
M A N N I N G

Stephen Blackheath
Anthony Jones

FOREWORD BY Heinrich Apfelmus

www.allitebooks.com

http://www.allitebooks.org

Functional Reactive Programming
www.allitebooks.com

http://www.allitebooks.org

ii
www.allitebooks.com

http://www.allitebooks.org

Functional Reactive
Programming

STEPHEN BLACKHEATH
ANTHONY JONES

M A N N I N G
SHELTER ISLAND
www.allitebooks.com

http://www.allitebooks.org

iv
For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without elemental chlorine.

Manning Publications Co. Development editor: Jennifer Stout
20 Baldwin Road Technical development editor: Dennis Sellinger
PO Box 761 Review editor: Aleksandar Dragosavljevic
Shelter Island, NY 11964 Project editor: Tiffany Taylor

Copyeditor: Tiffany Taylor
Proofreader: Melody Dolab

Typesetter: Marija Tudor
Cover designer: Marija Tudor

ISBN: 9781633430105
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16
www.allitebooks.com

www.manning.com
http://www.allitebooks.org

brief contents
1 ■ Stop listening! 1
2 ■ Core FRP 26
3 ■ Some everyday widget stuff 60
4 ■ Writing a real application 65
5 ■ New concepts 94
6 ■ FRP on the web 111
7 ■ Switch 131
8 ■ Operational primitives 169
9 ■ Continuous time 186

10 ■ Battle of the paradigms 201
11 ■ Programming in the real world 215
12 ■ Helpers and patterns 232
13 ■ Refactoring 262
14 ■ Adding FRP to existing projects 273
15 ■ Future directions 283

v

www.allitebooks.com

http://www.allitebooks.org

BRIEF CONTENTSvi

www.allitebooks.com

http://www.allitebooks.org

contents
foreword xv
preface xvii
acknowledgments xviii
about this book xix
about the cover xxii

1 Stop listening! 1
1.1 Project, meet complexity wall 2
1.2 What is functional reactive programming? 3

A stricter definition 3 ■ Introducing Sodium 4

1.3 Where does FRP fit in? The lay of the land 4
1.4 Interactive applications: what are events? 5
1.5 State machines are hard to reason about 6
1.6 Interactive applications without the bugs 7
1.7 Listeners are a mainstay of event handling, but … 7
1.8 Banishing the six plagues of listeners 8
1.9 Why not just fix listeners? 9

1.10 “Have you tried restarting it?” or why state is problematic 9
1.11 The benefit of FRP: dealing with complexity 10
1.12 How does FRP work? 11

Life cycle of an FRP program 13

1.13 Paradigm shift 14
Paradigm 14 ■ Paradigm shift 15

1.14 Thinking in terms of dependency 15
vii

www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii
1.15 Thinking declaratively: what the program is, not what it
does 17

1.16 Conceptual vs. operational understanding of FRP 19
Opening your mind to FRP 20 ■ What’s really going on when
the code runs? 21

1.17 Applying functional programming to event-based code 22
1.18 Summary 25

2 Core FRP 26
2.1 The Stream type: a stream of events 27
2.2 The map primitive: transforming a value 30

Transforming a stream 31

2.3 The components of an FRP system 32
Combining primitives 32 ■ Separating I/O from logic 33

2.4 Referential transparency required 33
2.5 The Cell type: a value that changes over time 34

Why Stream and Cell? 36 ■ The constant primitive: a cell with
a constant value 37 ■ Mapping cells 37

2.6 The merge primitive: merging streams 38
Simultaneous events 39 ■ Collection variants of merge 42
How does merge do its job? 42

2.7 The hold primitive: keeping state in a cell 43
2.8 The snapshot primitive: capturing the value of a cell 45
2.9 Looping hold and snapshot to create an accumulator 47

Forward references 47 ■ Constructing FRP in an explicit
transaction 48 ■ Accumulator code 49
Does snapshot see the new value or the old value? 50

2.10 The filter primitive: propagating an event only sometimes 52
2.11 The lift primitive: combining cells 53
2.12 The never primitive: a stream that never fires 55
2.13 Referential transparency dos and don’ts 55
2.14 FRP cheat sheet 57
2.15 Summary 58

3 Some everyday widget stuff 60
3.1 Spinner as a standalone SWidget 60
3.2 Form validation 62
3.3 Summary 64
www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix
4 Writing a real application 65
4.1 The petrol pump example 66
4.2 Running the petrol pump example 68
4.3 Code, meet outside world 68
4.4 The life cycle of a petrol pump fill 73

Code for LifeCycle 75

4.5 Is this really better? 77
4.6 Counting liters delivered 78
4.7 Showing dollars’ of fuel delivered 79
4.8 Communicating with the point-of-sale system 82
4.9 Modularity illustrated: a keypad module 85

4.10 Notes about modularity 87
The form of a module 87 ■ Tuples vs. classes 88
Explicit wiring 88 ■ When inputs and outputs proliferate 88
Some bugs are solved, some aren’t 88 ■ Testability 89

4.11 Adding a preset dollar amount 89
4.12 What have you achieved? 92
4.13 Summary 93

5 New concepts 94
5.1 In search of the mythical von Neumann machine 94

Why so slow? The cache 96 ■ The madness of bus
optimization 98 ■ How does this relate to FRP? 101

5.2 Compositionality 101
When complexity gets out of control 101 ■ Reductionism and
engineering 102 ■ Compositionality is no longer optional 104

5.3 Lack of compositionality illustrated 104
Why the OO version lacks compositionality 105

5.4 Compositionality: eliminating whole classes of bugs 106
5.5 Don’t pull out the rug: use immutable values 107

Immutable data structures 107

5.6 Clarity of intent 108
5.7 The consequences of cheap abstraction 109
5.8 Summary 109

6 FRP on the web 111
6.1 RxJS 112
www.allitebooks.com

http://www.allitebooks.org

CONTENTSx
6.2 Observable 112
Hot and cold observables 113 ■ How to maintain state 114
A stateful accumulator with scan() 114 ■ The most recent
value of an observable with withLatestFrom() 115

6.3 Keeping state in RxJS, Kefir.js, and Flapjax 116
startWith() as shorthand for BehaviorSubject 119 ■ The same
again with Kefir.js 119 ■ And now…Flapjax 120

6.4 The latest of two observables with combineLatest 121
Glitches in combineLatest 122 ■ merge isn’t compositional 124

6.5 Creating your own hot observable 124
Don’t use this to implement logic 125

6.6 Example: autocomplete the FRP way 125
6.7 RxJS/Sodium cheat sheet 129
6.8 Static typing preferred 130
6.9 Summary 130

7 Switch 131
7.1 The sample primitive: getting a cell’s value 131
7.2 switch 132

The concept of switch: a TV remote control 132

7.3 switch use case #1: zombies 133
The end of the world 134 ■ A simple human 135
Using sample in map or snapshot 136 ■ A game loop 137
An enhanced obstacle-avoiding human 139 ■ A flesh-eating
zombie 141 ■ Putting together the two characters 143

7.4 Transforming the game character with switch 145
If a tree falls…switch and memory management 146

7.5 switch use case #2: creation and destruction of game
characters 147
Not quite referentially transparent 153 ■ Another “what are we
doing this for?” moment 154 ■ An exercise for you 156

7.6 The efficiency of big merges 156
Efficiency of this approach 157

7.7 Game characters and efficiency in RxJS 157
7.8 Switch use case #3: removing invalid states 163

And now, improved with flatMapLatest 165

7.9 Switch use case #4: switching between screens 166
7.10 Summary 168

CONTENTS xi
8 Operational primitives 169
8.1 Interfacing FRP code with the rest of your program 170

Sending and listening to streams 170 ■ Multiple send()s in a
single transaction 171 ■ Sending and listening to cells 172
Threading model and callback requirements 173

8.2 Laziness solves loop craziness 174
8.3 Transactions 174

Constructing FRP logic under an explicit transaction 176

8.4 Getting a stream from a cell with updates and value 177
Introducing updates and value 178

8.5 Spawning new transactional contexts with the split
primitive 180
Deferring a single event to a new transaction 182
Ending up in the same transaction 183

8.6 Scalable addressing 183
8.7 Summary 185

9 Continuous time 186
9.1 Rasterizing time 186
9.2 Position as a function of time 187
9.3 The animation loop 191
9.4 Measuring time 193

Newtonian physics primer 195 ■ Signals for quadratic
motion 196 ■ A natural representation of a bouncing
ball 198

9.5 Summary 200

10 Battle of the paradigms 201
10.1 Classic state machine vs. FRP vs. actor model 201

Classic state machine 203 ■ FRP 204
Actor model 205 ■ And the winner is… 207

10.2 Let’s add a feature: Shift key gives axis lock 208

10.3 Improvement: Shift key updates the document 211
Changing this in the classic paradigm 211 ■ Changing this in
FRP 212 ■ Changing this in the actor model 213
How are the different paradigms doing? 213 ■ State machines
with long sequences 214

10.4 Summary 214

CONTENTSxii
11 Programming in the real world 215
11.1 Dealing with I/O 216

Error-handling in FRP 217 ■ Executing an I/O action 218
Putting the application together 219

11.2 Promises/Futures 220
A map viewer example using Promise 223 ■ Initiating I/O with
the spark idiom 226

11.3 Distributed processing 228
Sacrificing consistency 228 ■ A stream that goes over a network
connection 229

11.4 Unit testing 229
Unit-testing FRP code 229 ■ We don’t recommend test-driven
development (TDD) 230 ■ FRP is type-driven
development 230 ■ FRP code is safe to refactor 231
FRP code is inherently testable 231 ■ Testing your logic 231

11.5 Summary 231

12 Helpers and patterns 232
12.1 Calming: removing duplicate values 233
12.2 Pausing a game 235
12.3 Junction or client registry 236
12.4 Writable remote values 239
12.5 Persistence 247
12.6 Unique ID generation 248
12.7 An FRP-based GUI system 249

Drawable 249 ■ Fridget 250 ■ Your first fridget:
FrButton 251 ■ Bringing a Fridget to life with FrView 253
Layout 255 ■ A form with text fields 257

12.8 Summary 261

13 Refactoring 262
13.1 To refactor or not to refactor? 262
13.2 A drag-and-drop example 263

Coding it the traditional way 264 ■ The FRP way: diagrams to
code 266

13.3 Adding a feature: drawing the floating element 267
13.4 Fixing a bug: clicks are being treated as drags 268
13.5 FRP: refactoring is a breeze 269
13.6 Summary 272

CONTENTS xiii
14 Adding FRP to existing projects 273
14.1 Where can FRP help? 274
14.2 Changing to immutable data structures 274
14.3 Stream as a drop-in replacement for callbacks 275

Caveat: you can’t send() inside a listener 277 ■ Choosing the
right chunk size 278

14.4 Program initialization with one big transaction 279
14.5 Module extensibility with junction/client registry 280
14.6 Cells can replace mutable variables 281
14.7 Summary 281

15 Future directions 283
15.1 Performance 283
15.2 Precompiled FRP for performance or embedded

systems 284
15.3 Parallelism 284
15.4 Syntax improvements 284

Auto-lifting 285 ■ Implicit forward references 285
Infix operators 285 ■ Type inference 285

15.5 Standardization and code reuse 286
Code reuse and FRP abstractions 286 ■ FRP engine
performance 286 ■ Common syntax between languages 287

15.6 FRP database applications 287
15.7 Visualization and debugging tools 287
15.8 Visual programming 287
15.9 Refactoring tools 287

15.10 Summary 287

appendix A Sodium API 289
appendix B The six plagues of event handling 301
appendix C Comparison of FRP systems 309
appendix D A section for managers 312
appendix E Denotational semantics of Sodium 315

index 329

CONTENTSxiv

foreword
In 1968, in a presentation that would later become known as the “the mother of all
demos,” computer scientist Douglas Engelbart and his team started the personal com-
puter revolution by demonstrating a system that featured text editing on a screen, his
newly invented mouse, mixing of text and graphics, outline views, hypertext links,
screen-sharing, and even videoconferencing. At a time when computers were room-
sized machines conceived to outperform humans at computational tasks, he instead
proposed that they help the human perform intellectual tasks, “augmenting” human
intelligence by becoming interactive assistants in everyone’s daily work. The graphical
user interface was born.

 But in addition to its groundbreaking interactivity, Engelbart’s system is also inter-
esting for the way it was built: it was written in several different programming lan-
guages that were specifically designed for it and adapted as the system changed.
Building a truly innovative system also required building appropriate languages to
program it. The next important milestone inspired by Engelbart’s vision was the
Xerox Alto system in 1973. In addition to introducing the desktop metaphor and
other user interface innovations, it also featured the first object-oriented language,
Smalltalk.

 Today, building graphical user interfaces and using object-oriented languages have
become mainstream. Unfortunately, though, programming user interfaces is still sur-
prisingly difficult. Code written in the currently predominant style, event-driven pro-
gramming and the observer pattern, has an uncanny tendency to quickly evolve into
an unmaintainable mess, commonly referred to as spaghetti code. Is there a better way?

 I think it’s time for another step in the evolution of user interfaces and program-
ming languages. In recent years, the ideas of functional programming and a (separate)
programming style called functional reactive programming (FRP) have shown great prom-
ise in making it easier to develop any kind of interactive programs.
xv

FOREWORDxvi
 This text is one of the first comprehensive introductions to functional reactive pro-
gramming in book form. With great enthusiasm, Stephen Blackheath and Anthony
Jones teach you the basic concepts of FRP, explain a large example in detail, and dis-
cuss various patterns that commonly occur in practice. To show that FRP does indeed
make things simpler, the pair of brothers also presents an illuminating case study
where they solve one problem in three different programming styles and compare the
results. Of the three approaches—event-based programming, actors, and functional
reactive programming—the latter compares most favorably.

 Functional reactive programming is a style that is usually supported by a library for
a particular programming language. The authors have written an FRP library called
Sodium that is available for several languages, including Java, and this book profits
from their experience in detail. For the sake of concreteness, they use it in this book
as well. Of course, the concepts apply more generally, and the authors also present a
short guide to many other FRP libraries.

 Not all programming languages are created equal. As the name suggests, func-
tional reactive programming derives much of its expressive power from functional
programming. In this book, Stephen and Anthony don’t assume any prior knowledge
of functional programming; instead, they gently introduce you to the necessary con-
cepts as needed. But this heritage also means that FRP libraries can only exist in lan-
guages that support them. Java is a popular example, and the authors have chosen it
as the main vehicle for explaining FRP. Still, Java is mainly an imperative language,
and I think the mismatch is showing in some places. That is why personally, I prefer
the purely functional language Haskell for my FRP work. But I think the authors made
an excellent choice by picking a more popular and widely used language for this book
and not shying away from the difficulties of dealing with the imperative aspects of
Java.

 Not all FRP libraries are created equal, either. As already mentioned, this book
focuses on the Sodium library. But for the case where your programming environ-
ment is limited, the authors also discuss libraries like RxJS, which implement a style
called reactive programming. This is very similar to functional reactive programming,
but the authors rightfully note that it lacks some benefits and guarantees, such as a
deterministic merge primitive. I wholeheartedly recommend the Sodium library as
designed by the authors.

 The field of functional reactive programming is still very young, and you may find
that you’ll need to think in new ways to express your code in this style. This book gives
you the necessary tools and foundation for doing that.

 HEINRICH APFELMUS

 OPEN SOURCE DEVELOPER

 AUTHOR OF THE FRP LIBRARY REACTIVE-BANANA

preface
This book was born of frustration. We were each involved in a large project with a lot
of event-based logic. Petty problems regularly turned into long days of debugging.

 Anthony joined a team working on a complex configuration GUI full of plumbing
that was replicated over and over. He decided to tidy this up by shifting all the logic to
a single abstraction called PublishedScalar. This was a revolutionary change.

 Stephen was working on embedded development for vehicle telematics, and the
challenges kept coming. He started fantasizing about a career change to truck driving
but instead found new approaches in functional programming.

 A lot of leading-edge work goes on quietly in the Haskell programming language
community. Stephen found a gem called functional reactive programming. He later
worked with Ryan Trinkle on a video game project; they decided to use FRP but
weren’t happy with any of the existing implementations. Using FRP is great, but imple-
menting an FRP system turned out to be more challenging than expected.

 Stephen’s fifth attempt at FRP became the Sodium project, and Ryan went on to
develop Reflex. Since that time, Stephen has been using FRP every day on the telemat-
ics project, now in its tenth year.

 Stephen and Anthony regularly compared notes and strategized about sharing this
great discovery with the world. Manning picked up the signal, and this book was born.
xvii

acknowledgments
We’d like to thank the following people:

■ Our wives and children, for their forbearance.
■ The first and second waves: the FRP pioneers and those who are making FRP

practical.
■ Our many reviewers and critics, for making this book better, and everyone who

has raised bugs and asked technical questions, including Danae Aguilar, Jim
Andrew, Mark Butler, Alessandro Campeis, Ron Cranston, Rafael Freire, Bruce
Hernandez, Unnikrishnan Kumar, Yuri Kushch, Michael Lund, Sergio Martinez,
Bhakti Mehta, Orlando Méndez, Wil Moore III, Giovanni Morana, Jean-François
Morin, Chris Pearce, Thomas Peklak, Patrick Regan, Paulo Rios, Bruno Son-
nino, William E. Wheeler, Henry Widd, and Arthur Zubarev. Thank you!

■ Adam Buczynski, for JavaScript assistance.
■ The many Manning staff who do an amazing job of taking people who know tech-

nical stuff and somehow transmogrifying them into authors: publisher Marjan
Bace and everyone on the editorial and production teams, including Michael
Stephens, Jennifer Stout, Janet Vail, Tiffany Taylor, Melody Dolab, and many oth-
ers who worked behind the scenes. There’s a reason their books are so good.

■ Duncan Hill, for the beautiful illustrations: http://duncanhill.nz/.
xviii

http://duncanhill.nz/

about this book
Functional programming (FP) holds real solutions to today’s complex software needs,
especially the challenges of parallelism. It’s catching on, but there are barriers to its
adoption. FRP is a subset of FP that doesn’t require you to learn a new language. This
makes FRP an ideal gateway drug to functional programming. FRP solves a specific
problem now, yet it gives you grounding in ideas that have wide application.

 Lambda expressions have now been added to every language. The only thing
standing in the way of wide adoption of FRP is gone. FRP is essentially an embedded
logic language, so code written in it looks basically the same in any language. It turns
out that Java has especially clear FRP syntax, and this was why we chose it as the pri-
mary vehicle in this book, but the language really doesn’t matter.

 There’s a need for FRP, the languages are ready, and functional programming is in
vogue. The time is right for FRP to take over a small corner of the world.

Roadmap

Chapter 1, “Stop listening!” introduces the what and why of FRP and finishes with a
simple example.

 Chapter 2, “Core FRP,” covers all the basics of FRP and includes a minimal example
for each element except the switch and sample primitives (covered in chapter 7) and
operational primitives (chapter 8). In chapter 3, “Some everyday widget stuff,” the
examples become more practical.

 Chapter 4, “Writing a real application,” shows the practicalities of writing a real-
world example—the logic for a petrol pump—entirely in FRP.

 At this point, you may be wondering why we’re doing things in this strange way.
Chapter 5, “New concepts,” covers the theoretical background that justifies FRP’s radi-
cal departure from the usual way of doing things.

 Chapter 6, “FRP on the web,” talks about JavaScript FRP systems and can be read
any time.
xix

ABOUT THIS BOOKxx
 As presented so far, FRP code has a fixed structure. Chapter 7, “Switch,” introduces
the switch primitive that enables the all-important capability of making runtime
changes to the logic structure.

 Chapter 8, “Operational primitives,” deals with interfacing FRP to the rest of your
program.

 Chapter 9, “Continuous time,” describes an amazing capability of FRP: modeling
your system with continuously varying values instead of having values change in dis-
crete steps.

 FRP is better for some tasks than others. Chapter 10, “Battle of the paradigms,”
compares the strengths and weaknesses of FRP against classic state machines and the
actor model to help you decide which tool to use for which job.

 Chapter 11, “Programming in the real world,” covers different ways of modeling
I/O in FRP programs.

 Chapter 12, “Helpers and patterns,” presents an assortment of interesting prob-
lems that come up and how to solve them with FRP.

 Chapter 13, “Refactoring,” explains why FRP is so easy to refactor by comparing an
example with the equivalent object-oriented code.

 Chapter 14, “Adding FRP to existing projects,” recommends some practices for
step-by-step conversion of non-FRP code to FRP.

 Chapter 15, “Future directions,” covers areas for potential development of FRP.

Who should read this book

This book is for programmers familiar with object-oriented programming. No prior
knowledge of functional programming is needed. A familiarity with graphical user
interface (GUI) programming is useful but not required.

Code conventions

This book provides copious examples. Source code in listings and code terms in text
are in a fixed-width font like this to separate them from ordinary text. In some
places, we’ve added line breaks and reworked indentation to accommodate the avail-
able page space in the book. When even this was not enough, listings include line-
continuation markers. Additionally, comments in the source code have often been
removed from the listings when the code is described in the text. Code annotations
accompany some of the source code listings, highlighting important concepts.

Source code downloads

All the examples can be found on the publisher’s website at www.manning.com/
books/functional-reactive-programming. You can also find them in the book/
directory of the Sodium project at https://github.com/SodiumFRP/, where you can
download them with this command:

git clone https://github.com/SodiumFRP/sodium

www.manning.com/books/functional-reactive-programming
www.manning.com/books/functional-reactive-programming
https://github.com/SodiumFRP/
https://github.com/SodiumFRP/y
https://github.com/SodiumFRP/y
https://github.com/SodiumFRP/y

ABOUT THIS BOOK xxi
To run the Java examples, you’ll need to install the Java Development Kit (JDK) ver-
sion 8 or higher and either the maven or ant build tool. Windows users may find maven
easier:

■ https://maven.apache.org/
■ https://ant.apache.org/

About the authors

STEPHEN BLACKHEATH lives near Palmerston North, New Zealand. He has done a lot
of event-based commercial programming, got into functional programming around
2007, and is the founder of the open source Sodium FRP system. He likes to play Go.

ANTHONY JONES lives in Auckland, New Zealand. He has spent half a decade refactor-
ing a Java-based configuration GUI to a FRP-based framework and is a contributor to
the Sodium project. He likes riding his bicycle.

Author Online

Purchase of Functional Reactive Programming includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the lead author and from other users. To
access the forum and subscribe to it, point your web browser to www.manning.com/
books/functional-reactive-programming. This page provides information on how to
get on the forum once you are registered, what kind of help is available, and the rules
of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the author can take place.
It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the Author Online remains voluntary (and unpaid). We
suggest you try asking the author some challenging questions lest his interest stray!
The Author Online forum and the archives of previous discussions will be accessible
from the publisher’s website as long as the book is in print.

www.manning.com/books/functional-reactive-programming
www.manning.com/books/functional-reactive-programming
https://maven.apache.org/
https://ant.apache.org/

about the cover
The caption for the illustration on the cover of Functional Reactive Programming is
“Turban-Bearer to the Grand Signior.” The illustration is taken from a collection of
costumes of the Ottoman Empire published on January 1, 1802, by William Miller of
Old Bond Street, London. The title page is missing from the collection, and we have
been unable to track it down to date. The book’s table of contents identifies the fig-
ures in both English and French, and each illustration bears the names of two artists
who worked on it, both of whom would no doubt be surprised to find their art gracing
the front cover of a computer programming book…200 years later.

 The collection was purchased by a Manning editor at an antiquarian flea market in
the “Garage” on West 26th Street in Manhattan. The seller was an American based in
Ankara, Turkey, and the transaction took place just as he was packing up his stand for
the day. The Manning editor didn’t have on his person the substantial amount of cash
that was required for the purchase, and a credit card and check were both politely
turned down. With the seller flying back to Ankara that evening, the situation was get-
ting hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller proposed that the
money be transferred to him by wire, and the editor walked out with the bank infor-
mation on a piece of paper and the portfolio of images under his arm. Needless to say,
we transferred the funds the next day, and we remain grateful and impressed by this
unknown person’s trust in one of us. It recalls something that might have happened a
long time ago. We at Manning celebrate the inventiveness, the initiative, and, yes, the
fun of the computer business with book covers based on the rich diversity of regional
life of two centuries ago‚ brought back to life by the pictures from this collection.
xxii

Stop listening!
Welcome to our book! We love functional reactive programming (FRP). Many people
like the idea too, yet they aren’t entirely clear what FRP is and what it will do for
them. The short answer: it comes in the form of a simple library in a standard pro-
gramming language, and it replaces listeners (also known as callbacks) in the widely
used observer pattern, making your code cleaner, clearer, more robust, and more
maintainable—in a word, simpler.

 It’s more than this: FRP is a very different way of doing things. It will improve
your code and transform your thinking for the better. Yet it’s surprisingly compati-
ble with the usual ways of writing code, so it’s easy to factor into existing projects in
stages. This book is about the concepts of FRP as they apply to a range of FRP sys-
tems and programming languages.

This chapter covers
■ What FRP is
■ What events are, and how they cause trouble
■ What FRP is for: the problem we’re trying to solve
■ The benefits of FRP
■ How an FRP system works
■ A different way of thinking that underlies FRP
1

2 CHAPTER 1 Stop listening!
 FRP is based on ideas from functional programming, but this book doesn’t assume
any prior knowledge of functional programming. Chapter 1 will lay down some
underlying concepts, and in chapter 2 we’ll get into the coding. So stop listening,
and start reacting!

1.1 Project, meet complexity wall
It seemed to be going so well. The features weren’t all there yet, but development was
swift. The boss was happy, the customers were impressed, the investors were optimis-
tic. The future was bright.

 It came out of nowhere … Software quality crumbled. The speed of development
went from treacle to molasses. Before long, there were unhappy customers and late
nights. What happened?

 Sooner or later, many big projects hit the complexity wall. The complexities in the
program that seemed acceptable compound exponentially: At first you hardly notice,
and then—BAM! It hits broadside. The project will then typically go one of four ways:

■ It’s shelved.
■ It’s rewritten from scratch, and a million dollars later, it hits the same wall again.
■ The company staffs up. As the team expands, its productivity shambles off into

the realm of the eternal quagmire. (Often the company has been acquired
around this time.)

■ It undergoes major refactoring, leading eventually to maintainable code.

Refactoring is the only way forward. It’s your primary tool to save a project that has hit
the wall, but it’s best used earlier, as part of a development methodology, to prevent
disaster before it happens.

 But this book isn’t about refactoring. It’s about functional reactive programming
(FRP), a programming style that works well with refactoring because it can prevent or
repair out-of-control complexity. FRP isn’t a methodology, and—apologies if you
bought this book under false pretenses—it won’t solve all of your problems. FRP is a
specific programming technique to improve your code in an area that just happens to
be a common source of complexity (and therefore bugs): event propagation.

Simple things taking too long

I joined a team that was developing a Java-based configuration tool for an embedded
system. The software was difficult to modify to the point where a request for adding
a check box to one of the screens was estimated as a two-week job.

This was caused by having to plumb the Boolean value through layers of interfaces
and abstraction. To solve this, we put together what we’d later discover was a basic
FRP system. Adding a check box was reduced to a one-line change.

We learned that every piece of logic, every listener, and every edge case you need to
write code for is a potential source of bugs.

3What is functional reactive programming?
1.2 What is functional reactive programming?
FRP can be viewed from different angles:

■ It’s a replacement for the widely used observer pattern, also known as listeners or
callbacks.

■ It’s a composable, modular way to code event-driven logic.
■ It’s a different way of thinking: the program is expressed as a reaction to its

inputs, or as a flow of data.
■ It brings order to the management of program state.
■ It’s something fundamental: we think that anyone who tries to solve the prob-

lems in the observer pattern will eventually invent FRP.
■ It’s normally implemented as a lightweight software library in a standard pro-

gramming language.
■ It can be seen as a complete embedded language for stateful logic.

If you’re familiar with the idea of a domain-specific language (DSL), then you can
understand FRP as a minimal complete DSL for stateful logic. Aside from the I/O
parts, an arbitrarily complex video game (for example) can be written completely in
FRP. That’s how powerful and expressive it is. Yet it isn’t all-or-nothing—FRP can be
easily introduced into an existing project to any extent you like.

1.2.1 A stricter definition

Conal Elliott is one of the inventors of FRP, and this book is about FRP by his defini-
tion. We’ll call this true FRP as a shorthand. What is and isn’t FRP? Here’s part of
Elliott’s reply to a Stack Overflow post, “Specification for a Functional Reactive Pro-
gramming language” (http://mng.bz/c42s):

I’m glad you’re starting by asking about a specification rather than implementation
first. There are a lot of ideas floating around about what FRP is. For me it’s always been
two things: (a) denotative and (b) temporally continuous. Many folks drop both of these
properties and identify FRP with various implementation notions, all of which are
beside the point in my perspective.

By “denotative,” I mean founded on a precise, simple, implementation-independent,
compositional semantics that exactly specifies the meaning of each type and building
block. The compositional nature of the semantics then determines the meaning of all
type-correct combinations of the building blocks.

A true FRP system has to be specified using denotational semantics.

DEFINITION Denotational semantics is a mathematical expression of the formal
meaning of a programming language. For an FRP system, it provides both a
formal specification of the system and a proof that the important property of
compositionality holds for all building blocks in all cases.

http://mng.bz/c42s

4 CHAPTER 1 Stop listening!
Compositionality is a mathematically strong form of the concept of composability that is
often recommended in software design. We’ll describe it in detail in chapter 5.

 This book emphasizes the practice of FRP as expressed through FRP systems you
can use right away. Some of the systems we’ll cover aren’t true FRP. As we go, we’ll
point out what’s specifically lacking and why it’s so important that an FRP system
should be based on denotational semantics. We’ll cover continuous time in chapter 9.

1.2.2 Introducing Sodium

The primary vehicle for FRP in this book is the authors’ BSD-licensed Sodium library,
which you can find at https://github.com/SodiumFRP. It’s a system with a denota-
tional semantics that we give in appendix E. It’s a practical system that has passed
through the crucible of serious commercial use by the authors.

 We’re using Sodium because it’s a practically useful, simple, true FRP system. At the
time of writing, there aren’t many systems like this available in nonfunctional lan-
guages. There’s minimal variation between FRP systems, so the lessons learned from
Sodium are applicable to all systems. To aid in understanding, we’ll use Sodium as a
common reference point when discussing other systems. This book is about FRP, and
Sodium is the best means to that end available to us.

 Like anything, Sodium is the product of design decisions. It isn’t perfect, and we
don’t wish to promote its use over any other system. We intend Sodium to be four things:

■ A production-ready library you can use in commercial and non-commercial
software across a range of programming languages

■ A vehicle to promote the true definition of FRP
■ A reference and benchmark for future innovation
■ A solid learning platform, due to its minimalist design philosophy

1.3 Where does FRP fit in? The lay of the land

NOTE This book assumes knowledge of general programming, but not func-
tional programming. Further, to use FRP, you only need a subset of the concepts
from functional programming, and we’ll explain what you need to know
along the way. FRP gives you many of the benefits of functional programming
with a shorter learning curve, and you can use it in your existing language.

It may sound oversimplified, but it turns out that
FRP is the intersection of functional programming and
reactive programming—see figure 1.1. Here’s what
these technologies are:

■ Functional programming—A style or paradigm
of programming based on functions, in the
mathematical sense of the word. It deliber-
ately avoids shared mutable state, so it
implies the use of immutable data structures,
and it emphasizes compositionality.

FP FRP RP

Figure 1.1 FRP is a subset of both
functional and reactive programming

https://github.com/SodiumFRP

5Interactive applications: what are events?
Compositionality turns out to be a powerful idea, as we’ll explain. It’s the rea-
son why FRP can deal with complexity so effectively.

■ Reactive programming—A broad term meaning that a program is 1) event-based,
2) acts in response to input, and 3) is viewed as a flow of data, instead of the tra-
ditional flow of control. It doesn’t dictate any specific method of achieving
these aims. Reactive programming gives looser coupling between program com-
ponents, so the code is more modular.

■ Functional reactive programming—A specific method of reactive programming
that enforces the rules of functional programming, particularly the property of
compositionality.

Typically, systems described as reactive programming emphasize distributed processing,
whereas FRP is more fine-grained and starts with strong consistency. Consistency must
be relaxed to achieve scalability in a distributed system. (We explain why in section
11.3.) FRP and reactive programming take different approaches to this question. FRP
can be useful for distributed processing, but it isn’t designed specifically for it.

 The Akka system is classified as reactive programming. It’s designed for distributed
processing and is largely based on the actor model. (We’ll contrast FRP against actors in
chapter 10.)

 Microsoft’s Reactive Extensions (Rx) isn’t true FRP at the time of writing. It sits some-
where between Akka and FRP. There’s a difference in design goals between Rx and
FRP. Rx is mostly concerned with chaining event handlers, and it gives you many
options for how you do it. FRP controls what you do more tightly and gives you strong
guarantees in return. Most of what you’ll learn in this book can be applied to Rx. We’ll
cover the FRP-like parts of Rx in chapter 6.

1.4 Interactive applications: what are events?
Most applications are architected around one of two programming models, or a mix
of the two:

■ Threads
■ Events

They’re both aimed at managing state changes in response to input, but they achieve
it in different ways. Which one to choose depends mainly on the nature of the prob-
lem you’re trying to solve:

■ Threads model state transitions as a control flow. They tend to be a good fit for
I/O or for any situation where the state transitions fall into a clearly defined
sequence. We put actors and generators in this category, too.

■ Events are discrete, asynchronous messages that are propagated around the pro-
gram. They’re a suitable model where a sequence is less obvious, especially
where the interactions between components are more complex. Typical appli-
cations include graphical user interfaces (GUIs) and video games.

People have debated which model is the best over the years. We don’t think one is bet-
ter than the other; rather, we consider each good for its proper purpose. When a

6 CHAPTER 1 Stop listening!
thread is best, you should use a thread. But this book is about the second program-
ming model: events. Often they’re the best choice, and when they are, this book will
teach you how to stay out of trouble.

1.5 State machines are hard to reason about
The term state machine refers to any system that works in the following way:

1 An input event comes into the system.
2 The program logic makes decisions based on the input event and the current

program state.
3 The program logic changes the program state.
4 The program logic may also produce output.

We’ve drawn this in figure 1.2. The arrows depict the flow of data.

We normally use the term state machine to describe programs or, more commonly, parts
of programs, that directly reflect the structure just described. In fact, any program that
does anything useful is functionally equivalent to a state machine because it’s possible
to rewrite any program as a state machine and have it function the same way.

 We could say that all programs are fundamentally state machines. But code written
in a traditional state-machine style tends to be unreadable and brittle. (Any embed-
ded C programmer will attest to this.) It also tends to be extremely efficient, which is
the usual excuse for using this style. The job of the programmer could be seen as find-
ing ways to organize state machines so they’re maintainable. Of course, a programmer
must express the program so that a computer can run it, but their responsibility
doesn’t end there. It’s not possible to keep all the code in your head at once, unless
the code is small or your head is especially large, so a programmer’s main task is to
structure the code so as to make the program easy to modify. Or, we can say that a pro-
grammer’s primary focus is managing complexity.

 We argue that all programs are state machines, and state machines are inherently
difficult to reason about, and this is why programming is difficult. Programmers
achieve their task of transforming chaos into order by using a bag of tricks, or a set of
abstractions they have learned, which they add to over the years through both study
and creativity. Threads and events are two abstractions you’ll find rattling about in
there. There are many others, and they all have their advantages and disadvantages
for different problem domains. This book is about a powerful and very general

Input Output

State
change

State

Logic Figure 1.2 The flow of data in a generalized
state machine

7Listeners are a mainstay of event handling, but …
abstraction you can add to your toolbox that directly addresses the problem of manag-
ing the complexity of state machines.

1.6 Interactive applications without the bugs
The problems we’re trying to solve have inherent difficulties; this is true. In spite of
this, most of our problems come from the way we’re doing things.

 Hikers often say that there’s no such thing as bad weather, only bad equipment.
We say that there’s no such thing as bad code, only bad infrastructure.

 A large portion—the majority—of bugs in event-based programs are preventable.
That’s the message of this book.

1.7 Listeners are a mainstay of event handling, but …
Listeners or callbacks—also called the observer pattern—are the dominant way of
propagating events in software today. But it wasn’t always this way.

 In the old days, when the walls were orange, the mice living in them weren’t the
event sources we know today but were small animals, and list boxes hadn’t been
invented yet. If you wanted to propagate some value around your program, you got
the value and called all the places where that value was going to be used. Back then,
the producer had a dependency on its consumers. If you wanted to add a new con-
sumer of your events, then you made the producer call it, too. Programs were mono-
lithic, and if you wanted to reuse some code that produced events (such as a list box),
it was a bit of work, because it was wired into the rest of the program.

 The idea of a list box as a reusable software component doesn’t work well if it has
to know in advance what all its consumers are. So the observer pattern was invented: if
you want to start observing an event producer, you can come along at any time and
register a new consumer (or listener) with it, and from then on, that consumer is
called back whenever an event occurs. When you want to stop observing the producer,
you deregister the consumer from it, as shown in the following listing.

public class ListBox {
 public interface Listener {
 void itemSelected(int index);
 }

 private List<Listener> listeners = new ArrayList<>();
 public void addListener(Listener l) {
 listeners.add(l);
 }
 public void removeListener(Listener l) {
 listeners.remove(l);
 }
 protected void notifyItemSelected(int index) {
 for (l : listeners) l.itemSelected(index);
 }
}

Listing 1.1 Listeners: the observer pattern
www.allitebooks.com

http://www.allitebooks.org

8 CHAPTER 1 Stop listening!
In this way, listeners invert the natural dependency. The consumer now depends on
the producer, not the other way around. This makes the program extensible and gives
you modularity through a looser coupling between components.

1.8 Banishing the six plagues of listeners
What could possibly go wrong with the wonderful observer pattern? Uh…yeah. We’ve
identified six sources of bugs with listeners; see figure 1.3. FRP banishes all of them.
They are as follows:

■ Unpredictable order—In a complex network of listeners, the order in which events
are received can depend on the order in which you registered the listeners,
which isn’t helpful. FRP makes the order in which events are processed not mat-
ter by making it completely nondetectable.

■ Missed first event—It can be difficult to guarantee that you’ve registered your lis-
teners before you send the first event. FRP is transactional, so it’s possible to
provide this guarantee.

■ Messy state—Callbacks push your code into a traditional state-machine style,
which gets messy fast. FRP brings order.

■ Threading issues—Attempting to make listeners thread-safe can lead to dead-
locks, and it can be difficult to guarantee that no more callbacks will be
received after deregistering a listener. FRP eliminates these issues.

Figure 1.3 The six plagues of listeners

9“Have you tried restarting it?” or why state is problematic
■ Leaking callbacks —If you forget to deregister your listener, your program will
leak memory. Listeners reverse the natural data dependency but don’t reverse
the keep-alive dependency as you’d like them to. FRP does this.

■ Accidental recursion—The order in which you update local state and notify listen-
ers can be critical, and it’s easy to make mistakes. FRP eliminates this issue.

You’ll find a detailed explanation of these problems with examples in appendix B.

1.9 Why not just fix listeners?
We think that if you fix the problems with listeners, you’ll invent FRP. In fact, many
people in industry have done exactly this, usually for a specific problem domain, and
usually without calling it FRP.

 We took the research of Conal Elliott, Paul Hudak, and others, and our own expe-
rience, and developed a general-purpose, open source (BSD3-licensed) FRP library
called Sodium for multiple programming languages with an emphasis on minimalism
and practicality. We and Heinrich Apfelmus, the developer of another FRP system
called Reactive Banana, have compared his system against Sodium, and even though
they were developed independently, they turn out to be equivalent apart from nam-
ing. We weren’t as surprised by this as you might expect.

 We believe that FRP isn’t so much a clever idea as something fundamental: that
when motivated people independently try to fix the observer pattern, after much
stumbling, they will eventually converge on similar solutions; and that there are only a
few possible variations in that “perfect” design. We’ll discuss these. FRP is a discovery,
not an invention.

 Implementing an FRP system turns out to be surprisingly difficult. We had the work
of others to steal from, yet it took more than six person-months of work to understand
the issues and develop an FRP system. And the library is only 1,000 lines of code!

 We think the reason is that event handling is an inherently hard problem. With lis-
teners, we deal with the frustrations in small doses every day, but to develop an FRP
library, you need to deal with them all at once.

 We highly recommend that you choose an existing library and not reinvent the
wheel. If there isn’t one available for your language of choice, we recommend that
you consider porting an existing implementation.

1.10 “Have you tried restarting it?” or why state is problematic
We’ve all had the same experience. The software you’re using gets into a bad state. Some-
thing inside the program hasn’t been updated properly, and it won’t work anymore.
That’s right, you know what to do, and there are lots of internet memes about it:

■ KEEP CALM and REBOOT.
■ CTRL ALT DELETE fixes everything.
■ If all else fails, RESTART.
■ How I fix stuff working on IT: Restart whatever isn’t working 88%. Quick

Google search 10%. Weird IT voodoo 2%.

10 CHAPTER 1 Stop listening!
■ WHAT IF I TOLD YOU A restart will fix your computer.
■ [And the best one:] Restart the world!

We think programming needs a reboot. In most languages, you can declare a variable
like this

int x = 10;

and then modify its value, like this:

x = x + 1;

In FRP, we don’t use normal mutable variables because they’re sensitive to changes in
execution sequence. A common bug is to read the variable before or after it was
updated when you intended to do the opposite.

 FRP keeps state in containers called cells. They solve the sequence problem because
they automatically come with update notification and sequence management: the
state is always up-to-date. State changes happen at predictable times.

1.11 The benefit of FRP: dealing with complexity
We all know from experience that the complexity of a program can get out of control.
This is so common that it’s considered normal in industry. When complex parts inter-
act in complex ways, the complexity can compound.

 FRP deals with complexity in a specific way. It enforces a mathematical property
called compositionality. This enables software components to be composed without unex-
pected side effects. As the program gets larger and more complex, compositionality
becomes more and more important. It makes software more scalable in a fundamental

The strange case of program configuration

Have you worked on a program with a complex configuration that affects many parts
of the code? What happens in your project when the configuration changes while the
program is running?

Each module that uses the configuration has to register a listener to catch the updates,
or it won’t catch the updates. This complicates the code, and it’s easy to make mis-
takes in propagating the configuration changes to the right places.

And how is it tested? That’s right: it isn’t. This sort of code is difficult to put into a
form suitable for unit testing.

How many software projects have given up entirely and require a program restart to
pick up the new configuration? When you change something on your ADSL router, does
it take effect immediately, or are you required to reboot?

Why is program configuration, which should be simple, such an intractable problem
in practice? Could this be indicative of something fundamental we’ve gotten wrong in
the way we program?

11How does FRP work?
way. The reasons behind this will be easier to explain when you’ve grasped the funda-
mentals, so we’ll cover compositionality in detail in chapter 5.

1.12 How does FRP work?
We’ll illustrate how FRP works with a simplified
flight-booking example, shown in figure 1.4.
Here’s the specification:

■ The user can enter their departure and
return dates using two date field widgets.

■ While the user is using the mouse and key-
board to enter the dates, some business
logic continuously makes decisions about
whether the current selection is valid. Whenever the selection is valid, the OK
button is enabled, and when it’s not, the button is disabled.

■ The business rule we’re using is this: valid if departure date <= return date.

In the figure, we’re trying to depart in September and return in August of the same
year, which is the wrong order. So the business rule returns false, and you can see
that the OK button is disabled (grayed out).

 A conceptual view of this application is shown in figure 1.5. We’re representing the
GUI widgets as clouds to indicate that their internal structure is hidden. In other
words, they’re black boxes.

A central idea is this: departure and return dates, as well as the “valid” status from the busi-
ness logic, all change dynamically in response to user input events. The lines show a flow of
data from the two dates, through some logic, and into the OK button. As the user
changes the dates, the OK button is enabled or disabled dynamically according to the
decision made by the logic.

Figure 1.4 Simplified flight-booking
example

ret

Date field
widget

Date field
widget

Business
logic Button

dep

valid
ok

Figure 1.5 Conceptual view of the flight-booking example

12 CHAPTER 1 Stop listening!
 The next listing gives the code to construct the widgets and the logic, with the Java
GUI setup left out. Don’t expect to understand every detail right now; we’ll return to
this code in section 1.16.2.

SDateField dep = new SDateField();
SDateField ret = new SDateField();
Cell<Boolean> valid = dep.date.lift(ret.date,
 (d, r) -> d.compareTo(r) <= 0);
SButton ok = new SButton("OK", valid);

We’re using Java and the authors’ Sodium FRP library. We’ll branch out into other FRP
systems and languages later in the book. What we use doesn’t matter much for the
teaching of FRP. Apart from surface differences, FRP is much the same in any language
or FRP system.

 FRP uses two fundamental data types:

■ Cells represent values that change over time. Your programming language already
has variables that allow you to represent changing values. This book is about the
advantages that FRP abstractions give you if you use them, instead.

■ Streams represent streams of events. We’ll introduce streams in chapter 2.

The key idea we want you to get is that the code directly reflects the conceptual view in
figure 1.5.

 We’re using a toy library that we wrote with GUI widgets that all start with S: SDate-
Field and SButton are like normal widgets, except we’ve added an FRP-based external
interface. This allows us to avoid some mechanics we don’t want to cover yet.

 SDateField exports this public field:

Cell<Calendar> date;

Calendar is the Java class that represents a date. We said a cell is a value that changes
over time, so Cell<Calendar> represents a date that changes over time.

 As you can see, Cell takes a type parameter that tells us the type of value the cell
contains, and we do this in Java with generics in the same way we do with lists and
other data structures. For instance, you might have a list of dates, and that would have
the type List<Calendar>. Cell<Calendar> is the same concept, but it represents a sin-
gle date that can change, instead of a list of dates.

 The date field of SDateField gives the date as it appears on the screen at any given
time while the user is manipulating the SDateField widget. In the code you can see
the two dates being used with a lift() method.

NOTE The expression (d, r) -> d.compareTo(r) <= 0 in listing 1.2 is
lambda syntax, which is new in Java 8. If this confuses you, don’t worry. We’re
only talking about concepts at this stage. We’ll explain how this all works in
chapter 2.

Listing 1.2 Flight-booking example using FRP

13How does FRP work?
You can check out and run this example with the following commands. You’ll need
Java 8, which means at least version 1.8 of the Java Development Kit (JDK). We’ve writ-
ten scripts for both Maven and Ant, which are two popular build systems in Java, both
from the Apache Software Foundation. Windows users might find Maven easiest. The
Windows version of Ant is called WinAnt. Here are the commands:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/swidgets/java
mvn test -Pairline1 or ant airline1

Look in other directories. You may find that the examples have been translated into
other languages.

NOTE Sodium can be found on Maven’s Central Repository with a groupId
of nz.sodium.

1.12.1 Life cycle of an FRP program

Figure 1.6 shows the mechanics of
how FRP code is executed. In most
FRP systems, this all happens at appli-
cation runtime. There are two stages:

■ Stage 1: Initialization—Typically
during program startup, FRP
code statements are converted
into a directed graph in mem-
ory.

■ Stage 2: Running—For the rest
of the program execution you
feed in values and turn the
crank handle, and the FRP
engine produces output.

NOTE In practice, the program spends most of its time in the running stage
with an already-constructed directed graph. But the graph can also be dynam-
ically modified during the running stage. We cover this in chapter 7.

A major task of the FRP engine is to ensure that things are processed in the order spec-
ified by the dependencies in the directed graph that’s maintained in memory. In
spreadsheets, this is referred to as natural order recalculation. It could be better
described as the “correct order” to distinguish it from any other order, which could
give the wrong result.

 This separation between initialization and running stages is similar to the way GUI
libraries normally work. You construct all your widgets first (initialization), and after-
ward an event loop handles events from the user (running). The Java GUI framework
Swing, which we’re using here, works this way.

OutputsInputs

Figure 1.6 The stages of execution of an FRP
program

14 CHAPTER 1 Stop listening!
 During the initialization stage, the flight-booking example executes this FRP
statement:

Cell<Boolean> valid = dep.date.lift(ret.date,
 (d, r) -> d.compareTo(r) <= 0);

This code expresses a relationship between the widgets, and nothing else.

NOTE Lifting is a general functional programming concept. We’ll return to it
in chapter 2.

Once the initialization is over, we enter the running stage. Java creates a window and
processes incoming mouse and keyboard events from the user. The FRP engine’s job is
to maintain the relationship we expressed, ensuring that the value of valid is always
up to date.

 We could write a spreadsheet to do this, as
shown in figure 1.7. In fact, FRP works the same
way a spreadsheet does. Our choice of the class
name Cell to represent dynamically change-
able values was partially influenced by this.

 Can you really write arbitrarily complex
application logic in the style of a spreadsheet?
Yes, you can. That’s exactly what FRP allows you
to do. But you’ll have to think a bit differently.

1.13 Paradigm shift
In his 1962 book The Structure of Scientific Revolutions, Thomas Kuhn argued that sci-
ence progresses in leaps, which he called paradigm shifts, rather than in a slow, linear
progression as people often thought.

DEFINITION A paradigm is a way of thinking, a world view, a philosophical
framework, or a frame of reference. A paradigm usually applies to a particular
area of knowledge. It’s based on a set of underlying assumptions.

FRP belongs to a new paradigm. Although you can use FRP to make incremental
improvements to an existing code base, there’s a different way of thinking underlying
it. If you embrace that way of thinking, you’ll get the most out of FRP.

1.13.1 Paradigm

Everyone’s way of thinking is based on a set of assumptions, mostly at the subcon-
scious level, which are taken to be true. They may or may not be true. They underlie
everything that person knows. No matter how clever someone is, there are always
some assumptions that have gone unquestioned.

 Most people share most of their assumptions about the world around them, and
these shared assumptions provide a frame of reference that enables us to communicate
with each other. When there’s a significant difference in the assumptions between two

Figure 1.7 We can express the flight-
booking example as a spreadsheet.

15Thinking in terms of dependency
people, communication becomes more difficult. We say that people are operating in
different paradigms. A good example is the culture shock you can experience when you
visit another country.

 In certain areas of knowledge, people’s assumptions can be very different indeed.
When this happens, the experience can be jarring. A statement made in terms of
frame of reference A can be nonsensical with respect to frame of reference B. Each
person may even think the other is insane. Thomas Kuhn described this situation by
saying that the two ways of thinking are incommensurable.

 By way of example, on Christmas, we like to eat ice cream at the beach and then
jump into the sea. This may seem like strange behavior, but what else would you do on
a hot summer day?

1.13.2 Paradigm shift

A person can change their paradigm, either slowly or all at once through an epiphany.
You usually need a crisis to bring about an epiphany, so we prefer the first method.

 If you’re used to object-oriented programming (OOP), then you’ll be entering a
new paradigm. FRP will appear a bit strange. We can claim all day that FRP is a simple
idea, and it is. But simple and easy to understand aren’t the same thing. The reality is that
until your thinking slots into place, you will encounter some challenges.

 FRP rests on certain notions about what’s important in programming that may go
against your current understanding. Without these ideas, FRP is just a way of taking
something that should be straightforward and doing it in an eccentric, limiting way.
The claimed benefits will be remote.

 We’re talking about standard functional programming ideas. If you’ve done func-
tional programming, it will be easier to learn FRP. If not, that’s no problem. You don’t
need to know everything about functional programming to use FRP, and we’ll teach
you what you need to know.

NOTE FRP made it easier for one of the authors to learn functional program-
ming. The other author learned these the other way around.

We’re asking you to question some of your assumptions. This can be intriguing, chal-
lenging, and liberating. Through this process, you either change your beliefs or
strengthen them. Either way, it’s beneficial, but it’s never easy.

 Next we’ll start laying the foundation for thinking in FRP. We’ll continue through-
out the book.

1.14 Thinking in terms of dependency
Traditionally, software is expressed as a sequence of steps, written by the programmer
and executed by the machine. Each step has a relationship with the steps that came
before. Some steps will depend on the previous step, and some may depend on things
from much earlier. Consider these steps:

■ Comb hair
■ Wash face

16 CHAPTER 1 Stop listening!
There is no dependency between these two statements. They can be executed in any
order or simultaneously if you have enough hands.

 Here’s another classic example that functional programmers use:

1 Open silo doors
2 Fire missiles

In this case, the dependency implied by the sequence is critical.
 If we weren’t using FRP, we’d write the flight-booking example much like in listing

1.3. We assume the existence of a JDateField widget, which doesn’t exist in reality.
Notice that there are certain places where the order of statements is critical—things
will break if it isn’t right.

public class BookingDialog {
 public BookingDialog() {
 JDateField startField = new JDateField(...);
 JDateField endField = new JDateField(...);
 this.ok = new JButton("OK");
 ...;
 this.start = startField.getDate();
 this.end = endField.getDate();
 update();
 startField.addDateFieldListener(new DateFieldListener() {
 public void dateUpdated(Calendar date) {
 BookingDialog.this.start = date;
 BookingDialog.this.update();
 }
 });
 endField.addDateFieldListener(new DateFieldListener() {
 public void dateUpdated(Calendar date) {
 BookingDialog.this.end = date;
 BookingDialog.this.update();
 }
 });
 }
 private JButton ok;
 private Calendar start;
 private Calendar end;
 private void update() {
 boolean valid = start.compareTo(end) <= 0;
 ok.setEnabled(valid);
 }
}

Threads allow you to express sequence; events allow you to express dependency. In
different situations, both are needed. A lot of problems come from trying to express
dependency with threads, or sequences with events.

 Given a conceptual diagram like the one we drew for the flight-booking example, we
can extract the dependency relationships easily, as shown in figure 1.8. All we need to

Listing 1.3 Flight-booking example in a traditional non-FRP style

GUI

Order is
critical

Logic

Order is
critical

Order is
critical

17Thinking declaratively: what the program is, not what it does
do is remove the unnecessary bits and
reverse the data-flow arrows to turn
them into a “depends on” relationship.

 The FRP engine knows all these rela-
tionships, so it can automatically deter-
mine the dependencies. From that, the
correct sequence is guaranteed.

 The example we’ve given is simple,
but sequence-dependent code can get
complex. The problem with represent-
ing dependencies as a sequence comes
when you go to change the code. To
make something happen earlier or
later, you need to make sure you fully
understand the dependencies implicit in the existing sequence. In FRP, you express
dependencies directly, so you can just add or remove the dependencies, and the
sequence is automatically updated. It’s impossible to make a sequence mistake.

 With regular listener-based event handling, you can express dependency, but it’s
still difficult to maintain a reliable sequence. The order of processing depends on
when the code propagates events and also on the order in which listeners were regis-
tered. (This is the plague we call unpredictable order.) It’s easy to change this inadver-
tently, resulting in unwanted surprises. When this happens in a complex program, it
can take some time to unravel.

 We naturally think of our problems in terms of dependency. Programming has
largely been concerned with translating that into a sequence. You’ve no doubt become
good at this. FRP does away with this aspect of programming so you stay in dependency-
land, and you can program in a way that’s closer to the problem description.

1.15 Thinking declaratively: what the program is, not what it does
In FRP we talk about working in the problem space rather than working in the machine
space. Decades of software development have made the authors lazy. We don’t want to
add sequence information to our code if we don’t have to. We’ll only end up having to
debug it.

 The sequence can be derived from dependencies, so you can write less code by leav-
ing the sequence out altogether. You end up with a lot more “what” and a lot less “how.”
This style is referred to as declarative programming: you tell the machine what the pro-
gram is, not what it does. You directly describe things and the relationships between them.

 We wanted to demonstrate that the “what” of programming is easier to combine,
reason about, and understand than the “how”—but we didn’t want to do it on an
empty stomach. So we decided to cook some lasagna. But when we looked up the rec-
ipe, we were horrified to see this:

1 Heat the oil in a large pan.
2 Fry the onions until golden.
3 Add ground beef and tomato.

Figure 1.8 Extracting “depends on” relationships
from a conceptual diagram: reverse the data-flow
arrows.

18 CHAPTER 1 Stop listening!
A sequence! We’ll spare you any more of this torture.
 This recipe is a list of tiny sequence-dependent details with no overview. Imagine if

you were asked what lasagna is by someone from Australia, where lasagna is practically
unknown. If you gave them the full monologue of the recipe, they’d have a hard time
understanding what they were going to get. This is no way to write a cookbook: it’s an
operational definition of lasagna, defined in terms of the steps needed to create it.
Declarative programming instead uses a conceptual definition—see figure 1.9.

 This is how our cookbook would be written:

■ Lasagna is grated cheese on cheese sauce on flat pasta on cheese sauce on
Bolognese on flat pasta on cheese sauce on Bolognese on flat pasta on cheese
sauce baked for 45 minutes.

■ Bolognese is onion and oil fried until golden mixed with ground beef mixed with
tomato simmered for 20 minutes.

■ Cheese sauce is milk and cheese added progressively to roux while frying it until
the sauce thickens.

■ Roux is flour and butter fried briefly.

Figure 1.9 A conceptual definition is easier to grasp than a long list of detailed instructions.

19Conceptual vs. operational understanding of FRP
■ Baked is put in an oven dish in a hot oven.
■ Fried is put in a pan on high and mixed frequently.
■ Simmered is put in a pan on low and mixed infrequently.

We’re fond of code reuse, so we thought we’d include some further recipes:

■ Spaghetti Bolognese is Bolognese on boiled and drained spaghetti.
■ Macaroni and cheese is cheese sauce on boiled and drained macaroni.

We want everyone to enjoy functional cooking, so some may find this alternative useful:

■ Cheese sauce is tomato paste, tahini, oil, rice flour, red miso, soy sauce, soy milk,
and nutritional yeast mixed.

Notice a few things:
■ We express dependencies directly. The sequence is derived from them. We

don’t care whether the cheese sauce is made before or after the Bolognese or
simultaneously, and neither should anyone else.

■ It’s closer to a conceptual view of the food, so it’s easy to understand.
■ It’s short, so our cookbook will need to be padded out with a lot of pictures.
■ We can compose the parts into new recipes easily.

As we go through, we’ll give concrete examples of what a program is, not what it does.
For now, we’ll leave you with this thought that is the basis of the philosophy behind FRP:

■ A program is a transformation from inputs to outputs.

1.16 Conceptual vs. operational understanding of FRP
There are two ways to understand how FRP works: operationally or conceptually, like we
did with the lasagna. A large part of the point of FRP is that it’s conceptually simple.

 Most programmers are accustomed to operational thinking, and we want to turn
you away from that. With FRP, operational thinking not only is a more complex way to
approach it, but also pollutes your mind with unnecessary details. Pay no attention to
the man behind the curtain, as it were.

 A few sections back, we presented some code for a flight-booking example. Later,
we showed how you’d implement this in a traditional style, using listeners or callbacks.
It probably won’t surprise you to learn that under the covers of most FRP systems,
everything is done with listeners.

NOTE Not all FRP systems use listeners internally. Push-based FRP systems typ-
ically do, but there are also pull-based systems—where values are calculated
on demand—and hybrids of the two. How a system works internally affects
performance only. It makes no difference to the meaning of the FRP code you
write. Sodium is a push-based system.

You may well ask, “What’s really going on when the code runs?” We’ll tell you in a
moment, but first, we want to emphasize the importance of conceptual thinking.

20 CHAPTER 1 Stop listening!
1.16.1 Opening your mind to FRP

We ask you to clear your mind so it’s receptive, like an empty rice bowl. Picture data
flowing through a limitless stream of code (see figure 1.10). Are you feeling it?

What is the essential nature of the Cell class we introduced to you? FRP is said to be
reactive because in writing the code, you’re always responding to input. When working
in FRP, we need you to view cells only as sources of information, and as the only
sources of information. You never say, “And now, the code will push this value.” Banish
such thoughts from your mind.

 FRP logic is a flow of data. Data flows into your logic through streams and cells. Data
flows out the output side. The bit in the middle is also a flow of data. FRP code is a
reaction to its input. Data flows from input to output. FRP is fundamentally a declara-
tive description of the output in terms of the input.

 In FRP, you’re conceptually working at the level of the data flow, not the individual
event value. We’ve found from experience that when you introduce people to FRP,
they inevitably ask one question:

 “How do you get the value?”
“In the far north,” we reply, “a stream of values flows over rocks. Seeking a moment’s
rest, a value alights on a willow.”

 When working with FRP, try to stay conceptual in your thinking. Try to stay at the
level of the relationships between things, not the mechanics of their interaction.

Figure 1.10 A stream of code

21Conceptual vs. operational understanding of FRP
1.16.2 What’s really going on when the code runs?

In the flight-booking example we gave earlier, we presented some code. Listing 1.4
gives the same code with more of the ancillary detail, but we’ve left out some ultra-
verbose layout-related tomfoolery. The nz.sodium.* import gives the Sodium FRP sys-
tem including Cell.

 The swidgets.* import gives our “toy library” for GUI widgets. The SDateField
and SButton widgets are like normal widgets, but jazzed up with an FRP interface. We
did this because otherwise we would have needed to tell you how to feed data into
Cell and how to get it out.

 Interfacing FRP to the outside world isn’t difficult, but we consider it of the highest
importance at this early stage to keep you away from operational thinking. Our expe-
rience in teaching FRP is that people gravitate toward the things they know. When
someone new to FRP sees a listener-like interface, they’ll say, “I know how to use this.”
They then slip back into established habits and ways of thinking. We’ll tell you how to
interface FRP to the rest of your program later in the book.

import javax.swing.*;
import java.awt.*;
import java.util.Calendar;
import swidgets.*;
import nz.sodium.*;

public class airline1 {
 public static void main(String[] args) {
 JFrame view = new JFrame("airline1");
 view.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 SDateField dep = new SDateField();
 SDateField ret = new SDateField();
 Cell<Boolean> valid = dep.date.lift(ret.date,
 (d, r) -> d.compareTo(r) <= 0);
 SButton ok = new SButton("OK", valid);

 GridBagLayout gridbag = new GridBagLayout();
 view.setLayout(gridbag);
 GridBagConstraints c = new GridBagConstraints();
 ...
 view.add(new JLabel("departure"), c);
 view.add(dep, c);
 view.add(new JLabel("return"), c);
 view.add(ok, c);
 view.setSize(380, 140);
 view.setVisible(true);
 }
}

Listing 1.4 More detail for the flight-booking example

22 CHAPTER 1 Stop listening!
What goes on when this code runs? During initialization, a push-based FRP system typi-
cally constructs a network of listeners like the one we’ve drawn in figure 1.11. We’re
showing these in a style more akin to unified modeling language (UML), where each
box represents a Java object in memory with a list of listeners that are currently regis-
tered. Objects that listen to other objects are called back on their update(..)
method.

During the running stage, nothing happens until the user changes the departure or
return date. Then this sequence of events occurs:

1 dep.date or ret.date notifies its listeners of the change.
2 The update(..) method for valid is called, and the logic for the business rule

is recalculated with the latest values. valid then notifies its listeners.
3 The update(..) method for ok is called, which causes the button widget to be

enabled or disabled.

1.17 Applying functional programming to event-based code
A lot of the power of FRP comes from the fact that FRP cells and streams follow the rules
of functional programming in a way that listener/callback code can never hope to do.

Figure 1.11 Behind the scenes, the FRP system translates FRP statements
into a directed graph of listeners.

23Applying functional programming to event-based code
It becomes possible to manipulate event-based code using functional programming.
FRP allows functional programming to become a meta-language for event-based logic.

DEFINITION Meta-language—A language used to manipulate the code of a sec-
ond language

With FRP, functional programming isn’t manipulating logic directly—it’s manipulat-
ing the statements of a logic language. We want to give you a taste of that.

NOTE This final section of chapter 1 will be difficult for people who are com-
pletely new to functional programming. It’s just to show you what FRP can do,
and it isn’t necessary for learning the material. If this example gives you a
dose of cataplexy, skip it for now. It’ll be easy to follow after you’ve finished
chapter 2.

We’re going to encapsulate business rules with a class called Rule so we can manipu-
late rules as a concept. We can rewrite the rule from the first example (return can’t
precede departure) like this:

Rule r1 = new Rule((d, r) -> d.compareTo(r) <= 0);

Here we’re writing the code of the rule using Java 8 lambda syntax and passing that as
the argument to Rule’s constructor.

 In China, the numbers 4, 14, and 24 are considered unlucky. You can define a new
business rule that doesn’t allow travel on unlucky dates. Given a function

private static boolean unlucky(Calendar dt) {
 int day = dt.get(Calendar.DAY_OF_MONTH);
 return day == 4 || day == 14 || day == 24;
}

the rule is expressed as

Rule r2 = new Rule((d, r) -> !unlucky(d) && !unlucky(r));

You also need a way to combine rules, such that this rule

Rule r = r1.and(r2);

returns true if rules r1 and r2 are both satisfied.
 Listing 1.5 gives the code for the Rule class. It’s a container class for a function that

takes two dates (Calendars) and returns true if the rule deems the given dates to be
valid. The Lambda2 class comes from Sodium.

DEFINITION Reify—A functional programming term meaning to convert an
abstract representation of something into real code

In line with this definition, the reify() method “compiles” the abstract rule into real
FRP code. You use Rule first to manipulate rules as an abstract concept, and then you
reify the result into executable code. In this example, reify() takes the cells

24 CHAPTER 1 Stop listening!
representing the departure and return dates and returns a cell representing whether
the supplied dates are valid according to that rule.

 and() is a method for manipulating existing rules. It combines two rules to give a
new rule that is satisfied if both the input rules are satisfied.

class Rule {
 public Rule(Lambda2<Calendar, Calendar, Boolean> f) {
 this.f = f;
 }
 public final Lambda2<Calendar, Calendar, Boolean> f;
 public Cell<Boolean> reify(Cell<Calendar> dep, Cell<Calendar> ret) {
 return dep.lift(ret, f);
 }
 public Rule and(Rule other) {
 return new Rule(
 (d, r) -> this.f.apply(d, r) && other.f.apply(d, r)
);
 }
}

NOTE Old programming text books may frown on nondescriptive variable
names like f for function, but functional programmers do this because they
always want their code to be general unless it absolutely has to be related to a
specific problem space. The class name Rule says what it is. The contained
function’s name doesn’t need to add to this.

The following listing is the logic of the main program. It implements the two business
rules described using the new Rule class.

private static boolean unlucky(Calendar dt) {
 int day = dt.get(Calendar.DAY_OF_MONTH);
 return day == 4 || day == 14 || day == 24;
}
...
 SDateField dep = new SDateField();
 SDateField ret = new SDateField();
 Rule r1 = new Rule((d, r) -> d.compareTo(r) <= 0);
 Rule r2 = new Rule((d, r) -> !unlucky(d) && !unlucky(r));
 Rule r = r1.and(r2);
 Cell<Boolean> valid = r.reify(dep.date, ret.date);
 SButton ok = new SButton("OK", valid);

To run this example, check out the code with git if you haven’t done so already, and
then run it. These are the commands:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/swidgets/java
mvn test -Pairline2 or ant airline2

Listing 1.5 Encapsulating a business rule

Listing 1.6 Manipulating abstract business rules

Return can’t
precede departure.

Can’t travel on
unlucky dates

25Summary
This is a small example of an approach that becomes powerful as the problem gets
more complex. In chapter 12, we’ll take this concept further and present an imple-
mentation of a GUI system done this way.

1.18 Summary
■ Listeners or callbacks have a set of problems that we call the six plagues.
■ FRP replaces state machines and listeners or callbacks.
■ FRP deals with complexity through a mathematical property called composition-

ality.
■ Thinking in terms of dependency is better than thinking in terms of sequence.
■ FRP code has a structure like a directed graph, and an FRP engine derives execu-

tion order automatically from it.
■ FRP uses a declarative programming style, meaning you think of the program in

terms of what it is, not what it does.
■ FRP is something fundamental: it’s a discovery, not an invention.
■ FRP allows functional programming to be used as a meta-language for writing

event-based logic.

Core FRP
To demonstrate the core principles of FRP, in the first few chapters of this book
we’ll use our Sodium library in Java. We chose Java because it has static typing
(which works well with FRP), and the syntax turns out to be quite nice. We’re trying
to teach the concepts of FRP, not the implementation details of specific systems. We
designed Sodium to embody those basic concepts as minimally and completely as
possible. Sodium and Java are just a convenient vehicle for this purpose; we hope
you won’t see this book as specific to a language or FRP system.

 In later chapters, we’ll delve into other FRP systems and languages. FRP systems
are all the same conceptually, but the design and naming can differ.

This chapter covers
■ Stream and Cell types
■ map, merge, hold, snapshot, filter, lift,

never, and constant primitives
■ Forward references with StreamLoop and

CellLoop

■ Making an accumulator with hold and
snapshot
26

27The Stream type: a stream of events
2.1 The Stream type: a stream of events
FRP is based on two classes or data types. The example in chapter 1 used cell, and now
we’re going to look at its counterpart, stream. Recall the following:

■ Cells—represent a value that changes over time
■ Streams—represent a stream of events

Figure 2.1 shows an example: a window
with a text field and a button. You can
type text into the field, and when you
click the button, the text field is cleared.

 Figure 2.2 gives a conceptual view like
the one we gave in chapter 1:

■ Arrows represent streams. They’re
labeled with variable names.

■ Boxes represent transformations on
streams. The label above a box
gives the name of the FRP operation being used. Arguments can appear in the
center of the box.

■ Conceptual modules or black boxes are shown as clouds to indicate that their inter-
nals have been obscured. They export or import streams or cells.

Three things happen when the user clicks the button:

1 An event is generated and fed into a stream named sClicked. Because a button
click has no associated information other than the fact it happened, the event
in sClicked contains a “nothing value” of a predefined type Unit. We’ll explain
this type shortly.

NOTE The convention used in this book is to prefix the variable names of
streams with s.

Figure 2.1 When you click Clear, the text you
entered disappears.

Stream Operation Stream

Unit or
“nothing” value

SButton
sClicked sClearIt

STextField

clear textu

Figure 2.2 Conceptual representation of
the clearfield example
www.allitebooks.com

http://www.allitebooks.org

28 CHAPTER 2 Core FRP
2 This event propagates to a map operation that transforms the Unit value into "",
an empty string value. This map operation produces a new stream that we have
called sClearIt.

NOTE If you’ve done any sort of functional programming before, you’ll have
encountered the concept of map, but if not, don’t worry—we’ll go into more
detail shortly. Don’t confuse map with the Java data structure Map that stores
key/value pairs.

3 The event in sClearIt propagates to the text field and changes its text contents
to the contained value, which is "". This is how the text field is cleared when the
user clicks the button.

Recall from chapter 1 that Cell has a type parameter that you express with Java gener-
ics to indicate the type of values contained in the cell. Stream also has a type parame-
ter, telling you the type of the values propagated through the stream. The type of
sClicked is Stream<Unit>, so the type of the values propagated by the stream is Unit.

Listing 2.1 gives the code, including all the Java stuff to make it work. Again, we’re
using FRP-enhanced widgets from the toy SWidgets library.

NOTE If you want to experiment with the SWidgets library in your own code,
you can install it into your local maven repository by going into the directory
sodium/book/swidgets/java/swidgets and typing mvn install.

The Unit data type

Unit is a sort of “nothing value.” Unit is a term and concept from functional program-
ming. Here’s why it’s useful.

In OOP programming, an event handler can take any number of arguments as needed.
Because a button click has no information associated with it other than the fact that
it happened, you’d normally define a handler that takes no arguments, like this:

public void buttonClicked() { ... }

FRP is a little different. You can think of it as internally using event handlers that always
take one argument. If there’s no value, you need a nothing value to plug the gap. Sodi-
um defines a type Unit for this:

public enum Unit { UNIT };

In OOP style, the equivalent would be an imaginary one-argument event handler like
this, although you don’t do this in FRP:

public void buttonClicked(Unit u) { ... }

The handler’s code would ignore u because it contains no information.

29The Stream type: a stream of events

Map
click
a str

o
e
SButton is like a Swing JButton, but it exports an FRP stream that fires when the but-
ton is clicked, through a public field declared like this:

public Stream<Unit> sClicked;

STextField is a text field with the following constructor:

STextField(Stream<String> sText, String initText)

You can pass it a stream in the first argument that can write text into the text field. It’s
a simple matter to connect one to the other, but the types are different, so you need a
map operation as we described to convert the Unit value to the empty string. The
example is again using Java 8 lambda syntax here with map(), and we’ll go into more
detail in a moment. Note how closely the code corresponds to the conceptual dia-
gram.

import javax.swing.*;
import java.awt.FlowLayout;
import swidgets.*;
import nz.sodium.*;

public class clearfield {
 public static void main(String[] args) {
 JFrame frame = new JFrame("clearfield");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setLayout(new FlowLayout());
 SButton clear = new SButton("Clear");
 Stream<String> sClearIt = clear.sClicked.map(u -> "");
 STextField text = new STextField(sClearIt, "Hello");
 frame.add(text);
 frame.add(clear);
 frame.setSize(400, 160);
 frame.setVisible(true);
 }
}

To run the example, check it out with git if you haven’t already done so, and then run
it as follows:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/swidgets/java
mvn test -Pclearfield or ant clearfield

We encourage you to tinker with the examples. If you’re using mvn, you can edit
pom.xml to add your own build entries; for ant, edit build.xml.

DEFINITION Event—The propagation of an asynchronous message from one
part of a program to another.

Listing 2.1 clearfield: a text field and a Clear button

Button with an
FRP interface

s the “button
ed” stream to
eam of empty
string events

Feeds sClearIt int
STextField’s “writ
to text” input

30 CHAPTER 2 Core FRP
DEFINITION Stream—A stream of discrete events. Also known in other FRP sys-
tems as an event (in which case the things it contains are termed event occur-
rences), an event stream, an observable, or a signal. When an event propagates
through a stream, we sometimes say that the stream has fired.

Sodium defines a class called Stream for an FRP stream. The example uses Stream to
represent button clicks. Here are some other examples of things it might make sense
to model as streams:

■ Mouse clicks and touchscreen events
■ A monster being created or destroyed in a video game
■ A video game character receiving damage from a hit in a fight
■ A connection to a server being established or lost
■ Bookmarking a website in a browser
■ Adding, moving, or deleting a vertex in a polygon editor
■ Zeroing a trip-distance meter on a vehicle

When a stream fires, an event or a message is propagated from one part of the pro-
gram to another. That message consists of a value, often referred to as a payload, and
the type of that value is specified (in Java) using generics, in the same way you repre-
sent the type of elements in a List or other container. For example, to represent a
stream of keypress positions, you’d want the Stream to have a payload of type Char, so
you’d declare it like this:

Stream<Char> sKeyPresses = ...

NOTE The examples in the next few chapters are in Java. We’ll give examples
in some other languages later in the book. Look online for examples that
have been translated to other programming languages.

2.2 The map primitive: transforming a value
In the clearfield example, you convert a button click to a text value to write into the
text field. The button click is represented by this

Stream<Unit> sClicked

and the change to the text field is represented by

Stream<String> sClearIt

You use map to convert one into the other with this line of code:

Stream<String> sClearIt = clear.sClicked.map(u -> "");

This uses the Java 8 lambda syntax. If this is unfamiliar, please refer to the sidebar for
an explanation.

31The map primitive: transforming a value
2.2.1 Transforming a stream

map transforms a stream into a new stream of the same type or a different type. It does
this using a function you supply it to convert the contained values.

 In the example, you convert the button click into a text-field update by passing a
function to map that converts a Unit to a String, and map uses it to convert the input
Stream<Unit> to the desired Stream<String>. This sets things up so that when the
sClicked stream fires with its Unit event value, the sClearIt stream created by map
fires at the same time with a value of "". To perform this conversion, map executes the
code inside the function you gave it each time sClicked fires.

NOTE It may seem strange that we’re saying the new stream fires at the same
time as the old one. Clearly this isn’t what’s actually occurring, but in FRP we
don’t think operationally. Conceptually, in FRP, we can view these two events as
truly simultaneous. A transactional context makes this so. We’ll explain soon.

map returns a new stream that fires events at the same time as the original stream, but
the payload is transformed by the given function. More generally, map takes a transfor-
mation on values (that is, a function) and performs a transformation on streams.

Java 8 lambda syntax

FRP tends to use a lot of small functions, which you pass as arguments to FRP oper-
ations. You could use Java’s inner classes for this, but in this book we’ll use Java
8’s new lambda syntax, because it’s awesome.

For example, if you want to define a function that adds 1 to an integer, you can express
it as an inner class, like this:

new Lambda1<Integer, Integer> {
 public Integer apply(Integer k) {
 return k+1;
 }
}

The new lambda syntax in Java 8 lets you write this using much shorter code, with no
fewer than six variations of the syntax:

(Integer k) -> { return k+1; }
(k) -> { return k+1; }
k -> { return k+1; }
(Integer k) -> k+1
(k) -> k+1
k -> k+1

We won’t go into detail here because this isn’t a book about Java. We’re only using
a couple of Java 8’s new features, so if our brief explanations aren’t enough, online
resources should suffice. If you want a more complete treatment of Java 8, we
recommend Java 8 in Action by Raoul-Gabriel Urma, Mario Fusco, and Alan Mycroft
(Manning, 2014).

32 CHAPTER 2 Core FRP
2.3 The components of an FRP system
An FRP system is usually implemented as a lightweight library in a standard program-
ming language. Most FRP systems are based on two classes and 10 basic operations
called primitives, although there are variations on this design.

DEFINITION Operation—A function or other code that converts streams or
cells to other streams or cells.

DEFINITION Primitive—A fundamental operation—that is, an operation that
can’t be expressed in terms of other operations. Primitives are implemented
using methods or functions. All FRP operations are made out of a small set of
fundamental operations. That’s what makes them primitive.

We’ve already introduced the Stream class. We’ll get to the other class, Cell, shortly.
 There are ten primitives: map, merge, hold, snapshot, filter, lift, never, con-

stant, sample, and switch. FRP systems also need some other mechanisms that relate
to their implementation that are outside the conceptual core of FRP.

NOTE We have 10 primitives to deal with six plagues, which works out to an
average of 1-2/3 primitives per plague.

2.3.1 Combining primitives

At its heart, FRP programming consists of applying primitive operations to values of
type Stream and Cell to produce new values of these types. Primitives can be com-
bined into arbitrarily complex constructions, and this is what you’ll find yourself
doing when writing FRP code. You use plain old classes and methods to structure these
constructions.

A quick recap: streams and maps

In FRP, the word stream refers to a stream of events—for example, a stream of
keypresses.

■ When a stream fires, this means an event of a particular payload value is prop-
agated from one part of the program to another. For example, a stream of type
Stream<String> might fire with the value "Lucy's Bins".

■ map takes a stream and creates a new stream that fires (conceptually) at the
same time. You supply a function to transform the value. For example, if you
map a button-click stream with the function u -> "", it will convert each click
event into an empty string.

Recall that with Java 8 lambda syntax, u -> "" is a short form for

new Lambda1<Unit, String> {
 public String apply(Unit u) {
 return "";
 }
}

33Referential transparency required
 Many FRP systems come with useful helper methods and functions, and this can make
that system seem complex at first. But it isn’t so bad. These helpers are combinations of
the 10 primitives. Once you understand the primitives, everything else will be easy to fol-
low. Sodium is minimalist with extra helper functions, but some systems aren’t.

 The way streams and cells act is clearly defined. The primitives maintain that defi-
nition, no matter how they’re combined. The denotational semantics for an FRP system
are the mathematical proof of this. This is how FRP guarantees the property of composi-
tionality that gives so many advantages. We’ll explain the idea of compositionality in
chapter 5.

DEFINITION Compositionality—The property that the meaning of an expression
is determined by the meanings of its parts and the rules used to combine them.

2.3.2 Separating I/O from logic

Usually you’ll keep logic and I/O separated when writing applications with FRP. Actu-
ally, doing so is required, but we wanted to butter you up a bit first. This is a good
thing: the restrictions that FRP places on you will—paradoxically—free you from
drudgery and frustration, and let you focus on what you want your program to do.

 In England, breakfast is a yes or no question. Instead of being forced to choose
between mediocre breakfasts, you’re guaranteed the full spread. Sometimes, being
prevented from making a bad choice isn’t a bad thing. FRP gives you what you need,
not what you think you want. Type safety is another example of this principle.

 The logic in a program doesn’t have to be—but can be—entirely FRP, whereas the
I/O is normally written outside FRP in a standard flow-of-control style. We’ll explain
how to interface FRP with the rest of your program, but now isn’t the time.

2.4 Referential transparency required
For FRP to work properly, the code you pass as a function to map must be referentially
transparent, also referred to as pure. The requirements are as follows:

■ You must not perform any I/O.
■ You must not throw any exceptions unless they’re caught and handled within

the function.
■ You must not read the value of any external variable if its value can change, but

constants are allowed and encouraged.
■ You must not modify any externally visible state.
■ You must not keep any state between invocations of the function.
■ In short, the function must have no external effects other than through the

returned value, and it must not be affected by any external state.

NOTE We expect you’ve thrown down the book in disgust by now. But don’t
panic. The primitives provide all the tools you need to avoid doing any of what
we just listed. It’s usually pretty simple—it’s “just” a matter of changing your
habits.

34 CHAPTER 2 Core FRP
A referentially transparent function is a function in the mathematical sense. One test
of referential transparency is that for a given input value, the function must always
give the same output value.

 The easiest way to think about it is that it shouldn’t matter when or where you run
the code, or even how many times. The code shouldn’t see or change the outside
world, and therefore it should always give the same result for a given input. This may
seem unnecessarily restrictive at first, but we need this restriction to guarantee compo-
sitionality, which is at the core of the benefits of FRP.

DEFINITION Cheating—Using functions that aren’t referentially transparent in
functional code (such as FRP).

Can you cheat just a little? No, you can’t. It may be difficult to grasp this now, but we
promise you’ll get a lot in return. Experience shows that cheating inevitably leads to
introducing otherwise-avoidable bugs.

 Having given you that lecture, there’s one small exception: diagnostic trace mes-
sages are acceptable when you’re trying to see what values are passing through your
FRP logic to find a bug. These have no logical effect on the rest of the program.
Expect the unexpected with execution order, however.

2.5 The Cell type: a value that changes over time
You’ve seen streams that represent a stream
of events. Now we’ll look at the other type
used in FRP—cell—representing a value that
changes over time.

 Figure 2.3 shows a trivial example. A
GUI label shows the current value of the
text in the text field. Change the text, and
the label’s text will also change.

 A cell is a nice fit for a GUI label widget.
The SLabel in SWidgets gives a visible rep-
resentation of a Cell<String> so that the screen representation is always kept up to
date with the changing cell value. Figure 2.4 shows the conceptual view of plugging
the text field’s output text into the SLabel, and listing 2.2 gives the code.

NOTE Cells don’t initiate state changes like streams do, so we’re drawing cells
with a small arrow head in the middle of the line. This is to indicate that
they’re passive, while streams are the active agency in FRP. We think this idea
is important.

Figure 2.3 A label that always shows the
current text of the text field

text
msg Ibl

STextField SLable

Figure 2.4 Conceptual view of the label example: STextField
exports its current text, and SLabel imports it.

35The Cell type: a value that changes over time

import javax.swing.*;
import java.awt.FlowLayout;
import swidgets.*;
import nz.sodium.*;

public class label {
 public static void main(String[] args) {
 JFrame frame = new JFrame("label");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setLayout(new FlowLayout());
 STextField msg = new STextField("Hello");
 SLabel lbl = new SLabel(msg.text);
 frame.add(msg);
 frame.add(lbl);
 frame.setSize(400, 160);
 frame.setVisible(true);
 }
}

Check it out with git if you haven’t done so already, and run it like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/swidgets/java
mvn test -Plabel or ant label

DEFINITION Cell—A container for a value that changes over time. Some FRP
systems call it a behavior, property, or signal.

NOTE The term signal is mostly used in systems that don’t distinguish
between stream and cell.

A stream contains events that fire at discrete times. A stream event only has a value
instantaneously when it fires, but a cell always has a value that can be sampled at any
time. In FRP, cells model state, while streams model state changes.

Listing 2.2 label example: a label showing text field’s text

What? Cell is a mutable variable?!

When you learn functional programming, it’s drummed into you that you shouldn’t use
non-local mutable variables. Mutable variables break compositionality, a property
that’s highly prized in functional programming. We agree completely.

Yet an FRP cell is modified in place, making it technically a non-local mutable variable.
What’s going on here? This paradox is resolved as follows.

State mutation is evil—in the technical sense of the word, meaning it breaks compo-
sitionality. Event handling is inherently stateful, so it’s similarly touched by the mark
of Cain. FRP can’t change this unavoidable fact.

In horror stories, demons can never be killed; they can only be banished. This is a
good thing, because it means you can always make more money off a sequel.

36 CHAPTER 2 Core FRP
Here are some things that may make sense modeled as a cell:

■ The position of the mouse cursor in an application window
■ The position of a spaceship in a video game
■ The current state of a polygon you’re editing
■ Vehicle speed, vehicle odometer, or current GPS position
■ Time
■ Whether the Wi-Fi network is online or offline
■ Signal strength
■ Temperature

2.5.1 Why Stream and Cell?

The clearfield example changes the contents of an STextField, and the label exam-
ple changes an SLabel. In both cases, you pass something in to the constructor to
cause those changes to occur. Compare these lines:

STextField text = new STextField(sClearIt, "Hello");
SLabel lbl = new SLabel(msg.text);

In the first line, you pass a stream; and in the second, you pass a cell. Why the
difference?

■ In clearfield, both the user and the program can change the STextField’s
text. Should the text field follow what the program says, or what the user says? It
needs to change according to events from both sources. A stream, representing

(continued)

In a similar way, FRP takes the evil of event handling, divides it into little pieces, and
then banishes each piece into an evil-proof box called a stream or a cell. The evil is
then divided so it can’t conspire against you, and it’s contained, rendering it good on
the outside.

By good we mean it has been transformed into something that obeys the rules of func-
tional programming. Although the value held inside is mutable, the container itself—
Stream or Cell—is an immutable value, so it can be used in referentially transparent
functions.

It may take a little while to get your head around this, but it’s an important point, so
please make sure you understand it. The immutability of the Stream and Cell classes
means your FRP code is compositional. Now the techniques of functional programming
are available to you, and that’s where the true benefits of FRP come from.

Note that the evil is contained only as long as Pandora doesn’t come along and open
the evil-proof box. This is why it’s vital that you don’t break the rules: the functions
you pass to FRP primitives must be referentially transparent. We’ll say it one more
time just to be clear: cheats never prosper.

clearfield example
label example

37The Cell type: a value that changes over time
discrete events, is a better fit, because you want to model the ability to make dis-
crete changes to the text field’s current text string.

■ In label, the label’s text is completely controlled by the program, and its dis-
play represents a string value that can change. Cell fits this better.

2.5.2 The constant primitive: a cell with a constant value

Cells usually change over time, but it’s also possible to construct them with a constant
value:

Cell<Integer> dozen = new Cell<>(12);

There’s no way to modify a cell after it’s created, so its value is guaranteed to be con-
stant forever.

2.5.3 Mapping cells

We can illustrate map on cells by reversing
the string in the previous example. See fig-
ure 2.5.

 Figure 2.6 shows the conceptual view
again. (If you’re viewing this in color, we’ll
show operations that output cells in blue.)
Listing 2.3 shows the code.

Figure 2.6 The conceptual review of the reverse example

import javax.swing.*;
import java.awt.FlowLayout;
import swidgets.*;
import nz.sodium.*;

public class reverse {
 public static void main(String[] args) {
 JFrame frame = new JFrame("reverse");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setLayout(new FlowLayout());
 STextField msg = new STextField("Hello");
 Cell<String> reversed = msg.text.map(t ->
 new StringBuilder(t).reverse().toString());
 SLabel lbl = new SLabel(reversed);
 frame.add(msg);
 frame.add(lbl);

Listing 2.3 Using map to reverse the text

Figure 2.5 Using map to reverse the text in a
cell

text
msg

reversed
reverse(t) Ibl

STextField

t

SLabel

38 CHAPTER 2 Core FRP
 frame.setSize(400, 160);
 frame.setVisible(true);
 }
}

Check it out with git if you haven’t done so already, and run it like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/swidgets/java
mvn test -Preverse or ant reverse

2.6 The merge primitive: merging streams
Let’s say you like playing Japanese board
games online. The game window has a little
chat window next to it. Let’s add a couple of
buttons for canned messages to make it
more convenient to say two commonly used
phrases: “Onegai shimasu” to greet your
opponent, and “Thank you” at the end of
the game. See figure 2.7. This is essentially
the same as the clearfield example, but
with two buttons instead of one.

 In figure 2.8, we have two sources of canned messages, and we use the new merge
primitive to merge them together. We’ll draw merge as a trapezoid. (It was our child-
hood wish to one day write a book with the word trapezoid in it.)

Figure 2.8 Merging two text streams into one

Listing 2.4 gives the code. STextField takes only one stream as input, so you need to
merge the two into one. This example uses a Sodium variant of merge called
.orElse(). This naming has to do with how it handles simultaneous events, which
we’ll explain next.

import javax.swing.*;
import java.awt.FlowLayout;
import swidgets.*;
import nz.sodium.*;

Listing 2.4 Merging two canned message sources into one

Figure 2.7 Buttons for poking canned
messages into the text field

sClicked

sClicked
SButton

STextField
sCanned

SButton

39The merge primitive: merging streams
public class gamechat {
 public static void main(String[] args) {
 JFrame frame = new JFrame("gamechat");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setLayout(new FlowLayout());
 SButton onegai = new SButton("Onegai shimasu");
 SButton thanks = new SButton("Thank you");
 Stream<String> sOnegai = onegai.sClicked.map(u ->
 "Onegai shimasu");
 Stream<String> sThanks = thanks.sClicked.map(u -> "Thank you");
 Stream<String> sCanned = sOnegai.orElse(sThanks);
 STextField text = new STextField(sCanned, "");
 frame.add(text);
 frame.add(onegai);
 frame.add(thanks);
 frame.setSize(400, 160);
 frame.setVisible(true);
 }
}

Check it out with git, if you haven’t done so already, and run it like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/swidgets/java
mvn test -Pgamechat or ant gamechat

DEFINITION The merge primitive puts the events from two streams together
into a single stream. The name merge for this primitive is universal, but you
may encounter the more mathematical terms union and append.

The two input streams and one output stream of the merge operation must all have
the same type. In the example, Stream<String> is the type. merge gives you a stream
such that if either of the input streams fires, an event will appear on the output stream
at the same time.

2.6.1 Simultaneous events

We alluded earlier to the fact that FRP processing takes place in a transactional con-
text. This is basically the same idea as the transactions used in databases.

How are transactions started in Sodium?

Sodium automatically starts a transaction whenever an input value is pushed into a
stream or cell. Any state changes that occur as a result of that input are performed
within the same transaction. Mostly you don’t need to do anything, but it’s possible
to start a transaction explicitly.

For the reasons we’ve explained, we want to leave the explanation of how to push
input values until a later chapter.

40 CHAPTER 2 Core FRP
sOnegai and sThanks both come from the SButton class. We wrote SButton in such a
way that it starts a new transaction for each button click event, so we happen to know
that two different button events can’t occur in the same transaction. Thus sCanned will
never encounter the situation where two events can occur in the same transaction.

DEFINITION Simultaneous events—Two or more stream events that occur in the
same transaction. In Sodium, they’re truly simultaneous, because their order
relative to each other can’t be detected.

It’s normal practice in FRP for each external event to run in a new transaction, so it’s
normally OK to assume that no two events from external streams will be simultaneous.
This is what we did in SButton. But we can’t always assume events aren’t simultaneous.
Because external streams aren’t usually a source of simultaneity, simultaneous events
are almost always caused by two streams that are modifications of a single input
stream.

EXAMPLE: SIMULTANEOUS EVENTS IN A DRAWING PROGRAM

Let’s say you’re developing a program for drawing diagrams, in which graphical ele-
ments can be selected or deselected. The rules are these:

■ If you click an item, it’s selected.
■ If an item is selected, and you click elsewhere, the item gets deselected.

Figure 2.9 illustrates us performing three steps with the diagram program:

1 At first nothing is selected, and we’re ready to
click the triangle.

2 When we’ve clicked the triangle, it’s high-
lighted.

3 We get ready to click the octagon.

At this point, a single mouse click will cause two
simultaneous events to be generated:

■ Deselecting the triangle
■ Selecting the octagon

You’ll almost certainly want to merge these streams
at some point in the program. Because these two
events originate in the same mouse click event,
they’re simultaneous. All three events—the mouse
click, the deselect, and the select—are conceptually
truly simultaneous in FRP, meaning it’s impossible to
detect any ordering in their occurrence.

 In appendix B, we use this example to illustrate
the first plague of listeners: unpredictable order. You’ll
find the code there.

Figure 2.9 Three steps in using
the diagram program

41The merge primitive: merging streams
DEALING WITH SIMULTANEOUS EVENTS

Each FRP system has its own policy for merging simultaneous events. Sodium’s policy
is as follows:

■ If the input events on the two input streams are simultaneous, merge combines
them into one. merge takes a combining function as a second argument for this
purpose. The signature of the combining function is A combine(A left, A
right).

■ The combining function is not used in the (usually more common) case where
the input events are not simultaneous.

■ You invoke merge like this: s1.merge(s2, f). If merge needs to combine simul-
taneous events, the event from s1 is passed as the left argument of the combin-
ing function f, and the event from s2 is passed on the right.

■ The s1.orElse(s2) variant of merge doesn’t take a combining function. In the
simultaneous case, the left s1 event takes precedence and the right s2 event is
dropped. This is equivalent to s1.merge(s2, (l, r) -> l). The name
orElse() was chosen to remind you to be careful, because events can be
dropped.

This policy has some nice results:

■ There can only ever be one event per transaction in a given stream.
■ There’s no such thing as event-processing order within a transaction. All events

that occur in different streams within the same transaction are truly simultane-
ous in that there’s no detectable order between them.

Some formulations of FRP don’t force you to combine simultaneous events, so they
allow more than one event per stream. But we think Sodium’s policy—forcing the
decision for every merge—is the right thing to do because we get true event simulta-
neity. This helps simplify the job of reasoning about logic.

NOTE Heinrich Apfelmus, author of the Reactive Banana FRP system, is also a
proponent of forcing the programmer to combine simultaneous events for
every merge.

How simultaneous events are handled depends only on things specified locally to
merge, not on things in distant parts of the program. This guarantees compositional
semantics, and compositionality is vital for reducing bugs. We’ll go into the reasons
for this in chapter 5.

NOTE In some FRP-like systems, there is no concept of simultaneous events,
so merge can’t be guaranteed to act consistently. This breaks compositional-
ity, so these systems technically aren’t true FRP systems. At the time of writing,
the system known as Reactive Extensions (Rx) and the many systems inspired by
it don’t meet this requirement. We hope this will change because the prob-
lems that result from it aren’t just theoretical.

42 CHAPTER 2 Core FRP
2.6.2 Collection variants of merge

Sodium’s Stream class also provides the following variants of merge that work on col-
lections of streams. Every FRP system has an equivalent:

static <A> Stream<A> orElse(java.lang.Iterable<Stream<A>> ss)
static <A> Stream<A> merge(java.lang.Iterable<Stream<A>> ss, Lambda2<A,A,A> f)

2.6.3 How does merge do its job?

How does merge do the job of combining simultaneous events? To answer this ques-
tion, we’re going to descend once again into the fetid world of the operational.

 The bottom of figure 2.10 shows the execution of the merge example from the pre-
vious section operationally in sequence. You see a transaction executing in time.

 Conceptually, the order of the events on sDeselect and sSelect isn’t detectable;
but here we show them occurring operationally in the opposite of the desired order.
The merge implementation has to store the events in temporary storage until a time
when it knows it won’t receive any more input. Then it outputs an event: if it received
more than one, it uses the supplied function to combine them; otherwise, it outputs
the one event it received.

Figure 2.10 The mechanics of how merge deals with
simultaneous events

Conceptual
view

Execution
in timesSelect

sSelect

sChange

sChange

sDeselect

sDeselect

left

left

right

right

43The hold primitive: keeping state in a cell
2.7 The hold primitive: keeping state in a cell
In figure 2.11, the user can click Red or Green. You’ll use a new primitive hold to hold
the result in a cell that you then show in an SLabel; the code is shown in listing 2.5.

 Figure 2.12 shows the conceptual view.
The stream events represent the changes to
the state, and the cell holds the state. SLabel
then shows the current state on the screen.
To recap, we’re using the following diagram
elements:

■ Yellow boxes for primitives that output
streams (assuming you’re viewing this
in color)

■ Arrows for streams
■ Blue boxes for primitives that output cells
■ Lines with a small arrow head in the middle for cells

Figure 2.12 Conceptual view of holding red or green event

import javax.swing.*;
import java.awt.FlowLayout;
import swidgets.*;
import nz.sodium.*;

public class redgreen {
 public static void main(String[] args) {
 JFrame frame = new JFrame("redgreen");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setLayout(new FlowLayout());
 SButton red = new SButton("red");

The function must be referentially transparent

As a reminder, all functions passed to FRP primitives must be referentially transparent,
or pure. This means they must not perform I/O, modify or read external state, or keep
internal state. Cheating always ends in tears. This is important.

Listing 2.5 Holding a stream to turn it into a cell

Figure 2.11 Selecting the color red or
green, after clicking Red

sClicked

sClicked

green

red

sGreen

colorsColor
SLabelsRed

44 CHAPTER 2 Core FRP
 SButton green = new SButton("green");
 Stream<String> sRed = red.sClicked.map(u -> "red");
 Stream<String> sGreen = green.sClicked.map(u -> "green");
 Stream<String> sColor = sRed.orElse(sGreen);
 Cell<String> color = sColor.hold("");
 SLabel lbl = new SLabel(color);
 frame.add(red);
 frame.add(green);
 frame.add(lbl);
 frame.setSize(400, 160);
 frame.setVisible(true);
 }
}

Check it out with git, if you haven’t done so already, and run it like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/swidgets/java
mvn test -Predgreen or ant redgreen

DEFINITION The hold primitive converts a stream into a cell in such a way that
the cell’s value is that of the most recent event received. Other names you
might encounter are stepper and toProperty.

NOTE The name stepper comes from FRP systems that emphasize continu-
ous time. With continuous time, you can represent a cell that changes contin-
uously over time. In continuous-time systems, stepper is the primitive for
constructing non-continuous cells that change their value at discrete times, so
the name reflects this.

Note that cells are how you model state in FRP, and they’re the only mechanism for
doing so. hold allows you to store a stream event’s value so it can be retrieved later.

 There’s a golden rule for cells: a cell always has a value. It can be sampled at any
time. To ensure that this invariant is maintained, hold requires you to specify an initial
value to use as the cell’s value until the first change event is received.

A quick recap: cells and hold

A cell models a value that changes over time.

■ A cell always has a value that can be sampled at any time, whereas a stream
only has a value instantaneously when it fires. A cell has a memory, although
it’s probably best to say a cell is a memory.

■ hold takes a stream and an initial value and creates a cell that starts off with
the initial value; then the value changes to the stream event’s value whenever
that stream fires.

■ You can use map on a cell to create a new cell. This is analogous to what we
did with streams.

Specifies the initial
value of the cell

45The snapshot primitive: capturing the value of a cell
2.8 The snapshot primitive: capturing the value of a cell
In the cell example, the SLabel’s text changed as the user typed into the text field. In
a real application, this might be a bit distracting for the user. Now we’re going to show
you a different way of reading the text from a text field using the snapshot primitive:
you’ll let the user type, and only capture the text when they click a button.

 Figure 2.13 shows what happens when
the user clicks Translate: you capture the
text, translate it into mock Latin,1 and
show the result in an SLabel. Figure 2.14
gives the conceptual view; the code is in
listing 2.6. text is sampled when sClicked
fires, and the output is the result of the
translate function applied to the two
input values. The function discards the
button’s Unit value.

 We hope that drawing cell lines without big arrow heads will help show that
streams are the active agency in FRP. When performing the snapshot, the stream
event “pulls” the value out of the cell.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import swidgets.*;
import nz.sodium.*;

public class translate {
 public static void main(String[] args) {
 JFrame view = new JFrame("Translate");
 view.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 view.setLayout(new FlowLayout());
 STextField english = new STextField("I like FRP");
 SButton translate = new SButton("Translate");

1 To create mock Latin, you add us to the end of each word. It’s useful in situations where a superficial air of
authority is called for, although none immediately come to mind. Note that we’ve only tested this with English
input; it may work in other languages, too.

Listing 2.6 Capturing a cell’s value when a button event occurs

Figure 2.13 Clicking Translate translates the
text into mock Latin.

sClicked

sLatin
translate(t)

latin
SLabel

SButton

translate

english

IblLatin
STextField Figure 2.14 Conceptual

view of capturing text when
the user clicks a button

46 CHAPTER 2 Core FRP
 Stream<String> sLatin =
 translate.sClicked.snapshot(english.text, (u, txt) ->
 txt.trim().replaceAll(" |$", "us ").trim()
);
 Cell<String> latin = sLatin.hold("");
 SLabel lblLatin = new SLabel(latin);
 view.add(english);
 view.add(translate);
 view.add(lblLatin);
 view.setSize(400, 160);
 view.setVisible(true);
 }
}

Check it out with git, if you haven’t done so already, and run it like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/swidgets/java
mvn test -Ptranslate or ant translate

DEFINITION The snapshot primitive captures the value of a cell at the time
when a stream event fires; it can then combine the stream and cell events
together with a supplied function. In other FRP systems, it goes by the name
withLatest, attach, or tag.

Figure 2.15 shows the time sequence of the execution of a snapshot operation. We’ve
drawn the cell’s value stretched across the length of the transaction, to illustrate the
idea that a cell always has a value; this is in contrast to streams, which only have a value
instantaneously when they fire.

Conceptual
view

Execution
in time

Stream

Cell

Cell always
has a value

Figure 2.15 Execution in time
of a snapshot operation

47Looping hold and snapshot to create an accumulator
snapshot also has a variant without the second function argument that ignores the
stream value and just captures the cell value. For example, to capture the English with-
out translating it, you could do this:

Stream<String> sEnglish = translate.sClicked.snapshot(english);

NOTE Most systems including Sodium have variants of snapshot that can
take more than one cell as input, up to some sensible limit in the implemen-
tation.

2.9 Looping hold and snapshot to
create an accumulator
To illustrate how you can accumulate
state changes, let’s implement a simple
spinner—see figure 2.16. The accumu-
lated value is kept in a cell, and you use
an SWidgets SLabel to display it.

 Figure 2.17 shows the conceptual view.
The accumulator is circled.

Figure 2.17 Conceptual view of accumulating + and - button clicks, with the accumulator circled

2.9.1 Forward references

Before we give the complete listing, we need to have a little chat about forward refer-
ences. Are you sitting comfortably? Then we’ll begin.

 You start by making a stream of deltas of 1 when + is clicked and -1 when - is
clicked, like this:

Stream<Integer> sPlusDelta = plus.sClicked.map(u -> 1);
Stream<Integer> sMinusDelta = minus.sClicked.map(u -> -1);
Stream<Integer> sDelta = sPlusDelta.orElse(sMinusDelta);

All you have to do is accumulate the sDeltas:

Stream<Integer> sUpdate = sDelta.snapshot(value,
 (delta, value_) -> delta + value_
);
Cell<Integer> value = sUpdate.hold(0);

Figure 2.16 A spinner example: + increments
the value, and - decrements it.

Accumulator

SButton

SButton

SLabelsPlusDelta

sMinusDelta

IblValue

toStringsClicked

value

sClicked

48 CHAPTER 2 Core FRP
Unfortunately, Java won’t let you write this, because you’re defining value in terms of
itself. value depends on sUpdate, and sUpdate depends on value.

DEFINITION Value loop—In functional programming, a value (in this case, a
stream or cell) defined directly or through other variables in terms of itself.

In our youth, we considered it important to make our breakfast before eating it. We
recognized long ago that there was a dependency relationship between the two. But
only in a Euclidean universe must one be temporally before the other, which is to say we
prefer to think in terms of dependency rather than sequence.

 Java isn’t entirely on board with this way of thinking, so in Sodium we use a trick
called CellLoop to get around it. Here’s the Sodium code:

CellLoop<Integer> value = new CellLoop<>();
Stream<Integer> sUpdate = sDelta.snapshot(value,
 (delta, value_) -> delta + value_
);
value.loop(sUpdate.hold(0));

CellLoop is like an immutable variable that you assign once through its loop()
method. But unlike a normal variable, you can reference it before it’s assigned.

NOTE For streams, there is a corresponding StreamLoop.

CellLoop and StreamLoop are subclasses of Cell and Stream. They’re equivalent in
every way to the Cell or Stream assigned to them using loop()—and the key idea is
that you can use them freely before loop() is called. The only purpose they serve is to
make forward references possible. But we take it one step further and allow cycles in
variable references. This may look like black magic, and it is, but we assure you it isn’t
complex. It only looks that way because your thoughts are cluttered with complexities
relating to execution sequence. Banish them from your mind.

NOTE FRP code exists outside of time. Less poetically, there is no concept of
sequence in FRP statements. You could take a blob of FRP code, arrange the
lines in a random order, and insert CellLoops and StreamLoops as needed,
and the code would work exactly the same. We call this the “sea sponge in a
blender” principle, because it’s said that if you put a sea sponge through a
blender, it can reassemble itself. We don’t really believe this.

2.9.2 Constructing FRP in an explicit transaction

The recommended practice with Sodium is to construct the FRP logic for a program
under a single big, explicit transaction. In most cases, Sodium will start transactions
automatically for you as needed. But CellLoop and StreamLoop are sensitive petals
and require the declaration and the .loop() call to be in the same transaction. They
will throw an exception if this isn’t done.

49Looping hold and snapshot to create an accumulator
 To wrap some code in an explicit transaction, you can write this (we’re using Java 8
lambdas again):

Transaction.runVoid(() -> {
 ... your code ...
}

If you want to return a value from the transactional block, do this:

A a = Transaction.run(() -> {
 ... your code ...
 A a = ...;
 return a;
}

DEFINITION Loan pattern—Method where you pass a lambda to some function
that opens and closes a resource for you. It’s often used with files. This is a
good idea because it’s impossible to accidentally forget to close the resource.
If this isn’t making sense, please skip ahead to the more detailed explanation
of the loan pattern in section 8.3; that section also covers transactions in more
detail.

2.9.3 Accumulator code

The following listing puts together all the elements of the accumulator.

import javax.swing.*;
import java.awt.FlowLayout;
import swidgets.*;
import nz.sodium.*;

public class spinner {
 public static void main(String[] args) {
 JFrame view = new JFrame("spinner");
 view.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 view.setLayout(new FlowLayout());
 Transaction.runVoid(() -> {
 CellLoop<Integer> value = new CellLoop<>();
 SLabel lblValue = new SLabel(
 value.map(i -> Integer.toString(i)));
 SButton plus = new SButton("+");
 SButton minus = new SButton("-");
 view.add(lblValue);
 view.add(plus);
 view.add(minus);
 Stream<Integer> sPlusDelta = plus.sClicked.map(u -> 1);
 Stream<Integer> sMinusDelta = minus.sClicked.map(u -> -1);
 Stream<Integer> sDelta = sPlusDelta.orElse(sMinusDelta);
 Stream<Integer> sUpdate = sDelta.snapshot(value,
 (delta, value_) -> delta + value_
);

Listing 2.7 Accumulating + and - button clicks

Wraps code
in an explicit

transaction

Forward
reference

50 CHAPTER 2 Core FRP
 value.loop(sUpdate.hold(0));
 });
 view.setSize(400, 160);
 view.setVisible(true);
 }
}

Check it out with git, if you haven’t done so already, and run it like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/swidgets/java
mvn test -Pspinner or ant spinner

DEFINITION Accumulator—A piece of state that’s updated by combining new
information with the existing state.

We’ve shown you how to build an accumulator from three basic elements: hold, snap-
shot, and loops or forward references. Sodium and other FRP systems give you a more
convenient way to write accumulators through methods with names like accum() and
collect(), but they are just helpers based on these three elements.

2.9.4 Does snapshot see the new value or the old value?

When an event enters your FRP logic through a stream, it causes a cascade of state
changes. As we explained, this happens under a transactional context, so all the state
changes that result from a given event are made atomically.

DEFINITION If a set of state changes is made atomically, it means to all appear-
ances they’re made at the same time. That is, it’s impossible to observe a situ-
ation where some have been made but not others. The property of atomicity
can save you from a cosmos of lamentation.

In the last example, we looked at an accumulator, where you read from a cell using
snapshot and wrote to it using hold in the same transaction. Does snapshot see the
new value or the old value of value? In this case, it would be impossible to update
value before reading it because the new value to be written depends on what was
read. It would eat its own tail and implode to a singularity.

 But what about the more general case, where the same event—implying the same
transaction—causes cell A both to be updated through a hold and also to be snap-
shotted? Does snapshot see cell A before or after the update?

 Each FRP system takes a different approach to this problem. Sodium works the
same as Conal Elliott’s formulation of FRP, saying that snapshot always sees the old
value. You can view this in two equivalent ways. Either

■ snapshot sees the value as it was at the beginning of the transaction.
or

■ hold updates are performed atomically at the end of the transaction. This is
how we’ve shown it in figure 2.18.

51Looping hold and snapshot to create an accumulator
Figure 2.18 shows the execution sequence of hold committing its updates at the end
of the transaction. Here value is 5 and the user clicks +.

 Here are some approaches you might see in other FRP systems:

■ Some say their snapshot equivalent sees the new value and will behave unpre-
dictably if there’s a loop.

■ Some normally give the new value but have an explicit delay primitive so you
can get the old value. An accumulator is expressed as a loop of hold-delay-
snapshot.

■ Some don’t allow value loops and provide only higher-level accum-style
primitives.

So delay can be seen as a separate primitive, but in Sodium it’s implicit.

The need for a non-delaying hold

Sodium’s hold has an implicit delay. Some people argue that a non-delaying hold
is also needed in some circumstances. We’ve done quite well without it. We aren’t
convinced that a non-delaying hold is necessary, but we’ll leave this for you to con-
template.

Stream

Cells are updated
atomically at

end of
transaction

Cell always
has a value

Conceptual
view

Execution
in time

Figure 2.18 The execution sequence of updating an accumulator: value
is 5, and the user clicks +.

52 CHAPTER 2 Core FRP
2.10 The filter primitive: propagating an event only sometimes
Let’s say you want to modify the previous spinner example so that the accumulated
number can’t be negative. Figure 2.19 gives the conceptual view of how to do this with
a primitive called filter (circled). We’re borrowing the decision box diamond from
flowcharts to represent the decision of whether to keep the event.

Figure 2.19 Add a filter to prevent the spinner’s value from becoming negative.

Instead of a full listing, here’s the modified line, with the addition shown in bold:

Stream<Integer> sUpdate = sDelta.snapshot(value,
 (delta, value_) -> delta + value_
).filter(n -> n >= 0);

If the value of sUpdate is >= 0, it’s let through. If not, it’s discarded, and no update is
received by hold.

 Check it out with git, if you haven’t done so already, and run it like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/swidgets/java
mvn test -Pnonegative or ant nonegative

DEFINITION Filter—To let stream values through only sometimes. This is a
general functional programming concept, and this name is used universally
in FRP systems.

(continued)

In Sodium, there are two ways to work around the need for a non-delaying hold. The
first is to use a combination of a non-core primitive Operational.updates() and
the merge primitive to capture the update of a cell that’s being made in the current
transaction. The second is to use a non-core primitive called Operational.defer()
that creates a new transaction. We’ll cover all of these in chapter 8; we’ve found that
this sort of thing isn’t often needed in practice.

SButton

SButton

sClicked

sClicked

sPlusDelta

sMinusDelta

toString

IblValue
sUpdate

sDelta

value

SLabel

53The lift primitive: combining cells
We’ve said it before, and we’ll say it again (and again). Like all functions you use with
FRP, a filter function must be pure or referentially transparent. This means

■ It must not cause external effects such as I/O or state changes.
■ It must be not be affected by external state.
■ For a given input value, it must always give the same output value.

If you need to filter based on some state, you need to snapshot a cell first and then
filter the output. Referential transparency is important.

NOTE In Sodium there is a variant of filter called filterOptional that’s
more suitable for this case. We’ll show some examples of it later.

2.11 The lift primitive: combining cells
The lift primitive allows you to combine
two or more cells into one using a speci-
fied combining function. Let’s add two
integers together with an add function. In
figure 2.20, the label shows the sum of the
values in the text fields.

 Figure 2.21 shows the conceptual view.
You convert the input text field values to
integers, add them with lift, and then convert the result back to a string to stick
into an SLabel.

Figure 2.21 Conceptual view of adding two text fields together

The following listing shows the code. The first argument to lift is the cell to combine
with this one, and the second argument is a function to perform that, in our case,
adds two integers together.

import javax.swing.*;
import java.awt.FlowLayout;
import swidgets.*;
import nz.sodium.*;

Listing 2.8 Adding two text fields together

Figure 2.20 Adding two cells together

sum

STextField

STextField

SLabel
text

text

txtA

txtB

IblSum

54 CHAPTER 2 Core FRP
public class add {
 public static void main(String[] args) {
 JFrame frame = new JFrame("add");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setLayout(new FlowLayout());
 STextField txtA = new STextField("5");
 STextField txtB = new STextField("10");
 Cell<Integer> a = txtA.text.map(t -> parseInt(t));
 Cell<Integer> b = txtB.text.map(t -> parseInt(t));
 Cell<Integer> sum = a.lift(b, (a_, b_) -> a_ + b_);
 SLabel lblSum = new SLabel(sum.map(i -> Integer.toString(i)));
 frame.add(txtA);
 frame.add(txtB);
 frame.add(lblSum);
 frame.setSize(400, 160);
 frame.setVisible(true);
 }
 private static Integer parseInt(String t) {
 try {
 return Integer.parseInt(t);
 } catch (NumberFormatException e) {
 return 0;
 }
 }
}

Check it out with git, if you haven’t done so already, and run it like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/swidgets/java
mvn test -Padd or ant add

lift is like the map operation that works with cells, except that it takes two or more
cells as input instead of one. lift takes as its last argument a function with the multi-
ple input arguments matching the number and types of the cells.

DEFINITION Lift —A functional programming term meaning to make a func-
tion that operates on values into a function that operates on some type of con-
tainer of those values. It’s called this because you’re “lifting” a function that
operates on values into the world of cells. Cell is the container type in the
example, but you can lift into any container type such as List or Optional.
We won’t say more, because it isn’t needed for FRP, but you’ll find this dis-
cussed in any book on functional programming such as Grokking Functional
Programming by Aslam Khan (Manning, forthcoming).

You can lift any number of cells up to some sensible limit in the FRP library implemen-
tation. lift’s output cell is automatically kept up to date when the inputs change. You
never again need to worry about whether a value is up to date or not.

NOTE map on cells can be seen as a lift of a single cell. Some FRP systems
use the term map for both single-cell and multiple cell cases, and some use

55Referential transparency dos and don’ts
lift for both. In Sodium, you map a single Stream or a Cell, and you lift
when you have two or more Cells.

2.12 The never primitive: a stream that never fires
There’s one more primitive to cover in this chapter, and it’s an easy one,
because…well…it doesn’t do anything.

DEFINITION Never stream—A stream that can’t ever fire. This name is universal
in FRP systems.

In Sodium it doesn’t have the name never. You get it by constructing a stream with no
arguments. For example:

Stream<String> sNone = new Stream<String>();

A stream constructed this way has no mechanism to cause it to fire, so it’s guaranteed
never to fire.

NOTE All state changes in FRP are caused by stream events. FRP is reactive, and
this property requires that all events should originate in I/O from outside the
FRP logic. This is an important principle. That’s why—apart from external
events originating in I/O—the only kind of stream you’re allowed to con-
struct directly is one that never fires.

never is primarily used when you don’t want a particular feature of some logic you’ve
written. We used it in when implementing SWidgets. STextField has two constructors:

public STextField(String initText)
public STextField(Stream<String> sText, String initText)

The second constructor has the extra feature of allowing the text field’s text to be
changed programmatically. We wrote the first constructor by passing a never stream
to the second constructor:

this(new Stream<String>(), initText);

Incidentally, a constant cell is equivalent to holding a never stream:

Cell<Integer> dozen = new Stream<Integer>().hold(12);

NOTE Strictly speaking, constant isn’t a primitive, because it can be written
in terms of hold and never.

2.13 Referential transparency dos and don’ts
As we’ve said, it’s important that all functions you pass to FRP primitives be pure, or
referentially transparent. Table 2.1 lays this out and gives suggestions on what to do in
situations that commonly arise.

56 CHAPTER 2 Core FRP

Table 2.1 Referential transparency (which is important): some guidance in the face of temptation

Do / Don’t Explanation / Do instead

Don’t read
state from
outside the
function.

When dealing with streams: model your state as a cell, and capture its value with
snapshot.
When dealing with cells: model your state as a cell, and capture its value with lift.
The test: for given input arguments, the function must always produce the same value.

Do read
constants
from outside
the function.

If the function captures a value as a constant from the enclosing scope—that is, it can’t
change for the life of the function—this isn’t state. We encourage constants:

final double kmPerMile = 1.609344;
Cell<Double> km = mi.map(mi_ -> mi_ * kmPerMile);

Don’t modify
state visible
outside the
function.

When dealing with streams: place the value you want to write in a data structure or tuple
along with the value you’re already returning from the function, and then split the output
stream in two using two maps. Feed the wanted stream into the hold of a cell.
Example: let’s say you have timestamped mouse events, and you want to extract the
positions of mouse-down events:

Stream<Point> sDown = sMouse
 .filter(m -> m.type == MouseEvent.DOWN)
 .map(m -> m.pos);

Now you want to record the timestamp of the last mouse down. You’re not allowed to
write directly to a variable. Here is how to follow our advice directly, although it can be
shortened:

Cell<new Tuple2<Point, Time>> sPair = sMouse
 .filter(m -> m.type == MouseEvent.DOWN)
 .map(m -> new Tuple2<Point, Time>(m.pos, m.time));
Stream<Point> sDown = sPair.map(p -> p.a);
Cell<Time> sLastTime = sPair.map(p -> p.b).hold(0);

When dealing with cells: the idea is the same as with streams. Tuple the values up, and
split with two maps.
If you want to output a stream, you can’t. You aren’t allowed to output a stream from a
primitive that works on cells. State changes in cells aren’t allowed to be converted to
streams directly. If you’re trying to do this, you should be using streams instead of cells.

Don’t keep
state
between
invocations
of the
function.

For given input values, the function must always produce the same output value. That
means no internal state.
When dealing with streams: keep your state in a cell, and snapshot it to read its value.
To write back to the cell, tuple the update value up with whatever stream value you’re
returning from your function, and then split the output stream in two using two maps.
Feed the update stream into the hold of the cell you’re using to store the state.
Example—suppose you’re parsing some sort of network packet:

Stream<Message> sMessage = sPkt.map(p -> parseMsg(p));

What if you want to add a unique ID to each message? You’re not allowed to use an
external variable directly. Instead, you do this:

StreamLoop<Integer> sID = new StreamLoop<>();
Cell<Integer> id = sID.hold(0);
Stream<Tuple2<Message, Integer>> sPair = sPkt.snapshot(id,
 (p, i) -> new Tuple2<Message, Integer>(
 new Message(i, parseMsg(p)),
 i+1));
Stream<Message> sMessage = sPair.map(p -> p.a);
sID.loop(sPair.map(p -> p.b));

When dealing with cells: if you need to initiate a state change from a cell primitive, you
should be using streams, not cells.

57FRP cheat sheet
We’ve said that all functions passed to FRP primitives must be referentially transpar-
ent, which means no direct contact with the outside world. This is important. FRP as
we’ve presented so far is a closed universe.

 Later we’ll explain how to interface Sodium with the rest of your program, but we
explained why we don’t want you to do that too soon: we’ve presented you with a lot
of unfamiliar material. We’re concerned that if we show you things you’re familiar
with too early, you’ll gravitate toward them. These are precisely the things we’re try-
ing to steer you away from in order to get you to think conceptually instead of opera-
tionally. We know you can swim, but you may not, and that’s why we’ve thrown you in
far from shore.

2.14 FRP cheat sheet
The 10 core primitives are shown in table 2.2. map and switch have stream and cell vari-
ants, but we’re counting them as one each. We’ll cover sample and switch in chapter 7.

These 10 primitives are made more powerful by helpers, which are built out of the
primitives. Sodium provides some common helpers, but the design philosophy is min-
imalist. A lot of the power in FRP comes from the generalness of the helpers you write

Don’t do I/O. To write to I/O: do it in a listener (to be covered in section 8.1).
To read from I/O: push the value into a StreamSink or CellSink (also in section
8.1).

Don’t throw
exceptions.

Exceptions are OK if they’re caught within the function and turned into a returned value,
but you mustn’t allow them to escape.

Do add
debug
traces.

Debug traces have no logical effect on the rest of a program, so they’re acceptable and
can be useful. FRP implementations make no guarantees about when and how often
functions will be executed, so you may get some surprises.

Table 2.2 Table of primitives as they appear in the Java version of Sodium

Class Outputs a stream Outputs a cell Outputs a value

Stream map()
merge() / orElse()
snapshot()
filter()
never / new Stream()

hold()

Cell switchS() map()
lift()
new Cell(constant)
switchC()

sample()

Table 2.1 Referential transparency (which is important): some guidance in the face of temptation

Do / Don’t Explanation / Do instead

58 CHAPTER 2 Core FRP
yourself. You can watch your code shrink as you introduce into your code more and
more helpers specific to your particular problem. FRP facilitates code reuse.

 Sodium emphasizes completeness and minimalism with enough practicality to
make it suitable as a base infrastructure for large projects. Other FRP systems have dif-
ferent design philosophies. Some emphasize practicality, giving you lots of useful help-
ers, and some are designed to be used in a style that mixes FRP with standard
programming approaches. You can mix it up with Sodium, too, but in order to pro-
vide strong guarantees, there’s a clear delineation between the two paradigms.

 We aren’t trying to promote Sodium over any other FRP system. We’ve written
Sodium so that FRP is available with a consistent API in a wide range of languages.
Making it minimal and domain-agnostic helps with that goal.

2.15 Summary
■ A stream is a stream of events, each consisting of a payload value. We also say that

a stream has fired. Other names for stream include event, event stream, observable,
and signal.

■ map is a primitive that gives you a new stream or cell that modifies the contained
value according to a specified function.

■ Given two streams, merge gives you a stream that combines the events from both
input streams.

■ Two events are simultaneous if they occur within the same transaction. By
default, in the simultaneous case with sLeft.orElse(sRight), the event from
the sLeft argument takes precedence, and the sRight event is dropped. If you
want to combine simultaneous events some other way, you can use
sLeft.merge(sRight, f) with your own combining function f.

■ A cell contains a value that changes over time. Other names for cell include
behavior, property, and signal.

■ hold constructs a cell that has an initial value, and changes its value according
to the values fired at it by a stream.

■ Given a stream and a cell, snapshot captures the cell’s value when the stream
fires and allows you to combine the two values (from the stream and the cell)
using a specified function.

■ filter gives you a new stream that lets only some of the events through,
decided by a predicate (a function that returns a Boolean value).

■ Give lift a function that works on two or more input values, and that number
of cells, and it’ll give you a cell that combines the input cells using the specified
function. It’s like map on a cell, but for more than one cell. It’s called lift
because it lifts a function into the world of cells.

■ never gives a stream that never fires.
■ constant gives a cell with a constant value.

59Summary
■ Functions that you pass to FRP primitives must be referentially transparent: they
mustn’t affect or be affected by the outside world, except through their argu-
ments and return value.

■ In Sodium, cell updates aren’t visible in the cell until the next transaction.
Other FRP systems may have different policies.

■ We talked about looping things with CellLoop and StreamLoop, and how they
can be used to implement accumulators. Other FRP systems can take different
approaches to this.

Some everyday
widget stuff
We’re using this short chapter to cement the concepts of FRP with two more simple
SWidget examples. We’re continuing to avoid telling you about StreamSink and
CellSink for now so we can achieve a clear separation in your mind between FRP
and non-FRP. We’ve talked about how people tend to gravitate toward familiar con-
cepts—we don’t want you saying, “I know how to do this” and mixing sinks into
your FRP logic, because this breaks the model. We want you to see what becomes
possible when you view streams and cells only as sources.

 These examples use the same primitives introduced in chapter 2, so you may
need to refer back to it to refresh your memory. Let’s get started.

3.1 Spinner as a standalone SWidget
Let’s take the spinner concept from the previous chapter and separate it out into a
new SWidget. You’ll also use a text field instead of a label so it’s more useful. Figure
3.1 shows what it looks like after you click + once.

This chapter covers
■ Some simple GUI widget examples
60

61Spinner as a standalone SWidget

Add
the
The next listing shows the separated-out SSpinner class. We’ve left out the main pro-
gram. It just constructs an SSpinner and adds it to the view. On the input and output
side of the text field, you convert between integer and string using map.

import javax.swing.*;
import java.awt.*;
import swidgets.*;
import nz.sodium.*;

public class SSpinner extends JPanel {
 SSpinner(int initialValue) {
 StreamLoop<Integer> sSetValue = new StreamLoop<>();
 STextField textField = new STextField(
 sSetValue.map(v -> Integer.toString(v)),
 Integer.toString(initialValue),
 5
);
 this.value = textField.text.map(txt -> {
 try {
 return Integer.parseInt(txt);
 }
 catch (NumberFormatException e) {
 return 0;
 }
 });
 SButton plus = new SButton("+");
 SButton minus = new Sbutton("-");

 setLayout(new GridBagLayout());
 add(textField, ...);
 add(plus, ...);
 add(minus, ...);

 Stream<Integer> sPlusDelta = plus.sClicked.map(u -> 1);
 Stream<Integer> sMinusDelta = minus.sClicked.map(u -> -1);
 Stream<Integer> sDelta = sPlusDelta.orElse(sMinusDelta);
 sSetValue.loop(
 sDelta.snapshot(
 this.value,
 (delta, value) -> delta + value
));
 }

 public final Cell<Integer> value;
}

Listing 3.1 SSpinner: your own spinner widget

Figure 3.1 The spinner after clicking + once

Converts integer to
string for setting the
textField’s textSize of

text field
Converts textField’s current
text to an integer to give
current spinner value

Java layout
stuff omitted

s the delta to
 current value

62 CHAPTER 3 Some everyday widget stuff
Check this out with git, if you haven’t done so already, and run it like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/swidgets/java
mvn test -Pspinme or ant spinme

3.2 Form validation
This chapter is about mundane, day-to-day widget programming, and widget program-
ming doesn’t get much more day-to-day than form validation. Let’s expand on the
theme of form validation with the flight-booking example from chapter 1. Form vali-
dation can be a tedious, bug-prone task, but FRP makes it straightforward.

 Figure 3.2 shows the form with these rules:

■ Name must be non-blank and contain at least one space.
■ The number of email addresses must be in the range of 1–4.
■ Only the selected number of email address fields is enabled.
■ Emails must contain an @ character.

If a validation error occurs, it’s shown in an SLabel to the right of the field with the
error. The OK button is enabled only when the form is validated.

Listing 3.2 gives the form’s field construction and validation logic. We’ve omitted the
verbose Java layout.

 There’s a lot of FRP construction here, and it’s all done in an explicit transaction as
recommended in chapter 2. First you construct the validation rule for each field, giv-
ing a string where "" means it’s valid. You can put this validation result into the dialog
box using an SLabel.

 In a for loop at the end, you map each validation result from a string to a Boolean
cell (where true means the field is valid) and build a chain of lift operations to pro-
duce an allValid cell that is the logical AND of the Boolean valid result of each field.
You pass this to the enabled argument of the SButton’s constructor. Whenever all
fields are valid, the OK button is enabled.

 The FRP describes the validation rules, and all the work of keeping everything up-
to-date is done for you.

Figure 3.2 A form with
validation rules

63Form validation

Each val
an error
or " " wh

The
fields

d
n

L

Boo

Transaction.runVoid(() -> {
 final int maxEmails = 4;

 JLabel[] labels = new JLabel[maxEmails+2];
 JComponent[] fields = new JComponent[maxEmails+2];
 Cell<String>[] valids = (Cell<String>[])Array.newInstance(
 Cell.class, maxEmails+2);
 int row = 0;

 labels[row] = new JLabel("Name");
 STextField name = new STextField("", 30);
 fields[row] = name;
 valids[row] = name.text.map(t ->
 t.trim().equals("") ? "<-- enter something" :
 t.trim().indexOf(' ') < 0 ? "<-- must contain space" :
 "");
 row++;

 labels[row] = new JLabel("No of email addresses");
 SSpinner number = new SSpinner(1);
 fields[row] = number;
 valids[row] = number.value.map(n ->
 n < 1 || n > maxEmails ? "<-- must be 1 to "+maxEmails
 : "");
 row++;

 STextField[] emails = new STextField[maxEmails];
 for (int i = 0; i < maxEmails; i++, row++) {
 labels[row] = new JLabel("Email #"+(i+1));
 final int ii = i;
 Cell<Boolean> enabled = number.value.map(n -> ii < n);
 STextField email = new STextField("", 30, enabled);
 fields[row] = email;
 valids[row] = email.text.lift(number.value, (e, n) ->
 ii >= n ? "" :
 e.trim().equals("") ? "<-- enter something" :
 e.indexOf('@') < 0 ? "<-- must contain @" :
 "");
 }

 Cell<Boolean> allValid = new Cell<Boolean>(true);
 for (int i = 0; i < row; i++) {
 view.add(labels[i], ...);
 view.add(fields[i], ...);
 SLabel validLabel = new SLabel(valids[i]);
 view.add(validLabel, ...);
 Cell<Boolean> thisValid = valids[i].map(t -> t.equals(""));
 allValid = allValid.lift(thisValid, (a, b) -> a && b);
 }
 SButton ok = new SButton("OK", allValid);
 view.add(ok, ...);
});

Listing 3.2 An example of form validation

Constructs the FRP in
an explicit transaction

Java’s way to
construct an array
of generic types

idation is
 message
en valid.

 first n email
 are enabled.

STextField is enable
according to a give
Boolean cell.

Disabled fields
don’t fail validation.

Valid if the validation
error is " "

ogical AND of
each row’s

lean validity The button is enabled
if allValid is true.

64 CHAPTER 3 Some everyday widget stuff
Check this out with git, if you haven’t done so already, and run it like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/swidgets/java
mvn test -Pformvalidation or ant formvalidation

3.3 Summary
FRP fits nicely into GUI programming, as illustrated with a couple of practical widget
examples.

Writing a real application
We’ve introduced FRP with some contrived examples and shown you some more
realistic GUI code. Now we want to show you how to write a real-world FRP applica-
tion, this time in the industrial space. In this chapter, you’ll develop a petrol pump.

 It can be difficult to find the right example for FRP. FRP’s pretensions to star-
dom conglomerate around the notion that it deals with complexity, but this doesn’t
manifest in a small example. If the example is too simple, you’ll say, “That was a
weird way of doing things for no apparent benefit.” If the example is too big, it can
be a lot of work for you. We chose the petrol pump idea to strike a balance: the size
is about right, it should be easy to follow because it’s a familiar real-world applica-
tion, and the level of complexity is enough for our purpose.

NOTE This chapter is dense, and we think it will repay the effort you spend
on it, but you don’t have to study it closely right now. If it fits your learning

This chapter covers
■ Putting primitives together to write real code
■ A typical development process
■ Modularity
■ Testability
65

66 CHAPTER 4 Writing a real application
style, feel free to read parts of it briefly, carry on with the book, and come
back here later.

This example uses industry-standard development methodology: you’ll add features
one by one without much deliberate design. We’ve left out refactoring; refactoring is
simple in FRP, and we’ll cover this subject in chapter 13.

4.1 The petrol pump example
We understand that some parts of the United States have fancy gasoline pumps. This
example uses the common or garden-variety petrol pump seen in more ordinary parts
of the world.

 Although the logic of a petrol pump may seem straightforward to someone using
it, it’s difficult enough to cause a few migraines for the programmer once you start
stacking on the features. Fuel flows through a petrol pump into your car, but we’re
going to show you a petrol pump with data flowing through it, too. It’s useful to view
FRP programs as flows of data, and that’s why FRP is sometimes put under the heading
of data flow programming.

 The petrol pump has the following features:

■ Three nozzles for three fuels
■ Three price displays
■ Displays for dollars paid and liters of petrol delivered (we’re using metric vol-

ume measurements, as do most countries other than the United States)
■ A keypad and display for a preset dollar amount
■ A beeper
■ A means of communication with the point-of-sale system

Figure 4.1 shows the petrol pump’s user interface. The user experience is simple:
when you lift one of the three nozzles, the nozzle you lifted selects which fuel to deli-
ver. The simulator then pretends to
be the mechanical parts of the
pump and causes imaginary fuel to
begin flowing. This book won’t
cover the code for the UI graphics
and simulated mechanics; we’ll
only concern ourselves with the
application logic. But you can
download the source code and look
at it if you like.

NOTE The petrol pump’s three
fuels are strawberry, lime, and
kerosene. Figure 4.1 Petrol pump user interface

67The petrol pump example
A real petrol pump nozzle has a
mechanical trigger so you can
make the fuel flow only when
you’ve put the nozzle in the car,
but the simulator acts as if this is
always on, so the fuel will start flow-
ing as soon as the nozzle is lifted.
As the fill progresses, you see a
running total of dollars and liters
delivered, as shown in figure 4.2.

Figure 4.3 shows that when you
hang up the nozzle, the fuel flow
stops, and a message is sent to the
point-of-sale system. This is simu-
lated with a dialog box that pops
up. When you click OK, the fill val-
ues are cleared, and the pump
returns to its initial state.

The pump has one other feature:
you can enter a preset value on the
keypad, which then appears in the
display on the left. When you get
near to the preset dollar value, the
fuel flow slows down, and when
you reach it, the fuel flow stops.
See figure 4.4.

Figure 4.2 Lift the nozzle, and you see running totals of
liters of simulated fuel and dollars spent as you fill your
imaginary car.

Figure 4.3 When you hang up the nozzle, the sale
details are sent to the point-of-sale system.

Figure 4.4 The petrol pump’s flow slows down when you
approach the preset dollar amount.

68 CHAPTER 4 Writing a real application
4.2 Running the petrol pump example
To run the petrol pump example, check it out if you haven’t done so already, and run
it with these commands:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/petrol-pump/java
mvn test or ant run

At the top of the window, you can select which pump logic you want to run from those
given in the book. Please confirm your understanding of how the code works by trying
the examples; we encourage you to play with the code.

4.3 Code, meet outside world
Each version of the petrol pump logic is an implementation of the interface given in
listing 4.1, where Inputs and Outputs are simple container classes with Stream and
Cell type fields. Each class that implements Pump creates the machinery that connects
the inputs to the outputs; all the logic you’ll need can be done in this way. When you
run the simulator, you can select which pump logic you want to run in a drop-down
box at the top.

package pump;

public interface Pump {
 public Outputs create(Inputs inputs);
}

Figure 4.5 is a diagrammatic representation of the inputs and outputs of the pump
logic encapsulated by Inputs and Outputs, and how they connect to things in the real
world.

 Listing 4.2 shows Inputs. These are the input streams:

■ sNozzle1, sNozzle2, sNozzle3—For each of the three fuels, a stream that fires
when the nozzle is lifted (signaling the start of a fill) or hung up.

■ sKeypad—A stream representing a press of one of the buttons on the preset
keypad, used to enter the fill amount. Key is an enumerated type identifying
which button was pressed.

■ sFuelPulses—Pulses counted through the fuel-flow meter. The event payload
is an integer number of pulses counted since the last event.

■ sClearSale—A signal sent from the point of sale once payment is completed,
to unlock the pump for the next fill.

The input cells are as follows:

■ calibration—The multiplier to turn pulses into liters
■ price1, price2, price3—The price of each of the three fuels in dollars per liter

Listing 4.1 Interface for the petrol pump logic

69Code, meet outside world
Java forces you to write a bit of container-class boilerplate here, but we’ve given the
entire code in listing 4.2 to make sure it’s clear.

 Immutability is extremely important in FRP, so you make all the fields final, which
means they can only be modified in the constructor. This is a good habit, and you
should follow it whenever you can. In your FRP code, you can do this all the time.

package pump;

import nz.sodium.*;

public class Inputs {
 public Inputs(
 Stream<UpDown> sNozzle1,
 Stream<UpDown> sNozzle2,
 Stream<UpDown> sNozzle3,
 Stream<Key> sKeypad,
 Stream<Integer> sFuelPulses,
 Cell<Double> calibration,

Listing 4.2 Inputs to the petrol pump logic

sNozzle1
sNozzle2
sNozzle3
sKeypad
sFuelPulses Logic goes

here

Pump
mechanics

calibration
price1
price2
price3
sClearSale

sSaleComplete

Point of sale

sBeep

priceLCD1
priceLCD2
priceLCD3

delivery
presetLCD

saleCostLCD
saleQuantityLCD

Figure 4.5 The interface between the pump logic and the (simulated) outside world

70 CHAPTER 4 Writing a real application
 Cell<Double> price1,
 Cell<Double> price2,
 Cell<Double> price3,
 Stream<Unit> sClearSale) {
 this.sNozzle1 = sNozzle1;
 this.sNozzle2 = sNozzle2;
 this.sNozzle3 = sNozzle3;
 this.sKeypad = sKeypad;
 this.sFuelPulses = sFuelPulses;
 this.calibration = calibration;
 this.price1 = price1;
 this.price2 = price2;
 this.price3 = price3;
 this.sClearSale = sClearSale;
 }

 public final Stream<UpDown> sNozzle1;
 public final Stream<UpDown> sNozzle2;
 public final Stream<UpDown> sNozzle3;
 public final Stream<Key> sKeypad;
 public final Stream<Integer> sFuelPulses;
 public final Cell<Double> calibration;
 public final Cell<Double> price1;
 public final Cell<Double> price2;
 public final Cell<Double> price3;
 public final Stream<Unit> sClearSale;
}

Listing 4.3 shows the outputs. The output streams are as follows:

■ sBeep—When this stream fires, the simulator emits a short beep.
■ sSaleComplete—A message that’s sent to the point-of-sale system giving the

details of the sale once it’s complete. Recall the input stream sClearSale: the
simulated point of sale uses this to convey a response back from the point of
sale to clear the sale and unlock the pump for the next fill.

The output cells are as follows:

■ delivery—Specifies whether to deliver fuel and, if so, which fuel and at what
speed. Values: OFF, SLOW1, FAST1, SLOW2, FAST2, SLOW3, and FAST3.

■ presetLCD—The LCD that appears above the keypad in which you can enter a
preset dollar amount.

■ saleCostLCD—Displays the dollars spent.
■ saleQuantityLCD—Displays the liters delivered.
■ priceLCD1, priceLCD2, priceLCD3—Displays the price for each fuel.

You’re writing the set methods in an unusual way: each method returns a copy of the
structure, replacing one field’s value (shown in bold). You’re doing this to make
the data structure immutable, meaning it can’t be modified in place. Then you
know the values contained in it can’t be changed. This makes the code easier to rea-
son about and preserves compositionality. This technique also makes the examples

71Code, meet outside world
easier to read because you only have to specify the fields you care about; the rest can
be left as defaults. We don’t recommend that you use this pattern all the time, but it
can often be useful.

NOTE Copying the entire data structure to modify one field may feel ineffi-
cient, but it’s not as inefficient as you may think. This pattern isn’t absolutely
needed, but we recommend it as a way of making sure you do things the right
way. When performance considerations drive software design, the result is
usually bad. In fact, most assumptions that people make about performance
turn out to be incorrect. For this reason, performance decisions should
almost always be made on the basis of profiling.

package pump;

import nz.sodium.*;

public class Outputs {
 private Outputs(
 Cell<Delivery> delivery,
 Cell<String> presetLCD,
 Cell<String> saleCostLCD,
 Cell<String> saleQuantityLCD,
 Cell<String> priceLCD1,
 Cell<String> priceLCD2,
 Cell<String> priceLCD3,
 Stream<Unit> sBeep,
 Stream<Sale> sSaleComplete) {
 this.delivery = delivery;
 this.presetLCD = presetLCD;
 this.saleCostLCD = saleCostLCD;
 this.saleQuantityLCD = saleQuantityLCD;
 this.priceLCD1 = priceLCD1;
 this.priceLCD2 = priceLCD2;
 this.priceLCD3 = priceLCD3;
 this.sBeep = sBeep;
 this.sSaleComplete = sSaleComplete;
 }

 public Outputs() {
 this.delivery = new Cell<Delivery>(Delivery.OFF);
 this.presetLCD = new Cell<String>("");
 this.saleCostLCD = new Cell<String>("");
 this.saleQuantityLCD = new Cell<String>("");
 this.priceLCD1 = new Cell<String>("");
 this.priceLCD2 = new Cell<String>("");
 this.priceLCD3 = new Cell<String>("");
 this.sBeep = new Stream<Unit>();
 this.sSaleComplete = new Stream<Sale>();
 }

Listing 4.3 Outputs from the petrol pump logic

72 CHAPTER 4 Writing a real application
 public final Cell<Delivery> delivery;
 public final Cell<String> presetLCD;
 public final Cell<String> saleCostLCD;
 public final Cell<String> saleQuantityLCD;
 public final Cell<String> priceLCD1;
 public final Cell<String> priceLCD2;
 public final Cell<String> priceLCD3;
 public final Stream<Unit> sBeep;
 public final Stream<Sale> sSaleComplete;

 public Outputs setDelivery(Cell<Delivery> delivery) {
 return new Outputs(delivery, presetLCD, saleCostLCD,
 saleQuantityLCD, priceLCD1, priceLCD2, priceLCD3, sBeep,
 sSaleComplete);
 }
 public Outputs setPresetLCD(Cell<String> presetLCD) {
 return new Outputs(delivery, presetLCD, saleCostLCD,
 saleQuantityLCD, priceLCD1, priceLCD2, priceLCD3, sBeep,
 sSaleComplete);
 }
 public Outputs setSaleCostLCD(Cell<String> saleCostLCD) {
 return new Outputs(delivery, presetLCD, saleCostLCD,
 saleQuantityLCD, priceLCD1, priceLCD2, priceLCD3, sBeep,
 sSaleComplete);
 }
 public Outputs setSaleQuantityLCD(Cell<String> saleQuantityLCD) {
 return new Outputs(delivery, presetLCD, saleCostLCD,
 saleQuantityLCD, priceLCD1, priceLCD2, priceLCD3, sBeep,
 sSaleComplete);
 }
 public Outputs setPriceLCD1(Cell<String> priceLCD1) {
 return new Outputs(delivery, presetLCD, saleCostLCD,
 saleQuantityLCD, priceLCD1, priceLCD2, priceLCD3, sBeep,
 sSaleComplete);
 }
 public Outputs setPriceLCD2(Cell<String> priceLCD2) {
 return new Outputs(delivery, presetLCD, saleCostLCD,
 saleQuantityLCD, priceLCD1, priceLCD2, priceLCD3, sBeep,
 sSaleComplete);
 }
 public Outputs setPriceLCD3(Cell<String> priceLCD3) {
 return new Outputs(delivery, presetLCD, saleCostLCD,
 saleQuantityLCD, priceLCD1, priceLCD2, priceLCD3, sBeep,
 sSaleComplete);
 }
 public Outputs setBeep(Stream<Unit> sBeep) {
 return new Outputs(delivery, presetLCD, saleCostLCD,
 saleQuantityLCD, priceLCD1, priceLCD2, priceLCD3, sBeep,
 sSaleComplete);
 }
 public Outputs setSaleComplete(Stream<Sale> sSaleComplete) {
 return new Outputs(delivery, presetLCD, saleCostLCD,
 saleQuantityLCD, priceLCD1, priceLCD2, priceLCD3, sBeep,
 sSaleComplete);
 }
}

73The life cycle of a petrol pump fill
4.4 The life cycle of a petrol pump fill
Now you now know about the map, merge, hold, snapshot, filter, lift, never, and
constant primitives. That’s all you need to build the petrol pump. There are only two
core primitives to go: sample and switch. You don’t need them for this example, so
we’ll get to them in chapter 7.

 The first thing you’ll do is translate the nozzle input events into the life cycle of a
pump fill, as shown in figure 4.6. The outputs are as follows:

■ sStart—A stream indicating the start of the fill
■ fillActive—A cell telling you whether a fill is currently active and, if so, what

fuel was selected
■ sEnd—A stream indicating the end of the fill

Here are the requirements:

■ When a nozzle is lifted, you select a fuel depending on the nozzle that was cho-
sen.

■ When that nozzle (and only that noz-
zle) is hung up, the fill ends. The
other two nozzles are ignored while
the fill is in progress.

As we mentioned, fillActive is a cell rep-
resenting whether you’re filling or not. Its
type is Cell<Optional<Fuel>>, using Java
8’s Optional type (see the following sidebar), and an enum called Fuel, identifying
which fuel was selected. The possible values of fillActive are these:

■ Optional.empty()—You aren’t filling.
■ Optional.of(fuel)—You’re filling, and the selected fuel is fuel.

Java 8’s Optional type

Java 8 defines a new class called Optional under java.util. It takes a type param-
eter. Optional<A> represents a nullable value of type A; that is, either it contains a
value of type A or it has a “nothing” value.

It’s a replacement for the traditional approach of using a null reference. If you con-
sistently use Optional instead of null, then whether a value is nullable is captured
in the type; thus it’s much harder to accidentally forget to deal with the null case.
Forgetting to check for null is a common source of bugs. Tony Hoare, who invented
the null reference in 1965, calls it his “billion dollar mistake.”

We won’t go into any more detail here. If this doesn’t explain things well enough, online
resources will probably be all you need. We’re not trying to be Java 8 power users,
but a couple of Java 8 features turn out to be compelling for our purposes. For a more
complete treatment of Java 8, see Java 8 in Action by Raoul-Gabriel Urma, Mario Fusco,
and Alan Mycroft (Manning, 2014, www.manning.com/books/java-8-in-action).

sNozzle1

LifeCycle

sStart

sEnd

fillActivesNozzle2

sNozzle3

Figure 4.6 Inputs and outputs of a
LifeCycle class

http://www.manning.com/books/java-8-in-action

74 CHAPTER 4 Writing a real application
Figure 4.7 zooms in on the implementation of LifeCycle in the style of one of the
familiar conceptual diagrams from chapter 2. You’ve seen each of the primitives used
already, but now more of them are put together.

 We’ve left some of the logic out of this diagram and drawn it as clouds or black
boxes. We haven’t diagrammed these two, so look at how they’re implemented as
methods in the code:

■ whenLifted—Takes a constant value of a fuel number (ONE, TWO, or THREE),
and, when that nozzle is lifted, outputs that constant.

■ whenSetDown—Also takes a constant fuel number. In addition, looks at fill-
Active, the currently selected fuel, and only outputs an event if a fill is active
and the nozzle that was set down matches the fuel of the current fill.

Here’s the flow of events when nozzle 1 is lifted:

1 The stream returned by whenLifted(Fuel.ONE) outputs an event containing
the value Fuel.ONE.

2 This event causes a snapshot of the current value of fillActive and is filtered
so that it only outputs the fuel number if there isn’t already a fill active. This is
exported as the stream sStart.

3 sStart feeds through a map that wraps the event value inside an Optional type
so the value becomes Optional.of(Fuel.ONE).

4 This is held by fillActive so the fill state becomes active with a selected fuel of
Fuel.ONE.

sNozzle1

sStart

sEnd

fillActive

fillActive
Optional.of

Opt.empty

Only triggers when the
nozzle matches fillActive

fill not
activesNozzle2

sNozzle3

whenLifted
Fuel.ONE

whenLifted
Fuel.TWO

whenLifted
Fuel.THREE

whenSetDown
Fuel.THREE

whenSetDown
Fuel.TWO

whenSetDown
Fuel.ONEsNozzle1

sNozzle2

sNozzle3

Figure 4.7 Conceptual overview of the logic for LifeCycle

75The life cycle of a petrol pump fill
When nozzle 1 is set back down, this happens:

■ whenSetDown(Fuel.ONE) checks that a fill is active on Fuel.ONE, and, if so, it
outputs an event. This is exported as the stream sEnd.

■ sEnd then feeds through a map that turns it into an Optional value of
Optional.empty().

■ This is held by fillActive so the fill state becomes inactive.

4.4.1 Code for LifeCycle

This section presents two classes. The logic is given in the LifeCycle class in listing
4.4. A bit later, listing 4.5 will give a second class, LifeCyclePump, that connects the
logic to the pump inputs and outputs so you can run it.

 Whenever you want to get an initial understanding of an FRP-based class or
method, we suggest you start by looking at what the inputs and outputs are, with an
understanding of the stated intent. Then, slowly examine how the inputs are trans-
formed into outputs.

 Fuel is an enum defined like this, used to identify which of the three fuel nozzles
was selected:

public enum Fuel { ONE, TWO, THREE }

If you look at the code, you can see that sStart and sEnd depend on fillActive,
which depends back on sStart and sEnd. As we discussed in chapter 2, CellLoop is
the magic trick to deal with these cyclic dependencies.

 Recall that StreamLoop and CellLoop must be loop()ed in the same transaction as
they’re constructed. In this example, we’ve made this issue go away: the petrol pump
simulator main program—which we haven’t listed in the book—wraps the invocation
of create() in a transaction. This is how we always recommend constructing FRP
logic, and you should normally assume this for any FRP construction code.

NOTE This code uses a variant of filter that you haven’t seen much of yet:
filterOptional. It takes a Stream<Optional<A>> and gives a Stream<A>. Java
8’s Optional is useful again. Where the value is present, filterOptional
unwraps the value and propagates it to the new stream as a value of type A.
Events where the value is empty are filtered out (they don’t propagate).
Because the input stream has an Optional type, Java won’t let you declare
it as a method of Stream; it’s a static method, instead, and hence Stream
.filterOptional(..).

package chapter4.section4;

import pump.*;
import nz.sodium.*;
import java.util.Optional;

Listing 4.4 Life cycle of a petrol pump fill

76 CHAPTER 4 Writing a real application

If a fil
ide
sel

Only al
pass t

up/

En

t

rd S
only
a fi

no
it’s e

on
public class LifeCycle {
 public final Stream<Fuel> sStart;
 public final Cell<Optional<Fuel>> fillActive;
 public final Stream<End> sEnd;

 public enum End { END }

 private static Stream<Fuel> whenLifted(Stream<UpDown> sNozzle,
 Fuel nozzleFuel) {
 return sNozzle.filter(u -> u == UpDown.UP)
 .map(u -> nozzleFuel);
 }

 private static Stream<End> whenSetDown(Stream<UpDown> sNozzle,
 Fuel nozzleFuel,
 Cell<Optional<Fuel>> fillActive) {
 return Stream.<End>filterOptional(
 sNozzle.snapshot(fillActive,
 (u,f) -> u == UpDown.DOWN &&
 f.equals(Optional.of(nozzleFuel))
 ? Optional.of(End.END)
 : Optional.empty()));
 }

 public LifeCycle(Stream<UpDown> sNozzle1,
 Stream<UpDown> sNozzle2,
 Stream<UpDown> sNozzle3) {
 Stream<Fuel> sLiftNozzle =
 whenLifted(sNozzle1, Fuel.ONE).orElse(
 whenLifted(sNozzle2, Fuel.TWO).orElse(
 whenLifted(sNozzle3, Fuel.THREE)));
 CellLoop<Optional<Fuel>> fillActive = new CellLoop<>();
 this.fillActive = fillActive;
 this.sStart = Stream.filterOptional(
 sLiftNozzle.snapshot(fillActive, (newFuel, fillActive_) ->
 fillActive_.isPresent() ? Optional.empty()
 : Optional.of(newFuel)));
 this.sEnd = whenSetDown(sNozzle1, Fuel.ONE, fillActive).orElse(
 whenSetDown(sNozzle2, Fuel.TWO, fillActive).orElse(
 whenSetDown(sNozzle3, Fuel.THREE, fillActive)));
 fillActive.loop(
 sEnd.map(e -> Optional.<Fuel>empty())
 .orElse(sStart.map(f -> Optional.of(f)))
 .hold(Optional.empty())
);
 }
}

The next listing gives a petrol pump logic implementation that tests this out. Try it in
the pump simulator, and you’ll see that the number 1, 2, or 3 appears on the Liters
display to indicate which nozzle has been lifted.

Start of the
fill streaml is active,

ntifies the
ected fuel

End of the
fill stream

lows “up” to
hrough from
down events

Outputs what fuel this
nozzle corresponds to

d instead
of Unit for
ype safety

Only the nozzle
matching the current
fill can end the fill.

This stream fires when a nozzle
is lifted, along with an identifier
of which nozzle it was.

Declares a
fillActive forwa
reference

tart of fill can
 happen when
ll isn’t already

in progress.

Checks each
zzle to see if
nding the fill

fillActive
implementatiCleared at the

end of the fill
fillActive is set to
the selected fuel at
the start of the fill.

77Is this really better?

package chapter4.section4;

import pump.*;
import nz.sodium.*;
import java.util.Optional;

public class LifeCyclePump implements Pump {
 public Outputs create(Inputs inputs) {
 LifeCycle lc = new LifeCycle(inputs.sNozzle1,
 inputs.sNozzle2,
 inputs.sNozzle3);
 return new Outputs()
 .setDelivery(lc.fillActive.map(
 of ->
 of.equals(Optional.of(Fuel.ONE)) ? Delivery.FAST1 :
 of.equals(Optional.of(Fuel.TWO)) ? Delivery.FAST2 :
 of.equals(Optional.of(Fuel.THREE)) ? Delivery.FAST3 :
 Delivery.OFF))
 .setSaleQuantityLCD(lc.fillActive.map(
 of ->
 of.equals(Optional.of(Fuel.ONE)) ? "1" :
 of.equals(Optional.of(Fuel.TWO)) ? "2" :
 of.equals(Optional.of(Fuel.THREE)) ? "3" : ""));
 }
}

Take this code for a spin. You’ve probably already checked it out, so you won’t need
the git line, but here’s the complete list of commands:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/petrol-pump/java
mvn test or ant run

4.5 Is this really better?
The way you write code with FRP is different than the normal way of writing it. You’re
probably wondering why we think this is better. The code isn’t shorter; it’s a bit ver-
bose, if anything.

 We want to say two things at this point: first, remember that we emphasized that
FRP provides improvements as a program becomes larger. In a small example, the
advantage isn’t apparent—there aren’t enough edge cases to bite you.

 Second, when expressed directly in general programming languages, FRP syntax is
a bit clunky. There’s a lot of potential for improvement with preprocessors and such
things, but FRP is still new and this work hasn’t been done. We’ll return to the topic of
syntax in chapter 15.

Listing 4.5 Petrol pump implementation that demonstrates LifeCycle

Turns on the motor
when a fuel is
selected

Displays which
fuel was selected
www.allitebooks.com

http://www.allitebooks.org

78 CHAPTER 4 Writing a real application
4.6 Counting liters delivered
Figure 4.8 shows the conceptual view of an accumulate() method you’ll use to count
liters delivered. accumulate() adds the new pulses coming in sDelta to the snapshot-
ted existing total and holds the result, looping the whole thing with a CellLoop.

 It also has a bit of logic to clear the value at the start of the fill. To do this, you
merge an extra stream sClearAccumulator into the snapshot-hold loop that can set
the value to 0. accumulate() finally applies a calibration to convert the pulse count
total to a liter count.

The create() method in the following listing gives a petrol pump implementation
that displays the liters delivered on the LCD. As with all the examples, you can try it by
running the pump simulator.

package chapter4.section6;

import pump.*;
import chapter4.section4.LifeCycle;
import nz.sodium.*;
import java.util.Optional;

public class AccumulatePulsesPump implements Pump {
 public Outputs create(Inputs inputs) {
 LifeCycle lc = new LifeCycle(inputs.sNozzle1,
 inputs.sNozzle2,
 inputs.sNozzle3);
 Cell<Double> litersDelivered =
 accumulate(lc.sStart.map(u -> Unit.UNIT),
 inputs.sFuelPulses,
 inputs.calibration);
 return new Outputs()
 .setDelivery(lc.fillActive.map(
 of ->
 of.equals(Optional.of(Fuel.ONE)) ? Delivery.FAST1 :
 of.equals(Optional.of(Fuel.TWO)) ? Delivery.FAST2 :

Listing 4.6 Counting liters delivered

sDelta

sClearAccumulator

calibration

total

u 0

0
Figure 4.8 Conceptual view of the
accumulate() method

Clears total
on fill start

Delivers the
selected fuel

79Showing dollars of fuel delivered

Dis
 of.equals(Optional.of(Fuel.THREE)) ? Delivery.FAST3 :
 Delivery.OFF))
 .setSaleQuantityLCD(litersDelivered.map(
 q -> Formatters.formatSaleQuantity(q)));
 }

 public static Cell<Double> accumulate(
 Stream<Unit> sClearAccumulator,
 Stream<Integer> sPulses,
 Cell<Double> calibration) {
 CellLoop<Integer> total = new CellLoop<>();
 total.loop(sClearAccumulator.map(u -> 0)
 .orElse(
 sPulses.snapshot(total, (pulses_, total_) ->
 pulses_ + total_)
)
 .hold(0));
 return total.lift(calibration,
 (total_, calibration_) -> total_ * calibration_);
 }
}

4.7 Showing dollars of fuel delivered
Now you want to show the number of dollars of fuel delivered along with liters deliv-
ered, and you’ll factor the logic for this out into a new class called Fill. Figure 4.9
shows the conceptual view of Fill. Here are the inputs:

■ sClearAccumulator—The mechanism for clearing the accumulator
■ sFuelPulses—Pulses from the flow meter
■ calibration—The conversion from pulse count to liters
■ price1, price2, price3—The prices for the three fuels
■ sFuelPulses—An event for the start of the fill, identifying the fuel that was

selected

Most of Fill’s work is done by accumulate(), which we gave in the last section, and
capturePrice(), which we’ll describe next. Finally, you multiply litersDelivered by
price to give dollarsDelivered.

plays liters
delivered

Zeroes the pulse
count on
sClearAccumulator

Accumulates
pulses

Multiplies by
calibration to
give liters

sClearAccumulator

sFuelPulses

calibration

price1

priceprice2

price3

sStart

capturePrice

accumulate lift
litersDelivered

dollarsDelivered

Figure 4.9 Conceptual view
of Fill that translates
delivery pulses into dollars
and liters

80 CHAPTER 4 Writing a real application

Price
wh

Ca
Listing 4.7 gives the code for the Fill class. When a group of FRP statements corre-
sponds to something at a conceptual level, it’s both easy and a good idea to separate
them out into a module, which can be implemented as a method or a class. capture-
Price() is an example of a module implemented as a method. In Java, it’s easiest to
use a static method if there’s one output or a class if more than one. We’ll return to
the subject of modules shortly.

NOTE Making the parameters distinct types will help you avoid making mis-
takes. For example, you could create a Dollars type instead of using Double,
although we haven’t done this here. In some languages, you can use named
parameters. You can also use simple container objects to group things
together, as we’ve done with Inputs and Outputs.

package chapter4.section7;

import pump.*;
import chapter4.section6.AccumulatePulsesPump;
import nz.sodium.*;
import java.util.Optional;

public class Fill {
 public final Cell<Double> price;
 public final Cell<Double> dollarsDelivered;
 public final Cell<Double> litersDelivered;

 public Fill(
 Stream<Unit> sClearAccumulator, Stream<Integer> sFuelPulses,
 Cell<Double> calibration, Cell<Double> price1,
 Cell<Double> price2, Cell<Double> price3,
 Stream<Fuel> sStart) {
 price = capturePrice(sStart, price1, price2, price3);
 litersDelivered = AccumulatePulsesPump.accumulate(
 sClearAccumulator, sFuelPulses, calibration);
 dollarsDelivered = litersDelivered.lift(price,
 (liters, price_) -> liters * price_);
 }

 public static Cell<Double> capturePrice(
 Stream<Fuel> sStart,
 Cell<Double> price1, Cell<Double> price2,
 Cell<Double> price3) {
 Stream<Double> sPrice1 = Stream.filterOptional(
 sStart.snapshot(price1,
 (f, p) -> f == Fuel.ONE ? Optional.of(p)
 : Optional.empty()));
 Stream<Double> sPrice2 = Stream.filterOptional(
 sStart.snapshot(price2,
 (f, p) -> f == Fuel.TWO ? Optional.of(p)
 : Optional.empty()));

Listing 4.7 State and logic for the fill

 as it was
en the fill

started
Multiplies liters by
price to give dollars

ptures price1
 if Fuel.ONE

was selected

81Showing dollars of fuel delivered

Co

(pre
 Stream<Double> sPrice3 = Stream.filterOptional(
 sStart.snapshot(price3,
 (f, p) -> f == Fuel.THREE ? Optional.of(p)
 : Optional.empty()));

 return sPrice1.orElse(sPrice2.orElse(sPrice3))
 .hold(0.0);
 }
}

The first thing you do in Fill is call capturePrice() to capture the price as it was
when the fuel was selected. In capturePrice(), you snapshot each price, taking the
value only where you match the right fuel selected. You merge these together with
orElse() and then filterOptional so you get the Optional value only when it has a
value. You must maintain state here: you need to know the price throughout the fill,
so you hold the captured price in a cell.

 Finally, as discussed, you calculate and return dollars spent. This is the same idea
as in the previous section, where you multiplied pulses by calibration to give liters
delivered.

 The next listing shows the pump implementation that uses the new Fill class.

package chapter4.section7;

import pump.*;
import chapter4.section4.LifeCycle;
import nz.sodium.*;
import java.util.Optional;

public class ShowDollarsPump implements Pump {
 public Outputs create(Inputs inputs) {
 LifeCycle lc = new LifeCycle(inputs.sNozzle1,
 inputs.sNozzle2,
 inputs.sNozzle3);
 Fill fi = new Fill(lc.sStart.map(u -> Unit.UNIT),
 inputs.sFuelPulses, inputs.calibration,
 inputs.price1, inputs.price2, inputs.price3,
 lc.sStart);
 return new Outputs()
 .setDelivery(lc.fillActive.map(
 of ->
 of.equals(Optional.of(Fuel.ONE)) ? Delivery.FAST1 :
 of.equals(Optional.of(Fuel.TWO)) ? Delivery.FAST2 :
 of.equals(Optional.of(Fuel.THREE)) ? Delivery.FAST3 :
 Delivery.OFF))
 .setSaleCostLCD(fi.dollarsDelivered.map(
 q -> Formatters.formatSaleCost(q)))
 .setSaleQuantityLCD(fi.litersDelivered.map(
 q -> Formatters.formatSaleQuantity(q)))
 .setPriceLCD1(priceLCD(lc.fillActive, fi.price, Fuel.ONE,
 inputs))

Listing 4.8 Petrol pump that shows dollars

nstructs the
new Fill class
vious listing)

82 CHAPTER 4 Writing a real application

 .setPriceLCD2(priceLCD(lc.fillActive, fi.price, Fuel.TWO,
 inputs))
 .setPriceLCD3(priceLCD(lc.fillActive, fi.price, Fuel.THREE,
 inputs));
 }

 public static Cell<String> priceLCD(
 Cell<Optional<Fuel>> fillActive,
 Cell<Double> fillPrice,
 Fuel fuel,
 Inputs inputs) {
 Cell<Double> idlePrice;
 switch (fuel) {
 case ONE: idlePrice = inputs.price1; break;
 case TWO: idlePrice = inputs.price2; break;
 case THREE: idlePrice = inputs.price3; break;
 default: idlePrice = null;
 }
 return fillActive.lift(fillPrice, idlePrice,
 (oFuelSelected, fillPrice_, idlePrice_) ->
 oFuelSelected.isPresent()
 ? oFuelSelected.get() == fuel
 ? Formatters.formatPrice(fillPrice_)
 : ""
 : Formatters.formatPrice(idlePrice_));
 }
}

As always, please try this example out.

4.8 Communicating with the point-of-sale system
In this section, you’ll communicate asynchronously with a remote point-of-sale system
through two streams:

■ sSaleComplete—An output stream telling the point-of-sale system that a sale
has completed

■ sClearSale—An input stream telling the pump that the point-of-sale system
has finished processing the sale and the pump is allowed to process a new fill

Between these two events, you lock the pump so it can’t fill any more. This complicates
the definition of when the fill begins and ends. You now have three state transitions:

■ Lifting the nozzle to start a fill
■ Hanging up the nozzle to end a fill and notifying the point-of-sale system
■ Clearing the sale at the point-of-sale system

Listing 4.9 gives the petrol pump implementation, and listing 4.10 shows the new
NotifyPointOfSale. To make the code robust, you use scoping: you ensure that the
LifeCycle is passed directly to new NotifyPointOfSale so it isn’t hanging around in
a variable visible in create(). NotifyPointOfSale can then output a modified view of
the fill life cycle, and it’s difficult for you to use the original life cycle by mistake. Lim-
iting scope in various ways is an important key to avoiding bugs in FRP code.

Captured price
for the fill

Price to show
when not filling

Shows captured
price when filling

Prices for fuels not
selected are blank
during the fill.

When not filling

83Communicating with the point-of-sale system

N
imple
 If you view the petrol pump conceptually, point-of-sale communications are a con-
cept in that view. Thus it makes sense for you to put the logic that pertains to it into a
NotifyPointOfSale module (that is, class). FRP code is naturally loosely coupled, so it
leaves you free to arrange the order and grouping of FRP statements to fit a concep-
tual view of the logic.

package chapter4.section8;

import pump.*;
import chapter4.section4.LifeCycle;
import chapter4.section7.Fill;
import chapter4.section7.ShowDollarsPump;
import nz.sodium.*;
import java.util.Optional;

public class ClearSalePump implements Pump {
 public Outputs create(Inputs inputs) {
 StreamLoop<Fuel> sStart = new StreamLoop<>();
 Fill fi = new Fill(
 inputs.sClearSale.map(u -> Unit.UNIT),
 inputs.sFuelPulses, inputs.calibration,
 inputs.price1, inputs.price2, inputs.price3,
 sStart);
 NotifyPointOfSale np = new NotifyPointOfSale(
 new LifeCycle(inputs.sNozzle1,
 inputs.sNozzle2,
 inputs.sNozzle3),
 inputs.sClearSale,
 fi);
 sStart.loop(np.sStart);
 return new Outputs()
 .setDelivery(np.fuelFlowing.map(
 of ->
 of.equals(Optional.of(Fuel.ONE)) ? Delivery.FAST1 :
 of.equals(Optional.of(Fuel.TWO)) ? Delivery.FAST2 :
 of.equals(Optional.of(Fuel.THREE)) ? Delivery.FAST3 :
 Delivery.OFF))
 .setSaleCostLCD(fi.dollarsDelivered.map(
 q -> Formatters.formatSaleCost(q)))
 .setSaleQuantityLCD(fi.litersDelivered.map(
 q -> Formatters.formatSaleQuantity(q)))
 .setPriceLCD1(ShowDollarsPump.priceLCD(np.fillActive, fi.price,
 Fuel.ONE, inputs))
 .setPriceLCD2(ShowDollarsPump.priceLCD(np.fillActive, fi.price,
 Fuel.TWO, inputs))
 .setPriceLCD3(ShowDollarsPump.priceLCD(np.fillActive, fi.price,
 Fuel.THREE, inputs))
 .setBeep(np.sBeep)
 .setSaleComplete(np.sSaleComplete);
 }
}

Listing 4.9 Pump implementation in which you clear the sale

The accumulator is cleared by
the point-of-sale system instead

of when the nozzle is lifted.

otifyPointOfSale()’s
mentation of sStart Constructs point-of-

sale logic (next listing)

84 CHAPTER 4 Writing a real application

Al
on

C

di
Listing 4.10 shows the NotifyPointOfSale class. In a cell called phase, you keep track
of the three phases of a fill: idle, filling and waiting for the point-of-sale system. We
represent these with an enum:

private enum Phase { IDLE, FILLING, POS };

gate() is a method on Stream that allows events through only when its cell argument
is true. It isn’t treated as a primitive in this book because it’s built from snapshot and
filter. You use gate() to ensure that nozzle lift and hang-up are only let through in
the right phases:

sStart = lc.sStart.gate(phase.map(p -> p == Phase.IDLE));
sEnd = lc.sEnd.gate(phase.map(p -> p == Phase.FILLING));

This protects against things happening at the wrong times. For instance, if a nozzle is
lifted while we are waiting for the point-of-sale system, it's ignored.

 sSaleComplete is a little fiddly because you get the selected fuel from fuel-
Flowing, which has no value when you aren’t filling. You have to deal with this unde-
sirable edge case. You can read the code carefully and reason that it will always have a
value when you need it, but it’s far better to eliminate these kinds of invalid states.
This is the kind of improvement that switch will allow you to make when we cover it
in chapter 7. The rest is explained in the code annotations.

public class NotifyPointOfSale {
 public final Stream<Fuel> sStart;
 public final Cell<Optional<Fuel>> fillActive;
 public final Cell<Optional<Fuel>> fuelFlowing;
 public final Stream<End> sEnd;
 public final Stream<Unit> sBeep;
 public final Stream<Sale> sSaleComplete;

 private enum Phase { IDLE, FILLING, POS };

 public NotifyPointOfSale(
 LifeCycle lc,
 Stream<Unit> sClearSale,
 Fill fi) {
 CellLoop<Phase> phase = new CellLoop<>();
 sStart = lc.sStart.gate(phase.map(p -> p == Phase.IDLE));
 sEnd = lc.sEnd.gate(phase.map(p -> p == Phase.FILLING));
 phase.loop(
 sStart.map(u -> Phase.FILLING)
 .orElse(sEnd.map(u -> Phase.POS))
 .orElse(sClearSale.map(u -> Phase.IDLE))
 .hold(Phase.IDLE));
 fuelFlowing =
 sStart.map(f -> Optional.of(f)).orElse(
 sEnd.map(f -> Optional.empty())).hold(Optional.empty());

Listing 4.10 Module to handle notifying the point-of-sale system

Three phases
of a fill

lows fill start
ly when IDLE

Allows fill end only
when FILLING

hanges phase
on three

fferent events

Cleared when the
nozzle is set down

85Modularity illustrated: a keypad module

Clea
sale
the

Cap
de
 fillActive =
 sStart.map(f -> Optional.of(f)).orElse(
 sClearSale.map(f -> Optional.empty())).hold(Optional.empty());
 sBeep = sClearSale;
 sSaleComplete = Stream.filterOptional(sEnd.snapshot(
 fuelFlowing.lift(fi.price, fi.dollarsDelivered,
 fi.litersDelivered,
 (oFuel, price_, dollars, liters) ->
 oFuel.isPresent() ? Optional.of(
 new Sale(oFuel.get(), price_, dollars, liters))
 : Optional.empty())
));
 }
}

4.9 Modularity illustrated: a keypad module
Listing 4.11 shows a module for a keypad on which you can enter a dollar amount up
to three digits. It beeps when you press a key, but not if the number already has three
digits.

 This uses the same pattern you’ve seen before, where you loop a value with Cell-
Loop and then use hold and snapshot to build an accumulator. You’ve also used
filterOptional because you sometimes want to ignore a keypress—for example,
when you already have three digits.

 sBeep comes from sUpdate, and it makes sense that these two streams should fire
at the same time, because sBeep is meant to provide feedback to the user that the key
has had an effect. Where the key has no effect (three digits have already been
entered), there should be no beep.

 The first constructor takes an extra Boolean cell argument active. You want key-
presses to be ignored when active is false, and you do this by blocking them with
gate().

NOTE You may notice that we like to use : ? instead of if () / then / else.
The reason is that : ? forces you to output a value, or the compiler will com-
plain. You can’t omit the else case or forget to return or assign the value you
want to output. We like to take any opportunity we can to make the compiler
help us avoid bugs.

This example shows the basis for how a GUI library can be implemented with FRP. We
think FRP is a better way to write a GUI library than the object-oriented approach that’s
universally used. We’ll show you an FRP-based GUI implementation in chapter 12.

package chapter4.section9;

import pump.*;
import nz.sodium.*;
import java.util.Optional;

Listing 4.11 Keypad module

red when the
 is cleared by
 point of sale

Beeps when the
sale is cleared

tures the sale
tails at nozzle

set-down

Undesirable
edge case

86 CHAPTER 4 Writing a real application

E

public class Keypad {
 public final Cell<Integer> value;
 public final Stream<Unit> sBeep;

 public Keypad(Stream<Key> sKeypad,
 Stream<Unit> sClear,
 Cell<Boolean> active) {
 this(sKeypad.gate(active), sClear);
 }

 public Keypad(Stream<Key> sKeypad, Stream<Unit> sClear) {
 CellLoop<Integer> value = new CellLoop<>();
 this.value = value;
 Stream<Integer> sKeyUpdate = Stream.filterOptional(
 sKeypad.snapshot(value,
 (key, value_) -> {
 if (key == Key.CLEAR)
 return Optional.of(0);
 else {
 int x10 = value_ * 10;
 return x10 >= 1000
 ? Optional.empty()
 : Optional.of(
 key == Key.ZERO ? x10 :
 key == Key.ONE ? x10 + 1 :
 key == Key.TWO ? x10 + 2 :
 key == Key.THREE ? x10 + 3 :
 key == Key.FOUR ? x10 + 4 :
 key == Key.FIVE ? x10 + 5 :
 key == Key.SIX ? x10 + 6 :
 key == Key.SEVEN ? x10 + 7 :
 key == Key.EIGHT ? x10 + 8 :
 x10 + 9
);
 }
 }
)
);
 value.loop(sKeyUpdate.orElse(sClear.map(u -> 0))
 .hold(0));
 sBeep = sKeyUpdate.map(k -> Unit.UNIT);
 }
}

The following listing shows a pump implementation that only tests the Keypad mod-
ule. You can, of course, try it in the pump simulator.

package chapter4.section9;

import pump.*;
import nz.sodium.*;
import java.util.Optional;

Listing 4.12 Pump implementation that just tests the keypad module

Variant that blocks input
keys when active is false

No more than three
digits are allowed.

xternal clear
command

Beeps when a key
caused an update

87Notes about modularity

You d
u

feature
a "ne
public class KeypadPump implements Pump
{
 public Outputs create(Inputs inputs) {
 Keypad ke = new Keypad(inputs.sKeypad, new Stream<Unit>());
 return new Outputs()
 .setPresetLCD(ke.value.map(v ->
 Formatters.formatSaleCost((double)v)))
 .setBeep(ke.sBeep);
 }
}

4.10 Notes about modularity
Putting things into modules is an important part of FRP programming. Here are a
few tips.

4.10.1 The form of a module

We like to torment object-oriented programmers by making all the fields final; when
we’ve knocked them off balance, we complete the job by putting all the code in the
constructor. When they’ve recovered somewhat, we use a static method instead of a
class. Because that’s how we roll. (As a last resort, we put a crocodile in their swim-
ming pool.)

 In Java, you can use a static method or a class to implement a module. You may have
noticed that whenever we’ve used a class,

■ All fields are declared public final.
■ The constructor is usually the only method.

We have specific reasons for doing these things:

■ All fields are public. The only purpose of a field is to make a stream or cell avail-
able, so it makes no sense to use a private field. To make something private,
you’d instead use a local variable in the constructor.

■ All fields are final. You want the class to be immutable. Changing it after it’s
constructed can only cause problems, as we’ve mentioned before.

■ All code is usually in the constructor. Java allows final fields to be assigned only in
the constructor.

But there’s a madness to our method, or rather, our complete absence of methods:
this isn’t really OOP. The purpose of OOP is to manage the mutation of state. In FRP,
we use streams and cells to do this instead. We use classes only for their ability to
group values together and their constructors to limit scope.

 If you want to write a module that has only one output, a static method is a good
approach, as you’ve seen a few times in the examples. You normally declare them pub-
lic because there usually isn’t any reason not to. When everything is immutable, it’s
not possible to monkey directly with the workings of an interface. But sometimes it’s
appropriate to use private visibility if the static method is only useful locally.

on’t want to
se the sClear
, so you pass
ver" stream.

88 CHAPTER 4 Writing a real application
4.10.2 Tuples vs. classes

Some languages have convenient syntax for arbitrarily typed n-tuples, so it’s trivial to
return several values from a method or function. It makes sense to use whichever is
idiomatic in the language you’re using. It happens that in Java, classes are idiomatic.

4.10.3 Explicit wiring

A feature of FRP is that the inputs and outputs of a module are explicit. An FRP module
is pure stateful logic, and the caller has full control over wiring that into the rest of the
code so it actually does something. This may be more bureaucracy than you’re used to,
but the key concept is that you’re attempting to prove to the compiler that you’ve writ-
ten your code correctly. You get a lot of assistance from the compiler in return.

4.10.4 When inputs and outputs proliferate

The number of arguments to a module of FRP code can often be large. In most pro-
gramming situations, when this happens, it’s a code smell that suggests a need for refac-
toring. In FRP, this is still true, but less so.

 One thing to note is that in FRP code, you can’t directly hide the ways in which
parts of the program communicate with each other. Often this means there are more
explicit input and outputs than you would get in normal programming. It’s not that
there are more inputs and outputs; it’s just that they’re more visible. We think this is a
good thing because inputs and outputs are a source of complexity. Having them right
up in your face pushes you to deal with them earlier.

 This doesn’t mean you can’t abstract them away at all, though. If you extended
the keypad concept to implement a full GUI, for example, the number of inputs and
outputs for each widget would be large enough to require more sophisticated
management.

 The basic way to do this is to abstract detail away by hiding things in container
classes. It may be surprising at first, but this simple approach is enormously powerful.
You'll see a real example of this in an FRP-based GUI library in chapter 12.

4.10.5 Some bugs are solved, some aren’t

FRP makes a lot of bugs harder to write, but you can still write some:

■ You can easily forget to use an input Stream or Cell in a module, or the caller
may forget to use a module’s output value. Generally, if you haven’t used a
value, it’s a bug, because if it wasn’t needed, it wouldn’t be there. Often this
manifests as a compiler warning of an unused variable (but not always). Be vigi-
lant for these warnings.

■ This isn’t always true. Sometimes you deliberately don’t want to use a value. For
instance, you may be reusing a keypad module but want it to be silent. Then
you throw away the returned sBeep.

■ Forgetting to supply an input value is hard to do accidentally because the com-
piler will require you to provide something, even if it’s a never stream as in Key-
padPump.

89Adding a preset dollar amount
■ Another bug that occurs sometimes in FRP is mixing up values when they acci-
dentally have the same type. FRP code often has a large number of local vari-
ables, and this contributes to the problem. A good way to deal with this is to
wrap your contained values in custom container classes with only one value in
them, so that the meaning of the value is reflected in its type. For unit values—
that is, “nothing” values—use an enum with only one element. We did this with
the End type in a Stream<End> to signal the end of the fill. We don’t know if this
helps, but it can’t hurt.

DEFINITION Newtype pattern—A common pattern in functional programming
is to wrap a value in a class to give it meaning and extra type safety. For exam-
ple, you might wrap a double in a class called Liters, or a String in a class
called ErrorMessage. This powerful technique is named after a keyword in
the programming language Haskell.

DEFINITION Primitive obsession—An anti-pattern that’s the opposite of the new-
type pattern, in which you use primitive types for everything.

4.10.6 Testability

Another thing you get in return for being forced to make your dependencies explicit
is testability. It’s easy to write unit tests for modules like these. We haven’t shown you
how to interface FRP code to the rest of your program yet, so we’ll unit test the petrol
pump's Keypad class in chapter 11, section 3.

4.11 Adding a preset dollar amount
Now that you have a keypad module, you can add the final bit of logic for a complete
petrol pump and bring this chapter to a close: the new Preset class/module in listing
4.13 causes the pump to stop pumping at the preset number of dollars.

 Here are the inputs:

■ Preset value
■ Fuel price
■ Dollars delivered
■ Liters delivered
■ Fuel flowing—Whether the nozzle is lifted, and what fuel is being pumped.
■ Fill active—Fuel is flowing or has flowed, but the fill hasn’t been cleared by the

point-of-sale system yet.

Here are the outputs:

■ Delivery—Which fuel to pump, and whether to go fast or slow
■ Keypad active—Whether the user can type on the keypad

This is the logic you want:

■ 0 means no preset number of dollars.
■ You start pumping slowly just before the preset dollar value is reached.

90 CHAPTER 4 Writing a real application
■ You stop when the preset dollar value is reached.
■ The user can change the preset value any time before pumping slows; then the

keypad is locked.

package chapter4.section11;

import pump.*;
import chapter4.section7.Fill;
import nz.sodium.*;
import java.util.Optional;

public class Preset {
 public final Cell<Delivery> delivery;
 public final Cell<Boolean> keypadActive;

 public enum Speed { FAST, SLOW, STOPPED };

 public Preset(Cell<Integer> presetDollars,
 Fill fi,
 Cell<Optional<Fuel>> fuelFlowing,
 Cell<Boolean> fillActive) {
 Cell<Speed> speed = presetDollars.lift(
 fi.price, fi.dollarsDelivered, fi.litersDelivered,
 (presetDollars_, price, dollarsDelivered, litersDelivered) -> {
 if (presetDollars_ == 0)
 return Speed.FAST;
 else {
 if (dollarsDelivered >= (double)presetDollars_)
 return Speed.STOPPED;
 double slowLiters =
 (double)presetDollars_/price - 0.10;
 if (litersDelivered >= slowLiters)
 return Speed.SLOW;
 else
 return Speed.FAST;
 }
 });
 delivery = fuelFlowing.lift(speed,
 (of, speed_) ->
 speed_ == Speed.FAST ? (
 of.equals(Optional.of(Fuel.ONE)) ? Delivery.FAST1 :
 of.equals(Optional.of(Fuel.TWO)) ? Delivery.FAST2 :
 of.equals(Optional.of(Fuel.THREE)) ? Delivery.FAST3 :
 Delivery.OFF
) :
 speed_ == Speed.SLOW ? (
 of.equals(Optional.of(Fuel.ONE)) ? Delivery.SLOW1 :
 of.equals(Optional.of(Fuel.TWO)) ? Delivery.SLOW2 :
 of.equals(Optional.of(Fuel.THREE)) ? Delivery.SLOW3 :
 Delivery.OFF
) :
 Delivery.OFF);

Listing 4.13 Logic for a preset dollar amount

Calculates the
pump speed

Converts the pump speed/fuel to
an instruction for the motors

91Adding a preset dollar amount

If n
ke
ar

from
 keypadActive = fuelFlowing.lift(speed,
 (of, speed_) ->
 !of.isPresent() || speed_ == Speed.FAST);
 }
}

All the inputs and outputs to Preset are cells, and the only primitive you use is to
combine them in different ways with lift. You first work out what speed to fill by
encoding an enum of FAST, SLOW, or STOPPED. You combine that information with the
fuelFlowing state to give a Delivery value to the pump’s motors. Finally, you decide
whether the keypad should be active. You can change the preset amount any time
before the motors switch to slow delivery.

 The following listing shows the completed petrol pump.

package chapter4.section11;

import pump.*;
import chapter4.section4.LifeCycle;
import chapter4.section4.LifeCycle.End;
import chapter4.section6.AccumulatePulsesPump;
import chapter4.section7.Fill;
import chapter4.section7.ShowDollarsPump;
import chapter4.section8.NotifyPointOfSale;
import chapter4.section9.Keypad;
import nz.sodium.*;
import java.util.Optional;

public class PresetAmountPump implements Pump {
 public Outputs create(Inputs inputs) {
 StreamLoop<Fuel> sStart = new StreamLoop<>();
 Fill fi = new Fill(inputs.sClearSale.map(u -> Unit.UNIT),
 inputs.sFuelPulses, inputs.calibration,
 inputs.price1, inputs.price2, inputs.price3,
 sStart);
 NotifyPointOfSale np = new NotifyPointOfSale(
 new LifeCycle(inputs.sNozzle1,
 inputs.sNozzle2,
 inputs.sNozzle3),
 inputs.sClearSale,
 fi);
 sStart.loop(np.sStart);
 CellLoop<Boolean> keypadActive = new CellLoop<>();
 Keypad ke = new Keypad(inputs.sKeypad,
 inputs.sClearSale,
 keypadActive);
 Preset pr = new Preset(ke.value,
 fi,
 np.fuelFlowing,
 np.fillActive.map(o -> o.isPresent()));
 keypadActive.loop(pr.keypadActive);

Listing 4.14 Completed petrol pump implementation with preset

ot active,
ypad keys
e ignored.

From
preset()

Preset value
 the keypad

92 CHAPTER 4 Writing a real application

det
 return new Outputs()
 .setDelivery(pr.delivery)
 .setSaleCostLCD(fi.dollarsDelivered.map(
 q -> Formatters.formatSaleCost(q)))
 .setSaleQuantityLCD(fi.litersDelivered.map(
 q -> Formatters.formatSaleQuantity(q)))
 .setPriceLCD1(ShowDollarsPump.priceLCD(np.fillActive, fi.price,
 Fuel.ONE, inputs))
 .setPriceLCD2(ShowDollarsPump.priceLCD(np.fillActive, fi.price,
 Fuel.TWO, inputs))
 .setPriceLCD3(ShowDollarsPump.priceLCD(np.fillActive, fi.price,
 Fuel.THREE, inputs))
 .setSaleComplete(np.sSaleComplete)
 .setPresetLCD(ke.value.map(v ->
 Formatters.formatSaleCost((double)v)))
 .setBeep(np.sBeep.orElse(ke.sBeep));
 }
}

You feed Preset’s keypadActive into the Keypad module. Because this is called before
you construct Preset, you use your old friend CellLoop to loop it.

 There are now two sources of beeps: NotifyPointOfSale beeps when the sale is
cleared, and Keypad beeps when a key is pressed. You must return the merge of these
two in Outputs.

4.12 What have you achieved?
We’ve shown you some pretty complex code that solves a real-world problem. For this
program’s size, it has a fair amount of logic, but we’ve managed to break it into sensi-
ble pieces and keep it tidy, although it could still be improved.

 You wrote the code in six revisions and added a major feature each time. Notice
that the code mainly consists of two things:

■ About half of it is the overhead of values being passed around.
■ The rest is mostly stateful logic.

The purpose of all this passing things around is keeping things tidy by limiting the
scope of variables. From the viewpoint of writing logic, it’s overhead, but it’s overhead
that gives you something.

 We hope you’re starting to notice what this code doesn’t contain:

■ There’s no explicit sequence. The order and grouping of statements is chosen
to aid comprehension and for no other reason. FRP leaves you free to arrange
things into conceptual groupings.

■ Practically no attention is given to the edge conditions of when things are
updated. Many of these issues tend to disappear, but not all.

■ No state is kept in normal mutable variables: cells are used instead.
■ There are no threads or anything resembling a flow of control.
■ There’s no direct initiation of state changes. Cells and streams are always

sources of information. From within the FRP paradigm, it’s impossible to

preset()
ermines this.

You now have two
beep sources, so
you merge them.

93Summary
express the concept of a sink in your code: “OK—now I’m going to push a value
out.” This makes sense when you consider that FRP doesn’t allow for the normal
concept of a flow of control. Stream events are the only way to cause state
changes in FRP, and the only type of stream that can be created directly is a
never stream, which can never fire. Therefore, all initiation of state changes has
to come from sources outside of FRP land. It’s called reactive programming pre-
cisely because the code can only react to input.

■ There’s no memory management. This is 100% automatic in FRP.

The code can only react to external input, but we haven’t yet shown you how to gener-
ate this external input. As we’ve explained, we’ve done this deliberately to get you
fully immersed in an FRP way of thinking.

 If you’re new to FRP, we expect that this code is unlike any code you’ve seen
before. You may want to think about how you’d normally write code like this and what
kinds of issues you’d run into.

4.13 Summary
■ FRP code is typically half pure logic and half management of variable scoping.
■ You usually write modules in a class or static method.
■ If a module is written as a class, you write all the code in the constructor and the

outputs as public final fields.
■ FRP code is naturally testable because you’re forced to make all inputs and out-

puts explicit.

New concepts
You’ve seen a practical example done in FRP style. In chapter 1, we said that a new
way of thinking will help you get the most out of FRP. In this chapter, we’ll continue
breaking that down.

5.1 In search of the mythical von Neumann machine
In this section, we’ll explain what the von Neumann machine is and why it’s the
source of some assumptions that not only are unhelpful in programming but also
turn out to be largely false. The “stored program” computer architecture (see fig-
ure 5.1) has served us well since John von Neumann described it in 1945. It’s the
basis for the modern computer: the processor reads the program instructions from

This chapter covers
■ The von Neumann machine: a stored program

computer architecture
■ Compositionality—what it is and why it’s important
■ Immutable values and immutable data structures
■ Clarity of intent
■ Cheap abstraction
94

95In search of the mythical von Neumann machine

memory and executes them, giving rise to the manipulation of data in memory. The
memory and processor are separate entities, connected by a bus.

 Now we’re going to demonstrate some performance characteristics of a machine
that don’t quite fit the von Neumann picture. A singly linked list is a sequence of
nodes where each item contains a reference to the next item in the list. Many lan-
guages provide linked lists as part of their standard library. We’ll give the example in C
because it’s close to the underlying machine instructions.

 You traverse a linked list of a million items 1,000 times (see listing 5.1). The
code shuffles the nodes into a random order before linking them, but if you give the
--no-shuffle option on the command line, it won’t do that. You generate the ran-
dom numbers for the shuffle even when not shuffling, so you can be sure the random-
number generation doesn’t account for the performance difference. You can find this
code under sodium/book/von-neumann/ in the Sodium project.

#include <stdlib.h>
#include <assert.h>

typedef struct Node {
 struct Node* next;
 unsigned value;
} Node;

void shuffle(Node** nodes, unsigned n, int doit) {
 unsigned i;
 for (i = 0; i < n; i++) {
 unsigned j = (unsigned)(((long long)random() * n) /
 ((long long)RAND_MAX + 1));

Listing 5.1 How long does it take to traverse a linked list?

Memory

Central
processing unit I/O

Program Data

Bus

Figure 5.1 von Neumann “stored
program” hardware architecture

Generates random
numbers

96 CHAPTER 5 New concepts
 if (i != j && doit) {
 Node* node = nodes[i];
 nodes[i] = nodes[j];
 nodes[j] = node;
 }
 }
}

int main(int argc, char* argv[])
{
 const unsigned n = 1000000;
 const unsigned iterations = 1000;
 Node* head;
 Node* node;
 unsigned iter;
 {
 Node** nodes = malloc(sizeof(Node*) * n);
 unsigned i;
 for (i = 0; i < n; i++) {
 nodes[i] = malloc(sizeof(Node));
 nodes[i]->value = i;
 }
 shuffle(nodes, n,
 argc == 2 && strcmp(argv[1], "--no-shuffle") == 0);
 for (i = 0; i < n; i++)
 nodes[i]->next = (i+1) < n ? nodes[i+1] : NULL;
 head = nodes[0];
 free(nodes);
 }
 for (iter = 0; iter < iterations; iter++) {
 unsigned long long sum = 0;
 for (node = head; node != NULL; node = node->next)
 sum += node->value;
 assert(sum == (unsigned long long)(n - 1) * n / 2);
 }
}

Let’s link the nodes in the order in which they were allocated and see how long it
takes:

time ./linked-list --no-shuffle
user 0m3.390s

What if you link the nodes in random order?

time ./linked-list
user 1m19.563s

It takes 23 times as long. Why?

5.1.1 Why so slow? The cache

Actually, the second run wasn’t slow: the first one was such an amazing feat of engi-
neering that it made the second one look slow by comparison. Today’s machines are
based on an architecture called non-uniform memory access (NUMA).

Swaps only if shuffle is
enabled

97In search of the mythical von Neumann machine
 The code doesn’t quite do what the von Neumann picture would suggest. What’s
going on here? Between the main memory and processor in a modern machine,
there’s a bit of sorcery known as a cache (see figure 5.2). A cache is a bank of memory
that keeps a local copy of the most recently accessed parts of the main memory.

When you access data that’s already in the cache, it’s called a cache hit, and when you
require a costly read from slower memory, it’s a cache miss. When it misses, the cache
doesn’t just fetch the requested data. It fetches a small chunk of data, typically 128
bytes or so, and stores that in the cache. This is done because an assumption of locality
often holds true in practice: any memory you access is likely to be near something
accessed recently.

 That’s why in the example, shuffling the nodes killed the performance. It just hap-
pens to be likely in our operating system that each allocated memory block is adjacent
to the previous one. The assumption of locality holds true, and when you come to
read data, it has often been prefetched. But when you shuffle the nodes, locality is
destroyed, so each loop is almost guaranteed to be a cache miss.

 A cache miss exposes you to the latency of a fetch to main memory. Latency itself
isn’t bad if you can give the CPU other work to do while it’s waiting. The linked-list
structure means each loop depends on information from the previous loop. Because
of this, the program can’t supply the CPU with any work, and the CPU must block. The
program falls off a performance cliff.

Memory

Central
processing unit

Program Data

Cache

Central
processing unit

Cache

Central
processing unit

Cache

Central
processing unit

Cache

Arbitration

Figure 5.2 Today’s non-uniform memory access (NUMA) architecture

98 CHAPTER 5 New concepts
MULTIPROCESSOR MACHINES

Caches get a lot more complicated with more than one processor. If one processor
writes to memory, it must clear the caches of all the other processors. If several write at
once, any conflicts must be resolved. Arbitration is the term for all the negotiation that
takes place. Having processors fight over the same memory causes a lot of arbitration
and is known as cache contention.

 Ultimately, the NUMA architecture is a set of processors with local memory with an
elaborate illusion of shared memory between them. Can it scale to 1,000 processors?
We don’t know.

5.1.2 The madness of bus optimization

Often people optimize their code for cache and bus performance. The general rule is
that memory accessed temporally nearby should be physically nearby, and each pro-
cessor should have its own local memory pool. But there are many more rules.

 The C programming language gives you almost direct access to a contiguous
block of memory. The ability of the compiler to optimize automatically for cache and
bus performance is limited. For example, when you have a pointer in C, the compiler
is prevented by the design of the language from transparently relocating the allo-
cated block somewhere that might better fit the temporal memory-access patterns of
the program.

 Q: Why are we in this strange situation?
 A: Because modern machines are forced by current languages to pretend to be a machine that

hasn’t existed since the 1970s.

 To get the performance we expect today out of existing software, caches have
become extremely complicated. For an application programmer to optimize their
code for cache efficiency is generally not a good idea, yet people do exactly this.
These are our reasons for saying so:

■ Hardware architectures have been made complicated so they can run existing
software quickly.

■ This complicated architecture means optimization is largely beyond the ability
of a programmer to optimize for cache and bus performance by hand. Pro-
gramming is difficult enough already.

■ This optimization should be the job of the language compiler, but most of our
languages aren’t well designed for this.

■ Optimizing an application by hand locks it into today’s architecture, but it
won’t be optimized for tomorrow’s. This entrenches the approach, making
innovation in hardware more difficult.

■ End result: a situation where software and hardware mutually complicate each
other.

99In search of the mythical von Neumann machine
The processor is working with sequential instructions that mutate state in place. When
it blocks on a memory read, it must analyze the dependencies in the code to find any-
thing it can execute that doesn’t depend on the outstanding data. In chapter 1, we
talked about how the programmer’s job is typically largely concerned with translating
dependencies into a sequence.

 The way we write software today, the compiler doesn’t have the original dependen-
cies to generate better code. Now the processor has to extract whatever dependency
information it can from the sequential instructions to get any performance. Its ability
to do this is limited. Large-scale parallelism on a single processor isn’t possible with
this design.

WHAT ARE WE EVEN DOING THIS FOR?

We’ve built our practices on some shaky assumptions. The von Neumann machine is a
hardware architecture designed around in-place mutation of state, and this worked
well in the 1970s. Our programming languages were designed to mutate state on a
von Neumann machine, and they haven’t changed much. State mutation is assumed
to be efficient, but the reality is more complex.

 There are mathematical reasons behind the “complexity wall” experienced in com-
mercial software projects: state mutation creates a maze of possible data dependencies
such that unraveling them is an intractable problem. This makes programming
harder and complicates parallelism and optimization. Object-oriented programming
brings order to state mutation, but this just entrenches an approach that doesn’t help
software or hardware designers.

 The von Neumann machine has a design bottleneck that limits its speed, but our
languages tie us to it. In order to run existing software fast, modern machines go to
great lengths to pretend to be von Neumann machines.

Getting the best bus performance out of your code

The Intel 64 and IA-32 Architectures Optimization Reference Manual is 800 pages long
and contains advice like this (section 3.6.12):

If there is a blend of reads and writes on the bus, changing the code to separate
these bus transactions into read phases and write phases can help perfor-
mance.

Note, however, that the order of read and write operations on the bus is not
the same as it appears in the program.

Bus latency for fetching a cache line of data can vary as a function of the access
stride of data references. In general, bus latency will increase in response to
increasing values of the stride of successive cache misses. Independently, bus
latency will also increase as a function of increasing bus queue depths (the
number of outstanding bus requests of a given transaction type).

Did you get that?

100 CHAPTER 5 New concepts
In summary, we’re programming in a bad way, because it’s compatible with a nonexis-
tent, inefficient hardware architecture, forcing us to make complicated hardware
emulations of it, so that it’s complicated to optimize our software, further entrenching
the hardware emulation. See figure 5.3.

Figure 5.3 Maxine is dismayed to discover that the von Neumann machine doesn’t exist.

Complex? Now add more processors

When your code is based on mutating program state in place, and you want to paral-
lelize it to run on multiple processors, you have to protect the state with locks. This
style of programming is prone to nondeterministic bugs, meaning you can get race
conditions or deadlocks that occur only one time out of a million runs at random.

This style doesn’t scale with program size. The reason: coarse-grained locks are safe
but defeat parallelism. Fine-grained locks require policies for acquiring them in the
right order that increase in complexity with program size until they become intractable.

Result: nondeterministic, difficult-to-reproduce bugs that increase with ballooning com-
plexity. If you’re an experienced programmer, then this ought to give you the wehi—
the fear.

101Compositionality
BUT WE CAN BREAK THE CYCLE

To think NUMA—today’s optimization of the von Neumann machine—is the only pos-
sible architecture is to think in a limited way. There are many ways to build a com-
puter. For example:

■ Single processors with local memory connected by fast Ethernet
■ Massively parallel array processors, such as graphics processing units (GPUs)
■ Field programmable gate arrays (FPGAs), where memory and code are near

each other
■ Optical computers
■ Quantum computers

Perhaps future computers will be seamless hybrids of multiple architectures, where
each bit of code runs on the hardware that best suits the underlying problem.

 The fundamental mistake we’re making is programming away from the problem
and toward the machine. In the process, we make the job harder than it needs to be,
and we limit the options of the compiler and the processor maker.

5.1.3 How does this relate to FRP?

To future-proof our code and free us for hardware innovation, we need to do one sim-
ple thing: program in a way that fits the problem and gives dependency information
to the compiler—and, in our specific case, the FRP system—so it can write the best
code for whatever machine it’s targeting. Functional programming in general does
this by tracking data dependencies and removing in-place state mutation. FRP does
this in a more specific way for one problem space. Of the architectures just listed, the
one that fits FRP the best is the FPGA, although the fit isn’t perfect. This relationship
would be interesting to research.

 When a program runs in parallel, it can achieve the same throughput with consid-
erably less power consumption. This basic fact is the true reason why parallelism is
here to stay. Parallelism is the pachyderm in the parlor that will ultimately force us to
adopt ways of programming that are focused on the problem, not on the machine.

NOTE FRP is still in its early days, and we’re a long way from saying parallelism
is a direct selling point of FRP. Current FRP implementations don’t do much
for parallelism yet. And in general, parallelism isn’t an easy problem. But FRP
is inherently parallelizable in a way that traditional programming isn’t.

5.2 Compositionality
A major claim of FRP is that it tames complexity. It does this in a specific way: by
enforcing something called compositionality.

5.2.1 When complexity gets out of control

We all know this from experience: the complexity of a program can get out of control.
When complex parts interact in complex ways, the complexity can compound, with
the result that overall software complexity grows exponentially with program size.

102 CHAPTER 5 New concepts
DEFINITION Exponential growth—When a quantity’s growth rate is propor-
tional to its current value. Compounding bank interest is a common example.
The typical experience is that the increase starts off imperceptibly and then
suddenly overwhelms you. There are some good videos on YouTube that
explain this idea. Any software project whose complexity is growing exponen-
tially will hit a complexity wall once it reaches a certain size.

How do we stop ballooning software complexity? Refactoring is a technique to
counter-balance it.

 We say FRP is compositional because it imposes mathematical rules that force the
interaction of program elements to be simple and predictable, without subtleties.
Their complexities add instead of multiplying, so overall complexity stays closer to
proportional to program size. Put things together, and you don’t get any surprises.

 We defined the term denotational semantics in chapter 1. This is what gives us the
mathematical proof of compositionality for an FRP system. It follows that any FRP
code, no matter how complex, is guaranteed to be compositional.

5.2.2 Reductionism and engineering

Software development is a form of engineering, and engineering is based on the phi-
losophy of reductionism. This methodology is powerful; it has been enormously suc-
cessful at providing us with technology that has transformed the way we do almost
everything.

 The reductionist approach to engineering has four steps:

1 Start with a complex problem.
2 Break the problem into simpler parts.
3 Solve the parts.
4 Compose the parts of the solution into a whole.

Step 4 is where we get into trouble. Reductionism has a hidden assumption of compo-
sitionality: that the nature of the parts doesn’t change when we compose them. When
this isn’t true, we can fail badly. If we wrongly assume compositionality, then we have
committed a logical fallacy called the fallacy of composition. What is true of the parts in
isolation may not be true when they’re combined. For example:

■ If someone stands up at a football game, they can see better. Therefore if every-
one stands up, everyone can see better.

■ Cells are invisible. I am composed of cells. Therefore I am invisible.
■ If I ignore my problems for an hour, they go away for an hour. Therefore if I

ignore them for two hours, they go away for two hours. Therefore …

Event propagation is a widely used “glue” for composing software components. FRP
gives us event propagation with guaranteed compositionality. By imposing composi-
tionality, FRP makes the assumptions of reductionism valid, and in this way, it makes
software engineering work the way it should.

103Compositionality
Defining compositionality and complexity

The idea of compositionality as a mathematical property comes from linguistics and
semantics. The formal definition is “The property that the meaning of an expression
is determined by the meanings of its parts and the rules used to combine them.”

In order to understand this definition, you need to understand the meaning of meaning
(see the following figure). But how can you understand your understanding if you don’t
know what “means” means? We were confused, so we went down to the pub for a
lime and kerosene.

After much contemplation, we came to realize that in linguistics, meaning refers to
the informational content that’s transmitted through human language. Information has
structure, structure implies complexity, and complexity is our chief concern as pro-
grammers.

Without compositionality, the consequences of composing program modules are ad
hoc. FRP works because it imposes rules on composition, making it fit the previous
definition.

Complexity can be tricky to pin down, and there are different approaches for measuring
it. We’re clearly not measuring what the program does. Two programs may do the same
thing, but one may be more complex in structure than the other. We’re concerned with
the structure of the program now, not the structure it might have after being refactored.

Cyclomatic complexity measures the number of linearly independent paths through a
program. Each if statement or loop adds to the metric. FRP reduces the number of
if statements.

The Kolmogorov complexity of a string of text (which could be a program) is the length
of the shortest description of it or program that can output it. For example, “abcab-
cabcabc” could be described as “output ‘abc’ four times”.

These may be helpful, but we prefer a less formal but more practical view of complexity,
where we measure the complexity of a program by the time and effort required to under-
stand it. To modify a program safely, we need to understand all the implications of
the change. The more complex the structure of the program, the longer it takes some-
one to understand it, and the greater the probability that they will make a mistake.
That’s why complexity has such practical negative consequences for programming.

Contemplating meaning

104 CHAPTER 5 New concepts
5.2.3 Compositionality is no longer optional

The problems we programmers are trying to solve are more and more parallel and dis-
tributed in nature, and more complex. Functional programmers know from their own
experience that functional programming deals with complexity better, but many can’t
put their finger on the reason, so they can’t explain it to others. Compositionality is
the reason. Functional programming works because it enforces compositionality,
although it doesn’t claim a monopoly on this.

 Not all problems can be dealt with in a compositional way. Stateful event-based
logic has always been in the non-compositional category, and it has always been a
major source of bugs. This situation has now been changed by FRP, and perhaps other
problems can be addressed in similar ways.

 Compositionality is a missing element in the understanding of most programmers.
This idea can lead to great improvements in the way we do things. In time, increasing
complexity will force us to embrace it.

5.3 Lack of compositionality illustrated
In chapter 2, we used an example of a drawing program to illustrate the merge primi-
tive. As a reminder, you’re working on some kind of drawing program, which is an edi-
tor for documents that contain drawing elements. You’re coding a part of it where the
graphical elements can be selected or deselected. These are the rules, with two more
added (shown in italics):

■ If you click an element, it’s selected.
■ If an element is selected, and you click elsewhere, the element gets deselected.
■ When nothing is selected, you get a cross-hair cursor.
■ When any element is selected, the cursor is an arrow.

Figure 5.4 shows three steps being performed with
the drawing program:

1 Nothing is selected, and we’re ready to click
the triangle.

2 When we’ve clicked the triangle, it’s high-
lighted, and we get an arrow cursor.

3 We get ready to click the octagon.

At this point, a single mouse click will cause two
events to be generated:

■ Deselecting the triangle
■ Selecting the octagon

Figure 5.4 Three steps in selecting and
deselecting elements in the drawing program

105Lack of compositionality illustrated
The following listing shows some pseudocode in an object-oriented/observer-pattern
style to set the shape of the cursor depending on how many elements are selected.

public interface SelectionListener {
 void selected(Element e);
 void deselected(Element e);
}

public class CursorMonitor implements SelectionListener {
 private HashSet<Element> selectedElts = new HashSet();
 public void selected(Element e) {
 selectedElts.add(e);
 updateCursor();
 }
 public void deselected(Element e) {
 selectedElts.remove(e);
 updateCursor();
 }
 private void updateCursor() {
 if (selectedElts.isEmpty()) crosshairCursor(); else
 arrowCursor();
 }
}

Now, what if the customer wants the cursor to stay solidly as an arrow in this case, with-
out any brief flicker? To achieve this, you’d either need to guarantee to process the
selection before the deselection, or wrap the whole thing in some sort of transaction
and update the cursor at the end of it. The first option is difficult because the order of
arrival of the events is unpredictable: it depends on the order in which the listeners
were registered, and this is out of your control in this part of the code. The second
option is possible but could complicate the code significantly.

 If you instead code this in FRP, the problem is neatly solved by the fact that merge
imposes a predictable order when events are simultaneous. To solve this problem, you
can guarantee to process selections first with the following code, assuming an
append() operation that combines two actions into one:

sSelected.merge(sDeselected, (s, d) -> s.append(d))

5.3.1 Why the OO version lacks compositionality

In the object-oriented code given in the previous section, there are two event han-
dlers: selected() and deselected(). Each one is called when an event occurs. Let’s
look at this code through FRP goggles.

 As mentioned, in FRP, you’d model these as two streams: sSelected and sDese-
lected. We haven’t given the code where these events are generated, but let’s assume
that somewhere there exists something like the following:

CursorMonitor cm = new CursorMonitor();
selectionLogic.addListener(cm);
deselectionLogic.addListener(cm);

Listing 5.2 Setting the mouse cursor according to the number of elements selected

Arranges for cm.selected()
to be called later

Arranges for cm.deselected() to be called later

106 CHAPTER 5 New concepts
The updateCursor() method roughly equates to the conceptual FRP merge of
sSelected and sDeselected. Let’s give the name sUpdate to the result of the concep-
tual merge operation you imagine to be represented by this code.

 The semantics of FRP tell us that an FRP merge gives a result that is compositional.
According to the definition of that term, the meaning of sUpdate should be deter-
mined by “the meanings of the elements [sSelected and sDeselected] and the rules
used to combine them [merge].”

 But the imaginary merge represented by this code adds something else: the propa-
gation order of sUpdate—concretely, the order in which the events arrive at update-
Cursor()—depends on the relative order of listener registration somewhere else in
the code. We showed some listener registration earlier, but this isn’t the place where
the order matters. It comes earlier still, where selectionLogic and deselection-
Logic are set up.

 This code isn’t a true FRP merge because it introduces something from a source
completely outside the elements and the rules. Something nonlocal is having an effect
on the order of event processing at updateCursor() and therefore on the meaning of
the results of the “merge.” And so compositionality is broken.

 Subtleties like this are fairly harmless in isolation, but these minor plagues will
compound. Soon they will eat all your lamingtons, leaving a trail of desiccated coco-
nut everywhere.

5.4 Compositionality: eliminating whole classes of bugs
FRP enforces a lot of discipline on the way we do things. At first this may be difficult to
deal with, but we hope you’ll bear with us. We know from experience that FRP can
express anything. But you’ll find that the way you’re used to doing things may no lon-
ger work.

 But you do get something in return: some of the mistakes we colorfully described
as the “six plagues” are a lot harder to make, but most of them are impossible to make.

 We aren’t just eliminating bugs, we’re eliminating whole classes of bugs. We can’t
squash all bugs, but we can fundamentally transform the riskiness of event-handling
code. What’s left over mostly consists of the following:

■ A few silly mistakes, such as mixing up two variables of the same type.
■ Logic errors—and we can’t help you much with these. These are the cases where

unit testing is helpful.
■ Not fully understanding your customer’s requirements.

So, try our new FRP bug spray!

Enlightenment

You’ve reached the point of enlightenment when the predominant source of bugs is
not understanding your customer’s requirements. This is the point at which you rewrite

107Don’t pull out the rug: use immutable values
5.5 Don’t pull out the rug: use immutable values
Both cells and streams contain values. These are passed through the FRP system and
are seen by different parts of your code at different times. It’s important that the FRP
system can provide the value intact. The values contained in the streams or cells
mustn’t be changed during this process.

 The way to guarantee this is to make all of your data structures immutable. In most
languages, you make the fields private and only define getters. In Java, you can mark
the fields as public final. The field types also need to be immutable. If your team is
disciplined enough not to modify them, you can keep things simple with regular pub-
lic fields.

5.5.1 Immutable data structures

Referential transparency or purity means functions passed to FRP primitives must not per-
form I/O, modify or read external state, or keep internal state.

 Pop quiz: is referential transparency
a. Completely unimportant

b. Somewhat important

c. Moderately important

d. Very important

Top marks! It’s very important. If we don’t make you sick of hearing about it, then we
haven’t emphasized it enough. This book comes with special reinforcement for when
you throw it down in disgust because we’ve banged on about referential transparency
too much.

 It’s a consequence of referential transparency (which is very important) that you
should always use immutable data structures. There are tree-based implementations of
maps, sets, and other things that can’t be modified in place, but they’re efficiently
“copied” to a new structure when they’re modified. Java doesn’t have anything like
this in its standard library, but there are several projects out there. These are some-
times referred to as functional data structures or persistent data structures. (This last term,
persistent, has an unfortunate double meaning: we aren’t talking about writing data
structures to persistent storage.)

 You can achieve the same effect by always copying your mutable data structure and
then modifying the copy, but this is inefficient if the structure is large. A true immuta-
ble data structure is typically nearly as efficient as a mutable one. We’re teaching you
to build software that’s correct and easy to modify. That is a greater priority than

old parts of the code base to keep yourself busy and start spending more time with
your family. Your manager will insist you keep your team at more or less the same
size because they will be unable to comprehend how productive you have become.

This really happened to one of the authors.

108 CHAPTER 5 New concepts
performance in most projects. Right now there are performance costs to this, but they
aren’t large. They will become smaller in mainstream languages as people use more
functional approaches and compilers are optimized accordingly. Functional program-
ming languages have demonstrated that a lot can be done to optimize the handling of
immutable data. As parallelism becomes more important, immutable structures may
well end up faster.

5.6 Clarity of intent
We said at the end of chapter 4 that FRP code consists mainly of two things:

■ Pure logic
■ Structure that limits scope

FRP has factored out most of the extraneous detail directly, and you have a free hand
to limit scope in ways that work for you at a conceptual level.

 We’ll cover refactoring in detail in chapter 13. Refactoring is easy in FRP. If two
aspects of some logic are complicating each other, it’s a simple matter to separate
them out into different modules:

■ Explicit dependencies make the mechanics of separating code out easy. You
remove the lines you want to separate out, and pass arguments around as
necessary.

■ Type safety makes the risk of breakage low, so you can refactor with abandon
without the need for unit tests.

When your code has been refactored a few times, it tends toward well-defined, self-
contained, conceptually simple layers of abstraction. The compositionality guarantee
of FRP is strong in preventing abstractions from being “leaky”—the interface between
two bits of code is well defined, and its rules can’t be violated. The types of the values
passed between them mostly define the semantics of the interface, but not entirely;
there may still be some details in the sequencing and meaning of stream events and
changes to cell values that aren’t captured in the types. Overall, it’s a great improve-
ment over traditional programming in this area.

 When a complex program has become stratified into layers with a level of abstrac-
tion appropriate to the problem, you’ll find you have achieved clarity of intent. Abstrac-
tion has a cost as well as a benefit: the reader of the code first needs to take the time to
understand the concepts behind the layer of abstraction they’re working at. Once
they’ve done that, it should be possible to read the code and know exactly what it
does. That's clarity of intent.

 Recall that the lasagna example in chapter 1 was easy to understand because we
described it in the concepts of human thought, not the minutiae of constructing it.
Even though the program is complex on a large scale, it’s expressed as simple layers
that don’t interfere in unpredictable ways. Each layer expresses the “what,” not the
“how,” where “what” corresponds to some concept in the problem description. It’s
both simple and understandable.

109Summary
 The true test of clarity of intent is this: if someone has reported a bug, you should be
able to see it just by reading the code. You should be able to understand what the pro-
gram does without running it.

5.7 The consequences of cheap abstraction
FRP has something in common with all other forms of functional programming:
abstraction is cheap, so we tend to use it more. Abstraction is where we hide the
details of something so we can interact with it in a simpler way. In FRP, this is mostly
achieved in practice by simple techniques that limit scope. Abstraction simplifies our
code overall—sometimes dramatically—and makes the intent of the code clearer, but
as we said, there’s an up-front cost: extra time is required to understand the concept
behind a given abstraction.

 But the cost is often not so high. Cheap abstraction means the usefulness of an
abstraction tends to outweigh its cost. Abstractions in FRP are often more general than
in “normal” programming, so code reuse is easier. This generality maximizes the use-
fulness of a given abstraction so the number and variety of abstractions needed is
smaller. This keeps down the overall costs of understanding them.

 We said that FRP is compositional in that you’re composing parts of your program
according to well-defined rules, so you don’t get surprises. FRP does this at a fine level
of granularity. We also said that refactoring is easy in FRP code. Part of the reason for
this is that even small fragments of code are compositional. Compositionality perme-
ates the code.

NOTE Aspects of the code that would be too cumbersome to factor out in “nor-
mal” programming are often easy to do in FRP. This is what we mean when we
say abstraction is cheap. When coding in FRP, we find ourselves refactoring
continuously, identifying bits of common logic and factoring them out into
reusable functions. We call this “the incredible shrinking code.”

One issue with a highly abstracted style of coding is that it can be different than what
people are used to. We’ve encountered pockets of resistance in our efforts to domi-
nate the entire universe. But this is becoming less and less of a problem as functional
programming goes mainstream; formerly esoteric concepts are becoming familiar.

 Ultimately, cheap abstraction leads to a sort of enlightenment or “superconductor
effect,” where simplicity compounds instead of complexity, and you find yourself pro-
gramming at a higher level. We can’t get this across to you with words. It has to be
experienced, and we hope you’ll get a glimpse of it by the end of the book.

5.8 Summary
■ Our machines aren’t really von Neumann machines. This idea ties us to

sequence, making parallelism difficult, making the programmer’s job difficult,
and limiting hardware innovation.

110 CHAPTER 5 New concepts
■ You should program to the problem and let the compiler deal with the
machine. FRP is a step in the right direction.

■ FRP tames complexity by enforcing compositionality.
■ FRP requires the use of immutable data structures and referential transparency

(purity).
■ You should aim for clarity of intent in your code. The code should be simple to

understand.

FRP on the web
FRP fits some problems better than others. User interfaces and networking are two
event-based areas where it fits especially well. Not surprisingly, FRP is excellent for
web applications.

 RxJS—part of the Reactive Extensions suite—is a system widely used in web
applications that has an FRP capability. In this chapter, we show how to use it for
FRP by contrasting it against Sodium, which we’re treating as a model of true FRP.

NOTE Appendix C contains comparison charts for all the systems dis-
cussed here.

This chapter covers
■ Observables in RxJS
■ How to manage state in RxJS
■ RxJS examples
■ A glimpse of Kefir.js and Flapjax
■ Glitches/inconsistent handling of simultaneous

events
111

112 CHAPTER 6 FRP on the web
6.1 RxJS
Reactive Extensions started as a library from Microsoft for the .NET platform, known
for short as Rx.NET. It has now been translated into almost every language, and the
JavaScript version is called RxJS.

 There are many other JavaScript systems inspired by RxJS, including Bacon.js,
Kefir.js, and Meteor Tracker. Flapjax is another JavaScript system from the same “clas-
sic FRP” lineage that Sodium comes from. We’ll compare one example among three
systems: RxJS, Kefir.js, and Flapjax.

 The goals and design philosophy of Rx are a little different than Sodium’s:

■ Sodium is intended to put the core concept of “true FRP” into a practical, mini-
malist form. It takes a restrictive approach with the aim of making certain kinds
of bugs either impossible or more difficult.

■ Rx is designed to assist with a range of real-world problems. When using Rx,
people often combine FRP and non-FRP ways of doing things. We aren’t keen
on this because you’re effectively writing your own primitives. When you do
this, it’s all too easy to break compositionality. To get the best advantage out of
FRP, we recommend a strict delineation between FRP and I/O, so this is the
approach we take here.

Rx has many features, but a subset of it is FRP-like and looks a lot like Sodium. Both
systems are ultimately wrappers for the observer pattern. Our approach will be to
compare Rx to Sodium. We’re doing this first so we can look at Rx through an FRP
lens, and second to give you a frame of reference because you’re now familiar with
Sodium.

NOTE One important thing Rx lacks is denotative semantics. This means the
building blocks lack compositionality in certain areas. We’ll explain those
areas in this chapter. Rx isn’t “true FRP” for this reason.

This book isn’t about how to get the most out of Rx: it’s about how to get FRP out of
Rx. For a more thorough treatment of the Rx family of systems, look at Reactive Exten-
sions in Action by Tamir Dresher (Manning, 2016).

6.2 Observable
Rx is based around an interface called Observable that corresponds to Sodium’s
Stream. Sodium Stream has, in keeping with classic FRP, only one type of event—a
value—but Rx Observable has three:

■ onNext—A value
■ onError—An error
■ onCompleted—The end of the stream

NOTE We have a minimalist view of FRP, and we think errors and end-of-
stream shouldn’t be built into an FRP system. They’re domain-specific: for

http://elm-lang.org/

113Observable
instance, they would be meaningless in a stream of mouse events. Where
these concepts are needed, they can be encoded in the values. Of course, this
is just our purist opinion. The way Rx does things make sense for Rx’s design
goals because its goal is to make common tasks easier.

Observable represents a sequence of values. To get the values out, you subscribe to it,
and you’re called back with each value in turn. For example:

var numbers = Rx.Observable.range(1, 3);
console.log("---1");
var subscription = numbers.subscribe(
 function (x) { console.log('onNext: %s', x); },
 function (e) { console.log('onError: %s', e); },
 function () { console.log('onCompleted'); });
console.log("---2");

This is the output:

–--1
onNext: 1
onNext: 2
onNext: 3
onCompleted
---2

NOTE You can use subscription.dispose() to unsubscribe, but Rx is
designed for fire-and-forget scenarios, so in most cases it’s not needed.

6.2.1 Hot and cold observables

In the previous example, all the action took place when subscribe() was invoked.
This is a cold observable. If you were to subscribe to numbers again later, the new sub-
scriber would get the same sequence from the beginning.

 A cold observable can be seen as equivalent to a list in functional programming.
This makes sense if you understand that part of the goal of Rx is to provide infrastruc-
ture for general functional programming in nonfunctional languages.

 Hot observables correspond to Sodium’s Stream. The subscriber doesn’t receive
any callbacks immediately, but only later as “live” events come in. Mouse events are a
good example:

var sMouseDown = Rx.Observable.fromEvent(document, 'mousedown');
var subscription = sMouseDown.subscribe(
 function (x) { console.log('onNext: %s', x.clientX+','+x.clientY); },
 function (e) { console.log('onError: %s', e); },
 function () { console.log('onCompleted'); });
console.log("---");

If you click the document twice, you get this output:

onNext: 100,87
onNext: 84,175

114 CHAPTER 6 FRP on the web
6.2.2 How to maintain state

RxJS observables work much the same as streams in Sodium or any other FRP system,
but state-keeping is a little different. RxJS employs three methods and one class in the
management of state:

■ scan()
■ withLatestFrom()
■ combineLatest()
■ BehaviorSubject

We’ll give illustrations of all of these.
 RxJS doesn’t have a direct equivalent of a cell type, but you can achieve a similar

effect by other means. The difference between the concepts of stream and cell is an
important part of FRP. RxJS doesn’t make this distinction with data types, so we’ll
emphasize it using the same convention as in the Sodium examples where you prefix
“stream” variable names with s.

6.2.3 A stateful accumulator with scan()

Figure 6.1 shows a toy application that draws
lines between the positions of mouse clicks. The
first line is drawn from (0,0) to the first mouse-
click position.

 The code is shown in listings 6.1 and 6.2. To
draw the line, you need to keep the state of the
previous mouse-click position. To do this, you use
the scan() method that keeps a state value from
last time it processed an event, giving you a state-
ful accumulator. On each invocation, the sup-
plied function is passed the state and the new
value, and it returns the new state value. That
new state value is then output on the sLines observable. Sodium has an equivalent to
scan() called accum() that’s implemented using a hold-snapshot loop.

<html><head>
 <title>Connect the dots</title></head>
 <style>
 #myCanvas { border-style: solid; border-width: 1px }
 </style>
 <script src="rx.all.min.js"></script>
 <script src="connect-the-dots.js"></script>
</head>
<body onload="init()">
 <div>Please click on the canvas</div>
 <canvas id="myCanvas" width="300" height="200">No canvas!</canvas>
</body>
</html>

Listing 6.1 connect-the-dots.html: drawing lines between mouse-click positions

Figure 6.1 A web application that
draws lines between mouse-click
positions

115Observable

Takes
state
The actual graphics are done in the subscriber. Note that the HTML5 canvas object
keeps the drawn image in its own state, so the lines you drew earlier stay on the screen.

function init() {
 var canvas = document.getElementById("myCanvas");
 var sMouseDown = Rx.Observable.fromEvent(canvas, 'mousedown');
 var initial = { x0 : 0, y0 : 0, x1 : 0, y1 : 0 };
 var sLines = sMouseDown.scan(initial, function(last, e) {
 var x = e.pageX – canvas.offsetLeft;
 var y = e.pageY - canvas.offsetTop;
 return { x0 : last.x1, y0 : last.y1,
 x1 : x, y1 : y };
 });
 var subscription = sLines.subscribe(function (l) {
 var ctx = canvas.getContext("2d");
 ctx.beginPath();
 ctx.moveTo(l.x0, l.y0);
 ctx.lineTo(l.x1, l.y1);
 console.log('{ x:'+l.x1+', y:'+l.y1+' },');
 ctx.stroke();
 });
}

You can check out this code and try it like this:

git clone https://github.com/SodiumFRP/sodium

Point your browser at sodium/book/web/connect-the-dots.html
 You’ll notice that the state management and logic are in a scan() so they’re han-

dled by FRP. You put only what you have to—the I/O—into the subscribe().

6.2.4 The most recent value of an observable with withLatestFrom()

Figure 6.2 shows a program that, when you
release the mouse button, draws a line from the
mouse-down position to the mouse-up position,
and a cross at each end. In listing 6.3 you use
withLatestFrom() to capture the most recent
sMouseDown position when sMouseUp fires.
withLatestFrom() does the state keeping, so
you’re treating sMouseDown as a cell, but without
any explicit conversion to one.

 The approximate Sodium equivalent would
be this

sMouseUp.snapshot(sMouseDown.hold(null), ...);

but with the difference that if sMouseDown has never fired before, withLatestFrom()
won’t output anything. Take the HTML as read; it’s only trivially different from the
previous example.

Listing 6.2 connect-the-dots.js

an initial
 value … … and a function to

update the state

We never dispose()
this subscription.

Figure 6.2 Drawing a line between the
mouse-down and mouse-up positions

116 CHAPTER 6 FRP on the web

function init() {
 var canvas = document.getElementById("myCanvas");
 var getXY = function(e) { return { x : e.pageX - canvas.offsetLeft,
 y : e.pageY - canvas.offsetTop }; };
 var sMouseDown = Rx.Observable.fromEvent(canvas, 'mousedown')
 .map(getXY);
 var sMouseUp = Rx.Observable.fromEvent(canvas, 'mouseup')
 .map(getXY);
 var sLines = sMouseUp.withLatestFrom(sMouseDown,
 function(up, down) {
 return { x0 : down.x, y0 : down.y,
 x1 : up.x, y1 : up.y };
 });
 var sub1 = sMouseDown.merge(sMouseUp).subscribe(function (d) {
 var ctx = canvas.getContext("2d");
 ctx.beginPath();
 ctx.moveTo(d.x-4, d.y);
 ctx.lineTo(d.x+4, d.y);
 ctx.moveTo(d.x, d.y-4);
 ctx.lineTo(d.x, d.y+4);
 ctx.stroke();
 });
 var sub2 = sLines.subscribe(function (l) {
 var ctx = canvas.getContext("2d");
 ctx.beginPath();
 ctx.moveTo(l.x0, l.y0);
 ctx.lineTo(l.x1, l.y1);
 ctx.stroke();
 });
}

To run this example, point your browser at sodium/book/web/line-stretch.html.

6.3 Keeping state in RxJS, Kefir.js, and Flapjax
BehaviorSubject is the thing that truly corresponds to Sodium’s Cell, having the
concept of a current value. It starts off as a cold observable. When you subscribe, you
get called back once immediately with the current value. Then it becomes a hot
observable, giving you the updates as they come in.

 For instance, figure 6.3 shows a program that
allows you to select a dog or cat polygon. When
you click OK, an alert pops up, saying “You
selected cat” or “You selected dog.”

Figure 6.3 The Select application with
the cat selected by default

Listing 6.3 line-stretch.js: Drawing a line from mouse-down to mouse-up position

Captures the most recent
mouseDown position
when mouseUp fires

Draws a cross at the
mouseUp and

mouseDown positions

On mouseUp, draws a line
from the mouseDown to
the mouseUp position

117Keeping state in RxJS, Kefir.js, and Flapjax
Listings 6.4 and 6.5 show the Sodium hold equivalent, where you construct

var selected = new Rx.BehaviorSubject("cat");
sSelected.subscribe(selected);

The equivalent in Sodium would be

selected = sSelected.hold("cat");

The argument says that the cat is selected by default. Using this instead of using
sSelected directly has two positive effects on the program:

■ It draws the scene on page load. Without the BehaviorSubject, you’d see noth-
ing, because sSelected doesn’t fire until the user clicks the canvas.

■ If you only click OK, the program captures the default value (“cat”) that you
passed to the BehaviorSubject. If you used sSelected directly, then if the user
only clicked the OK button, nothing would happen. withLatestFrom()
wouldn’t see any event on sSelected, so it would output nothing when it got an
event on sOK.

<html><head>
 <title>Select cat or dog then click OK - Rx.JS</title>
 <style>
 #myCanvas { border-style: solid; border-width: 1px }
 </style>
 <script src="rx.all.min.js"></script>
 <script src="select-rxjs.js"></script>
</head>
<body onload="init()">
 <div>Select cat or dog then click OK - Rx.JS</div>
 <canvas id="myCanvas" width="300" height="200">No canvas!</canvas>
 <div><button id="ok">OK</button</div>
</body>
</html>

Forward references

The Observable.subscribe(BehaviorSubject) line can be written much later than
the construction of the Rx.BehaviorSubject. This allows forward references, equiv-
alent to CellLoop in Sodium. You can use this to write a state accumulator with a
looped value, as you do in Sodium.

In a similar way, streams can be looped using a class called Rx.Subject(), giving
an equivalent of Sodium’s StreamLoop:

var s0 = new Rx.Subject();
...
s.subscribe(s0);

Listing 6.4 select-rxjs.html: Select application for selecting polygons

Cell with a default value
Changes it according
to sSelected

118 CHAPTER 6 FRP on the web
function insidePolygon(pos, poly) {
 var x = pos.x, y = pos.y, coords = poly.coords, inside = false;
 var v = coords[coords.length-1], x1 = v.x, y1 = v.y;
 for(var i = -1; v = coords[++i];) {
 var x2 = v.x, y2 = v.y;
 if((y1 < y && y2 >= y) || (y2 < y && y1 >= y))
 if (x1 + (y - y1) / (y2 - y1) * (x2 - x1) < x)
 inside = ! inside;
 x1 = x2, y1 = y2;
 }
 return inside;
}
var shapes = [
 { id: "cat", coords: [{ x:55, y:90 },{x:67,y:54},{x:72,y:89},
 {x:99,y:88},{x:106,y:54},{x:115,y:91},{x:123,y:106},
 {x:100,y:134},{x:88,y:130},{x:80,y:134},{x:48,y:108}]},
 { id: "dog", coords: [{x:171,y:58},{x:154,y:80},{x:156,y:120},
 {x:166,y:110},{x:166,y:82},{x:183,y:130},{x:202,y:127},
 {x:221,y:78},{x:225,y:111},{x:237,y:119},{x:231,y:59},
 {x:211,y:66},{x:195,y:60},{x:180,y:72}]}
]

function init() {
 var canvas = document.getElementById("myCanvas");
 var getXY = function(e) { return { x : e.pageX - canvas.offsetLeft,
 y : e.pageY - canvas.offsetTop }; };
 var sMouseDown = Rx.Observable.fromEvent(canvas, 'mousedown')
 .map(getXY);
 var sSelected = sMouseDown.map(function(pos) {
 for (var i = 0; i < shapes.length; i++)
 if (insidePolygon(pos, shapes[i]))
 return shapes[i].id;
 return null;
 });
 var selected = new Rx.BehaviorSubject("cat");
 sSelected.subscribe(selected);
 var okButton = document.getElementById('ok');
 var sOK = Rx.Observable.fromEvent(okButton, 'click');
 sOK.withLatestFrom(selected, function(ok, sel) { return sel; })
 .subscribe(function(sel) {
 alert('You selected '+sel);
 });
 selected.subscribe(function(selected) {
 var ctx = canvas.getContext("2d");
 ctx.clearRect(0, 0, canvas.width, canvas.height);
 for (var i = 0; i < shapes.length; i++) {
 var coords = shapes[i].coords;
 ctx.beginPath();
 ctx.moveTo(coords[0].x, coords[0].y);
 for (var j = 0; j < coords.length; j++)
 ctx.lineTo(coords[j].x, coords[j].y);
 ctx.closePath();
 if (selected == shapes[i].id) {

Listing 6.5 select-rxjs.js

“hold” a stream

119Keeping state in RxJS, Kefir.js, and Flapjax
 ctx.fillStyle = '#ff0000';
 ctx.fill();
 }
 ctx.stroke();
 }
 });
}

To run this example, point your browser at sodium/book/web/select-rxjs.html.

6.3.1 startWith() as shorthand for BehaviorSubject

In the previous example, these two lines

var selected = new Rx.BehaviorSubject("cat");
sSelected.subscribe(selected);

could be written like this:

var selected = sSelected.startWith("cat");

This will give you an observable that reports "cat" once on any new subscription. In
this program, the effect would be the same, but they aren’t equivalent.

 On a new subscription, BehaviorSubject gives you "cat" if there haven’t been any
events yet, or the latest value if there have been events. Because it remembers the lat-
est change, it works like an FRP cell. But startWith always gives "cat" as the initial
value on a new subscription, no matter how many events have gone before. It doesn’t
remember the most recent event value like BehaviorSubject does. These two are only
equivalent if you only ever subscribe to them during program initialization (before
the first event is received) as many programs do.

6.3.2 The same again with Kefir.js

Now let’s do it again in Kefir.js (see listing 6.6). Kefir is based on RxJS, but the equiva-
lent of Cell/BehaviorSubject is called Property. It behaves more like a distinct type,
as in Sodium. toProperty is exactly equivalent to Sodium’s hold, and sampledBy is
Sodium’s snapshot with the first two arguments reversed.

function init() {
 var canvas = document.getElementById("myCanvas");
 var getXY = function(e) { return { x : e.pageX - canvas.offsetLeft,
 y : e.pageY - canvas.offsetTop }; };
 var sMouseDown = Kefir.fromBinder(function(emitter) {
 canvas.addEventListener("mousedown", emitter.emit);
 return function() {
 canvas.removeEventListener("mousedown", emitter.emit);
 }
 }).map(getXY);
 var selected = sMouseDown.map(function(pos) {

Listing 6.6 select-kefir.js: Select application again in Kefir.js

120 CHAPTER 6 FRP on the web
 for (var i = 0; i < shapes.length; i++)
 if (insidePolygon(pos, shapes[i]))
 return shapes[i].id;
 return null;
 }).toProperty("cat");
 var okButton = document.getElementById('ok');
 var sOK = Kefir.fromBinder(function(emitter) {
 okButton.addEventListener("click", emitter.emit)
 return function() {
 okButton.removeEventListener("click", emitter.emit);
 }
 });
 selected.sampledBy(sOK, function(sel, ok) { return sel; })
 .onValue(function(sel) {
 alert('You selected '+sel);
 });
 selected.onValue(function(selected) {
 ...

To run this example, point your browser at sodium/book/web/select-kefir.html.

6.3.3 And now…Flapjax

Here’s the same example in Flapjax (see listing 6.7). Flapjax is based more on “classic”
FRP, so it’s a little closer to Sodium than to RxJS.

 Flapjax uses the old-school names Event (for stream) and Behavior (for cell);
hence the E and B suffixes of its primitives. mapE corresponds to Sodium’s map on
streams, and liftB corresponds to Sodium’s map on cells.

 These two double as listen functionality for feeding outputs to I/O handling. We’re
not so keen on this idea because we think it’s better to keep these concepts separate in
people’s minds: “This is mapE, and it’s for referentially transparent logic. This is
listen, and it’s for I/O.”

 startsWith corresponds to Sodium’s hold—not to RxJS’s startWith(). And
snapshotE is exactly snapshot.

NOTE We maintain that FRP is FRP is FRP—that despite some surface differ-
ences, all FRP systems are substantially based on the same small set of simple
concepts.

function init() {
 var canvas = document.getElementById("myCanvas");
 var getXY = function(e) { return { x : e.pageX - canvas.offsetLeft,
 y : e.pageY - canvas.offsetTop }; };
 var mouseDown = extractEventE(canvas,'mousedown').mapE(getXY);
 var selected = mouseDown.mapE(function(pos) {
 for (var i = 0; i < shapes.length; i++)
 if (insidePolygon(pos, shapes[i]))
 return shapes[i].id;
 return null;

Listing 6.7 select-flapjax.js: Select application again this time in Flapjax

121The latest of two observables with combineLatest

Behavior
of the c

tex
inp
 }).startsWith("cat");
 var okButton = document.getElementById('ok');
 var ok = clicksE(okButton);
 snapshotE(ok, selected, function(ok, sel) { return sel; })
 .mapE(function(sel) {
 alert('You selected '+sel);
 });
 ...

To run this example, point your browser at sodium/book/web/select-flapjax.html.

6.4 The latest of two observables with combineLatest
Now we’ll return to RxJS. The final state-keeping method we need to cover is
combineLatest, which allows you to combine the current values of two Cell-like input
observables. It works as expected when its inputs are BehaviorSubjects. When used
like this, it corresponds to lift in Sodium.

 Figure 6.4 shows the trivial but classic use case of FRP
lift: adding two numbers represented as cells. Listings
6.8 and 6.9 give the code. Some browsers will retain the
content of the text fields if you reload. You’ll see that
everything works in a properly cell-like manner, so the sum starts off correct.

<html><head>
 <title>Add two numbers</title>
 <style>
 #a { width: 80px; }
 #b { width: 80px; }
 </style>
 <script src="rx.all.min.js"></script>
 <script src="add.js"></script>
</head>
<body onload="init()">
 <input id="a" type="text"/> +
 <input id="b" type="text"/> =

</body>
</html>

function currentTextOf(input) {
 var sKeyPresses = Rx.Observable.fromEvent(input, 'keyup'),
 text = new Rx.BehaviorSubject(input.value);
 sKeyPresses.map(function (e) { return input.value; }).subscribe(text);
 return text;
}
function init() {
 var a = currentTextOf(document.getElementById('a'))
 .map(function(text) { return parseInt(text); }),

Listing 6.8 add.html: Adding two numbers together

Listing 6.9 add.js

Figure 6.4 Adding two
numbers together

Subject
urrent
t of an
ut field

122 CHAPTER 6 FRP on the web
 b = currentTextOf(document.getElementById('b'))
 .map(function(text) { return parseInt(text); }),
 cSpan = document.getElementById('c');
 var c = a.combineLatest(b, function(aa, bb) { return aa + bb; });
 c.subscribe(function(cc) { cSpan.innerHTML = cc; });
}

To run this example, point your browser at sodium/book/web/add.html.

6.4.1 Glitches in combineLatest

We said in chapter 1 that because Rx isn’t based on denotational semantics, it isn’t
truly compositional, and this is one of the requirements of FRP. One way in which this
manifests is the area of glitches. A true FRP system should be glitch-free.

 A glitch is defined as a visible output that isn’t consistent with the relationships
defined by the FRP code. To demonstrate a glitch, you need simultaneous events.
Recall that two simultaneous events must originate in a single stream. This is the sort
of thing that doesn’t come up in simple programs but starts to become a problem as
they get more complex.

 The quickest way to illustrate is with a
contrived example. Suppose you have two
simultaneous events—ones and hundreds.
You’ll feed the numbers 1 and 2 into ones.
hundreds is ones multiplied by 100, and
sum is the sum of ones and hundreds. In a
perfect, glitch-free world, figure 6.5 shows
what you would like to see visible in sum.

 If you code this in RxJS (see listing 6.10)
and then load it in the browser, you get
these alerts:

■ 101
■ 102
■ 202

The number 102 is referred to as a glitch because ones has the value of 2 at this point,
so to be consistent, hundreds should be 200. 102 isn’t consistent with the relationships
described in the code. In an FRP system, no inconsistent state should be observable.

<html><head>
 <title>Glitch</title>
 <script src="rx.all.min.js"></script>
</head>
<body>
 <script type="text/javascript">
 var ones = Rx.Observable.range(1, 2);
 var hundreds = ones.map(function(x) { return x * 100; });

Listing 6.10 How RxJS handles simultaneous events

ones

hundreds

time

1 2

100 200

sum 101 202

Figure 6.5 The sum of simultaneous events
ones and hundreds

123The latest of two observables with combineLatest
 var sum = ones.combineLatest(hundreds, function(o, h) {
 return o + h; });
 sum.subscribe(function(s) { alert(s); });
 </script>
</body>

To run this example, point your browser at sodium/book/web/glitch.html.
 Listing 6.11 gives the Sodium equivalent. Sodium doesn’t give glitches, so its out-

put is as you’d like:

101
202

import nz.sodium.*;

public class glitch {
 public static void main(String[] args) {
 CellSink<Integer> ones = new CellSink<>(1);
 Cell<Integer> hundreds = ones.map(o -> o * 100);
 Cell<Integer> sum = ones.lift(hundreds, (o, h) -> o + h);
 Listener l = sum.listen(s -> System.out.println(s));
 ones.send(2);
 l.unlisten();
 }
}

When evaluating a system, you need to understand how it deals with simultaneous
events and decide how important that is to your project. Once you’ve invested in a sys-
tem for your project, you’re stuck with its glitch behavior. It can’t be fixed later.

 What plagues does RxJS banish? See table 6.1.

Notes:

■ Threading issues—JavaScript doesn’t have threads, so there are obviously no
threading issues. The Rx system in other languages has imperfect ways of
dealing with threading issues, but they’re an improvement over traditional ways

Listing 6.11 How Sodium handles simultaneous events

Table 6.1 What plagues does RxJS banish?

Plague Banished?

Unpredictable order No

Missed first event Yes

Messy state Yes

Threading issues Partially (see the following notes)

Leaking callbacks Yes

Accidental recursion No (see the following notes)

124 CHAPTER 6 FRP on the web
of doing things. This isn’t as good as things could be. FRP systems can eliminate
threading issues altogether, as Sodium demonstrates.

■ Accidental recursion—Rx allows a subscriber’s handler code to push events into
an observable, which can lead to accidental recursion. Having said that, if you
have the self-control not to do this, you should avoid this problem. Sodium
strictly enforces a ban on doing this, as we’ll explain in chapter 8. This is why it
can completely eliminate this plague.

6.4.2 merge isn’t compositional

A second, similar problem that RxJS and some other system have is that merge doesn’t
deal consistently with simultaneous events. This is exactly the same issue we described
in section 5.3. This lack of compositionality creates more and more practical difficul-
ties as program size increases, and as we’ve explained, these will eventually com-
pound. You need to consider these issues when selecting an FRP system for your
project.

6.5 Creating your own hot observable
For the purposes of I/O handling, it’s possible to create your own hot observables.
We’ll explain how here and give a concrete example in the next section. This is the
skeleton:

var sOutput = Rx.Observable.create(function (observer) {
 ... asynchronous I/O stuff ...
 observer.onNext(outputValue);
 ...
 }).publish();
sOutput.connect();

There are four parts:

■ You construct the observable, passing it a function that does the real work of
supplying values to observers when they subscribe.

■ Your asynchronous I/O code would then listen to some event source. When
your code receives a callback and you want to push an event to subscribed
observers, you call onNext() on the observer.

■ Without publish(), if there were multiple subscribers, then the function you
supplied would be executed more than once, creating one instance for each

Standardization of “streams” systems—an opportunity lost?

Rx-like systems are gaining wide acceptance and even becoming standards in some
cases. We’re concerned about the adoption of systems that lack compositional prop-
erties. It wouldn’t take much additional effort to get things right. We think that when
a broken form of FRP is adopted as standard, an important opportunity to improve
the quality of software in the industry has been lost.

125Example: autocomplete the FRP way
subscriber. What publish() does is broadcast a single output stream: only one
actual instance is created, and multiple subscribers each receive a copy of the
same event.

■ publish() doesn’t start the single instance for which it broadcasts the output.
You need to call connect() explicitly to make this happen.

6.5.1 Don’t use this to implement logic

Creating your own hot observables is the right approach for pushing events from the
I/O parts of your program into the FRP logic. But don’t be tempted to use it to write
stateful logic or implement your own primitives. To make this clear:

■ You may want to write some code that receives events from an observable, keeps
its own state, and outputs events based on that state.

■ If it only does this, then you should use existing primitives instead. They were
designed to guarantee compositionality with no effort on your part. If you can
always assume compositionality, then there are large categories of potential
bugs you don’t even need to think about.

■ If it does I/O as well, then it’s probably best to do it with subscribe()by creat-
ing your own observables. The important thing is that you see it as being “out-
side the world of FRP.”

The point of all this is so you can say, “This code is FRP, so I know it’s compositional.
This code is I/O, so I have to take care.”

6.6 Example: autocomplete the FRP way
The examples we’ve given so far have been trivial
ones to introduce individual primitives. Now let’s
put them all together in a more realistic example:
the autocomplete functionality you commonly
find on websites—done the FRP way (see figure
6.6). When the user selects a city, the example
looks up and displays some information about
the city (see figure 6.7).

Figure 6.6 Auto-complete
implemented with FRP

Figure 6.7 You look up and display city info
once the user selects it.

126 CHAPTER 6 FRP on the web

Con
hot ob

to FRPi d
Look at listings 6.12 and 6.13. debounce() is an RxJS method giving you exactly what
you need: it fires if there are no events for the specified time. You use this to tell you
when the user has stopped typing for 100 ms before you look up the entered text on
the server.

<html>
<head>
 <title>Autocomplete - Rx.JS</title>
 <style>
 #info { padding-top: 20px; }
 #city { width: 300px; }
 table { border-collapse: collapse; }
 table td { padding: 2px; border: 1px solid black; }
 </style>
 <script src="rx.all.min.js"></script>
 <script src="autocomplete.js"></script>
</head>
<body onload="init()">
 <div>
 <label for="city">City</label>
 <input id="city" type="text" />
 </div>
 <div id="info"></div>
</body>
</html>

var jsonpCallbacks = {
 cntr: 0
};

function lookup(url, sRequest) {
 var sResponse = Rx.Observable.create(function (observer) {
 return sRequest.subscribe(function(req) {
 var fnName = "fn" + jsonpCallbacks.cntr++,
 script = document.createElement("script");
 script.type = "text/javascript";
 script.src = url+encodeURIComponent(req) +
 "&callback=jsonpCallbacks." + fnName;
 jsonpCallbacks[fnName] = function(resp) {
 delete jsonpCallbacks[fnName];
 document.body.removeChild(script);
 observer.onNext([req, resp]);
 };
 document.body.appendChild(script);
 });
 }).publish();
 sResponse.connect();
 return sResponse;
}

Listing 6.12 autocomplete.html: text field auto-complete, FRP style

Listing 6.13 autocomplete.js

Looks up the city
name on the server

structs a
servable

fy the I/O I/O, so you’re allowe
to be stateful

127Example: autocomplete the FRP way

.

Pokes th
the t

Fir
presses

fo

d
function escapeHTML(text) {
 return text.replace(/&/g, '&')
 .replace(/"/g, '"')
 .replace(/'/g, ''')
 .replace(/</g, '<')
 .replace(/>/g, '>');
}

function calm(s) {
 return s.scan([null, null], function(prev_out, thiz) {
 return [thiz, thiz != prev_out[0] ? thiz : null];
 }).map(function(tpl) {
 return tpl[1];
 }).filter(function(a) {
 return a !== null;
 });
}

function currentTextOf(input) {
 var sKeyPresses = Rx.Observable.fromEvent(input, 'keyup'),
 text = new Rx.BehaviorSubject(input.value);
 sKeyPresses.map(function (e) { return input.value; }).subscribe(text);
 return text;
}

function autocomplete(textEdit) {
 var popup = document.createElement('select');
 popup.size = 15;
 popup.style.position = 'absolute';
 popup.style.zIndex = 100;
 popup.style.display = 'none';
 popup.style.width = textEdit.offsetWidth;
 popup.setAttribute('id', 'popup');
 document.body.appendChild(popup);
 var sClicked = Rx.Observable.fromEvent(popup, 'change')
 .map(function (e) {
 return popup.value;
 });
 sClicked.subscribe(function (text) {
 return textEdit.value = text;
 });
 var editText = currentTextOf(textEdit),
 sKeyPresses = Rx.Observable.fromEvent(textEdit, 'keyup'),
 sDebounced = sKeyPresses.startWith(null).debounce(100),
 sTextUpdate = calm(sDebounced.withLatestFrom(editText,
 function (key, text) { return text; }));
 var sTabKey = sKeyPresses.filter(function(k) {
 return k.keyCode == 9; }),
 sEscapeKey = sKeyPresses.filter(function(k) {
 return k.keyCode == 27; }),
 sEnterKey = sKeyPresses.filter(function(k) {
 return k.keyCode == 13; });
 var sClearPopUp = sEscapeKey.merge(sEnterKey)
 .merge(sClicked).map(null);
 lookedUp = lookup("http://gd.geobytes.com/AutoCompleteCity?q=",

Common FRP idiom:
suppresses updates that are
the same as previous values

From the add example:
BehaviorSubject gives the
current text of an input field

City names selected
from the pop-up

ose into
ext field

es if key
 are idle
r 100 ms

Clears the pop-up if
Esc or Enter is presse
or the user selects
from the pop-up

128 CHAPTER 6 FRP on the web

Loo
pr

does
th

l

 sTextUpdate.merge(sTabKey.withLatestFrom(editText,
 function (key, text) {
 return text;
 }
))
).map(function (req_resp) {
 var req = req_resp[0],
 resp = req_resp[1];
 return resp.length == 1 && (resp[0] == "%s"
 || resp[0] == "" || resp[0] == req) ? null : resp;
 }).merge(sClearPopUp).startWith(null);
 lookedUp.subscribe(function(items) {
 if (items !== null) {
 var html = '';
 for (var i = 0; i < items.length; i++) {
 html += '<option>' + escapeHTML(items[i]) + '</option>';
 }
 popup.innerHTML = html;
 if (popup.style.display != 'block') {
 popup.style.left = textEdit.offsetLeft;
 popup.style.top = textEdit.offsetTop +
 textEdit.offsetHeight;
 popup.style.display = 'block';
 }
 }
 else {
 popup.style.display = 'none';
 }
 });
 return sEnterKey.withLatestFrom(editText, function (key, text) {
 return text;
 }).merge(sClicked);
}

function init() {
 var cityInput = document.getElementById("city"),
 infoDiv = document.getElementById("info"),
 sEntered = autocomplete(cityInput);
 lookup("http://getcitydetails.geobytes.com/GetCityDetails?fqcn=",
 sEntered).subscribe(function (city_info) {
 var city = city_info[0],
 info = city_info[1];
 var html = 'Information for ' + escapeHTML(city) +
 '' + '<table>';
 for (var key in info) {
 html += '<tr><td>' + escapeHTML(key) + '</td><td>' +
 escapeHTML(info[key]) + '</td></tr>';
 }
 html += '</table>';
 infoDiv.innerHTML = html;
 });
}

To run this example, point your browser at sodium/book/web/autocomplete.html.

ks up on key
esses idle or
the Tab key

Handles empty response
cases from the server

Shows or
n’t show
e pop-up
based on
ookedUp

Looks up
city info

129RxJS/Sodium cheat sheet
6.7 RxJS/Sodium cheat sheet
RxJS includes the same concepts as Sodium, but with different names. Table 6.2 is a
cheat sheet to get those concepts clear in your mind. See appendix C for comparison
charts for many different FRP systems.

 A reminder: our advice is that it’s important to stick to FRP ways and avoid writing
your own primitives. FRP is a powerful enough paradigm that you don’t need to. The
benefit is compositionality—or as near to compositionality as the particular system
allows, if it isn’t full FRP. This translates into fewer bugs in the real world.

NOTE We’ll cover Stream.listen() formally in chapter 8.

Table 6.2 Equivalence between Sodium and RxJS

Sodium RxJS

Stream Rx.Observable

new Stream() (never fires) Rx.Observable.of()

s1.merge(s2) s1.merge(s2)

s.map(f) s.map(f)

s.filter(f) s.filter(f)

s.snapshot(c, f) s.withLatestFrom(c, f)

s.accum(i, f) s.scan(i, f)

s.listen(handler) s.subscribe(handler)

s.hold(i) var c = new Rx.BehaviorSubject(i);
s.subscribe(c);

Cell Rx.BehaviorSubject

new Cell(constant) Rx.Observable.of(constant)

c.map(f) c.map(f)

c1.lift(c2, f) c1.combineLatest(c2, f)

CellLoop.loop() var c = new Rx.BehaviorSubject(i);
… code …
s.subscribe(c);

StreamLoop.loop() var s0 = new Rx.Subject();
… code …
s.subscribe(s0);

130 CHAPTER 6 FRP on the web
6.8 Static typing preferred
When we think of web development, we usually think of JavaScript, which is a dynami-
cally typed language. FRP does a lot of things to help prevent bugs, and a major part to
this is the way it uses the power of static typing. Using a dynamically typed language,
you miss out on some of the advantages that FRP provides.

 Today, most languages can compile to JavaScript. If you’re starting a new web proj-
ect, we hope you’ll consider a statically typed language, rather than assuming you have
to use JavaScript. Languages with good type inference are better because you get type
safety without the extra bashing away at the keyboard.

 If you have an existing project, Microsoft’s Typescript is a popular type-safe super-
set of JavaScript. Being a superset of JavaScript means you can easily port existing
JavaScript applications to it. Typescript is just one example; there are plenty more to
choose from.

6.9 Summary
■ The RxJS observable is the same as the FRP concept of a stream of events.
■ Instead of a Cell-equivalent type, three methods and one class are used to

manage state: scan(), withLatestFrom(), combineLatest(), and Behavior-
Subject.

■ Observables can be cold—producing output immediately on subscription, or
hot, producing output later as events happen. BehaviorSubject starts cold, out-
putting the current value once on initial subscription, and then becomes hot.

■ startWith() is a shortcut for BehaviorSubject, but it’s not exactly equivalent.
■ RxJS doesn’t prevent glitches and doesn’t handle simultaneous events consis-

tently, which means it doesn’t have compositionality. This means it’s not strictly
a true FRP system.

Functional Programming in JavaScript

FRP puts event-based code into a form that allows you to use the power of functional
programming. You might want to check out Functional Programming in JavaScript by
Luis Atencio (Manning, 2016) for a thorough treatment of the ways you can use this
power.

Switch
FRP code describes data flow in a directed graph structure, and until now those
graphs have been static. Cells for storing state are constructed using the hold prim-
itive, and the total number of them hasn’t been able to change as the program
runs. switch allows you to change this structure dynamically. sample allows you to
sample the value of a cell.

7.1 The sample primitive: getting a cell’s value
What you’re about to read may surprise you, coming from people as puritanical
about compositionality as we are. Remember that in chapter 1 we talked about how
people new to FRP will ask us, “How do you get the value?” We waved our hands
around and gave some evasive answer. We wanted you to be thinking the right way
before we told you that we can just say (for example)

Cell<Scene> scene = ...;
Scene sc = scene.sample();

This chapter covers
■ The last two core primitives: sample and

switch

■ How to write video games in FRP
131

132 CHAPTER 7 Switch
and fetch the current value of a cell directly. Oh, the hypocrisy!
 Now that you’ve calmed down and picked the book back up, a common case where

sample is useful is in the paint() method of an animation. A listen callback might
trigger a repaint(). For those who don’t know about Java, this doesn’t paint directly
but schedules a paint() method to be executed “later.”

 When you come to do the actual paint, you can paint whatever the latest value is—
fetched by sample. You might miss a frame, but so what? Sometimes there isn’t
enough CPU time, and that’s the right thing to do.

 Like all primitives, sample starts a small transaction if you don’t do so explicitly. If
you’re doing several samples, you may want them to be taken from the same instant in
time. Wrapping them all in an explicit transaction will do this for you. We discussed
transactions before, but they get a more complete treatment in section 8.3. You’ll use
sample in the next few examples because it makes some things more succinct.

7.2 switch
As we said, the FRP logic can be thought of as a data flow graph. Until now, this graph
has been static. switch, also known as flatten or join, is the primitive that allows FRP
to construct FRP, so the structure of the data flow graph can be changed dynamically
as the program runs. Here are some common use cases:

■ Add or remove monsters in a running game.
■ Make invalid states not exist so they can’t cause bugs.
■ Divide an application into screens. For example, a video game might have an

intro screen, preferences, the game itself, and a “game over” screen. Only the
currently active screen should consume resources.

7.2.1 The concept of switch: a TV remote control

When I (Stephen) was a child, there were two TV channels with programs on them
and a mysterious third channel that showed staticky fuzz. It was better than the other
two channels, although I didn’t realize that at the time.

 To give a conceptual understanding of switch, imagine you’re implementing a
digital version of my old TV (see figure 7.1). As you know, a cell is a value that changes
over time, so it makes sense to model a video stream as Cell<Image>—an image that
changes over time.

 selected is of type Cell<Cell<Image>> and holds the video stream that was most
recently chosen with the remote control. You can see it as a video stream (Cell<Image>)
that changes over time. That is, it’s an image that changes over time that changes over time.

 That translates to the type Cell<Cell<Image>>. To put the result on the screen,
you need to convert it into the video stream type: that is, flatten it to Cell<Image>. This
primitive is also called switch, because it switches from one chunk of logic to another,

https://github.com/SodiumFRP/sodium
https://github.com/SodiumFRP/sodium

133switch use case #1: zombies
or join, which is a term from functional programming. There’s a stream variant and a
cell variant of switch; we’re using the cell variant here, called switchC() in Sodium.

7.3 switch use case #1: zombies
This section presents a video game example. We have two purposes in mind:

■ FRP is great for video games because things are neatly encapsulated and com-
posable. And it’s especially good for monster AI. We want to show you how an
FRP video game is normally structured.

■ You may know that when a human is bitten by a zombie, they turn into a zombie
themselves. We’ll show how you can use switch to model this transformation.

With this in mind, we’ll first introduce the video game character logic and later add
switch functionality to implement the zombie bite transformation.

Cell<Image> fuzz = ...;
Cell<Image> one = ...;
Cell<Image> two = ...;
Stream<Unit> sButton1 = ...;
Stream<Unit> sButton2 = ...;
Cell<Cell<Image>> selected = sButton1.map(u -> one).orElse(
 sButton2.map(u -> two)).hold(fuzz);
Cell<Image> screen = Cell.switchC(selected);

fuzz

selected screen

one two

switch

hold

Figure 7.1 Modeling a remote control that can switch between TV channels, showing the state
before any button is pressed. The “fuzz” channel is selected by default.

134 CHAPTER 7 Switch
7.3.1 The end of the world

Figure 7.2 summarizes the strategies behind the human and zombie AI. Figure 7.3
shows the interaction between human and zombie AI in a running simulation:
humans walk randomly, and zombies walk toward the nearest human.

Figure 7.2 Human and zombie strategies

Species: Human/Homo Sapiens
Goal: Generally have a good time
Speed: 80 pixels/second
Strategies:
 1. Avoid obstacles
 2. Walk in a random direction
 3. Change direction if bored or
obstacle encountered

Species: Homo Zombicus
Goal: Eat human flesh
Speed: 20 pixels/second
Strategies:
 1. If Zombicus nearby, walk away
 2. Walk towards nearest human
 3. If near human, bite

Figure 7.3 A zombie apocalypse in progress

135switch use case #1: zombies

 (x, y)

time
The layout of the scene is represented as a list of Character data structures, given in
the following listing. It’s used to draw the scene, but it’s also used by zombies to decide
what direction to walk in.

import java.awt.Point;

public class Character {
 public Character(int id, CharacterType type, Point pos,
 Vector velocity) {
 this.id = id;
 this.type = type;
 this.pos = pos;
 this.velocity = velocity;
 }
 public final int id;
 public final CharacterType type;
 public final Point pos;
 public final Vector velocity;
}

NOTE Vector is a class we wrote that does simple vector math. We won’t list
the code.

7.3.2 A simple human

Let’s start with a simple human implementation in listing 7.2; then you’ll animate it.
The human is playing with a cellphone, rendering it oblivious to zombie predation.
To simulate normal human motivation, it walks in a random direction; when it gets
bored after 0.5 to 1.5 seconds, it picks a new direction.

 Each character has a unique ID, which isn’t needed yet. Later, you’ll need it to
identify who was bitten.

 This code uses the newly introduced sample primitive in functions passed to snap-
shot three times. We’ll explain this next.

import java.awt.Point;
import java.util.List;
import java.util.Optional;
import java.util.Random;
import nz.sodium.*;

public class SimpleHomoSapiens {
 public SimpleHomoSapiens(
 int self,
 Point posInit,
 Cell<Double> time,
 Stream<Unit> sTick)
 {

Listing 7.1 Character, describing an element of the scene

Listing 7.2 A simple human character

Unique ID Enum of SAPIENS
or ZOMBICUS

position

Velocity

Unique ID
Initial positionAnimation

 (seconds)

Frame tick

136 CHAPTER 7 Switch
 final double speed = 80.0;
 class Trajectory {
 Trajectory(Random rng, double t0, Point orig) {
 this.t0 = t0;
 this.orig = orig;
 this.period = rng.nextDouble() * 1 + 0.5;
 double angle = rng.nextDouble() * Math.PI * 2;
 velocity = new Vector(Math.sin(angle), Math.cos(angle))
 .mult(speed);
 }
 double t0;
 Point orig;
 double period;
 Vector velocity;
 Point positionAt(double t) {
 return velocity.mult(t - t0).add(orig);
 }
 }
 Random rng = new Random();
 CellLoop<Trajectory> traj = new CellLoop<>();
 Stream<Unit> sChange = Stream.filterOptional(
 sTick.snapshot(traj, (u, traj_) ->
 time.sample() - traj_.t0 >= traj_.period
 ? Optional.of(Unit.UNIT)
 : Optional.<Unit>empty()
));
 traj.loop(
 sChange.snapshot(traj, (u, traj_) ->
 new Trajectory(rng, time.sample(),
 traj_.positionAt(time.sample()))
).hold(new Trajectory(rng, time.sample(), posInit))
);
 character = traj.lift(time, (traj_, t) ->
 new Character(self, CharacterType.SAPIENS,
 traj_.positionAt(t), traj_.velocity)
);
 }

 public final Cell<Character> character;
}

7.3.3 Using sample in map or snapshot

sample can be used in the function passed to map: this is equivalent to snapshot. The
following code

Stream<Integer> sC = sA.snapshot(b, (a_, b_) -> a_ + b_);

can be written this way:

Stream<Integer> sC = sA.map(a_ -> a_ + b.sample());

These are equivalent.

NOTE Strictly speaking, snapshot isn’t primitive because it can be written in
terms of map and sample.

Picks a random
direction

Position as a
function of time

Accumulator
for AI state Decides whether to

change direction

Changes direction
if “boredom”

period expires

New trajectory starts at
current time and position

Output: representation
in the scene

137switch use case #1: zombies
sample can also be used in snapshot as in the previous listing. Most FRP systems will
allow you to snapshot more than one cell, but we’re doing it this way to illustrate this
use of sample.

 Using sample in map or snapshot like this breaks the rule we gave in chapter 2:
functions passed to FRP primitives must be referentially transparent. For a function to be ref-
erentially transparent, it must give the same answer for given inputs no matter when
you run it. The output of sample depends on when it’s called, so it doesn’t comply.

 We seem to be abusing the rules of FRP. We aren’t, but in the light of both sample
and switch, we need to modify the rule. sample is connected to the transactional con-
text it runs in, so it can be used safely. If it runs in map or snapshot, then the value
returned by sample is the value of the cell at the time of the event that triggered the
passed function to be evaluated. Note that although sample is safe in such contexts, it
wouldn’t be safe to directly reference a normal mutable variable because the FRP sys-
tem can’t control when it’s written.

 This is the complete new rule:

■ Functions passed to FRP primitives may contain code that’s referentially trans-
parent.

■ Functions passed to FRP primitives that work with events (Stream.map, snap-
shot, filter, merge, Stream.accum) may use code that’s connected to a transac-
tional context. This includes sample and the construction of FRP logic using
hold and other primitives.

NOTE sample isn’t allowed in primitives that return cells, like lift and
Cell.map, because the changes or steps in cell values shouldn’t be treated as
if they were events. We’ll cover this in chapter 8.

To make switch useful, you need to allow the construction of FRP logic in event-based
primitives. You’ll see an example of this later when you construct new game characters
while the game is running.

7.3.4 A game loop

Listing 7.3 gives a trivial game loop to animate a scene of several humans, even though
nothing is looping yet. Animate contains the Java Swing code that does the actual
drawing, and we won’t list it here.

 You lay out the humans across the screen and put their output character values
into a list of type List<Cell<Character>>. But Animate wants a scene to draw, and
that’s a slightly different type: Cell<List<Character>>. You need to convert a list of
cells of type A into a cell of a list of type A. It turns out there’s a standard functional
programming idiom to do this:

static <A> Cell<List<A>> sequence(Collection<Cell<A>> in)

Because this is such a general idea, we’ve borrowed its name from the Haskell pro-
gramming language. An argument could be made to include this as a helper function
in an FRP system.

138 CHAPTER 7 Switch

lper

c

 It’s important to understand that Animate—for which we don’t list the code—
invokes the FRP logic in three steps. Each step runs in a separate transaction:

1 Set time to the new time.
2 Push a UNIT value into sTick. This is the driver for all state updates.
3 Once the state updates are complete, read the scene out of the scene cell using

sample, and draw it.

Remember that in Sodium, stream events cause cells to be updated, but the updates
are delayed and aren’t visible in the same transaction. You want the state changes trig-
gered by sTick to see the new value of time, not the old one. Also, in step 3, you want
to capture the new scene, not the old one. You achieve these things by performing
each of these three steps in a transaction of its own.

 We still haven’t told you how to interface FRP logic to the rest of a program in
Sodium, although we did for JavaScript in chapter 6. You’ve waited a long time, we
know. It’s coming in the next chapter.

NOTE The three steps used to run this animation are similar to the technique
for implementing continuous time. That’s coming in chapter 9.

import java.awt.Dimension;
import java.awt.Point;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import nz.sodium.*;

public class simple {
 static <A> Cell<List<A>> sequence(Collection<Cell<A>> in) {
 Cell<List<A>> out = new Cell<>(new ArrayList<A>());
 for (Cell<A> c : in)
 out = out.lift(c,
 (list0, a) -> {
 List<A> list = new ArrayList<A>(list0);
 list.add(a);
 return list;
 });
 return out;
 }
 public static void main(String[] args)
 {
 Animate.animate(
 "Zombicus simple",
 (Cell<Double> time, Stream<Unit> sTick,
 Dimension windowSize) -> {
 List<Cell<Character>> chars = new ArrayList<>();
 int id = 0;
 for (int x = 100; x < windowSize.width; x += 100)
 for (int y = 150; y < windowSize.height; y += 150) {
 Point pos0 = new Point(x, y);

Listing 7.3 Animating several humans

The useful he
function

Passes a lambda
to Animate to

onstruct the scene

139switch use case #1: zombies
 SimpleHomoSapiens h = new SimpleHomoSapiens(id,
 pos0, time, sTick);
 chars.add(h.character);
 id++;
 }
 return sequence(chars);
 }
);
 }
}

You can run it like this. Clone the git repository only if you haven’t done so already:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/zombicus/java
mvn test -Psimple or ant simple

7.3.5 An enhanced obstacle-avoiding human

The humans are walking right off the screen. Listing 7.4 upgrades the human with
obstacle-avoidance capabilities. The new human does two things:

■ When picking a random direction for its trajectory, it retries up to 10 times if it
gets a direction where there’s an obstacle right in front of it.

■ Hitting an obstacle is added as a new reason to pick a new trajectory.

In this simulation, the only obstacle is the edge of the screen.
 You’ll notice that there isn’t a lot of complexity in the FRP bones of the logic. It’s a

simple state accumulator. Most of the complexity is in the details of the game itself.
But this way of structuring a video game allows for any level of complexity you like in
the game characters.

import java.awt.Point;
import java.util.List;
import java.util.Optional;
import java.util.Random;
import nz.sodium.*;

public class HomoSapiens {
 public HomoSapiens(
 World world,
 int self,
 Point posInit,
 Cell<Double> time,
 Stream<Unit> sTick)
 {
 final double speed = 80.0;
 final double step = 0.02;
 class Trajectory {
 Trajectory(Random rng, double t0, Point orig) {
 this.t0 = t0;
 this.orig = orig;

Listing 7.4 An obstacle-avoiding human

Contains obstacle
information

140 CHAPTER 7 Switch
 this.period = rng.nextDouble() * 1 + 0.5;
 for (int i = 0; i < 10; i++) {
 double angle = rng.nextDouble() * Math.PI * 2;
 velocity = new Vector(Math.sin(angle), Math.cos(angle))
 .mult(speed);
 if (!world.hitsObstacle(positionAt(t0 + step*2)))
 break;
 }
 }
 double t0;
 Point orig;
 double period;
 Vector velocity;
 Point positionAt(double t) {
 return velocity.mult(t - t0).add(orig);
 }
 }

 Random rng = new Random();
 CellLoop<Trajectory> traj = new CellLoop<>();
 Stream<Unit> sChange = Stream.filterOptional(
 sTick.snapshot(traj,
 (u, traj_) -> {
 double t = time.sample();
 return world.hitsObstacle(traj_.positionAt(t + step))
 || t - traj_.t0 >= traj_.period
 ? Optional.of(Unit.UNIT)
 : Optional.<Unit>empty();
 }));
 traj.loop(
 sChange.snapshot(traj, (u, traj_) ->
 new Trajectory(rng, time.sample(),
 traj_.positionAt(time.sample()))
).hold(new Trajectory(rng, time.sample(), posInit))
);
 character = traj.lift(time, (traj_, t) ->
 new Character(self, CharacterType.SAPIENS,
 traj_.positionAt(t), traj_.velocity)
);
 }

 public final Cell<Character> character;
}

NOTE Our use of the Java random-number generator isn’t strictly referen-
tially transparent because it won’t meet the requirement to always return the
same output given the same input. In this case, the consequences aren’t so
bad, but if you want to do things properly, you might want to look into func-
tional random-number generators.

We haven’t listed the game loop code for this, but you can run it as follows. Clone the
git repository only if you haven’t done so already:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/zombicus/java
mvn test -Phumans or ant humans

141switch use case #1: zombies
7.3.6 A flesh-eating zombie

Listing 7.5 shows the Homo Zombicus logic. The zombie normally walks toward the
nearest human, but if the nearest character is a zombie, and it’s within 60 pixels, the
first zombie will walk away from it. This is to prevent them from walking on top of
each other so the scene looks better.

 You update the zombie’s direction every 0.2 seconds. You can’t do it every frame,
or you’ll be viciously savaged by rounding errors because of the integer Point type
you’re using.

 Notice that the initial State is constructed with an empty scene. The reason is that
you don’t have a value handy for the initial scene, so, you deal with this in the most
expedient way: you stuff an empty scene into it the first time around. This means the
zombies stand still for the first 0.2 second period.

import java.awt.Point;
import java.util.ArrayList;
import java.util.List;
import java.util.Optional;
import nz.sodium.*;

public class HomoZombicus {
 public HomoZombicus(
 int self,
 Point posInit,
 Cell<Double> time,
 Stream<Unit> sTick,
 Cell<List<Character>> scene)
 {
 final double speed = 20.0;
 class State {
 State(double t0, Point orig, int self,
 List<Character> scene) {
 this.t0 = t0;
 this.orig = orig;
 double bestDist = 0.0;
 Optional<Character> oOther = nearest(self, scene);
 if (oOther.isPresent()) {
 Character other = oOther.get();
 this.velocity = Vector.subtract(other.pos, orig)
 .normalize().mult(
 other.type == CharacterType.SAPIENS
 ? speed : -speed
);
 }
 else
 this.velocity = new Vector(0,0);
 }
 Optional<Character> nearest(int self, List<Character> scene) {
 double bestDist = 0.0;
 Optional<Character> best = Optional.empty();

Listing 7.5 Game logic for a zombie character

All characters currently
in the scene

Walks toward a
human or away
from a zombie

142 CHAPTER 7 Switch

Fir

ion

Bit
 is w
 for (Character ch : scene)
 if (ch.id != self) {
 double dist = Vector.distance(ch.pos, orig);
 if (ch.type == CharacterType.ZOMBICUS && dist > 60)
 ;
 else
 if (!best.isPresent() || dist < bestDist) {
 bestDist = dist;
 best = Optional.of(ch);
 }
 }
 return best;
 }
 Optional<Character> nearestSapiens(int self,
 List<Character> scene) {
 List<Character> sapiens = new ArrayList<>();
 for (Character ch : scene) {
 if (ch.type == CharacterType.SAPIENS)
 sapiens.add(ch);
 }
 return nearest(self, sapiens);
 }
 final double t0;
 final Point orig;
 final Vector velocity;
 Point positionAt(double t) {
 return velocity.mult(t - t0).add(orig);
 }
 }

 CellLoop<State> state = new CellLoop<>();
 Stream<State> sChange = Stream.filterOptional(
 sTick.snapshot(state,
 (u, st) -> {
 double t = time.sample();
 return t - st.t0 >= 0.2
 ? Optional.of(new State(t, st.positionAt(t),
 self, scene.sample()))
 : Optional.<State>empty();
 }
));
 List<Character> emptyScene = new ArrayList<Character>(0);
 state.loop(sChange.hold(
 new State(time.sample(), posInit, self, emptyScene)
));
 character = state.lift(time, (st, t) ->
 new Character(self, CharacterType.ZOMBICUS,
 st.positionAt(time.sample()), st.velocity));
 sBite = Stream.filterOptional(
 sTick.snapshot(state,
 (u, st) -> {
 Optional<Character> oVictim = st.nearestSapiens(
 self, scene.sample());
 if (oVictim.isPresent()) {

Only cares about zombies
that are nearby

Position as a
 function of time

Accumulator
for AI state

Picks a new direction
every 0.2 sec

st time, decides
based on an
empty scene

Output: representat
in the scene

es if a human
ithin 10 pixels

143switch use case #1: zombies
 Character victim = oVictim.get();
 Point myPos = st.positionAt(time.sample());
 if (Vector.distance(victim.pos, myPos) < 10)
 return Optional.<Integer>of(victim.id);
 }
 return Optional.<Integer>empty();
 }
));
 }

 public final Cell<Character> character;
 public final Stream<Integer> sBite;
}

7.3.7 Putting together the two characters

Now you’ll put the human and zombie characters together into a simple animation
that shows them moving. There is no transformation from human to zombie yet: you
ignore the zombie’s sBite output for now.

 Figure 7.4 shows how it fits together. The
inputs are simple: an animation clock cell
and a tick stream for each frame. Why don’t
you combine time and sTick into one?
Because time is conceptually continuous, so
a cell is a suitable representation. Animation
frames, on the other hand, are conceptually
discrete, so a stream is sensible. We want to
keep these ideas clear and separate. This
code doesn’t truly model continuous time.
We’ll show you how to do this properly in
chapter 9.

 Each character outputs a Character data
structure describing its position and appear-
ance. You gather them together into a list
forming a scene, and this is what you draw.
You also feed the scene into HomoZombicus
so that the zombies can see where the humans and other zombies are. We haven’t
shown you World, which is immutable.

 We hope you’ll agree that this is a simple and natural way to structure a game. The
game characters maintain their own state internally, and you plumb everything as a
data flow. Whenever you need data to go from point A to point B in the logic, you pass
a cell or stream as necessary. FRP is a simple idea.

 Listing 7.6 gives the code for the overall animation. The scene is constructed from
the output of the characters. The outputs of the zombies depend on the scene, and
this is a cyclic dependency. But because you use snapshot to sample the scene, and you

HomoSapiens HomoZombicus

time
scene

sTick

scene

charactercharacter

+

Figure 7.4 Putting the characters
together in an animation: The code has
multiple humans and zombies, but here
we’re showing one of each.

144 CHAPTER 7 Switch
know Sodium delays state updates, you’re reading the scene from the previous frame
and everything works well.

import java.awt.Dimension;
import java.awt.Point;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import nz.sodium.*;

public class characters {
 static <A> Cell<List<A>> sequence(Collection<Cell<A>> in) {
 Cell<List<A>> out = new Cell<>(new ArrayList<A>());
 for (Cell<A> c : in)
 out = out.lift(c,
 (list0, a) -> {
 List<A> list = new ArrayList<A>(list0);
 list.add(a);
 return list;
 });
 return out;
 }
 static Cell<List<Character>> createCharacters(
 Cell<Double> time, Stream<Unit> sTick, World world,
 Cell<List<Character>> scene) {
 List<Cell<Character>> chars = new ArrayList<>();
 int id = 0;
 for (int x = 100; x < world.windowSize.width; x += 100)
 for (int y = 150; y < world.windowSize.height; y += 150) {
 Point pos0 = new Point(x, y);
 if (id != 3 && id != 6 && id != 7) {
 HomoSapiens h = new HomoSapiens(world, id, pos0,
 time, sTick);
 chars.add(h.character);
 }
 else {
 HomoZombicus z = new HomoZombicus(id, pos0,
 time, sTick, scene);
 chars.add(z.character);
 }
 id++;
 }
 return sequence(chars);
 }
 public static void main(String[] args)
 {
 Animate.animate(
 "Zombicus characters",
 (Cell<Double> time, Stream<Unit> sTick,
 Dimension windowSize) -> {
 World world = new World(windowSize);
 CellLoop<List<Character>> scene = new CellLoop<>();
 Cell<List<Character>> scene_ = createCharacters(
 time, sTick, world, scene);

Listing 7.6 Putting the characters together

145Transforming the game character with switch
 scene.loop(scene_);
 return scene;
 }
);
 }
}

You can run this with

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/zombicus/java
mvn test -Pcharacters or ant characters

7.4 Transforming the game character with switch
HomoSapiens doesn’t have any logic to handle a zombie bite. You’ll make a new class
called BitableHomoSapiens that starts off human and transforms itself into a zombie
when it receives an sBite event.

 In figure 7.5 we’ve attempted to draw what happens, but we can’t depict it per-
fectly. The code in listing 7.7 fills in some details missing from the diagram. Effec-
tively, when the bite event comes in, you replace a chunk of FRP logic with another,
wiring things up as needed:

■ The human is oblivious to its surroundings, so it doesn’t use the scene input,
but the zombie does.

■ The human can’t bite, so you start off outputting a never stream for sBite. The
zombie outputs a real sBite stream.

BitableHomoSapiens

clock sTick sBite scene

character sBite

switchC switchS

character

HomoSapiens never

snapshot

hold

CHOMP!!

BitableHomoSapiens

clock sTick sBite scene

character sBite

switchC switchS

character

HomoZombicus

snapshot

hold

sBite

Figure 7.5 The logic in the hold is replaced when a human is bitten.

146 CHAPTER 7 Switch

Filte
even

t

Zom

Star
bec

don’t b
turns

f

Note that the actual switch takes place on the output. There are two variants of switch:
switchC to switch a cell, and switchS to switch a stream. You use these for character
and sBite, respectively.

import java.awt.Point;
import java.util.List;
import java.util.Set;
import nz.sodium.*;

public class BitableHomoSapiens {
 public BitableHomoSapiens(
 World world,
 int self,
 Point posInit,
 Cell<Double> time,
 Stream<Unit> sTick,
 Stream<Set<Integer>> sBite,
 Cell<List<Character>> scene)
 {
 HomoSapiens h = new HomoSapiens(world, self, posInit,
 time, sTick);
 Stream<Set<Integer>> sBiteMe = sBite.filter(ids ->
 ids.contains(self));
 Stream<HomoZombicus> sBecome = sBiteMe.snapshot(
 h.character,
 (id, ch) -> new HomoZombicus(
 self,
 ch.pos,
 time,
 sTick, scene
)
);
 this.character = Cell.switchC(
 sBecome.map(z -> z.character).hold(h.character)
);
 this.sBite = Cell.switchS(
 sBecome.map(z -> z.sBite).hold(new Stream<Integer>())
);
 }
 public final Cell<Character> character;
 public final Stream<Integer> sBite;
}

To run this example, use the following:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/zombicus/java
mvn test -Pbite or ant bite

7.4.1 If a tree falls…switch and memory management

So far, we haven’t talked much about memory management in this book. That’s because
FRP systems have, or should have, completely automated memory management, so you

Listing 7.7 BitableHomoSapiens that transforms into a zombie when bitten

rs out a bite
t if it isn’t for
his character

Stream containing
the new zombie

bie starts at human’s
current position

Starts as HomoSapiens,
and then turns into the
character from sBecome

ts as a never,
ause humans
ite, and then
 into the bite
rom sBecome

147switch use case #2: creation and destruction of game characters
mostly don’t even need to think about it. But it will be helpful to explain what’s going
on, and there are some subtleties worth noting.

IF A TREE FALLS IN THE FOREST…

You probably know this popular philosophical conundrum: “If a tree falls in the forest
and no one is around to hear it, does it make a sound?” As this relates to the real
world, we have no idea. But in FRP, the answer is, “No, it doesn’t.”

 “If some FRP logic isn’t observed by anyone, does it still execute?”
 Because we require referential transparency, FRP can lock out all effects other than

through cells and streams; in the absence of those, the only observable difference is
the efficiency. While a bit of FRP logic is referenced by anything, it exists and con-
sumes both memory and CPU resources. Once all references to it are dropped, it gets
garbage-collected and vanishes.

 In the example, you would like the memory used to store the human’s state to be
freed once it becomes a zombie. But the code won’t clean it up because you haven’t
done it quite right. If you read the code carefully, you’ll see that it’s possible for the
BitableHomoSapiens character to be bitten again even after it has become a zombie.
In practice, this won’t happen, because a zombie won’t bite another zombie. But
because of this possibility, the human logic is still referenced by the snapshot state-
ment through this dependency chain: sBecome -> h.character. This will waste mem-
ory keeping the old human’s logic alive even though it has no observable effect.

 There are two ways to fix this:

■ You can switch sBecome as you did with character and sBite, and then loop it
back with a StreamLoop. It’s a common idiom in FRP code for a fragment of
logic to use switch to replace itself with a new implementation and so switch
itself out of existence. You’ll see an example of this shortly.

■ You can use a method of Stream called once()—that we haven’t mentioned
before—in the definition of sBiteMe:

Stream<Integer> sBiteMe = sBite.filter(id -> id == self).once();

Most FRP systems have a once. What it does here is only ever let the sBiteMe event fire
once. It should then free everything up.

 In practice, it may not. It depends on the amount of cleverness in the implementa-
tion. Optimization in FRP systems will improve over time. In summary: apart from effi-
ciency considerations, what isn’t observed in FRP doesn’t exist.

7.5 switch use case #2: creation and destruction of game characters
Each character in a game has its own logic and maintains its own state. As you know,
FRP keeps state and logic together in neat modules. So far, you’ve created the charac-
ters at the start of the game and let them go, but games normally need to add and
remove characters dynamically as they run. You can’t do this without switch, because
without switch, once FRP logic is constructed, its structure is static.

148 CHAPTER 7 Switch
In this example, you’ll have the humans enter the game every six seconds through an
energetic portal at the center of the screen called Finsbury Park Tube Station. You’ll
also dig some holes in the road surrounded by traffic cones. Humans now have
obstacle-avoidance logic, so they will be safe, but zombies can be destroyed by falling
into the holes. See figure 7.6.

 The code is shown in listing 7.8 on page 150. The key to the whole thing is that you
maintain a State data structure with these fields:

int nextID;
Map<Integer, Cell<Character>> chars;
Map<Integer, Stream<Integer>> sBites;
Map<Integer, Stream<Integer>> sDestroys;

The Maps are indexed by a unique ID for each character. You could make a new data
structure and put the values together into a single map, but it’s slightly more conve-
nient this way.

 As usual, you accumulate the State data structure in a cell by looping snapshot
and hold primitives, but State contains cells and stream, which you haven’t done
before. Note that sChange is a stream of functions that changes the state of the game
by adding or removing characters:

CellLoop<State> state = new CellLoop<>();
...
Stream<Lambda1<State, State>> sChange = ...;
state.loop(sChange.snapshot(state, (f, st) -> f.apply(st))
 .hold(initState));

Figure 7.6 Creation and destruction: humans enter through a portal at
the center, and zombies can fall down holes.

149switch use case #2: creation and destruction of game characters
You’ve seen the character cell and the sBite stream as the outputs of a character
before, but now you add a new stream sDestroy that destroys the specified character.
The mechanism is that each character can send a message that causes itself to be ter-
minated by the top-level logic of the game loop. It’s a common FRP idiom for a piece
of logic to ask to be terminated in this way.

 state is a Cell<State>, and State contains cells and streams within its structure.
You want to extract three outputs from this so they can be used in the top-level game
loop (scene, sBite, and sDestroy). This is done in two steps:

1 Merge the outputs of the characters. From Cell<State> state, you get values
of type Cell<Cell<...>> and Cell<Stream<...>> using the map primitive.

2 You can’t use these as they are, so you use switch to flatten them to Cell<...>
and Stream<...>. Now they’re usable.

For example, here’s how you extract a single combined sDestroy stream from all the
characters in the state:

Cell<Stream<Set<Integer>>> csDestroy = state.map(st ->
 Helper.mergeToSet(st.sDestroys.values()));
this.sDestroy = Cell.switchS(csDestroy);

To merge streams, you use a helper, mergeToSet(), that collects simultaneous events
into a set, because more than one character can be destroyed in the same transaction.
The events of sDestroy give the set of all characters that are being destroyed in one
frame tick. mergeToSet() would be less cumbersome with a proper immutable/func-
tional implementation of Set. If immutable data structures become standard in Java,
this could become a Sodium primitive. Here it is:

public static <A> Stream<Set<A>> mergeToSet(Iterable<Stream<A>> sa) {
 Vector<Stream<Set<A>>> asSets = new Vector<>();
 for (Stream<A> s : sa)
 asSets.add(s.map(a -> {
 TreeSet<A> set = new TreeSet<>();
 set.add(a);
 return set;
 }));
 return Stream.merge(asSets, (s1, s2) -> {
 TreeSet<A> out = new TreeSet<>(s1);
 out.addAll(s2);
 return out;
 });

To update the state, you have to process both the creations and the destructions of
characters, and with many characters present in the game, creation and destruction
events of different characters are likely to occur simultaneously. To combine them suc-
cessfully, you’ll first represent both sAdd and sRemove as streams of state transforma-
tions. Here’s how you do it for sRemove:

Stream<Lambda1<State, State>> sRemove
 = sDestroy.map(ids -> st -> st.remove(ids));

150 CHAPTER 7 Switch
Each state transformation is represented by a Lambda1<State, State>, which is a
function that takes a State and returns a modified State.

 The expression ids -> st -> st.remove(id) gives a function that takes a set of
character ids and turns it into a Lambda1<State, State> state transformation. It may
be clearer if you add parentheses and think of it as ids -> (st -> st.remove(id)).
If you’re new to functional programming, you may need a moment of contemplation.
We’ll pause the book.

 Welcome back. Functional programmers call this currying, and you can read more
about it online or in any book on functional programming.

 Once the changes are represented as state transformations, you can then merge
them with a combining function that chains two transformations together into a sin-
gle lambda:

Stream<Lambda1<State, State>> sChange = sAdd.merge(sRemove,
 (f1, f2) -> a -> f1.apply(f2.apply(a)));

And finally, you apply the resulting single function to the state:

state.loop(sChange.snapshot(state, (f, st) -> f.apply(st))
 .hold(initState));

Accumulating change functions like this is a common FRP idiom, so it’s a candidate
for a helper method in an FRP system.

import java.awt.Dimension;
import java.awt.Point;
import java.awt.Polygon;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Optional;
import java.util.Set;
import nz.sodium.*;

public class dynamic {
 static <A> Cell<List<A>> sequence(Collection<Cell<A>> in) {
 Cell<List<A>> out = new Cell<>(new ArrayList<A>());
 for (Cell<A> c : in)
 out = out.lift(c,
 (list0, a) -> {
 List<A> list = new ArrayList<A>(list0);
 list.add(a);
 return list;
 });
 return out;
 }
 public static Stream<Unit> periodicTimer(

Listing 7.8 Dynamically adding and removing characters

Fires at a regular
interval (see the
next section)

151switch use case #2: creation and destruction of game characters

F
str

cop
 Cell<Double> time, Stream<Unit> sTick, double period) {
 CellLoop<Double> tAlarm = new CellLoop<>();
 Stream<Double> sAlarm = Stream.filterOptional(
 sTick.snapshot(tAlarm,
 (u, alarm) -> time.sample() >= alarm
 ? Optional.of(time.sample() + period)
 : Optional.<Double>empty())
);
 double t0 = time.sample() + period;
 tAlarm.loop(sAlarm.hold(t0));
 return sAlarm.map(u -> Unit.UNIT);
 }
 static class State {
 State() {
 this.nextID = 0;
 this.chars = new HashMap<>();
 this.sBites = new HashMap<>();
 this.sDestroys = new HashMap<>();
 }
 State(int nextID, Map<Integer, Cell<Character>> chars,
 Map<Integer, Stream<Integer>> sBites,
 Map<Integer, Stream<Integer>> sDestroys) {
 this.nextID = nextID;
 this.chars = chars;
 this.sBites = sBites;
 this.sDestroys = sDestroys;
 }
 final int nextID;
 final Map<Integer, Cell<Character>> chars;
 final Map<Integer, Stream<Integer>> sBites;
 final Map<Integer, Stream<Integer>> sDestroys;

 State add(Cell<Character> chr, Stream<Integer> sBite,
 Stream<Integer> sDestroy) {
 Map<Integer, Cell<Character>> chars =
 new HashMap<>(this.chars);
 Map<Integer, Stream<Integer>> sBites =
 new HashMap<>(this.sBites);
 Map<Integer, Stream<Integer>> sDestroys =
 new HashMap<>(this.sDestroys);
 chars.put(nextID, chr);
 sBites.put(nextID, sBite);
 sDestroys.put(nextID, sDestroy);
 return new State(nextID+1, chars, sBites, sDestroys);
 }
 State remove(Set<Integer> ids) {
 Map<Integer, Cell<Character>> chars =
 new HashMap<>(this.chars);
 Map<Integer, Stream<Integer>> sBites =
 new HashMap<>(this.sBites);
 Map<Integer, Stream<Integer>> sDestroys =
 new HashMap<>(this.sDestroys);
 for (Integer id : ids) {
 chars.remove(id);
 sBites.remove(id);

unctional data
uctures would

make this
ying efficient.

152 CHAPTER 7 Switch

Crea

n
C

ch
 sDestroys.remove(id);
 }
 return new State(nextID, chars, sBites, sDestroys);
 }
 }
 static Stream<Integer> fallDownHole(int self, Stream<Unit> sTick,
 Cell<Character> character, World world) {
 return Stream.filterOptional(
 sTick.snapshot(character, (u, ch) ->
 world.hitsHole(ch.pos) ? Optional.of(self)
 : Optional.<Integer>empty()
));
 }
 static class CreateCharacters {
 CreateCharacters(Cell<Double> time,
 Stream<Unit> sTick, World world,
 Cell<List<Character>> scene, Stream<Set<Integer>> sBite,
 Stream<Set<Integer>> sDestroy) {
 State initState = new State();
 HomoZombicus z = new HomoZombicus(initState.nextID,
 new Point(36,332), time, sTick, scene);
 initState = initState.add(z.character, z.sBite,
 fallDownHole(initState.nextID, sTick, z.character, world));
 CellLoop<State> state = new CellLoop<>();
 Point center = new Point(world.windowSize.width / 2,
 world.windowSize.height / 2);
 Stream<Lambda1<State, State>> sAdd =
 periodicTimer(time, sTick, 6.0)
 .map(u ->
 st -> {
 BitableHomoSapiens h = new BitableHomoSapiens(
 world, st.nextID, center, time, sTick,
 sBite, scene);
 return st.add(h.character, h.sBite,
 fallDownHole(st.nextID, sTick, h.character,
 world));
 }
);
 Stream<Lambda1<State, State>> sRemove
 = sDestroy.map(ids -> st -> st.remove(ids));
 Stream<Lambda1<State, State>> sChange = sAdd.merge(sRemove,
 (f1, f2) -> a -> f1.apply(f2.apply(a)));
 state.loop(sChange.snapshot(state, (f, st) -> f.apply(st))
 .hold(initState));
 Cell<Cell<List<Character>>> cchars = state.map(st ->
 sequence(st.chars.values()));
 this.scene = Cell.switchC(cchars);
 Cell<Stream<Set<Integer>>> csBite = state.map(st ->
 Helper.mergeToSet(st.sBites.values()));
 this.sBite = Cell.switchS(csBite);
 Cell<Stream<Set<Integer>>> csDestroy = state.map(st ->
 Helper.mergeToSet(st.sDestroys.values()));
 this.sDestroy = Cell.switchS(csDestroy);
 }
 final Cell<List<Character>> scene;

Starts with
one zombie

tes a new human
every six seconds

Function that
returns a functio

oalesces state
anges into one

Applies the
state change

Extracts outputs
from the state

153switch use case #2: creation and destruction of game characters
 final Stream<Set<Integer>> sBite;
 final Stream<Set<Integer>> sDestroy;
 }

 public static void main(String[] args)
 {
 ArrayList<Polygon> obstacles = new ArrayList<>();
 obstacles.add(...);
 Animate.animate(
 "Zombicus dynamic",
 (Cell<Double> time, Stream<Unit> sTick,
 Dimension windowSize) -> {
 World world = new World(windowSize, obstacles);
 CellLoop<List<Character>> scene = new CellLoop<>();
 StreamLoop<Set<Integer>> sBite = new StreamLoop<>();
 StreamLoop<Set<Integer>> sDestroy = new StreamLoop<>();
 CreateCharacters cc = new CreateCharacters(
 time, sTick, world, scene, sBite, sDestroy);
 scene.loop(cc.scene);
 sBite.loop(cc.sBite);
 sDestroy.loop(cc.sDestroy);
 return scene;
 },
 obstacles
);
 }
}

To run this example, use the following:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/zombicus/java
mvn test -Pdynamic or ant dynamic

NOTE In this example, we’ve achieved the FRP programmer’s coveted “wall
of code” effect. Mwahahaha!

7.5.1 Not quite referentially transparent

We said earlier that sample isn’t referentially transparent: what value it returns
depends on the context it runs in. We want to help cement this idea in your mind by
directing your attention to a couple of examples from this code.

 The previous listing had this function:

public static Stream<Unit> periodicTimer(
 Cell<Double> time, Stream<Unit> sTick, double period) {
 CellLoop<Double> tAlarm = new CellLoop<>();
 Stream<Double> sAlarm = Stream.filterOptional(
 sTick.snapshot(tAlarm,
 (u, alarm) -> time.sample() >= alarm
 ? Optional.of(time.sample() + period)
 : Optional.<Double>empty())
);
 double t0 = time.sample() + period;

Numbers
omitted

Reached
alarm time? Next alarm

Time of first alarm

154 CHAPTER 7 Switch
 tAlarm.loop(sAlarm.hold(t0));
 return sAlarm.map(u -> Unit.UNIT);
}

This is an example of sample giving different answers in different contexts, which
means it isn’t referentially transparent. In the snapshot, it gives you the time when
sTick fired. In the body of periodicTimer(), it gives you the time when the
periodicTimer() FRP logic is constructed.

 Here’s another example from that listing:

Stream<Lambda1<State, State>> sAdd =
 periodicTimer(time, sTick, 6.0)
 .map(u ->
 st -> {
 BitableHomoSapiens h = new BitableHomoSapiens(
 world, st.nextID, center, time, sTick,
 sBite, scene);
 return st.add(h.character, h.sBite,
 fallDownHole(st.nextID, sTick, h.character,
 world));
 }
);

The constructor of BitableHomoSapiens constructs HomoSapiens, and if you look
back at this listing for HomoSapiens, you can see that it too invokes time.sample() at
its top level (highlighted):

traj.loop(
 sChange.snapshot(traj, (u, traj_) ->
 new Trajectory(rng, time.sample(),
 traj_.positionAt(time.sample()))
).hold(new Trajectory(rng, time.sample(), posInit))
);

The time returned by this invocation is used in the initial trajectory of the human.
Again, the value depends on the transactional context in which it’s executed. In this
case, it’s the time of the sAdd when the human was constructed. The other two invoca-
tions of time.sample() are in a snapshot, so those happen later.

7.5.2 Another “What are we doing this for?” moment

FRP—like any other way you might choose to do things—has costs. It’s more restrictive
than other ways, and that leads to a certain level of bureaucracy. It’s important to ask
what you’re getting in return.

FRP is restrictive?

The idea of FRP being “restrictive” is not necessarily so. It depends on your point of
view.

Update to a new alarm time
each time sAlarm fires

155switch use case #2: creation and destruction of game characters
We’re telling you that FRP code is simple to reason about and close to the problem.
But it would be helpful if we could illustrate this. As always, the problem is this: it
would be good if we could show you some complex code and say, “Look how (rela-
tively) simple this is.” But doing so could make the book pretty unreadable.

 Instead, we’ll try this: imagine how you’d add transition animations to this code.
Let’s say that when a character is created, bitten, or destroyed, we show a nice anima-
tion and perhaps block certain input events while it’s running. These are the sorts of
complicating factors that make the difference between book examples and real-world
code.

 We hope you can see that everything is so nicely isolated and encapsulated that
these changes would be easy to put into cleanly separated modules. You may also find
that you can reuse a lot of code between the three situations.

It looks restrictive because you’re not allowed to modify state directly. But what does
this mean? It means you’re not allowed to assume that the underlying machine is a
von Neumann machine. It’s only because you’re so used to this assumption that you
perceive not being able to make it as a “restriction.” But is that a good assumption
to make?

The way you’ve become accustomed to writing code is restrictive in ways that FRP
isn’t. For example you’re restricted by having to specify things in a particular order.
The difficulty comes in exchanging your old restriction and freedom for a new kind of
restriction and freedom. FRP gives you what you need, not what you think you want.

FRP and static typing

FRP pushes the type system to its limit. In Java, you end up with a lot of very long
types that you don’t see in a dynamic language such as JavaScript. Static types don’t
do anything, and in Java all the type information in angle brackets (between < and >)
evaporates when you compile your code. But static types do add more information to
the source code, and they help you pick up type errors early.

Even with all the type information, the code is information-dense. It’s simple, but it
can be difficult to read because it does a lot of work in only a few lines. You can consider
that the type information is a kind of white space. If may help to make the editor color
for types lighter to give you a clearer view of the logic.

In a lot of cases, we’ve introduced intermediate variables to make the code easier to
read. You may find it sufficient to inline some of the intermediate variables once your
team is rocking FRP. This is especially true if you have a powerful IDE that shows the
types of everything.

In chapter 15, we’ll discuss type inference as a way to improve FRP. Type inference
removes type clutter without a loss of type safety.

156 CHAPTER 7 Switch
7.5.3 An exercise for you

Your challenge, if you like, is to turn this into a playable game by having the mouse
cursor act as a little bird that awakens the human from its cellphone reverie, causing
the human to walk toward the bird. The goal is to save the world by enticing the
humans to stand in the right places so the zombies are lured to their demise in the
roadwork holes.

7.6 The efficiency of big merges
Whenever a character is created or destroyed, the utility function sequence() and
Sodium’s collection variant of Stream.merge() are called to construct new outputs.
These iterate over the entire list. Here’s a naïve implementation of the collection vari-
ant of merge():

static <A> Stream<A> merge(Collection<Stream<A>> in, Lambda2<A,A,A> f) {
 Stream<A> sOut = new Stream<>();
 for (Stream<A> c : in)
 sOut = sOut.merge(c, f);
 return sOut;
}

In figure 7.7, you can see that the resulting structure
is in a long line, and if a node far from the end is
updated, it has to go through N-1 nodes to reach the
output. This clearly isn’t scalable.

 FRP and the requirement for referential transpar-
ency force us to do things this way, so we have to find
a way to deal with this. We can easily improve the effi-
ciency of the created data structure by constructing a
balanced tree instead of a long line. Then the time
to propagate a message is order log(N) instead of
order N. A recursive version of merge() would look
like this:

static <A> Stream<A> merge(Collection<Stream<A>> in, Lambda2<A,A,A> f) {
 if (in.isEmpty()) return new Stream<A>();
 if (in.size() == 1) return in.iterator().next();
 List<Stream<A>> l = new ArrayList<>();
 List<Stream<A>> h = new ArrayList<>();
 int i = 0;
 for (Stream<A> s : in) {
 if (i < in.size() / 2) l.add(s); else h.add(s);
 ++i;
 }
 return merge(l,f).merge(merge(h,f),f);
}

But if you’re updating this tree frequently, it’s inefficient to reconstruct the whole
thing each time.

1 2

3

4

5

6

output

Figure 7.7 Merging six things
into one the inefficient way

157Game characters and efficiency in RxJS
 A proper solution would be to build switches into the tree so that each update only
needs to reconstruct a local section. Note that this tree is a mutable data structure, not
one of the immutable data structures we’ve described. Updates should then be order
log(N). We’ll discuss this and give a concrete example in section 8.6.

NOTE Ryan Trinkle has done work on bettering these log factors in his Reflex
FRP system at https://github.com/reflex-frp/reflex.

7.6.1 Efficiency of this approach

One of our reviewers said this about chapter 7:

Game characters change position every time, and this could lead to the creation of thou-
sands of characters—for every tick in the game loop, all characters in the scene should be
re-created. That’s a lot of burden on the GC (garbage collector).

There are a number of things we would say about this:

■ Functional languages execute code like this all the time and achieve some
impressive speeds these days. They optimize the code, and their garbage collec-
tors are efficient for short-lived objects. You can’t assume memory allocation is
happening, and if it’s happening, you can’t assume it’s expensive.

■ If you assume that modifying values in place is more efficient than copying
them, then you’re assuming your machine is a von Neumann machine.
Although we don’t know the exact performance characteristics, we hope we
persuaded you in chapter 5 that these kinds of assumptions don’t necessarily
hold today and almost certainly won’t in the future.

■ FRP has potential for aggressive optimization, although at the time of writing
this is still in the future.

We can’t prove anything here, but our intuition is that FRP could be made extremely fast.

7.7 Game characters and efficiency in RxJS
Now we’ll look at some of these efficiency considerations in an RxJS example that has
the same basic structure as the zombie game. See figure 7.8: you’re the groundskeeper
for a golf course in Austria run by your
uncle, a mad professor. To control the
mole problem, he has issued you a large
wooden mallet. You’re sure this contra-
venes every animal welfare code since
Charlemagne, but, having been caught
evading import tax on Moroccan lanterns,
you need to prove you’re capable of hon-
est work, or you’ll lose your inheritance.
Your “inheritance” is a golf course full of
moles, but the penny hasn’t dropped yet. Figure 7.8 Video game “Whack That Mole!”

https://github.com/reflex-frp/reflex

158 CHAPTER 7 Switch

Time
wh
The first thing we’ll look at is the mole itself, in listing 7.9. It’s the same basic idea as
the zombie and human characters in the previous example, except you don’t need a
view of the world because moles are blind. Here are the inputs:

■ Unique ID for the mole.
■ Constant x-y position.
■ Animation clock. You’re treating this as both a stream and a cell. This isn’t in

the spirit of FRP, but it allows you to represent the animation clock in a single
variable, which is arguably an advantage.

■ sClick stream to indicate that the user clicked the mole.

And here are the outputs:

■ id—From the input
■ drawable—Function that draws the mole character
■ sDestroy—Stream allowing the mole to request its own destruction
■ dispose—Described shortly

The mole has three states: rising, up, and whacked. The user can only whack the mole
in the rising state. If it rises all the way without being whacked, its state changes to up,
meaning it won; it will then laugh at you for 10 seconds. This is the first time we’ve
done a game in JavaScript, but the FRP concepts used here are all the same.

 You return a dispose function for this reason: the Rx.BehaviorSubject/
subscribe idiom in RxJS is like any use of subscribe, in returning a subscription
object. When the logic is used in flatMapLatest(), which is RxJS’s switch (as you’ll
do shortly), there will be a memory leak if you don’t clean this up explicitly.

 This is true at the time of writing, but the desirable situation is that this should be
automatic, as it is in Sodium. If you used scan() instead of the Rx.BehaviorSubject/
subscribe idiom, this wouldn’t be an issue. You could do it this way, but there are two
advantages of using Rx.BehaviorSubject:

■ You can rely on the cell-like semantics of the state value. The observable
returned by scan() doesn’t give you a current value on subscription. This might
be important if you use withLatestFrom() on it later.

■ You’re combining sUp and sWhack, which originate from two different inputs.
We think the Rx.BehaviorSubject/subscribe idiom expresses things a bit
more naturally than scan() in this sort of case.

function mkMole(id, x, y, clock, sClick)
{
 var tRise = 100,
 tWhack = 15,
 tUp = 500;
 function drawMole(ctx, x, y, up, fracVisible) {

Listing 7.9 The mole’s logic

Time to rise
from hole

 to descend
en whacked Time to hang around

in the up state

159Game characters and efficiency in RxJS

Cha
st

M
st

Fun
the

e

 ...
 }
 var state = new Rx.BehaviorSubject({ phase : 'rising',
 t0 : clock.getValue() }),
 sUp = clock.withLatestFrom(state,
 function (t, state) {
 return state.phase == 'rising' &&
 t - state.t0 >= tRise
 ? { phase : 'up', t0 : t }
 : null;
 })
 .filter(function (state) { return state !== null; }),
 sWhack = sClick.withLatestFrom(clock, state,
 function (_, t, state) {
 var dt = t - state.t0;
 return state.phase == 'rising'
 ? { phase : 'whacked',
 t0 : t - (1 - dt / tRise) * tWhack }
 : null;
 })
 .filter(function (state) { return state !== null; }),
 subscr1 = sUp.merge(sWhack).subscribe(state),
 drawable = clock.withLatestFrom(state, function (t, state) {
 return state.phase == 'rising' ? function (ctx) {
 var dt = t - state.t0;
 drawMole(ctx, x, y, false, dt / tRise); } :
 state.phase == 'up' ? function (ctx) {
 drawMole(ctx, x, y, true, 1); } :
 function (ctx) {
 var dt = t - state.t0;
 if (dt < tWhack)
 drawMole(ctx, x, y, false,
 1 - dt / tWhack); };
 }),
 sDestroy = clock
 .withLatestFrom(state,
 function (t, st) {
 var dur = t - st.t0;
 return (st.phase == 'up' && dur >= tUp)
 || (st.phase == 'whacked' && dur >= tWhack)
 ? id : null;
 })
 .filter(function (id) { return id != null; });
 return {
 id : id,
 drawable : drawable,
 sDestroy : sDestroy,
 dispose : function () { subscr1.dispose(); }
 };
}

Listing 7.10 gives a main program with everything written without caring too much
about performance. As with the zombies, you extract a single sDestroy and drawable
from the game state’s current list of moles using RxJS’s switch operation: flat-
MapLatest() is equivalent to a map, hold, and then switch in Sodium.

Graphics code
omitted

nges to the up
ate after tRise

Changes to the
whacked state if
clicked while rising

erges the two
ate transitions

into state

ction to draw
mole, updated
very clock tick

Request to be terminated when
the whacked or up state expires

160 CHAPTER 7 Switch

Cl
a

re
 Note that when you destroy a mole, as mentioned earlier, you return a function to
dispose it explicitly to avoid memory leaks. You call it using a setTimeout with a delay
of 0 so you can guarantee it will be done safely after the current RxJS processing has
completed.

 As noted, the “restrictive” style of FRP that requires referential transparency does
put a lot of work onto the garbage collector. The performance scalability of this code
as presented is abysmal:

■ The mole outputs a new drawable every frame and all of them are combined
each frame.

■ The combining of drawables has an algorithmic complexity of O(N) for each
mole update. Because each mole updates each frame, that’s O(N 2) per frame.

■ Appending arrays by copying is inefficient if the arrays are long.

Next you’ll see ways to improve these without going outside the FRP paradigm.

function init() {
 var canvas = document.getElementById("myCanvas"),
 getXY = function(e) {
 return { x : e.pageX - canvas.offsetLeft,
 y : e.pageY - canvas.offsetTop }; },
 sMouseDown = Rx.Observable.fromEvent(canvas, 'mousedown')
 .map(getXY),
 clock = new Rx.BehaviorSubject(0);
 Rx.Observable.interval(20).subscribe(clock);
 var state = new Rx.BehaviorSubject({ nextID : 0, moles : []}),
 sAddMole = clock
 .filter(function (_) { return Math.random() < 0.02; })
 .withLatestFrom(state, clock,
 function (_, state, t0) {
 var x = 25+(canvas.width-50) * Math.random();
 var y = 25+(canvas.height-50) * Math.random();
 var sClick = sMouseDown.filter(function (pt) {
 return pt.x >= x - 20 && pt.x <= x + 20 &&
 pt.y >= y - 20 && pt.y <= y + 30;
 });
 var newMoles = state.moles.slice();
 newMoles.push(mkMole(state.nextID, x, y,
 clock, sClick));
 state = { nextID : state.nextID+1,
 moles : newMoles };
 console.log("add mole "+state.nextID+
 " ("+state.moles.length+")");
 return state;
 }),
 sDestroy = state.flatMapLatest(
 function (state) {
 var sDestroy = Rx.Observable.of();
 for (var i = 0; i < state.moles.length; i++)
 sDestroy = sDestroy.merge(state.moles[i].sDestroy);

Listing 7.10 Main program for Whack That Mole!

50 fps animation
clock

At random
times …

… creates a new mole

icks in the mole’s area
re passed to the mole.

Copies the list for
ferential transparency

Merges all moles’
sDestroys into one

161Game characters and efficiency in RxJS

Turns

Merg

 in
 return sDestroy;
 });
 sRemoveMole = sDestroy.withLatestFrom(state,
 function (id, state) {
 var newMoles = [];
 for (var i = 0; i < state.moles.length; i++)
 if (state.moles[i].id != id)
 newMoles.push(state.moles[i]);
 else
 setTimeout(state.moles[i].dispose, 0);
 console.log("remove mole "+id+" ("+newMoles.length+")");
 return { nextID : state.nextID, moles : newMoles };
 });
 sAddMole.merge(sRemoveMole).subscribe(state);
 var drawables = new Rx.BehaviorSubject([]);
 state.flatMapLatest(
 function (state) {
 var drawables = new Rx.BehaviorSubject([]);
 for (var i = 0; i < state.moles.length; i++) {
 var thiz = state.moles[i].drawable.map(
 function(draw) {
 return [draw];
 });
 drawables = i == 0
 ? thiz
 : drawables.combineLatest(thiz,
 function (d1, d2) { return d1.concat(d2); });
 }
 return drawables;
 }).subscribe(drawables);
 clock.subscribe(function(t) {
 var ctx = canvas.getContext("2d");
 ctx.fillStyle = '#00af00';
 ctx.fillRect(0, 0, canvas.width, canvas.height);
 var ds = drawables.getValue();
 for (var i = 0; i < ds.length; i++)
 ds[i](ctx);
 });
}

To run this code, check it out if you haven’t done so already, and point your browser at
sodium/book/web/whack1.html. The code is in whack1.js.

 Let’s improve the performance. First, instead of updating the draw function every
frame, you’ll turn it into a function of time and update it only when the mole changes
state. This change is trivial. Replace this section

var drawable = clock.withLatestFrom(state, function (t, state) {
 ...

with the following so the updating of drawables happens only on changes to the
mole’s state, not for every clock frame. t is now an argument of the returned function:

var drawable = state.map(function (state) {
 return state.phase == 'rising' ? function (ctx, t) {

 sDestroy into
a state change

Copies non-destroyed
molesExplicitly disposes

of deleted moles

es state
changes
together
to state

Combines drawables into
a single BehaviorSubject

Redraws the screen
every frame

162 CHAPTER 7 Switch
 var dt = t - state.t0;
 drawMole(ctx, x, y, false, dt / tRise); } :
 state.phase == 'up' ? function (ctx, _) {
 drawMole(ctx, x, y, true, 1); } :
 function (ctx, t) {
 var dt = t - state.t0;
 if (dt < tWhack)
 drawMole(ctx, x, y, false,
 1 - dt / tWhack); };
 });

Next, modify the main loop like this to pass the current time:

var ds = drawables.getValue();
for (var i = 0; i < ds.length; i++)
 ds[i](ctx, t);

The second improvement is to construct drawables in a binary tree structure instead
of a flat structure, as described in section 7.6:

var drawables = new Rx.BehaviorSubject([]);
state.flatMapLatest(
 function (state) {
 var drawables = [];
 for (var i = 0; i < state.moles.length; i++)
 drawables.push(state.moles[i].drawable);
 return sequence(drawables);
 }).subscribe(drawables);

It uses a generalized sequence() function like the Java one you used earlier, but tuned
up a bit. It converts a list of cells of values (the Java type would be List<Cell<A>>) to a
cell of a list of values: Cell<List<A>>.

 You split the list and work recursively so the number of combineLatest operations
between any input cell and the cell you output is no more than log(N). Thus the algo-
rithmic complexity of a single update is O(log N):

function sequence(xs)
{
 if (xs.length == 0)
 return new Rx.BehaviorSubject([]);
 else
 if (xs.length == 1)
 return xs[0].map(function(x) { return [x]; });
 else {
 var mid = Math.floor(xs.length/2),
 left = xs.slice(0, mid),
 right = xs.slice(mid);
 return sequence(left).combineLatest(sequence(right),
 function (x1, x2) { return x1.concat(x2); });
 }
}

Third, appending arrays by copying them is costly if the arrays are long. Recall that to
ensure referential transparency, the values have to be immutable, so you must copy

163Switch use case #3: removing invalid states
the arrays. It turns out you can get the best of both worlds: there’s a data structure
called a 2-3 finger tree that is immutable, that behaves like an array, and for which
appending has a complexity of O(log(min(n1,n2)). There are JavaScript implementa-
tions of it.

 We’ve done the first two modifications. To try the new version, point your browser
at sodium/book/web/whack2.html. The code is in whack2.js.

7.8 Switch use case #3: removing invalid states
Let’s extend one of the JavaScript examples from chapter 6 so you can drag around
the cat and dog polygons. Three kinds of input mouse events are involved in a drag
and drop: mouse down, mouse move, and mouse up (see figure 7.9).

Listing 7.11 defines a BehaviorSubject for the dragging state, which is null when
you aren’t dragging. This works, but there’s a risk of bugs, because the drag logic has
to make sure dragging is non-null before it does its thing. This is what you’ll improve
shortly. Don’t forget that the final subscribe() is the I/O part, which should be kept
as far away from the logic as possible (in this case, the bottom of the file).

function insidePolygon(pos, poly) {
}
function find(doc, pos) {

Listing 7.11 Dragging cat and dog polygons without flatMapLatest

Event 1: mouse down

Mouse button is held down
to start dragging

Events 2-9: mouse move

With mouse button held
down, move events stream
in as the mouse is moved.
The object is drawn floating
above the document to
indicate it is being dragged.

Event 10: mouse up

Mouse button is released.
Document is updated
with a new position for
this element. Figure 7.9 Modeling the input mouse events

in drag-and-drop logic

Code omitted

164 CHAPTER 7 Switch

draggi
if mou
clicks

C
dragg

on

Ca
 for (var i = 0; i < doc.length; i++)
 if (insidePolygon(pos, doc[i])) return doc[i];
 return null;
}
function insert(doc, shape) {
 doc = doc.slice();
 for (var i = 0; i < doc.length; i++)
 if (doc[i].id == shape.id) doc[i] = shape;
 return doc;
}
function shiftBy(shape, dx, dy) {
 var neu = { id: shape.id, coords : [] };
 for (var i = 0; i < shape.coords.length; i++) {
 var pt = shape.coords[i];
 neu.coords.push({ x : pt.x + dx, y : pt.y + dy });
 }
 return neu;
}

function init() {
 var canvas = document.getElementById("myCanvas");
 var getXY = function(e) { return { x : e.pageX - canvas.offsetLeft,
 y : e.pageY - canvas.offsetTop }; };
 var sMouseDown = Rx.Observable.fromEvent(canvas, 'mousedown')
 .map(getXY);
 var sMouseMove = Rx.Observable.fromEvent(canvas, 'mousemove')
 .map(getXY);
 var sMouseUp = Rx.Observable.fromEvent(canvas, 'mouseup').map(getXY);
 var dragging = new Rx.BehaviorSubject(null);
 var doc = new Rx.BehaviorSubject([
 { id: "cat", coords: ... },
 { id: "dog", coords: ... }
]);
 sMouseDown.withLatestFrom(doc, function(pos, doc) {
 var shape = find(doc, pos);
 if (shape === null) return null;
 else return { shape : shape, startPos : pos };
 }).merge(
 sMouseUp.map(function(pos) { return null; })
).subscribe(dragging);
 sMouseMove.withLatestFrom(dragging, doc, function(pos, dragging, doc) {
 if (dragging === null) return null;
 else {
 var dx = pos.x - dragging.startPos.x;
 var dy = pos.y - dragging.startPos.y;
 return insert(doc, shiftBy(dragging.shape, dx, dy));
 }
 }).filter(function(doc) { return doc !== null; })
 .subscribe(doc);
 doc.subscribe(function(doc) {
 var ctx=canvas.getContext("2d");
 ctx.clearRect(0, 0, canvas.width, canvas.height);
 for (var i = 0; i < doc.length; i++) {
 var coords = doc[i].coords;
 ctx.beginPath();

Numbers omittedSets the
ng state
seDown
a shape

lears the
ing state
mouseUp

reful! Make
sure you’re

dragging!

The I/O part is separate
from the logic part.

165Switch use case #3: removing invalid states
 ctx.moveTo(coords[0].x, coords[0].y);
 for (var j = 0; j < coords.length; j++)
 ctx.lineTo(coords[j].x, coords[j].y);
 ctx.closePath();
 ctx.fillStyle = '#D090ff';
 ctx.fill();
 }
 });
}

To run this example, check this out if necessary: git clone https://github.com/
SodiumFRP/sodium. Then point your browser at sodium/book/web/drag1.html.

7.8.1 And now, improved with flatMapLatest

In functional programming, you strive to make it so invalid states aren’t represent-
able. What you want is for the dragging logic not to exist at all until you’re dragging.

 You can replace the code in bold from the previous listing with the code in listing
7.12. When you mouse-down on a valid shape, you output an observable that describes
what to do from then on.

 takeUntil() is an RxJS operation that terminates the observable when an event
arrives on its argument, sMouseUp. It has no direct equivalent in Sodium, but you
could write it. This does what you want: it instantiates the drag logic when you start the
drag and destroys it when you stop. The drag logic can safely assume it’s always drag-
ging. The invalid state of mouse move when not dragging is eliminated, and so is any
associated potential bug.

var dragging = ... ;
var doc = ... ;
sMouseDown.withLatestFrom(doc, function(pos, doc) {
 return { startPos : pos, shape : find(doc, pos) };
}).filter(function(x) { return x.shape !== null; })
 .flatMapLatest(function(x) {
 var startPos = x.startPos;
 var shape = x.shape;
 return sMouseMove.withLatestFrom(doc, function(pos, doc) {
 var dx = pos.x - startPos.x;
 var dy = pos.y - startPos.y;
 return insert(doc, shiftBy(shape, dx, dy));
 }).takeUntil(sMouseUp);
 }).subscribe(doc);

To run this example, check this out if necessary: git clone https://github.com/
SodiumFRP/sodium. Then point your browser at sodium/book/web/drag2.html.

Listing 7.12 Dragging cat and dog polygons: improved with flatMapLatest

https://github.com/SodiumFRP/sodium
https://github.com/SodiumFRP/sodium
https://github.com/SodiumFRP/sodium
https://github.com/SodiumFRP/sodium

166 CHAPTER 7 Switch
7.9 Switch use case #4: switching between screens
A real game has multiple screens (see figure 7.10). In video games, you usually want to
redraw the entire scene every frame, so you’d typically model the scene—consisting of
all the graphical elements to be drawn—as a single cell. Some infrastructures work
well in this way (WebGL, OpenGL, and HTML5 Canvas), and some don’t (DOM and
SVG) but can be adapted.

Figure 7.10 Example of the screens in a real game

Here’s how you can implement this in FRP with
switch. Each screen’s logic outputs a sChange stream
allowing it to fire with the screen you want to switch to;
the main game loop handles the state transition. See
figure 7.11.

Figure 7.11 How a game switches screens

Play

Play!
Quit

Quit Pause

Pause, Resume

ZOMBICUS
by FRP Studios

Preferences

ZOMBICUS
is paused!

Resume

GAME OVER

Preferences,
Back

Back

Preferences

Groans

Blood-curdling screams

Cheesy animations

Screen logic

switch

hold

scene

sMouseEvent

switch

sChange

167Switch use case #4: switching between screens
With this arrangement, it’s easy to get clever and introduce transition animations
between screens. The scene during a transition is a function of three things:

■ The old screen’s scene
■ The new screen’s scene
■ The animation clock time

This can be expressed directly in FRP. To make it work neatly, you may also want to
gate the mouse input so that only the new screen receives it, or neither screen receives
it during the transition. Otherwise you’ll get the strange situation where both screens
are affected by the same mouse clicks during the transition.

 Notice that sometimes you’ll want screens to keep their state while they’re not
active, and sometimes you won’t. For instance, when you start a new game, you want a
completely new state. When you switch to the pause screen, you want a new pause
screen, because it has no useful state to preserve. But when you switch back to the
game, you want the game state to be preserved.

 Achieving this is simpler than you may think. Do this:

■ When you want a screen to have new state (new game or pause screen), execute
FRP statements to construct new FRP logic.

■ When you want to preserve the state of a screen—for instance, when you
pause—pass the game screen’s scene cell to the pause screen to hold onto.
When it has finished pausing, it passes it out sChange. While the pause screen
holds a reference to this cell, the game logic stays active in memory.

When all references to the scene of a screen are discarded, it’s cleaned up. When you
change to the Game Over screen, you throw away the game screen’s scene. Because
it’s not being referenced any more, all the game state gets garbage-collected.

 Note that for this to work properly, an additional mechanism is required: you need
to gate the input events so only the active screen can see them. If you don’t do this,
then mouse clicks on the pause screen will be interpreted by the game screen as
player input.

NOTE While a game is paused, you don’t want any state changes in the game
logic. Typically there will be a game clock that causes monsters to walk
around, and so on. To prevent this from happening during a pause, a recom-
mended method is to give the pause screen a mechanism that lets it pause the
game clock. For animations on the pause screen, you use a different clock.

To summarize, to implement screen-switching in a game, you might do it this way:

■ Switch the output cells and streams of the screen logic.
■ One of those outputs is a stream sChange for switching to a new screen, which is

then held by the top-level game loop.
■ If you need to retain the state for a screen, hold onto its outputs. To restore that

screen, feed those outputs out as if they were a new screen through an event on
sChange.

168 CHAPTER 7 Switch
■ Gate all the inputs so that screens that aren’t visible also don’t see any input
events.

■ Add transition animations to your heart’s content.

7.10 Summary
■ The sample primitive allows cells to be sampled directly. You can use it when

constructing FRP logic or in functions passed to FRP primitives that work on
events (Stream.map, snapshot, filter, merge, Stream.accum). Or it can be
called any time from I/O code to sample a cell’s current value.

■ Without switch, the data-flow graph that implements the FRP logic is static.
■ switch lets you use FRP to construct FRP, so you can change the FRP data-flow

graph dynamically.
■ Merging long lists of cells or streams has performance implications, but there

are ways to make this scalable.
■ Making invalid states not representable is desirable because it reduces the possi-

bilities for bugs. switch can help with this.

Operational primitives
Cue some soft music as we reflect that you now have a good grounding in the
10 primitives that form the conceptual core of FRP: map, merge, hold, snapshot,
filter, lift, never, constant, sample, and switch. Together they create a perfect
world where everything is harmonious and wonderful.

 Zzzzzzzzzzzzrrrrrrrrppppppppp! (That’s the sound of ripping a record off a
record player.) Certain issues dwell at the fringe of the FRP design space and don’t
quite fit. This chapter is about those and how to deal with them in Sodium. Each
FRP system takes its own approach to these issues, so we introduce the operational
primitives.

This chapter covers
■ Interfacing FRP code with the rest of your

program
■ Lazy values
■ Transactions
■ Getting a stream from a cell
■ Spawning new transactional contexts
■ The question of scalable addressing
169

170 CHAPTER 8 Operational primitives
8.1 Interfacing FRP code with the rest of your program
For the entire book, you’ve been saying, “Just tell me already!” and we’ve been pre-
tending to be Yoda from Star Wars, saying “Ready you are not! Hmmm?” Now we judge
that your mind is sufficiently purified that you can learn how to send data into FRP
logic and receive it out without your FRP programming being influenced by opera-
tional thinking. We’re about to teach you something that is necessary but that you
should do only when necessary.

NOTE What follows is how Sodium does it, which should be fairly typical, but
there will be variations in different FRP systems. For information about how to
do this in RxJS, see “Creating your own hot observable” in section 6.5.

8.1.1 Sending and listening to streams

Interfacing your FRP code to the rest of your program has two parts:

1 Push events into streams or cells.
2 Listen to the events from streams or cells.

Listing 8.1 shows both of these. You construct a StreamSink, which is a subclass of
Stream that adds a method called send(), allowing you to push or send values into the
stream.

NOTE With certain rules on listeners to be discussed shortly, it’s absolutely
thread-safe and safe in every other way to call send() from any context. The
send() call will also never block on I/O.

When you export a StreamSink from a module for other parts of the program to con-
sume the stream, you should upcast it to Stream before doing so, so the ability to push
events into the stream isn’t made public.

NOTE Your code can do all the I/O and state mutation it wants in between
calls to send(). We’re now in the Wild West where the strict rules of referen-
tial transparency don’t apply.

To listen to a stream’s events, you can register a listener on any Stream with the
listen() method. It returns a Listener object that has an unlisten() method to
deregister the listener when you’ve finished observing the values from the stream:

Listener l = ev.listen(value -> { ... do something ... ; });
...
l.unlisten();

You can also append() listeners together into one, so a common idiom to simplify
unlistening is this:

Listener l = new Listener();
l = l.append(sX.listen(...));
l = l.append(sY.listen(...));
...
l.unlisten();

Deregisters all
callbacks

171Interfacing FRP code with the rest of your program
The following are Sodium-specific:

■ The stuff that Sodium does behind the scenes is all automatic, but deregistering
these explicit listeners is not automatic. If you forget to do so, the FRP logic is
held in memory, and this could result in a memory leak. But FRP programs typi-
cally don’t have many listeners to be concerned about, and often they exist for
the life of the program anyway.

■ When you listen to something with listen(), all the associated FRP logic is held
in memory and isn’t garbage-collected until you explicitly call unlisten().
There is a variant of listen() called listenWeak() that automatically deregis-
ters the handler if the Listener object is garbage-collected.

import nz.sodium.*;
public class stream {
 public static void main(String[] args) {
 StreamSink<Integer> sX = new StreamSink<>();
 Stream<Integer> sXPlus1 = sX.map(x -> x + 1);
 Listener l = sXPlus1.listen(x -> { System.out.println(x); });
 sX.send(1);
 sX.send(2);
 sX.send(3);
 l.unlisten();
 }
}
ant stream
stream:
 [java] 2
 [java] 3
 [java] 4

To run this, check it out if you haven’t done so already, and then run it like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/operational/java
mvn test -Pstream or ant stream

8.1.2 Multiple send()s in a single transaction

NOTE This section doesn’t apply to Rx and other systems that lack a concept
of transactions.

When you create an event by issuing a send(), it automatically starts a transaction
within which all the state changes that result from it in your FRP logic take place. As
we’ve mentioned before and will cover in more detail shortly, it’s possible to start
transactions explicitly. If you call send() on more than one StreamSink in a single
transaction, the resulting events are simultaneous with each other.

 But what if you send to the same StreamSink more than once? Sodium only allows
one event per transaction on a given stream, so how does it deal with this situation? By
default, it throws away the events from all but the last send().

Listing 8.1 Sending data into and listening to a stream

172 CHAPTER 8 Operational primitives
 If you want to do something different, you can use a variant of StreamSink’s con-
structor that takes a combining function. For example, if you’re using the type Stream-
Sink<Integer> and you want to add the numbers when combining, you can do this:

StreamSink<Integer> s = new StreamSink<>((a, b) -> a + b);
...
s.send(1);
Transaction.runVoid(() -> {
 s.send(5);
 s.send(7);
});
s.send(100);

In this explicit transaction, the numbers are added together using the function speci-
fied giving a single event with the value 12. The events you’ll see on s in this program
are as follows:

1
12
100

8.1.3 Sending and listening to cells

Listing 8.2 constructs a CellSink. Because a cell must always have a value, it requires
you to specify an initial value. Cell.listen() is the same as its stream counterpart,
except that you’re called back once on registration of the listener with the cell’s cur-
rent value. Note that the output shows the initial 0.

import nz.sodium.*;
public class cell {
 public static void main(String[] args) {
 CellSink<Integer> x = new CellSink<>(0);
 Listener l = x.listen(x_ -> { System.out.println(x_); });
 x.send(10);
 x.send(20);
 x.send(30);
 l.unlisten();
 }
}
ant cell
cell:
 [java] 0
 [java] 10
 [java] 20
 [java] 30

To run this, check it out if you haven’t done so already, and then run it like this:

cd sodium/book/operational/java
mvn test -Pcell or ant cell

Listing 8.2 Sending data into and listening to a cell

Groups the two sends
into a single transaction

173Interfacing FRP code with the rest of your program
8.1.4 Threading model and callback requirements

To make things work consistently, there are certain rules about what you can and can’t
do in a listen() callback. These rules should be considered a requirement in
Sodium, but they’re good advice in any FRP system.

 Sodium currently works in the following way, but there’s a good chance this could
change in the future for performance reasons:

■ In Sodium, you’re called back on the thread that the send() that started the
FRP processing was called on.

Other systems may behave differently. But no matter what FRP system you’re using,
you’ll avoid many problems if you don’t make assumptions about what thread you
were called back on. The rules we give in this chapter are based on this idea.

 Having said that, if you carefully inspect the implementation of the SWidgets library
used in the examples, you’ll see that we’re using such assumptions to obtain specific
behavior: we’re trying to make Swing comply with some FRP-like assumptions about
when state changes will occur. Sometimes this is the right thing to do. This will generally
be when you’re trying to wrap some non-FRP logic with an FRP interface, as in this case.

 Without further ado, here are the rules you should use for listen() callbacks:

■ You’re not allowed to send() inside a callback. In Sodium, doing so throws an
exception. There are two reasons. First, we don’t encourage this style, and sec-
ond, we can’t maintain correct processing order. If you need to write your own
primitive, this means we should improve Sodium. This may need to happen
from time to time.

■ You’re not allowed to block inside a callback.
■ Nonblocking I/O is acceptable.

The way to do blocking I/O is to delegate your processing to a worker thread. At the
conclusion of the I/O, you can send() a result back into your FRP logic. Because the
worker thread wouldn’t be blocking the callback, this is valid.

The rules of interfacing with FRP in Sodium

We can summarize the rules of interfacing your I/O code with FRP like this:

■ It’s safe to call send() from any context except an FRP listener, and it never
blocks.

■ The functions passed to FRP logic can do anything that’s referentially transpar-
ent, and functions that work with stream events may construct FRP logic and
may use sample. I/O is forbidden.

■ Listeners must not block or call send(), and they may do nonblocking I/O,
including delegating work to other threads.

If these rules are followed, you’ll never have threading issues. This is true in Sodium
and may be true in other FRP systems.

174 CHAPTER 8 Operational primitives
8.2 Laziness solves loop craziness
This advice is Sodium-specific. Sometimes you write code that calls sample() during
its construction. You saw an example of this in periodicTimer() from the previous
chapter:

public static Stream<Unit> periodicTimer(
 Cell<Double> time, Stream<Unit> sTick, double period) {
 CellLoop<Double> tAlarm = new CellLoop<>();
 Stream<Double> sAlarm = Stream.filterOptional(
 sTick.snapshot(tAlarm,
 (u, alarm) -> time.sample() >= alarm
 ? Optional.of(time.sample() + period)
 : Optional.<Double>empty())
);
 double t0 = time.sample() + period;
 tAlarm.loop(sAlarm.hold(t0));
 return sAlarm.map(u -> Unit.UNIT);
}

But what if the time passed in has been looped? Let’s say it’s called like this:

CellLoop<Double> time = new CellLoop<>();
Stream<Unit> eAlarm = periodicTimer(time, sTick, 2.0);
time.loop(...);

At the time when you call sample(), the time variable hasn’t been looped yet. How
can Java return the value when there’s no way to know it yet? The previous code will
throw an exception.

 Sodium provides a way to solve this problem:

Lazy<double> t0 = time.sampleLazy().map(p -> p + period);
tAlarm.loop(sAlarm.holdLazy(t0));

sampleLazy() returns a proxy for the value that isn’t available yet, and holdLazy()
knows how to use it. There’s a map() function to modify it, and it also has lift() func-
tions for combining multiple lazy values.

NOTE Haskell is the only language where this isn’t a problem, because all val-
ues are lazily evaluated.

8.3 Transactions
listen brings us to the operational way of viewing things that we’ve been avoiding
until now. Now we’ll talk about transactions and what they are operationally.

NOTE The Reactive Extensions (Rx) family of systems and many systems
based on it don’t have the concept of transactions.

In some FRP systems, a transaction is called a moment, and this is a better name because
it’s conceptual, not operational. Another good name would be an instant. We’re stick-
ing with transaction because it’s the term people already know.

175Transactions
 How do you initiate a transaction? First, in Sodium, if you don’t create a transaction,
one is created automatically. For instance, each send() here runs in a new transaction:

sSnk.send(5);
eSnk.send(6);
eSnk.send(7);

Or you can create a transaction explicitly like this in Sodium:

Transaction.runVoid(() -> {
 ... transactional code ...
}

This uses the loan pattern, where you pass to runVoid() a lambda specifying the code
you want it to execute in a transactional context.

If you want to return a value from a transactional block of code, there’s a variant
called run():

Stream<Integer> s = Transaction.run(() -> {
 ...
 Stream<Integer> s = ...;
 ...
 return s;
});

The loan pattern

The loan pattern is a software design pattern in which a function that manages some
resource is given a piece of code in the form of a lambda to run, and the function
loans the resource to the passed code. The point of it is to reduce the chance of
resource leaks by making it impossible for the caller to forget to close the resource.

The best-known use case for the loan pattern is opening and closing a file. Let’s say
you want to read the contents of a file into a byte array. Instead of opening and closing
it yourself, you can imagine that there exists a loan pattern method called readFile()
that does the work for you. Here’s how you might invoke it:

byte[] text = readFile(filename, is -> {
 int size = is.available();
 byte[] text = new byte[size];
 h.read(text);
 return text;
});

readFile()’s job is to handle the opening and closing of the file for you so you can’t
get it wrong. It opens the requested file, passes the resulting InputStream is to the
lambda function that the caller supplied, and ensures that all resources are cleaned
up and exceptions are handled safely.

Sodium makes you use this pattern when you want to wrap the code in a transaction.
Then there’s no risk of accidentally leaving the transaction open.

Transaction 1
Transaction 2

Transaction 3

176 CHAPTER 8 Operational primitives
The transaction is tied to the thread that the code is running on, so there’s no explicit
transaction handle. Sodium knows how to retrieve the transactional context behind
the scenes when it needs it.

 Sodium executes a transaction in two steps:

1 Process all stream events simultaneously.
2 Update all cell values atomically.

During step 1, cells can’t change their state, so event processing sees a single
“moment” representing the state before the transaction started. As we explained in
chapter 2, you can view all events processed in a single transaction as truly simultane-
ous with each other.

 In step 2, you then apply the updates you queued up in step 1 atomically. Recall
that atomically means it’s impossible to observe a situation where some updates have
been applied but not others.

8.3.1 Constructing FRP logic under an explicit transaction

We’ve mentioned this, but here we’ll cover it formally:

■ It’s normal to construct FRP logic under an explicit transaction.
■ It often makes sense for all the program initialization to be wrapped in a single,

big FRP transaction. We’ll come back to this in chapter 14.
■ StreamLoop and CellLoop require an explicit transaction.

MIXING I/O WITH FRP CONSTRUCTION

A large program does a lot of initialization, and we recommend one big transaction
wrapped around it. This implies, clearly, that there would normally be some I/O inside
that transaction. Although you generally want a clear line between I/O and FRP, mixing
I/O in with FRP construction during program startup isn’t a problem in practice.

 Bear in mind that if you spawn a thread during initialization, and that thread calls
send() on StreamSink or CellSink, it could block until the initialization transaction
closes on the initialization thread. This is probably what you want anyway, but we’re
making this clear. This could vary from one FRP system to another depending on how
it’s implemented.

LISTENING AND SENDING IN THE SAME TRANSACTION

In Sodium, if you send() and listen() to the same stream in the same transaction (as
in listing 8.3), the sent value is guaranteed to be seen, no matter what order these two
operations occur in. This property, combined with the “one big transaction” policy for
program initialization, allows you to banish the missed first event plague described in
detail in appendix B.

import nz.sodium.*;

public class sametrans {
 public static void main(String[] args) {

Listing 8.3 Sending and listening in the same transaction

177Getting a stream from a cell with updates and value
 StreamSink<Integer> sX = new StreamSink<>();
 Stream<Integer> sXPlus1 = sX.map(x -> x + 1);
 Listener l = Transaction.run(() -> {
 sX.send(1);
 Listener l_ = sXPlus1.listen(x -> { System.out.println(x); });
 return l_;
 });
 sX.send(2);
 sX.send(3);
 l.unlisten();
 }
}
ant sametrans
sametrans:
 [java] 2
 [java] 3
 [java] 4

To run this example, check it out if you haven’t done so already, and then run it like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/operational/java
mvn test -Psametrans or ant sametrans

8.4 Getting a stream from a cell with updates and value
There are two views of time in FRP systems:

■ Discrete time
■ Continuous time

This difference pertains to cells only. Streams are the same in both models. Sodium is
mostly focused on discrete time, but you can express continuous time in it, and we’ll
cover this in detail in chapter 9.

 In a discrete time system, state (cell) changes or steps happen in response to
events, so the steps are discrete. A continuous time system allows this too, but it also
has the ability for a cell’s value to vary continuously over time. An obvious case where
this would be useful would be in simulating physics, as you might do in a video game.

 To protect the idea of a continuously varying cell, a true FRP system must ensure that
changes in a cell’s value aren’t observable. The 10 core primitives we’ve listed are con-
sistent with this because they give you no way to convert a cell into a stream. Note that
listen() is an operational external interface thing and is not considered part of FRP.

 We’re about to introduce two primitives that break that nice property. They’re
sometimes needed for operational situations.

NOTE In Rx, we recommend BehaviorSubject to do the job of an FRP cell,
but BehaviorSubject is not a distinct data type in Rx. It can be treated
directly as an Observable (the same as Stream in Sodium). Unfortunately this
means there’s no direct way to achieve the desirable property of concealing
cell steps.

178 CHAPTER 8 Operational primitives
8.4.1 Introducing updates and value

The Sodium-specific primitives updates and value both take a cell and give you a
stream. Here are two use cases for this. There aren’t many (some others will come up
in later chapters):

■ You might want to send a cell over a network link. This would require decon-
structing it into its current value and a stream of its updates, and holding the
result on the other end of the wire.

■ In chapter 12, we’ll discuss a function called calm() that for performance rea-
sons removes unnecessary steps from cells, where the value is a repeat of the
previous firing. You need Operational.updates() to implement it, but it fol-
lows our rule and doesn’t expose the steps to the caller.

We’ve given them the following deliberately cumbersome names because we want you
always to be aware that by using them, you’re breaking the non-detectability of cell steps:

■ Operational.updates()
■ Operational.value()

NOTE In Rx, as we mentioned, BehaviorSubject (cell) and Observable
(stream) aren’t distinct types. This means no equivalent of updates and
value is needed to convert one to the other.

updates gives you the discrete updates to a cell. value differs from updates by firing
once with the cell’s current value in the transaction where it was invoked. updates is
effectively the inverse of hold. To preserve the non-observability of cell steps, the gen-
eral rule is this:

Functions that use Operational.updates() shouldn’t expose cell steps to the caller.

NOTE Some systems use the term changes for updates, but it’s important to
note that they’re not changes in the sense of being values that aren’t equal.
That is, Sodium doesn’t filter out values that are equal to the previous value.
If you want this functionality, you can write it yourself with FRP primitives.

EXAMPLE OF UPDATES

Listing 8.4 listens to the updates of a cell. The key thing to note is that this doesn’t
give you the current value in the first callback like when you called a cell’s listen()
method in an earlier example. In this example, the current value of x is 1 when you
listen, but you don’t see 1 in the output because updates only captures the updates
that occur in the same transaction as or after you start listening.

import nz.sodium.*;
public class updates {
 public static void main(String[] args) {
 CellSink<Integer> x = new CellSink<>(0);

Listing 8.4 Listening to the updates of a cell

179Getting a stream from a cell with updates and value
 x.send(1);
 Listener l = Operational.updates(x).listen(x_ -> {
 System.out.println(x_);
 });
 x.send(2);
 x.send(3);
 l.unlisten();
 }
}
ant updates
updates:
 [java] 2
 [java] 3

To run this, check it out if you haven’t done so already, and then run it like this:

cd sodium/book/operational/java
mvn test -Pupdates or ant updates

EXAMPLE OF VALUE

Listing 8.5 doesn’t give the effect you may expect. The reason is that it doesn’t specify
an explicit transaction. If a transaction doesn’t already exist, Sodium primitives create
a short-lived one automatically, so value() and listen() run in two separate transac-
tions. By the time you listen, you’ve missed the current value that was output by
value().

import nz.sodium.*;
public class value1 {
 public static void main(String[] args) {
 CellSink<Integer> x = new CellSink<>(0);
 x.send(1);
 Listener l = Operational.value(x).listen(x_ -> {
 System.out.println(x_);
 });
 x.send(2);
 x.send(3);
 l.unlisten();
 }
}
ant value1
value1:
 [java] 2
 [java] 3

To run this, check it out if you haven’t done so already, and then run it like this:

cd sodium/book/operational/java
mvn test -Pvalue1 or ant value1

Listing 8.5 value not working as expected

What? Where’s
the current value?

180 CHAPTER 8 Operational primitives
To solve this, you wrap this line in a transaction, which you’ll find in the file
value2.java:

x.send(1);
Listener l = Transaction.run(() -> {
 return Operational.value(x).listen(x_ -> {
 System.out.println(x_);
 });
});
x.send(2);
x.send(3);

Now you get the output you expect:

ant value2
value2:
 [java] 1
 [java] 2
 [java] 3

To run this, check it out if you haven’t done so already, and then run it like this:

cd sodium/book/operational/java
mvn test -Pvalue2 or ant value2

Note that Cell’s listen() is equivalent to value().listen() in a transaction. It’s a
shorter way to do what you’ve done here. You can rewrite the earlier line as

Listener l = x.listen(x_ -> { System.out.println(x_); });

8.5 Spawning new transactional contexts with the split primitive

NOTE Because Rx doesn’t have transactions, this section doesn’t apply to it.

Let’s say you have data packets, each of which contains several commands, and you
want to feed them into the FRP logic (see figure 8.1). Each packet is processed in a
separate transaction, so in this diagram there are two transactions.

 To write this, the logic would need to deal throughout with lists of commands.
That would be a bit clunky. What you’d really like to do is split these commands out
and process each one in its own transaction, as in figure 8.2.

split

split

A

F

Packet 1

FRP logic
Packet 2

cmd1

cmd2

cmd3

cmd4

cmd5

B C

D E

G

H I

J K L

Figure 8.2 Let’s split the packets into individual commands.

cmd1

cmd2

cmd3

cmd4

Packet 1

FRP logic

cmd4

Packet 2

Figure 8.1 Packets come into the system,
each containing a list of commands.

181Spawning new transactional contexts with the split primitive
On the input side you have two transactions, but split lets you to turn that into five
transactions. The original transactions are still there, so you get these seven
transactions:

1 Packet 1
2 cmd1
3 cmd2

4 cmd3

5 Packet 2
6 cmd4

7 cmd5

The following listing shows some code that demonstrates this. Instead of executing
commands, it adds numbers together.

NOTE Recall that accum() is a helper that gives you an accumulator. It’s
shorthand for a simple hold-snapshot loop.

import nz.sodium.*;
import java.util.List;
import java.util.Arrays;

public class split {
 public static void main(String[] args) {
 StreamSink<List<Integer>> as = new StreamSink<>();
 Listener l = Operational.updates(
 Operational.split(as)
 .<Integer>accum(0, (a, b) -> a + b)
).listen(total -> { System.out.println(total); });
 as.send(Arrays.asList(100, 15, 60));
 as.send(Arrays.asList(1, 5));
 l.unlisten();
 }
}
ant split
split:
 [java] 100
 [java] 115
 [java] 175
 [java] 176
 [java] 181

To run this, check it out if you haven’t done so already, and then run it like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/operational/java
mvn test -Psplit or ant split

Listing 8.6 Splitting list elements into their own transactions

182 CHAPTER 8 Operational primitives

n

You can nest split, too. If you have a list
of a list and split it twice, then each sub-
element ends up in its own transaction;
see figure 8.3.

8.5.1 Deferring a single event to a new
transaction

If you want to put a single event into a new
transaction, this is called deferring the
event. It’s implemented as a variant of
split that works on a single event instead
of a list. The Operational.defer()

method provides that in the Java version of Sodium. This primitive gives you a way to
read the new version of a cell’s state.

 Here’s a use case for defer. Imagine you’re writing the logic for a communication
protocol, and you receive some sort of timeout event. You want to turn that into a
retry event. Let’s say the timeout sets an idle flag to true, indicating that a message is
allowed to be sent. When the retry happens, you want it to see the idle flag after it’s
been set. defer allows you to do this.

 Here’s a sketch of the code. We briefly mentioned gate() in chapter 4—it’s a
helper based on snapshot and filter that lets events through when the Boolean cell
you pass it is true:

Cell<Message> msg = ...;
Stream<Unit> sInitiate = ...;
StreamLoop<Unit> sRetry = new StreamLoop<>();
CellLoop<Boolean> idle = new CellLoop<>();
Stream<Message> sSend = sInitiate.merge(sRetry).snapshot(msg)
 .gate(idle);
Stream<Unit> sTimeout = ...;
idle.loop(sSend.map(u -> false).merge(
 sTimeout.map(u -> true)).hold(true));
sRetry.loop(Operational.defer(sTimeout));

It’s a bit unrealistic as it is, but it’s loosely based on a real-world case where this issue
came up.

Sodium has an implicit delay

The problem in this example is a by-product of the fact that Sodium delays state
updates until after the transaction has completed. In chapter 2, we said that you could
alternatively view this delay as a separate primitive. Seen this way, Sodium implicitly
adds delay to hold. Some systems (such as Yampa) do indeed have a separate delay
primitive (dHold being equivalent to hold followed by the delay primitive iPre). In a
strange way, therefore, defer could be seen as something that reverses delay.

A

F

Packet 1

Packet 2

B C

D E

G

H I

J K L

A B C

D E

F G

H I

J K L

H
I

A
B
C
D
E
F
G

J
K
L

split split

Figure 8.3 Split twice to flatten a list of lists.

Blocks
send if
ot idle Defers the retry event so

idle is true and the gate
doesn’t block the retry

183Scalable addressing
The previous snippet also serves to illustrate why FRP feels like wooden teeth when
you try to express sequences in it. You can write this in FRP, but a threaded style is
more natural, like in this rough pseudo-code:

while (retryCount < 3) {
 send(msg);
 reply = timeout(1000, recv());
 if (reply != TIMEOUT)
 break;
 retryCount++;
}

FRP is a great hammer, but not every problem is a nail.

8.5.2 Ending up in the same transaction

When defer or split is used in more than one place in the program, the output
events can end up in the same transaction:

StreamSink<String> in = new StreamSink<>();
Stream<String> lower = in.map(x -> x.toLowerCase());
Stream<String> both = Operational.defer(in)
 .orElse(Operational.defer(lower));
List<String> out = new ArrayList();
both.listen(x -> out.add(x));
sink.send("A");
sink.send("B");
sink.send("C");
System.out.println(out);

This code outputs [A, B, C] because two defers put the events into the same new
transaction and orElse() gives precedence to in (the capital letters). Why didn’t we
just make Sodium put them into different new transactions? The denotational seman-
tics make you do it this way because there’s no compositional way to decide what order
they should be in.

 This is why we put defer() and split() into the Operational sin bin. They’re
potentially useful, but be aware that using defer() more than once in a program can
generate simultaneous events.

8.6 Scalable addressing
In the Zombicus example in chapter 7, you routed zombie bites to their victims using
a unique ID. You merged the bits together, and then each BitableHomoSapiens
ignored the bites that weren’t for it:

Stream<Set<Integer>> sBiteMe = sBite.filter(ids ->
 ids.contains(self));

This is great, except it doesn’t scale. Each time you send a bite, if you have N humans,
you have to do N comparisons. The algorithmic complexity is O(N 2) for N humans

184 CHAPTER 8 Operational primitives
and N bites. Imagine if a mail carrier had to deliver N letters to N houses and visited
every house in town for each letter (see figure 8.4).

NOTE In the 1970s, the New Zealand Post Office actually worked this way.

NOTE On some imaginary massively parallel machine, this scalability issue
would be less of a problem. If you think about it, this issue is a product of both
the FRP paradigm you’re using and the machine.

If we hadn’t been so fussy in Sodium and had allowed you to put send() in a listen()
handler, then you could do it that way. In Rx, this sort of approach would be sensible,
because Rx is designed to allow this. But it’s easy to break compositionality if you’re
not careful.

 At any rate, it would be nice to solve this problem in a way that guarantees compo-
sitionality. You could write a custom primitive for this, and that isn’t a bad idea.

 Another approach is to combine it with the solution we talked about in section 7.6.
The idea is to make a special tree with switches built into it so you only need to update
a portion of the tree each time you add or remove a game character. You can add
addressing to this design so there are O(logN) comparisons per message instead
of O(N).

 This is one of those “You know you’re a functional programmer when …”
moments. What you’re doing here is going to great lengths to do things functionally.
It’s the kind of thing functional programmers do because they know how powerful the
paradigm is. Of course, there are cases when it isn’t worthwhile. But don’t forget—this
problem only needs to be solved once, and it’s been solved in general.

 To demonstrate that this is possible, we’ve implemented a third version of the
Whack That Mole! JavaScript example from chapter 7 that uses this approach. You
can run it by pointing your browser at sodium/book/web/whack3.html in the
Sodium project. The game logic is in whack3.js, and it uses a complex tree structure
that you’ll find in addressing.js.

 The addressing function takes these three streams:

var sCreated = addressing(sAdd, sRemove, sIn);

Are you Mr. Jones?
Are you Mr. Jones?

Are you Mr. Jones?

Are you Mr. Jones?

Are you Mr. Jones? Nice doggy.
Are you Mr. Jones?Are you Mr. Jones?

Are you Mr. Jones?

Are you Mr. Jones?

Are you Mr. Jones?Are you Mr. Jones?

Figure 8.4 Delivering mail badly: asking each householder for each letter is O(N2).

185Summary
sAdd is a stream that causes a new destination keyed on an ID to be registered, and
sRemove causes one to be deregistered. To address a message to a particular address,
the events that are received sIn must be paired with an ID. In response to sAdd, the
output stream sCreated fires, containing an inner stream called sAddressee that out-
puts events that were addressed to that ID through sIn.

 It’s based on a simple binary tree, so the algorithmic complexity is nominally
O(logN). But the tree isn’t balanced. To do this properly, you would want to imple-
ment a self-balancing algorithm such as a red-black tree or 2-3 tree.

 We’re doing this to show that it’s possible to solve this problem efficiently with the
FRP semantics we’ve presented. If you can implement something without breaking
FRP semantics, you get a mathematical proof of compositionality for free. If you then
implement a new primitive with the same interface, you can achieve better-than-
O(logN) complexity and know that the new primitive is compositional.

8.7 Summary
■ listen() and send() are the interface between FRP and the outside world.
■ The Operational.updates() and Operational.value() primitives convert a

cell to a stream representing the state changes. They have deliberately cumber-
some names to remind you to only use them for operational reasons because
they break an important property of FRP where the steps in a cell’s value
shouldn’t be detectable.

■ split/defer primitives let you spawn new transactions.

Continuous time
The video games we’ve shown so far use a frame—of 1/60th of a second or what-
ever—as a basic unit of time. We’ll show you how continuous time lets you remove
the concept of a frame, and model the animation in a clean, natural, declarative
way that’s closer to the underlying concept. If it’s a physics simulation, the model
can more or less directly express the physics.

9.1 Rasterizing time
The difference between a discrete (or frame-based) and continuous representation
of time is analogous to the representation of space in images. There are two basic
models of images:

■ Raster graphics—The image is represented as a bitmap where a pixel is the
basic unit of space. The resolution of the image is baked into the image data,

This chapter covers
■ Continuously varying cells
■ Sampling a continuous time model
■ Measuring time
186

187Position as a function of time
and changing the resolution usually results in a loss of quality. JPEG and PNG
image formats work this way.

■ Vector graphics—The image is described using lines and curves independently of
any display resolution. Space is treated as continuous. VRML, X3D, and PDF use
this representation.

A vector image can be rasterized, where it’s converted to a raster image of a given reso-
lution. The quality is limited only by the output resolution.

 In an analogous way, FRP lets you define a continuous animation and then sample
it at any frame rate you like. This is like rasterization, but in the time domain instead
of space.

9.2 Position as a function of time
First we’ll introduce the simple anima-
tion framework. You’ll use the coordinate
system shown in figure 9.1.

 You’ll represent an animated scene
with the interface in listing 9.1. Timer-
System is a class that comes with Sodium
that enables you to handle time. We’ll go
into more detail soon. Point is a simple
container class for an (X, Y) position with
basic point/vector math (add, subtract,
and multiply). We’ll show Drawable next.
To construct the animation, the anima-
tion engine passes it a timer system and the extents of the coordinate space, and it
returns a Cell<Drawable> representing the animated scene.

import nz.sodium.*;
import nz.sodium.time.*;

public interface Animation {
 public Cell<Drawable> create(TimerSystem<Double> sys, Point extents);
}

Listing 9.2 shows how you represent a drawable scene. This takes you right back to
object-oriented programming books of the 1990s: you have an object with a polymor-
phic draw() method that does the work.

 Now, we know what you’re thinking. FRP is only allowed to deal with things that
obey the rules of referential transparency, but Drawable represents I/O. This is OK,
because a Drawable object represents I/O but doesn’t perform it. It’s not until the final
drawable makes its way to the animation engine that you call the draw() method and
any I/O is done. As long as this distinction is kept clear—as long as the manipulation

Listing 9.1 Representation of an animation

-extents.x extents.x0
-extents.y

0

extents.y

Figure 9.1 extents gives the extents of the
coordinate system. The origin is at the center.

188 CHAPTER 9 Continuous time
of drawable objects is referentially transparent, you’re fine. append() combines two
Drawables into one, giving you the ability to construct an entire scene represented as
one Drawable.

import java.awt.Graphics;

public class Drawable {
 public void draw(Graphics g, Point orig, double scale) {}
 public final Drawable append(Drawable second) {
 Drawable first = this;
 return new Drawable() {
 public void draw(Graphics g, Point orig, double scale) {
 first.draw(g, orig, scale);
 second.draw(g, orig, scale);
 }
 };
 }
}

Listing 9.3 gives the building blocks for constructing scenes. You can do four things:

■ Create a circle of radius 1.0 at the origin.
■ Scale a drawable.
■ Translate a drawable.
■ Overlay one drawable on top of another.

You’ll redraw the entire scene each frame. This is all you need to make multiple cir-
cles move around the scene. This is the bare bones of a system of composable anima-
tions, done in a functional programming style.

 If you haven’t seen this kind of thing before, we encourage you to play with the code.
It’s a great way to experience the power of functional programming. This sort of graph-
ics code is easier to follow if the graphics back end can handle translating, scaling, and
rotating the coordinate system. OpenGL is good, but Java’s Graphics doesn’t work this
way, so you have to simulate it by passing numbers through the draw() methods.

import java.awt.Color;
import java.awt.Graphics;
import nz.sodium.*;

public class Shapes {
 public static Cell<Drawable> circle(Color color) {
 return new Cell<Drawable>(new Drawable() {
 public void draw(Graphics g, int ht, Point offset, double sc) {
 int rad = (int)sc;
 int x = (int)offset.x;
 int y = (int)offset.y;

Listing 9.2 Representation of a drawable scene

Listing 9.3 Primitives for manipulating drawables

Combines two
Drawables into one

189Position as a function of time
 g.setColor(color);
 g.fillOval(x-rad, (ht-1-y)-rad, rad*2, rad*2);
 g.setColor(Color.black);
 g.drawOval(x-rad, (ht-1-y)-rad, rad*2, rad*2);
 }
 });
 }

 public static Cell<Drawable> scale(Cell<Drawable> drawable,
 Cell<Double> scale) {
 return drawable.lift(scale, (dr, newSc) -> new Drawable() {
 public void draw(Graphics g, int ht, Point offset, double sc) {
 dr.draw(g, ht, offset, sc * newSc);
 }
 });
 }

 public static Cell<Drawable> translate(Cell<Drawable> drawable,
 Cell<Point> offset) {
 return drawable.lift(offset, (dr, o) -> new Drawable() {
 public void draw(Graphics g, int ht, Point offset, double sc) {
 dr.draw(g, ht, offset.add(o.multiply(sc)), sc);
 }
 });
 }

 public static Cell<Drawable> over(Cell<Drawable> a, Cell<Drawable> b) {
 return a.lift(b, (dra, drb) -> new Drawable() {
 public void draw(Graphics g, int ht, Point offset, double sc) {
 drb.draw(g, ht, offset, sc);
 dra.draw(g, ht, offset, sc);
 }
 });
 }
}

Figure 9.2 shows a simple animation called fwoomph. It constructs a circle and changes
its radius over time so it fwoomphs in and out like some kind of funky speaker thing.

Figure 9.2 A circle that changes
its radius over time

190 CHAPTER 9 Continuous time
The code for this is shown in listing 9.4. Conceptually, time is a continuous number of
seconds, and you scale the circle according to the fraction of the second of the cur-
rent time. We’ll show you a second example, and then we’ll talk about the mechanics
of how it works.

import java.awt.Color;
import nz.sodium.*;

public class fwoomph extends Shapes {
 public static void main(String[] args) {
 Animate.animate("fwoomph", (sys, extents) -> {
 Cell<Double> time = sys.time;
 double maxSize = 200.0;
 return scale(
 circle(Color.green),
 time.map(t -> {
 double frac = t - Math.floor(t);
 return (frac < 0.5 ? frac : 1.0 - frac) * maxSize;
 })
);
 });
 }
}

To run this, check it out if you haven’t done so already, and then run it like this:

cd sodium/book/continuous-time/java
mvn test -Pfwoomph or ant fwoomph

Figure 9.3 shows a more complex example with two circles. They stay the same size, but
one moves left and right, and the other moves up and down. They cross at the center.

Listing 9.4 Fwoomph example: a circle with a changing radius

Imports static methods
from the Shapes class

Figure 9.3 Cross example: the circles
cross over each other.

191The animation loop
 The next listing gives the code. This is the same basic idea but with more elements
combined. Instead of the radius, you’re now varying the position continuously.

import java.awt.Color;
import nz.sodium.*;

public class cross extends Shapes {
 public static void main(String[] args) {
 Animate.animate("cross", (sys, extents) -> {
 Cell<Double> time = sys.time;
 double maxSize = 120;
 Cell<Double> offset = time.map(t -> {
 double frac = t - Math.floor(t);
 return (frac < 0.5 ? frac - 0.25 : 0.75 - frac)
 * 4.0 * maxSize;
 });
 Cell<Double> fifty = new Cell<>(50.0);
 Cell<Drawable> greenBall = translate(
 scale(circle(Color.green), fifty),
 offset.map(x -> new Point(x, 0.0)));
 Cell<Drawable> blueBall = translate(
 scale(circle(Color.blue), fifty),
 offset.map(y -> new Point(0.0, y)));
 return over(greenBall, blueBall);
 });
 }
}

To run this, check it out if you haven’t done so already, and then run it like this:

cd sodium/book/continuous-time/java
mvn test –Pcross or ant cross

9.3 The animation loop
The examples you’ve seen take a conceptually continuous time and use the map and
lift primitives to produce a conceptually continuous animation. But because you’re
running this on a computer, and computers are inherently discrete, it can’t really be
continuous. What you’re doing here is describing a continuous world in such a way
that you can write an animation loop that can sample it at discrete times. You’re “ras-
terizing time.”

 Listing 9.6 shows the animation loop. There’s not that much to it, but a small
amount of magic needs to be explained. When the class SecondsTimerSystem is con-
structed, it hooks itself into Sodium’s transaction system so that whenever a transac-
tion is initiated, it first writes the current time into sys.time. The transaction you
initiate does nothing itself: it just causes the timer system’s “set a new time” hook to be
executed. The overall result is that the animation is moved forward to a new time. You
then trigger a JPanel repaint, and the paint method samples the latest drawable and
asks it to draw itself.

Listing 9.5 Cross example: circles crossing back and forth

192 CHAPTER 9 Continuous time

T

 Do you see what’s happening here? You have two worlds: a description of a contin-
uous animation, and an animation loop that can wind that animation forward as far as
it likes and then sample it. The continuous animation is completely unaware of the
concept of a frame, just as a vector graphics image is represented with no awareness of
the pixels it will ultimately be rendered into.

import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.Toolkit;
import javax.swing.JFrame;
import javax.swing.JPanel;
import nz.sodium.*;
import nz.sodium.time.*;

public class Animate extends JPanel {
 public Animate(Animation anim, Dimension windowSize) {
 Point extents = new Point(windowSize.width/2, windowSize.height/2);
 this.drawable = Transaction.run(() ->
 Shapes.translate(
 anim.create(new SecondsTimerSystem(), extents),
 new Cell<>(extents)));
 this.windowSize = windowSize;
 }
 private final Cell<Drawable> drawable;
 private final Dimension windowSize;

 public Dimension getPreferredSize() { return windowSize; }

 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 drawable.sample()
 .draw(g, windowSize.height, new Point(0,0), 1.0);
 Toolkit.getDefaultToolkit().sync();
 }

 public static void animate(String title, Animation anim) {
 JFrame frame = new JFrame(title);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 CellSink<Double> clock = new CellSink<>(0.0);
 StreamSink<Unit> sAlarm = new StreamSink<>();
 JPanel view = new Animate(anim, new Dimension(500, 350));
 frame.setContentPane(view);
 frame.pack();
 frame.setVisible(true);
 long t0 = System.currentTimeMillis();
 long tLast = t0;
 while (true) {
 long t = System.currentTimeMillis();
 long tIdeal = tLast + 15;
 long toWait = tIdeal - t;

Listing 9.6 Animation loop that renders a continuous animation into frames

ranslates so the
origin is at the

window’s center

Samples the drawable,
and draws it

Some Java voodoo for
smooth animation

Delays for
one frame

193Measuring time
 if (toWait > 0)
 try { Thread.sleep(toWait); }
 catch (InterruptedException e) {}
 Transaction.runVoid(() -> {});
 view.repaint(0);
 tLast = tIdeal;
 }
 }
}

9.4 Measuring time
The previous examples were animated in continuous time, but they weren’t reactive:
there were no state changes in response to events. Now let’s model a bouncing ball,
which reacts to hitting the walls and floor of an imaginary indoor squash court (see
figure 9.4).

TimerSystem provides a Cell<T> time representing the current time. But to make
full use of continuous time, you also need the ability to measure time. You do this with
a second feature of TimerSystem: a method called at() that sets an alarm. It has this
signature:

public Stream<T> at(Cell<Optional<T>> tAlarm);

If tAlarm’s Optional has no value, then no alarm is set and the stream will never fire.
Otherwise it fires at the specified time.

 Listing 9.7 gives a simple example showing how at() works. An important rule of
using at() is that the caller must arrange things so that when the returned Stream<T>
fires, tAlarm must be updated. Otherwise the alarm stays set and the application will
loop forever. You can see that this is exactly what periodic() does.

Triggers the timer system’s
hook that updates sys.time.
The drawable is then updated
because the scene is defined
in terms of sys.time.

Causes the JPanel
to be repainted

Figure 9.4 A bouncing ball

194 CHAPTER 9 Continuous time
 Note that at() timers fire at idealized times that exactly match the requested time,
whereas main—being an event from an external source—is associated with a real time
from the operating system. It orders things so as to guarantee that time is always non-
decreasing.

NOTE TimerSystem guarantees that values of time are non-decreasing.

import nz.sodium.*;
import nz.sodium.time.*;
import java.util.Optional;

public class timers {
 static Stream<Long> periodic(TimerSystem sys, long period) {
 Cell<Long> time = sys.time;
 CellLoop<Optional<Long>> oAlarm = new CellLoop<>();
 Stream<Long> sAlarm = sys.at(oAlarm);
 oAlarm.loop(
 sAlarm.map(t -> Optional.of(t + period))
 .hold(Optional.<Long>of(time.sample() + period)));
 return sAlarm;
 }

 public static void main(String[] args) {
 TimerSystem sys = new MillisecondsTimerSystem();
 Cell<Long> time = sys.time;
 StreamSink<Unit> sMain = new StreamSink<Unit>();
 Listener l = Transaction.run(() -> {
 long t0 = time.sample();
 Listener l1 = periodic(sys, 1000).listen(t -> {
 System.out.println((t - t0)+" timer"); });
 Listener l2 = sMain.snapshot(time).listen(t -> {
 System.out.println((t - t0)+" main");
 });
 return l1.append(l2);
 });
 for (int i = 0; i < 5; i++) {
 sMain.send(Unit.UNIT);
 try { Thread.sleep(990); } catch (InterruptedException e) {}
 }
 l.unlisten();
 }
}

ant timers
timers:
 [java] 22 main
 [java] 1000 timer
 [java] 1013 main
 [java] 2000 timer
 [java] 2003 main
 [java] 2994 main

Listing 9.7 Simple example of measuring time with at()

195Measuring time
 [java] 3000 timer
 [java] 3984 main
 [java] 4000 timer

To run this, check it out if you haven’t done so already, and then run it like this:

cd sodium/book/continuous-time/java
mvn test -Ptimers or ant timers

9.4.1 Newtonian physics primer

Skip this section if you already know about Newtonian physics. The famous physicist
Isaac Newton was sitting under a tree one day, minding his own business. Suddenly an
apple fell on his head, causing him to see mathematical formulas. In an instant, calcu-
lus and the laws of physics were born.

 He saw that the motion of a body could be expressed with three different quantities:
■ Position
■ Velocity (the rate of change of position)
■ Acceleration (the rate of change of velocity)

He also realized that gravity is a constant acceleration downward. (To avoid emails
from pedantic people, I’ll add here that this is true on Earth but there might be plan-
ets where things fall upward.) You can represent the acceleration of gravity on Earth
as a function of time, assuming positive numbers in the representation are up and
negative ones are down:

a(t) = -9.8 m/s2

We’re going to use a general form of equation called a polynomial. A polynomial has
different degrees, which refers to the number of terms depending on t. Terms is mathe-
matical jargon for things added together. We’ll use these three polynomials:

■ A constant (degree 0) doesn’t change over time, so it ignores its t argument. It
has a constant term only: x(t) = c.

■ A linear function (degree 1) adds a t term: x(t) = bt + c.
■ A quadratic (degree 2) adds a t 2 term: x(t) = at 2 + bt + c.

Mathematicians don’t usually express the t argument as (t), but we’re using functional
programmer notation.

 We said each quantity is the rate of change of the previous. An integral allows you to
go in the other direction: velocity is the integral of acceleration, and position is the inte-
gral of velocity. There’s a general formula for the integral of a polynomial, and this is
what it looks like for a linear function:

x(t) = bt + c
integral of x(t) with respect to t = 0.5bt 2 + ct

Newton’s equations of motion pop straight out of this general formula. You don’t
need to understand why it works; all you need to understand is that an integral will
convert an acceleration into a velocity, or a velocity into a position.

196 CHAPTER 9 Continuous time
 Note that the integral we’ve shown here doesn’t have a constant term. When you
convert a velocity to a position, for instance, you’ll need to add an extra constant term
to give the starting position as it is at time t = 0. In the code, you’ll notice that the
integrate function takes an initial argument for this purpose.

SOLVING A QUADRATIC

The formula for a quadratic tells you the value of x(t) if you know t:

x(t) = at 2 + bt + c

There is a way to reverse this if you know x(t) and want to find t. You’ll use this to find
out when the ball will hit the wall or floor. Let’s say you want to know for what values
of t the formula gives the value w representing the position of the wall. To solve this,
you need to solve the equation, which means you need to rewrite

w = at 2 + bt + c

as

t = … something …

There’s a general formula for this, and it needs the equation to equal 0. You first
rewrite the equation as

at 2 + bt + (c – w) = 0

and then apply the general formula for solving a quadratic. Because of the parabolic
shape of the curve of a bouncing ball, there are two solutions to this, but you can fix it
with a simple rule: take the earliest solution that isn’t in the past.

9.4.2 Signals for quadratic motion

Let’s write a class called Signal that you can use for all three quantities: position, veloc-
ity, and acceleration. It contains a quadratic describing the motion and a starting time
t0. For a given time t, applying the quadratic to t – t0 gives the value at that time.

 You’ll represent the Y position of the ball with a value of type Cell<Signal>. The
Signal value represents the continuous motion of the ball between bounces. Each time
a bounce occurs, a new signal is produced.

 Figure 9.5 shows the Y position of the ball over time. t0 is the time of the start of
the animation, and {t1, t2, t3, …} are the bounce times. The position represented as a
Cell<Signal> type starts with s0, and then, when the bounce happens at t1, it’s
updated to a new signal s1, and so on.

 Figure 9.5 represents the ball’s position as a sequence of signals. Listing 9.8 gives
the code for Signal. t0 is the start time of the period described by the signal. There’s
no end time, so the signal is current until the containing cell is updated. You can do
some tricks with this signal:

■ valueAt() samples the signal’s value at the specified time.

197Measuring time
■ when(double x) solves the quadratic, returning the first time after t0 when the
signal gives a value of x or Optional.empty() if it never does.

■ integrate(double initial) gives the mathematical integral of the signal, with
a specified initial offset.

■ The static integrate() method is for integrating a Cell<Signal>, allowing
you to integrate the velocity of the bouncing ball to give its position.

Note that integrate() uses Operational.updates() to deconstruct the cell into its
component signal steps. We’ve emphasized throughout the book that the non-
observability of steps in a cell is an important property of FRP. This property is
especially important with continuous time. In this case, Operational.updates() is
permissible because integrate() doesn’t expose cell steps to the caller.

import nz.sodium.*;
import java.util.Optional;

public class Signal {
 public Signal(double t0, double a, double b, double c) {
 this.t0 = t0;
 this.a = a;
 this.b = b;
 this.c = c;
 }
 public final double t0, a, b, c;
 public double valueAt(double t) {
 double x = t - t0;
 return a*x*x + b*x + c;
 }
 public final static double quantum = 0.000001;
 public Optional<Double> when(double x) {
 double c = this.c - x;
 if (a == 0) {

Listing 9.8 Signal, representing a period of continuous motion

Time

Y
po

si
tio

n

s
0

s
1

s
2

t
0

t
1

t
2

t
3

Figure 9.5 Y position of a bouncing ball
plotted against time

Samples signal at a
specified time

Solves the time when the
signal’s value reaches x

198 CHAPTER 9 Continuous time

Int
se
sig
 double t = (-c) / b;
 return t >= quantum ? Optional.of(t + t0)
 : Optional.empty();
 }
 else {
 double b24ac = Math.sqrt(b*b - 4*a*c);
 double t1 = ((-b) + b24ac) / (2*a);
 double t2 = ((-b) - b24ac) / (2*a);
 return t1 >= quantum
 ? t2 >= quantum ? Optional.of((t1 < t2 ? t1 : t2) + t0)
 : Optional.of(t1 + t0)
 : t2 >= quantum ? Optional.of(t2 + t0)
 : Optional.empty();
 }
 }
 public Signal integrate(double initial) {
 if (a != 0.0) throw new InternalError("Signal can’t handle x^3");
 return new Signal(t0, b/2, c, initial);
 }
 public static Cell<Signal> integrate(
 Cell<Signal> sig, double initial) {
 Stream<Signal> sSig = Operational.updates(sig);
 return sSig.accum(sig.sample().integrate(initial),
 (neu, old) -> neu.integrate(old.valueAt(neu.t0)));
 }
}

9.4.3 A natural representation of a bouncing ball

And now you let the magic of FRP unfold. With the tools you’ve prepared, listing 9.9 is
a natural representation of a bouncing ball. This description is declarative: you’re say-
ing what the ball is, not what it does. This is an FRP translation of the following English:

■ The X component of the velocity is a sequence of bounces, with the initial sig-
nal of a constant value of 350 (positive numbers are to the right).

■ Gravity is a constant value of -1,200 (negative numbers are down).
■ The Y component of the velocity is a sequence of bounces, with an initial signal

of the integral of gravity over time.
■ The position X component is the integral of the velocity X component, starting

at the left wall.
■ The position Y component is the integral of the velocity Y component, starting

at the roof.
■ The bounces of the velocity X component are when you hit the left wall or right

wall.
■ The bounces of the velocity Y component are when you hit the floor.
■ A bounce is the negation of the velocity component upon hitting a specified

position, retaining the acceleration component. You also multiply the velocity
by a coefficient of restitution to represent a loss of energy, so the ball will reach
a lower height each time it bounces.

Integrates a signal step

egrates a
quence of
nal steps

199Measuring time

th
value

a

FRP keeps everything up-to-date in response to the constraints specified by the FRP
logic. When a bounce happens, the next bounce is automatically calculated because
of the cyclic dependency between the bounce event and the ball’s position.

import java.awt.Color;
import nz.sodium.*;
import nz.sodium.time.*;

public class bounce extends Shapes {
 public static void main(String[] args) {
 Animate.animate("bounce", (sys, extents) -> {
 Cell<Double> time = sys.time;
 double t0 = time.sample();
 double ballRadius = 15;
 double leftWall = -extents.x + ballRadius;
 double rightWall = extents.x - ballRadius;
 double floor = -extents.y + ballRadius;
 double roof = extents.y - ballRadius;
 Signal gravity = new Signal(t0, 0, 0, -1200);
 StreamLoop<Signal> sBounceX = new StreamLoop<>();
 StreamLoop<Signal> sBounceY = new StreamLoop<>();
 Cell<Signal> velx =
 sBounceX.hold(new Signal(t0, 0, 0, 350));
 Cell<Signal> vely =
 sBounceY.hold(gravity.integrate(0));
 Cell<Signal> posx = Signal.integrate(velx, leftWall);
 Cell<Signal> posy = Signal.integrate(vely, roof);
 sBounceX.loop(bounceAt(sys, velx, posx, leftWall)
 .orElse(bounceAt(sys, velx, posx, rightWall)));
 sBounceY.loop(bounceAt(sys, vely, posy, floor));
 return translate(
 scale(circle(Color.red), new Cell<Double>(ballRadius)),
 time.lift(posx, posy, (t, x, y) ->
 new Point(x.valueAt(t), y.valueAt(t)))
);
 });
 }
 static double restitution = 0.95;
 public static Stream<Signal> bounceAt(TimerSystem<Double> sys,
 Cell<Signal> vel, Cell<Signal> pos, double target) {
 return sys.at(pos.map(p -> p.when(target)))
 .snapshot(vel, (t, v) ->
 new Signal(t, v.a, v.b,
 -v.valueAt(t)*restitution));
 }
}

To run this, check it out if you haven’t done so already, and then run it like this:

cd sodium/book/continuous-time/java
mvn test -Pbounce or ant bounce

Listing 9.9 Modeling the bouncing ball

X has constant
velocity.

Y is the integral
of gravity.

Sets an alarm
for when you
hit the target

On bounce,
negates

e velocity’s
but retains
cceleration
component

200 CHAPTER 9 Continuous time
9.5 Summary
■ We liken continuous-time FRP to vector graphics and animation frames to raster

graphics, but in the domain of time instead of space.
■ The mechanism of continuous time is to update a cell representing time before

passing external events into the FRP system. Externally, you’re saying, “Please
sample the model at time t,” but within the model, you can think of time as
varying continuously. Different systems abstract these mechanics away in differ-
ent ways.

■ If you lift or map something against a continuously varying time variable, then
the resulting value is continuous.

■ Continuous time requires that you can measure time. Sodium provides Timer-
System.at() to do this.

■ With continuous-time FRP, you can simulate physics in a natural way.

Battle of the paradigms
As you may have gathered, FRP is awesome. But for some tasks, the level of awesome
is more limited, and other paradigms do a better job.

 Drag-and-drop is a common task that fits FRP pretty well, but two other para-
digms—classic state machine and the actor model—also do a nice job of it, for dif-
ferent reasons. We want you to understand why this is so you can make the right
choices in your code.

10.1 Classic state machine vs. FRP vs. actor model
Figure 10.1 presents the same simple drag-and-drop example written in three differ-
ent paradigms: classic state machine, FRP, and actor model. FRP and actor both require
immutable data structures, but even when those aren’t required, they’re always a
good idea. The polygons are called Elements, and you contain them in a Document.

This chapter covers
■ One example (drag-and-drop) in three paradigms
■ Comparing the merits of classic static machine

vs. FRP vs. actor model
■ Adding a feature to see how each approach

copes
201

202 CHAPTER 10 Battle of the paradigms
Listing 10.1 shows the external interface for Document. We won’t give the implementa-
tion, but you can find it in sodium/book/battle/java/battle/. getByPoint() allows
you to find an element given an (x, y) mouse position. A string id identifies the ele-
ments in the document: if you insert an element with an id that already exists, the
original element is replaced. insert() works immutably, returning a copy of the doc-
ument with the element replaced.

class Entry {
 public final String id;
 public final Element element;
}
class Document {
 public Optional<Entry> getByPoint(Point pt);
 public Document insert(String id, Element polygon);
 public void draw(Graphics g);
}

The next listing gives the interface for Element. You can test whether a given point is
inside the polygon with contains(). You can translate() it—again, immutably—
according to a mouse drag from orig to pt. Finally, both Document and Element can
be draw()n.

class Element {
 public boolean contains(Point pt);
 public Element translate(Point orig, Point pt);
 public void draw(Graphics g);
}

Listing 10.3 gives the Paradigm interface that the implementation for each paradigm
must conform to. Each paradigm implementation receives input events through a
mouseEvent() method and outputs updated documents using the observer pattern.
We used Java vernacular rather than FRP for the common interface here.

Listing 10.1 External interface for a Document of polygons

Listing 10.2 Element representing a polygon

Figure 10.1 The same logic in three
paradigms. Betraying an affectation
of nonchalant elegance, you drag a
hexagon with FRP.

d
203Classic state machine vs. FRP vs. actor model

interface Paradigm {
 interface DocumentListener {
 void documentUpdated(Document doc);
 }
 interface Factory {
 Paradigm create(Document initDoc, DocumentListener dl);
 }
 void mouseEvent(MouseEvt me);
 void dispose();
}

And now for the implementations. Ladies and gentlemen, start your engines!

10.1.1 Classic state machine

Listing 10.4 is the classic state-machine implementation. The external interface is the
same classic/observer paradigm, so there’s no impedance mismatch to bridge. This
makes the code simpler, but even so, the FRP code is two lines shorter than the classic
version.

 Note that when handling MOVE, you have to explicitly check whether you’re drag-
ging. It’s possible to make a mistake and forget to check. You can eliminate this poten-
tial source of bugs in both FRP and actor.

class Classic implements Paradigm {
 public Classic(Document initDoc, DocumentListener dl) {
 this.doc = initDoc;
 this.dl = dl;
 }
 private final DocumentListener dl;

 private static class Dragging {
 Dragging(MouseEvt me1, Entry ent) {
 this.me1 = me1;
 this.ent = ent;
 }
 final MouseEvt me1;
 final Entry ent;
 }
 private Document doc;
 private Optional<Dragging> oDragging = Optional.empty();

 public void mouseEvent(MouseEvt me) {
 switch (me.type) {
 case DOWN:
 Optional<Entry> oe = doc.getByPoint(me.pt);
 if (oe.isPresent()) {
 System.out.println("classic dragging " + oe.get().id);
 oDragging = Optional.of(new Dragging(me, oe.get()));
 }
 break;

Listing 10.3 Interface for each of the three paradigms

Listing 10.4 Drag-and-drop: classic state-machine version

Internal state is
kept in fields.

If the user clicke
an element …

...starts
dragging.

204 CHAPTER 10 Battle of the paradigms

s
d

d

 case MOVE:
 if (oDragging.isPresent()) {
 Dragging dr = oDragging.get();
 doc = doc.insert(dr.ent.id,
 dr.ent.element.translate(dr.me1.pt, me.pt));
 dl.documentUpdated(doc);
 }
 break;
 case UP:
 oDragging = Optional.empty();
 break;
 }
 }
 public void dispose() {}
}

10.1.2 FRP

The following listing gives the same logic in FRP. This code does the same thing as the
RxJS drag-and-drop code from section 7.8.1.

class FRP implements Paradigm {
 public FRP(Document initDoc, DocumentListener dl) {
 l = Transaction.run(() -> {
 CellLoop<Document> doc = new CellLoop<>();
 Stream<Stream<Document>> sStartDrag =
 Stream.filterOptional(
 sMouse.snapshot(doc, (me1, doc1) -> {
 if (me1.type == Type.DOWN) {
 Optional<Entry> oe = doc1.getByPoint(me1.pt);
 if (oe.isPresent()) {
 String id = oe.get().id;
 Element elt = oe.get().element;
 System.out.println("FRP dragging " + id);
 Stream<Document> sMoves =
 sMouse.filter(me -> me.type == Type.MOVE)
 .snapshot(doc, (me2, doc2) ->
 doc2.insert(id,
 elt.translate(me1.pt, me2.pt)));
 return Optional.of(sMoves);
 }
 }
 return Optional.empty();
 }));
 Stream<Document> sIdle = new Stream<>();
 Stream<Stream<Document>> sEndDrag =
 sMouse.filter(me -> me.type == Type.UP)
 .map(me -> sIdle);
 Stream<Document> sDocUpdate = Cell.switchS(
 sStartDrag.orElse(sEndDrag).hold(sIdle)
);
 doc.loop(sDocUpdate.hold(initDoc));

Listing 10.5 Drag-and-drop: FRP version

Potential source of bugs:
explicit state check

Updates the
internal state

Stops
dragging

Optionally
witches to a new
ocument stream

If the user clicked
an element …

Stream that updates the
document on MOVE events

Switches to the
dragging state

Outputs nothing
“Not dragging”
state

Switches the
ocument stream

to “never”
The actual
switch

205Classic state machine vs. FRP vs. actor model

Interfa
outs
 return sDocUpdate.listen(doc_ -> dl.documentUpdated(doc_));
 });
 }
 private final Listener l;
 private final StreamSink<MouseEvt> sMouse = new StreamSink<>();
 public void mouseEvent(MouseEvt me) { sMouse.send(me); }
 public void dispose() { l.unlisten(); }
}

Even with your new familiarity with FRP, this code will be less obvious than the classic
code. The key to understanding it is that you’re switching between streams of docu-
ment updates of type Stream<Document>. When you get a mouse DOWN on an element
from the document, you enter the dragging state by switching to a stream that outputs
updates in response to MOVE events. When you get a mouse UP event, you enter the “not
dragging” state by switching to a never stream: don’t output any document updates.

 Recall what we said in chapter 7: switch lets you eliminate invalid states. The state
of “what you are dragging” is invalid when you aren’t dragging. Classic combined those
two states using an Optional type, and that’s the best you can do in that paradigm. But
the handling of MOVE demands an explicit check to see whether you’re dragging. With
FRP and switch, you can achieve the ideal: the logic exists only when the state exists.

NOTE Murphy’s law says, “If anything can go wrong, it will.” Invalid states are
something that can go wrong, and this makes them a potential source of bugs.
The philosophy of functional programming and of FRP is to eliminate things
that can go wrong as much as possible.

10.1.3 Actor model

Listing 10.6 gives the actor model implementation. Of the three, this is the most natu-
ral. We argue that this is because actor is the best fit for this particular problem.

What is the actor model?

Actors often marry models, as you can see in the fig-
ure, but we’ll leave our analysis of the entertainment
industry for another time.

Actors are a model of concurrency first developed in
the 1970s. The programming language Erlang and,
more recently, reactive frameworks like Akka make
extensive use of it. It’s especially suited for distributed
computing because of its ability to tolerate runtime fail-
ures and to hot-swap components. It’s been proven in
large-scale commercial applications.

An actor is a process whose job is to handle incoming
messages from a single asynchronous input queue.
Each actor has a public address, and other actors that

ce to the
ide world

The actor model

206 CHAPTER 10 Battle of the paradigms

Me

class Actor implements Paradigm {
 public Actor(Document initDoc, DocumentListener dl) {
 ArrayBlockingQueue<Document> out = new ArrayBlockingQueue<>(1);
 t1 = new Thread(() -> {
 try {
 Document doc = initDoc;
 while (true) {
 MouseEvt me1 = null;
 Entry ent = null;
 while (true) {
 MouseEvt me = in.take();
 if (me.type == Type.DOWN) {
 Optional<Entry> oe = doc.getByPoint(me.pt);
 if (oe.isPresent()) {
 me1 = me;
 ent = oe.get();
 break;
 }
 }
 }
 System.out.println("actor dragging " + ent.id);
 while (true) {
 MouseEvt me = in.take();
 if (me.type == Type.MOVE) {
 doc = doc.insert(ent.id,
 ent.element.translate(me1.pt, me.pt));
 out.put(doc);
 }
 else
 if (me.type == Type.UP)
 break;
 }
 }
 } catch (InterruptedException e) {}
 });
 t1.start();
 t2 = new Thread(() -> {
 try {

(continued)

know the address can send the actor messages. Actors commonly use a reply mech-
anism that sends a message to the originator of an input message. Actors can spawn
new actors, and they can send the address of an actor to another actor over a message.

Actors as they’re commonly implemented have a thread-like flow of control. We think
there’s a lot of potential for FRP and actors to work together. You could, for example,
implement the logic of an actor within an established actor-based framework
using FRP.

Listing 10.6 Drag-and-drop: actor model version

ssage queue

What you’re
dragging This loop corresponds to

the non-dragging state.

Blocks on an
input message

Switches to the
dragging state

This loop corresponds
to the dragging state.

Outputs an
updated document

Exits the dragging
state on an UP event

Bridges the paradigms:
drains the out queue into an
external observer interface

207Classic state machine vs. FRP vs. actor model
 while (true)
 dl.documentUpdated(out.take());
 } catch (InterruptedException e) {}
 });
 t2.start();
 }
 private final Thread t1, t2;
 private final ArrayBlockingQueue<MouseEvt> in =
 new ArrayBlockingQueue<>(1);
 public void mouseEvent(MouseEvt me) {
 try {
 in.put(me);
 } catch (InterruptedException e) {}
 }
 public void dispose() { t1.interrupt(); t2.interrupt(); }
}

To run this, check it out if you haven’t done so already, and then run it like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/battle/java
mvn test -Pbattle or ant battle

Actors have a flow of control, which is something that classic and FRP can’t replicate.
The state for this problem consists of two variables:

■ Current document
■ Whether you’re dragging and, if you’re dragging, what you’re dragging

In classic, these are represented directly as variables (stored in object fields). In FRP,
they directly map to cells.

 A great advantage of actor is that it allows for implicit state machines, as they’re
called: you can make variable 2 (dragging) implicit in the flow of control. This gives
the same advantage that FRP gave you of eliminating an invalid state. Like FRP, the
logic exists only when the state exists.

10.1.4 And the winner is…

Actor won that round. It eliminated an
invalid state, and it did so in a way that was
natural and easy to understand.

 But this is a book about FRP, so our egos
demand that FRP can’t be beaten. We’ve
been arguing both from theory and anec-
dotally that FRP’s advantage isn’t that it’s
better than other paradigms in all situa-
tions, but that its solution complexity (or
code complexity) increases more linearly
with problem complexity. Our personal
experience is shown roughly in figure 10.2.

problem complexity

co
de

 c
om

pl
ex

ity

classic actor

FRP

Figure 10.2 How we argue code
complexity increases with problem
complexity

208 CHAPTER 10 Battle of the paradigms
The Agile software development methodology claims this same advantage, but FRP
achieves it in a different way: by applying simple mathematical principles to your
code. FRP may have some upper limit in its ability to deal with complexity, but we
don’t know where it is or how it manifests because we haven’t hit it.

 The advantage that actor has is that you can flatten the dragging state into a flow of
control. The other state variable document can be neatly flattened into the same struc-
ture along with dragging.

10.2 Let’s add a feature: Shift key gives axis lock
But what if you throw actor a curve ball? You’re going to give it a second state variable
that doesn’t fit neatly with dragging:

■ If you hold down the Shift key, the element’s displacement is locked to the X or
Y axis.

You should be familiar with this because most diagramming software has this feature.
 Listing 10.7 gives the actor version with changes in bold. There are two problems:

■ The code to change the axisLock state is duplicated. Of course, this can be put
into a method, but it still has to be handled separately in both loops.

■ In actor, it’s common to use dynamic typing on input messages, so we’ve done
that here. The disadvantage is that it’s possible to accidentally send an object of
a type that an actor doesn’t know about, or forget to handle a type somewhere
in your actor. For example, you could accidentally forget about Type (Shift key)
messages in one of the two places.

Actor can flatten a state variable into a flow of control, and you’ve seen that this is a
powerful technique. But it can only do this successfully with one state variable. We flat-
tened dragging into the flow of control, and document worked nicely along with it. But
axisLock doesn’t fit this flow at all. Hence, the code is duplicated.

class Actor implements Paradigm {
 public Actor(Document initDoc, DocumentListener dl) {
 ArrayBlockingQueue<Document> out = new ArrayBlockingQueue<>(1);
 t1 = new Thread(() -> {
 try {
 Document doc = initDoc;
 boolean axisLock = false;
 while (true) {
 MouseEvt me1 = null;
 Entry ent = null;
 while (true) {
 Object o = in.take();
 if (o instanceof MouseEvt) {
 MouseEvt me = (MouseEvt) o;

Listing 10.7 Drag-and-drop with axis lock: actor model version

The input value is now
dynamically typed.

209Let’s add a feature: Shift key gives axis lock
 if (me.type == Type.DOWN) {
 Optional<Entry> oe = doc.getByPoint(me.pt);
 if (oe.isPresent()) {
 me1 = me;
 ent = oe.get();
 break;
 }
 }
 }
 if (o instanceof Type) {
 Type t = (Type) o;
 axisLock = t == Type.DOWN;
 }
 }
 System.out.println("actor dragging " + ent.id);
 while (true) {
 Object o = in.take();
 if (o instanceof MouseEvt) {
 MouseEvt me = (MouseEvt) o;
 if (me.type == Type.MOVE) {
 doc = doc.insert(ent.id,
 ent.element.translate(me1.pt, me.pt,
 axisLock));
 out.put(doc);
 }
 else
 if (me.type == Type.UP)
 break;
 }
 if (o instanceof Type) {
 Type t = (Type) o;
 axisLock = t == Type.DOWN;
 }
 }
 }
 } catch (InterruptedException e) {}
 });
 ...
 }
 private final Thread t1, t2;
 private final ArrayBlockingQueue<Object> in =
 new ArrayBlockingQueue<>(1);
 public void mouseEvent(MouseEvt me) {
 try {
 in.put(me);
 } catch (InterruptedException e) {}
 }
 public void shiftEvent(Type t) {
 try {
 in.put(t);
 } catch (InterruptedException e) {}
 }
 public void dispose() { t1.interrupt(); t2.interrupt(); }
}

Shift key handling
is duplicated.

Irrelevant code
omitted

210 CHAPTER 10 Battle of the paradigms
The next listing shows the same logic change in the FRP version. You can see that the
change is fairly trivial.

class FRP implements Paradigm {
 public FRP(Document initDoc, DocumentListener dl) {
 l = Transaction.run(() -> {
 CellLoop<Document> doc = new CellLoop<>();
 Cell<Boolean> axisLock = sShift.map(t -> t == Type.DOWN)
 .hold(false);
 Stream<Stream<Document>> sStartDrag = Stream.filterOptional(
 sMouse.snapshot(doc, (me1, doc1) -> {
 if (me1.type == Type.DOWN) {
 Optional<Entry> oe = doc1.getByPoint(me1.pt);
 if (oe.isPresent()) {
 String id = oe.get().id;
 Element elt = oe.get().element;
 System.out.println("FRP dragging " + id);
 Stream<Document> sMoves = sMouse
 .filter(me -> me.type == Type.MOVE)
 .snapshot(doc, (me2, doc2) ->
 doc2.insert(id,
 elt.translate(me1.pt, me2.pt,
 axisLock.sample())));
 return Optional.of(sMoves);
 }
 }
 return Optional.empty();
 }));
 Stream<Document> sIdle = new Stream<>();
 Stream<Stream<Document>> sEndDrag =
 sMouse.filter(me -> me.type == Type.UP)
 .map(me -> sIdle);
 Stream<Document> sDocUpdate = Cell.switchS(
 sStartDrag.orElse(sEndDrag).hold(sIdle)
);
 doc.loop(sDocUpdate.hold(initDoc));
 return sDocUpdate.listen(doc_ -> dl.documentUpdated(doc_));
 });
 }
 private final Listener l;
 private final StreamSink<MouseEvt> sMouse = new StreamSink<>();
 public void mouseEvent(MouseEvt me) { sMouse.send(me); }
 private final StreamSink<Type> sShift = new StreamSink<>();
 public void shiftEvent(Type t) { sShift.send(t); }
 public void dispose() { l.unlisten(); }
}

To run this, check it out if you haven’t done so already, and then run it like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/battle/java
mvn test -Pshift or ant shift

Listing 10.8 Drag-and-drop with axis lock: FRP version

211Improvement: Shift key updates the document
The classic implementation, which we don’t list here, is also a trivial change. We think
FRP still beats classic because of the elimination of the invalid state. You’ll find this
code under sodium/book/battle/java/shift/.

10.3 Improvement: Shift key updates the document
In the previous Shift key/axis lock example, the change in the Shift key state doesn’t
cause the dragged element to be redrawn. You have to move the mouse infinitesimally
to do it, and this feels wrong to the user. It’d be nice to fix each paradigm so shift-
Event() also causes the element position to be updated.

 We’ve implemented a third version of the code that does this. We’ll give code snip-
pets to illustrate the changes you need to make. You can read the full code at sodium/
book/battle/java/shift2/.

 To run this version, check it out if you haven’t done so already, and then run it
like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/battle/java
mvn test -Pshift2 or ant shift2

10.3.1 Changing this in the classic paradigm

You need to add a new move field to remember the most recent move position, and
you need to set it to an initial value in UP and then update it in MOVE. The output of
the updated document is moved to a new updateMove() method:

private Point move;
...
 case DOWN:
 ...
 if (...) {
 move = me.pt;
 }
 break;
 case MOVE:
 move = me.pt;
 updateMove();
 break;

shiftEvent() is changed to call updateMove():

public void shiftEvent(Type t) {
 axisLock = t == Type.DOWN;
 updateMove();
}

The extra state variable move makes us a little uneasy. It belongs in the Dragging data
structure. This would be cleaner, except that Optional isn’t designed to be modified
in place. We’ll leave you to think about this.

212 CHAPTER 10 Battle of the paradigms
10.3.2 Changing this in FRP

In FRP, you also need some new state to keep the most recent move position. The best
way to do this is to model move and axisLock as cells instead of streams, because
they’re both stateful. You define axisLock like this at the top level:

Cell<Boolean> axisLock = sShift.map(t -> t == Type.DOWN)
 .hold(false);

On the start of the drag state, you define move—the most recent mouse move posi-
tion—like this:

Cell<Point> move =
 sMouse.filter(me -> me.type == Type.MOVE)
 .map(me -> me.pt)
 .hold(me1.pt);

NOTE We’ve talked about this before: the fact that we’re using switch means
the transactional context in which the holds are executed is important. axis-
Lock is in the transactional context of all the logic because it should be inde-
pendent of when the drag starts and stops. But move must be defined in the
transactional context of handling the mouse DOWN because it should exist dur-
ing the dragging state only. Its initial value comes from the position of the
DOWN event, which is only in scope within this transactional context.

Now it’s simple to use lift to calculate where the dragged element should be:

Stream<Document> sMoves = Operational.updates(
 move.lift(axisLock, (mv, lck) ->
 elt.translate(me1.pt, mv, lck))
)
 .snapshot(doc, (newElt, doc2) ->
 doc2.insert(id, newElt));

Finally, you break the rule of non-observability of cell steps (see section 8.4) and use
Operational.updates() to turn that cell into a stream of the new element to be
replaced in the document. This is a neat way to solve the problem, so we’ll leave you to
contemplate the philosophical issues yourself. Bear in mind that some FRP systems
may not allow you to do this.

 If you want to avoid this, it can be done in an equivalent but less neat way with two
snapshots. For move and axisLock, you need both the stream and cell variants, so you
need move, sMove, axisLock, and sAxisLock. When sMove fires, you want to capture
the most recent axisLock, and vice versa with sAxisLock and move. So you merge an
sMove.snapshot(axisLock) with an sAxisLock.snapshot(move). Here it is, imple-
mented in a second Paradigm implementation called FRP2:

class Pair {
 Pair(Point move, boolean lock) {
 this.move = move;
 this.lock = lock;
 }

213Improvement: Shift key updates the document
 Point move;
 boolean lock;
}
Stream<Point> sMove =
 sMouse.filter(me -> me.type == Type.MOVE)
 .map(me -> me.pt);
Cell<Point> move = sMove.hold(me1.pt);
Stream<Pair> sPair = sMove.snapshot(axisLock,
 (m, l) -> new Pair(m, l))
 .orElse(sAxisLock.snapshot(move,
 (l, m) -> new Pair(m, l)));
Stream<Document> sMoves = sPair.snapshot(doc,
 (p, doc2) -> doc2.insert(id,
 elt.translate(me1.pt, p.move, p.lock)));

10.3.3 Changing this in the actor model

The change to the actor code is fairly straightforward. A document update can be trig-
gered by two different events, so you use a temporary variable, toUpdate, for that:

Point move = me1.pt;
while (true) {
 Object o = in.take();
 boolean toUpdate = false;
 if (o instanceof MouseEvt) {
 MouseEvt me = (MouseEvt) o;
 if (me.type == Type.MOVE) {
 move = me.pt;
 toUpdate = true;
 }
 else
 if (me.type == Type.UP)
 break;
 }
 if (o instanceof Type) {
 Type t = (Type) o;
 axisLock = t == Type.DOWN;
 toUpdate = true;
 }
 if (toUpdate) {
 doc = doc.insert(ent.id,
 ent.element.translate(me1.pt, move,
 axisLock));
 out.put(doc);
 }
}

10.3.4 How are the different paradigms doing?

Let’s reflect on how each paradigm is coping with what we’ve thrown at it:

■ Classic—You’ve got to make sure you check whether you’re in the dragging
state, and it’s also possible to inadvertently forget to call updateMove(). The
classic paradigm often leads you to have one or more update() methods that

214 CHAPTER 10 Battle of the paradigms
bring things up to date and generate outputs. Forgetting to call update() is a
common bug that can’t occur in FRP.

■ FRP—It coped well. It got verbose in one case when we tried to avoid the short-
cut of using Operational.updates(), but it remained semantically tidy.

■ Actor—The biggest problem was that we had to handle the Type (Shift key up/
down) message twice and duplicate some logic, and there doesn’t seem to be an
easy way to solve this. Actor can also lead you into long methods with lots of local
variables, and the example is getting there. Perhaps this can be split into two
actors, but it isn’t clear how to do this. The actor code also suffers a little from the
same “update-itis” that classic has: it would be easy to inadvertently forget to set
toUpdate. In FRP, the cell abstraction is effective at eliminating this problem.

10.3.5 State machines with long sequences

We’ll reiterate something we’ve said before. FRP isn’t ideal for things that naturally fall
into a long linear sequence of state changes—that is, when a single state variable goes
through a long, complex, branching and/or looping sequence. An example might be
communicating with an SMTP server to send a list of emails and handling errors at
each step. Actor/threads would be a more suitable abstraction for this kind of logic.

 FRP is better for situations with multidimensional state transitions: a large number
of state variables interacting in complex ways. We’ve given many examples where FRP
is sensible.

 So, even though FRP does well in the current example, there do exist nontrivial
problems where actor would be more suitable than FRP. We like the idea of a combina-
tion of FRP and actors for some applications.

10.4 Summary
■ The classic callback/listener style code often involves calling some kind of

update() method. There are many opportunities to forget to do it or to call
things in the wrong order.

■ The actor model can flatten one state variable into a flow of control, often
greatly simplifying the implementation. But it doesn’t cope well when the prob-
lem demands more than one independent state variable.

■ FRP copes well with multiple independent state variables. So does classic, but
complexity is always threatening to creep in.

■ Actor is best where the problem has a clear, linear flow of control.

Programming
in the real world
Functional programming in general gives you an idealized programming model,
allowing you to focus on the problem itself, and FRP does this too. In chapter 9, you
bounced a ball in an ideal world of continuous time, as if in some Zen squash court
from the movie The Matrix. Earlier, chapter 8 covered some of the uncharted, more
operational areas of the FRP design space. But sooner or later, you’ll have to deal
with something even more terrifying: the real world.

 I/O is notorious for presenting intractable difficulties and complexities. I/O
and logic tend to mutually complicate each other, so the approach used in FRP—
and in functional programming in general—is to keep them separate. FRP deals
well with the complexities of logic, and I/O is simpler with the logic removed.

This chapter covers
■ Dealing with I/O
■ Working with promises and futures
■ Distributed processing
■ Unit testing
215

216 CHAPTER 11 Programming in the real world
11.1 Dealing with I/O
A simple way to model I/O in FRP is as a function of this type:

Stream myIO(Stream<A> sIn)

When the input stream fires, the I/O is initiated, and when the result of the I/O is
ready, it appears on the output stream. The operation is asynchronous, so the output
is in a different transactional context from the I/O initiation event.

 The needs of Sodium in Java require you to write that type concretely as shown
here, but of course, each language has its own way of representing function types:

Lambda1<Stream<A>, Stream>

DEFINITION I/O action—The type Stream myIO(Stream<A> sIn), repre-
senting some I/O.

Once you have an I/O action in this form, it will play nicely with FRP. You’ll use this to
implement a dictionary lookup client; see figure 11.1.

The I/O consists of connecting to a dictionary server to retrieve the definition, and it’s
written in the normal way. The skeleton for wrapping this up into the form you want is
given in listing 11.1. In this example, the input is a String containing the word, and
the output value is Optional<String> indicating either the definition retrieved from
the server or an error if the value isn’t present in the Optional.

NOTE The key idea is that viewed from the outside, an I/O action adheres to the
strict rules of FRP, but on the inside it’s free to roam the lawless lands of I/O.

public static final
Lambda1<Stream<String>, Stream<Optional<String>>> lookup = sWord -> {
 StreamSink<Optional<String>> sDefinition = new StreamSink<>();

Listing 11.1 Skeleton for an I/O action

Figure 11.1 A dictionary lookup
client: Click Look Up, and it
fetches from the server a definition
for the word you entered.

217Dealing with I/O
 Listener l = sWord.listenWeak(wrd -> {
 new Thread() {
 public void run() {
 Optional<String> def = Optional.empty();
 try {
 ...
 def = Optional.of(...);
 }
 finally {
 sDefinition.send(def);
 }
 }
 }.start();
 });
 return sDefinition.addCleanup(l);
};

We’ve omitted the I/O code here, but you’ll find it in sodium/book/real-world/java/
lookup/Lookup.java. This listing introduces a new Sodium API method,
Stream.addCleanup(), that takes a Listener. This causes that stream to keep the
specified listener alive while it’s alive. The Sodium API requires that you use listen-
Weak() to obtain the listener that you pass to addCleanup().

 In this example, as long as the output stream sDefinition is referenced or used in
some way, the listener stays registered, and it’s automatically cleaned up when
sDefinition is. This allows you to write your I/O in a fire-and-forget way.

 Recall the rules of what you’re allowed to do inside a listener from chapter 8:

■ send() isn’t allowed.
■ Blocking I/O isn’t allowed.
■ Non-blocking I/O is acceptable.

Here you spawn a thread to ensure that the I/O doesn’t block inside the handler you
pass to listen(). Note that the send() doesn’t break the first rule because it’s run-
ning on a different thread.

11.1.1 Error-handling in FRP

In most languages, I/O errors are handled through the mechanism of exceptions. FRP
can’t cope with exceptions, and you must never throw them in normal FRP code.
FRP only deals in values, so your I/O code needs to catch the exception and turn it
into a value.

 Rx and the systems based on it have error-handling capability built in. This isn’t
the same as a normal exception. Underneath, these errors are really just values, and
Rx causes them to be propagated automatically in an exception-like way.

 In systems without error-handling, such as Sodium, the way to model errors is
through optional or variant types. Most languages have an equivalent of Java’s
Optional. If the value isn’t present, then you treat it as an error.

Spawn a worker
thread.

I/O result handled in
a new transaction

218 CHAPTER 11 Programming in the real world
NOTE Rx automatically propagates errors through a chain of processing. In
Sodium, you have to propagate the error state yourself by hand, but you can
write helper code to make this easier.

A variant type allows your error value to be more meaningful. The value can be either
an error message or a value. Functional programming languages typically make this
easy, but it can be cumbersome in nonfunctional languages. Java has no direct equiva-
lent of variant types, so you have to write one yourself. What you want is something
like Optional but with a representation of the error (such as a string) instead of no
value. In C++, you can use boost::variant from the Boost library. Part of the reason
the designers of Rx built in error-handling may be to do with the fact that variant types
aren’t a common idiom in the most popular languages.

 As we’ve said, exceptions aren’t allowed, so the I/O code should always output
some value, which might be a value representing an error. We used a try / finally
block in listing 11.1 so it’s guaranteed to output something. You should choose what-
ever style fits your error-handling needs.

11.1.2 Executing an I/O action

You can instantiate an I/O action like this:

Stream<Stream> sWord = ...;
Stream<Optional<String>> sOut = lookup.apply(sWord);

When the I/O runs, two FRP transactions are involved. The initiation of the I/O hap-
pens in one transaction, and the receiving of the result happens in a later transac-
tion—see figure 11.2. Note that because you spawn a new thread to do the I/O, the
send() method isn’t explicitly inside a transactional context. But it will start a new
transaction automatically.

NOTE It’s sensible to add to the definition of an I/O action a requirement
that the result should always arrive in a new transaction—not in the same
transaction in which it was initiated. This permits you to always assume this is
so when working with any I/O action.

Time

t1 t2 t3 t4 t5

I/O

Figure 11.2 I/O is initiated in transaction 2, and
the response comes back in transaction 4.

219Dealing with I/O
Because the I/O action runs asynchronously, it’s possible for a single I/O action
instance to be executing more than once in parallel, as in figure 11.3. Note also that
there’s no guarantee that the responses will come back in the same order as the initia-
tions of the I/O. You need to have some sort of policy to decide what you do about the
possibility of overlapping I/O execution.

The current example will use a simple policy. You’ll prevent overlapping I/O in the
following way: you’ll keep a busy state and allow I/O to be initiated only when busy is
false. You can write a general utility class to help with this—see listing 11.2.

 This utility instantiates the I/O action you pass to it by executing the action func-
tion. It outputs the stream containing the I/O action’s output, along with a busy flag.
It’s the caller’s responsibility to block input to the action based on busy.

class IsBusy<A,B> {
 public IsBusy(Lambda1<Stream<A>, Stream> action, Stream<A> sIn) {
 sOut = action.apply(sIn);
 busy = sIn.map(i -> true)
 .orElse(sOut.map(i -> false))
 .hold(false);
 }
 public Stream sOut;
 public Cell<Boolean> busy;
}

11.1.3 Putting the application together

Listing 11.3 puts together the Lookup application, with Java layout code omitted. The
busy flag is used in three places:

■ enabled is the logical NOT of busy. You pass that flag in to SButton so it’s
enabled only when the I/O isn’t busy. This prevents initiation of I/O when it’s
already busy.

■ You also pass enabled to the output text area, so it appears gray while the I/O
request is in progress.

Listing 11.2 General utility to track whether an I/O action is busy

Time

t1 t2 t3 t4 t5

I/O
I/O

Figure 11.3 Multiple executions of
I/O can overlap.

220 CHAPTER 11 Programming in the real world
■ When the I/O is busy, you show “Looking up…” in the output text area instead
of the definition.

Transaction.runVoid(() -> {
 STextField word = new STextField("", 25);
 CellLoop<Boolean> enabled = new CellLoop<>();
 SButton button = new SButton("look up", enabled);
 Stream<String> sWord = button.sClicked.snapshot(word.text);
 IsBusy<String, Optional<String>> ib =
 new IsBusy<>(lookup, sWord);
 Stream<String> sDefinition = ib.sOut
 .map(o -> o.isPresent() ? o.get() : "ERROR!");
 Cell<String> definition = sDefinition.hold("");
 Cell<String> output = definition.lift(ib.busy, (def, bsy) ->
 bsy ? "Looking up..." : def);
 enabled.loop(ib.busy.map(b -> !b));
 STextArea outputArea = new STextArea(output, enabled);
 view.add(word, c);
 view.add(button, c);
 view.add(new JScrollPane(outputArea), c);
});

As usual, check it out if you haven’t done so already:

git clone https://github.com/SodiumFRP/sodium

Note that an extra step is required to run this if you’re using Maven. You need to
install the SWidgets library into your local Maven repository:

cd sodium/book/swidgets/java/swidgets
mvn install
cd ../../../../..

Then do this to run it:

cd sodium/book/real-world/java
mvn test -Plookup or ant lookup

11.2 Promises/Futures
The way you handled asynchronous I/O in the previous section works for simple cases,
but sometimes you want to track some state with each outstanding I/O request. Promises
are a popular abstraction these days, and they work well in FRP for this problem.

NOTE There are lots of opinions about the difference between the terms
promise and future. We’ll treat them as one and just talk about promises.

A promise models a value that’s available either now or in the future. If it’s not avail-
able now, you can be notified when it arrives. You can implement a promise as shown
in listing 11.4.

Listing 11.3 Dictionary lookup application

221Promises/Futures

Curr
which m

not b

I
interfac
NOTE In Sodium, listenOnce() is a variant of listen() that you haven’t
seen yet. It automatically deregisters and cleans up the listener after it has
handled one event, so it will only fire once.

import nz.sodium.*;
import java.util.Optional;

public class Promise<A> {
 public Promise(Stream<A> sDeliver) {
 this.sDeliver = sDeliver.once();
 this.oValue = this.sDeliver.map(a -> Optional.of(a))
 .hold(Optional.empty());
 }
 public final Stream<A> sDeliver;
 public final Cell<Optional<A>> oValue;
 public final Stream<A> then() {
 return Stream.filterOptional(Operational.value(oValue))
 .orElse(sDeliver).once();
 }
 public final void thenDo(Handler<A> h) {
 Transaction.runVoid(() ->
 then().listenOnce(h)
);
 }
}

The next listing tests this out.

import nz.sodium.*;
import java.util.ArrayList;

public class promise1 {
 public static void main(String[] args) {
 System.out.println("*** test 1");
 {
 ArrayList<String> out = new ArrayList<>();
 StreamSink<String> s1 = new StreamSink<>();
 Promise<String> p1 = new Promise<>(s1);
 s1.send("Early");
 p1.thenDo(t -> System.out.println(t));
 }
 System.out.println("*** test 2");
 {
 ArrayList<String> out = new ArrayList<>();
 StreamSink<String> s1 = new StreamSink<>();
 Promise<String> p1 = new Promise<>(s1);
 p1.thenDo(t -> System.out.println(t));
 s1.send("Late");
 }
 }

Listing 11.4 FRP-based implementation of Promise

Listing 11.5 Trying out Promise

Delivery of the
value, which

may have
already

occurred

ent value,
ay or may
e present

Requests the value: returns a
stream guaranteed to fire once

with the value when it’s available
either now or in the future

mperative
e to then()

222 CHAPTER 11 Programming in the real world
}
------ Output ------
*** test 1
Early
*** test 2
Late

To run this example, check it out if you haven’t done so already, and then run it like
this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/real-world/java
mvn test -Ppromise1 or ant promise1

Listing 11.6 gives another useful feature you could add to Promise. You lift a function
into promises like you do cells. The combined promise’s value is delivered when both
of its inputs are delivered. If you’re prepared to use Operational.updates(), then
lifting the cell will do everything you need. Promise.lift() can be implemented
without Operational.updates(), but the code is longer. See the file PromiseWithout-
Updates.java if you’re interested.

private Promise(Cell<Optional<A>> oValue) {
 this.sDeliver = Stream.filterOptional(Operational.updates(oValue));
 this.oValue = oValue;
}

public <B,C> Promise<C> lift(Promise pb,
 final Lambda2<A, B, C> f) {
 return Transaction.run(() -> new Promise<C>(
 this.oValue.lift(pb.oValue,
 (oa, ob) ->
 oa.isPresent() && ob.isPresent()
 ? Optional.of(f.apply(oa.get(), ob.get()))
 : Optional.empty()
)));
}

Let’s test this as shown in the following listing.

import nz.sodium.*;
import java.util.ArrayList;

public class promise2 {
 public static void main(String[] args) {
 System.out.println("*** Simple test");
 {
 ArrayList<String> out = new ArrayList<>();
 StreamSink<String> sa = new StreamSink<>();

Listing 11.6 Lifting a function into promises

Listing 11.7 Testing lifting functions into promises

223Promises/Futures
 Promise<String> pa = new Promise<>(sa);
 StreamSink<String> sb = new StreamSink<>();
 Promise<String> pb = new Promise<>(sb);
 Promise<String> p = pa.lift(pb, (a, b) -> a + " " + b);
 sa.send("Hello");
 p.thenDo(t -> System.out.println(t));
 sb.send("World");
 }
 System.out.println("*** Simultaneous case");
 {
 ArrayList<String> out = new ArrayList<>();
 StreamSink<String> sa = new StreamSink<>();
 Promise<String> pa = new Promise<>(sa);
 StreamSink<String> sb = new StreamSink<>();
 Promise<String> pb = new Promise<>(sb);
 Promise<String> p = pa.lift(pb, (a, b) -> a + " " + b);
 p.thenDo(t -> System.out.println(t));
 Transaction.runVoid(() -> {
 sa.send("Hello");
 sb.send("World");
 });
 }
 }
}
------ Output ------
*** Simple test
Hello World
*** Simultaneous case
Hello World

To run this example, check it out if you haven’t done so already, and then run it like
this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/real-world/java
mvn test -Ppromise2 or ant promise2

11.2.1 A map viewer example using Promise

Let’s say you’re developing an applica-
tion that draws maps fetched from a
map server (see figure 11.4). As the
user scrolls and zooms around the
world, the map area changes. That’s the
area of the world that corresponds to
the visible window. It’s indicated with a
black rectangle in the figure. The map
area at any time is converted into a set
of segments that need to be fetched
and displayed to fill the window. In this
example, there are six of them.

Figure 11.4 You need to fetch six segments
from the server to fill the window.

224 CHAPTER 11 Programming in the real world

For
orig

w

The map viewer’s state consists of a key/value mapping from segment coordinates to
image promises. An image promise has the type Promise<Image>, so this mapping has
this type:

Cell<Map<SegmentID, Promise<Image>>>

We’ve coded this example up in RxJS. Point your browser at sodium/book/web/
map.html in the Sodium project to run it. You can drag the map around, and you’ll
see it load map squares from a server as needed.

 Here’s the code to convert a URL into an image promise:

function imagePromise(url)
{
 var sLoaded = Rx.Observable.create(function (observer) {
 var img = new Image();
 img.onload = function() { observer.onNext(img); };
 img.src = url;
 }).publish();
 sLoaded.connect();
 var image = new Rx.BehaviorSubject(null),
 subscr1 = sLoaded.subscribe(image);
 return { image : image,
 dispose : function() { subscr1.dispose(); } };
}

You represent a promise as a BehaviorSubject that has a value of null initially and is
replaced by the image once it has been loaded.

 Listing 11.8 gives the body of the code. We’ve left out sequence(), which is defined
in the Whack That Mole example in chapter 7; dragging(), which handles the mov-
ing of the scroll origin with mouse drag events; and draw(), which draws the scene.

var baseURL = 'http://reactiveprogramming.org/~blackh/frp-map/',
 xTiles = 44, yTiles = 34,
 tileWidth = 200, tileHeight = 200,
 noOfTiles = xTiles * yTiles;
function tileX(tile) { return (tile % xTiles) * tileWidth; }
function tileY(tile) { return Math.floor(tile / xTiles) * tileHeight; }

function init() {
 var canvas = document.getElementById("myCanvas"),
 scrollOrigin = dragging(canvas),
 sTilesNeeded = scrollOrigin.map(function (so) {
 var tiles = [],
 x0 = Math.floor(so.x / tileWidth),
 y0 = Math.floor(so.y / tileHeight),
 wid = canvas.width,
 ht = canvas.height;
 for (var x = x0; ((x) * tileWidth - so.x <= wid); x++)
 for (var y = y0; ((y) * tileHeight - so.y <= ht); y++) {
 var tile = x + y * xTiles;

Listing 11.8 Map viewer that loads map segments on demand

a given scroll
in, works out
hat tiles you

need to draw

225Promises/Futures

pro
no

sequ
defined

Str
fires w

tile
 if (tile >= 0 && tile < noOfTiles)
 tiles.push(tile);
 }
 return tiles;
 }),
 tilePromises = new Rx.BehaviorSubject([]);
 sTilesNeeded.withLatestFrom(tilePromises,
 function (needed, promises) {
 var newPromises = [],
 promises = promises.slice();
 for (var i = 0; i < needed.length; i++) {
 var tile = needed[i];
 var found = false;
 for (var j = 0; j < promises.length; j++) {
 if (promises[j].tile == tile) {
 newPromises.push(promises.splice(j, 1)[0]);
 found = true;
 break;
 }
 }
 if (!found)
 newPromises.push({
 tile : tile,
 promise : imagePromise(
 baseURL+"tile_"+tile+".png")
 });
 }
 for (var j = 0; j < promises.length; j++)
 setTimeout(promises[j].promise.dispose, 0);
 return newPromises;
 }).subscribe(tilePromises);
 var scene = tilePromises.flatMapLatest(function (promises) {
 var outImages = [];
 for (var i = 0; i < promises.length; i++) {
 outImages.push(function (tile, image) {
 return image.map(
 function (img) {
 return { tile : tile, image : img };
 });
 } (promises[i].tile, promises[i].promise.image));
 }
 return sequence(outImages);
 });
 var sTileLoaded = tilePromises.flatMapLatest(function (promises) {
 var sLoaded = Rx.Observable.of();
 for (var i = 0; i < promises.length; i++)
 sLoaded = sLoaded.merge(
 promises[i].promise.image.filter(function (img) {
 return img !== null; }));
 return sLoaded;
 });

 function draw(toDraw) {
 var so = toDraw.so;
 var scene = toDraw.scene;
 ...
 }

Instantiates and destroys
promises as needed, given
list of needed tiles

Disposes of
mises that are
 longer needed

Flattens the
promised

images into a
single scene

ence() helper
 in chapter 7

eam that
hen any

is loaded

226 CHAPTER 11 Programming in the real world
 sTileLoaded.withLatestFrom(scrollOrigin, scene,
 function (_, so, scene) {
 return { so : so, scene : scene };
 }
).subscribe(draw);
 scrollOrigin.withLatestFrom(scene,
 function (so, scene) {
 return { so : so, scene : scene };
 }
).subscribe(draw);
}

11.2.2 Initiating I/O with the spark idiom

The map example works fine in RxJS, but we took a semantic shortcut: image-
Promise() performs I/O and so isn’t referentially transparent. It shouldn’t be used in
the function you passed to withLatestFrom(). Yet what you’ve done feels OK.

 The rules of FRP exist to prevent bugs, so let’s see how you can implement this
within the rules. What’s the correct way to initiate I/O in this situation? Let’s switch to
Sodium—which is clearer about such rules—to look at this question.

 Say you already have an I/O action defined for fetching a map tile in the same style
you used in the dictionary lookup example from the beginning of this chapter. Its type
would be

Stream<Image> fetchTile(Stream<TileID> tileID)

which is represented as Java/Sodium lambda in this way:

Lambda1<Stream<TileID>,Stream<Image>> fetchTile

For simplicity, we’ll pretend that errors can’t happen.
 Given an I/O action lambda, you can write a general promisize() function to con-

vert an I/O action into something that produces promises. We’ll give the code for
promisize() shortly. promisize() lets you write a Java/Sodium version of the map
application in this way:

Stream<Set<TileID>> sTilesNeeded = Operational.value(scrollOrigin).map(
 ...);
CellLoop<Map<TileID, Promise<Image>> tilePromises;
tilePromises.loop(sTilesNeeded.snapshot(tilePromises, (needed, prs) -> {
 ...
 for (TileID tileID : needed) {
 ...
 if (!found) {
 Promise<Image> img = promisize(fetchTile, tileID);
 ...
 }
 }
 ...
}).hold(new HashMap<TileID, Promise<Image>()));

Redraws if the scroll
origin changes

Redraws when
a tile is loaded

227Promises/Futures
CONVERTING A CONSTANT TO A STREAM

How do you write promisize()? fetchTile wants a Stream<TileID>, but all you have
is a TileID. How do you construct this required stream? How can a constant initiate
an I/O operation?

 In this code, you’re constructing FRP logic in a lambda you’ve passed to snapshot.
You know that this code runs in response to a stream event. To get the stream that
fetchTile requires as input, you could use the same stream that was passed to snap-
shot because you can deduce that it fired in the same transaction in which you want
the I/O to be initiated.

 sTilesNeeded is the stream in question, but you only want to initiate I/O once for
each tile. The stream to initiate the I/O could be constructed like this:

Stream<TileID> sInitiateIO = sTilesNeeded.once().map(tn -> tileID);

Then you’d pass sInitiateIO explicitly as a new third argument to promisize(),
which would work fine:

tilePromises.loop(sTilesNeeded.snapshot(tilePromises, (needed, prs) -> {
 ...
 for (TileID tileID : needed) {
 ...
 if (!found) {
 Stream<TileID> sInitiateIO = sTilesNeeded.once()
 .map(tn -> tileID);
 Promise<Image> img = promisize(fetchTile, tileID, sInitiateIO);
 ...
 }
 }
 ...
}).hold(new HashMap<TileID, Promise<Image>()));

THE SPARK IDIOM

But there’s a more convenient way. It’s possible to convert a constant a of type A into a
Stream<A> using the following idiom:

Operational.value(new Cell<A>(a))

Recall that the stream returned by Operational.value() always fires once with the
current value of the cell you gave it. If you hand it a constant cell, it will fire once with
any value you want. Effectively, you’re creating a stream event out of thin air. We refer
to this as a spark.

 This spark idiom gives you a more convenient way of initiating the I/O. Because
you’re processing a snapshot, you know an event must exist. You’ve inferred the exis-
tence of an event, and, on the strength of that, you reconstruct it (without its payload,
which you can’t infer).

 We’re getting into the deep semantics of FRP, but the questions aren’t that diffi-
cult. Recall that with the introduction of switch and sample, we had to revise the

228 CHAPTER 11 Programming in the real world
rules of what was permitted in functions passed to FRP primitives (see section 7.3.3).
We said this:

■ Functions passed to FRP primitives that work with events (Stream.map, snap-
shot, filter, merge, and Stream.accum) may use code that’s connected to a
transactional context. This includes sample and construction of FRP logic using
hold and other primitives. Note that sample isn’t allowed in primitives that
return cells, like lift and Cell.map.

The reasoning is the same for Operational.value() because it’s also connected to a
transactional context. Within the context of FRP primitives that work with events, you
can infer the existence of a stream event. That implied event is the reason that within
such a context, sample is semantically equivalent to snapshot. Now we’re saying it’s
legitimate to reconstruct that event (without its payload) in a new stream, and that’s
what the spark idiom does. The code for promisize() is given in the next listing.

<A,B> Promise promisize(Lambda1<Stream<A>, Stream> action,
 A a) {
 Stream<A> sSpark = Operational.value(new Cell<A>(a));
 return new Promise<>(action.apply(sSpark));
}

11.3 Distributed processing
FRP can be useful for implementing distributed systems. But FRP is basic infrastructure
and doesn’t provide a turnkey solution by itself. Distributed systems are a complex
topic, and we’ll only sketch out a few basic ideas here.

 We’ve shown you a way of modeling I/O in FRP. This can be useful in distributed
systems. For instance, it would work well if you wanted to model some sort of a remote
procedure call (RPC). But distributed systems don’t always work this way. We need to
take a step back.

11.3.1 Sacrificing consistency

Distributed systems are subject to Eric Brewer’s CAP theorem. The initials pertain to
three desired properties of a system:

■ Consistency—A read anywhere in the system sees the results of all previously
completed writes.

■ Availability—Reads and writes always succeed.
■ Partition tolerance—The system operates in spite of communication problems

between nodes.

The theorem essentially says that during a network partition, a distributed system
must choose either consistency or availability. Partitions are a fact of distributed systems
and can’t be avoided. Availability is usually—but not always—the more important of

Listing 11.9 Using a promise to represent the output of an I/O action

229Unit testing
these two goals. Therefore, to achieve availability, distributed systems must sacrifice
consistency.

11.3.2 A stream that goes over a network connection

FRP gives you a strong consistency guarantee by default. It’s easy to take a stream of
some serializable value, pass the values over a network connection, and have them
appear as a stream on a remote node. But FRP transactions and the consistency they
provide can only work locally. There’s no way to make any guarantees about the arrival
times of messages or even whether the messages will arrive at all. Many issues will arise,
and they’re the same as the ones you’d get in an actor-based distributed system.

 You must use logic to deal with these issues, and FRP is ideal for this sort of com-
plex logic. We think FRP would make a great basis for distributed systems, and we’d
like to see FRP-based distributed frameworks.

 But don’t expect a magic-bullet solution that gives FRP-like consistency across a dis-
tributed system. The CAP theorem tells us this is impossible.

11.4 Unit testing
The real world throws quality requirements at you. Unit testing can be a powerful way
to ensure that you meet them. FRP has some interesting properties with regard to unit
testing.

11.4.1 Unit testing FRP code

Let’s say you want to unit test the Keypad class from chapter 4. The external interface
looks like this:

public class Keypad {
 public final Cell<Integer> value;
 public final Stream<Unit> sBeep;
 public Keypad(Stream<Key> sKeypad, Stream<Unit> sClear) {
 }
}

FRP doesn’t allow any implicit state to exist, so all code is automatically testable. Here’s
what a test case for this code might look like:

StreamSink<Key> sKeypad = new StreamSink<>();
StreamSink<Unit> sClear = new StreamSink<>();
Keypad keypad = new Keypad(sKeypad, sClear);
sKeypad.send(Key.ONE);
sKeypad.send(Key.SEVEN);
assertEquals(17, keypad.value.sample());

Testing the value of a cell is simple with sample(). But to check that stream events
such as beeps occurred, we recommend using hold() or accum() to stuff the stream
event into a cell. Or you can attach a listener using listen(). Here’s one way:

{
 Cell<Optional<Unit>> beeped = keypad.sBeep.map(u -> Optional.of(u))
 .hold(Optional<Unit>());

230 CHAPTER 11 Programming in the real world
 sKeypad.send(Key.ONE);
 assertEquals(Optional.of(Unit.UNIT), beeped.sample());
}
{
 Cell<Optional<Unit>> beeped = keypad.sBeep.map(u -> Optional.of(u))
 .hold(Optional<Unit>());
 sKeypad.send(Key.SEVEN);
 assertEquals(Optional.of(Unit.UNIT), beeped.sample());
}

A helper method would shorten this code.

11.4.2 We don’t recommend test-driven development (TDD)

There are two ways to apply unit testing in your project. The first way is to write your
code and then selectively write tests where you think there is benefit in doing so.

 The second way is test-driven development (TDD), which is a radically different way of
writing code. In TDD, you add to your code one feature at a time. For each feature,
you follow a three-step process:

■ Red—Write a test to test whether the feature works. Because the code hasn’t
been written yet, the test will fail, so the test harness will show red.

■ Green—Write the minimum code required to make the test pass. The test har-
ness will show green.

■ Refactor—Tidy up the code, and factor out any repeated code. Refactoring is
safe because the existing tests will make breakage almost impossible.

You can take TDD even further with pair programming. Two programmers share a single
computer. One writes the tests, and the other writes the code. An evil coder does only
the minimum coding to make the test pass, so the tester is forced to write tests for
every aspect of the code.

 We can see the point of all this, but we generally don’t recommend TDD for FRP.
We give our reasons next.

11.4.3 FRP is type-driven development

With FRP code in a statically typed language, you get a lot of checking for free. Several
major classes of bugs are automatically eliminated.

 The benefits of static typing are greater in FRP than you get with normal or imper-
ative code. You may have noticed that in this book we talk a lot about the data types
we’re using. FRP—and functional programming in general—can be said to be type-
driven development. In FRP, the data types constrain the problem and prevent you from
making mistakes in a way similar to the way tests do in TDD, but with less effort.

 To some extent, TDD exists to compensate for the lack of checking that’s inherent
in imperative programming. In dynamically typed languages there is even less check-
ing, so TDD becomes even more important.

231Summary
11.4.4 FRP code is safe to refactor

A major purpose of TDD is to lock down the code so it can be refactored safely. This
advantage doesn’t apply to FRP in a statically typed language because it’s already safe
to refactor. We’ll go into this in more depth in chapter 13.

11.4.5 FRP code is inherently testable

An advantage of TDD is that it makes your code testable. Because a given piece of code
has to interface both to the rest of the program and to the tests, it pushes you into a
desirably modular, loosely coupled style that’s flexible and easy to refactor. FRP forces
you to write your code loosely coupled anyway, so TDD doesn’t add much.

11.4.6 Testing your logic

As we’ve argued, FRP gives you most of the advantages of TDD automatically. If you use
TDD to write FRP code, you’ll be duplicating a lot of work that FRP gives you for free.
We think this isn’t productive in the common case, but if your project has a high assur-
ance requirement, then TDD may be justified.

 But there’s one advantage of TDD that FRP doesn’t give you: FRP doesn’t protect you
from mistakes in your logic. We generally recommend that you write your FRP code, and
write tests either beforehand or afterward that test to be sure the logic is correct.

11.5 Summary
■ In FRP, you can model an I/O action as a function from Stream<A> to

Stream.
■ We’ve given an implementation of promises based on FRP.
■ If you want to associate state with the execution of I/O, it can be useful to use

switch and model the I/O result as a promise.
■ It’s good to write unit tests to verify the correctness of your logic, but we don’t

generally recommend test-driven development for FRP.

Helpers and patterns
The highly abstracted nature of FRP means solutions can be very general. This
opens us up to uncharted oceans of new ways of dealing with programming prob-
lems. We (the authors) have only just gotten our feet wet, compared with what the
community will discover in time.

 This chapter covers some solutions we’ve found to common problems. Some of
these examples are complex and will take some unraveling. They’re best treated as
reference material for how to solve specific problems, or tests to see how good you
are at FRP comprehension. But we hope this chapter will give you a glimpse of what
sorts of things are possible.

This chapter covers
■ Removing duplicate values
■ Pausing a game
■ Junction or client registry
■ Writable remote values
■ Persistence
■ Unique ID generation
■ An FRP-based GUI system
232

233Calming: removing duplicate values
12.1 Calming: removing duplicate values
We’ll start with a simple one. Sometimes we have a situation where there are unneces-
sary updates and this adversely affects performance. For example, a particular opera-
tion may double the amount of processing, and it may be structured so that this
happens several times. The good news is that these cases are generally easy to reason
about, but the bad news is that things can get inefficient. We discussed some of these
implications in section 7.6. A common way to deal with this is to “calm” a stream or
cell by removing values that are repeats of the previous value.

 We’ve said that Operational.updates() should be used for operational situations
where the steps in cells aren’t exposed. The cell variant of calm complies: it uses
Operational.updates() but doesn’t expose any of this to the caller. As long as you
respect this principle consistently, calm has performance implications only, but no
semantic ones.

Listing 12.1 gives the code for stream and cell variants of calm(). This example illus-
trates some things we’ve touched on before. First, we’ve talked about sampleLazy()
and holdLazy(). These are variants of sample() and hold() that work correctly with
CellLoops. In any generalized code, this is important. Plain sample() will throw an
exception if it’s used before CellLoop.loop() is called, because the actual value
doesn’t exist yet. sampleLazy() gives a representation of the value as it will be after
loop() is called later. This is a sort of promise.

 Second, until now, when you’ve implemented any sort of state accumulator, you’ve
used a hold-snapshot. Sodium provides a helper method, collect(), to make this
more concise, letting you write a state accumulator based on an update lambda. This
is a basic state machine or Mealy machine. It takes the new input value and the current
state value, and it outputs a tuple of (output value, new state). Sodium provides a
tuple type Tuple2 that’s used for this. collectLazy() is a variant of collect() that
accepts a lazy initial value.

Why not calm cells automatically?

We’ve been asked why we don’t just make all cells automatically calmed in Sodium.
There are two reasons.

First, we can’t assume that a concept of equality exists for all values. A cell can legit-
imately contain a function, for example, and there’s no general way to test equality
for functions.

Second, auto-calming would require doing equality tests for each update. For some
data types, such as large key/value Maps, this would be prohibitively expensive in terms
of CPU time.

234 CHAPTER 12 Helpers and patterns

C
stre

where
no init

import nz.sodium.*;
import java.util.Optional;

public class calm {
 public static <A> Stream<A> calm(Stream<A> sA,
 Lazy<Optional<A>> oInit) {
 return Stream.filterOptional(
 sA.<Optional<A>,Optional<A>>collectLazy(
 oInit,
 (A a, Optional<A> oLastA) -> {
 Optional<A> oa = Optional.of(a);
 return oa.equals(oLastA)
 ? new Tuple2<Optional<A>,Optional<A>>(
 Optional.empty(), oLastA)
 : new Tuple2<Optional<A>,Optional<A>>(oa, oa);
 }
));
 }

 public static <A> Stream<A> calm(Stream<A> sA) {
 return calm(sA, new Lazy<Optional<A>>(Optional.empty()));
 }

 public static <A> Cell<A> calm(Cell<A> a) {
 Lazy<A> initA = a.sampleLazy();
 Lazy<Optional<A>> oInitA = initA.map(a_ -> Optional.of(a_));
 return calm(Operational.updates(a), oInitA).holdLazy(initA);
 }

 public static void main(String[] args) {
 CellSink<Integer> sa = new CellSink<>(1);
 Listener l = calm(sa).listen(i -> System.out.println(i));
 sa.send(1);
 sa.send(2);
 sa.send(2);
 sa.send(4);
 sa.send(4);
 sa.send(1);
 l.unlisten();
 }
}

ant calm
calm:
 [java] 1
 [java] 2
 [java] 4
 [java] 1

To run this, check it out if you haven’t done so already, and then run it like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/patterns/java
mvn test -Pcalm or ant calm

Listing 12.1 Removing duplicate values: stream and cell variants of calm

Filters out
duplicates Determines what’s

a duplicate
Initial state

Is the new value the
same as the last?Yes: output

nothing, and don’t
change the state.

No: output the new value
and set the state to it.

ommon
am case
 there’s
ial value

Cell case: deal with
the initial value.

235Pausing a game

cap

Wh

t

12.2 Pausing a game
A game often has a clock of this type:

Cell<Double> time

When you pause the game, it can be useful to stop the game clock. Listing 12.2 gives a
little code fragment that does this.

 You might want animation in your user interface that still works when the game is
paused. How do you achieve that? Simple! Use mainClock for the user interface and
gameClock for the game itself. You can’t accidentally use the wrong clock in your game
logic because you don’t pass mainClock to it, so it can’t be in scope.

 We think this is elegant. It illustrates the power you have in FRP to give a strong iso-
lation guarantee by limiting scope. This isn’t exclusive to FRP, but it’s natural to the
functional programming concepts that underlie FRP.

import nz.sodium.*;
import java.util.Optional;

public class pause {
 public static Cell<Double> pausableClock(Stream<Unit> sPause,
 Stream<Unit> sResume, Cell<Double> clock) {
 Cell<Optional<Double>> pauseTime =
 sPause.snapshot(clock, (u, t) -> Optional.<Double>of(t))
 .orElse(sResume.map(u -> Optional.<Double>empty()))
 .hold(Optional.<Double>empty());
 Cell<Double> lostTime = sResume.<Double>accum(
 0.0,
 (u, total) -> {
 double tPause = pauseTime.sample().get();
 double now = clock.sample();
 return total + (now - tPause);
 });
 return pauseTime.lift(clock, lostTime,
 (otPause, tClk, tLost) ->
 (otPause.isPresent() ? otPause.get()
 : tClk)
 - tLost);
 }

 public static void main(String[] args) {
 CellSink<Double> mainClock = new CellSink<>(0.0);
 StreamSink<Unit> sPause = new StreamSink<>();
 StreamSink<Unit> sResume = new StreamSink<>();
 Cell<Double> gameClock = pausableClock(sPause, sResume, mainClock);
 Listener l = mainClock.lift(gameClock,
 (m, g) -> "main="+m+" game="+g)
 .listen(txt -> System.out.println(txt));
 mainClock.send(1.0);
 mainClock.send(2.0);
 mainClock.send(3.0);

Listing 12.2 Pausing a game clock

On pause start,
tures the clock time

On unpause,
accumulates the
total lost time

en paused, takes
the pause time

When not paused,
takes the clockSubtracts the

otal lost time

236 CHAPTER 12 Helpers and patterns
 sPause.send(Unit.UNIT);
 mainClock.send(4.0);
 mainClock.send(5.0);
 mainClock.send(6.0);
 sResume.send(Unit.UNIT);
 mainClock.send(7.0);
 l.unlisten();
 }
}

ant pause
pause:
 [java] main=0.0 game=0.0
 [java] main=1.0 game=1.0
 [java] main=2.0 game=2.0
 [java] main=3.0 game=3.0
 [java] main=3.0 game=3.0
 [java] main=4.0 game=3.0
 [java] main=5.0 game=3.0
 [java] main=6.0 game=3.0
 [java] main=6.0 game=3.0
 [java] main=7.0 game=4.0

To run this, check it out if you haven’t done so already, and then run it like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/patterns/java
mvn test -Ppause or ant pause

12.3 Junction or client registry
Mobile phones have a notification area with notifications from different places. Mine
says

■ 1 update available
■ Playing: One Day You Will Cry
■ Message received: Raining! Bring in the washing.

I know that phones aren’t normally designed as a single program. But if you imagine that
you were designing the entire phone as a single FRP application, you’d have to say this:

UpdateManager umgr = new UpdateManager(...);
MediaPlayer mediaPlyr = new MediaPlayer(...);
Messenger messenger = new Messenger(...);
Cell<List<Message>> notifications = umgr.notifications.lift(
 mediaPlyr.notifications, messenger.notifications,
 (ms1, ms2, ms2) -> appendList(ms1, appendList(ms2, ms3))
);
NotificationArea notArea = new NotificationArea(notifications);

You have to decide what applications you want notifications for during initialization.
This is a typically functional way to do things, and it’s not extensible because you can’t
come along later and start an arbitrary new module/application that then registers
itself with notArea.

237Junction or client registry

Co

functio
one if

more th
in a tran

clie
 In this design, you want more freedom to add and remove applications, and this
may happen at different times as the program runs. You need an extensible way for an
application to register itself as a new client of the notifications list, allowing it to push
its own notifications.

 What you’d like to do is this:

CellJunction<List<Message>> notifications = new CellJunction<>(
 new List<Message>(), appendList);
NotificationArea notArea = new NotificationArea(notifications.out);
UpdateManager umgr = new UpdateManager(notifications, ...);
MediaPlayer mediaPlyr = new MediaPlayer(notifications, ...);
Messenger messenger = new Messenger(notifications, ...);

The construction of each application may not happen during initialization of the pro-
gram, as you see here.

 Note that this approach is imperative, not functional, because the process of regis-
tering a client causes a state change. You’re exchanging the semantic tidiness of func-
tional programming for extensibility. It’s affected by the sequence in which
registrations happen, and so on. This isn’t a bad thing in itself; it’s just that it’s impor-
tant to make that distinction in your mind.

 We’ll give the code for CellJunction and StreamJunction here, and the next sec-
tion uses a junction in a concrete example. First you define Junction, which is a super-
class for both stream and cell variants, as shown in the following listing.

import nz.sodium.*;
import java.util.Collection;
import java.util.HashMap;
import java.util.Map;

public abstract class Junction<ContainerA, A> {
 private int nextID;
 private StreamSink<Lambda1<Map<Integer, ContainerA>,
 Map<Integer, ContainerA>>> sUpdate
 = new StreamSink<>((f1, f2) -> a -> f1.apply(f2.apply(a)));
 protected Cell<Collection<ContainerA>> clients;
 public Junction() {
 clients = sUpdate
 .<Map<Integer, ContainerA>>accum(
 new HashMap<Integer, ContainerA>(),
 (f, m) -> f.apply(m))
 .map(m -> m.values());
 }
 public Listener add(ContainerA c) {
 int id;
 synchronized (this) {
 id = nextID++;
 }

Listing 12.3 Superclass for CellJunction and StreamJunction

appendList: tells the
CellJunction how to

combine message list

Starts with a stream
of change functions

alesces
update
ns into
there’s
an one
saction

Accumulates updates
to the client registry

Applies the
update function

Turns it into a list

Method to add a new
client. ContainerA could
be a stream or cell.

Allocates each
nt a unique ID

238 CHAPTER 12 Helpers and patterns

Fi
r

Return
allowi
 sUpdate.send(m0 -> {
 java.util.HashMap<Integer, ContainerA> m = new HashMap(m0);
 m.put(id, c);
 return m;
 });
 return new Listener() {
 public void unlisten() {
 sUpdate.send(m0 -> {
 java.util.HashMap<Integer, ContainerA> m
 = new HashMap(m0);
 m.remove(id);
 return m;
 });
 }
 };
 }
}

This code uses an FRP idiom you encountered in the Zombicus game in chapter 7.
You have a stream of state transformations represented as Lambda1<X,X>, and you accu-
mulate that into a current state of the client registry.

 You’re using the variant of StreamSink’s constructor where you pass it a function to
combine values if more than one is sent in a single transaction. This happens often in
practice. This combining function combines two lambdas into a single lambda that
applies the two of them in sequence.

 The next listing gives the stream variant. The current list of clients is merged
together to give an output stream.

import nz.sodium.*;
import java.util.Collection;

public class StreamJunction<A> extends Junction<Stream<A>, A> {
 public StreamJunction(Lambda2<A,A,A> combine) {
 this.out = Cell.switchS(clients.map(cls ->
 Stream.merge(cls, combine)));
 }
 public Stream<A> out;
}

Listing 12.5 gives the cell variant. In the stream variant, the combining operation is
merge. For cells, it’s lift, but the caller needs to supply a null value to use in the case
where no clients have registered yet.

 In the notification area example, each module registers itself as a source of notifi-
cation messages this way:

MediaPlayer(CellJunction<List<Message>> notifications, ...) {
 Cell<List<Message>> playingMsgs = ...;

Listing 12.4 StreamJunction

res an “add to
egistry” event

Copies the map so you’re
referentially transparents a Listener,

ng the caller
to deregister

Fires a “delete from
registry” event

Function to combine in case
of simultaneous events

Merges all events coming from
currently registered/added clients

239Writable remote values

Combina
the value

all regi
added
 this.l = notifications.add(playingMsgs);
}
Listener l;

import nz.sodium.*;
import java.util.Collection;

public class CellJunction<A> extends Junction<Cell<A>, A> {
 static <A> Cell<A> combines(Collection<Cell<A>> in,
 A nullValue, Lambda2<A,A,A> combine) {
 Cell<A> cOut = new Cell<>(nullValue);
 for (Cell<A> c : in)
 cOut = cOut.lift(c, combine);
 return cOut;
 }
 public CellJunction(A nullValue, Lambda2<A,A,A> combine) {
 this.out = Cell.switchC(
 clients.map(cls -> combines(cls, nullValue, combine)));
 }
 public Cell<A> out;
}

To look at the source code, check it out if you haven’t done so already:

git clone https://github.com/SodiumFRP/sodium

You’ll find the files in sodium/book/writable-remote/java/.

12.4 Writable remote values
We’ll reiterate one of the selling points of FRP: you can manipulate event-handling
logic using code written in a functional style. This isn’t possible with the observer pat-
tern or with actors.

 Here’s why you can do this: the stream and cell values in FRP are immutable values
with compositional properties. Because they’re so well behaved, you can use func-
tional programming techniques on them. This gives you a lot of power.

 Here’s a concrete example, based on the real five-year commercial project that
ended up selling one of the authors on FRP. Let’s say you have a remote data store, and
you want to view and modify fields in it through a GUI form. It could be a server, a data-
base, or perhaps a piece of networking equipment. You also have these requirements:

■ You want to support multiple clients that are always kept up to date.
■ You want the screen representation to be driven by the needs of the user, not

the structure of the database, so you want to apply transformations to the data-
base representation to make it suitable for the user.

Listing 12.5 CellJunction

To be cleaned up when MediaPlayer
closes/wants to stop notifying

Initial/default value of the output.
Function to combine values coming

from registered/added clients.

tion of
s from
stered/
 clients

240 CHAPTER 12 Helpers and patterns

Cleanu
perfor

th
when f
Figure 12.1 shows the example. You’ll transform birthDate from a single field in the
database into three fields for the user to edit.

 Listing 12.6 shows the Value data type used to represents a writable value on the
remote server. A Value can be instantiated by passing a stream to its construct()
method. Events on that stream originate locally and are sent as updates to the remote
database. construct() returns a pair of values in a ValueOutput structure:

■ A Cell<Optional<A>> representing the current value of the Value in the remote
store

■ A Listener representing the cleanup that must be performed by the caller
when it’s finished with the value

import nz.sodium.*;
import java.util.Optional;

public abstract class Value<A> {
 public abstract ValueOutput<A> construct(Stream<A> sWrite);
}

import nz.sodium.*;
import java.util.Optional;

public class ValueOutput<A> {
 public ValueOutput(Cell<Optional<A>> value, Listener cleanup) {
 this.value = value;
 this.cleanup = cleanup;
 }
 public final Cell<Optional<A>> value;
 public final Listener cleanup;
}

Listing 12.7 gives a simple test case showing how you can instantiate and use Values.
You’re using delays here because BackEnd simulates some network delays. First you
construct a value and start listening to it. You wait for it to give its value, and then you

Listing 12.6 Writable remote Value data type

name String
birthDate (Int, Int, Int)

Figure 12.1 Transformation between database and user view: Split birthDate into three fields.

No value if you’re waiting
for it to be fetched

p to be
med by
e caller
inished

241Writable remote values

See the

Waits
value to

Sen
set it to 5 and wait some more so you can see it echoing that update back to you. Back-
End outputs some diagnostic lines, too, starting with “BackEnd:”.

import nz.sodium.*;
import java.util.Optional;

public class simple {
 public static void main(String[] args) {
 BackEnd be = new BackEnd();
 Value<Integer> vAge = be.allocate("age", 0);
 StreamSink<Integer> sAge = new StreamSink<>();
 ValueOutput<Integer> out = vAge.construct(sAge);
 Cell<Optional<Integer>> age = out.value;
 Listener l = age.listen(oa -> {
 System.out.println("age = "+(
 oa.isPresent() ? Integer.toString(oa.get())
 : "<empty>"));
 });
 try { Thread.sleep(1000); } catch (InterruptedException e) {}
 System.out.println("SEND 5");
 sAge.send(5);
 try { Thread.sleep(1000); } catch (InterruptedException e) {}
 l.unlisten();
 }
}

ant simple
simple:
 [java] age = <empty>
 [java] BackEnd: age -> 0
 [java] age = 0
 [java] SEND 5
 [java] BackEnd: age <- 5
 [java] BackEnd: age -> 5
 [java] age = 5

As usual, check it out if you haven’t done so already:

git clone https://github.com/SodiumFRP/sodium

Note that an extra step is required to run the projects in this directory if you’re using
Maven. One of the examples depends on the SWidgets library, so you need to install it
into your local Maven repository:

cd sodium/book/swidgets/java/swidgets
mvn install
cd ../../../../..

Then do this to run it:

cd sodium/book/writeable-remote/java
mvn test -Psimple or ant simple

Listing 12.7 Simple example of using a Value

 next listing.
Creates a new Value
in the back end with
the default value

For sending
updates to

the database
Constructs it

Shows the current
value on the console

for the initial
 be retrieved

ds an update
to the server

Waits for the update
to be echoed back

242 CHAPTER 12 Helpers and patterns

c
e,

cli
The following listing gives the implementation of the simulated remote database back
end. You use StreamJunction from the previous section to do a lot of the work. Look
back a few pages for this code.

import nz.sodium.*;
import java.util.Optional;

public class BackEnd {
 public BackEnd() {}
 public final <A> Value<A> allocate(String name, A initA) {
 StreamJunction<A> j = new StreamJunction<>((l, r) -> l);
 StreamSink<A> s0 = new StreamSink<>();
 Listener l = j.out.listenWeak(a -> {
 new Thread(() -> {
 try { Thread.sleep(50); }
 catch (InterruptedException e) {}
 System.out.println("BackEnd: "+name+" <- " +a);
 s0.send(a);
 }).start();
 });
 Cell<A> c = s0.addCleanup(l).hold(initA);
 return new Value<A>() {
 public ValueOutput<A> construct(Stream<A> sWrite) {
 CellSink<Optional<A>> recvd =
 new CellSink<>(Optional.empty());
 Listener l =
 j.add(sWrite)
 .append(
 c.listen(a -> {
 new Thread(() -> {
 try { Thread.sleep(50); }
 catch (InterruptedException e) {}
 System.out.println("BackEnd: "
 +name+" -> " +a);
 recvd.send(Optional.of(a));
 }).start();
 })
);
 return new ValueOutput<A>(recvd, l);
 }
 };
 }
}

Figure 12.2 shows the GUI example client again.
 Listing 12.9 gives the important code snippets for

implementing the client shown in figure 12.2. If you
want to see the entire program, download and look
at sodium/book/writeable-remote/java/form.java
and the related files in the same directory.

Listing 12.8 Simulated database back end

Merges all
lients’s Writes

When a client writes to the valu
simulates a network transfer …

… and then
updates the state

Value’s state
on the “server”

Constructs a new
ent for this Value

Merges this
client’s sWrite

Combine two
Listeners together

When the server state
is updated, simulates a

network transfer…

…and then feeds
to the client

Figure 12.2 The GUI client example

243Writable remote values
 This code uses three components, which we’ll introduce next:

■ A lens() method on Value that lets you split the date into fields using a getter
and a setter function for each field.

■ A map() method on Value that lets you transform a value, in this case converting
Integer to String. Because you need to convert in both directions (client to
server, server to client), the function you pass must be reversible. Bijection is a
simple container class to represent a pair of a function and its inverse.

■ A VTextField for each field. It handles the GUI side of things for you.

We’re only demonstrating a couple of transformations of Values here. You can use
your imagination to see what else could be done. We’ve also left out a lot of detail. For
example, we aren’t even attempting to get any consistency.

 But we hope you can see that you’re manipulating Values in a clean, high-level way.
This approach utterly transformed the real project this example was based on: Main-
tainability was improved by an order of magnitude.

class Date {
 public Date(int year, int month, int day) {
 this.year = year; this.month = month; this.day = day; }
 public final int year, month, day;
 public final Date setYear(int year_) {
 return new Date(year_, month, day); }
 public final Date setMonth(int month_) {
 return new Date(year, month_, day); }
 public final Date setDay(int day_) {
 return new Date(year, month, day_); }
 public String toString() { return year+"."+month+"."+day; }
}
...
 BackEnd be = new BackEnd();
 Value<String> vName = be.allocate("name", "Joe Bloggs");
 Value<Date> vBirthDate = be.allocate("birthDate",
 new Date(1980, 5, 1));

 Value<Integer> vYear = vBirthDate.lens(
 d -> d.year,
 (dt, y) -> dt.setYear(y)
);
 Value<Integer> vMonth = vBirthDate.lens(
 d -> d.month,
 (dt, y) -> dt.setMonth(y)
);
 Value<Integer> vDay = vBirthDate.lens(
 d -> d.day,
 (dt, y) -> dt.setDay(y)
);
 Bijection<Integer,String> toString = new Bijection<>(
 i -> Integer.toString(i),

Listing 12.9 GUI client for remote server values

Constructs the
database fields

Uses lenses to split
birthDate into year,
month, and day

Forward function:
formats the

integer as a string

244 CHAPTER 12 Helpers and patterns

mo
h
 s -> {
 try { return Integer.parseInt(s); }
 catch (NumberFormatException e) {
 return 0;
 }
 });
 Value<String> vYearStr = vYear.map(toString);
 Value<String> vMonthStr = vMonth.map(toString);
 Value<String> vDayStr = vDay.map(toString);
...
 client.add(new JLabel("Name"), c);
 client.add(new VTextField(vName, 15), c);
 client.add(new JLabel("Birth date"), c);
 client.add(new VTextField(vYearStr, 4), c);
 client.add(new VTextField(vMonthStr, 2), c);
 client.add(new VTextField(vDayStr, 2), c);

 client.setSize(300,100);
 client.setVisible(true);

Now let’s look at each of the components we used to construct the client. First, listing
12.10 gives VTextField. You have three constructors because this is a Java idiom for
constructing things to pass to the superclass in such a way that you can reference them
afterward.

 This is just a thin wrapper around STextField, the FRP-enhanced widget you’ve
been using throughout the book. Essentially, all you’re doing is constructing the value
and then connecting it to the STextField. You also take the cleanup returned from
constructing the Value and execute it in the Java-specific removeNotify() method so
everything is nicely cleaned up when the Java GUI element is disposed.

 Note that sUserChanges is something exported by STextField that you haven’t seen
before. It gives you the changes instigated by the user, ignoring changes made to the
widget externally. If you took all changes, then a change would loop around between
the server and the widget forever.

class VTextField extends STextField {
 public VTextField(Value<String> v, int width) {
 this(new StreamLoop<String>(), v, width);
 }
 private VTextField(StreamLoop<String> sRemoteWrite, Value<String> v,
 int width) {
 this(sRemoteWrite, v.construct(sRemoteWrite), width);
 }
 private VTextField(StreamLoop<String> sRemoteWrite,
 ValueOutput<String> outRemote, int width) {
 super(
 Stream.filterOptional(outRemote.value.value()),
 "",
 width,

Listing 12.10 VTextField: a widget that edits Values

Reverse function: parses
the string to an integer

Converts to string
values for VtextField

Plunks them
on the screen

Widget text
dified by the
Value output Widget starts wit

an empty string
Size of the widget on screen

245Writable remote values

tFeeds u

the r

App
functi

to
 outRemote.value.map(oV -> oV.isPresent())
);
 sRemoteWrite.loop(sUserChanges);
 this.cleanup = outRemote.cleanup;
 }
 public void removeNotify() {
 cleanup.unlisten();
 super.removeNotify();
 }
 private Listener cleanup;
}

The next listing shows the Value.map() method and also Bijection, which is a simple
container for two functions (a function and its inverse).

public abstract class Value<A> {
 ...
 public final Value map(Bijection<A,B> bij) {
 Value<A> va = this;
 return new Value() {
 public ValueOutput construct(Stream sWriteB) {
 ValueOutput<A> out = va.construct(sWriteB.map(bij.fInv));
 return new ValueOutput(
 out.value.map(oa ->
 oa.isPresent() ? Optional.of(bij.f.apply(oa.get()))
 : Optional.empty()),
 out.cleanup);
 }
 };
 }
}
...
import nz.sodium.Lambda1;

public class Bijection<A,B> {
 public Bijection(Lambda1<A,B> f, Lambda1<B,A> fInv) {
 this.f = f;
 this.fInv = fInv;
 }
 public final Lambda1<A,B> f;
 public final Lambda1<B,A> fInv;
}

Listing 12.12 gives Value.lens(), which follows the same idea as Value.map() but is
slightly more complicated. lens() allows you to take a date and zoom in on the year,
for example. The getter extracts the year, and the setter changes it to a new value,
leaving the rest of the date unchanged. Recall that this is how you used it:

Value<Integer> vYear = vBirthDate.lens(
 d -> d.year,
 (dt, y) -> dt.setYear(y)
);

Listing 12.11 Mapping a Value with a reversible function

Makes the widget
editable only when the
remote Value is presenser edits to

emote value

Releases Value resources
on widget dispose

lies the reverse
on on the client
 server updates

Applies the forward
function on the server
to client notifications

Passes the same
cleanup through

Represents a
reversible function

Forward
functionReverse

function

Getter function
Setter function

246 CHAPTER 12 Helpers and patterns
public abstract class Value<A> {
 ...
 public final Value lens(
 Lambda1<A, B> getter,
 Lambda2<A, B, A> setter)
 {
 Value<A> va = this;
 return new Value() {
 public ValueOutput construct(Stream sWriteB) {
 return Transaction.run(() -> {
 StreamLoop<A> sWriteA = new StreamLoop<>();
 ValueOutput<A> out = va.construct(sWriteA);
 Cell<Optional<A>> oa = out.value;
 sWriteA.loop(Stream.filterOptional(
 sWriteB.snapshot(oa, (wb, oa_) ->
 oa_.isPresent()
 ? Optional.of(setter.apply(oa_.get(), wb))
 : Optional.empty()
)
));
 return new ValueOutput(
 oa.map(oa_ ->
 oa_.isPresent()
 ? Optional.of(getter.apply(oa_.get()))
 : Optional.empty()),
 out.cleanup
);
 });
 }
 };
 }
}

To run the form example, check it out if you haven’t done so already, and then run it
like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/writeable-remote/java
mvn test -Pform or ant form

This code shows how you can invent a derived abstraction Value out of a stream going
in one direction and a cell in the other, and how you can manipulate this abstraction
in simple ways. Under the covers, lots of FRP gets constructed, and this happens once
for each field at the end when construct() is finally called by the VTextField. This rei-
fies the Value (as in section 1.17) into the actual code that does the job. It’s a form of
meta-programming.

 This sort of approach is common in functional programming, and it can be power-
ful. What FRP adds to the picture is the ability to use this functional approach on
event-based logic. This is something that actor, the observer, or even plain functional

Listing 12.12 Lens: a Value to represent a field of another Value

Because you’re using a
loop, starts an explicit
transaction for safety.

Uses the setter to
update the field

Uses the getter to
retrieve the field

247Persistence
programming doesn’t give you. Later, we’ll give you an even more ambitious example
of this principle: how to implement a GUI library in FRP.

12.5 Persistence
All FRP state is kept in cells. Sometimes you want to get the entire state of some com-
plex logic and capture it so it can be stored on disk. The basic approach to persistence
in FRP is this:

■ You write a container class containing all the state you want to persist, and write
the persistence functions for it. Let’s call it State.

■ You load the initial state of the system from disk before initializing your FRP
logic. You then pass State state0 (where the 0 means initial) or parts of it as
needed to all code that constructs FRP logic. That logic then picks the right val-
ues and passes them to the hold() and accum() methods that construct the cells
in which you keep your state.

■ You also need to be able to snapshot the current state of the logic. You do this
by using lift primitives to put together a Cell<GlobalState> state reflecting
the entire persistent state of the system, and returning parts of this as needed
from the code that constructs FRP logic. Generally, the state0 going into a frag-
ment of code and the state going out are of types A and Cell<A>, respectively.

Here’s the general pattern:

public class SomeLogic {
 public static class State {
 public State(A a, B b, C c) {
 this.a = a;
 this.b = b;
 this.c = c;

 }
 public final A a;
 public final B b;
 public final C c;
 }
 public final Cell<State> state;
 public SomeLogic(State state0, ...) {
 Cell<A> a = <something>.hold(state0.a);
 Cell b = <something>.hold(state0.b);
 Cell<C> c = <something>.hold(state0.c);
 state = a.lift(b, c, (a_, b_, c_) -> new State(a_, b_, c_));
 }
}

To snapshot the state and commit it to disk, you use snapshot, like this:

Stream<Unit> sSave = ...;
Listener l = sSave.snapshot(state).listen(st -> {
 ...write st to disk...
});

Initiates saving
the state to disk

248 CHAPTER 12 Helpers and patterns
This pattern is clean and easy to implement, and illustrates the power of the orderly
state management that FRP gives you.

12.6 Unique ID generation
Functional programming—and FRP—requires everything to be referentially transpar-
ent. Sometimes you want to be able to generate IDs that you know are unique
throughout the program. Listing 12.13 gives a special trick to do this in a referentially
transparent way.

 This code is imperative and stateful on the inside but referentially transparent on
the outside. The evil has been contained in a neat little box! Zeus, Hermes, and Pan-
dora will be pleased.

package fridgets;

import java.util.Optional;

public class Supply {
 private static class Impl {
 private long nextID = 0;
 public final synchronized long alloc() { return ++nextID; }
 }
 public Supply() { this.impl = new Impl(); }
 private Supply(Impl impl) { this.impl = impl; }
 private final Impl impl;
 private Optional<Long> oID = Optional.empty();
 private Optional<Supply> oChild1 = Optional.empty();
 private Optional<Supply> oChild2 = Optional.empty();
 public final synchronized long get() {
 if (!oID.isPresent())
 oID = Optional.of(impl.alloc());
 return oID.get();
 }
 public final synchronized Supply child1() {
 if (!oChild1.isPresent())
 oChild1 = Optional.of(new Supply(impl));
 return oChild1.get();
 }
 public final synchronized Supply child2() {
 if (!oChild2.isPresent())
 oChild2 = Optional.of(new Supply(impl));
 return oChild2.get();
 }
}

A Supply represents a unique ID value that can be obtained with get(). It also has the
ability to give birth to two children, imaginatively called child1() and child2(). The
two children are guaranteed to yield different ID values from their parent and from
each other. The referential transparency comes from guaranteeing that get(),

Listing 12.13 Generating unique IDs in a referentially transparent way

249An FRP-based GUI system
child1(), and child2() always return the same value, no matter how many times
they’re called.

 In this way, you can pass Supplys around far and wide, and, as long as you’ve been
careful to call child1() and child2() in the right places, the IDs will be guaranteed
unique throughout the program. Unfortunately, it’s possible to make mistakes and
pass the same supply to two different places, so take care.

NOTE Random numbers can be generated functionally in a similar way, but
we won’t cover that.

You’ll make extensive use of this class in the next section.

12.7 An FRP-based GUI system
The implementation of a graphical user interface (GUI) system was one of the early
use cases of object-oriented programming. Today, pretty much every GUI system has
the same basic design—to the point that people have trouble imagining any other way
of doing things.

 We think FRP is a superior paradigm for this particular problem, and we’ll prove it.
We would love to see a full GUI system implemented using FRP, so we introduce
Fridgets, a tiny GUI system implemented entirely in FRP. It handles the drawing of wid-
gets, input handling, focus, and form layout.

12.7.1 Drawable

Fridgets draws its own widgets using 2D graphics. Things to be drawn are represented
by a Drawable class like the one used in chapter 9. In the following listing, you can see
that it’s a base class with a polymorphic draw() method. You can also append draw-
ables together.

package fridgets;

import java.awt.Graphics;

public class Drawable {
 public void draw(Graphics g) {}
 public final Drawable append(Drawable second) {
 Drawable first = this;
 return new Drawable() {
 public void draw(Graphics g) {
 first.draw(g);
 second.draw(g);
 }
 };
 }
}

Listing 12.14 A thing that can be drawn

250 CHAPTER 12 Helpers and patterns
12.7.2 Fridget

Fridget is short for “FRP widget,” and Fridget is
the base class for all fridgets. Figure 12.3 shows
a fat FrButton fridget.

 Fridget (listing 12.15) is a container for a
function of five inputs and three outputs. The
inputs are as follows:

■ Cell<Optional<Dimension>> size—The actual size of the fridget after layout.
This can be Optional.empty(), meaning the size isn’t yet known.

■ Stream<MouseEvent> sMouse—Mouse input events.
■ Stream<KeyEvent> sKey—Keyboard input events.
■ Cell<Long> focus—The ID of the fridget that currently has focus.
■ Supply idSupply—A supply of unique IDs.

And these are the outputs:

■ Cell<Drawable> drawable—How to draw the fridget.
■ Cell<Dimension> desiredSize—The size the fridget wants to be, which is the

input to the layout algorithm.
■ Stream<Long> sChangeFocus—A request to change keyboard input focus to the

fridget with the specified ID.

package fridgets;

import java.awt.Dimension;
import java.awt.event.KeyEvent;
import java.awt.event.MouseEvent;
import java.util.Optional;
import nz.sodium.*;

public abstract class Fridget {
 public static class Output {
 public Output(
 Cell<Drawable> drawable,
 Cell<Dimension> desiredSize,
 Stream<Long> sChangeFocus) {
 this.drawable = drawable;
 this.desiredSize = desiredSize;
 this.sChangeFocus = sChangeFocus;
 }
 public Cell<Drawable> drawable;
 public Cell<Dimension> desiredSize;
 public Stream<Long> sChangeFocus;
 }
 public Fridget(Lambda5<
 Cell<Optional<Dimension>>, Stream<MouseEvent>,
 Stream<KeyEvent>, Cell<Long>, Supply, Output> reify_) {
 this.reify_ = reify_;

Listing 12.15 Fridget interface

Figure 12.3 FrButton fridget

251An FRP-based GUI system
 }
 private final Lambda5<
 Cell<Optional<Dimension>>, Stream<MouseEvent>,
 Stream<KeyEvent>, Cell<Long>, Supply, Output> reify_;
 public final Output reify(
 Cell<Optional<Dimension>> size,
 Stream<MouseEvent> sMouse, Stream<KeyEvent> sKey,
 Cell<Long> focus, Supply idSupply) {
 return reify_.apply(size, sMouse, sKey, focus, idSupply);
 }
}

12.7.3 Your first fridget: FrButton

Listing 12.16 gives the code for the button fridget. It calculates its desired size based
on measuring the label text but draws itself as it’s told to by the input size. In addition
to meeting the requirements of the Fridget interface, it also exports a stream,
sClicked, that fires when the button is clicked. It draws itself differently when the
mouse is held down.

package fridgets;

import java.awt.*;
import java.awt.event.MouseEvent;
import java.util.Optional;
import nz.sodium.*;

public class FrButton extends Fridget {
 public FrButton(Cell<String> label) {
 this(label, new StreamLoop<Unit>());
 }
 private FrButton(Cell<String> label, StreamLoop<Unit> sClicked) {
 super((size, sMouse, sKey, focus, idSupply) -> {
 Stream<Unit> sPressed = Stream.filterOptional(
 sMouse.snapshot(size, (e, osz) ->
 osz.isPresent() &&
 e.getID() == MouseEvent.MOUSE_PRESSED
 && e.getX() >= 2 && e.getX() < osz.get().width-2
 && e.getY() >= 2 && e.getY() < osz.get().height-2
 ? Optional.of(Unit.UNIT)
 : Optional.empty()
)
);
 Stream<Unit> sReleased = Stream.filterOptional(
 sMouse.map(e -> e.getID() == MouseEvent.MOUSE_RELEASED
 ? Optional.of(Unit.UNIT)
 : Optional.empty()));
 Cell<Boolean> pressed =
 sPressed.map(u -> true)
 .orElse(sReleased.map(u -> false))
 .hold(false);
 sClicked.loop(sReleased.gate(pressed));
 Font font = new Font("Helvetica", Font.PLAIN, 13);
 Canvas c = new Canvas();

Listing 12.16 FrButton, the button fridget

252 CHAPTER 12 Helpers and patterns
 FontMetrics fm = c.getFontMetrics(font);
 Cell<Dimension> desiredSize = label.map(label_ ->
 new Dimension(
 fm.stringWidth(label_) + 14,
 fm.getHeight() + 10));
 return new Output(
 label.lift(size, pressed,
 (label_, osz, pressed_) -> new Drawable() {
 public void draw(Graphics g) {
 if (osz.isPresent()) {
 Dimension sz = osz.get();
 int w = fm.stringWidth(label_);
 g.setColor(pressed_ ? Color.darkGray
 : Color.lightGray);
 g.fillRect(3, 3, sz.width-6, sz.height-6);
 g.setColor(Color.black);
 g.drawRect(2, 2, sz.width-5, sz.height-5);
 int centerX = sz.width / 2;
 g.setFont(font);
 g.drawString(label_,
 (sz.width - w)/2,
 (sz.height - fm.getHeight())/2
 + fm.getAscent());
 }
 } }
),
 desiredSize,
 new Stream<Long>()
);
 });
 this.sClicked = sClicked;
 }
 public final Stream<Unit> sClicked;
}

Note that each fridget sees the world in such a way that its top left is at the origin
(0,0). Mouse input events and drawables are adjusted to create this illusion. That way,
the fridget doesn’t need to care where it is in the window.

 Listing 12.17 shows how you construct the widgets. The way you do this is similar to
the SWidgets used in chapters 1 and 2. FrView converts a Fridget into a Swing compo-
nent so you can attach it as the content of your application’s Swing frame. You’ll see
the code for that shortly.

import fridgets.*;
import javax.swing.*;
import nz.sodium.*;

public class button {
 public static void main(String[] args) {

Listing 12.17 Button fridget example

253An FRP-based GUI system
 JFrame frame = new JFrame("button");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setContentPane(Transaction.run(() -> {
 FrButton b = new FrButton(new Cell<>("OK"));
 Listener l = b.sClicked.listen(
 u -> System.out.println("clicked!"));
 return new FrView(frame, b) {
 public void removeNotify() {
 super.removeNotify();
 l.unlisten();
 }
 };
 }));
 frame.setSize(360,120);
 frame.setVisible(true);
 }
}

To run this, check it out if you haven’t done so already, and then run it like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/fridgets/java
mvn test -Pbutton or ant button

12.7.4 Bringing a Fridget to life with FrView

Listing 12.18 shows how you interface a Fridget to Java Swing. The code basically
feeds in the mouse, keyboard, and window resize events and tells the Fridget to take
up the entire window. You don’t do any layout here.

 Handling of current focus is trivially simple. You hold() what the fridget sets it to
and feed that back in.

package fridgets;

import java.awt.event.ComponentAdapter;
import java.awt.event.ComponentEvent;
import java.awt.event.KeyAdapter;
import java.awt.event.KeyEvent;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseMotionListener;
import java.awt.event.MouseEvent;
import java.awt.*;
import javax.swing.*;
import java.util.Optional;
import nz.sodium.*;

public class FrView extends JPanel {
 public FrView(JFrame frame, Fridget fr) {
 StreamSink<MouseEvent> sMouse = new StreamSink<>();
 StreamSink<KeyEvent> sKey = new StreamSink<>();

Listing 12.18 Viewing a Fridget as a Swing component

Javaism to stop listening when
the component is disposed

254 CHAPTER 12 Helpers and patterns
 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 sMouse.send(e);
 }
 public void mouseReleased(MouseEvent e) {
 sMouse.send(e);
 }
 });
 addMouseMotionListener(new MouseMotionListener() {
 public void mouseDragged(MouseEvent e) {
 sMouse.send(e);
 }
 public void mouseMoved(MouseEvent e) {
 sMouse.send(e);
 }
 });
 size = new CellSink<Optional<Dimension>>(Optional.empty());
 addComponentListener(new ComponentAdapter() {
 public void componentResized(ComponentEvent e) {
 if (e.getID() == ComponentEvent.COMPONENT_RESIZED)
 size.send(Optional.of(getSize()));
 }
 });
 frame.addKeyListener(new KeyAdapter() {
 public void keyTyped(KeyEvent e) {
 sKey.send(e);
 }
 });
 CellLoop<Long> focus = new CellLoop<>();
 Fridget.Output fo = fr.reify(size, sMouse, sKey, focus,
 new Supply());
 focus.loop(fo.sChangeFocus.hold(-1l));
 this.drawable = fo.drawable;
 l = l.append(Operational.updates(drawable).listen(d -> {
 repaint();
 }));
 }

 private Listener l = new Listener();
 private final CellSink<Optional<Dimension>> size;
 private final Cell<Drawable> drawable;

 public void paintComponent(Graphics g) {
 super.paintComponent(g);
 drawable.sample().draw(g);
 }
 public void removeNotify() {
 l.unlisten();
 super.removeNotify();
 }
 public void handleKeys(JFrame frame) {
 }
}

255An FRP-based GUI system

T
c

12.7.5 Layout

Layout of widgets in the window is handled by
a FrFlow fridget. It takes as input a direction,
HORIZONTAL or VERTICAL, and a list of child
fridgets to lay out. It lays them out one after
another, horizontally or vertically according to
each fridget’s requested size. Figure 12.4
shows an example of FrFlow; the code is in the
next listing.

package fridgets;

import java.awt.Dimension;
import java.util.Collection;
import java.util.Optional;
import nz.sodium.*;

public class FrFlow extends Fridget {
 public enum Direction { HORIZONTAL, VERTICAL };

 public FrFlow(Direction dir, Collection<Fridget> fridgets) {
 super((size, sMouse, sKey, focus, idSupply) -> {
 Cell<Dimension> desiredSize = new Cell<>(new Dimension(0,0));
 Cell<Drawable> drawable = new Cell<>(new Drawable());
 Stream<Long> sChangeFocus = new Stream<Long>();
 for (Fridget fridget : fridgets) {
 CellLoop<Optional<Dimension>> childSz = new CellLoop<>();
 Fridget.Output fo = new FrTranslate(fridget,
 dir == Direction.HORIZONTAL
 ? desiredSize.map(dsz -> new Dimension(dsz.width, 0))
 : desiredSize.map(dsz -> new Dimension(0, dsz.height)))
 .reify(childSz, sMouse, sKey, focus,
 idSupply.child1());
 idSupply = idSupply.child2();
 childSz.loop(
 size.lift(fo.desiredSize, (osz, foDsz) ->
 osz.isPresent()
 ? Optional.of(dir == Direction.HORIZONTAL
 ? new Dimension(foDsz.width,
 osz.get().height)
 : new Dimension(osz.get().width,
 foDsz.height))
 : Optional.empty()
)
);
 desiredSize = desiredSize.lift(fo.desiredSize,
 dir == Direction.HORIZONTAL
 ? (dsz, foDsz) -> new Dimension(
 dsz.width + foDsz.width,

Listing 12.19 Widget layout with FrFlow

Figure 12.4 Laying out two buttons
horizontally with FrFlow

ranslates the child’s
oordinate space(see

listing 12.20)

Peels off a unique ID
for the child widget

The width is the
child’s desired width.

The height of
the child is

your height.

Desired width:
sum of children

256 CHAPTER 12 Helpers and patterns
 dsz.height > foDsz.height ? dsz.height
 : foDsz.height)
 : (dsz, foDsz) -> new Dimension(
 dsz.width > foDsz.width ? dsz.width
 : foDsz.width,
 dsz.height + foDsz.height));
 drawable = drawable.lift(fo.drawable,
 (drA, drB) -> drA.append(drB));
 sChangeFocus = sChangeFocus.orElse(fo.sChangeFocus);
 }
 return new Fridget.Output(drawable, desiredSize, sChangeFocus);
 });
 }
}

NOTE FrFlow takes a static collection of fridgets to display, but you could
enhance this code to make it dynamic by passing Cell<Collection<Fridget>>
instead. There’s an exercise for you if you’d like one.

Listing 12.19 used FrTranslate, which we give in the next listing. It intercepts incom-
ing mouse events and outgoing drawables, translating their coordinate space accord-
ing to a specified (x,y) offset.

package fridgets;

import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.event.MouseEvent;
import nz.sodium.*;

public class FrTranslate extends Fridget {
 public FrTranslate(Fridget fr, Cell<Dimension> offset) {
 super((size, sMouse, sKey, focus, idSupply) -> {
 Stream<MouseEvent> sMouseNew =
 sMouse.snapshot(offset, (e, o) ->
 new MouseEvent(e.getComponent(), e.getID(),
 e.getWhen(), e.getModifiers(),
 e.getX() - o.width, e.getY() - o.height,
 e.getClickCount(), e.isPopupTrigger()));
 Fridget.Output fo = fr.reify(size, sMouseNew,
 sKey, focus, idSupply);
 Cell<Drawable> drawableNew = fo.drawable.lift(offset,
 (dr, o) -> new Drawable() {
 public void draw(Graphics g) {
 g.translate(o.width, o.height);
 dr.draw(g);
 g.translate(-o.width, -o.height);
 } });
 return new Fridget.Output(drawableNew,
 fo.desiredSize, fo.sChangeFocus);
 });
 }
}

Listing 12.20 FrTranslate: translating a fridget’s coordinate space

Desired height:
maximum of children

Combines
drawables

Combines focus
requests

257An FRP-based GUI system
The next listing shows the main program flow that demonstrates the use of FrFlow.

import fridgets.*;
import javax.swing.*;
import java.util.ArrayList;
import nz.sodium.*;

public class flow {
 public static void main(String[] args) {
 JFrame frame = new JFrame("flow");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setContentPane(Transaction.run(() -> {
 FrButton ok = new FrButton(new Cell<>("OK"));
 FrButton cancel = new FrButton(new Cell<>("Cancel"));
 ArrayList<Fridget> fridgets = new ArrayList<>();
 fridgets.add(ok);
 fridgets.add(cancel);
 Fridget dialog = new FrFlow(FrFlow.Direction.HORIZONTAL,
 fridgets);
 Listener l =
 ok.sClicked.listen(
 u -> System.out.println("OK"))
 .append(
 cancel.sClicked.listen(
 u -> System.out.println("Cancel")
)
);
 return new FrView(frame, dialog) {
 public void removeNotify() {
 super.removeNotify();
 l.unlisten();
 }
 };
 }));
 frame.setSize(360,120);
 frame.setVisible(true);
 }
}

To run this, check it out if you haven’t done so already, and then run it like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/fridgets/java
mvn test -Pflow or ant flow

12.7.6 A form with text fields

Now let’s look at a more complex exam-
ple: a form with two text fields and two
buttons. See figure 12.5.

Figure 12.5 A complex example:
two text fields and two buttons

Listing 12.21 flow example main program

258 CHAPTER 12 Helpers and patterns

tex
m

The next listing shows FrTextField. It’s a lot of code, but think about how much work
it does. Yet it’s not much more complicated than FrButton.

package fridgets;

import java.awt.*;
import java.awt.event.MouseEvent;
import java.util.Optional;
import nz.sodium.*;

class TextUpdate {
 TextUpdate(String txt, int newX) {
 this.txt = txt;
 this.newX = newX;
 }
 String txt;
 int newX;
};

public class FrTextField extends Fridget {
 public FrTextField(String initText) {
 this(initText, new CellLoop<String>());
 }
 private FrTextField(String initText, CellLoop<String> text) {
 super((size, sMouse, sKey, focus, idSupply) -> {
 Stream<Integer> sPressed = Stream.filterOptional(
 sMouse.snapshot(size, (e, osz) ->
 osz.isPresent() &&
 e.getID() == MouseEvent.MOUSE_PRESSED
 && e.getX() >= 2 && e.getX() < osz.get().width-2
 && e.getY() >= 2 && e.getY() < osz.get().height-2
 ? Optional.of(e.getX() - 2)
 : Optional.empty()
)
);
 CellLoop<Integer> x = new CellLoop<>();
 long myId = idSupply.get();
 Cell<Boolean> haveFocus = focus.map(f_id -> f_id == myId);
 Font font = new Font("Helvetica", Font.PLAIN, 13);
 Canvas c = new Canvas();
 FontMetrics fm = c.getFontMetrics(font);
 Stream<TextUpdate> sTextUpdate = Stream.filterOptional(
 sKey.gate(haveFocus)
 .snapshot(text, (key, txt) -> {
 int x_ = x.sample();
 if (key.getKeyChar() == (char)8) {
 if (x_ > 0)
 return Optional.of(new TextUpdate(
 txt.substring(0,x_-1)+
 txt.substring(x_),
 x_-1));
 else
 return Optional.empty();

Listing 12.22 FrTextField fridget

X position in the
t field where the
ouse was clicked

Do you
have focus?

Ignores
keypresses
if no focus

Updates the text
contents according to

keypress, current text,
and cursor position

259An FRP-based GUI system
 }
 else {
 char[] keyChs = new char[1];
 keyChs[0] = key.getKeyChar();
 return Optional.of(new TextUpdate(
 txt.substring(0, x_)+
 new String(keyChs)+
 txt.substring(x_),
 x_ + 1));
 }
 })
);
 x.loop(sPressed.snapshot(text,
 (xCoord, txt) -> {
 for (int x_ = 1; x_ <= txt.length(); x_++)
 if (xCoord < fm.stringWidth(txt.substring(0, x_)))
 return x_-1;
 return txt.length();
 })
 .orElse(sTextUpdate.map(tu -> tu.newX))
 .hold(0));
 text.loop(sTextUpdate.map(tu -> tu.txt).hold(initText));
 Cell<Dimension> desiredSize = text.map(txt ->
 new Dimension(
 fm.stringWidth(txt) + 14,
 fm.getHeight() + 10));
 return new Output(
 text.lift(x, haveFocus, size,
 (txt, x_, haveFocus_, osz) -> new Drawable() {
 public void draw(Graphics g) {
 if (osz.isPresent()) {
 Dimension sz = osz.get();
 g.setColor(Color.white);
 g.fillRect(3, 3, sz.width-6, sz.height-6);
 g.setColor(Color.black);
 g.drawRect(2, 2, sz.width-5, sz.height-5);
 int centerX = sz.width / 2;
 g.setFont(font);
 int cursorX = fm.stringWidth(
 txt.substring(0, x_));
 g.drawString(txt,
 4,
 (sz.height - fm.getHeight())/2
 + fm.getAscent());
 if (haveFocus_) {
 g.setColor(Color.red);
 g.drawLine(4 + cursorX, 4,
 4 + cursorX, sz.height - 5);
 }
 }
 } }),
 desiredSize,
 sPressed.map(xCoord -> myId)
);
 });

Moves the cursor
on a mouse click

Moves the cursor
after a keypress

Holds text
changes

Draws the cursor only
if you have focus

260 CHAPTER 12 Helpers and patterns
 this.text = text;
 }
 public final Cell<String> text;
}

Following is the main program for textfield.

import fridgets.*;
import javax.swing.*;
import java.util.ArrayList;
import nz.sodium.*;

public class textfield {
 public static void main(String[] args) {
 JFrame frame = new JFrame("button");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setContentPane(Transaction.run(() -> {
 FrTextField firstName = new FrTextField("Joe");
 FrTextField lastName = new FrTextField("Bloggs");
 FrButton ok = new FrButton(new Cell<>("OK"));
 FrButton cancel = new FrButton(new Cell<>("Cancel"));
 ArrayList<Fridget> fridgets = new ArrayList<>();
 fridgets.add(ok);
 fridgets.add(cancel);
 Fridget buttons = new FrFlow(FrFlow.Direction.HORIZONTAL,
 fridgets);
 fridgets = new ArrayList<>();
 fridgets.add(firstName);
 fridgets.add(lastName);
 fridgets.add(buttons);
 Fridget dialog =
 new FrFlow(FrFlow.Direction.VERTICAL, fridgets);
 Listener l =
 ok.sClicked
 .map(u -> firstName.text.sample()+" "+
 lastName.text.sample())
 .listen(name -> System.out.println("OK: "+name))
 .append(
 cancel.sClicked.listen(
 u -> System.out.println("Cancel")
)
);
 return new FrView(frame, dialog) {
 public void removeNotify() {
 super.removeNotify();
 l.unlisten();
 }
 };
 }));
 frame.setSize(360,120);
 frame.setVisible(true);
 }
}

Listing 12.23 textfield example main program

261Summary
To run this, check it out if you haven’t done so already, and then run it like this:

git clone https://github.com/SodiumFRP/sodium
cd sodium/book/fridgets/java
mvn test -Ptextfield or ant textfield

12.8 Summary
■ It can be useful to remove duplicate values from cells with a calm()method.
■ Junction is an imperative idea, but it allows you to instantiate modules extensi-

bly that can push their own data into a preexisting stream or cell.
■ Writable remote values are a way to deal neatly with impedance mismatches

between a data back end and a GUI interface.
■ The orderliness of state management in FRP means snapshotting the current

state of something complex for persistent storage is easy to achieve.
■ Supply is a technique from functional programming to generate unique IDs in a

way that’s referentially transparent to the caller.
■ A graphical user interface (GUI) library can be implemented nicely in FRP—

and the code is arguably much better than the common object-oriented
approach.

Refactoring
In your job as a programmer, you’ll often add a feature or fix a bug by adding extra
code to a class or method. As the code gets longer, it can get messier. In this chap-
ter, we’ll illustrate that process by example.

 As the Agile software development methodology emphasizes, when you start to
smell that “code smell” of untidy code, it’s usually a good idea to refactor the code
by breaking the class or method into smaller pieces. This is important because
messy code is complex code, and we’ve argued that complexity can compound.
We’ve also argued that this should be less of an issue in FRP due to its composition-
ality, but refactoring is still important. Fortunately, refactoring with FRP is as easy as
falling off a log.

13.1 To refactor or not to refactor?
If you add extra state and logic to an existing class, this is the question you must ask
yourself. Latent problems in code usually manifest when you make modifications.

This chapter covers
■ A drag-and-drop example
■ Adding some features
■ Contrasting refactoring between OOP and FRP code
262

263A drag-and-drop example
Often, deep in your heart, you’ll hear a little voice calling, “Refactor me!” But do you
always listen?

 The complexity you added gives you an uneasy feeling. That’s because you know at
some point you’ll need to split things up. “It’s only a few small changes,” you reply to
yourself. But the longer you put off refactoring, the more work it will eventually be, as
you can see in figure 13.1.

 Sometimes it’s difficult to see a neat way to do it. Sometimes you don’t want to
incur hours of testing and be blamed for refactoring breakage in someone else’s code;
adding an extra variable and a couple of lines of logic seems infinitely preferable. Yes,
sometimes short-term considerations win out. This is exactly the process by which
Frankenstein created his famous monster.

13.2 A drag-and-drop example
To show FRP refactoring in action, we’ll use a variation on the drag-and-drop exam-
ples developed in chapters 7 and 10. Recall from chapter 7 that there are three types
of mouse event, each associated with an (x, y) position in the window:

■ Mouse down—The mouse button is pressed down.
■ Mouse move—The mouse position changes, but there is no change to the buttons.
■ Mouse up—The mouse button is released.

This implementation doesn’t use switch because we’ll be drawing diagrams and we
haven’t figured out a way to diagram the dynamic changes of a switch.

Figure 13.1 Dale regrets having put off refactoring.

264 CHAPTER 13 Refactoring

g
Om

boile

mouse
of ion

t

13.2.1 Coding it the traditional way

Let’s first look at how you write this in a traditional object-oriented / listener / state
machine style. You typically write a class called DragAndDrop that does the following:

■ Registers listeners on the input events
■ Has fields for the state

To keep things tidy, you’ll use two container classes. Dragging holds the state you need
to keep while dragging. Instead of updating the diagram for each mouse move, you’ll
draw the element separately as it’s dragged and update the document only at the end.
You add a helper method to give a representation of this in a second class, Floating-
Element. This information is used in the paint method to draw the floating element:

class Dragging {
 Dragging(Element elt, Point origMousePos) { ... }
 Element elt;
 Point origMousePos;

 FloatingElement floatingElement(Point curMousePos) {
 Vector moveBy = curMousePos.subtract(origMousePos);

 return new FloatingElement(elt.getPosition().add(moveBy), elt);
 }
}

class FloatingElement {
 FloatingElement(Point position, Element elt) { ... }
 Point position;
 Element elt;
}

Before we get to the rest of the code, we’ll sketch out the logic in a simplified version
of the diagram style used in chapter 2. It uses

■ Round corners for things that output streams
■ Square corners for state (cells)

We’ll keep it simple and leave out the mouseMove event handling, so for now the float-
ing element won’t be drawn as you drag.

 In figure 13.2, the top rounded-corner box (logic) is activated when a mouseDown
event comes in. It snapshots from the document (note the arrow from document) and
asks if an element exists at the mouse position. If it does, it updates dragging with a
value of new Dragging(elt, pos). You’re now dragging elt.

 The rounded-corner box at left is activated by the mouseUp event. If you’re drag-
ging (that is, the dragging variable has a non-null value), you’ll end the drag. You
produce an event labeled drop, and if you follow the arrows, you can see that it causes
three things to happen:

1 null is written into the dragging variable, which puts you back in the idle state
(not dragging).

Container class for the dra
state used during drag

itting
rplate

Element you’re
draggingOriginal

 position
 the drag

Helper method that
returns a representat
of the floating elemen

New position = original
position + distance traveled

Selected element and
the position to draw
it at while floating

265A drag-and-drop example

g
O

bo

mouse
of

ion
t

2 You update the document with the new position for the element.
3 You repaint the window.

The Java pseudocode is shown in the following listing. Shortly we’ll contrast it against
the equivalent FRP.

class Dragging {
 Dragging(Element elt, Point origMousePos) { ... }
 Element elt;
 Point origMousePos;

 FloatingElement floatingElement(Point curMousePos) {
 Vector moveBy = curMousePos.subtract(origMousePos);

 return new FloatingElement(elt.getPosition().add(moveBy), elt);
 }
}

class FloatingElement {
 FloatingElement(Point position, Element elt) { ... }
 Point position;
 Element elt;
}

class DragAndDrop implements MouseListener
{
 Document doc;
 Window window;
 Dragging dragging = null;

 DragAndDrop(Document doc, Window window) {
 ...
 window.addMouseListener(this);
 }

Listing 13.1 Pseudo Java for drag-and-drop logic, traditional object-oriented style

If dragging

Is there an element
at this position?

mouseDown

dragging

document

startDrag
drop

repaint

mouseUp

new Dragging(elt,pos)

null

Move element
to new position

endDrag

Figure 13.2 Minimal drag-and-drop logic

Container class for the dra
state used during dragmitting

ilerplate Element you’re
dragging

Original
position
the drag

Helper method that
returns a representat
of the floating elemen

New position = original
position + distance traveled

Selected element and
the position to draw
it at while floating

Asks the window to call you
back with mouse events

266 CHAPTER 13 Refactoring

docu
its
 void mouseDown(Point mousePos) {
 Element elt = doc.lookupByPosition(mousePos);
 if (elt != null)
 dragging = new Dragging(elt, mousePos);
 }
 void mouseMove(Point mousePos) {
 }
 void mouseUp(Point mousePos) {
 if (dragging != null) {
 FloatingElement flt = dragging.floatingElement(mousePos);
 doc.moveTo(flt.elt, flt.position);
 dragging = null;
 window.repaint();
 }
 }
}

13.2.2 The FRP way: diagrams to code

As we said at the beginning of the book, FRP code directly reflects a box-and-arrows
diagram. Let’s translate our diagram into code.

 In figure 13.3, we put the diagram side-by-side with the equivalent FRP pseudocode.
The structure of FRP code is fundamentally the same as the structure of the diagram.

Starts dragging if you
press down on a
document element

If you’re
dragging…

…moves the
ment element to
 floating position Repaint: assumes the

paint() method reads from
the document directly

startDrag = mouseDown.snapshot(document,
 (pos, doc) -> {
 // do stuff
 }).filter();
drop = mouseUp.snapshot(dragging,
 (pos, drag) -> {
 // do stuff
 }).filter();
endDrag = drop.map(flt -> null);
dragging = startDrag.merge(endDrag)
 .hold(null);
document = drop.accum(new Document(),
 (flt, doc) -> doc.moveTo(flt.elt,
 flt.position));
repaint = endDrag;

If dragging

Is there an element
at this position?

mouseDown

dragging

document

startDrag
drop

repaint

mouseUp

new Dragging(elt,pos)

null

Move element
to new position

endDrag

Figure 13.3 The structure
of FRP code corresponds
closely to a “boxes and
arrows” diagram.

267Adding a feature: drawing the floating element

is
 Observe the following:

■ For brevity, we’ve left out the types in the variable assignments.
■ Each variable (rectangular box) and each italicized label we’ve added to an

arrow corresponds to a statement in the FRP code. These statements are written
as assignments to named variables.

■ Whenever a statement references a variable declared elsewhere, there’s a corre-
sponding arrow in the diagram.

13.3 Adding a feature: drawing the floating element
As it is, the user doesn’t get any visual feedback when they drag an element. You’d like
to draw the element floating as the user drags it. The traditional way would be to make
the mouseMove() method cause a repaint if you’re dragging. The Window instance’s
paint() method, which does the real work, will use document directly to draw the doc-
ument, and it will call the Dragging class’s floatingElement() method to find out
where and how to draw the floating element (we won’t show the code for paint()):

 FloatingElement floatElt = null;

 void mouseMove(Point mousePos) {
 if (dragging != null)
 floatElt = dragging.floatingElement(mousePos);
 else
 floatElt = null;
 window.repaint();
 }
 FloatingElement floatingElement() {
 return floatElt;
 }

Now let’s add this mouseMove handling to the diagram. The additions are shown in
bold; see figure 13.4.

Records floating
element information

Requests the window
to be repainted Window’s paint() calls th

to ask about the floating
element and its position.

If dragging

Is there an element
at this position?

mouseDown

dragging

document

startDrag

dragging.floatingElement(pos)

drop

repaint

mouseMove

floatElt
floatElt

floatUpdate

mouseUp

new Dragging(elt,pos)

null

If dragging

Move element
to new position

null

endDrag

Figure 13.4 Add repaint on
mouseMove so you see the
element floating as you drag
it. Additions are in bold.

268 CHAPTER 13 Refactoring
13.4 Fixing a bug: clicks are being treated as drags
This code has an undocumented feature that annoys the user: clicks are being misin-
terpreted as drags, so when the user clicks an object, it often gets moved slightly. Let’s
fix that by having two phases:

■ Pending—The mouse button has been pressed down, but you haven’t started
moving yet.

■ Dragging—You’ve detected mouse motion while in the pending phase, so the
element is now really being dragged.

You’ll detect mouse motion if the mouse has
moved five pixels or more from the point where
the mouse button was pressed. See figure 13.5: it’s
not until you get outside a five-pixel radius of the
drag origin that the drag starts, at event 3.

 The next listing shows the changed lines in bold to add the extra pending phase.
Note that you have to be careful to use the right state variable in the right place.

class DragAndDrop implements MouseListener
{
 Document doc;
 Window window;
 Dragging pending = null;
 Dragging dragging = null;
 FloatingElement floatElt = null;

 DragAndDrop(Document doc, Window window) {
 ...
 window.addMouseListener(this);
 }
 void mouseDown(Point mousePos) {
 Element elt = doc.lookupByPosition(mousePos);
 if (elt != null)
 pending = new Dragging(elt, mousePos);
 }
 void mouseMove(Point mousePos) {
 if (pending != null &&
 mousePos.distance(pending.origMousePos) >= 5)
 dragging = pending;
 if (dragging != null)
 floatElt = dragging.floatingElement(mousePos);
 else
 floatElt = null;
 window.repaint();
 }
 FloatingElement floatingElement() {
 return floatElt;
 }

Listing 13.2 Code changes to add a pending phase before drag, traditional-style

Figure 13.5 Start the
drag only when you move
outside a five-pixel
radius of the drag origin.

269FRP: refactoring is a breeze
 void mouseUp(Point mousePos) {
 if (dragging != null) {
 FloatingElement flt = dragging.floatingElement(mousePos);
 doc.moveTo(flt.elt, flt.position);
 dragging = null;
 window.repaint();
 }
 pending = null;
 }
}

Figure 13.6 adds this logic to the previous FRP diagram (which was figure 1.7). Addi-
tions are again in bold.

13.5 FRP: refactoring is a breeze
The code in the previous example has a problem: it’s getting messy. In the traditional-
style code presented, it would be easy to make a mistake and mix up pending and
dragging.

 You can improve this by refactoring each variable into a separate class to limit the
scope so one part of the logic sees only pending and the other sees only dragging, and

Is there an element
at this position?

mouseDown

dragging

document

startDrag

dragging.floatingElement(pos)

drop

repaint

mouseMove

floatElt
floatElt

floatUpdate

pending

If dragging

mouseUp

new Dragging(elt,pos)

pending != null &&
moved more than 5 pixels

null

Move element
to new position

null

endDrag

null

If dragging

Figure 13.6 Add a pending phase
before the drag starts. Additions
are in bold.

270 CHAPTER 13 Refactoring
the interface between the classes is clearly delineated. You’ll separate this logic into
three classes:

■ DragPending—Manages pending state
■ Dragging—Manages dragging state
■ DrawFloating—Manages floatElt state

Figure 13.7 shows a typical refactoring in the traditional programming style. You move
the bits of code relating to each state into classes of their own. After that, you’d neaten
up the interfaces between them; for example, DragPending would call a new start-
Drag() method on Dragging to set its dragging state.

Figure 13.8 shows how you refactor in FRP. In practice, you’d do this directly with
code, but we’re using a diagram to get the concept across.

 We’ve “drawn” circles around groups of boxes that are conceptually related, so that
the number of incoming and outgoing arrows is small, and we've given the circles

class Dragging

Dragging pending = null;
Dragging dragging = null;
FloatingElement floatElt = null;

void mouseDown(Point mousePos) {
Element elt = doc.lookupByPosition(mousePos);
if (elt != null)
pending = new Dragging(elt, mousePos);

}
void mouseMove(Point mousePos) {

if (pending != null &&
mousePos.distance(pending.origMousePos) >= 5)

dragging = pending;

if (dragging != null)
floatElt = dragging.floatingElement(mousePos);

else
floatElt = null;

window.repaint();
}
FloatingElement floatingElement() {

return floatElt;
}

void mouseUp(Point mousePos) {
if (dragging != null) {
FloatingElement flt = dragging

.floatingElement(mousePos);
doc.moveTo(flt.elt, flt.position);
dragging = null;
window.repaint();

}
pending = null;

}

class DragPending class DrawFloating

void mouseDown(..) {

}

void mouseMove(..) {

}

void mouseUp(..) {

}

void mouseDown(..) {

}

void mouseMove(..) {

}

void mouseUp(..) {

}

Figure 13.7 Traditional refactoring: separate the code into three classes.

271FRP: refactoring is a breeze
names. Each box corresponds to a statement in the FRP code. You just move those
statements into new classes and fix up the variable references.

 You’d create a structure like the following. We arrived at this by going round the
edge of the lines in the diagram. Each incoming arrow becomes a constructor argu-
ment, and each outgoing arrow becomes a field. In practice, you’d look at each state-
ment and its dependencies:

class DragPending {
 DragPending(Stream<MouseEvent> sMouseDown, Stream<MouseEvent> sMouseUp,
 Stream<MouseEvent> sMouseMove, Cell<Document> document) {}
 Stream<Unit> sStartDrag;
}
class Dragging {
 Dragging(Stream<Unit> sStartDrag, Stream<MouseEvent> sMouseUp) {}
 Cell<Dragging> dragging;
 Stream<DocumentUpdate> sDrop;
 Stream<Unit> sRepaint;
}
class DrawFloating {
 DrawFloating(Stream<MouseEvent> sMouseMove, Cell<Dragging> dragging) {}
 Stream<Unit> sRepaint;
 Cell<Optional<FloatingElement>> floatElt;
}

If dragging

Is there an element
at this position?

mouseDown

dragging

document

startDrag

dragging.floatingElement(pos)

drop

repaint

mouseMove

floatElt
floatElt

floatUpdate

pending
mouseUp

new Dragging(elt,pos)

pending != null &&
moved more than 5 pixels

null

DrawFloating

Dragging

DragPending

If dragging

Move element
to new position

null

endDrag

null

Figure 13.8 FRP refactoring: just
“draw” circles around the modules
you want, and label them.

272 CHAPTER 13 Refactoring
Then you paste the existing FRP statements into the new constructors. Done.
 You don’t have to tease the code apart as you did with the traditional code. Fur-

thermore, the compiler will do a good job of making sure you don’t make mistakes: if
something is out of scope or you paste a statement into the wrong constructor, the
code won’t compile. If you get the order of arguments wrong, the compiler is likely
(but not certain) to complain about a type mismatch.

 We’ll repeat what we said in section 11.4: unit tests are normally used to protect
against code breakage. FRP has so much built-in checking that it generally isn’t neces-
sary to use tests to protect the code against refactoring breakage. But of course, tests
can never hurt. As a result of all this, FRP programmers don’t experience the same
“Should I? Shouldn’t I?” refactoring dilemma.

13.6 Summary
■ Sometimes the difficulty and risk of refactoring lead us to favor short-term con-

siderations. Refactoring gets put off, and code gets messy.
■ FRP code doesn’t get messy as easily due to its compositionality.
■ FRP code is automatically safe and easy to refactor.
■ FRP protects against refactoring breakage so well that unit tests aren’t necessary

for this purpose.
■ The dilemma of short-term versus long-term considerations largely disappears

with FRP.

Adding FRP to
existing projects
Cast your mind back to the beginning of the book where we told the sad tale of a
project hitting the complexity wall. The authors have both lived through this. It’s
actually the underlying motivation for our interest in FRP.

 We think software quality and the costs of achieving it are a serious issue for
industry. Software is being called on to solve more and more complex problems.
There are many reasons for this, but parallelism will be an increasingly important
factor. Existing methods are coming under strain. We need stronger techniques to
deal with this greater complexity, and that’s why industry is looking to what func-
tional programming can offer. FRP is part of that. We think that for certain types of
projects—anywhere there’s a lot of event handling—FRP can help turn intractable
code into maintainable code so you can navigate the complexity wall barrier.

This chapter covers
■ Changing over to immutable data structures
■ Replacing callbacks with streams and cells
■ Program-initialization techniques
■ Combining information sources extensibly with

Junctions
273

274 CHAPTER 14 Adding FRP to existing projects
14.1 Where can FRP help?
Here are some situations where you might consider adding FRP to an existing project:

■ Your project has brittle parts that are FRP-like problems. Perhaps they resemble
some of the examples in this book.

■ Your project is getting the sorts of bugs we described as the six plagues in appen-
dix B, and there have been repeated attempts to fix them.

■ Parts of the code are becoming intractable, or you can see them heading in that
direction.

FRP isn’t an all-or-nothing deal. You can try FRP in limited areas, see how it goes, and
continue if it’s successful. Now we’ll discuss some tips and tricks to make it a smooth
process.

14.2 Changing to immutable data structures
As we said in section 5.5.1, FRP requires the values it works with to be immutable.
Immutability means if a piece of code or FRP logic holds a reference to some data,
you’re absolutely assured that data can’t be changed by some other part of the pro-
gram. The data must not be able to be modified in place.

 We suggest that once you’ve identified part of the code where FRP might be useful,
as a first step you should change over to using immutable data structures, also known as
functional or persistent data structures. This last term has an unfortunate double mean-
ing: we aren’t talking about writing data structures to persistent storage.

NOTE Changing over to immutable data structures is a good idea. By itself it
will give you the benefits of thread safety and compositionality. This is the
essence of functional programming.

Some data types, such as String in Java, are already immutable. But it’s common for
people to use mutable dictionary data types: maps, sets, queues, and arrays. These all
have immutable equivalents that are as efficient or nearly as efficient.

 For example, if you wanted to catalog the tracks in the media library of a media
player by song title, a mutable implementation might look like this:

class MediaLibrary {
 public MediaLibrary() {}
 private Map<Title, Track> tracks = new HashMap<>();
 public void addTrack(Track t) { tracks.put(t.getTitle(), t); }
}

Before you can introduce FRP, you need to make this immutable. You first need to find
an implementation of an immutable dictionary. If you assume one called Immutable-
Map, then here’s an idea of the code:

class MediaLibrary {
 public MediaLibrary() { this(new ImmutableMap<Title, Track>()); }
 private MediaLibrary(ImmutableMap<Title, Track> tracks) {
 this.tracks = tracks;

275Stream as a drop-in replacement for callbacks
 }
 private final ImmutableMap<Title, Track> tracks;
 public MediaLibrary addTrack(Track t) {
 return new MediaLibrary(tracks.insert(t.getTitle(), t));
 }
}

You also need to change the place from which addTrack() is called so it overwrites its
own state with the returned MediaLibrary.

 Once these changes are complete, it becomes possible to keep the media library
state in an FRP cell, like this:

Stream<Track> sAddTrack = ...;
Cell<MediaLibrary> mediaLibrary = sAddTrack.accum(initialTracks,
 (track, library) -> library.addTrack(track));

Make sure you understand why using the mutable implementation of MediaLibrary
shown here would be forbidden by the rules of FRP.

14.3 Stream as a drop-in replacement for callbacks
In many cases, a stream in Sodium can be treated as a drop-in replacement for a lis-
tener/callback/observer pattern mechanism. Here’s an example of making this
replacement.

 Let’s say you’re writing a Player component for your media player that handles
the I/O for the playback. It publishes three things:

■ Whether it’s paused
■ Where you’re up to in the track (seconds)
■ When the track has finished playing

This is shown in the following listing.

public class Player {
 public interface Listener {
 public void paused(boolean isPaused);
 public void seconds(int seconds);
 public void ended();
 }
 private List<Listener> listeners = new ArrayList<>();
 public void addListener(Listener l) {
 listeners.add(l);
 }
 public void removeListener(Listener l) {
 listeners.remove(l);
 }
 public void play(Track t) { ... }
 public void pause() { ... }
 public void resume() { ... }
 public boolean isPaused() { ... }

Listing 14.1 Media player component with observer interface

276 CHAPTER 14 Adding FRP to existing projects
 public int getSeconds() { ... }
 private void notifyPaused(boolean p) {
 for (l : listeners) l.paused(p); }
 private void notifySeconds(int s) {
 for (l : listeners) l.seconds(s); }
 private void notifyEnded() {
 for (l : listeners) l.ended(); }
}

You can replace seconds and paused with cells and ended with a stream, as in the next
listing. Note that you keep the sink sides of the cells and streams private, and you
export them as a Cell or Stream subclass. These classes don’t have a send() method,
so the consumer of the exported cells and streams won’t be able to write to them.

public class Player {
 public void play(Track t) { ... }
 public void pause() { ... }
 public void resume() { ... }
 private final CellSink<Boolean> pausedSnk = new CellSink<>(false);
 public final Cell<Boolean> paused = pausedSnk;
 private final CellSink<Integer> secondsSnk = new CellSink<>(0);
 public final Cell<Integer> seconds = secondsSnk;
 private final StreamSink<Unit> sEndedSnk = new StreamSink<Unit>();
 public final Stream<Unit> sEnded = sEndedSnk;
 private void notifyPaused(boolean p) { pausedSnk.send(p); }
 private void notifySeconds(int s) { secondsSnk.send(s); }
 private void notifyEnded() { endedSnk.send(Unit.UNIT); }
}

You might define a controller that plays the next track when a track ends, as shown in
the next listing.

public class Controller implements Player.Listener {
 public Controller(Player player) {
 this.player = player;
 player.addListener(this);
 playNext();
 }
 private Player player;
 public void ended() {
 playNext();
 }
 public void playNext() { ... }
}

The following listing rewrites this based on the FRP version of Player.

Listing 14.2 Media player component, FRPized

Listing 14.3 Controller to play the next song using the observer interface

277Stream as a drop-in replacement for callbacks

public class Controller {
 public Controller(Player player) {
 this.player = player;
 player.sEnded.listen(() -> playNext());
 playNext();
 }
 private Player player;
 public void playNext() { ... }
}

14.3.1 Caveat: you can’t send() inside a listener

These changes are easy to make, but there’s an important caveat. Sodium has a restric-
tion: it doesn’t allow StreamSink.send() or CellSink.send() to be called from inside
a listener. It will throw an exception at runtime if you do this. This is the case for
two reasons:

■ To ensure that messages are propagated in strict dependency order. If you use
send() directly, then Sodium can’t track the dependency, so we don’t allow it.

■ To discourage writing “FRP code” in an imperative style.

Other FRP systems may not have this restriction, but they tend not to have strict denota-
tional semantics and therefore aren’t “true FRP.” We discussed the importance of this
issue in section 1.2.1 and talked about how RxJS doesn’t comply in chapter 6.

 In the FRPized Controller in the previous example, it’s likely that playNext(),
which is called from this handler

player.sEnded.listen(() -> playNext());

could call send(). Then playNext() would probably call Player.play(), which
would in turn do this:

secondsSnk.send(0);

This wouldn’t be allowed because it breaks the restriction. There are two ways to deal
with this. Which one you choose depends on how much of your program you want to
refactor.

THE CONSERVATIVE WAY: DELEGATING TO ANOTHER THREAD

Instead of doing this

player.sEnded.listen(() -> playNext());

you can dump the processing onto a new thread:

player.sEnded.listen(() -> new Thread() {
 void run() { Player.this.playNext(); }
}.start());

NOTE In Sodium, a listen() handler isn’t allowed to make any assumptions
about what thread it’s running on. Each FRP system has different rules for this.

Listing 14.4 Controller to play the next song, FRPized

278 CHAPTER 14 Adding FRP to existing projects
Spawning a thread like this requires that Player is thread-safe. A better way may be to
use an asynchronous message queue and have Player run its own thread to process
the requests. This is an actor model-like approach, and it neatly solves the concurrency
issues. When dealing with I/O, we generally recommend this approach.

 Doing things this way, you’re treating play() more as I/O than as a state update.
This means your state updates won’t be as “tight.” To state this more precisely, the
state transition from ending one track to starting the next isn’t atomic. Depending on
how the rest of the program works, it may be possible to observe a state between tracks
when nothing is being played. This could be problematic, for example, if you wanted
to detect when the player was idle. It might falsely come to that conclusion between
songs. A full FRP approach eliminates this issue.

THE RADICAL WAY: TRANSFORMING PLAY() INTO A STREAM

Instead of this

Player() { ... }
void play(Track t) {
 secondsSnk.send(0);
 ... Initiate I/O ...
}

you can write

Player(Stream<Track> sPlay) {
 sPlay.listen(t -> { ... Initiate I/O ... });
 seconds = sPlay.map(t -> 0).merge(... other stuff ...).hold(0);
}

where ... other stuff ... is a placeholder for whatever mechanism makes the sec-
onds tick. For this to work properly, you also need to change Controller to manage
all of its state using FRP. Now the code is turning completely into FRP. You’re bringing
discipline to the state management and making the whole thing thread-safe. That’s
the good news.

 But if your program is large, taking this sort of approach consistently may force
you to make too many changes at once. The best approach is to transform code into
the world of FRP in stages, always maintaining a bridge between the imperative and
FRP parts. It’s important to do this in small chunks so you can test as you go.

14.3.2 Choosing the right chunk size

As we said, converting a project to use FRP should be done in small chunks so you can
keep the code tested and running. It’s best to find self-contained modules where you
can initially keep the same interface on the outside. You need to ask these questions:

■ How much of the state is still mutable, and how much work is involved in chang-
ing to immutable data structures?

■ What are the implications for threading when I try to maintain the same exter-
nal interface?

Then do the work and retest before moving on to the next chunk.

279Program initialization with one big transaction
14.4 Program initialization with one big transaction
A lot of programs are structured at the top level a bit like the following code. There
are many dependencies, so sometimes, something akin to c.setD(d); is required,
although this may be in the constructor of d rather than at the top level:

public class Main {
 public static void main(String[] args) {
 ModuleA a = new ModuleA();
 ModuleB b = new ModuleB(a);
 ModuleC c = new ModuleC(a);
 ModuleD d = new ModuleD(b, c);
 c.setD(d);
 while (true) {
 ... main loop ...
 }
 }
}

In large applications, this construction can be pages long and get complex, messy, and
brittle. When the relationships between modules have to be changed, things can break.

 The major source of grief is that a lot of this initialization code is order-dependent.
An example is that things like c.setD(d); imply that c’s reference to d is initially a null
reference. If c tries to access d before setD() is called, then you get a NullPointer-
Exception. In a complex program, it’s difficult to guarantee that this won’t happen.

 FRP tends to eliminate these problems completely because FRP code can be rear-
ranged into any order and always has the same meaning. FRP references can never be
null. Instead, cyclic dependencies are expressed with StreamLoop and CellLoop, and
these can be safely referenced before the loop is resolved.

 As a first step to FRP-ing your code, you typically put a big transaction around the
construction of the modules. Then you can start adding Sodium bit by bit to tidy up
the initialization. The transaction does two things:

■ It allows CellLoop and StreamLoop to be used between modules, because in
Sodium, they have a requirement that their loop() method is called in the
same transaction as their construction.

■ It ensures that if one module calls StreamSink.send() during initialization on
a stream that it’s exporting, other modules are guaranteed to receive the sent
value, regardless of initialization order. In our six plagues, we call this the
plague of missed first event.

There’s a minor issue here that pertains only to Sodium. Because Sodium uses the loan
pattern for explicit transactions, it’s not straightforward to keep the variables a, b, c,
and d in scope during the main loop to keep them alive, but you can solve this by put-
ting the construction of your application into a class. You could make a new class, but
this example writes a constructor for Main because you’re not using it for anything else:

public class Main {
 Main() {
 a = new ModuleA();

280 CHAPTER 14 Adding FRP to existing projects
 b = new ModuleB(a);
 c = new ModuleC(a);
 d = new ModuleD(b, c);
 c.setD(d);
 }
 final ModuleA a;
 final ModuleB b;
 final ModuleC c;
 final ModuleD d;
 public static void main(String[] args) {
 Main m = Transaction.run(() -> new Main());
 while (true) {
 ... main loop ...
 }
 }
}

The cyclic dependency between c and d is now better expressed this way:

StreamLoop<Something> sOutputD = new StreamLoop<>();
c = new ModuleC(a, sOutputD);
d = new ModuleD(b, c);
sOutputD.loop(d.sOutputD);

If you forget to call sOutputD.loop(), you’ll get a runtime exception telling you so,
but this will happen consistently and nothing is dependent on execution order.

14.5 Module extensibility with junction/client registry
At the beginning of this chapter, we suggested that you could replace Player’s play()
method with a stream, using this constructor:

Player(Stream<Track> sPlay)

Using this pattern, the program initialization for the media player might look like this:

StreamLoop<Track> sPlay = new StreamLoop<>();
Player p = new Player(sPlay);
Controller c = new Controller(p);
sPlay.loop(c.sPlay);

But what if multiple controllers in the program wanted to be able to start songs play-
ing? Each would export an sPlay, and you would need to merge them together. You
could of course do this:

sPlay.loop(c.sPlay.orElse(c2.sPlay)
 .orElse(c3.sPlay)
 .orElse(c4.sPlay));

There’s a risk you might forget one of them. In addition, this approach isn’t very
extensible.

 StreamJunction and CellJunction from section 12.3 can be used for these prob-
lems. Let’s return to the example from that chapter. Imagine a mobile phone with

281Summary
a notification area at the top of the screen. Different applications can publish
notifications there. You did this on an imaginary cellphone operating system in which
everything runs in one process. The code worked like this:

CellJunction<List<Message>> notifications = new CellJunction<>(
 new List<Message>(), appendList);
NotificationArea notArea = new NotificationArea(notifications.out);
UpdateManager umgr = new UpdateManager(notifications, ...);
MediaPlayer mediaPlyr = new MediaPlayer(notifications, ...);
Messenger messenger = new Messenger(notifications, ...);

Each constructor registers its own source of notifications with the junction:

Cell<List<Message>> myNotifications = ...;
Listener l = notifications.add(myNotifications);

notifications.out is then a concatenation of all the different notification sources.
 This is a useful construct when you’re adding FRP to an existing program. You may

want to look over that section again.

14.6 Cells can replace mutable variables
Let’s say your application has a Mailbox class with a “number of messages available”
value that can be read, but no notification infrastructure:

class Mailbox {
 private int noOfMessages;
 public final getNoOfMessages() { return noOfMessage; }
}

You can use a cell as a drop-in replacement for this, as in the media player example.
You write into it with noOfMessageSnk.send() and read out of it with noOf-
Messages.sample():

class Mailbox {
 private final CellSink<Integer> noOfMessageSnk
 = new CellSink<Integer>(0);
 public final Cell<Integer> noOfMessages = noOfMessagesSnk;
}

Suddenly, this variable is thread-safe, and it has the extra features that cell gives you,
such as the ability to listen for changes. It also plays nicely with all your FRP code. The
usual rule applies, though, that the value contained in the cell must be an immutable
data type.

14.7 Summary
■ Streams and cells can be used as drop-in replacements for listeners and mutable

variables, respectively.
■ FRP requires values to be immutable, so it can be a good policy to refactor your

code to use immutable variables first. This is a good idea in any case.

282 CHAPTER 14 Adding FRP to existing projects
■ When refactoring with FRP, you should do it in small chunks where you can
keep the external interface so existing code can use it.

■ We recommend that you put one big transaction around your program initial-
ization.

■ The Junction class described in section 12.3 can be a useful helper when you
need extensibility.

Future directions
At the time of writing, given what is possible, it’s still early days for FRP. Like charac-
ters from a Hayao Miyazaki movie, we’ll now let our hair cascade in the wind, the
sun glinting in our goggles as we squint uncomprehendingly at the horizon. In this
chapter, we’ll talk about some of the directions we’d like to see FRP go in.

15.1 Performance
An FRP system knows its data dependencies and can measure its usage patterns at
runtime. There is enormous scope for just-in-time (JIT) compilation and live opti-
mization based on performance characteristics measured at runtime. We think FRP
could be made to run very quickly indeed.

This chapter covers
■ Performance and parallelism
■ Syntax improvements
■ Standardization
■ Precompiling
■ FRP database applications
■ Developer tools
283

284 CHAPTER 15 Future directions
 We should also look at nontraditional computing architectures. FRP abstracts the
machine away, and there may be machines that are well suited for FRP.

15.2 Precompiled FRP for performance or embedded systems
Precompiling FRP would be one way to improve performance, but it would also be
useful for resource-constrained environments. Without switch, it should be easy to
statically compile FRP code into C or for deployment on field programmable gate
arrays (FPGAs). This would be useful on embedded systems, which are often used for
control applications—an application domain that fits FRP well. Implementing switch
would be more of a challenge but should be eminently possible.

15.3 Parallelism
It should be possible to automatically parallelize FRP code to run on multicore sys-
tems. We have to be careful here because implementing automated parallelism tends
to look a lot easier than it really is.

 We have a good starting point. An FRP engine knows all the dependencies and data
flows in the FRP logic, so it can be guaranteed to give the right answer in all cases, but
with total flexibility in how it arranges for the answer to be calculated.

 The simplest approach to parallelism would be to use software transactional mem-
ory (STM) to implement cells. This approach to parallelism works beautifully in Haskell
but runs into problems in other languages because only languages like Haskell can lock
things down sufficiently to ensure that you can’t break some important rules. FRP
achieves a similar level of lockdown due to its highly restricted computational model,
so STM should work well in an FRP engine even in more liberal languages.

 The STM approach would work like this:

■ Two FRP transactions run in parallel, and initially their logical order relative to
each other isn’t decided.

■ If they try to lock the same state, a decision is made as to which transaction is
logically first; the other is rolled back and automatically restarted. This is similar
to what happens in many relational database systems. The efficiency of this
approach would depend on making sure this is a relatively rare occurrence.

■ If they don’t access the same state, the decision about which is logically first
never needs to be made, and the transactions will run in parallel.

A more complicated way to implement parallelism would be to use the techniques of a
JIT compiler to measure processing times and execution patterns at runtime so intelli-
gent decisions could be made about scheduling on multiple processors.

 As for implementing FRP on GPUs, this probably doesn’t make much sense. GPUs
suit a different kind of parallelism called data parallelism where the same operation is
performed many times on large data sets.

15.4 Syntax improvements
The syntax of FRP is clunky in most languages and could be improved hugely with
some kind of preprocessing. There are several things we can do.

285Syntax improvements
15.4.1 Auto-lifting

One key concept is auto-lifting. It should be possible to write this

Cell<Integer> c = a.lift(b, (a_, b_) -> a_ + b_);

in the following way:

c <- a + b

The language would know that a and b are cells and would “auto-lift” the + operator.
The Flapjax FRP system authors did some work in this area.

15.4.2 Implicit forward references

In the Java version of Sodium, you need to use loop classes to allow forward references
for accumulators and such:

CellLoop<Integer> count;
count.loop(sCount.snapshot(count, (u, total) -> total + 1))
 .hold(0));

We’d like forward references to be automatic, so we could just write this:

count <- sCount.snapshot(count, (u, total) -> total + 1)
 .hold(0)

In the Haskell programming language, this exists already. It’s enabled by the
RecursiveDo language extension and the rec keyword.

15.4.3 Infix operators

The Reactive Banana FRP system uses the infix operators <@> and <@ for snapshot. In
our imaginary syntax, this code

count <- sCount.snapshot(count, (u, total) -> total + 1)
 .hold(0)

might become

count <- ((count + 1) <@ sCount).hold(0)

This sort of thing is great for making the syntax more succinct, at the risk of scaring
away people new to FRP.

15.4.4 Type inference

Most languages require many types to be written out explicitly. Java’s lambda syntax is
excellent in this respect:

Stream<Integer> sTotal = eExtra.snapshot(total, (ex, to) -> ex + to);

But C++11 is pretty bad because lambda arguments require type signatures:

stream<int> sTotal = sExtra.snapshot<int,int>(total,
 [] (int ex, int to) { return ex + to; });

286 CHAPTER 15 Future directions
We’d like to write it like this:

sTotal <- sExtra.snapshot(total, (ex, to) -> ex + to);

In FRP, most types can be inferred. This may seem like a small thing, but it can make a
huge difference to the readability of FRP code. This is most pronounced when you
have complex types like Maps and tuples.

 The Haskell programming language already does this. It’s statically typed, but the
bureaucracy of the type checking is mostly hidden so it doesn’t impair code readability.

15.5 Standardization and code reuse
We think FRP should be basic infrastructure, like threading and networking. Standard-
ization will, of course, require wide agreement about how things should be done. FRP
is a powerful infrastructure for developing reusable components. A profusion of dif-
ferent FRP systems that all do the same job to varying degrees of quality isn’t helpful
for innovation in this area.

 We think the major problems have been solved, but we don’t want standardization
too early, either—we’re keen to ensure that we don’t stifle innovation of FRP systems.
One of the aims of this book is to take us toward standardization. We do not wish to
propose a standard directly, but we want to establish a common reference point for
concepts and terminology. We want to describe something people can use in real
applications so they learn the intricacies and pitfalls. We hope this lays some ground-
work out of which a standard can emerge.

 It’s imperative that this standard be based on denotational semantics. There is cur-
rently a serious risk of broken forms of FRP becoming standardized. This would be a
terrible shame. Compositionality is both within our reach and vitally important in this
age of increasing software complexity. We hope the theory we laid down in chapter 5
has helped you understand how important it is. Why throw it away? It’s unnecessary.

15.5.1 Code reuse and FRP abstractions

We’ve talked a lot about how to make the FRP engine better. But what about the possi-
bilities of innovation in FRP logic? There are undreamed vistas of libraries, abstrac-
tions, and paradigms we could build on top of an FRP infrastructure.

 A lack of standardization is a serious hindrance to this. For example, many FRP sys-
tems have their own animation libraries and GUI widget libraries. If we can agree on
what the FRP looks like, we can avoid this replication of effort.

15.5.2 FRP engine performance

Standardization would decouple FRP engine innovation from innovation in FRP-based
abstractions. As things stand, we’re at serious risk of wasting our efforts with these
kinds of fragmentation:

■ Innovative designs in FRP abstractions built on badly supported FRP engines
■ The same engine optimizations replicated in different FRP engines

287Summary
15.5.3 Common syntax between languages

The fact that we have many programming languages to deal with makes the fragmen-
tation even worse. A common syntax that works across languages would hugely
improve this situation.

15.6 FRP database applications
The models of persistence we’ve described in this book have been very basic: snapshot
the state and write the resulting data structure to disk. But we think it’s possible to
implement an FRP system where each cell is automatically associated with a database
key and the values are automatically persistent. An FRP transaction would correspond
to a transaction in the database.

 A web application would be modeled like this:

Stream<Response> application(Stream<Request> sReq);

If a new user comes along, then a switch would allow new cells to be created dynami-
cally to retain that user’s state.

15.7 Visualization and debugging tools
Visualization and debugging tools could provide a graphical representation of FRP
state over time. They would allow us to debug FRP logic without stepping into the FRP
engine implementation. It would also be easy to implement replay debugging, in
which it’s possible to step through the processing both forward and backward in time.

15.8 Visual programming
We think FRP lends itself to visual programming, where the code is manipulated in a
graphical instead of textual form. If you want to see an example of this, Matter-
Machine.com is a private company that uses a web-based FRP-like form of visual pro-
gramming to specify constraints for manufacturing.

15.9 Refactoring tools
Refactoring is already easy in FRP, but it could be automated. You should be able to
drag-and-drop the lines of code you want to factor out into a new module, and have
the variable references fixed up automatically.

15.10 Summary
■ Standardization is highly desirable.
■ FRP syntax tends to be clunky and could be greatly improved.
■ We think FRP has the potential to go very fast.
■ FRP is currently constructed at runtime, making it suitable for just-in-time com-

pilers and runtime optimization. But we think it could also be compiled stati-
cally for embedded systems.

288 CHAPTER 15 Future directions
■ We think FRP could be developed to express database applications, such as
those found commonly on the web.

■ We think FRP could be well suited to visual programming, visual debugging
tools, and automatic refactoring.

That’s it! We hope you’ve enjoyed the book and that we’ve opened some new possibil-
ities for you.

appendix A
Sodium API

A.1 Package nz.sodium

Table A.1 Interfaces

Handler<A> An interface for event handlers

Lambda0<A> An interface for zero-argument lambda functions

Lambda1<A,B> An interface for one-argument lambda functions

Lambda2<A,B,C> An interface for two-argument lambda functions

Lambda3<A,B,C,D> An interface for three-argument lambda functions

Lambda4<A,B,C,D,E> An interface for four-argument lambda functions

Lambda5<A,B,C,D,E,F> An interface for five-argument lambda functions

Lambda6<A,B,C,D,E,F,G> An interface for six-argument lambda functions

Table A.2 Classes

Cell<A> Represents a value of type A that changes over time

CellLoop<A> A forward reference for a Cell equivalent to the Cell that is referenced

CellSink<A> A cell that allows values to be pushed into it, acting as an interface between the
world of I/O and the world of FRP

Lazy<A> A representation for a value that may not be available until the current transac-
tion is closed

Listener A handle for a listener that was registered with Cell.listen(Handler) or
Stream.listen(Handler)

Operational Operational primitives that must be used with care because they break non-
detectability of cell steps/updates
289

290 APPENDIX A Sodium API
A.1.1 Interface Handler<A>

An interface for event handlers:

void run(A a)

A.1.2 Interface Lambda0<A>

An interface for zero-argument lambda functions:

A apply()

A.1.3 Interface Lambda1<A,B>

An interface for one-argument lambda functions:

B apply(A a)

A.1.4 Interface Lambda2<A,B,C>

An interface for two-argument lambda functions:

C apply(A a, B b)

A.1.5 Interface Lambda3<A,B,C,D>

An interface for three-argument lambda functions:

D apply(A a, B b, C c)

A.1.6 Interface Lambda4<A,B,C,D,E>

An interface for four-argument lambda functions:

E apply(A a, B b, C c, D d)

A.1.7 Interface Lambda5<A,B,C,D,E,F>

An interface for five-argument lambda functions:

F apply(A a, B b, C c, D d, E e)

A.1.8 Interface Lambda6<A,B,C,D,E,F,G>

An interface for six-argument lambda functions:

G apply(A a, B b, C c, D d, E e, F f)

Stream<A> Represents a stream of discrete events/firings containing values of type A

StreamLoop<A> A forward reference for a Stream equivalent to the Stream that is referenced

StreamSink<A> A Stream that allows values to be pushed into it, acting as an interface between
the world of I/O and the world of FRP

Transaction Functions for controlling transactions

Tuple2<A,B> A generalized 2-tuple

Table A.2 Classes (continued)

291Package nz.sodium
A.1.9 Class Cell<A>

Represents a value of type A that changes over time.
 A cell with a constant value:

Cell(A value)

Apply a value in a cell to a function in a cell. This is the primitive for all function lifting:

static <A,B> Cell apply(Cell<Lambda1<A,B>> bf, Cell<A> ba)

Lift a binary function into cells so the returned Cell always reflects the specified func-
tion applied to the input cells’ values:

<B,C> Cell<C> lift(Cell b, Lambda2<A,B,C> fn)

Parameter: f, function to apply. It must be referentially transparent.
 Lift a ternary function into cells so the returned Cell always reflects the specified

function applied to the input cells’ values:

<B,C,D> Cell<D> lift(Cell b, Cell<C> c, Lambda3<A,B,C,D> fn)

Parameter: f, function to apply. It must be referentially transparent.
 Lift a quaternary function into cells so the returned Cell always reflects the speci-

fied function applied to the input cells’ values:

<B,C,D,E> Cell<E> lift(Cell b, Cell<C> c, Cell<D> d,
 Lambda4<A,B,C,D,E> fn)

Parameter: f, function to apply. It must be referentially transparent.
 Lift a five-argument function into cells so the returned Cell always reflects the

specified function applied to the input cells’ values:

<B,C,D,E,F> Cell<F> lift(Cell b, Cell<C> c, Cell<D> d, Cell<E> e,
 Lambda5<A,B,C,D,E,F> fn)

Parameter: fn, function to apply. It must be referentially transparent.
 Lift a six-argument function into cells so the returned Cell always reflects the spec-

ified function applied to the input cells’ values:

<B,C,D,E,F,G> Cell<G> lift(Cell b, Cell<C> c, Cell<D> d, Cell<E> e,
 Cell<F> f, Lambda6<A,B,C,D,E,F,G> fn)

Parameter: f, function to apply. It must be referentially transparent.
 Listen for updates to the value of this cell:

Listener listen(Handler<A> action)

This is the observer pattern. The returned listener has a Listener.unlisten()
method to cause the listener to be removed. This is an operational mechanism for
interfacing between the world of I/O and FRP.

 Parameter: action, the handler to execute when there’s a new value. You should
make no assumptions about what thread you’re called on, and the handler shouldn’t

292 APPENDIX A Sodium API
block. You aren’t allowed to use CellSink.send() or StreamSink.send() in the han-
dler. An exception will be thrown because you aren’t meant to use this to create your
own primitives.

 Transform the cell’s value according to the supplied function so the returned Cell
always reflects the value of the function applied to the input Cell’s value:

 Cell map(Lambda1<A,B> f)

Parameter: f, function to apply to convert the values. It must be referentially
transparent.

 Sample the cell’s current value:

A sample()

It may be used in the functions passed to primitives that apply them to Streams,
including Stream.map(), in which case it’s equivalent to snapshotting the cell,
Stream.snapshot(), Stream.filter(), and Stream.merge(). It should generally be
avoided in favor of listen() so you don’t miss any updates, but in many circum-
stances it makes sense.

 A variant of sample() that works with CellLoops when they haven’t been looped yet:

Lazy<A> sampleLazy()

It should be used in any code that’s general enough that it could be passed a Cell-
Loop. See also: Stream.holdLazy().

 Unwrap a cell in another cell to give a time-varying cell implementation:

static <A> Cell<A> switchC(Cell<Cell<A>> bba)

Unwrap a stream in a cell to give a time-varying stream implementation:

static <A> Stream<A> switchS(Cell<Stream<A>> bea)

A.1.10 Class CellLoop<A> extends Cell<A>

A forward reference for a Cell equivalent to the Cell that is referenced.
 Constructor:

CellLoop()

Resolve the loop to specify what the CellLoop was a forward reference to:

void loop(Cell<A> a_out)

It must be invoked in the same transaction as the place where the CellLoop is used.
This requires you to create an explicit transaction with Transaction.run() or
Transaction.runVoid().

A.1.11 Class CellSink<A> extends Cell<A>

A cell that allows values to be pushed into it, acting as an interface between the world
of I/O and the world of FRP. Code that exports CellSinks for read-only use should
downcast to Cell.

293Package nz.sodium
 Construct a writable cell with the specified initial value. If multiple values are sent
in the same transaction, the last one is used:

CellSink(A initValue)

Construct a writable cell with the specified initial value. If multiple values are sent in
the same transaction, the specified function is used to combine them:

CellSink(A initValue, Lambda2<A,A,A> f)

Send a value, modifying the value of the cell:

void send(A a)

send() may not be used in handlers registered with Stream.listen() variants or
Cell.listen(). An exception will be thrown because CellSink is for interfacing I/O
to FRP only. You aren’t meant to use this to define your own primitives.

 Parameter: a, value to push into the cell.

A.1.12 Class Lazy<A>

A representation for a value that may not be available until the current transaction is
closed.

 Constructors:

Lazy(Lambda0<A> f)
Lazy(A a)
A get()

Get the value if available, or throw an exception if not:

A get()

In the general case, this should only be used in transactions after the Lazy was
obtained.

 Map the lazy value according to the specified function so the returned Lazy
reflects the value of the function applied to the input Lazy’s value:

 Lazy map(Lambda1<A,B> f)

Parameter: f, function to apply to the contained value. It must be referentially trans-
parent.

 Lift a binary function into lazy values so the returned Lazy reflects the value of the
function applied to the input Lazy’s values:

<B,C> Lazy<C> lift(Lazy b, Lambda2<A,B,C> f)

Lift a ternary function into lazy values so the returned Lazy reflects the value of the
function applied to the input Lazy’s values:

<B,C,D> Lazy<D> lift(Lazy b, Lazy<C> c, Lambda3<A,B,C,D> f)

Lift a quaternary function into lazy values so the returned Lazy reflects the value of
the function applied to the input Lazy’s values:

294 APPENDIX A Sodium API
<B,C,D,E> Lazy<E> lift(Lazy b, Lazy<C> c, Lazy<D> d,
 Lambda4<A,B,C,D,E> f)

A.1.13 Class Listener

A handle for a listener that was registered with Cell.listen()or Stream.listen()vari-
ants. Deregister the listener that was registered so it will no longer be called back, allow-
ing associated resources to be garbage-collected:

void unlisten()

Combine listeners into one so that invoking unlisten() on the returned listener will
unlisten both the inputs:

Listener append(Listener two)

A.1.14 Class Operational

Operational primitives that must be used with care.
 Push each event onto a new transaction guaranteed to come before the next exter-

nally initiated transaction. Same as split(Stream), but it works on a single value:

static <A> Stream<A> defer(Stream<A> s)

Push each event in the list onto a newly created transaction guaranteed to come
before the next externally initiated transaction:

static <A,C extends java.lang.Iterable<A>> Stream<A> split(Stream<C> s)

Note that the semantics are such that two different invocations of split() can put
events into the same new transaction, so the resulting stream’s events could be simul-
taneous with events output by split() or defer(Stream) invoked elsewhere in the
code.

 A stream that gives the updates/steps for a Cell:

static <A> Stream<A> updates(Cell<A> c)

This is an operational primitive, which isn’t part of the main Sodium API. It breaks the
property of non-detectability of cell steps/updates. The rule with this primitive is that
you should only use it in functions that don’t allow the caller to detect the cell
updates.

 A stream that’s guaranteed to fire once in the transaction where value() is
invoked, giving the current value of the cell, and thereafter behaves like updates(),
firing for each update/step of the cell’s value:

static <A> Stream<A> value(Cell<A> c)

This is an operational primitive, which isn’t part of the main Sodium API. It breaks the
property of non-detectability of cell steps/updates. The rule with this primitive is that
you should only use it in functions that don’t allow the caller to detect the cell
updates.

295Package nz.sodium
A.1.15 Class Stream<A>

Represents a stream of discrete events/firings containing values of type A.
 A stream that never fires:

Stream()

Accumulate on an input event, outputting the new state each time:

<S> Cell<S> accum(S initState, Lambda2<A,S,S> f)

Parameter: f, function to apply to update the state. It may construct FRP logic or use
Cell.sample(), in which case it’s equivalent to snapshot()ing the cell. In addition,
the function must be referentially transparent.

 A variant of accum() that takes an initial state returned by Cell.sampleLazy():

<S> Cell<S> accumLazy(Lazy<S> initState, Lambda2<A,S,S> f)

Attach a listener to this stream so that its Listener.unlisten()is invoked when this
stream is garbage-collected. Useful for functions that initiate I/O, returning the result
of it through a stream:

Stream<A> addCleanup(Listener cleanup)

You must use this only with listeners returned by listenWeak(Handler) so that things
aren’t kept alive when they shouldn’t be.

 Transform an event with a generalized state loop (a Mealy machine). The function
is passed the input and the old state and returns the new state and output value:

<B,S> Stream collect(S initState, Lambda2<A,S,Tuple2<B,S>> f)

Parameter: f, function to apply to update the state. It may construct FRP logic or use
Cell.sample(), in which case it’s equivalent to snapshot()ing the cell. In addition,
the function must be referentially transparent.

 A variant of collect() that takes an initial state returned by Cell.sampleLazy():

<B,S> Stream collectLazy(Lazy<S> initState, Lambda2<A,S,Tuple2<B,S>> f)

Return a stream that only outputs events for which the predicate returns true:

Stream<A> filter(Lambda1<A,java.lang.Boolean> predicate)

Return a stream that only outputs events that have present values, removing the
Optional wrapper and discarding empty values:

static <A> Stream<A> filterOptional(Stream<java.util.Optional<A>> ev)

Return a stream that only outputs events from the input stream when the specified
Cell’s value is true:

Stream<A> gate(Cell<java.lang.Boolean> c)

Create a Cell with the specified initial value, which is updated by this stream’s event
values:

Cell<A> hold(A initValue)

296 APPENDIX A Sodium API
There’s an implicit delay: state updates caused by event firings don’t become visible as
the cell’s current value as viewed by snapshot() until the following transaction. To
put this another way, snapshot() always sees the value of a cell as it was before any
state changes from the current transaction.

 A variant of hold() with an initial value captured by Cell.sampleLazy():

Cell<A> holdLazy(Lazy<A> initValue)

Listen for events/firings on this stream:

Listener listen(Handler<A> handler)

This is the observer pattern. The returned Listener has a Listener.unlis-

ten()method to cause the listener to be removed. This is an operational mechanism
for interfacing between the world of I/O and FRP.

 Parameter: handler, the handler to execute when there’s a new value. You should
make no assumptions about what thread you’re called on, and the handler shouldn’t
block. You aren’t allowed to use CellSink.send() or StreamSink.send() in the han-
dler. An exception will be thrown, because you aren’t meant to use this to create your
own primitives.

 A variant of listen(Handler) that handles the first event and then automatically
deregisters itself:

Listener listenOnce(Handler<A> handler)

This is useful for implementing things that work like promises.
 A variant of listen(Handler) that will deregister the listener automatically if the

listener is garbage-collected:

Listener listenWeak(Handler<A> action)

With listen(Handler), the listener is only deregistered if Listener.unlisten()is
called explicitly. This method should be used for listeners that are to be passed to
addCleanup(Listener) to ensure that things aren’t kept alive when they shouldn’t be.

 Transform the stream’s event values according to the supplied function so the
returned Stream’s event values reflect the value of the function applied to the input
Stream’s event values:

 Stream map(Lambda1<A,B> f)

Parameter: f, function to apply to convert the values. It may construct FRP logic or use
Cell.sample(), in which case it’s equivalent to snapshot()ing the cell. In addition,
the function must be referentially transparent.

 Transform the stream’s event values into the specified constant value:

 Stream mapTo(final B b)

Parameter: b, constant value.
 Merge two streams of the same type into one, so that events on either input appear

on the returned stream:

Stream<A> merge(Stream<A> s, Lambda2<A,A,A> f)

297Package nz.sodium
If the events are simultaneous (that is, one event from this and one from s occur in
the same transaction), combine them into one using the specified combining func-
tion so that the returned stream is guaranteed only ever to have one event per transac-
tion. The event from this will appear at the left input of the combining function, and
the event from s will appear at the right.

 Parameter: f, function to combine the values. It may construct FRP logic or use
Cell.sample(). In addition, the function must be referentially transparent.

 Variant of merge(Stream,Lambda2) that merges a collection of streams:

static <A> Stream<A> merge(java.lang.Iterable<Stream<A>> ss, Lambda2<A,A,A> f)

Return a stream that outputs only one value, which is the next event of the input
stream, starting from the transaction in which once() was invoked:

Stream<A> once()

Variant of merge(Stream, Lambda2) that merges two streams and drops an event in
the simultaneous case:

Stream<A> orElse(Stream<A> s)

In the case where two events are simultaneous (both in the same transaction), the
event from this takes precedence, and the event from s is dropped. If you want to
specify your own combining function, use merge(Stream, Lambda2). s1.orElse(s2)
is equivalent to s1.merge(s2, (l, r) -> l). The name orElse() is used instead of
merge() to make it clear that care should be taken because events can be dropped.

 Variant of orElse(Stream) that merges a collection of streams:

public static <A> Stream<A> orElse(java.lang.Iterable<Stream<A>> ss)

Variant of snapshot() that captures the cell’s value at the time of the event firing,
ignoring the stream’s value:

 Stream snapshot(Cell c)

Return a stream whose events are the result of the combination using the specified
function of the input stream’s event value and the value of the cell at that time:

<B,C> Stream<C> snapshot(Cell c, Lambda2<A,B,C> f)

There’s an implicit delay: state updates caused by event firings being held with hold()
don’t become visible as the cell’s current value until the following transaction. To put
this another way, snapshot() always sees the value of a cell as it was before any state
changes from the current transaction.

 Variant of snapshot() that captures the values of two cells:

<B,C,D> Stream<D> snapshot(Cell cb, Cell<C> cc, Lambda3<A,B,C,D> fn)

Variant of snapshot() that captures the values of three cells:

<B,C,D,E> Stream<E> snapshot(Cell cb, Cell<C> cc, Cell<D> cd,
 Lambda4<A,B,C,D,E> fn)

298 APPENDIX A Sodium API
Variant of snapshot() that captures the values of four cells:

<B,C,D,E,F> Stream<F> snapshot(Cell cb, Cell<C> cc, Cell<D> cd,
 Cell<E> ce, Lambda5<A,B,C,D,E,F> fn)

Variant of snapshot() that captures the values of five cells:

<B,C,D,E,F,G> Stream<G> snapshot(Cell cb, Cell<C> cc, Cell<D> cd,
 Cell<E> ce, Cell<F> cf, Lambda6<A,B,C,D,E,F,G> fn)

A.1.16 Class StreamLoop<A> extends Stream<A>

A forward reference for a Stream equivalent to the Stream that is referenced.
 Constructor:

StreamLoop()

Resolve the loop to specify what the StreamLoop was a forward reference to:

void loop(Stream<A> ea_out)

It must be invoked in the same transaction as the place where the StreamLoop is used.
This requires you to create an explicit transaction with Transaction.run() or
 Transaction.runVoid().

A.1.17 Class StreamSink<A> extends Stream<A>

A stream that allows values to be pushed into it, acting as an interface between the
world of I/O and the world of FRP. Code that exports StreamSinks for read-only use
should downcast to Stream.

 Construct a StreamSink that allows send() to be called once on it per transaction:

StreamSink()

If you call send() more than once, it will throw an exception. If you need to do this,
then use StreamSink(Lambda).

 If you send more than one event in a transaction, they’re combined into a single
event using the specified function. The combining function should be associative:

StreamSink(Lambda2<A,A,A> f)

Parameter: f, function to combine the values. It may construct FRP logic or use
Cell.sample(). In addition, the function must be referentially transparent.

 Send a value to be made available to consumers of the stream:

void send(A a)

send() may not be used in handlers registered with Stream.listen() variants or
Cell.listen(). An exception will be thrown because StreamSink is for interfacing
I/O to FRP only. You aren’t meant to use this to define your own primitives.

 Parameter: a, value to push into the cell.

299Package nz.sodium.time
A.1.18 Class Transaction

Functions for controlling transactions.
 Run the specified code in a single transaction, with the contained code returning a

value of the parameter type A:

static <A> A run(Lambda0<A> code)

In most cases this isn’t needed because the primitives always create their own transac-
tion automatically, but it’s required in some circumstances.

 Run the specified code in a single transaction:

static void runVoid(java.lang.Runnable code)

In most cases this isn’t needed because the primitives always create their own transac-
tion automatically, but it’s required in some circumstances.

 Add a runnable that will be executed whenever a transaction is started:

public static void onStart(java.lang.Runnable r)

That runnable may start transactions itself, which won’t cause the hooks to be run
recursively. The main use case for this is the implementation of a time/alarm system.

 Execute the specified code after the current transaction is closed, or immediately
if there is no current transaction:

public static void post(java.lang.Runnable action)

A.1.19 Class Tuple2<A,B>

A generalized 2-tuple.
 Constructor:

Tuple2(A a, B b)

First value:

A a

Second value:

B b

A.2 Package nz.sodium.time

A.2.1 Interface Timer

A handle for a pending timer:

void cancel()

A.2.2 Interface TimerSystemImpl<T>

An interface for implementations of FRP timer systems.
 Return the current clock time:

T now()

300 APPENDIX A Sodium API
Run all pending timers scheduled for up to and including the specified time:

void runTimersTo(T t)

Set a timer that will execute the specified callback at the specified time:

Timer setTimer(T t, java.lang.Runnable callback)

Returns a handle that can be used to cancel the timer.

A.2.3 Class MillisecondsTimerSystem extends
TimerSystem<java.lang.Long>

A timer system implementation using Java’s System.currentTimeMillis() clock:

MillisecondsTimerSystem()

A.2.4 Class SecondsTimerSystem extends
TimerSystem<java.lang.Double>

A timer system implementation where the clock is a floating-point number of seconds
since program start:

SecondsTimerSystem()

A.2.5 Class TimerSystem<T extends java.lang.Comparable>

A system for time and timers.
 Constructor:

TimerSystem(TimerSystemImpl<T> impl)

A cell giving the current clock time:

Cell<T extends java.lang.Comparable> time

A timer that fires at the specified time:

Stream<T> at(Cell<java.util.Optional<T>> tAlarm)

appendix B
The six plagues of

event handling

We’ve identified six sources of bugs in the observer pattern. FRP banishes all of
them. Here we’ll describe each problem in detail, with a short explanation of how
FRP fixes it.

B.1 Plague 1: unpredictable order
Let’s say you’re developing a program for drawing diagrams, in which graphical
elements can be selected or deselected. The rules are these:

■ If you click an item, it’s selected.
■ If an item is selected and you click elsewhere, it gets deselected.
■ When nothing is selected, you see a crosshair

cursor.
■ When any element is selected, the cursor is an

arrow.

Figure B.1 shows three steps performed with the dia-
gram program:

1 At first nothing is selected, and you’re ready
to click the triangle.

2 When you’ve clicked the triangle, it’s high-
lighted, and you see an arrow cursor.

3 You get ready to click the octagon.

Figure B.1 Three steps in using the diagram program
301

302 APPENDIX B The six plagues of event handling
At this point, a single mouse click will cause two events to be generated:

■ Deselecting the triangle.
■ Selecting the octagon.

The following listing shows the code to set the shape of the cursor depending on how
many items are selected.

public interface SelectionListener {
 void selected(Item i);
 void deselected(Item I);
}

public class CursorMonitor implements SelectionListener {
 private HashSet<Item> selectedItems = new HashSet();
 public void selected(Item i) {
 selectedItems.add(i);
 updateCursor();
 }
 public void deselected(Item i) {
 selectedItems.remove(i);
 updateCursor();
 }
 private void updateCursor() {
 if (selectedElts.isEmpty()) crosshairCursor(); else

 arrowCursor();
 }
}

Now, what if the customer wants the cursor to stay solidly as an arrow in this case, with-
out any brief flicker?

 To achieve this, you need to either guarantee to process the selection before the
deselection or wrap the whole thing in some sort of transaction and update the cursor
at the end of it. The first option is difficult because the order of event arrival is unpre-
dictable; it depends on the order in which the listeners were registered, and this is out
of your control in this part of the code. The second option is possible but could com-
plicate the code significantly. FRP is transactional, so it deals with these sorts of issues
very neatly.

B.2 Plague 2: missed first event
Let’s say you have a class that establishes a connection to a server when it’s demanded:

Connector conn = new Connector();
conn.requestConnect(true);

You can also register listeners to do whatever is needed to communicate with the
server once the session has been established. The public interface for this class is
shown next.

Listing B.1 Setting the mouse cursor according to the number of items selected

303Plague 3: messy state

public class Connector {
 public interface Listener {
 public void online(Session s);
 public void offline(Session s);
 }
 public void addListener(Listener l);
 public void removeListener(Listener l);
 public void requestConnect(boolean toConnect);
 ...
}

During program initialization you have these lines:

Connector conn = new Connector();
Demander dem = new Demander(conn);
Talker tkr = new Talker(conn);

The job of Demander is to decide when you want a session to be started, and Talker
performs the job of communicating with the server. In the Talker constructor, it regis-
ters itself as a listener using conn.addListener().

 The program works great, but then someone makes this change:

■ Make Demander persist its requestConnect() state to disk so it can be true as
soon as the program starts.

This continues to work great because the establishment of a connection to the server
is asynchronous, so Talker gets a chance to be initialized before the connection is
established in practice.

 All is well until the customer decides to use some sort of proxy running on the
local machine. They configure the program to talk to a server on localhost. The
socket code just happens to be written in such a way that the socket connection com-
pletes immediately in this case, and this happens before Talker is constructed. Talker
has now missed the first online() event, so the program connects, but it doesn’t actu-
ally talk to the server.

 Many problems of this sort have their origin in issues of initialization order and
processing order. FRP solves these problems by all but eliminating processing order as
a consideration in your code.

B.3 Plague 3: messy state
State machine is a term used to describe any piece of program logic that has a set of
internal states and a set of transitions between those states, triggered by asynchronous
external events. A state machine can be represented as a diagram of circles (repre-
senting states) with arrows between them (representing state transitions caused
by events).

 The observer pattern tends to push you toward a classic state-machine style. When
a class is listening to multiple event sources, this can get messy.

Listing B.2 Connector class

304 APPENDIX B The six plagues of event handling
 For example, let’s say you take Connector from the previous example and add this
functionality:

■ Cooperatively tear down a session: When Connector receives requestCon-
nect(false), it will send a tearDown() request to a number of active sessions,
passing a callback they must use to notify Connector when they have completed
their tear-down sequence.

The new interface is shown in the next listing.

public interface Listener {
 public void online(Session s);
 public void offline(Session s);
 public interface TearDownCallBack {
 public void tornDown();
 }
 public void tearDown(Session s, TearDownCallBack cb);
}

Connector now has four possible states:

■ OFFLINE

■ CONNECTING
■ ONLINE
■ TEARING_DOWN (waiting for one or more sessions to tear down)

Following are the events you’ll receive. You have to make sure each event is handled
correctly in each state:

■ requestConnect() transitions to true.
■ Network connection is established.
■ Network connection failed.
■ requestConnect() transitions to false.
■ Client acknowledges tear-down.

Four states multiplied by 5 input events gives 20 combinations, many of which are
invalid. But you have to think carefully to make sure these invalid states won’t occur.

 There are also some edge cases:

■ Network connection succeeds or fails synchronously. That is, the callback hap-
pens before the method to initiate the connection returns.

■ Zero clients, in which case you skip the TEARING_DOWN state.
■ Client calls back synchronously (before the call to tearDown() returns).

We won’t sketch out the code, but hopefully you can imagine that the implementation
of Connector might be bad, but not awful. But throw in a few more complicating fac-
tors, and it could get that way. Networking is a great source of complication.

Listing B.3 Modified Connector.Listener

305Plague 4: threading issues
 In this style of coding, it’s easy to make mistakes and difficult to debug them. For
example, what if one of your “talkers” has an intermittent bug and never calls back
tornDown()? Can you find this bug when all you have to work with is an event log? FRP
brings a considerable amount of order to this chaos.

B.4 Plague 4: threading issues
Was that last example complex enough for you? Let’s make it thread-safe.

 The five input events could now come in on different threads. In addition,
addListener() and removeListener() calls could come in on any thread, and you
need to guarantee that once removeListener() has returned to its caller, no more
callbacks can happen.

 If you do nothing, race conditions will make the program collapse in on itself in a
smoldering ruin. You could use the synchronized keyword, which tells Java to lock a
mutex attached to the class instance—in this case, Connector. This mostly works. The
following listing shows one way to make notifyOnline() thread-safe, but it’s a bit
dangerous.

protected synchronized void notifyOnline(Session s)
{
 for (l : listeners) l.online(s);
}

It’s dangerous because you don’t know what the listener’s handler might do. It might
lock something, too. Its listener might lock something. It might work perfectly a thou-
sand times. It might work perfectly a million times. But the specter of the deadlock
walks close behind, shadowing your footsteps.

 If this doesn’t send cold fingers of dread creeping up your spinal column, then
welcome to your new career as a programmer—you’re young and inexperienced. If
the wehi—the fear—doesn’t keep you awake at night, then vats of coffee will, while you
take phone calls every half hour from your customer, reassuring them it will be fixed
by morning…as your heart sinks with doubt about whether it really will be.

NOTE Now you know what led us to FRP and to writing this book. There had
to be a better way.

To sidestep this horror, you typically take a thread-safe copy of the listeners list so
you can notify listeners outside the synchronized block, as shown in the next listing.

protected void notifyOnline(Session s) {
 List<Listener> ls;
 synchronized (this) {
 ls = listeners.clone();

Listing B.4 Dangerous thread-safe notify

Listing B.5 Much better thread-safe notify

306 APPENDIX B The six plagues of event handling
 }
 for (l : ls) l.online(s);
}

Problem solved.
 Oh you think so, do you? The following listing is an attempt to implement a

thread-safe removeListener().

public synchronized void removeListener(Listener l) {
 listeners.remove(l);
}

Now look back at notifyOnline() in listing B.5. How do you guarantee that there will
be no more callbacks after removeListener() has returned to its caller? This isn’t at
all straightforward.

 FRP makes all these threading problems vanish into thin air, in a Harry Potter sort
of way. (Yes, you really did buy this book from the nonfiction section.)

B.5 Plague 5: leaking callbacks
Let’s say you registered a listener with some event source, but when you were finished
with it, you inadvertently forget to call removeListener(). Your listener is still refer-
enced by that event source’s listeners list, so your listener is kept alive and chews up
memory even though you don’t need it to. Not only that, it wastes CPU time every time
it’s called back. What happened to the safety that garbage collection was supposed to
give you?

Listing B.6 Thread-safely removing a listener—or does it?

Threads (wrongly?) considered harmful

Many have argued that we should stop reaching for a thread when we need concur-
rency, including John Ousterhout in his short 1995 presentation, “Why Threads Are
a Bad Idea (for Most Purposes)” (https://web.stanford.edu/~ouster/cgi-bin/papers/
threads.pdf). They’re “very hard to program,” he says. “Unless we need true CPU con-
currency, events are better.”

Ah, yes, things were so simple in 1995. Fast-forward to the multicore age, and threads
are no longer optional.

Threads are defined as multiple independent execution streams, shared mutable
state, preemptive scheduling, synchronization. But wait a minute! What if there’s no
shared state? Then there’s no synchronization, either. Threads don’t look so bad after
all. Is shared state so deeply rooted in our belief system that we blame threads, when
shared mutable state is the real culprit? We think so.

Are the synchronization problems in this section really a problem with threads, or with
shared mutable state?

https://web.stanford.edu/~ouster/cgi-bin/papers/threads.pdf
https://web.stanford.edu/~ouster/cgi-bin/papers/threads.pdf

307Plague 6: accidental recursion
 As we said in chapter 1, the main point of the observer pattern is that it inverts the
natural dependency so the producer doesn’t depend on the consumer. But the pro-
ducer still keeps the consumer alive. Ideally, we would like this reversed also. FRP does
exactly this.

B.6 Plague 6: accidental recursion
Returning to the connector example, the following code fragment is how you might
implement cooperative tear-down of sessions, with some bugs added to shake things up.

public class Connector {
 public interface Listener {
 public void online(Session s);
 public void offline(Session s);
 public interface TearDownCallBack {
 public void tornDown();
 }
 public void tearDown(Session s, TearDownCallBack cb);
 }
 private boolean shouldBeOnline;
 private Map<Session, Listener> activeSessions = new HashMap<>();
 ...

 public void requestConnect(boolean req) {
 this.shouldBeOnline = req;
 update();
 }

 private void notifyTearDown() {
 for (Map.Entry<Session, Listener> e : activeSessions.entrySet()) {
 final Session s = e.getKey();
 final Listener l = e.getValue();
 Listener.TearDownCallBack cb =
 new Listener.TearDownCallBack() {
 void tornDown() {
 activeSessions.remove(s);
 update();
 }
 };
 e.getKey().tearDown(s, cb);
 }
 }

 private void update() {
 switch (state) {
 ...
 case State.ONLINE:
 if (!shouldBeOnline) {
 notifyTearDown();
 state = State.TEARING_DOWN;
 }

Listing B.7 Cooperative tear-down of a session, with bugs

Bug 1B

308 APPENDIX B The six plagues of event handling
 break;
 case State.TEARING_DOWN:
 if (activeSessions.isEmpty()) {
 notifyOffline();
 state = State.OFFLINE;
 }
 else
 break;
 ...
 }
 }
 ...
}

During the call to notifyTearDown() B, one of the handlers notifies tornDown()
immediately if it has no work to do. This doesn’t work properly, because you haven’t
changed state to TEARING_DOWN yet. The isEmpty() check will never be performed.
This is easily fixed by reversing the order of the two lines, like this:

state = State.TEARING_DOWN;
notifyTearDown();

The same problem exists c when you notify that the session is offline, if the offline
handler calls you back for some reason (perhaps to go back online again).

 As we said, this is easily fixed. But you need to think carefully to make sure you
don't make mistakes like this. Wouldn’t it be nice if these sorts of errors were impossi-
ble? In FRP, they are.

 Did you spot the other bug we slipped in there—the case where there are zero ses-
sions isn’t handled correctly? You need to put the break inside an else so you drop
through and handle the State.TEARING_DOWN case once after the call to notifyTear-
Down(). Here’s the corrected code:

case State.ONLINE:
 if (!shouldBeOnline) {
 state = State.TEARING_DOWN;
 notifyTearDown();
 }
 else
 break;

This style of coding is just bad. We hope this book contributes to reducing the amount
of it in the world, although FRP doesn’t have a monopoly on solving these problems.

Bug 2c

appendix C
Comparison of FRP systems

The tables in this appendix relate the primitives named in this book to each sys-
tem’s API. They’re not necessarily directly equivalent, but you will be able to tell
where in that system’s API to start looking. If a field is blank, there is no equivalent.

 Variable names give clues, mainly these:
■ s—Stream

■ c—Cell

■ i—Initial value
■ h—Handler
■ a—Value

Table C.1 Cheat sheet for Sodium, RxJS, and Bacon.JS

Primitive Sodium (Java) RxJS (JS) Bacon.JS (JS)

Stream Stream Rx.Observable EventStream

Cell Cell Rx.BehaviorSubject Property

never new Stream() Rx.Observable.of() Bacon.never()

constant new Cell(i) Rx.Observable.of(i) Bacon.constant(i)

map (S) s.map(f) s.map(f) e.map(f)

map (C) c.map(f) c.map(f) p.map(f)

merge s1.orElse(s2)
s1.merge(s2)

s1.merge(s2) s1.merge(s2)

hold s.hold(i) var c = new
Rx.BehaviorSubject(i);
s.subscribe(c);

s.toProperty(i)
309

310 APPENDIX C Comparison of FRP systems

snapshot s.snapshot(c,
f)

s.withLatestFrom(c, f) c.sampledBy(s, f)

filter s.filter(f) s.filter(f) s.filter(f)

lift c1.lift(c2, f) c1.combineLatest(c2, f) c1.combine(c2, f)

sample c.sample()

switch Cell.switchS()
Cell.switchC()

s.flatMapLatest(f) s.flatMapLatest(f)

accum s.accum(i, f) s.scan(i, f) s.scan(i, f)

listen s.listen(h)
c.listen(h)

s.subscribe(h) s.listen(h)
p.listen(h)

send StreamSink /
ss.send(a)
CellSink /
cs.send(a)

Rx.Observable.create(f) new
Bacon.EventStream(f)

Table C.2 Cheat sheet for Kefir.js, Flapjax, and Reactive Banana

Primitive Kefir.js (JS) Flapjax (JS) Reactive Banana (Haskell)

Stream Stream EventStream Event

Cell Property Behavior Behavior

never Kefir.never() zeroE() never

constant Kefir.constant(i) constantB(i) pure i

map (S) s.map(f) mapE(f, s) fmap f s

map (C) p.map(f) liftB(f, c) fmap f c

merge s1.merge(s2) mergeE(s1, s2) union

hold s.toProperty(function
() { return k; })

startsWith(s, i) stepper i s

snapshot p.sampledBy(s, f) snapshotE(s, c) c <@ s
fmap f c <@> s

filter s.filter(f) filterE(s, f) filterE f s

lift p1.combine(p2, f) liftB(f, c1, c2) liftA2 f c1 c2

sample valueNow(c) valueB

switch s.flatMapLatest(f) switchE(s)
switchB(c)

switchE s
switchB c

Table C.1 Cheat sheet for Sodium, RxJS, and Bacon.JS (continued)

Primitive Sodium (Java) RxJS (JS) Bacon.JS (JS)

311Comparison of FRP systems
accum s.scan(f, i) collectE(s, i, f) accumE s

listen s.onValue(h) mapE(h) Done differently

send Kefir.stream(f) ReceiverE() /
sendEvent(a, s)

Done differently

Table C.3 Cheat sheet for ReactFX and ReactiveCocoa

Primitive ReactFX (Java) ReactiveCocoa (Objective-C)

Stream EventStream RACSignal

Cell Val RACBehaviorSubject

never new EventStreamBase() [RACSignal never]

constant Val.constant(i) [RACSignal return:i]

map (S) s.map(f) [s map:f]

map (C) c.map(f) [c map:f]

merge EventStreams.merge(s1, s2) [RACSignal merge:@[s1, s2]]

hold Val.wrap(s.toBinding(i)) c = [RACBehaviorSubject
behaviorSubjectWithDefaultValue:i
]
[c subscribe:s]

snapshot c.emitOn(s) [c sample:s]

filter s.filter(f) [s filter:f]

lift Val.combine(c1, c2, f) [combineLatest:@[c1,c2] reduce:f]

sample c.get()

switch s.flatMap(f) [s flatten:1]

accum s.accumulate(i, f) [s scanWithStart:i reduce:f]

listen s.subscribe(h) [s subscribeNext:h]

send new EventSource<>() /
s.push(a)

RACSubject* s = [RACSubject
subject]
[s sendNext:a]

Table C.2 Cheat sheet for Kefir.js, Flapjax, and Reactive Banana

Primitive Kefir.js (JS) Flapjax (JS) Reactive Banana (Haskell)

appendix D
A section for managers

D.1 Doing what you said you’d do
As a manager, you need to be able to set reasonable expectations and deliver on
them. The Agile movement has traded a short-term benefit of showing progress
early for an ability to predict on an ongoing basis. Agile delivers on that promise,
but the project’s success or failure still relies on the quality of the code you write.

 Whether you’ve got an Agile team or not, it’s important for you to get consistent
results. It doesn’t matter whether your organization values consistency or efficiency.
They go hand in hand, and if you have buggy software, you end up with neither.
Having a comprehensive test suite helps you find bugs, but it’s still better not to
have the bugs in the first place.

 Let’s write a definition of what ideal looks like for the engineering manager of
an e-commerce site. The business people ask for a new feature. You deliver a work-
ing prototype within a few hours. You get their feedback, which involves a number
of changes. You make the functional changes in a few days and leave the aesthetic
ones on a prioritized backlog. From very early in the project, you have something
that works, and you spend most of your time counting pixels to make sure it looks
just right. You meet your business deadline according to your estimate. It isn’t per-
fect, but it does a pretty good job.

 Two things aren’t ideal. The first is the cost of redoing things because you don’t
always understand what the business people want up front. The second is the ongo-
ing cost of real bugs. Real bugs are where the code does something different from
what you intended. You wouldn’t believe us if we told you that FRP code always does
what it looks like it does. It doesn’t, and we wouldn’t make such a claim. But we’ll
ask you to look for the six plagues in your recent bug reports and imagine how life
would be if those bugs had never happened. We’re saying that a certain subset of
the problems that you have is preventable, even though they’ve plagued the indus-
try for decades.
312

313Who else is using FRP?
 There’s always a new snake oil; a new buzzword; some product, language, or
scheme that promises to fix all your woes. We’re sure you’ve seen it all before. Some of
these things help a little, and many of them are blind alleys. Often they’re just new
terms for things you’re already doing. It puts us in a difficult position when it comes to
making claims. This is why we’re very specific about the kinds of problems we claim to
solve. You need to be able to run your own numbers.

 We’ve always had success making some level of investment in the team’s worst paper
cuts. If you find your team is working around the same problem time and time again,
then making time to fix it usually pays off. If our six plagues are showing up in your bug
reports, then FRP can probably help. This will depend on what type of code your project
consists of. If there’s a lot of event handling, then FRP may be worth trying out.

D.2 What is the investment?
We hope your lead developer has read this book and is already excited. If not, you
need to find someone who is motivated to do things differently and give them this
book to read. You should be able to find a FRP library for the programming language
you’re using. Otherwise you’ll need to port an existing FRP system, but this isn’t diffi-
cult. You’ll also need to spend some time adding FRP bindings to existing widgets,
devices, or whatever the I/O parts of your system are.

 Once you have the basic building blocks, you can start the clock and compare writ-
ing a new feature using FRP. We’re sure you’ll pay attention to the time it takes to write
the code. You should pay special attention to the number of bugs you find and espe-
cially whether you see any of the six plagues. If the six plagues are banished, then FRP
does what it says on the box.

 Depending on the size of the codebase, you’ll see an ongoing cost for converting
your old code into FRP code. Usually this works out to be quicker and easier than fix-
ing bugs in the old code, but it’s definitely something you need to be active about
managing. These costs will be offset by a reduced number of bugs in new features.

D.3 Can I hire people with FRP experience?
Maybe, although more than likely FRP programmers are happy in their current jobs.
But people interested in general functional programming will be lining up to come
work for you. Our experience in hiring people is that it takes three to six months to
become a true FRP expert. Hiring graduates is a good proposition because you don’t
have to pay for the more conventional experience that you’re not going to use. You
should still make sure you have experienced programmers on your team.

D.4 Who else is using FRP?
People’s perception of technology seems to be heavily swayed by the high-profile com-
panies that have made a success out of using it. Today, the biggest company we can
point to that uses FRP is Netflix, which uses Rx.Java for its server-side systems.

314 APPENDIX D A section for managers
 This question is often asked because it’s risky to invest in technology, especially lan-
guages that don’t see much mainstream use. This is mostly due to fear of the technol-
ogy going into end of life. The risk is low for FRP because its popularity is expanding,
and you can use your existing language. All that’s needed is a small FRP library. This
means it can be trialed on a small scale, and you’ll quickly find out whether it works in
your project. FRP isn’t difficult, as such, but it’s radically different, so the main cost of
such a trial will be the learning curve for the team member concerned. But once they
understand it, they can teach the others relatively quickly.

 FRP is based on the ideas of functional programming, and functional program-
ming is rapidly becoming popular. Functional programming ideas can benefit any
project. But the size of the leap required to gain these benefits has always been an
obstacle. This problem is slowly disappearing as functional programming ideas seep
into more and more areas of computing. FRP contains the most important of these
ideas in a concentrated form, if you will, without the esoteric stuff or the overhead of
learning a new programming language. In this way, it serves as an efficient training
ground for functional programming. Even if you don’t ultimately use FRP, it will still
make whoever comes in contact with it a better programmer.

 Productivity is less important to a huge established business than it is to a smaller
company with a smaller cash flow. If you have a small company with one developer and
no testers, then you need to do everything you can to eliminate bugs and reduce costs.

D.5 The burden of success
We’ll give you some advice you won’t believe you need. Feel free to skip over it and
come back to it when your team has too much time on their hands.

 With FRP, you’ll need a lot fewer people to do the same amount of work. The hard-
est hit will be the testers, who will have increasing difficulty finding interesting bugs.
Once you get into the swing of things, you’ll need to get better at finding work for
your team. If your testers are interested, you can retrain them to do software develop-
ment. They should get some enjoyment out of rewriting existing code so that they can
fix the bugs that have been bugging them for the longest time.

 You’ll still need a strong development lead, but you won’t need as many strong
developers, so you can diversify by hiring people with a broader mix of skills: people
who are good at data visualization or communicating with other teams. You’ll also
need to increase your team’s portfolio so they can do more things.

appendix E
Denotational semantics

of Sodium

Revision 1.1—26 Apr 2016

E.1 Introduction
This document is the formal specification of the semantics of Sodium, an FRP sys-
tem based on the concepts from Conal Elliott’s paper “Push-Pull FRP.” The code in
this document is in Haskell, and a basic knowledge of Haskell is required to under-
stand it. Most readers won’t need this information, but people interested in FRP
semantics and developers of FRP systems will find it useful. Note that this has noth-
ing to do with the Haskell implementation of Sodium. The executable version of
this specification can be found at https://github.com/SodiumFRP/sodium/blob/
master/denotational/.

E.2 Revision history
■ 1.0 (19 May 2015)—First version
■ 1.1 (24 July 2015)—The times for streams changed to increasing instead of

nondecreasing so that multiple events per time are no longer representable
■ 1.1 (8 Oct 2015, 26 Apr 2016)—Minor corrections; no semantic change

E.3 Data types
Sodium has two data types:

■ Stream a—A sequence of events, equivalent to Conal’s Event
■ Cell a—A value that changes over time, equivalent to Conal’s Behavior

We replace Conal’s term event occurrence with event.
315

https://github.com/SodiumFRP/sodium/blob/master/denotational/
https://github.com/SodiumFRP/sodium/blob/master/denotational/

316 APPENDIX E Denotational semantics of Sodium
E.4 Primitives
We define a type T representing time that is a total order. For the Split primitive, we
need to extend that definition to be hierarchical so that for any time t we can add
children numbered with natural numbers that are all greater than t but smaller than
any greater sibling of t. In the executable version, we have used the type

type T = [Int]

with comparison defined so that early list elements have precedence over later ones.
 Sodium has 16 primitives. Primitives marked with * are non-primitive because they

can be defined in terms of other primitives:

■ Never :: Stream a
■ MapS :: (a → b) → Stream a → Stream b
■ Snapshot* :: (a → b → c) → Stream a → Cell b → Stream c
■ Merge :: Stream a → Stream a → (a → a → a) → Stream a
■ Filter :: (a → Bool) → Stream a → Stream a
■ SwitchS :: Cell (Stream a) → Stream a
■ Execute :: Stream (Reactive a) → Stream a
■ Updates :: Cell a → Stream a
■ Value :: Cell a → T → Stream a
■ Split :: Stream [a] → Stream a
■ Constant* :: a → Cell a
■ Hold :: a → Stream a → T → Cell a
■ MapC :: (a → b) → Cell a → Cell b
■ Apply :: Cell (a → b) → Cell a → Cell b
■ SwitchC :: Cell (Cell a) → T → Cell a
■ Sample :: Cell a → T → a

Reactive is a helper monad that’s equivalent to Reader T. It represents a computation
that’s executed at a particular instant in time. Its declaration is as follows:

data Reactive a = Reactive { run :: T → a }

Execute works with this monad. In the Haskell implementation, Reactive is part of the
public interface of Sodium used to construct the four primitives that take a T argument
representing the time when that primitive was constructed: Value, Hold, SwitchC, and
Sample. Most languages don’t support monads, so they instead use a concept of trans-
actions, but the meaning is the same. The output values of those four primitives can
never be sampled before the time t they were constructed, for these reasons:

■ The public interface only allows Value, Hold, SwitchC, and Sample to
be constructed through Reactive.

■ The time at which the simulation is sampled is always increasing.
■ The public interface only allows Reactive to be resolved once the simulation

has reached time t.
■ The public interface only allows streams and cells to be sampled at the current

simulation time.

317Test cases
We define semantic domains S a and C a for streams and cells:

■ type S a = [(T, a)] for increasing T values
■ type C a = (a, [(T, a)]) for increasing T values

S a represents a list of time/value pairs describing the events of the stream. C a repre-
sents (initial value, steps) for the cell: the initial value pertains to all times before the
first step, and the time/value pairs give the discrete steps in the cell’s value.

 We define these semantic functions to transform streams and cells to their seman-
tic domains:

occs :: Stream a → S a
steps :: Cell a → C a

C a is different than Conal Elliott’s semantic domain for behavior, which was

type B a = T → a

The reason for this choice is that it makes Updates and Value possible, and it allows
the cell variant of switch to take Cell (Cell a) as its argument instead of Cell a →

Stream (Cell a), effectively decoupling it from stepper/hold functionality. Some-
thing roughly equivalent to Conal’s switcher can be defined as follows, if we posit
that [0] is the smallest possible value of T:

switcher :: Cell a → Stream (Cell a) → Cell a
switcher c s = SwitchC (Hold c s [0]) [0]

We can derive Conal’s B a from C a with an at function:

at :: C a → T → a
at (a, sts) t = last (a : map snd (filter (\(tt, a) → tt < t) sts))

E.5 Test cases
Now we’ll give the definitions of the semantic functions occs and steps for each
primitive, with test cases to show things are working as expected. MkStream is the
inverse of occs, constructing a Stream a from an S a. We use it to feed input into our
test cases.

E.5.1 Never

Never :: Stream a

A stream that never fires:

occs Never = []

TEST CASES

See figure E.1:

let s = Never

Figure E.1 Never test

s

0 1 2t

318 APPENDIX E Denotational semantics of Sodium
E.5.2 MapS

MapS :: (a → b) → Stream a → Stream b

Map a function over a stream:

occs (MapS f s) = map (\(t, a) → (t, f a)) (occs s)

TEST CASES

See figure E.2:

let s1 = MkStream [([0], 5), ([1], 10), ([2], 12)]
let s2 = MapS (1+) s1

Figure E.2 MapS test

E.5.3 Snapshot

Snapshot :: (a → b → c) → Stream a → Cell b → Stream c

Capture the cell’s observable value at the time when the stream fires:

occs (Snapshot f s c) = map (\(t, a) → (t, f a (at stsb t))) (occs s)
 where stsb = steps c

NOTE Snapshot is non-primitive. It can be defined in terms of MapS, Sample,
and Execute:

snapshot2 f s c = Execute (MapS (\a → f a <$> sample c) s)

NOTE To make it easier to see the underlying meaning, we’re diagramming
cells in their “cooked” form with the observable values it would give us and
vertical lines to indicate the steps, not directly in their B a representation of
initial value and steps.

TEST CASES

See figure E.3:

let c = Hold 3 (MkStream [([1], 4), ([5], 7)]) [0]
let s1 = MkStream [([0], 'a'), ([3], 'b'), ([5], 'c')]
let s2 = Snapshot (flip const) s1 c

s1

0

5 10

1 2

12

s2 6 11 13

t

c

0

3

1 2

s1 'a'

t

4

3

'b'

4 5 6

'c'

7

7 8

s2 3 4 4

Figure E.3 Snapshot test

319Test cases
E.5.4 Merge

Merge :: Stream a → Stream a → (a → a → a) → Stream a

Merge the events from two streams into one. A stream can have simultaneous events,
meaning two or more events with the same value t, which have an order. s3 in the fol-
lowing diagram gives an example. Merge is left-biased, meaning for time t, events orig-
inating in the left input event are output before ones from the right:

occs (Merge sa sb) = coalesce f (knit (occs sa) (occs sb))
 where knit ((ta, a):as) bs@((tb, _):_) | ta <= tb = (ta, a) : knit as bs
 knit as@((ta, _):_) ((tb, b):bs) = (tb, b) : knit as bs
 knit as bs = as ++ bs
coalesce :: (a → a → a) → S a → S a
coalesce f ((t1, a1):(t2, a2):as) | t1 == t2 = coalesce f ((t1, f a1 a2):as)
coalesce f (ta:as) = ta : coalesce f as
coalesce f [] = []

TEST CASES

See figure E.4:

let s1 = MkStream [([0], 0), ([2], 2)]
let s2 = MkStream [([1], 10), ([2], 20), ([3], 30)]
let s3 = Merge s1 s2 (+)

E.5.5 Filter

Filter :: (a → Bool) → Stream a → Stream a

Filter events by a predicate:

occs (Filter pred s) = filter (\(t, a) → pred a) (occs s)

TEST CASES

See figure E.5:

let s1 = MkStream [([0], 5), ([1], 6), ([2], 7)]
let s2 = Filter odd s1

s1

0 1 2

s2

0

t 3

2

4

10

s3

20 30

0 10 22 30

Figure E.4 Merge test

s1

0 1 2

s2

5

t 43

6 7

5 7

Figure E.5 Filter test

320 APPENDIX E Denotational semantics of Sodium
E.5.6 SwitchS

SwitchS :: Cell (Stream a) → Stream a

Act like the stream that is the current value of the cell:

occs (SwitchS c) = scan Nothing a sts
 where (a, sts) = steps c
 scan mt0 a0 ((t1, a1):as) =
 filter (\(t, a) → maybe True (t >) mt0 && t <= t1) (occs a0)
 ++ scan (Just t1) a1 as
 scan mt0 a0 [] =
 filter (\(t, a) → maybe True (t >) mt0) (occs a0)

TEST CASES

See figure E.6:

let s1 = MkStream [([0], 'a'), ([1], 'b'), ([2], 'c'), ([3], 'd')]
let s2 = MkStream [([0], 'W'), ([1], 'X'), ([2], 'Y'), ([3], 'Z')]
let c = Hold s1 (MkStream [([1], s2)]) [0]
let s3 = SwitchS c

E.5.7 Execute

Execute :: Stream (Reactive a) → Stream a

Unwrap the Reactive helper monad value of the occurrences, passing it the time of
the occurrence. This is commonly used when we want to construct new logic to acti-
vate with SwitchC or SwitchS:

occs (Execute s) = map (\(t, ma) → (t, run ma t)) (occs s)

TEST CASES

See figure E.7:

let s1 = MkStream [([0], return 'a')]
let s2 = Execute s1

E.5.8 Updates

Updates :: Cell a → Stream a

A stream representing the steps in a cell, which breaks the principle of non-detectabil-
ity of cell steps. Updates must therefore be treated as operational primitives, for use

c

0

s1

1 2

s3 'a'

t

s2

3

'b'

s1 'a' 'b' 'c'

s2

'd'

'W' 'X' 'Y' 'Z'

'Y' 'Z'

Figure E.6 SwitchS test

s1

0

s2

r etur n 'a'

t

'a'

Figure E.7 Execute test

321Test cases
only in defining functions that don’t expose cell steps to the caller. If the cell had
been the Hold of stream s, it would be equivalent to Coalesce (flip const) s.

occs (Updates c) = sts
 where (_, sts) = steps c

TEST CASES

See figure E.8:

let c = Hold 'a' (MkStream [([1], 'b'), ([3], 'c')]) [0]

E.5.9 Value

Value :: Cell a → T → Stream a

This is like Updates, except it also fires once with the current cell value at the time t0
when it’s constructed. Also like Updates, Value breaks the non-detectability of cell
steps and so is treated as an operational primitive:

occs (Value c t0) = coalesce (flip const) ((t0, a) : sts)
 where (a, sts) = chopFront (steps c) t0
chopFront :: C a → T → C a
chopFront (i, sts) t0 = (at (i, sts) t0, filter (\(t, a) → t >= t0) sts)

Note that Value has the property that it can create an event occurrence out of noth-
ing. It’s possible to argue that it’s reconstructing an event occurrence that we can
prove exists—the one that drives the Execute that must have executed this instance of
Value. It’s the same event occurrence that Sample implies the existence of, if it’s seen
as being based on Snapshot.

TEST CASES

See figure E.9:

let c = Hold 'a' (MkStream [([1], 'b'), ([3], 'c')]) [0]
let s = Value c [0]

c

0

'a'

1 2

s1

t

'b'

3

'b'

4 5

'c'

'c'

Figure E.8 Updates test

c

0

'a'

1 2

s

t

'b'

3

'b'

4 5

'c'

'c'

'a'
Figure E.9 Value test 1

322 APPENDIX E Denotational semantics of Sodium
See figure E.10:

let c = Hold 'a' (MkStream [([0], 'b'), ([1], 'c'), ([3], 'd')]) [0]
let s = Value c [0]

E.5.10 Split

Split :: Stream [a] → Stream a

Put the values into newly created child time steps:

occs (Split s) = concatMap split (coalesce (++) (occs s))
 where split (t, as) = zipWith (\n a → (t++[n], a)) [0..] as

TEST CASES

See figure E.11:

let s1 = MkStream [([0], ['a', 'b']), ([1],['c'])]
let s2 = Split s1

E.5.11 Constant

Constant :: a → Cell a

A cell with an initial value but no steps:

steps (Constant a) = (a, [])

Note that Constant is non-primitive. It can be defined in terms of Hold and Never.

TEST CASES

See figure E.12:

let c = Constant 'a'

E.5.12 Hold

Hold :: a → Stream a → T → Cell a

c

0

'a'

1 2

s

t

'b'

3

'c'

4 5

'd'

'd''c'

'b'
Figure E.10 Value test 2

s1

[0] [0,0]

s2

t

'c'

[1]

'a' 'b'

['a','b']

[0,1]

['c']

[1,0]

Figure E.11 Split test

c

0

'a'

1t

Figure E.12 Constant test

323Test cases
A cell with an initial value of a and the specified steps, ignoring any steps before spec-
ified t0:

steps (Hold a s t0) = (a, coalesce (flip const)
 (filter (\(t, a) → t >= t0) (occs s)))

We coalesce to maintain the invariant that step times in C a are increasing. Where
input events are simultaneous, the last is taken. Events before t0 are discarded.

TEST CASES

See figure E.13:

let c = Hold 'a' (MkStream [([1], 'b'), ([3], 'c')]) [0]

E.5.13 MapC

MapC :: (a → b) → Cell a → Cell b

Map a function over a cell:

steps (MapC f c) = (f a, map (\(t, a) → (t, f a)) sts)
 where (a, sts) = steps c

TEST CASES

See figure E.14:

let c1 = Hold 0 (MkStream [([2], 3), ([3], 5)]) [0]
let c2 = MapC (1+) c1

E.5.14 Apply

Apply :: Cell (a → b) → Cell a → Cell b

Applicative “apply” operation, as the basis for function lifting:

steps (Apply cf ca) = (f a, knit f fsts a asts)
 where (f, fsts) = steps cf
 (a, asts) = steps ca
 knit _ ((tf, f):fs) a as@((ta, _):_)

c

0

'a'

1 2t

'b'

3 4 5

'c'

Figure E.13 Hold test

c1

0

0

1 2t

3

3 4 5

5

c2 1 4 6

Figure E.14 MapC test

324 APPENDIX E Denotational semantics of Sodium
 | tf < ta = (tf, f a) : knit f fs a as
 knit f fs@((tf, _):_) _ ((ta, a):as)
 | tf > ta = (ta, f a) : knit f fs a as
 knit _ ((tf, f):fs) _ ((ta, a):as)
 | tf == ta = (tf, f a) : knit f fs a as
 knit _ ((tf, f):fs) a [] = (tf, f a) : knit f fs a []
 knit f [] _ ((ta, a):as) = (ta, f a) : knit f [] a as
 knit _ [] _ [] = []

Note the “no glitch” rule: where both cells are updated in the same time t, we output
only one output step.

TEST CASES

See figure E.15:

let cf = Hold (0+) (MkStream [([1], (5+)), ([3], (6+))]) [0]
let ca = Hold (100 :: Int) (MkStream [([1], 200), ([2], 300),
 ([4], 400)]) [0]
let cb = Apply cf ca

E.5.15 SwitchC

SwitchC :: Cell (Cell a) → T → Cell a

Act like the current cell that’s contained in the cell:

steps (SwitchC c t0) = (at (steps (at (steps c) t0)) t0,
 coalesce (flip const) (scan t0 a sts))
 where (a, sts) = steps c
 scan t0 a0 ((t1, a1):as) =
 let (b, stsb) = normalize (chopBack
 (chopFront (steps a0) t0) t1)
 in ((t0, b) : stsb) ++ scan t1 a1 as
 scan t0 a0 [] =
 let (b, stsb) = normalize (chopFront (steps a0) t0)
 in ((t0, b) : stsb)
 normalize :: C a → C a
 normalize (_, (t1, a) : as) | t1 == t0 = (a, as)
 normalize as = as
 chopBack :: C a → T → C a
 chopBack (i, sts) tEnd = (i, filter (\(t, a) → t < tEnd) sts)

The purpose of normalize is to get rid of simultaneousness returned by chopFront,
where the first step occurs at the chop point t0. It discards the initial value and

cf

0

(0+)

1 2t

(5+)

3 4 5

(6+)

ca

6

cb 100

100

205

200

406

400

305

300

306

Figure E.15 Apply test

325Test cases
replaces that with the first step value. This is different than how Value uses chopFront:
in that case, we keep the simultaneous events.

TEST CASES

See figure E.16:

let c1 = Hold 'a' (MkStream [([0], 'b'), ([1], 'c'),
 ([2], 'd'), ([3], 'e')]) [0]
let c2 = Hold 'V' (MkStream [([0], 'W'), ([1], 'X'),
 ([2], 'Y'), ([3], 'Z')]) [0]
let c3 = Hold c1 (MkStream [([1], c2)]) [0]
let c4 = SwitchC c3 [0]

See figure E.17:

let c1 = Hold 'a' (MkStream [([0], 'b'), ([1], 'c'), ([2], 'd'),
 ([3], 'e')]) [0]
let c2 = Hold 'W' (MkStream [([1], 'X'), ([2], 'Y'), ([3], 'Z')]) [0]
let c3 = Hold c1 (MkStream [([1], c2)]) [0]
let c4 = SwitchC c3 [0]

See figure E.18:

let c1 = Hold 'a' (MkStream [([0], 'b'), ([1], 'c'),
 ([2], 'd'), ([3], 'e')]) [0]
let c2 = Hold 'X' (MkStream [([2], 'Y'), ([3], 'Z')]) [0]

c1

0

'a'

1 2t

'c'

3 4 5

'e'

c2

c3

'b' 'd'

c1 c2

c4

'V' 'X' 'Z''W' 'Y'

'a' 'X' 'Z''b' 'Y'

Figure E.16 SwitchC test 1

c1

0

'a'

1 2t

'c'

3 4 5

'e'

c2

c3

'b' 'd'

c1 c2

c4

'W' 'X' 'Z''Y'

'a' 'X' 'Z''b' 'Y'
Figure E.17 SwitchC test 2

326 APPENDIX E Denotational semantics of Sodium
let c3 = Hold c1 (MkStream [([1], c2)]) [0]
let c4 = SwitchC c3 [0]

See figure E.19:

let c1 = Hold 'a' (MkStream [([0], 'b'), ([1], 'c'),
 ([2], 'd'), ([3], 'e')]) [0]
let c2 = Hold 'V' (MkStream [([0], 'W'), ([1], 'X'),
 ([2], 'Y'), ([3], 'Z')]) [0]
let c3 = Hold '1' (MkStream [([0], '2'), ([1], '3'),
 ([2], '4'), ([3], '5')]) [0]
let c4 = Hold c1 (MkStream [([1], c2), ([3], c3)]) [0]
let c5 = SwitchC c4 [0]

E.5.16 Sample

Sample :: Cell a → T → a

Extract the observable value of the cell at time t:

sample :: Cell a → Reactive a
sample c = Reactive (at (steps c))

c1

0

'a'

1 2t

'c'

3 4 5

'e'

c2

c3

'b' 'd'

c1 c2

c4

'X' 'Z''Y'

'a' 'X' 'Z''b' 'Y'

Figure E.18 SwitchC test 3

c1

0

'a'

1 2t

'c'

3 4 5

'e'

c2

c3

'b' 'd'

c1 c2c4

c5 'a' 'X' '5''b' 'Y'

'V' 'X' 'Z''W' 'Y'

'1' '3' '5''2' '4'

c3

Figure E.19 SwitchC test 4

327Test cases
TEST CASES

See figure E.20:

let c = Hold 'a' (MkStream [([1], 'b')]) [0]
let a1 = run (sample c) [1]
let a2 = run (sample c) [2]

c

0

'a'

1 2t 3 4 5

'b'

a1

a2

'a'

'b'
Figure E.20 Sample test

328 APPENDIX E Denotational semantics of Sodium

index
Numerics

2-3 finger tree 163

A

abstractions, functional reactive
programming 286

acceleration 195
accidental recursion

event handling 307–308
overview 9, 124

accum() method 114, 181, 229,
247, 295

accumulator, looping snapshot
and hold to create 47–51

accumulator code 49–50
constructing FRP in explicit

transaction 48–49
forward references 47–48
whether snapshot sees new or

old value 50–51
actions (I/O) 218–219
active argument 85
actor model

comparing to other
paradigms 205–208

document updates in 213
overview 5

actor paradigm 214
addCleanup() method 217, 296
Agile methodology 208
Akka system 5, 205
angle brackets 155
animation loop 191–192
Apply test, Sodium 323–324

arbitration 98
arrows 27, 43
at() method 193
atomic 278
atomicity 50, 176
auto-lifting, syntax 285
autocomplete functionality

125–128
availability 228
axis lock, Shift key 208–211

B

BackEnd 240
BehaviorSubject class

overview 114
startWith() method as short-

hand for 119
Bijection 245
BitableHomoSapiens class 145,

147
black boxes 11, 27
blocking I/O 217
blue boxes 43
Boost library 218
bouncing ball, natural represen-

tation of 198–200
boxes 27
bugs

eliminating whole classes
of 106

interactive applications
without 7

with listeners 8–9
busy flag 219

C

cache, NUMA architecture
96–98

Calendar class 12
callbacks

leaking 306–307
overview 1–3
using streams as drop-in

replacement for 275–278
chunk size 278
inability to use send()

method inside
listener 277–278

calm() method 178, 233
calming, removing duplicate

values 233–234
CAP theorem 228
Cell class 14, 21, 32, 276, 289,

291–292
Cell type 196
Cell.listen() method 172, 294,

298
Cell.map 137
Cell.sample() method 295–297
Cell.sampleLazy() method

295–296
CellJunction 237, 239, 280
CellLoop class 48, 78, 117, 176,

279, 289
CellLoop.loop() method 233
cells

capturing value of 45–47
combining 53–54
getting streams from 177–180

updates 178–179
values 179–180
329

INDEX330
cells (continued)
keeping state in 43–44
mapping 37–38
overview 10–12, 20
replacing mutable

variables 281–282
sending and listening to 172
with constant value 37

CellSink class 60, 172, 176, 289
CellSink.send() method 277,

292, 296
Char type 30
character cell 149
Character data structures 135,

143
cheap abstraction, consequences

of 109–110
cheating 34
clarity of intent 108–109
classes

package nz.sodium 291–299
Cell 291–292
CellLoop extends Cell

292–293
Lazy 293
Listener 294
operational primitives 294
Stream 295–298
StreamLoop extends

Stream 298
StreamSink extends

Stream 298
Transaction 299
Tuple2 299

package nz.sodium.time 300
vs. tuples 88

classic paradigm 213
classic state machine

comparing to other
paradigms 203

document updates in 211
clearfield example 27, 30, 36, 38
clouds 27
cold observables, Observable

interface 113
collect() method 233
collectLazy() method 233
combineLatest() method

keeping state 121–124
glitches 122–124
lack of compositionality

124
overview 114, 162

combining
cells 53–54

primitives 32–33
complexity wall 102–103
compositionality

eliminating whole classes of
bugs 106

importance of 104
lack of 104–106

combineLatest method 124
OO version 105–106

managing complexity
101–102

overview 10–11
reductionism and

engineering 102
conceptual definition 18
conceptual modules 27
consistency 228
Constant test, Sodium 322
constant value, cells with 37
constants, converting to

streams 227
contains() method 202
continuous time 186–200

animation loop 191–192
measuring time 193–200

natural representation of
bouncing ball 198–200

Newtonian physics 195–196
signals for quadratic

motion 196–197
position as function of

time 187–191
rasterizing time 186–187

currying 150
cyclic dependency 143
cyclomatic complexity 103

D

data flow 11, 20, 66
data parallelism 284
data types, Sodium 315
debounce() method 126
declarative programming 17–19
defer() method 183
degrees, polynomial 195
delay primitive 51, 182
denotational semantics of

Sodium 315–327
data types 315
primitives 316–317
revision history 315
test cases 317–327

Apply test 323–324
Constant test 322

Execute test 320
Filter test 319
Hold test 323
MapC test 323
MapS test 318
Merge test 319
Never test 317
Sample test 326–327
Snapshot test 318
Split test 322
SwitchC test 324–326
SwitchS test 320
Updates test 320–321
Value test 321

dependency 15–17
depends on relationships 17
diagrams, translating into

code 266–267
distributed processing 228–229

sacrificing consistency
228–229

stream that goes over network
connection 229

Document class 202
document updates 211–214

comparing in different
paradigms 213–214

in actor model 213
in classic state machine 211
in functional relative

programming 212
state machines with long

sequences 214
document variable 208
domain-specific language. See

DSL
drag-and-drop example,

refactoring 263–265
traditional coding 264–265
translating diagrams into

code 266–267
Dragging class 264, 270
dragging data structure 211
dragging phase 268
dragging state 163
dragging variable 264
DragPending class 270
draw() method 187, 202, 224,

249
Drawable class

FRP-based GUI system 249
overview 187

drawables 160–161
DrawFloating class 270
drawing floating elements 267

INDEX 331
drawing program example,
simultaneous events in 40

DSL (domain-specific
language) 3

E

Element class 202
embedded systems, precompiled

functional reactive pro-
grammming for 284

enabled argument 62
engineering and reductionism,

compositionality 102
Erlang 205
error-handling, in functional

reactive programming
217–218

event handling 301–308
accidental recursion 307–308
leaking callbacks 306–307
messy state 303–305
missed first event 302–303
threading 305–306
unpredictable order 301–302

event occurrences 30
event stream 30
event-based code, applying func-

tional reactive program-
ming to 22–25

events
overview 5–6
propagating (sometimes)

52–53
simultaneous 39–41

evil coder 230
Execute test, Sodium 320
explicit transaction, construct-

ing FRP in 48–49
explicit wiring 88
exponential growth 102

F

fallacy of composition 102
field programmable gate arrays.

See FPGAs
Fill class 79–81
filter primitive 52–53
Filter test, Sodium 319
filterOptional 53
final fields 87, 93
fired stream 30, 32
Flapjax, keeping state in 120–121

flatMapLatest() method
overview 158–159
removing invalid states 165

flatten primitive 132
flight-booking example 11, 16,

21
floating elements, drawing 267
FloatingElement class 264
flow of control 207
forms

validation 62–64
with text fields 257–261

forward references 47–48, 50
FPGAs (field programmable

gate arrays) 101, 284
FrButton fridget 251–253, 258
FrFlow fridget 255
fridgets, FRP-based GUI system

FrView 253
FRP (functional reactive

programming) 111–130
adding to existing

projects 273–282
cells can replace mutable

variables 281–282
changing to immutable data

structures 274–275
initializing program with

one big
transaction 279–280

module extensibility with
junction/client
registry 280–281

reasons for 274
using stream as drop-in

replacement for
callbacks 275–278

applying to event-based
code 22–25

autocomplete
functionality 125–128

benefit of 10–11
cells

capturing value of 45–47
combining 53–54
keeping state in 43–44
mapping 37–38
with constant value 37

cheat sheet 59
companies using 313–314
comparing to other

paradigms 204–205
comparison of systems 309
components of FRP

system 32–33

conceptual vs. operational
understanding of 19–22

constructing FRP logic under
explicit transaction 176–177
listening and sending in

same transaction
176–177

mixing I/O with FRP
construction 176

database applications 287
error-handling 217–218
events, propagating

(sometimes) 52–53
filter primitive 52–53
graphical user interface

system 249–261
Drawable class 249
form with text fields

257–261
fridgets 250
layout 255–257

hiring programmers 313
hold primitive 43–44, 47–51
hot observables 124–125
how works 11–14
interfacing code with opera-

tional primitives 170–173
multiple send()s in single

transaction 171–172
sending and listening to

cells 172
sending and listening to

streams 170–171
threading model and call-

back requirements 173
investing in 313
keeping state 116–121

combineLatest
method 121–124

in Flapjax 120–121
in Kefir.js 119–120
in RxJS 119

lift primitive 53–54
map primitive 30–32
never primitive 55
Observable interface 112–116

hot and cold
observables 113

keeping state 114
stateful accumulator with

scan() method 114–115
withLatestFrom()

method 115–116
overview 3–4
precompiled 284

INDEX332
FRP (functional reactive pro-
gramming) (continued)

reactive programming and
4–5

referential transparency
33–34, 55–59

RxJS
equivalence between

Sodium and 129
overview 112

snapshot primitive 45–51
Sodium library and 4
static typing 130
streams 27–30, 38–42

collection variants of
merge 42

how works 42
simultaneous events 39–41
that never fire 55
transforming 31–32

unit testing 229–230
as type-driven develop-

ment 230
refactoring 231
testability 231

values, transforming 30–32
FRP paradigm 214
FrTextField 258
FrTranslate 256
FrView fridget 253
functional data structures 107
functional reactive program-

ming. See FRP
fwoomph animation 189

G

game characters
creation and destruction

of 147–156
practice example 156
reasons for 154–155
referential

transparency 153–154
efficiency in RxJS and

157–163
transforming with switch

primitive 145–147
gate() method 84, 182
GC (garbage collector) 157
glitches, combineLatest

method 122–124
GPUs (graphics processing

units) 101
GUI (graphical user interface)

system

functional reactive
programming 249–261
Drawable class 249
form with text fields

257–261
fridgets 250
layout 255–257

overview 5

H

handler interface 290
helpers and patterns 232–261

an FRP-based GUI
system 249–261
Drawable class 249
form with text fields

257–261
fridgets 250
layout 255–257

calming 233–234
junction/client registry

236–239
pausing game 235–236
persistence 247–248
unique ID generation

248–249
writable remote values

239–247
hold primitive

looping snapshot and, to cre-
ate accumulator 47–51
accumulator code 49–50
constructing FRP in explicit

transaction 48–49
forward references 47–48
whether snapshot sees new

or old value 50–51
overview 43–44

Hold test, Sodium 323
hold-snapshot loop 114, 233
hold() method 229, 233, 247,

253, 296–297
holdLazy() method 174, 233
HomoSapiens class 145
hot observables

Observable interface 113
stateful logic and 125

I

I/O 216–220
error-handling in functional

reactive programming

217–218
executing actions 218–219
initiating with spark

idiom 226–228
converting constant to

stream 227
spark idiom 227–228

mixing with FRP
construction 176

putting application
together 219–220

separating from logic 33
ID generation, unique 248–249
if statement 103
immutable data structures

changing to 274–275
overview 107

immutable values 107–108
implicit forward references,

syntax 285
implicit state machines 207
infix operators 285
initialization stage 13, 22
initializing program, with one

big transaction 279–280
Inputs class 68
insert() method 202
integral 195
integrate() method 196–197
interactive applications, without

bugs 7
interfaces

package nz.sodium 290–299
package nz.sodium.time

299–300
invalid states, removing 163–165
isEmpty() method 308

J

JDateField widget 16
JDK (Java Development Kit) 13
JIT (just-in-time) 283, 287
join primitive 132
JPanel 191
junction/client registry

module extensibility
with 280–281

overview 236, 239

K

keeping state 116–121
combineLatest method

121–124

INDEX 333
glitches 122–124
merge isn’t compositional

124
in Flapjax 120–121
in Kefir.js 119–120
in RxJS 119
Observable interface 114

Kefir.js, keeping state in
119–120

Key type 68
key/value mapping 224
Keypad class 229
Keypad module, petrol pump

example 85–86
Kolmogorov complexity 103

L

languages, common syntax
between 287

latency 97
layout, FRP-based GUI

system 255–257
Lazy class 289, 293
lazy values, operational

primitives 174
leaking callbacks

event handling 306–307
overview 9

lens() method 243, 245
life cycle of programs 13–14
lift operations 62
lift primitive 53–54
lift() method 12, 174
lifting 14
linear function 195
listen() method 170, 173,

176–179, 217, 221, 229, 277,
292–293, 298

Listener class 170–171, 289,
294

Listener.unlisten() method 291,
295–296

listeners
fixing problems with 9
inability to use send() method

inside 277–278
delegating to another

thread 277–278
transforming play() into

stream 278
source of bugs with 8–9

listenOnce() method 221
listenWeak() method 171, 217

loan pattern 49, 175
locality 97
logic errors 106
logic, separating I/O from 33
logical fallacy 102
loop() method 48, 75, 279

M

mainClock 235
managerial issues 312–314

burden of success 314
companies using FRP

313–314
delivering on promises

312–313
hiring FRP programmers 313
investing in FRP 313

map operation 28–29, 54
map primitive 30–32
map() method 29, 174, 243
MapC test, Sodium 323
mapping cells 37–38
MapS test, Sodium 318
Mealy machine 233
measuring time 193–200

natural representation of
bouncing ball 198–200

Newtonian physics 195–196
signals for quadratic

motion 196–197
MediaLibrary class 275
memory management, switch

primitive and 146–147
merge primitive 38–39, 52
Merge test, Sodium 319
merge() method 156, 297
merges, switch primitive

156–157
mergeToSet() method 149
merging streams 38–42

collection variants of
merge 42

how works 42
simultaneous events 39–41

messy state
event handling 303–305
overview 8

meta-language 23
MillisecondsTimerSystem

extends TimerSystem
class 300

missed first event
event handling 302–303
overview 8, 279

modularity 87–89
bugs and 88–89
explicit wiring 88
form of module 87
inputs and outputs and 88
testability 89
tuples vs. classes 88

mouse events 163
mouseDown event 263–264
mouseEvent() method 202
mouseMove event 263–264,

267
mouseUp event 263–264
MOVE event 203, 205
multiprocessor machines,

cache 98
mutable variables, replacing with

cells 281–282

N

named parameters 80
natural order recalculation 13
never primitive 55
Never test, Sodium 317
Newtonian physics 195–196
newtype pattern 89
non-blocking I/O 173, 217
null value 224, 264
NullPointerException 279
NUMA (non-uniform memory

access) 96

O

object-oriented programming.
See OOP

Observable interface 112–116
hot and cold observables 113
keeping state 114
stateful accumulator with

scan() method 114–115
withLatestFrom()

method 115–116
observer pattern 1, 3, 7
once() method 147, 297
onCompleted event 112
onError event 112
onNext() method 112, 124
OOP (object-oriented

programming) 15
operation 32
Operational class 289
operational definition 18

INDEX334
operational primitives 169–185
getting stream from cell

177–180
updates 178–179
values 179–180

interfacing FRP code 170–173
multiple send()s in single

transaction 171–172
sending and listening to

cells 172
sending and listening to

streams 170–171
threading model and call-

back requirements 173
lazy values 174
scalable addressing 183–185
spawning new transactional

contexts with split
primitive 180–183
deferring single event to

new transaction 182–183
ending up in same tran-

saction 183
transactions 174–177

operational primitives class 294
Operational.defer() method 52,

182
Operational.updates()

method 52, 178, 197, 212,
214, 222, 233

Operational.value()
method 178, 227–228

Optional class 73, 205, 216–217
orElse() method 81, 183, 297
Outputs class 68

P

package nz.sodium 290–299
classes 291–299

Cell 291–292
CellLoop extends Cell

292–293
Lazy 293
Listener 294
operational primitives 294
Stream 295–298
StreamLoop extends

Stream 298
StreamSink extends

Stream 298
Transaction 299
Tuple2 299

interfaces 290
package nz.sodium.time

299–300

paint() method 132, 191,
266–267

pair programming 230
Paradigm interface 202
paradigms 201–214

comparing 201–208
actor model 205–208
classic state machine 203
functional relative

programming 204–205
Shift key

axis lock 208–211
document updates 211–214

parallelism 284
partition tolerance 228
payload 30
pending phase 268
performance

FRP database
applications 287

future directions 283–284
parallelism 284
precompiled functional reac-

tive programmming
for 284

refactoring tools 287–288
standardization and code

reuse 286–287
abstractions and 286
common syntax between

languages 287
FRP engine

performance 286
syntax improvements 284–286

auto-lifting 285
implicit forward

references 285
infix operators 285
type inference 285–286

periodic() method 193
periodicTimer() method 154,

174
persistence 247–248
persistent data structures 107
petrol pump example

code 68–71
communicating with point-of-

sale system 82–84
counting liters delivered 78
keypad module 85–86
life cycle of petrol pump

fill 73–77
overview 66–67
running 68

showing dollars of fuel
delivered 79–82

phase cell 84
play() method, transforming

into stream 278
Player class 275–276
Player.play() method 277
playNext() method 277
Point class 187
Point type 141
polynomial 195
pom.xml 29
position

as function of time 187–191
overview 195

precompiled functional reactive
programmming 284

Preset class 89
primitive obsession 89
primitives

combining 32–33
Sodium 316–317

private field 87
Promise type 224
Promise.lift() method 222
promises/futures 220–228

initiating I/O with spark
idiom 226–228
converting constant to

stream 227
spark idiom 227–228

map viewer example 223–224
promisize() method 226–228
propagating, events

(sometimes) 52–53
Property 119
public field 87
publish() method 125
purity 33, 107

Q

quadratic
overview 195
signals for quadratic

motion 196–197
solving 196

R

raster graphics 186
rasterizing time 186–187
Reactive Banana 9
Reactive Extensions. See Rx

INDEX 335
Reactive monad 316
reactive programming 4–5
rec keyword 285
RecursiveDo extension 285
reductionism and engineering,

compositionality 102
refactoring 262–272

benefits of 269–272
deciding when to

refactor 262–263
drag-and-drop example

263–265
traditional coding 264–265
translating diagrams into

code 266–267
drawing floating

elements 267
fixing bugs 268–269
tools 287–288

referential transparency, do’s
and don’ts 55–59

reify() method 23
removeListener() method

305–306
removeNotify() method 244
repaint() method 132
requestConnect() method

303–304
Rule class 23–24
run() method 175
running stage 13, 22
runVoid() method 175
Rx (Reactive Extensions) 5, 41,

174
Rx.BehaviorSubject 117, 158
Rx.Subject() method 117
RxJS

equivalence between Sodium
and 129

game characters and effi-
ciency in 157–163

keeping state in 119
overview 112

S

sample primitive
getting cell’s value 131–132
overview 73, 135

Sample test, Sodium 326–327
sample() method 174, 229, 233,

254, 292, 298
sampleLazy() method 174, 233
SButton class 12, 21, 40, 219
scan() method 114, 158

screens, switching between
166–168

SDateField widget 12, 21
SecondsTimerSystem class 191
send() method

inability to use from inside
listeners 277–278
delegating to another

thread 277–278
transforming play() into

stream 278
using multiple in single

transaction 171–172
sequence() function 156, 162,

224
set methods 70
Shift key

axis lock 208–211
document updates 211–214

comparing in different
paradigms 213–214

in actor model 213
in classic state machine 211
in functional relative

programming 212
state machines with long

sequences 214
shiftEvent() method 211
signal 30, 35
Signal class 196
simultaneous events 39–41
SLabel 34, 62
snapshot primitive 47–51

accumulator code 49–50
constructing FRP in explicit

transaction 48–49
forward references 47–48
overview 45–46
whether snapshot sees new or

old value 50–51
Snapshot test, Sodium 318
snapshot() method 296–298
Sodium

denotational semantics
of 315–327
Apply test 323–324
Constant test 322
data types 315
Execute test 320
Filter test 319
Hold test 323
MapC test 323
MapS test 318
Merge test 319
Never test 317

primitives 316–317
revision history 315
Sample test 326–327
Snapshot test 318
Split test 322
SwitchC test 324–326
SwitchS test 320
test cases 317–327
Updates test 320–321
Value test 321–322

package nz.sodium 290–299
classes 291–299
interfaces 290

package nz.sodium.time
299–300
classes 300
interfaces 300

software transactional memory.
See STM

spark idiom, initiating I/O
with 226–228

converting constant to
stream 227

spark idiom 227–228
spinner, as standalone

SWidget 60–62
split primitive, spawning new

transactional contexts
with 180–183

deferring single event to new
transaction 182–183

ending up in same
transaction 183

Split test, Sodium 322
split() method 183, 294
SSpinner class 61
standardization and code

reuse 286–287
abstractions and 286
common syntax between

languages 287
FRP engine performance 286

startWith() method, as short-
hand for
BehaviorSubject 119

state
keeping in cells 43–44
problems with 9–10

state changes 35
state machines

overview 6–7
with long sequences 214

static method 75, 80, 87, 93
static typing 130, 155
stepper primitive 44

INDEX336
STextField 38, 55, 244
sTick 138, 143, 154
STM (software transactional

memory) 284
Stream class 30, 32, 42, 170, 276,

290, 295–298
Stream type 205
Stream.addCleanup()

method 217
Stream.coalesce() method 292
Stream.filter() method 292
Stream.holdLazy() method 292
Stream.listen() method 294
Stream.map() method 137, 292
Stream.merge() method 156,

292
Stream.snapshot() method 292
StreamJunction 237, 242, 280
StreamLoop class 48, 147, 176,

279, 290
streams

converting constants to 227
getting from cells 177–180

updates 178–179
value 179–180

merging 38–42
collection variants of

merge 42
how works 42
simultaneous events 39–41

sending and listening to
170–171

that never fire 55
transforming play() into 278
using as drop-in replacement

for callbacks 275–278
chunk size 278
inability to use send()

method inside
listener 277–278

StreamSink class 60, 170–172,
176, 290, 298

StreamSink.send() method 277,
279, 292, 296

String data type 274
subscribe() method 113, 125,

163
subscription object 158
subscription.dispose()

method 113
SWidgets library 28, 34, 55,

60–62, 173, 241, 252
switch primitive 131–168

creation and destruction of
game characters 147–156

practice example 156
reasons for 154–155
referential

transparency 153–154
game characters and effi-

ciency in RxJS 157–163
merges 156–157
overview 132–133
removing invalid states

163–165
sample primitive, getting cell’s

value 131–132
switching between

screens 166–168
transforming game characters

with 145–147
TV remote control

comparison 132–133
zombie video game 133–145

end of world 134–135
enhanced obstacle-avoid-

ing human 139–140
flesh-eating zombie 141
game loop 137–139
putting together two

characters 143–145
simple human 135
using sample in map or

snapshot 136–137
SwitchC test, Sodium 324–326
switchC() method 133
SwitchS test, Sodium 320
synchronized keyword 305
syntax 284–286

auto-lifting 285
common syntax between

languages 287
implicit forward

references 285
infix operators 285
type inference 285–286

T

takeUntil() method 165
TDD (test-driven

development) 230
test cases, Sodium 317–327

Apply test 323–324
Constant test 322
Execute test 320
Filter test 319
Hold test 323
MapC test 323
MapS test 318

Merge test 319
Never test 317
Sample test 326–327
Snapshot test 318
Split test 322
SwitchC test 324–326
SwitchS test 320
Updates test 320–321
Value test 321–322

test-driven development. See
TDD

threading issues 8, 123, 305–306
threading model, callback

requirements and 173
threads 5
Timer interface 299–300
TimerSystem class 187, 193, 300
TimerSystemImpl

interface 299–300
toProperty 119
tornDown() method 305, 308
Transaction class 290, 299
Transaction.run() method 292,

298
Transaction.runVoid()

method 298
transactions 174–177

constructing FRP logic under
explicit transaction 176–177
listening and sending in

same transaction
176–177

mixing I/O with FRP
construction 176

spawning new transactional
contexts with split
primitive 180–183
deferring single event to

new transaction 182–183
ending up in same

transaction 183
transparency

referential 33–34
Tuple2 class 233, 290, 299
tuples, vs. classes 88
type inference, syntax 285–286

U

unique ID generation 248–249
unit testing 229–231

functional reactive program-
ming code 229–231
as type-driven

development 230

INDEX 337
refactoring 231
testability 231

logic 231
test-driven development 230

Unit type 27–28
UNIT value 138
unlisten() method 170, 291, 294
unpredictable order

event handling 301–302
overview 8, 17, 40

update() method 22
updates primitive 178
Updates test, Sodium 320–321
updates, cells 178–179

V

validation error 62
value loop 48
value primitive 178
Value test, Sodium 321–322
Value.lens() method 245
Value.map() method 245
value() method 179, 294
values

capturing 45–47
cells 179–180
transforming 30–32

variant types 217
vector graphics 187
velocity 195
visual programming 287

visualization and debugging
tools 287

von Neumann machine 94–101,
157

bus optimization 98–101
options 101
reasons for 99–100

cache 96–98
functional reactive

programming 101

W

Whack That Mole example 157
widgets 60–64

form validation 62–64
spinner as standalone

SWidget 60–62
WinAnt 13
withLatestFrom() method

Observable interface 115–116
overview 114, 158, 226

writable remote values 239–247
writing applications 65–93

modularity 87–89
bugs and 88–89
explicit wiring 88
form of module 87
inputs and outputs and 88
testability 89
tuples vs. classes 88

petrol pump example

adding preset dollar
amount 89–92

code 68–71
communicating with point-

of-sale system 82–84
counting liters delivered 78
keypad module 85–86
life cycle of petrol pump

fill 73–77
overview 66–67
running 68
showing dollars of fuel

delivered 79–82

Y

yellow boxes 43

Z

zombie video game, switch
primitive 133–145

end of world 134–135
enhanced obstacle-avoiding

human 139–140
flesh-eating zombie 141
game loop 137–139
putting together two

characters 143–145
simple human 135
using sample in map or

snapshot 136–137

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Functional Programming in JavaScript
by Luis Atencio

ISBN: 9781617292828
272 pages
$44.99
June 2016

Functional Programming in Java
How to improve your Java programs using
functional techniques
by Pierre-Yves Saumont

ISBN: 9781617292736
300 pages
$49.99
December 2016

Functional Programming in Scala
by Paul Chiusano and Rúnar Bjarnason

ISBN: 9781617290657
320 pages
$44.99
September 2014

https://www.manning.com/books/functional-programming-in-scala
https://www.manning.com/books/functional-programming-in-java
https://www.manning.com/books/functional-programming-in-javascript

T
bug
Ob

Fun
and
of w
thro
to p
man
Wh
in t

Wh
●

●

●

●

Rea
enc

Step
dev
mu

Illu

Fu

PROGRAMMING

e

Blackheath ● Jones

oday’s software is shifting to more asynchronous, event-
based solutions. For decades, the Observer pattern has
been the go-to event infrastructure, but it is known to be

-prone. Functional reactive programming (FRP) replaces
server, radically improving the quality of event-based code.

ctional Reactive Programming teaches you how FRP works
 how to use it. You’ll begin by gaining an understanding
hat FRP is and why it’s so powerful. Then, you’ll work
ugh greenfi eld and legacy code as you learn to apply FRP
ractical use cases. You’ll fi nd examples in this book from
y application domains using both Java and JavaScript.
en you’re fi nished, you’ll be able to use the FRP approach
he systems you build and spend less time fi xing problems.

at’s Inside
 Think differently about data and events
 FRP techniques for Java and JavaScript
 Eliminate Observer one listener at a time
 Explore Sodium, RxJS, and Kefi r.js FRP systems

ders need intermediate Java or JavaScript skills. No experi-
e with functional programming or FRP required.

hen Blackheath and Anthony Jones are experienced software
elopers and the creators of the Sodium FRP library for
ltiple languages.

strated by Duncan Hill

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/functional-reactive-programming

nctional Reactive Programming

“A gentle introduction to th
necessary concepts of FRP.”—From the Foreword by
Heinrich Apfelmus, author of the

Reactive-banana FRP library

“Highly topical and
brilliantly written, with

great examples.”
—Ron Cranston, Sky UK

“A comprehensive reference
and tutorial, covering both

theory and practice.”—Jean-François Morin
Laval University

“Your guide to using
the merger of functional

and reactive programming
paradigms to create modern

software applications.”—William E. Wheeler
West Corporation

SEE INSERT
$49.99 / Can $57.99 [INCLUDING eBOOK]M A N N I N G

	Functional Reactive Programming
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Who should read this book
	Code conventions
	Source code downloads
	About the authors
	Author Online

	about the cover
	1 Stop listening!
	1.1 Project, meet complexity wall
	1.2 What is functional reactive programming?
	1.2.1 A stricter definition
	1.2.2 Introducing Sodium

	1.3 Where does FRP fit in? The lay of the land
	1.4 Interactive applications: what are events?
	1.5 State machines are hard to reason about
	1.6 Interactive applications without the bugs
	1.7 Listeners are a mainstay of event handling, but …
	1.8 Banishing the six plagues of listeners
	1.9 Why not just fix listeners?
	1.10 “Have you tried restarting it?” or why state is problematic
	1.11 The benefit of FRP: dealing with complexity
	1.12 How does FRP work?
	1.12.1 Life cycle of an FRP program

	1.13 Paradigm shift
	1.13.1 Paradigm
	1.13.2 Paradigm shift

	1.14 Thinking in terms of dependency
	1.15 Thinking declaratively: what the program is, not what it does
	1.16 Conceptual vs. operational understanding of FRP
	1.16.1 Opening your mind to FRP
	1.16.2 What’s really going on when the code runs?

	1.17 Applying functional programming to event-based code
	1.18 Summary

	2 Core FRP
	2.1 The Stream type: a stream of events
	2.2 The map primitive: transforming a value
	2.2.1 Transforming a stream

	2.3 The components of an FRP system
	2.3.1 Combining primitives
	2.3.2 Separating I/O from logic

	2.4 Referential transparency required
	2.5 The Cell type: a value that changes over time
	2.5.1 Why Stream and Cell?
	2.5.2 The constant primitive: a cell with a constant value
	2.5.3 Mapping cells

	2.6 The merge primitive: merging streams
	2.6.1 Simultaneous events
	2.6.2 Collection variants of merge
	2.6.3 How does merge do its job?

	2.7 The hold primitive: keeping state in a cell
	2.8 The snapshot primitive: capturing the value of a cell
	2.9 Looping hold and snapshot to create an accumulator
	2.9.1 Forward references
	2.9.2 Constructing FRP in an explicit transaction
	2.9.3 Accumulator code
	2.9.4 Does snapshot see the new value or the old value?

	2.10 The filter primitive: propagating an event only sometimes
	2.11 The lift primitive: combining cells
	2.12 The never primitive: a stream that never fires
	2.13 Referential transparency dos and don’ts
	2.14 FRP cheat sheet
	2.15 Summary

	3 Some everyday widget stuff
	3.1 Spinner as a standalone SWidget
	3.2 Form validation
	3.3 Summary

	4 Writing a real application
	4.1 The petrol pump example
	4.2 Running the petrol pump example
	4.3 Code, meet outside world
	4.4 The life cycle of a petrol pump fill
	4.4.1 Code for LifeCycle

	4.5 Is this really better?
	4.6 Counting liters delivered
	4.7 Showing dollars of fuel delivered
	4.8 Communicating with the point-of-sale system
	4.9 Modularity illustrated: a keypad module
	4.10 Notes about modularity
	4.10.1 The form of a module
	4.10.2 Tuples vs. classes
	4.10.3 Explicit wiring
	4.10.4 When inputs and outputs proliferate
	4.10.5 Some bugs are solved, some aren’t
	4.10.6 Testability

	4.11 Adding a preset dollar amount
	4.12 What have you achieved?
	4.13 Summary

	5 New concepts
	5.1 In search of the mythical von Neumann machine
	5.1.1 Why so slow? The cache
	5.1.2 The madness of bus optimization
	5.1.3 How does this relate to FRP?

	5.2 Compositionality
	5.2.1 When complexity gets out of control
	5.2.2 Reductionism and engineering
	5.2.3 Compositionality is no longer optional

	5.3 Lack of compositionality illustrated
	5.3.1 Why the OO version lacks compositionality

	5.4 Compositionality: eliminating whole classes of bugs
	5.5 Don’t pull out the rug: use immutable values
	5.5.1 Immutable data structures

	5.6 Clarity of intent
	5.7 The consequences of cheap abstraction
	5.8 Summary

	6 FRP on the web
	6.1 RxJS
	6.2 Observable
	6.2.1 Hot and cold observables
	6.2.2 How to maintain state
	6.2.3 A stateful accumulator with scan()
	6.2.4 The most recent value of an observable with withLatestFrom()

	6.3 Keeping state in RxJS, Kefir.js, and Flapjax
	6.3.1 startWith() as shorthand for BehaviorSubject
	6.3.2 The same again with Kefir.js
	6.3.3 And now…Flapjax

	6.4 The latest of two observables with combineLatest
	6.4.1 Glitches in combineLatest
	6.4.2 merge isn’t compositional

	6.5 Creating your own hot observable
	6.5.1 Don’t use this to implement logic

	6.6 Example: autocomplete the FRP way
	6.7 RxJS/Sodium cheat sheet
	6.8 Static typing preferred
	6.9 Summary

	7 Switch
	7.1 The sample primitive: getting a cell’s value
	7.2 switch
	7.2.1 The concept of switch: a TV remote control

	7.3 switch use case #1: zombies
	7.3.1 The end of the world
	7.3.2 A simple human
	7.3.3 Using sample in map or snapshot
	7.3.4 A game loop
	7.3.5 An enhanced obstacle-avoiding human
	7.3.6 A flesh-eating zombie
	7.3.7 Putting together the two characters

	7.4 Transforming the game character with switch
	7.4.1 If a tree falls…switch and memory management

	7.5 switch use case #2: creation and destruction of game characters
	7.5.1 Not quite referentially transparent
	7.5.2 Another “What are we doing this for?” moment
	7.5.3 An exercise for you

	7.6 The efficiency of big merges
	7.6.1 Efficiency of this approach

	7.7 Game characters and efficiency in RxJS
	7.8 Switch use case #3: removing invalid states
	7.8.1 And now, improved with flatMapLatest

	7.9 Switch use case #4: switching between screens
	7.10 Summary

	8 Operational primitives
	8.1 Interfacing FRP code with the rest of your program
	8.1.1 Sending and listening to streams
	8.1.2 Multiple send()s in a single transaction
	8.1.3 Sending and listening to cells
	8.1.4 Threading model and callback requirements

	8.2 Laziness solves loop craziness
	8.3 Transactions
	8.3.1 Constructing FRP logic under an explicit transaction

	8.4 Getting a stream from a cell with updates and value
	8.4.1 Introducing updates and value

	8.5 Spawning new transactional contexts with the split primitive
	8.5.1 Deferring a single event to a new transaction
	8.5.2 Ending up in the same transaction

	8.6 Scalable addressing
	8.7 Summary

	9 Continuous time
	9.1 Rasterizing time
	9.2 Position as a function of time
	9.3 The animation loop
	9.4 Measuring time
	9.4.1 Newtonian physics primer
	9.4.2 Signals for quadratic motion
	9.4.3 A natural representation of a bouncing ball

	9.5 Summary

	10 Battle of the paradigms
	10.1 Classic state machine vs. FRP vs. actor model
	10.1.1 Classic state machine
	10.1.2 FRP
	10.1.3 Actor model
	10.1.4 And the winner is…

	10.2 Let’s add a feature: Shift key gives axis lock
	10.3 Improvement: Shift key updates the document
	10.3.1 Changing this in the classic paradigm
	10.3.2 Changing this in FRP
	10.3.3 Changing this in the actor model
	10.3.4 How are the different paradigms doing?
	10.3.5 State machines with long sequences

	10.4 Summary

	11 Programming in the real world
	11.1 Dealing with I/O
	11.1.1 Error-handling in FRP
	11.1.2 Executing an I/O action
	11.1.3 Putting the application together

	11.2 Promises/Futures
	11.2.1 A map viewer example using Promise
	11.2.2 Initiating I/O with the spark idiom

	11.3 Distributed processing
	11.3.1 Sacrificing consistency
	11.3.2 A stream that goes over a network connection

	11.4 Unit testing
	11.4.1 Unit testing FRP code
	11.4.2 We don’t recommend test-driven development (TDD)
	11.4.3 FRP is type-driven development
	11.4.4 FRP code is safe to refactor
	11.4.5 FRP code is inherently testable
	11.4.6 Testing your logic

	11.5 Summary

	12 Helpers and patterns
	12.1 Calming: removing duplicate values
	12.2 Pausing a game
	12.3 Junction or client registry
	12.4 Writable remote values
	12.5 Persistence
	12.6 Unique ID generation
	12.7 An FRP-based GUI system
	12.7.1 Drawable
	12.7.2 Fridget
	12.7.3 Your first fridget: FrButton
	12.7.4 Bringing a Fridget to life with FrView
	12.7.5 Layout
	12.7.6 A form with text fields

	12.8 Summary

	13 Refactoring
	13.1 To refactor or not to refactor?
	13.2 A drag-and-drop example
	13.2.1 Coding it the traditional way
	13.2.2 The FRP way: diagrams to code

	13.3 Adding a feature: drawing the floating element
	13.4 Fixing a bug: clicks are being treated as drags
	13.5 FRP: refactoring is a breeze
	13.6 Summary

	14 Adding FRP to existing projects
	14.1 Where can FRP help?
	14.2 Changing to immutable data structures
	14.3 Stream as a drop-in replacement for callbacks
	14.3.1 Caveat: you can’t send() inside a listener
	14.3.2 Choosing the right chunk size

	14.4 Program initialization with one big transaction
	14.5 Module extensibility with junction/client registry
	14.6 Cells can replace mutable variables
	14.7 Summary

	15 Future directions
	15.1 Performance
	15.2 Precompiled FRP for performance or embedded systems
	15.3 Parallelism
	15.4 Syntax improvements
	15.4.1 Auto-lifting
	15.4.2 Implicit forward references
	15.4.3 Infix operators
	15.4.4 Type inference

	15.5 Standardization and code reuse
	15.5.1 Code reuse and FRP abstractions
	15.5.2 FRP engine performance
	15.5.3 Common syntax between languages

	15.6 FRP database applications
	15.7 Visualization and debugging tools
	15.8 Visual programming
	15.9 Refactoring tools
	15.10 Summary

	appendix A Sodium API
	A.1 Package nz.sodium
	A.1.1 Interface Handler<A>
	A.1.2 Interface Lambda0<A>
	A.1.3 Interface Lambda1<A,B>
	A.1.4 Interface Lambda2<A,B,C>
	A.1.5 Interface Lambda3<A,B,C,D>
	A.1.6 Interface Lambda4<A,B,C,D,E>
	A.1.7 Interface Lambda5<A,B,C,D,E,F>
	A.1.8 Interface Lambda6<A,B,C,D,E,F,G>
	A.1.9 Class Cell<A>
	A.1.10 Class CellLoop<A> extends Cell<A>
	A.1.11 Class CellSink<A> extends Cell<A>
	A.1.12 Class Lazy<A>
	A.1.13 Class Listener
	A.1.14 Class Operational
	A.1.15 Class Stream<A>
	A.1.16 Class StreamLoop<A> extends Stream<A>
	A.1.17 Class StreamSink<A> extends Stream<A>
	A.1.18 Class Transaction
	A.1.19 Class Tuple2<A,B>

	A.2 Package nz.sodium.time
	A.2.1 Interface Timer
	A.2.2 Interface TimerSystemImpl<T>
	A.2.3 Class MillisecondsTimerSystem extends TimerSystem<java.lang.Long>
	A.2.4 Class SecondsTimerSystem extends TimerSystem<java.lang.Double>
	A.2.5 Class TimerSystem<T extends java.lang.Comparable>

	appendix B The six plagues of event handling
	B.1 Plague 1: unpredictable order
	B.2 Plague 2: missed first event
	B.3 Plague 3: messy state
	B.4 Plague 4: threading issues
	B.5 Plague 5: leaking callbacks
	B.6 Plague 6: accidental recursion

	appendix C Comparison of FRP systems
	appendix D A section for managers
	D.1 Doing what you said you’d do
	D.2 What is the investment?
	D.3 Can I hire people with FRP experience?
	D.4 Who else is using FRP?
	D.5 The burden of success

	appendix E Denotational semantics of Sodium
	E.1 Introduction
	E.2 Revision history
	E.3 Data types
	E.4 Primitives
	E.5 Test cases
	E.5.1 Never
	E.5.2 MapS
	E.5.3 Snapshot
	E.5.4 Merge
	E.5.5 Filter
	E.5.6 SwitchS
	E.5.7 Execute
	E.5.8 Updates
	E.5.9 Value
	E.5.10 Split
	E.5.11 Constant
	E.5.12 Hold
	E.5.13 MapC
	E.5.14 Apply
	E.5.15 SwitchC
	E.5.16 Sample

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	Functional Reactive Programming-back

