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preface
Although I’d taken a lot of programming classes in college, I never fully appreciated
programming until I had a job that involved a lot of repetitive tasks. After amusing
myself by automating much of that job, I decided to return to school and study biol-
ogy, which is when I took my first GIS course. I was instantly in love, and managed to
convince someone to give me a biology degree for writing an extension for ArcView
GIS (a precursor to ArcGIS, for you Esri fans out there). After finishing that up, I went
to work for the Remote Sensing/Geographic Information Systems Laboratory at Utah
State University. One of my first projects involved some web mapping, and I soon
became a big fan of the open source UMN MapServer software. That was my introduc-
tion to open source geospatial software, including GDAL.

 I’m fairly certain that I didn’t appreciate the power of the GDAL/OGR library when
I first learned about it, but I came to my senses once I started using it in my C++ and
C# code. In the College of Natural Resources, there weren’t many people around who
were interested in coding, but I did get to point people to the GDAL command-line
utilities on a regular basis. But then Esri introduced Python as the scripting language
of choice for ArcGIS, and things started to change. I don’t think I had used Python
much before then, but playing with arcgisscripting (the original Esri Python module)
made me realize how much I enjoyed working with Python, so naturally I had to start
using GDAL with it as well.

 More importantly for this book, my coworker John Lowry suggested that we team-
teach a Python-for-GIS class. He taught students how to use Python with ArcGIS, and I
taught them about GDAL. The class turned out to be popular, so we taught it that way
for another few years until John moved away. I took over the entire class and have
been teaching it in various configurations ever since. I’ve never bothered to take the
class material from the first two years off the web, however, which is how Manning
found me. They asked if I would write a book on using GDAL with Python. I’d never
xi



PREFACExii
had the desire to write a book, so it took a bit of persuasion to convince me to do it. In
the end, it was my love for teaching that won me over. I’ve discovered over the years
that I really enjoy teaching, mostly because I love watching students incorporate what
they’re learning into the rest of their work. This is especially true of graduate students,
some of whom might not have completed their research in a timely manner (or at all)
if they hadn’t learned how to write code. I know that these skills will continue to assist
them throughout their careers, and my hope is that this book will provide the same
help to you, no matter if you’re a student, professional, or a hobbyist. This is fun stuff,
and I hope you enjoy it as much as I do!
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about this book
I wrote Geoprocessing for Python to help you learn the basics of working with geospatial
data, mostly using GDAL/OGR. There are other options, of course, but some of them
build on top of GDAL, so if you understand the material in this book, you’ll probably
be able to pick them up without too much trouble. This is not a book on GIS or
remote sensing, although some background theory will be explained. Instead, this
book will teach you how to write Python code for manipulating and creating spatial
data, along with some simple analyses. You can use these building blocks to imple-
ment more-complicated analyses of your own devising.

Who should read this book
This book is for anyone who wants to learn to work with geospatial data. Some basics
of GIS and remote sensing are explained so that readers new to geospatial analysis will
know why they’re learning certain things, but the code starts out simple enough so
that people with a geospatial background—but not much coding experience—will
also benefit.

How this book is organized
This book is organized into 13 chapters. It starts out with a general introduction to
geospatial data and Python and then covers vector data, spatial reference systems, ras-
ter data, and visualization.

■ Chapter 1 is an introduction to spatial data and analysis. It describes types of
analyses you can perform with different types of data, along with the difference
between vector and raster data and the uses of each.

■ Chapter 2 is a quick Python primer.
■ Chapter 3 explains what the OGR library is and teaches you how to read, write,

and edit vector data sources.
xiv



ABOUT THIS BOOK xv
■ Chapter 4 dives into the differences between vector formats. Although various
formats can be treated the same in many cases, here you’ll learn about specific
capabilities.

■ Chapter 5 teaches you how to filter and select data based on spatial and attri-
bute relationships.

■ Chapter 6 describes the nitty-gritty details of creating and editing point, line,
and polygon geometries.

■ Chapter 7 shows you how to look at spatial relationships between geometries
and how you might use these concepts for simple analyses.

■ Chapter 8 includes an introduction to spatial reference systems and then
teaches you how to work with them and transform data between them.

■ Chapter 9 explains what the GDAL library is and teaches you how to read and
write raster datasets. It also shows you how to convert between real-world coor-
dinates and pixel offsets.

■ Chapter 10 teaches you how to work with aspects of raster data such as ground
control points, color tables, histograms, and attribute tables. It also covers the
use of callback functions and error handlers.

■ Chapter 11 describes how to use NumPy and SciPy for map algebra, including
local, focal, zonal, and global analyses, and covers some methods for resam-
pling data.

■ Chapter 12 shows you some techniques for supervised and unsupervised map
classification.

■ Chapter 13 teaches you how to use matplotlib and Mapnik to visualize your data.

If you’re familiar with spatial data and analyses, you can safely skip chapter 1. Simi-
larly, if you’re already familiar with Python, then there’s no need to read chapter 2. If
you’ve never programmed at all, you might find that you need to read a little more
theory than can be provided in one chapter, but chapter 2 should be a good start, at
least. If you’re only interested in vector data, you can ignore chapters 9-11. Likewise, if
you’re only interested in raster data, chapters 3-7 can be skipped.

 This book also has several appendixes. The first two, included in the pBook, con-
tain installation instructions for the software used in this book and a list of data
resources. Three additional appendixes (containing reference material for the three
modules included with GDAL: ogr, osr, and gdal) are online-only and can be down-
loaded from www.manning.com/books/geoprocessing-with-python.

About the code
This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text.

 In many cases, the original source code has been reformatted; I’ve added line
breaks and reworked indentation to accommodate the available page space in the

www.manning.com/books/geoprocessing-with-python


ABOUT THIS BOOKxvi
book, and occasionally used line-continuation markers (➥). Additionally, comments
in the source code have often been removed from the listings when the code is
described in the text. Code annotations accompany many of the listings, highlighting
important concepts.

 I’ve tried to make variable names understandable while still keeping them short
enough so that the code can fit on a line in the book. You might want to use more-
descriptive variable names in your code, however.

 Source code for the examples can be downloaded from www.manning.com/books/
geoprocessing-with-python or from https://github.com/cgarrard/osgeopy-code. The
example datasets are also available from the Manning link or from https://
app.box.com/osgeopy.

Author Online
The purchase of Geoprocessing in Python includes free access to a private web forum run
by Manning Publications, where you can make comments about the book, ask techni-
cal questions, and receive help from the author and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/books/
geoprocessing-with-python. This page provides information on how to get on the
forum once you’re registered, what kind of help is available, and the rules of conduct
on the forum. 

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking her some challenging questions lest her interest stray! The Author
Online forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

Other online resources
If you need help with the Python language itself, there are a lot of tutorials online,
such as the one at www.codecademy.com/learn/python.

 If you need help with GDAL/OGR, the gdal-dev mailing list is a great place to
ask questions and get advice. Sign up or view the archives at http://lists.osgeo.org/
listinfo/gdal-dev.

 The Python GDAL/OGR Cookbook found at https://pcjericks.github.io/py-gdalogr
-cookbook/ contains a lot of useful examples.

 After learning how to use OGR, you might also be interested in learning how to use
Fiona (http://toblerity.org/fiona/), which is a module designed to read and write vec-
tor data and is built on top of OGR. Shapely (http://toblerity.org/shapely/) is a useful
module for manipulating geometries.

 Rasterio (https://github.com/mapbox/rasterio) is built on top of GDAL and is
another good module for working with raster data.

www.manning.com/books/geoprocessing-with-python
www.manning.com/books/geoprocessing-with-python
https://app.box.com/osgeopy
https://app.box.com/osgeopy
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about the cover illustration
The illustration on the cover of Geoprocessing with Python is captioned “Man from Dal-
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Introduction
Humans have been making maps for far longer than we’ve been writing, and even
the famed Lascaux caves in France have a star map on their walls. We know that
ancient peoples all over the world used maps, including the Babylonians, Greeks,
and Chinese. The art of cartography has evolved over the millennia, from cave walls
as mediums to clay tablets, parchment, paper, and now digital. Maps have also got-
ten much more detailed, as well as accurate, as technology has been developed and
improved. In fact, most of us would probably have a hard time recognizing the
most primitive maps as maps at all. 

 It took mankind a long time to go from cave walls to mass-produced road maps,
but the degree of change in the last few decades has been staggering. Geographic
Information Systems (GISs) became more common and easier to use, giving more
people the ability to both analyze spatial data and produce their own high-quality
maps. Then came web mapping and services that allow users to make custom maps
online and share them with the world. Many of us even carry devices in our pockets

This chapter covers
■ Introducing basic types of spatial data
■ What is geoprocessing?
■ Using QGIS
1



2 CHAPTER 1 Introduction
that can display a map showing our current location and tell us how to get to a new
restaurant that we want to try. Not only that, but the available data has also changed
dramatically. Makers of those early maps would be blown away by our roadmaps over-
laid on top of aerial photography and our talking GPS units.

 Thanks to these recent advances in technology, along with free and open source
tools, you have access to powerful software to work with your own data. This book aims
to teach you the basic concepts of working with spatial data and how to do so with the
Python programming language and a few open source tools. After reading this book,
you’ll write Python scripts to solve basic data analysis problems and have the back-
ground knowledge to answer more-complicated questions.

1.1 Why use Python and open source?
Several compelling reasons exist for using Python and open source tools for process-
ing spatial data. First, Python is a powerful programming language that has the advan-
tage of being much easier to learn than some other languages, and it’s also easy to
read. It’s a good language to start with if you’ve never programmed before, and if
you’re coming from other languages, you’ll probably find Python easy to pick up. 

 Learning Python is a good move, even if you never again use it for spatial analysis
after reading this book. Many different Python modules are available for a wide range
of applications, including web development, scientific data analysis, and 3D anima-
tion. In fact, geospatial applications are only a small subset of what Python is used for.

 In addition, Python is multiplatform, so unless you’ve used an extra module that’s
specific to one operating system, a Python script that you write on one machine will run
on any other machine, provided the required modules are installed. You can use your
Linux box to develop a set of scripts and then give them to a colleague who uses Win-
dows, and everything should work fine. You do need to install a Python interpreter to
run the code, but those are freely available for major desktop operating systems. 

 Python ships with the core language and numerous modules that you can option-
ally use in your code. In addition, many more modules are available from other
sources. For example, the Python Package Index (PyPI), available at https://pypi.python
.org/pypi, lists more than 60,000 additional modules, all used for different purposes,
and all free. That’s not to say that everything Python is free, however. Several of you
coming from a GIS background are no doubt familiar with ArcPy, which is a Python
module that comes with ArcGIS, and is not useable without an ArcGIS license.

 Not only is there an abundance of free Python packages, but many of them are also
open source. Although many people associate open source software with software that
doesn’t cost money, that’s only part of it. The real meaning is that the source code is
made available for you to use if you wish. The fact that you have access to the source
code means that nothing is a “black box” (if you want to take the time to learn what’s
inside the box), but also that you can modify the code to suit your needs. This is
extremely liberating. I’ve used open source tools that didn’t quite do what I wanted,
so I tweaked the source code, recompiled, and then had a utility that did exactly what

https://pypi.python.org/pypi
https://pypi.python.org/pypi


3Types of spatial data
I needed. This is impossible with proprietary software. These two types of freedom
associated with open source software make it an attractive model.   

 Several different types of open source licenses exist, some of which not only allow
you to modify the code as needed, but even allow you to turn around and sell your
derived work without providing the source code and your modifications. Other licenses
require that if you use the software, then your software must also be open source.

 We’ll cover a few popular open source Python modules for geospatial data in this
book. Several were originally developed in other languages, but became so common
and well respected that they were either ported to other languages, or bindings were
developed so that they could be used in other languages. For example, the Geospatial
Data Abstraction Library (GDAL) is an extremely popular C/C++ library for reading and
writing spatial data, and bindings have been developed for Python, .NET, Ruby, and
other languages. The GDAL library is even used by many proprietary software pack-
ages. Because of the library’s widespread use, this book concentrates on GDAL/OGR.
If you can learn to use this, then moving to other libraries shouldn’t be difficult. In
fact, several nice libraries are built on top of GDAL/OGR that are probably easier to
use, but don’t necessarily provide all of the functionality that’s present in GDAL. See
appendix A for installation instructions for the modules used in this book.

 Another advantage to going with open source tools is that active user communities
exist for some of these packages, and you may find that bugs and other issues are
addressed much more quickly than with many proprietary software packages. You can
even discuss the finer points of the libraries with the actual developers via email lists.

1.2 Types of spatial data
You’ll learn how to work with the two main
types of spatial data, vector and raster. Vec-
tor data is made up of points, lines, and
polygons, while raster data is a two- or three-
dimensional array of data values such as the
pixels in a photograph. A dataset contain-
ing country boundaries is an example of
vector data. In this case, each country is
generally represented as a polygon. Datasets
that use lines to represent roads or rivers, or
points to show the location of weather sta-
tions, are other examples. Early primitive
maps, such as those drawn on cave walls,
only showed the features themselves. Later
maps contained labels for features of inter-
est such as cities or seaports; for example,
the Portolan map of northwest Africa shown
in figure 1.1. Figure 1.1 A Portolan map of the northwest 

coast of Africa, circa 1590



4 CHAPTER 1 Introduction
Using digital data, you have the advantage of attaching multiple attribute values to
each feature, whether you plan to display the information on a map or not. For each
road, you can store information such as its name, speed limit, number of lanes, or any-
thing else you can think of. Figure 1.2 shows an example of data you might store with
each country in a dataset.

    Of the several reasons why this is use-
ful, the obvious one is that you can label
features using one of the attributes. For
example, figure 1.2 could show country
names as well as outlines. All of this data
can also help you make more-interesting
maps that might even tell a story. The
population counts stored for each fea-
ture in figure 1.2 could be used to sym-
bolize countries based on population, so
it’s evident at a glance which countries
are most populated (figure 1.3).

Figure 1.3 Countries symbolized based on 
population

Name: Democratic Republic of the Congo

Postal code: DRC

Population: 68,692,542

Last census: 1984

Name: Somalia

Postal code: SO

Population: 9,832,017

Last census: 1987

Figure 1.2 You can store 
attributes such as name and 
population for each geographic 
feature in a dataset.

Population

< 20,000,000

20,000,000–70,000,000

70,000,000–160,000,000

160,000,000–310,000,000

> 310,000,000



5Types of spatial data
Spatial overlay analyses are also easy using vector data. Say you wanted to know what per-
centage of Lake Victoria was in Uganda, Kenya, and Tanzania. You could always guess-
timate the answer based on figure 1.4, but you could also use GIS software to get more
accurate numbers. You’ll do simple analyses like this by the time you finish this book.

 Attribute values attached to features can also add to the power of spatial opera-
tions. For example, say you had a dataset containing the locations of water wells with 
attributes that included depth and flow
rate. If you also had a dataset for the
same area containing geologic land-
forms or soil types, you could analyze
this data to see if flow rate or required
well depth was affected by landform or
soil type.

 Unlike the early mapmakers, you also
have access to raster data. Rasters, as the
datasets are called, are two- or three-
dimensional arrays of values, the way a
photograph is a two-dimensional array of
pixel values. In fact, aerial photographs
such as the one shown in figure 1.5 are a
commonly used type of raster data. Satel-
lite images sometimes look similar,
although they generally have lower

Kenya

Tanzania

Uganda

Figure 1.4 Lake Victoria straddles 
Uganda, Kenya, and Tanzania. 
Spatial analysis could help you 
determine the proportion of the 
lake that falls in each country.

Figure 1.5 An aerial photograph near Seattle, 
Washington 
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resolutions. The cool thing about satellite imagery is that much of it is collected using
nonvisible light so it can provide information that a simple photograph cannot.

 Raster datasets are well suited to any continuous data, not only photographs. Pre-
cipitation data like that shown in figure 1.6 is a good example. Rain doesn’t usually stop
at a sudden boundary, so it’s hard to draw a polygon around it. Instead, a grid of pre-
cipitation amounts works much better and can capture local variation more easily. The
same idea applies to temperature data, and many other variables, as well. Another exam-
ple is a digital elevation model (DEM), in which each pixel contains an elevation value.

 Raster data is better suited for different types of analysis than vector data. Satellite
imagery and aerial photos are commonly used for tasks such as vegetation mapping.
Because water only flows downhill, elevation models can be used to determine water-
shed boundaries. Even simple math can be used to perform useful analyses with raster
data. For example, simple ratios of one wavelength value to another can help identify
healthy vegetation or measure soil moisture.

 Blocks of adjacent pixels can also be used to calculate useful information. For
example, you can use a DEM to calculate slope, which can then be used for runoff
analysis, vegetation mapping, or planning a ski resort. But to calculate slope, you need
the elevation of surrounding cells. In figure 1.7, you use all of the pixel values shown

Figure 1.6 A raster 
dataset showing 
precipitation (PRISM 
Climate Group, Oregon 
State University, 2015)

54 53 51

53 52 50

50 50 48 Figure 1.7 All nine elevation values shown here would 
be used to calculate the slope for the center pixel.
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to calculate the slope of the center pixel. For any other pixel, you need the surround-
ing nine cells to calculate slope for it, too. These sets of pixels are called windows, and
you can do many other kinds of analyses by moving a window around a raster so each
pixel is in the center of its own window.

 Vector and raster data can also be used together. Think of a hybrid web mapping
application that shows a photographic basemap with roads drawn on top of it. The
basemap is raster data and the roads shown on top are vectors. Figure 1.8 shows an
example of a simple map that uses a raster DEM of the Grand Canyon as a basemap
and shows a vector line dataset drawn on top.

1.3 What is geoprocessing?
Geoprocessing is a general term for manipulating spatial data, whether raster or vec-
tor. As you can imagine, that covers an awful lot of ground. I’ve always thought of
using GIS with geoprocessing as a tool much like statistics in that it can be applied to
pretty much everything. You even use geoprocessing in your daily life, whether you
realize it or not. For example, I tend to take a different route to work depending on
whether I’m driving or riding a bicycle because I prefer to avoid high-traffic roads
with no shoulder when riding my bike. Steep hills are also not a concern while driv-
ing, but they are when I’m biking. Basing my route selection not only on spatial fac-
tors such as the direction of the road and elevation gain, but also on attributes such as
the amount of traffic and road width is a type of geoprocessing. You probably make
similar decisions every day.

Figure 1.8 Simple map of the Grand Canyon with vector roads layer drawn on top of a raster elevation 
dataset
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You have many reasons to be interested in geoprocessing, other than selecting a route
to work. Let’s look at a few examples of applications. One famous example of early
spatial analysis is the story of John Snow, an English physician who lived in the 1800s.
Although parts of the story have been disputed, the gist of it is that he used spatial
analysis to determine the cause of a cholera outbreak in 1854. A section of his map is
shown in figure 1.9, with the Broad Street pump in the middle. You can see that it
looks like bar charts are anchored on nearby streets. Each of these bars is made of
horizontal lines, with one per cholera victim. Snow realized that most of the victims
probably got their water from the pump on Broad Street, because that was the closest
one, and he convinced authorities to shut the pump down. This is significant not only
because it’s an early example of spatial analysis, but also because it wasn’t yet known
that cholera was contracted from contaminated water. Because of this, Snow is consid-
ered one of the fathers of modern epidemiology.

 Spatial analysis is still an important part of epidemiology, but it’s used for many
other things, too. I’ve worked on projects that include studying the habits of a threat-
ened species, modeling vegetation cover over large areas, comparing data from pre-
and post-flood events to see how the river channels changed, and modeling carbon
sequestration in forests. You can probably find examples of spatial analysis wherever
your interests lie. Let’s consider a few more examples.

Figure 1.9 Part of John Snow’s map of the Soho cholera outbreak of 1854
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 Chinese researchers Luo et al.1 used spatial analysis, along with historical records, to
pinpoint the locations of missing courier stations along the Silk Road. The historical
records contained descriptions of the route, including distance traveled and general
direction between stations. The locations of several stations were already known, and
the researchers knew that ancient travelers were unlikely to follow a straight line, but
instead follow rivers or other landforms. They used all of this information to determine
likely geographic areas for the still-missing stations. They then used high-resolution sat-
ellite imagery to search these areas for geometric shapes that could be station ruins.
After visiting the sites in person, they determined that one, in fact, was an old courier
station, and two others were likely military facilities during the Han Dynasty.

 For a completely different application, Moody et al.2 were interested in the poten-
tial for using microalgae as a biofuel. They used a microalgae growth model and mete-
orological data from various locations around the globe to simulate biomass
productivity. Because the meteorological data was only from certain sites, the results
were then spatially interpolated to provide a global map of productivity potential. It
turns out that the most promising locations are in Australia, Brazil, Colombia, Egypt,
Ethiopia, India, Kenya, and Saudi Arabia.

 This is interesting, but spatial analyses also affect your everyday life. Have you
noticed that your automobile insurance premium differs depending on where you
live? It’s likely that a sort of spatial analysis also affected the location of your favorite
coffee shop or grocery store. Several new elementary and high schools are being built
in my community, and their locations were determined in part by the spatial distribu-
tion of future students, along with the availability of suitable pieces of real estate. 

 Spatial analysis isn’t limited to geography, either. Rose et al.3 demonstrated that
GIS can be used to analyze the distribution of nano- and microstructures in bone.
They could use this to see how bone remodeling events corresponded to parts of the
bone that experience high levels of compression and tension. 

 You personally might need to make data more suitable for a map, such as eliminat-
ing unwanted features or simplifying complex lines so they display faster on a web
map. Or you might analyze demographic data to plan for future transportation needs.
Perhaps you’re interested in how vegetation responds to different land management
practices, such as prescribed burns or mowing. Or maybe it’s something else entirely.

 Although geoprocessing techniques can be rather complicated, many are fairly sim-
ple. It’s the simple ones that you’ll learn about in this book, but they’re the foundation
for everything else. By the time you’re done, you’ll read and write spatial data in many

1  Luo, L., X. Wang, C. Liu, H. Guo, and X. Du. 2014. Integrated RS, GIS and GPS approaches to archaeological
prospecting in the Hexi Corridor, NW China: a case study of the royal road to ancient Dunhuang. Journal of
Archaeological Science. 50: 178-190. doi:10.1016/j.jas.2014.07.009.

2 Moody, J. W., C. M. McGinty, and J. C. Quinn. 2014. Global evaluation of biofuel potential from microalgae.
Proceedings of the National Academy of Sciences of the United States of America. 111: 8691-8696. doi:
10.1073/pnas.1321652111.

3 Rose, D. C., A. M. Agnew, T. P. Gocha, S. D. Stout, and J. S. Field. 2012. Technical note: The use of geograph-
ical information systems software for the spatial analysis of bone microstructure. American Journal of Physical
Anthropology. 148: 648–654. doi: 10.1002/ajpa.22099.
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formats, both vector and raster. You’ll subset vector data by attribute value or by spatial
location. You’ll know how to perform simple vector geoprocessing, including overlay
and proximity analyses. In addition, you’ll know how to work with raster datasets,
including resizing pixels, performing calculations based on multiple datasets, and mov-
ing window analyses.

 You’ll know how to do all of this with Python rather than by pushing buttons in a
software package. The ability to script your processes like this is extremely powerful.
Not only does it make it easy to batch process many datasets at once (something I do
often), but it gives you the ability to customize your analysis instead of being limited to
what the software user interface allows. You can build your own custom toolkits based
on your workflow, and use these over and over. Automation is another big one, and it’s
the reason I fell in love with scripting in the first place. I hate pushing buttons and
doing the same thing over and over, but I’ll happily spend time figuring out how to
automate something so I never have to think about it again. One last advantage that
I’ll mention here is that you always know exactly what you did, as long as you don’t
lose your script, because everything is right there. 

1.4 Exploring your data
You’ll see ways to visualize your data as you work with it in Python, but the best way to
explore the data is still to use a desktop GIS package. It allows you to easily visualize
the data spatially in multiple ways, but also inspect the attributes included with the
data. If you don’t have access to GIS software already, QGIS is a good open source
option and is the one we’ll be using when needed in this book. It’s available from
www.qgis.org, and it runs on Linux, Mac OS X, and Windows.

This isn’t a book on QGIS, so I won’t talk much about how to use it. Documentation is
available on their website, and you can find one or two books published on the topic.
However, I’ll briefly discuss how to load data and take a look. If you’ve never used a
GIS before, then QGIS might look a bit daunting when you first open it up, but it’s not
hard to use it to view data. For example, to load up one of the shapefiles in the exam-
ple data for this book, select Add Vector Layer… from the Layer menu in QGIS. In the
dialog that opens, make sure that the File button is selected and then use the Browse

Downloadable code and sample data

The examples in this book use code and sample data that’s available for download
from the following links. You’ll need to download these if you want to follow along.
The code contains examples from the book but also custom utilities used by the exam-
ples, and all of the data used in the examples is included. 

■ Code: https://github.com/cgarrard/osgeopy-code and www.manning.com/
books/geoprocessing-with-python

■ Data: https://app.box.com/osgeopy and www.manning.com/books/geo
processing-with-python

https://github.com/cgarrard/osgeopy-code
www.qgis.org
http://www.manning.com/books/geoprocessing-with-python
http://www.manning.com/books/geoprocessing-with-python
https://app.box.com/osgeopy
http://www.manning.com/books/geoprocessing-with-python
http://www.manning.com/books/geoprocessing-with-python
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button to select a shapefile. A good choice to start out with is the countyp010.shp file
in the US folder (figure 1.10). 

 After selecting a file, click Open in the Add vector layer dialog, and the spatial data
will draw in QGIS, as shown in figure 1.11. You can use the magnifying glass tool (cir-
cled in figure 1.11) to zoom in on part of the map.

Figure 1.10 The dialog for 
adding a vector layer to QGIS

Figure 1.11 QGIS window immediately after loading countyp010.shp
www.allitebooks.com

http://www.allitebooks.org
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You’ll also see the name of the layer, countyp010 in this case, shown in the Layers list
on the left. Double-click on a layer and you’ll get a Properties dialog. If you click on
the Style tab, then you can change how the data is drawn. Let’s change the counties
layer so that the counties are not all drawn with the same color, but instead the color
depends on the state the county is in. To do this, choose Categorized from the drop-
down list, set the column to STATE, select a Color ramp from the dropdown list, and
then click Classify. You’ll see a list of all of the states and the colors they’ll be drawn
with, as shown in figure 1.12. You can change the color ramp by selecting a new one
from the list, clicking Delete All, and then clicking Classify again. You can also change
a particular entry in the list by double-clicking on the color swatch next to the state
abbreviation. 

NOTE TO PRINT BOOK READERS: COLOR GRAPHICS Many graphics in this book
are best viewed in color. The eBook versions display the color graphics, so
they should be referred to as you read. To get your free eBook in PDF, ePub,
and Kindle formats, go to https://www.manning.com/books/geoprocessing-
with-python to register your print book.

Once you’re happy with your colors, click Apply, and the colors will be applied in the
main QGIS window (figure 1.13).

 You can view the attribute data that’s attached to the spatial data by right-clicking on
the layer name in the Layers list and selecting Open Attribute Table. Each row in the
table shown in figure 1.14 corresponds to a county drawn on the map. In fact, try select-
ing a row by clicking on the number in the left-most column and then clicking on the
Zoom map to selected rows button (circled in figure 1.14) and watch what happens.

Figure 1.12 QGIS Style dialog configured to draw the counties in each state in a different color

https://www.manning.com/books/geoprocessing-with-python
https://www.manning.com/books/geoprocessing-with-python
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 .

Take time to play with QGIS and read at least part of the documentation on the web-
site. The software is extremely powerful and worth getting to know. I’ll talk about it
more throughout the book, but not a whole lot. You’ll want to use it to inspect the
sample data and the results of any data you create, however.

Figure 1.13 Results of applying the symbology from figure 1.12 to the counties layer

Figure 1.14 Attribute table for the counties layer
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1.5 Summary
■ Python is a powerful multiplatform programming language that’s relatively easy

to learn.
■ Free and open source software is not only free with regard to price (free beer),

but also allows for many freedoms with how it’s used (free speech).
■ Many excellent open source Python modules exist for processing both vector

and raster geospatial data.
■ You don’t give up quality by using open source tools. In fact several of these

packages are also used by proprietary software.



Python basics
You can do many things with desktop GIS software such as QGIS, but if you work
with spatial data for long, you’ll inevitably want to do something that isn’t available
through the software’s interface. If you know how to program, and are clever
enough, you can write code that does exactly what you need. Another common sce-
nario is the need to automate a repetitive processing task instead of using the
point-and-click method over and over again. Not only is coding more fun and intel-
lectually stimulating than pointing and clicking, but it’s also much more efficient
when it comes to repetitive tasks. You have no shortage of languages you could
learn and work with, but because Python is used with many GIS software packages,
including QGIS and ArcGIS, it’s an excellent language for working with spatial data.
It’s also powerful, but at the same time a relatively easy-to-learn language, so that
makes it a good choice if you’re starting out with programming. 

 Another reason for using Python is that it’s an interpreted language, so
programs written in Python will run on any computer with an interpreter, and

This chapter covers
■ Using the Python interpreter vs. writing scripts
■ Using the core Python data types
■ Controlling the order of code execution
15
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interpreters exist for any operating system you’re likely to use. To run a Python script,
you need the script and an interpreter, which is different from running an .exe file,
for example, where you only need one file. But if you have an .exe file, you can only
run it under the Windows operating system, which is a bummer if you want to run it
on a Mac or Linux. However, if you have a Python script, you can run it anywhere that
has an interpreter, so you’re no longer limited to a single operating system.

2.1 Writing and executing code
Another advantage of interpreted languages is that you can use them interactively.
This is great for playing around and learning a language, because you can type a line
of code and see the results instantly. You can run the Python interpreter in a terminal
window, but it’s probably easier to use IDLE, which is a simple development environ-
ment installed with Python. Two different types of windows exist in IDLE, shells and edit
windows. A shell is an interactive window in which you can type Python code and get
immediate results. You’ll know that you’re looking at an interactive window if you see
a >>> prompt, like that in figure 2.1. You can type code after this prompt and execute
it by pressing Enter. Many of the examples in this book are run this way to show
results. This is an inefficient way to run more than a few lines of code, and it doesn’t
save your code for later use. This is where the edit window comes in. You can use the
File menu in IDLE to open a new window, which will contain an empty file. You can
type your code in there and then execute the script using the Run menu, although
you’ll need to save it with a .py extension first. The output from the script will be sent
to the interactive window. Speaking of output, in many of the interactive examples in
this book I type a variable name to see what the variable contains, but this won’t work
if you’re running the code from a script. Instead, you need to use print to explicitly
tell it to send information to the output window.

 In figure 2.1 the string I typed, ‘Hello world!’, and the output are color coded.
This syntax highlighting is useful because it helps you pick out keywords, built-in func-
tions, strings, and error messages at a glance. It can also help you find spelling mistakes
if something doesn’t change color when you expect it to. Another useful feature of IDLE
is tab completion. If you start typing a variable or function name and then press the Tab

Figure 2.1 An IDLE shell window
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key, a list of options will pop up, as shown in figure 2.2. You can keep typing, and it will
narrow the search. You can also use arrow keys to scroll through the list. When the word
you want is highlighted, press Tab again, and the word will appear on your screen.

 Because Python scripts are plain text files, you aren’t forced to use IDLE if you don’t
want to. You can write scripts in whatever text editor you prefer. Many editors are easy
to configure, so you can run a Python script directly without leaving the editor. See the
documentation for your favorite editor to learn how to do this. Packages that are
designed specifically for working with Python code are Spyder, PyCharm, Wing IDE,
and PyScripter. Everybody has their own favorite development environment, and you
may need to play with a few different ones before you find an environment that you like.

2.2 Basic structure of a script
Some of the first things you’ll see right at the top of most Python scripts are import
statements. These lines of code load additional modules so that the scripts can use
them. A module is basically a library of code that you can access and use from your
scripts, and the large ecosystem of specialized modules is another advantage to using
Python. You’d have a difficult time working with GIS data in Python without extra
modules that are designed for this, similar to the way tools such as GIMP and Photo-
shop make it easier to work with digital images. The whole point of this book is to
teach you how to use these tools for working with GIS data. Along the way, you’ll also
use several of the modules that come with Python because they’re indispensable for
tasks such as working with the file system. 

 Let’s look at a simple example that uses one of the built-in modules. The first thing
you need to do to use a module is load it using import. Then you can access objects in
the module by prefixing them with the module name so that Python knows where to find
them. This example loads the random module and then uses the gauss function con-
tained in that module to get a random number from the standard normal distribution:

>>> import random
>>> random.gauss(0, 1)
-0.22186423850882403

Figure 2.2 Start typing and press the Tab key in order to get a list of possible 
variables or functions that match what you were typing.
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Another thing you might notice in a Python script is the lack of semicolons and curly
braces, which are commonly used in other languages for ending lines and setting off
blocks of code. Python uses whitespace to do these things. Instead of using a semico-
lon to end a line, press Enter and start a new line. Sometimes one line of code is too
long to fit comfortably on one line in your file, however. In this case, break your line at
a sensible place, such as right after a comma, and the Python interpreter will know
that the lines belong together. As for the missing curly braces, Python uses indenta-
tion to define blocks of code instead. This may seem weird at first if you’re used to
using braces or end statements, but indentation works as well and forces you to write
more readable code. Because of this, you need to be careful with your indentations. In
fact, it’s common for beginners to run into syntax errors because of wayward indenta-
tions. For example, even an extra space at the beginning of a line of code will cause an
error. You’ll see examples of how indentation is used in section 2.5.

 Python is also case sensitive, which means that uppercase and lowercase letters are
different from one another. For example, random.Gauss(0, 1) wouldn’t have worked
in the last example because gauss needs to be all lowercase. If you get error messages
about something being undefined (which means Python doesn’t know what it is), but
you’re sure that it exists, check both your spelling and your capitalization for mistakes.

 It’s also a good idea to add comments to your code to help you remember what it
does or why you did it a certain way. I can guarantee that things that are obvious as
you’re writing your code will not be so obvious six months later. Comments are
ignored by Python when the script is run, but can be invaluable to the real people
looking at the code, whether it’s you or someone else trying to understand your code.
To create a comment, prefix text with a hash sign:

# This is a comment 

In addition to comments, descriptive variable names improve the legibility of your
code. For example, if you name a variable m, you need to read through the code to fig-
ure out what’s stored in that variable. If you name it mean_value instead, the contents
will be obvious. 

2.3 Variables
Unless your script is extremely simple, it will need a way to store information as it
runs, and this is where variables come in. Think about what happens when you use
software to open a file, no matter what kind of file it is. The software displays an Open
dialog, you select a file and click OK, and then the file is opened. When you press OK,
the name of the selected file is stored as a variable so that the software knows what file
to open. Even if you’ve never programmed anything in your life, you’re probably
familiar with this concept in the mathematical sense. Think back to algebra class and
computing the value of y based on the value of x. The x variable can take on any value,
and y changes in response. A similar concept applies in programming. You’ll use many
different variables, or x’s, that will affect the outcome of your script. The outcome can
be anything you want it to be and isn’t limited to a single y value, however. It might be
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a number, if your goal is to calculate a statistic on your data, but it could as easily be
one or more entirely new datasets.

 Creating a variable in Python is easy. Give it a name and a value. For example, this
assigns the value of 10 to a variable called n and then prints it out:

>>> n = 10
>>> n
10

If you’ve used other programming languages such as C++ or Java, you might be won-
dering why you didn’t need to specify that the variable n was going to hold an integer
value. Python is a dynamically typed language, which means that variable types aren’t
checked until runtime, and you can even change the data type stored in a variable.
For example, you can switch n from an integer to a string and nobody will complain:

>>> n = 'Hello world'
>>> n
Hello world

Although you can store whatever you want in a variable without worrying about data
type, you will run into trouble if you try to use the variable in a way that’s inconsistent
with the kind of data stored in it. Because the data types aren’t checked until runtime,
the error won’t happen until that line of the script is executed, so you won’t get any
warning beforehand. You’ll get the same errors in the Python interactive window that
would occur in a script, so you can always test examples there if you’re not sure if
something will work. For example, you can’t add strings and integers together, and
this shows what happens if you try:

>>> msg = n + 1
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: Can't convert 'int' object to str implicitly

Remember that n contains Hello world, which cannot be added to 1. If you’re using
Python 2.7, the core of the problem is the same, but your error message will look like
this instead:

TypeError: cannot concatenate 'str' and 'int' objects

Notice that you use a single equal sign to assign a value to a variable. To test for equal-
ity, always use a double equal sign:

>>> n = 10
>>> n == 10
True 

When you’re first starting out, you might be more comfortable hardcoding values into
your script instead of using variables when you don’t have to. For example, say you
need to open a file in the script, maybe on line 37. You’ll probably be tempted to type
the filename on line 37 when the file is opened. This will certainly work, but you’ll
find that things are easier to change later if you instead define a variable containing
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the filename early in the script and then use that variable on line 37. First, this makes
it easier to find the values you need to change, but even more importantly, it will be
much easier to adapt your code so that you can use it in more situations. Instead of
line 37 looking something like this,

myfile = open('d:/temp/cities.csv')

you’d define a variable early on and then use it when needed:

fn = 'd:/temp/cities.csv'
<snip a bunch of code>
myfile = open(fn)

It might be hard to remember to do this at first, but you’ll be glad you did if you have
to adapt your code to use other data.

2.4 Data types
As your code becomes more complex, you’ll find that it’s extremely difficult to store
all of the information that your script needs as numbers and strings. Fortunately, you
can use many different types of data structures, ranging from simple numbers to com-
plex objects that can contain many different types of data themselves. Although an
infinite number of these object types can be used (because you can define your own),
only a small number of core data types exist from which the more complex ones are
built. I’ll briefly discuss several of those here. Please see a more comprehensive set of
Python documentation for more details, because this leaves out much information.

2.4.1 Booleans

A Boolean variable denotes true or false values. Two case-sensitive keywords, True and
False, are used to denote these values. They can be used in standard Boolean opera-
tions, like these:

>>> True or False
True
>>> not False
True
>>> True and False
False
>>> True and not False
True

Other values can also resolve to True or False when value testing and performing
Boolean operations. For example, 0, the None keyword, blank strings, and empty lists,
tuples, sets, and dictionaries all resolve to False when used in Boolean expressions.
Anything else resolves to True. You’ll see examples of this in section 2.5.

2.4.2 Numeric types

As you’d expect, you can use Python to work with numbers. What you might not
expect, however, is that distinct kinds of numbers exist. Integers are whole numbers,
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such as 5, 27, or 592. Floating-point numbers, on the other hand, are numbers with deci-
mal points, such as 5.3, 27.0, or 592.8. Would it surprise you to know that 27 and 27.0
are different? For one, they might take up different amounts of memory, although the
details depend on your operating system and version of Python. If you’re using
Python 2.7 there’s a major difference in how the two numbers are used for mathemat-
ical operations, because integers don’t take decimal places into account. Take a look
at this Python 2.7 example:

>>> 27 / 7
3
>>> 27.0 / 7.0
3.857142857142857
>>> 27 / 7.0
3.857142857142857

As you can see, if you divide an integer by another integer, you still end up with an
integer, even if there’s a remainder. You get the correct answer if one or both of the
numbers being used in the operation is floating-point. This behavior has changed in
Python 3.x, however. Now you get floating-point math either way, but you can still
force integer math using the // floor division operator:

>>> 27 / 7
3.857142857142857
>>> 27 // 7
3

WARNING Python 3.x performs floating-point math by default, even on inte-
gers, but older versions of Python perform integer math if all inputs are inte-
gers. This integer math often leads to undesirable results, such as 2 instead of
2.4, in which case you must ensure that at least one input is floating-point.

Fortunately, you have a simple way to convert one numeric data type to the other,
although be aware that converting floating-point to integer this way truncates the
number instead of rounding it:

>>> float(27)
27.0
>>> int(27.9)
27

If you want to round the number instead, you must use the round function:

>>> round(27.9)
28 

Python also supports complex numbers, which contain real and imaginary parts. As
you might recall, these values result when you take the square root of a negative num-
ber. We won’t use complex numbers in this book, but you can read more about them
at python.org if you’re interested.
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2.4.3 Strings

Strings are text values, such as ‘Hello world’. You create a string by surrounding the
text with either single or double quotes—it doesn’t matter which, although if you start
a string with one type, you can’t end it with the other because Python won’t recognize
it as the end of the string. The fact that either one works makes it easy to include quotes
as part of your string. For example, if you need single quotes inside your string, as you
would in a SQL statement, surround the entire string with double quotes, like this:

sql = "SELECT * FROM cities WHERE country = 'Canada'"

If you need to include the same type of quote in your string that you’re using to delin-
eate it, you can use a backslash before the quote. The first example here results in an
error because the single quote in “don’t” ends the string, which isn’t what you want.
The second one works, thanks to the backslash:

>>> 'Don't panic!'
  File "<stdin>", line 1
    'Don't panic!'
         ^
SyntaxError: invalid syntax
>>> 'Don\'t panic!'
"Don't panic!"

Notice the caret symbol (^) under the spot where Python ran into trouble. This can
help you narrow down where your syntax error is. The double quotes that surround
the string when it’s printed aren’t part of the string. They show that it’s a string, which
is obvious in this case, but wouldn’t be if the string was “42” instead. If you use the
print function, the quotes aren’t shown:

>>> print('Don\'t panic!')
Don't panic!

TIP Although most of these examples from the interactive window don’t use
print to send output to the screen, you must use it to send output to the
screen from a script. If you don’t, it won’t show up. In Python 3, print is a
function and like all functions, you must pass the parameters inside parenthe-
ses. In Python 2, print is a statement and the parentheses aren’t required,
but they won’t break anything, either.

JOINING STRINGS

You have several ways to join strings together. If you’re only concatenating two strings,
then the simplest and fastest is to use the + operator:

>>> 'Beam me up ' + 'Scotty'
'Beam me up Scotty'

If you’re joining multiple strings, the format method is a better choice. It can also join
values together that aren’t all strings, something the + operator can’t do. To use it, you
create a template string that uses curly braces as placeholders, and then pass values to
take the place of the placeholders. You can read the Python documentation online to
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see the many ways you can use this for sophisticated formatting, but we’ll look at the
basic method of specifying order. Here, the first item passed to format replaces the
{0} placeholder, the second replaces {1}, and so on:

>>> 'I wish I were as smart as {0} {1}'.format('Albert', 'Einstein')
'I wish I were as smart as Albert Einstein'

To see that the numeric placeholders make a difference, try switching them around
but leaving everything else the same:

>>> 'I wish I were as smart as {1}, {0}'.format('Albert', 'Einstein')
'I wish I were as smart as Einstein, Albert'

The fact that the placeholders reference specific values means that you can use the same
placeholder in multiple locations if you need to insert an item in the string more than
once. This way you don’t have to repeat anything in the list of values passed to format. 

ESCAPE CHARACTERS

Remember the backslash that you used to include a quote inside a string earlier?
That’s called an escape character and can also be used to include nonprintable charac-
ters in strings. For example, “\n” includes a new line, and “\t” represents a tab:

>>> print('Title:\tMoby Dick\nAuthor:\tHerman Melville')
Title:  Moby Dick
Author: Herman Melville

The fact that Windows uses backslashes as path separators causes angst for beginning
programmers who use Windows, because they tend to forget that a single backslash
isn’t a backslash. For example, pretend you have a file called cities.csv in your d:\temp
folder. Try asking Python if it exists:

>>> import os
>>> os.path.exists('d:\temp\cities.csv')
False

To get an idea of why that fails, when you know that the file does indeed exist, try
printing the string instead:

>>> print('d:\temp\cities.csv')
d:      emp\cities.csv

The “\t” was treated as a tab character! You have three ways to solve this problem.
Either use forward slashes or double backslashes, or prefix the string with an r to tell
Python to ignore escape characters:

>>> os.path.exists('d:/temp/cities.csv')
True
>>> os.path.exists('d:\\temp\\cities.csv')
True
>>> os.path.exists(r'd:\temp\cities.csv')
True

I prefer the latter method if I’m copying and pasting paths, because it’s much easier to
add one character at the beginning than to add multiple backslashes.
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2.4.4 Lists and tuples

A list is an ordered collection of items that are accessed via their index. The first item
in the list has index 0, the second has index 1, and so on. The items don’t even have to
all be the same data type. You can create an empty list with a set of square brackets, [],
or you can populate it right off the bat. For example, this creates a list with a mixture
of numbers and strings and then accesses some of them:

>>> data = [5, 'Bob', 'yellow', -43, 'cat']
>>> data[0]
5
>>> data[2]
'yellow'

You can also use offsets from the end of the list, with the last item having index -1:

>>> data[-1]
'cat'
>>> data[-3]
'yellow'

You’re not limited to retrieving one item at a time, either. You can provide a starting
and ending index to extract a slice, or sublist. The item at the ending index isn’t
included in the returned value, however:

>>> data[1:3]
['Bob', 'yellow']
>>> data[-4:-1]
['Bob', 'yellow', -43]

You can change single values in the list, or even slices, using indices:

>>> data[2] = 'red'
>>> data
[5, 'Bob', 'red', -43, 'cat']
>>> data[0:2] = [2, 'Mary']
>>> data
[2, 'Mary', 'red', -43, 'cat']

Use append to add an item to the end of the list, and del to remove an item:

>>> data.append('dog')
>>> data
[2, 'Mary', 'red', -43, 'cat', 'dog']
>>> del data[1]
>>> data
[2, 'red', -43, 'cat', 'dog']

It’s also easy to find out how many items are in a list or if it contains a specific value:

>>> len(data)
5
>>> 2 in data
True
>>> 'Mary' in data
False
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Tuples are also ordered collections of items, but they can’t be changed once created.
Instead of brackets, tuples are surrounded by parentheses. You can access items and
test for existence the same as with lists:

>>> data = (5, 'Bob', 'yellow', -43, 'cat')
>>> data[1:3]
('Bob', 'yellow')
>>> len(data)
5
>>> 'Bob' in data
True

Like I said, you’re not allowed to change a tuple once it has been created:

>>> data[0] = 10
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

Because of this, use lists instead of tuples when it’s possible that the data will change.

Error messages are your friend

When you get an error message, be sure to look carefully at the information it provides
because this can save you time figuring out the problem. The last line is a message
giving you a general idea of what the problem is, as seen here:

>>> data[0] = 10
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

You could deduce from this error message that your code tried to edit a tuple object
somehow. Before the error message, you’ll see a list of the lines of code that were
executed before it ran into a problem. This is called a stack trace. In this example,
<stdin> means the interactive window, so the line number isn’t as helpful. But look
at the following, which traces through two lines of code:

Traceback (most recent call last):
  File "D:\Temp\trace_example.py", line 7, in <module>                
    y = add(x, '1')                           
  File "D:\Temp\trace_example.py", line 2, in add
    return n1 + n2                                
TypeError: unsupported operand type(s) for +: 'int' and 'str'

The last line tells you the error is from trying to add an integer and a string together.
The trace tells you that the problem started with line 7 of the file trace_example.py.
Line 7 calls a function called add, and the error happens on line 2 inside of that func-
tion. You can use the information from the stack trace to determine where the error
occurred, and where the original line of code that triggered it is. In this example, you
know that either you passed bad data to the add function on line 7, or else an error
exists in the add function on line 2. That gives you two specific places to look for a
mistake. 

Code on line 7

Code on line 2
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2.4.5 Sets

Sets are unordered collections of items, but each value can only occur once, which
makes it an easy way to remove duplicates from a list. For example, this set is created
using a list that contains two instances of the number 13, but only one is in the result-
ing set:

>>> data = set(['book', 6, 13, 13, 'movie'])
>>> data
{'movie', 6, 'book', 13}

You can add new values, but they’ll be ignored if they’re already in the set, such as
‘movie’ in this example:

>>> data.add('movie')
>>> data.add('game')
>>> data
{'movie', 'game', 6, 'book', 13}

Sets aren’t ordered, so you can’t access specific elements. You can check if items are in
the set, however:

>>> 13 in data
True

Sets also make it easy to do things such as combine collections (union) or find out
which items are contained in both sets (intersection):

>>> info = set(['6', 6, 'game', 42])
>>> data.union(info)                               
{6, 'movie', 13, 'game', 'book', '6', 42}
>>> data.intersection(info)                       
{'game', 6}

You’ve already seen that you can use sets to remove duplicates from a list. An easy way
to determine if a list contains duplicate values is to create a set from the list and check
to see if the set and list have the same length. If they don’t, then you know duplicates
were in the list.

2.4.6 Dictionaries

Dictionaries are indexed collections, like lists and tuples, except that the indices aren’t
offsets like they are in lists. Instead, you get to choose the index value, called a key.
Keys can be numbers, strings, or other data types, as can the values they reference.
Use curly braces to create a new dictionary:

>>> data = {'color': 'red', 'lucky number': 42, 1: 'one'}
>>> data
{1: 'one', 'lucky number': 42, 'color': 'red'}
>>> data[1]
'one'

All values from 
both sets

Only values 
contained in both
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>>> data['lucky number']
42

As with lists, you can add, change, and remove items:

>>> data[5] = 'candy'
>>> data
{1: 'one', 'lucky number': 42, 5: 'candy', 'color': 'red'}
>>> data['color'] = 'green'
>>> data
{1: 'one', 'lucky number': 42, 5: 'candy', 'color': 'green'}
>>> del data[1]
>>> data
{'lucky number': 42, 5: 'candy', 'color': 'green'}

You can also test to see if a key exists in the dictionary:

>>> 'color' in data
True

This is a powerful way to store data when you don’t know beforehand what it will be. For
example, say you needed to remember the spatial extent for each file in a collection of
geographic datasets, but the list of datasets changed each time you ran your script. You
could create a dictionary and use the filenames as keys and the spatial extents as values,
and then this information would be readily available later in your script. 

2.5 Control flow
The first script you write will probably consist of a sequence of statements that are exe-
cuted in order, like all of the examples we have looked at so far. The real power of pro-
gramming, however, is the ability to change what happens based on different
conditions. Similar to the way you might use sale prices to decide which veggies to buy
at the supermarket, your code should use data, such as whether it’s working with a
point or a line, to determine exactly what needs to be done. Control flow is the concept
of changing this order of code execution.

2.5.1 If statements

Perhaps the simplest way to change execution order is to test a condition and do
something different depending on the outcome of the test. This can be done with an
if statement. Here’s a simple example:

if n == 1:
    print('n equals 1')
else:
    print('n does not equal 1')

If the value of the n variable is 1, then the string “n equals 1” will be printed. Other-
wise, the string “n does not equal 1” will be printed. Notice that the if and else lines
end with a colon and that the code depending on a condition is indented under the
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condition. This is a requirement. Once you quit indenting code, then the code quits
depending on the condition. What do you think the following code will print?

n = 1
if n == 1:
    print('n equals 1')
else:
    print('n does not equal 1')
print('This is not part of the condition')

Well, n is equal to 1, so the equality message prints out, and then control is transferred
to the first line of code that isn’t indented, so this is the result:

n equals 1
This is not part of the condition

You can also test multiple conditions like this:

if n == 1:
    print('n equals 1')
elif n == 3:
    print('n equals 3')
elif n > 5:
    print('n is greater than 5')
else:
    print('what is n?')

In this case, n is first compared to 1. If it’s not equal to 1, then it’s compared to 3. If it’s
not equal to that, either, then it checks to see if n is greater than 5. If none of those
conditions are true, then the code under the else statement is executed. You can
have as many elif statements as you want, but only one if and no more than one
else. Similar to the way the elif statements aren’t required, neither is an else state-
ment. You can use an if statement all by itself if you’d like.

 This is a good place to illustrate the idea that different values can evaluate to True
or False while testing conditions. Remember that strings resolve to True unless
they’re blank. Let’s test this with an if statement: 

>>> if '':
...     print('a blank string acts like True')
... else:
...     print('a blank string acts like false')
...
a blank string acts like false

If you’d used a string containing any characters at all, including a single space, then
the preceding example would have resolved to True instead of False. If you have a
Python console open, go ahead and try it and see for yourself. Let’s look at one more
example that resolves to True because the list isn’t empty:

>>> if [1]:
...     print('a non-empty list acts like True')
... else:
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...     print('a non-empty list acts like False')

...
a non-empty list acts like True

You can use this same idea to test that a number isn’t equal to zero, because zero is the
same as False, but any other number, positive or negative, will be treated as True.

2.5.2 While statements

A while statement executes a block of code as long as a condition is True. The condi-
tion is evaluated, and if it’s True, then the code is executed. Then the condition is
checked again, and if it’s still True, then the code executes again. This continues until
the condition is False. If the condition never becomes False, then the code will run
forever, which is called an infinite loop and is a scenario you definitely want to avoid.
Here’s an example of a while loop:

>>> n = 0
>>> while n < 5:
...     print(n)
...     n += 1
...
0
1
2
3
4

The += syntax means “increment the value on the left by the value on the right,” so n is
incremented by 1. Once n is equal to 5, it’s no longer less than 5, so the condition
becomes False and the indented code isn’t executed again.

2.5.3 For statements

A for statement allows you to iterate over a sequence of values and do something for
each one. When you write a for statement, you not only provide the sequence to iter-
ate over, but you also provide a variable name. Each time through the loop, this vari-
able contains a different value from the sequence. This example iterates through a list
of names and prints a message for each one:

>>> names = ['Chris', 'Janet', 'Tami']
>>> for name in names:
...     print('Hello {}!'.format(name))
...
Hello Chris!
Hello Janet!
Hello Tami!

The first time through the loop, the name variable is equal to ‘Chris’, the second
time it holds ‘Janet’, and the last time it is equal to ‘Tami’. I called this variable
name, but it can be called anything you want.
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THE RANGE FUNCTION

The range function makes it easy to iterate over a sequence of numbers. Although this
function has more parameters, the simplest way to use it is to provide a number n, and
it will create a sequence from 0 to n-1. For example, this will count how many times
the loop was executed:

>>> n = 0
>>> for i in range(20):
...     n += 1
...
>>> print(n)
20

The variable i wasn’t used in this code, but nothing is stopping you from using it.
Let’s use it to calculate the factorial of 20, although this time we’ll provide a starting
value of 1 for the sequence, and have it go up to but not include the number 21: 

>>> n = 1
>>> for i in range(1, 21):
...     n = n * i 
...
>>> print(n)
2432902008176640000

You’ll see in later chapters that this variable is also useful for accessing individual
items in a dataset when they aren’t directly iterable. 

2.5.4 break, continue, and else

A few statements apply to while and for loops. The first one, break, will kick execution
completely out of the loop, as in this example that stops the loop when i is equal to 3:

>>> for i in range(5):
...     if i == 3:
...         break
...     print(i)
...
0
1
2

Without the break statement, this loop would have printed the numbers 0 through 4.
 The continue statement jumps back up to the top of the loop and starts the next

iteration, skipping the rest of the code that would normally be executed during the
current loop iteration. In this example, continue is used to skip the code that prints i
if it’s equal to 3:

>>> for i in range(5):
...     if i == 3:
...         continue
...     print(i)
...
0
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1
2
4

Loops can also have an else statement. Code inside of this clause is executed when the
loop is done executing, unless the loop was stopped with break. Here we’ll check to see
if the number 2 is in a list of numbers. If it is, we’ll break out of the loop. Otherwise, the
else clause is used to notify us that the number wasn’t found. In the first case, the num-
ber is found, break is used to exit the loop, and the else statement is ignored:

>>> for i in [0, 5, 7, 2, 3]:
...     if i == 2:
...         print('Found it!')
...         break
... else:
...     print('Could not find 2')
...
Found it!

But if the number isn’t found, so break is never called, then the else clause is
executed:

>>> for i in [0, 5, 7, 3]:
...     if i == 2:
...         print('Found it!')
...         break
... else:
...     print('Could not find 2')
...
Could not find 2

You could use this pattern to set a default value for something if an appropriate value
wasn’t found in a list. For example, say you needed to find and edit a file with a specific
format in a folder. If you can’t find a file with the correct format, you need to create
one. You could loop through the files in the folder, and if you found an appropriate
one you could break out of the loop. You could create a new file inside the else clause,
and that code would only run if no suitable existing file had been found.

2.6 Functions
If you find that you reuse the same bits of code over and over, you can create your
own function and call that instead of repeating the same code. This makes things
much easier and also less error-prone, because you won’t have nearly as many places
to make typos. When you create a function, you need to give it a name and tell it
what parameters the user needs to provide to use it. Let’s create a simple function to
calculate a factorial:

def factorial(n):
    answer = 1
    for i in range(1, n + 1):
        answer = answer * i
    return answer
www.allitebooks.com

http://www.allitebooks.org
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The name of this function is factorial, and it takes one parameter, n. It uses the
same algorithm you used earlier to calculate a factorial and then uses a return state-
ment to send the answer back to the caller. You could use this function like this:

>>> fact5 = factorial(5)

Functions can also have optional parameters that the user doesn’t need to provide. To
create one of these, you must provide a default value for it when you create the func-
tion. For example, you could modify factorial to optionally print out the answer:

def factorial(n, print_it=False):
    answer = 1
    for i in range(1, n + 1):
        answer = answer * i
    if print_it:
        print('{0}! = {1}'.format(n, answer))
    return answer

If you were to call this function with only a number, nothing would get printed
because the default value of print_it is False. But if you pass True as the second
parameter, then a message will print before the answer is returned:

>>> fact5 = factorial(5, True)
5! = 120

It’s easy to reuse your functions by saving them in a .py file and then importing them
the way you would any other module. The one hitch is that your file needs to be in a
location where Python can find it. One way to do this is to put it in the same folder as
the script that you’re running. For example, if the factorial function was saved in a
file called myfuncs.py, you could import myfuncs (notice there’s no .py extension)
and then call the function inside of it:

import myfuncs
fact5 = myfuncs.factorial(5)

Because certain characters aren’t allowed in module names, and module names are
only filenames without the extension, you need to be careful when naming your files.
For example, underscores are allowed in module names, but hyphens aren’t.

2.7 Classes
As you work through this book, you’ll come across variables that have other data and
functions attached to them. These are objects created from classes. Although we won’t
cover how to create your own classes in this book, you need to be aware of them
because you’ll still use ones defined by someone else. Classes are an extremely power-
ful concept, but all you need to understand for the purposes of this book are that
they’re data types that can contain their own internal data and functions. An object or
variable that is of this type contains these data and functions, and the functions oper-
ate on that particular object. You saw this with several of the data types we looked at
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earlier, such as lists. You can have a variable of type list, and that variable contains all
of the functions, such as append, that come with being a list. When you call append on
a list, it only appends data to that particular list and not to any other list variables you
might have. 

 Classes can also have methods that don’t apply to a particular object, but to the
data type itself. For example, the Python datetime module contains a class, or type,
called date. Let’s get that data type out of the module and then use it to create a new
date object, which we can then ask which day of the week it is, where Monday is 0 and
Sunday is 6:

>>> import datetime
>>> datetype = datetime.date
>>> mydate = datetype.today()
>>> mydate
datetime.date(2014, 5, 18)
>>> mydate.weekday()
6

The datetype variable holds a reference to the date type itself, not to a particular
date object. The data type has a method, today, that creates a new date object. The
date object stored in the mydate variable stores date information internally and uses
that to determine what day of the week the date refers to, Sunday in this case. You
couldn’t ask the datetype variable what weekday it was, because it doesn’t contain any
information about a particular date. You don’t need to get a reference to the data type
and could have created mydate with datetime.date.today(). Now suppose you want
to find out what day of the week May 18 was in 2010. You can create a new date object
based on the existing one, but with the year changed, and then you can ask the new
one what day of the week it represents:

>>> newdate = mydate.replace(year=2010)
>>> newdate
datetime.date(2010, 5, 18)
>>> newdate.weekday()
1

Apparently May 18, 2010, was a Tuesday. The original mydate variable hasn’t changed,
and will still report that it refers to a Sunday.

 You’ll use objects created from classes throughout this book. For example, when-
ever you open a dataset, you’ll get an object that represents that dataset. Depending
on the type of data, that object will have different information and functions associ-
ated with it. Obviously, you need to know about the classes being used to create these
objects, so that you know what data and functions they contain. The GDAL modules
contain fairly extensive classes, which are documented in appendixes B, C, and D.
(Appendixes C through E are available online on the Manning Publications website at
www.manning.com/books/geoprocessing-with-python.)

https://www.manning.com/books/geoprocessing-with-python
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2.8 Summary
■ The Python interpreter is useful for learning how things work or trying out

small bits of code, but writing scripts is more efficient for running multiple lines
of code. Plus, you can save scripts and use them later, which is one of the main
reasons for programming.

■ Modules are libraries of code that you can load into your script and use. If you
need to do something with Python, chances are good that somewhere a module
exists that will help you out, no matter what it is you’re trying to do.

■ Get used to storing data in variables, because it will make your code much eas-
ier to adapt later.

■ Python has a few core data types, all of which are extremely useful for different
types of data and different situations.

■ You can use control flow statements to change which lines of code execute
based on various conditions or to repeat the same code multiple times.

■ Use functions to make your code reusable.



Reading and writing
vector data
They seem to be rare these days, but you’ve probably seen a paper roadmap
designed to be folded up and kept in your car. Unlike the more recent web maps
that we’re used to using, these maps don’t use aerial imagery. Instead, features on
the maps are all drawn as geometric objects—namely, points, lines, and polygons.
These types of data, where the geographic features are all distinct objects, are
called vector datasets. 

 Unless you only plan to look at maps that someone else has made, you’ll need to
know how to read and write these types of data. If you want to work with existing
data in any way, whether you’re summarizing, editing, deriving new data, or per-
forming sophisticated spatial analyses, you need to read it in from a file first. You
also need to write any new or modified data back out to a disk. For example, if you

This chapter covers
■ Understanding vector data 
■ Introducing OGR
■ Reading vector data
■ Creating new vector datasets
■ Updating existing datasets
35
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had a nationwide city dataset but needed to analyze only data from cities with 100,000
people or more, you could extract those cities out of your original dataset and run
your analysis on them while ignoring the smaller towns. Optionally, you could also
save the smaller dataset to a new file for later use.

 In this chapter you’ll learn basic ideas behind vector data and how to use the OGR
library to read, write, and edit these types of datasets. 

3.1 Introduction to vector data
At its most basic, vector data are data in which geographic features are represented as
discrete geometries—specifically, points, lines, and polygons. Geographic features
that have distinct boundaries, such as cities, work well as vector data, but continuous
data, such as elevation, don’t. It would be difficult to draw a single polygon around all
areas with the same elevation, at least if you were in a mountainous area. You could,
however, use polygons to differentiate between different elevation ranges. For exam-
ple, polygons showing subalpine zones for a region would be a good proxy for an ele-
vation range, but you’d lose much of the detailed elevation data within those
polygons. Many types of data are excellent candidates for a vector representation,
though, such as features in the roadmap mentioned earlier. Roads are represented as
lines, counties and states are polygons, and depending on the scale of the map, cities
are drawn as either points or polygons. In fact, all of the features on the map are prob-
ably represented as points, lines, or polygons. 

 The type of geometry used to draw a feature can be dependent on scale, however.
Figure 3.1 shows an example of this. On the map of New York State, cities are shown as
points, major roads as lines, and counties as polygons. A map of a smaller area, such as
New York City, will symbolize features differently. In this case, roads are still lines, but
the city and its boroughs are polygons instead of points. Now points would be used to
represent features such as libraries or police stations.

 You can imagine many other examples of geographic data that lend themselves to
being represented this way. Anything that can be described with a single set of coordi-
nates, such as latitude and longitude, can be represented as a point. This includes cit-
ies, restaurants, mountain peaks, weather stations, and geocache locations. In
addition to their x and y coordinates (such as latitude and longitude), points can have
a third z coordinate that represents elevation.

 Geographic areas with closed boundaries can be represented as polygons. Exam-
ples are states, lakes, congressional districts, zip codes, and land ownership, along with
many of the same features that can be symbolized as points such as cities and parks.
Other features that could be represented as polygons, but probably not as points,
include countries, continents, and oceans.

 Linear features, such roads, rivers, power lines, and bus routes, all lend themselves
to being characterized as lines. Once again, however, scale can make a difference. For
example, a map of New Orleans could show the Mississippi River as a polygon rather
than a line because it’s so wide. This would also allow the map to show the irregular
banks of the river, rather than just a smooth line, as shown in figure 3.2.
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Figure 3.1 An example of how scale changes
the geometries used to draw certain features.
New York City is a point on the state map, but

is made of several polygons on the city map.

Figure 3.2 The difference
between using polygon b

and line c geometries
to represent the

Mississippi River. The
polygon shows the details

along the banks,
while the line doesn’t.
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Vector data is more than geometries, however. Each one of these features also has
associated attributes. These attributes can relate directly to the geometry itself, such as
the area or perimeter of a polygon, or length of a line, but other attributes may be
present as well. Figure 3.3 shows a simple example of a states dataset that stores the
state name, abbreviation, population, and other data along with each feature. As you
can see from the figure, these attributes can be of various types. They can be numeric,
such as the city population or road speed limit, strings like city or road names, or
dates such as the date the land parcel was purchased or last appraised. Certain types of
vector data also support BLOBs (binary large objects), which can be used to store
binary data such as photographs.

 It should be clear by now that this type of data is well suited for making maps, but
some reasons might not be so obvious. One example is how well it scales when drawing.
If you’re familiar with web graphics, you probably know that vector graphics such as SVG
(scalable vector graphics) work much better than raster graphics such as PNG when dis-
played at different scales. Even if you know nothing about SVG, you’ve surely seen an
image on a website that’s pixelated and ugly. That’s a raster graphic displayed at a
higher resolution than it was designed for. This doesn’t happen with vector graphics,
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Figure 3.3 An attribute table for a dataset containing state boundaries within the United States. Each 
state polygon has an associated row in the data table with several attributes, including state name and 
population in 2010.
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and the exact same principle applies
to vector GIS data. It always looks
smooth, no matter the scale. 

 That doesn’t mean that scale is
irrelevant, though. As you saw earlier,
scale affects the type of geometry
used to represent a geographic fea-
ture, but it also affects the resolution
you should use for a feature. A simple
way to think of resolution is to equate
it to detail. The higher the resolution,
the more detail can be shown. For
example, a map of the United States
wouldn’t show all of the individual
San Juan Islands off the coast of
Washington State, and in fact, the
dataset wouldn’t even need to include
them. A map of only Washington
State, however, would definitely need
a higher-resolution dataset that
includes the islands, as seen in figure
3.4. Keep in mind that resolution isn’t
important only for display, but also
for analysis. For example, the two
maps of Washington would provide
extremely different measurements for
coastline length.  

The coastline paradox

Have you ever thought about how to measure the coastline of a landmass? As first
pointed out by the English mathematician Lewis Fry Richardson, this isn’t as easy as
you might think, because the final measurement depends totally on scale. For exam-
ple, think about a wild section of coastline with multiple headlands, with a road running
along beside it. Imagine that you drive along that road and use your car’s odometer
to measure the distance, and then you get out of the car and walk back the way you
came. But when on foot, you walk out along the edges of the headlands and follow
other curves in the coast that the road doesn’t. It should be easy to imagine that you’d
walk farther than you drove because you took more detours. The same principle applies
when measuring the entire coastline, because you can measure more variation if you
measure in smaller increments. In fact, measuring the coast of Great Britain in
50-km increments instead of 100-km increments increases the final measurement
by about 600 km. You can see another example of this, using part of Washington State,

Figure 3.4 An example showing the difference that 
resolution makes. The dataset shown with the thick 
outline has a lower resolution than the one shown 
with shading. Notice the difference in the amount of 
detail available in the two datasets.
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As mentioned previously, vector data isn’t only for making maps. In fact, I couldn’t
make a pretty map if my life depended on it, but I do know a little bit more about data
analysis. One common type of vector data analysis is to measure relationships between
geographic features, typically by overlaying them on one another to determine their
spatial relationship. For example, you could determine if two features overlap spatially
and what that area of overlap is. Figure 3.5 shows the New Orleans city boundaries over-
laid on a wetlands dataset. You could use this information to determine where wetlands
exist within the city of New Orleans and how much of the city’s area is or isn’t wetland.

(continued)

 in figure 3.3. If you were to measure all of the twists and turns in the higher-resolution
dataset, you’d get a longer coastline measurement than if you measured the lower-
resolution coastline shown by the dark line, which doesn’t even include many of the
islands.

Lake Pontchartrain

Lake Borgne

Figure 3.5 An example of a vector overlay operation. The dark outline is the City of New Orleans 
boundary, and the darker land areas are wetlands. These two datasets could be used to determine 
the percentage of land area within the New Orleans boundary that is wetlands.
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Another aspect of spatial relationships is the distance between two features. You could
find the distance between two weather stations, or all of the sandwich shops within
one mile of your office. I helped out with a study a few years ago in which the
researchers needed both distances and spatial relationships. They needed to know
how far GPS-collared deer traveled between readings, but also the direction of travel
and how they interacted with man-made features such as roads. One question in par-
ticular was if they crossed the roads, and if so, how often.

 Speaking of roads, vector datasets also do a good job of representing networks,
such as road networks. A properly configured road network can be used to find routes
and drive times between two locations, similar to the results you see on various web-
mapping sites. Businesses can also use information like this to provide services. For
example, a pizza joint might use network analysis to determine which parts of town
they can reach within a 15-minute drive to set their delivery area.

 As with other types of data, you have multiple ways to store vector data. Similar to
the way you can store a photograph as a JPEG, PNG, TIFF, bitmap, or one of many
other file types, many different file formats can be used for storing vector data. I’ll talk
more about the possibilities in the next chapter, but for now I’ll briefly mention a few
common formats, several of which we’ll use in this chapter.

 Shapefiles are a popular format for storing vector data. A shapefile isn’t made of a
single file, however. In fact, this format requires a minimum of three binary files, each
of which serves a different purpose. Geometry information is stored in .shp and .shx
files, and attribute values are stored in a .dbf file. Additionally, other data, such as
indexes or spatial reference information, can be stored in even more files. Generally
you don’t need to know anything about these files, but you do need to make sure that
they’re all kept together in the same folder.

 Another widely used format, especially for web-mapping applications, is GeoJSON.
These are plain text files that you can open up and look at in any text editor. Unlike a
shapefile, a GeoJSON dataset consists of one file that stores all required information.

 Vector data can also be stored in relational databases, which allows for multiuser
access as well as various types of indexing. Two of the most common options for this
are spatial extensions built for widely used database systems. The PostGIS extension
runs on top of PostgreSQL, and SpatiaLite works with SQLite databases. Another pop-
ular database format is the Esri file geodatabase, which is completely different in that
it isn’t part of an existing database system.

3.2 Introduction to OGR
The OGR Simple Features Library is part of the Geospatial Data Abstraction Library
(GDAL), an extremely popular open source library for reading and writing spatial data.
The OGR portion of GDAL is the part that provides the ability to read and write many
different vector data formats. OGR also allows you to create and manipulate geometries;
edit attribute values; filter vector data based on attribute values or spatial location; and
it also offers data analysis capabilities. In short, if you want to use GDAL to work with vec-
tor data, OGR is what you need to learn about, and you will, in the next four chapters.
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 The GDAL library was originally written in C and C++, but it has bindings for several
other languages, including Python, so there’s an interface to the GDAL/OGR library
from Python, not that the code was rewritten in Python. Therefore, to use GDAL with
Python, you need to install both the GDAL library and the Python bindings for it. If you
haven’t yet done this, please see appendix A for detailed installation instructions. 

NOTE What does the OGR acronym stand for, anyway? It used to stand for
OpenGIS Simple Features Reference Implementation, but because OGR isn’t
fully compliant with the OpenGIS Simple Features specification, the name was
changed and now the OGR part of it doesn’t stand for anything and is only
historical in nature.

Several functions used in this chapter are from the ospybook Python module available
for download at www.manning.com/books/geoprocessing-with-python. You’ll want to
install this module, too. The sample datasets are available from the same site.

 Before you start working with OGR, it’s useful to look at how various objects in the
OGR universe are related to each other, as shown in figure 3.6. If you don’t under-
stand this hierarchy, then the steps required to read and write data won’t make much
sense. When you use OGR to open a data source, such as a shapefile, GeoJSON file,
SpatiaLite, or PostGIS database, you’ll have a DataSource object. This data source can
have one or more child Layer objects, one for each dataset contained in the data
source. Many vector data formats, such as the shapefile examples used in this chapter,
can only contain one dataset. But others, such as SpatiaLite, can contain multiple
datasets, and you’ll see examples of this in the next chapter. Regardless of how many
datasets are in a data source, each one is considered a layer by OGR. Even several of
my students, who use GIS regularly for their classes and research, get confused by this
if they mostly use shapefiles, because it’s counterintuitive to them that something
called a layer sits between the data source and the actual data. 

 And speaking of the actual data, each layer contains a collection of Feature
objects that holds the geometries and their attributes. If you load vector data into a
GIS, such as QGIS, and then look at the attribute table, you’ll see something similar to

Data source

Layer 2Layer 1

Feature 2Feature 1 Feature 1

Attribute 1Geometry Attribute 2

Figure 3.6 The OGR class structure. 
Each data source can have multiple 
layers, each layer can have multiple 
features, and each feature contains a 
geometry and one or more attributes.

http://www.manning.com/books/geoprocessing-with-python
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figure 3.7. Each row in the table corresponds to a feature, such as the feature repre-
senting Afghanistan. Each column corresponds to an attribute field, and in this case
two of the attributes are SOVEREIGNT and TYPE. Although you can open data tables
that don’t have any spatial information or geometries associated with the features,
we’ll work with datasets that do have geometries. As you can see in figure 3.7, the
geometries don’t show up in the attribute table in QGIS, although other GIS software
packages, such as ArcGIS, do show a shape column in the attribute table. 

 The first step to accessing any vector data is to open the data source. For this, you
need to have an appropriate driver that tells OGR how to work with your data format.
The GDAL/OGR website lists more than 70 vector formats that OGR is capable of read-
ing, although it can’t write to all of them. Each one of these has its own driver. It’s
likely that your version of OGR doesn’t support all of those listed, but you can always
compile it yourself if you need something that’s missing (note that this is easier said
than done in many cases). See www.gdal.org/ogr_formats.html for the list of all avail-
able formats and specific details pertaining to each one. 

DEFINITION A driver is a translator for a specific data format, such as GeoJSON
or shapefile. It tells OGR how to read and write that particular format. If no
driver for a format is compiled into OGR, then OGR can’t work with it.

If you aren’t sure if your installation of GDAL/OGR supports a particular data format,
you can use the ogrinfo command-line utility to find out which drivers are available.
The location of this utility on your computer depends on your operating system and
how you installed GDAL, so you might need to refer back to appendix A. If you aren’t
used to using a command line, you may be tempted to double-click the ogrinfo exe-
cutable file, but that won’t get you anywhere useful. Instead, you need to run ogrinfo
from a terminal window or Windows command prompt. At any rate, once you find the 
executable, you’ll want to run
it with the --formats option.
Figure 3.8 shows an example of
running it on my Windows 7
machine, although I’ve cut off
most of the output.

Figure 3.8 An example of running the
ogrinfo utility from a GDAL command

prompt on a Windows computer

Figure 3.7 An example of an attribute table shown in QGIS. Each row corresponds 
to a feature, and each column is an attribute field.

www.gdal.org/ogr_formats.html
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As you can see, ogrinfo not only tells you which drivers are included with your version
of OGR, but also whether it can write to each one as well as read from it. 

TIP Information about vector formats supported by OGR can be found at
www.gdal.org/ogr_formats.html.

You can also determine which drivers are available using Python. In fact, let’s try it. Start
by opening up your favorite Python interactive environment. I’ll use IDLE (figure 3.9)
because it’s the one that’s packaged with Python, but you can use whichever one you’re
comfortable with. The first thing you need to do is import the ogr module so that you
can use it. This module lives inside the osgeo package, which was installed when you
installed the Python bindings for GDAL. All of the modules in this package are named
with lowercase letters, which is how you need to refer to them in Python. Once you’ve
imported ogr, then you can use ogr.GetDriverByName to find a specific driver:

from osgeo import ogr
driver = ogr.GetDriverByName('GeoJSON')

Use the name from the Code column on the OGR Vector Formats webpage. If you get
a valid driver and print it out, you’ll see information about where the object is stored
in memory. The important thing is that there was something for it to print out
because it means you successfully found a driver. If you pass an invalid name, or the
name of a missing driver, the function will return None. See figure 3.9 for examples.

 A function called print_drivers in the ospybook module will also print out a list
of available drivers. This is shown in figure 3.9.

3.3 Reading vector data
Now that you know what formats are available to work with, it’s time to read data. You’ll
start with a cities shapefile, the ne_50m_populated_places.shp dataset in the global

Listing all available
drivers using ospybook

Not case sensitive

Correct name is
“ESRI shapefile”

Figure 3.9 Sample Python 
interactive session showing 
how to get drivers

www.gdal.org/ogr_formats.html
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subfolder of your osgeopy-data folder. Feel free to open it up in QGIS and look. Not only
will you see the cities shown in figure 3.10, but you’ll also see that the attribute table
contains a collection of fields, most of which aren’t visible in the screenshot.

 Listing 3.1 shows a little script that prints out the names, populations, and coordi-
nates for the first 10 features in this dataset. Don’t worry if it doesn’t make much sense
at first glance because we’ll go over it in excruciating detail in a moment. The file is
included with the source code for this chapter, so if you want to try it out, you can
open it in IDLE, change the filename in the third line of code to match your setup,
and then choose Run Module under the Run menu. 

import sys
from osgeo import ogr             

fn = r'D:\osgeopy-data\global\ne_50m_populated_places.shp'
ds = ogr.Open(fn, 0)                                                   
if ds is None:                                                          
    sys.exit('Could not open {0}.'.format(fn))                           
lyr = ds.GetLayer(0)                                                  

i = 0
for feat in lyr:
    pt = feat.geometry()                                               
    x = pt.GetX()                                                        
    y = pt.GetY()                                                      
    name = feat.GetField('NAME')                                       
    pop = feat.GetField('POP_MAX')                                     
    print(name, pop, x, y)
    i += 1
    if i == 10:
        break
del ds

Listing 3.1 Printing data from the first ten features in a shapefile

Figure 3.10 The geometries 
and attributes from 
ne_50m_populated_places.shp 
as seen in QGIS

Don’t forget 
to import ogr

Open the data 
source

Get x, y coordinates

Get attribute values
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The basic outline is simple. The first thing you do is open the shapefile and make sure
that the result of that operation isn’t equal to None, because that would mean the data
source couldn’t be opened. I tend to call this variable ds, short for data source. After
making sure the file is opened, you retrieve the first layer from the data source. Then
you iterate through the first 10 features in the layer and for each one, get the geome-
try object, its coordinates, and the NAME and POP_MAX attribute values. Then you print
the information about the feature before moving on to the next one. When done, you
delete the ds variable to force the file to close. 

 If you successfully ran the code, you should have 10 lines of output that look some-
thing like this, although you won’t have the parentheses if using Python 3:

('Bombo', 75000, 32.533299524864844, 0.5832991056146284)
('Fort Portal', 42670, 30.27500161597942, 0.671004121125236)
<snip>
('Clermont-Ferrand', 233050, 3.080008095928406, 45.779982115759424)

Let’s look at this in a little more detail. You open a data source by passing the filename
and an optional update flag to the Open function. This is a standalone function in the
OGR module, so you prefix the function name with the module name so that Python
can find it. If the second parameter isn’t provided it defaults to 0, which will open the
file in read-only mode. You could have passed 1 or True to open it in update, or edit,
mode instead.

 If the file can’t be opened, then the Open function returns None, so the next thing
you do is check for this and print out an error message and quit if needed. I like to
check for this so I can solve the problem immediately and in the manner of my choos-
ing (quitting, in this case) instead of waiting for the script to crash when it tries to use
the nonexistent data source. Change the filename in listing 3.1 to a bogus one and
run the script if you want to see this behavior in action:

fn = r'D:\osgeopy-data\global\ne_50m_populated_places.shp'
ds = ogr.Open(fn, 0)
if ds is None:
    sys.exit('Could not open {0}.'.format(fn))
lyr = ds.GetLayer(0)

Remember that data sources are made of one or more layers that hold the data, so
after opening the data source you need to get the layer from it. Data sources have a
function called GetLayer that takes either a layer index or a layer name and returns
the corresponding Layer object inside that particular data source. Layer indexes start
at 0, so the first layer has index 0, the second has index 1, and so on. If you don’t pro-
vide any parameters to GetLayer, then it returns the first layer in the data source. The
shapefile only has one layer, so the index isn’t technically needed in this case.

 Now you want to get the data out of your layer. Recall that each layer is made of
one or more features, with each feature representing a geographic object. The geom-
etries and attribute values are attached to these features, so you need to look at them
to get your data. The second half of the code in listing 3.1 loops through the first 10
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features in the layer and prints information about each one. Here’s the interesting
part of it again:

for feat in lyr:
    pt = feat.geometry()
    x = pt.GetX()
    y = pt.GetY()
    name = feat.GetField('NAME')
    pop = feat.GetField('POP_MAX')
    print(name, pop, x, y)

The layer is a collection of features that you can iterate over with a for loop. Each
time through the loop, the feat variable will be the next feature in the layer, and the
loop will iterate over all features in the layer before stopping. You don’t want to print
out all 1,249 features, though, so you force it to stop after the first 10.

 The first thing you do inside the loop is get the geometry from the feature and
stick it in a variable called pt. Once you have the geometry, you grab its x and y coordi-
nates and store them in variables to use later.

 Next you retrieve the values from the NAME and POP_MAX fields and store those in
variables as well. The GetField function takes either an attribute name or index and
returns the value of that field. Once you have the attributes, you print out all of the
information you gathered about the current feature.

 One thing you should be aware of is that the GetField function returns data that’s
the same data type as that in the underlying dataset. In this example, the value in the
name variable is a string, but the value stored in pop is a number. If you want the data
in another format, check out appendix B to see a list of functions that return values as
a specific type. For example, if you wanted pop to be a string so that you could concat-
enate it to another string, you could use GetFieldAsString.

pop = feat.GetFieldAsString('POP_MAX')

Note that not all data formats support all field types, and not all data can successfully
be converted between types, so you should test things thoroughly before relying on
these automatic conversions. Not only are these functions useful for converting data
between types, but you can also use them to make data types more evident in your
code. For example, if you use GetFieldAsInteger, then it’s obvious to anyone reading
your code that the value is an integer. 

3.3.1 Accessing specific features

Sometimes you don’t need every feature, so you have no reason to iterate through all
of them as you’ve done so far. One powerful method of limiting features to a subset is
to select them by attribute value or spatial extent, and you’ll do that in chapter 5.
Another way is to look at features with specific offsets, also called feature IDs (FIDs). The
offset is the position that the feature is at in the dataset, starting with zero. It depends
entirely on the position of the feature in the file and has nothing to do with the sort
order in memory. For example, if you open the ne_50m_populated _places shapefile in
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QGIS and look at the attribute table, it would
show Bombo as the first record in the table, as
in figure 3.11A. See the numbers in the left-
most column? Those are the offset values. Now
try sorting the table by name by clicking on the
NAME column header, as shown in figure
3.11B. Now the first record shown in the table is
the one for Abakan, but it has an offset of 346.
As you can see, that left-most column isn’t a row
number like you see in spreadsheets, where the
row numbers are always in the right order no
matter how you sort the data. These numbers
represent the order in the file instead. 
     If you know the offset of the feature you
want, you can ask for that feature by FID. To
get the feature for Vatican City, you use Get-
Feature(7). 

You can also get the total number of features with GetFeatureCount, so you could
grab the last feature in the layer like this: 

>>> num_features = lyr.GetFeatureCount()
>>> last_feature = lyr.GetFeature(num_features - 1)
>>> last_feature.NAME
'Hong Kong'

You have to subtract one from the total number of features because the first index is
zero. If you had tried to get the feature at index num_features, you’d have gotten an
error message saying that the feature ID was out of the available range. This snippet
also shows an alternate way of retrieving an attribute value from a feature, instead of
using GetField, but it only works if you know the names beforehand so that you can
hardcode them into your script.

THE CURRENT FEATURE

Another important point is that the functions that return features keep track of which
feature was last accessed; this is the current feature. When you first get the layer object, it
has no current feature. But if you start iterating through features, the first time
through the loop, the current feature is the one with an FID of zero. The second time
through the loop, the current feature is the one with offset 1, and so on. If you use
GetFeature to get the one with an FID of 5, that’s now the current feature, and if you
then call GetNextFeature or start a loop, the next feature returned will be the one
with offset 6. Yes, you read that right. If you iterate through the features in the layer, it
doesn’t start at the first one if you’ve already set the current feature.

 Based on what you’ve learned so far, what do you think would happen if you iterated
through all of the features and printed out their names and populations, but then later
tried to iterate through a second time to print out their names and coordinates? If you

A. Native sort order B. Sorted by name

Figure 3.11 The attribute table for the 
ne_50m_populated_places shapefile. Table A 
shows the native sort order, with the FIDs in order. 
Table B has been sorted by city name, and the FIDs 
are no longer ordered sequentially.
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guessed that no coordinates would
print out, you were right. The first
loop stops when it runs out of fea-
tures, so the current feature is
pointing past the last one and isn’t
reset to the beginning (see figure
3.12). No next feature is there
when the second loop starts, so
nothing happens. How do you get
the current feature to point to the
beginning again? You wouldn’t
want to use a FID of zero, because if
you tried to iterate through them
all, the first feature would be
skipped. To solve this problem, use
the layer.ResetReading() function, which sets the current feature pointer to a loca-
tion before the first feature, similar to when you first opened the layer. 

3.3.2 Viewing your data

Before we continue, you might find it useful to know about functions in the ospybook
module that will help you visualize your data without opening it in another software
program. These don’t allow the level of interaction with the data that a GIS does, so
opening it in QGIS is still a much better option for exploring the data in any depth. 

VIEWING ATTRIBUTES

You can print out attribute values to your screen using the print_attributes func-
tion, which looks like this:

print_attributes(lyr_or_fn, [n], [fields], [geom], [reset])

■ lyr_or_fn is either a layer object or the path to a data source. If it’s a data
source, the first layer will be used.

■ n is an optional number of records to print. The default is to print them all.
■ fields is an optional list of attribute fields to include in the printout. The

default is to include them all.
■ geom is an optional Boolean flag indicating whether the geometry type is

printed. The default is True.
■ reset is an optional Boolean flag indicating whether the layer should be reset

to the first record before printing. The default is True.

For example, to print out the name and population for the first three cities in the
populated places shapefile, you could do something like this from a Python interac-
tive window:

>>> import ospybook as pb
>>> fn = r'D:\osgeopy-data\global\ne_50m_populated_places.shp'
>>> pb.print_attributes(fn, 3, ['NAME', 'POP_MAX'])

Location of current feature

Layer when first opened or

after calling ResetReading()

Record 0During first loop iteration

After iterating

through all features

Record 1

Record 2

…

Record n

Figure 3.12 The location of the current feature pointer 
at various times
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FID    Geometry                  NAME           POP_MAX
0      POINT (32.533, 0.583)     Bombo          75000
1      POINT (30.275, 0.671)     Fort Portal    42670
2      POINT (15.799, 40.642)    Potenza        69060
3 of 1249 features

Normally, you must provide arguments to functions in the order they’re listed, but if
you want to provide an optional argument without specifying values for earlier
optional parameters, you can use keywords to specify which parameter you mean. For
example, If you wanted to set geom to False without specifying a list of fields, you
could do it like this:

pb.print_attributes(fn, 3, geom=False)

This function works well for viewing small numbers of attributes, but you’ll probably
regret using it to print all attributes of a large file.

PLOTTING SPATIAL DATA

The ospybook module also contains convenience classes to help you visualize your data
spatially, although you’ll learn how to do it yourself in the last chapter. To use these, you
must have the matplotlib Python module installed. To plot your data, you need to create
a new instance of the VectorPlotter class and pass a Boolean parameter to the con-
structor indicating if you want to use interactive mode. If interactive, the data will be
drawn immediately when you plot it. If not interactive, you’ll need to call draw after
plotting the data, and everything will be drawn at once. Either way, once you’ve created
this object, you can use it to plot your data with the plot method:

plot(self, geom_or_lyr, [symbol], [name], [kwargs])

■ geom_or_lyr is a geometry, layer, or path to a data source. If a data source, the
first layer will be drawn. 

■ symbol is an optional pyplot symbol to draw the geometries with.
■ name is an optional name to assign to the data so it can be accessed later.
■ kwargs are optional pyplot drawing parameters that are specified by keyword

(you’ll see the abbreviation kwargs used often for an indeterminate number of
keyword arguments).

The plot function can optionally use parameters from the pyplot interface in mat-
plotlib. You’ll see a few used in this book, but to see more you can read the pyplot
documentation at http://matplotlib.org/1.5.0/api/pyplot_summary.html. Let’s start
with an example that plots the populated places shapefile on top of country outlines:

>>> import os
>>> os.chdir(r'D:\osgeopy-data\global')
>>> from ospybook.vectorplotter import VectorPlotter
>>> vp = VectorPlotter(True)
>>> vp.plot('ne_50m_admin_0_countries.shp', fill=False)
>>> vp.plot('ne_50m_populated_places.shp', 'bo')

The first thing you do is use the built-in os module to change your working directory,
which allows you to use filenames later instead of typing the entire path. Then you pass

http://matplotlib.org/1.5.0/api/pyplot_summary.html
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True to VectorPlotter to create an interactive plotter. The fill pyplot parameter
causes the countries shapefile to be drawn as hollow polygons, and the ‘bo’ symbol for
populated places means blue circles. This results in a plot that looks like figure 3.13.

 You don’t need to do anything special if you want to use this in a script, but you
should know that when the plotter isn’t created with interactive mode, it will stop
script execution until you close the window that pops up. I’ve also discovered that
depending on the environment I’m running the script from, sometimes it closes itself
automatically if I created it with interactive mode, so I never get the chance to view it.
Because of this, if I’m using a VectorPlotter in a script instead of a Python interactive
window, I usually create it using non-interactive mode and call draw at the end of the
script. The source code for this chapter has examples of this.

3.4 Getting metadata about the data
Sometimes you also need to know general information about a dataset, such as the
number of features, spatial extent, geometry type, spatial reference system, or the
names and types of attribute fields. For example, say you want to display your data on
top of a Google map. You need to make sure that your data use the same spatial refer-
ence system as Google, and you need to know the spatial extent so that you can have
your map zoom to the correct part of the world. Because different geometry types
have different drawing options, you also need to know geometry types to define the
symbology for your features. 

 You’ve already seen how to get some of these, such as the number of features in a
layer with GetFeatureCount. Remember that this applies to the layer and not the data
source, because each layer in a data source can have a different number of features,
geometry type, spatial extent, or attributes. 

 The spatial extent of a layer is the rectangle constructed from the minimum and
maximum bounding coordinates in all directions. Figure 3.14 shows the Washington
large_cities file and its extent. You can get these bounding coordinates from a layer

Figure 3.13 The output from plotting 
the global populated places shapefile on 
top of the country outlines
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object with the GetExtent function, which returns a tuple of numbers as (min_x,
max_x, min_y, max_y). Here’s an example:

>>> ds = ogr.Open(r'D:\osgeopy-data\Washington\large_cities.geojson')
>>> lyr = ds.GetLayer(0)
>>> extent = lyr.GetExtent()
>>> print(extent)
(-122.66148376464844, -117.4260482788086, 45.638729095458984,

➥ 48.759552001953125)

Compare these numbers to those in figure 3.14 to better understand what’s returned
in the extent tuple.

 You can also get the geometry type from the layer object, but there’s a catch. The
GetGeomType function returns an integer instead of a human-readable string. But how
is that useful? The OGR module has a number of constants, shown in table 3.1, which
are basically unchangeable variables with descriptive names and numeric values. You
can compare the value you get with GetGeomType to one of these constants in order to
check if it’s that geometry type. For example, the constant for point geometries is
wkbPoint and the one for polygons is wkbPolygon, so continuing with the previous
example, you could find out if large_cities.shp is a point or polygon shapefile like this:

>>> print(lyr.GetGeomType())                            
1                                                       
>>> print(lyr.GetGeomType() == ogr.wkbPoint)            
True                                                     
>>> print(lyr.GetGeomType() == ogr.wkbPolygon)           
False                                                   
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Figure 3.14 Here you can see the spatial extent of the large_cities dataset. The minimum and maximum 
longitude (x) values are approximately -122.7 and -117.4, respectively. The minimum and maximum latitude (y) 
values are approximately 45.6 and 48.8.
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If the layer has geometries of varying types, such as a mixture of points and polygons,
GetGeomType will return wkbUnknown.

NOTE The wkb prefix on the OGR geometry constants stands for well-known
binary (WKB), which is a standard binary representation used to exchange geom-
etries between different software packages. Because it’s binary, it isn’t human-
readable, but a well-known text (WKT) format does exist that is readable.

Sometimes you’d rather have a human-readable string, however, and you can get this
from one of the feature geometries. The following example grabs the first feature in
the layer, gets the geometry object from that feature, and then prints the name of the
geometry:

>>> feat = lyr.GetFeature(0)
>>> print(feat.geometry().GetGeometryName())
POINT

Another useful piece of data you can get from the layer object is the spatial reference
system, which describes the coordinate system that the dataset uses. Your GPS unit
probably shows unprojected, or geographic, coordinates by default. These are the lati-
tude and longitude coordinates that we’re all familiar with. These geographic coordi-
nates can be converted to many other types of coordinate systems, however, and if you
don’t know which of these systems a dataset uses, then you have no way of knowing
where on the earth the coordinates refer to. Obviously, this is a crucial bit of metadata,
and I’ll talk more about it in chapter 8. For now, you only need to know that you can
get this information. If you print it out, you’ll get a string that describes the reference
system in WKT format, like that shown in listing 3.2.

>>> print(lyr.GetSpatialRef())
GEOGCS["NAD83",
    DATUM["North_American_Datum_1983",
        SPHEROID["GRS 1980",6378137,298.257222101,
            AUTHORITY["EPSG","7019"]],

Table 3.1 Common geometry type constants. You can find more in appendix B.

Geometry type OGR constant

Point wkbPoint

Mulitpoint wkbMultiPoint

Line wkbLineString

Multiline wkbMultiLineString

Polygon wkbPolygon

Multipolygon wkbMultiPolygon

Unknown geometry type wkbUnknown

No geometry wkbNone

Listing 3.2 Example of well-known text representation of a spatial reference system 
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        TOWGS84[0,0,0,0,0,0,0],
        AUTHORITY["EPSG","6269"]],
    PRIMEM["Greenwich",0,
        AUTHORITY["EPSG","8901"]],
    UNIT["degree",0.0174532925199433,
        AUTHORITY["EPSG","9122"]],
    AUTHORITY["EPSG","4269"]]

Depending on your GIS experience, this output may or may not mean much to you.
Don’t worry if it makes no sense now, because you’ll learn all about it later.

 Last, you can also get information about the attribute fields attached to the layer.
The easiest way to do this is to use the schema property on the layer object to get a list
of FieldDefn objects. Each of these contains information such as the attribute column
name and data type. Here’s an example of printing out the name and data type of
each field:

>>> for field in lyr.schema:
...   print(field.name, field.GetTypeName())
...
CITIESX020 Integer
FEATURE String
NAME String
<snip>

Part of this output was left out in the interest of space, but you can run the code your-
self to see the rest of the fields in the layer. You’ll learn more about working with
FieldDefn objects in section 3.5.2. 

3.5 Writing vector data
Reading data is definitely useful, but you’ll probably need to edit existing or create
new datasets. Listing 3.3 shows how to create a new shapefile that contains only the
features corresponding to capital cities in the global populated places shapefile. The
output will look like the cities in figure 3.15.

Figure 3.15 Capital cities with country outlines for reference
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I

import sys
from osgeo import ogr

ds = ogr.Open(r'D:\osgeopy-data\global', 1)     
if ds is None:
    sys.exit('Could not open folder.')
in_lyr = ds.GetLayer('ne_50m_populated_places')      

if ds.GetLayer('capital_cities'):                                      
    ds.DeleteLayer('capital_cities')                                   
out_lyr = ds.CreateLayer('capital_cities',                              
                         in_lyr.GetSpatialRef(),                       
                         ogr.wkbPoint)                                   
out_lyr.CreateFields(in_lyr.schema)                                     

out_defn = out_lyr.GetLayerDefn()                                      
out_feat = ogr.Feature(out_defn)                                     
for in_feat in in_lyr:
    if in_feat.GetField('FEATURECLA') == 'Admin-0 capital':
        geom = in_feat.geometry()                                    
        out_feat.SetGeometry(geom)                                      
        for i in range(in_feat.GetFieldCount()):                       
            value = in_feat.GetField(i)                                 
            out_feat.SetField(i, value)                               
        out_lyr.CreateFeature(out_feat)                        

del ds                                                 

In this example you open up a folder instead of a shapefile as the data source. A nice
feature of the shapefile driver is that it will treat a folder as a data source if a majority
of the files in the folder are shapefiles, and each shapefile is treated as a layer. Notice
that you pass 1 as the second parameter to Open, which will allow you to create a new
layer (shapefile) in the folder. You pass the shapefile name, without the extension, to
GetLayer to get the populated places shapefile as a layer. Even though you open it dif-
ferently here than in listing 3.1, you can use it in exactly the same way.

 Because OGR won’t overwrite existing layers, you check to see if the output layer
already exists, and delete it if it did. Obviously you wouldn’t want to do this if you
didn’t want the layer overwritten, but in this case you can overwrite data as you test dif-
ferent things.

 Then you create a new layer to store your output data in. The only required param-
eter for CreateLayer is a name for the layer, which should be unique within the data
source. You do have, however, several optional parameters that you should set when
possible:

CreateLayer(name, [srs], [geom_type], [options])

■ name is the name of the layer to create.
■ srs is the spatial reference system that the layer will use. The default is None,

meaning that no spatial reference system will be assigned.

Listing 3.3 Exporting capital cities to a new shapefile

Open folder data 
source for writing

Get input 
shapefile

Delete layer if it exists

Create a point layer

Create a blank feature

Copy geometry 
and attributes

nsert the
feature

Close files
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■ geom_type is a geometry type constant from table 3.1 that specifies the type of
geometry the layer will hold. The default is wkbUnknown.

■ options is an optional list of layer-creation options, which only applies to cer-
tain vector format types.

The first of these optional parameters is the spatial reference, which defaults to None
if not provided. Remember that without spatial reference information, it’s extremely
difficult to figure out where the features are on the planet. Sometimes the spatial ref-
erence is implicit in the data; for example, KML only supports unprojected coordi-
nates using the WGS 84 datum, but you should set this if possible. In this case, you copy
the spatial reference information from the original shapefile to the new one. We’ll dis-
cuss spatial reference systems and how to use them in more detail in chapter 8.

 The second optional parameter is one of the OGR geometry type constants from
either table 3.1 or appendix B. This specifies the type of geometries that the layer will
contain. If not provided, it defaults to ogr.wkbUnknown, although in many cases this
will be updated to the correct value after you add features to the layer and it can be
determined from them. 

 The last optional parameter is a list of layer-creation option strings in the form of
option=value. These are documented for each driver on the OGR formats webpage. Not
all vector data formats have layer-creation options, and even if a format does have
options, you’re under no obligation to use them.

 You use the following code to create a new point shapefile called capital_cities.shp
that uses the same spatial reference system as the populated places shapefile. You do
one more thing, though. The schema property on the input layer returns a list of attri-
bute field definitions for that layer, and you pass that list to CreateFields to create
the exact same set of attribute fields in the new layer:

out_lyr = ds.CreateLayer('capital_cities',
                         in_lyr.GetSpatialRef(),
                         ogr.wkbPoint)
out_lyr.CreateFields(in_lyr.schema)

Now, to add a feature to a layer, you need to create a dummy feature that you add the
geometry and attributes to, and then you insert that into the layer. The next step is to
create this blank feature. Creating a feature requires a feature definition that contains
information about the geometry type and all of the attribute fields, and this is used to
create an empty feature with the same fields and geometry type. You need to get the
feature definition from the layer you plan to add features to, but you must do it after
you’ve added, deleted, or updated any fields. If you get the feature definition first,
and then change the fields in any way, the definition will be out of date. This means
that a feature you try to insert based on this outdated definition will not match reality,
as seen in figure 3.16. This will cause Python to die a horrible death, and you defi-
nitely don’t want that.

out_defn = out_lyr.GetLayerDefn()
out_feat = ogr.Feature(out_defn)
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Now that you have a feature to put information into, it’s time to start looping through
the input dataset. For each feature, you check to see if its FEATURECLA attribute was
equal to ‘Admin-0 capital’, which means it’s a capital city. If it is, then you copy the
geometry from it into the dummy feature. Then you loop through all of the fields in
the attribute table and copy the values from the input feature into the output feature.
This works because you create the fields in the new shapefile based on the fields in the
original, so they’re in the same order in both shapefiles. If they were in different
orders, you’d have to use their names to access them, but you can use indexes here
because you know that they match:

for in_feat in in_lyr:
    if in_feat.GetField('FEATURECLA') == 'Admin-0 capital':
        geom = in_feat.geometry()
        out_feat.SetGeometry(geom)
        for i in range(in_feat.GetFieldCount()):
            value = in_feat.GetField(i)
            out_feat.SetField(i, value)
        out_lyr.CreateFeature(out_feat)

Once you copy all of the attribute fields over, you insert the feature into the layer
using CreateFeature. This function saves a copy of the feature, including all of the
information you add to it, to the layer. The feature object can then be reused, and
whatever you do to it won’t affect the data that have already been added to the layer.

Feature definition

Country PopulationName

What the layer really looks like

Country Population CapitalName

No value for capital, but the layer expects something, even if null

Country PopulationName

Get layer

Get feature

definition

Add new field

to layer

Add new feature

based on feature

definition

Crash!

Figure 3.16 Always get feature definitions after making changes to fields, or the 
definition will not match reality.
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This way you don’t have the overhead of creating multiple features, because you can
create a single one and keep editing its data each time you want to add a new feature
to the layer.

 You delete the ds variable at the end of the script, which forces the files to close
and all of your edits to be written to disk. Deleting the layer variable doesn’t do the
trick; you must close the data source. If you wanted to keep the data source open, you
could call SyncToDisk on either the layer or data source object instead, like this:

ds.SyncToDisk()

WARNING You must close your files or call SyncToDisk to flush your edits to
disk. If you don’t do this, and your interactive environment still has your data
source open, you’ll be disappointed to find an empty dataset.

It’s always a good idea to carefully inspect your output to make sure you get the results
you want. The best way would be to open it in QGIS, or you could get a good idea by
plotting it from Python (figure 3.17):

>>> vp = VectorPlotter(True)
>>> vp.plot('ne_50m_admin_0_countries.shp', fill=False)
>>> vp.plot('capital_cities.shp', 'bo')

Let’s return to the topic of adding attribute values for a moment. You might be won-
dering if multiple functions exist for setting attribute field values as with retrieving val-
ues. The answer is generally no. Most data will be converted to the correct type for
you, but you may not like the results if a conversion isn’t possible. For example, pre-
tend for a minute that you made a mistake and inserted the population into the Name
field, and the name into the Population field. Do you think that the population could
be converted to a string and successfully inserted into the Name field? How about
converting the country name to a number so it could go in the Population field?

Figure 3.17 The result of plotting 
the new capital cities shapefile on 
top of country outlines
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Well, converting a number to a string works fine, but converting a string to a number
is problematic. The string “3578” can be translated into the number 3578, but what
about the string “Russia”? If you try it in a Python interactive window by typing
int('Russia'), you’ll get an error, but OGR will insert a zero into the Population
field instead of crashing. Sometimes this behavior is to your advantage because you
don’t need to convert data before inserting it in a feature, but it can also be a problem
if you mistakenly try to insert the wrong type of data into a field.

3.5.1 Creating new data sources

You used an existing data source in listing 3.3, but sometimes you’ll need to create
new ones. Fortunately, it’s not difficult. Perhaps the most important part is that you
use the correct driver. It’s the driver that does the work here, and each driver only
knows how to work with one vector format, so using the correct one is essential. For
example, the GeoJSON driver won’t create a shapefile, even if you ask it to create a file
with an .shp extension. As shown in figure 3.18, the output will have an .shp exten-
sion, but it will still be a GeoJSON file at heart.

 You have a couple of ways to get the required driver. The first is to get the driver
from a dataset that you’ve already opened, which will allow you to create a new data
source using the same vector data format as the existing data source. In this example,
the driver variable will hold the ESRI shapefile driver:

ds = ogr.Open(r'D:\osgeopy-data\global\ne_50m_admin_0_countries.shp')
driver = ds.GetDriver() 

The second way to get a driver object is to use the OGR function GetDriverByName
and pass it the short name of the driver. Remember that these names are available on
the OGR website, by using the ogrinfo utility that comes with GDAL/OGR, or the
print_drivers function available in the code accompanying this book. This example
will get the GeoJSON driver:

json_driver = ogr.GetDriverByName('GeoJSON')

Once you have a driver object, you can use it to create an empty data source by provid-
ing the data source name. This new data source is automatically open for writing, and

Create datasource

called data.shp

GeoJSON

driver

Create layer

called data

Creates empty text
file called data.shp

Adds basic
GeoJSON text

{
"type": "FeatureCollection",

"features":[
]
}

Contents
of output

Figure 3.18 Using the GeoJSON driver to create a file with an .shp extension will still create a GeoJSON file, 
not a shapefile.
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you can add layers to it the way you did in listing 3.3. If the data source can’t be cre-
ated, then CreateDataSource returns None, so you need to check for this condition:

json_ds = json_driver.CreateDataSource(json_fn)
if json_ds is None:
    sys.exit('Could not create {0}.'.format(json_fn))

A few data formats have creation options that you can use when creating a data
source, although these aren’t required. Like layer-creation options, these parameters
are documented on the OGR website. Don’t confuse the two, because data source and
layer-creation options are two different things. Both types are passed as a list of strings,
however. Let’s see how you’d use a data source–creation option to create a full-fledged
SpatiaLite data source instead of SQLite. This will fail if your version of OGR wasn’t
built with SpatiaLite support, though:

driver = ogr.GetDriverByName('SQLite')
ds = driver.CreateDataSource(r'D:\ osgeopy-data\global\earth.sqlite', 
                             ['SPATIALITE=yes'])

Another thing to be aware of when creating new data sources is that you can’t over-
write an existing data source. If a chance exists that your code might legitimately try to
overwrite a dataset, then you’ll need to delete the old one before attempting to create
the new one. One way to deal with this would be to use the Python os.path.exists
function to see if a file already exists before you attempt to create a data source; or you
could wait and deal with it if your original attempt fails, either after checking for None
or by using a try/except block. Either way, you should use the driver to delete the
existing source instead of using a Python built-in function. Why? Because the driver
will make sure that all required files are deleted. For example, if you’re deleting a
shapefile, the shapefile driver will delete the .shp, .dbf, .shx, and any other optional
files that may be present. If you were using the Python built-in module to delete the
shapefile, you’d have to make sure your code checked for all of these files. Here’s an
example of one way to deal with an existing data source:

if os.path.exists(json_fn):
    json_driver.DeleteDataSource(json_fn)
json_ds = json_driver.CreateDataSource(json_fn)
if json_ds is None:
    sys.exit('Could not create {0}.'.format(json_fn))

TIP If you try to create a shapefile as a data source rather than a layer (where
the data source is the containing folder), and the shapefile already exists,
you’ll get an odd error message saying that the shapefile isn’t a directory.

Using OGR exceptions

By default, OGR doesn’t raise an error if it has a problem, such as failing to create a
new data source. This is why you check for None, but Python programmers generally
expect an error to be raised instead. You can enable this behavior if you’d like, by
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3.5.2 Creating new fields

You saw in listing 3.3 how to copy attribute field definitions from one layer to another,
but you can also define your own custom fields. Several different field types are avail-
able, but not all are supported by all data formats. This is another situation when the
online documentation for the various formats will come in handy, so hopefully you’ve
bookmarked that page.

 To add a field to a layer, you need a FieldDefn object that contains the important
information about the field, such as name, data type, width, and precision. The
schema property you used in listing 3.3 returns a list of these, one for each field in the

calling ogr.UseExceptions() at the beginning of your code. Although most of the
time this works as anticipated, I’ve discovered that it doesn’t always raise an error
when I expect. For example, no error is raised if OGR fails to open a data source. How-
ever, in instances where it does raise an error, you don’t need to check for None before
continuing. Using exceptions also gives you flexibility with handling errors.

For example, here’s a contrived situation where I’m pretending to process data, then
I want to save some temporary data to a GeoJSON file, and then I want to keep pro-
cessing something else. If I can’t create the temporary file, I want to skip that step
and go on to the next bit of data processing rather than crashing. Here’s the sample
code:

ogr.UseExceptions()                              
fn = r'D:\ osgeopy-data\global\africa.geojson'
driver = ogr.GetDriverByName('GeoJSON')
print('Doing some preliminary analysis...')

try:                                                             
    ds = driver.CreateDataSource(fn)                             
    lyr = ds.CreateLayer('layer')                               
    # Do more stuff, like create fields and save data                    

except RuntimeError as e:                                         
    print(e)                                                      

print('Doing some more analysis...')

Suppose that the africa.geojson file already exists. This code doesn’t check for that,
so you know it will fail when you call CreateDataSource. If you weren’t using OGR
exceptions, this script would fail at that point and never get to the last print state-
ment. But because you’re using exceptions, you’ll get an error message saying that
the file couldn’t be created, and then it will continue on to the last print statement,
and the output will look like this:

Doing some preliminary analysis...
The GeoJSON driver does not overwrite existing files.
Doing some more analysis...

Try it out yourself and comment out the first line, and watch how the behavior changes.

Turn on exceptions

Attempt to save 
some data

Print error message and continue
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layer. You can create your own, however, by providing the name and data type for the
new field to the FieldDefn constructor. The data type is one of the constants from
table 3.2. 

After you create a basic field definition, but before you use it to add a field to the layer,
you can add other constraints such as floating-point precision or field width, although
I’ve noticed that these don’t always have an effect, depending on the driver being
used. For example, I haven’t been able to set a precision in a GeoJSON file, and I’ve
also discovered that you must set a field width if you want to set field precision in a
shapefile. This example would create two fields to hold x and y coordinates with a pre-
cision of 3:

coord_fld = ogr.FieldDefn('X', ogr.OFTReal)                             
coord_fld.SetWidth(8)                                                    
coord_fld.SetPrecision(3)                                                
out_lyr.CreateField(coord_fld)                                         
coord_fld.SetName('Y')                                                   
out_lyr.CreateField(coord_fld)                                           

You might have noticed that you don’t create two different field definition objects
here. Once you’ve used the field definition to create a field in the layer, you can
change the definition’s attributes and reuse it to create another field, which makes
this easier because you want two fields that were identical except in name.

 Also, sometimes the field width will be ignored if it’s too small for the data pro-
vided. For example, if you create a string field with a width of 6, but then try to insert
a value that’s 11 characters long, in certain cases the width of the field would increase
to hold the entire string. This isn’t always possible, however, and it’s best to be specific
about what you want rather than hope something like this will conveniently happen. 

Table 3.2 Field type constants. There are more shown in appendix B, 
                 but I have been unable to make them work in Python.

Field data type OGR constant

Integer OFTInteger

List of integers OFTIntegerList

Floating point number OFTReal

List of floating point numbers OFTRealList

String OFTString

List of strings OFTStringList

Date OFTDate

Time of day OFTTime

Date and time OFTDateTime

Create and add 
the first field

Reuse the FieldDefn to 
create a second field
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3.6 Updating existing data
Sometimes you need to update existing data rather than create an entirely new data-
set. Whether this is possible, and which edits are supported, depends on the format of
the data. For example, you can’t edit GeoJSON files, but many different edits are
allowed on shapefiles. We’ll discuss getting information about what’s supported in the
next chapter.

3.6.1 Changing the layer definition

Depending on the type of data you’re working with, you can edit the layer definition
by adding new fields, deleting existing ones, or changing field properties such as
name. As with adding new fields, you need a field definition to change a field. Once
you have a field definition that you’re happy with, you use the AlterFieldDefn func-
tion to replace the existing field with the new one:

AlterFieldDefn(iField, field_def, nFlags)

■ iField is the index of the field you want to change. A field name won’t work in
this case.

■ field_def is the new field definition object.
■ nFlags is an integer that is the sum of one or more of the constants shown in

table 3.3.

To change a field’s properties, you need to create a field definition containing the
new properties, find the index of the existing field, and decide which constants from
table 3.3 to use to ensure your changes take effect. To change the name of a field from
‘Name’ to ‘City_Name’, you might do something like this:

i = lyr.GetLayerDefn().GetFieldIndex('Name')
fld_defn = ogr.FieldDefn('City_Name', ogr.OFTString)
lyr.AlterFieldDefn(i, fld_defn, ogr.ALTER_NAME_FLAG)

If you needed to change multiple properties, such as both the name and the precision
of a floating-point attribute field, you’d pass the sum of ALTER_NAME_FLAG and
ALTER_WIDTH_PRECISION_FLAG, like this:

lyr_defn = lyr.GetLayerDefn()
i = lyr_defn.GetFieldIndex('X')

Table 3.3 Flags used to specify which properties of a field definition can be changed.
                 To use more than one, simply add them together

Field properties that need to change OGR constant

Field name only ALTER_NAME_FLAG

Field type only ALTER_TYPE_FLAG

Field width and/or precision only ALTER_WIDTH_PRECISION_FLAG

All of the above ALTER_ALL_FLAG
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width = lyr_defn.GetFieldDefn(i).GetWidth()
fld_defn = ogr.FieldDefn('X_coord', ogr.OFTReal)
fld_defn.SetWidth(width)
fld_defn.SetPrecision(4)
flag = ogr.ALTER_NAME_FLAG + ogr.ALTER_WIDTH_PRECISION_FLAG
lyr.AlterFieldDefn(i, fld_defn, flag)

Notice that you use the original field width when creating the new field definition. I
found out the hard way that if you don’t set the width large enough to hold the origi-
nal data, then the results will be incorrect. To get around the problem, use the origi-
nal width. For the precision change to take effect, all records must be rewritten.
Making the precision larger than it was won’t give you more precision, however,
because data can’t be created from thin air. The precision can be decreased, however.

 Instead of summing up flag values, you could cheat and just use ALTER_ALL_FLAG.
Only do this if your new field definition is exactly what you want the field to look like
after editing, however. The other flags limit what can change, but this one doesn’t. For
example, if your field definition has a different data type than the original field but
you pass ALTER_NAME_FLAG, then the data type will not change, but it will if you pass
ALTER_ALL_FLAG.

3.6.2 Adding, updating, and deleting features

Adding new features to existing layers is exactly the same as adding them to brand-
new layers. Create an empty feature based on the layer definition, populate it, and
insert it into the layer. Updating features is much the same, except you work with fea-
tures that already exist in the layer instead of blank ones. Find the feature you want to
edit, make the desired changes, and then update the information in the layer by pass-
ing the updated feature to SetFeature instead of CreateFeature. For example, you
could do something like this to add a unique ID value to each feature in a layer:

lyr.CreateField(ogr.FieldDefn('ID', ogr.OFTInteger))
n = 1
for feat in lyr:
    feat.SetField('ID', n)
    lyr.SetFeature(feat)
    n += 1

First you add an ID field, and then you iterate through the features and set the ID
equal to the value of the n variable. Because you increment n each time through the
loop, each feature has a unique ID value. Last, you update the feature in the layer by
passing it to SetFeature. 

 Deleting features is even easier. All you need to know is the FID of the feature you
want to get rid of. If you don’t know that number off the top of your head, or through
another means, you can get it from the feature itself, like this:

for feat in lyr:
    if feat.GetField('City_Name') == 'Seattle':
        lyr.DeleteFeature(feat.GetFID())
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For each feature in the layer, you check to see if its ‘City_Name’ attribute is equal to
‘Seattle’, and if it is, you retrieve the FID from the feature itself and then pass that
number to DeleteFeature.

 Certain formats don’t completely kill the feature at this point, however. You may
not see it, but sometimes the feature has only been marked for deletion instead of
totally thrown out, so it’s still lurking in the shadows. Because of this, you won’t see
any other features get assigned that FID, and it also means that if you’ve deleted many
features, there may be a lot of needlessly used space in your file. See figure 3.19 for a
simple example. Deleting these features will reclaim this space. If you have much
experience with relational databases, you should be familiar with this idea. It’s similar
to running Compact and Repair on a Microsoft Access database or using VACUUM on a
PostgreSQL database. 

 How to go about reclaiming this space, or determining if it needs to be done, is
dependent on the vector data format being used. Here are examples for doing it for
shapefiles and SQLite:

ds.ExecuteSQL('REPACK ' + lyr.GetName())       
ds.ExecuteSQL('VACUUM')    

In both cases, you need to open the data source and then execute a SQL statement on
it that compacts the database. For shapefiles you need to know the name of the layer,
so if the layer is called “cities”, then the SQL would be “REPACK cities”.

 Another issue with shapefiles is that they don’t update their metadata for spatial
extent when existing features are modified or deleted. If you edit existing geometries
or delete features, you can ensure that the spatial extent gets updated by calling this:

ds.ExecuteSQL('RECOMPUTE EXTENT ON ' + lyr.GetName())
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Figure 3.19 The effect of vacuuming or repacking a database. Notice that the FID 
values change.
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This isn’t necessary if you insert features, however, because those extent changes are
tracked. It’s also not necessary if there’s no chance that your edits change the layer’s
extent.

3.7 Summary
■ Vector data formats are most appropriate for features that can be characterized

as a point, line, or polygon.
■ Each geographic feature in a vector dataset can have attribute data, such as

name or population, attached to it.
■ The type of geometry used to model a given feature may change depending on

scale. A city could be represented as a point on a map of an entire country, but
as a polygon on a map of a smaller area, such as a county.

■ Vector datasets excel for measuring relationships between geographic features
such as distances or overlaps.

■ You can use OGR to read and write many different types of vector data, but
which ones depend on which drivers have been compiled into your version of
GDAL/OGR.

■ Data sources can contain one or more layers (depending on data format), and
in turn, layers can contain one or more features. Each feature has a geometry
and a variable number of attribute fields.

■ Newly created data sources are automatically opened for writing. If you want to
edit existing data, remember to open the data source for writing.

■ Remember to make changes to the layer, such as adding or deleting fields,
before getting the layer definition and creating a feature for adding or updat-
ing data.



Working with different
vector file formats
As mentioned in the previous chapter, there are many different vector file formats,
and they’re not always interchangeable, at least in a practical sense. Certain formats
are more appropriate for certain uses than others. In this chapter you’ll learn sev-
eral of the differences and their strengths and weaknesses.

 Another consideration with format is what you can and can’t do with the data
using OGR. In general, working with one type is the same as working with another,
but sometimes how you open the data source is different. The larger issue is the dif-
ference in capabilities of each driver. For example, certain formats can be read
from but not written to, and others can be created but existing data can’t be edited.
You’ll also learn how to determine what you can and can’t do with a dataset.

This chapter covers
■ Choosing a vector data file format
■ Working with various vector data formats
■ Checking what edits are allowed on a data 

source
67
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4.1 Vector file formats
Up to this point, you’ve only worked with shapefiles, but many more vector file for-
mats are available. Chances are that you’ll probably only use a handful of them on a
regular basis, but you need to have an idea of the available options. Several formats
have open specifications and are supported by many different software programs,
while others are used more sparingly. Certain formats also support more capabilities
than others. Most of these formats allow for easy transfer from one user to another,
much like you can give someone else your spreadsheet file. A few use database servers,
however, which allows for many users to access and edit the same dataset at a central
location, but sometimes makes it more difficult to move the data from one place to
another.

4.1.1 File-based formats such as shapefiles and geoJSON

What I call file-based formats are made up of one or more files that live on a disk drive
and can be easily transferred from one location to another, such as from your hard
drive to another computer or an external drive. Several of these are relational data-
bases, but are designed to be easily moved around (think of Microsoft Access rela-
tional databases), so they’re considered file-based for the purposes of this discussion.
Several of these formats have open standards so anyone can create software to use
them, while others are proprietary and limited to smaller numbers of software. Exam-
ples of open formats are GeoJSON, KML, GML, shapefiles, and SpatiaLite.

 Spatial data can also be stored in Excel spreadsheets, comma- or tab-delimited
files, or other similar formats, although this is most common for point data when only
x and y coordinates are required. Most spatial data, however, is stored using formats
designed specifically for GIS data. Several of these formats are plain text, meaning that
you can open them in any text editor and look at them, and others are binary files that
require software capable of understanding them. 

 As mentioned previously, one advantage of plain text files is that you can open
them in a text editor and inspect their contents. You can even edit them by hand,
rather than using GIS software, if you’re so inclined. Listing 4.1 shows an example of a
GeoJSON file that contains two cities in Switzerland, Geneva and Lausanne, both rep-
resented as points.

{
  "type": "FeatureCollection",
  "features": [
    { 
      "type": "Feature", 
      "properties": { "NAME": "Geneva", "PLACE": "city" }, 
      "geometry": { 
        "type": "Point", 
        "coordinates": [ 6.1465886, 46.2017589 ] 
      }

Listing 4.1 An example GeoJSON file with two features
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    },
    { 
      "type": "Feature", 
      "properties": { "NAME": "Lausanne", "PLACE": "city" }, 
      "geometry": { 
        "type": "Point", 
        "coordinates": [ 6.6327025, 46.5218269 ] 
      } 
    },
  ]
}

It’s okay if you don’t understand everything in this example. The point here is that
you can open and edit the file in a text editor instead of using GIS software. For exam-
ple, you could easily fix the spelling of a city name or tweak one of the point coordi-
nates. While we’re on the subject, it’s worth mentioning that small GeoJSON files are
automatically rendered as interactive maps when uploaded to GitHub. The example
shown here is saved as a gist at https://gist.github.com/cgarrard/8049400. If you have
a GitHub account, you can copy this gist to your own account, make changes, and
instantly see the result.

 Plain text formats such as GeoJSON, KML, and GML are popular for transferring
small amounts of data and for web applications, but they don’t work so well for data
analysis. For one thing, all three of these formats allow different geometry types to be
present in the same dataset, which GIS software doesn’t really appreciate. For exam-
ple, data in the popular shapefile format contains all points, all lines, or all polygons,
but not a mixture. Therefore, a shapefile could contain roads (lines) or city boundar-
ies (polygons), but not both. A GeoJSON file, on the other hand, can contain a combi-
nation of all three geometries in the same dataset, such as the roads and city
boundaries mentioned previously that would have to live in two different shapefiles.
Because you have only one file to download and process, this is an excellent solution
for passing data to a web browser so it can render it on a map. However, most GIS soft-
ware expects only points, only lines, or only polygons, and won’t read the data cor-
rectly if it has a mixture. If you need to load the data into GIS software, don’t combine
multiple geometry types into one dataset, even when allowed.

 Perhaps a more serious problem with plain text formats when it comes to data
analysis is that they don’t have the same indexing capabilities as many binary formats.
Indexes are used for searching and accessing data quickly. Attribute indexes allow for
searching on values in the attribute fields for the features, such as searching for all cit-
ies in a dataset with a population over 100,000. Spatial indexes store information
about the spatial location of features in the dataset so that searching can be limited to
features in a certain geographic area, for example, when you overlay a small water-
shed polygon on a larger dataset of water-monitoring stations. A spatial index would
be used to quickly find the monitoring stations that fall within the watershed bound-
ary. Both of these operations, finding large cities and finding water-monitoring sta-
tions, would be slow on large datasets if the appropriate attribute or spatial index
didn’t exist. In addition, spatial indexes can help a dataset be drawn more quickly

https://gist.github.com/cgarrard/8049400
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because they help find the features that fall within the viewport. For example, if you’re
looking at Asian cities and zoom in on Japan, the spatial index helps find Japanese cit-
ies faster while ignoring cities in western China. 

 These issues aren’t as important with small datasets, but they’re extremely impor-
tant with large ones. Certain formats have ways around these problems, though. For
example, although the KML format doesn’t have true spatial indexes, it does allow for
datasets to be broken up into different files for different spatial locations. This allows
for smaller datasets to be loaded as a user zooms and pans around the map, which
increases rendering speed.

 Several vector data formats use familiar desktop-based, or personal, relational data-
base software under the hood. This is true for Esri personal geodatabases and GeoMe-
dia .mdb files, which use Microsoft Access databases to store data. Another example of
a vector format based on an existing database format is SpatiaLite, a spatial extension
for the SQLite database management system. These vector data formats can take
advantage of the capabilities built into the database software, such as indexes. The
underlying database also imposes much stricter rules for storing data. For example, all
geographic features in a dataset must have the same geometry type and the same set
of attribute fields. Similar to the way nonspatial databases can contain multiple tables,
a spatial database can contain multiple datasets. Although an individual dataset is lim-
ited to a single geometry type, a solitary database file can contain multiple datasets,
each with different geometry types and attribute fields. This is convenient for keeping
related datasets together and for moving them from disk to disk. Figure 4.1 shows a
schematic of a single SpatiaLite database file that contains multiple datasets with dif-
ferent geometries.

 Other vector formats consist of several files, such as the ever popular shapefile.
These datasets store geometries, attribute values, and indexes in separate files. If you
move a shapefile from one location to another, you need to ensure that you move all
of the required files. Other format types that require multiple files make it a bit easier
by using dedicated folders that contain the necessary files. As with shapefiles, you
don’t need to know anything about the individual files, but you shouldn’t change any-
thing in the folder. Two examples of formats that use this system are Esri grids and file
geodatabases.

 Many other vector data formats haven’t been mentioned here, but you should now
have an idea of the types of formats and their strengths and weaknesses. 

Figure 4.1 A sample SpatiaLite 
database containing multiple layers 
with different geometry types. All of 
these various datasets are contained 
within one easily transportable file.



71Working with more data formats
4.1.2 Multi-user database formats such as PostGIS

You’ve seen that file-based formats come in many shapes and sizes, including desktop
relational database models such as SpatiaLite. One limitation of these formats is that
they don’t allow multiple people to edit, or sometimes even use, a specific dataset at
the same time. This is where the multi-user client-server database architecture comes
in, because the data are stored in a database that is accessible by multiple clients
across the network. Users access data from the server rather than opening a file on a
local disk. Although this is certainly not for everyone, it’s a great choice for making
data available to many users from a central location. This is especially useful if the data
are updated frequently or are used by many different users, because all users will
instantly have access to the updated data. It also allows multiple people to edit a data-
set at once, which isn’t usually possible with file-based formats. In addition, in many
cases the indexing and querying capabilities of these database systems provide faster
performance when accessing data.

 The most popular client-server database solutions for spatial data include Post-
greSQL with the PostGIS spatial extension, ArcSDE, SQL Server, and Oracle Spatial and
Graph. If you want to host the data on your own computer, you need to invest in a sys-
tem like these. My favorite is PostGIS (www.postgis.net) because it’s open source and
provides a feature-rich environment with many functions, operators, and indexes that
are specific to spatial data. Even with huge amounts of data, you can still get good per-
formance. Although you can’t zip up a PostGIS dataset and email it to a colleague, it
comes with utilities to import and export several popular file-based formats, and it’s
straightforward to run a query and export the data to a portable format. Not only does
PostGIS store the data, but you can use it for many types of analyses as well, without the
need for other GIS software. PostGIS also works with raster data.

 If you’re not familiar with relational databases, then it might take effort to set one
of these systems up and learn how to use it. But it’s extremely powerful and worth the
investment in brain cells if you need to give multiple users simultaneous access to data. 

4.2 Working with more data formats
Until now we’ve only worked with one data format out of many. The basics don’t change
between formats, though. Once you open the data source, reading the data is pretty
much the same. But for kicks, let’s look at several formats that support more than one
layer, because we haven’t done that yet. Until now, we’ve used the first and only layer in
a data source, but if multiple layers exist, you need to know either the name or the
index of the one you’re interested in. Generally, I’d use ogrinfo to get this information,
but because this is a book on Python, let’s write a simple function that opens a data
source, loops through the layers, and prints their names and indexes:

def print_layers(fn):
    ds = ogr.Open(fn, 0)
    if ds is None:
        raise OSError('Could not open {}'.format(fn))
    for i in range(ds.GetLayerCount()):
        lyr = ds.GetLayer(i)
        print('{0}: {1}'.format(i, lyr.GetName()))

www.postgis.net
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This function takes the filename of the data source as a parameter, and the first thing
it does is open the file. Then it uses GetLayerCount to find out how many layers the data
source contains, and iterates through a loop that many times. Each time through the
loop, it uses the i variable to get the layer at the index corresponding to that iteration.
Then it prints the name of the layer and its index. This function is included in the ospy-
book module, and you’ll use it to inspect other data sources in the following examples.

4.2.1 SpatiaLite

Let’s start with a SpatiaLite database. This type of data source can contain many differ-
ent layers, all with unique (and hopefully descriptive) names. To see this, list the layers
in the natural_earth_50m.sqlite file in the data download:

>>> import ospybook as pb
>>> pb.print_layers(r'D:\osgeopy-data\global\natural_earth_50m.sqlite')
0: countries
1: populated_places 

As you can see, the dataset has two layers. How would you get a handle to the
populated_places layer? Well, you could use either the index or the layer name, so
both ds.GetLayer(1) and ds.GetLayer('populated_places') would do the trick.
It’s probably better to use the name rather than the index, however, because the index
might change if other layers are added to the data source. To prove that this works, try
plotting the layer, which will be dots representing cities around the world, as shown in
figure 4.2.

>>> ds = ogr.Open(r'D:\osgeopy-data\global\natural_earth_50m.sqlite')
>>> lyr = ds.GetLayer('populated_places')
>>> vp = VectorPlotter(True)
>>> vp.plot(lyr, 'bo')

Figure 4.2 The populated_places layer in natural_earth_50m.sqlite



73Working with more data formats
4.2.2 PostGIS

What about connecting to a database server such as the PostGIS spatial extension for
PostgreSQL? Note a couple of extra considerations that you don’t need to worry about
with local files. You need to know the connection string to use, which involves host,
port, database name, username, and password. You also need permission to connect
to the database and tables in question. If you’re not managing your own database
server, then you might need to talk to the database administrator to set all of this up.
The following example connects to the geodata database being served by a Post-
greSQL instance running on my local machine. It won’t work for you unless you go to
the trouble to install PostgreSQL and PostGIS, and then set up a database.

>>> pb.print_layers('PG:user=chris password=mypass dbname=geodata')
0: us.counties
1: global.countries
2: global.populated_places
3: time_zones

You see four layers here, but they’re divided up into three different groups, or sche-
mas. The time zones layer is in the default schema, counties is in the us schema, and
the remaining two are in the global schema. Every user of the database could have

Ogrinfo

GDAL comes with several extremely useful command-line utilities, and in fact, you’ve
already seen how to use ogrinfo to find out which vector data formats your version of
OGR supports. You can also use ogrinfo to get information about specific data sources
and layers. If you pass it a data source name, it will print a list of layers contained in
that data source:

D:\osgeopy-data\global>ogrinfo natural_earth_50m.sqlite
INFO: Open of `natural_earth_50m.sqlite'
      using driver `SQLite' successful.
1: countries (Multi Polygon)
2: populated_places (Point)

You can also use ogrinfo to see metadata about a layer and even all of the attribute
data. This example will show a summary only (-so) of the countries layer in the natural
earth SQLite database. This includes metadata such as the extent, spatial reference,
and a list of attribute fields and their data types. The second will show all attribute
values for the first feature in the layer.

ogrinfo -so natural_earth_50m.sqlite countries

To display all of the attribute values for the feature with an FID of 1, you could do
something like this, where –q means don’t print the metadata and –geom=NO means
don’t print out a text representation of the geometry (which would be long).

ogrinfo -fid 1 -q -geom=NO natural_earth_50m.sqlite countries

See http://www.gdal.org/ogrinfo.html for full ogrinfo documentation.

http://www.gdal.org/ogrinfo.html
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access to different schemas, and even different layers within a schema, depending on
how the database administrator has set up the security.

 As you can see, you can access PostGIS databases with OGR, but you can do many
things with a PostGIS database that aren’t covered in this book. If you’re interested in
learning more about it, take a look at PostGIS in Action, also published by Manning.

4.2.3 Folders as data sources (shapefiles and CSV)

In certain cases OGR will treat entire folders as data sources. Two examples of this are
the shapefile and comma-delimited text file (.csv) drivers, which can be used to open
either individual files or entire folders as data sources. If you use a folder, then each
file inside of the folder is treated as a layer. If a folder contains a variety of file types,
then the shapefile driver is used. For example, try listing the layers in the US folder:

>>> pb.print_layers(r'D:\osgeopy-data\US')
0: citiesx020 (Point)
1: cities_48 (Point)
2: countyp010 (Polygon)
3: roadtrl020 (LineString)
4: statep010 (Polygon)
5: states_48 (Polygon)
6: volcanx020 (Point)

Compare this list to the contents of the folder, and you’ll see that it listed each of the
shapefiles, but none of the others. The CSV driver is a little pickier, however, and wants
all of the files in the folder to be CSV files. Although it won’t work with the US folder, it
works fine with the csv subfolder. Does this mean that you can’t open a CSV file that’s
in a folder with a bunch of other files? Fortunately, no. All you have to do is treat the
CSV file itself as a data source with only one layer. You can do the exact same thing
with a shapefile by providing the name of the .shp file.

4.2.4 Esri file geodatabases

You Esri users out there might expect to see feature
datasets inside file geodatabases treated like the sche-
mas in PostGIS. If so, you’ll be disappointed, because
all you see are feature class names. Figure 4.3 shows
what the natural_earth file geodatabase looks like in
ArcCatalog, but the large_scale feature dataset name
isn’t included in the layer names that OGR uses.

>>> pb.print_layers(r'D:\osgeopy-data\global\natural_earth.gdb')
0: countries_10m
1: populated_places_10m
2: countries_110m
3: populated_places_110m 

Fortunately, you don’t need the feature dataset name to access the layer, though; the
feature class name works fine:

>>> ds = ogr.Open(r'D:\osgeopy-data\global\natural_earth.gdb')
>>> lyr = ds.GetLayer('countries_10m')

Figure 4.3 The natural_earth file 
geodatabase as seen in ArcCatalog
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File geodatabases have two different drivers. You can read more about the differences
on the OGR website, but one huge difference is that the read-only OpenFileGDB driver
is compiled into OGR by default and the read/write FileGDB driver isn’t because it
requires a third-party library from Esri. If somebody gave you a file geodatabase that
you needed to change but you didn’t have access to the FileGDB driver, you could still
use the OpenFileGDB driver to open the geodatabase and copy the data to a format
that you could edit. This may not be ideal, but at least you have the option. For exam-
ple, you could copy the countries_110m feature class in the natural earth geodatabase
to a shapefile like this:

gdb_ds = ogr.Open(r'D:\osgeopy-data\global\natural_earth.gdb')
gdb_lyr = gdb_ds.GetLayerByName('countries_110m')
shp_ds = ogr.Open(r'D:\Temp', 1)
shp_ds.CopyLayer(gdb_lyr, 'countries_110m')
del shp_ds, gdb_ds

You haven’t seen the CopyLayer method before. This allows you to easily copy the con-
tents of an entire layer into a new data source or to the same data source but with a
different layer name. To use it, you need to get the layer that you want to make a copy
of and open the data source that you want to save the copy into. Then call CopyLayer
on the data source that will get the copy, and pass it the original layer and a name for
the new layer that will be created.

 If you do have the Esri FileGDB driver, you can create new file geodatabases, and
even feature datasets even though OGR doesn’t show you feature dataset names. Listing
4.2 shows a function that imports all of the layers from a data source into a feature data-
set within a file geodatabase, but note that this only works if you have the FileGDB driver.
If you try to use this function without that driver installed, you’ll get an error message
that says AttributeError: 'NoneType' object has no attribute 'CreateDataSource'.

def layers_to_feature_dataset(ds_name, gdb_fn, dataset_name):
    """Copy layers to a feature dataset in a file geodatabase."""
    in_ds = ogr.Open(ds_name)
    if in_ds is None:
        raise RuntimeError('Could not open datasource')
    gdb_driver = ogr.GetDriverByName('FileGDB')
    if os.path.exists(gdb_fn):                                       
        gdb_ds = gdb_driver.Open(gdb_fn, 1)                             
    else:
        gdb_ds = gdb_driver.CreateDataSource(gdb_fn)                   
    if gdb_ds is None:
        raise RuntimeError('Could not open file geodatabase')
    options = ['FEATURE_DATASET=' + dataset_name]                       
    for i in range(in_ds.GetLayerCount()):                              
        lyr = in_ds.GetLayer(i)                                         
        lyr_name = lyr.GetName()                                         
        print('Copying ' + lyr_name + '...')                            
        gdb_ds.CopyLayer(lyr, lyr_name, options)                        

Listing 4.2 Function to import layers to a file geodatabase

Open the geodatabase 
if it existsCreate the

odatabase
if needed

he feature
aset name

Copy each layer
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This function requires three parameters: the path to the original data source, the path
to the file geodatabase, and the name of the feature dataset to copy the layers into.
After opening the original data source, it checks to see if the file geodatabase exists. If
it does, then the geodatabase is opened for writing. If it doesn’t exist, it’s created. Fea-
ture datasets are specified using layer-creation options, so then a list containing a sin-
gle option for FEATURE_DATASET is created. After that, all of the layers in the original
data source are looped over and copied into the geodatabase while keeping the same
layer name (although they’ll be renamed if naming conflicts arise in the geodata-
base). If the FEATURE_DATASET layer-creation option wasn’t provided, then the layer
will be added to the file geodatabase, but it will be at the top level instead of in a fea-
ture dataset.

 Now that you have this function, you could copy all of the shapefiles in a folder
into a geodatabase like this:

layers_to_feature_dataset(
    r'D:\osgeopy-data\global', r'D:\Temp\osgeopy-data.gdb', 'global')

If you wanted to have the option of saving the feature classes to the top level of the
geodatabase instead of in a feature dataset, you could modify this function so it
doesn’t pass the option list to CopyLayer if the dataset_name parameter is None or an
empty string.

4.2.5 Web feature services

You can also access online services, such as Web Feature Services (WFS). Let’s try this
using a WFS hosted by the United States National Oceanic and Atmospheric Adminis-
tration (NOAA) that serves out hazardous weather watches and advisories. Start with
getting the list of available layers:

>>> url = 'WFS:http://gis.srh.noaa.gov/arcgis/services/watchWarn/' + \
...       'MapServer/WFSServer'
>>> pb.print_layers(url)
0: watchWarn:WatchesWarnings (MultiPolygon)
1: watchWarn:CurrentWarnings (MultiPolygon)

You can loop through these layers like the layers from other data sources, but all of
the data are fetched immediately, so there could be quite a lag if the list has lots of fea-
tures. It looks like the second layer only contains warnings, which are more severe
than watches, so it should have less data. Let’s find out what type of warning the first
feature represents. I’ve discovered that things crash if I try to use GetFeature with an
FID, but you can do it using GetNextFeature:

>>> ds = ogr.Open(url)
>>> lyr = ds.GetLayer(1)
>>> feat = lyr.GetNextFeature()
>>> print(feat.GetField('prod_type'))
Tornado Warning
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I can recommend an easier and faster way to get only the first few features if that’s all
you want, however. Tack a MAXFEATURES parameter onto your URL, like this:

>>> url += '?MAXFEATURES=1'
>>> ds = ogr.Open(url)
>>> lyr = ds.GetLayer(1)
>>> lyr.GetFeatureCount()
1

You can also work with the geometries from a WFS. Figure 4.4 shows my results when I
used VectorPlotter to draw the watchWarn:WatchesWarnings layer on top of states.

 Let’s do something a little different—save real-time data from a WFS and use it to
build a simple web map using Folium, which is a Python module that creates Leaflet
maps. If you have no idea what Leaflet is, that’s okay, because you don’t have to know
anything about web mapping to work through this example. First you need to install
Folium, though. On my Windows computer, I opened up a command prompt and
used pip to install Folium and Jinja2 (another module that Folium requires in order
to work) for Python 3.3 like this:

C:\Python33\Scripts\pip install Jinja2
C:\Python33\Scripts\pip install folium

If you’re not familiar with installing Python modules via pip, please refer to the instal-
lation instructions in appendix A. Now let’s look at the example script, which breaks
things out into functions so code can be easily reused. Listing 4.3 contains a function
to retrieve stream gauge data from a WFS and save it as GeoJSON; a function to make
the web map showing these stream gauges; a function to get a geometry so that the
map focuses on a single state instead of the whole country; and a couple of helper
functions to format data for the WFS request and the map.

import os
import urllib
from osgeo import ogr
import folium

Listing 4.3 Create a web map from WFS data

Figure 4.4
The WatchesWarnings layer 
from the NOAA web feature 
service. If you plot it, your 
results will differ because this 
layer shows real-time data.
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Get b

g

def get_bbox(geom):                                    
    """Return the bbox based on a geometry envelope."""
    return '{0},{2},{1},{3}'.format(*geom.GetEnvelope())

def get_center(geom):                                          
    """Return the center point of a geometry."""
    centroid = geom.Centroid()
    return [centroid.GetY(), centroid.GetX()]

def get_state_geom(state_name):                             
    """Return the geometry for a state."""
    ds = ogr.Open(r'D:\osgeopy-data\US\states.geojson')
    if ds is None:
        raise RuntimeError(
            'Could not open the states dataset. Is the path correct?')
    lyr = ds.GetLayer()
    lyr.SetAttributeFilter('state = "{0}"'.format(state_name))
    feat = next(lyr)
    return feat.geometry().Clone()

def save_state_gauges(out_fn, bbox=None):                       
    """Save stream gauge data to a geojson file."""
    url = 'http://gis.srh.noaa.gov/arcgis/services/ahps_gauges/' + \
          'MapServer/WFSServer'
    parms = {
        'version': '1.1.0',
        'typeNames': 'ahps_gauges:Observed_River_Stages',
        'srsName': 'urn:ogc:def:crs:EPSG:6.9:4326',
    }
    if bbox:
        parms['bbox'] = bbox
    try:
        request = 'WFS:{0}?{1}'.format(url, urllib.urlencode(parms))
    except:
        request = 'WFS:{0}?{1}'.format(url, urllib.parse.urlencode(parms))
    wfs_ds = ogr.Open(request)
    if wfs_ds is None:
        raise RuntimeError('Could not open WFS.')
    wfs_lyr = wfs_ds.GetLayer(0)

    driver = ogr.GetDriverByName('GeoJSON')
    if os.path.exists(out_fn):
        driver.DeleteDataSource(out_fn)
    json_ds = driver.CreateDataSource(out_fn)
    json_ds.CopyLayer(wfs_lyr, '')

def make_map(state_name, json_fn, html_fn, **kwargs):       
    """Make a folium map."""
    geom = get_state_geom(state_name)
    save_state_gauges(json_fn, get_bbox(geom))
    fmap = folium.Map(location=get_center(geom), **kwargs)
    fmap.geo_json(geo_path=json_fn)
    fmap.create_map(path=html_fn)

os.chdir(r'D:\Dropbox\Public\webmaps')                                   
make_map('Oklahoma', 'ok.json', 'ok.html',                              
         zoom_start=7)                                                  

ounding
box from
eometry

Get center point 
from geometry

Get a state 
geometry

Save gauge WFS 
data to GeoJSON

Make the web map

Top-level code
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You can probably understand what the get_state_geom function does and how it does
it, because you’ve seen the same process before. It takes a state name as a parameter,
finds the corresponding feature in a layer, and returns the cloned geometry. The file-
name is hardcoded because you assume that the location of this state boundary file
won’t change.

 The two helper functions are also simple. The get_center function takes a geome-
try, gets its centroid, and then returns the coordinates as a [y, x] list. The order might
seem weird to you, but that’s the order that Folium wants them in for the map. 

 The get_bbox function takes a geometry and returns its bounding coordinates as a
string formatted like min_x,min_y,max_x,max_y. This is the format that a WFS uses to
spatially subset results, and it’s how you’ll limit your gauge results to the bounding box
of a state. This function takes advantage of the string formatting rules to rearrange the
results of GetEnvelope, which returns a geometry’s bounding box (figure 4.5) as a
[min_x, max_x, min_y, max_y] list.

 Now let’s look at the slightly more complicated save_state_gauges function. Here
you hardcode in the URL for a WFS that returns the observed river stages data from the
Advanced Hydrologic Prediction Service. You also create a dictionary containing the
parameters to be passed to the WFS. As you already know, the typeNames parameter is
the name of the layer to retrieve data from. The version is the WFS version to use, and
srsName specifies which coordinate system you’d like your data to be returned in. You
can see the available options for this in the WFS’s capabilities output, which you can get
by tacking ?request=GetCapabilities onto the end of the service URL and visiting it in a
web browser. For example, part of the output from http://gis.srh.noaa.gov/arcgis/
services/ahps_gauges/MapServer/WFSServer?request=GetCapabilities looks like this:

<wfs:FeatureType>
    <wfs:Name>ahps_gauges:Observed_River_Stages</wfs:Name>
    <wfs:Title>Observed_River_Stages</wfs:Title>
    <wfs:DefaultSRS>urn:ogc:def:crs:EPSG:6.9:4269</wfs:DefaultSRS>
    <wfs:OtherSRS>urn:ogc:def:crs:EPSG:6.9:4326</wfs:OtherSRS>
    <snip>
</wfs:FeatureType>

From this you can see that the default spatial reference system (DefaultSRS) is EPSG
4269, which happens to be unprojected data using the NAD83 datum. If that doesn’t
make much sense, don’t worry about it for now, because you’ll learn all about it in

Figure 4.5 The line is the bounding box 
for the state of Oklahoma.

http://gis.srh.noaa.gov/arcgis/services/ahps_gauges/MapServer/WFSServer?request=GetCapabilities
http://gis.srh.noaa.gov/arcgis/services/ahps_gauges/MapServer/WFSServer?request=GetCapabilities
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chapter 8. All you need to know now is that web-mapping libraries generally want
coordinates that use WGS84, which corresponds to EPSG 4326. Fortunately, that’s listed
as an OtherSRS option in the capabilities output, so you insert it into your parameters
dictionary:

parms = {
    'version': '1.1.0',
    'typeNames': 'ahps_gauges:Observed_River_Stages',
    'srsName': 'urn:ogc:def:crs:EPSG:6.9:4326',
}
if bbox:
    parms['bbox'] = bbox

If the user provided a bbox parameter to the function, you also insert that into your
dictionary. If a bbox parameter is provided to the WFS, it returns features that fall in
that box instead of returning all of them. Remember that your get_bbox function cre-
ates a string in the correct format for this based on a geometry’s bounding box. 

 Creating this dictionary wasn’t absolutely necessary, because you could have built
your query string the same way you did in earlier examples, but I think that using a
dictionary makes it easier to see what parameters are being passed. It’s easy to create
the query string from the dictionary by using the urlencode function, which formats
everything for you. In Python 2, this function lives in the urllib module, but in Python
3 it lives in urllib.parse, which is why you have the next step in a try/except block. You
try to create the query string using the Python 2 function, but if that fails because the
script was run with Python 3, then you do it the Python 3 way instead:

try:
    request = 'WFS:{0}?{1}'.format(url, urllib.urlencode(parms))
except:
    request = 'WFS:{0}?{1}'.format(url, urllib.parse.urlencode(parms))

After creating your query string, you use it to open a connection to the WFS and get
the layer. You want to save the output to a local file this time, though, so then you cre-
ate an empty GeoJSON data source. Data sources have a CopyLayer function that cop-
ies an existing layer into the data source; this existing layer can be from another data
source altogether. You use that function to copy the data from the WFS into your new
GeoJSON file:

json_ds.CopyLayer(wfs_lyr, '')

The second parameter to CopyLayer is the name for the new layer, but GeoJSON layers
don’t have names, so you pass a blank string. You could pass a real layer name, but it
wouldn’t do much good. When your function returns after creating the layer, the data
sources go out of scope, so the files get closed automatically, which is why you don’t
bother to close them inside the function.

 The last function you write is called make_map. It wants a state name along with
filenames for the output GeoJSON and HTML files. It can also take other named
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arguments that get passed to Folium, which allows you to pass optional Folium param-
eters without having to worry about them in your make_map function:

def make_map(state_name, json_fn, html_fn, **kwargs):
    """Make a folium map."""
    geom = get_state_geom(state_name)
    save_state_gauges(json_fn, get_bbox(geom))
    fmap = folium.Map(location=get_center(geom), **kwargs)
    fmap.geo_json(geo_path=json_fn)
    fmap.create_map(path=html_fn)

The basic outline is shown in figure 4.6, but the first thing this function does is get the
geometry for the state of interest. Then it gets the bbox for the geometry and passes
that, along with the output GeoJSON filename, to the function that saves the WFS data
to file. Then it creates a Folium map centered on the geometry, and also uses any
named arguments that the user might have passed in. Remember that ** explodes a
dictionary into key/value pairs, so all of the arguments are treated as if they’re an
exploded dictionary called kwargs. You can read about the optional parameters at
http://folium.readthedocs.org/en/latest/. This map uses OpenStreetMap tiles as the
basemap by default, but that’s one of the things you can change.

After creating the basic map, the contents of the GeoJSON file are added and the map
is saved to the HTML filename provided by the user. All that’s left is to use it.

os.chdir(r'D:\Dropbox\Public\webmaps')
make_map('Oklahoma', 'ok.json', 'ok.html',
         zoom_start=7)

I used a Dropbox folder so that I could view the output on the web using the Dropbox
public link functionality. You probably won’t have much luck viewing the output
straight from your local drive without using a web server. If you don’t have something
like Dropbox you can use, check out the sidebar to learn how to start up a simple
Python web server on your local machine instead. I wanted to make a map of Okla-
homa, and I also passed one of those optional parameters, zoom_start, through to
Folium. By default, Folium maps start with a zoom level of 10, which is zoomed in too
far to see the entire state. A start level of 7 works much better for this example.

Get state

geometry

Request

gauges in

bounding box

from WFS

Save gauges

to local

GeoJSON

Create

Folium map

Load

GeoJSON

gauges file

into the map

Save the

map HTML

Figure 4.6 Tasks in the make_map function
www.allitebooks.com

http://folium.readthedocs.org/en/latest/
http://www.allitebooks.org
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Once you’ve run the script, you can get the Dropbox public link for ok.html and view
it in a web browser. If all went well, it will look something like figure 4.7.

 The map in figure 4.7 shows the location of stream gauges, but other than that, it’s
not too useful. Smaller markers would be nice, and so would popups that provide the
gauge reading if you click on the marker. Unfortunately, I don’t believe there’s a way
to do this by adding a GeoJSON file to the map directly, but it’s not hard to do manu-
ally. Let’s add a function to make custom markers, along with a couple of helper

Python SimpleHTTPServer

Python ships with a simple web server that you can use for testing things out, although
you probably shouldn’t use it for production websites. The easiest way to use it is to
open up a terminal window or command prompt, change to the directory that contains
the files you want to serve, and then invoke the server from the command line. 

For Python 2:
D:\>cd dropbox\public\webmaps
D:\Dropbox\Public\webmaps>c:\python27\python -m SimpleHTTPServer   

For Python 3:
D:\>cd dropbox\public\webmaps
D:\Dropbox\Public\webmaps>c:\python33\python -m http.server

This will start up a web server running on your local port 8000, so you can get to it in
a web browser at http://localhost:8000/. If a file called index.html is in the folder you
started the server from (d:\dropbox\public\webmaps, in this case), then that page
will automatically be displayed. Otherwise, a list of files in the folder will display, and
you can click on one to see it. The URL for the Oklahoma example would be http://
localhost:8000/ok.html.

Figure 4.7 A simple Folium map made with a GeoJSON file

http://localhost:8000/
http://localhost:8000/ok.html
http://localhost:8000/ok.html
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functions, and then change the make_map function to use those instead of adding the
GeoJSON straight to the map.

colors = {                                                
    'action': '#FFFF00',
    'low_threshold': '#734C00',
    'major': '#FF00C5',
    'minor': '#FFAA00',
    'moderate': '#FF0000',
    'no_flooding': '#55FF00',
    'not_defined': '#B2B2B2',
    'obs_not_current': '#B2B2B2',
    'out_of_service': '#4E4E4E'
}

def get_popup(attributes):                         
    """Return popup text for a feature."""
    template = '''{location}, {waterbody}</br>
                  {observed} {units}</br>
                  {status}'''
    return template.format(**attributes)

def add_markers(fmap, json_fn):                          
    ds = ogr.Open(json_fn)
    lyr = ds.GetLayer()
    for row in lyr:
        geom = row.geometry()
        color = colors[row.GetField('status')]
        fmap.circle_marker([geom.GetY(), geom.GetX()],
                           line_color=color,
                           fill_color=color,
                           radius=5000,
                           popup=get_popup(row.items()))

def make_map(state_name, json_fn, html_fn, **kwargs):
    """Make a folium map."""
    geom = get_state_geom(state_name)
    save_state_gauges(json_fn, get_bbox(geom))
    fmap = folium.Map(location=get_center(geom), **kwargs)
    add_markers(fmap, json_fn)                       
    fmap.create_map(path=html_fn)

os.chdir(r'D:\Dropbox\Public\webmaps')
make_map('Oklahoma', 'ok2.json', 'ok2.html',
         zoom_start=7, tiles='Stamen Toner')

The first thing you do here is set up colors to use. These come from the online legend
for this map service, which is available at http://gis.srh.noaa.gov/arcgis/rest/services/
ahps_gauges/MapServer/0. The keys in the colors dictionary are possible values in
the Status attribute field, and the values are hex strings that describe a color.

Listing 4.4 Custom markers for a Folium map

Colors based 
on flood status

Create popup text 
for a feature

Add markers 
to the map

Use your 
new function

http://gis.srh.noaa.gov/arcgis/rest/services/ahps_gauges/MapServer/0
http://gis.srh.noaa.gov/arcgis/rest/services/ahps_gauges/MapServer/0
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The get_popup function creates an HTML string by exploding the attributes diction-
ary for a feature and inserting the values in the corresponding placeholders in a tem-
plate string. For example, the value from the Location field would get inserted in
place of “{location}” in the template string.

 The markers are created in the add_markers function, which loops through the
GeoJSON layer and creates a marker for each point in the layer. This uses the Folium
circle_marker function, which wants a [y, x] list as its first argument. This is where the
marker will be placed on the map. You used a different color based on the flood status
at that location, and also added a popup to go along with the marker. The radius
parameter is the marker radius in pixels. Yours are a little larger than the default.

 The last steps are to change the make_map function so that it calls add_markers
instead of geo_json, and then to create a new map. This time you use Stamen Toner
tiles instead of OpenStreetMap, mostly because the markers are easier to see that way.
Your output should look like figure 4.8, and if you click on a marker, you’ll see a
popup containing the relevant information.

 Although it isn’t the subject of this book, I hope you enjoyed the short foray into
web mapping. If you didn’t know anything on the subject and are anything like me,
you now have another item on your “to learn” list.

4.3 Testing format capabilities
As mentioned earlier, not all operations are available with all data formats and drivers.
How do you find out what’s allowed on your data, other than trying it and crossing
your fingers that your code doesn’t crash? Fortunately, drivers, data sources, and
layers are all willing to convey that information if you ask. Table 4.1 shows which capa-
bilities you can check for each of these data types.

Figure 4.8 A nicer map created by manually constructing colored markers with popups
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To check for a given capability, all you have to do is call the TestCapability function
on a driver, data source, or layer, and pass a constant from table 4.1 as a parameter.
The function will return True if that operation is allowed and False if it isn’t. Try
using this to determine if you can add new shapefiles to a folder:

>>> dirname = r'D:\ osgeopy-data\global'
>>> ds = ogr.Open(dirname)                                              
>>> ds.TestCapability(ogr.ODsCCreateLayer)                              
False                                                                   
>>> ds = ogr.Open(dirname, 1)                                          
>>> ds.TestCapability(ogr.ODsCCreateLayer)                              
True                                                                    

Table 4.1 Constants used for testing capabilities

Driver capabilities OGR constant

Create new data sources ODrCCreateDataSource

Delete existing data sources ODrCDeleteDataSource

DataSource capabilities OGR constant

Create new layers ODsCCreateLayer

Delete existing layers ODsCDeleteLayer

Layer capabilities OGR constant

Read random features using GetFeature OLCRandomRead

Add new features OLCSequentialWrite

Update existing features OLCRandomWrite

Supports efficient spatial filtering OLCFastSpatialFilter

Has an efficient implementation of GetFeatureCount OLCFastFeatureCount

Has an efficient implementation of GetExtent OLCFastGetExtent

Create new fields OLCCreateField

Delete existing fields OLCDeleteField

Reorder fields in the attribute table OLCReorderFields

Alter properties of existing fields OLCAlterFieldDefn

Supports transactions OLCTransactions

Delete existing features OLCDeleteFeature

Has an efficient implementation of SetNextByIndex OLCFastSetNextByIndex

Values of string fields are guaranteed to be UTF-8 encoding OLCStringsAsUTF8

Supports ignoring fields when fetching feature data, which can 
speed up data access

OLCIgnoreFields

Data source is 
opened read-only

Data source is 
opened for writing
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As you probably could’ve guessed, you’re allowed to create new layers when the
folder has been opened for writing, but not when it has been opened read-only. How
could you use this information to make sure you didn’t attempt to do something that
would cause an error? You can modify your code to add checks before you try to do
any editing:

ds = ogr.Open(new_fn, 1)
if ds is None:
    sys.exit('Could not open {0}.'.format(new_fn))
lyr = ds.GetLayer(0)

if not lyr.TestCapability(ogr.OLCCreateField):       
    raise RuntimeError('Cannot create fields.')                      

lyr.CreateField(ogr.FieldDefn('ID', ogr.OFTInteger))

This snippet will raise an error and not continue if you aren’t allowed to add fields to
the layer. You could catch and handle this error if you needed to, or let it bail out. If
you don’t want to handle the errors, the biggest reason for checking beforehand is to
make sure that all edits are possible before you start. 

 For example, what if a layer supported editing fields but not deleting features, and
you wanted to do both? If you edited the fields before deleting the features, then part
of your changes would take place (the field edits) before your code crashed when try-
ing to delete features. Obviously, this is a problem if you want all or none when it
comes to your edits. If partial edits don’t bother you, then you may not want to worry
about this issue, but you can avoid the problem by checking capabilities beforehand
and not proceeding if you’re not allowed to make all of your changes. 

 Another option, if partial edits are okay in your book but you still want to handle
errors instead of letting the script crash, is to use OGR exceptions. You wouldn’t need
to add any code to test capabilities, but you’d need to remember to add ogr.Use-
Exceptions() somewhere early in your script. Using this approach, the attempt to
delete a feature would still fail, but it then throws a RuntimeError that you could catch. 

 A function in the ospybook module called print_capabilities will print what
capabilities a driver, data source, or layer supports. Here’s how to use it from the
Python interactive window:

>>> driver = ogr.GetDriverByName('ESRI Shapefile')
>>> pb.print_capabilities(driver)
*** Driver Capabilities ***
ODrCCreateDataSource: True
ODrCDeleteDataSource: True 

Because this function only prints out information, you can’t use it in your code to
determine what action to take based on available capabilities. You can use it in an
interactive window to determine what actions were allowed on an object, though.

Check that fields can be added
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4.4 Summary
■ The vector file format you choose to use might depend on the application. You

might go with GeoJSON for making a web map, but use shapefiles or PostGIS for
data analysis.

■ Perhaps the most popular data transfer format is the shapefile because it’s sim-
ple, the specifications are public, and it has been around for a long time.

■ Formats based on databases, such as SpatiaLite, PostGIS, and Esri geodatabases,
tend to be more efficient and support more features than other vector formats.

■ Although the syntax for opening various data source types differs, once you
have the data source open, you can access the layers and features the same way
no matter the source.

■ Multiple layers in a data source can be different from one another. For exam-
ple, they can have different geometry types, attribute fields, spatial extents, and
spatial reference systems.

■ You can use TestCapability to determine which edits are allowed on your
dataset.



Filtering data with OGR
Back in chapter 3, you learned how to iterate through all of the features in a layer
and use attribute values for each one to determine if it was interesting. You’ve got
easier ways to throw out features that you don’t want, however, and that’s where fil-
ters come in. With filters you can easily select features that match specific criteria,
such as all animal GPS locations from a certain day or all crabapple trees from a city
tree inventory. Filters also let you limit features by spatial extent, so you could limit
your crabapple trees to a specific neighborhood, or GPS locations to those within a
kilometer of an animal feeding station. Filtering your data like this makes it easy to
extract or process only the features you’re interested in. I’ve used these techniques
to extract features such as city boundaries for a single county from a larger dataset,
or to extract highways and freeways from road datasets, while ignoring the smaller
residential roads.

 You can also use SQL queries to join attribute tables together from different lay-
ers. For example, if you had a layer containing all of the locations of your store

This chapter covers
■ Efficiently selecting features using attribute 

values
■ Using spatial location to select features
■ Joining attribute tables from different layers
88
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franchises and each feature had an attribute denoting the city that the store was in,
then you could join this layer with one containing cities. If the city layer contained
demographic information for each city, then that data would be associated with the
store data, and you could easily compare demographics between stores.

DEFINITION SQL is short for Structured Query Language, although you’ll
rarely see it written out like that. If you’ve used a relational database, then
you’ve probably used SQL, even if you didn’t realize it. For example, if you
build a graphical query in Microsoft Access, it still builds a SQL query behind
the scenes, and you can see it if you switch to SQL View. SQL is featured more
prominently in other database software such as PostgreSQL. 

5.1 Attribute filters
If you need to limit the features by values contained in one or more attribute fields,
then you want an attribute filter. To set one of these filters, you need to come up with
a conditional statement that’s much like the WHERE clause in a SQL statement. You
compare the value of an attribute field to another value, and then all features where
that comparison is true are returned. The standard logical operators, such as =, !=, <>,
>, <, >=, and <=, allow you to use statements such as the following:

'Population < 50000'                                  
'Population >= 25000'                                 
'Type_code != 7'                                      
'Name = "Cairo"'                                     
"Name = 'Moscow'"                                     
'Name != "Tokyo"'                                    

You can probably guess what these comparisons do; they all test for equality or
inequality. Notice that if you’re comparing strings, you need to put quotes around the
string values, but they can be either single or double. Make sure they’re different from
the quotes you use to surround the entire query string, or else you’ll end your string
prematurely and get a syntax error. Don’t use quotes with numbers, because that turns
them into string values, and you won’t get the comparison you were expecting.
Another thing you might have noticed is that you use a single equal sign to test for
equality, which isn’t the way programming languages typically work. But that’s the way
SQL does things, so who are we to argue? In addition, if you want to test if something
doesn’t equal another value, you can use either != or <>.

 You can also combine statements using AND or OR: 

'(Population > 25000) AND (Population < 50000)'
'(Population > 50000) OR (Place_type = "County Seat")'

The first of these selects features with a population value greater than 25,000 but less
than 50,000. The second selects features that either have a population greater than
50,000 or are county seats (or both).

Numeric comparisons don’t 
require quotes around the number

String comparisons require 
either single or double quotes
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 Conditions can be negated using NOT, and NULL is used to indicate a null or no data
value in the attribute table:

'(Population < 50000) OR NOT (Place_type = "County Seat")'
'County NOT NULL'

That first example selects features that either have a population less than 50,000 or
aren’t county seats. Again, a feature will be selected if it meets one or both of those con-
ditions. The second example selects features that have a value for the County attribute.

 If you want to check if a value is between two other values, you can use BETWEEN
instead of two different comparisons joined with AND. For example, the following two
statements are equivalent, and both select features with a population between 25,000
and 50,000:

'Population BETWEEN 25000 AND 50000'
'(Population > 25000) AND (Population < 50000)'

You have an easy way to check if a value is equal to one of several different values.
Once again, both of these select features where the Type_code value is 4, 3, or 7:

'Type_code IN (4, 3, 7)'
'(Type_code = 4) OR (Type_code = 3) OR (Type_code = 7)'

This also works for strings:

'Place_type IN ("Populated Place", "County Seat")'

Last, you can compare strings using the normal logical operators (a is less than c), or
you can do fancier, case-insensitive, string matching using LIKE. This allows you to use
wildcards to match any character in a string. An underscore matches any single char-
acter and a percent sign matches any number of characters. Table 5.1 shows examples,
and this is how you’d use them:

'Name LIKE "%Seattle%"'

If you want to read more about the SQL syntax available in OGR, check out the online
documentation at http://www.gdal.org/ogr_sql.html and http://www.gdal.org/
ogr_sql_sqlite.html. But for now, let’s see how to put this newfound information to
use. It will definitely be more fun if you fire up a Python interactive window for testing
this out, because you can use the VectorPlotter class to interactively draw your

Table 5.1 Match examples using the LIKE operator

Pattern Matches Doesn’t match

_eattle Seattle Seattle WA

Seattle% Seattle, Seattle WA North Seattle

%Seattle% Seattle, Seattle WA, North Seattle Tacoma

Sea%le Seattle Seattle WA

Sea_le Seatle (note misspelling) Seattle

http://www.gdal.org/ogr_sql.html
http://www.gdal.org/ogr_sql_sqlite.html
http://www.gdal.org/ogr_sql_sqlite.html
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selections. After configuring an interactive vector plotter, open the global data folder
and grab the low-resolution countries layer:

>>> ds = ogr.Open(r'D:\osgeopy-data\global')
>>> lyr = ds.GetLayer('ne_50m_admin_0_countries')

Then plot out the features, but be patient if it takes it a few seconds to draw the output
shown in figure 5.1, since it has a fair amount of data to plot. Remember that setting
fill=False tells it to draw only country outlines.

>>> vp.plot(lyr, fill=False)

Now inspect the layer attributes by printing out the names of the first few features:

>>> pb.print_attributes(lyr, 4, ['name'], geom=False)
FID    name
0      Aruba
1      Afghanistan
2      Angola
3      Anguilla
4 of 241 features

Notice that the feature IDs (FIDs) are in order and also the fact that there are 241 fea-
tures in the layer. Now find out how many of those are in Asia by using an attribute fil-
ter. To do this, pass a conditional statement to SetAttributeFilter:

>>> lyr.SetAttributeFilter('continent = "Asia"')
0
>>> lyr.GetFeatureCount()
53

Now the layer thinks it has only 53 features. The zero that got spit out when you called
SetAttributeFilter means that the query executed successfully. Now that you have

Figure 5.1
The ne_50m_admin_0_countries 
shapefile layer in the global data 
folder, with no filters applied
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selected the countries in Asia, try drawing them in yellow; your result should look like
figure 5.2:

>>> vp.plot(lyr, 'y')

NOTE TO PRINT BOOK READERS: COLOR GRAPHICS Many graphics in this book
are best viewed in color. The eBook versions display the color graphics, so
they should be referred to as you read. To get your free eBook in PDF, ePub,
and Kindle formats, go to https://www.manning.com/books/geoprocessing-
with-python to register your print book.

You can look a little more closely at what’s happening with the filter by printing attri-
butes for the first few features:

>>> pb.print_attributes(lyr, 4, ['name'], geom=False)
FID    name
1      Afghanistan
7      United Arab Emirates
9      Armenia
17     Azerbaijan
4 of 53 features

Huh. Now you’re missing a bunch of FIDs. That’s because those features aren’t in Asia,
so they’re ignored while iterating through the layer. Getting features by specific FID
doesn’t honor the filter, however, because features aren’t truly being deleted, and
therefore the FID values don’t change. You can prove it to yourself by getting a feature
or two using FIDs:

>>> lyr.GetFeature(2).GetField('name')
'Angola'

You can see from this that even though Angola doesn’t show up when you iterate
through the filtered layer, it’s still there. It should be obvious to you now that looping

Figure 5.2 An attribute filter 
that selects countries in Asia 
has been applied to the 
countries layer shown in figure 
5.1, and the results are plotted 
on top of the original.

https://www.manning.com/books/geoprocessing-with-python
https://www.manning.com/books/geoprocessing-with-python
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through a filtered layer using specific FIDs is a bad idea and you won’t get the desired
results. Instead, you need to iterate through the layer using a for loop.

 If you set another attribute filter, it doesn’t create a subset of the currently filtered
features. Instead, the new filter is applied to the entire layer. To illustrate this, try
applying a new filter that selects the countries in South America, and then draw them
in blue, which results in the shading you see in figure 5.3.

>>> lyr.SetAttributeFilter('continent = "South America"')
>>> vp.plot(lyr, 'b')

You can, however, use both attribute and spatial filters together to refine your results,
and you’ll see an example of that in the next section. To clear out the attribute filter
and get all 241 features back, simply pass None to SetAttributeFilter:

>>> lyr.SetAttributeFilter(None)
>>> lyr.GetFeatureCount()
241

Removing the filter also resets the current feature back to the beginning, as if you had
just opened the layer.

5.2 Spatial filters
Spatial filters let you limit the features by spatial extent rather than attribute value.
These filters can be used to select features within another geometry or inside a bound-
ing box. For example, if you had a dataset of global cities with no attribute indicating
the country that the cities are in, but you had another dataset with the same spatial
reference system that contained the boundary of Germany, you could use a spatial fil-
ter to select the German cities.

Figure 5.3 An attribute filter 
that selects countries in South 
America has been applied to the 
countries layer and the results 
plotted on top of the previous 
data from figure 5.2.
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Try selecting cities in Germany using the natural earth shapefiles. After setting up a
vector plotter in an interactive window, open the folder data source and get the coun-
tries layer. Then use an attribute filter to limit the countries to Germany and grab the
corresponding feature and geometry:

>>> ds = ogr.Open(r'D:\osgeopy-data\global')
>>> country_lyr = ds.GetLayer('ne_50m_admin_0_countries')
>>> vp.plot(country_lyr, fill=False)
>>> country_lyr.SetAttributeFilter('name = "Germany"')
>>> feat = country_lyr.GetNextFeature()
>>> germany = feat.geometry().Clone()

You can assume, in this case, that the attribute filter will return one and only one fea-
ture, so using GetNextFeature will get the first and only feature in the filtered results.
Then you grab the geometry and clone it so that you can use the geometry even after

Spatial reference systems and spatial filters

The geometries or coordinates used for spatial filtering must use the same spatial
reference system as the layer you’re trying to filter. Why is this? Pretend for a moment
that you have a layer that uses a Universal Transverse Mercator (UTM) spatial refer-
ence system. Coordinates in that layer would be large numbers, much different than
the latitude and longitude values we’re all familiar with. This means that they wouldn’t
align if plotted on top of each other, and they’d appear to have non-overlapping spatial
extents. For example, the UTM easting and northing coordinates for the capitol building
in Salt Lake City, UT, are approximately 425045 and 4514422, but the corresponding
longitude and latitude are -111.888 and 40.777. Those coordinates are awfully dif-
ferent from each other, and they wouldn’t overlay on each other unless one of them
was transformed to the same spatial reference system as the other. 

Figure 5.4 All of the cities in 
the populated_places layer in 
the natural earth dataset
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the feature is removed from memory. Oh, and you also plot the world countries
before applying the filter so that you have context for the cities later on. Now open
the populated places layer and plot all cities (see figure 5.4) as yellow dots:

>>> city_lyr = ds.GetLayer('ne_50m_populated_places')
>>> city_lyr.GetFeatureCount()
1249
>>> vp.plot(city_lyr, 'y.')

The call to GetFeatureCount indicates there are 1,249 city features in the full layer.
Now try applying a spatial filter by passing the germany geometry that you got earlier
to SetSpatialFilter, and then plot the resulting cities as large dots:

>>> city_lyr.SetSpatialFilter(germany)
>>> city_lyr.GetFeatureCount()
5
>>> vp.plot(city_lyr, 'bo')

Now the layer claims to have only five features, so five cities fall within the German
boundary polygon. You can also see from your plot that the circles fall in the correct
geographical area. You can use the Zoom to rectangle tool on the bottom of the plot
window to zoom in on Germany if you’d like (figure 5.5).

To clone or not to clone?

Geometry objects have a Clone function, which makes a copy of the object. Why would
you want to use this? When you get a geometry from a feature, that geometry is still
associated with that feature. If that feature is then deleted (or the variable is populated

Figure 5.5 A spatial filter has 
been applied to the 
populated_places layer to limit 
the features to those within 
the boundaries of Germany. 
These filtered points are 
shown in as large dots.
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As promised, you now get to combine a spatial and an attribute query. Further refine
your selection by finding the cities with a population over 1,000,000, and draw them as
the squares shown in figure 5.6:

>>> city_lyr.SetAttributeFilter('pop_min > 1000000')
>>> city_lyr.GetFeatureCount()
3
>>> vp.plot(city_lyr, 'rs')

(continued)

with a different feature), then the geometry is no longer useable. In fact, if you try to
use it, Python will crash instead of spit out an error. This problem is easy to solve,
however, by cloning the geometry. Now you can store a copy of the feature or geometry
that’s no longer associated with other objects and will live on even if the parent objects
disappear. Want to see this in action? Try this in an interactive window:

>>> ds = ogr.Open(r'D:\osgeopy-data\global\natural_earth_50m.sqlite')
>>> lyr = ds.GetLayer('countries')
>>> feat = lyr.GetNextFeature()
>>> geom = feat.geometry()
>>> geom_clone = feat.geometry().Clone()
>>> feat = lyr.GetNextFeature()                
>>> print(geom_clone.GetArea())
0.014118879217099978
>>> print(geom.GetArea())                     

In this example, the geom variable holds a Geometry object that’s still owned by the
Feature object stored in the feat variable, but the geom_clone variable holds a ge-
ometry that has been disassociated from that feature. After you populate the feat
variable with a different feature, you can still use the geom_clone geometry, but not
the object stored in the geom variable, because you no longer have a handle to the
feature that it came from. 

Incidentally, this is related to why all of these examples would also cause Python to
crash:

feat = ogr.Open(fn, 0).GetLayer(0).GetNextFeature()
# or
lyr = ogr.Open(fn, 0).GetLayer(0)
feat = lyr.GetNextFeature()
# or
ds = ogr.Open(fn, 0)
lyr = ds.GetLayer(0)
del ds
feat = lyr.GetNextFeature()

In each case, the data source has gone out of scope or been deleted before you try
to use the layer. But the layer is associated with the data source and becomes un-
usable once the data source is gone, the same way a geometry becomes unusable
if its parent feature disappears. You should never close your data source if you still
need access to the layer.

Delete the feature that the 
geometries came from

Python crashes
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Judging from these results, there are three German cities with populations of more
than 1,000,000 people. Figure 5.6 shows the output plot zoomed in on Germany so
you can see these features. But what if you decide that you want to know how many cit-
ies exist in the entire world with a population that large? All you have to do is remove
the spatial filter by passing None to SetSpatialFilter. Note that the attribute filter
will still be in effect. Go ahead and try it, drawing the results as triangles:

>>> city_lyr.SetSpatialFilter(None)
>>> city_lyr.GetFeatureCount()
246
>>> vp.plot(city_lyr, 'm^', markersize=8)

And now you know where the largest cities in the world are (figure 5.7).

Figure 5.6 An attribute filter has been 
combined with a spatial filter to select 
the German cities with a population 
greater than 1,000,000 people. The 
selected features are shown as squares 
instead of circles.

Figure 5.7 The spatial filter 
has been removed, but the 
attribute filter is still in effect, 
so now all of the cities in the 
world with a population of more 
than 1,000,000 are drawn as 
triangles over the top of the 
original dots for all cities.
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You’re not completely out of luck if you’d like to filter features spatially but don’t have
a geometry to use. You can also use a rectangular extent by providing the minimum
and maximum x and y coordinates:

SetSpatialFilterRect(minx, miny, maxx, maxy)

You can use this to select the countries that fall within the box shown in figure 5.8.
Again, start by plotting all of the countries:

>>> vp.clear()
>>> country_lyr.SetAttributeFilter(None)
>>> vp.plot(country_lyr, fill=False)

Now plug in the bounding coordinates shown in figure 5.8:

>>> country_lyr.SetSpatialFilterRect(110, -50, 160, 10)
>>> vp.plot(country_lyr, 'y')

Now you should have a plot that looks similar to figure 5.9, with Australia and a few
surrounding countries shaded in.

Australia

170° E

170° E

160° E

160° E

150° E

150° E

140° E

140° E

130° E

130° E

120° E

120° E

110° E

110° E

100° E

100° E

10° N 10° N

0° 0° 

10° S 10° S

20° S 20° S

30° S 30° S

40° S 40° S

50° S 50° S

Figure 5.8 The minimum and maximum x and y values for the rectangle surrounding Australia can 
be used to set a spatial extent on the global countries layer. 
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TIP To clear a spatial filter, whether it was created with a geometry or a
bounding box, pass None to SetSpatialFilter. You can’t clear the filter
using SetSpatialFilterRect.

5.3 Using SQL to create temporary layers
If you’re familiar with SQL, or are willing to learn, you can create more-complicated
queries and do fun stuff using the ExecuteSQL function on a data source. This func-
tion applies to a data source instead of a layer because it allows you to use multiple lay-
ers if desired. It requires a SQL query and can optionally use a geometry as a spatial
filter. In addition, you can also specify a different SQL dialect, but more on that later.
Here’s the signature:

ExecuteSQL(statement, [spatialFilter], [dialect])

■ statement is the SQL statement to use.
■ spatialFilter is an optional geometry to use as a spatial filter on the results.

The default is no filter.
■ dialect is a string specifying the SQL dialect to use. Available options are

OGRSQL and SQLite. The default is to use the OGR dialect unless the data source
has its own SQL engine (such as a SpatiaLite database).

This function is different from the filtering functions in that it returns a new layer
containing the result set rather than only filtering features out of the existing layer.
Let’s look at a few examples using this technique, starting with a simple one that
returns global countries sorted by population in descending order: 

>>> ds = ogr.Open(r'D:\osgeopy-data\global')
>>> sql = '''SELECT ogr_geom_area as area, name, pop_est
...          FROM 'ne_50m_admin_0_countries' ORDER BY POP_EST DESC'''
>>> lyr = ds.ExecuteSQL(sql)

Figure 5.9 The shaded 
countries were selected 
using the rectangular extent 
shown in figure 5.8.
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>>> pb.print_attributes(lyr, 3)
FID    Geometry        area                  name             pop_est
41     MULTIPOLYGON    950.9810937547769     China            1338612970.0
98     MULTIPOLYGON    278.3474038553223     India            1166079220.0
226    MULTIPOLYGON    1115.1781907153158    United States    313973000.0
3 of 241 features

As you can see from these results, the three most populous countries in the world are
China, India, and the United States, in that order. The query returns each country’s
name and population attributes because you request them in the SQL statement. You
also use the special ogr_geom_area field to get the area of each geometry (table 5.2),
and the FID and geometry itself are returned automatically. This example uses the
default OGR SQL dialect because shapefiles don’t have any built-in SQL support.

If you’re querying a data source that has its own SQL support, that native SQL version
will be used. For example, if you have the SQLite driver, you could get the same infor-
mation from the natural_earth_50m.sqlite database using the SQLite version of SQL.
This dialect also allows you to limit the number of returned features, so you could
limit the result set to the three countries with the highest populations:

>>> ds = ogr.Open(r'D:\osgeopy-data\global\natural_earth_50m.sqlite')
>>> sql = '''SELECT geometry, area(geometry) AS area, name, pop_est
...          FROM countries ORDER BY pop_est DESC LIMIT 3'''
>>> lyr = ds.ExecuteSQL(sql)
>>> pb.print_attributes(lyr)
FID    Geometry        area                  name             pop_est
0      MULTIPOLYGON    950.9810937547769     China            1338612970.0
1      MULTIPOLYGON    278.3474038553223     India            1166079220.0
2      MULTIPOLYGON    1115.1781907153158    United States    313973000.0
3 of 3 features

This time you could print attributes for the entire layer, because only three features
are returned. You should also notice that now you use the area function instead of a
special field name, and if you don’t rename it with the AS area syntax, then it would
be called area(geometry) instead. You also have to specifically request the geometry
because the SpatiaLite engine doesn’t return the geometry by default.

Table 5.2 Special fields used in the OGR SQL dialect

Field Returns

FID The feature ID.

OGR_GEOMETRY An OGR geometry type constant (see table 3.1). This is especially useful for 
data formats that support multiple geometry types in one layer.

OGR_GEOM_WKT The well-known text (WKT) representation of the feature’s geometry.

OGR_GEOM_AREA The area of the feature’s geometry. Returns zero for geometries with no area 
(for example, points or lines).

OGR_STYLE The style string for the feature, if it exists. Very few applications use this.
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 You can also use ExecuteSQL to join attributes from multiple layers. Take a look at
this code and see if you can figure out what it’s doing:

ds = ogr.Open(r'D:\osgeopy-data\global')
sql = '''SELECT pp.name AS city, pp.pop_min AS city_pop,
             c.name AS country, c.pop_est AS country_pop
         FROM ne_50m_populated_places pp                             
         LEFT JOIN ne_50m_admin_0_countries c                            
         ON pp.adm0_a3 = c.adm0_a3
         WHERE pp.adm0cap = 1'''
lyr = ds.ExecuteSQL(sql) 

The first thing to notice is that you use the ne_50m_populated_places and
ne_50m_admin_0_countries shapefiles and rename them to pp and c, respectively.
You do this by putting the alias directly after the layer name. This isn’t necessary, of
course, but does make your SQL a lot shorter because those layer names are pretty
long. You also link these two layers together by using a join, which allows you to link
tables using a shared attribute. Here you use a LEFT JOIN to keep all records in the
table on the left (populated places), and if a matching record exists in the table on
the right (countries), then you’ll also get data from that record. But how does it figure
out what matches? That’s where the ON clause comes in. For each feature in pp, it takes
the adm0_a3 attribute value and tries to find a feature in the countries layer that has
the same value for its adm0_a3 field. See figure 5.10 for an illustration.

Now that you know what tables the data are coming from, go back to the beginning of
the SQL statement and look at what attribute fields are being requested. You ask for
the NAME and POP_MIN fields from the populated places layer, as well as the NAME and
POP_EST fields from the countries layer. Because the fields from the two layers have
the same names, it makes sense to rename them so that you can tell what’s what. Last,
you use a WHERE clause to limit the results to features that represent capital cities
(adm0cap = 1). 

 This technique is handy if you want to see related data from multiple layers at the
same time. Without this, you could query city populations and country populations

Rename the layers

Figure 5.10 An illustration of a SQL query that selects records from the populated places table where adm0cap 
equals 1, and then gets related data from the countries table based on the adm0_a3 field in both tables.
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separately, but now you can see the country’s population right beside the city’s. To see
this, look at the layer returned by this query:

pb.print_attributes(lyr, 3, geom=False)
FID    city            city_pop    country          country_pop
7      Vatican City    832         Vatican          832.0
48     San Marino      29000       San Marino       30324.0
51     Vaduz           5342        Liechtenstein    34761.0
3 of 200 features

I didn’t print the geometry column because it wouldn’t fit comfortably on the page,
but because this uses the OGR SQL dialect, the geometry is returned automatically. But
which one: the city or the country? It’s the city, because that’s the main table being
used in the join, and corresponding country information is returned only if it existed
for a city. You could plot the layer to prove it to yourself if you’d like.

 Now check out a similar example using the SQLite dialect, but still shapefile
data sources (you could use a SQLite database, of course, but I want to prove that
the SQLite dialect will work with other data source types). See if you can spot the
differences:

ds = ogr.Open(r'D:\osgeopy-data\global')
sql = '''SELECT pp.name AS city, pp.pop_min AS city_pop, 
             c.name AS country, c.pop_est AS country_pop 
         FROM ne_50m_populated_places pp
         LEFT JOIN ne_50m_admin_0_countries c 
         ON pp.adm0_a3 = c.adm0_a3
         WHERE pp.adm0cap = 1 AND c.continent = "South America"'''
lyr = ds.ExecuteSQL(sql, dialect='SQLite')
pb.print_attributes(lyr, 3)

The most obvious difference is the inclusion of the dialect parameter to the
ExecuteSQL function. But you also add one thing to the SQL that doesn’t work with
the OGR dialect. This time the results are limited to cities in South America by check-
ing the value of the continent field in the countries layer. The OGR dialect doesn’t
support using fields from the joined table in the WHERE clause, so the only attributes
allowed would be ones from the populated places layer. Also, because you need to spe-
cifically request geometries if you want them when using the SQLite dialect, no geom-
etries are returned by this particular query. You could add them in by specifying
pp.geometry along with the other fields.

 If your version of OGR was built with SpatiaLite support (not only SQLite), you can
also manipulate geometries within your SQL. Be warned that this could take a while,
depending on what you try to do. As an example, if you have SpatiaLite support, try
merging all of the counties in California into one big geometry. Start with drawing the
individual counties so you have something to compare your results with:

>>> ds = ogr.Open(r'D:\osgeopy-data\US')
>>> sql = 'SELECT * FROM countyp010 WHERE state = "CA"'
>>> lyr = ds.ExecuteSQL(sql)
>>> vp.plot(lyr, fill=False)
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This will draw a map of the counties in California, as shown in figure 5.11A. Now try
using the SpatiaLite st_union function to merge all of the county polygons into one,
as shown in figure 5.11B:

>>> sql = 'SELECT st_union(geometry) FROM countyp010 WHERE state = "CA"'
>>> lyr = ds.ExecuteSQL(sql, dialect='SQLite')
>>> vp.plot(lyr, 'w')

Geometry operations also work with data sources that have their own native SQL flavor
and the ability to perform geometry manipulations. SpatiaLite and PostGIS are two
obvious examples of this. For example, this is how you’d do the same thing with a Post-
GIS data source:

conn_str = 'PG:host=localhost user=chrisg password=mypass dbname=geodata'
ds = ogr.Open(conn_str)
sql = "SELECT st_union(geom) FROM us.counties WHERE state = 'CA'"
lyr = ds.ExecuteSQL(sql)
vp.plot(lyr)

Don’t worry if you want to perform operations like this but aren’t using PostGIS or
SpatiaLite, because you’ll learn how to do it without databases in the next chapter. 

5.4 Taking advantage of filters
Remember back in chapter 3 when you copied all of the capital cities in a global
shapefile into a new shapefile? You looped through each feature in the shapefile,
checked the appropriate attribute, and copied the feature if it was a capital city. This
whole process can be made much easier if the features you want can be selected with
filters. Do you remember the CopyLayer method that was introduced in section 4.2.4?
As a reminder, it copies an existing layer into a new data source. How do you think you

A B

Figure 5.11 Part A, on the left, shows the counties in California drawn individually. Part B, on the other 
hand, shows the result of running the SpatiaLite st_union function on the counties. They’re all joined 
together into one geometry.
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could use this to do something similar to the code back in listing 3.3, but much easier?
Think about this problem for a minute and then look at the next example:

ds = ogr.Open(r'D:\osgeopy-data\global', 1)
in_lyr = ds.GetLayer('ne_50m_populated_places')
in_lyr.SetAttributeFilter("FEATURECLA = 'Admin-0 capital'")
out_lyr = ds.CopyLayer(in_lyr, 'capital_cities2')

Here the call to CopyLayer makes a copy of in_lyr in the ds data source. In this case,
it happens to be the same data source as the original layer, but it could be any data
source. Because you’ve already set an attribute filter on in_lyr, only the filtered fea-
tures are copied. That’s certainly easier than checking each one. 

 If you only want certain attributes, you could use a layer created using
ExecuteSQL. Write a SQL query that pulls out the attributes you want and copy the
results to a new layer: 

sql = """SELECT NAME, ADM0NAME FROM ne_50m_populated_places
         WHERE FEATURECLA = 'Admin-0 capital'"""
in_lyr2 = ds.ExecuteSQL(sql)
out_lyr2 = ds.CopyLayer(in_lyr2, 'capital_cities3')

It should be obvious by now that you can simplify your life by taking advantage of fil-
ters and the ExecuteSQL function whenever possible.

5.5 Summary
■ Attribute filters can be used to efficiently select specific features based on their

attribute values. 
■ Spatial filters allow you to select features based on their location by using a

bounding polygon or coordinates for a bounding box. The coordinates to set a
spatial filter must use the same spatial reference system as the data to be fil-
tered.

■ Spatial and attribute filters can be combined.
■ You can use SQL queries to create temporary layers made up of multiple layers

joined on attribute values.
■ You can’t use objects once their owners go out of scope, so if you want to use a

geometry after you’ve lost the handle to its feature, make sure you clone the
geometry. Always keep your data source open if you want access to the layers. If
you break one of these rules, Python will crash and burn.



Manipulating
geometries with OGR
Thus far we’ve talked about using OGR to read and write vector datasets and how to
edit attribute values, but you haven’t manipulated the geometries in any way. If you
want to create your own data and not use someone else’s, you’ll need to know how
to work with the actual geometries. For example, if you have a time series of GPS
coordinates from a hiking or bicycling trip, you can create a line that represents the
route you took. You can even compare the timestamps from the GPS locations to
the timestamps on the photos you took to create a point dataset showing where you
stopped to take pictures.

 You might even need to know how to manipulate geometries to better display
existing data. For example, say you want to create a map using your photo points
and link them to the actual photos. Certain locations will probably have multiple
photos in the same spot. You can deal with this many ways, but one way is to offset
each point a little in a different direction so that it looks like a cluster of points
instead of only one. But to do this, you need to know how to manipulate the point
geometries themselves.

This chapter covers
■ Creating points, lines, and polygons from scratch
■ Editing existing geometries
105
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 You can also manipulate and combine geometries to create new ones. For example,
if you want to create a simple map of riparian areas from a stream dataset, and you
assume that the riparian zones stretch one meter on either side of a stream, you can cre-
ate a polygon that surrounds each stream, with the edges of the polygon one meter out
on each side of the water. If two streams join, then these polygons will overlap near their
confluence, and you can combine the overlapping polygons into one using a union
operation. You’ll learn how to do all of this, and more, in the next two chapters.

 Before you can do any of this, however, you need to be acquainted with the differ-
ent types of geometries. 

6.1 Introduction to geometries
You have several kinds of geometries with which you can work, points being the sim-
plest. All other types are made up of points connected by straight line segments, and
the points are what store the coordinate values, so points can be thought of as the
building blocks of geometries. These points that are used to build other geometries
are called vertices, and there can be thousands of vertices per geometry, if needed. For
example, line geometries are an ordered collection of points that are connected by
straight line segments, with a vertex at every location where the line needs to change
direction. A line representing a short dead-end street wouldn’t require many vertices,
but one representing the Amazon River in much detail would need thousands. Poly-
gons are somewhat similar to lines, but they’re closed, meaning the first and last ver-
tex are identical and they enclose a specific area. You’ll start with creating and editing
points and work your way up to the more complicated geometries as you go along.

DEFINITION A vertex is a point where two line segments of a geometry meet.
Vertices hold coordinates for the ends of each line segment.

Although many geometries live only in a two-dimensional (2D) Cartesian coordinate
plane with x and y coordinates, it’s also possible to have three-dimensional (3D) geom-
etry objects with z values. These z values are typically used to represent elevation, but
can also be used for other data, such as maximum annual temperature. Technically,
these geometries are considered 2.5D instead of 3D in OGR, because OGR doesn’t take
the z values into account when performing spatial operations. One thing to be aware
of is that although you can add z values to 2D geometries, they’ll be ignored when writ-
ing the data to a file.  

NOTE Geometries with only x and y coordinates are considered 2D. Geome-
tries with an additional z coordinate are considered 2.5D instead of 3D in
OGR because the z values aren’t taken into account when performing spatial
operations.

It’s probably easiest to work with simple geometries when you’re beginning, so you’ll
learn to create different geometry types by re-creating the fictional yard shown in
figure 6.1. If you use your imagination when looking at this figure, hopefully you can
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envision a yard with a house in the middle, rectangular garden beds to the east, a side-
walk on the north side (solid line), stone pathways (dotted lines), a fire pit (star), and
outdoor water spigots (circles). Although you’ll create this scenario in two-dimen-
sional space, the same concepts apply to 2.5D geometries.

 Although the shapes shown in figure 6.1 are simple, the concepts are exactly the
same as working with complex geometries. You can apply the material you learn here
to real-world scenarios.

6.2 Working with points
Points consist of an east/west x coordinate, a north/south y coordinate, and some-
times a vertical z coordinate that’s commonly used for elevation. You’re probably
familiar with the x coordinate being called longitude and the y coordinate called lati-
tude. These terms are appropriate when a geographic coordinate system is being used,
where latitude ranges from -90 to 90 and longitude is between -180 and 180. If the
coordinates have been projected into a Cartesian coordinate system, such as UTM,
then common terms are easting for the x coordinate and northing for the y.
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Figure 6.1 The fictional yard whose geometries you’ll create throughout this chapter. 
Coordinates are in meters.
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 Points are used to represent items that have only one set of coordinates. Points
don’t have a length, width, area, or any other measurement. Despite this, the features
represented by points on a map vary depending on scale, and those features might
have an area in real life. For example, a map of France would most likely represent
Paris as a single point, while a map of the Île-de-France region would show more
detail, with the Paris city boundaries represented as polygons and major landmarks
such as the Eiffel Tower shown as points. As the scale changes, the areas of features
represented by points will also change, similar to the way the area covered by the Eiffel
Tower is much smaller than that covered by Paris.

6.2.1 Creating and editing single points

Looking at the yard diagram, you can see that
the fire pit is a perfect candidate to be repre-
sented as a single point, so let’s build it. Figure
6.2 shows a close-up of the area so that you can
see the coordinates.

 Unless you have a text representation of the
geometry you want to build, the first step to
building any type of geometry with OGR is to cre-
ate an empty Geometry object using one of the
constants from table 6.1. Go ahead and do this in
an interactive window so that you can get imme-
diate results:

>>> firepit = ogr.Geometry(ogr.wkbPoint)

Once you have the geometry, you can start adding vertices. Points only have one ver-
tex, which you add with the AddPoint function. This function wants x, y, and an
optional z.

>>> firepit.AddPoint(59.5, 11.5)

That’s it! You now have a fully functional point object with a northing of 11.5 and an
easting of  59.5. The coordinates can be retrieved if needed using GetX, GetY, and GetZ:

x, y = firepit.GetX(), firepit.GetY()

Remember that in Python you can set multiple variables at once, so x is assigned the
results of GetX and y gets the results of GetY.

Table 6.1 OGR constants denoting geometry types

Geometry type 2D constant 2.5D constant

Point wkbPoint wkbPoint25D

Multipoint wkbMultiPoint wkbMultiPoint25D

Line wkbLineString wkbLineString25D
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Figure 6.2 You can use a single point 
to hold the fire pit geometry, shown 
here as a star. 
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You can also print geometry objects in WKT format if you want to verify that things
look okay, although this can get ugly pretty fast with geometry types other than points.

>>> print(firepit)
POINT (59.5 11.5 0)

Notice that the WKT shows a z value of 0, but you created a 2D point. That’s not going
to hurt anything, so there’s no reason to worry about it. You could even set a z value your-
self, although it would be ignored when it came time to write the geometry out to a file.

 Unless you want to see the coordinate values, an easier way to visualize your geom-
etries as you create them is to use the VectorPlotter class that we introduced in chap-
ter 3, although this is boring with a single point:

>>> vp.plot(firepit, 'bo')

What if you realize later that your GPS was slightly off and the y coordinate is 13
instead of 11.5? The easiest way to solve the problem is to call AddPoint again, but
with the correct coordinates. You can verify the results by plotting the new geometry
with a different marker (figure 6.3) or by printing the WKT:

>>> firepit.AddPoint(59.5, 13)
>>> vp.plot(firepit, 'rs')
>>> print(firepit)
POINT (59.5 13.0 0)

Why doesn’t this add a second set of
coordinates to the geometry, as the
name AddPoint implies? Points are a
special case because they’re only
allowed one set of coordinates, so any
existing ones are overwritten. You’ll
see later that AddPoint has different
behavior when applied to other
geometry types.

Figure 6.3 The original and edited fire pit geome-
tries. The edited one has the square marker.

Multiline wkbMultiLineString wkbMultiLineString25D

Polygon ring wkbLinearRing n/a

Polygon wkbPolygon wkbPolygon25D

Multipolygon wkbMultiPolygon wkbMultiPolygon25D

Geometry collection wkbGeometryCollection wkbGeometryCollection25D

Table 6.1 OGR constants denoting geometry types (continued)

Geometry type 2D constant 2.5D constant
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If you like to make life a little more complicated, or want to be more consistent with
how vertices are edited with other geometry types, you can use SetPoint(point, x,
y, [z]) instead, where point is the index of the vertex to edit. Because point geome-
tries contain only one vertex, this parameter is always zero when dealing with points:

firepit.SetPoint(0, 59.5, 13)

To create a 2.5D point, specify the 2.5D type when you create it and then provide a z
coordinate along with the x and y:

firepit = ogr.Geometry(ogr.wkbPoint25D)
firepit.AddPoint(59.5, 11.5, 2)

Other than the addition of a third coordinate value, working with 2.5D points is the
same as working with 2D points.

6.2.2 Creating and editing multipoints: multiple points as one geometry

Multipoint geometries contain one or more points in a single object. This means that
multiple points can be attached to a single feature rather than requiring a separate
feature per point. For example, a dataset with multiple points might be the locations
of all fire hydrants within city boundaries, where each hydrant is treated as a unique
feature. Perhaps you also want to map outdoor water faucets in private yards. In this
case, you might treat all spigots in an individual yard as one multipoint item so that
you have only one feature per yard. In fact, that’s what you’ll do with the yard exam-
ple. Three faucets are shown as circles in figure 6.4, and you’ll build one multipoint
object with three vertices to represent them.
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Figure 6.4 You can 
use a multipoint 
geometry to hold the 
water spigot 
geometries, shown 
here as dots.
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Create
multip
To create a multipoint geometry, you need to create at least two geometries. You need
at least one point object and also a multipoint object to hold the points. Referring
back to table 6.1, you can see that the correct OGR constant for a multipoint object is
wkbMultiPoint. You create the points exactly as before and then add them to your
multipoint geometry. Here’s one way to do this, using coordinates obtained from
figure 6.4:

>>> faucets = ogr.Geometry(ogr.wkbMultiPoint)                            
>>> faucet = ogr.Geometry(ogr.wkbPoint)                           
>>> faucet.AddPoint(67.5, 16)                                          
>>> faucets.AddGeometry(faucet)                                     
>>> faucet.AddPoint(73, 31)                                           
>>> faucets.AddGeometry(faucet)                                         
>>> faucet.AddPoint(91, 24.5)                                           
>>> faucets.AddGeometry(faucet)                                          

Notice that it’s fine to reuse the same point geometry each time. A copy of the point
object is added to the multipoint when AddGeometry is invoked, so the original point
can be edited later without affecting the coordinates that have already been added to
the multipoint. You could, of course, create a new point object for each vertex, but
reusing the geometry saves a little overhead.

 Once again, you can plot the geometry and print the WKT to see what it looks
like:

>>> vp.clear()                                                          
>>> vp.plot(faucets, 'bo')
>>> vp.zoom(-5)                                          
>>> print(faucets)
MULTIPOINT (67.5 16.0 0,73 31 0,91.0 24.5 0)

With a multipoint object, the WKT string separates each coordinate in the set with a
comma. As with a regular point object, the x, y, and z coordinates for a single point
are separated by spaces. Notice also that the vertices are listed in the same order you
added them. That’s extremely important if you need to access one later—you can
always be sure of which point you’re getting because their order doesn’t change.

 You can get a specific point from a multipoint geometry by passing the index of
the desired point to GetGeometryRef. The first point added has index 0, the second
has index 1, and so on. Once you have an individual point, you can edit it the same
way as a single point. Because GetGeometryRef returns a reference to the point inside
the multipoint instead of a copy, the multipoint is automatically updated when the
point is changed. For example, this would get the second faucet and then edit its
coordinates:

faucets.GetGeometryRef(1).AddPoint(75, 32)

You can also find out how many points are in a multipoint object, which is useful if
you need to loop through them all. For example, to move all spigots two meters to the

 a 2D
oint Create a point and 

add to multipoint

Reuse the point object

Zoom out so all 
points are visible
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east, you’d need to loop through the points and add 2 to each x coordinate while leav-
ing the y coordinates unchanged. The results are shown in figure 6.5.

>>> for i in range(faucets.GetGeometryCount()):
...     pt = faucets.GetGeometryRef(i)
...     pt.AddPoint(pt.GetX() + 2, pt.GetY())
...
>>> vp.plot(faucets, 'rs')
>>> vp.zoom(-5)

As you’ll see in the rest of this chapter, working with other geometry types directly
builds on these concepts that you’ve learned for points.

6.3 Working with lines
As mentioned earlier, lines are a sequence of vertices, or points, connected by straight
line segments. Figure 6.6 shows a line with its vertices, although normally you don’t
see markers for the vertices when a line is drawn. A line can’t change direction, no
matter how slightly, without a vertex to end one segment and start another. Therefore,
a line that looks like a smooth curve is a large number of short straight segments, all
joined together by vertices.

 Adding more vertices, and therefore a larger number of shorter segments, gives you
more control over the shape of the line. Think about how you’d draw the coastline of

Figure 6.5 The original and edited water 
spigot multipoint geometries. The edited 
geometry uses square markers.

Figure 6.6 A line and the vertices 
connecting each segment
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Great Britain using a series of straight
lines. As you can see from figure 6.7,
accuracy is greatly improved by using
shorter lines. The same concept applies
to any line geometry. The more detail
required, the more vertices you need to
add. Keep in mind that the more vertices
you have, the more complicated the
geometry object is and the more time it
takes to process, so don’t add unneces-
sary vertices. In fact, you might want to
simplify geometries so that they use
fewer vertices if you’re going to serve
data over the web. See the Simplify
function in appendix C if you need to do
this. (Appendixes C through E are avail-
able online on the Manning Publications
website at https://www.manning.com/
books/geoprocessing-with-python.)

 Lines can be used to represent linear
features such as roads, streams, or pipe-
lines. A line is a good choice if you want
to show one coastline of an island, such as the example in figure 6.7, but a polygon is
a better choice if you want to represent the entire island. You’ll use a simple line
object to model the sidewalk bordering the make-believe yard and the oddly shaped
parking strip (figure 6.8).

 The line you’ll build for the sidewalk contains a small number of vertices, but the
technique for working with longer and more-complex lines is exactly the same.

Figure 6.7 The solid line follows the coast of 
Great Britain more closely because it has more 
vertices, and therefore more and shorter line 
segments, than the dotted line. More detail for 
lines and polygons can be achieved by using 
more vertices.
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Figure 6.8 You can use a line to hold 
the sidewalk geometry, shown here as 
the thick green line.
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6.3.1 Creating and editing single lines

As with points, the first step to creating a line geometry is to create an empty Geometry
object and then add the vertices. Although the direction you traverse the line when
adding coordinates isn’t important, the vertices must be added in order. Try creating
the line representing the sidewalk shown in figure 6.8, going from west to east:

>>> sidewalk = ogr.Geometry(ogr.wkbLineString)                      
>>> sidewalk.AddPoint(54, 37)                                           
>>> sidewalk.AddPoint(62, 35.5)                                        
>>> sidewalk.AddPoint(70.5, 38)                                          
>>> sidewalk.AddPoint(74.5, 41.5)                                        

Remember how AddPoint overwrote existing coordinates in point objects? That
doesn’t happen here because lines consist of many vertices instead of only one, so a
new vertex is added to the end of the line instead of overwriting the only allowed
point.

 Again, you can verify that things are working as expected by plotting the geometry
or printing the WKT:

>>> vp.plot(sidewalk, 'b-')
>>> print(sidewalk)
LINESTRING (54 37 0,62.0 35.5 0,70.5 38.0 0,74.5 41.5 0)

As before, the coordinates for a vertex are separated by spaces, and individual vertices
are separated by commas. Because you know that the vertices are always in the same
order that they were added to the line, you could use SetPoint to change the x coor-
dinate for the last vertex (the one with index 3) in the sidewalk:

sidewalk.SetPoint(3, 76, 41.5)

You can find out how many vertices a line contains and then loop through all of them
if necessary. For example, if you suddenly realize that the sidewalk is one meter too far
south, you can nudge it north by looping through all of the vertices and adding one to
each y coordinate (figure 6.9):

>>> for i in range(sidewalk.GetPointCount()):
...     sidewalk.SetPoint(i, sidewalk.GetX(i), sidewalk.GetY(i) + 1)
...
>>> vp.plot(sidewalk, 'r--')

Notice that you use GetX and GetY again, but now you need to provide the index of
the vertex you want. You also might wonder why you use GetPointCount instead of
GetGeometryCount as you did for multipoints, and that’s a good question. The reason
is because GetGeometryCount tells you how many individual geometry objects are
combined to make up one multigeometry, and it returns zero if the object isn’t a mul-
tigeometry. The GetPointCount function, on the other hand, returns the number of
vertices in a geometry, and it returns zero for multigeometries because they’re made
of other geometries instead of vertices.

Create a 2D line

Add vertices from 
west to east
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TIP Use GetGeometryCount to determine the number of geometries con-
tained in a collection of geometries (such as a multigeometry or a polygon),
and use GetPointCount to determine the number of vertices in a single geom-
etry. The GetGeometryCount function will always return zero for a single
geometry, and GetPointCount will always return zero for a collection of
geometries.

What if you later realize that the shape of the sidewalk is all wrong because it’s missing
a vertex? If you still have the coordinates for each vertex, then the easiest thing is
probably to create a new sidewalk geometry using all of the vertices. But if your land-
scaper only gave you the coordinates of the missing vertex and told you that it needed
to be inserted between the second and third vertices, as shown in figure 6.10, you’d
need to insert it in your line. You can solve this problem multiple ways, but I think the
easiest is to get a list of all the vertices, insert a new set of coordinates into the list, and
then use the list to create a new geometry. You can use GetPoints to get the list of ver-
tices in a line, where each vertex is in the form of a tuple with x, y, and z coordinates.
Here’s what that list looks like for the original sidewalk:

>>> print(sidewalk.GetPoints())
[(54.0, 37.0, 0.0), (62.0, 35.5, 0.0), (70.5, 38.0, 0.0), 

➥ (74.5, 41.5, 0.0)]

Figure 6.9 The original and edited sidewalk 
line geometries. The edited one is shown with 
the dotted line.
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Figure 6.10 The dotted line shows 
changes to make to the sidewalk by 
inserting a new vertex between the 
existing second and third vertices.
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A handy feature of lists is that you can easily insert items into the ith position using the
list[i:i] syntax. The following example gets the list of sidewalk vertices and then
inserts a tuple containing new x and y coordinates in between the second and third
vertices:

>>> vertices = sidewalk.GetPoints()
>>> vertices[2:2] = [(66.5, 35)]
>>> print(vertices)
[(54.0, 37.0, 0.0), (62.0, 35.5, 0.0), (66.5, 35), 

➥ (70.5, 38.0, 0.0), (74.5, 41.5, 0.0)]

You can see that the original vertices are still there, but the new vertex has been inserted
at index 2. This vertex doesn’t have a z coordinate because one wasn’t provided in the
inserted tuple. The fact that the
original coordinates do have z val-
ues is unimportant, because this is a
2D geometry and they should all be
zero anyway. 

 Now you have a list of tuples, but
how do you turn it into a line geom-
etry, like that in figure 6.11? The
easiest way is to take advantage of
the Python * operator to expand
the tuples to individual parameters
and pass them in turn to AddPoint:

>>> new_sidewalk = ogr.Geometry(ogr.wkbLineString)
>>> for vertex in vertices:
...     new_sidewalk.AddPoint(*vertex)
...
>>> vp.plot(new_sidewalk, 'g:')

The Python * operator 

The * operator unpacks the contents of a tuple or list into separate items so they can
be passed as parameters to a function. Take this example:

>>> pt = ogr.Geometry(ogr.wkbPoint)
>>> vertex = (10, 20)
>>> pt.AddPoint(*vertex)                              
>>> pt.AddPoint(vertex)                                            
<snip Traceback>                                                  
TypeError: Required argument 'y' (pos 3) not found                

Using the * operator explodes vertex into two parameters that are successfully
passed to AddPoint. Forgetting the * operator only passes one parameter, a tuple.
But AddPoint expects at least two parameters, an x and a y, so it fails.

Figure 6.11 The original sidewalk line geometry and 
one with another vertex inserted in the middle

Resolves to 
pt.AddPoint(10, 20), 
which works

Resolves to 
pt.AddPoint((10, 20)), 
which fails
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This is easy to expand to a larger number of edits if needed. For example, what if you
want to add new points after the existing 5th, 11th, 19th, and 26th vertices, as shown
by the dotted line in figure 6.12? As you look at the following code, see if you can fig-
ure out why you’d want to add the vertices at the end of the line first:

vertices = line.GetPoints()
vertices[26:26] = [(87, 57)]                                           
vertices[19:19] = [(95, 38), (97, 43), (101, 42)]                      
vertices[11:11] = [(121, 18)]                                         
vertices[5:5] = [(67, 32), (74, 30)]                                    
new_line = ogr.Geometry(ogr.wkbLineString)
for vertex in vertices:
    new_line.AddPoint(*vertex)

Once you insert an item into a list, then the indices of the later items are changed. If
you insert the points after the 5th vertex first, then the original 11th vertex will now
have an index of 13, because two points were added earlier in the list. You’ll have to
keep track of how many items you inserted so that you can get the later indices right.
That’s certainly doable, but why bother if you can avoid the problem altogether by
working backward?

TIP If you need to insert or delete multiple items in a list (whether the list
contains vertices or something else), you’ll find that life is easier if you start
from the end and work backward so you don’t inadvertently change indexes
that you still need to use.

If you don’t want to create a new line geometry, you can modify the original instead.
This adds one vertex to the sidewalk line without creating a copy:

vertices = sidewalk.GetPoints()
vertices[2:2] = [(66.5, 35)]
for i in range(len(vertices)):
    sidewalk.SetPoint(i, *vertices[i])

Insert later vertices first 
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Figure 6.12 The results of inserting 
multiple vertices into a line geometry. The 
original is shown with a solid line, and the 
edited is drawn as a dotted line.



118 CHAPTER 6 Manipulating geometries with OGR

Cop
But this uses SetPoint to edit five vertices when the original sidewalk only has four.
How can you possibly change a vertex that doesn’t exist? It turns out that SetPoint
will add a vertex at the requested index, along with any missing vertices in between.
For example, if the line has ten vertices (so the highest index is 9) and you use Set-
Point to create a vertex with index 15, it will also create vertices with indices 10
through 14. Be careful, though, because any vertices it adds as fillers are initialized to
(0, 0), which is probably not what you want.

CREATING POINTS FROM LINES

Sometimes you need to get the vertices of a line as individual points. By this time, you
know how to create points and also how to manipulate individual line vertices, so turn-
ing the vertices into points shouldn’t be too difficult. All you need to do is loop
through the line vertices, get the coordinates, and create a point using those coordi-
nates. The following listing shows a function that does this.

def line_to_point_layer(ds, line_name, pt_name):
    """Creates a point layer from vertices in a line layer."""
    if ds.GetLayer(pt_name):
        ds.DeleteLayer(pt_name)
    line_lyr = ds.GetLayer(line_name)
    sr = line_lyr.GetSpatialRef()
    pt_lyr = ds.CreateLayer(pt_name, sr, ogr.wkbPoint)     
    pt_lyr.CreateFields(line_lyr.schema)                              
    pt_feat = ogr.Feature(pt_lyr.GetLayerDefn())
    pt_geom = ogr.Geometry(ogr.wkbPoint)
    for line_feat in line_lyr:
        atts = line_feat.items()
        for fld_name in atts.keys():                                     
            pt_feat.SetField(fld_name, atts[fld_name])                   
        for coords in line_feat.geometry().GetPoints():   
            pt_geom.AddPoint(*coords)                                 
            pt_feat.SetGeometry(pt_geom)
            pt_lyr.CreateFeature(pt_feat)

This function takes a data source, the name of an existing line layer, and the name of
a new point layer. It creates the point layer and copies all of the attribute fields from
the line to the point layer. Then it loops through all of the line features and creates a
point feature for each vertex, which also contains the same attribute values as the line
it came from.

6.3.2 Creating and editing multilines: multiple lines as one geometry

As with multipoints, multiline objects contain one or more lines that are treated as if
they were one. The collection of channels in a braided river is a good candidate for
this geometry type. As shown in figure 6.13, you can also treat the stone pathways run-
ning through the yard as a multiline object.

 As with any multigeometry, you need to create each component separately and
then add it to the main geometry, so you need at least one regular line object along

Listing 6.1 Function to create a point layer from a line layer

Create the point layer

y attribute values

Loop through vertices 
and create points
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with your multiline. The following code shows how to create the multiple paths from
figure 6.13:

>>> path1 = ogr.Geometry(ogr.wkbLineString)    
>>> path1.AddPoint(61.5, 29)                                             
>>> path1.AddPoint(63, 20)                                               
>>> path1.AddPoint(62.5, 16)                                           
>>> path1.AddPoint(60, 13)                                            

>>> path2 = ogr.Geometry(ogr.wkbLineString)                        
>>> path2.AddPoint(60.5, 12)                                            
>>> path2.AddPoint(68.5, 13.5)                                         

>>> path3 = ogr.Geometry(ogr.wkbLineString)                                  
>>> path3.AddPoint(69.5, 33)
>>> path3.AddPoint(80, 33)
>>> path3.AddPoint(86.5, 22.5)

>>> paths = ogr.Geometry(ogr.wkbMultiLineString)                      
>>> paths.AddGeometry(path1)                                            
>>> paths.AddGeometry(path2)                                          
>>> paths.AddGeometry(path3)                                          

This is similar to creating a multipoint. The first thing you do is create the three sepa-
rate line geometries that make up the pathways. After creating those, you create a
multiline geometry and add the paths in order. It doesn’t matter if you wait until all of
the individual lines are created and then create the multiline, or if you create the mul-
tiline up front and add the individual lines as you go along. You can even reuse one
line object for each path, but you’d need to add the path to the multiline immediately
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Figure 6.13 You can 
use a multiline to hold 
the garden path 
geometries, shown 
here as dotted lines.

Create the first path
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Create the multiline geometry 
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after adding its vertices, and call Empty on the path geometry to clear out the old verti-
ces before starting on the next pathway. 

 Let’s take a look at the guts of your new multiline:

>>> vp.plot(paths)
>>> print(paths)
MULTILINESTRING ((61.5 29.0 0,63 20 0,62.5 16.0 0,60 13 0),

➥ (60.5 12.0 0,68.5 13.5 0),(69.5 33.0 0,80 33 0,86.5 22.5 0))

Each inner line is inside its own set of parentheses, and they’re listed in the same
order as they were added to the multiline. Again, it’s important that OGR preserves
this order so that you always know which line is which.

 To edit a vertex once it’s been added to the multiline, you first need to grab the
single line that you want to edit, the same way you did with multipoints. Once you
have that, you can edit the vertices the same way you would a regular line. To edit the
second vertex in the first path added to the multiline, you can do something like this:

paths.GetGeometryRef(0).SetPoint(1, 63, 22)

You can use the concepts you’ve already learned about getting inner geometries and
editing lines to move the whole multiline two units to the east and three to the south,
with the results shown in figure 6.14:

>>> for i in range(paths.GetGeometryCount()):
...     path = paths.GetGeometryRef(i)              
...     for j in range(path.GetPointCount()):
...         path.SetPoint(j, path.GetX(j) + 2, path.GetY(j) - 3)
...
>>> vp.plot(paths, 'r--')

Hopefully you feel comfortable con-
structing and editing lines by this point,
and you’ll see in the next section that
working with polygons is only slightly
more complicated. 

Figure 6.14 The original and edited
pathway multiline geometries. The

edited one is drawn as a dotted line.

6.4 Working with polygons
Polygons are used to represent things that have area, unlike a point or line. City
boundaries and lakes are two examples of data that could be modeled as polygons.
Instead of a polygon being made up of a list of vertices, like a line, they’re made of
rings. This is because polygons can have holes in them, like a donut, and a separate
ring is required for the outer polygon and for each of the holes. A simple polygon

Get inner geometry
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with no holes in it is still made up of one ring. Like lines, rings are made up of a series
of vertices connected by straight line segments, but the first and last vertices are the
same so that they form a closed ring.

 Like lines, ring vertices need to be added in order, but you have other consider-
ations as well. The line segments making up a polygon’s perimeter shouldn’t touch or
cross, as shown in figure 6.15. OGR will allow you to create a polygon like this, but cal-
culations on it are apt to be wrong, even if they run without errors. You can check for
problems like this by calling IsValid on a geometry, which you should make a habit of
if you’re building your own geometries. Note that polygons that don’t have a width—
so they look like a line—are also invalid.

Returning to the yard example, let’s start by creating a polygon for the entire yard
boundary (figure 6.16).

 Once again, you’ll work with simple polygons in the examples, but your new know-
ledge can be easily applied to more-complex geometries.

Figure 6.15 The polygon 
on the left is valid, but the 
other two are not because 
the line segments intersect 
and split the polygon.
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Figure 6.16 You can use a polygon to hold the yard boundary, shown here as the thick solid line.
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6.4.1 Creating and editing single polygons

A polygon is like a multigeometry in the sense that it consists of a set of geometries. All
polygons are made of rings, which in turn are made of vertices. A simple polygon only
has one ring, but you still need to create a ring object and then add it to the polygon.
As with lines, use AddPoint to add a vertex to a ring. Vertices need to be added in
order, but the direction around the perimeter can vary depending on the format you
want to use to store the data. For example, shapefiles specify that the outer rings are
in clockwise order, but GeoJSON doesn’t specify an order. Because of details like this,
it’s probably a good idea to read up about the format you intend to use. But no matter
the direction, the first and last vertices must have the same coordinates so they close
the ring. To do this, you can either make sure the last vertex added has identical coor-
dinates to the first one, or you can call CloseRings on the ring or polygon after add-
ing all vertices. The latter method is the one used here to create the yard outline
shown in figure 6.16. The example starts with the upper left vertex and traverses the
perimeter in counter-clockwise direction.

>>> ring = ogr.Geometry(ogr.wkbLinearRing)                            
>>> ring.AddPoint(58, 38.5)                                            
>>> ring.AddPoint(53, 6)                                                
>>> ring.AddPoint(99.5, 19)                                              
>>> ring.AddPoint(73, 42)                                               
>>> yard = ogr.Geometry(ogr.wkbPolygon)  
>>> yard.AddGeometry(ring)                          
>>> yard.CloseRings()        

You can make sure things look okay by plotting the geometry and printing the WKT:

>>> vp.plot(yard, fill=False, edgecolor='blue')
>>> print(yard)
POLYGON ((58.0 38.5 0,53 6 0,99.5 19.0 0,73 42 0,58.0 38.5 0))

The WKT contains all of the coordinates for the ring, but notice that the coordinate
list is inside a second set of parentheses. This is because the vertices make up a ring
inside the polygon. You’ll see later there can be more than one ring within a polygon,
which is why the ring needs to be delineated with its own set of parentheses.

 If you were to call GetPointCount on yard, the response would be zero because the
vertices belong to the ring that’s inside the polygon. This is similar to how multigeom-
etries won’t admit to having vertices, but they’ll confess to containing other geome-
tries. The yard variable would claim to have one geometry if you queried it with
GetGeometryCount, and that one geometry is the ring. Because of this, to edit a poly-
gon’s vertices you need to get the ring first, and then edit the ring the same way you
edit lines. This example grabs the ring and shifts it five map units to the west, which
automatically moves the whole polygon, as seen in figure 6.17:

>>> ring = yard.GetGeometryRef(0)
>>> for i in range(ring.GetPointCount()):
...     ring.SetPoint(i, ring.GetX(i) - 5, ring.GetY(i))
...
>>> vp.plot(yard, fill=False, ec='red', linestyle='dashed')

Create a ring and 
add vertices

Create a polygon 
and add the ring Close all rings 

in the polygon
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You can insert vertices into polygon rings using the same method that you used for
lines. For example, you can cut one of the sharp corners off of the yard by getting the
ring and replacing the third vertex with two different vertices (figure 6.18):

>>> ring = yard.GetGeometryRef(0)
>>> vertices = ring.GetPoints()
>>> vertices[2:3] = ((90, 16), (90, 27))
>>> for i in range(len(vertices)):
...     ring.SetPoint(i, *vertices[i])
...
>>> vp.plot(yard, fill=False, ec='black', ls='dotted', linewidth=3)

WARNING Creating a linestring with the same beginning and ending vertices
won’t create a ring that can be used to build a polygon. Instead, it will be a
line that happens to stop at the same place it started. It still won’t have an
area, perimeter, or any other properties specific to polygons.

Figure 6.17 The original and edited yard 
polygon geometries. The original is drawn 
with a solid line.

Figure 6.18 The original yard geometry 
and one with the third vertex replaced 
with two other vertices.
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CREATING LINES FROM POLYGONS

Sometimes you need to convert polygons to lines. To do this, you need to create a line
from each ring inside the polygon. I’ve had luck copying the rings into line features, but
the following listing shows how to do it by creating a line from a ring instead. Similarly
to the line_to_point_layer function in listing 6.1, this function requires a data
source, the name of the existing polygon layer, and the name for a new line layer. It cre-
ates a new line layer with the same attributes as the polygon layer, and then for each
polygon feature, copies each ring to a line and inserts a new feature in the line layer.

def poly_to_line_layer(ds, poly_name, line_name):
    """Creates a line layer from a polygon layer."""
    if ds.GetLayer(line_name):
        ds.DeleteLayer(line_name)
    poly_lyr = ds.GetLayer(poly_name)
    sr = poly_lyr.GetSpatialRef()
    line_lyr = ds.CreateLayer(line_name, sr, ogr.wkbLineString)
    line_lyr.CreateFields(poly_lyr.schema)
    line_feat = ogr.Feature(line_lyr.GetLayerDefn())
    for poly_feat in poly_lyr:
        atts = poly_feat.items()
        for fld_name in atts.keys():
            line_feat.SetField(fld_name, atts[fld_name])
        poly_geom = poly_feat.geometry()
        for i in range(poly_geom.GetGeometryCount()):
            ring = poly_geom.GetGeometryRef(i)                         
            line_geom = ogr.Geometry(ogr.wkbLineString)               
            for coords in ring.GetPoints():                            
                line_geom.AddPoint(*coords)                             
            line_feat.SetGeometry(line_geom)
            line_lyr.CreateFeature(line_feat)

After creating a new layer to hold the lines, the function starts iterating through the
polygons in the original layer, and creates a new line for each ring in the polygon. To
do this, each time it finds a ring, it creates an empty line object and then iterates
through the ring’s vertices. The coordinates for each ring vertex are used to create a
new vertex in the line, so you get a line containing all of the same vertices as the ring.
Lines, however, aren’t closed even if the first and last vertices are the same. If you plot
the line, it will look like a polygon, but it doesn’t have the concept of an area or any-
thing else specific to polygons.

6.4.2 Creating and editing multipolygons: multiple polygons as one geometry

If you’ve read this far, you can guess that a multipolygon is a geometry made of one or
more individual polygons. A classic example of this is the Hawaiian Islands. This archi-
pelago makes up the state of Hawaii and is usually represented as one geometry in
datasets covering the United States, but it’s obviously made of several islands. The col-
lection of islands makes up one state, the same way a collection of polygons makes up
one multipolygon. An example is shown in figure 6.19.

Listing 6.2 Function to create a line layer from a polygon layer

Create a line from a ring
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Clos
the r
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You can probably also figure out how to create a multipolygon, because you don’t
need to know anything new. You create the individual polygons and add them to a
multipolygon, and that’s all there is to it. For example, the following listing shows how
you can treat the garden boxes in figure 6.19 as a multipolygon made of two individ-
ual raised beds.

>>> box1 = ogr.Geometry(ogr.wkbLinearRing)                              
>>> box1.AddPoint(87.5, 25.5)                                         
>>> box1.AddPoint(89, 25.5)                                           
>>> box1.AddPoint(89, 24)                                               
>>> box1.AddPoint(87.5, 24)                                            
>>> garden1 = ogr.Geometry(ogr.wkbPolygon)                             
>>> garden1.AddGeometry(box1)                                          

>>> box2 = ogr.Geometry(ogr.wkbLinearRing)                              
>>> box2.AddPoint(89, 23)                                              
>>> box2.AddPoint(92, 23)                                               
>>> box2.AddPoint(92,22)                                               
>>> box2.AddPoint(89,22)                                               
>>> garden2 = ogr.Geometry(ogr.wkbPolygon)                             
>>> garden2.AddGeometry(box2)                                          

>>> gardens = ogr.Geometry(ogr.wkbMultiPolygon)                         
>>> gardens.AddGeometry(garden1)                                        
>>> gardens.AddGeometry(garden2)                                         
>>> gardens.CloseRings()                                                

Let’s look at the WKT for this multipolygon:

>>> vp.plot(gardens, fill=False, ec='blue')
>>> print(gardens)
MULTIPOLYGON (((87.5 25.5 0,89.0 25.5 0,89 24 0,87.5 24.0 0,87.5 25.5 0)),

➥ ((89 23 0,92 23 0,92 22 0,89 22 0,89 23 0)))

Listing 6.3 Creating a multipolygon
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Figure 6.19 You can use a multipolygon 
to hold the garden boxes, shown here as 
the two rectangles.
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Here you have two polygons inside of a
multipolygon, each inside its own set of
parentheses, and each one of these
contains one ring in another set of
parentheses. Once again, everything is
in the same order that you added it.

 Editing a multipolygon is similar to
what you’ve already seen, although it
has one more step because you need to
get each inner polygon and then get
the ring from that before you can edit
vertices. Figure 6.20 shows the result of
moving the garden boxes one map unit
to the east and half a unit to the north.

>>> for i in range(gardens.GetGeometryCount()):
...     ring = gardens.GetGeometryRef(i).GetGeometryRef(0)
...     for j in range(ring.GetPointCount()):
...         ring.SetPoint(j, ring.GetX(j) + 1, ring.GetY(j) + 0.5)
...
>>> vp.plot(gardens, fill=False, ec='red', ls='dashed')

Now you know how to work with single and multi-geometries, but you still have the
special case of polygons with holes. Keep reading to learn how these are different than
multipolygons.

6.4.3 Creating and editing polygons with holes: donuts

What about polygons with holes in them, like donuts? These are different than multi-
polygons, because the hole is the absence of a polygon, not a second polygon. This is
why polygons need to be made of rings. One ring defines the outer edge of the donut,
and another delineates the hole. You need to add the outer ring to the polygon first,
and subsequent rings define holes in the geometry. To illustrate how to do this, try
cutting the house out of the yard polygon (figure 6.21).

>>> lot = ogr.Geometry(ogr.wkbLinearRing)                              
>>> lot.AddPoint(58, 38.5)                                              
>>> lot.AddPoint(53, 6)                                                
>>> lot.AddPoint(99.5, 19)                                              
>>> lot.AddPoint(73, 42)                                                 

>>> house = ogr.Geometry(ogr.wkbLinearRing)                          
>>> house.AddPoint(67.5, 29)                                         
>>> house.AddPoint(69, 25.5)                                          
>>> house.AddPoint(64, 23)                                             
>>> house.AddPoint(69, 15)                                             
>>> house.AddPoint(82.5, 22)                                           
>>> house.AddPoint(76, 31.5)                                          

Listing 6.4 Creating a polygon with a hole

Figure 6.20 The original and edited garden box 
multipolygon geometries. The edited one is drawn 
with a dashed line.

Re-create the 
yard outline

Create a new ring 
for the hole
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>>> yard = ogr.Geometry(ogr.wkbPolygon)                                
>>> yard.AddGeometry(lot)                                              
>>> yard.AddGeometry(house)                                           
>>> yard.CloseRings()                                                  

Likely, creating a donut was easier than you expected. Now if you take a look at the
WKT, you’ll see two rings shown inside the polygon:

>>> vp.plot(yard, 'yellow')
>>> print(yard)
POLYGON ((58.0 38.5 0,53 6 0,99.5 19.0 0,73 42 0,58.0 38.5 0),

➥ (67.5 29.0 0,69.0 25.5 0,64 23 0,69 15 0,82.5 22.0 0,76.0 31.5 0,
➥ 67.5 29.0 0))

The holes are taken into account when using the polygon. For example, the area of
the yard polygon is equal to the area of the lot with the house subtracted out. The
hole in the polygon isn’t considered part of the geometry when using the spatial anal-
ysis tools shown in the next section, either.

 The only difference when editing a polygon like this is that you need to loop
through each of the rings instead of assuming only one exists (figure 6.22). In prac-
tice, you shouldn’t ever assume only one ring exists, anyway, because that assumption
could come back to haunt you later.

>>> for i in range(yard.GetGeometryCount()):
...     ring = yard.GetGeometryRef(i)
...     for j in range(ring.GetPointCount()):
...         ring.SetPoint(j, ring.GetX(j) - 5, ring.GetY(j))
...
>>> vp.plot(yard, fill=False, hatch='x', color='blue')

Add the outer ring 
before the inner one
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Figure 6.21 You can use a 
polygon with a hole for the 
yard boundary with the house 
cut out of the middle, shown 
here as the thick solid line.
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6.5 Summary
■ A geometry consists of a collection of vertices. In the cases of lines and poly-

gons, the vertices are connected by line segments to form shapes.
■ Multigeometries consist of multiple geometries combined into one. This allows

features such as Hawaii to be represented with a single geometry object.
■ Geometries in OGR are either 2D or 2.5D. The 2.5D geometries have z values,

but they’re ignored during analyses, which is why they aren’t considered 3D.
■ All polygon geometries are made up of one or more rings.

Using other modules to work with geometries

Now that you understand how to deal with geometries using OGR, other geometry librar-
ies, such as Fiona, should be easy to understand. Lines are still created by an ordered
collection of vertices, and polygons are still made up of rings. The underlying theory
about geometries doesn’t change, although the method of accessing them does.

Fiona, for example, is a library for reading and writing vector data that’s built on top
of OGR. Fiona doesn’t use special geometry types, but instead uses Python lists to
store vertices. The lists are filled with tuples that contain the vertex coordinates.
For example, a ring is a list of tuples, and a polygon is a list of rings. A polygon with
one ring is a list that contains another list that contains tuples for the vertices. The
Fiona user manual is excellent and can be found online at http://toblerity.org/fiona/
manual.html.

Shapely is another outstanding module that’s designed for working with geometries,
but not reading and writing data. Unlike Fiona, it does have special data types for geom-
etries, but that’s why it can do spatial analysis, unlike Fiona. Even though it has its
own data types, the general ideas are still the same. The detailed user manual for
Shapely is available online at http://toblerity.org/shapely/manual.html. 

Figure 6.22 The original and edited yard 
polygon geometries with the house cut out. The 
original is filled and the edited one is hatched.

http://toblerity.org/fiona/manual.html
http://toblerity.org/fiona/manual.html
http://toblerity.org/shapely/manual.html
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Now you know how to access existing data and how to build your own geometries
from scratch, but I see these as gateways to the more interesting task of spatial anal-
ysis. Without analysis capabilities, spatial data is only useful for making maps. Good
cartography is essential for many things, but I imagine that even cartographers
would get bored if new datasets weren’t continually created from various types of
analyses. Plus, spatial analyses can answer countless questions relating to pretty
much every discipline. In fact, you’re probably more likely to generate new data
using the analysis functions described in this chapter than by creating geometries
vertex by vertex as outlined previously in nauseating detail. 

 Spatial analysis with vector data comes down to looking at the spatial relation-
ships between two or more geometries. Possible studies range from the extremely
simple, such as the distance between two points, to much more complex algorithms
such as network analyses. Have you ever wondered how certain mapping websites
can provide you with various route options from point A to point B, and even
provide travel times? That’s network analysis. One easy exercise that I sometimes
find entertaining is comparing the distance I hiked with the straight-line distance

This chapter covers
■ Determining if geometries share a spatial location
■ Proximity relationships between geometries
129
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between the starting and ending points, because these two distances can be signifi-
cantly different in mountainous terrain. There probably isn’t much use for that partic-
ular example in my life, other than to satisfy my curiosity, but it’s important
information for search-and-rescue teams who need to know actual distances. There are
plenty of other important questions out there waiting to be answered using spatial
analysis techniques.

 For example, biologists can use the information downloaded from GPS collars to
study how animals use various habitat types or their reactions to roads or other man-
made features. Businesses use spatial data to help determine the best location for new
stores or factories. Utility companies can use this type of data to select the best routes
to install pipelines or electrical transmission lines, and mining companies use geo-
graphic information to determine areas that are likely rich in resources. If you’re
reading this book, it’s likely that you have a specific type of analysis in mind, and it’s
probably completely different from any of the examples mentioned. Spatial analyses
are ubiquitous, and in fact, you use these sorts of analyses in your daily life when you
choose where to live or what route to take to the office. OGR provides a good founda-
tion for vector analysis, although it’s left to you to implement more-complicated algo-
rithms that you may be interested in. This section will introduce you to the basic tools
that make up this foundation.

7.1 Overlay tools: what’s on top of what?
One basic question in geographic analysis is what features occur at the same place.
Certain entities, such as countries, don’t occur in the same location, although they
may share borders. Other types of areas, such as the home ranges of individual bears,
can easily overlap, as can boundaries that aren’t necessarily related, such as wetlands
and land ownership. Many types of queries are concerned with this overlap idea. For
example, insurance companies want to know if a parcel of land is on a floodplain
before they set a premium, or even decide to insure it at all. A business looking for
land to build a factory on would want to know which lots for sale are within an appro-
priate municipal land use zone. If you’re making a map of Stockholm, you’ll want to
know which roads, train tracks, and parks, among other things, are within city limits. 

 What sorts of overlap tools exist? Several test certain conditions, such as Inter-
sects, which tells you if two geometries share any space in common. For example, in
figure 7.1, the line L2 intersects with the line L3 and the polygon L3. The polygons
P2 and P4 also intersect. You can find out if two geometries touch edges, but don’t
actually share any area, with Touches. This is also true for lines L2 and L3, but not L2
and P3, because they do more than touch. How about discovering if one geometry is
contained completely within another? You can test that with either Contains or
Within. Polygon P5 is within polygon P1, and P1 contains P5. See table 7.1 for a list
of the available operations, along with examples for each one from figure 7.1. Note
that while these functions work with polygons, they don’t work with linear rings. All
functions return True or False. More information can be found in appendix C.
(Appendixes C through E are available online on the Manning Publications website
at https://www.manning.com/books/geoprocessing-with-python.)

https://www.manning.com/books/geoprocessing-with-python
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Table 7.1 Functions to test relationships between geometries. These all return True or False.

Operation Examples from figure 7.1

Intersects Polygons P2 and P4 intersect.
Line L3 and Point B intersect.
Point A and Polygon P2 intersect.
Lines L2 and L3 intersect.
Line L2 and Polygon P3 intersect.

Touches Polygon P2 and Point A touch.
Polygon P5 and Point D do not touch.
Lines L2 and L3 touch.
Lines L1 and L3 do not touch.

Crosses Lines L1 and L3 cross.
Lines L2 and L3 do not cross.

Within Line L1 is within Polygon P2.
Line L3 is not within Polygon P2.

Contains Polygon P1 contains Polygon P5.
Polygon P2 does not contain Polygon P4.

Overlaps Polygons P2 and P4 overlap.
Polygons P1 and P5 do not overlap.

Disjoint Polygon P1 and Line L1 are disjoint.
Polygons P1 and P4 are disjoint.

P1

P2

P3

P4

P5

E

D L2

L1
L3

C

B

A

Figure 7.1 Geometries used to get the results of overlay operations that are shown in 
table 7.1 and figure 7.2.
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Several functions create new geometries based on the spatial relationships of existing
geometries. For example, you can use Intersection to get a new geometry that repre-
sents only the area that two others have in common. In figure 7.1, the intersection of
L1 and L3 is a single point; the intersection of L2 and P3 is a short segment from L2;
and the intersection of P2 and P4 is shown in figure 7.2. You would probably use
Intersection to create new datasets containing features only found within the Stock-
holm boundary when making the map mentioned earlier.

 You can combine the areas of two existing geometries into
one with Union, which may return a geometry collection if the
input geometries are different types. You can treat a geometry
collection kind of like a multigeometry, except that the parts
don’t all need to be the same kind of geometry. For example,
the union of L2 and P3 is a geometry collection containing a
polygon and two lines, as shown in figure 7.3. The section of L2
that intersects P3 no longer exists as a line, and instead the space
it takes up is included in the polygon. The union of P2 and P4 is
a single polygon, as shown in figure 7.2. You might use this func-
tion if you were given a roads dataset in which the roads were
broken up into segments based on changes in speed limits,
which would be required for an analysis looking at travel time,
but you want each road to be a single feature so it’s easier to use
in a map.

 It’s also possible to clip an intersection out of a geometry so that you’re left with
the part of the geometry that doesn’t intersect the second geometry. Unlike
Intersection and Union, the results from Difference depend on which geometry
the function is called on and which is passed to it. This is also illustrated in figure 7.2. 

 There’s also SymDifference, which returns the union of two geometries with the
intersection removed. If you were looking at the home ranges, or territories, of two
different mountain lions, you might want to know the area that the first cat uses but

Intersection Union P2 Difference P4 P4 Difference P2 SymDifference

Figure 7.2 The results of several overlay operations on the P2 and P4 geometries from figure 7.1 
are shown as hatched areas with dark outlines.

Figure 7.3 The 
three parts of the 
geometry collection 
created by unioning 
L2 and P3 together.
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the second doesn’t, or vice versa. You’d use Difference to get that information. You
could use SymDifference to determine the area that was used by either lion, but not
both. Intersection would give you the shared territory, and Union would provide the
combined territories. Each type of information is likely useful to a cougar researcher,
but each in a different way. In fact, it was a study similar to this, although on a threat-
ened species of lizard and much more sophisticated than this simplified example, that
got me hooked on GIS in the first place! 

 Let’s look at a concrete example. Figure 7.4 might remind you of our discussion of
wetlands within the boundaries of New Orleans back in chapter 3. You’re about to
look at two different ways of using intersections to determine the percentage of New
Orleans made up by wetlands. But first, it will be helpful to do a little interactive exer-
cise with the data to visualize what’s happening. Open the water bodies shapefile
for the United States, which contains features such as lakes, streams, canals, and
marshes, and plot one specific feature that represents a marsh near New Orleans. This
shapefile has approximately 27,000 features, so don’t try to plot the entire file unless
you want to wait all day.

>>> water_ds = ogr.Open(r'D:\osgeopy-data\US\wtrbdyp010.shp')
>>> water_lyr = water_ds.GetLayer(0)

Lake Pontchartrain

Lake Borgne

Figure 7.4 A simple map of New Orleans showing the city boundary, water, and wetlands
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>>> water_lyr.SetAttributeFilter('WaterbdyID = 1011327')
>>> marsh_feat = water_lyr.GetNextFeature()
>>> marsh_geom = marsh_feat.geometry().Clone()
>>> vp.plot(marsh_geom, 'b')

You should now see something similar to figure 7.5, but without the city boundary.
Add the New Orleans boundary to provide a little context:

>>> nola_ds = ogr.Open(r'D:\osgeopy-data\Louisiana\NOLA.shp')
>>> nola_lyr = nola_ds.GetLayer(0)
>>> nola_feat = nola_lyr.GetNextFeature()
>>> nola_geom = nola_feat.geometry().Clone()
>>> vp.plot(nola_geom, fill=False, ec='red', ls='dashed', lw=3)

Now you have two polygons, one for New Orleans and one for a marsh that’s partly
contained with the New Orleans boundary. Now intersect the two geometries:

>>> intersection = marsh_geom.Intersection (nola_geom)
>>> vp.plot(intersection, 'yellow', hatch='x')

Figure 7.5 The New Orleans city boundary is 
shown as a dashed line overlaid on a single, but 
large, marsh polygon from the United States 
water bodies dataset.

Figure 7.6 The result of intersecting the New 
Orleans boundary with the marsh is shown in 
the hatched area.
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You can see from figure 7.6 that the intersection geometry consists of the area that’s
contained within both the city boundary and the marsh polygon. How can you use
this to figure out how much of New Orleans is wetlands? Well, if you intersect the city
boundary with all of the wetland polygons that it overlaps, then you’ll end up with a
bunch of polygons that represent wetlands within the boundary. All you need to do
then is sum up their areas and divide by the area of the New Orleans geometry. Let’s
assume that anything in the water bodies dataset that’s not a lake is a wetland, and
try this:

>>> water_lyr.SetAttributeFilter("Feature != 'Lake'")             
>>> water_lyr.SetSpatialFilter(nola_geom)                              
>>> wetlands_area = 0
>>> for feat in water_lyr:
...     intersect = feat.geometry().Intersection (nola_geom)    
...     wetlands_area += intersect.GetArea()                         
...
>>> pcnt = wetlands_area / nola_geom.GetArea()
>>> print('{:.1%} of New Orleans is wetland'.format(pcnt))
28.7% of New Orleans is wetland

The first thing you do is change the attribute filter on the water bodies so that lakes,
specifically Lake Pontchartrain, are ignored. Then you use a spatial filter to toss out all
of the features not in the vicinity of New Orleans, which gets rid of almost everything
in the shapefile. This step isn’t technically necessary, but it speeds up processing time
considerably because you get to ignore most of the dataset. Then you loop through
the remaining water bodies, intersect each one with the New Orleans geometry, and
add the intersection area to a running total. When done with the loop, all you needed
to do was divide by the area of New Orleans to get your answer.

TIP Filtering out unneeded features, either with spatial or attribute filters,
can significantly decrease your processing time.

You have an easier way to do this, however, if you want to work with layers instead of
individual geometries. In this case, OGR takes care of looping through the geometries
in the layers for you. Let’s intersect the New Orleans boundary with the water layer to
get the area in common between the two:

>>> water_lyr.SetAttributeFilter("Feature != 'Lake'")                  

>>> memory_driver = ogr.GetDriverByName('Memory')                  
>>> temp_ds = memory_driver.CreateDataSource('temp')                
>>> temp_lyr = temp_ds.CreateLayer('temp')                           
>>> nola_lyr.Intersection(water_lyr, temp_lyr)                

As before, you limit the water bodies to the non-lakes, but you don’t perform a spatial
filter because the layer intersection handles that. An empty layer is required for a layer
intersection, however, so you do need the extra step of creating that. Because there’s
no reason to save the layer, you use the memory driver to create the data source and

Limit features to anything not 
a lake within New Orleans

Sum up the intersecting a
of each wetland feature

Keep
ding

lakes Create a temporary 
layer in memory

Intersect the layers and 
store result in temp_lyr
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layer. This driver doesn’t write anything out to disk, so it’s a good choice for tempo-
rary data. Once you have the empty layer, you pass it to the layer Intersection func-
tion, which populates it with the intersection of nola_lyr and water_lyr. 

 Once you have the intersected area, you can use a SQL statement to sum up the
areas of all geometries in temp_lyr. Remember that ExecuteSQL returns a new layer
object, so you need to get the first feature from it in order to access the results of the
SUM function:

>>> sql = 'SELECT SUM(OGR_GEOM_AREA) AS area FROM temp'
>>> lyr = temp_ds.ExecuteSQL (sql)
>>> pcnt = lyr.GetFeature(0).GetField('area') / nola_geom.GetArea()
>>> print('{:.1%} of New Orleans is wetland'.format(pcnt))
28.7% of New Orleans is wetland

One more important detail is that functions that operate on entire layers instead of
individual geometries preserve the attribute values from the input layers. This is
handy if you still need the information about each feature. In this case you don’t need
it, but think about the mountain lion home range example, but with even more cats.
The researcher would almost definitely want to know which two cougars were sharing
the same habitat, and a layer intersection would keep this information in the results,
assuming it was in the original attribute tables.

7.2 Proximity tools: how far apart are things?
Another common problem when analyzing geographic features is determining how
far apart they are from one another. For example, many municipalities have regula-
tions concerning the types of businesses allowed within a certain distance of a church
or school, and proximity to a large customer base is another important factor when
considering business locations. Or how about an ornithologist trying to determine
how roads affect the nesting sites chosen by various species of birds? He would need to
measure the distance between each nest and the closest roads as part of his study.  

 Two proximity tools are included with OGR, one to measure distance between
geometries and one to create buffer polygons. A buffer is a polygon that extends out a
certain distance from the original geometry. Figure 7.7 shows the yard geometries
from chapter 6 with buffers around them, although they’re not in their true yard con-
figuration so that you can see the buffers better. You could use a buffer to visualize
which businesses were within walking distance of your location, or to make sure that
you didn’t build a pizza joint within a certain distance of an existing one. You could
also buffer a stream geometry to get an idea of the riparian area surrounding it, or to
show where cattle aren’t allowed to graze and risk damaging the ecosystem.

TIP Unprojected datasets (those using latitude and longitude) are fine for
displaying data in many cases, but can be a poor choice when it comes to anal-
ysis. Think about how the longitudinal lines on a globe converge on the
poles. One longitudinal degree at 40° latitude is shorter than one degree at
the equator, which makes comparing distances at different latitudes
extremely problematic. You’re much better off converting your data to a dif-
ferent coordinate system with a constant unit of measure.
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As a buffering example, let’s figure out how many cities in the United States are within
10 miles of a volcano. We’ll use datasets that have an Albers projection so that the map
units are meters instead of decimal degrees. We’ll also use this example to highlight a
potential source of error when doing analyses like this. The first step in your analysis
will be to buffer a volcano dataset by 16,000 meters, which is roughly equivalent to 10
miles. Because there isn’t a buffer function on an entire layer, you’ll buffer each vol-
cano point individually and add it to a temporary layer. Once that’s done, you can
intersect the buffer layer with the cities layer to get the number of cities that fall
within that 10-mile radius. All of this is shown in the following listing.

>>> shp_ds = ogr.Open(r'D:\osgeopy-data\US')
>>> volcano_lyr = shp_ds.GetLayer('us_volcanos_albers')
>>> cities_lyr = shp_ds.GetLayer('cities_albers')

>>> memory_driver = ogr.GetDriverByName('memory')                     
>>> memory_ds = memory_driver.CreateDataSource('temp')                   
>>> buff_lyr = memory_ds.CreateLayer('buffer')                          
>>> buff_feat = ogr.Feature(buff_lyr.GetLayerDefn())                    

>>> for volcano_feat in volcano_lyr:                                     
...     buff_geom = volcano_feat.geometry().Buffer(16000)               
...     tmp = buff_feat.SetGeometry(buff_geom)                         
...     tmp = buff_lyr.CreateFeature(buff_feat)                         
...
>>> result_lyr = memory_ds.CreateLayer('result')                        
>>> buff_lyr.Intersection (cities_lyr, result_lyr)                       
0
>>> print('Cities: {}'.format(result_lyr.GetFeatureCount()))
Cities: 83

From this you could conclude that that are 83 cities in the United States that are
within 10 miles of a volcano. But for good measure, try doing the same thing with the

Listing 7.1 A flawed method for determining the number of cities near volcanoes

Figure 7.7 The geometries from the 
make-believe yard shown along with 
buffer geometries. Notice how the buffer 
for multigeometries becomes a single 
polygon if the individual buffers overlap.

Make a temporary 
layer to store buffers

Buffer each volcano and 
add it to the buffer layer

Intersect the cities 
and volcano buffers
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slightly different method shown in listing 7.2. This time you’ll add the buffers to a
multipolygon instead of a temporary layer. A function called UnionCascaded effi-
ciently unions all of the polygons in a multipolygon together; you’ll use this to create
one polygon from all of the volcano buffers and then use the result as a spatial filter
on the cities layer. 

>>> volcano_lyr.ResetReading()                             
>>> multipoly = ogr.Geometry(ogr.wkbMultiPolygon)
>>> for volcano_feat in volcano_lyr:
...     buff_geom = volcano_feat.geometry().Buffer(16000)
...     multipoly.AddGeometry(buff_geom)
...
>>> cities_lyr.SetSpatialFilter(multipoly.UnionCascaded ())
>>> print('Cities: {}'.format(cities_lyr.GetFeatureCount()))
Cities: 78

Huh, somehow you lost five cities in the last few minutes, which is a little disconcert-
ing. What happened? In the first example, a copy of a city is included in the output
every time it falls within a volcano buffer. This means a city will be included more than
once if it’s within 16,000 meters of multiple volcanoes. This happened with a few cit-
ies, which is why the count from the intersection method was wrong, and higher than
from the spatial filter method. This is a good example of why you should always think
through your methodology carefully, because the “obvious” solution might be incor-
rect and provide the wrong results.

TIP Use UnionCascaded when you need to union many geometries together.
It will be much faster than joining them one by one.

We’ll look at one last example. Perhaps you want to know how far a particular city is
from a certain volcano. The first thing you need to do is get the geometries for the city
and volcano of interest:

>>> volcano_lyr.SetAttributeFilter("NAME = 'Rainier'")
>>> feat = volcano_lyr.GetNextFeature()
>>> rainier = feat.geometry().Clone()

>>> cities_lyr.SetAttributeFilter("NAME = 'Seattle'")
>>> feat = cities_lyr.GetNextFeature()
>>> seattle = feat.geometry().Clone()

Once you have the geometries, you can use the Distance function to ask them how
far apart they are from each other:

>>> meters = round(rainier.Distance(seattle))
>>> miles = meters / 1600
>>> print('{} meters ({} miles)'.format(meters, miles))
92656 meters (57.91 miles)

The city of Seattle is approximately 58 miles from Mount Rainier, which is considered
an active volcano. Of course, you’d get a different answer if you used actual city

Listing 7.2 A better method for determining the number of cities near volcanoes

Go back to the start 
of the volcanoes layer
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boundaries instead of a point, but I doubt that the fine people of Seattle would appre-
ciate the distinction if the mountain did erupt.

2.5D geometries

You may remember from the last chapter that geometries with z values are considered
2.5D in OGR because the z values aren’t used when performing spatial operations.
To illustrate this, let’s look at the distance between two points:

>>> pt1_2d = ogr.Geometry(ogr.wkbPoint)
>>> pt1_2d.AddPoint(15, 15)
>>> pt2_2d = ogr.Geometry(ogr.wkbPoint)
>>> pt2_2d.AddPoint(15, 19)
>>> print(pt1_2d.Distance(pt2_2d))
4.0

That returns a distance of 4 units, as expected. Now try the same thing but with 2.5D
points:

>>> pt1_25d = ogr.Geometry(ogr.wkbPoint25D)
>>> pt1_25d.AddPoint(15, 15, 0)
>>> pt2_25d = ogr.Geometry(ogr.wkbPoint25D)
>>> pt2_25d.AddPoint(15, 19, 3)
>>> print(pt1_25d.Distance(pt2_25d))
4.0

That also returned a distance of 4, but taking the elevation values into account, the
real distance is 5. Clearly, the z values weren’t used in the calculation. How about an
area example? This polygon is 10 units long on each side, so it should have an area
of 100:

>>> ring = ogr.Geometry(ogr.wkbLinearRing)
>>> ring.AddPoint(10, 10)
>>> ring.AddPoint(10, 20)
>>> ring.AddPoint(20, 20)
>>> ring.AddPoint(20, 10)
>>> poly_2d = ogr.Geometry(ogr.wkbPolygon)
>>> poly_2d.AddGeometry(ring)
>>> poly_2d.CloseRings()
>>> print(poly_2d.GetArea())
100.0

You got the expected result there, but try moving the right-most edge to a higher ele-
vation so that the rectangle is in the 3D plane:

>>> ring = ogr.Geometry(ogr.wkbLinearRing)
>>> ring.AddPoint(10, 10, 0)
>>> ring.AddPoint(10, 20, 0)
>>> ring.AddPoint(20, 20, 10)
>>> ring.AddPoint(20, 10, 10)
>>> poly_25d = ogr.Geometry(ogr.wkbPolygon25D)
>>> poly_25d.AddGeometry(ring)
>>> poly_25d.CloseRings()
>>> print(poly_25d.GetArea())
100.0
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Now you know the basics of spatial analysis with vector data. You might not need to do
anything more complicated than what you’ve seen here, but if you do, these tools are
the building blocks with which to start. 

7.3 Example: locating areas suitable for wind farms
Let’s do a simple analysis to look for suitable wind farm locations in Imperial County,
California. The United States National Renewal Energy Laboratory provides a wind
dataset that shows areas in the United States that are suitable for wind farms based on
wind speed and abundance, and geographical factors such as terrain (figure 7.8).

(continued)

This new rectangle also claims to have an area of 100 but in reality, the area is closer
to 141.

Overlay operations also ignore the elevation values. For example, if elevation were
accounted for, pt1_2d would be contained in the 2D polygon but not in the 2.5D one,
which isn’t what we see:

>>> print(poly_2d.Contains(pt1_2d))
True
>>> print(poly_25d.Contains(pt1_2d))
True

Figure 7.8 Census and wind data for Imperial County, CA. The darker the shading, the 
better the wind conditions for a wind farm. The hatched area shows census tracts with 
a population density less than 0.5/km2.
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Areas are rated on a scale of 1 to 7, where anything 3 and above is generally considered
suitable. We’ll combine this with census data to locate areas with an appropriate wind
rating and a population less than 0.5 per square kilometer.

 The census dataset contains population per census tract, but doesn’t have a popu-
lation density attribute. You can calculate that given the tract area and the population,
however, so the first thing to do is add a field containing that information:

census_fn = r'D:\osgeopy-data\California\ca_census_albers.shp'
census_ds = ogr.Open(census_fn, True)
census_lyr = census_ds.GetLayer()
density_field = ogr.FieldDefn('popsqkm', ogr.OFTReal)
census_lyr.CreateField(density_field)
for row in census_lyr:
    pop = row.GetField('HD01_S001')
    sqkm = row.geometry().GetArea() / 1000000
    row.SetField('popsqkm', pop / sqkm)
    census_lyr.SetFeature(row)

You open the census shapefile for editing and add a floating-point field. Then you
loop through each row and calculate the population density. The map units for this
dataset are meters, so the geometry’s area is square meters, but you convert that to
square kilometers by dividing by 1,000,000. You grab the tract population from the
HD01_S001 field and divide by the calculated area to get population per km2. 

 Now get the geometry for Imperial County so that you can use it to spatially limit
your analysis. You don’t need to keep the county data source open after cloning the
geometry.

county_fn = r'D:\osgeopy-data\US\countyp010.shp'
county_ds = ogr.Open(county_fn)
county_lyr = county_ds.GetLayer()
county_lyr.SetAttributeFilter("COUNTY ='Imperial County'")
county_row = next(county_lyr)
county_geom = county_row.geometry().Clone()
del county_ds

But one problem exists, though. The county data uses coordinates that are latitude
and longitude values, but the census and wind datasets use meters. You’ll learn how to
work with different spatial reference systems like these in the next chapter, but for
now please trust me that this bit of code will convert the county geometry to the cor-
rect coordinate system:

county_geom.TransformTo(census_lyr.GetSpatialRef())
census_lyr.SetSpatialFilter(county_geom)
census_lyr.SetAttributeFilter('popsqkm < 0.5')

Once the geometry is converted, you use it to set a spatial filter on the census tract
data so you’ll only be considering tracts in the correct part of the state. You also set an
attribute filter to further limit the tracts to those with a low population density.
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 Now open the wind dataset and use an attribute filter to limit it to the areas with a
rating of 3 or better:

wind_fn = r'D:\osgeopy-data\California\california_50m_wind_albers.shp'
wind_ds = ogr.Open(wind_fn)
wind_lyr = wind_ds.GetLayer()
wind_lyr.SetAttributeFilter('WPC >= 3')

It makes sense to create a data source to put the results in before starting any analysis,
so let’s do that now. Create a new shapefile that uses the same spatial reference system
as the wind data, and then add fields for the wind rating and the population density.
You might as well use the layer’s definition to create an empty feature for inserting
data later, too.

out_fn = r'D:\osgeopy-data\California\wind_farm.shp'
out_ds = ogr.GetDriverByName('ESRI Shapefile').CreateDataSource(out_fn)
out_lyr = out_ds.CreateLayer(
    'wind_farm', wind_lyr.GetSpatialRef(), ogr.wkbPolygon)
out_lyr.CreateField(ogr.FieldDefn('wind', ogr.OFTInteger))
out_lyr.CreateField(ogr.FieldDefn('popsqkm', ogr.OFTReal))
out_row = ogr.Feature(out_lyr.GetLayerDefn())

You’re finally ready to look for possible wind farm locations. In the next listing, you’ll
loop through the census tracts, intersect them with the suitable wind polygons, and
put the results in your new shapefile.  

for census_row in census_lyr:
    census_geom = census_row.geometry()                                 
    census_geom = census_geom.Intersection(county_geom)                 
    wind_lyr.SetSpatialFilter(census_geom)

    print('Intersecting census tract with {0} wind polygons'.format(
        wind_lyr.GetFeatureCount()))

    if wind_lyr.GetFeatureCount() > 0:                                  
        out_row.SetField('popsqkm', census_row.GetField('popsqkm'))
        for wind_row in wind_lyr:
            wind_geom = wind_row.geometry()
            if census_geom.Intersect(wind_geom):                        
                new_geom = census_geom.Intersection(wind_geom)
                out_row.SetField('wind', wind_row.GetField('WPC'))
                out_row.SetGeometry(new_geom)
                out_lyr.CreateFeature(out_row)
del out_ds

You have an extra step to get the results you want, however. Unfortunately, the census
and county boundaries don’t line up exactly (figure 7.9), which means that a census
tract that barely overlaps the county because of this data error will be used to select
wind polygons even though you don’t need it. One way to deal with this is to intersect
the census and county polygons so that you only use the part of the census polygon

Listing 7.3 Intersecting census and wind data

Intersect census 
tract with county

 if there
re wind
olygons

eck if the tract and
 polygons intersect
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that falls within the county polygon (for example, the tiny sliver in figure 7.9). Once
you’ve found this intersection, then you can use a spatial filter to select the wind poly-
gons that it contains or overlaps.

 After setting the spatial filter, you iterate through the selected wind polygons and
intersect each of them with the census polygon. This throws out parts of a census tract
that don’t get enough wind or suitable wind areas with too high of a population den-
sity. The attribute filter remains in effect, even with the spatial filter changes, so this is
always limited to the suitable wind polygons. You add each of these intersection poly-
gons to the new dataset, along with
attributes for wind class and popula-
tion density.

 Figure 7.10 is zoomed in on part of
the results. You’re close, but it would
be nice to have large polygons instead
of many small ones. This will lose the
information about wind suitability class
and population density, but at this
point you know that all of your poly-
gons are appropriate, anyway.

 The fastest way to combine the little
polygons into one large one is to use
the UnionCascaded function, which
requires that the polygons to be joined
are all contained in a single multipoly-
gon. It works correctly only if you add
individual polygons to the multipoly-
gon, however. If you add a multipoly-
gon, then you’ll get incorrect results
later, so you need to break up any multipolygons created by your earlier intersections
and add each one individually. The following listing shows this process.

folder = r'D:\osgeopy-data\California'
ds = ogr.Open(folder, True)
in_lyr = ds.GetLayerByName('wind_farm')

Listing 7.4 Combining small polygons into large ones

Figure 7.9 The solid census tract 
boundary doesn’t line up perfectly 
with the dotted county boundary. 

Figure 7.10 Suitable wind farm locations 
according to our analysis. The darker the shading, 
the higher the wind rating.
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out_lyr = ds.CreateLayer(
    'wind_farm2', in_lyr.GetSpatialRef(), ogr.wkbPolygon)
out_row = ogr.Feature(out_lyr.GetLayerDefn())

multipoly = ogr.Geometry(ogr.wkbMultiPolygon)       

for in_row in in_lyr:
    in_geom = in_row.geometry().Clone()
    in_geom_type = in_geom.GetGeometryType()
    if in_geom_type == ogr.wkbPolygon:                                   
        multipoly.AddGeometry(in_geom)                                   
    elif in_geom_type == ogr.wkbMultiPolygon:                         
        for i in range(in_geom.GetGeometryCount()):                    
            multipoly.AddGeometry(                                    
                in_geom.GetGeometryRef(i))                            

multipoly = multipoly.UnionCascaded()         

for i in range(multipoly.GetGeometryCount()):
    poly = multipoly.GetGeometryRef(i)
    if poly.GetArea() > 1000000:                           
        out_row.SetGeometry(poly)
        out_lyr.CreateFeature(out_row)
del ds

After you union all of the polygons
together into one large multipolygon,
you go through it and break it up into
individual polygons that you add to the
new shapefile. Small islands of land that
aren’t big enough to hold a wind farm
can be thrown out, so you only keep the
polygons with an area of at least a
square kilometer. The results are shown
in figure 7.11, and you can see that
some of these little polygons that were
off by themselves are now gone.

 A dataset like this, with only large
polygons, is probably easier to work with
than one with many small polygons, as
long as you don’t need the information
that’s lost by joining them all together.

7.4 Example: animal tracking data
The website https://www.movebank.org/ has a database of animal tracking data for
studies all over the world. I downloaded GPS location data for Galapagos Albatrosses
as a CSV file, but let’s convert it into a shapefile and then play with the data a bit. You
can use the x and y coordinates from the location-long and location-lat columns to
create a point and copy that and the individual-local-identifier and timestamp

The multipolygon 
to hold everything

ingle polygons

Break up 
multipolygons

Union everything 
together

Only keep 
large polygons

Figure 7.11 The results from unioning the small 
polygons in figure 7.10 together and throwing out 
the small island polygons

https://www.movebank.org/
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columns as attributes. The shapefile format doesn’t support true date/time fields, so
you’ll keep the timestamp information as a string. The code for this is shown in the
following listing.

from osgeo import ogr, osr

csv_fn = r"D:\osgeopy-data\Galapagos\Galapagos Albatrosses.csv"
shp_fn = r"D:\osgeopy-data\Galapagos\albatross_dd.shp"
sr = osr.SpatialReference(osr.SRS_WKT_WGS84)

shp_ds = ogr.GetDriverByName('ESRI Shapefile').CreateDataSource(shp_fn)
shp_lyr = shp_ds.CreateLayer('albatross_dd', sr, ogr.wkbPoint)
shp_lyr.CreateField(ogr.FieldDefn('tag_id', ogr.OFTString))
shp_lyr.CreateField(ogr.FieldDefn('timestamp', ogr.OFTString))
shp_row = ogr.Feature(shp_lyr.GetLayerDefn())

csv_ds = ogr.Open(csv_fn)
csv_lyr = csv_ds.GetLayer()
for csv_row in csv_lyr:
    x = csv_row.GetFieldAsDouble('location-long')                       
    y = csv_row.GetFieldAsDouble('location-lat')                       
    shp_pt = ogr.Geometry(ogr.wkbPoint)                                  
    shp_pt.AddPoint(x, y)                                              
    tag_id = csv_row.GetField('individual-local-identifier')
    timestamp = csv_row.GetField('timestamp')
    shp_row.SetGeometry(shp_pt)
    shp_row.SetField('tag_id', tag_id)
    shp_row.SetField('timestamp', timestamp)
    shp_lyr.CreateFeature(shp_row)

del csv_ds, shp_ds

Unfortunately, if you plot this new shapefile or open it up in a GIS, you’ll see bad
points over by Africa (figure 7.12). There must have been an error with the data col-
lection for these points, so their latitude and longitude values are set to 0. Let’s get rid
of them.

Listing 7.5 Create a shapefile from a .csv file

Create the point

Figure 7.12 A few bad 
GPS locations by Africa 
instead of South America
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Because you know that the bad points have coordinates of (0, 0), you can set a spatial
filter to select those points and then delete them one by one:

shp_ds = ogr.Open(shp_fn, True)
shp_lyr = shp_ds.GetLayer()
shp_lyr.SetSpatialFilterRect(-1, -1, 1, 1)
for shp_row in shp_lyr:
    shp_lyr.DeleteFeature(shp_row.GetFID())
shp_lyr.SetSpatialFilter(None)
shp_ds.ExecuteSQL ('REPACK ' + shp_lyr.GetName())
shp_ds.ExecuteSQL ('RECOMPUTE EXTENT ON ' + shp_lyr.GetName())
del shp_ds

Don’t forget to use REPACK to permanently
delete the points and RECOMPUTE EXTENT to
recalculate the shapefile’s spatial extent. Now
all of the points are between the Galapagos
Islands and South America, as shown in fig-
ure 7.13.

 Now that the bad points are gone, you can
think about doing some analysis. The first
things I think of doing with GPS tracking data
from animals are to see how far they move
and to look at the area they use. Unfortu-
nately, latitude/longitude data in degrees
isn’t ideal for this, but that’s the coordinate
system used by these points. Because you
won’t learn how to work with spatial refer-
ences and coordinate systems until the next
chapter, let’s see how to convert between
coordinate systems using the ogr2ogr command-line utility. Remember that you need
to run this from a terminal window or command prompt, not from Python. You’ll also
need to make sure that you’re in the same folder as the albatross_dd shapefile.

 You’ll convert the coordinates to a system that uses meters rather than degrees as
units of measure. Not only are meters easier to understand (most people probably
can’t visualize half a degree very well), but they’re constant, unlike degrees that
change with latitude. The system you’ll use is called Lambert Conformal Conic, and
you’ll use a variation of it that’s specific for South America. The parts of this com-
mand after -t_srs and up to +no_defs are what define the coordinate system. The
output will be a shapefile called albatross_lambert.shp.

ogr2ogr -f "ESRI Shapefile" -t_srs "+proj=lcc +lat_1=-5 +lat_2=-42 

➥ +lat_0=-32 +lon_0=-60 +x_0=0 +y_0=0 +ellps=aust_SA +units=m +no_defs" 
➥ albatross_lambert.shp albatross_dd.shp

Now you’ve got a shapefile that uses meters, so let’s calculate the distance between
each location. To do this, you need to select the points for an individual bird, so let’s

Figure 7.13 GPS locations for Galapagos 
Albatrosses
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write a function that will get unique values from an attribute column. You can use the
function from the following listing to get tag_id values in later listings. 

def get_unique(datasource, layer_name, field_name):
    sql = 'SELECT DISTINCT {0} FROM {1}'.format(field_name, layer_name)
    lyr = datasource.ExecuteSQL (sql)
    values = []
    for row in lyr:
        values.append(row.GetField(field_name))
    datasource.ReleaseResultSet(lyr)
    return values

To calculate distances, you’ll iterate through the points for each bird in order and then
calculate the distance between each location and the previous one, so you’ll need to
keep track of the previous point as you loop. The points should be in the correct order
in the original .csv file, which means they’re also in order in the shapefile you created,
but you’ll add code to check, just in case. If it does find something out of order, it will
bail so that you can correct the problem. The following listing shows the process.

ds = ogr.Open(r'D:\osgeopy-data\Galapagos', True)
lyr = ds.GetLayerByName('albatross_lambert')
lyr.CreateField(ogr.FieldDefn('distance', ogr.OFTReal))                 

tag_ids = get_unique(ds, 'albatross_lambert', 'tag_id')                  
for tag_id in tag_ids:                                                  
    print('Processing ' + tag_id)
    lyr.SetAttributeFilter(                                              
        "tag_id ='{}'".format(tag_id))                                   
    row = next(lyr)                                                    
    previous_pt = row.geometry().Clone()                               
    previous_time = row.GetField('timestamp')                        
    for row in lyr:
        current_time = row.GetField('timestamp')                           
        if current_time < previous_time:                           
            raise Exception('Timestamps out of order')                  
        current_pt = row.geometry().Clone()
        distance = current_pt.Distance(previous_pt)                     
        row.SetField('distance', distance)                             
        lyr.SetFeature(row)
        previous_pt = current_pt                                      
        previous_time = current_time                                 
del ds

Before starting the loop, you save the timestamp and point geometry for the first loca-
tion so that you can use it to calculate distance between it and the second feature. This
increments the current feature, so the loop starts with the second feature instead of
the first, and you calculate a distance between the first and second points in the first

Listing 7.6 Function to get unique values from an attribute column

Listing 7.7 Calculating distance between adjacent points

dd a
 field

Loop through
individual ids

it points to
current id

Save first time 
and point

Make sure points 
are ordered

alculate distance
to previous point

Save current 
time and point
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iteration. After saving the distance, you store the timestamp and geometry for the cur-
rent feature in your “previous” variables, so that the next time through the loop you’ll
have this information. If you hadn’t stored the current values, you’d always calculate
the distance to the first point, because that’s the one originally stored in previous_pt.

 Now it’s an easy matter to get information about the distances. For example, you
could use SQL to find out which bird had the longest distance between GPS fixes:

ds = ogr.Open(r'D:\osgeopy-data\Galapagos')
for tag_id in get_unique(ds, 'albatross_lambert', 'tag_id'):
    sql = """SELECT MAX(distance) FROM albatross_lambert
             WHERE tag_id = '{0}'""".format(tag_id)
    lyr = ds.ExecuteSQL (sql)
    for row in lyr:
        print '{0}: {1}'.format(tag_id, row.GetField(0))

The first few lines of output look like this:

4264-84830852: 106053.530233
4266-84831108: 167097.198703
1103-1103: 69342.7642097

What if later you want to know the maximum travel speed from one point to the next?
You’ve got the distances, but you need to know the amount of time in between GPS
readings to calculate speed. The fact that the timestamp field is a string, not a date/
time, presents a small but easily surmountable problem. Fortunately, you can create
Python datetime objects from a string as long as you can tell it how the string is for-
matted. The timestamps in your dataset look like this:

timestamp = '2008-05-31 13:30:02.001'

You can create a format string that matches this using the information at https://
docs.python.org/2/library/datetime.html#strftime-strptime-behavior, and then use
the strptime function to convert the string to a datetime:

date_format = '%Y-%m-%d %H:%M:%S.%f'
my_date = datetime.strptime(timestamp, date_format)

The following listing shows how to use this information to find the maximum travel
speed between each location. This won’t be completely accurate because it’s probably
rare that a bird has been flying the entire time between readings, but at least it’s a start.

from datetime import datetime
from osgeo import ogr

date_format = '%Y-%m-%d %H:%M:%S.%f'
ds = ogr.Open(r'D:\osgeopy-data\Galapagos')
lyr = ds.GetLayerByName('albatross_lambert')
for tag_id in get_unique(ds, 'albatross_lambert', 'tag_id'):
    max_speed = 0
    lyr.SetAttributeFilter("tag_id ='{}'".format(tag_id))

Listing 7.8 Find maximum speed from locations and elapsed time

https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
https://docs.python.org/2/library/datetime.html#strftime-strptime-behavior
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    row = next(lyr)
    ts = row.GetField('timestamp')                                      
    previous_time = datetime.strptime(ts, date_format)                  
    for row in lyr:
        ts = row.GetField('timestamp')
        current_time = datetime.strptime(ts, date_format)
        elapsed_time = current_time - previous_time                      
        hours = elapsed_time.total_seconds() / 3600                     
        distance = row.GetField('distance')                              
        speed = distance / hours                                         
        max_speed = max(max_speed, speed)
    print 'Max speed for {0}: {1}'.format(tag_id, max_speed)

As with finding distance, you need to keep track of the previous point so that you can
find the length of time between GPS fixes. After getting that information, you divide the
distance by the number of hours between readings to get speed in meters per hour.

 Now let’s take a look at the areas used by each bird. Sophisticated methods are
available for determining an animal’s home range, but we’ll use convex hull polygons
because they’re simple and OGR has them built in. To do this, you need to put the
points for each bird into a multipoint geometry that can then be used to create the
convex hull polygons, as shown in the following listing.

ds = ogr.Open(r'D:\osgeopy-data\Galapagos', True)
pt_lyr = ds.GetLayerByName('albatross_lambert')
poly_lyr = ds.CreateLayer(
    'albatross_ranges', pt_lyr.GetSpatialRef(), ogr.wkbPolygon)
id_field = ogr.FieldDefn('tag_id', ogr.OFTString)
area_field = ogr.FieldDefn('area', ogr.OFTReal)                       
area_field.SetWidth(30)                                                
area_field.SetPrecision(4)                                             
poly_lyr.CreateFields([id_field, area_field])
poly_row = ogr.Feature(poly_lyr.GetLayerDefn())

for tag_id in get_unique(ds, 'albatross_lambert', 'tag_id'):
    print('Processing ' + tag_id)
    pt_lyr.SetAttributeFilter("tag_id = '{}'".format(tag_id))
    locations = ogr.Geometry(ogr.wkbMultiPoint)                      
    for pt_row in pt_lyr:                                              
        locations.AddGeometry(pt_row.geometry().Clone())            

    homerange = locations.ConvexHull()                
    poly_row.SetGeometry(homerange)
    poly_row.SetField('tag_id', tag_id)
    poly_row.SetField('area', homerange.GetArea())
    poly_lyr.CreateFeature(poly_row)

del ds

The results are shown in figure 7.14, where the polygon for one bird is filled in and
the rest are hollow. Maybe it’s me, but those big polygons don’t tell me a whole lot. I’d

Listing 7.9 Create convex hull polygons for each bird

Convert string to datetime

Calculate speed

Make area field big 
enough to hold data

Multipoint to 
hold locations

Create convex hull
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ins
like to see the area each bird used around
the islands and around the mainland, but
without the middle of the ocean. In fact,
comparing the area used between different
visits to the archipelago or mainland might
be interesting.

 I can think of a few different ways to
separate the points into different visits to
the continent or islands, but we’ll only look
at one of them. Listing 7.10 does it by
ignoring all locations that are more than
100 kilometers from land, and every time
the birds cross an imaginary vertical line in
the middle of the ocean, a new set of points
is created so the two geographical areas are
separated. In the interest of space, the code
to create the new polygon shapefile itself is omitted and only the code to create the
polygons is shown.

land_lyr = ds.GetLayerByName('land_lambert')                         
land_row = next(land_lyr)                                               
land_poly = land_row.geometry().Buffer(100000)                           

for tag_id in get_unique(ds, 'albatross_lambert', 'tag_id'):
    print('Processing ' + tag_id)
    pt_lyr.SetAttributeFilter("tag_id = '{}'".format(tag_id))
    pt_locations = ogr.Geometry(ogr.wkbMultiPoint)
    last_location = None
    for pt_row in pt_lyr:
        pt = pt_row.geometry().Clone()
        if not land_poly.Contains(pt):                                  
            continue                                                   
        if pt.GetX() < -2800000:                                    
            location = 'island'                                        
        else:                                                          
            location = 'mainland'                                      
        if location != last_location:                                
            if pt_locations.GetGeometryCount() > 2:
                homerange = pt_locations.ConvexHull()
                poly_row.SetGeometry(homerange)
                poly_row.SetField('tag_id', tag_id)
                poly_row.SetField('area', homerange.GetArea())
                poly_row.SetField('location', last_location)
                poly_lyr.CreateFeature(poly_row)
            pt_locations = ogr.Geometry(ogr.wkbMultiPoint)
            last_location = location
        pt_locations.AddGeometry(pt)

Listing 7.10 Create convex hull polygons separated by geographic area

Figure 7.14 The ranges for each bird. The 
polygon for the bird with ID 4264-84830852 
is filled in, but the rest are hollow.

Buffer the 
land polygon

Skip points not
ide the land buffer

Figure out side 
of the ocean

Save points if area 
has changed



151Example: animal tracking data
    if pt_locations.GetGeometryCount() > 2:                 
        homerange = pt_locations.ConvexHull()
        poly_row.SetGeometry(homerange)
        poly_row.SetField('tag_id', tag_id)
        poly_row.SetField('area', homerange.GetArea())
        poly_row.SetField('location', last_location)
        poly_lyr.CreateFeature(poly_row)

In this example you need a land dataset so you can tell which points are within 100
kilometers of land. After getting the land polygon, you buffer it by 100,000 meters,
which is the same as 100 km. When iterating through the points, the first thing you do
is check to see if the point falls within the land buffer. If it doesn’t, then you move on
to the next point without doing anything more. If a point is within the buffer, and
therefore within 100 kilometers of land, you check to see which side of the imaginary
line the point is on and set a location variable to keep track of whether the point is on
the island or mainland. If the location has changed since the previous point you
looked at, and you encounter at least three locations (the minimum required for a
polygon), then you create a new convex hull polygon with the collected points. After
checking the number of points and possibly creating a polygon, you create a new mul-
tipoint object to store the next set of points. If you hadn’t created a new multipoint,
then your next convex hull would use all locations you’d saved so far, but you want to
start over now that you’re in a different geographic area. When you finish iterating
through the points for a specific animal, the points since the last location change still
need to be turned into a polygon, so you’ve got another bit of code to take care of
those last locations. 

 The result for one bird is shown in fig-
ure 7.15. This is the same animal whose
range was shaded in figure 7.14, so you
can see the difference in the calculated
ranges.

 I don’t know about you, but I’m curi-
ous how much of the same area is used by
an individual on separate visits to the
islands or the mainland—do they haunt
the same locations or do they switch it up
a bit? A simple way to get at this, which
ignores the fact that some polygons might
be created from a day’s worth of data as
opposed to others with a week or two,
might be to look at the ratio of common
area to total area (if you’re an albatross
biologist, please don’t cringe too much at
my idea). Figure 7.16 shows the difference between these two for one of the bird’s vis-
its to the islands.

Save the last
set of points

Figure 7.15 The area-specific ranges for 
bird 4264-84830852. Compare this with the 
large polygon for the same animal shown in 
figure 7.14.
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Let’s look at how you’d calculate this ratio, and then we’ll leave the albatrosses alone.
The following listing does it for the bird shown in figure 7.16, but you could easily
adapt the code to calculate this value for all of the birds.

ds = ogr.Open(r'D:\osgeopy-data\Galapagos')
lyr = ds.GetLayerByName('albatross_ranges2')
lyr.SetAttributeFilter("tag_id = '1163-1163' and location = 'island'")
row = next(lyr)
all_areas = row.geometry().Clone()
common_areas = row.geometry().Clone()
for row in lyr:
    all_areas = all_areas.Union(row.geometry())
    common_areas = common_areas.Intersection(row.geometry())
percent = common_areas.GetArea() / all_areas.GetArea() * 100
print('Percent of all area used in every visit: {0}'.format(percent))

The output looks like this:

Percent of all area used in every visit: 25.1565197202

It looks like a quarter of this bird’s total range is used during each visit to the islands,
but it’s clear from figure 7.16 that this area is in the middle of the range. A next step
might be to see how many points were used to create each polygon—maybe the larger
polygons are bigger because they have more points and not because the bird changed
its habits each time.

7.5 Summary
■ Overlap tools tell you the spatial relationship of geometries to each other, such

as whether or not they intersect in space.
■ Proximity tools are used to determine distances between geometries or create

buffers around them.  
■ As with any type of analysis, it’s important to carefully consider your methodolo-

gies and assumptions when creating your workflow.

Listing 7.11 Calculate percentage of total area used in all island visits

All area (union) Common area (intersection)

Figure 7.16 The outlines show the 
areas used on four different visits to 
the islands by bird 1163-1163, and 
the shaded areas show the results 
of union and intersection operations 
on these polygons.



Using spatial
reference systems
Most people are familiar with the concept of using latitude and longitude to specify
a location on the earth’s surface. Would you be surprised to learn that many other
coordinate systems are also used, and that these different spatial reference systems
are used for different purposes? To make things even more complicated, the earth
isn’t a perfect sphere, and multiple models, called datums, are used to represent the
planet’s shape. Given this, coordinates from any system, including latitude and lon-
gitude, aren’t absolute—a set of coordinates can specify a slightly different location
depending on the datum used. 

 Because so many coordinate systems exist, it’s unlikely that all of your data will
use the one you need, so the ability to convert data between them is critical. Not
only that, but it’s impossible to transform data from one spatial reference system to
another if you don’t know which system they currently use, so you must ensure that

This chapter covers
■ Understanding spatial reference systems
■ Transforming data using OSR
■ Transforming data using pyproj
■ Great-circle calculations using pyproj
153
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this information is documented or risk rendering your data unusable. To effectively
work with coordinate systems, you need to understand why so many of them exist in
the first place and how to select an appropriate one for your purposes, so we’ll start
with background information and then move on to transforming data.

8.1 Introduction to spatial reference systems
A spatial reference system is made of
three components—a coordinate sys-
tem, a datum, and a projection—all of
which affect where on the earth a set of
coordinates refers to. Briefly, datums
are used to represent the curvature of
the earth, and projections transform
coordinates from a three-dimensional
globe to a two-dimensional map. Differ-
ent projections are appropriate for dif-
ferent purposes, such as web mapping,
accurately measuring distances, or cal-
culating areas. There’s more to it than
that, however, and it’s important to
understand the role that both datums
and projections play. Let’s back up and
review how coordinates are repre-
sented on a globe. Latitude and longitude are the distance, in degrees, from the equa-
tor and the prime meridian, respectively. Latitude values range from -90 to 90, with
positive values north of the equator. Longitudes range from -180 to 180, with positive
values east of the Greenwich prime meridian (shown in figure 8.1). Using degrees
makes perfect sense on a spherical surface, and although the earth isn’t a perfect
sphere, it’s close enough for this to be a convenient way to specify a precise location
on the planet. 

DEFINITION The prime meridian is the line of longitude that passes through
the Royal Observatory, Greenwich, in London. This has been recognized by
much of the world as the reference meridian since 1884. The equator is the
line of latitude that is equal distances from both the north and south poles.

Methods of specifying latitude and longitude

Multiple methods exist for specifying latitude and longitude coordinates. For example,
these are all equivalent:

■ Decimal degrees (DD)—37.8197° N, 122.4786° W
■ Degrees decimal minutes (DM)—37° 49.182’ N, 122° 28.716’ W
■ Degrees minutes seconds (DMS)—37° 49’ 11” N, 122° 28’ 43” W  

Equator

Prime meridian

Figure 8.1 Latitude and longitude lines at 30° 
intervals. Positive latitude values are north of the 
equator, and positive longitudes are east of the 
prime meridian.
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However, a complication arises from the fact that the earth isn’t a perfect sphere or
even a perfect ellipsoid. As you probably learned in geometry class, but then promptly
forgot, simple equations can model the shape of ellipsoids, including spheres. But
these equations assume a perfect geometry with a nice smooth surface and no protru-
sions and dips. It would be quite something if a planet were to form that perfectly, and
ours certainly didn’t. Have you ever seen a worn-out ball, like a volleyball, that has
developed a weak spot and has a bulge that wasn’t there when the ball was new? Not
only does the earth have mountains and valleys, but it’s a little lopsided like that vol-
leyball, which definitely makes describing its surface with a simple set of equations
more complicated. 

 Because of these anomalies in the planet’s surface, and also because measurement
accuracies vary, the earth’s ellipsoid has multiple models. These models are called
datums, and every spatial reference system is based on one of them. One widely used
global datum, the World Geodetic System, was last revised in 1984. This datum, called
WGS84 for short, is the one used for data with a global coverage, including the Global
Positioning System (GPS). Most datums are designed to model the curvature of the
earth in a more localized area, such as a continent or even a smaller area. A datum
designed for one area will not work well elsewhere. For example, the North American
Datum of 1983 (NAD83) shouldn’t be used in Europe.

 Depending on which datum is being used, the same set of latitude and longitude
coordinates can refer to slightly different locations, because the underlying ellipsoids
are different shapes. Sometimes the difference between coordinates using two different

These different notations are based on the fact that angles are divided up into minutes,
where one degree in an angle is made up of 60 minutes, and each minute is made
up of 60 seconds. Because latitude and longitude are degree measurements, they’re
also divided up into minutes and seconds. To get decimal minutes from decimal
degrees, multiply the fractional part of the DD value by 60, so for example, 60 × 0.8197
= 49.182. Therefore, 37.8197 degrees equals 37 degrees and 49.182 minutes. Sim-
ilarly, you can multiply the fractional part of the minutes value by 60 to get seconds.
Because 60 × 0.182 = 10.92, now you have 37 degrees, 49 minutes, and about 11
seconds.

To go the opposite direction and convert DMS to DD, divide the minutes by 60 and
the seconds by 3600 and add those results to the hours value, like this (notice the
rounding error):

Additionally, south and west values are represented as negative numbers if the direc-
tions aren’t specified. For example, -122.4786° is the same as 122.4786° W.

To use latitude and longitude values in your Python code, you’ll need to make sure
that they use the decimal degrees format and specify directions using positive and
negative values instead of N, S, E, or W. 

DD 37 49
60
---------- 11

360
----------------+ + 37 0.8167 0.0031+ + 37.8198= = =
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datums is negligible, but other times it can be hundreds of meters. Because of this, you
always need to know which datum your geographic data is based on.

 Until now we’ve only talked about three-dimensional ellipsoids, but what you really
want in most cases is a two-dimensional map because they tend to be more convenient
for most purposes. After all, it’s hard to fold up a globe and put it in your pocket or
embed one inside of a book! How do mapmakers go from three to two dimensions?
One way to solve the problem is with what’s called an interrupted map, like that shown in
figure 8.2. You’ve probably seen these before, and perhaps you’ve even cut one out and
bent the paper to make a globe. That’s kind of cool, but in its two-dimensional form, the
map would be much easier to use if land masses weren’t split up into chunks and sep-
arated by wasted space. This is where projections come in. As their name implies,
they’re used to project, or transform, locational data into a different coordinate system.
These map projections use Cartesian coordinate systems, so locations are specified with
x,y coordinate pairs based on two perpendicular axes, like scatterplots or line graphs.
The tricky part is converting coordinates on a sphere to a two-dimensional plane.

 In fact, many ways to accomplish this exist, and they all have their own strengths and
weaknesses. Think about stretching the different parts of the interrupted map shown in
figure 8.2 so that the map was a single rectangle with no cutouts. Geographic features
would obviously get warped, especially near the poles where you had to stretch farther.
No matter how you project geographic data to two dimensions, you’ll get distortion, but
the type of distortion depends on how you do the conversion. Depending on what you
plan to use the data for, some types of distortion may be acceptable while others won’t.
Figure 8.3 shows a couple of ways a piece of paper could be wrapped around a globe and
used to convert the geographic data to 2D. Even with those methods shown here, the
angle of the paper could be changed to get a different effect.

 Certain projections, called conformal, preserve local shapes. For example, the shape
of Lake Titicaca on the border of Bolivia and Peru wouldn’t change between the
globe and the 2D map. No mathematical trickery can preserve the shape of a large
area, such as all of Eurasia, however. Mercator projections, including the Universal
Transverse Mercator (UTM), are examples of conformal projections. Others, called
equal-area projections, keep the amount of area the same, so the measured area of

Figure 8.2
An interrupted map
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Greenland wouldn’t change, although the shape might. The Lambert equal-area and
Gall-Peters projections are two examples of this. Equidistant projections, such as the
Azimuthal equidistant, keep distances and scales the same, but only for a certain part
of the map, such as the equator. The farther you get from this true line, the greater
the distortion. Figure 8.4 shows examples of different projections.

TIP Several terms exist for data that use latitude and longitude coordinate
values. You might see them referred to as having a geographic projection or
see them called unprojected or geographic.

Figure 8.3 Two different ways 
that a piece of paper could be 
wrapped around a globe and 
used to project geographic data 
onto a two-dimensional surface. 
The example on the left is 
cylindrical, and the one on the 
right is conical.

Geographic

Web Mercator (conformal)

Gall-Peters (equal-area)

Azimuthal equidistant

Figure 8.4
Examples of

different types of
projections
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Why should you care about all of these
differences? Depending on your pur-
poses, maybe you don’t. I doubt I’d be
worried about it if I was making a map of
the small town I live in. But if I was mak-
ing a map of the state I live in, I might
care if it looked short and fat or a little
taller and skinnier, as shown in figure 8.5.
What if you cared more about measure-
ments and less about appearances? Let’s
consider a dramatic example and think
about what would happen if you needed
to compare the amount of forested area
in Columbia and Chile. Sticking with lati-
tude and longitude wouldn’t work, because the lines of longitude converge at the
poles, so one degree of longitude doesn’t represent a constant distance. In fact, one
degree of longitude is equal to approximately 111 kilometers at the equator, but only
about 79 km at a latitude of 45 degrees. Although latitude distance can vary slightly
because the earth isn’t a perfect sphere, it’s generally around 111 kilometers per
degree. Therefore, a square 100 km long on each side would measure about 0.8
square degrees in Columbia, but closer to 0.5 square degrees at the southern tip of
Chile. Using latitude and longitude to compare the amount of forested area in the
two countries would obviously give inaccurate results. Instead, you’d want to choose
an appropriate equal-area projection for this purpose.

 Projections aren’t tied to specific datums, so knowing the projection of your data
isn’t enough. You also need to know the datum, and it’s the combination of the two
that defines the spatial reference system. For example, most of the data I get for Utah
uses a UTM projection and the NAD83 datum, but I can’t safely assume that all UTM
data I receive uses NAD83. It could easily be NAD27 or WGS84 instead, so I don’t have a
complete spatial reference system unless I know both the projection and the datum. If
you don’t know both components, you might map your data in the wrong location.
I’ve known people who unknowingly set their GPS to display coordinates in an
unusual spatial reference system and then collected data by writing down the coordi-
nates shown on their screen. Unfortunately, their data were then unusable because
they didn’t know what spatial reference system the GPS had been set to display at the
time. On the other hand, I also know people who lacked spatial reference information
for their data, but fortunately the data were in a common system and they figured it
out. If you’re collecting data, please simplify your life by paying attention to this cru-
cial information at the beginning of the process, no matter how boring it might seem.

TIP If you collect geographic data, it’s crucial to know from the beginning
what projection and datum your coordinates use. If you don’t pay attention to
this, then your data may end up useless, and nobody wants that.

Figure 8.5 The state of Utah shown using 
geographic (lat/lon) coordinates on the left and 
UTM Zone 12N on the right. Both examples use 
the NAD83 datum.
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8.2 Using spatial references with OSR
Because spatial reference systems (SRSs) are so important, most vector data formats
provide a way to store this information with the data, and you need to know how to
work with it. When using spatial data, one common task is to convert the dataset from
one spatial reference system to another so that it can be used with other datasets or
for a particular analysis. The analysis techniques discussed in the last chapter, for
example, only work if the geometries all use the same SRS. Another reason you might
need to convert between SRSs is if you’re using an online mapping solution that
requires a Web Mercator projection to display data.

WARNING Many GIS software packages will project on-the-fly, which means
that they’ll automatically convert data to a different SRS when displaying it.
For example, if you load in a dataset that uses an Albers equal-area projec-
tion, the map will be drawn using that projection. But if you then load a sec-
ond file that uses UTM, it will be converted to Albers so it can be displayed
correctly with the first. Of course, this only happens if both of the datasets
have SRS information stored with them, because without that the software
doesn’t know what to do. Also, this process only changes what’s in memory
and doesn’t alter what’s stored on disk in any way. Although this behavior can
be helpful when you’re using a GIS, sometimes it leads people to assume that
datasets use the same SRS when in reality they don’t.

The osgeo package contains a module called OSR (short for OGR Spatial Reference)
that’s used to work with SRSs. This section will show you how to use OSR to assign SRS
information to your data so that GIS software, including OSR, knows how to work with
it. You’ll also learn how to convert data between different SRSs so that you can trans-
form data to whichever SRS you need for a particular project.

8.2.1 Spatial reference objects

To work with a spatial reference system, you need a SpatialReference object that rep-
resents it. If you already have a layer that uses the SRS you want, then you can get the
SRS from it using the GetSpatialRef function. A similar function, GetSpatial-
Reference, will get an SRS from a geometry. Both of these functions will return None if
the layer or geometry doesn’t have an SRS stored with it. 

 Let’s look at the information contained in one of these SRS objects. Perhaps the
easiest way is to print it out, which will display a nicely formatted description of the
SRS in WKT format and doesn’t require the OSR module to be imported. The states_48
shapefile uses a geographic, or unprojected, coordinate system along with the North
American Datum of 1983 (NAD83):

>>> ds = ogr.Open(r'D:\osgeopy-data\US\states_48.shp')
>>> print(ds.GetLayer().GetSpatialRef())
GEOGCS["GCS_North_American_1983",
    DATUM["North_American_Datum_1983",
        SPHEROID["GRS_1980",6378137.0,298.257222101]],
    PRIMEM["Greenwich",0.0],
    UNIT["Degree",0.0174532925199433]]



160 CHAPTER 8 Using spatial reference systems
You can tell that this isn’t a projected SRS because it doesn’t have a PROJCS entry, only
a GEOGCS one. If you were looking at a projected SRS, there would be more informa-
tion describing the parameters of the coordinate system, such as the UTM example
show in figure 8.6. 

WKT isn’t the only string representation of an SRS. I like PROJ.4 strings because
they’re especially concise. For example, this is the PROJ.4 string for the UTM SRS
shown in figure 8.6:

'+proj=utm +zone=12 +ellps=GRS80 +towgs84=0,0,0,0,0,0,0 +units=m +no_defs '

The PROJ.4 Cartographic Projections Library is a popular open source library for con-
verting data between projections, and you can read about the details of PROJ.4 defini-
tions at http://trac.osgeo.org/proj/. See appendix D for other functions you can use
to get text representations of spatial reference systems. (Appendixes C through E are
available online on the Manning Publications website at https://www.manning.com/
books/geoprocessing-with-python.) Several of the results are wordy; try out Export-
ToXML to see what I mean.

DEFINITION Spatial Reference System Identifiers (SRIDs) are used to uniquely
identify each spatial reference system, datum, and several other related items
within a GIS. The software can use its own set of IDs, or it can use a common
set such as EPSG (short for European Petroleum Survey Group) codes. These
are the AUTHORITY entries in the WKT examples.

PROJCS["NAD83 / UTM zone 12N",
    GEOGCS["NAD83",
        DATUM["North_American_Datum_1983",
            SPHEROID["GRS 1980",6378137,298.257222101,
                AUTHORITY["EPSG","7019"]],
            TOWGS84[0,0,0,0,0,0,0],
            AUTHORITY["EPSG","6269"]],
        PRIMEM["Greenwich",0,
            AUTHORITY["EPSG","8901"]],
        UNIT["degree",0.0174532925199433,
            AUTHORITY["EPSG","9122"]],
        AUTHORITY["EPSG","4269"]],
    PROJECTION["Transverse_Mercator"],
    PARAMETER["latitude_of_origin",0],
    PARAMETER["central_meridian",-111],
    PARAMETER["scale_factor",0.9996],
    PARAMETER["false_easting",500000],
    PARAMETER["false_northing",0],
    UNIT["metre",1,
        AUTHORITY["EPSG","9001"]],
    AXIS["Easting",EAST],
    AXIS["Northing",NORTH],
    AUTHORITY["EPSG","26912"]]

Figure 8.6 Well-known text for the NAD83 UTM Zone 12N spatial reference system

http://trac.osgeo.org/proj/
https://www.manning.com/books/geoprocessing-with-python
https://www.manning.com/books/geoprocessing-with-python
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Fortunately, you don’t have to print anything out to discover if an SRS is geographic or
projected, because handy functions called IsGeographic and IsProjected can provide
that information. You can also get other information about the SRS, although you do
need to know the structure of an SRS to do so. Go back and look at the WKT in figure
8.6. You can use the GetAttrValue function to get the text corresponding to the first
occurrence of each keyword such as PROJCS or DATUM, where the keywords aren’t case-
sensitive. Assuming that the utm_sr variable holds the SRS from figure 8.6, you could
get the projection name like this:

>>> utm_sr.GetAttrValue('PROJCS')
'NAD83 / UTM zone 12N'

Several AUTHORITY entries are in the UTM SRS. Which one do you think will be
returned by GetAttrValue? Let’s try it and see:

>>> utm_sr.GetAttrValue('AUTHORITY')
'EPSG'

That didn’t tell you much, because the first value of each one happens to be ‘EPSG’.
An optional parameter to GetAttrValue lets you specify which child you want
returned using its index. The string ‘EPSG’ is the first child, but the second is a num-
ber, so try getting it:

>>> utm_sr.GetAttrValue('AUTHORITY', 1)
'26912'

Why did it get the last one shown in figure 8.6 instead of the first? This is because
items are nested inside each other in the SRS, and this one is the least nested, so it’s
the first one returned by the function. 

 If GetAttrValue only grabs the first item that appears with a given keyword, how
do you get the others? To get authority codes, or SRIDs, pass the key for the SRID that
you’re interested in to GetAuthorityCode:

>>> utm_sr.GetAuthorityCode('DATUM')
'6269'

You can get values with a PARAMETER key using GetProjParm, which takes one of the
SRS_PP constants from appendix D as an argument:

>>> utm_sr.GetProjParm(osr.SRS_PP_FALSE_EASTING)
500000.0

Many other functions are available for getting information from an SRS, several of
which only apply to certain types of SRSs. See appendix D for a full list. 

8.2.2 Creating spatial reference objects

Because you can’t always get an appropriate spatial reference object from a layer or
geometry, you may need to create your own. Because I like short representations, my
two favorite ways to do this are to use a standard EPSG code if it exists for the SRS I
want to use, or a PROJ.4 string. As you saw with the UTM example, the EPSG code for
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NAD83 UTM 12N is 26912, which you can pass to the ImportFromEPSG function after
importing OGR and creating a blank SpatialReference object:

>>> from osgeo import osr
>>> sr = osr.SpatialReference()
>>> sr.ImportFromEPSG(26912)
0
>>> sr.GetAttrValue('PROJCS')
'NAD83 / UTM zone 12N'

The SRS you create is equivalent to the UTM example from earlier. The zero returned
by ImportFromEPSG means that the SRS was imported successfully. Interestingly, watch
what happens if you use the PROJ.4 string you saw earlier:

>>> sr = osr.SpatialReference()
>>> sr.ImportFromProj4('''+proj=utm +zone=12 +ellps=GRS80
...                       +towgs84=0,0,0,0,0,0,0 +units=m +no_defs ''')
0
>>>
>>> sr.GetAttrValue('PROJCS')
'UTM Zone 12, Northern Hemisphere'

The datum name is no longer part of the SRS name because the datum wasn’t speci-
fied in the PROJ.4 string. However, the GRS80 ellipsoid used by the NAD83 datum was
part of the string, so the required information is still there (if you want to prove it to
yourself, print the WKT and compare the SPHEROID values to the ones from figure
8.6). To include the datum, add +datum=NAD83 to the PROJ.4 representation. 

TIP You can look up EPSG codes, WKT, PROJ.4 strings, and several other rep-
resentations of SRSs, at www.spatialreference.org.

Several different functions for exporting SRS information exist, and so do multiple
methods for importing this information into a spatial reference object, including one
to import information from a URL such as a definition on www.spatialreference.org
(again, see appendix D). You can also create a spatial reference object from a WKT
string without having to use one of the importer functions:

>>> wkt = '''GEOGCS["GCS_North_American_1983",
...            DATUM["North_American_Datum_1983",
...              SPHEROID["GRS_1980",6378137.0,298.257222101]],
...            PRIMEM["Greenwich",0.0],
...            UNIT["Degree",0.0174532925199433]]'''
>>>
>>> sr = osr.SpatialReference(wkt)

You can also build a spatial reference object yourself, and several projection-specific
functions can help you with this. Let’s branch out from UTM and build the Albers
Conic Equal Area SRS that the United States Geological Survey uses for the lower 48
states (figure 8.7). The projection-specific function for Albers looks like this:

SetACEA(stdp1, stdp2, clat, clong, fe, fn)

www.spatialreference.org
www.spatialreference.org


163Using spatial references with OSR
The parameters are standard parallel 1, standard parallel 2, latitude of center, longi-
tude of center, false easting, and false northing, in that order. You could use this to
build the USGS Albers spatial reference:

>>> sr = osr.SpatialReference()
>>> sr.SetProjCS('USGS Albers')
>>> sr.SetWellKnownGeogCS('NAD83')
>>> sr.SetACEA(29.5, 45.5, 23, -96, 0, 0)
>>> sr.Fixup()
>>> sr.Validate()
0

The first thing you do after creating an empty SRS is set a name for it, then specify a
datum, and last you provide the required parameters for the Albers projection. The
call to Fixup adds default values for missing parameters and reorders items so that
they match the standard. The last thing you need to do is call Validate to make sure
that you didn’t forget anything. In this case, Validate returns a zero, which means
everything is fine (in fact, many of the other functions in this example also returned
zero, but I cut the returned values out of the examples in the interest of space). Try
leaving out the datum and see what happens when you call Validate. In that case, it
should return 5, which means that the SRS is corrupt. This is because an SRS needs
either a datum or a spheroid, neither of which is specified if you leave out the call to
SetWellKnownGeogCS. If you turn on exception handling with osr.UseExceptions
(True) then Validate will throw an exception instead of return a number.

8.2.3 Assigning an SRS to data

It’s a good idea to attach SRS information to your dataset whenever possible, so that
you always know what coordinate system it uses. You can assign an SRS to layers and
individual geometries, although all geometries in a layer share the same SRS. A data
source can’t be assigned an SRS because individual layers are allowed to have different
spatial reference systems.

 Do you remember when you created new layers in chapter 3? One of the parame-
ters for the CreateLayer function was a spatial reference object. The default value for

Geographic Albers equal-area

Figure 8.7 The lower 48 states are shown using geographic coordinates and an Albers equal-area 
projection.
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this parameter is None, because OGR can’t figure out what SRS the data use on its own.
If you have a spatial reference object, you need to provide it when you create a new
layer because you have no function to add an SRS to an existing layer.

sr = osr.SpatialReference()
sr.ImportFromEPSG(26912)
driver = ogr.GetDriverByName('ESRI Shapefile')
ds = driver.CreateDataSource(r'D:\osgeopy-data\output\testdata.shp')
lyr = ds.CreateLayer('counties', sr, ogr.wkbPolygon)                  

Now the new counties shapefile and all of the geometries contained in it will know
that they use a UTM SRS (EPSG 26912). Of course, you must create the geometries
using UTM coordinates. Assigning an SRS to a layer doesn’t magically convert all of the
data to that coordinate system. All it does is provide information, so if you assign a dif-
ferent SRS than you’re using, you’re basically lying and causing confusion because
nothing will know how to work with the data.  

 If you’re working with individual geometries instead of layers, you might want to
assign an SRS to a geometry. You can do this with the AssignSpatialReference method:

geom.AssignSpatialReference(sr)

Again, this doesn’t force the geometry to use the assigned spatial reference, but
instead provides information about the SRS, whether right or wrong.

8.2.4 Reprojecting geometries

If you need your data to use a different SRS than the one they’re already using, you’ll
need to reproject them to the new SRS. I have to do this most commonly when I get a
new dataset from somewhere but it doesn’t use the SRS that I usually use. If I want to
use the new data with my existing files, I need to project it so that the SRSs match. I’ve
also needed to do this recently when using software that required data to use Web
Mercator but my originals used UTM.

 You have two different ways of projecting a geometry. One assumes that the geom-
etry already has an SRS assigned to it, and the other doesn’t. We’ll look at them both,
but first let’s get data to work with. This book’s data has a shapefile called
ne_110m_land_1p.shp that contains the world’s landmasses as one multipolygon, and
the ospybook module has a function called get_shp_geom that pulls the first geometry
out of a shapefile. You can use these to get the global multipolygon, and for good
measure, why don’t you also create a point containing the latitude and longitude of
the Eiffel Tower?

>>> world = pb.get_shp_geom(r"D:\GeoData\Global\ne_110m_land_1p.shp")
>>> tower = ogr.Geometry(wkt='POINT (2.294694 48.858093)')           
>>> tower.AssignSpatialReference(
...     osr.SpatialReference(osr.SRS_WKT_WGS84))

Because WGS84 is so common, the OSR module has a constant that contains the WKT
for that geographic coordinate system, which you use here to add an SRS to the tower 

The SRS is the second parameter
when creating the layer.

Latitude and
longitude 
coordinates
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geometry. The world geometry also
has a WGS84 SRS associated with it
because the shapefile it came from
does. If you plot the multipolygon,
you should see something similar to
figure 8.8. 

 Because both geometries know
their SRS, you can reproject them
using their TransformTo function,
where you only need to provide the
target SRS. We’ll use this to trans-
form them both to a Web Mercator
projection. Certain points, such as
the North and South poles, can’t
always be successfully reprojected,
however. This is the case when transforming the world geometry to Web Mercator, so
you also need to use the built-in module to set an environment variable telling it that
it’s okay to skip those points. Without that, the world geometry won’t be successfully
transformed, and you’ll get an error message that says “ERROR 1: Full reprojection
failed, but partial is possible if you define OGR_ENABLE_PARTIAL_REPROJECTION
configuration option to TRUE.” You can fix this by importing the gdal module and
using its SetConfigOption method:

>>> from osgeo import gdal
>>> gdal.SetConfigOption('OGR_ENABLE_PARTIAL_REPROJECTION', 'TRUE')
>>> web_mercator_sr = osr.SpatialReference()
>>> web_mercator_sr.ImportFromEPSG(3857)
>>> world.TransformTo(web_mercator_sr)
>>> tower.TransformTo(web_mercator_sr)
>>> print(tower)
POINT (255444.16760638013 6250816.9576802524)        
>>> vp.plot(world)

As you can see, the coordinates for
the Eiffel Tower no longer fall in the
range for latitude and longitude val-
ues, and the world geometry should
look like figure 8.9 when plotted.
Notice also that the world and tower
geometries themselves were changed
instead of returning new geometries,
which is different behavior than many
other functions we’ve looked at.

Figure 8.9 The world’s landmasses plotted
with Web Mercator coordinates

Figure 8.8 The world’s landmasses plotted with 
geographic coordinates

Web Mercator 
coordinates
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If you use TransformTo on a geometry that doesn’t have an SRS assigned to it, it won’t
change and you’ll get an error code of 6. You can still transform it provided that you
know what its SRS is, however. To do this, you need a CoordinateTransformation
object, which you can create using a source and a target spatial reference. For exam-
ple, let’s pretend that the world geometry doesn’t have spatial reference data and use
this technique to convert it from Web Mercator to Gall-Peters. This time you’ll use the
Transform function, which requires a CoordinateTransformation object:

>>> peters_sr = osr.SpatialReference()
>>> peters_sr.ImportFromProj4("""+proj=cea +lon_0=0 +x_0=0 +y_0=0
...                              +lat_ts=45 +ellps=WGS84 +datum=WGS84
...                              +units=m +no_defs""")
>>>
>>> ct = osr.CoordinateTransformation(web_mercator_sr, peters_sr)
>>> world.Transform(ct)
>>> vp.plot(world)

Now your plot should look like figure 8.10. If you wanted to reverse this and go from
Gall-Peters to Web Mercator, you’d switch the order of the arguments when creating
the coordinate transformation.

CHANGING DATUMS

Sometimes you’ll also need to change the datum that your dataset uses. For example,
sometimes I’m given data that uses the NAD27 datum, which I then need to convert to
NAD83 so that it matches the rest of my data. The TransformTo and Transform func-
tions will convert between datums if the necessary information is present.

 Because mathematical equations to convert between datums don’t always exist,
many times GIS uses data files called grid shift files to help with the conversion. These
contain the information needed to accurately transform coordinates from one datum
to another. The OSR module will use the appropriate files for datum transformations
if it can find them on your system, although you must make sure that both your source

Figure 8.10 The world’s landmasses 
plotted with Gall-Peters coordinates
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and target spatial references contain datum information. Figure 8.11 shows an exam-
ple of two spatial references that use the same projection and ellipsoid, but one has a
datum included and the other doesn’t. Although both are valid spatial references,
only the one with the datum will work for datum transformations. See appendix D for
more information about making grid shift files available to OSR.

 If you don’t have the appropriate grid shift files for your datum transformation, you
can set the towgs84 parameters for your source and target spatial references. These
parameters describe an approximate transformation from a particular datum to the
WGS84 datum. If you don’t know the parameters that you need, you can look them up
at www.epsg-registry.org. Make sure you set the search type to Coordinate Transforma-
tion, select a geographic area, and enter the name of the datum you’re interested in. I
searched for nad27 in the United States, and then selected the NAD27 to WGS 84 (4)
result because it was described as being appropriate for the lower 48 states. This gave
me x, y, and z translation values equal to -8, 160, and 176, respectively. Once you have
the appropriate parameters, you can use SetTOWGS84 to add them to your SRS:

sr = osr.SpatialReference()
sr.SetWellKnownGeogCS('NAD27')
sr.SetTOWGS84(-8, 160, 176)  

It’s easier to rely on grid shift files if you can get them, however.

8.2.5 Reprojecting an entire layer

No function exists for projecting an entire layer at once, but it’s not hard to do. After
creating the new layer, you need to loop through each of the features in the original

PROJCS["UTM Zone 12, Northern Hemisphere",
    GEOGCS["NAD83",
        DATUM["North_American_Datum_1983",
            SPHEROID["GRS 1980",
                6378137,298.257222101,
                AUTHORITY["EPSG","7019"]],
            TOWGS84[0,0,0,0,0,0,0],
            AUTHORITY["EPSG","6269"]],
        PRIMEM["Greenwich",0,
            AUTHORITY["EPSG","8901"]],
        UNIT["degree",0.0174532925199433,
            AUTHORITY["EPSG","9108"]],
        AUTHORITY["EPSG","4269"]],
    PROJECTION["Transverse_Mercator"],
    PARAMETER["latitude_of_origin",0],
    PARAMETER["central_meridian",-111],
    PARAMETER["scale_factor",0.9996],
    PARAMETER["false_easting",500000],
    PARAMETER["false_northing",0],
    UNIT["Meter",1]]

SRS with datum and ellipsoid

PROJCS["UTM Zone 12, Northern Hemisphere",
    GEOGCS["GRS 1980(IUGG, 1980)",
        DATUM["unknown",
            SPHEROID["GRS80",
                6378137,298.257222101]],
        PRIMEM["Greenwich",0],
        UNIT["degree",0.0174532925199433]],
    PROJECTION["Transverse_Mercator"],
    PARAMETER["latitude_of_origin",0],
    PARAMETER["central_meridian",-111],
    PARAMETER["scale_factor",0.9996],
    PARAMETER["false_easting",500000],
    PARAMETER["false_northing",0],
    UNIT["Meter",1]]

SRS with ellipsoid but no datum

Figure 8.11 Examples of two spatial references that use the same spheroid, but only one has the datum specified

www.epsg-registry.org
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layer, get the geometry and transform it, and then insert a feature containing the
transformed geometry into the new layer. Chances are, you’ll also want to keep all of
the attribute fields, so you’ll need to copy the field definitions from the original layer
when creating the new one. The following listing shows a simple example of this that
assumes the new layer doesn’t already exist and that the layer being reprojected con-
tains point geometries.

from osgeo import ogr, osr

sr = osr.SpatialReference()
sr.ImportFromProj4('''+proj=aea +lat_1=29.5 +lat_2=45.5 +lat_0=23
                      +lon_0=-96 +x_0=0 +y_0=0 +ellps=GRS80
                      +datum=NAD83 +units=m +no_defs''')

ds = ogr.Open(r'D:\osgeopy-data\US', 1)
in_lyr = ds.GetLayer('us_volcanos')

out_lyr = ds.CreateLayer('us_volcanos_aea', sr,
                         ogr.wkbPoint)

out_lyr.CreateFields(in_lyr.schema)                           

out_feat = ogr.Feature(out_lyr.GetLayerDefn())
for in_feat in in_lyr:
    geom = in_feat.geometry().Clone()                                   
    geom.TransformTo(sr)                                                
    out_feat.SetGeometry(geom)                                          
    for i in range(in_feat.GetFieldCount()):                            
        out_feat.SetField(i, in_feat.GetField(i))                     
    out_lyr.CreateFeature(out_feat)

The first thing the code in this listing does is create an output spatial reference. Then
it opens a data source for writing and gets the existing layer to reproject. Next, a new
layer is created and the field definitions are copied from the input layer to the output
layer. If you don’t do this, then you can’t copy attribute values into the new layer. After
the new layer is ready to go, then you loop through each of the features in the original
layer, and for each one you get its geometry and transform it using the spatial refer-
ence created at the beginning of the listing. Notice that you don’t provide an input
spatial reference and instead are assume that the input layer has an SRS associated
with it. After transforming the geometry, you add it to a new feature, copy all of the
attribute values to this feature, and then use it to insert the data into the new layer.

8.3 Using spatial references with pyproj
As briefly mentioned earlier, the PROJ.4 Cartographic Projections Library is a C library
for converting data between SRSs. It’s used by a variety of open source projects, includ-
ing OSR. You don’t need to install all of GDAL and OGR in order to take advantage of
PROJ.4 with Python, however, because the pyproj module provides a Python wrapper

Listing 8.1 Projecting a point layer

Copy field 
definitions

Transform geometry 
and copy attributes
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for PROJ.4. Instead of working with geometries, like OSR does, this module works with
lists of coordinate values, which can be provided as Python lists, tuples, arrays, NumPy
arrays, or scalars (NumPy is a Python module designed to work with large arrays, and
you’ll learn more about it in chapter 11). If you had a collection of coordinates in a
text file, the functions contained in the pyproj module would be an ideal way to con-
vert them to other coordinate systems.

TIP You can find online documentation and downloads for the pyproj mod-
ule at https://code.google.com/p/pyproj/.

8.3.1 Transforming coordinates between spatial reference systems

There are a couple of different ways to convert coordinates between spatial reference
systems using pyproj. You can use the Proj class to convert between geographic and
projected coordinates or the module-level transform function to convert between two
spatial reference systems. Let’s start with converting the Eiffel Tower coordinates from
latitude and longitude to UTM Zone 31N. The first thing to do is initialize a Proj
object with the UTM spatial reference system using a PROJ.4 string, and then use that
to transform the coordinates. The syntax might look a bit odd to you, because you
don’t need to call a specific function on the Proj object to do the conversion:

>>> import pyproj
>>> utm_proj = pyproj.Proj('+proj=utm +zone=31 +ellps=WGS84')
>>> x, y = utm_proj(2.294694, 48.858093)                         
>>> print(x, y)
448265.9146797105 5411920.651462567

Here you pass a single x and single y coordinate to utm_proj, and in return it gives
you one x and one y. You could also pass in a list of x values and a list of y values
(where x[i] and y[i] are a coordinate pair), and then you’d get two lists in return.

 To go the other direction, from projected to geographic coordinates, set the
optional inverse parameter to True and pass in the UTM coordinates. If you use the
UTM coordinates just calculated, you’ll get the original latitude and longitude values,
except with a slight bit of rounding error:

>>> x1, y1 = utm_proj(x, y, inverse=True)
>>> print(x1, y1)
2.294693999999985 48.85809299999999

Initializing Proj objects

You can initialize Proj objects using PROJ.4 strings, arguments corresponding to the
parameters in the PROJ.4 string, or with an EPSG code. For example, these are all
equivalent:

p = pyproj.Proj('+proj=utm +zone=31 +ellps=WGS84')
p = pyproj.Proj(proj='utm', zone=31, ellps='WGS84')
p = pyproj.Proj(init='epsg:32631')

Do the conversion

https://code.google.com/p/pyproj/
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If you need to convert between two projected coordinate systems, then it’s easiest to
use the pyproj transform function instead. In addition, you’re required to use trans-
form if you want to convert between datums. Let’s use UTM coordinates for the Statue
of Liberty in New York City to compare the difference between the WGS84 and NAD27
datums. The transform function takes four required parameters: source SRS, target
SRS, x, and y, where the spatial reference information is contained in Proj objects.
This example converts coordinates from the WGS84 datum to NAD27. Both sets of
coordinates use the UTM Zone 18N projection.

>>> wgs84 = pyproj.Proj('+proj=utm +zone=18 +datum=WGS84')
>>> nad27 = pyproj.Proj('+proj=utm +zone=18 +datum=NAD27')
>>> x, y = pyproj.transform(wgs84, nad27, 580744.32, 4504695.26)       
>>> print(x, y)
580711.5381565462 4504472.13698683                                

Comparing the input and output numbers, it looks like the two datums differ by 30
meters or so in the east/west direction, but the north/south difference is over 200
meters, at least in New York City. As shown in figure 8.12, using the NAD27 coordinates
as if they were WGS84 puts the Statue of Liberty in the water rather than on Liberty
Island. 

 This example is a good illustration of why you should always know your datum.

GS84
ates NAD27 coordinates

Figure 8.12 The black dot shows where NAD27 coordinates would place 
the Statue of Liberty if they were treated as if they were WGS84.
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8.3.2 Great-circle calculations

The shortest distance between two points on the globe is called the great-circle distance.
Because travelers don’t like to travel farther than necessary, these have been impor-
tant for navigation for centuries. You can use pyproj to get this distance between two
sets of latitude and longitude coordinates, along with the starting and ending bear-
ings of the great-circle line between them. To illustrate how this is done, let’s look at
the distance between Los Angeles and Berlin (figure 8.13). The first thing you need to
do is instantiate an object of the Geod class with the ellipsoid you want to use. A list of
options is available on the pyproj website mentioned earlier. Once you have the Geod,
pass the starting and ending coordinates in decimal degrees to its inv function in
order to get the forward bearing, backward bearing, and distance:

>>> la_lat, la_lon = 34.0500, -118.2500
>>> berlin_lat, berlin_lon = 52.5167, 13.3833
>>> geod = pyproj.Geod(ellps='WGS84')
>>> forward, back, dist = geod.inv(la_lon, la_lat, berlin_lon, berlin_lat)
>>> print('forward: {}\nback: {}\ndist: {}'.format(forward, back, dist))
forward: 27.23284045673668
back: -38.49148498662066
dist: 9331934.878166698

What exactly do these results mean? If you were to
head out from Los Angeles (the first set of coordi-
nates passed to inv) at a bearing of 27.2328 degrees
and travel 9,331,935 meters, you’d find yourself in
Berlin. Or if you wanted to travel the other way,
leave Berlin at a bearing of -38.4915° and travel the
same distance to arrive in Los Angeles.

 You can also find out where you’d end up if you
followed a bearing for a certain distance. To do this,
pass the starting coordinates, bearing, and distance
in meters to the fwd function. This will return the
ending longitude, latitude, and bearing back to
where you came from. For example, if you plug in
the Berlin coordinates, backward bearing, and distance you got a minute ago, it should
spit out the coordinates for Los Angeles along with the bearing from LA to Berlin:

>>> x, y, bearing = geod.fwd(berlin_lon, berlin_lat, back, dist)
>>> print('{}, {}\n{}'.format(x, y, bearing))
-118.25000000000001, 34.05000000000002
27.23284045673668

You can also get a list of equally spaced coordinates along the great-circle line by passing
starting and ending coordinates and the number of desired points to the npts function:

>>> coords = geod.npts(la_lon, la_lat, berlin_lon, berlin_lat, 100)
>>> for i in range(3):
...     print(coords[i])

Figure 8.13 The great-circle path 
between Los Angeles and Berlin
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...
(-117.78803196383676, 34.78972514500416)
(-117.31774994946879, 35.52757560403803)
(-116.83878951054419, 36.2634683783333)

I used the npts function to generate the points used to draw the great circle path
between Los Angeles and Berlin in figure 8.13.

8.4 Summary 
■ Several main types of map projections exist, and each is used to preserve a spe-

cific property of the data. Make sure you choose a projection appropriate for
your use.

■ Always make sure you know both the projection and datum of your datasets.
■ You can’t transform data to another spatial reference system if you don’t know

the one it currently uses.
■ You can use either OSR or pyproj to transform data between spatial reference

systems.
■ Use pyproj for great-circle calculations.



Reading and writing
raster data
If you have a geographic dataset that’s made of continuous data such as elevation
or temperature, it’s probably a raster dataset. Spectral data such as aerial photo-
graphs and satellite imagery are also stored this way. These types of datasets don’t
assume strict boundaries exist between objects in the way that vector datasets do.
Think of a digital photograph and how each pixel can be a slightly different color
than the pixels next to it. The fact that pixel values can vary continuously like this
makes for a much better-looking photo than if there were only a few colors to
choose from. This trait also makes rasters appropriate for continuously varying data
such as elevation.

 Working with raster datasets is different from working with vectors. Instead of
having individual geometries, you have a collection of pixels which is essentially a
large two- or three-dimensional array of numbers. A raster dataset is made of bands

This chapter covers
■ Understanding raster data basics
■ Introducing GDAL
■ Reading and writing raster data
■ Resampling data
173
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instead of layers, and each of these bands is a two-dimensional array. The collection of
bands becomes a 3D array. It’s a different way of thinking about spatial data, and if you
have a math phobia, this description might make it sound scary, too. But you’ll soon
see that it’s not.

 In this chapter you’ll learn basic theory of raster data, including tips for keeping
them to manageable sizes. Then you’ll see how to use Python and GDAL to read these
datasets into memory and how to write them back out to disk. The easiest case is to
read and write an entire dataset at once, but sometimes you don’t need the entire spa-
tial extent, and other times the amount of memory is a limiting factor, so you’ll also
learn how to deal with a spatial subset of the data. It’s also possible to change the pixel
size while reading or writing, and you’ll see how to do that as well.

9.1 Introduction to raster data
As mentioned, raster datasets can hold pretty much any type of data you’d like. That
doesn’t mean that it’s always a good idea to use rasters, however. Objects that can be
thought of as points, lines, or polygons are usually better left as vectors. For example,
country boundaries lend themselves perfectly to a polygon vector dataset. This same
data could be stored in a raster, but it would take up more disk space and the bound-
aries wouldn’t be nice, smooth lines. You also couldn’t use vector data analysis func-
tions such as buffering and intersecting. These would still be possible using raster
techniques, but you’d be better off sticking to vector in this case. 

 Raster is a perfect choice when values change continuously instead of at sharply
defined boundaries. This includes common datasets such as elevation, slope, aspect,
precipitation, temperature, and satellite data, but it can include many other things,
too. It could be evapotranspiration, distance from roads, soil moisture, or anything
else you might need to model as a continuous variable. Sometimes you need what
would normally be vector data to be represented as a raster. For example, rivers and
streams are good candidates for vector data, but rasters are required for modeling
flow accumulation or groundwater flow, such as what would be needed to track the
flow of a contaminant in the water supply.

 Also, raster datasets don’t have to contain continuous data. In fact, I see many ras-
ters made of categorical data such as land cover type. One reason for this is that ras-
ters are used in the models used to produce these datasets in the first place. For
example, land cover models typically use visible and nonvisible wavelengths of light
from satellite imagery, along with ancillary data such as elevation. The model output is
a raster because the inputs are rasters, and it makes sense to leave it that way. It also
makes the data easy to use as an input to other raster-based models.

 Other examples include viewshed analysis, which takes topology into account
when determining what’s visible from a certain location. Maybe a ski resort would use
this to decide where to locate a restaurant for the best views, and I know of a case
where this type of analysis is being used to determine if ground bird nesting sites are
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visible to hawks perched on power lines (unpublished, but see Hovick et al.1 for
related research). Speaking of wildlife, rasters can also be used for habitat modeling,
which might be done purely for the sake of knowledge, or to help select conservation
areas. You might think of elevation as a fairly static dataset, but I know researchers
who use ground-based lasers (in the form of LIDAR systems) to create elevation mod-
els of riverbeds, and then they do the same thing after a flood event so they can com-
pare the before and after elevation profiles (Schaffrath et al.2). The possibilities are
endless, really.

 Now let’s talk a bit about the details of raster datasets. You can probably envision a
digital photograph as a two-dimensional array of pixels. In fact, that’s what we talk
about when discussing the dimensions of a photo—the numbers of rows and columns
in that 2D array. This is what raster datasets are, except that they aren’t limited to two
dimensions. They can have a third dimension in the form of bands. Digital photos
have multiple bands, too, although you don’t usually think of them that way. But they
have one each for red, green, and blue wavelengths of light. Your computer (or
printer) combines these together to produce the colors you see on your monitor
screen. You’re familiar with this concept if you’ve ever created a webpage and speci-
fied a color using HEX notation, where the first two numbers correspond to red, the
second two to green, and the last two to blue, or RGB notation where you provide a
separate number for each of these colors. 

 Also, just as with a photograph, each band in a dataset has the same numbers of
rows and columns, so the pixels from one fall in the same spatial location as the pixels
in another. If the pixels for each individual color in a photograph didn’t line up cor-
rectly, I imagine the results would look fairly blurry.

 Obviously not all raster datasets are photographs,
so pixel values don’t have to correspond to colors.
Pixel values in a digital elevation model (DEM), for
example, correspond to elevation values. Generally
DEM datasets only contain one band, because elevation
is the only value required to create a useful dataset.
Figure 9.1 shows a single-band raster landcover map
for the state of Utah, where each unique pixel value
represents a different landcover classification. This
dataset contains discrete, rather than continuous, data.

Figure 9.1 A landcover classification map, where each unique
pixel value corresponds to a specific landcover classification

1 Hovick, T. J., Elmore, R. D., Dahlgren, D. K., Fuhlendorf, S. D., Engle, D. M. 2014. REVIEW: Evidence of neg-
ative effects of anthropogenic structures on wildlife: a review of grouse survival and behavior. Journal of
Applied Ecology, 51: 1680–1689. DOI: 10.1111/1365-2664.12331.

2 Schaffrath, K. R., P. Belmont, and J.M Wheaton. 2015. Landscape-scale geomorphic change detection: Quan-
tifying spatially variable uncertainty and circumventing legacy data issues. Geomorphology, 250: 334-348.
DOI: 10.1016/j.geomorph.2015.09.020.
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NOTE TO PRINT BOOK READERS: COLOR GRAPHICS Many graphics in this book
are best viewed in color. The eBook versions display the color graphics, so
they should be referred to as you read. To get your free eBook in PDF, ePub,
and Kindle formats, go to https://www.manning.com/books/geoprocessing-
with-python to register your print book.

Satellite imagery, on the other hand, contains measurements of various wavelengths,
many of which aren’t visible to our eyes. While the image might contain bands corre-
sponding to visible red, green, and blue wavelengths, there might also be bands for
infrared or thermal radiation. False color images such as those shown in figure 9.2 are
created by displaying an infrared band along with visible light. This figure illustrates
another use case for satellite imagery in the form of raster data. The image on the left
was created using visible light wavelengths, like a traditional photograph. The camera
also captured a near infrared wavelength as another band at the same time, and it was
used along with the visible red and green bands to create the false color image on the
right. The near infrared band is brighter for growing vegetation, and it’s displayed as
red, so red areas are vegetation. This band combination is useful for monitoring vege-
tation. The field in the stadium and the practice fields outside are both green and
look like grass in the natural color image, but the field inside the stadium is dark gray
in the false color image, so it must be artificial. The practice fields outside the stadium
are bright red, however, so they must be grass.  

Figure 9.2 Two images of Gillette Stadium, home of the New England Patriots, in Foxborough, Massachusetts. 
The field inside the stadium looks like grass in the natural color image on the left, and it looks gray in the false 
color image on the right, which makes it clear that it’s actually artificial. The practice fields, on the other hand, 
also look like grass in the natural color image on the left, but are red in the image on the right, signifying that 
they are indeed grass. 

https://www.manning.com/books/geoprocessing-with-python
https://www.manning.com/books/geoprocessing-with-python
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Let’s make another comparison to photographs. Although pictures you take with your
phone might be geotagged, meaning that metadata in the image specifies where you
were standing when you took the photo, each pixel doesn’t correspond to a specific
location on the ground. That wouldn’t even make sense for most of the photos you
take, but what if you took one from an airplane, looking straight down? A photo like
that could be overlaid on a map if you had the appropriate spatial information. Hav-
ing only the geotagged coordinates isn’t enough, even if you knew exactly what part of
the photo the coordinates corresponded to, such as a corner or the center. For exam-
ple, think how different your photo would look if you were in a Cessna flying relatively
close to the ground as opposed to a 747 much higher up. Your photo would cover a
much larger area in the second case, even if the photo was taken with the same cam-
era and had the same number of rows and columns. The difference is the pixel size or
the area on the ground that a single pixel covers. The pixels in the photo taken from
the Cessna would each cover a smaller area than a pixel in the 747 photo. If you knew
how much area they each covered, along with the coordinates of one of them, you
could figure out how to stretch the photo so that it overlaid on a map. This is assum-
ing that your camera was pointed exactly straight down so the pixels aren’t skewed to
one side. It also assumes that you had things aligned perfectly so that the top of the
photo was exactly north, although you could rotate the image to compensate for that.

 Knowing the pixel size is important if you want to overlay your photo on a map, but
you obviously need coordinates to go with it. With vector data it’s enough to know the
spatial reference system because the coordinates for each feature are stored in the ver-
tices. Given the SRS, each vertex can be placed in the correct location with lines drawn
between them, and you have your geometry. Raster datasets don’t use vertices, and
instead commonly use one set of coordinates, the pixel size, and the amount the data-
set is rotated to determine coordinates for the rest of the image. This is called an affine
transformation, and is a common way to georeference a raster dataset, although it isn’t
the only way. The set of coordinates is
generally for the upper-left corner of
the image and is called the origin. For
the simple (and common) case of a ras-
ter that has the top of the dataset facing
north, you only need these coordinates
and the pixel size to find the coordi-
nates of any pixel in the image. All you
need to do is figure out the offsets from
the origin, multiply those by the pixel
size, and add that to the origin coordi-
nates. Figure 9.3 shows how to get the
upper-left coordinates for the pixel in
the fifth column and fourth row. The
first row and column have offsets 0, so

x0, y0

py

x = x0 + 4px
y = y0 – 3py

px

Figure 9.3 An example showing how to get the 
upper-left coordinates for the pixel in the fifth 
column and fourth row
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your offsets in this case are 4 and 3. To get the easting coordinate, multiply the pixel
width by 4 to get the distance across those four columns. Then add that to the origin’s
easting coordinate, and you’re done. You can get northings the same way, but by using
the row offset instead of the column. As you can see, it’s extremely important that the
origin coordinates are correct and using the right SRS, or else you can’t calculate coor-
dinates for any part of the dataset.

 As you’ve no doubt noticed, the more pixels contained in a photo, the more disk
space that photo requires. Similarly, raster datasets can take up a lot of space on disk
and in RAM, so you should ensure that you’re not using smaller pixels or larger data
types than are necessary. For example, if your data are only good down to 10 meters,
it doesn’t make sense to have 1-meter pixels because the smaller pixels inside your 10-
meter block will all have the same value. As a comparison, you may have seen com-
pact digital cameras with more megapixels than high-end digital SLRs. The SLR still
takes better photos, though, because higher quality data is collected. More pixels
aren’t a substitute for quality data or effective resolution. Not only would they fail to
improve your data, all of these extra pixels would greatly increase the size of your file.
Doubling the number of rows and columns doesn’t double the size of the image.
Instead, it quadruples it! For example, an image with 250 rows and 250 columns
would have 250 x 250 = 62,500 pixels, while an image with 500 rows and columns has
250,000 pixels.

 The data type you choose for your data is also important when it comes to storage
space. For example, if your pixel values all fall in the range of 0 to 254, then you
should use a byte data type (254 is the largest value a byte can hold). In this case, each
pixel will take up a byte, or 8 bits, of disk space, no matter the value, unless you’re
using compression. If you were to store this same data as 32-bit integer, each pixel
would take up four times as much space as before. You’d be taking up four times as
much memory with absolutely no benefit. With a small dataset, this might not matter
so much, but it certainly does with large datasets. 

 If rasters can be so large and take a while to process, how can they be drawn on your
screen in a reasonable amount of time? This is where overview layers come in. You might
have also heard them called pyramid layers or reduced resolution datasets (hence the .rrd
extension that several types of overviews have). Overview layers are reduced resolution
layers—they’re rasters that cover the same area as the original, but are resampled to
larger pixel sizes. A raster dataset can have many different overviews, each with a differ-
ent resolution. When you’re zoomed out and looking at the whole image, the coarse
resolution layer is drawn. Because the pixels are so large, that layer doesn’t take much
memory and can draw quickly, but you can’t tell the difference at that zoom level. As
you zoom in, a higher resolution layer is drawn, but only the part you’re viewing needs
to be loaded and shown. If you zoom in enough, you’ll see the original pixels, but
because you’re only looking at a small subset of the image, it still draws quickly.

 Figure 9.4 shows how this works. Each successive overview layer has a pixel size twice
as large as the previous one. All resolutions look the same when viewing the entire
image, but you can see the difference when you’re zoomed into a smaller area. The
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upper-left image in the figure is a full resolution (1 x 1-meter pixel) image of San Diego
Harbor. You can see individual cars, boats, and trees. The middle-top image is the first
set of overviews, with pixels 2 meters on a side. The pixels in the upper-right image are
4 x 4 meters. Along the bottom row, the pixels are 8, 16, and 32 meters on a side. If
you’re zoomed out so you can see all of San Diego, you can’t tell the difference between
the first and the last image, but the last one is a small fraction of the size of the full-res-
olution one and draws much faster. A good rule of thumb is to create overview layers of
decreasing resolution until the coarsest one has 256 pixels or less in one dimension. 

 Incidentally, the ubiquitous web-mapping services use this same technique to dis-
play aerial photography, except that the reduced resolution layers are stored as collec-
tions of individual tiles. Your browser downloads whichever tiles are required to cover
the area you’re looking at, and as you zoom in, you get tiles that have a higher resolu-
tion and cover a smaller area, until eventually the resolution is so good that you can
see your house or car.

 Another aspect of raster datasets that influences access speed is how they’re stored
on disk. Rasters are made up of blocks, which have to do with how the data are

A

D

B C

E F

Figure 9.4 Example of how each overview is a coarser resolution than the previous one. The image 
in the upper left (A) is full resolution, and each successive image uses a pixel size twice as large as 
the previous one. The last image (F) only looks good when zoomed way out, but it draws much faster 
than the full image at that scale.
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arranged on the disk. As you’d expect, each format does this differently. (If not, they
wouldn’t really be different formats, would they?) Blocks of pixels are all physically
stored next to each other on disk, so they can be accessed together efficiently. It’s pos-
sible that other blocks belonging to the same image are stored on another part of the
disk; this is the sort of problem you solve by defragmenting your drive. It’s faster to
grab data that are close to each other physically, just as it’s faster for you to pull two
books off the same shelf instead of from two different bookshelves. If you need to read
or write data, it’s most efficient to use blocks. For example, GeoTIFFs come in tiled
and untiled formats. Untiled GeoTIFFs store each row of pixels as a block, but tiled
ones use square sets of pixels instead, with 256 x 256 being a common block (or tile)
size. It’s faster to read data from a tiled GeoTIFF in the square chunks corresponding
to blocks, but it’s faster to deal with entire rows when it comes to untiled GeoTIFFs.

 You’re probably also wondering about data compression, because this is regularly
used with digital photos in .jpeg format and can significantly reduce the size of a file.
This is certainly possible, and multiple types of compression are available, depending
on the data format. You might have heard of lossy versus lossless compression. Lossy
compression loses information in the act of compressing the data. When saving .jpegs,
you’ve probably noticed the compression quality option. The higher the quality, the
less data you lose and the better the resulting image looks. The .png format, however,
is lossless, which is why you aren’t asked for a compression quality when saving one of
those. That doesn’t mean that the data can’t be compressed. It means that you won’t
lose any data in the act of compression, and the image can be perfectly reconstructed
into the original uncompressed dataset. If you plan to compress your data but you also
need to perform analyses on it, make sure you select a lossless algorithm. Otherwise,
your analysis won’t be operating on the actual pixel values because several will have
been lost. GeoTIFF is a popular lossless format.

 I have one more important concept you need to understand if you’re going to use
raster data, and that’s the difference between resampling methods. You don’t have a
one-to-one mapping between pixels when a raster is resampled to a different cell size
or reprojected to another spatial reference system, so new pixel values have to be cal-
culated. The simplest and fastest method, called nearest-neighbor, is to use the value
from the old pixel that’s closest to the new one. Another possible algorithm, shown in
figure 9.5, is to take the average of the four closest pixels. Several other methods use
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Figure 9.5 Simple resampling example, where the average of four pixels is used to calculate the 
value for a new pixel that covers the same extent as the four smaller pixels
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multiple input pixels, such as bilinear, which uses a weighted average of the four clos-
est input pixels. 

 You should always use nearest-neighbor resampling when dealing with datasets
containing discrete values, such as the landcover classifications from figure 9.1. Other-
wise, you might end up with a value that doesn’t correspond to a classification, or with
a number that denotes a completely unrelated classification. Continuous data, on the
other hand, are well-suited to the other resampling methods. For example, taking an
average elevation value makes perfect sense, and you’ll get smoother output that way
than if you used nearest-neighbor.

9.2 Introduction to GDAL
Now that the theory is out of the way, let’s learn how to work with these datasets using
GDAL. Numerous different file formats exist for raster data, and GDAL is an extremely
popular and robust library for reading and writing many of them. The GDAL library is
open source, but has a permissive license, so even many commercial software pack-
ages use it. Unfortunately, they don’t necessarily use it to read as many formats as pos-
sible, so I have students and colleagues ask me on a regular basis if I can convert their
data into a format their software can read. Every time I get asked this, I point the per-
son to GDAL and its command-line utilities. They’re usually amazed with what they
can do with free software, and if they knew how to write their own code, they could do
even more.

 The GDAL library is well known for its ability to read and write so many different
formats, but it also contains a few data processing functions such as proximity analysis.
You’ll still have to write your own processing code in many cases, but this is relatively
easy for many types of analyses. There’s a Python module called NumPy that’s
designed for processing large arrays of data, and you can use GDAL to read data
directly into NumPy arrays. After manipulating the data however you need, using
NumPy or another module that works with these arrays, you can write the array back
out to disk as a raster dataset. It’s a pretty painless process. You’ll learn how to work
directly with NumPy arrays in chapter 11.

 I only use a small handful of raster formats on a regular basis, and I imagine that
most readers of this book do the same, but nonetheless there are well over 100 differ-
ent format drivers available for GDAL, listed online at http://www.gdal.org/
formats_list.html. Each one of these drivers handles reading and writing a specific
data format. You probably won’t have all of them available with your version of GDAL,
but they do exist. If you need a particular driver and can’t find a precompiled GDAL
binary with that specific one, you can always compile your own customized version of
GDAL (although this might be tricky, especially if you have no experience with that
sort of thing). Not all drivers support the same operations, however. While many sup-
port reading and writing, some are read-only, and others won’t let you modify existing
datasets, although you can create new ones. Assuming the driver supports the opera-
tion you have in mind, you use all of the drivers the same way. Most of my examples
will use GeoTIFFs, but they’d work fine with other formats as well.

http://www.gdal.org/formats_list.html
http://www.gdal.org/formats_list.html
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The basic structure of a GDAL dataset is shown in figure 9.6 and matches what you’ve
learned about raster datasets in general. Each dataset contains one or more bands,
which in turn contain the pixel data and possibly overviews. The georeferencing
information is contained in the dataset because all of the bands use the same infor-
mation for this.

 To illustrate how to use GDAL to read and write raster data, let’s start with an
example that combines three individual Landsat bands into one stacked image, as
shown in figure 9.7. The Landsat program is a joint initiative between the United

Dataset

Band 2

Data array

GeotransformBand 1 Band 3

Overview 1Data array Overview 2

Figure 9.6 The basic structure of a GDAL dataset. Each dataset contains one or more bands, which in 
turn contain the pixel data.

A

C

B

D

Figure 9.7 Red (A), green (B), 
and blue (C) Landsat bands are 
shown in black and white, and you 
can see that they look a bit 
different from each other. Part D 
shows these three bands stacked 
into an RGB image like that 
created by listing 9.1. 
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States Geological Survey (USGS) and the National Aeronautics and Space Administra-
tion (NASA), and has been collecting moderate-resolution satellite imagery worldwide
since 1972. Landsat images are distributed by the USGS as a collection of GeoTIFFs,
one for each collected band. With the exception of bands 6 (thermal) and 8 (pan-
chromatic), each of these has a 30-meter resolution and because they’re from the
same Landsat scene, the same dimensions. This makes things easy, because the bands
go directly on top of one another with no fiddling required. Listing 9.1 shows how to
create a three-band dataset with these same dimensions, and then copy bands 3, 2,
and 1 into it. These three bands correspond to red, green, and blue wavelengths of
visible light, respectively, so putting them in this order will result in an RGB (red,
green, blue) image that will look much like it would to your own eyes. Figure 9.7
shows the individual red, blue, and green bands in black and white, along with the
resulting three-band natural color image. If you preview your images in a GIS, they’ll
probably look similar to this because the GIS will most likely stretch them. If you view
them somewhere else, they’ll look washed out compared to this. I chose to include
the stretched images because you can’t see any detail at all in the others on the
printed page. Let’s take a look at the following code.

import os
from osgeo import gdal                                 

os.chdir(r'D:\osgeopy-data\Landsat\Washington')
band1_fn = 'p047r027_7t20000730_z10_nn10.tif'
band2_fn = 'p047r027_7t20000730_z10_nn20.tif'
band3_fn = 'p047r027_7t20000730_z10_nn30.tif'

in_ds = gdal.Open(band1_fn)                                
in_band = in_ds.GetRasterBand(1)                                       

gtiff_driver = gdal.GetDriverByName('GTiff')                           
out_ds = gtiff_driver.Create('nat_color.tif',                          
    in_band.XSize, in_band.YSize, 3, in_band.DataType)                 
out_ds.SetProjection(in_ds.GetProjection())                            
out_ds.SetGeoTransform(in_ds.GetGeoTransform())                        

in_data = in_band.ReadAsArray()                                       
out_band = out_ds.GetRasterBand(3)                                       
out_band.WriteArray(in_data)                                            

in_ds = gdal.Open(band2_fn)                                             
out_band = out_ds.GetRasterBand(2)                                     
out_band.WriteArray(in_ds.ReadAsArray())                               

out_ds.GetRasterBand(1).WriteArray(
    gdal.Open(band3_fn).ReadAsArray())

out_ds.FlushCache()                                                   
for i in range(1, 4):                                                    
    out_ds.GetRasterBand(i).ComputeStatistics(False)                  

Listing 9.1 Stacking individual raster bands into one image

Import GDAL

Open the band 1 
GeoTIFF

Create a three-band 
GeoTIFF with same 
properties as band 1

Copy pixel data from input 
band to band 3 of output

Copy pixel data from a 
dataset instead of a band

Compute statistics on 
each output band
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out_ds.BuildOverviews('average', [2, 4, 8, 16, 32])              

del out_ds

What happens here? Well, the first thing you do is import the gdal module. Then you
set your current directory and specify which file corresponds to which Landsat band.
Then you open the GeoTIFF containing the first band by passing the filename to
gdal.Open. You also grab a handle to the first and only band inside the dataset,
although you haven’t read any data in yet. Notice that you use an index of 1 instead of
0 to get the first band. Band numbers always start with 1 when you use GetRasterBand,
although I frequently forget and use 0 and then have to fix my error. Anyway, you
need this band object before creating the output image because it has information
you need.

TIP Remember that band indices start at 1 instead of 0.

Next you create a new dataset to copy the pixel data into. You have to use a driver
object to create a new dataset, so you find the GeoTIFF driver and then use its Create
function. Here’s the full signature for that function:

driver.Create(filename, xsize, ysize, [bands], [data_type], [options]) 

■ filename is the path to the dataset to create.
■ xsize is the number of columns in the new dataset.
■ ysize is the number of rows in the new dataset.
■ bands is the  number of bands in the new dataset. The default value is 1.
■ data_type is the type of data that will be stored in the new dataset. The default

value is GDT_Byte.
■ options is a list of creation option strings. The possible values depend on the

type of dataset being created.

Because you use the GeoTIFF driver, the output file will be a GeoTIFF no matter what
file extension you give it. The extension isn’t added automatically, however, so you do
need to provide it. In this case, you call it nat_color.tif and save it in the D:\osgeopy-
data\Landsat\Washington folder, because that’s the current folder set with os.chdir.
You’re also required to provide the numbers of columns and rows when creating a
new dataset, so you use the XSize and YSize properties, respectively, to get that
information from the input band. The next argument to Open is the number of
bands, and you want this new raster to have three of them. The next optional param-
eter is the data type, which has to be one of the values from table 9.1. You obtain this
information from the input band, although you could have ignored it in this case
because these images use the default type of GDT_Byte. You can also provide format-
specific creation options, but you don’t do that here. Because every format has
its own options, you need to consult www.gdal.org/formats_list.html for your format
of interest.

Build over
views/pyramid layers

www.gdal.org/formats_list.html


185Introduction to GDAL
  

At this point you have an empty three-band dataset, but you probably want it to know
what SRS it uses and where it’s located on the planet. The next two lines take care of
those details, and they’re repeated here:

out_ds.SetProjection(in_ds.GetProjection())
out_ds.SetGeoTransform(in_ds.GetGeoTransform())

You get the projection (SRS) from the input dataset and copy it to the new dataset, and
then you do the same for the geotransform. The geotransform is important because it
provides the origin coordinates and pixel sizes, along with rotation values if the image
isn’t situated so the top faces north. As you learned earlier, the origin and pixel size
are extremely important when it comes to placing the dataset in the correct spatial
location. Although you don’t have to add the projection and geotransform informa-
tion before adding pixel values, I prefer to get this out of the way as soon as I create
the new dataset.

 After setting up your dataset, it’s time to add pixel values. Because you already have
the band object from the GeoTIFF for Landsat band 1, you can read the pixel values
from it into a NumPy array. If you don’t provide any parameters to ReadAsArray, then
all pixel values are returned in a two-dimensional array with the same dimensions as
the raster itself. At this point your in_data variable holds a two-dimensional array of
pixel values:

in_data = in_band.ReadAsArray()

Table 9.1 GDAL data type constants

Constant Data type

GDT_Unknown Unknown

GDT_Byte Unsigned 8-bit integer (byte)

GDT_UInt16 Unsigned 16-bit integer

GDT_Int16 Signed 16-bit integer

GDT_UInt32 Unsigned 32-bit integer

GDT_Int32 Signed 32-bit integer

GDT_Float32 32-bit floating point

GDT_Float64 64-bit floating point

GDT_CInt16 16-bit complex integer

GDT_CInt32 32-bit complex integer

GDT_CFloat32 32-bit complex floating point

GDT_CFloat64 64-bit complex floating point

GDT_TypeCount Number of available data types



186 CHAPTER 9 Reading and writing raster data
Now, because band 1 of a Landsat image is the blue band, you need to put that into
the third band of your output image to get the bands in RGB order. The next thing
you do is get the third band from out_ds and then use WriteArray to copy the values
in the in_data array into the third band of your new dataset:

out_band = out_ds.GetRasterBand(3)
out_band.WriteArray(in_data)

You still need to add the green and red Landsat bands to your dataset, so then you
open the second band’s GeoTIFF. Notice that you don’t get the band object from the
dataset, though, because you’re going to read pixel data directly from the dataset
itself this time. Because the second Landsat band is the green one, you then get a han-
dle to the second (green) band in your stacked dataset, and copy the data from the
Landsat file to your stacked dataset:

in_ds = gdal.Open(band2_fn)
out_band = out_ds.GetRasterBand(2)
out_band.WriteArray(in_ds.ReadAsArray())

When you call ReadAsArray on a dataset, you get a three-dimensional array if the
dataset you’re reading from has multiple bands. Because the Landsat file only has
one band, ReadAsArray on the dataset returns the same two-dimensional array that
you’d get from the band object. Instead of saving the data into an intermediate vari-
able, this time you immediately send it to the output band. Then you do the same
thing for the red pixel values, but compress it into even less code. The result is the
same, however:

out_ds.GetRasterBand(1).WriteArray(gdal.Open(band3_fn).ReadAsArray())

In the next bit of code, you compute statistics on each band in your dataset. This isn’t
strictly necessary, but it makes it easier for some software to display it nicely. The statis-
tics include mean, minimum, maximum, and standard deviation. A GIS can use this
information to stretch the data on the screen and make it look better. You’ll see an
example of how to stretch data manually in a later chapter. Before computing statis-
tics, you have to ensure that the data have been written to disk instead of only cached
in memory, so that’s what the call to FlushCache does. Then you loop through the
bands and compute the statistics for each one. Passing False to this function tells it
that you want actual statistics instead of estimates, which it might get from overview
layers (which don’t exist yet) or from sampling a subset of the pixels. If an estimate is
acceptable, then you can pass True instead; this will also make the calculation go
faster because not every pixel needs to be inspected:

out_ds.FlushCache()
for i in range(1, 4):
    out_ds.GetRasterBand(i).ComputeStatistics(False)
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The last thing you do is build overview layers for the dataset. Because these pixel
values are continuous data, you use average interpolation instead of the default of
nearest-neighbor. You also specify five levels of overviews to build. It happens that five
levels are what you’d need to get tiles of size 256 for this particular image:

out_ds.BuildOverviews('average', [2, 4, 8, 16, 32])

Oh, and don’t forget to delete the output dataset. This will happen automatically
when the variable goes out of scope, but this may not be when your script finishes run-
ning if you’re using an interactive Python environment. This is a regular occurrence
when my students are working on their homework. They don’t flush the cache or
delete the variable, and their IDE doesn’t release the dataset object when the script
finishes, so they end up with an empty image and don’t know why.

9.3 Reading partial datasets
In listing 9.1 you read and wrote entire bands of data at a time. You can break it up
into chunks if you need to, however. This might be because you only need a spatial
subset of the data to begin with, or maybe you don’t have enough RAM to hold it all at
once. Let’s a take a look at how you can access subsets instead of the entire images.

 The ReadAsArray function has several optional parameters, although they differ
depending on whether you’re using a dataset or a band. 

 Here’s the signature for the band version:

band.ReadAsArray([xoff], [yoff], [win_xsize], [win_ysize], [buf_xsize],
                 [buf_ysize], [buf_obj])

■ xoff is the column to start reading at. The default value is 0.
■ yoff is the row to start reading at. The default value is 0.
■ win_xsize is the number of columns to read. The default is to read them all.
■ win_ysize is the number of rows to read. The default is to read them all.
■ buf_xsize is the number of columns in the output array. The default is to use the

win_xsize value. Data will be resampled if this value is different than win_xsize.

Other modules for working with raster data

If you’d like to play with a module that uses more “Pythonic” syntax but still harnesses
the power of GDAL, check out rasterio at https://github.com/mapbox/rasterio. This
module depends on GDAL and uses it internally to read and write data, but it tries to
make the process of working with raster data a little easier.

Another module that might be of interest is imageio. This one is written in pure Python
and doesn’t rely on GDAL. It doesn’t focus on geospatial data, but it can read and
write many different raster formats, including video formats. You can read more about
it at http://imageio.github.io/.

https://github.com/mapbox/rasterio
http://imageio.github.io/
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■ buf_ysize is the number of rows in the output array. The default is to use the
win_ysize value. Data will be resampled if this value is different than win_ysize.

■ buf_obj is a NumPy array to put the data into instead of creating a new array.
Data will be resampled, if needed, to fit into this array. Values will also be con-
verted to the data type of this array. 

The xoff and yoff parameters specify the column and row offsets, respectively, to start
reading at. The default is to start reading at the first row and column. The win_xsize
and win_ysize parameters indicate how many rows and columns to read, and the
default is to read them all. The buf_xsize and buf_ysize parameters allow you to
specify the size of the output array. If these values are different than the win_xsize and
win_ysize values, then the data will be resampled as it’s read to match the output array
size. The buf_obj parameter is a NumPy array that the data will be stored in instead of
a new array being created. The pixel data type will be changed to match the data type
of this array. You’ll get an error if you provide buf_xsize and buf_ysize values that
don’t match the dimensions of this array, but there’s no reason to provide sizes in that
case anyway, because they can be determined from the array itself.

 For example, to read the three rows and six columns starting at row 6000 and col-
umn 1400 shown in figure 9.8, you could do something like the following:

data = band.ReadAsArray(1400, 6000, 6, 3)

If you need the pixel values as floating-point instead of byte, you can convert them
using NumPy after you’ve read them in, like this:

data = band.ReadAsArray(1400, 6000, 6, 3).astype(float)

Or you could have GDAL do the conversion for you as it reads the data. To use this
method, you create a floating-point array and then pass it as the buf_obj parameter to
ReadAsArray. Make sure you create the array with the same dimensions as the data
being read.

1400

6000

Figure 9.8
Use ReadAsArray(1400, 6000, 6, 3)
to read three rows and six columns 
starting at row 6000 and column 1400.
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import numpy as np
data = np.empty((3, 6), dtype=float)
band.ReadAsArray(1400, 6000, 6, 3, buf_obj=data)

The NumPy empty function creates an array that hasn’t been initialized with any val-
ues, so it contains garbage until you fill it somehow. The first parameter to the function
is a tuple containing the dimensions of the array to create. If it’s a two-dimensional
array, the tuple contains the number of rows and then the number of columns. The
dtype parameter is optional and specifies the type of data that the array will hold. If
not provided, the array will hold floating-point numbers.

 To write a data array out to a specific location in other dataset, pass the offsets to
WriteArray. It will write out all data in the array you pass to the function, beginning at
the offsets you provide.

band2.WriteArray(data, 1400, 6000)

One important thing to remember when reading partial datasets is that you have to
make sure you don’t try to read more data than exists, or you’ll get an error. For exam-
ple, if an image has 100 rows, and you ask it to start reading at offset 75 and read in 30
rows, that would go past the end of the image and will fail. A similar problem will
occur if you pass an array to WriteArray that’s too large to fit in the raster, given your
starting offsets.

How might you use this information to process a large dataset that won’t fit in RAM?
Well, one way would be to deal with a single block at a time. Remember that rasters
store their data on disk in blocks. Because the data in a block are stored together on
disk, it’s efficient to process images in these chunks. 

 The basic idea is shown in figure 9.9. You start with the first block of rows and col-
umns, and then go to the next block in either the x or y direction (this example uses
the latter). Each time you jump to the next block, you need to make sure there’s really
a full block’s worth of data to read. For example, if the block size is 64 rows, you need
to check that at least 64 rows are left that you haven’t read yet. If there aren’t, then you
can only read in as many as are left, and you’ll get an error if you try to access more.
Once you’ve worked your way to the end, you move to the next block of columns and
start over, working through the rows. Again, you always need to make sure that you
don’t try to read more columns than exist in the raster.

Access window out of range error messages

The following message means that I tried to read a 30 x 30 array from band 1 of
testio.tif, starting at column 0 and row 75. The problem is that testio.tif only has 100
rows and 100 columns, so there aren’t 30 rows to read if I start at number 75.

“ERROR 5: testio.tif, band 1: Access window out of range in RasterIO().  Requested
(0,75) of size 30x30 on raster of 100x100.”
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Figure 9.9 The process for reading and writing a raster block by block
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Listing 9.2 shows how you might convert a digital elevation model from meters to feet,
one block at a time. This is a small dataset, so you probably wouldn’t need to break it
up like this in the real world, but you would process a large dataset in the same way.
This also shows you an example of dealing with NoData values in your raster, which are
pixels that are considered to have a null value. Pixels must have a value, but a specific
value can be specified as NoData, and therefore ignored.

import os
import numpy as np
from osgeo import gdal

os.chdir(r'D:\osgeopy-data\Washington\dem')

in_ds = gdal.Open('gt30w140n90.tif')
in_band = in_ds.GetRasterBand(1)
xsize = in_band.XSize
ysize = in_band.YSize
block_xsize, block_ysize = in_band.GetBlockSize()                      
nodata = in_band.GetNoDataValue()                                      

out_ds = in_ds.GetDriver().Create(
    'dem_feet.tif', xsize, ysize, 1, in_band.DataType)
out_ds.SetProjection(in_ds.GetProjection())
out_ds.SetGeoTransform(in_ds.GetGeoTransform())
out_band = out_ds.GetRasterBand(1)

for x in range(0, xsize, block_xsize):                                
    if x + block_xsize < xsize:                                         
        cols = block_xsize                                              
    else:                                                               
        cols = xsize - x                                               
    for y in range(0, ysize, block_ysize):                              
        if y + block_ysize < ysize:                                     
            rows = block_ysize                                          
        else:                                                           
            rows = ysize - y                                             
        data = in_band.ReadAsArray(x, y, cols, rows)                    
        data = np.where(data == nodata, nodata, data * 3.28084)          
        out_band.WriteArray(data, x, y)                                  

out_band.FlushCache()
out_band.SetNoDataValue(nodata)                                          
out_band.ComputeStatistics(False)                                        
out_ds.BuildOverviews('average', [2, 4, 8, 16, 32])
del out_ds

You can probably figure out what’s happening at the beginning of this example. You
open the dataset and get information about the band, including the size of its blocks
and its NoData value. After creating the output dataset, you start looping through
the blocks in the horizontal (x) direction. You start at column 0 and go up to the last

Listing 9.2 Processing a raster by block

Get block size and 
NoData value

Get number of 
columns to read

Get number of 
rows to read

ead and write one
ck’s worth of data

Compute statistics at end, 
after setting NoData
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column, represented with index xsize.
The twist is that each time through the
loop, you increment x by the number
of columns in a block (the third argu-
ment to range is the amount to incre-
ment by), so you skip from the
beginning of one block to the begin-
ning of the next. Then you store the
number of columns to read in a vari-
able called cols. If there’s a full block’s
worth of columns left to read, this vari-
able is set to the number of columns in
a block. But if there aren’t enough col-
umns, as would be the case when x is
equal to 10 in figure 9.10, the number
of remaining columns (three in the figure) is used instead. You need to do this
because you’ll get an error if you try to read more rows or columns than exist.

 After computing the number of columns to read, you repeat the process for the
number of rows. As shown in figure 9.10, the first two times through that second loop
you read five rows, but the third time there’s only one row left to read. After process-
ing the first five columns of all rows, you go to the next iteration of the outer loop and
process the next five columns, and then the last three columns.

 Once you figure out how many rows and columns to read, you pass those numbers,
along with the current row and column offsets, to ReadAsArray to get a block’s worth
of data back:

data = in_band.ReadAsArray(x, y, cols, rows)

The next step is to convert the values, which come in as meters, to feet. You use the
NumPy where function to help with this. This function is like an if-else statement. The
first parameter is the condition to check, in this case whether or not the pixel value is
equal to the NoData value. The second parameter is the output value if the condition
is true. If the incoming pixel is NoData, you output NoData as well. The third parame-
ter is the value to output if the condition is false, so this is where you convert the val-
ues to feet by multiplying them by 3.28084:

data = np.where(data == nodata, nodata, data * 3.28084)

After converting valid pixels to feet, you pass the data to WriteArray using the current
row and column offsets before continuing on to the next block:

out_band.WriteArray(data, x, y)

After processing all of the blocks, you calculate statistics and build the overviews. To
exclude the NoData pixels from the statistics calculation, you have to tell the band

Figure 9.10 A small example image with a block 
size of five rows and five columns. Alternating 
blocks are shaded to make it easy to see. The 
upper-left pixel has offset 0,0.



193Reading partial datasets
which value represents NoData before calling ComputeStatistics. You might be
tempted to calculate statistics inside your loop, but you want the statistics to be based
on all of the pixels in the band, so you need to wait until all of the pixel values have
been calculated.

 Obviously this method of looping through blocks is more complicated than read-
ing and writing an entire band at once, but it’s invaluable if you’re low on RAM.

9.3.1 Using real-world coordinates

Until now, we’ve only considered pixel offsets when deciding where to start reading or
writing data, but most of the time you’ll have real-world coordinates instead. Fortu-
nately, converting between the two is easy, as long as your coordinates use the same
SRS as the raster. You saw earlier how to calculate coordinates of individual pixels, and
now you need to reverse that process. All of the data required, including the origin
coordinates, pixel sizes, and rotation values, are stored in the geotransform you’ve
been copying between datasets. The geotransform is a tuple containing the six values
shown in table 9.2. The rotation values are usually 0; in fact, I can’t recall ever using an
image that wasn’t north up, but they’re certainly out there. 

You could use this information to apply the affine transformation yourself, but GDAL
provides a function that does it for you, called ApplyGeoTransform, that takes a geo-
transform, an x value, and a y value. When used with a dataset’s geotransform, this
function converts image coordinates (offsets) to real-world coordinates. But right now
you’re interested in going the other direction, so you need to get the inverse of the
dataset’s geotransform. Fortunately, a function exists for that, but you use it differently
depending on the version of GDAL that you’re using. If you’re using GDAL 1.x, the
InvGeoTransform function returns a success flag and a new geotransform that can be
used to go the other direction:

gt = ds.GetGeoTransform()
success, inv_gt = gdal.InvGeoTransform(gt)

If all went well, then the success flag will be 1, but if the affine transformation
couldn’t be inverted, it returns 0 instead. Because of this, you should check the value

Table 9.2 GeoTransform items

Index Description

0 Origin x coordinate

1 Pixel width

2 x pixel rotation (0° if image is north up)

3 Origin y coordinate

4 y pixel rotation (0° if image is north up)

5 Pixel height (negative)
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of the success flag before continuing if you’re not certain that the geotransform can
be inverted. 

 If you’re using GDAL 2.x, then the InvGeoTransform function only returns one
item: a geotransform if one could be calculated, or None if not. In this case, you need
to make sure that the returned value isn’t equal to None:

inv_gt = gdal.InvGeoTransform(gt)

Now that you have an inverse geotransform, you can use it to convert real-world coor-
dinates to image coordinates. For example, say you need the pixel value at coordi-
nates 465200, 5296000. The following code would get it, assuming that the raster
covers that location:

offsets = gdal.ApplyGeoTransform(inv_gt, 465200, 5296000)
xoff, yoff = map(int, offsets)
value = band.ReadAsArray(xoff, yoff, 1, 1)[0,0]

The ApplyGeoTransform function returns an x and a y value as floating-point num-
bers, but you need integer offsets to pass to ReadAsArray. If you forget to convert the
offsets to integers, you’ll get an error. After getting the integers, you read in one row
and one column starting at those offsets. You might think that this would return a
number, but not quite. Remember that ReadAsArray returns a two-dimensional array,
and it does this even for only one row and/or one column. To get the actual pixel
value, you still have to get the value in the first row and first column (position [0,0]) in
the array.

 This method is extremely inefficient if you need to sample pixel values at many dif-
ferent locations, however. In that case, you’re better off reading in the entire band
and then pulling the appropriate values from that array. This is because read and
write operations are expensive, so doing a new read operation for each point is much
slower than doing one large read operation for the whole band. The code to get the
same pixel value using this method might look like this:

data = band.ReadAsArray()
x, y = map(int, gdal.ApplyGeoTransform(inv_gt, 465200, 5296000))
value = data[yoff, xoff]

Obviously, you wouldn’t read the whole band in for each point; you’d do that once but
then repeat the last two lines for each point. Notice that the row and column offsets
are reversed when pulling the pixel value from the NumPy array, because NumPy
wants offsets as [row, column], not [x, y] (which is the same as [column, row]).

TIP Use [row, column] offsets for NumPy arrays. This is the reverse of what
you’re used to using with GDAL.

The ability to convert between real-world coordinates and offsets is also important if
you want to extract a spatial subset and save it to a new image, because you need to
change the origin coordinates in the geotransform. Say you wanted to extract Vashon
Island (figure 9.11) out of the natural color Landsat image you created earlier, and
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you’re given the upper-left and lower-right coordinates of the area of interest. You
need to convert these into pixel offsets so you know what data to read, but it’s unlikely
that these bounding coordinates correspond exactly to pixel boundaries, so you also
need to find the true upper-left coordinates for the subset you extracted. The follow-
ing listing shows an example of this.

import os
from osgeo import gdal

vashon_ulx, vashon_uly = 532000, 5262600
vashon_lrx, vashon_lry = 548500, 5241500

os.chdir(r'D:\osgeopy-data\Landsat\Washington')
in_ds = gdal.Open('nat_color.tif')
in_gt = in_ds.GetGeoTransform()

inv_gt = gdal.InvGeoTransform(in_gt)
if gdal.VersionInfo()[0] == '1':
    if inv_gt[0] == 1:
        inv_gt = inv_gt[1]
    else:
        raise RuntimeError('Inverse geotransform failed')
elif inv_gt is None:
    raise RuntimeError('Inverse geotransform failed')

offsets_ul = gdal.ApplyGeoTransform(                                  
    inv_gt, vashon_ulx, vashon_uly)                                     
offsets_lr = gdal.ApplyGeoTransform(                                    
    inv_gt, vashon_lrx, vashon_lry)                                     
off_ulx, off_uly = map(int, offsets_ul)                                
off_lrx, off_lry = map(int, offsets_lr)                              

rows = off_lry - off_uly                                                
columns = off_lrx - off_ulx                                              

Listing 9.3 Extracting and saving a subset of an image 

Figure 9.11 The goal of 
listing 9.3 is to extract 
Vashon Island out of the 
natural color Landsat 
image created earlier.

Compute upper-left 
and lower-right offsets

Compute number of rows
and columns to extract
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gtiff_driver = gdal.GetDriverByName('GTiff')
out_ds = gtiff_driver.Create('vashon2.tif', columns, rows, 3)
out_ds.SetProjection(in_ds.GetProjection())
subset_ulx, subset_uly = gdal.ApplyGeoTransform(                       
    in_gt, off_ulx, off_uly)                                           
out_gt = list(in_gt)                                                    
out_gt[0] = subset_ulx                                                   
out_gt[3] = subset_uly                                                  
out_ds.SetGeoTransform(out_gt)                                          

for i in range(1, 4):
    in_band = in_ds.GetRasterBand(i)
    out_band = out_ds.GetRasterBand(i)
    data = in_band.ReadAsArray(                                        
        off_ulx, off_uly, columns, rows)                               
    out_band.WriteArray(data)                                        

del out_ds

You’ve seen everything in this example before, but you haven’t seen it put together
quite like this. The important parts are where you compute the offsets for the upper-
left and lower-right corners of Vashon Island, based on the coordinates at the top of
the script (in real life you probably wouldn’t want the coordinates hardcoded in, but it
works for the example). Then you subtract the upper-left offsets from the lower-right
offsets to get the total numbers of rows and columns to extract.

 Once you have that basic information, you create an output image with these new
dimensions, rather than the dimensions of the original image. The projection infor-
mation is copied over unchanged, but you have to alter the geotransform to reflect
the upper-left coordinates of the subset. You can’t use the upper-left coordinates that
you calculated because those probably fall in the middle of a pixel somewhere, but
you need the coordinates of the pixel corner. Notice that you use the original geo-
transform for this, not the inverted one, because you’re converting offsets to real-
world coordinates. Then, because the geotransform is returned as a tuple, you have to
convert it to a list before you can insert the new upper-left coordinates. 

 After all that housekeeping, you copy the data from the original to the new image.
You start reading at the upper-left offsets, and grab the numbers of columns and rows
that you computed earlier. There’s no reason to provide offsets when writing the data
out because the new image will only contain the subset, so you want to start writing at
the origin.

 You’d probably also compute statistics and build overviews, but those steps aren’t
absolutely necessary, so I left them out in the interest of space.

9.3.2 Resampling data

A nice feature of the ReadAsArray function is that you can use it to resample data as
it’s read in, either by specifying the output buffer size or passing an existing buffer
array. As a reminder, here’s what the function signature looks like:

band.ReadAsArray([xoff], [yoff], [win_xsize], [win_ysize], [buf_xsize],
                 [buf_ysize], [buf_obj])

Put new origin coordinates 
in geotransform

Read in data using 
computed values

Write out data 
starting at the origin
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The win parameters specify the number of rows and columns to read from the band,
and the buf parameters specify the size of the array to put those pixel values into. An
array with larger dimensions than the original will resample to smaller pixels, while
one with smaller dimensions will resample to larger pixels using nearest-neighbor
interpolation.

RESAMPLING TO SMALLER PIXELS

To resample data to a finer resolution, provide an array that’s larger than the data
being read in so that the pixel values need to be repeated to fill the target array. For
example, this will create four pixels for every one pixel, essentially cutting the pixel
size in half, as shown in figure 9.12:

band.ReadAsArray(1400, 6000, 3, 2, 6, 4)

This works because you’re reading three columns and two rows from the band, but
putting that data into an array with six columns and four rows, so each row and col-
umn is duplicated to fill the output array.

This is all well and good, but how do you deal with the new cell size if you need to
write the data out to a new image? It’s easy, because all you have to do is alter the geo-
transform so that it specifies a smaller pixel size. Take a look at the following listing to
see how you might resample an entire image to a smaller pixel size.

import os
from osgeo import gdal

os.chdir(r'D:\osgeopy-data\Landsat\Washington')

in_ds = gdal.Open('p047r027_7t20000730_z10_nn10.tif')
in_band = in_ds.GetRasterBand(1)
out_rows = in_band.YSize * 2                                         
out_columns = in_band.XSize * 2                                       

gtiff_driver = gdal.GetDriverByName('GTiff')
out_ds = gtiff_driver.Create('band1_resampled.tif',                    
    out_columns, out_rows)                                              

Listing 9.4 Resample an image to a smaller pixel size
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Figure 9.12 Pixel values are repeated four times each when the numbers of rows and columns are 
doubled.
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out_ds.SetProjection(in_ds.GetProjection())
geotransform = list(in_ds.GetGeoTransform())                           
geotransform [1] /= 2                                                  
geotransform [5] /= 2                                                   
out_ds.SetGeoTransform(geotransform)                                   

data = in_band.ReadAsArray(                                            
    buf_xsize=out_columns, buf_ysize=out_rows)                         
out_band = out_ds.GetRasterBand(1)
out_band.WriteArray(data)

out_band.FlushCache()
out_band.ComputeStatistics(False)
out_ds.BuildOverviews('average', [2, 4, 8, 16, 32, 64])          
del out_ds

This example has a few important things to note. First, you double the number of
rows and columns when creating the new dataset, and you pass these same numbers as
parameters to ReadAsArray. This ensures that your input data dimensions match your
output data dimensions, and also causes the data to be resampled to those larger
dimensions. Instead of using the buf_xsize and buf_ysize parameters, you could
have used an existing array for the buf_obj parameter and gotten the same results.
You could also have provided the win_xsize and win_ysize parameters, but they
default to the original numbers of rows and columns, which is what you want.

 You also edit the geotransform to reflect the smaller pixel size. The second item in
the geotransform is the pixel width, and the sixth is the pixel height, so you divide
each of those values by two and overwrite the original values. Because this image still
covers the same spatial extent as the original, you don’t need to change any of the other
values. Once you finish editing, you set the geo-
transform onto the new dataset. Fortunately,
editing the geotransform doesn’t alter the geo-
transform for the original image because the
tuple isn’t linked to the dataset, so you’re not
introducing any complications there.

 If you hadn’t changed the pixel size and
instead copied the original geotransform to the
new dataset, your output would have looked like
the larger image shown in figure 9.13. As you
may recall, the spatial extent of a raster is deter-
mined from the origin coordinates and the
pixel size. The upper-left corner coordinates
would be the same, but the incorrect pixel size
would cause the image to cover twice the dis-
tance in each direction. In this case, a satellite
image of northwestern Washington State would
appear to extend into eastern Washington and
south into Oregon, which is obviously incorrect.

Edit the geotransform so pixels 
are one-quarter previous size

Specify a larger buffer 
size when reading data

Build appropriate 
number of overviews 
for larger image

Figure 9.13 This illustrates the result 
of resampling to a smaller pixel size 
without changing the size in the 
geotransform. The smaller image in the 
upper left is correct. The larger one was 
created by using the unedited 
geotransform from the input image.
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It should be clear by now how important an accurate geotransform is. If a raster
appears to be in the wrong location or the wrong size when opened in a GIS, then an
incorrect geotransform is a likely culprit, as is an erroneous spatial reference system.

RESAMPLING TO LARGER PIXELS

You can also resample to a coarser resolution by providing a smaller buffer array when
reading the data. In this case, one pixel takes the place of several cells, and nearest-
neighbor interpolation is used to determine which value is used (figure 9.14). The fol-
lowing example replaces four pixels with one:

data = np.empty((2, 3), np.int)
band.ReadAsArray(1400, 6000, 6, 4, buf_obj=data)

Here, an empty integer NumPy array with three columns and two rows is created
beforehand and then passed as an argument to ReadAsArray. The six columns and
four rows requested from the image are resampled to fit into this smaller array. By the
way, you don’t need to catch the return value from ReadAsArray in this case, because
you already have the data variable. But not only is the data variable filled automati-
cally, it’s also returned from the function, so you can grab it that way if you’d like, but
it’s not necessary.

Although this technique usually uses nearest-neighbor interpolation to resample, if
you have an overview layer of the requested resolution, then that will be used instead.
If the appropriate overview was built with average interpolation, then that’s what
you’d get when using ReadAsArray, rather than nearest-neighbor.

 As with resampling to smaller pixels, you need to change the pixel size in the geo-
transform when writing the data back out to another dataset. The only difference is
that in this case, you want to decrease the number of rows and columns and increase
the pixel size. You could alter listing 9.4 to resample to coarser pixels by dividing the
rows and columns by 2 instead of multiplying, and multiplying instead of dividing the
pixel size. You could also get away with building fewer overview layers. Other than
that, the technique is the same. If you forget to change the pixel size, then you end up
with an image that’s compressed into too small of an area instead of the too large area
shown back in figure 9.13.
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Figure 9.14 Nearest-neighbor interpolation is used to select a pixel value when resampling to smaller 
dimensions. In this case, the lower-right pixel value for each block of four pixels is used in the output.
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9.4 Byte sequences
If you’ve looked through appendix E, you’ve probably noticed that ReadAsArray and
WriteArray aren’t the only ways to read and write data with GDAL. (Appendixes C
through E are available online on the Manning Publications website at https://
www.manning.com/books/geoprocessing-with-python.) You can also read data into a
sequence of Python bytes, which is much like a string made up of the ASCII codes cor-
responding to the numeric pixel values. Unlike strings, byte sequences can’t be modi-
fied, although you’ll learn how to get around that in this section. This is a bit faster
than converting to a NumPy array, but I prefer to get an array so that I can manipulate
it mathematically. But if you’d like to use bytes instead, or don’t need to manipulate
the data, the parameters for ReadRaster are similar to those for ReadAsArray. Here’s
the signature for the dataset version of ReadRaster:

ReadRaster([xoff], [yoff], [xsize], [ysize], [buf_xsize], [buf_ysize],
           [buf_type], [band_list], [buf_pixel_space], [buf_line_space],
           [buf_band_space])

■ xoff is the column to start reading at. The default value is 0.
■ yoff is the row to start reading at. The default value is 0.
■ xsize is the number of columns to read. The default is to read them all.
■ ysize is the number of rows to read. The default is to read them all.
■ buf_xsize is the number of columns in the returned sequence. The default is

to use the xsize value. Data will be resampled if this value is different than
xsize.

■ buf_ysize is the number of rows in the returned sequence. The default is to
use the ysize value. Data will be resampled if this value is different than ysize.

■ buf_type is the target GDAL data type for the returned sequence. The default is
the same as the original data.

■ band_list is a list of band indices to read. The default is to read all bands.
■ buf_pixel_space is the byte offset between pixels in the sequence. The default

is the size of buf_type.
■ buf_line_space is the byte offset between lines in the sequence. The default is

the size of buf_type multiplied by xsize.
■ buf_band_space is the byte offset between bands in the sequence. The default

is the size of buf_line_space multiplied by ysize.

The first six parameters are the same as for ReadAsArray. The buf_type parameter is a
GDAL data type constant from table 9.1 and is used to specify the data type used for
the byte sequence. This can be used to change the data type as it’s read in. For exam-
ple, if the raster is of type byte, but you provide GDT_float32 for this parameter, then
the resulting byte string will represent the pixel values as floating-point instead of
byte. You can also provide a list of bands to read, and they’ll be returned in the order
you specify. You can even include a band more than once, although I’m not sure why
you’d want to. The last three parameters change the spacing of data in the returned

https://www.manning.com/books/geoprocessing-with-python
https://www.manning.com/books/geoprocessing-with-python
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byte string and can be used to work with unusually interleaved datasets, but chances
are that you’ll never need these. The parameters for the band version of ReadRaster
are the same, except that band_list and buf_band_space are missing.

 Anyway, if you were to print out the results of a call to ReadRaster, the result would
be something like b'\x1c\x1d\x1c\x1e', which doesn’t mean a whole lot to me. You
can access elements by index, however, and those will look more familiar. Byte strings
are immutable, which means they can’t change, but you can convert them to byte
arrays if you need to edit values. The following interactive session shows you an exam-
ple of this:

>>> data = ds.ReadRaster(1400, 6000, 2, 2, band_list=[1])
>>> data
b'\x1c\x1d\x1c\x1e'
>>> data[0]
28
>>> bytearray_data = bytearray(data)
>>> bytearray_data[0] = 50
>>> bytearray_data[0]
50

You can also convert a byte string to a tuple using the built-in struct module. Here you
need to provide a format string that specifies what type, and how many, elements are
contained in the string. In this example, you’re using a format string such as “BBBB” to
specify four bytes. See the Python struct documentation for other formats. 

tuple_data = struct.unpack('B' * 4, data)

If you want to turn the byte string into a NumPy array, you can do that using the tuple
from unpack, or by using the NumPy fromstring function to convert the byte string
directly (although if you want a NumPy array, maybe you should use ReadAsArray). As
with using unpack, you have to provide the data type that the sequence uses when con-
verting it to a NumPy array. Both of these methods return a one-dimensional array, so
you’ll have to reshape it to multidimensional if needed. Examples of these operations
are shown here:

numpy_data1 = np.array(tuple_data)
numpy_data2 = np.fromstring(data, np.int8)
reshaped_data = np.reshape(numpy_data2, (2,2))

The parameters for writing data from byte strings are similar to those for reading,
although the first five arguments are required instead of optional:

def WriteRaster(xoff, yoff, xsize, ysize, buf_string, [buf_xsize], 
                [buf_ysize], [buf_type], [band_list], [buf_pixel_space],
                [buf_line_space], [buf_band_space])

■ xoff is the column to start writing at.
■ yoff is the row to start writing at.
■ xsize is the number of columns to write.
■ ysize is the number of rows to write.
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■ buf_string is the byte sequence to write.
■ buf_xsize is the number of columns in the byte sequence. The default is to use

the xsize value. Data will be resampled if this value is different than xsize.
■ buf_ysize is the number of rows in the byte sequence. The default is to use the

ysize value. Data will be resampled if this value is different than ysize.
■ buf_type is the GDAL data type of the byte sequence. The default is the same as

the dataset being written to.
■ band_list is a list of band indices to write. The default is to write all bands.
■ buf_pixel_space is the byte offset between pixels in the byte sequence. The

default is the size of buf_type.
■ buf_line_space is the byte offset between lines in the byte sequence. The

default is the size of buf_type multiplied by xsize.
■ buf_band_space is the byte offset between bands in the byte sequence. The

default is the size of buf_line_space multiplied by ysize.

Once again, the band version is the same, except that the band_list and
buf_band_space parameters don’t exist.

 You could write a byte sequence, called data, that contains six columns and four
rows out to a dataset like this:

ds.WriteRaster(1400, 6000, 6, 4, data, band_list=[1])

Let’s try resampling an image to a larger pixel size using bytes instead of NumPy
arrays.

import os
import numpy as np
from osgeo import gdal

os.chdir(r'D:\osgeopy-data\Landsat\Washington')

in_ds = gdal.Open('nat_color.tif')
out_rows = int(in_ds.RasterYSize / 2)                                   
out_columns = int(in_ds.RasterXSize / 2)                                
num_bands = in_ds.RasterCount

gtiff_driver = gdal.GetDriverByName('GTiff')
out_ds = gtiff_driver.Create('nat_color_resampled.tif',      
    out_columns, out_rows, num_bands)                                  

out_ds.SetProjection(in_ds.GetProjection())
geotransform = list(in_ds.GetGeoTransform())                         
geotransform[1] *= 2                                                   
geotransform[5] *= 2                                                   
out_ds.SetGeoTransform(geotransform)

data = in_ds.ReadRaster(                                               
    buf_xsize=out_columns, buf_ysize=out_rows)                          

Listing 9.5 Resample an image to a larger pixel size using byte sequences

Get number of output 
rows and columns

Create output dataset

Edit the geotransform
so pixel sizes are larger

Use a smaller buffer 
to read and write data
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out_ds.WriteRaster(0, 0, out_columns, out_rows, data)  
out_ds.FlushCache()
for i in range(num_bands):
    out_ds.GetRasterBand(i + 1).ComputeStatistics(False)

out_ds.BuildOverviews('average', [2, 4, 8, 16])             
del out_ds

In many ways this example is similar to listing 9.4, except that the numbers of output
rows and columns are halved instead of doubled, and the pixel size is doubled instead
of halved. Notice that in this case you need to ensure that the numbers of rows and
columns are integers, because the result of the division might be floating-point, and
the dataset creation function doesn’t like that.

 The interesting part is where you read and write the data. Because all rows, columns,
and bands are read by default, you didn’t have to do anything about those. But because
you want the data resampled into half as many rows and columns, you pass these smaller
numbers in using the buf_xsize and buf_ysize parameters. This causes the data to
be resampled as GDAL reads it into the byte sequence. Then you write the data out to
the new dataset starting at the first row and column. You also tell WriteRaster how
many rows and columns are contained in the byte sequence, because unlike a NumPy
array, this isn’t obvious. A byte sequence that is 32 bytes long might contain one 32-bit
integer, or it might contain four 8-bit integers. Although WriteRaster can figure out
how many bytes are in the sequence, it doesn’t know how to convert those to pixel
values until you tell it how many values there are supposed to be. 

9.5 Subdatasets
Several types of datasets can contain other datasets, which each in turn contain bands
(figure 9.15). One example of this is the MODIS imagery distributed by the United
States Geological Service, which comes as a hierarchical data format (HDF) file. If your
dataset contains subdatasets, you can get a list of them with the GetSubDatasets func-
tion and then use that information to open the one you want.

Build appropriate 
number of overviews 
for smaller image

Dataset

Subdataset 1 Subdataset 2

Band 2 Band 1Band 1 Geotransform

Subdataset 3

Figure 9.15 Several types of datasets include subdatasets. Each of these subdatasets is 
structured like a normal dataset and contains its own bands and georeferencing information.
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As an example, let’s open a subdataset contained in a MODIS file. Note that the HDF
driver isn’t included in GDAL by default, so this example won’t work for you if your
GDAL version doesn’t include HDF support. Assuming you can work with HDF files,
the first step is to open the HDF file as a dataset:

ds = gdal.Open('MYD13Q1.A2014313.h20v11.005.2014330092746.hdf')

Now you can get the list of subdatasets contained in this open dataset. The GetSub-
Datasets method returns a list of tuples, with one tuple per subdataset. Each tuple
contains the name and the description of the subdataset, in that order. The following
snippet gets this list and then prints out the name and description for each of the sub-
datasets:

subdatasets = ds.GetSubDatasets()
print('Number of subdatasets: {}'.format(len(subdatasets)))
for sd in subdatasets:
    print('Name: {0}\nDescription:{1}\n'.format(*sd))

The first few lines of output look like this, and show the information for the first sub-
dataset, which is the NDVI (normalized difference vegetation index), but there are 11
more not shown:

Number of subdatasets: 12
Name: HDF4_EOS:EOS_GRID:"MYD13Q1.A2014313.h20v11.005.2014330092746.hdf":

➥ MODIS_Grid_16DAY_250m_500m_VI:250m 16 days NDVI
Description:[4800x4800] 250m 16 days NDVI MODIS_Grid_16DAY_250m_500m_VI 

➥ (16-bit integer)

To open a subdataset, pass its name to gdalOpen. For example, this gets the tuple cor-
responding to the first subdataset, gets the first item (the name) from the tuple, and
then uses that to open the subdataset:

ndvi_ds = gdal.Open(subdatasets[0][0])

Similarly, you would use subdatasets[4][0] to open the fifth subdataset. Once you’ve
opened a subdataset like this, it can be treated like any other dataset. For example, you
could get the first band in the NDVI subdataset using ndvi_ds.GetRasterBand(1).

9.6 Web map services
Let’s take a quick look at web map services, which are used to serve images across the
web for things like basemaps. We’ll try out an OGC web map service that creates an
image based on your request, but you have other methods of accessing basemaps. For
example, both OpenStreetMap and Google use pre-rendered tiled images. To use
those, you need to know the tile that you want, and nothing is rendered on the fly
(well, it could be, depending on how the images are cached on the server, but the idea
is that the tiles already exist so they provide fast access). 

GDAL allows you to use XML files to specify the parameters for a map service,
and all of the possibilities are documented at http://www.gdal.org/frmt_wms.html.

http://www.gdal.org/frmt_wms.html
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The following listing shows the XML describing an imagery basemap from the US
National Map.

<GDAL_WMS>
    <Service name="WMS">
        <Version>1.3.0</Version>
        <ServerURL>http://raster.nationalmap.gov/arcgis/services/

             ➥ Orthoimagery/USGS_EROS_Ortho_1Foot/ImageServer/WMSServer?
             ➥ </ServerURL>
        <CRS>CRS:84</CRS>
        <ImageFormat>image/png</ImageFormat>
        <Layers>0</Layers>
    </Service>
    <DataWindow>
        <UpperLeftX>-74.054444</UpperLeftX>
        <UpperLeftY>40.699167</UpperLeftY>
        <LowerRightX>-74.034444</LowerRightX>
        <LowerRightY>40.679167</LowerRightY>
        <SizeX>300</SizeX>
        <SizeY>300</SizeY>
    </DataWindow>
    <BandsCount>4</BandsCount>
</GDAL_WMS>

You need to know certain information about the service to create an XML specifica-
tion, however. OGC web map services allow you to request information about them
using a GetCapabilities request. If you don’t know the base URL for the service, you’re
out of luck, but assuming you do know it, tack “?request=GetCapabilities&ser-
vice=WMS” onto the end and view the result in a browser. For example, the URL for
the service defined in listing 9.6 is http://raster.nationalmap.gov/arcgis/services/
Orthoimagery/USGS_EROS_Ortho_1Foot/ImageServer/WMSServer?request=Get
Capabilities&service=WMS.

 This is a lot of information, but we’ll focus on a few parts that are important for the
Service section of the XML. Look at the first line of output:

<WMS_Capabilities xmlns=http://www.opengis.net/wms

➥ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.3.0" 
➥ xsi:schemaLocation="http://www.opengis.net/wms 
➥ http://schemas.opengis.net/wms/1.3.0/capabilities_1_3_0.xsd">

Part of that line specifies the WMS version as 1.3.0. Add that information to the Ver-
sion section of your XML. Now look through the GetCapabilities results until you find
the GetMap section. The first part of it looks like this:

<GetMap>
    <Format>image/tiff</Format>
    <Format>image/png</Format>
    <Format>image/png24</Format>
    <Format>image/png32</Format>
    <Format>image/bmp</Format>

Listing 9.6 XML describing a web map service

http://raster.nationalmap.gov/arcgis/services/Orthoimagery/USGS_EROS_Ortho_1Foot/ImageServer/WMSServer?request=GetCapabilities&service=WMS
http://raster.nationalmap.gov/arcgis/services/Orthoimagery/USGS_EROS_Ortho_1Foot/ImageServer/WMSServer?request=GetCapabilities&service=WMS
http://raster.nationalmap.gov/arcgis/services/Orthoimagery/USGS_EROS_Ortho_1Foot/ImageServer/WMSServer?request=GetCapabilities&service=WMS
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    <Format>image/jpeg</Format>
    <Format>image/svg</Format>
    <Format>image/bil</Format>

These are the formats that the service can provide, and you should include one of
them in the ImageFormat section of your XML. Now look for the Layer section in the
GetCapabilities output. Here are the first few lines of that section:

<Layer>
    <Name>0</Name>
    <Title>USGS_EROS_Ortho_1Foot</Title>
    <Abstract>
        The USGS_EROS_Ortho_1Foot service from The National Map contains 1 

foot orthoimagery, and is viewable at all scales.
    </Abstract>

We want to use the layer called USGS_EROS_Ortho_1Foot, but the Name value is the
important one. In this case, the name is “0,” which isn’t too descriptive, but it’s what
you need to add to the Layer section of the XML. If you keep looking at the Layer sec-
tion of the capabilities, you’ll see a lengthy list of CRS values, which are the coordinate
systems supported by the service. Here are the first few:

    <CRS>CRS:84</CRS>
    <CRS>EPSG:4326</CRS>
    <CRS>EPSG:3857</CRS>

You guessed it. Select one of these for your output and add it to the CRS section of
your XML. 

 Now that the service is defined in your XML, you need to specify the geographic
extent that you want to retrieve. You do this with the DataWindow section. The Upper-
LeftX, UpperLeftY, LowerRightX, and
LowerRightY are the minimum x, maximum
y, maximum x, and minimum y values,
respectively. The SizeX and SizeY parameters
specify the number of columns and rows for
the output image. 

 Once you have your XML saved, pass the
filename to the GDAL Open function, and if
everything is configured correctly, it will be
opened as a dataset. At this point you could
get the bands and read the data into an array,
or you could save the image to a local file
using CreateCopy. For example, this snippet
uses the XML from listing 9.6 to save a local
image of Liberty Island in New York Harbor
(figure 9.16):

ds = gdal.Open('listing9_6.xml')
gdal.GetDriverByName('PNG').CreateCopy(r'D:\Temp\liberty.png', ds)

Figure 9.16 An image of Liberty Island in 
New York Harbor obtained using an OGC 
web map service
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If you need to request images with different spatial extents or other parameters that
regularly change, it would make sense to create an XML template and format it with
the desired values when required.

9.7 Summary
■ Raster datasets are ideal for continuous data without sharp boundaries, such as

elevation, precipitation, or satellite imagery.
■ In the interest of disk space, don’t use smaller pixel sizes or larger data types

than necessary.
■ If you need to use your data for analysis, be sure to use a lossless compression

algorithm or no compression at all.
■ Use overviews for rapid display of raster data.
■ Always use nearest-neighbor resampling for non-continuous raster data

because other methods will result in new pixel values that don’t correspond to
the originals.

■ For best performance, make as few read/write calls as possible, but don’t try to
keep more data in memory than you have RAM.

■ Don’t forget to edit the geotransform if you change spatial extent or pixel size.
■ Don’t try to read or write past the edge of an image.
■ Use the buffer parameters to resample data while reading or writing.
■ Use ReadAsArray if you want to use NumPy to manipulate your data in memory,

but ReadRaster is slightly faster if you only need to copy data.



Working with raster data
In the last chapter you learned the basics of raster processing, such as how to read
and write data and work with individual bands, and how rasters use geotransforms
to orient themselves to the real world. This was a great first step, but what if you
have an old aerial photograph or scanned paper map that you’d like to turn into a
geographic dataset? You might want to do that because it’s fun and interesting, or
you might want to do a change analysis using this data along with more current
imagery. To do that, you must overlay the old data on the new. You can do this
using ground control points, which are essentially a collection of points with known
locations. This chapter will teach you how to use these points. 

 You’ll also learn how to work with raster attribute tables. Although most of the
raster examples we’ve looked at so far have been continuous data, such as satellite

This chapter covers
■ Georeferencing with ground control points
■ Working with attributes, histograms, and color 

tables
■ Using the GDAL virtual format
■ Reprojecting rasters
■ Using GDAL error handling 
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imagery, raster datasets can also contain thematic data. In this case, each unique pixel
value corresponds to a classification of some kind, such as vegetation or soil type. Pixel
values are numeric, though, so how do you know what each value stands for? For
example, the landcover classification map shown in figure 10.1 has 125 different
classes. I certainly can’t remember what each value stands for; 76 doesn’t mean nearly
as much to me as “Inter-Mountain Basins Semi-Desert Grassland” does. Fortunately,
it’s possible to store information like this in raster attribute tables.

NOTE TO PRINT BOOK READERS: COLOR GRAPHICS Many graphics in this book
are best viewed in color. The eBook versions display the color graphics, so
they should be referred to as you read. To get your free eBook in PDF, ePub,
and Kindle formats, go to https://www.manning.com/books/geoprocessing-
with-python to register your print book.

Take a look at figure 10.1 again. It uses a constant set of
colors to display each landcover class. Water is always
blue (or almost black if you’re viewing this in black and
white) and the playa west of the Great Salt Lake are
always a pale yellowish color (or a very light gray in
black and white). Although constant colors are certainly
not required for data analysis, it’s nice to have them
when looking at a dataset. You saw earlier how red,
green, and blue bands can be used to draw an image,
but this dataset has only one band that contains classifi-
cation values. Instead of the RGB bands, it has what’s
called a color table that specifies what color each unique
pixel value should be drawn in.

 These are only a few examples of other components
of raster datasets. You’ll learn how to work with these,
and more, in this chapter. You’ll also learn tricks for
handling errors in GDAL. 

10.1 Ground control points 
You’ve learned how geotransforms work to georeference an image, using the upper-
left coordinates and pixel size. You don’t always have this information, however. For
example, if you found an old aerial photo from 1969 and scanned it in, you’d have a
digital image, but you couldn’t load it into a GIS and see it displayed in the correct
location. Your scanner creates a digital image, but it doesn’t attach any sort of geo-
graphic information to it. All is not lost, however, as long as you know what area the
photo is of and can identify a few locations. These locations are called ground control
points (GCPs), which are points for which you know the real-world coordinates. If you
can associate a number of pixels around the image with actual coordinates, then the

Figure 10.1 A landcover 
classification map, where 
each unique pixel value 
corresponds to a specific 
landcover classification

https://www.manning.com/books/geoprocessing-with-python
https://www.manning.com/books/geoprocessing-with-python
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image can be warped to overlay on a map, as shown in figure 10.2. This method isn’t
used as often as geotransforms, but it’s necessary in certain cases. Plus, once an image
has been georeferenced this way, a geotransform can be computed so that it can be
used instead if desired. You should be aware that because the image will be stretched,
warped, and/or rotated so that the GCPs overlay the real coordinates, the pixel size
and raster dimensions might be changed during the process.

 It should be apparent that fixed landmarks make good GCPs because they’re the
easiest thing to pinpoint and get real coordinates for. For example, if you have an aer-
ial photograph that includes a freeway, using a car on that freeway won’t work because
you probably have no way of knowing its location at the exact time the photo was
taken (if you do, then by all means, use it). An exit ramp, however, is a good choice
because it doesn’t move, it will be easily visible in the photo, and it’s not difficult to get
the coordinates for.

 Depending on the type of transformation you use to warp the image, you’ll need a
different number of GCPs. One commonly used algorithm, a first-order polynomial, fits a
linear equation to the image’s x coordinates so the GCP image coordinates match, as
closely as possible, the real GCP coordinates that you provide. The same is done for
the y coordinates. This method requires at least three points. If your coordinates are
exact, then theoretically you don’t need more points, but this is probably not the case,
and you’ll get better results with a few more points evenly distributed around the
image. This algorithm works well if your image needs to be scaled or rotated, as in fig-
ure 10.3A. If your image needs to be bent, as in the shape changes (figure 10.3B),
then you’re better off using a higher-order polynomial, such as a quadratic or cubic
equation, with more GCPs.

 A polynomial transformation might end up shifting several of your GCPs slightly to
minimize error across the image, as in figure 10.4A. If you want to eliminate error

CBA

Figure 10.2 An example of using four known locations to warp an image to fit correctly on a map. Figure 
A shows an aerial photo with the points overlaid on top, figure B shows a topographical map with the 
same points, and figure C shows the photo stretched so that the points match up with the topo map.
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around the GCPs and are willing to accept greater error in other parts of the image, as
in figure 10.4B, you can use a spline method instead. A spline doesn’t use a single equa-
tion, but instead uses different equations for different parts of the data, so it can fit
the provided points exactly. This might cause other parts of the image to be warped in
odd ways, however. You can use various interpolation methods with the gdalwarp util-
ity that comes with GDAL, but you’ll only see how to use a first-order (linear) polyno-
mial with Python.

 How do you go about using GCPs? The first things you need are the known coordi-
nates for specific pixel offsets. You could get this information the hard way, such as
opening your raster in image or photo processing software and using it to determine
pixel offsets. An easier method, however, is to use the QGIS georeferencer plugin. This
allows you to click on a location in your image and on an already georeferenced map,
and it will tell you the pixel offsets and corresponding real-world coordinates. It will
even export the necessary gdalwarp command to do the georeferencing for you. But
you’re here to learn how to do the same job with Python, so let’s look at the example
back in figure 10.2. This aerial photo of a small area shows a few roads and several
large water treatment ponds. I’ve determined the coordinates for four locations,
shown in table 10.1 and as dots in the figure. I chose points that could be identified
on both the image in figure 10.2A and the topo map in figure 10.2B. Getting the
point coordinates is the hard part of the process, but it’s something you’ll have to do

A. Resized and rotated B. Shape changed

Figure 10.3 A scaled and rotated raster (A) and a raster whose shape has changed (B)

A. Error evenly distributed B. GCPs exact, more error elsewhere

Figure 10.4 Different error distributions. Triangles are GCPs; circles are random points. Solid shapes 
are the true location; hollow shapes are the location the point ends up in the warped raster.
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by hand. In this case, the topo map was georeferenced so I could figure out the coor-
dinates from the map. 

The following listing shows how you would attach these ground control points to the
photo.

import shutil
from osgeo import gdal, osr
orig_fn = r'D:\osgeopy-data\Utah\cache_no_gcp.tif'                      
fn = r'D:\osgeopy-data\Utah\cache.tif'                                   
shutil.copy(orig_fn, fn)                                                
ds = gdal.Open(fn, gdal.GA_Update)
sr = osr.SpatialReference()
sr.SetWellKnownGeogCS('WGS84')
gcps = [gdal.GCP(-111.931075, 41.745836, 0, 1078, 648),
        gdal.GCP(-111.901655, 41.749269, 0, 3531, 295),
        gdal.GCP(-111.899180, 41.739882, 0, 3722, 1334),
        gdal.GCP(-111.930510, 41.728719, 0, 1102, 2548)]
ds.SetGCPs(gcps, sr.ExportToWkt())
ds = None

When adding GCPs to a raster, make sure you open the dataset for updating, as you do
here. You also need the spatial reference system of the known coordinates; in this case
they use the WGS84 datum but are unprojected (lat/lon). The last thing you need is a
list of GCPs, and you can create each of those with the GCP constructor shown here:

gdal.GCP([x], [y], [z], [pixel], [line], [info], [id])

■ x, y, and z are the real-world coordinates corresponding to the point. All are
optional and default to 0, although you probably don’t want x and y values to be 0.

■ pixel is the column offset for the pixel with known coordinates. This is
optional and the default is 0.

■ line is the row offset for the pixel with known coordinates. This is optional and
the default is 0.

■ info and id are two optional strings used to identify the GCP, but in my experi-
ence they don’t carry over to the image. I rarely use GCPs, however, so perhaps
there are instances where they do. The default is a blank string.

Table 10.1 Pixel offsets and coordinates used to georeference the aerial photo shown in figure 10.2

Photo column Photo row Longitude Latitude

1078 648 -111.931075 41.745836

3531 295 -111.901655 41.749269

3722 1334 -111.899180 41.739882

1102 2548 -111.930510 41.728719

Listing 10.1 Adding ground control points to a raster

Make a copy of the 
file to work with
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In listing 10.1 you use the information in table 10.1 to create a list of four GCPs, and then
you attach those GCPs to the dataset with SetGCPs. This function requires a list of GCPs
and a WKT string containing projection information for the real-world coordinates.

 Now that you’ve added GCPs, software that understands them can display your
image in its correct location. If you don’t need to know what GCPs were used to geore-
ference the image and would rather use the more common geotransform method of
georeferencing, you can create a geotransform from the GCPs and set that on the
dataset instead of attaching the GCPs. To create a geotransform using a first-order
transformation, pass your list of GCPs to GCPsToGeoTransform. Then make sure you
set both the geotransform and the projection information on your dataset:

ds.SetProjection(sr.ExportToWkt())
ds.SetGeoTransform(gdal.GCPsToGeoTransform(gcps))

You don’t have to convert your GCPs to a geotransform if you don’t want to, however.

10.2 Converting pixel coordinates to another image
As you learned in the last chapter, functions can help you convert between real-world
coordinates and pixel offsets. Also, a Transformer class can be used for that or to go
between offsets in two different rasters. One example of why you might want to do this
is if you’re mosaicking rasters together,
because each input image goes in a different
part of the mosaic. To illustrate this, let’s com-
bine a few digital orthophotos of Cape Cod
together into one raster.

 To combine the images, it’s necessary to
know the extent of the output mosaic. The
only way to find this is to get the extent of each
input raster and calculate the overall mini-
mum and maximum coordinates (figure 10.5).
To make this a little easier, you’ll create a func-
tion that gets the extent of a raster. It uses the
geotransform to get the upper-left coordinates
and then calculates the lower right coordinates
using the pixel size and raster dimensions:

def get_extent(fn):
    '''Returns min_x, max_y, max_x, min_y'''
    ds = gdal.Open(fn)
    gt = ds.GetGeoTransform()
    return (gt[0], gt[3], gt[0] + gt[1] * ds.RasterXSize,
        gt[3] + gt[5] * ds.RasterYSize)

You can see in the following listing how this function is used to help find the output
extent. Once you know the extent, you can calculate the output dimensions and cre-
ate the raster. Then you can finally start copying data from each file.

Figure 10.5 Dotted lines show the 
footprints of six rasters to be mosaicked 
together. The solid outer line is the 
footprint for the output raster.
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os.chdir(r'D:\osgeopy-data\Massachusetts')
in_files = glob.glob('O*.tif')                                        
min_x, max_y, max_x, min_y = get_extent(in_files[0])                   
for fn in in_files[1:]:                                                
    minx, maxy, maxx, miny = get_extent(fn)                            
    min_x = min(min_x, minx)                                           
    max_y = max(max_y, maxy)                                           
    max_x = max(max_x, maxx)                                          
    min_y = min(min_y, miny)                                            

in_ds = gdal.Open(in_files[0])                                         
gt = in_ds.GetGeoTransform()                                           
rows = math.ceil((max_y - min_y) / -gt[5])                              
columns = math.ceil((max_x - min_x) / gt[1])                           

driver = gdal.GetDriverByName('gtiff')                                  
out_ds = driver.Create('mosaic.tif', columns, rows)                    
out_ds.SetProjection(in_ds.GetProjection())                            
out_band = out_ds.GetRasterBand(1)                                     

gt = list(in_ds.GetGeoTransform())                                      
gt[0], gt[3] = min_x, max_y                                             
out_ds.SetGeoTransform(gt)                                             

for fn in in_files:
    in_ds = gdal.Open(fn)
    trans = gdal.Transformer(in_ds, out_ds, [])                          
    success, xyz = trans.TransformPoint(False, 0, 0)                     
    x, y, z = map(int, xyz)                                              
    data = in_ds.GetRasterBand(1).ReadAsArray()                         
    out_band.WriteArray(data, x, y)                                    

del in_ds, out_band, out_ds

The first thing you do in listing 10.2 is loop through all of the input files and use their
extents to calculate the final mosaic’s extent, and then you calculate the numbers of
rows and columns for the output. You do this by getting the distance between the min
and max values in each direction and dividing by the pixel size. You make sure to not
accidentally cut the edges off by using the ceil function to round any partial numbers
up to the next integer. Then you create a new dataset using these dimensions. You still
need to create an appropriate geotransform, but that’s easily done by copying one
from an input file and changing the upper-left coordinates to the ones you calculated.

 By this point you have an empty raster of the appropriate size, so it’s time to start
copying data. This is where the transformer comes in. For each input dataset, you cre-
ate a transformer between that dataset and the output mosaic. The third parameter is
for transformer options, but you’re not using any of them here. Once you have the
transformer, you can easily calculate the correct pixel offsets for the mosaic that corre-
spond to the upper-left corner of the input raster using TransformPoint:

TransformPoint(bDstToSrc, x, y, [z])

Listing 10.2 Mosaic multiple images together

Calculate output 
extent from all inputs

Calculate dimensions

Create output

Calculate new 
geotransform

Get output offsets

Copy data 
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■ bDstToSrc is a flag specifying if you want to compute offsets from the destina-
tion raster to the source raster or vice versa. Use True to go from the destina-
tion to the source and False to go the other way.

■ x, y, and z are the coordinates or offsets that you want to transform. z is optional and
defaults to 0.

You want to compute offsets in the destination raster (the second one provided when
you created the transformer) based on the source, so you use False for the first param-
eter. The x and y parameters are both 0 because you want the offsets corresponding to
the first row and first column in the input. The function returns a list containing a suc-
cess flag and a tuple with the requested coordinates, but the coordinates are floating-
point so you convert them to integers. Finally, you read the data from the input raster
and write it out to the mosaic using the offsets you just calculated. Then you go on to
the next input dataset. 

 The resulting mosaic is shown in
figure 10.6. You can see how the
color balancing between the images
isn’t perfect. One other thing to be
aware of is that if the input rasters
overlap, then pixel values in the
overlap area will be overwritten by
the last raster that covers the overlap.
The order in which you combine the
rasters might be important to you so
that you get the correct pixel values.
Or you could implement a fancier
algorithm to average the pixel values
or handle them in another way.

 You can also transform coordi-
nates between pixel offsets and real-
world coordinates by not providing
one of the datasets. For example, this would get the real-world coordinates for the
pixel at column 1078 and row 648, assuming that the dataset has a valid geotransform:

trans = gdal.Transformer(out_ds, None, [])
success, xyz = trans.TransformPoint(0, 1078, 648)

I prefer to use ApplyGeoTransform for this, as you saw in the previous chapter, but you
should use whichever one makes the most sense to you.

10.3 Color tables
In thematic rasters the pixel values represent a classification such as vegetation type
instead of color information like in a photograph. If you want to control how these
datasets are displayed, then you need a color table. The map of Utah vegetation types
shown back in figure 10.1 uses a color table so that the image looks the same whether

Figure 10.6 A simple mosaic of six aerial photos of 
Cape Cod, Massachusetts
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you open it in QGIS, ArcMap, or even the Windows Photo Viewer. Color tables only
work for integer-type rasters, and I have only had luck getting the color mapping to
work on pixel values of 255 and below (values that fit into a byte).

 To see how color tables work, let’s create one for an elevation dataset that has been
classified into ranges. This file has been created for you and is in the book data’s Swit-
zerland folder. It’s called dem_class.tif, and the elevation values have been classified
into five different ranges, so the pixel values range from 0 to 5, with 0 being set to
NoData. If you look at this file in something like Windows Photo Viewer, you’ll only see
a black rectangle, because that’s how it interprets such small pixel values. If you open
it up in QGIS or another GIS package, it’s likely that the software will automatically
stretch the data for you so you’ll see something like figure 10.7.

 If you add a color map to this image, then it will draw correctly without being
stretched, and you can specify the colors that are used for each elevation range. Let’s
try it.

os.chdir(r'D:\osgeopy-data\Switzerland')
original_ds = gdal.Open('dem_class.tif')
driver = gdal.GetDriverByName('gtiff')
ds = driver.CreateCopy('dem_class2.tif', original_ds)    
band = ds.GetRasterBand(1)

colors = gdal.ColorTable()                                              
colors.SetColorEntry(1, (112, 153, 89))                                
colors.SetColorEntry(2, (242, 238, 162))                               
colors.SetColorEntry(3, (242, 206, 133))                                
colors.SetColorEntry(4, (194, 140, 124))                               
colors.SetColorEntry(5, (214, 193, 156))                               

band.SetRasterColorTable(colors)                                     
band.SetRasterColorInterpretation(                                    
    gdal.GCI_PaletteIndex)                                           

del band, ds

Listing 10.3 Add a color map to a raster

Figure 10.7 Digital elevation 
model for Switzerland that has 
been classified into five 
elevation ranges and then 
stretched so that the small 
pixel values appear different 
from one another

Make a copy 
of the dataset

Create an RGB 
ColorTable and 
add colors

Add the ColorTable 
to the band
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The first part of this listing doesn’t have anything to do with the color table; it’s mak-
ing a copy of the image so that the original doesn’t get modified. The interesting part
is when you create an empty color table called colors and then add colors to it. The
first parameter to SetColorEntry is the pixel value that you want to set the color for,
and the second parameter is a tuple or list containing the red, green, and blue values
for the color. You set colors for pixel values between 1 and 5, inclusive. Because this is
a byte dataset, there are 255 possible pixel values and the color table contains zeros
(black) for the values that you didn’t change. Finally, you add the color map to the
band and tell the band that it’s using a color map by setting the color interpretation to
paletted, although that second step isn’t necessary because GDAL figures it out. Now
your image looks like figure 10.8, although software that doesn’t understand the
NoData setting will draw a black background.

 You can also edit existing color tables. Say you want to change the color map you
created so that the highest elevation range displays as something closer to white. Grab
the color table from the band and change the entry you’re interested in, which is the
pixel value 5 in this case:

os.chdir(r'D:\osgeopy-data\Switzerland')
ds = gdal.Open('dem_class2.tif', gdal.GA_Update)              
band = ds.GetRasterBand(1)
colors = band.GetRasterColorTable()
colors.SetColorEntry(5, (250, 250, 250))
band.SetRasterColorTable(colors)                                   
del band, ds

Remember to open the dataset for writing. If you don’t, your changes won’t take effect
and you won’t get an error message, either. You also need to add the color map back
to the band because the one you’re editing is no longer linked to the band. 

10.3.1 Transparency

Have you ever seen colors referred to as RGBA instead of plain RGB? The A stands for
a fourth value called alpha, which is used to specify opacity. The higher the alpha
value, the more opaque the color. You can add an alpha band to your image and then

Figure 10.8 Digital 
elevation model for 
Switzerland that has been 
classified into five elevation 
ranges and then had a color 
map applied. If you look at 
the color version online, it 
will look much different from 
the automatic symbology 
shown in figure 10.7.

Open the dataset 
for updating

Set the modified ColorTable 
onto the band
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certain software packages, such as QGIS, will use it. Others, like ArcMap, ignore the
alpha band when using color tables. If you want to go this route with color tables, you
need to create your dataset with two bands, where the first one is your pixel values as
before, and the second one holds alpha values. You also need to specify that this sec-
ond band is an alpha band at creation time, like this:

ds = driver.Create('dem_class4.tif', original_ds.RasterXSize,
    original_ds.RasterYSize, 2, gdal.GDT_Byte, ['ALPHA=YES'])

Then add values between 0 and 255 to your alpha band, where 0 means fully transpar-
ent and 255 is fully opaque. We’ll talk about NumPy in the next chapter, but this is
how you’d use NumPy to find all pixels in the first band that are equal to 5 and set
them approximately 25% transparent:

import numpy as np
data = band1.ReadAsArray()
data = np.where(data == 5, 65, 255)
band2.WriteArray(data)
band2.SetRasterColorInterpretation(gdal.GCI_AlphaBand)

Here you use the NumPy where function to create a new array based on the values of
the original data array from band 1. It’s like an if-else statement, where the condition
is whether or not the pixel value is equal to 5. If it is, then the corresponding cell in
the output array gets a value of 65, which is roughly a quarter of 255. If the original
pixel has a value other than 0, then the output gets a value of 255, which is no trans-
parency. Write that new array to the second band, and make sure you set the color
interpretation for that band to alpha.

 If you wanted to create an image with transparency that more software will under-
stand, then you could create a four-band image and forego the color map. In this case,
you’d put the red value in the first band, green in the second, blue in the third, and
the alpha value in the fourth band. The disadvantage to this is that your dataset would
be at least twice as large because it would have twice as many bands. It would probably
have even another band to hold your original pixel values instead of only color infor-
mation. Otherwise, you’d lose your information about pixel classifications, such as
landcover types.

10.4 Histograms
Sometimes you need a frequency histogram for pixel values. One example of this
would be calculating the area of each vegetation type in a vegetation classification. If
you know how many pixels are classified as pinyon-juniper, for instance, then you can
multiply that number by the area of a pixel (which is pixel width times pixel height) to
get the total acreage of pinyon-juniper.

 The easiest way to get a histogram is to use the GetHistogram function on a band.
You can specify exactly what bins you want to use, but the default is to use 256 of them.
The first one includes values between -0.5 and 0.5, the second bin goes from 0.5 to
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1.5, and so on. So if you have byte data, this histogram will have one bin per possible
pixel value (0, 1, 2, and so on). If no histogram data already exist for the raster, then
this function computes an approximate one by default, but you can request an exact
one. The function looks like this:

GetHistogram([min], [max], [buckets], [include_out_of_range], [approx_ok],
            [callback], [callback_data])

■ min is the minimum pixel value to include in the histogram. The default value
is 0.5.

■ max is the maximum pixel value to include in the histogram. The default value
is 255.5.

■ buckets is the number of bins you want. The size of the bins is determined by
taking the difference between max and min and dividing that by buckets. The
default value is 256.

■ include_out_of_range denotes whether or not to lump pixel values below the
minimum value into the minimum bin, and the pixel values larger than the
maximum into the maximum bin. The default value is False. Use True if you
want to enable this behavior.

■ approx_ok denotes whether or not it’s okay to use approximate numbers, either
by looking at overviews or only sampling a subset of the pixels. The function
will run faster this way. The default value is True. Use False if you want exact
counts.

■ callback is a function that’s called periodically while the histogram is being
computed. This is useful for showing progress while processing large datasets.
The default value is 0, which means you don’t want to use a callback function.

■ callback_data is data to pass to the callback function if you’re using one. The
default value is None. 

This code snippet shows the difference between approximate and exact values, using
the classified elevation raster that we looked at earlier:

os.chdir(r'D:\osgeopy-data\Switzerland')
ds = gdal.Open('dem_class2.tif')
band = ds.GetRasterBand(1)
approximate_hist = band.GetHistogram()
exact_hist = band.GetHistogram(approx_ok=False)
print('Approximate:', approximate_hist[:7], sum(approximate_hist))
print('Exact:', exact_hist[:7], sum(exact_hist))

The histogram consists of a list of counts, in order by bin. In this case the first count
corresponds to pixel value 0, the second to pixel value 1, and so on. Here you only
print the first seven entries, because the remaining 249 of them are all 0 for this data-
set. The results are shown here and in figure 10.9:

Approximate: [0, 6564, 3441, 3531, 2321, 802, 0] 16659
Exact: [0, 27213, 12986, 13642, 10632, 5414, 0] 69887 
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Notice that the numbers, including the sum, for the approximate histogram are much
smaller than those for the exact. Therefore, the approximate numbers are not the way
to go if you need to tabulate area, but they’d probably work well if you want relative
frequencies. Also notice that no counts exist for a pixel value of 0. That’s because 0 is
set to NoData, so it gets ignored.

GDAL stores these histograms in an XML file alongside the raster. If you ran this
code, there should now be a file called dem_class2.tif.aux.xml in your Switzerland
folder. If you open it and take a look, you’ll see both sets of histogram data. As long as
you don’t delete that file, those specific histograms won’t need to be computed again
because GDAL can read the information from the XML file. 

 You can also set a certain binning scheme to be the default for an image. For exam-
ple, say you want to lump pixel values 1 and 2 together, 3 and 4 together, and leave 5
alone. You can do that like this:

hist = band.GetHistogram(0.5, 6.5, 3, approx_ok=False)
band.SetDefaultHistogram(1, 6, hist)

In this example, you create a histogram with three bins that include pixel values 1
through 6. Why go up to 6 instead of 5, when the actual data values only go up to 5?
The bins are created of equal size, so if there were three bins between 1 and 5, then
the breaks would be in the wrong places. The breaks for the example would be at 2.5
and 4.5, but they would be at 2.2 and 3.8 if you used a range of 5 instead of 6. In that
case, the pixels with values 4 and 5 would be lumped together and 3 would be alone,
which isn’t the desired outcome (figure 10.10).

 Once you compute the histogram, you set it as the default. The SetDefault-
Histogram function wants a minimum pixel value, maximum value, and then the list
of counts. Once you’ve set a default, you can use GetDefaultHistogram to get that
particular one. While GetHistogram returns a list of counts, GetDefaultHistogram
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Figure 10.9 The approximate and 
exact histograms generated from the 
classified elevation raster



221Attribute tables
returns a tuple containing the minimum pixel value, maximum pixel value, number
of bins, and a list of counts:

min_val, max_val, n, hist = band.GetDefaultHistogram()
print(hist)
[40199, 24274, 5414]

When you call GetHistogram, you provide the min and max values and the number
of bins to use, so that function doesn’t need to return that information because you
already know it. These values are returned when you call GetDefaultHistogram
because you might not know what values were used to create the default histogram. 

10.5 Attribute tables
Integer raster datasets can have attribute tables, although in my experience they don’t
have nearly as many fields as vector attribute tables. Instead of a record in the table cor-
responding to an individual feature, each record of a raster attribute table corresponds
to a particular pixel value. For example, all pixels with a value of 56 will share the same
record in the attribute table, because each pixel doesn’t represent an individual fea-
ture, but multiple pixels with the same value should represent the same thing, whether
it’s a certain color, an elevation, a land use classification, or something else. 

 An attribute table doesn’t even make sense
for many rasters. I can’t think of an attribute I
would want to attach to various pixel values in
an aerial photo, for example. In fact, raster
attribute tables make the most sense for cate-
gorical data such as landcover or soil type,
when you’d want attributes containing infor-
mation about each category.

 Let’s create an attribute table for the clas-
sified elevation raster we’ve been working
with. Table 10.2 shows the elevation classes
used to create the dataset, which would be
useful information to store.

A

0 1 2 3 4 5 6 7

B

Figure 10.10 The results of creating three bins between 0.5 and 6.5 (A) and 0.5 and 5.5 (B). In case 
A, values 1 and 2 share a bin, 3 and 4 share a bin, and 5 has a bin to itself (there are no pixels with a 
value of 6). In case B, however, value 3 is the one that doesn’t share a bin.

Table 10.2 Pixel values and the
corresponding elevation ranges for the
classified elevation raster

 Pixel value Elevation range (meters)

1 0 – 800

2 800 – 1300

3 1300 – 2000

4 2000 – 2600

5 2600+
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We’ll use the code in the following listing to add the information from table 10.2
along with the histogram counts to the raster’s attribute table.

os.chdir(r'D:\osgeopy-data\Switzerland')
ds = gdal.Open('dem_class2.tif')
band = ds.GetRasterBand(1)
band.SetNoDataValue(-1)                         

rat = gdal.RasterAttributeTable()                                     
rat.CreateColumn(                                                       
    'Value', gdal.GFT_Integer, gdal.GFU_Name)                            
rat.CreateColumn(                                                       
    'Count', gdal.GFT_Integer, gdal.GFU_PixelCount)                     
rat.CreateColumn(                                                       
    'Elevation', gdal.GFT_String, gdal.GFU_Generic)                     
rat.SetRowCount(6)                                                      

rat.WriteArray(range(6), 0)                                            
rat.WriteArray(                                                         
    band.GetHistogram(-0.5, 5.5, 6, False, False), 1)                   
rat.SetValueAsString(1, 2, '0 - 800')                                  
rat.SetValueAsString(2, 2, '800 - 1300')                                 
rat.SetValueAsString(3, 2, '1300 - 2000')                               
rat.SetValueAsString(4, 2, '2000 - 2600')                               
rat.SetValueAsString(5, 2, '2600 +')                                    

band.SetDefaultRAT(rat)                                 
band.SetNoDataValue(0)                                                  
del band, ds

When you create a new raster attribute table, you need to define the columns it will
have. You provide three pieces of information when you add a column. The first is the
name of the column. The second is the data type, which can be one of GFT_Integer,
GFT_Real, or GFT_String. The last thing is the purpose of the column using one of the
GFU constants from appendix E. (Appendixes C through E are available online on the
Manning Publications website at https://www.manning.com/books/geoprocessing-
with-python.) The desktop software I use either doesn’t support raster attribute tables
at all (QGIS) or doesn’t see most of them as anything special (ArcGIS), but there’s prob-
ably software out there that does. Therefore, the only types I’m usually interested in
are the ones used here. You used GFU_Name for the column containing the pixel values,
GFU_PixelCount for the histogram counts, and GFU_Generic for the description. You
also told it that there will be six rows.

 The next step is to add the data. You know the pixel values range from 0 to 5, so you
use the range function to get a list containing those numbers and then add that list to
the first column, which is pixel values. The first parameter to WriteArray is the data to
put in the column, and the second parameter is the index of the column that you want
to add the data to. Because you already specified that there were six rows, you’d have

Listing 10.4 Add an attribute table to a raster

Set NoData to a 
nonexisting value

Create the 
attribute table

Load in a list of 
data to a column

Set individual values

Add the table 
to the band

tore
ata

https://www.manning.com/books/geoprocessing-with-python
https://www.manning.com/books/geoprocessing-with-python
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gotten an error about too many values if you’d provided a list with more than six items.
You don’t have to write all rows at once, though. If you’d only provided four values, it
would have filled the first four rows of the column. An optional third parameter tells it
which row to begin writing data on, so you could then add the remaining data by pass-
ing a 4 as the last parameter so that it would start writing on the correct row. 

 You use this same method to add the histogram counts to the second column,
except this time the list of values comes from the GetHistogram function. Remember
that the 0 values are ignored when computing histograms, but you might want the
number of zeros in the attribute table. One way to get a histogram that includes those
values is to set NoData to a bogus value and then calculate a histogram that hasn’t been
calculated before. It needs to be a new histogram because if that particular one has
already been calculated, then GDAL will pull the information out of the XML file you
saw earlier, and the zeros still won’t be counted. That’s why you set NoData to -1 before
creating the attribute table, and then use a set of parameters that you haven’t yet used
to retrieve a histogram. Conveniently, you tell it that you want six bins, which is exactly
how many rows the table has.

 Then you set the elevation ranges. You could create a list holding those descrip-
tions, but instead you add each one individually by specifying the row, then the column,
and then the value to put in the table. You don’t
bother adding a description for the first row with
index 0, because there’s not much to say about
NoData.

 Once you add all of your data to the table,
you add it to the band with SetDefaultRAT, and
then make sure to restore the NoData value to
your band. Figure 10.11 shows a screenshot of
this raster attribute table in ArcGIS. Unfortu-
nately, you can’t view the results with QGIS.

10.6 Virtual raster format
The GDAL virtual format (VRT) isn’t another property you can add to a raster, like an
attribute or color table, but it’s a useful format that allows you to define a dataset
using an XML file. Virtual raster datasets use other datasets to store the data, but the
XML describes how to pull the data out of those other files. A VRT can be used to sub-
set the data, modify properties such as the projection, or even combine multiple data-
sets into one. In these cases, the original datasets aren’t changed, but the
modifications are made to the data in memory when it’s read by the software. 

 For example, say you had a raster dataset that covered a large spatial area, but you
needed to run different analyses on various spatial subsets of the original raster. You
could clip out the areas you need, or you could define a VRT for each of these subsets
and not have to create the subsetted rasters on disk. For even more information on
VRTs than you will see here, check out http://www.gdal.org/gdal_vrttut.html.

Figure 10.11 Raster attribute table 
for the classified elevation raster

http://www.gdal.org/gdal_vrttut.html
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 Before we look at manipulating data with a VRT, let’s look at an extremely simple
example (called simple_example.vrt in the Landsat/Washington data folder). This
XML defines a VRT dataset with one band, and that band is the blue band from the
natural color GeoTIFF you created in the last chapter.

<VRTDataset rasterXSize="8849" rasterYSize="8023">
    <SRS>
        PROJCS["WGS 84 / UTM zone 10N",GEOGCS["WGS 84",DATUM["WGS_1984",...
    </SRS>
    <GeoTransform>343724.25, 28.5, 0, 5369585.25, 0,-28.5</GeoTransform>
    <VRTRasterBand dataType="Byte" band="1">
        <SimpleSource>
            <SourceFilename relativeToVRT="1">                        
                nat_color.tif                                           
            </SourceFilename>                                           
            <SourceBand>3</SourceBand>                                   
            <SourceProperties RasterXSize="8849" RasterYSize="8023"
                DataType="Byte" BlockXSize="8849" BlockYSize="1" />
        </SimpleSource>
    </VRTRasterBand>
</VRTDataset>

This XML contains general dataset information such as the numbers of rows and col-
umns, the spatial reference system, and the geotransform. The SRS needs to be in
WKT, which would have taken up a lot of space, so I opted to truncate it for the exam-
ple (the third line). In real life, you’d need the entire SRS string. There’s also a
VRTRasterBand element for each band in the dataset, which is only one in this case.
This contains the data type, band number, rows and columns, and the information
required to load the data. This is a simple case, so it only needs a filename and a band
number. You want the blue band, which is the third one in nat_color.tif. The rela-
tiveToVRT attribute tells it whether or not the file path to the data is relative to the
location of the VRT file itself. If you want an absolute filename, use a 0 here. In this
particular case, the image file and the VRT file are in the same directory, but if you
were to move the VRT file without moving the image file, the VRT would be unable to
load any data. 

 Creating VRT datasets from Python can be a bit tricky because you need to supply
part of the XML yourself. The most basic example is providing the source filename
and band number. You could set up an XML template something like the following
and then use it when adding bands to the VRT:

xml = '''
<SimpleSource>
  <SourceFilename>{0}</SourceFilename>
  <SourceBand>1</SourceBand>
</SimpleSource>
'''

Listing 10.5 XML to define a VRT dataset with one band

Filename and 
band number
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This snippet assumes that you’ll always use the first band from the source raster. That’s
because you’re going to use it to define a natural color raster without copying any data
around like you did in the last chapter, and each of the input rasters only has one
band anyway. Most things work the same way with a VRT as they do for other dataset
types, so creating the new dataset is the same as before. Even though no data will be
copied, you still need to make sure that you create the dataset with the same dimen-
sions as the originals:

os.chdir(r'D:\osgeopy-data\Landsat\Washington')
tmp_ds = gdal.Open('p047r027_7t20000730_z10_nn30.tif')
driver = gdal.GetDriverByName('vrt')
ds = driver.Create('nat_color.vrt', tmp_ds.RasterXSize, 
    tmp_ds.RasterYSize, 3)                          
ds.SetProjection(tmp_ds.GetProjection())
ds.SetGeoTransform(tmp_ds.GetGeoTransform())

Now you can go about adding the links to the three input rasters. For each one, you
need to create a dictionary with one entry, where the key is ‘source_0’ and the value
is the XML string containing the filename. Then you add that dictionary as metadata
for the band in the ‘vrt_sources’ domain. Repeat this process for all three bands.

metadata = {'source_0': xml.format('p047r027_7t20000730_z10_nn30.tif')}
ds.GetRasterBand(1).SetMetadata(metadata, 'vrt_sources')

metadata = {'source_0': xml.format('p047r027_7t20000730_z10_nn20.tif')}
ds.GetRasterBand(2).SetMetadata(metadata, 'vrt_sources')

metadata = {'source_0': xml.format('p047r027_7t20000730_z10_nn10.tif')}
ds.GetRasterBand(3).SetMetadata(metadata, 'vrt_sources')

Now you can use QGIS to open the VRT
dataset, and you’ll see a three-band
image such as that shown in figure
10.12. Unlike the GeoTIFF you created
before, this won’t open up in regular
image-processing software, however.

10.6.1 Subsetting

I mentioned earlier that you can use
VRTs to subset images without creating
another subsetted image. The process
of creating the empty dataset is similar
to what you did in the previous chapter
when subsetting. You still need to fig-
ure out the numbers of rows and col-
umns and the new geotransform, and
then use that information to create the
new dataset. That’s what the first part

Figure 10.12 Stacked VRT created from three 
single-band images. It doesn’t look like much when 
printed in black and white, but you can view the 
color version online, which will look like natural 
color (the way our eyes would see it).
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of the following listing does, except that it uses a VRT driver. Things change after you
create the dataset, however, because in this example you need to create the appropri-
ate XML for each raster band and insert it into the VRT. The process is explained after
the code listing. 

import os
from osgeo import gdal

os.chdir(r'D:\osgeopy-data\Landsat\Washington')
tmp_ds = gdal.Open('nat_color.tif')
tmp_gt = tmp_ds.GetGeoTransform()

inv_gt = gdal.InvGeoTransform(tmp_gt)                                  
if gdal.VersionInfo()[0] == '1':                                       
    if inv_gt[0] == 1:                                                 
        inv_gt = inv_gt[1]                                             
    else:                                                               
        raise RuntimeError('Inverse geotransform failed')               
elif inv_gt is None:                                                     
    raise RuntimeError('Inverse geotransform failed')                   

vashon_ul = (532000, 5262600)
vashon_lr = (548500, 5241500)
ulx, uly = map(int, gdal.ApplyGeoTransform(inv_gt, *vashon_ul))
lrx, lry = map(int, gdal.ApplyGeoTransform(inv_gt, *vashon_lr))
rows = lry - uly
columns = lrx - ulx
gt = list(tmp_gt)
gt[0] += gt[1] * ulx
gt[3] += gt[5] * uly

ds = gdal.GetDriverByName('vrt').Create('vashon.vrt', columns, rows, 3)
ds.SetProjection(tmp_ds.GetProjection())
ds.SetGeoTransform(gt)

xml = '''                                                                
<SimpleSource>                                                            
  <SourceFilename relativeToVRT="1">{fn}</SourceFilename>                 
  <SourceBand>{band}</SourceBand>                                         
  <SrcRect xOff="{xoff}" yOff="{yoff}"                                   
           xSize="{cols}" ySize="{rows}" />                             
  <DstRect xOff="0" yOff="0"                                           
           xSize="{cols}" ySize="{rows}" />                          
</SimpleSource>                                                       
'''                                                                     

data = {'fn': 'nat_color.tif', 'band': 1,                                 
        'xoff': ulx, 'yoff': uly,                                     
        'cols': columns, 'rows': rows}                                 

meta = {'source_0': xml.format(**data)}                               
ds.GetRasterBand(1).SetMetadata(meta, 'vrt_sources')                    

Listing 10.6 Subset a raster using a VRT

Account for GDAL 
version when getting the 
inverse geotransform

XML describing a band

Data to be inserted 
into the XML

Insert band 1 into VRT
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data['band'] = 2                                                       
meta = {'source_0': xml.format(**data)}                               
ds.GetRasterBand(2).SetMetadata(meta, 'vrt_sources')                   

data['band'] = 3
meta = {'source_0': xml.format(**data)}
ds.GetRasterBand(3).SetMetadata(meta, 'vrt_sources')

del ds, tmp_ds

As mentioned right before the code listing, you have to create XML to subset your ras-
ter with a VRT. This XML is slightly more complicated than the XML you used a minute
ago, because it also includes elements for the source and destination extents. The
numbers of rows and columns are the same size for both the source and destination
and are the numbers you calculate. The offsets for the source are the offsets you com-
pute to correspond with the upper-left corner of the area of interest, and the offsets
for the destination are both 0 because you fill the entire output image:

  <SrcRect xOff="{xoff}" yOff="{yoff}" xSize="{cols}" ySize="{rows}" />   
  <DstRect xOff="0" yOff="0" xSize="{cols}" ySize="{rows}" />    

This time you use named placeholders in the XML to make it easier to see what goes
where. To format this string, you need a dictionary with the same keys as placeholders.
You can create this dictionary once and then change the band number (because
you’re using a different band from the three-band input image each time) when you
add a new band to the VRT:
data['band'] = 2 

meta = {'source_0': xml.format(**data)} 
ds.GetRasterBand(2).SetMetadata(meta, 'vrt_sources') 

If all went well, the VRT will look like figure
10.13 if you open it in QGIS, and it will over-
lay perfectly on the original image. 

10.6.2 Creating troublesome formats

Not all raster formats allow you to create and
manipulate multiple-band images. For
example, if you’d tried to create a natural
color JPEG instead of a TIFF in the previous
chapter, you would have run into problems
because the JPEG driver doesn’t allow you to
create a multiband image and then add data
to the bands. That’s a real problem if you
want JPEG output! Fortunately, VRTs can
come to your rescue. All you need to do is
create a VRT that defines the output you
want, and then use the JPEG (or whatever

Change to band 2 
and insert

Figure 10.13 Subsetted VRT
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format) driver’s CreateCopy function. For example, to create a JPEG of Vashon Island,
open up the VRT you created in the last section and then copy it to a JPEG:

ds = gdal.Open('vashon.vrt')
gdal.GetDriverByName('jpeg').CreateCopy('vashon.jpg', ds)

If you’d rather create an intermediate TIFF instead of a VRT, go right ahead, and then
copy the TIFF to a JPEG. The advantage to using a VRT is that you’re not creating possi-
bly large intermediate files on disk.

10.6.3 Reprojecting images

Remember talking about reproject-
ing vector data in chapter 8? Raster
data can also be reprojected, but it’s
more complicated than with vector
data. With vectors, you need the new
coordinates for each vertex and
you’re good to go, but with rasters
you need to deal with the fact that
cells get bent and moved around,
and a one-to-one mapping from old
cell locations to new cell locations
doesn’t exist (see figure 10.14). The
easiest way to determine the pixel
value for a new cell is use the value
from the input cell that gets mapped
closest to the output cell. This is
called nearest-neighbor and is the fastest method, the one you’ll usually want for cate-
gorical data. All others, except mode, will change your categories, which you defi-
nitely don’t want for categorical data. Continuous data rasters usually won’t look good
if you use nearest-neighbor, however. For those, I generally use bilinear interpolation
or cubic convolution, which use an average of surrounding pixels. Several other meth-
ods are available, however, that might be more appropriate for your particular data.

 I think that the easiest way to reproject a raster, other than using the gdalwarp util-
ity that comes with GDAL, is to use a VRT. There’s a handy function that creates a
reprojected VRT dataset for you when you provide the spatial reference information.
It looks like this:

AutoCreateWarpedVRT(src_ds, [src_wkt], [dst_wkt], [eResampleAlg],
[maxerror]) 

■ src_ds is the dataset you want to reproject.
■ src_wkt is the WKT representation of the source spatial reference system. The

default is None, in which case it will use the SRS information from the source
raster. If this raster doesn’t have SRS information, then you need to provide it
here. You can also provide it here if using None makes you nervous.

Figure 10.14 Example of how pixels get moved 
around when the raster is projected. The triangles and 
circles are pixel center points for two different 
rasters. The triangles were created from a reprojected 
version of the raster that the circles came from. 
Notice that the dimensions are even different.
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■ dst_wkt is the WKT representation of the desired spatial reference system. The
default is None, in which case no reprojection will occur.

■ eRasampleAlg is one of the resampling methods from table 10.3. The default is
GRA_NearestNeighbour.

■ maxerror is the maximum amount of error, in pixels, that you want to allow.
The default is 0, for an exact calculation.

The AutoCreateWarpedVRT function doesn’t create a VRT file on disk, but returns a
dataset object that you can then save to another format using CreateCopy. The follow-
ing example takes the natural color Landsat image that uses a UTM spatial reference,
creates a warped VRT with a destination SRS of unprojected WGS84, and copies the
VRT to a GeoTIFF:

srs = osr.SpatialReference()
srs.SetWellKnownGeogCS('WGS84')
os.chdir(r'D:\osgeopy-data\Landsat\Washington')
old_ds = gdal.Open('nat_color.tif')
vrt_ds = gdal.AutoCreateWarpedVRT(old_ds, None, srs.ExportToWkt(), 
    gdal.GRA_Bilinear)
gdal.GetDriverByName('gtiff').CreateCopy('nat_color_wgs84.tif', vrt_ds)

The output from this looks like figure 10.15.

Table 10.3 Resample methods

Constant Description

GRA_NearestNeighbour Closest pixel

GRA_Bilinear Weighted distance average of 4 pixels

GRA_Cubic Average of 16 pixels

GRA_CubicSpline Cubic B-spline of 16 pixels

GRA_Lanczos Lanczos windowed sinc with 36 pixels

GRA_Average Average

GRA_Mode Most common value

Figure 10.15 The original 
Landsat image that uses a 
UTM spatial reference, and 
the new one that uses 
unprojected lat/lon 
coordinates
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10.7 Callback functions
Often you want an indication of how
long your process is going to take or
how far along it is. If I’m batch pro-
cessing multiple files, and each one
takes a long time, I’ll sometimes have
my code print out a message telling
me which file it’s currently working
on. That’s not a useful technique if I
want to see the progress of a GDAL
function, such as computing statistics
or warping an image, because that bit
of processing is out of my hands once
I call the function. Fortunately, the
GDAL developers thought of this,
and many functions take callback
functions as arguments (in fact, you
saw this in the signature for Get-
Histogram). A callback function is one that gets passed to another function and is
then called from the function it was passed to (figure 10.16). 

 In the case of GDAL, the callback functions are designed to show progress, so they
get called often as the process runs. A predefined function is even available for you to
use that prints a percentage or a dot at every 2.5% of progress. By the time the process
has finished, the output from this function looks like this:

0...10...20...30...40...50...60...70...80...90...100 - done.

To take advantage of this, just pass gdal.TermProgress_nocb to any function that
takes a callback function as a parameter. This example would cause progress informa-
tion to be printed while calculating statistics:

band.ComputeStatistics(False, gdal.TermProgress_nocb)

TIP Several of the methods on OGR layers, such as Intersection and Union,
also accept a callback parameter. To use it, import GDAL and pass
gdal.TermProgress_nocb as you do with GDAL functions. You could also use
callbacks to track the progress of your vector-processing functions using the
techniques shown here.

You can also use this function to print out the progress of your own functions. Instead
of passing the TermProgress_nocb function to another function, call it yourself with
the appropriate percentage. For example, if I wanted to use this instead of print file-
names during my batch processing, I could do something like this:

for i in range(len(list_of_files)):
    process_file(list_of_files[i])

Your code

Code calls a GDAL function and passes the

required parameters and a callback function

GDAL function periodically calls the callback

function and passes a progress percentage

GDAL function

Callback function

Figure 10.16 Callbacks are functions that get 
passed as parameters to a second function, where 
they’re later called.
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    gdal.TermProgress_nocb(i / float(len(list_of_files)))
gdal.TermProgress_nocb(100)

This assumes that the list_of_files variable is a list of all of the files to process, and
that the process_file function does something with the file. Each time I start pro-
cessing a new file, I figure out how far I am based on the total number of files and pass
that to TermProgress_nocb so I can get a visual indication of my progress. The prog-
ress function is also called after finishing the loop in order to tidy things up. Other-
wise, if the last percentage passed wasn’t quite 100, you’d end up with output like this,
where the last bit is missing:

0...10...20...30...40...50...60...70...80...90..

You might not care about that, but if other people are running your code, they might
prefer to know that things finished.

NOTE It’s possible that with your version of GDAL, the progress function is
called TermProgress instead.

You can also write your own callback function if you’d like your progress information
to look different. The function you define needs to have three different parameters.
The first is the progress percentage between 0 and 1, the second is a string, and the
third is whatever you want. If one of the GDAL functions invokes your callback, it will
pass a string specifying what it’s doing as the second parameter. You provide the third
parameter when you pass in the callback function. The best way to explain how this
works is by example, so the following listing is an example that allows the user to
specify how often to print a progress indicator dot by passing in another number
between 0 and 1 as the progressArg parameter. The message string is also printed
out once at the beginning.

import sys
def my_progress(complete, message, progressArg=0.02):
    if not hasattr(my_progress, 'last_progress'):
        sys.stdout.write(message)                                      
        my_progress.last_progress = 0                                   
    if complete >= 1:
        sys.stdout.write('done\n')
        del my_progress.last_progress                                   
    else:
        progress = divmod(complete, progressArg)[0]                    
        while my_progress.last_progress < progress:                   
            sys.stdout.write('.')                                      
            sys.stdout.flush()                                         
            my_progress.last_progress += 1                              

There’s a trick here that you may not have seen before. Normally when you declare a
variable inside a function, it disappears when the function finishes, right? Here you

Listing 10.7 Use a callback function

This runs the first 
time only

Clear out
progress
hen done

Show current progress
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attach the variable to the function as an attribute, so it sticks around and can be used
the next time the function is called. The Python hasattr function checks to see if an
object has an attribute with a given name, and you check to see if the my_progress
function has an attribute called last_progress. If there isn’t one, then you assume
that this is the first time the function has been called and print the message parameter
and create the last_progress attribute. The next time the function is called, that
attribute will exist, so the message won’t be printed. You’ll also use that attribute to
keep track of how many dots have been printed so far.

 Next you check to see if the process is done. If so, then you print done and delete
the last_progress attribute. If you don’t delete the attribute, then you can’t use this
function again in the same script because it will always think that it’s done and won’t
do anything.

 If the process isn’t finished, which is the case most of the time, you use divmod
(which returns a quotient and a remainder as a tuple) to figure out how many dots
should be printed. Because multiple dots might need to be printed if the process runs
quickly, you keep printing and incrementing last_progress until it equals the
required number of dots. 

 This function uses sys.stdout.write instead of print because print works
slightly differently in Python 2 and 3, and so you need to call it in different ways to get
the dot to print without a newline after it. Using write solves the problem because it
doesn’t print a newline unless you request it. You do need to call flush to make sure
that the dot shows up immediately, however. The progress function isn’t of much use
if the dots aren’t printed until the processing is finished.

 Now that you have your progress function, how do you use it? Exactly the same way
that you used TermProgress_nocb, except that you need to include an additional
parameter specifying how often you want the indicators printed (the default value of
0.02 is only honored if you call the function yourself, not if it’s called by something
else). Here’s an example:

band.ComputeStatistics(False, my_progress, 0.05)
Compute Statistics...................done

This is a simple example, but the same concepts apply if you want to do something
more complicated. For example, if you had an exceptionally long-running process
and wanted to be notified by email at certain points in the process, you could do that.

10.8 Exceptions and error handlers
As with OGR, you can have GDAL throw an exception when it runs into a problem. To
do this, simply call UseExceptions, and you can turn exceptions off by calling Dont-
UseExceptions. Normally, you need to make sure that operations that might have
failed did work, such as opening a file. If you don’t check and the file wasn’t opened,
then your script will crash when it tries to use the dataset. This might be fine,
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depending on what you’re doing, but it might not be. Take this simple example of
batch-computing statistics: 

file_list = ['dem_class.tif', 'dem_class2.tiff', 'dem_class3.tif']
for fn in file_list:
    ds = gdal.Open(fn)
    ds.GetRasterBand(1).ComputeStatistics(False)

This is great, except for the extra “f” at the end of the second filename. The script will
spit out the following error and crash when it tries to get the band, and the last file will
never be looked at:

ERROR 4: `dem_class2.tiff' does not exist in the file system,
and is not recognised as a supported dataset name.

Traceback (most recent call last):
  File "D:\ errors.py", line 28, in <module>
    ds.GetRasterBand(1).ComputeStatistics(False)
AttributeError: 'NoneType' object has no attribute 'GetRasterBand'

You have a few ways you can solve this problem. You might have your code check that
the dataset was successfully opened, and if not, print a message so that the user knows
that the file was skipped. This way nothing will crash and statistics will be computed
for the last file:

for fn in file_list:
    ds = gdal.Open(fn)
    if ds is None:
        print('Could not compute stats for ' + fn)
    else:
        ds.GetRasterBand(1).ComputeStatistics(False)

A cleaner way to handle errors would be to use a try/except block. If multiple possible
points of failure exist, you don’t have to check that each one succeeded. Instead, wrap
the whole thing in one try block and handle all errors in the except clause:

gdal.UseExceptions()
for fn in file_list:
    try:
        ds = gdal.Open(fn)
        ds.GetRasterBand(1).ComputeStatistics(False)
    except:
        print('Could not compute stats for ' + fn)
        print(gdal.GetLastErrorMsg())

Although the error was encountered in this case, the error message would not print
automatically. If you need it, you can get access to the error message using the Get-
LastErrorMsg function. After the except clause is processed, the loop continues with
the next filename in the list.

GDAL also has the concept of error handlers that get called whenever a GDAL func-
tion runs into an error. The default error handler prints out error messages like the
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one you saw a second ago. If you don’t want these messages printed for some reason,
you can shut them up with the built-in quiet error handler. To do this, enable the han-
dler before running the code that you’d like to be quiet. The PushErrorHandler func-
tion will make a handler the active one until you call PopErrorHandler, which will
restore the original handler:

gdal.PushErrorHandler('CPLQuietErrorHandler')
# do stuff
gdal.PopErrorHandler()

You can also use SetErrorHandler to enable a handler, but then it’s in effect until you
pass a different handler to SetErrorHandler:

gdal.SetErrorHandler('CPLQuietErrorHandler')
# do stuff
gdal.SetErrorHandler('CPLDefaultErrorHandler')

Error handlers aren’t limited to the GDAL functions, though. You can call them your-
self if you’d like. Say you have a function that takes two datasets, but they need to
share a spatial reference system for your logic to work. You can call whatever error
handler happens to be in effect by using the Error function, which takes three param-
eters. The first is an error class and the second is an error number, both from table
10.4. The third argument is the error message.

def do_something(ds1, ds2):
    if ds1.GetProjection() != ds2.GetProjection():
        gdal.Error(gdal.CE_Failure, gdal.CPLE_AppDefined,
            'Datasets must have the same SRS')
        return False
    # now do your stuff

You might be wondering why you would do this instead of print your error message
and return from the function. You certainly could do that, but this gives you more
flexibility in the future. If this function is part of a module you’re reusing in different
situations, you might want to handle errors in different ways, depending on your
application. This gives you that ability, because all you have to do is change your error
handler instead of finding and changing all of your print statements (which you
might have to change back for another application). This also makes your function
treat errors the same way that GDAL does. If UseExceptions is in effect, then instead
of printing the error message, the call to Error will raise an exception that can be
caught in a try/except block.

Table 10.4 Possible error classes and numbers

Error classes Error numbers (types, if you prefer)

CE_None CPLE_None

CE_Debug CPLE_AppDefined

CE_Warning CPLE_OutOfMemory
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You can write your own error handlers, too. You might do this so you could log error
messages to a file or database, or I suppose you could also try to solve the error some-
how. If you do choose to write your own function, it needs to accept the same three
arguments that get passed to the Error function. Here’s a simple example of a han-
dler that logs the error class, reason, and message using the Python logging module: 

def log_error_handler(err_class, err_no, msg):
    logging.error('{} - {}: {}'.format(
        pb.get_gdal_constant_name('CE', err_class),
        pb.get_gdal_constant_name('CPLE', err_no),
        msg))

You could use a function like this to easily send your error messages to different
places. If you wanted to see the messages on the screen, all you’d have to do is import
the logging module and set your error handler: 

import logging
gdal.PushErrorHandler(log_error_handler)

To send the messages to a file instead, you need to add the step of configuring the log-
ger, like this:

import logging
logging.basicConfig(filename='d:/temp/log.txt')

CE_Failure CPLE_FileIO

CE_Fatal CPLE_OpenFailed

CPLE_IllegalArg

CPLE_NotSupported

CPLE_AssertionFailed

CPLE_NoWriteAccess

CPLE_UserInterrupt

Get constant names with the ospybook module

The ospybook module contains a function that helps you get the human-readable forms
of the GDAL constants. Pass it the case-sensitive prefix corresponding to the type of
GDAL constant you want to look up and the numeric value to find. The function returns
the name of the constant as a string.

>>> import ospybook as pb
>>> print(pb.get_gdal_constant_name('GDT', 5))
GDT_Int32

Table 10.4 Possible error classes and numbers (continued)

Error classes Error numbers (types, if you prefer)
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Now if you called your do_something function on two datasets with different spatial
references, a line like this would get added to log.txt:

ERROR:root:CE_Failure - CPLE_AppDefined: Datasets must have the same SRS

Normally, when you turn on exceptions by calling UseExceptions, the error handlers
are turned off and an exception is raised when an error is encountered. This is why
the error messages don’t automatically print when exceptions are enabled. If you
wanted your error message logged using your new log_error_handler function, but
you also wanted to use exceptions, you could enable the error handler after enabling
exceptions, and then you should get both behaviors.

10.9 Summary
■ Use known locations, called ground control points, if you don’t have geotrans-

form information for a raster dataset. You can create a geotransform from the
GCPs.

■ Add a raster attribute table to your thematic datasets so that you know what
each pixel value means.

■ Add a color table to a thematic dataset if you want it to draw with the same col-
ors all of the time.

■ You can manipulate data with virtual raster files without ever creating new files
on disk.

■ The easiest way to reproject a raster is to use a VRT and then copy it to the
desired format.

■ It’s a good idea to use callback functions to provide progress information for
long-running processes.



Map algebra with
NumPy and SciPy
You’ve seen how to read and write raster data, but you still don’t know how to manip-
ulate pixel values to do any analysis. Aerial photos make nice basemaps, but many
types of raster datasets are used for scientific data analysis. For example, you’ll see
several examples of landcover classification in the next chapter. If you wanted to cre-
ate your own landcover model, you might collect satellite imagery, elevation data,
and climate data such as average precipitation or temperature, all of which are gen-
erally raster datasets. If you wanted to use vector data in the model, such as soil types,
you’d convert it to raster first so that you could use it with your raster datasets. You
could then use techniques from this chapter to derive slope and aspect from your
elevation data and to combine all of your datasets to create a landcover model. 

 You’ll learn several techniques for manipulating raster data in this chapter. For
example, you’ll learn how to apply calculations on a pixel-by-pixel basis to two or

This chapter covers
■ Manipulating data with NumPy
■ Using NumPy and SciPy for local, focal, and 

zonal map algebra calculations
■ Using GDAL for global map algebra calculations
■ Resampling data
237
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more rasters. You’ll also see how to use a small set of neighboring pixels to come up
with new values. This is what happens when you smooth or sharpen a digital photo.
Other calculations use all pixels in a raster, or divide them up based on some common
value. Each of these has different uses, and you’ll see examples of all of them. 

 If you plan on working with large raster datasets with Python, you need to be famil-
iar with the SciPy project, which is a collection of Python modules designed for scien-
tific computing. The NumPy, SciPy, and matplotlib modules are part of this. NumPy
was designed to handle large arrays of data, which is perfect for raster data because a
band is essentially a two-dimensional array of pixel values. SciPy contains routines for
several kinds of scientific analysis, and it uses NumPy to hold the data. We’ll look at
both of these modules, along with a couple of others, in the next two chapters. Mat-
plotlib is a plotting module that’s also part of the SciPy project, and we’ll look at it in
the last chapter.

11.1 Introduction to NumPy
Entire books have been written about NumPy, but we’ll take a brief look at how to cre-
ate arrays and access specific values. When you use the GDAL ReadAsArray function,
the data are put into a NumPy array for you. Once there, you can manipulate your
data in many different ways. The bulk of this chapter discusses map algebra, which
involves calculations on one or more arrays, and many of the examples won’t make
much sense if you don’t understand the basics of working with NumPy arrays. For
more in-depth information, please look at another book or refer to the excellent doc-
umentation online at http://www.numpy.org.

 Accessing individual cell values in NumPy arrays is much the same as accessing val-
ues in a Python list, except that they have an index for each dimension of the array.
For example, if you have a two-dimensional array, you need to provide both the row
and the column offsets to specify a particular cell. Let’s look at this and other basics
from inside a Python interactive session.

TIP By convention, the numpy module is renamed to np when importing it
into a Python script. You don’t have to follow suit, but you’ll find that many
examples, including those on the NumPy website, do this.

First create an example array using the arange function, which returns an array con-
taining a sequence of numbers. Because this array only has one dimension, you can
access elements with a single index. You can also get a slice, or section, of an array by
providing starting and ending indices separated by a colon. 

>>> import numpy as np
>>> a = np.arange(12)
>>> a
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
>>> a[1]
1
>>> a[1:5]
array([1, 2, 3, 4])

http://www.numpy.org


239Introduction to NumPy
As long as the total number of elements in an array doesn’t change, you can reshape it
to different dimensions. For example, the array you created contains 12 elements, so it
can be reshaped into a two-dimensional array with three rows and four columns
because that also contains 12 elements. It couldn’t be reshaped into an array with four
rows and four columns, however, because that would require 16 elements. A two-dimen-
sional array requires a row and a column index, in that order, to access its elements:

>>> a = np.reshape(a, (3,4))
>>> a
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> a[1,2]
6

TIP When specifying the shape of an array in a function, be sure to pass the
dimensions in a tuple instead of as individual values.

If you only provide one index, n, it returns the entire nth row. You can get an entire
column by using a colon as the row index, which is the same as 0:n, where n is the
number of rows. You could retrieve the entire second row or third column like this:

>>> a[1]
array([4, 5, 6, 7])
>>> a[:,2]
array([ 2,  6, 10])

You can access a two-dimensional slice by providing starting and ending indices for
both dimensions. Again, not providing a starting index on the left of the colon is the
same as using 0, and if you don’t provide an ending index, then you get the rest of the
values in that dimension. You can also use negative numbers to leave rows or columns
off the end. 

>>> a[1:,1:3]
array([[ 5,  6],
       [ 9, 10]])
>>> a[2,:-1]
array([ 8,  9, 10])

Working with NumPy arrays is more than accessing cell values, though. You need to
use multiple arrays together to implement many types of analyses. If two or more
arrays have the same dimensions, you can perform mathematical and logical opera-
tions on them. These work on a cell-by-cell basis, so, for example, if you add two
arrays, the [n, m] cell in the first array is added to the [n, m] cell in the second array.
The same rule applies to operations such as multiplication; if you want mathematical
matrix algebra behavior instead, use the numpy.linalg submodule.

>>> a = np.array([[1, 3, 4], [2, 7, 6]])
>>> b = np.array([[5, 2, 9], [3, 6, 4]])
>>> a
array([[1, 3, 4],
       [2, 7, 6]])
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>>> b
array([[5, 2, 9],
       [3, 6, 4]])
>>> a + b
array([[ 6,  5, 13],
       [ 5, 13, 10]])
>>> a > b
array([[False,  True, False],
       [False,  True,  True]], dtype=bool)

Many different functions exist for working with arrays, including one that works much
like an if-else statement. For example, you could create an array with certain values
based on the comparison of two existing arrays like this:

>>> np.where(a > b, 10, 5)
array([[ 5, 10,  5],
       [ 5, 10, 10]])

The first parameter to the where function is the condition to check, the second
parameter is the value to use if the condition is true, and the third is the value to use
otherwise. These values can also be arrays, as long as they’re the same size as the con-
dition array. For example, you could get the larger of the two values at each location
like this:

>>> np.where(a > b, a, b)
array([[5, 3, 9],
       [3, 7, 6]])

Now that you’ve seen these examples, let’s look at another way to extract data from
arrays. You aren’t limited to one value or slices of contiguous data, because you can
also use a list of indices. As an example, create an array of 12 random integers
between 0 and 20 and then extract the ninth, first, and fourth values, in that order:

>>> a = np.random.randint(0, 20, 12)
>>> a
array([16, 16, 18,  1, 14,  2, 18, 19,  2, 16, 10,  8])
>>> a[[8, 0, 3]]
array([ 2, 16,  1])

If the array is multidimensional, you need to provide a list of lists, with an inner list for
each dimension. If you want to extract three values from a two-dimensional array, you
would provide a list containing two other lists. The first of these would contain the
three row offsets, and the second would contain the three column offsets. You’ll use
this technique to easily sample pixel values at a list of locations in the next chapter. Try
converting the random number array into two-dimensions and look at how it works:

>>> a = np.reshape(a, (3, 4))
>>> a
array([[16, 16, 18,  1],
       [14,  2, 18, 19],
       [ 2, 16, 10,  8]])
>>> a[[2, 0, 0], [0, 0, 3]]
array([ 2, 16,  1])
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You can also use an array of Boolean values that’s the same size as your data array, and
the returned array will contain only the values that correspond to True. Here’s an
example of this, using the same array a:

>>> b
array([[False, False,  True, False],
       [False,  True, False, False],
       [ True,  True,  True, False]], dtype=bool)
>>> a[b]
array([18,  2,  2, 16, 10])

Why is this useful? Say you wanted to get the mean pixel value, but only for pixels that
had a value greater than five. Using where to select the values of interest wouldn’t
work, because you’d still have to set the nonmatching ones to some value, which
would mess up your mean calculation. Using Boolean indexing solves your problem.

>>> np.mean(a[a>5])
15.0

Sometimes you need to create a new array from scratch. If the cells need to be initialized
to a certain value, you can use the zeros or ones functions. These return floating-point
arrays by default, but you can specify the data type if needed. If you need a different num-
ber, you can create an array of ones and multiply that by the number you need:

>>> np.zeros((3,2))
array([[ 0.,  0.],
       [ 0.,  0.],
       [ 0.,  0.]])
>>> np.ones((2,3), np.int)
array([[1, 1, 1],
       [1, 1, 1]])
>>> np.ones((2,3), np.int) * 5
array([[5, 5, 5],
       [5, 5, 5]])

You might have noticed that np.int was provided as a second parameter to the ones
examples. Arrays are created as floating-point by default, but you can specify a differ-
ent data type if you need. This example didn’t specify if it should be a 32-bit or 64-bit
integer, and the result is system-dependent. To ensure that you get a 64-bit integer,
use np.int64. A list of the available NumPy data types can be found at http://
docs.scipy.org/doc/numpy/user/basics.types.html. 

TIP NumPy data types and GDAL data types aren’t the same thing, and you
can’t use them interchangeably.

If you need an empty array that doesn’t have to be initialized to a certain value, you
can use the empty function. This is faster than initializing an array, but be sure to fill
all cells with real data eventually, because ones that you don’t fill will contain garbage,
like that shown here:

>>> np.empty((2,2))
array([[  2.50516998e-315,   2.50377043e-315],
       [  1.53313748e-316,   0.00000000e+000]])

http://docs.scipy.org/doc/numpy/user/basics.types.html
http://docs.scipy.org/doc/numpy/user/basics.types.html
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You’ll see examples of several more NumPy functions and techniques for working with
arrays as you read through this chapter.

11.2 Map algebra
Map algebra is way of manipulating raster datasets using algebraic operations that
you’re already familiar with, such as addition and subtraction. In this case, however,
two or more rasters are used instead of numbers. You can use these techniques to pro-
cess raster data in many different ways, from simple to complex. You could touch up a
dataset to make it look better on a map, or you could create entirely new datasets
derived from one or more others.

 Four main types of map algebra exist, all useful for different types of analyses. Sev-
eral of the array examples in the previous section showed local analysis, where each
operation works on individual pixels. This is what happens when you add two arrays
together. Focal analyses use a few surrounding pixels, zonal operations work on pixels
with the same value, and global analyses work on the entire array. We’ll look at exam-
ples of all of these.

 Before diving into the details, though, let’s write a function that will save typing later,
as shown in listing 11.1. It will create an output GeoTIFF with the same dimensions, geo-
transform, and projection as an existing dataset. The function will require five param-
eters: the existing dataset, the filename for the new dataset, a NumPy array containing
data to write to the new image, an output data type, and an optional NoData value.

def make_raster(in_ds, fn, data, data_type, nodata=None):
    """Create a one-band GeoTIFF.

    in_ds     - datasource to copy projection and geotransform from
    fn        - path to the file to create
    data      - NumPy array containing data to write
    data_type - output data type
    nodata    - optional NoData value
    """
    driver = gdal.GetDriverByName('GTiff')
    out_ds = driver.Create(
        fn, in_ds.RasterXSize, in_ds.RasterYSize, 1, data_type)
    out_ds.SetProjection(in_ds.GetProjection())
    out_ds.SetGeoTransform(in_ds.GetGeoTransform())
    out_band = out_ds.GetRasterBand(1)
    if nodata is not None:
        out_band.SetNoDataValue(nodata)
    out_band.WriteArray(data)
    out_band.FlushCache()
    out_band.ComputeStatistics(False)
    return out_ds

This code has nothing new. All it does is create a new raster using information from
the existing dataset and the provided data type, write the data into this new raster, and
compute statistics. It then returns the new dataset. All of this code would need to be in

Listing 11.1 Function to save a new raster 
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the rest of the chapter listings, but this function will reduce it to one line. For the sake
of convenience, it’s already in the ospybook module.

11.2.1 Local analyses

Local map algebraic operations are probably the simplest to both understand and per-
form. They work on two or more arrays that are the same size, and an algebraic equa-
tion is applied to each set of pixel locations. Figure 11.1 shows an example of a local
calculation that adds two 2D arrays together. This is a simple example, but the opera-
tions can be much more involved if required.

 Adding two rasters together may not seem useful at first, but it can be. For exam-
ple, I remember helping with a project many years ago that used this technique to
rank land for conservation efforts. A few input rasters were created that ranked loca-
tions by individual variables, such as distance to riparian areas. Areas within a certain
distance to water had the highest rank, and other distance intervals had different
ranks. Another input raster ranked areas on biodiversity, and another on distance to
existing developments. There were six or seven of these datasets, all with a small num-
ber of rank categories. They were added together to find the locations with the high-
est overall rank, and therefore the most important for conservation efforts. This
simple model was then turned into an interactive online tool that allowed people to
change their rankings of the different variables. If a user selected a different ranking
structure for a variable, a new raster to reflect those priorities was created and the
appropriate rasters were added together to get a new overall importance map. This
gave planners a simple tool for exploring different scenarios without knowing any-
thing about GIS. I’m sure much more sophisticated models exist online today, but this
was in the days before online mapping was common.

 Local analysis can be used for plenty of other things as well. Another common task
using multispectral imagery is to compute various indices for tasks such as distinguish-
ing between burned and unburned land or measuring nitrogen contained in vegeta-
tion. Let’s look at an index used to measure “greenness,” the normalized difference
vegetation index (NDVI). The NDVI is a simple index that uses red and near-infrared
wavelengths to produce a number that ranges from -1 to 1. Growing plants use red
wavelengths for photosynthesis, but reflect near-infrared radiation, so a high ratio of
these two measurements can indicate photosynthetic activity and healthy vegetation. 
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Figure 11.1 Local map algebra calculations work on a pixel-by-pixel basis, so the equation 
applies to pixels that fall in the same spatial location.
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NOTE TO PRINT BOOK READERS: COLOR GRAPHICS Many graphics in this book
are best viewed in color. The eBook versions display the color graphics, so
they should be referred to as you read. To get your free eBook in PDF, ePub,
and Kindle formats, go to https://www.manning.com/books/geoprocessing-
with-python to register your print book.

Remember the near-infrared color composite from chapter 9 that clearly showed that
stadium turf was artificial? Let’s revisit that briefly in figure 11.2. Here you can see the
natural color, red band, near-infrared band, near-infrared composite, and NDVI
images. The red, near-infrared, and NDVI images are of single bands, where brighter
areas have higher values. Notice that the vegetation is dark in the red band image but
bright in the near-infrared one. Vegetation is absorbing red light and reflecting near-
infrared, and these pixel values measure the amount being reflected back to the sen-
sor, the same way our eyes see what’s reflected back. The color infrared composite is a
visual image only. Our eyes can see that vegetation appears red (unless you’re reading
a black-and-white copy of this book, in which case it’s gray and doesn’t look much dif-
ferent from the natural color image), but that’s not useful if you want to use the data
in an analysis. This is where the NDVI comes in. The practice fields in the NDVI image
are bright, meaning they have high values and represent growing vegetation. The sta-
dium field is dark, making it easy to determine that it’s artificial.

 In the following example, you’ll calculate the NDVI that’s shown in figure 11.2E.
The formula is simple:

You can use NumPy to apply this equation to two arrays, where one holds the red values
and the other the near-infrared. You already know how to read data into NumPy arrays,
because you did it in chapter 9. One potential problem exists, however. It’s possible for
both the red and near-infrared pixels to have 0 values, in which case the denominator
is also 0, and we all know that you can’t divide by 0. This situation probably doesn’t exist
in the example data we’re using, but if you’re using a satellite image you may have a
large number of 0 values around the edges, and this becomes important.

 You have several ways of dealing with this problem, and you might get different
advice depending on who you talk to. The first is to proceed as if there were no prob-
lem, although I don’t suggest this approach. By default, NumPy will warn you that it
ran into errors, but the rest of the calculations will be fine (you can change this behav-
ior, however, so if your settings are different, then things might crash). However, the
output will have invalid numbers for the pixels that couldn’t be calculated, so you’ll
have to deal with that somehow. If both the numerator and denominator of the equa-
tion are equal to 0, then the output is the np.nan value, which stands for not a number.
If only the denominator is 0, then the output is set to the np.inf value, which stands
for infinity. If you leave these values in your dataset, not only will it affect your statistics
calculations, but different software will treat the values differently. For these reasons,

NDVI NIR RED–
NIR RED+------------------------------=

https://www.manning.com/books/geoprocessing-with-python
https://www.manning.com/books/geoprocessing-with-python
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you’ll probably want to set the invalid pixels to NoData so that things are standardized.
You could do that by checking for pixels equal to either of these values and replacing
them with another number, like this:

ndvi = (nir - red) / (nir + red)
ndvi = np.where(np.isnan(ndvi), -99, ndvi)
ndvi = np.where(np.isinf(ndvi), -99, ndvi)

A. Natural color B. Red

C. Near infrared

D. Color infrared E. NDVI

Figure 11.2 Different examples of looking at the same image in different ways. Image A is the 
natural color image composed of the red, green, and blue wavelengths, and B and C are single bands, 
where bright areas have higher pixel values. Image D is a visual representation that allows people 
to see what’s vegetation and what isn’t, but doesn’t help with data analysis. Image E, however, is 
a single NDVI band in which higher values represent growing vegetation. Not all differences are 
readily apparent in black and white, but a color version of this figure is available online.
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Then you would also set the NoData value for your output band to whatever number
you used, in this case -99. I like to use -99 because I know it isn’t a valid number for my
use cases and it’s easy for me to remember, but software packages tend to use much
larger numbers.

 You might think you could deal with the problem by doing the calculation on only
the pixels that don’t have 0 as a denominator, like this:

ndvi = np.where(nir + red > 0, (nir - red) / (nir + red), -99)

This will run faster than the first example, but you’ll still get division errors and risk a
crash. At least you don’t have to check for nan or inf, because everywhere with a divi-
sion by 0 will be assigned -99 during the calculation. 

TIP Change NumPy’s behavior when it encounters floating-point errors with
the numpy.seterr function.

A better solution to the division by 0 problem is to use masked arrays, which allow you
to completely ignore certain pixels during the calculation. This will get rid of the divi-
sion errors, and also makes it explicit what pixels you’re ignoring. The idea is that you
mask out the pixels that you want to ignore, do your calculations, and then fill in the
missing pixels with your NoData value. Check out the following listing for an example
of this in action. 

import os
import numpy as np
from osgeo import gdal
import ospybook as pb

os.chdir(r'D:\osgeopy-data\Massachusetts')
in_fn = 'm_4207162_ne_19_1_20140718_20140923_clip.tif'
out_fn = 'ndvi.tif'

ds = gdal.Open(in_fn)
red = ds.GetRasterBand(1).ReadAsArray().astype(np.float)
nir = ds.GetRasterBand(4).ReadAsArray()
red = np.ma.masked_where(nir + red == 0, red)                        
ndvi = (nir - red) / (nir + red)
ndvi = ndvi.filled(-99)                                               

out_ds = pb.make_raster(                                                
    ds, out_fn, ndvi, gdal.GDT_Float32, -99)                           
overviews = pb.compute_overview_levels(out_ds.GetRasterBand(1))
out_ds.BuildOverviews('average', overviews)
del ds, out_ds

This example uses the same input image as that shown in figure 11.2. This dataset is
from the National Agriculture Imagery Program (NAIP), part of the United States
Department of Agriculture. These aerial images are acquired periodically, with differ-
ent states processed in different years. Although the visible red, green, and blue bands

Listing 11.2 Compute NDVI for a NAIP image

k the
band Fill the empty cells

Set NoData to 
the fill value
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are always collected so that the images are natural color, sometimes a fourth, near-
infrared band is also collected. That’s the case with the image used here. The first
band is red light, and the fourth is near-infrared, which is why you read these two
bands in at the beginning. Because the output is floating-point, you want to ensure
that floating point math is used, so you convert the red band from byte to floating-
point as you read it into the NumPy array.

 Once you have the data in memory, you mask out the red array in all locations
where the sum of the two arrays is 0. Although you could also mask the near-infrared
data, you don’t need to because if one array has a masked value, then no computa-
tions happen on that pixel, so it doesn’t matter what value the other input arrays have.
If you’d rather create a separate mask because you want to apply it to multiple arrays,
you could do something like this instead:

mask = np.ma.equal(nir + red, 0)
red = np.ma.masked_array(red, mask)

Once you mask out the bad pixels, you apply the NDVI equation to the two arrays to
create a third one with valid NDVI values in most pixels, but with bad pixels masked
out and containing no value. You want your output image to have NoData in those
locations, so you fill those pixels in with -99 and then make sure to set -99 as the band’s
NoData value later. All that’s left to do is save your new NDVI array to a new dataset with
the same projection and geotransform as the original NAIP image.

11.2.2 Focal analyses

Focal analyses use the pixels that surround the target pixel in order to calculate a
value. For a given cell in the output, the value is calculated based on the correspond-
ing cell and its neighbors in the input dataset. This is also called a moving window anal-
ysis because you can think of it as “window” of cells centered on each pixel in turn.
Once the value for the target pixel is calculated, the window moves to the next pixel.
Figure 11.3 shows how a 3 x 3 window would “move” across an image. The output
values of the dark pixels are calculated using the nine surrounding lightly-shaded

Figure 11.3 In a 3 x 3 moving window analysis, the output value for each dark pixel is calculated 
using the nine surrounding lightly-shaded input pixels.
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input pixels. These types of operations are common for smoothing data and removing
random noise. In fact, you’ve probably used similar filters to touch up your own digital
photos. Focal analyses can also be used for anything else that requires input from sur-
rounding pixels, such as computing slope and aspect for an elevation dataset. 

 Figure 11.4 shows an example of a smoothing filter that computes the mean of a
3 x 3 moving window. The value of each output pixel is the average value of the nine
surrounding pixels in the input. The exception to this is if the target pixel is on the
edge, so that there aren’t a full nine surrounding pixels. In this particular example,
the average of the available pixels is used, but you have many ways of dealing with the
edge problem. In the figure, the shaded regions in the input (left) raster show the
cells that are used to compute the output value for the corresponding shaded cells in
the raster on the right. 

 If the input data array from figure 11.4 is called indata and the result is called
outdata, then the upper shaded output pixel in the figure is computed like this:

 outdata[2,2] = (indata[1,1] + indata[1,2] + indata[1,3] + 
                 indata[2,1] + indata[2,2] + indata[2,3] + 
                 indata[3,1] + indata[3,2] + indata[3,3]) / 9

This is the average of the nine surrounding pixels. Thankfully, you have a shorter way
to write the same thing:

outdata[2,2] = np.mean(indata[1:4, 1:4])

Using this information, you might be tempted to loop through the rows and columns
of a raster to implement a moving window like this one, especially if you have back-
ground in a language such as C. To simplify and eliminate special cases where you
don’t have nine input pixels, you might throw out the outer rows and columns, and
then your code would be similar to this:

outdata = np.zeros(indata.shape, np.float32)                         
for i in range(1, rows-1):                                           
    for j in range(1, cols-1):                                        
        outdata[i,j] = np.mean(indata[i-1:i+2, j-1:j+2])            
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Figure 11.4 A 3 x 3 moving window that calculates the average value of the nine 
surrounding pixels (or less if the target pixel is on the edge). The shaded areas 
correspond to the window of input pixels that produce one output pixel value.

Don’t try this 
at home!
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This example would run, but it would be excruciatingly slow, and unless your raster
was small, you’d wait a long time for the output. It’s a bad idea to implement looping
like this on a NumPy array if you don’t absolutely have to. You’re much better off
using array slices, and then your processing speed will be closer to the speed you
could get with C. To do this, you need to create nine slices, each one corresponding to
one of the nine input pixels, as shown in figures 11.5 and 11.6. The first figure shows a
small raster with six rows and columns, and the lightly shaded cells correspond to the
slice specified with the text below each example. The dark outline defines the 3 x 3
window around the cell at index [2, 2].
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Figure 11.5 The slices that are used in a 3 x 3 moving window. Each example shows the same 
input data, but the lightly shaded cells are the slices defined by the text below the example. The 
dark outline defines the window around pixel [2, 2]. The darker shaded cells are all at index [1, 
1] inside the corresponding slice. 
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Figure 11.6 shows these same slices with the cell at index [1, 1] highlighted. Compare
the values of these highlighted pixels to the values of the pixels inside the dark outline
in figure 11.5. They’re the same, so if you take the average of the slices, the value at
index [1, 1] will be the average of the nine pixels outlined in figure 11.5. In fact, the out-
put contains the average of all complete 3 x 3 windows in the original dataset. Again,
this leaves the edge rows and columns out of the resulting data, for the sake of simplic-
ity. You’d need to cut off more rows and columns from the edges for larger moving win-
dows. For example, a 5 x 5 window would cut off two on each side instead of one.

 You could create all nine slices, add them together, and then divide by 9, like this:

outdata = np.zeros(indata.shape, np.float32)
outdata[1:rows-1, 1:cols-1] = (
    indata[0:-2, 0:-2] + indata[0:-2, 1:-1] + indata[0:-2, 2:] +
    indata[1:-1, 0:-2] + indata[1:-1, 1:-1] + indata[1:-1, 2:] +
    indata[2:  , 0:-2] + indata[2:  , 1:-1] + indata[2:  , 2:]) / 9

That looks like a pain, but again, I have an easier way to do it. If the slices are all
stacked into a three-dimensional array, then you can use the mean function, which
would definitely be simpler. The dstack function will stack the slices on top of each
other, which is what you need. But you still need to get all of the slices so you can pass
them to dstack. You could type everything out again, but that isn’t any easier than
before. Instead, you could use a loop to get each slice and add it to a list. To do this,
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Figure 11.6 The individual slices created in figure 11.5, along with their sum and average. The shaded cells at 
index [1, 1] in each slice are the same cells as those in the outlined window in figure 11.5, so averaging the slices 
is equivalent to averaging the cells in the window.
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you need to loop through three rows and three columns. Assuming that you use loop
indices 0-2, the current index can be used as the row or column to start the slice. You
know that when a slice starts at row 0, then it needs to end at 2 less than the number of
rows. If you add 1 to the starting index, then you need to add 1 to the ending index as
well. Therefore, you can find the ending index by adding the starting index to the
number rows minus 2:

slices = []
for i in range(3):
    for j in range(3):
        slices.append(indata[i:rows-2+i, j:cols-2+j]) 

Not only does this require less typing, but it scales much easier to larger windows, as
you’ll see in a bit. But now that you have a list of slices, you can stack them in the third
dimension with the dstack function, which returns a three-dimensional array that can
be used to compute means:

stacked = np.dstack(slices)
outdata = np.zeros(indata.shape, np.float32)
outdata[1:-1, 1:-1] = np.mean(stacked, 2)

By default, the mean function returns the mean of all pixels in the array, but you want
the mean calculated for each set of pixels in a single spatial location, like a local anal-
ysis. To do this, tell the function which axis you’d like the mean calculated on. The
third dimension is axis 2, so if you specify that, you’ll get an array with the same num-
bers of rows and columns as the stacked array, with the value of each cell being the
mean of the nine slices in that location. The slices have two less rows and columns
than the original data set, however, so you create a zero-filled array the same size as
the original data, and then insert the array containing the means into the middle of it,
cutting off a row and column on each side.

 This method of getting the nine slices can be easily generalized into a function
that will return slices of any size you want (well, as long as the dimensions are odd
numbers—even numbers don’t work well because there’s no middle cell). This func-
tion, which is in the ospybook module, is shown in the next listing.

def make_slices(data, win_size):
    """Return a list of slices given a window size.

    data     - two-dimensional array to get slices from
    win_size - tuple of (rows, columns) for the moving window
    """
    rows = data.shape[0] - win_size[0] + 1                              
    cols = data.shape[1] - win_size[1] + 1                             
    slices = []
    for i in range(win_size[0]):                                    
        for j in range(win_size[1]):                                
            slices.append(data[i:rows+i, j:cols+j])                   
    return slices

Listing 11.3 Function to get slices of any size from an array

Calculate slice size

Create the slices
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Now you can use everything you’ve learned so far to run an average smoothing filter
on an elevation dataset. Figure 11.7 shows a DEM of the area surrounding Mt. Everest.
For some reason, a seamline runs right through the middle, and the northern half
looks better than the southern half. I thought that perhaps smoothing the dataset
would make the seamline less obvious. Whether it did or not is open to debate, but
the smoothed image does look different from the original. This is especially obvious
in the northern part of the image, where the contours are less distinct in the
smoothed version. The following listing shows the code to apply the filter.

import os
import numpy as np
from osgeo import gdal
import ospybook as pb

in_fn = r"D:\osgeopy-data\Nepal\everest.tif"
out_fn = r'D:\Temp\everest_smoothed_edges.tif'
in_ds = gdal.Open(in_fn)
in_band = in_ds.GetRasterBand(1)
in_data = in_band.ReadAsArray()
slices = pb.make_slices(in_data, (3, 3))                            
stacked_data = np.ma.dstack(slices)                                    

rows, cols = in_band.YSize, in_band.XSize
out_data = np.ones((rows, cols), np.int32) * -99               
out_data[1:-1, 1:-1] = np.mean(stacked_data, 2)                        

pb.make_raster(in_ds, out_fn, out_data, gdal.GDT_Int32, -99)
del in_ds

Although it took a while to work up to it, the filtering code turned out to be simple.
You use your make_slices function to create the nine slices, stack them into a

Listing 11.4 Smooth an elevation dataset 

Original Smoothed

Figure 11.7 A digital 
elevation model of the 
area surrounding Mt. 
Everest, along with a 
version that has been 
smoothed using a 3 x 3 
moving average filter

Stack the slices

Initialize output 
to NoData

sult
ddle
tput
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three-dimensional array, and then use the mean function to calculate the average
across the third dimension. Because the slices are smaller than the original data, you
put the result into the middle of an array of the correct size that has already been ini-
tialized to the NoData value. This ensures that the ignored edges are set to NoData, as
long as you remember to pass that value to the make_raster function.

 Nothing is stopping you from applying
much more complicated functions to the
cells that make up the moving window. In
fact, this is exactly what you’d want to do
for many analyses. One example is com-
puting slope from an elevation model.
Several algorithms calculate slope, and
one of them is shown in figure 11.8.

 The next listing shows code for calcu-
lating the slope of the Mt. Everest DEM
using these equations. Note that for this
algorithm to work properly, the elevation
units must be the same as the horizontal
ones. For example, if your dataset uses a UTM projection, then the coordinates are
expressed in meters, so the elevation values must also be meters.

import os
import numpy as np
from osgeo import gdal
import ospybook as pb

in_fn = r"D:\osgeopy-data\Nepal\everest_utm.tif"
out_fn = r'D:\Temp\everest_slope.tif'

in_ds = gdal.Open(in_fn)
cell_width = in_ds.GetGeoTransform()[1]
cell_height = in_ds.GetGeoTransform()[5]
band = in_ds.GetRasterBand(1)
in_data = band.ReadAsArray().astype(np.float)
out_data = np.ones((band.YSize, band.XSize)) * -99           

slices = pb.make_slices(in_data, (3, 3))
rise = ((slices[6] + (2 * slices[7]) + slices[8]) -
        (slices[0] + (2 * slices[1]) + slices[2])) / \
       (8 * cell_height)
run =  ((slices[2] + (2 * slices[5]) + slices[8]) -
        (slices[0] + (2 * slices[3]) + slices[6])) / \
       (8 * cell_width)

dist = np.sqrt(np.square(rise) + np.square(run))
out_data[1:-1, 1:-1] = np.arctan(dist) * 180 / np.pi             

pb.make_raster(in_ds, out_fn, out_data, gdal.GDT_Float32, -99)
del in_ds

Listing 11.5 Compute slope from DEM
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Figure 11.8 The algorithm for computing the 
slope of cell e from elevation values in the 
surrounding cells

Initialize output 
array with -99

Output edges don’t 
get slope data



254 CHAPTER 11 Map algebra with NumPy and SciPy
This is more complicated than the smoothing example, but it’s still not too bad. Most
of it is made up of calculating the slope. You do need to know the order that the slices
are stored in the slices list to use the correct one in each part of the equation, how-
ever. The make_slices function returns them in the same order as if you were reading
left to right and down, or in other words, in alphabetical order if you refer to figure
11.8. Unlike the smoothing example, in this case you don’t stack the slices into a
three-dimensional array because you need to reference them individually in the slope
equations. Again, you make sure that the edges are set to the NoData value. The out-
put looks like that shown in figure 11.9.

USING SCIPY FOR FOCAL ANALYSIS

SciPy is a versatile Python module designed for scientific data analysis, and it uses
NumPy arrays to store large amounts of data. It has submodules for interpolation,
Fourier transforms, linear algebra, statistics, signal processing, and image processing,
among others. The multidimensional image processing submodule contains filtering
functions that can be used to perform the same operations you did with NumPy. It’s
probably easier to use SciPy than NumPy, but hopefully now you understand enough
about working with NumPy arrays that you can figure out how to solve other problems
that you might run into.

 One advantage to using SciPy is that it will handle the edge problems for you by
filling in extra cells around the edges so that the calculations can be performed on all
cells. It has several different ways of populating these extra pixels, and you can decide
which one you want to use. The default is the “reflect” mode, which repeats the values

Elevation Slope

Figure 11.9 The original Mt. Everest DEM and a slope raster derived from it
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near the edge, but in the opposite order. You can also use the nearest value, a constant
value of your own choosing, or a few other value-repeating methods.

  One of the built-in filters in SciPy is a uniform filter, which is a smoothing filter
that works the same as the smoothing filter from listing 11.4. This next listing shows
how you use it.

import os
import scipy.ndimage
from osgeo import gdal
import ospybook as pb

in_fn = r"D:\osgeopy-data\Nepal\everest.tif"
out_fn = r'D:\Temp\everest_smoothed.tif'

in_ds = gdal.Open(in_fn)
in_data = in_ds.GetRasterBand(1).ReadAsArray()

out_data = scipy.ndimage.filters.uniform_filter(                       
    in_data, size=3, mode='nearest')                                   

pb.make_raster(in_ds, out_fn, out_data, gdal.GDT_Int32)
del in_ds

As you can see, running the actual filter only requires one line of code, and the rest of
it is dealing with reading and writing the data. The only required argument to
uniform_filter is the NumPy array containing the data to smooth, but you have sev-
eral optional parameters. You use two of them here. The size parameter specifies the
size of the moving window to use, and you don’t really need to use it here because the
default value is 3 anyway. You also use the mode parameter to change the method of
dealing with the edges so that the closest pixel values are used to fill in the edges.

 Other built-in filters exist, including minimum, maximum, and median values. But
what about more complicated situations such as the slope calculation? All you need to
do is create a function that performs the calculation that you want and then pass that
to a generic filter function, as shown in the following listing.

import os
import numpy as np
import scipy.ndimage
from osgeo import gdal
import ospybook as pb

in_fn = r"D:\osgeopy-data\Nepal\everest_utm.tif"
out_fn = r'D:\Temp\everest_slope_scipy2.tif'

def slope(data, cell_width, cell_height):
    """Calculates slope using a 3x3 window.

Listing 11.6 Smoothing filter using SciPy

Listing 11.7 Calculate slope using SciPy

Run the filter
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    data        - 1D array containing the 9 pixel values, starting
                  in the upper left and going left to right and down
    cell_width  - pixel width in the same units as the data
    cell_height - pixel height in the same units as the data
    """
    rise = ((data[6] + (2 * data[7]) + data[8]) -
            (data[0] + (2 * data[1]) + data[2])) / \
           (8 * cell_height)
    run =  ((data[2] + (2 * data[5]) + data[8]) -
            (data[0] + (2 * data[3]) + data[6])) / \
           (8 * cell_width)
    dist = np.sqrt(np.square(rise) + np.square(run))
    return np.arctan(dist) * 180 / np.pi

in_ds = gdal.Open(in_fn)
in_band = in_ds.GetRasterBand(1)
in_data = in_band.ReadAsArray().astype(np.float32)                

cell_width = in_ds.GetGeoTransform()[1]
cell_height = in_ds.GetGeoTransform()[5]
out_data = scipy.ndimage.filters.generic_filter(                
    in_data, slope, size=3, mode='nearest',                          
    extra_arguments=(cell_width, cell_height))                        

pb.make_raster(in_ds, out_fn, out_data, gdal.GDT_Float32)
del in_ds

The first thing you do is write a custom filter function called slope that contains the
exact same math as before, so it should look familiar. The first argument to your filter
function must be a one-dimensional array of data that will be used for the calculation.
Conveniently, the cell values will be in the same order that you used earlier with your
make_slices function. The first value is the upper-left pixel, the second is the upper-
middle pixel, and so on, until ending with the lower-right pixel. If you need it to, your
function can also take additional parameters, but this isn’t a requirement for custom
filters. In this case, you need to know the pixel dimensions for the slope calculation,
so your function also requires pixel width and height.

 Once you have your custom filter function, you provide it as a parameter when call-
ing the SciPy generic_filter function. The first argument to generic_filter is the
NumPy array containing data to filter and the second is the filter function to use. These
are the only required parameters, but once again, you can use optional ones. In this
case, you specify a 3 x 3 moving window, but it’s possible to use different sizes, or even
use a Boolean array to indicate exactly which cell values to pass to your filter. You can
read more about this in the SciPy documentation. Once again, you change the default
method of dealing with the array edges, and finally, you provide a tuple containing the
extra arguments that your function requires. The generic_filter function passes the
appropriate pixel values to your function to calculate each output cell value.

BREAKING UP FOCAL ANALYSES

What if you want to do a moving window analysis but don’t have enough RAM to hold
everything in memory? You can break the image up into chunks, but instead of

Use floating-point

Run the filter
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processing discrete sets of data, have them overlap each other. Figure 11.10 shows an
example of reading in multiple rows at a time using a step parameter of 5. More than
five rows get read in each time, though, because of the overlap. The dark outlines
show the rows that are processed, and the shaded areas are the cells that get valid data
in that iteration. Because this is a 3 x 3 window, it has one empty row and column on
each side. The idea is to tack one row on the top and one on the bottom of each
chunk so that every row ends up with valid data. The first time through, one extra row
is added at the bottom so six rows get processed instead of five. The second time
through, two extra rows are processed. To get an extra row at the top, the starting off-
set is moved to an earlier row. For example, with a step value of 5, the second iteration
would normally start reading at row 5, but instead it starts at row 4 in this example.
The third time through is similar, except that the available rows are limited so only
four are read in. You can see that all of the rows except the top and bottom end up
with valid data.

 Although the Everest dataset is small, pretend for a moment that it’s too large to
process all at once, but you have enough RAM to process approximately 100 rows at a
time. The following listing shows how you could do this.

import os
import numpy as np
from osgeo import gdal
import ospybook as pb

in_fn = r"D:\osgeopy-data\Nepal\everest.tif"
out_fn = r'D:\Temp\everest_smoothed_chunks.tif'

in_ds = gdal.Open(in_fn)
in_band = in_ds.GetRasterBand(1)

Listing 11.8 Focal analysis broken into chunks

0

Iteration 1

1

2

3

4

5

6

7

8

9

10

11

12

0

Iteration 2

1

2

3

4

5

6

7

8

9

10

11

12

0

Iteration 3

1

2

3

4

5

6

7

8

9

10

11

12

Figure 11.10 Breaking up an 
image into overlapping chunks. 
The thick outlines show the 
cells read from disk, and the 
shaded cells are the ones that 
get valid data and are written to 
the output.
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xsize = in_band.XSize
ysize = in_band.YSize

driver = gdal.GetDriverByName('GTiff')
out_ds = driver.Create(out_fn, xsize, ysize, 1, gdal.GDT_Int32)
out_ds.SetProjection(in_ds.GetProjection())
out_ds.SetGeoTransform(in_ds.GetGeoTransform())
out_band = out_ds.GetRasterBand(1)
out_band.SetNoDataValue(-99)

n = 100
for i in range(0, ysize, n):
    if i + n + 1 < ysize:                                              
        rows = n + 2                                                     
    else:                                                               
        rows = ysize - i                                                
    yoff = max(0, i - 1)                                        

    in_data = in_band.ReadAsArray(0, yoff, xsize, rows)
    slices = pb.make_slices(in_data, (3, 3))
    stacked_data = np.ma.dstack(slices)
    out_data = np.ones(in_data.shape, np.int32) * -99
    out_data[1:-1, 1:-1] = np.mean(stacked_data, 2)

    if yoff == 0:
        out_band.WriteArray(out_data)
    else:                                                              
        out_band.WriteArray(out_data[1:], 0, yoff + 1)                  

out_band.FlushCache()
out_band.ComputeStatistics(False)
del out_ds, in_ds

Much of this resembles code you’ve written before. Remember that you’re going to
read in two extra rows if possible, so you need to take those extra rows into account
when checking if enough rows exist to read an entire chunk. You also make sure you
don’t try to use -1 as a row offset in the first iteration. Once you determine how many
rows to grab, you read them in and process them as before. For all but the first chunk,
though, you make sure not to write the first row of the processed data to the output. If
you had, it would’ve overwritten the good data written during the previous iteration.
Because you’re ignoring this first row, you also have to increase the row offset you use
for writing.

11.2.3 Zonal analyses

Zonal analyses work on cells that share a certain value, or belong to the same zone.
The zones are usually defined by one raster and the analysis performed using values
from a second one. For example, if you have a raster showing land ownership catego-
ries such as federal, state, and private, and a second raster showing landcover, you
could use the ownership categories as zones to determine the acreage of each land-
cover type within each ownership category, as shown in figure 11.11.

Read two extra 
rows if possible

Don’t start 
before row 0

Don’t overwrite good data 
from previous chunk
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First let’s look at how you could do this with NumPy and then a more flexible method
using SciPy. What you want here is basically a two-dimensional histogram. A regular his-
togram gives you the number of items in each bin, but in this case, you want to treat
zones as one set of bins and landcover as another set of bins, and then get the count for
each combination of zone and landcover bin. There are several ways you can define
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Figure 11.11 An example of 
a zonal analysis using 
ownership and landcover type. 
The number of pixels for each 
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your bins, including letting NumPy do it for you, but here you’ll see how to do it your-
self. A set of bins is defined by an array of bin edges. The first number in the array is the
lower bound for the first bin, the second number is the upper, non-inclusive bound for
the first bin and also the lower, inclusive bound for the second bin, and so on. The last
number in the array is the upper bound of the last bin. One easy way to get the bins for
this particular use case is to get the unique values in the dataset. The NumPy unique
function returns these values in sorted order. Because the lower bound is inclusive, this
list of numbers would create the lower bound for bins corresponding to the dataset val-
ues. All that’s left is to add a larger number to the end to form the upper bound for the
last bin. The following function creates this array of bin edges for you:

def get_bins(data):
    """Return bin edges for all unique values in data. """
    bins = np.unique(data)
    return np.append(bins[~np.isnan(bins)], max(bins) + 1)

Now that you know how to define bins, let’s see how to use them with the NumPy
histogram2d function to get the counts. The two required parameters for this function
are the two arrays containing values to bin, and one of the optional arguments lets you
specify the bins you want to use. If the values from the upper-left dataset shown in fig-
ure 11.11 are in an array called zones, and the values from the upper-right dataset are
in an array called landcover, then you can get the two-way histogram like this:

>>> hist, zone_bins, landcover_bins = np.histogram2d(
...     zones.flatten(), landcover.flatten(),
...     [get_bins(zones), get_bins(landcover)])
>>> hist
array([[  3.,   1.,  10.,   4.,   4.],
       [  7.,   5.,  15.,   8.,  20.],
       [  2.,   0.,   0.,   7.,  14.]])

Notice a couple of things here. First, the
histogram2d function wants the data arrays to be
one-dimensional, and the flatten function takes
care of that detail. The histogram2d function
returns three values: a two-dimensional histogram
and two sets of bins, one for each input array. The
histogram rows correspond to the bins from the first
array passed in, and the columns correspond to the
second. In this case, the two bin outputs will be
exactly what you pass in, but if you don’t explicitly
define your bins, then these two return values would
tell you what bins were used for the calculation.

Figure 11.12 SWReGAP landcover classification with 
ecoregion boundaries drawn on top
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If you have SciPy, you can accomplish this same thing with a more general SciPy func-
tion called stats.binned_statistic_2d. The following listing shows you how to use
this to count up the number of pixels with each landcover class in each ecoregion
zone shown in figure 11.12.

import numpy as np
import scipy.stats
from osgeo import gdal

def get_bins(data):
    """Return bin edges for all unique values in data."""
    bins = np.unique(data)
    return np.append(bins, max(bins) + 1)

landcover_fn = r'D:\osgeopy-data\Utah\landcover60.tif'
ecoregion_fn = r'D:\osgeopy-data\Utah\utah_ecoIII60.tif'
out_fn = r'D:\Temp\histogram.csv'

eco_ds = gdal.Open(ecoregion_fn)
eco_band = eco_ds.GetRasterBand(1)
eco_data = eco_band.ReadAsArray().flatten()
eco_bins = get_bins(eco_data)

lc_ds = gdal.Open(landcover_fn)
lc_band = lc_ds.GetRasterBand(1)
lc_data = lc_band.ReadAsArray().flatten()
lc_bins = get_bins(lc_data)

hist, eco_bins2, lc_bins2, bn = \
    scipy.stats.binned_statistic_2d(                                    
        eco_data, lc_data, lc_data, 'count',                         
        [eco_bins, lc_bins])                                          
hist = np.insert(hist, 0, lc_bins[:-1], 0)                              
row_labels = np.insert(eco_bins[:-1], 0, 0)                            
hist = np.insert(hist, 0, row_labels, 1)                                
np.savetxt(out_fn, hist, fmt='%1.0f', delimiter=',')                   

The first thing you do is read in the ecoregion and landcover datasets as flattened,
one-dimensional arrays (because this function, like histogram2d, requires single-
dimension arrays), and also calculate the required bins for each dataset. Then you
create your histogram using the binned_statistic_2d function. The first two param-
eters are the same as the histogram2d function, namely, the two datasets that will be
binned. Unlike histogram2d, this function can not only count occurrences but also
calculate statistics, so it also requires a third array containing the values to calculate
statistics on. Because you count the number of pixels, it doesn’t matter if you use land-
cover or ecoregions in this case, but you use landcover. The next parameter to the
function specifies which statistic you want to calculate, which is “count” in this case
(other options are mean, median, sum, or a custom function that you provide). But

Listing 11.9 Zonal analysis with SciPy

Compute histogram

Add bin info to histogram
ave
ut
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you could do something like calculate the mean elevation in each combination of
ecoregion and landcover by passing an elevation dataset as the third parameter and
“mean” as the fourth. Anyway, you provide the bin boundaries as the last argument,
the way you did before. This returns the same outputs as the histogram function,
along with one extra one that indicates which bin the data value fell into. 

 This time you also get ambitious and add several bin labels to your histogram.
Because the different landcovers are the columns, you use those bins as the column
labels. Remember that the last item in the bins array is the upper bound and isn’t
needed to label your bins. You insert all but the last number in the landcover bins array
as the first row of the histogram. The insert function wants the data being inserting
into, the index to insert at, the data to insert, and the axis, where 0 means a row. You use
the same idea to insert the ecoregion bins as row labels, except that you have to add a
placeholder for the first row, which is now landcover labels. You insert 0 at the begin-
ning and then use axis 1 to insert a column at the beginning of your histogram. 

 If you wanted to know the area instead of pixel count, you could multiply the histo-
gram array by the area of a pixel before adding the label row and column.

 Once your table is complete, you write it out to a text file. The fmt parameter to
savetxt specifies how you want the numbers formatted in the output. Without this,
you’d probably get scientific notation; nothing is wrong with that, but here you specify
integers instead. The % is the first character of a format string, the 1 means you want it
to print out at least one digit, the .0 means no numbers after the decimal point, and f
means that it will be getting a floating-point number to work with. For more informa-
tion on format strings, please see the NumPy documentation for savetxt at http://
docs.scipy.org/doc/numpy/reference/generated/numpy.savetxt.html.

 Your output should look some-
thing like figure 11.13.

 What if you wanted to know
the most common landcover type
in each ecoregion but didn’t care
about counts? In this case, you
could use the one-dimensional
binned_statistic function
instead, because you only need to
bin one ecoregion. Unfortunately,
mode isn’t one of the supported
statistics types, but you can pro-
vide your own statistical function. All you need to do is write a simple function that
returns the mode and then pass it to binned_statistic, like this:

def my_mode(data):
    return scipy.stats.mode(data)[0]

modes, bins, bn = scipy.stats.binned_statistic(
    eco_data, lc_data, my_mode, eco_bins)

Figure 11.13 The first few columns of the histogram 
output. The first column specifies the ecoregion (255 is 
NoData cells), and the top row specifies the landcover 
category. All other values are cell counts.

http://docs.scipy.org/doc/numpy/reference/generated/numpy.savetxt.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.savetxt.html
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You can use this technique to calculate whatever information you want, as long as it
can be computed from a one-dimensional array.

11.2.4 Global analyses

Global functions work on the entire image, such as proximity analysis or cost distance.
A proximity analysis determines the Euclidean distance of each cell to the nearest cell
that’s marked as a source, while cost distance determines the least cost of traveling
between each cell and the nearest source, as determined by a cost surface. For exam-
ple, if you’re walking between two points in the mountains, the easiest, and therefore
least costly path, may not be the shortest. In this case, the cost surface might be
derived from elevation and slope rasters, and cells on a mountain pass would have a
lower cost than cells on steep ridges.

GDAL has global analysis functions built in, and you’re about to see how to use sev-
eral of them to determine the distance to the nearest road for areas in the Frank
Church—River of No Return Wilderness in Idaho (figure 11.14). You’ll start off with a
state-wide roads shapefile and a shapefile showing wilderness boundaries. Several
polygons make up this wilderness area, so you’ll select them out, get the extent of the
selected polygons, and use that rectangle to select the roads you’re interested in.

0

15,795

A. Vector wilderness areas and roads B. Rasterized roads (zoomed in)

C. Proximity D. Proximity with non-wilderness removed

Figure 11.14 Data used for 
calculating average distance to 
roads within a wilderness area. 
A: The dark shaded area is the 
wilderness area of interest, and 
the lines are roads (the roads 
dataset has artifacts, but those 
will be treated as real data in 
the example). B: Roads are no 
longer smooth lines when 
rasterized. C: Results of the 
proximity analysis, where bright 
areas are further from roads. 
D: The proximity dataset with 
non-wilderness removed.
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Then you can use GDAL to create a raster that has ones where there are roads and
zeros everywhere else. This will be used as a source layer in order to determine dis-
tances from roads to every other pixel. The following listing shows how to accomplish
all of this. The listing is long, but that’s because the data haven’t been preprocessed. 

import os
import sys
from osgeo import gdal, ogr

folder = r'D:\osgeopy-data\Idaho'
roads_ln = 'allroads'
wilderness_ln = 'wilderness'
road_raster_fn = 'church_roads.tif'
proximity_fn = 'proximity.tif'
cellsize = 10                                                 

shp_ds = ogr.Open(folder)
wild_lyr = shp_ds.GetLayerByName(wilderness_ln)                         
wild_lyr.SetAttributeFilter(                                           
    "WILD_NM = 'Frank Church - RONR'")                                  
envelopes = \                                                          
    [row.geometry().GetEnvelope() for row in wild_lyr]                 
coords = list(zip(*envelopes))                                         
minx, maxx = min(coords[0]), max(coords[1])                            
miny, maxy = min(coords[2]), max(coords[3])                          

road_lyr = shp_ds.GetLayerByName(roads_ln)                          
road_lyr.SetSpatialFilterRect(minx, miny, maxx, maxy)              

os.chdir(folder)
tif_driver = gdal.GetDriverByName('GTiff')
cols = int((maxx - minx) / cellsize)
rows = int((maxy - miny) / cellsize)

road_ds = tif_driver.Create(road_raster_fn, cols, rows)              
road_ds.SetProjection(                                               
    road_lyr.GetSpatialRef().ExportToWkt())                            
road_ds.SetGeoTransform(                                              
    (minx, cellsize, 0, maxy, 0, -cellsize))                             

gdal.RasterizeLayer(                                                 
    road_ds, [1], road_lyr, burn_values=[1],                         
    callback=gdal.TermProgress)                                        

prox_ds = tif_driver.Create(                                           
    proximity_fn, cols, rows, 1, gdal.GDT_Int32)                       
prox_ds.SetProjection(road_ds.GetProjection())                          
prox_ds.SetGeoTransform(road_ds.GetGeoTransform())                      
gdal.ComputeProximity(                                                  
    road_ds.GetRasterBand(1), prox_ds.GetRasterBand(1),                
    ['DISTUNITS=GEO'], gdal.TermProgress)                             

Listing 11.10 Proximity analysis

Set the cell size 
for the analysis

Get extent of 
wilderness area

Select roads in 
wilderness extent

Create empty 
raster for roads

Burn roads into raster

Burn proximity 
data into new raster
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wild_ds = gdal.GetDriverByName('MEM').Create(                          
    'tmp', cols, rows)                                                 
wild_ds.SetProjection(prox_ds.GetProjection())                          
wild_ds.SetGeoTransform(prox_ds.GetGeoTransform())                     
gdal.RasterizeLayer(                                                   
    wild_ds, [1], wild_lyr, burn_values=[1],                        
    callback=gdal.TermProgress)                                         

wild_data = wild_ds.ReadAsArray()                                     
prox_data = prox_ds.ReadAsArray()                                      
prox_data[wild_data == 0] = -99                                        
prox_ds.GetRasterBand(1).WriteArray(prox_data)                         
prox_ds.GetRasterBand(1).SetNoDataValue(-99)                            
prox_ds.FlushCache()                                                    

stats = prox_ds.GetRasterBand(1).ComputeStatistics(
    False, gdal.TermProgress)
print('Mean distance from roads is', stats[2])

del prox_ds, road_ds,  shp_ds

Because you’re using statewide datasets, the first thing you do is find the extent of the
wilderness area that you’re interested in. To do this, you open the wilderness shapefile
and set an attribute filter that selects out all records where the WILD_NM attribute value
was equal to ‘Frank Church – RONR’. Because the layer’s GetExtent function returns
the extent of the entire layer, even when a filter has been applied, you have to come
up with a different method to get bounding coordinates. The solution is to make a list
of the extents for each of the selected polygons and then find the minimum and max-
imum coordinates from that. Creating the list of polygon extents is easy enough:

envelopes = [row.geometry().GetEnvelope() for row in wild_lyr]

Each tuple in this list contains the minimum and maximum x value, and the mini-
mum and maximum y, in that order. Now if you zip these tuples together, you end up
with four lists, one each for minimum and maximum x and y. From there, it’s a simple
matter of extracting the most extreme values in each list:

coords = list(zip(*envelopes))
minx, maxx = min(coords[0]), max(coords[1])
miny, maxy = min(coords[2]), max(coords[3])

Now that you have the bounding coordinates for the wilderness extent, you set a spa-
tial filter on the roads layer to select only the roads that fall in that rectangle:

road_lyr.SetSpatialFilterRect(minx, miny, maxx, maxy)

After getting your roads of interest, you turn them into a raster band that you use for
your proximity analysis. The raster band must already exist, and then the vector fea-
tures are burned into it. You figure out how many rows and columns will fit in the
extent, given the cell size you chose early in the script. Smaller cell sizes result in
more-precise distances, but they also greatly increase processing time. Ten meters is a
reasonable size for this example.

cols = int((maxx - minx) / cellsize)
rows = int((maxy - miny) / cellsize)

Burn wilderness into 
temporary raster

Set NoData 
outside wilderness
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Now you have all of the information necessary to create a new raster dataset, which
you do. It needs a geotransform so that the roads can be burned into the correct loca-
tions, so you construct one from your bounding coordinates and numbers of rows and
columns. You also copy the spatial reference from the roads layer. Remember that a
layer’s GetSpatialRef function returns a spatial reference object, but a raster data-
set’s SetProjection function requires a WKT string, which is why you have to get the
layer’s spatial reference as a string:

road_ds.SetProjection(road_lyr.GetSpatialRef().ExportToWkt())
road_ds.SetGeoTransform((minx, cellsize, 0, maxy, 0, -cellsize))

Now you can finally burn the roads into a raster band using the following function:

RasterizeLayer(dataset, bands, layer, [transformer], [transformArg], 
               [burn_values], [options], [callback], [callback_data])

■ dataset is the raster dataset containing the band(s) to burn into.
■ bands is the list of bands to burn the data into, where the first one has index 1.
■ layer is the OGR layer whose features will be burned into the raster bands.
■ transformer is a GDAL transformer object to convert map coordinates into

pixel offsets. If not provided, then the function will create its own using the
geotransform.

■ transformArg is the callback data for the transformer.
■ burn_values is the list of values to burn into the raster wherever there are fea-

tures. If this parameter is provided, it must be the same length as bands. The
default for a byte array is 255.

■ options is a list of key=value strings. See appendix E for a list of possibilities.
(Appendixes C through E are available online on the Manning Publications
website at https://www.manning.com/books/geoprocessing-with-python.)

■ callback is a callback function for reporting burn progress.
■ callback_data is data to be passed to the callback function.

You use this function to burn the value of 1 everywhere there was a road:

gdal.RasterizeLayer(
    road_ds, [1], road_lyr, burn_values=[1], callback=gdal.TermProgress)  

If you load this raster into a GIS, it won’t look like
much until you start to zoom in. This is because the
pixel size is so small that you’ll need to zoom in to
see many of them. When you do zoom in, you’ll see
that the roads are blocky, as in figure 11.15. This is a
result of them now being represented as pixels
instead of smooth vector lines.

Figure 11.15 Rasterized roads

https://www.manning.com/books/geoprocessing-with-python
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Once you have a raster representation of the roads, you’re almost ready to compute
proximity to them using the ComputeProximity function:

ComputeProximity(
    srcBand, proximityBand, [options], [callback], [callback_data])

■ srcBand is the raster band containing the features to compute proximity to. By
default, any non-zero pixels are considered features.

■ proximityBand is the raster band to store the proximity measurements into.
■ options is a list of key=value strings. See appendix E for a list of possibilities.
■ callback is a callback function for reporting progress.
■ callback_data is data to be passed to the callback function.

Like the RasterizeLayer function, the ComputeProximity function requires that the
output raster band already exist. You create a new dataset and copy the spatial refer-
ence information and geotransform from your roads raster, and then calculate prox-
imity using map distances instead of the default pixel distances:

gdal.ComputeProximity(
    road_ds.GetRasterBand(1), prox_ds.GetRasterBand(1),
    ['DISTUNITS=GEO'], gdal.TermProgress)

Although you now have a proximity raster, you only want statistics for the areas within
the wilderness area. You could use a zonal analysis to calculate that information, or
you could get rid of the non-wilderness data altogether. Either case requires rasteriz-
ing the wilderness polygons, though, so you do that in a similar manner as the roads,
except you use the MEM driver to store the dataset in memory instead of writing it to
disk. Then you read both the wilderness and proximity data into NumPy arrays and
change all proximity values to -99 if the wilderness value is 0, which signifies that the
pixel doesn’t fall in a wilderness polygon.

prox_data[wild_data == 0] = -99

Once you save the data back to disk,
you’re able to correctly calculate sta-
tistics, and you also have a nice prox-
imity dataset for use later. Figure 11.16
shows part of this dataset, zoomed in
far enough to get an idea of how it
works. The brighter the pixel, the lon-
ger the distance from a road.

11.3 Resampling data
Back in chapter 9 you learned how to
resample your data to different cell
sizes by changing the size of the arrays
used to hold the data. Other ways to

Figure 11.16 A small section of the proximity 
dataset with roads drawn on top. Brighter areas 
indicate longer distances from roads.
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resample give you more control over the outcome, however. One simple approach is to
use slices to keep pixel values at a specific interval and throw out everything in between.
To do this, provide a step value when specifying your slice. A step value of 2 tells NumPy
to keep every second value, 3 means keep every third value, and so on. This example
shows you how to keep every other cell, reducing the rows and columns by half:

>>> data = np.reshape(np.arange(24), (4, 6))
>>> data
array([[ 0,  1,  2,  3,  4,  5],
       [ 6,  7,  8,  9, 10, 11],
       [12, 13, 14, 15, 16, 17],
       [18, 19, 20, 21, 22, 23]])
>>> data[::2, ::2]
array([[ 0,  2,  4],
       [12, 14, 16]])

For this example, data[0:4:2, 0:6:2] provides the same results as data[::2, ::2].
Not providing starting and stopping indices around the first colon means that you
want to start at the beginning and go to the end. The third number, after the second
colon, is the step index. If you want to start at the second row and column instead of
the first, you can do this: 

>>> data[1::2, 1::2]
array([[ 7,  9, 11],
       [19, 21, 23]])

This should look familiar, because the results are similar to the automatic resampling
that happens when you read data from a file into a differently sized array.

 You can also increase the size of the array, which is how you’d decrease pixel sizes.
To do this, use the NumPy repeat function, which wants an array of data, the number
of times to repeat each value, and the axis to use. If you don’t provide an axis, then
the array is flattened to one dimension. An axis of 0 repeats the rows, and a value of 1
repeats columns, like this:

>>> np.repeat(data, 2, 1)
array([[ 0,  0,  1,  1,  2,  2,  3,  3,  4,  4,  5,  5],
       [ 6,  6,  7,  7,  8,  8,  9,  9, 10, 10, 11, 11],
       [12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17],
       [18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23]])

Notice how each column is repeated twice? To end up with each value repeated four
times (so the rows and columns are both doubled), call repeat once on rows and
once on columns:

>>> np.repeat(np.repeat(data, 2, 0), 2, 1)
array([[ 0,  0,  1,  1,  2,  2,  3,  3,  4,  4,  5,  5],
       [ 0,  0,  1,  1,  2,  2,  3,  3,  4,  4,  5,  5],
       [ 6,  6,  7,  7,  8,  8,  9,  9, 10, 10, 11, 11],
       [ 6,  6,  7,  7,  8,  8,  9,  9, 10, 10, 11, 11],
       [12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17],
       [12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17],
       [18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23],
       [18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23]])
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But let’s look at something
more interesting. You can also
use multiple slices to apply cus-
tom algorithms instead of
using a single pixel value. For
example, if you want to resam-
ple to pixels that are four times
the original size (twice the
length and twice the width),
you could take the average of
those four pixel values and use
that as the new value. Figure
11.17 shows an example of this.

 In the case of figure 11.17, you need four numbers to calculate the output value.
To accomplish the same thing with slices, you’d need four slices, with each one corre-
sponding to one of the four input values. Unlike the slices you used for moving win-
dows, however, these would each be much smaller than the original array. Instead,
they’d be the same size as the output array, and each one would contain one value per
output cell, as shown in figure 11.18. The figure shows the original data, but the cells
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Figure 11.17 Increasing cell size and using the average 
value of the input pixels as the output value
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Figure 11.18 Slices used to resample using an average of the input values. The shaded cells are the 
ones used to create each smaller slice. The smaller arrays are averaged together to get the final result. 
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that would make up each slice are highlighted. One slice would contain the upper-left
pixel from every set of four pixels used to calculate the output. Another slice would
contain each upper-right pixel, and so on. Each of the slices in this example has three
rows and three columns, which is the same size as the output. If you take the average
of these slices on a pixel-by-pixel basis, you end up with the values shown in figure
11.17. For example, the upper-left corner would have a value of (3 + 5 + 4 + 5) / 4 = 17
/4 = 4.25.

 Let’s look at how to implement this with code. Once again, your life will be easier if
you write a function to create the required slices. The following listing shows one that
returns the slices in a list, given the original data and the window size (2 x 2 in the
example from figure 11.18).

def make_resample_slices(data, win_size):
    """Return a list of resampled slices given a window size.

    data     - two-dimensional array to get slices from
    win_size - tuple of (rows, columns) for the input window
    """
    row = int(data.shape[0] / win_size[0]) * win_size[0]
    col = int(data.shape[1] / win_size[1]) * win_size[1]
    slices = []

    for i in range(win_size[0]):
        for j in range(win_size[1]):
            slices.append(data[i:row:win_size[0], j:col:win_size[1]])
    return slices

The first thing this function does is calculate the last row and column that will be
used. This is necessary because the original data might not be divisible by the size of
the window you want. For example, in figure 11.19 the input array has five rows and
five columns. The figure shows two of the slices needed to take an average of four pix-
els, but the second one is smaller than the first. If you try to use these two slices

Listing 11.11 Function to make stepped slices
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Figure 11.19 When the dimensions of the array to be resampled are not divisible by the 
dimensions of the window (2 x 2 in this case), the slices are different sizes. This must be 
accounted for so that the slices have the same size.
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together, you’ll get an error because they’re different sizes. The function in listing
11.11 handles this by cutting off the fifth row and column, so that the slices are cre-
ated from four rows and columns instead. To do this, the total number of rows or col-
umns is divided by the number of rows or columns in a window. For the example in
figure 11.19, this would be 5 / 2 = 2 for both, so the data can fit two full windows in
each direction. Multiply that by the window size to get the total number of rows or col-
umns to use, which is four in the example. This number is used to put an upper
bound on the slices.  

 Once the numbers of rows and columns are known, the function creates one slice
for each input location, using the window size as the step parameter so only one input
pixel per window is extracted. The slices are all returned as a list, and once you have
that you can apply any algorithm you want, as long as you can code it up. To get an
average, you could stack the slices and then use the NumPy mean function, as you did
for moving windows.

TIP Don’t forget to change the geotransform to reflect the new cell size
when resampling your data.

Techniques like this are great if your output cell size is a multiple of the original, but
they don’t work in other cases. Let’s look at a way to extract specific pixels that can’t
be specified with a step parameter. To do this, you need to know the original pixel
size, the new pixel size, and the numbers of rows and columns in the original image.
Get a scaling factor for width by dividing the new pixel width by the original width,
and do the same for pixel height. For example, if your original image has a pixel
width of 10 but your target width is 25, then the scaling factor is 2.5. The new pixels
are 2.5 old pixels wide. 

 Divide the scaling factor in half to determine that the center of a new pixel is 1.25
old pixels from the edge. This center point is what you want because you use the cen-
ter of new pixels to determine which nearby old pixels to use when resampling. To get
the center x values for the new pixels in terms of the original cell offsets, create an
array that starts at the center (1.25) and increments by the scaling factor (2.5). You
need to make sure this array goes up to, but not past, the total number of columns in
the original array. Do the same for rows, so that you have two arrays containing x and
y offsets. Figure 11.20 shows an example of a few pixels. The alternating shaded areas

A
Indexes for each point

in terms of the small cells

A: [1.25, 1.25]

B: [1.25, 3.75]

C: [3.75, 1.25]

D: [3.75, 3.75]

B

C D

Figure 11.20 Resampling to a larger pixel size 
that’s not a multiple of the original size. The 
alternating shaded areas are the original pixels 
and the thick outlines show the new ones. The 
dots are the center points for the new pixels.
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are the original pixels (of size 10) and the thick outlines denote the pixels with size
25. The dots are the center points of the large pixels, and the text shows the coordi-
nates for these points in terms of the smaller pixels.

 Once you have the lists of x and y offsets, you can use the NumPy meshgrid func-
tion to get two new arrays that contain all possible coordinates obtained from these
values. For example, if your row offsets are (3, 5) and column offsets are (2, 4), then
the possible combinations are [(3, 2), (3, 4), (5, 2), (5, 4)], and meshgrid would
return two four-element arrays, one for the row offsets and one for the columns.

 The following listing shows a function that computes the scaling factors, makes the
offset arrays, and then creates and returns the coordinate arrays.

def get_indices(source_ds, target_width, target_height):
    """Returns x, y lists of all possible resampling offsets.

    source_ds     - dataset to get offsets from
    target_width  - target pixel width
    target_height - target pixel height (negative)
    """
    source_geotransform = source_ds.GetGeoTransform()
    source_width = source_geotransform[1]
    source_height = source_geotransform[5]
    dx = target_width / source_width
    dy = target_height / source_height
    target_x = np.arange(dx / 2, source_ds.RasterXSize, dx)
    target_y = np.arange(dy / 2, source_ds.RasterYSize, dy)
    return np.meshgrid(target_x, target_y)

Once you have coordinates, you can take advantage of the fact that offset lists can be
used to extract values from NumPy arrays to get the values of the original pixels that
fall directly under the center of the new pixels. This is nearest-neighbor resampling,
which uses the value of the closest pixel in the original array and doesn’t do any other
processing. To do this, you’d extract the values at the calculated indices and be done
with it, like this:

ds = gdal.Open(fn)
data = ds.ReadAsArray()
x, y = get_indices(ds, 25, -25) 
new_data = data[y.astype(int), x.astype(int)]

The only trick is that you need to convert the indices to integers or NumPy will com-
plain when you attempt to use them to index an array.

 Nearest-neighbor is simple, fast, and one of the few appropriate resampling meth-
ods for categorical data, but it’s not the greatest choice for continuous data. For these
types of data, you usually want to use several surrounding pixels to calculate your
new value. You could use an average as you did earlier, or one of several other common

Listing 11.12 Function to get new pixel offsets in terms of old pixels
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Fir
resampling methods. Two examples of these are bilinear
interpolation, which takes a weighted average of the four
closest pixels, and cubic convolution, which fits a smooth
curve through the 16 nearest pixels and uses that to cal-
culate a new value. You’re going to write a function that
uses the output from your get_indices function to per-
form bilinear interpolation. The hatched areas in figure
11.21 show which four original pixels are used for each
center point.

 To get the values of these four pixels, the first thing you
need to do is subtract 0.5 from the calculated indices so
that they correspond to the center, instead of the edge, of
the input pixels. Then you need to determine the integers
on either side of these coordinates, which gives you the off-
sets to use. For example, if the row coordinate is 4.25, then
you’d use rows 4 and 5. If you do that for column offsets as well, you have two rows and
two columns and can use those to get the four input pixels surrounding the target pixel. 

 Once you have an input pixel value, multiply it by the distance in both directions
from that pixel to the target pixel. This is the part that weights the closer pixels
heavier than further pixels. Then add the four weighted values together to get the
final output value. If you’d like a more detailed explanation of the algorithm, you can
find many sources online.

 The following listing shows a function that performs bilinear interpolation, given
the original data and the center offsets for the new pixels.

def bilinear(in_data, x, y):
    """Performs bilinear interpolation.

    in_data - the input dataset to be resampled
    x       - an array of x coordinates for output pixel centers
    y       - an array of y coordinates for output pixel centers
    """
    x -= 0.5
    y -= 0.5
    x0 = np.floor(x).astype(int)                                        
    x1 = x0 + 1                                                         
    y0 = np.floor(y).astype(int)                                        
    y1 = y0 + 1                                                        

    ul = in_data[y0, x0] * (y1 - y) * (x1 - x)
    ur = in_data[y0, x1] * (y1 - y) * (x - x0)
    ll = in_data[y1, x0] * (y - y0) * (x1 - x)
    lr = in_data[y1, x1] * (y - y0) * (x - x0)

    return ul + ur + ll + lr

Listing 11.13 Function for bilinear interpolation

Figure 11.21 The hatched 
areas show the four original 
pixels closest to the new 
pixel center point. These 
are the ones used to 
calculate a value for the 
new pixel.

First and second 
column offsets

st and second
row offsets
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Now to use bilinear interpolation to resample a raster, you can use your get_indices
function to get offsets, which you then pass to the bilinear function. Don’t forget to
edit the geotransform when saving the output, as shown in the following listing.

in_fn = r"D:\osgeopy-data\Nepal\everest.tif"
out_fn = r'D:\Temp\everest_bilinear.tif'
cell_size = (0.02, -0.02)

in_ds = gdal.Open(in_fn)
x, y = get_indices(in_ds, *cell_size)                                
outdata = bilinear(in_ds.ReadAsArray(), x, y)                         

driver = gdal.GetDriverByName('GTiff')
rows, cols = outdata.shape                                          
out_ds = driver.Create(                                              
    out_fn, cols, rows, 1, gdal.GDT_Int32)                              
out_ds.SetProjection(in_ds.GetProjection())

gt = list(in_ds.GetGeoTransform())                                    
gt[1] = cell_size[0]                                                   
gt[5] = cell_size[1]                                                  
out_ds.SetGeoTransform(gt)                                            

out_band = out_ds.GetRasterBand(1)
out_band.WriteArray(outdata)
out_band.FlushCache()
out_band.ComputeStatistics(False)

If you’d like to try other types of interpolation, scipy.ndimage contains several inter-
polation methods. See http://docs.scipy.org/doc/scipy-0.16.1/reference/ndimage
.html#module-scipy.ndimage.interpolation for more information.  

Listing 11.14 Bilinear interpolation

Resampling with GDAL command-line utilities

This might be a good time to mention the GDAL command-line utilities. There are cur-
rently about 30 of them, and new ones get added occasionally. These aren’t Python
tools; you need to run them from a command prompt or terminal window. Let’s see
how to use gdalwarp to resample an image. This utility is designed for transforming
rasters between spatial reference systems, but you can also use it to resample without
changing the spatial reference. The command line looks like this:

gdalwarp -tr 0.02 0.02 -r bilinear everest.tif everest_resampled.tif

The –tr option is for target resolution, in this case indicating that both cell width and
height should be 0.02. As you’ve probably guessed, -r stands for resampling method,
and this specifies bilinear. Other options include but aren’t limited to nearest-neighbor,
average, cubic convolution, and mode. The input file is everest.tif, and the new file
will be called everest_resampled.tif. Many more options are available, and they’re all
documented at http://www.gdal.org/gdalwarp.html.

Resample

New image is same 
size as outdata

Change the geotransform

http://docs.scipy.org/doc/scipy-0.16.1/reference/ndimage.html#module-scipy.ndimage.interpolation
http://docs.scipy.org/doc/scipy-0.16.1/reference/ndimage.html#module-scipy.ndimage.interpolation
http://www.gdal.org/gdalwarp.html
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11.4 Summary
■ If you need to work with large arrays of data in Python, the NumPy module is

your answer.
■ Use the SciPy module to perform many different scientific data analyses on

NumPy arrays.
■ Local map algebra computations work on a pixel-by-pixel basis, such as calculat-

ing NDVI for a pixel.
■ Focal map algebra computations involve a moving window that uses surround-

ing pixels to calculate the output value, such as calculating slope.
■ Zonal calculations work on pixels that are all in the same zone, such as calculat-

ing the histogram of landcover types based on land ownership.
■ Global calculations, such as proximity analysis, involve the entire raster dataset.

(continued)

If you have GDAL version 2.x, you can also use the same options with the
gdal_translate utility, which is designed to convert data between different formats. (I
wish I knew how many times I’ve pointed people to this tool over the years!)

Although these aren’t Python tools, you can call them from Python using the subpro-
cess module, which sends commands out to the operating system:

import subprocess

args = [
    'gdalwarp',
    '-tr', '0.02', '0.02',
    '-r', 'bilinear',
    'everest.tif', 'everest_resample.tif']
result = subprocess.call(args)

The result variable will hold 0 if the process completed successfully, and 1 if not.
It’s preferred that you break your command up into a list of arguments like the example
so that Python can handle special cases such as spaces in filenames, but you can
also pass a string instead, like this:

result = subprocess.call('gdalwarp -tr 0.02 0.02 -r bilinear everest.tif 
everest_resample.tif')



Map classification
One common use for raster data is map classification, which involves categorizing
the pixels into groups. For example, say you wanted to create a vegetation land-
cover dataset. You might use satellite imagery, elevation, slope, geology, precipita-
tion, or other input data in order to create your classifications. The techniques
we’ve looked at so far will help you prepare your datasets, but you need something
else in order to classify pixels. Many different classification techniques exist, and
which one you use will probably depend on your use case and available resources.
This section is by no means a comprehensive introduction to map classification,
and you should consult a remote sensing book if you want to learn more, but at
least you’ll get an idea of what’s possible.

 You’ll use four bands from a Landsat 8 image to see how well you can replicate
the landcover classification from the SWReGAP project that you saw earlier. These
classifications include groupings such as “Great Basin Pinyon-Juniper Woodland”

This chapter covers
■ Using the spectral module for unsupervised 

map classification
■ Using the scikit-learn module for supervised 

map classification
276
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and “Inter-Mountain Basins Playa.” Although this project covered five states in the
southwestern United States, you’ll only look at the area covered by one Landsat scene
(figure 12.1). Landsat scenes contain more than four bands, but you’ll only use the
three visible bands (red, green, and blue, which make up the natural color image)
and a thermal band. You’ll also use versions of these bands that have been resampled
from 30-meter to 60-meter pixels so that the examples run faster and your computer is
less likely to run into memory issues. 

 You’ll use the SWReGAP field data when necessary. Don’t expect your results to
rival theirs, though, because that project involved many years of work, with thousands
of locations visited in person to collect data, a much more comprehensive set of pre-
dictor variables at 30-meter resolution, and more-sophisticated modeling methods. In
addition, the SWReGAP dataset consists of more than 100 distinct landcover classifica-
tions, but these examples won’t produce nearly so many classes. You’ll see that your
simpler models can replicate several of the same general patterns, however.

 The examples in this section use a few new Python modules: Spectral Python,
SciKit-Learn, and SciKit-Learn Laboratory. Please see appendix A for installation
instructions.

Natural color

Thermal

Figure 12.1 The SWReGAP landcover dataset for Utah with the Landsat scene 
footprint drawn on top. The red, green, and blue bands of the Landsat dataset 
make up the natural color image, and the thermal band is shown alone.
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12.1 Unsupervised classification
Unsupervised classification methods group pixels together based on their similarities,
with no information from the user about which ones belong together. The user selects
the independent, or predictor, variables of interest, and the chosen algorithm does
the rest. This doesn’t mean that you don’t need to know what you’re classifying, how-
ever. Once a classification is produced, it’s up to the user to interpret it and decide
which types of features correspond to which generated classes, or if they even do cor-
respond nicely.

 The Spectral Python module is designed for working with hyperspectral image
data, of which Landsat data is an example. You’ll use a k-means clustering algorithm
to group the pixels into clusters and then visually compare your results to the
SWReGAP classification. But first, let’s write a function that takes a list of filenames as a
parameter, reads in all bands from all files, and returns the data as a three-dimen-
sional NumPy array. We’ll use this function in the next few listings, and to make things
easier, it’s in the ospybook module.

def stack_bands(filenames):
    """Returns a 3D array containing all band data from all files."""
    bands = []
    for fn in filenames:
        ds = gdal.Open(fn)
        for i in range(1, ds.RasterCount + 1):
            bands.append(ds.GetRasterBand(i).ReadAsArray())
    return np.dstack(bands)

Now back to the classification problem. A k-means algorithm begins with an initial set
of cluster centers and then assigns each pixel to a cluster based on distance. This dis-
tance is computed as if the pixel values were coordinates. For example, if two pixel val-
ues were 25 and 42, the distance would be 17, no matter where the pixels were in
relation to each other spatially. 

 After this process has completed, the centroids of the clusters are then used as
starting points, and the process repeats until the maximum number of iterations or a
user-defined stopping condition is reached. 

 Running the default classification is quite easy, as you’ll see in the following listing.
In fact, it’s only one line of code, and the bulk of the example consists of setting things
up and saving the output. That code has been shortened, also, by using custom func-
tions in the ospybook module.

import os
import numpy as np
import spectral                                                
from osgeo import gdal
import ospybook as pb

Listing 12.1 Function to stack raster bands

Listing 12.2 K-means clustering with Spectral Python

Import spectral
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folder = r'D:\osgeopy-data\Utah'
raster_fns = \
    ['LE70380322000181EDC02_60m.tif', 'LE70380322000181EDC02_TIR_60m.tif']
out_fn = 'kmeans_prediction_60m2.tif'

os.chdir(folder)

data = pb.stack_bands(raster_fns)                                       
classes, centers = spectral.kmeans(data)                                

ds = gdal.Open(raster_fns[0])
out_ds = pb.make_raster(ds, out_fn, classes, gdal.GDT_Byte)
levels = pb.compute_overview_levels(out_ds.GetRasterBand(1))
out_ds.BuildOverviews('NEAREST', levels)
out_ds.FlushCache()
out_ds.GetRasterBand(1).ComputeStatistics(False)

del out_ds, ds

The only required parameter to the kmeans function is an array containing the predic-
tor variables, which is in the three-dimensional array returned by stack_bands. You
could also specify the number of output clusters desired, maximum number of itera-
tions, several initial clusters, or a few other things. The default 10 clusters and 20 iter-
ations are sufficient for the example, however. Feel free to consult the Spectral Python
online documentation for more information.

 Assuming you got the same results I did, the algorithm only created nine classes
instead of ten, but it would have created ten if it could resolve them with the given
data. I went to the trouble to try to match the resulting classes with SWReGAP classes so
that you can see a visual comparison, although admittedly, this works best if you’re
looking at a color version of figure 12.2. The classification is definitely different, but at
least the mountains in the east are clearly separated from the flats and playas to the

Run the model

SWReGAP k-means

Figure 12.2 The SWReGAP landcover dataset and one created using unsupervised classification
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west. It’s possible that the match would be better if more clusters had been requested,
because the SWReGAP data contains a much larger number of classes. If you were to
run a classification like this, you’d have to determine what each cluster represented, as
I tried to match up clusters with existing classifications.

12.2 Supervised classification
Supervised classification, unlike unsupervised techniques, requires input from the
user in the form of training data. A training dataset contains all of the independent
variables that correspond to a known value for the dependent variable. For example,
if you knew for a fact that a particular pixel was an agricultural field, then you could
sample your input datasets, such as satellite imagery, at that location and include
those pixel values as the independent variables. The model is fitted using these input
data and then it can be applied to your full datasets to get a spatial representation of
the model results.

 It used to be that training data had to be collected by visiting locations in person
and documenting first-hand what the actual classification should be. In this age of
high-resolution online imagery, however, in certain cases researchers can determine
these values from imagery without leaving their desks. This is definitely a more
cost-effective solution, although it certainly isn’t appropriate or possible for every situ-
ation. Because accurate training datasets are essential for supervised classification,
consider collecting data in the field if possible. Even if the truth can be determined by
looking at imagery, the modeling process is still necessary, unless you want to manu-
ally classify every pixel.

 We’ll take a look at one example of supervised classification using a decision tree.
This type of model consists of a hierarchical set of conditions based on the model’s
independent variables, and has at least one pathway that leads to each possible out-
come. Figure 12.3 shows a simple, if not accurate, example of a decision tree.

Bat Bird

Yes

Can it fly?

Does it have

feathers?

Does it

have fur?

Does it

have legs?

No

Yes

Mammal

YesNo

Snake Lizard

No

YesNo

Figure 12.3 A simple example of a decision tree
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Listing 12.3 uses the scikit-learn module to create a decision tree that predicts
landcover type based on four bands from a Landsat 8 image and actual field data from
the SWReGAP project. The locations of these ground-truthed points are shown in fig-
ure 12.4.

 You have a text file that contains coordinates for the points in figure 12.4 and an
integer value signifying the landcover class, which looks something like this:

x               y               class
377455.171684   4447157.33631   82
372685.109412   4443741.27817   119
372823.111316   4443875.28023   48

That’s a good start, but you still need the independent variables. You’ll sample the
Landsat bands at the coordinates in the text file to get a dataset that looks more
like this:

band1 band2 band3 band4 class
136   116   92    233   82
156   129   112   253   119
150   127   109   239   48

These data will be used to build a model that you’ll then apply to the entire extent of
the Landsat bands to get a spatial dataset containing predictions. This process is
shown in the following listing.

import csv
import os
import numpy as np
from sklearn import tree                       
from osgeo import gdal
import ospybook as pb

Listing 12.3 Map classification using CART

Figure 12.4 The locations of the ground-truthed 
data points used in listing 12.3

Import sci-kit learn
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Set p
wit
sate

data 
folder = r'D:\osgeopy-data\Utah'
raster_fns = \
    ['LE70380322000181EDC02_60m.tif', 'LE70380322000181EDC02_TIR_60m.tif']
out_fn = 'tree_prediction60.tif'
train_fn = r'D:\osgeopy-data\Utah\training_data.csv'
gap_fn = r'D:\osgeopy-data\Utah\landcover.img'

os.chdir(folder)

xys = []                                                                 
classes = []                                                            
with open(train_fn) as fp:                                             
    reader = csv.reader(fp)                                            
    next(reader)                                                       
    for row in reader:                                                  
        xys.append([float(n) for n in row[:2]])                         
        classes.append(int(row[2]))                                     

ds = gdal.Open(raster_fns[0])                                          
pixel_trans = gdal.Transformer(ds, None, [])                           
offset, ok = pixel_trans.TransformPoints(True, xys)                    
cols, rows, z = zip(*offset)                                          

data = pb.stack_bands(raster_fns)

sample = data[rows, cols, :]                                 

clf = tree.DecisionTreeClassifier(max_depth=5)                           
clf = clf.fit(sample, classes)                                          

rows, cols, bands = data.shape                                       
data2d = np.reshape(data, (rows * cols, bands))                       
prediction = clf.predict(data2d)                                       
prediction = np.reshape(prediction, (rows, cols))                    

prediction[np.sum(data, 2) == 0] = 0                                   

predict_ds = pb.make_raster(ds, out_fn, prediction, gdal.GDT_Byte, 0)
predict_ds.FlushCache()
levels = pb.compute_overview_levels(predict_ds.GetRasterBand(1))
predict_ds.BuildOverviews('NEAREST', levels)

gap_ds = gdal.Open(gap_fn)                                             
colors = gap_ds.GetRasterBand(1).GetRasterColorTable()                 
predict_ds.GetRasterBand(1).SetRasterColorTable(colors)                 

del ds

This is a little more complicated than the unsupervised example, but it’s still not that
bad. The first task is to read in the coordinates and landcover class from the text file.
You skip the header line, and then convert the first two values to floating-point
(because they’re read in as strings) and put them in a list. When finished, this list con-
tains a list of lists, with each inner list containing the x and y coordinates. You need
the coordinates in this format later. You also put the landcover class integer in another
list for later use.

Read coordinates 
and class from csv

Get pixel offsets

Sample satellite 
data at pixel offsets

Fit the 
classification tree

Apply model to 
satellite dataixels

h no
llite
to 0

Copy colormap from 
SWReGAP dataset
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 Then you open one of the raster datasets so you can create a transformer object to
convert between map coordinates and pixel offsets. You use this with your list of coor-
dinates to get pixel offsets in two lists called cols and rows.

 After reading the four satellite bands into a three-dimensional array, you take
advantage of the fact that you can pass lists of coordinates as indices to pull data out of
an array, and sample all of the points in one line of code:

sample = data[rows, cols, :]

This samples the 3D array at each of the provided row and column offsets, and returns
every value in the third dimension, which is the four different satellite bands. The
result is a two-dimensional array, where each row contains the four pixel values from
the four bands.

 Now you have all of the data required in order to fit the model, so you create a new
decision tree classifier using default parameters (see the scikit-learn documenta-
tion to read the nitty-gritty details of the optional parameters) and then pass the fit
method your independent variables and known landcover classifications at those same
points. Make sure you don’t change the order of any of the lists; otherwise, the satel-
lite pixel values won’t match up with the appropriate landcover value and your model
won’t be fitted correctly.

clf = tree.DecisionTreeClassifier(max_depth=5)
clf = clf.fit(sample, classes)

All that’s left is to apply your fitted model to the full set of pixel values. Unfortunately,
the predictor variables need to be in a two-dimensional array for this to work, so you
reshape the array so that it has a large number of rows (rows * cols) and four col-
umns, one for each band. You pass this to the predict function, and then reshape the
resulting one-dimensional array back into two dimensions:

rows, cols, bands = data.shape
data2d = np.reshape(data, (rows * cols, bands))
prediction = clf.predict(data2d)
prediction = np.reshape(prediction, (rows, cols))

Another way to handle the prediction is to loop through the rows and process one at a
time. An added advantage to this method is that it uses less memory. For example, my
laptop crashed when I tried to run the prediction on the entire 30-meter dataset at
once, but it did it row by row without a problem. You’d do it something like this:

prediction = np.empty(data.shape[0:2])
for i in range(data.shape[0]):
    prediction[i,:] = clf.predict(data[i,:,:])

Landsat bands have 0 values around the edges of the image, but those pixels are still
assigned a value with the model. If all four Landsat bands contain 0 at a location, then
you know that there’s no data for that cell, so you change those to 0 in the prediction
data as well. You could have used any number that wasn’t a valid landcover classifica-
tion, as long as you set it as the NoData value. After saving the prediction as a GeoTIFF,
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you copy the color table from the real SWReGAP landcover classification so you can
visually compare the results. Again, you can see in figure 12.5 that this model predicts
some of the same general patterns, but the results are still different. If you’re viewing
this in color, you’ll see that it even failed to predict water correctly! This is a strong
indication that the model needs more work. A better set of training data or indepen-
dent variables would probably help.

12.2.1 Accuracy assessments

Accuracy assessments are usually performed on models such as this to get an idea of
how good they are. Because the model should do a good job of predicting the values
that were used to build it, accuracy assessments are usually performed using a separate
set of data to test the model on different values. I’ve provided a separate dataset for this,
but if you need to split your data into training and assessment groups, you may want to
look into the cross-validation tools in scikit-learn. One easy accuracy assessment
method is to use a confusion matrix, which breaks out the results by predicted and
observed values so you can see how well each classification was predicted. Although you
can figure out the total percentage of correct classifications from the confusion matrix,
better measures of accuracy exist. One of these is Cohen’s kappa coefficient, which
ranges from -1 to 1, where the higher the number, the better the predictions. The fol-
lowing listing shows you how to use the scikit-learn module to construct a confusion
matrix and SciKit-Learn Laboratory to compute the kappa statistic.

import csv
import os
import numpy as np

Listing 12.4 Confusion matrix and kappa statistic

SWReGAP Classification tree

Figure 12.5 The SWReGAP landcover dataset and one created using a decision tree
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from sklearn import metrics                                             
import skll                                                            
from osgeo import gdal

folder = r'D:\osgeopy-data\Utah'
accuracy_fn = 'accuracy_data.csv'
matrix_fn = 'confusion_matrix.csv'
prediction_fn = r'D:\osgeopy-data\Landsat\Utah\tree_prediction60.tif'

os.chdir(folder)

xys = []
classes = []
with open(accuracy_fn) as fp:
    reader = csv.reader(fp)
    next(reader)
    for row in reader:
        xys.append([float(n) for n in row[:2]])
        classes.append(int(row[2]))

ds = gdal.Open(prediction_fn)
pixel_trans = gdal.Transformer(ds, None, [])
offset, ok = pixel_trans.TransformPoints(True, xys)
cols, rows, z = zip(*offset)

data = ds.GetRasterBand(1).ReadAsArray()
sample = data[rows, cols]
del ds

print('Kappa:', skll.kappa(classes, sample))                   

labels = np.unique(np.concatenate((classes, sample)))                  
matrix = metrics.confusion_matrix(classes, sample, labels)             

matrix = np.insert(matrix, 0, labels, 0)                               
matrix = np.insert(matrix, 0, np.insert(labels, 0, 0), 1)             
np.savetxt(matrix_fn, matrix, fmt='%1.0f', delimiter=',')            

Most of this code should look familiar because obtaining the data points needed for
the accuracy assessment is similar to collecting the model training data. The differ-
ence is that instead of sampling the satellite imagery, you sample the prediction out-
put and compare those results to the known classifications. 

 Once you have the known and predicted values for each location, computing
kappa is easy. All you need to do is pass an array containing the true values and one
containing the predicted values to the kappa function. Again, the order of the values
is important, because your results will be extremely inaccurate if the known values are
compared to predicted values from other locations. The kappa statistic for this model
is 0.24, so the classification is slightly better than random, but it’s certainly nothing to
brag about, either. In fact, a number that low indicates a poor classification. 

 Technically, you only need the same inputs that you use for the kappa statistic to
create the confusion matrix, but you also create a list of unique classification values to

Import sci-kit 
modules

Compute kappa

Create the 
confusion matrix

Add labels and 
save the matrix
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use as labels. The classes will be listed in this order in the resulting matrix. After creat-
ing the matrix, you add the labels in much the same way as you added labels to your
two-way histogram earlier. The matrix looks something like figure 12.6, where the
rows correspond to predicted values and columns to known values. For example, 16
pixels that were predicted as class 22 were predicted correctly, but two were really
class 5 and one was actually class 28. 

12.3 Summary
■ Unsupervised classification algorithms group pixels based on how alike they are.
■ Supervised classification algorithms use ground-truthed data to predict which

set of conditions results in each class.
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Figure 12.6 The first few rows and 
columns of the confusion matrix for the 
classification tree model. Rows are 
predictions, and columns are actual 
values, so two pixels were predicted as 
class 22 but were class 5.
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Visualizing data
As you no doubt have noticed, the ability to view your data is essential. While you
can use desktop GIS software, such as QGIS, sometimes it’s nice to see your data as
you work, without needing to open it up in other software. This is the idea behind
the VectorPlotter class in the ospybook module. Other times you might need to
create a picture of your data, such as a quick-and-dirty plot to show a colleague, or
perhaps a much nicer map to post online or give to a client. This isn’t a book on
cartography (which is good, because I’m cartographically challenged), so this chap-
ter will show you the basics of displaying data in a few different ways, but won’t
focus on techniques for making the data look pretty. You’ll see how to use both the
matplotlib and Mapnik modules to plot your data. If you want something pretty,
you’ll want to go with Mapnik, but matplotlib is great for quick visualizations.

This chapter covers
■ Making quick plots of vector data using 

matplotlib 
■ Plotting raster data with matplotlib
■ Creating maps with Mapnik
287
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13.1 Matplotlib
Matplotlib is a general-purpose plotting library for Python and can be used for any kind
of graphic you can think up. This module is extensive, and like NumPy and SciPy, entire
books have been written on it. If you’re interested in seeing an overview of what can be
done, check out the examples in the matplotlib gallery at http://matplotlib.org/
gallery.html. The gallery contains many impressive examples for making charts and
graphs, but we’re more interested in spatial data, so this section will concentrate on
quick-and-crude plots of geographical datasets. In fact, the VectorPlotter class uses
matplotlib, and you’ll learn the basics of how that class plots vector data.

 Matplotlib has several parts, but the one that you interact with the most to plot
data is pyplot, and that’s what we’ll use here. It’s convention to rename this as plt
when importing it:

import matplotlib.pyplot as plt

You can use pyplot in interactive or non-interactive mode. Back in chapters 3 through
7, you used a VectorPlotter from an interactive console and saw the changes to your
plots immediately. This was matplotlib at work in interactive mode. This mode is
extremely handy for playing with matplotlib and learning how it works. It’s also useful
for interactively exploring data. 

 Plotting isn’t interactive by default, however. This makes sense, because interactiv-
ity wouldn’t be helpful for a script that creates a graphic and saves it to disk with no
input from the user. Exceptions exist to every rule, though, and you may find that if
you’re using IPython in pylab mode or an IDE such as Spyder, then interactive mode
will be on by default. When in interactive mode, the plot is automatically shown to the
user, but if you want to show the plot when using non-interactive mode, then you must
call the plt.show() method after adding all of the graphics to your plot. This will stop
the script’s execution until the user closes the plot window. You might be tempted to
use interactive mode so that the user can see the plot as it’s created, but you’ll proba-
bly have bad luck with that because the plot window disappears when the script ends.
The user might see parts of the plot as it’s created, but if the script ends as soon as the
plot is finished, then the user may never get a chance to see the final product.

 If you want to turn interactive mode on, either from a script or the console, use this:

plt.ion()

You can turn interactive mode back off with plt.ioff().

13.1.1 Plotting vector data

You might be surprised to learn that plotting vector data isn’t that difficult. The data’s
made up of x and y coordinates, after all. First you’ll see how to use the plot function
to draw points, lines, and polygons in general, and then you’ll graduate to plotting
shapefiles. Once you can do that, you’ll learn how to create holes in the special case of
donut polygons, so that other data can show through if needed. The plot function
has many options, most of which will be ignored here, but you can read about them all
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in the online documentation found at http://matplotlib.org/api/pyplot_api.html
#matplotlib.pyplot.plot. This function wants, at the minimum, lists of x and y coordi-
nates. If that’s all you provide, then a line is plotted using those coordinates and a
color from the matplotlib color cycle. For example, the following code plots the line
y = x2, shown in figure 13.1:

import matplotlib.pyplot as plt

x = range(10)
y = [i * i for i in x]
plt.plot(x, y)
plt.show()

You can specify a color and change this from a line
to a series of points simply by providing a marker
specification, as in the following example. In this
case, ‘ro’ means that it should draw red circles
instead of the default line. The markersize parame-
ter makes the points a bit larger than they would
have been by default. (Don’t forget to call
plt.show() to draw each of these plots.)

plt.plot(x, y, 'ro', markersize=10)

The result of this code is shown in figure 13.2. You
can also plot a single point by passing in an x and a
y value instead of lists of values. You might think
that the coordinates would be enough, but you have
to provide a marker symbol such as ‘ro’ or else it
still tries to draw a line. Because one point isn’t
enough information to draw a line, you end up with
a blank plot.

 Because polygons are closed lines, you can draw
a hollow polygon exactly the same way as a line.
Make sure that the first and last sets of coordinates
are the same so that the polygon is closed. For exam-
ple, the following code snippet adds a 0 to the end
of each list so that a line from figure 13.1 is drawn
back to the origin. In addition, the lw named
parameter is used to change the line thickness (lw is
short for linewidth, which you could also use). The
results are shown in figure 13.3.

x = list(range(10))
y = [i * i for i in x]
x.append(0)
y.append(0)
plt.plot(x, y, lw=5)

Figure 13.1 A simple line plot

Figure 13.2 A simple point plot

Figure 13.3 A simple closed 
line plot
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Believe it or not, you now know pretty much everything you need to know to make
simple plots of vector data, assuming you remember what you learned in earlier chap-
ters. To draw the features in a layer, open it and, for each feature, get the geometry
coordinates and plot them as you did here. Let’s try it out with the global landmass
shapefile. This particular dataset is convenient because all of the geometries are sim-
ple polygons, and you don’t need to worry about multipolygons. You have one donut
polygon in the mix, but you can ignore that for now and plot the outer ring. For each
feature, get the first ring from its geometry, and then get the coordinates from that.
Remember that the coordinates come in a list of pairs, so the zip function comes in
handy because you can use it to create two separate lists of x and y coordinates. The
following listing demonstrates this pattern and results in a plot like figure 13.4A.

import matplotlib.pyplot as plt
from osgeo import ogr

ds = ogr.Open(r'D:\osgeopy-data\global\ne_110m_land.shp')
lyr = ds.GetLayer(0)
for row in lyr:
    geom = row.geometry()
    ring = geom.GetGeometryRef(0)
    coords = ring.GetPoints()                      
    x, y = zip(*coords)
    plt.plot(x, y, 'k')                                         
plt.axis('equal')                                             
plt.show()

One little detail that the listing takes care of has not been mentioned yet. For your
spatial plots to look right, you need to set the axis units equal to each other. If you
comment this line out, you’ll end up with a plot more like figure 13.4B. By default the
data are fitted into the available space so that the data fill it all up. The distance

Listing 13.1 Plotting simple polygons

List of (x, y) tuples

 ‘k’ means black

Equalize axis units

A. Axis equal B. Axis not equal

Figure 13.4 Two plots of the continents using closed lines for polygons. Plot A sets the axes equal 
to each other and the proportions are correct, unlike plot B in which the default axis limits are used.
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covered by a single unit might be different on each axis. If you look closely at part B of
the figure, you’ll see that the horizontal axis ranges from -200 to 200 but the vertical
one from -100 to 100, and yet they both use up the same amount of space on paper.
Setting the axes units equal fixes this distortion.

 As you’ve seen, drawing simple poly-
gons isn’t difficult. Dealing with multi-
polygons and donut polygons adds a little
more complexity to the code, but it’s still
the exact same process. In the case of a
multipolygon, you need to loop through
each polygon in the multipolygon, and
then for each polygon (whether from a
multipolygon or not), loop through the
rings and plot each one. The following
listing shows this process for the countries
shapefile, which gives you a plot like fig-
ure 13.5.

import matplotlib.pyplot as plt
from osgeo import ogr

def plot_polygon(poly, symbol='k-', **kwargs):
    """Plots a polygon using the given symbol."""
    for i in range(poly.GetGeometryCount()):                           
        subgeom = poly.GetGeometryRef(i)                              
        x, y = zip(*subgeom.GetPoints())
        plt.plot(x, y, symbol, **kwargs)

def plot_layer(filename, symbol, layer_index=0, **kwargs):
    """Plots an OGR polygon layer using the given symbol."""
    ds = ogr.Open(filename)
    for row in ds.GetLayer(layer_index):
        geom = row.geometry()
        geom_type = geom.GetGeometryType()
        if geom_type == ogr.wkbPolygon:
            plot_polygon(geom, symbol, **kwargs)
        elif geom_type == ogr.wkbMultiPolygon:
            for i in range(geom.GetGeometryCount()):                    
                subgeom = geom.GetGeometryRef(i)                        
                plot_polygon(subgeom, symbol, **kwargs)

plot_layer(r'D:\osgeopy-data\global\ne_110m_admin_0_countries.shp', 'k-')
plt.axis('equal')
plt.gca().get_xaxis().set_ticks([])                                    
plt.gca().get_yaxis().set_ticks([])                                     
plt.show()

Listing 13.2 Plotting polygons 

Figure 13.5 A plot of countries using closed 
lines but accounting for multipolygons and holes

Loop through rings

Loop through 
subpolygons

Turn off tick marks
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This example breaks things up into a few functions to make things easier. The
plot_polygon function loops through the rings in a polygon and plots each one. The
other function, plot_layer, opens a data source, gets the layer indicated by the
optional layer_index parameter, and loops through all of the features and plots their
geometries. If the geometry is a polygon, it passes it along to plot_polygon, but if it’s
a multipolygon, it passes each polygon part to plot_polygon separately. Both of these
functions allow you to use **kwargs to pass optional parameters that are used by the
matplotlib plot function (see the sidebar). 

 These functions make it easy to plot a shapefile, because all you have to do is pass
the filename and symbol to plot_layer, set your axes to be equal, and then show the
plot. This listing also shows you how to turn tick marks off if you don’t want them
drawing alongside the axes.

You probably want to plot lines and
points in addition to polygons, so create
two more simple functions to plot those
geometry types and add a few more con-
ditional statements to plot_layer. This
additional code is shown in the following
listing, and an example of the output is
shown in figure 13.6.

Figure 13.6 A plot of countries, rivers,
and cities using basic lines and points

Using **kwargs in functions

The same way you’ve used a single asterisk to explode a list into individual values
that can be passed as ordered arguments to a function, you can use double asterisks
to explode a dictionary for use as named arguments. For example, if a function can
accept a variety of optional parameters, you could create a dictionary containing the
ones you want to use, with the parameter names as the keys, and then pass that to
the function instead of each argument individually. This behavior is useful for passing
arguments through your function to another one.

For example, the matplotlib plot function accepts a large number of optional param-
eters that control the output. It would be nice to use these with the plot_polygon
and plot_layer functions in listing 13.2, but those functions have no reason to worry
about the optional parameters. They only need to pass them along to plot when the
time comes. To do this, add a variable prefixed with ** as the last parameter to your
function. This variable is called kwargs by convention, but you can call it whatever
you want. It does have to be the last parameter, however. Then you can pass it along
to other functions, and the parameters that the user provided eventually arrive in the
intended function.
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import os
import matplotlib.pyplot as plt
from osgeo import ogr

def plot_polygon(poly, symbol='k-', **kwargs):
    """Plots a polygon using the given symbol."""
    for i in range(poly.GetGeometryCount()):
        subgeom = poly.GetGeometryRef(i)
        x, y = zip(*subgeom.GetPoints())
        plt.plot(x, y, symbol, **kwargs)

def plot_line(line, symbol='k-', **kwargs):                              
    """Plots a line using the given symbol."""                          
    x, y = zip(*line.GetPoints())                                      
    plt.plot(x, y, symbol, **kwargs)                                   

def plot_point(point, symbol='ko', **kwargs):                            
    """Plots a point using the given symbol."""                         
    x, y = point.GetX(), point.GetY()                                    
    plt.plot(x, y, symbol, **kwargs)                                     

def plot_layer(filename, symbol, layer_index=0, **kwargs):
    """Plots an OGR layer using the given symbol."""
    ds = ogr.Open(filename)
    for row in ds.GetLayer(layer_index):
        geom = row.geometry()
        geom_type = geom.GetGeometryType()
        if geom_type == ogr.wkbPolygon:
            plot_polygon(geom, symbol, **kwargs)
        elif geom_type == ogr.wkbMultiPolygon:
            for i in range(geom.GetGeometryCount()):
                subgeom = geom.GetGeometryRef(i)                         
                plot_polygon(subgeom, symbol, **kwargs)
        elif geom_type == ogr.wkbLineString:                            
            plot_line(geom, symbol, **kwargs)                            
        elif geom_type == ogr.wkbMultiLineString:                        
            for i in range(geom.GetGeometryCount()):                   
                subgeom = geom.GetGeometryRef(i)                        
                plot_line(subgeom, symbol, **kwargs)                     
        elif geom_type == ogr.wkbPoint:                                 
            plot_point(geom, symbol, **kwargs)                         
        elif geom_type == ogr.wkbMultiPoint:                            
            for i in range(geom.GetGeometryCount()):                    
                subgeom = geom.GetGeometryRef(i)                       
                plot_point(subgeom, symbol, **kwargs)                   

os.chdir(r'D:\osgeopy-data\global')
plot_layer('ne_110m_admin_0_countries.shp', 'k-')
plot_layer('ne_110m_rivers_lake_centerlines.shp', 'b-')                  
plot_layer(                                                              
    'ne_110m_populated_places_simple.shp', 'ro', ms=3)                 
plt.axis('equal')
plt.gca().get_xaxis().set_ticks([])
plt.gca().get_yaxis().set_ticks([])
plt.show()

Listing 13.3 Plotting lines and points

New function

New function

New code in 
plot_layer

Plot new layers
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This listing doesn’t contain new concepts, only new code. You extend the plot_layer
function so it calls the correct functions for lines, multilines, points, and multipoints.
Then at the end of the listing, you use the updated function to plot country outlines
again, but you also add major rivers and large cities. You also take advantage of
**kwargs to pass a marker size for the city points so that they don’t draw so big as to
hide other features in the plot.

 Until now you’ve treated polygons as closed lines when plotting them. What if you
want to fill them with a color? You can do this by changing your plot_polygon func-
tion to use the matplotlib fill function instead of plot, like this: 

def plot_polygon(poly, symbol='w', **kwargs):
    """Plots a polygon using the given symbol."""
    for i in range(poly.GetGeometryCount()):
        x, y = zip(*poly.GetGeometryRef(i).GetPoints())
        plt.fill(x, y, symbol, **kwargs)

Now the symbol parameter should be a
color to use for the fill, so using y for yel-
low would result in figure 13.7 with the
continents filled in. 

 The only problem with this method is
that polygons with holes in them will be
plotted incorrectly, because the holes will
be plotted using the same fill color. You
could fix this by only plotting the first
ring with the fill color and using white for
the later rings, but that wouldn’t create a
hole because nothing underneath would
show through. If you need real holes, you
can use matplotlib PathPatches, but it’s a
little more complicated than what you’ve
done so far. To draw a polygon, you not
only need the vertex coordinates, but also
a set of codes denoting whether to draw a
line or move the pen to that location. You
use this information to create a Path, and
then create a PathPatch from that. The
PathPatch is the object that you add a fill color to. Once you have that, then you need
to add it to the plot. For example, this bit of code draws the solid red triangle shown
in figure 13.8:

import matplotlib.pyplot as  plt
from matplotlib.path import Path
import matplotlib.patches as patches
coords = [(0, 0), (0.5, 1), (1, 0), (0, 0)]
codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO]

Figure 13.7 A repeat of figure 13.6, but the 
closed lines are filled with a color

Figure 13.8 Simple patch polygons
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path = Path(coords, codes)
patch = patches.PathPatch(path, facecolor='red')
plt.axes().add_patch(patch)
plt.show()

The first code is MOVETO, meaning that the pen should move to the first set of coordi-
nates without drawing anything. This makes sense if you’ve already drawn something
else and don’t want a line connecting the last point in the previous path to the first
point in this path. The LINETO code corresponds to the rest of your coordinates, mean-
ing that the points will be connected. Once you’ve created the path, then you can use
it to create a patch, which can be filled. You need to add the patch to the drawing area
of the plot, which is called the axes (which in turn contains the x and y axis).

 To put a hole in a patch, create a path as before, but use a MOVETO code to move to
the first set of coordinates for the hole, and then add the vertices in the opposite
direction as the outer set in order to indicate that this should create a hole. If the
coordinates for the outer ring are in clockwise order, then the coordinates for the
holes must be in counterclockwise order. For example, you can put a hole in your ear-
lier triangle like this:

outer_coords = [(0, 0), (0.5, 1), (1, 0), (0, 0)]                 
outer_codes = [Path.MOVETO, Path.LINETO,
               Path.LINETO, Path.LINETO]
inner_coords = [(0.4, 0.4), (0.5, 0.2),                                
                (0.6, 0.4), (0.4, 0.4)]                                
inner_codes = [Path.MOVETO, Path.LINETO,
               Path.LINETO, Path.LINETO]
coords = np.concatenate((outer_coords, inner_coords))
codes = np.concatenate((outer_codes, inner_codes))
path = Path(coords, codes)
patch = patches.PathPatch(path, facecolor='red')

Once you have all of your coordinates and
codes in two lists or NumPy arrays, then
you can use them as before to create the
patch with a hole that is shown in figure
13.8. The following listing applies this pro-
cess to spatial data to make a plot of world
countries like that in figure 13.9.

Figure 13.9 Countries drawn with
patches instead of lines

import numpy as np
import matplotlib.pyplot as  plt
from matplotlib.path import Path
import matplotlib.patches as patches
from osgeo import ogr

Listing 13.4 Draw world countries as patches

Clockwise

Counterclockwise
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def order_coords(coords, clockwise):
    """Orders coordinates."""
    total = 0                                                     
    x1, y1 = coords[0]                                             
    for x, y in coords[1:]:                                         
        total += (x - x1) * (y + y1)                                     
        x1, y1 = x, y                                              
    x, y = coords[0]                                               
    total += (x - x1) * (y + y1)                                    
    is_clockwise = total > 0                                         
    if clockwise != is_clockwise:                                       
        coords.reverse()                                              
    return coords

def make_codes(n):
    """Makes a list of path codes."""
    codes = [Path.LINETO] * n
    codes[0] = Path.MOVETO
    return codes

def plot_polygon_patch(poly, color):
    """Plots a polygon as a patch."""
    coords = poly.GetGeometryRef(0).GetPoints()                      
    coords = order_coords(coords, True)                           
    codes = make_codes(len(coords))                          
    for i in range(1, poly.GetGeometryCount()):
        coords2 = poly.GetGeometryRef(i).GetPoints()                     
        coords2 = order_coords(coords2, False)                          
        codes2 = make_codes(len(coords2))                             
        coords = np.concatenate((coords, coords2))                      
        codes = np.concatenate((codes, codes2))                         
    path = Path(coords, codes)
    patch = patches.PathPatch(path, facecolor=color)
    plt.axes().add_patch(patch)

ds = ogr.Open(r'D:\osgeopy-data\global\ne_110m_admin_0_countries.shp')
lyr = ds.GetLayer(0)
for row in lyr:
    geom = row.geometry()
    if geom.GetGeometryType() == ogr.wkbPolygon:
        plot_polygon_patch(geom, 'yellow')
    elif geom.GetGeometryType() == ogr.wkbMultiPolygon:
        for i in range(geom.GetGeometryCount()):
            plot_polygon_patch(geom.GetGeometryRef(i), 'yellow')
plt.axis('equal')
plt.show()

This listing contains a couple of useful functions. The first, order_coords, checks if
coordinates are in the order requested and reorders them if not. Most of the code in
the function implements an algorithm for determining order. Once the order is
determined, it’s compared to the requested order, and if they differ, the coordinates
are reversed.

 Also, a simple function called make_codes creates a list of LINETO codes of the
appropriate length, with the first one changed to MOVETO so a new path can be started.

Determine order 
of coordinates

Reorder if needed

Outer clockwise path

Inner counterclockwise paths

Concatenate paths
Licensed to Kris Johnson <n.o.r.d.i.ckan@gmail.com>



297Matplotlib
 The last function plots polygons as patches. The first thing this function does is
create a list of the outer ring coordinates in clockwise order, along with a correspond-
ing code list. Then it loops through any inner rings that might exist, and for each one
creates a list of coordinates in counterclockwise order and a list of codes. Then it
appends the coordinates and codes for the inner ring to the end of the master lists.
Once all rings have been processed, it creates a patch and adds it to the plot.

 The main part of the code simply loops through the features in a shapefile and
calls the plot_polygon_patch function on each polygon, including those inside multi-
polygons. Don’t forget to set the axis to equal before drawing the plot, because other-
wise the x and y axis will probably only range from 0 to 1, and you’ll end up staring at
a blank plot.

ANIMATION

You can have even more fun by animating your plots. To see how it’s done, you’ll ani-
mate the movements of one of the albatrosses from chapter 7. Let’s start by configur-
ing the plot’s extent based on the GPS data:

ds = ogr.Open(r'D:\osgeopy-data\Galapagos')
gps_lyr = ds.GetLayerByName('albatross_lambert')
extent = gps_lyr.GetExtent()
fig = plt.figure()
plt.axis('equal')
plt.xlim(extent[0] - 1000, extent[1] + 1000)
plt.ylim(extent[2] - 1000, extent[3] + 1000)
plt.gca().get_xaxis().set_ticks([])
plt.gca().get_yaxis().set_ticks([])

You get the extent of the GPS data layer and then use it to set the x and y limits for the
plot, except that you add 1,000 meters in every direction to add a little buffer around
the data you want to show. You also turn the tick marks off. You probably want to add
the landmasses to your plot because the GPS locations aren’t too interesting without
context. You can use your plot_polygon function to do this:

land_lyr = ds.GetLayerByName('land_lambert')
row = next(land_lyr)
geom = row.geometry()
for i in range(geom.GetGeometryCount()):
    plot_polygon(geom.GetGeometryRef(i))

Now you’re ready to add the animated data, but you need to store it somewhere so it’s
accessible to the animation routines. You have many ways you could set this up, but for
this example you’ll store the x,y coordinate pairs in a list, with the corresponding
timestamps in another list:

timestamps, coordinates = [], []
gps_lyr.SetAttributeFilter("tag_id = '2131-2131'")
for row in gps_lyr:
    timestamps.append(row.GetField('timestamp'))
    coordinates.append((row.geometry().GetX(), row.geometry().GetY()))
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You iterate through all of the features for the animal with tag ‘2131-2131’ and add
the timestamp to one list and a tuple containing the coordinates to another list. You’ll
use the coordinates to animate a point and the timestamps to show the current time.
You need to initialize both the point and the timestamp annotation, so let’s do that:

point = plt.plot(None, None, 'o')[0]
label = plt.gca().annotate('', (0.25, 0.95), xycoords='axes fraction')
label.set_animated(True)

Here you initialize the point by plotting it with no coordinates. The plot function
returns a list of objects, but in this case you have only one item in the list because you
only plotted one point. You grab that point graphic out of the list and store it in your
point variable. Then you create an empty annotation object on the current axes (gca
is short for “get current axes”). Setting the optional xycoords parameter to ‘axes
fraction’ lets you specify the annotation’s location using percentages rather than
pixels or map coordinates. The annotation will be a quarter of the way across the axes
(0.25) and close to the top (0.95). You also tell the annotation that it’s going to be ani-
mated, which will make the text change much more smoothly.

 Now you need to write a simple function that tells the animation what items are
going to change, namely, your point and label. If you don’t set the point coordinates
to None in this function, then there is always a point at the first location in the anima-
tion, even while another point is moving around.

def init():
    point.set_data(None, None)
    return point, label

One last function you need to write is the one that moves the point and changes the
label. The first parameter to this function is a counter that gets passed to it automati-
cally, specifying which iteration of the animation is currently being processed. The
rest of the parameters are up to you. It needs to accept the objects that will change
and any data needed to change them. Like the init function, this function must
return the objects that change.

def update(i, point, label, timestamps, coordinates):
    label.set_text(timestamps[i])
    point.set_data(coordinates[i][0], coordinates[i][1])
    return point, label

The function uses the counter variable, i, to pull the correct timestamps and coordi-
nates out of the lists. It changes the label’s text to the timestamp, and sets the point’s
coordinates to the values you saved from the shapefile. Then it returns the point and
the label because they’ve changed.

 Now let’s run the animation using the FuncAnimation function in matplotlib. The
two required parameters are the matplotlib figure object that the animation will run
on and your function that tells things how to animate. The frames parameter is the
counter variable, which can be a list of values, or as in this case, the number of times
you want the animation to run. The init_func parameter is the initialization function
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that you wrote. If you don’t provide this, then the first result from the animation will
be used for initialization, and it will stay there throughout the animation. If your ani-
mation function requires parameters other than the counter, you need to provide
them using the fargs argument to FuncAnimation. If blit is True, then only the
parts of the plot that have changed will be redrawn, which will speed things up. The
interval parameter is the number of milliseconds between frames, and repeat tells it
whether to repeat the animation or stop after one time.

import matplotlib.animation as animation
a = animation.FuncAnimation(
    fig, update, frames=len(timestamps), init_func=init,
    fargs=(point, label, timestamps, coordinates),
    interval=25, blit=True, repeat=False)
plt.show()

It would be nice if the animation could be embedded in paper, but it can’t, so you’ll
have to run the code yourself to see it in action. One thing you should notice is that
nothing in this code will force the elapsed time to stay at a constant speed. If two con-
secutive GPS fixes are three days apart, they’ll be treated the same as two that are only
an hour apart. One way to fix that is to round the timestamps to the nearest hour and
make sure entries are in the timestamps and coordinates lists for every hour. If there
aren’t coordinates corresponding to a specific time, then put a bogus value in the list.
When you update the animation, only update the point location if the coordinates are
valid. Here’s a function that rounds timestamps:

from datetime import datetime, timedelta
def round_timestamp(ts, minutes=60):
    ts += timedelta(minutes=minutes/2.0)
    ts -= timedelta(
        minutes=ts.minute % minutes, seconds=ts.second,
        microseconds=ts.microsecond)
    return ts

If you use the default value of 60 for the minutes parameter, the function rounds to
the nearest hour. In this case it adds 30 minutes to the timestamp, so if the original
was 11:27:14.01, the new time is 11:57:14.01. Then it calculates the remainder of divid-
ing the timestamp’s minutes value by the number of minutes you want to round to. In
this case, that value is 57 because 57 goes into 60 zero times and the entire value is the
remainder. Then the numbers of seconds and microseconds from the timestamp are
added to this value, so you have 57:14.01, and the result is subtracted from the time-
stamp. Now the timestamp is 11:00 even, which is the closest hour to 11:27:14.01.

 Now that you can round timestamps, let’s initialize the timestamps and coordi-
nates lists with the first values from the dataset:

gps_lyr.SetAttributeFilter("tag_id = '2131-2131'")
time_format = '%Y-%m-%d %H:%M:%S.%f'
row = next(gps_lyr)
timestamp = datetime.strptime(row.GetField('timestamp'), time_format)
timestamp = round_timestamp(timestamp)
timestamps = [timestamp]
coordinates = [(row.geometry().GetX(), row.geometry().GetY())]  
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Now you can loop through the rest of the features and fill in your lists. Get the time-
stamp for each row and compare it to the last one in the timestamps list. Keep adding
new timestamps to the list until the last one is equal to the one from the feature, and
while you’re at it, append a bogus set of coordinates to that list, too. The loop will stop
when the last timestamp in the list is equal to the row’s timestamp, so you can over-
write the last set of bogus coordinates with the feature’s coordinates and they’ll match
up with the correct timestamp.

hour = timedelta(hours=1)
for row in gps_lyr:
    timestamp = datetime.strptime(row.GetField('timestamp'), time_format)
    timestamp = round_timestamp(timestamp)
    while timestamps[-1] < timestamp:
        timestamps.append(timestamps[-1] + hour)
        coordinates.append((None, None))
    coordinates[-1] = (row.geometry().GetX(), row.geometry().GetY())

The only other thing you need to do is change your update function so that it only
moves the point if there are valid coordinates. If you don’t do this, the point will disap-
pear when there aren’t coordinates for a specific time because they’ll be set to None.

def update(i, point, label, timestamps, coordinates):
    label.set_text(timestamps[i])
    if coordinates[i][0] is not None:
        point.set_data(coordinates[i][0], coordinates[i][1])
    return point, label

Now you can run the animation as before, but the time increments will be constant,
which makes much more sense. 

 If you have appropriate software installed, you can also save the animation as a
video file. For example, I have FFmpeg (www.ffmpeg.org) installed, so as long as
ffmpeg is in my PATH environment variable, I can save the animation like this:

a.save('d:/temp/albatross.mp4', 'ffmpeg')

If you don’t have the software to save it yourself but would still like to see the results,
there’s a saved version in the Galapagos data folder.

13.1.2 Plotting raster data

You can also use matplotlib to draw raster data. Making a simple raster plot is
extremely easy because you have no coordinates to worry about, and there happens to
be a function for displaying data contained in a NumPy array. Let’s start with a small
image and draw it using the default color ramp, as shown in figure 13.10A.

ds = gdal.Open(r'D:\osgeopy-data\Washington\dem\sthelens_utm.tif')
data = ds.GetRasterBand(1).ReadAsArray()
plt.imshow(data)
plt.show()
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As you can see, all you have to do is read the raster data into a NumPy array as you’ve
done many times before, and then pass that array to the imshow function, and you
have yourself a plot. You might not like the default color ramp, but you can probably
find a built-in one that you like. If not, you can create your own, although you won’t
learn how to do that here. To use a colormap, pass its name to imshow as the cmap
parameter, like this (figure 13.10B): 

plt.imshow(data, cmap='gray')

TIP As of this writing, you can see a list of matplotlib colormaps at http://
wiki.scipy.org/Cookbook/Matplotlib/Show_colormaps.

If you want to plot a large image, you shouldn’t read the entire band in and try to plot
it. You’re much better off using one of the pyramid layers because they take up much
less memory and will plot considerably faster. You need to choose the appropriate
overview level so that you have the resolution that you need without degrading perfor-
mance. Here’s a function that retrieves overview data from an image, although it
doesn’t check to make sure that the user requests a valid overview level.

def get_overview_data(fn, band_index=1, level=-1):
    """Returns an array containing data from an overview.

    fn         - path to raster file
    band_index - band number to get overview for
    level      - overview level, where 1 is the highest resolution; 
                 the coarsest can be retrieved with -1
    """
    ds = gdal.Open(fn)
    band = ds.GetRasterBand(band_index)

Listing 13.5 Function to retrieve overview data

A. Default color ramp B. Gray color ramp

Figure 13.10 Two plots of the same digital elevation model of Mount St. 
Helens. Plot A uses the default color ramp (which morphs from blue to red), and 
plot B uses a grayscale color ramp.
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    if level > 0:
        ov_band = band.GetOverview(level)
    else:
        num_ov = band.GetOverviewCount()
        ov_band = band.GetOverview(num_ov + level)
    return ov_band.ReadAsArray()

The function requires that the user provide the path to a raster file, and optionally, a
band number and overview level. If the optional parameters aren’t provided, it will
return the coarsest overview for the first band. Try using this function to plot the low-
est resolution overview for a Landsat band:

fn = r'D:\osgeopy-data\Landsat\Washington\p047r027_7t20000730_z10_nn10.tif'
data = get_overview_data(fn)
data = np.ma.masked_equal(data, 0)                             
plt.imshow(data, cmap='gray')
plt.show()

As you can see from figure 13.11A, this results in an extremely dark image and in this
case, at least, it’s difficult if not impossible to differentiate much at all. It might even
seem worse if you hadn’t masked out the pixels that were equal to 0. Without that
step, you’d see a rectangle with all of the outside pixels that weren’t part of the satel-
lite imagery drawn as black. 

 Because of the lack of contrast in figure 13.11A, this is a perfect time to stretch the
data to make it look better. A standard deviation stretch, which is a common method,
keeps pixel values that are within one or more standard deviations (usually two) from
the mean, and sets everything outside that range to the minimum or maximum
included values, as shown in figure 13.12. The values are then stretched between 0
and 1 for drawing, because that’s what matplotlib wants.

 To implement this, figure out the minimum and maximum cutoffs that are the
desired number of standard deviations from the mean and then pass them as the vmin

Mask out black edges

A. Default B. Stretched

Figure 13.11 Two plots of the same Landsat band. Plot A uses default settings, but plot B uses 
stretched data for much better contrast.
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and vmax parameters to imshow, respectively. The data will automatically be stretched
for you, but you need to provide these clip values, like this:

mean = np.mean(data)
std_range = np.std(data) * 2
plt.imshow(data, cmap='gray', vmin=mean-std_range, vmax=mean+std_range)

Figure 13.11B is stretched in this way, and it’s obviously a better visualization of the
data than the nonstretched version.

 You can also plot three bands as red, green, and blue, with an optional fourth alpha
band. In this case you need to stack the bands into a three-dimensional array and pass
that to imshow. Unlike with single bands, using masked arrays to filter out the zeros

40 60 100 140 180

Min –2 SD Mean

Original

+2 SD Max

0.0 0.5 1.0

Min –2 SD Mean

Stretched

+2 SD Max

60 100 140

Min –2 SD Mean

Clipped to 2

standard deviations

+2 SD Max

Figure 13.12 An 
illustration of how the 
data extremes are 
clipped, and then all data 
values are stretched 
between 0 and 1

A. Default B. Stretched

Figure 13.13 Two plots of the same three-band Landsat image. Plot A uses default settings, but plot 
B uses stretched data for considerably better contrast.
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around the edges doesn’t work in this case, so you’re stuck with the black edges for the
moment. The following code snippet uses three bands to create a figure like 13.13A:

os.chdir(r'D:\osgeopy-data\Landsat\Washington')
red_fn = 'p047r027_7t20000730_z10_nn30.tif'
green_fn = 'p047r027_7t20000730_z10_nn20.tif'
blue_fn = 'p047r027_7t20000730_z10_nn10.tif'
red_data = get_overview_data(red_fn)
green_data = get_overview_data(green_fn)
blue_data = get_overview_data(blue_fn)
data = np.dstack((red_data, green_data, blue_data))
plt.imshow(data)

Again, that image is too dark to be useful. Unfortunately, stretching the data is a bit
more complicated if you’re plotting multiple bands because the automatic scaling
with vmin and vmax only works for single bands. You’ll need to normalize the data
yourself. The following function performs a standard deviation stretch on the data
contained in a NumPy array and then scales the results between 0 and 1.

def stretch_data(data, num_stddev):
    """Returns the data with a standard deviation stretch applied.

    data       - array containing data to stretch
    num_stddev - number of standard deviations to use
    """
    mean = np.mean(data)
    std_range = np.std(data) * 2
    new_min = max(mean - std_range, np.min(data))
    new_max = min(mean + std_range, np.max(data))
    clipped_data = np.clip(data, new_min, new_max)
    return clipped_data / (new_max - new_min)

Instead of finding the appropriate distance from the mean, based on the desired
number of standard deviations, this function makes sure that the values used aren’t
less than the minimum or greater than the maximum data values. For example, if you
have 8-bit data that ranges from 0 to 255, the mean value is 43, and the standard devi-
ation is 24, then the lower bound would be -5 if you subtracted two standard devia-
tions from the mean. The minimum possible value is 0, however, and you don’t want
to normalize your data using impossible values, so that’s why the function checks to
make sure that the bounds don’t fall out of the range of potential values. After deter-
mining the bounds, they’re used with the np.clip function, which replaces all values
that are less than new_min with new_min, and replaces all values that are greater than
new_max with new_max, like what was illustrated back in figure 13.12. Then the result-
ing data are scaled from 0 to 1. Now you can use this function to scale each of the
three bands appropriately.

Listing 13.6 Function to stretch and scale data
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 Because you’re scaling these data yourself, you can take advantage of the alpha
channel to get rid of the black around the edges. For this particular image, you can
assume that if all three bands contain 0, then the pixel is an outside edge. The alpha
band should also contain 0 for these pixels, meaning it’s fully transparent. Other pix-
els should have a 1 in the alpha band so that they’ll be drawn at full opacity. Add this
alpha band to your three-dimensional stack, as shown in the following snippet, and
when you plot it the results will be similar to figure 13.13B.

red_data = stretch_data(get_overview_data(red_fn), 2)
green_data = stretch_data(get_overview_data(green_fn), 2)
blue_data = stretch_data(get_overview_data(blue_fn), 2)
alpha = np.where(red_data + green_data + blue_data > 0, 1, 0)
data = np.dstack((red_data, green_data, blue_data, alpha))
plt.imshow(data)

13.1.3 Plotting 3D data

You can even plot three-dimensional data, such as a digital elevation model. To do
this, you need the array containing elevation data, and two other arrays of the same
size containing x and y coordinates for each pixel. These latter two arrays can be cre-
ated by passing arrays containing the possible x and y values to np.meshgrid, which
results in data like that shown in figure 13.14. Each pixel in the x array contains a
value indicating which row it’s in, and each pixel in the y array indicates the column.
If your pixels are square and you don’t need georeferencing information in your plot,
you can use arange to get the input lists for meshgrid, so getting your two-dimensional
x and y arrays is as easy as this:

x, y = np.meshgrid(np.arange(band.XSize), np.arange(band.YSize))

In other cases, you can use the geotransform to compute the required information so
that the x and y arrays contain real-world coordinates instead of pixel coordinates like
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Figure 13.14 An illustration of meshgrid output. Part A shows the x,y coordinate pair for each cell in 
the array. The output is two arrays, one of which contains x coordinates (part B) and the other 
contains y coordinates (part C).
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those in figure 13.14. The following listing shows the steps to do this using a DEM of
Mount St. Helens, and then it plots the data in 3D to get figure 13.15A.

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from osgeo import gdal
ds = gdal.Open(r'D:\osgeopy-data\Washington\dem\sthelens_utm.tif')
band = ds.GetRasterBand(1)
ov_band = band.GetOverview(band.GetOverviewCount() - 3)                 
data = ov_band.ReadAsArray()
geotransform = ds.GetGeoTransform()
minx = geotransform[0]                                                   
maxy = geotransform[3]                                                  
maxx = minx + ov_band.XSize * geotransform[1]                            
miny = maxy + ov_band.YSize * geotransform[5]                            
x = np.arange(minx, maxx, geotransform[1])                             
y = np.arange(maxy, miny, geotransform[5])                              
x, y = np.meshgrid(x[:ov_band.XSize], y[:ov_band.YSize])                

fig = plt.figure()
ax = fig.gca(projection='3d')                                            
ax.plot_surface(x, y, data, cmap='gist_earth', lw=0)                    
plt.axis('equal')
plt.show()

The first part of this listing reads overview data into memory and uses the geotrans-
form to calculate the bounding coordinates for the DEM. These coordinates are then
used in conjunction with meshgrid to create the x and y arrays needed for the plot.

 To create the plot, you first create a matplotlib figure object and then grab its axes
object. You tell the axes to use 3D, and then you call its plot_surface method in
order to make the plot. This function requires the x and y arrays and the array

Listing 13.7 Using meshgrid to get map coordinates

Get appropriate 
overview level

Calculate bounding 
coordinates

Get x and y arrays

Make the 3D plot

A. Default B. New vantage point

Figure 13.15 3D plots of Mount St. Helens. Plot A uses default settings, while the elevation 
and azimuth have been changed for plot B, as well as the axis removed.
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containing elevations. You use the colormap named gist_earth instead of the default,
and you used lw=0 to set the line width to 0. If you don’t change the line width, then
each cell will have an outline around it, which doesn’t look good in this case. By the
way, a figure and axes were created automatically for your earlier plots, but you didn’t
need to worry about them. Here you do, because you need a handle to the axes to
specify 3D and plot the surface. 

 What if you want to change the vantage point that you’re viewing the 3D image
from? Well, you can set an elevation between 0 and 90, where 0 is ground level and 90
is looking straight down, and you can also rotate the plot from 0 to 360 degrees. The
image in figure 13.15B was obtained by setting the elevation to 55, rotating the figure
60 degrees, and turning the axis off. To do this, add these two lines before calling
plt.show():

ax.view_init(elev=55, azim=60)
plt.axis('off')

You can make this even more fun by creating an animation. This is simpler than the
Albatross animation from earlier because all you have to do is change the rotation fac-
tor for each iteration. Try adding this to your code before calling plt.show:

import matplotlib.animation as animation

def animate(i):
    ax.view_init(elev=65, azim=i)

anim = animation.FuncAnimation(
    fig, animate, frames=range(0, 360, 10), interval=100)

The animate function changes the vantage point that the plot is being viewed from.
The call to FuncAnimation sets things up so that the animate function is called 36
times, once for each value in frames. This will cause the plot to rotate 10 degrees each
time. Although the interval parameter specifies that there will be 100 milliseconds in
between each frame, it will be slower if your computer can’t draw it that fast. A saved
version of this is in the Nepal data folder.

13.2 Mapnik
The plots you’ve been making so far work well for visualizing data, but a good chance
exists that you’ll need to make something that looks a little nicer, or more like a real
map, at some point. One good way to do this using Python is with Mapnik, a popular
cartographic library. In fact, you might have seen maps created with Mapnik without
knowing it. Mapnik was designed for making tiled maps for web applications, and as
far as I know it’s not easy to put cartographic symbols such as North arrows on Mapnik
images. You can do it with other graphics modules such as Cairo, but that’s beyond the
scope of this introduction. This section will walk you through the basics of drawing
vector and raster data using this module, but you should visit mapnik.org if you want
to learn more.
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Before we start drawing anything, though, let’s take a quick look at the minimum
requirements for a Mapnik map, as seen in figure 13.16. A map has one or more lay-
ers, as well as one or more styles. The styles are what specify how the data are to be
drawn. Each style needs at least one rule, and each rule needs at least one symbol.
Rules can also have filters so that they only apply to a subset of the data. Each layer
needs a data source and at least one style. Layer styles aren’t new style objects; they ref-
erence one of the styles that belongs to the map. You’ll see how this all works in the
next few examples.

13.2.1 Drawing vector data

Do you remember the New Orleans data from an earlier chapter? If not, you’re about
to be reminded, because you’ll use it in the next few examples. The following listing
starts by drawing the TIGER water layer from the US Census Bureau. 

import mapnik

srs = "+proj=longlat +ellps=GRS80 +datum=NAD83 +no_defs"
m = mapnik.Map(800, 600, srs)                                           
m.zoom_to_box(mapnik.Box2d(-90.3, 29.7, -89.5, 30.3))                   

tiger_fn = r'D:\osgeopy-data\Louisiana\tiger_la_water_CENSUS_2006'
tiger_shp = mapnik.Shapefile(file=tiger_fn)                             
tiger_lyr = mapnik.Layer('Tiger')                                     
tiger_lyr.datasource = tiger_shp                                       

Listing 13.8 Creating a simple Mapnik map

Map

Layers Styles

LayerLayer

Datasource Style 1

Filter

Style 2

Style 1

Datasource Style 3 Rule Rule Rule

Style 2

Symbol Symbol

Style 3

Figure 13.16 A basic organization chart of a Mapnik map. Each map has at least one layer and one style. Each 
layer needs to reference at least one of the styles.

Create a mapnik map

Create a layer 
from a shapefile
Licensed to Kris Johnson <n.o.r.d.i.ckan@gmail.com>



309Mapnik

ol

Sa
the m

to f
water_color = mapnik.Color(165, 191, 221)                              
water_fill_sym = mapnik.PolygonSymbolizer(water_color)                  

tiger_rule = mapnik.Rule()                                               
tiger_rule.symbols.append(water_fill_sym)                                
tiger_style = mapnik.Style()                                            
tiger_style.rules.append(tiger_rule)                                    
m.append_style('tiger', tiger_style)                                     

tiger_lyr.styles.append('tiger')                                      
m.layers.append(tiger_lyr)                                             

mapnik.render_to_file(m, r'd:\temp\nola.png')                           

The first step is to create a Mapnik map object, but you call it m instead of map because
map is a reserved word in Python. You need to provide a size for the map when you cre-
ate it, so this map will be 800 pixels wide and 600 tall. You can optionally provide a spa-
tial reference in the form of a Proj.4 string or EPSG code; if you don’t provide this,
then it will default to WGS84 lat/lon. Because most of the New Orleans data uses
NAD83 lat/lon, that’s what you decide to use here. You also set a bounding box in the
form of (min_x, min_y, max_x, max_y). If you don’t set the bounding box, you’ll
end up with an empty map.

 To add a layer to a map, you need to create a layer object and give it a data source.
Several types of data sources exist for different data formats, such as shapefiles, Geo-
JSON, and PostGIS. Here you create a shapefile data source and add it to a layer that
you name ‘Tiger’. 

 Adding a layer to a map isn’t enough, however. If you want the layer to be drawn, you
also need to provide information about how to symbolize it. You start this off by creating
a Mapnik color object (water_color) from RGB values that specify a light blue, and
then used that to create a polygon symbolizer for drawing water layers. Polygons drawn
with this symbolizer will be filled with the blue color defined by the RGB values. 

 Once you have a symbolizer, you create a symbology style. A style needs at least one
rule that defines how to draw something. This particular style is simple and only con-
tains one rule, which in turn only contains your polygon symbolizer. Then you add the
style to the map so that layers could use it. Notice that you provide a name for the style
at the same time you add it to the map; this is important later.

 You want the Tiger layer to use the style you create, so then you add the style to the
layer as well, making sure to use the same name for the style that you used when add-
ing it to the map. The style must be added to both the layer and the map or it won’t
work. In addition, the style must be added to the layer before the layer is added to the
map, which is what you do next.

Create a polygon fill symb

Create a symbology 
style and add to layer

Add the style and layer to mapve
ap
ile
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Finally, after everything is added in the appropriate places, you save the map to a file.
If all goes well, you’ll have an image like figure 13.17.

 As pretty as that figure is, you want more than water bodies, so now try adding marsh-
land, too. These data come from a national hydrography dataset that includes open
water, glaciers, marshes, dry lakes, canals, and other features. In fact, including the
canals and lakes from this dataset will make your map look a little better, so you’ll include
them as well. This next listing shows how to add this new layer with more-complicated
styling to the map. This code would be added in before saving the map to an image file.

atlas_lyr = mapnik.Layer('National Atlas')
atlas_shp = mapnik.Shapefile(file=r'D:\osgeopy-data\US\wtrbdyp010')
atlas_lyr.datasource = atlas_shp

water_rule = mapnik.Rule()                                              
water_rule.filter = mapnik.Expression(                                  
    "[Feature]='Canal' or [Feature]='Lake'")                            
water_rule.symbols.append(water_fill_sym)                               

marsh_color = mapnik.Color('#66AA66')                                    
marsh_fill_sym = mapnik.PolygonSymbolizer(marsh_color)                 
marsh_line_sym = mapnik.LineSymbolizer(marsh_color, 2)                  

marsh_rule = mapnik.Rule()                                             
marsh_rule.filter = mapnik.Expression(                                  
    "[Feature]='Swamp or Marsh'")                                       
marsh_rule.symbols.append(marsh_fill_sym)                              
marsh_rule.symbols.append(marsh_line_sym)                              

atlas_style = mapnik.Style()                                            
atlas_style.rules.append(water_rule)                                    
atlas_style.rules.append(marsh_rule)                                   

Listing 13.9 Using multiple rules in a style 

Figure 13.17 A simple plot of 
hydrographic data using a single 
layer and style rule

Create open 
water rule

Create marsh fill and 
outline symbolizers

Create marsh rule

Create style 
and add rules
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m.append_style('atlas', atlas_style)
atlas_lyr.styles.append('atlas')
m.layers.append(atlas_lyr)

The methods for creating this layer and adding it and its style to the map are the same
as before, but this time the style is more complicated. For starters, you add two rules to
this style instead of one. Let’s look at the first of these, called water_rule. You use a
filter to apply this rule to only those features where the “Feature” attribute column is
equal to either ‘Canal’ or ‘Lake’. Filter expressions in Mapnik are similar to the OGR
filter expressions that you’ve already used, but attribute names must be surrounded by
brackets. You use the same water polygon symbolizer for this rule that you used for the
tiger data.

 Before creating the second rule, you construct new symbolizers that use a green
color. This time you define the color using hex notation to prove that you can, but you
could use RGB again if you want. The color is then used to create another polygon fill
symbol and also a line symbol that’s 2 pixels wide. This line symbolizer will be used to
outline the polygons with the same color that they’re filled with. The reason you use
the outline here is because the datasets have slight gaps between shapes that are obvi-
ous without an outline filling them up.

 Now that you have your symbolizers, you create the marsh rule for this layer. First,
you use a filter to make this rule apply only to features where the “Feature” attribute
column is equal to the string ‘Swamp or Marsh’. Then you add the green fill and out-
line symbols that you created previously.

 After creating the rules, you create a new style and add both rules to it. Then you
add the style to the map and the layer, and add the layer to the map. After rendering
this map to a file, you end up with a graphic like figure 13.18.

 If you compare figures 13.17 and 13.18, you might wonder where all of the little
water bodies disappeared to. The layers are drawn in the same order that you add
them to the map, so the marshes were drawn on top of those little water bodies. For

Figure 13.18 Another layer 
added, this time using two rules 
to specify that marshes and 
open water in the same dataset 
are drawn differently
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this reason, you need to think about which of your layers should not be covered up
and plan accordingly. To get a graphic like figure 13.19 instead, move the code that
appends the layers to the map down to the end of the script and then reverse the
order that the layers are added, like this:

m.layers.append(atlas_lyr)
m.layers.append(tiger_lyr)

Your map is still not complete, however, because you want some roads and the New
Orleans city boundary. The following listing shows the code to add these.

roads_lyr = mapnik.Layer('Roads', "+init=epsg:4326")              
road_shp = mapnik.Shapefile(
    file=r'D:\osgeopy-data\Louisiana\roads')
roads_lyr.datasource = road_shp

roads_color = mapnik.Color(170, 170, 127)

roads_primary_rule = mapnik.Rule()
roads_primary_rule.filter = mapnik.Expression("[fclass]='primary'")
roads_primary_sym = mapnik.LineSymbolizer(roads_color, 1.5)
roads_primary_rule.symbols.append(roads_primary_sym)

roads_secondary_rule = mapnik.Rule()
roads_secondary_rule.filter = mapnik.Expression(
    "[fclass]='secondary' or [fclass]='tertiary'")
roads_secondary_sym = mapnik.LineSymbolizer(roads_color, 0.5)
roads_secondary_rule.symbols.append(roads_secondary_sym)

roads_style = mapnik.Style()
roads_style.rules.append(roads_primary_rule)
roads_style.rules.append(roads_secondary_rule)

Listing 13.10 Adding the roads and city outline

Figure 13.19 The same data as 
figure 13.18, but the order of the 
layers reversed

Specify the layer’s SRS
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m.append_style('roads style', roads_style)
roads_lyr.styles.append('roads style')

city_lyr = mapnik.Layer('City Outline')
city_shp = mapnik.Shapefile(file=r'D:\osgeopy-data\Louisiana\NOLA')
city_lyr.datasource = city_shp

city_color = mapnik.Color('black')                        
city_sym = mapnik.LineSymbolizer(city_color, 2)
city_sym.stroke.add_dash(4, 2)                         
city_rule = mapnik.Rule()
city_rule.symbols.append(city_sym)
city_style = mapnik.Style()
city_style.rules.append(city_rule)

m.append_style('city style', city_style)
city_lyr.styles.append('city style')

m.layers.append(atlas_lyr)
m.layers.append(tiger_lyr)
m.layers.append(roads_lyr)
m.layers.append(city_lyr)

Only a few new things were added in this example. This first is that you specify the spa-
tial reference when creating the roads layer. This is necessary because this particular
shapefile uses WGS84 instead of NAD83. You could use a Proj.4 string, as you did with
the map spatial reference information, but you opt for an EPSG code instead. Notice
that you use two rules for the roads style so that you can draw primary roads a little fat-
ter than secondary and tertiary roads.

 The second new concept is that you can create color objects using HTML named
colors, as well. This is the technique you use to create the black line for the city out-
line. But you also want the city outline to be dashed instead of solid, so you edit the
line’s stroke property to make it dashed. The first parameter to add_dash is the length
of the dash in pixels, and the second is the length of the gap between the dashes. 

 The result of adding all of this code to your script is shown in figure 13.20.

Create a color by name

Make a dashed line

Figure 13.20 Line styles added 
in order to draw roads and the 
city outline
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13.2.2 Storing information as XML

If you use certain styles or layers often, you can store the relevant information in XML
files that can be loaded from your script. You can also store entire maps this way, mean-
ing that you can create a map using XML and then render it with Mapnik. If you’d like
to see what one of these files looks like, add this line of code to the end of your script:

mapnik.save_map(m, 'nola_map.xml')

To render the map described in this XML file to an image, write a script that imports
Mapnik and then loads the XML and saves the output like this:

m = mapnik.Map(400, 300)
m.zoom_to_box(mapnik.Box2d(-90.3, 29.7, -89.5, 30.3))
mapnik.load_map(m, r'd:\temp\nola.xml')
mapnik.render_to_file(m, r'd:\temp\nola.png')

That is pretty much the entire script. You do still have to create a map object with the
desired size and bounding box, but the layers and styles are pulled from the XML file.

 You aren’t stuck using only the information contained in the XML, however, so you
can use this technique to store commonly used layers or styles. For example, if you use
the hydrography dataset from the National Atlas often, you can store its information
in an XML file and load it in your scripts. Pull the code pertaining to the atlas layer out
of your earlier script and use it to create a new script that saves the necessary XML.
The following listing shows what you need.

import mapnik

m = mapnik.Map(0, 0)

water_rule = mapnik.Rule()
water_rule.filter = mapnik.Expression(
    "[Feature]='Canal' or [Feature]='Lake'")
water_rule.symbols.append(
    mapnik.PolygonSymbolizer(mapnik.Color(165, 191, 221)))

marsh_rule = mapnik.Rule()
marsh_rule.filter = mapnik.Expression("[Feature]='Swamp or Marsh'")
marsh_color = mapnik.Color('#66AA66')
marsh_rule.symbols.append(mapnik.PolygonSymbolizer(marsh_color))
marsh_rule.symbols.append(mapnik.LineSymbolizer(marsh_color, 2))

atlas_style = mapnik.Style()
atlas_style.rules.append(water_rule)
atlas_style.rules.append(marsh_rule)
m.append_style('atlas', atlas_style)

lyr = mapnik.Layer('National Atlas Hydro',
                   "+proj=longlat +ellps=GRS80 +datum=NAD83 +no_defs")
lyr.datasource = mapnik.Shapefile(file=r'D:\osgeopy-data\US\wtrbdyp010')
lyr.styles.append('atlas')
m.layers.append(lyr)

mapnik.save_map(m, r'd:\temp\national_atlas_hydro.xml')

Listing 13.11 Create XML to describe the National Atlas hydrography layer
Licensed to Kris Johnson <n.o.r.d.i.ckan@gmail.com>



315Mapnik
This script creates the styles used by the National Atlas layer, including the filters that
are specific to that layer’s attribute table. It also creates the layer and appends the style
to it. The SRS is added to the layer, too, because your scripts that load this file may not
use the same SRS as this particular layer. The style and layer are both added to a
dummy map object that’s used to save the information. The size of the map doesn’t
matter because that will be determined by the script that loads the XML.

 The resulting XML looks like the following listing.

<?xml version="1.0" encoding="utf-8"?>
<Map srs="+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs">
    <Style name="atlas">
        <Rule>
            <Filter>
                (([Feature]=&apos;Canal&apos;) or 
                ➥ ([Feature]=&apos;Lake&apos;))
            </Filter>
            <PolygonSymbolizer fill="rgb(165,191,221)"/>
        </Rule>
        <Rule>
            <Filter>([Feature]=&apos;Swamp or Marsh&apos;)</Filter>
            <PolygonSymbolizer fill="rgb(102,170,102)"/>
            <LineSymbolizer stroke="rgb(102,170,102)" stroke-width="2"/>
        </Rule>
    </Style>
    <Layer name="National Atlas Hydro"
           srs="+proj=longlat +ellps=GRS80 +datum=NAD83 +no_defs">
        <StyleName>atlas</StyleName>
        <Datasource>
            <Parameter name="file">D:\osgeopy-data\US\wtrbdyp010</Parameter>
            <Parameter name="type">shape</Parameter>
        </Datasource>
    </Layer>
</Map>

As you can see, the XML is straightforward, so you might even want to define your lay-
ers this way from the beginning instead of writing code. Either way, once you have this
file, you can delete all of the code from listing 13.9 that creates the atlas layer and style
(that’s more than 20 lines) and then replace this

m.layers.append(atlas_lyr)

with this:

mapnik.load_map(m, r'd:\temp\national_atlas_hydro.xml')

Obviously, this technique will simplify your life if you use the same layers in multiple
maps and is worth looking into.

Listing 13.12 XML describing the National Atlas hydrography layer
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13.2.3 Drawing raster data

Now that you know the basics of drawing vector data with Mapnik, it’s time to create a
simple graphic using raster data. The following listing creates an image that displays a
topo map for Mount St. Helens.

import mapnik
srs = '+proj=utm +zone=10 +ellps=GRS80 +datum=NAD83 +units=m +no_defs'
m = mapnik.Map(1200, 1200, srs)
m.zoom_to_box(mapnik.Box2d(558800, 5112200, 566600, 5120500))

topo_lyr = mapnik.Layer('Topo', srs)                                  
topo_raster = mapnik.Gdal(                                             
    file=r'D:\osgeopy-data\Washington\dem\st_helens.tif')              
topo_lyr.datasource = topo_raster                                    

topo_sym = mapnik.RasterSymbolizer()                           
topo_rule = mapnik.Rule()
topo_rule.symbols.append(topo_sym)
topo_style = mapnik.Style()
topo_style.rules.append(topo_rule)

m.append_style('topo', topo_style)
topo_lyr.styles.append('topo')

m.layers.append(topo_lyr)
mapnik.render_to_file(m, r'd:\temp\helens.png')

Much of this example should look
familiar, because it’s similar to the vec-
tor example. The main differences are
that you use a GDAL data source
instead of a shapefile and you use a
simple raster symbolizer with no
options. Unlike the shapefile exam-
ples, though, you do have to specify an
SRS for the raster data source even if it
matches the map’s SRS. Other than
that, the process of creating rules,
styles, and layers is still the same. The
output graphic looks like figure 13.21.
    This image could use a little help,
though. One common technique for
making something like this more aes-
thetically pleasing is to overlay it on a
hillshade dataset to give it depth. A hill-
shade is created by assuming a height

Listing 13.13 Drawing a raster

Add a GDAL data 
source to the layer

Use a RasterSymbolizer

Figure 13.21 A raster plot of a topo map
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and angle for a light source, and determining where the shadows would fall based on
a digital elevation model (figure 13.22). The next listing shows how to put a hillshade
derived from the Mount St. Helens DEM underneath this topo map to get a figure
like 13.23.

import mapnik
srs = '+proj=utm +zone=10 +ellps=GRS80 +datum=NAD83 +units=m +no_defs'
m = mapnik.Map(1200, 1200, srs)
m.zoom_to_box(mapnik.Box2d(558800, 5112200, 566600, 5120500))

hillshade_lyr = mapnik.Layer('Hillshade', srs)
hillshade_raster = mapnik.Gdal(
    file=r'D:\osgeopy-data\Washington\dem\sthelens_hillshade.tif')
hillshade_lyr.datasource = hillshade_raster

hillshade_rule = mapnik.Rule()
hillshade_rule.symbols.append(mapnik.RasterSymbolizer())
hillshade_style = mapnik.Style()
hillshade_style.rules.append(hillshade_rule)

m.append_style('hillshade', hillshade_style)
hillshade_lyr.styles.append('hillshade')

topo_lyr = mapnik.Layer('Topo', srs)
topo_raster = mapnik.Gdal(
    file=r'D:\osgeopy-data\Washington\dem\st_helens.tif')
topo_lyr.datasource = topo_raster

Listing 13.14 Using a hillshade

Figure 13.22 A digital elevation model of Mount St. Helens on the left, and a hillshade derived 
from the DEM on the right
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topo_sym = mapnik.RasterSymbolizer()
topo_sym.opacity = 0.6                                         
topo_rule = mapnik.Rule()
topo_rule.symbols.append(topo_sym)
topo_style = mapnik.Style()
topo_style.rules.append(topo_rule)

m.append_style('topo', topo_style)
topo_lyr.styles.append('topo')

m.layers.append(hillshade_lyr)                                          
m.layers.append(topo_lyr)                                              
mapnik.render_to_file(m, r'd:\temp\helens2.png')

In this example, the hillshade layer is
added exactly the same way as the topo
layer was added previously, but this
time you make one change to the topo
layer’s symbolizer. Because you want
the topo layer to be semitransparent to
let the hillshade layer show through,
you change the opacity property to a
value of 0.6. A value of 1.0 (the
default) makes the layer fully opaque,
so the hillshade layer might as well not
even be there. A value of 0 is fully
transparent, so you’d only see the hill-
shade. You can play with this value to
see what level of transparency you like
best, but figure 13.23 shows what effect
a value of 0.6 has.
 
 
 

13.3 Summary
■ The matplotlib module is a general-purpose plotting module for Python and

works well for quickly visualizing data.
■ You can use the matplotlib interactive mode to see immediately what effect

something has.
■ Use the Mapnik module if you want prettier maps and images than what you

can easily get with matplotlib.
■ You can store Mapnik styles and layers in XML files to make them easily reusable.

Make topo layer 
semitransparent

Topo is drawn on top 
of hillshade

Figure 13.23 A topo raster drawn partly transparent so that 
an underlying hillshade layer provides shadows
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appendix A
Installation

You’ll need to install several components in order to work through this book. The
most obvious is Python itself, but the basic Python distribution doesn’t come with
the geoprocessing modules bundled with it. Some third-party Python distributions
do include these libraries, or at least some of them, and you’re welcome to use
them if you’d like. Although I haven’t tested the examples in this book with it, I’ve
had success teaching classes using Anaconda Python, which is available for Win-
dows, OS X, and Linux (https://www.continuum.io/downloads). Three other
examples that I’m aware of, but haven’t tested things with, are OSGeo4W,
Enthought Canopy, and Python(x,y). If you want to use one of these distributions,
make sure that you check the package list first to make sure it includes the Python
modules that you’re interested in. The instructions provided here will show you
how to obtain Python and the required modules without using one of these distri-
butions, as well as how to get them using Anaconda. Unfortunately, everybody’s sys-
tem is different, even if they’re using the same operating system, so these
instructions can in no way cover all cases.

 Here’s the list of modules that we’ll work with in this book:

■ Python itself: www.python.org
■ GDAL/OGR, for reading and writing geospatial data: www.gdal.org
■ NumPy, the basic Python array-processing module: www.numpy.org
■ Matplotlib, for plotting data graphically: www.matplotlib.org
■ SciPy, a scientific computing module: www.scipy.org
■ Pyproj, a Python wrapper for the PROJ.4 Cartographic Projections library:

https://code.google.com/p/pyproj/
■ Folium, for making Leaflet.js maps using Python: https://github.com/

python-visualization/folium
■ Spectral Python, for processing hyperspectral image data: http://www

.spectralpython.net/
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■ scikit-learn, for data analysis: http://scikit-learn.org/stable/
■ Mapnik, for making beautiful maps: http://mapnik.org/

There are two main versions of Python, 2.x and 3.x, and there are a few significant dif-
ferences between them, so they aren’t completely interchangeable. A lot of code will
run in both, however, and I’ve tried to write the examples in this book so that they’ll
work with either one. The latest version of the 2.x branch is 2.7, and there will be no
more major releases in this branch. The 3.x branch is being actively developed, and if
you have no specific version requirements, I would suggest going with this because as
the Python website says, it’s “the present and the future of the language.” However,
you may be forced to use an older version of Python if you need to use a third party
module that has not been updated to work with Python 3.x.

 For example, I use both Python 2.7 and 3.3, but at work it’s usually 2.7 because
ArcGIS software is used extensively at the university, and it requires Python 2.7.
Because my coworkers and students almost always have ArcGIS installed, they already
have Python 2.7 even if they don’t realize it. It makes sense to help them install open
source tools to work with the Python version they already have, and this way I can
take advantage of both GDAL and ArcGIS in the same script if I want, and teach them
to do the same. 

 It’s possible to have multiple versions of Python installed on one computer, so you
can always pick and choose which version to use for which project. It’s also possible to
have different environments for one version of Python, meaning that you can have
different workspaces, each with different modules installed. This allows you to have
different configurations for different applications built with Python. Although that
won’t be covered in this book, please see www.virtualenv.org if you’re interested in
how to do it.

 Python comes with a command-line utility called pip, which you’ll become familiar
with if you install many extra modules for Python because it’s usually the easiest way to
do it. The pip utility lives in the scripts folder inside your Python installation directory.
Because this is a command-line tool, you need to use it from a terminal window or
command prompt. To install a module using pip, you do something like this:

pip install module_name

To see a list of modules in the default pip repository, see https://pypi.python.org/pypi.
You can install modules from other locations, but if you’re using a new version of pip,
you might get an error about the repository not being trusted. The error message will
tell you what to add to the command to override this, but you should only do it if you
trust the location you’re trying to download the module from. (But you don’t ever
download something from a source you don’t trust, right?) For more information on
using pip, see https://pypi.python.org/pypi/pip.

 There’s more information about installing GDAL available online at http://trac
.osgeo.org/gdal/wiki/DownloadingGdalBinaries, but I’m providing some informa-
tion for you here. 
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A.1 Anaconda
Anaconda (https://www.continuum.io/downloads) includes Python and a large num-
ber of modules designed for scientific computing. Some are installed by default, and
many more can be installed with a command-line tool that comes with Anaconda.
Unfortunately, Anaconda quit supporting GDAL with version 2.5, but you can still
download older versions that have GDAL. This is definitely the easiest way to get set up,
although not all of the modules used in this book are included, and it doesn’t have all
possible capabilities compiled into GDAL. When you download and install an older ver-
sion of Anaconda Python from https://repo.continuum.io/archive/index.html, you’ll
automatically have Python, NumPy, SciPy, matplotlib, and scikit-learn. GDAL/OGR and
pyproj are optional installs, and you can get them by opening up the Anaconda com-
mand prompt and typing the following command:

conda install gdal pyproj

More information about using the conda utility to install and manage packages can be
found at http://conda.pydata.org/docs/using/pkgs.html. You can use conda to install
packages that aren’t part of Anaconda, too. To find out how to do it, go to http://
pypi.anaconda.org/ and search for the package you’re interested in. Or you can use
pip, and that’s what we’ll do here to install folium and spectral:

pip install folium spectral

See the information for your operating system to get hints for how to get Mapnik and
set it up to work with Python. As of this writing, version 2.2 is the latest with downloadable
binaries from the Mapnik website, but that’s fine and is what I used for the examples.

A.2 Nonbundled installations
If you don’t want to use a set of prebundled modules such as Anaconda, you can
install everything individually. Every system is different and has its own little idiosyn-
crasies, however, so these are just general guidelines.

A.2.1 Linux

I can’t provide information for all flavors of Linux here, but these Ubuntu directions
might be enough to get you started. This example uses the standard Ubuntu repository,
but more recent builds for these packages may be available from www.launchpad.net/
~ubuntugis. 

 You can use apt-get to install GDAL and its dependencies:

sudo apt-get install gdal-bin libgdal-dev python-gdal

The easiest way to install most of the other needed packages is also to use apt-get. I
think this should do it:

sudo apt-get install gdal-bin libgdal-dev python-scipy \
python-matplotlib python-pyproj python-scikits-learn libmapnik2.2 \ 

libmapnik2-dev mapnik-utils python-mapnik2 qgis
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You can install spectral python using pip. If you don’t already have the pip tool for
installing Python modules, you should install that now:

sudo apt-get install python-pip

And then to install Spectral Python:

sudo pip install spectral

A.2.2 Mac OS X

Although I haven’t used a Mac in several years, back when I had one, the easiest way I
found to install GDAL and several other geospatial packages was to take advantage of
the great KyngChaos Wiki resource maintained by William Kyngesburye at
www.kyngchaos.com/software:frameworks. This site contains prebuilt frameworks that
are designed to work with the system version of Python on newer versions of OS X
(Lion, Mountain Lion, and Mavericks, as of this writing). They don’t support other
versions of Python, including ones you download and install from www.python.org. 

 You can get everything GDAL, including some of the Python modules, by installing
the GDAL Complete framework from the KyngChaos Wiki. This includes everything
required by GDAL/OGR, but it doesn’t include the optional plugins such as drivers for
the Esri FileGDB and MrSID file formats. If you want them, they’re available for down-
load in the GDAL section farther down on the same download page.

 The GDAL Complete framework also includes the NumPy module, but it doesn’t
include many of the other modules discussed in this book. If you follow the link to the
Python Modules section of the wiki (www.kyngchaos.com/software/python), you’ll see
downloads for SciPy and matplotlib, among other useful modules not discussed here.
While at this website, you might as well follow the link for QGIS (www.kyngchaos.com/
software/qgis) and install that as well. 

 You should now be able to use pip from your terminal window to install the
remaining Python packages:

pip install folium spectral scikit-learn

The remaining package is Mapnik. See http://mapnik.org/pages/downloads.html to
get a precompiled binary (although not for the latest version as of this writing), and
then see https://pypi.python.org/pypi/mapnik2 to see how to get the correct set of
Python bindings. If I were to install this today, the version of Mapnik would be 2.2 and
I would install the Python bindings like this: 

easy_install -U mapnik2==2.2.0

A.2.3 Windows

If you’re using Windows, the first thing you need is a copy of Python, because unlike
many other operating systems, Windows doesn’t come with Python already installed.
The easiest way to get everything working on Windows is to download an official copy
of Python from www.python.org. Several versions are available there, but as I said ear-
lier, I’d suggest the latest one unless you have other requirements. If you have a 64-bit
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operating system, which is likely these days, you’ll probably want to get one of the
64-bit versions of Python (please note, however, that I am not aware of a 64-bit version
of Mapnik for Windows, so you’ll need a 32-bit version if you want to use that in the
last chapter). A 32-bit version will run on a 64-bit operating system, but the perfor-
mance won’t be as good. A 64-bit version of Python will definitely not run on a 32-bit
operating system, however. 

 Assuming you’re using an official Python distribution from www.python.org, you
can get all of the other modules used in this book, except for folium and mapnik,
from Christoph Gohlke’s excellent resource at www.lfd.uci.edu/~gohlke/pythonlibs,
and that’s how I’d suggest doing it. The Spectral Python module is listed in the Misc
section at the bottom of the page, as “spectral.” When downloading packages from his
site, be sure to download the ones corresponding to whatever version of Python you
installed. If you installed a 64-bit version of Python, make sure you download the
64-bit versions of all packages. The same goes for 32-bit.

 You can install folium using pip:

pip install folium 

To install Mapnik, download and extract the Mapnik zip file from http://mapnik.org/
pages/downloads.html. As of this writing, the latest version with a Windows binary
provided is 2.2, and then only for 32-bit (it won’t work with a 64-bit version of Python).
After extracting the archive, set the following environment variables, assuming you
extracted the files to C:\mapnik-v2.2.0:

■ Add C:\mapnik-v2.2.0\bin and C:\mapnik-v2.2.0\lib to PATH
■ Add C:\mapnik-v2.2.0\python\2.7\site-packages to PYTHONPATH (you’ll need to

create this environment variable if it doesn’t already exist)

Another option for installing GDAL is to download the latest version from http://
www.gisinternals.com/. If you do this, you need to set the following environment vari-
ables, assuming the installation folder is C:\Program Files\GDAL (the default location
for 64-bit):

■ Add C:\Program Files\GDAL  to PATH
■ GDAL_DATA = C:\Program Files\GDAL\gdal-data
■ GDAL_DRIVER_PATH = C:\Program Files\GDAL\gdalplugins
■ PROJ_LIB = C:\Program Files\GDAL\projlib

I’ve used this method to tell Anaconda where to find GDAL instead of using the ver-
sion of GDAL provided by Anaconda because this one has more options precompiled.
I’ve also used it with the new Anaconda Python suite that doesn’t include GDAL.

A.3 Environment variables
Because several of these Python modules need external libraries to work, you need to
make sure that Python can find them. This is where environment variables come in.
For example, GDAL isn’t really a Python program, and you need the GDAL program
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itself before the GDAL Python bindings will work. The Python GDAL module just
allows you to use the real GDAL program through Python, but you can’t do this if the
real GDAL libraries can’t be found.

 I’m guessing that those of you on Linux who used apt-get will have everything in
the correct place, so you won’t have issues. I’m not sure about OS X, although I
wouldn’t be surprised if there were problems with Mapnik, if nothing else. The Win-
dows packages from Gohlke’s website tend to put the required binaries in the same
folder as the Python bindings, so you probably won’t have problems there. But again,
Mapnik will be an issue.

 If you do have problems, here are some environment variables that might help (if
you don’t know how to set environment variables, a quick web search will tell you how
for your operating system):

■ PATH: Should include the install folders for GDAL and Mapnik; for example:

C:\mapnik-v2.2.0\bin;C:\mapnik-v2.2.0\lib;C:\Python33\Lib\site-
packages\osgeo;C:\Program Files\<the rest of your PATH>

■ GDAL_DATA: Set this to the folder in the GDAL installation directory that contains
a bunch of .csv and .wkt files. It’s usually called data or gdal-data; for example:

C:\Python33\Lib\site-packages\osgeo\data\gdal

■ GDAL_DRIVER_PATH: Set this to the folder containing optional GDAL drivers, if
you installed some; for example:

C:\Python33\Lib\site-packages\osgeo

■ PROJ_LIB: This should be set to the folder in the pyproj installation that con-
tains a large collection of files, most of them without extensions (one will be
“epsg”); for example:

C:\Python33\Lib\site-packages\pyproj\data

■ PYTHONPATH: This includes folders that Python will search in when looking for
modules. If you’ve put modules in nonstandard locations, those need to be
specified in this variable. If you install Mapnik on Windows, for example, the
Python module isn’t moved into a standard Python location, so you need to
point Python to the Mapnik site-packages subfolder; for example:

C:\mapnik-v2.2.0\python\2.7\site-packages

A.4 Source code and data
The source code for the examples in the book is available from the Manning website at
https://www.manning.com/books/geoprocessing-with-python and from GitHub at
https://github.com/cgarrard/osgeopy-code. There’s also a custom Python module for
the book that contains some convenience functions and some crude tools for viewing
data. This is contained in a file called ospybook-latest.zip in the code download. You can
use pip to install it like this (assuming it’s in my C:/temp folder):

pip install c:/temp/ospybook-latest.zip
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If you download the book’s source code, you’ll have all of the code for this module.
Using pip puts it in a standard location so that Python can find it. You can download
the data used in the examples from www.manning.com/books/geoprocessing-with-
python, and from https://app.box.com/osgeopy.

A.5 Development environments
Python comes with an interactive environment that you can use from a terminal win-
dow or command prompt, but most people aren’t huge fans of this (I use it a lot for
playing with short snippets of code). Python also comes with a graphical interface
called IDLE. This includes an interactive environment, similar to the command line,
but with syntax highlighting and code completion, meaning you can start typing and
then press TAB to see a list of options for completing your code, such as function or
variable names. It also has a text editor in which you can edit files containing Python
code and run them from inside IDLE.

 If you want something nicer, however, you have a lot of options. Two examples,
both of which happen to come with Anaconda Python, are IPython and Spyder.
IPython is an interactive shell, but is more functional than the default Python interac-
tive environment. It has syntax highlighting, tab completion, system shell access,
aliases in the form of “magic commands,” macros, and much more. You can learn
about IPython at http://ipython.org/. Another nice feature of IPython is its notebook
support. You can embed text along with Python code and output into a notebook that
you can share with others or convert to another format such as HTML. More informa-
tion about Jupyter notebooks is available at http://jupyter.org/. Anaconda also installs
Spyder, which is an interactive development environment (IDE) for Python. It uses
IPython and puts a code editor, interactive shell, output windows, variable lists, and
other information all in one package. See https://pythonhosted.org/spyder/ for
more information. 

 I have to admit that I use a text editor instead of an IDE much of the time. This has
its downsides, such as the fact that I don’t have a code editor and interactive shell that
are linked together. With Spyder, for example, you can run a script from a file, and the
variables set in the script are then available from the interactive shell. This makes it
really easy to play with and explore your data. The lack of integration can also be a
good thing, however, because my scripts always start with a blank slate when I run
them from a text editor. More than once I’ve seen students get tripped up when they
accidentally broke their code by deleting a line that set a variable, but the IDE remem-
bered the variable and their code still ran. Well, it ran until they restarted the IDE, and
then things no longer worked.

 Another advantage to IDEs is that they make it easier to walk through and debug
your code. Python has a debugger called pdb built in, but you might find using an IDE
to be easier. A debugger allows you to set breakpoints on lines of your code, and then
if you run your script it will run until it hits the breakpoint. You can inspect the cur-
rent values of your variables at that point, and you can also step through your code
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line by line and watch how your variables change or see if the code is executing the
way you intended it to (in other words, you can check your logic). So if you do use an
IDE, you’d be wise to read the help documentation about its debugger, or else just
write some code, hit the debug button, and see what happens. Playing is the best way
to learn, after all.

 There’s a long list of Python IDEs available online at https://wiki.python.org/
moin/IntegratedDevelopmentEnvironments. 
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Data used in figures
The numbers in parentheses correspond to items in the second section of this
appendix, “Data References.”

Chapter 1

 1.1: Library of Congress (7)
 1.2–1.4: Natural Earth (9)
 1.5: USDA NAIP (16)
 1.6: PRISM (12)
 1.8: Grand Canyon NP (6), USGS Grand Canyon (19)
 1.9: Snow (13)
 1.11, 1.13: USGS Small-scale data (24)

Chapter 3

 3.1: USGS Small-scale data (24), GSHHG (10), OpenStreetMap (11)
 3.2: OpenStreetMap (11), USGS NHD (22)
 3.3: Natural Earth (9)
 3.4: Natural Earth (9), USGS Small-scale data (24)
 3.5: USCB TIGER (15), USGS Small-scale data (24), City of New Orleans (2), OpenStreet-

Map (11)
 3.10, 3.13: Natural Earth (9)
 3.14: USGS Small-scale data (24)
 3.15, 3.17: Natural Earth (9)

Chapter 4

 4.2: Natural Earth (9)
 4.4: USGS Small-scale data (24), NWS (8)
 4.5: USGS Small-scale data (24)
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 4.7: NWS (8), OpenStreetMap (11)
 4.8: NWS (8), Stamen (14)

Chapter 5

 5.1–5.9: Natural Earth (9)
 5.11: USGS Small-scale data (24)

Chapter 6

 6.7: Natural Earth (9)

Chapter 7

 7.4: City of New Orleans (2), USGS Small-scale data (24), USCB TIGER (15), OpenStreetMap 
(11)

 7.5, 7.6: USGS Small-scale data (24), City of New Orleans (2)
 7.8: NREL Wind data (29), US Census Tract Data (28), USGS Small-scale data (24)
 7.9: US Census tract data (28), USGS small-scale data (24)
 7.10, 7.11: NREL Wind data (29)
 7.12–7.16: Natural Earth (9), Env-DATA (3 and 4)

Chapter 8

 8.1–8.4: Natural Earth (9)
 8.5: Utah AGRC (27)
 8.7: USGS Small-scale data (24)
 8.8–8.10: Natural Earth (9)
 8.12: USDA NAIP (16)
 8.13: Natural Earth (9)

Chapter 9

 9.1: USGS GAP (26)
 9.2, 9.4: USDA NAIP (16)
 9.7, 9.11, 9.13: USGS Landsat (20)
 9.16: USGS Ortho (30)

Chapter 10

 10.1: USGS GAP (26)
 10.2: USGS DOQ (17), USGS TOPO (25)
 10.6: USGS DOQ (17)
 10.7, 10.8: USGS GTOPO30 (18)
 10.12, 10.13, 10.15: USGS Landsat (20)

Chapter 11

 11.2: USDA NAIP (16)
 11.7, 11.9: USGS GTOPO30 (18)
 11.12: USGS GAP (26), EPA (5)
 11.14: USGS Roads (23), BLM Wilderness areas (1)
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 11.16: USGS Roads (23)

Chapter 12

 12.1: USGS GAP (26), USGS Landsat (20)
 12.2: USGS GAP (26)
 12.4: USGS GAP (26), USGS Landsat (20)
 12.5: USGS GAP (26)

Chapter 13

 13.4–13.7, 13.9: Natural Earth (9)
 13.10: USGS NED (21)
 13.11, 13.13: USGS Landsat (20)
 13.15: USGS NED (21)
 13.16: USCB TIGER (15)
 13.18, 13.19: USCB TIGER (15), USGS Small-scale data (24)
 13.20: USCB TIGER (15), USGS Small-scale data (24), NOLA (2), OpenStreetMap (11)
 13.21: USGS TOPO (25)
 13.22: USGS NED (21)
 13.23: USGS NED (21), USGS TOPO (25)
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Symbols

_ (underscore) character 90
!= operator 89
?request=GetCapabilities 79
* operator, Python 116
** symbol 81
**kwargs 81, 291–294
// floor division operator 21
% (percent sign) character 90, 

262
+ operator 22
+= syntax 29
+no_defs 146

Numerics

2.5D geometries 106, 139
2.5D polygon 140
2D (two-dimensional) 106
2D polygon 140
3D (three-dimensional) 106
3d data, plotting 305–307

A

accuracy assessments 284–286
add function 25
add_markers function 84
AddGeometry function 

(ogr) 111
AddPoint function (ogr)

108–109, 114, 116, 122
adjacent points, calculating dis-

tance between 147

Advanced Hydrologic Prediction 
Service 79

affine transformation 177, 193
albatross_lambert.shp file 146
Albers Conic Equal Area 

SRS 162
alpha band 305
alpha value, RGBA 217
ALTER_ALL_FLAG 

constant 63–64
ALTER_NAME_FLAG 

constant 63
ALTER_TYPE_FLAG 

constant 63
ALTER_WIDTH_PRECISION_

FLAG constant 63
AlterFieldDefn function 

(ogr) 63
Anaconda Python, 

installation 321
animate function 307
animation 297–300
append function 24, 33
ApplyGeoTransform function 

(gdal) 193–194, 215
apt-get 321, 324
arange function 238
ArcGIS software 2, 43, 218, 320
ArcPy 2
area SQL function 100
AssignSpatialReference (ogr) 

function 164
attribute fields 118, 147
attribute filter 89, 91–94, 97, 

104, 135, 143

attribute indexes 69
attribute tables

raster 209, 221–223
vector 42–43

attribute values 5
AUTHORITY entry 160
AutoCreateWarpedVRT func-

tion (gdal) 229
axes 295
axes fraction setting 298
Azimuthal equidistant 

projections 157

B

bands 175, 182
attribute tables 221–223
calculating statistics 186
color tables 215–218
creating 184
data type 184
getting from dataset 184
histograms 218–221
overviews 187, 301–302
reading data from 185–188
resampling 196–199, 202–203
subsetting 194–196, 225–227
working with blocks 189–193
writing data to 186

bilinear function 273
bilinear interpolation 273–274
binned_statistic function 

(scipy) 262
binned_statistic_2d function 

(scipy) 261
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book functions
add_markers function 84
animate function 307
bilinear function 273
factorial function 32
get_bbox function 78–80
get_bins function 260
get_center function 78–79
get_extent function 213
get_indices function 272–274
get_overview_data 

function 301–302
get_popup function 83–84
get_state_geom function

78–79
get_unique function 147
init function 298
line_to_point_layer 

function 118, 124
log_error_handler 

function 235–236
make_codes function 296
make_map function 80–81, 

83–84
make_raster function 242, 

253
make_resample_slices 

function 270
make_slices function 251–252, 

254, 256
my_mode function 262
my_progress function 231–232
order_coords function 296
plot_layer function 291–294
plot_line function 293
plot_point function 293
plot_polygon function

291–294, 297
plot_polygon_patch 

function 296–297
round_timestamp 

function 299
save_state_gauges function 79
slope function 255–256
stack_bands function

278–279
stretch_data function 304
update function 298, 300

Boolean values 241
Booleans 20
break statement 30–31
buf_type parameter 200
Buffer function (ogr) 137
buffer polygons 136

BuildOverviews function 
(gdal) 187

byte sequences 200–203

C

callback functions 219, 230–232, 
266–267

caret symbol (^) 22
Cartesian coordinate plane 106
Cartesian coordinate 

systems 156
categorical data 174–175, 228
CE_Debug class 234
CE_Failure class 235
CE_Fatal class 235
CE_None class 234
CE_Warning class 234
ceil function (math) 214
census shapefile 141
circle_marker function 

(Folium) 84
classes 32–34
client-server database 

formats 71
clip function (numpy) 304
Clone function (ogr) 95
CloseRings function (ogr) 122
Color class (mapnik) 309
color cycle, matplotlib 289
color tables 215–218
command-line utilities 43, 73, 

146, 274
comparison operators 89
ComputeProximity function 

(gdal) 267
ComputeStatistics function 

(gdal) 193
conformal projections 156
Contains function (ogr)

130–131
continue statement 30–31
continuous data 174–175, 228
control flow 27–31

break statement 30–31
continue statement 30–31
else statement 30–31
for statements 29–30
if statements 27–29
while statements 29

convex hull polygons 149–150
ConvexHull function (ogr) 149
CoordinateTransformation class 

(osr) 166

CopyLayer function (ogr) 75–76, 
80, 103

cost distance 263
CPLE constants 234–235
Create function (gdal) 184
CreateCopy function 

(gdal) 206, 228–229
CreateDataSource function 

(ogr) 60–61, 75
CreateFeature function 

(ogr) 57, 64
CreateFields function (ogr) 56
CreateLayer function (ogr) 55, 

163
creating lines from 

polygons 124
creating points from lines 118
Crosses function (ogr) 131
CSV files 74
cubic convolution 273–274
current feature 48–49

D

data compression 180
data source (vector) 42–43

copying layers 75, 104
counting layers in 71–72
creating layers in 55–56
creating new 59–60
creating temporary layers with 

SQL 99–103
deleting 60
getting layers from 46
opening 46
testing capabilities 85

data sources
creating 59–61
folders as 74

data types 20–27
Booleans 20
dictionaries 26–27
lists and tuples 24–25
numeric types 20–21
NumPy vs. GDAL 241
sets 26
strings 22–23

escape characters 23
joining 22–23

data, smoothing 248
dataset (raster) 182

building overviews 187
calculating statistics 186
converting pixel coordi-

nates 193–194, 213–215
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dataset (continued)
copying 228
creating 184
georeferencing 209–213
geotransform 185, 193, 

196–199, 207
getting bands from 184
opening 184
reading data from 185–188
reprojecting 228–229
spatial reference 185
subdatasets 203–204
subsetting 194–196, 225–227
writing data to 186

DataSource class (ogr) 42
DataWindow section 206
datetime module 33, 148
DATUM keyword 161
datums 153–156, 158, 166–167, 

170
DD (decimal degrees) 154
decision trees 280–283
DecisionTreeClassifier class 

(sklearn) 283
DefaultSRS 79
degrees decimal minutes. See DM
degrees minutes seconds. See 

DMS
del function 24
DeleteFeature function 

(ogr) 65
deleting features 64–66
DEM (digital elevation 

model) 6, 175
dem_class.tif file 216
development 

environments 325–326
dictionaries 26–27
Difference function (ogr)

132–133
digital elevation model. See DEM
Disjoint function (ogr) 131
Distance function (ogr) 138
distance, calculating between 

adjacent points 147
DM (degrees decimal 

minutes) 154
DMS (degrees minutes 

seconds) 154
DontUseExceptions function 

(gdal) 232
donut polygons 126–128, 291
double asterisks 292

draw function (ospybook)
50–51

drawing
raster data 316–318
vector data 308–313

drivers
gdal 181, 184
ogr 43–44

testing capabilities 85
Dropbox public link 81–82
dstack function (numpy)

250–251

E

easting 107
edit windows 16
elif statement 28
ellipsoids 155
else statement 27–28, 30–31
empty function (numpy) 189, 

241
Empty function (ogr) 120
EPSG (European Petroleum Sur-

vey Group) 160
equal-area projections 156
equator 154
equidistant projections 157
Error function (gdal) 234–235
error handlers 232–236
error messages 25
escape characters 23
Esri file geodatabases 41, 74–76, 

322
European Petroleum Survey 

Group. See EPSG
everest_resampled.tif file 274
except clause 233
exceptions

error handlers 232–236
gdal 232–236
ogr 60–61
osr 163

ExecuteSQL function (ogr) 99, 
102, 104, 136

executing code 16–17
ExportToXML (osr) 

function 160
Expression class (mapnik)

310–311

F

factorial function 32
false color image 176

False keyword 20
Feature class 42, 96
feature datasets 76
FEATURE_DATASET option 76
features 42–43

copying 56–57
counting 48, 51, 95
creating 56–57, 64
current 48–49
deleting 64–65, 146
errors while iterating 

over 95–96
filtering by attribute 89–93, 

96–97, 135, 141–142
filtering spatially 93–99, 135, 

141–142, 146
finding by FID 47–48
getting attributes from 47–48
getting from layer 46–49
getting geometry from 47
updating 64

FID field, OGR SQL dialect 100
FIDs (feature IDs) 47, 91–92
FieldDefn class (ogr) 54, 61–62
fields

adding data to 57–59
copying 56
creating 56, 61–62
editing 63–64
getting data from 47–48

fields, creating 61–62
file geodatabases. See Esri file 

geodatabases
FileGDB driver 75
fill function (matplotlib) 294
filtering data, with OGR 88–104

attribute filters 89–93
overview 88
spatial filters 93–98
taking advantage of 

filters 103–104
using SQL to create tempo-

rary layers 99–103
first-order polynomial 210
fit method (sklearn) 283
Fixup function (osr) 163
flatten function (numpy) 260
floating-point array 188
floating-point numbers 21
FlushCache function (gdal) 186
focal analyses 247–258

breaking up 256–258
using SciPy for 254–256

folders, as data sources 74
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folium module 77, 81–84, 323
circle_marker function 84
geo_json function 81, 84

for statements 29–30
format method 22
format string 148, 201, 262
fromstring function 

(numpy) 201
FuncAnimation function 

(matplotlib) 298–299, 307
functions 31–32
fwd function (pyproj) 171

G

Gall-Peters projections 157
gauss function (random) 17
GCP class (gdal) 212
GCPs (ground control 

points) 209–213
GCPsToGeoTransform function 

(gdal) 213
GDAL (Geospatial Data Abstrac-

tion Library) 3, 41, 181–187
Gdal class (mapnik) 316
GDAL command-line utilities, 

GDAL 274
GDAL Complete 

framework 322
GDAL data type constants 185
GDAL field type constants 222
GDAL field usage constants 222
gdal module

ApplyGeoTransform 
function 193–194, 215

AutoCreateWarpedVRT 
function 229

BuildOverviews function 187
ComputeProximity 

function 267
ComputeStatistics 

function 193
Create function 184
CreateCopy function 206, 

228–229
DontUseExceptions 

function 232
Error function 234–235
FlushCache function 186
GCP class 212
GCPsToGeoTransform 

function 213
GetDefaultHistogram 

function 220

GetGeoTransform 
function 185

GetHistogram function 218, 
221, 223, 230

GetLastErrorMsg 
function 233

GetProjection function 185
GetRasterBand function 184
GetSubDatasets 

function 203–204
InvGeoTransform 

function 193–194
Open function 184, 206
PopErrorHandler 

function 234
PushErrorHandler 

function 234
RasterizeLayer function 266
ReadAsArray function

185–188, 192, 196, 199
ReadRaster function 200–201
SetColorEntry function 217
SetConfigOption 

function 165
SetDefaultHistogram 

function 220
SetDefaultRAT function 223
SetErrorHandler 

function 234
SetGCPs function 213
SetProjection function 185, 

266
TermProgress function 231
TermProgress_nocb 

function 230, 232
Transformer class 213
TransformPoint function 214
UseExceptions function 232
WriteArray function 186, 189, 

200, 222
WriteRaster function 203

GDAL resampling algorithm 
constants 229

GDAL_DATA environment 
variable 324

GDAL_DRIVER_PATH environ-
ment variable 324

gdal_translate utility 275
GDAL/OGR 3
gdalwarp utility 211, 274–275
generic_filter function 

(scipy) 256
geo_json function (folium) 81, 

84

GEOGCS entry 160
geographic coordinate 

system 107
geographic coordinates 107, 

153–155, 157
distance between 171
reprojecting 164–165, 169
using for analysis 136, 158

Geographic Information Sys-
tems. See GISs

GeoJSON 41, 68–69, 80, 82
geometries

buffering 137–138
cloning 95–96
combining 138, 143–144
distance between 138, 

147–148
intersecting 142–143
lines 112–120

creating from polygons 124
creating points from 118
multilines 118–120
overview 112–113
single lines 114–118

overview of 106–107
points 107–112

creating from lines 118
multipoints 110–112
overview 107–108
single points 108–110

polygons 120–128
combining 138, 143–144
creating lines from 124
multipolygons 124–126
overview 120–121
single polygons 122–124
with holes 126–128

reprojecting 164–167
spatial reference 164
spatial relationships 

between 130–140
geometry collection 132
geoprocessing 7–10
georeferencing 177, 209–213
Geospatial Data Abstraction 

Library. See GDAL
GeoTIFFs 180
geotransform 185, 193–194, 

196–199, 207
get_bbox function 78–80
get_bins function 260
get_center function 78–79
get_extent function 213
get_indices function 272–274
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get_overview_data 
function 301–302

get_popup function 83–84
get_state_geom function 78–79
get_unique function 147
GetAttrValue function (osr) 161
GetCapabilities results 

request 79, 205–206
GetDefaultHistogram function 

(gdal) 220
GetDriverByName function 

(ogr) 59
GetEnvelope function (ogr) 79
GetExtent function (ogr) 52, 265
GetFeature function (ogr) 48, 76
GetFeatureCount function 

(ogr) 48, 51
GetField function (ogr) 47–48
GetFieldAsInteger function 

(ogr) 47
GetFieldAsString function 

(ogr) 47
GetGeometryCount function 

(ogr) 114–115, 122
GetGeometryRef function 

(ogr) 111
GetGeomType function 

(ogr) 52–53
GetGeoTransform function 

(gdal) 185
GetHistogram function 

(gdal) 218, 221, 223, 230
GetLastErrorMsg function 

(gdal) 233
GetLayer function (ogr) 46, 55, 

72
GetLayerCount function 

(ogr) 72
GetMap section 205
GetNextFeature function 

(ogr) 48, 76, 94
GetPointCount function 

(ogr) 114–115, 122
GetPoints (ogr) function 115
GetProjection function 

(gdal) 185
GetRasterBand function 

(gdal) 184
GetSpatialRef function 

(ogr) 159, 266
GetSpatialReference function 

(ogr) 159
GetSubDatasets function 

(gdal) 203–204

GetX function (ogr) 108, 114
GetY function (ogr) 108, 114
GetZ function (ogr) 108
GIS software packages 10, 159
GISs (Geographic Information 

Systems) 1
global analyses 263–267
Global Positioning System. See 

GPS
Gohlke, Christoph 323
GPS (Global Positioning 

System) 155
great-circle calculations 171–172
great-circle distance 171
grid shift files 166–167
ground control points. See GCPs

H

hasattr function 232
HDF (hierarchical data 

format) 203
HEX notation 83, 175
hillshade 316–317
histogram2d function 260
histogram2d function 

(numpy) 260–261
histograms 218–221
histograms (numpy and 

scipy) 259–262
holes, polygons with 126–128
hydrography dataset 314
hyperspectral image data 319

I

IDE (interactive development 
environment) 16, 325

if statements 27–29
ImageFormat section 206
import statements 17
ImportFromEPSG function 

(osr) 162
imshow function 

(matplotlib) 301, 303
indexes 69
inf constant (numpy) 244
infinite loop 29
init function 298
insert function (numpy) 262
installation

Anaconda Python 321
environment variables 

and 323–324

nonbundled 
installations 321–323
Linux 321–322
Mac OS X 322
Windows 322–323

int constant (numpy) 244
integer-type rasters 216
integers 20
interactive development envi-

ronment. See IDE
interpolation methods 211
interrupted map 156
Intersection function 

(ogr) 132–133, 136, 152, 
230

Intersects function (ogr)
130–131, 152

InvGeoTransform function 
(gdal) 193–194

ioff function (matplotlib) 288
ion function (matplotlib) 288
IsGeographic function 

(osr) 161
IsProjected function (osr) 161
IsValid function (ogr) 121

J

joining strings 22–23
.jpeg format 180, 227–228

K

k-means algorithm 278
kappa function (skll) 285
kappa statistic 284
key/value pairs 81
keys 26
kmeans function (spectral) 279
kwargs 81
KyngChaos Wiki 322
Kyngesburye, William 322

L

Lambert Conformal Conic 146
Lambert equal-area 

projections 157
large polygons 143–144
latitude 107, 153–155

See also geographic coordinates
Layer class (mapnik) 308–309
Layer class (ogr) 42, 46
layer definition, changing 63–64
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layer-creation options 56, 76
layers 42–43

adding features to 56–57
adding fields to 56
attribute filters 89–93, 96–97, 

135, 141–142
copying 75, 104
counting 71–72
counting features in 48, 51, 95
creating 55–56
creation options 56, 75–76
deleting features 64–65, 146
editing features 64
editing fields 63–64
errors while iterating 

through 95–96
geometry type 52–53
getting from data source 46
getting name 71–72
joining 101–102
reprojecting 167–168
reprojecting entire 

layers 167–168
spatial extent 51–52
spatial filters 93–99, 135, 

141–142, 146
spatial reference 53–54, 

163–164
temporary 99–103, 135
temporary creating using 

SQL 99–103
testing capabilities 85–86

Leaflet maps 77, 319
LEFT JOIN 101
LIDAR systems 175
line_to_point_layer 

function 118, 124
linear features 36
linear rings 120–121, 130
lines 112–120

creating from polygons 124
creating points from 118
multilines 118–120
overview 112–113
plotting 293
single lines 114–118

linestrings 123
See also lines

LineSymbolizer class 
(mapnik) 310–311

LINETO code 295
Linux, installation on 321–322
lists and tuples 24–25

load_map function 
(mapnik) 314

local analyses 243–247
local map algebra 243
log_error_handler 

function 235–236
logging 235–236
logical operators 89–90
longitude 107, 153–155

See also geographic coordinates
lossless compression 180
lossy compression 180
LowerRightX value 206
LowerRightY value 206

M

Mac OS X, installation on 322
make_codes function 296
make_map function 80–81, 

83–84
make_raster function 242
make_resample_slices 

function 270
make_slices function 251–252, 

254, 256
map algebra 238, 242–275

focal analyses 247–258
breaking up 256–258
overview 247–253
using SciPy for 254–256

global analyses 263–267
local analyses 243–247
resampling data 267–275
zonal analyses 258–263

Map class (mapnik) 308–309
map classification 276–286

overview 276–277
supervised classification

280–286
unsupervised 

classification 278–280
Mapnik 307–318

drawing raster data 316–318
drawing vector data 308–313
installing 323
layer order 311–312
storing information as 

XML 314–315
mapnik module 323

Color class 309
Expression class 310–311
Gdal class 316
Layer class 308–309

LineSymbolizer class 310–311
load_map function 314
Map class 308–309
PolygonSymbolizer class 309
RasterSymbolizer class 316, 

318
render_to_file function

309–310
Rule class 309
save_map function 314
Shapefile class 308–309
Style class 309
zoom_to_box function 308

marker symbols 289
matplotlib 288–307

plotting 3d data 305–307
plotting raster data 300–307

3d data 305–307
animation 307
multiple bands 303–304
single band 300–303
stretching 302–305

plotting vector data 288–300
animation 297–300
lines 289, 292–294
points 289, 292–294
polygons 289–292, 294–297

matplotlib module
fill function 294
FuncAnimation 

function 298–299, 307
imshow function 301, 303
interactive mode 288
ioff function 288
ion function 288
plot function 288–289, 292, 

298
plot_surface function 306
show function 288

mean function (numpy) 271
Mercator projections 156
meshgrid function 

(numpy) 272, 305–306
metadata 51–54, 73
MODIS file 204
MOVETO code 295
moving window analysis 247–258
MrSID format 322
multidimensional array 240
multigeometries 114, 122

multilines 118–120
multipoints 110–112
multipolygons 124–126

multilines 118–120
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multiple input pixels 181
multipoints 110–112
multipolygons 124–126, 138, 

143–144, 291
my_mode function 262
my_progress function 231–232
mydate variable 33

N

NAD83 (North American Datum 
of 1983) 155, 159

NAIP (National Agriculture 
Imagery Program) 246

nan constant (numpy) 244
NASA (National Aeronautics 

and Space 
Administration) 183

nat_color.tif file 184
National Agriculture Imagery 

Program. See NAIP
National Oceanic and Atmo-

spheric Administration. See 
NOAA

natural_earth file 
geodatabase 74

NDVI (normalized difference 
vegetation index) 204, 243

nearest-neighbor 
resampling 180, 228, 272

NOAA (National Oceanic and 
Atmospheric 
Administration) 76

NoData value 191–192, 216–
217, 220, 223, 246, 254, 283

nonbundled installations
321–323

Linux 321–322
Mac OS X 322
Windows 322–323

None keyword 20
normalized difference vegeta-

tion index. See NDVI
North American Datum of 1983. 

See NAD83
northing 107
numeric types 20–21
NumPy

division by zero 244–246
introduction to 238–242
masked arrays 246–247
sampling arrays 281–283
saving data 262
slicing 238–240, 249–251

NumPy array 185, 188, 194, 
199–201, 203

NumPy module 322
numpy module

clip function 304
dstack function 250–251
empty function 189, 241
flatten function 260
fromstring function 201
histogram2d function 260–261
inf constant 244
insert function 262
int constant 244
mean function 271
meshgrid function 272, 

305–306
nan constant 244
ones function 241
repeat function 268
savetxt function 262
seterr function 246
unique function 260
where function 192, 218, 240
zeros function 241

NumPy, map algebra with
242–267

focal analyses 247–258
breaking up 256–258

global analyses 263–267
local analyses 243–247
resampling data 267–275
zonal analyses 258–263

O

OGR capability constants 85
OGR field type constants 62
OGR geometry type 

constants 53, 108–109
ogr module

AddGeometry function 111
AddPoint function 108–109, 

114, 116, 122
AlterFieldDefn function 63
AssignSpatialReference 

function 164
Buffer function 137
Clone function 95
CloseRings function 122
Contains function 130–131
ConvexHull function 149
CopyLayer function 75–76, 

80, 103

CreateDataSource 
function 60–61, 75

CreateFeature function 57, 64
CreateFields function 56
CreateLayer function 55, 163
Crosses function 131
DataSource object 42
DeleteFeature function 65
Difference function 132–133
Disjoint function 131
Distance function 138
Empty function 120
ExecuteSQL function 99, 

102, 104, 136
Feature class 42, 96
FieldDefn class 54, 61–62
GetDriverByName 

function 59
GetEnvelope function 79
GetExtent function 52, 265
GetFeature function 48, 76
GetFeatureCount 

function 48, 51, 95
GetField function 47–48
GetFieldAsInteger 

function 47
GetFieldAsString function 47
GetGeometryCount 

function 114–115, 122
GetGeometryRef 

function 111
GetGeomType function 52–53
GetLayer function 46, 55
GetLayerCount function 72
GetNextFeature function 48, 

76, 94
GetPointCount function

114–115, 122
GetPoints function 115
GetSpatialRef function 159, 

266
GetSpatialReference 

function 159
GetX function 108, 114
GetY function 108, 114
GetZ function 108
Intersection function 132–133, 

136, 152, 230
Intersects function 130–131
IsValid function 121
Layer class 42, 46
Open function 46
Overlaps function 131
ResetReading function 49
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ogr module (continued)
schema property 56, 61
SetAttributeFilter 

function 91, 93
SetColorEntry function 217
SetFeature function 64
SetPoint function 110, 114, 

118
SetSpatialFilter method 95, 

97, 99
Simplify function 113
SymDifference function

132–133
SyncToDisk function 58
TestCapability function 85
Touches function 130–131
Transform function 166
TransformTo function

165–166
Union function 132–133, 152, 

230
UnionCascaded function 138, 

143
UseExceptions function 61, 

86
Within function 130–131

OGR Simple Features 
Library 41–44, 105–128

creating from polygons 124
filtering data with 88–104

attribute filters 89–93
creating temporary layers 

using SQL 99–103
spatial filters 93–98
taking advantage of 

filters 103–104
lines 112–120

creating from polygons 124
creating points from 118
multilines 118–120
overview 112–113
single lines 114–118

overview of geometries
106–107

points 107–112
creating from lines 118
multipoints 110–112
overview 107
single points 108–110

polygons 120–128
creating lines from 124
multipolygons 124–126
overview 120–121
single polygons 122–124

with holes 126–128
vector analysis with 129–152

examples of use 140–144
overlay tools 130–136
overview 129
proximity tools 136–140

OGR Spatial Reference. See OSR
OGR SQL dialect special 

fields 100
OGR Vector Formats 

webpage 44
OGR website 75
ogr_geom_area field 100
ogr2ogr command-line 

utility 146
ogrinfo command-line 

utility 43, 59, 73
old cell locations 228
one-dimensional array 256
ones function (numpy) 241
Open function (gdal) 184, 206
Open function (ogr) 46
open source, reasons for 

using 2–3
OpenFileGDB driver 75
OpenGIS Simple Features Refer-

ence Implementation. See 
OGR

OpenStreetMap tiles 81
order_coords function 296
origin 177
os module 50, 60, 165
os.chdir 184
os.path.exists function 60
ospybook module 42, 44, 49–50, 

86, 164, 278
draw function 50–51
plot function 50
print_attributes function 49
print_capabilities function 86
print_drivers function 44
VectorPlotter class 50–51, 90, 

287–288
OSR (OGR Spatial Reference), 

using spatial reference sys-
tems with 159–168

assigning an SRS to data
163–164

reprojecting entire 
layers 167–168

reprojecting geometries
164–167

spatial reference objects
159–163

osr module
CoordinateTransformation 

class 166
ExportToXML function 160
Fixup function 163
GetAttrValue function 161
ImportFromEPSG 

function 162
IsGeographic function 161
IsProjected function 161
SetTOWGS84 function 167
SetWellKnownGeogCS 

function 163
SpatialReference class 159
UseExceptions function 163
Validate function 163

OtherSRS option 80
Overlaps function (ogr) 131
overlay tools 130–136
overview layers 178–179, 

186–187, 199

P

partial datasets, reading 187–199
resampling data 196–199
using real-world 

coordinates 193–196
PATH environment 

variable 300, 324
PathPatch object 294
percent sign (%) character 90, 

262
pip tool 322
pixel coordinates, converting to 

another image 213–215
pixels 175, 177
plain text formats 69
plot function 292
plot function (matplotlib)

288–289, 292, 298
plot function (ospybook) 50
plot_layer function 291–294
plot_line function 293
plot_point function 293
plot_polygon function 291–294, 

297
plot_polygon_patch function

296–297
plot_surface method 

(matplotlib) 306
plotting

lines and points 293
polygons 291
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plotting with matplotlib
288–307

raster data 300–307
3d data 305–307
animation 307
multiple bands 303–305
single band 300–303
stretching 302–305

vector data 288–300
animation 297–300
lines 289, 292–294
points 289, 292–294
polygons 289–292, 294–297

plotting with ospybook 50–51
plt (matplotlib) 288
point layer 118
points 107–112

multipoints 110–112
overview 107
single points 108–110

polygons 120–128
2.5D 139–140
2D 139–140
buffer 136
census 142–143
combining small into 

large 143
convex hull 149–150
county 143
creating lines from 124
intersection 143
large 143–144
multipolygons 124–126, 144
overview 113, 120–121
plotting 291
plotting with matplotlib

289–292, 294–297
single polygons 122–124
wind 143
with holes 126–128

PolygonSymbolizer class 
(mapnik) 309

polynomial transformation 210
PopErrorHandler function 

(gdal) 234
PostGIS 41–42, 71, 73–74, 103
PostgreSQL 41
predict function (sklearn) 283
prime meridian 154
print function 16, 22, 234
print_attributes function 

(ospybook) 49
print_capabilities function 

(ospybook) 86

print_drivers function 
(ospybook) 44

progressArg parameter for call-
back functions 231

Proj class (pyproj) 169
PROJ_LIB environment 

variable 324
PROJ.4 Cartographic Projec-

tions Library 160, 168
PROJ.4 string 160–162, 169
PROJCS keyword 160–161
proximity analysis 263, 265, 275
proximity tools 136–140
PushErrorHandler function 

(gdal) 234
PyCharm 17
pylab mode 288
PyPI (Python Package Index) 2
pyplot interface 50
pyplot symbol 50
pyproj

overview 321
using spatial reference systems 

with 168–172
great-circle 

calculations 171–172
transforming coordinates 

between SRS 169–170
pyproj module

fwd function 171
Proj class 169
transform function 169–170

pyramid layers 178
PyScripter 17
Python

basic structure of script 17–18
classes 32–34
control flow 27–31

break statement 30–31
continue statement 30–31
else statement 30–31
for statements 29–30
if statements 27–29
while statements 29

data types 20–27
Booleans 20
dictionaries 26–27
lists and tuples 24–25
numeric types 20–21
sets 26
strings 22–23

functions 31–32
reasons for using 2–3
variables 18–20

writing and executing 
code 16–17

Python * operator 116
Python datetime objects 148
Python modules, installing 322
PYTHONPATH environment 

variable 324

Q

QGIS georeferencer plugin 58, 
211

R

random module 17
random noise, removing 248
range function 30, 222
raster data 6–7, 173–236

attribute tables 209, 221–223
bands 175
blocks 180
byte sequences 200–203
callback functions 230–232
color tables 215–218
converting pixel coordinates 

to another image 213–215
data types 178
drawing 316–318
exceptions and error 

handlers 232–236
GDAL and 181–187
georeferencing 177, 209–213
ground control points 209–213
histograms 218–221
overview 173–181
overview layers 178–179, 

186–187, 199
pixels 175, 177
plotting 300–305
reading partial datasets 187–199

overview 187–192
resampling data 196–199
using real-world 

coordinates 193–196
resampling methods 180–181
size considerations 178
subdatasets 203–204
virtual raster format 223–229

creating troublesome 
formats 227–228

overview 223–224
reprojecting images 228–229
subsetting 225–227

web map services 204
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RasterizeLayer function 
(gdal) 266

RasterSymbolizer class 
(mapnik) 316, 318

ReadAsArray function 186–187
ReadAsArray function 

(gdal) 185, 188, 192, 196, 
199

reading
partial datasets 187–199

overview 187–192
resampling data 196–199
using real-world 

coordinates 193–196
vector data 44–51

accessing specific 
features 47–49

overview 44–48
viewing data 49–51

ReadRaster function 
(gdal) 200–201

real-world coordinates, reading 
partial datasets using
193–196

RECOMPUTE EXTENT 
function 65, 146

reduced resolution datasets 178
reflect edge handling mode 

(scipy) 254
relativeToVRT attribute 224
render_to_file function 

(mapnik) 309–310
REPACK function 65, 146
repeat function (numpy) 268
reprojecting

coordinates 169–170
entire layers 167–168
geometries 164–167
images 228–229

resampling data 196–199, 
202–203, 267–275

average 269–271
bilinear interpolation

273–274
nearest neighbor 196–199, 

202–203, 268, 271–272
to larger pixels 199
to smaller pixels 197–199

resampling methods 180
ResetReading function (ogr) 49
return statement 32
RGB notation 175
round function 21
round_timestamp function 299

.rrd extension 178
Rule class (mapnik) 309
RuntimeError message 86

S

satellite imagery 6
save_map function 

(mapnik) 314
save_state_gauges function 79
savetxt function (numpy) 262
scale 36–39, 66, 108
scaling factor 271
schema property (ogr) 56, 61
scikit-learn 281, 320–321
SciKit-Learn Laboratory 284
scikit-learn laboratory. See skll 

module
scikit-learn module 276, 281, 

284
scikit-learn module. See sklearn 

module
scipy module

binned_statistic function 262
binned_statistic_2d 

function 261
edge handling 254–255
generic_filter function 256
uniform_filter function 255

SciPy, using for focal 
analyses 254–256

script, basic structure of 17–18
SetAttributeFilter function 

(ogr) 91, 93
SetColorEntry function 

(gdal) 217
SetColorEntry function 

(ogr) 217
SetConfigOption function 

(gdal) 165
SetDefaultHistogram function 

(gdal) 220
SetDefaultRAT (gdal) 223
seterr function (numpy) 246
SetErrorHandler function 

(gdal) 234
SetFeature function (ogr) 64
SetGCPs function (gdal) 213
SetGeoTransform function 

(gdal) 185
SetMetadata function 

(gdal) 225
SetPoint function (ogr) 110, 

114, 118

SetProjection function (gdal)
185, 266

sets 26
SetSpatialFilter method (ogr)

95, 97, 99
SetSpatialFilterRect method 

(ogr) 99
SetTOWGS84 function (osr)

167
SetWellKnownGeogCS function 

(osr) 163
Shapefile class (mapnik)

308–309
shapefiles 41–42, 65, 68–70, 74

calculating extent 65
packing 65

shells 16
show function (matplotlib) 288
SimpleHTTPServer 82
Simplify function (ogr) 113
single lines 114–118
single points 108–110
single polygons 122–124, 132, 

137
skll module

kappa function 285
sklearn module

DecisionTreeClassifier 
class 283

fit method 283
predict function 283

slope calculation 253, 255–256
slope function 255–256
smoothing data 248, 253, 255
smoothing filter 255
Snow, John 8
spatial data

plotting 50–51
types of 3–7

spatial filters 93–98, 135, 138, 
141, 143, 146

spatial indexes 69–70
Spatial Reference System Identi-

fiers. See SRIDs
spatial reference systems

assigning to data 163–164
creating 163–164
getting from layer 53–54

spatial reference systems. See SRS
spatial subsets 223
SpatiaLite 41–42, 72–73
SpatialReference class (osr) 159
SpatialReference object 159, 

162
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spectral module
kmeans function 279

Spectral Python module 278
Spectral Python, installing 322
SPHEROID values 162
spline method 211
SQL (Structured Query 

Language) 89, 99–103
SQL statement 99
SQLite database 41, 65
SRIDs (Spatial Reference System 

Identifiers) 160
SRS (spatial reference 

systems) 93–94, 104, 
153–172, 212

overview 154–158
using with OSR 159–168

assigning an SRS to 
data 163–164

reprojecting entire 
layers 167–168

reprojecting 
geometries 164–167

spatial reference 
objects 159–163

using with pyproj 168–172
great-circle 

calculations 171–172
transforming coordinates 

between SRS 169–170
st_union function 103
stack trace 25
stack_bands function 278–279
Stamen Toner tiles 84
standard deviation stretch 302, 

304
storing information, as 

XML 314–315
stream gauge data 77
stretch_data function 304
stretching raster data 302–305
strings

escape characters 23
formatting 23
joining 22–23

struct module 201
Style class (mapnik) 308
subdatasets 203–204
subsetted rasters 223
subsetting 194–196, 225–227
supervised classification

280–286
SWReGAP classification 278
symbolizer 309, 311

SymDifference function 
(ogr) 132–133

SyncToDisk function 58
SyncToDisk function (ogr) 58
sys.stdout.write 232

T

tab completion 16
temporary layers, creating using 

SQL 99–103
TermProgress function 

(gdal) 231
TermProgress_nocb function 

(gdal) 230, 232
TestCapability function (ogr) 85
three-dimensional array

250–251, 253–254
three-dimensional 

ellipsoids 156
tiled GeoTIFF 180
today method 33
Touches function (ogr) 130–131
towgs84 parameters 167
Transform function (ogr) 166
transform function 

(pyproj) 169–170
Transformer class (gdal) 213
TransformPoint function 

(gdal) 214
TransformTo function 

(ogr) 165–166
transparency 217–218
True keyword 20
try/except block 80, 233
tuples 25, 116, 128
two-dimensional array 238–240
two-dimensional 

histogram 259–260

U

underscore (_) character 90
uniform_filter function 

(scipy) 255
Union function (ogr) 132–133, 

152, 230
UnionCascaded function 

(ogr) 138, 143
unique function (numpy) 260
United States Geological Survey. 

See USGS
Universal Transverse Mercator. 

See UTM

unprojected datasets 136
unsupervised classification

278–280
untiled GeoTIFF 180
update function 298, 300
updating features 64–66
updating vector data 63–66

adding, updating, and delet-
ing features 64–66

changing layer definition
63–64

UpperLeftX value 206
UpperLeftY value 206
urlencode function 80
urllib module 80
UseExceptions function 

(gdal) 232
UseExceptions function 

(ogr) 61, 86
UseExceptions function 

(osr) 163
USGS (United States Geological 

Survey) 183
USGS_EROS_Ortho_1Foot 

layer 206
UTM (Universal Transverse 

Mercator) 94, 156

V

VACUUM 65
Validate function (osr) 163
variables 18–20
vector analysis, with OGR

129–152
examples of use 140–144
overlay tools 130–136
proximity tools 136–140

vector data 7, 35–66, 129, 140, 
177

drawing 308–313
metadata 51–54
OGR Simple Features Library 

and 41–44
overview 36–41
plotting 288–300
reading 44–51

accessing specific 
features 47–49

overview 44–46
viewing data 49–51

updating data 63–66
adding, updating, and 

deleting features 64–66
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vector data (continued)
changing layer 

definition 63–64
writing 54–62

creating data sources 59–61
creating fields 61–62
overview 54–58

vector data formats 70
vector datasets 35
vector file formats 67–87

client-server database 
formats 71

Esri file geodatabases 74–76
file-based formats 68–70
folders as data sources 74
geoJSON 68–70
overview 67
PostGIS 71, 73–74
shapefiles 68–70
SpatiaLite 72–73
testing format capabilities

84–87
web feature services 76–84

VectorPlotter class 
(ospybook) 50–51, 90, 109, 
287–288

vertices 106
virtual raster format. See VRT
visualizing data 287–318

Mapnik 307–318
drawing raster data

316–318
drawing vector data

308–313
overview 307
storing information as 

XML 314–315
matplotlib 288–307

plotting 3d data 305–307

plotting raster data
300–305

plotting vector data
288–300

VRT (virtual raster format)
223–229

creating troublesome 
formats 227–228

overview 223–224
reprojecting images 228–229
subsetting 225–227

vrt_sources domain 225
VRTRasterBand element 224

W

WatchesWarnings layer 77
water bodies shapefile 133
web feature services 76–84

GetCapabilities request 79
limiting number of results 77
saving results locally 80
setting bounding box 79–80
spatial reference 79–80

web map services 204–207
Web Mercator projection 165
web server. See Sim-

pleHTTPServer
web-mapping libraries 80
well-known text. See WKT
WGS84 (World Geodetic 

System) 155, 212
WHERE clause 89, 101–102
where function (numpy) 192, 

218, 240
while loop 29–30
while statements 29
wildcards 90
wind polygons 142–143

windows 7
Windows Photo Viewer 216
Windows, installation on

322–323
Wing IDE 17
Within function (ogr) 130–131
WKT (well-known text) 159–162
WKT string 160, 213
World Geodetic System. See 

WGS84
WriteArray function (gdal) 186, 

189, 200, 222
WriteRaster function (gdal) 203
writing vector data 54–62

creating data sources 59–61
creating fields 61–62
overview 54–58

X

x coordinates 106, 210
XML specification 205
XML, storing information 

as 314–315

Y

y coordinates 106, 210

Z

z coordinate 106
z values 139
zeros function (numpy) 241
zip function 290
zonal analyses 258–263
zoom_to_box function 

(mapnik) 308
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T his book is about the science of reading, analyzing, and 
presenting geospatial data programmatically, using 
Python. Thanks to dozens of open source Python libraries

 and tools, you can take on professional geoprocessing tasks 
without investing in expensive proprietary packages like 
ArcGIS and MapInfo. The book shows you how.

Geoprocessing with Python teaches you how to access available 
datasets to make maps or perform your own analyses using 
free tools like the GDAL, NumPy, and matplotlib Python 
modules. Through lots of hands-on examples, you’ll master 
core practices like handling multiple vector fi le formats, 
editing geometries, applying spatial and attribute fi lters, 
working with projections, and performing basic analyses on 
vector data. The book also covers how to manipulate, 
resample, and analyze raster data, such as aerial photographs 
and digital elevation models. 

What’s Inside
●  Geoprocessing from the ground up
●  Work with vector data
●  Read, write, process, and analyze raster data
●  Visualize data with matplotlib
●  Write custom geoprocessing tools

To read this book all you need is a basic knowledge of Python 
or a similar programming language.
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