To do this we

change the function DECODE, so that it returns null values (Fig. A.6).”

Appendix: Application of the Formal Principle for the Analysis of Performance. . . 105



select count(*) from t1 where decode(t1.b,1,-1,2,-2) = (select /*+
no_unnest index(t2) */ max(decode(t2.b,1,-1,2,-2)) from t2 where
t2.a=t1.a) or t1.c = (select /*+ no_unnest index(t3) */ max(t3.b) from
t3 where t3.a=t1.c)

Plan hash value: 1147310957

Id Operation Name Starts E-Rows A-Rows A-Time   
0 SELECT STATEMENT               1 1 00:00:00.20 
1 SORT AGGREGATE                1 1 1 00:00:00.20 

*  2 FILTER                       1 452 00:00:00.20 
3 TABLE ACCESS FULL           T1   1 1000 1000 00:00:00.01 
4 SORT AGGREGATE     1000 1 1000 00:00:00.18 
5 TABLE ACCESS BY INDEX ROWID T3   1000 33 14670 00:00:00.13 

*  6 INDEX RANGE SCAN          I_T3 1000 33 14670 00:00:00.05 
7 SORT AGGREGATE              24 1 24 00:00:00.01
8 TABLE ACCESS BY INDEX ROWID T2   24 25 600 00:00:00.01 

*  9 INDEX RANGE SCAN          I_T2 24 25 600 00:00:00.01 

Predicate Information (identified by operation id):
---------------------------------------------------

2 - filter(("T1"."C"= OR DECODE("T1"."B",1,(-1),2,(-2))=))
6 - access("T3"."A"=:B1)
9 - access("T2"."A"=:B1)

Fig. A.6 Optimization FILTER ‘IS NOT NULL’ for subquery

P.: “With the best will in the world, I don’t understand where the figure 24 comes

from.”

A.: “That’s very easy. Subquery caching is deactivated. Then Oracle only has to

use the optimization filter ‘IS NOT NULL.’ This means that the subquery

from the table T2 is executed for all rows for which the subquery from table

T3 does not return a result and for which the function decode(t1.b,1,-1,2,-2) is

‘not null’:”

SQL> select count(*) from t1 where not exists (select /*+ no_unnest index(t3) */ * from t3 where 
t3.a=t1.c) and decode(t1.b,1,-1,2,-2) is not null;

COUNT(*)
----------

24

P.: “I should have guessed that myself. I notice that although the filter ‘IS NOT

NULL’ is used, it does not appear in the predicates. This makes the analysis

more difficult.”

A.: “That’s right. The important thing for us is that Oracle always uses the

optimization filter ‘IS NOT NULL’ for subqueries even if the relevant tables

have no optimizer statistics (as in our test case). Now let’s consider the

optimization filter ‘IS NOT NULL’ for joins. To do this, we force Oracle to

transform the subqueries into inline views. In the test case, we use outlines so

that Oracle always generates the same execution plan (in this way, it is easier

to compare the test results). As the SQL text with the outlines is very big, only

the relevant execution plan is presented here (Fig. A.7).”

106 Appendix: Application of the Formal Principle for the Analysis of Performance. . .



Id Operation Name Starts E-Rows A-Rows A-Time
0 SELECT STATEMENT                 1 1 00:00:00.17 
1 SORT AGGREGATE                  1 1 1 00:00:00.17 
2 NESTED LOOPS                   1 1 8 00:00:00.17 
3 NESTED LOOPS                  1 6 440 00:00:00.02 
4 VIEW                         VW_SQ_2 1 30 30 00:00:00.01 
5 HASH GROUP BY               1 30 30 00:00:00.01 
6 TABLE ACCESS FULL          T3      1 1000 1000 00:00:00.01 

*  7 TABLE ACCESS FULL            T1      30 1 440 00:00:00.01 
*  8 VIEW PUSHED PREDICATE         VW_SQ_1 440 1 8 00:00:00.15 
*  9 FILTER                       440 440 00:00:00.15 
10 SORT AGGREGATE              440 1 440 00:00:00.14 
11 TABLE ACCESS BY INDEX ROWID T2      440 25 11000 00:00:00.11

* 12 INDEX RANGE SCAN          I_T2    440 25 11000 00:00:00.04 

Predicate Information (identified by operation id):
---------------------------------------------------

7 - filter(("T1"."C"="MAX(T3.B)" AND "ITEM_2"="T1"."C"))
8 - filter("MAX(DECODE(T2.B,1,-1,2,-2))"=DECODE("T1"."B",1,(-1),2,(-2)))
9 - filter(COUNT(*)>0)
12 - access("T2"."A"="T1"."A")

Fig. A.7 Optimization FILTER ‘IS NOT NULL’ for joins is not used

P.: “I don’t see any sign of this optimization.”

A.: “Exactly. This happens because Oracle initially assesses whether this optimi-

zation is worthwhile. It does this by using the column statistics

NUM_NULLS. According to [3], the optimization filter ‘IS NOT NULL’ is

used for nested loop join when the proportion of rows with null values in the

relevant column is more than 5%. That, by the way, is the answer to the

question you asked previously.”

P.: “Which column do you mean?”

A.: “In our case, that is the function DECODE(T1.B,1,(-1),2,(-2)). Let’s create

the extended statistics for this function:

If we execute our SQL statement again, we see that the optimization is

having an effect (Fig. A.8).”

SQL> col ext new_value ext 
SQL> select dbms_stats.create_extended_stats(null,'T1','(decode(t1.b,1,-1,2,-2))') ext from dual;

EXT
----------------------------------------------------------------
SYS_STU_GXO4ZZKOWJIU3MQ2G$$69D

SQL> exec dbms_stats.gather_table_stats(user,'T1', method_opt=>'for columns "&ext" size 254', 
no_invalidate=>false)

PL/SQL procedure successfully completed.

Appendix: Application of the Formal Principle for the Analysis of Performance. . . 107



Id Operation Name Starts E-Rows A-Rows A-Time
0 SELECT STATEMENT                 1 1 00:00:00.02
1 SORT AGGREGATE                  1 1 1 00:00:00.02
2 NESTED LOOPS                   1 1 8 00:00:00.02
3 NESTED LOOPS                  1 1 16 00:00:00.02
4 VIEW                         VW_SQ_2 1 30 30 00:00:00.01
5 HASH GROUP BY               1 30 30 00:00:00.01
6 TABLE ACCESS FULL          T3      1 1000 1000 00:00:00.01

*  7 TABLE ACCESS FULL            T1      30 1 16 00:00:00.01
*  8 VIEW PUSHED PREDICATE         VW_SQ_1 16 1 8 00:00:00.01
*  9 FILTER                       16 16 00:00:00.01
10 SORT AGGREGATE              16 1 16 00:00:00.01
11 TABLE ACCESS BY INDEX ROWID T2      16 25 400 00:00:00.01

* 12 INDEX RANGE SCAN          I_T2    16 25 400 00:00:00.01

Predicate Information (identified by operation id):
---------------------------------------------------

7 - filter((DECODE("B",1,(-1),2,(-2)) IS NOT NULL AND "T1"."C"="MAX(T3.B)" AND 
"ITEM_2"="T1"."C"))

8 - filter(DECODE("B",1,(-1),2,(-2))="MAX(DECODE(T2.B,1,-1,2,-2))")
9 - filter(COUNT(*)>0)

12 - access("T2"."A"="T1"."A")

Fig. A.8 Optimization FILTER ‘IS NOT NULL’ for joins is used with extended optimizer

statistics

P.: “I notice that Oracle generates the predicate ‘DECODE(B,1,(-1),2,(-2)) IS

NOT NULL’ for the filter in step 7. So in this way one can recognize the

optimization. It’s a pity that this is not the case for subqueries. Would these

extended statistics also have solved the performance problem after the Oracle

migration?”

A.: “Yes, they would have helped.”

108 Appendix: Application of the Formal Principle for the Analysis of Performance. . .



Literature

1. Nossov L (2014) Performance Tuning f€ur Oracle-Datenbanken. Methoden aus der Praxis f€ur die
Praxis. Springer Vieweg, Berlin

2. Lewis J (2006) Cost-based Oracle fundamentals. Apress

3. Anokhin A. Unique Oracle stories. Filter IS NOT NULL. https://alexanderanokhin.wordpress.

com/2013/11/16/filter-is-not-null/. Accessed 18 Jan 2015

4. Meade K (2014) Oracle SQL performance tuning and optimization. It’s all about the

Cardinalities. Edition: self edition

# Springer-Verlag Berlin Heidelberg 2016

L. Nossov et al., Formal SQL Tuning for Oracle Databases,
DOI 10.1007/978-3-662-50417-8

109

https://alexanderanokhin.wordpress.com/2013/11/16/filter-is-not-null/
https://alexanderanokhin.wordpress.com/2013/11/16/filter-is-not-null/

	Foreword by Watson
	Foreword by Gosejacob
	Foreword by Schwinn
	Preface
	Contents
	1: Introduction
	1.1 Aims and Target Groups
	1.2 An Overview of the Book
	1.3 Acknowledgments

	2: Some Thoughts on the Term ``SQL Tuning´´
	2.1 SQL Tuning: Definitions and Objectives
	2.2 SQL Tuners
	2.2.1 Oracle
	2.2.2 Developer
	2.2.3 Database Administrator


	3: Minimum Minimorum on the Subject of the ``Execution Plan´´
	3.1 Can You Read Execution Plans?
	3.2 Some Important Details
	3.2.1 Sections of the Execution Plan
	3.2.1.1 Plan
	3.2.1.2 Query Block Name/Object Alias
	3.2.1.3 Outline Data
	3.2.1.4 Peeked Binds
	3.2.1.5 Predicate Information
	3.2.1.6 Column Projection Information
	3.2.1.7 Remote SQL Information
	3.2.1.8 Note

	3.2.2 Optimizer Estimations and Costs
	3.2.3 Runtime Statistics

	3.3 Summary

	4: Approaches to Formal SQL Tuning
	4.1 The Objective: Effective SQL Tuning
	4.2 The Principle: Elimination of ``Brakes´´ in the Execution Plan
	4.3 The Method: Analysis of Runtime Statistics in the Execution Plan
	4.4 The Main Criterion: The Runtime Statistic ``Cardinality´´
	4.5 The Procedure: An Iterative Process
	4.6 The Guideline: Tuning Without Changing the SQL Statement

	5: Bottlenecks in the Execution Plan
	5.1 ``Local´´ Problems in the Execution Plan
	5.1.1 A Missing Index
	5.1.2 A Nonselective Index
	5.1.3 An Index with a Large Clustering Factor
	5.1.4 A Sparse Index
	5.1.5 Nested Loop Join Instead of Hash Join and Vice Versa

	5.2 ``Global´´ Problems in the Execution Plan
	5.2.1 Formal Rules for Changing the Table Order in a Join
	5.2.2 Joins with a Low Number of Hits
	5.2.3 Joins with a Large Hit Quantity

	5.3 Summary

	6: Procedure of Formal SQL Tuning
	7: Practical Experience with Formal SQL Tuning
	7.1 Hanno´s Experience
	7.1.1 Statistics on Problem Categories
	7.1.2 A Small Synthetic Test Case in Respect of a Nonselective Index
	7.1.3 Practical Example
	7.1.3.1 The First Improvement
	7.1.3.2 The Second Improvement


	7.2 Victor´s Experience
	7.2.1 The First Practical Example
	7.2.2 The Second Practical Example


	8: Closing Remarks
	Appendix: Application of the Formal Principle for the Analysis of Performance Problems After an Oracle Migration
	Literature

