

Getting Started With JUCE

Table of Contents

Getting Started With JUCE
Credits
About the Author
About the Reviewers
www.PacktPub.com

Support files, eBooks, discount offers, and more
Why Subscribe?
Free Access for Packt account holders

Preface
What this book covers
What you need for this book
Who this book is for
Conventions
Reader feedback
Customer support

Downloading the example code
Errata
Piracy
Questions

1. Installing JUCE and the Introjucer Application
Installing JUCE for Mac OS X and Windows
Building and running the JUCE Demo application

Running the JUCE Demo application on Windows
Running the JUCE Demo application on Mac OS X
The JUCE Demo application overview
Customizing the look and feel

Building and running the Introjucer application
Building the Introjucer application on Windows
Building the Introjucer application on Mac OS X
Examining the JUCE Demo Introjucer project

Creating a JUCE project with the Introjucer application
Documentation and other examples
Summary

2. Building User Interfaces
Creating buttons, sliders, and other components

Adding child components
Responding to user interaction and changes

Broadcasters and listeners
Filtering data entry

Using other component types
Specifying colors

Component color IDs

Setting colors using the LookAndFeel class
Using drawing operations

Intercepting mouse activity
Configuring complex component arrangements

Other component types
Summary

3. Essential Data Structures
Understanding the numerical types
Specifying and manipulating text strings

Posting log messages to the console
String manipulation

Measuring and displaying time
Displaying and formatting time information
Manipulating time data
Measuring time
Specifying file paths
Accessing various special directory locations
Obtaining various information about files
Other special locations
Navigating directory structures

Using dynamically allocated arrays
Finding the files in a directory
Tokenizing strings
Arrays of components
Using the OwnedArray class
Other banks of controls

Employing smart pointer classes
Summary

4. Using Media Files
Using simple input and output streams

Reading and writing text files
Reading and writing binary files

Reading and writing image files
Manipulating image data

Playing audio files
Creating a GUI to control audio file play
Adding audio file playback support

Working with the Binary Builder tool
Embedding an image file using the Introjucer application

Summary
5. Helpful Utilities

Using the dynamically typed objects
Using the Value class
Structuring hierarchical data

Employing undo management
Adding XML support

Understanding how JUCE handles multiple threads
Storing application properties
Adding menu bar controls
Summary

Index

Getting Started With JUCE

Getting Started With JUCE
Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of
brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for
any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1211013

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78328-331-6

www.packtpub.com

Cover Image by Aniket Sawant (<aniket_sawant_photography@hotmail.com>)

http://www.packtpub.com
mailto:aniket_sawant_photography%40hotmail.com

Credits
Author

Martin Robinson

Reviewers

Michael Hetrick

Liam Lacey

Owen S. Vallis

Acquisition Editors

Ashwin Nair

Usha Iyer

Lead Technical Editor

Mohammed Fahad

Technical Editor

Menza Mathew

Project Coordinator

Suraj Bist

Proofreader

Clyde Jenkins

Indexer

Hemangini Bari

Graphics

Yuvraj Mannari

Production Coordinator

Pooja Chiplunkar

Cover Work

Pooja Chiplunkar

About the Author
Martin Robinson is a British University Lecturer, software developer, composer, and an artist. He
lectures in Music Technology with particular interests in audio software development and game audio.
He gained his B.A. (Hons) Music and Music Technology from Middlesex University with first class
honors, specializing in music composition. Later, he gained his M.A. Electronic Arts (with distinction)
where his thesis focused on developing a system for employing artificial neural networks for controlling
audio-visual systems.

His interest in computer programming developed through his music composition practice and his desire
to customize systems for manipulating music and audio. He developed the UGen++ library for
developing audio applications that was based on the look and feel of the SuperCollider audio
programming language. Later, he developed the Plink|Plonk|Plank libraries too, for audio application
development. He also develops iOS applications.

I would like to thank my wife Catherine and my two children, Mia and Esme, for their support,
especially on writing days.

About the Reviewers
Michael Hetrick (born in 1988) is a Ph.D. student in the Media Arts and Technology department at
UC, Santa Barbara. A lifelong musician, he discovered his passion for electronic music while studying at
Western Reserve Academy. At Vanderbilt University, he expanded his work into the field of video art
while receiving a B.A. in Digital Media and Distribution. He went on to receive an M.A. in Electronic
Music and Sound Design at UC, Santa Barbara in 2011 while doing research in chaotic synthesis under
Curtis Roads, Clarence Barlow, Matthew Wright, and Marcos Novak. He is the co-owner and co-
founder of Unfiltered Audio, a company dedicated to creating new software for digital musicians
everywhere. His current research is focused on new paradigms for microsound. You can find his work at
http://mhetrick.com.

Liam Lacey graduated from the University of the West of England, Bristol, UK in 2010 with a first-
class B.Sc. (Hons) degree in Audio and Music Technology. Since then he has become the lead software
developer for Bristol-based company nu desine, which develops the new electronic musical instrument
—the AlphaSphere.

Liam's main interests are within the fields of music interaction and electronic musical instrument design.
He recently attended the annual New Interfaces for Music Expression 2013 conference, where he co-
authored and presented a paper on the design of the AlphaSphere. In his spare time he is also a
musician, producer, composer, and performer, as well as likes getting involved in various programming
projects.

Liam has been using JUCE, for more than two years, as the main library for all software that he
develops, due to its ease for creating cross-platform GUI applications, and it has been the perfect
framework for developing the AlphaSphere software due to JUCE's strong audio and MIDI support.

Owen S. Vallis is currently a professor of Music Technology at the California Institute of the Arts,
Music Technology: Interaction, Intelligence, and Design program. He is a musician, artist, and scientist
interested in performance, sound, and technology. As a co-founder of Flipmu and The NOISE INDEX,
he explores a diverse range of projects including big data research, sound art installations, producing and
composing, designing audio processors, and creating new hardware interfaces for musical performance.
He received his Ph.D. in 2013 at the New Zealand School of Music, Victoria University of Wellington,
and explored contemporary approaches to live computer music. During his graduate research, Owen
focused on developing new musical interfaces, interactive musical agents, and large networked music
ensembles. He graduated with a B.A. in Music Technology from the California Institute of the Arts in
2008.

Having lived in Toronto, Canada; Wellington, New Zealand; Tokyo, Japan; San Francisco, Nashville,
and Los Angeles, Owen has been able to develop a broad and interesting cross section of musical
ideologies and aesthetics. Over the past 10 years, he has worked as a research scientist for Twitter,
developed multi-touch interfaces for Nokia research labs, worked for leading ribbon microphone
manufacturer Royer Labs, has had musical production featured in major motion films, built a recording
facility, and produced, engineered, and mixed records in Tokyo, Nashville, and Los Angeles. Owen's
work has been featured in Wired, Future Music, Pitchfork, XLR8R, Processing.org, computer arts
magazine, and shown at events such as NASA's Yuri's Night, Google I/O, and the New York Cutlog art

http://mhetrick.com

festival.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer,
you are entitled to a discount on the eBook copy. Get in touch with us at <service@packtpub.com> for
more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here,
you can access, read and search across Packt's entire library of books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service%40packtpub.com
http://packtlib.packtpub.com/
http://PacktLib.PacktPub.com

Why Subscribe?
Fully searchable across every book published by Packt
Copy and paste, print and bookmark content
On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today
and view nine entirely free books. Simply use your login credentials for immediate access.

http://www.PacktPub.com

Preface
JUCE is a framework for developing cross-platform software in C++. JUCE itself comprises of a wide
range of classes that solve common problems encountered when developing software systems. These
include handling graphics, sound, user interaction, networks, and so on. Due to its level of audio support
JUCE is popular for developing audio applications and audio plugins, although this is by no means limits
its use to this domain. It is relatively easy to get started with JUCE, and each JUCE class offers few
surprises. At the same time, JUCE is powerful and customizable with little effort.

What this book covers
Chapter 1, Installing JUCE and the Introjucer Application, guides the user through installing JUCE and
covers the structure of the source code tree, including some of the useful tools available for creating
JUCE projects. By the end of this chapter, the user will have installed JUCE, created a basic project
using the Introjucer application and be familiar with the JUCE documentation.

Chapter 2, Building User Interfaces, covers the JUCE Component class, which is the main building block
for creating graphical user interfaces in JUCE. By the end of this chapter, the user will be able to create
basic user interfaces and perform fundamental drawing within a component. The user will also have the
skills required to design and build more complex interfaces.

Chapter 3, Essential Data Structures, describes JUCE's important data structures, many of which could
be seen as replacements for some of the standard library classes. This chapter also introduces the
essential classes for JUCE development. By the end of this chapter, the user will be able to create and
manipulate data in a range of JUCE's essential classes.

Chapter 4, Using Media Files. JUCE provides its own classes for reading and writing files and many
helper classes for specific media formats. This chapter introduces the main examples of these classes.
By the end of this chapter, the user will be able to manipulate a range of media files using JUCE.

Chapter 5, Helpful Utilities. In addition to the essential classes introduced in earlier chapters, JUCE
includes a range of classes for solving common problems in application development. By the end of this
chapter, the user will have an awareness of some of the additional, helpful utilities offered by JUCE.

What you need for this book
You will need a Mac OS X or Windows computer that supports an appropriate Integrated
Development Environment (IDE). Any relatively recent computer should be sufficient. On Mac OS X,
you should be running the Mac OS X 10.7 "Lion" operating system (or later). Most relatively recent
Windows computers will support an appropriate version of the Microsoft Visual Studio IDE. Setting up
the IDE for JUCE development is covered in Chapter 1, Installing JUCE and the Introjucer
Application.

Who this book is for
This book is for programmers with a basic grasp of C++. The examples start from a basic level, making
few assumptions beyond fundamental C++ concepts. For example, not even an understanding of the
C++ Standard Library is needed. Those without any experience with C++ should be able to follow and
construct the examples, although may need further support to understand the fundamental concepts.
Experienced programmers should also find they get to grips the JUCE library more quickly.

Conventions
In this book, you will find a number of styles of text that distinguish among different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of the include
directive."

A block of code is set as follows:

class MainContentComponent : public Component
{
public:
 MainContentComponent()
 {
 setSize (200, 100);
 }
};

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are
set in bold:

class MainContentComponent : public Component
{
public:
 MainContentComponent()
 {
 setSize (200, 100);
 }
};

Any command-line input or output is written as follows:

JUCE v2.1.2
Hello world!

New terms and important words are shown in bold. Words that you see on the screen, in menus or
dialog boxes for example, appear in the text like this: "clicking the Next button moves you to the next
screen".

Tip

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—what you
liked or may have disliked. Reader feedback is important for us to develop titles that you really get the
most out of.

To send us general feedback, simply send an e-mail to <feedback@packtpub.com>, and mention the book
title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to a
book, see our author guide on www.packtpub.com/authors.

mailto:feedback%40packtpub.com
http://www.packtpub.com/authors

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to get the
most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you
find a mistake in one of our books—maybe a mistake in the text or the code—we would be grateful if
you would report this to us. By doing so, you can save other readers from frustration and help us
improve subsequent versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your book, clicking on the errata submission form
link, and entering the details of your errata. Once your errata are verified, your submission will be
accepted and the errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, we take
the protection of our copyright and licenses very seriously. If you come across any illegal copies of our
works, in any form, on the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

mailto:copyright%40packtpub.com

Questions
You can contact us at <questions@packtpub.com> if you are having a problem with any aspect of the
book, and we will do our best to address it.

mailto:questions%40packtpub.com

Chapter 1. Installing JUCE and the Introjucer
Application
This chapter guides you through installing the JUCE library, and covers the structure of its source code
tree, including some of the useful tools available for creating JUCE-based projects. In this chapter we
will cover the following topics:

Installing JUCE for Mac OS X and Windows
Building and running the JUCE Demo project
Building and running the Introjucer application
Creating a JUCE project with the Introjucer application

By the end of this chapter, you will have installed JUCE and created a basic project using the Introjucer
application.

Installing JUCE for Mac OS X and Windows
JUCE supports the development of C++ applications for a range of target platforms. These include
Microsoft Windows, Mac OS X, iOS, Linux, and Android. In general, this book covers the development
of C++ applications using JUCE for Windows and Mac OS X, but it is relatively straightforward to
apply this knowledge to build applications for the other supported target platforms.

In order to compile JUCE-based code for these platforms, typically an Integrated Development
Environment (IDE) is required. To compile code for Windows, the Microsoft Visual Studio IDE is
recommended (supported variants are Microsoft Visual Studio 2008, 2010, and 2012). Microsoft Visual
Studio is available to download from http://www.microsoft.com/visualstudio (the free Express versions
are sufficient for non-commercial development). To compile code for Mac OS X or iOS, the Xcode IDE
is required. Generally, the latest public version of Xcode is recommended. This can be downloaded for
free from the Mac App Store from within Mac OS X.

JUCE is provided as source code (rather than prebuilt libraries) divided into discrete but interconnected
modules. The juce_core module is licensed under the Internet Systems Consortium (ISC) license,
allowing it to be used freely in commercial and open source projects. All the other JUCE modules are
dual licensed. For open source development, JUCE may be licensed under the terms of the GNU
General Public License (Version 2 or later) or the Affero General Public License (Version 3). JUCE
may also be used for closed-source, commercial projects using separate commercial licenses for a fee.
More information on JUCE licensing is available at http://www.juce.com/documentation/commercial-
licensing.

Unless there are very specific reasons for using a particular version of JUCE, it is recommended to use
the current development version available from the project's GIT repository. This version is almost
always kept stable and often includes useful new features and bug fixes. The source code is available for
download, using any GIT client software, at git://github.com/julianstorer/JUCE.git or
git://git.code.sf.net/p/juce/code. Alternatively, the code for the current development version may be
downloaded as a ZIP file from https://github.com/julianstorer/JUCE/archive/master.zip.

You should keep the JUCE source code in its top-level juce directory, but you should move this
directory to a sensible location on your system that suits your workflow. The juce directory has the
following structure (directories are shown using a trailing /):

amalgamation/
docs/
extras/
juce_amalgamated.cpp
juce_amalgamated.h
juce_amalgamated.mm
juce.h
modules/
README.txt

Although all of these files are important, and the actual code for the JUCE library itself is located in the
juce/modules directory, each module is contained within its own subdirectory. For example, the
juce_core module mentioned previously is in the juce/modules/juce_core directory. The remainder of

http://www.microsoft.com/visualstudio
http://www.juce.com/documentation/commercial-licensing
http://git%3A//github.com/julianstorer/JUCE.git
http://git%3A//git.code.sf.net/p/juce/code
https://github.com/julianstorer/JUCE/archive/master.zip

this chapter examines some important projects available in the juce/extras directory. This directory
contains a range of useful projects, in particular the JUCE Demo and the Introjucer projects.

Building and running the JUCE Demo
application
To give an overview of the features provided by JUCE, a demonstration project is included in the
distribution. This is not only a good place to start, but is also a useful resource containing many
examples of implementation details of classes throughout the library. This JUCE Demo project can be
found in juce/extras/JuceDemo. The structure of this directory is typical of a JUCE project generated
by the Introjucer application (which is covered later in the chapter).

Project directory
contents Purpose

Binary Data
A directory containing any binary files, such as image and audio files, which will be embedded as
code in the project

Builds A directory containing the native platform IDE project files

Juce Demo.jucer The Introjucer project file

JuceLibraryCode
The generic JUCE library code, configuration files, and the binary files converted to source code for
inclusion in the project

Source The project-specific source code

To build and run the JUCE Demo application, open the appropriate IDE project file from the
juce/extras/Builds directory.

Running the JUCE Demo application on Windows
On Windows, open the appropriate Microsoft Visual Studio Solution file. For example, using Microsoft
Visual Studio 2010, this will be juce/extras/JuceDemo/Builds/VisualStudio2010/Juce Demo.sln
(other project and solution file versions are also available for Microsoft Visual Studio 2008 and 2012).

Now, build and run the project by navigating to the menu item Debug | Start Debugging. You may be
asked if you want to build the project first as shown in the following screenshot:

Click on Yes, and when this succeeds, the JUCE Demo application should appear.

Running the JUCE Demo application on Mac OS X
On Mac OS X, open the Xcode project in: juce/extras/JuceDemo/Builds/MacOSX/Juce
Demo.xcodeproj. To build and run the JUCE Demo application, navigate to the menu item Product |
Run. When this succeeds, the JUCE Demo application should appear.

The JUCE Demo application overview
The JUCE Demo application is divided into a series of demonstration pages, each illustrating a useful
facet of the JUCE library. The following screenshot shows the Widgets demo (as it looks on Mac OS X).
This is available by navigating to the menu item Demo | Widgets.

The Widgets demonstration shows many of the commonly needed Graphical User Interface (GUI)
controls provided by JUCE for application development. In JUCE, these graphical elements are called
components and this is the focus of Chapter 2, Building User Interfaces. There are a range of sliders,
dials, buttons, text display, radio buttons, and other components, which are all customizable. There are
other demonstrations available by default in the Demo menu, covering features such as Graphics
Rendering, Fonts and Text, Multithreading, Treeviews, Table Components, Audio, Drag-and-
drop, Interprocess comms, Web Browser, and Code Editor. There are additional demonstrations
available on some platforms and when certain hardware and software is available. These are the
QuickTime, DirectShow, OpenGL, and Camera Capture demonstrations.

Customizing the look and feel
By default, the JUCE Demo application uses JUCE's own window title bars, its own menu bar
appearance, and its default look and feel. The title bars can be configured to use the native operating
system appearance. The following screenshot shows the title bar of the JUCE Demo application as it
appears on the Windows platform. Notice that even though the appearance of the buttons is the same as
on Mac OS X, their positions should be more familiar to users on Windows.

By navigating to the menu item Look-and-feel | Use native window title bar, the title bar can use the
standard appearance available on the operating system. The following screenshot shows the appearance
of the native title bar on Mac OS X:

The default menu bar appearance, whereby the menu items appear within the application window below
the title bar, should be familiar to Windows users. Of course, this is not the default location for
application menus on the Mac OS X platform. Again, this can be specified as an option demonstrated in
the JUCE Demo application by navigating to the menu item Look-and-feel | Use the native OSX menu
bar. This moves the menu bar to the top of the screen, which will be more familiar to Mac OS X users.
All of these options are customizable within JUCE-based code.

JUCE also provides a mechanism to customize the look and feel of many of the built-in components
using its LookAndFeel class. This look and feel can apply to only some of the components of a particular
type or globally across the application. JUCE itself, and the JUCE Demo application, come with two
look and feel options: the default look and feel and the old, original (that is, "old school") look and feel.
In the JUCE Demo application, this can be accessed via the Look-and-feel menu.

You should explore the JUCE Demo application before moving onto the next section, where you will
build the Introjucer application that eases the management of multi-platform projects.

Building and running the Introjucer application
The Introjucer application is a JUCE-based application for creating and managing multi-platform JUCE
projects. The Introjucer application is able to generate the Xcode projects for Mac OS X and iOS, the
Microsoft Visual Studio projects (and solutions) for Windows projects, and the project files for all the
other supported platforms (and other IDEs, such as the cross-platform IDE CodeBlocks). The Introjucer
application performs a number of tasks that make managing such projects much easier, such as:

Populating all the native IDE project files with the source code files for your project
Configuring the IDE project settings to link to the necessary libraries on the target platform
Adding any preprocessor macros to some or all of the target IDE projects
Adding the library and header search paths to the IDE projects
Naming the product and adding any icon files
Customizing the debug and release configurations (for example, code optimization settings)

These are all helpful when setting up a project for the first time, but even more valuable when changes
need to be made later in a project. Even changing the name of the product is relatively tedious if this
needs to be done in several, separate projects. With the Introjucer application, most project settings can
be set within the Introjucer project file itself. When saved, this will then modify the native IDE projects
with any new settings. You should be aware that this would also override any changes made to the
native IDE projects. Therefore, it is wise to make all the required changes within the Introjucer
application.

In addition to this, the Introjucer application includes a GUI editor for arranging any GUI components.
This reduces the amount of coding required for certain types of GUI development. This part of the
Introjucer application generates the C++ code required to reconstruct the GUI when your application
runs.

The Introjucer application is provided as source code; you will need to build it before it can be used.
The source code is located in juce/extras/Introjucer. In a similar way to building the JUCE Demo
application, there are various IDE projects available in juce/extras/Introjucer/Builds
(understandably there are no Introjucer builds for iOS or Android). It is preferable to build the Introjucer
application in its release configuration to take advantage of any code optimizations.

Building the Introjucer application on Windows
Open the appropriate solution file in juce/extras/Introjucer/Builds into Microsoft Visual Studio.
Change the solution configuration to from Debug to Release as shown in the following screenshot:

Now you should build the Introjucer project by navigating to the menu item Build | Build Solution.
After this succeeds, the Introjucer application will be available at
juce/extras/Introjucer/Builds/VisualStudio2010/Release/Introjucer.exe (or similar, if you are
using a different version of Microsoft Visual Studio). At this point you should add a shortcut to your
Desktop or Start Menu, or whatever suits your typical workflow.

Building the Introjucer application on Mac OS X
Open the Xcode project located at juce/extras/Introjucer/Builds/MacOSX/The
Introjucer.xcodeproj. To build the Introjucer application in the release configuration, navigate to the
menu item Product | Build For | Archiving. After this succeeds, the Introjucer application will be
available at juce/extras/Introjucer/Builds/MacOSX/build/Release/Introjucer.app. At this point,
you should add an alias to your ~/Desktop, or whatever suits your typical workflow.

Examining the JUCE Demo Introjucer project
To illustrate the structure and functionality of an Introjucer project, let's examine the Introjucer project
for the JUCE Demo application. Open the Introjucer application you have just built on your system. In
the Introjucer application, navigate to the menu item File | Open… and navigate to open the JUCE
Demo Introjucer project file (that is, juce/extras/JuceDemo/Juce Demo.jucer).

An Introjucer project uses a typical master-detail interface, as shown in the following screenshot. On
the left, or the master section, there are either the Files or Config panels, which are selectable using
either the on-screen tabs or via the View menu. On the right, or the detail section, there are the settings
associated with the selected, specific item in the master section. With the project name selected in the
Config panel in the master section, the global settings for the whole JUCE Demo project are shown in
the detail section. The Config panel shows the hierarchy of the project's available target builds for the
different native IDEs.

In addition to these sections in the hierarchy of the Config panel that are concerned with the native IDE
targets, there is one item named Modules. As mentioned previously, the JUCE codebase is divided into
loosely coupled modules. Each module generally encapsulates a specific range of functionality (for

example, graphics, data structures, GUI, video). The following screenshot shows the available modules
and the modules that are enabled or disabled for the JUCE Demo project.

Modules may be enabled or disabled for a particular project that is based on the functionality required
for the final application. For example, a simple text-editing app may not need any video or audio
functionality, and the modules related to that functionality could be disabled.

Each module also has its own settings and options. In many cases, these are where there might be the
option to use native libraries for certain functionality (where performance on each platform may be a
high priority) or whether the cross-platform JUCE code should be used for that functionality instead
(where consistency across multiple platforms is a higher priority). Each module may have a dependency
on one or more other modules, in which case it will be highlighted if it has missing dependencies (and
selecting the module will explain which modules need to be enabled to resolve this). To illustrate this,
try turning off the checkbox for the juce_core module. All the other modules depend on this juce_core
module, which, as its name suggests, provides the core functionality of the JUCE library.

Each module has a copying mode (or Create local copy) option. With this turned on (or set to Copy
the module into the project folder), the Introjucer application will copy the source code from the
JUCE source tree into the project's local project hierarchy. With this option turned off, the native IDE
will be instructed to refer to the JUCE source files directly in the JUCE source tree. Your preference
here is a matter of taste and your individual circumstances.

The left-hand Files panel shows the hierarchy of all the source code that will be available in the native
IDEs, and the binary files (for example, images, audio, XML, ZIP) that will be transformed into cross-
platform source code (and included in the native IDE projects by the Introjucer application). The top-

level file structure for the JUCE Demo project is shown in the following screenshot:

Selecting a file in the Files panel enables you to edit the file directly in the Introjucer application. It is
currently more convenient to undertake the majority of the code editing in a native IDE that has
features such as code completion, error checking, and so on.

Now that we are familiar with the Introjucer application, let's use it to create a project from scratch.

Creating a JUCE project with the Introjucer
application
This section will guide you through creating a new Introjucer project, creating a native IDE project from
this, and running your first JUCE application. First, close any open Introjucer projects by navigating to
the menu item File | Close Project. Next, choose the menu item File | New Project…, and the
Introjucer application will present its new project window. Using the Project Folder section of the
window, navigate to where you would like to save the project (bearing in mind the project actually
comprises a folder containing a hierarchy of code and possibly binary files). As shown in the following
screenshot, name the project TestProject001 in the Project Name field, and select the Create a
Main.cpp file and a basic window option from the Files to Auto-generate menu:

Finally, click on the Create… button and a familiar Introjucer project should be presented, similar to
that shown in the following screenshot:

Initially, the Introjucer application creates only one target IDE platform for the user's current platform.
Right-click (on Mac OS X, press control and click) on the project name in the Config panel. This
presents a range of options for adding the target platforms to the project, as shown in the following
screenshot:

Select the Files panel and notice that the Introjucer application created three files for this basic project:
Main.cpp: This manages the lifetime of the application and includes the main entry point of the
application. It also includes the code to present the main application window to the user. This
window in turn presents a MainContentComponent object in this window, which is specified in the
remaining two files.
MainComponent.cpp: This includes the code to draw content into this main application window. In

this case, this is simply a "Hello world!" message, but could comprise a complex and hierarchical
user interface.
MainComponent.h: The header file for the MainComponent.cpp file.

It is recommended that you add any new files to the projects using this Introjucer project page. As
discussed earlier, this ensures that any new files are added to all the projects for all the target platforms,
rather than you having to manage this separately. In this example you will not be adding any files.
Editing source files in the native IDE is not a problem even though these exact same files are used to
compile on all the other platforms your project supports (that is, these files are not copied separately for
each platform). You may need to be aware of some differences between compilers, but relying on the
JUCE classes where possible (where this has already been taken into account) will help in this regard.

To open the project in your native IDE, first save the project by navigating to the menu item File | Save
Project. Then, choose the appropriate option from the File menu to open the native project in the IDE.
On Mac OS X, this menu item is Open in Xcode…, and on Windows it is Open in Visual Studio….
There is also a Menu option that combines these two operations, and a shortcut button for it at the
bottom of the Config panel.

Once the project is loaded into your IDE, you should build and run the project as you did with the JUCE
Demo project earlier. When this succeeds, you should be presented with a window as shown in the
following screenshot:

The three source files added to the project by the Introjucer application can be seen in your native IDE.
The following screenshot shows the project structure in Xcode on Mac OS X. This is similar in
Microsoft Visual Studio.

Edit the MainComponent.cpp file (by single-clicking in Xcode or double-clicking in Microsoft Visual
Studio). Examine the MainContentComponent::paint() function. This contains four function calls to
draw into the Component object's Graphics context:

Graphics::fillAll(): This fills the background with a particular color
Graphics::setFont(): This sets the font to a given font and size
Graphics::setColour(): This sets the foreground drawing color to a particular color
Graphics::drawText(): This draws some text at a specified location

Experiment with changing some of these values, and build the application again.

Documentation and other examples
JUCE is fully documented at the following URL:

http://www.juce.com/juce/api/

All the JUCE classes are documented using the Doxygen application (http://www.doxygen.org), which
turns specially formatted code comments into readable documentation pages. For this reason, you can
also read the comments from within the JUCE source code header files if you prefer. This is sometimes
more convenient, depending on your IDE, because you can navigate to the documentation easily from
within the code text editor. Throughout the remainder of this book, you will be directed to the
documentation for the key classes being discussed.

JUCE is used by a number of commercial developers for applications and audio plugins in particular.
Some examples include:

The Tracktion music production software effectively started the development of the JUCE library
Cycling 74's flagship product Max was developed using JUCE from Version 5 onwards
Codex Digital that makes products used extensively in the production of Hollywood movies
Other important developers include Korg, M-Audio, and TC Group

There are many others, some of which keep their use of JUCE a secret for commercial reasons.

http://www.juce.com/juce/api/
http://www.doxygen.org

Summary
This chapter has guided you through installing JUCE for your platform, and by this point you should
have a good grasp of the structure of the source code tree. You should be familiar with the capabilities
of JUCE through exploring the JUCE Demo project. The Introjucer application that you will have
installed and used provides a basis for creating and managing projects using JUCE and the remaining
chapters of this book. You will also know where to find the JUCE documentation via the JUCE website,
or within the source code. In the next chapter, you will be exploring the Component class in more detail
to create a range of user interfaces and to perform drawing operations.

Chapter 2. Building User Interfaces
This chapter covers the JUCE Component class, which is the main building block for creating a
Graphical User Interface (GUI) in JUCE. In this chapter we will cover the following topics:

Creating buttons, sliders, and other components
Responding to user interaction and changes: broadcasters and listeners
Using other component types
Specifying colors and using drawing operations

By the end of this chapter, you will be able to create a basic GUI and perform fundamental drawing
operations within a component. You will also have the skills required to design and build more complex
interfaces.

Creating buttons, sliders, and other components
The JUCE Component class is the base class that provides the facility to draw on the screen and intercept
user interaction from pointing devices, touch-screen interaction, and keyboard input. The JUCE
distribution includes a wide range of Component subclasses, many of which you may have encountered
by exploring the JUCE Demo application in Chapter 1, Installing JUCE and the Introjucer Application.
The JUCE coordinate system is hierarchical, starting at the computer's screen (or screens) level. This is
shown in the following diagram:

Each on-screen window contains a single parent component within which other child components (or
subcomponents) are placed (each of which may contain further child components). The top-left of the
computer screen is coordinate (0, 0) with each top-left of the content of JUCE windows being at an
offset from this. Each component then has its own local coordinates where its top-left starts at (0, 0) too.

In most cases you will deal with the components' coordinates relative to their parent components, but
JUCE provides simple mechanisms to convert these values to be relative to other components or the
main screen (that is, global coordinates). Notice in the preceding diagram that a window's top-left
position does not include the title bar area.

You will now create a simple JUCE application that includes some fundamental component types. As
the code for this project is going to be quite simple, we will write all our code into the header file (.h).
This is not recommended for real-world projects except for quite small classes (or where there are other
good reasons), but this will keep all the code in one place as we go through it. Also, we will split up the
code into the .h and .cpp files later in the chapter.

Create a new JUCE project using the Introjucer application:
1. Choose menu item File | New Project…
2. Select Create a Main.cpp file and a basic window from the Files to Auto-Generate menu.
3. Choose where to save the project and name it Chapter02_01.

4. Click on the Create… button
5. Navigate to the Files panel.
6. Right-click on the file MainComponent.cpp, choose Delete from the contextual menu, and confirm.
7. Choose menu item File | Save Project.
8. Open the project in your Integrated Development Environment (IDE), either Xcode or Visual

Studio.

Navigate to the MainComponent.h file in your IDE. The most important part of this file should look
similar to this:

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component
{
public:
 //==
 MainContentComponent();
 ~MainContentComponent();

 void paint (Graphics&);
 void resized();

 private:
 //==
 JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR
 (MainContentComponent)
};

Of course, we have removed the actual code from the autogenerated project by removing the .cpp file.

First let's make an empty window. We will remove some of the elements to simplify the code and add a
function body for the constructor. Change the declaration of the MainContentComponent class shown as
follows:

class MainContentComponent : public Component
{
public:
 MainContentComponent()
 {
 setSize (200, 100);
 }
};

Build and run the application, there should be an empty window named MainWindow in the center of
the screen. Our JUCE application will create a window and place an instance of our
MainContentComponent class as its content (that is, excluding the title bar). Notice our
MainContentComponent class inherits from the Component class and therefore has access to a range of
functions implemented by the Component class. The first of these is the setSize() function, which sets
the width and height of our component.

Adding child components
Building user interfaces using components generally involves combining other components to produce
composite user interfaces. The easiest way to do this is to include member variables in which to store
the child components in the parent component class. For each child component that we wish to add,
there are five basic steps:
1. Creating a member variable in which to store the new component.
2. Allocating a new component (either using static or dynamic memory allocation).
3. Adding the component as a child of the parent component.
4. Making the child component visible.
5. Setting the child component's size and position within the parent component.

First, we will create a button; change the code shown as follows. The preceding numbered steps are
illustrated in the code comments:

class MainContentComponent : public Component
{
public:
 MainContentComponent()
 : button1 ("Click") // Step [2]
 {
 addAndMakeVisible (&button); // Step [3] and [4]
 setSize (200, 100);
 }

 void resized()
 {
 // Step [5]
 button1.setBounds (10, 10, getWidth()-20, getHeight()-20);
 }

private:
 TextButton button1; // Step [1]
};

The important parts of the preceding code are:
An instance of the JUCE TextButton class was added to the private section of our class. This
button will be statically allocated.
The button is initialized in the constructor's initializer list using a string that sets the text that will
appear on the button.
A call to the component function addAndMakeVisible() is passed as a pointer to our button instance.
This adds the child component to the parent component hierarchy and makes the component visible
on screen.
The component function resized() is overridden to position our button with an inset of 10 pixels
within the parent component (this is achieved by using component functions getWidth() and
getHeight() to discover the size of the parent component). This call to the resized() function is
triggered when the parent component is resized, which in this case happens when we call the
setSize() function in the constructor. The arguments to the setSize() function are in the order:
width and height. The arguments to the setBounds() function are in the order: left, top, width, and
height.

Build and run the application. Notice that the button responds as the mouse pointer hovers over the
button and when the button is clicked, although the button doesn't yet do anything.

Generally, this is the most convenient method of positioning and resizing child components, even though
in this example we could have easily set all the sizes in the constructor. The real power of this technique
is illustrated when the parent component becomes resizable. The easiest way to do that here is to enable
the resizing of the window itself. To do this, navigate to the Main.cpp file (which contains the boilerplate
code to set up the basic application) and add the following highlighted line to the MainWindow
constructor:

...
{
 setContentOwned (new MainContentComponent(), true);

 centreWithSize (getWidth(), getHeight());
 setVisible (true);
 setResizable (true, true);
}
...

Build and run the application and notice that the window now has a corner resizer in the bottom-right.
The important thing here is that the button automatically resizes as the window size changes due to the
way we implemented this above. In the call to the setResizable() function, the first argument sets
whether the window is resizable and the second argument sets whether this is via a corner resizer (true)
or allowing the border of the window to be dragged to resize the window (false).

Child components may be positioned proportionally rather than with absolute or offset values. One way
of achieving this is through the setBoundsRelative() function. In the following example you will add a
slider control and a label to the component.

class MainContentComponent : public Component
{
public:
 MainContentComponent()
 : button1 ("Click"),
 label1 ("label1", "Info")
 {
 slider1.setRange (0.0, 100.0);
 addAndMakeVisible (&button1);
 addAndMakeVisible (&slider1);
 addAndMakeVisible (&label1);
 setSize (200, 100);
 }

 void resized()
 {
 button1.setBoundsRelative (0.05, 0.05, 0.90, 0.25);
 slider1.setBoundsRelative (0.05, 0.35, 0.90, 0.25);
 label1.setBoundsRelative (0.05, 0.65, 0.90, 0.25);
 }

private:
 TextButton button1;
 Slider slider1;
 Label label1;
};

In this case, each child component is 90 percent of the width of the parent component and positioned
five percent of the parent's width from the left. Each child component is 25 percent of the height of the
parent, and the three components are distributed top to bottom with the button five percent of the
parent's height from the top. Build and run the application, and notice that resizing the window
automatically and smoothly, updates the sizes and position of the child components. The window should
look similar to the following screenshot. In the next section you will intercept and respond to user
interaction:

Tip

Downloading the example code

You can download the example code files for all Packt books you have purchased from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Responding to user interaction and changes
Create a new Introjucer project named Chapter02_02 with a basic window; this time retain all of the
auto-generated files. We will now split the code from the previous section into the MainComponent.h and
MainComponent.cpp files. The MainComponent.h file should look as follows:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component
{
public:
 MainContentComponent();
 void resized();

private:
 TextButton button1;
 Slider slider1;
 Label label1;
};
#endif

The MainComponent.cpp file should look as follows:

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
: button1 ("Click")
{
 slider1.setRange (0.0, 100.0);
 addAndMakeVisible (&button1);
 addAndMakeVisible (&slider1);
 addAndMakeVisible (&label1);
 setSize (200, 100);
}

void MainContentComponent::resized()
{
 button1.setBoundsRelative (0.05, 0.05, 0.90, 0.25);
 slider1.setBoundsRelative (0.05, 0.35, 0.90, 0.25);
 label1.setBoundsRelative (0.05, 0.65, 0.90, 0.25);
}

Broadcasters and listeners
Although the Slider class already contains a text box that displays the slider's value, it will be useful to
examine how this communication works within JUCE. In the next example we will:

Remove the text box from the slider
Make the slider's value appear in the label
Enable the slider to be zeroed by clicking on the button

To achieve this, JUCE uses the observer pattern widely throughout the library to enable objects to
communicate. In particular, the Component class and the Component subclasses use this to notify your
code when a user interface item has been clicked, their content has been changed, and so on. In JUCE,
these are generally known as listeners (the observers) and broadcasters (the subjects of the observers).
JUCE also makes extensive use of multiple inheritance. One area in JUCE where multiple inheritance is
particularly useful is through the use of the broadcaster and listener systems. Generally, a JUCE class
that supports broadcasting its state changes has a nested class called Listener. Thus, the Slider class
has the Slider::Listener class and the Label class has the Label::Listener class. (These are often
represented by classes with similar names to help support older IDEs, for example, SliderListener and
LabelListener are equivalent.) The TextButton class is in fact a subclass of the more generic Button
class; therefore, its listener class is Button::Listener. Each of these listener classes will contain a
declaration of at least one pure virtual function . This will require our derived class to implement these
functions. Listener classes may contain other regular virtual functions, meaning they may be
implemented optionally. To implement these functions, first add listener classes for the button and slider
as public base classes of our MainContentComponent class in the MainComponent.h file shown as follows:

class MainContentComponent : public Component,
 public Button::Listener,
 public Slider::Listener
{
...

Each of our user interface listeners here requires us to implement one function to respond to its changes.
These are the buttonClicked() and sliderValueChanged() functions. Add these to the public section
of our class declaration:

 ...
 void buttonClicked (Button* button);
 void sliderValueChanged (Slider* slider);
 ...

The full listing to use for the MainComponent.cpp file is shown as follows:

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
: button1 ("Zero Slider"),
 slider1 (Slider::LinearHorizontal, Slider::NoTextBox)
{
 slider1.setRange (0.0, 100.0);

 slider1.addListener (this);
 button1.addListener (this);

 slider1.setValue (100.0, sendNotification);

 addAndMakeVisible (&button1);
 addAndMakeVisible (&slider1);
 addAndMakeVisible (&label1);

 setSize (200, 100);
}

void MainContentComponent::resized()
{
 button1.setBoundsRelative (0.05, 0.05, 0.90, 0.25);
 slider1.setBoundsRelative (0.05, 0.35, 0.90, 0.25);
 label1.setBoundsRelative (0.05, 0.65, 0.90, 0.25);
}

void MainContentComponent::buttonClicked (Button* button)
{
 if (&button1 == button)
 slider1.setValue (0.0, sendNotification);
}
void MainContentComponent::sliderValueChanged(Slider* slider)
{
 if (&slider1 == slider) {
 label1.setText (String (slider1.getValue()),
 sendNotification);
 }
}

The two calls to add the listeners using the addListener() function, pass the this pointer (a pointer to
our MainContentComponent instance). This adds our MainContentComponent instance as a listener to both
the slider and the button respectively.

Although there is only one instance of each type of component, the preceding example shows the
recommend way to check which component broadcasted a change, in cases where there may be many
similar components (such as banks of buttons or sliders). This technique is to check the value of the
pointer received by the listener function and whether this matches the address of one of the member
variables. There is one thing to note on the coding style here. You may prefer to write the if()
statement with the arguments swapped over as follows:

if
(button == &button1)
...

However, the style used throughout this book is employed to cause a deliberate compiler error if you
mistype the "==" operator as a single "=" character. This should help avoid bugs that might be introduced
by this mistake.

Components that store some kind of value such as sliders and labels may, of course, have their state set
programmatically. In this case, you can control whether its listeners are notified of the change or not
(you can also customize whether this is transmitted synchronously or asynchronously). This is the
purpose of the sendNotification value (which is an enumerated constant) in the calls to the
Slider::setValue() and Label::setText() functions as in the preceding code snippet. Also, you should
notice that the call to the Slider::setValue() function in the constructor is made after the class has

been registered as a listener. This ensures that all the components are configured correctly from the start
while minimizing the duplication of code. This code makes use of the String class to pass text to the
label, to convert text to numerical values, and vice versa. The String class will be explored in more
detail in the next chapter, but for now, we will limit the usage of the String class to these basic
operations. The text box is removed from the slider by initializing the slider in the initializer list with a
slider style and text box style. In this case, the initializer slider1 (Slider::LinearHorizontal,
Slider::NoTextBox) specifies a horizontal slider and that no text box should be attached.

Finally, should we want to set the value of the slider to something specific; we can make the label
editable and transmit any changes typed into the label to the slider. Make another new Introjucer project
and name it Chapter02_03. Add the Label::Listener class to the base classes of our
MainContentComponent class in the header file:

class MainContentComponent : public Component,
 public Button::Listener,
 public Slider::Listener,
 public Label::Listener
{
...

Add the Label::Listener function that responds to the label changes, also in the header file:

...
 void labelTextChanged (Label* label);
...

Update the constructor in the MainComponent.cpp file to further configure the label:

MainContentComponent::MainContentComponent()
: button1 ("Zero Slider"),
 slider1 (Slider::LinearHorizontal, Slider::NoTextBox)
{
 slider1.setRange (0.0, 100.0);
 label1.setEditable (true);

 slider1.addListener (this);
 button1.addListener (this);
 label1.addListener (this);

 slider1.setValue (100.0, sendNotification);

 addAndMakeVisible (&button1);
 addAndMakeVisible (&slider1);
 addAndMakeVisible (&label1);

 setSize (200, 100);
}

Here, the label is set to be editable with a single click and our class registers itself as a listener for the
label. Lastly, add the implementation for the labelTextChanged() function to the MainComponent.cpp
file:

void MainContentComponent::labelTextChanged (Label* label)
{
 if (&label1 == label) {
 slider1.setValue (label1.getText().getDoubleValue(),

 sendNotification);
 }
}

Build and run the application to test this functionality. There are some problems:
The slider correctly clips values typed into the label that are outside the range of the slider, but the
text in the label still remains if these values are outside the range
The label allows non-numerical characters to be typed in (although these are usefully resolved to
zero)

Filtering data entry
The first issue mentioned above is straightforward, and this is to convert the slider's value back to text
and use this to set the label content. This time we use the dontSendNotification value, because we
want to avoid an infinite loop whereby each component would broadcast a message that causes a
change that would in turn cause a message to be broadcasted and so on:

 if (&label1 == label)
 {
 slider1.setValue (label1.getText().getDoubleValue(),
 sendNotification);
 label1.setText (String (slider1.getValue()),
 dontSendNotification);
 }

The second issue requires a filter to allow only certain characters. Here, you need access to the label's
internal TextEditor object. To do this, you could create a custom label class by inheriting from the
Label class and implementing the editorShown() virtual function. Add this small class to the
MainComponent.h file above the MainContentComponent class declaration (although to reuse this class
across a number of components in your application, it may be better to place this code in a separate
file):

class NumericalLabel : public Label
{
public:
 void editorShown (TextEditor* editor)
 {
 editor->setInputRestrictions (0, "-0123456789.");
 }
};

Because the text editor is just about to be shown, this function is called by the label, and at that point
you can set the text editor's input restrictions using its setInputRestrictions() function. The two
arguments are: length and allowable characters. The zero length means there is no restriction on length
and the allowable characters in this case include all the digits, the minus sign and the period. (In fact you
could omit the minus sign to disallow negative numbers and omit the period if you wanted to allow
integer values only.) To use this class in place of the built-in Label class simply replace this class name
in the member variable list for our MainContentComponent class as shown highlighted:

...
private:
 TextButton button1;
 Slider slider1;
 NumericalLabel label1;
...

Hopefully, by this point you can see that JUCE classes provide a useful range of core functionality while
allowing customizations with relative ease.

Using other component types
There are many other built-in component types and variations on the sliders and buttons already seen. In
the previous section we used the default horizontal slider, but the Slider class is very flexible, as
illustrated by the Widget demo page of the JUCE Demo application. The sliders can adopt a rotary-type
control, have minimum and maximum ranges, and warp the numerical track to adopt non-linear
behavior. Similarly, buttons can adopt different styles such as toggle buttons, buttons that use images,
and so on. The following example illustrates a toggle-type button that changes the style of two sliders.
Create a new Introjucer project named Chapter02_04, and use the following code:

MainComponent.h:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component,
 public Button::Listener
{
public:
 MainContentComponent();
 void resized();

 void buttonClicked (Button* button);

private:
 Slider slider1;
 Slider slider2;
 ToggleButton toggle1;
};
#endif

MainComponent.cpp:

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
: slider1 (Slider::LinearHorizontal, Slider::TextBoxLeft),
 slider2 (Slider::LinearHorizontal, Slider::TextBoxLeft),
 toggle1 ("Slider style: Linear Bar")
{
 slider1.setColour (Slider::thumbColourId, Colours::red);
 toggle1.addListener (this);

 addAndMakeVisible (&slider1);
 addAndMakeVisible (&slider2);
 addAndMakeVisible (&toggle1);

 setSize (400, 200);
}

void MainContentComponent::resized()
{
 slider1.setBounds (10, 10, getWidth() - 20, 20);
 slider2.setBounds (10, 40, getWidth() - 20, 20);
 toggle1.setBounds (10, 70, getWidth() - 20, 20);
}

void MainContentComponent::buttonClicked (Button* button)
{
 if (&toggle1 == button)
 {
 if (toggle1.getToggleState()) {
 slider1.setSliderStyle (Slider::LinearBar);
 slider2.setSliderStyle (Slider::LinearBar);
 } else {
 slider1.setSliderStyle (Slider::LinearHorizontal);
 slider2.setSliderStyle (Slider::LinearHorizontal);
 }
 }
}

This example uses a ToggleButton object and checks its toggle state in the buttonClicked() function
using the getToggleState() function. One obvious customization yet to be discussed is changing the
colors of the various elements within the built-in components. This will be covered in the next section.

Specifying colors
Colors in JUCE are handled by the Colour and Colours classes (note the British spelling of these two
class names):

The Colour class stores a 32-bit color with 8-bit alpha, red, green, and blue values (ARGB). A
Colour object may be initialized from other formats (for example, using floating point values, or
values in the HSV format).
The Colour class includes a number of utilities for creating new colors from existing ones, for
example, by modifying the alpha channel, changing only the brightness or finding a suitable
contrasting color.
The Colours class is a collection of static Colour instances (for example, Colour::red,
Colour::cyan). These are based broadly on the naming scheme of colors in the HyperText
Markup Language (HTML) standard.

For example, the following code snippet illustrates several different ways of creating the same "red"
color:

Colour red1 = Colours::red; // using Colours
Colour red2 = Colour (0xffff0000); // using hexadecimal ARGB
Colour red3 = Colour (255, 0, 0); // using 8-bit RGB values
Colour red4 = Colour::fromFloatRGBA (1.f, 0.f, 0.f, 1.f); // float
Colour red5 = Colour::fromHSV (0.f, 1.f, 1.f, 1.f); // HSV

Component classes employ an ID system to refer to the various colors they use for different purposes
(background, border, text, and so on). To use these colors to change the appearance of a component, the
Component::setColour() function is used:

void setColour (int colourId, Colour newColour);

For example, to change the color of a slider's thumb (which is the draggable part), the ID is the
Slider::thumbColourId constant (this too changes the fill color that represents the slider's value when
the slider style is set to the Slider::LinearBar constant). You can test this in the Chapter02_04 project
by adding the following highlighted lines to the constructor:

MainContentComponent::MainContentComponent()
: slider1 (Slider::LinearHorizontal, Slider::TextBoxLeft),
 slider2 (Slider::LinearHorizontal, Slider::TextBoxLeft),
 toggle1 ("Slider style: Linear Bar")
{
 slider1.setColour (Slider::thumbColourId, Colours::red);
 slider2.setColour (Slider::thumbColourId, Colours::red);
 toggle1.addListener (this);

 addAndMakeVisible (&slider1);
 addAndMakeVisible (&slider2);
 addAndMakeVisible (&toggle1);

 setSize (400, 200);
}

The final look of this application showing both types of slider is shown in the following screenshot:

Component color IDs
Many built-in components define their own color ID constants; the most useful are:

Slider::backgroundColourId

Slider::thumbColourId

Slider::trackColourId

Slider::rotarySliderFillColourId

Slider::rotarySliderOutlineColourId

Slider::textBoxTextColourId

Slider::textBoxBackgroundColourId

Slider::textBoxHighlightColourId

Slider::textBoxOutlineColourId

Label::backgroundColourId

Label::textColourId

Label::outlineColourId

ToggleButton::textColourId

TextButton::buttonColourId

TextButton::buttonOnColourId

TextButton::textColourOffId

TextButton::textColourOnId

Each of these enumerated constants is defined in the class in which they are used. There are many
others for each of the component types.

Setting colors using the LookAndFeel class
If you have many controls and want to set unified colors for all of them, then it is likely to be more
convenient to set the color at some other point in the component hierarchy. This is one purpose of the
JUCE LookAndFeel class. This was seen briefly in Chapter 1, Installing JUCE and the Introjucer
Application where the different styles of the various widgets can be selected by using a different look
and feel. If this is to be a global change across the whole application then the best place to put this
change is likely to be in the initialization code. To try this, remove the following two lines of code from
your project, which were added in the previous step:

 slider1.setColour (Slider::thumbColourId, Colours::red);
 slider2.setColour (Slider::thumbColourId, Colours::red);

Navigate to the Main.cpp file. Now add the following lines to the initialise() function (again notice
the British spelling).

void initialise (const String& commandLine)
{
 LookAndFeel& lnf = LookAndFeel::getDefaultLookAndFeel();
 lnf.setColour (Slider::thumbColourId, Colours::red);
 mainWindow = new MainWindow();
}

It should be clear that an extended list of colors could be configured at this point to customize the
application's appearance. Another technique, that again uses the LookAndFeel class, is to inherit from the
default LookAndFeel class and update colors in this derived class. Setting a particular look and feel for a
component affects all child components in its hierarchy. Therefore, this method would allow you to set
colors selectively in different parts of an application. A solution that uses this method is shown as
follows, with the important parts highlighted:

The MainComponent.h file:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component,
 public Button::Listener
{
public:
 MainContentComponent();
 void resized();

 void buttonClicked (Button* button);

 class AltLookAndFeel : public LookAndFeel
 {
 public:
 AltLookAndFeel()
 {
 setColour (Slider::thumbColourId, Colours::red);
 }
 };
private:

 Slider slider1;
 Slider slider2;
 ToggleButton toggle1;
 AltLookAndFeel altLookAndFeel;
};
#endif

In the MainComponent.cpp file only the constructor needs updating:

MainContentComponent::MainContentComponent()
: slider1 (Slider::LinearHorizontal, Slider::TextBoxLeft),
 slider2 (Slider::LinearHorizontal, Slider::TextBoxLeft),
 toggle1 ("Slider style: Linear Bar")
{
 setLookAndFeel (&altLookAndFeel);
 toggle1.addListener (this);

 addAndMakeVisible (&slider1);
 addAndMakeVisible (&slider2);
 addAndMakeVisible (&toggle1);

 setSize (400, 200);
}

Here, we create a nested class AltLookAndFeel that is based on the default LookAndFeel class. This is
defined as a nested class, because we need to only refer to it from within a MainContentComponent
instance. It might be more appropriate to define this class outside the MainContentComponent class if the
AltLookAndFeel becomes a more extended class or needs to be reused by other component classes that
we write.

In the AltLookAndFeel constructor, we set the color of the slider thumb. Finally, we set the look and feel
for the MainContentComponent class in its constructor. There are clearly many other possible techniques
using this handful of tools, and the exact approach is heavily dependent on the specific application
features being developed. It is important to note that the LookAndFeel class not only deals with colors,
but also more broadly enables you to configure the exact way in which certain user interface elements
are drawn. Not only can you change the color of the slider thumb, you can change its radius (by
overriding the LookAndFeel::getSliderThumbRadius() function) or even change its shape altogether (by
overriding the LookAndFeel::drawLinearSliderThumb() function).

Using drawing operations
Although it is advisable to use the built-in components if possible, there are occasions where you may
need or wish to create a completely new custom component. This may be to perform some specific
drawing tasks or a unique user interface item. JUCE also handles this elegantly.

First, create a new Introjucer project and name it Chapter02_05. To perform drawing tasks in a
component, you should override the Component::paint() function. Change the contents of the
MainComponent.h file to:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component
{
public:
 MainContentComponent();
 void paint (Graphics& g);
};
#endif

Change the contents of the MainComponent.cpp file to:

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
{
 setSize (200, 200);
}

void MainContentComponent::paint (Graphics& g)
{
 g.fillAll (Colours::cornflowerblue);
}

Build and run the application to see the resulting empty window filled with a blue color.

The paint() function is called when the component needs to redraw itself. This might be due to the
component having been resized (which of course you can try out using the corner resizer), or specific
calls to invalidate the display (for example, the component displays visual representation of a value and
this is no longer the currently stored value). The paint() function is passed a reference to a Graphics
object. It is this Graphics object that you instruct to perform your drawing tasks. The
Graphics::fillAll() function used in the code above should be self-explanatory: it fills the entire
component with the specified color. The Graphics object can draw rectangles, ellipses, rounded
rectangles, lines (in various styles), curves, text (with numerous shortcuts for fitting or truncating text
within particular areas) and images.

The next example illustrates drawing a collection of random rectangles using random colors. Change the
paint() function in the MainComponent.cpp file to:

void MainContentComponent::paint (Graphics& g)

{
 Random& r (Random::getSystemRandom());
 g.fillAll (Colours::cornflowerblue);

 for (int i = 0; i < 20; ++i) {
 g.setColour (Colour (r.nextFloat(),
 r.nextFloat(),
 r.nextFloat(),
 r.nextFloat()));

 const int width = r.nextInt (getWidth() / 4);
 const int height = r.nextInt (getHeight() / 4);
 const int left = r.nextInt (getWidth() - width);
 const int top = r.nextInt (getHeight() - height);

 g.fillRect (left, top, width, height);
 }
}

This makes use of multiple calls to the JUCE random number generator class Random. This is a
convenient class that allows the generation of pseudo-random integers and floating-point numbers. You
can make your own instance of a Random object (which is recommend if your application uses random
numbers in multiple threads), but here we simply take a copy of a reference to a global "system" Random
object (using the Random::getSystemRandom() function) and use it multiple times. Here, we fill the
component with a blue background and generate 20 rectangles. The color is generated from randomly
generated floating point ARGB values. The call to the Graphics::setColour() function sets the current
drawing color that will be employed by subsequent drawing commands. A randomly generated rectangle
is also created by first choosing width and height (each being a maximum value of one-quarter of the
parent component's width and height respectively). Then the position of the rectangle is randomly
selected; again this is done using the parent component's width and height but this time subtracting the
width and height of our random rectangle to ensure its right and bottom edges are not off-screen. As
mentioned previously, the paint() function is called each time the component needs to be redrawn. This
means we will get a completely new set of random rectangles as the component is resized.

Changing the drawing command to fillEllipse() rather than fillRect() draws a collection of ellipses
instead. Lines can be drawn in various ways. Change the paint() function as follows:

void MainContentComponent::paint (Graphics& g)
{
 Random& r (Random::getSystemRandom());
 g.fillAll (Colours::cornflowerblue);

 const float lineThickness = r.nextFloat() * 5.f + 1.f;
 for (int i = 0; i < 20; ++i) {
 g.setColour (Colour (r.nextFloat(),
 r.nextFloat(),
 r.nextFloat(),
 r.nextFloat()));

 const float startX = r.nextFloat() * getWidth();
 const float startY = r.nextFloat() * getHeight();
 const float endX = r.nextFloat() * getWidth();
 const float endY = r.nextFloat() * getHeight();

 g.drawLine (startX, startY,
 endX, endY,

 lineThickness);
 }
}

Here, we choose a random line thickness (between one and six pixels wide) before the for() loop and
use it for each line. The start and end positions of the lines are also randomly generated. To draw a
continuous line there are a number of options, you could:

store the last end point of the line and use this as the start point of the next line; or
use a JUCE Path object to build a series of line drawing commands and draw the path in one pass.

The first solution would be something like this:

void MainContentComponent::paint (Graphics& g)
{
 Random& r (Random::getSystemRandom());
 g.fillAll (Colours::cornflowerblue);

 const float lineThickness = r.nextFloat() * 5.f + 1.f;

 float x1 = r.nextFloat() * getWidth();
 float y1 = r.nextFloat() * getHeight();
 for (int i = 0; i < 20; ++i) {
 g.setColour (Colour (r.nextFloat(),
 r.nextFloat(),
 r.nextFloat(),
 r.nextFloat()));

 const float x2 = r.nextFloat() * getWidth();
 const float y2 = r.nextFloat() * getHeight();
 g.drawLine (x1, y1, x2, y2, lineThickness);
 x1 = x2;
 y1 = y2;
 }
}

The second option is slightly different; in particular, each of the lines that make up the path must be
same color:

void MainContentComponent::paint (Graphics& g)
{
 Random& r (Random::getSystemRandom());
 g.fillAll (Colours::cornflowerblue);

 Path path;
 path.startNewSubPath (r.nextFloat() * getWidth(),
 r.nextFloat() * getHeight());
 for (int i = 0; i < 20; ++i) {
 path.lineTo (r.nextFloat() * getWidth(),
 r.nextFloat() * getHeight());
 }

 g.setColour (Colour (r.nextFloat(),
 r.nextFloat(),
 r.nextFloat(),
 r.nextFloat()));

 const float lineThickness = r.nextFloat() * 5.f + 1.f;

 g.strokePath (path, PathStrokeType (lineThickness));
}

Here the path is created before the for() loop and each iteration of the loop adds a line segment to the
path. These two approaches to line drawing clearly suit different applications. The path drawing
technique is heavily customizable, in particular:

The joints at the corners of the line segments can be customized with the PathStrokeType class (for
example, to make the corners slightly rounded).
The lines need not be straight: they can be Bezier curves.
The path may include other fundamental shapes such as rectangles, ellipses, stars, arrows and so on.

In addition to these line drawing commands, there are accelerated functions specifically for drawing
horizontal and vertical lines (that is, non-diagonal). These are the Graphics::drawVerticalLine() and
Graphics::drawHorizontalLine() functions.

Intercepting mouse activity
To help your component respond to mouse interaction, the Component class has six important callback
functions that you can override:

mouseEnter(): Called when the mouse pointer enters the bounds of this component and the mouse
buttons are up.
mouseMove(): Called when the mouse pointer moves within the bounds of this component and the
mouse buttons are up. A mouseEnter() callback will always have been received first.
mouseDown(): Called when one or more mouse buttons are pressed while the mouse pointer is over
this component. A mouseEnter() callback will always have been received first and it is highly likely
one or more mouseMove() callbacks will have been received too.
mouseDrag(): Called when the mouse pointer is moved following a mouseDown() callback on this
component. The position of the mouse pointer may be outside the bounds of the component.
mouseUp(): Called when the mouse button is released following a mouseDown() callback on this
component (the mouse pointer will not necessarily be over this component at this time).
mouseExit(): Called when the mouse pointer leaves the bounds of this component when the mouse
buttons are up and after a mouseUp() callback if the user has clicked on this component (even if the
mouse pointer exited the bounds of this component some time ago).

In each of these cases, the callbacks are passed a reference to a MouseEvent object that can provide
information about the current state of the mouse (where it was at the time of the event, when the event
occurred, which modifier keys on the keyboard were down, which mouse buttons were down, and so
on). In fact, although these classes and function names refer to the "mouse" this system can handle
multi-touch events and the MouseEvent object can be ask which "finger" was involved in such cases (for
example, on the iOS platform).

To experiment with these callbacks, create a new Introjucer project and name it Chapter02_06. Use the
following code for this project.

The MainComponent.h file declares the class with its various member functions and data:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component
{
public:
 MainContentComponent();
 void paint (Graphics& g);

 void mouseEnter (const MouseEvent& event);
 void mouseMove (const MouseEvent& event);
 void mouseDown (const MouseEvent& event);
 void mouseDrag (const MouseEvent& event);
 void mouseUp (const MouseEvent& event);
 void mouseExit (const MouseEvent& event);

 void handleMouse (const MouseEvent& event);

private:
 String text;
 int x, y;
};
#endif

The MainComponent.cpp file should contain the following code. First, add the constructor and the
paint() function. The paint() function draws a yellow circle at the mouse position and some text
showing the current phase of the mouse interaction:

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
: x (0), y (0)
{
 setSize (200, 200);
}

void MainContentComponent::paint (Graphics& g)
{
 g.fillAll (Colours::cornflowerblue);
 g.setColour (Colours::yellowgreen);
 g.setFont (Font (24));
 g.drawText (text, 0, 0, getWidth(), getHeight(),
 Justification::centred, false);
 g.setColour (Colours::yellow);
 const float radius = 10.f;
 g.fillEllipse (x - radius, y - radius,
 radius * 2.f, radius * 2.f);
}

Then add the mouse event callbacks and our handleMouse() function described as follows. We store the
coordinates of the mouse callbacks with reference to our component and store a String object based on
the type of callback (mouse down, up, move, and so on). Because the storage of the coordinates is the
same in each case, we use the handleMouse() function, which stores the coordinates from the
MouseEvent object in our class member variables x and y, and pass this MouseEvent object from the
callbacks. To ensure that the component redraws itself, we must call the Component::repaint()
function.

void MainContentComponent::mouseEnter (const MouseEvent& event)
{
 text = "mouse enter";
 handleMouse (event);
}

void MainContentComponent::mouseMove (const MouseEvent& event)
{
 text = "mouse move";
 handleMouse (event);
}

void MainContentComponent::mouseDown (const MouseEvent& event)
{
 text = "mouse down";
 handleMouse (event);
}

void MainContentComponent::mouseDrag (const MouseEvent& event)

{
 text = "mouse drag";
 handleMouse (event);
}

void MainContentComponent::mouseUp (const MouseEvent& event)
{
 text = "mouse up";
 handleMouse (event);
}

void MainContentComponent::mouseExit (const MouseEvent& event)
{
 text = "mouse exit";
 handleMouse (event);
}

void MainContentComponent::handleMouse (const MouseEvent& event)
{
 x = event.x;
 y = event.y;
 repaint();
}

As shown in the following screenshot, the result is a yellow circle that sits under our mouse pointer and
a text message in the center of the window that gives feedback as to the type of mouse event most
recently received:

Configuring complex component arrangements
JUCE makes it straightforward to create custom components either by combining several built-in
components or through providing an effective means of interacting with pointing devices combined with
a range of fundamental drawing commands. In addition to this, the Introjucer application provides a
graphical editor for laying out custom components. This will then autogenerate the code required to
rebuild this interface in your application. Create a new Introjucer project as earlier, with a basic
window, and name it Chapter02_07.

Switch to the Files panel, right-click (on the Mac, press control and click) on the Source folder in the
hierarchy, and select Add New GUI Component… from the contextual menu, as shown in the
following screenshot:

You will be asked to name the header file, which also names the corresponding .cpp file. Name the
header file CustomComponent.h. When you select a .cpp file created in this way, you are offered several
ways of editing the file. In particular you can add child components, add drawing commands, or you can
edit the code directly. Select the CustomComponent.cpp file, as shown in the following screenshot:

In the Subcomponents panel, you can right-click on the grid to add one of the several built-in
component types. Add in a few buttons and sliders. Each of these can be edited when selected using the
properties on the right-hand side of the window. What is particularly useful here is the ability to set

complex rules about the positioning of the components relative to each other and the parent component.
Some of the options for this are visible in the following screenshot:

Because the Introjucer application generates C++ code, it should be clear that these options are clearly
available programmatically. For some tasks, especially complex GUIs, using the GUI editor may be
more convenient. It is also a useful way of discovering features available in the various component
classes and the corresponding code to enable and control these features.

Before opening the project in your IDE, select the Class panel (using the tab to the left of the
Subcomponents tab) and change the class name from NewComponent to CustomComponent (to match the
filenames of the code). Save the Introjucer project and open its IDE project for your platform. You need
make only a few minor modifications to load this auto-generated code into your MainContentComponent
class. Change the MainComponent.h file as follows:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"
#include "CustomComponent.h"

class MainContentComponent : public Component
{
public:
 MainContentComponent();

private:
 CustomComponent custom;
};
#endif

Then, change the MainComponent.cpp file to:

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
{
 addAndMakeVisible (&custom);
 setSize (custom.getWidth(), custom.getHeight());
}

This allocates a CustomComponent object and makes it fill the bounds of the MainContentComponent
object. Build and run the application, and you should see whatever user interface you designed in the
Introjucer application's GUI editor. The Introjucer application takes special control of the source files
for these autogenerated GUI controls. Take a look in the CustomComponent.h and CustomComponent.cpp
files. There will be some code you recognize from earlier in this chapter (one major difference is that the
Introjucer application generates code to allocate the subcomponent classes dynamically, rather than
using static allocation as we have done here). You must be very careful when editing code in these
autogenerated GUI files, because loading the project back into the Introjucer application may overwrite
some of your changes (which doesn't happen with regular code files). The Introjucer application
identifies areas where you may make changes using specially tagged opening and closing comments. For
example, this is the end of a typical autogenerated component constructor:

...
 //[UserPreSize]
 //[/UserPreSize]

 setSize (600, 400);

 //[Constructor] You can add your own custom stuff here..
 //[/Constructor]
}

You may make changes and add code in between the opening [UserPreSize] tag and closing
[/UserPreSize] tag and between the opening [Constructor] tag and closing [/Constructor] tag. In fact
you can make edits between any of these opening and closing tags but not anywhere else. Doing so risks
your changes being deleted if and when the Introjucer project is next saved to disk. This applies if you
add another build target, add another GUI component, add other files to the Introjucer project, and
where you explicitly save the project in the Introjucer application.

Other component types
JUCE comprises a wide range of other component types for particular tasks. Many of these will be
familiar, as similar controls are available within many operating systems and other GUI frameworks. In
particular:

Buttons: There are several button types, including buttons that can be created using image files and
other shapes (for example, ImageButton, and ShapeButton classes); there is a ToolbarButton class
that can be used to create toolbars.
Menus: There is a PopupMenu class (for issuing commands) and a ComboBox class (for selecting
items).
Layout: There are various classes for organizing other components including a TabbedComponent
class (for creating tabbed pages), a ViewPort class (for creating scrollable content), a TableListBox
class (for creating tables), and a TreeView class (for organizing content in to a hierarchical
structure).
File browsers: There are various ways of displaying and accessing file directory structures
including the FileChooser, FileNameComponent, and FileTreeComponent classes.
Text editors: There is a general-purpose TextEditor class, and a CodeEditorComponent for
displaying and editing code.

Most of source code for these components can be found in juce/modules/juce_gui_basics with some
additional classes being found in juce/modules/juce_gui_extra. All classes are documented in the
online documentation. An alphabetical list of all classes can be found here:

http://www.juce.com/api/annotated.html

http://www.juce.com/api/annotated.html

Summary
By the end of this chapter you should be familiar with the principles of building user interfaces in JUCE
both programmatically and via the Introjucer application. This chapter has shown you how to create and
use JUCE's built-in components, how to construct custom components, and how to perform fundamental
drawing operations on-screen. You should read the online documentation for each class introduced
during this chapter. You should also examine the code bundle for this book that contains each of the
examples developed in this chapter. The code in this bundle also includes more inline comments for
each of the examples. The next chapter covers a range of non-GUI classes although many of these will
be useful for managing some elements of user interface functionality.

Chapter 3. Essential Data Structures
JUCE includes a range of important data structures, many of which could be seen as replacements for
some of the standard library classes. This chapter introduces the essential classes for JUCE
development. In this chapter we will cover the following topics:

Understanding the numerical types
Specifying and manipulating strings of text using the String class
Measuring and displaying time
Specifying file paths in a cross-platform manner using the File class (including access to the user's
home space, the Desktop and Documents locations)
Using dynamically allocated arrays: the Array class
Employing smart pointer classes

By the end of this chapter, you will be able to create and manipulate data in a range of JUCE's essential
classes.

Understanding the numerical types
The word size of some the basic data types (char, int, long, and so on) varies across platforms,
compilers, and CPU architectures. A good example is the type long. In Xcode on Mac OS X, long is 32
bits wide when compiling 32-bit code and 64 bits wide when compiling 64-bit code. In Microsoft Visual
Studio on Windows, long is always 32 bits wide. (The same applies to the unsigned versions too.) JUCE
defines a handful of primitive types to assist the writing of platform-independent code. Many of these
have familiar names and may be the same names used in other libraries and frameworks in use by your
code. These types are defined in the juce namespace; therefore, can be disambiguated using the juce::
prefix if necessary. These primitive types are: int8 (8-bit signed integer), uint8 (8-bit unsigned integer),
int16 (16-bit signed integer), uint16 (16-bit unsigned integer), int32 (32-bit signed integer), uint32 (32-
bit unsigned integer), int64 (64-bit signed integer), uint64 (64-bit unsigned integer), pointer_sized_int
(a signed integer that is the same word size as a pointer on the platform), pointer_sized_uint (an
unsigned integer that is the same word size as a pointer on the platform), and juce_wchar (a 32-bit
Unicode character type).

In many cases the built-in types are sufficient. For example, JUCE internally makes use of the int data
type for a number of purposes, but the preceding types are available where the word size is critical. In
addition to this, JUCE does not define special data types for char, float, or double. Both floating-point
types are assumed to be compliant with IEEE 754, and the float data type is assumed to be 32 bits wide
and the double data type 64 bits wide.

One final utility in this regard addresses the issue that writing 64-bit literals in code differs across
compilers. The literal64bit() macro can be used to write such literals if needed:

int64 big = literal64bit (0x1234567890);

JUCE also declares some basic template types for defining certain geometry; the Component class uses
these in particular. Some useful examples are Point<ValueType>, Line<ValueType>, and
Rectangle<ValueType>.

Specifying and manipulating text strings
In JUCE, text is generally manipulated using the String class. In many ways, this class may be seen as
an alternative to the C++ Standard Library std::string class. We have already used the String class
for the basic operations in earlier chapters. For example, in Chapter 2, Building User Interfaces, strings
were used to set the text appearing on a TextButton object and used to store a dynamically changing
string to display in response to mouse activity. Even though these examples were quite simple, they
harnessed the power of the String class to make setting and manipulating the strings straightforward for
the user.

The first way this is achieved is through storing strings using reference counted objects. That is to say,
when a string is created, behind the scenes JUCE allocates some memory for the string, stores the string,
and returns a String object that refers to this allocated memory in the background. Straight copies of
this string (that is, without any modifications) are simply new String objects that refer to this same
shared memory. This helps keep code efficient by allowing String objects to be passed by value
between functions, without the potential overhead of copying large chunks of memory in the process.

To illustrate some of these features, we will use a console, rather than a Graphical User Interface (GUI),
application in the first instance. Create a new Introjucer project named Chapter03_01; changing the
Project Type to Console Application, and only selecting Create a Main.cpp file in the Files to Auto-
Generate menu. Save the project and open it into your Integrated Development Environment (IDE).

Posting log messages to the console
To post messages to the console window, it is best to use JUCE's Logger class. Logging can be set to log
a text file, but the default behavior is to send the logging messages to the console. A simple "Hello
world!" project using a JUCE String object and the Logger class is shown as follows:

#include "../JuceLibraryCode/JuceHeader.h"

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();
 String message ("Hello world!");
 log->writeToLog (message);

 return 0;
}

The first line of code in the main() function stores a pointer to the current logger such that we can reuse
it a number of times in later examples. The second line creates a JUCE String object from the literal C
string "Hello world!", and the third line sends this string to the logger using its writeToLog() function.
Build and run this application, and the console window should look something like the following:

JUCE v2.1.2
Hello world!

JUCE reports the first line automatically; this may be different if you have a later version of JUCE from
the GIT repository. This is followed by any logging messages from your application.

String manipulation
While this example is more complex than an equivalent using standard C strings, the power of JUCE's
String class is delivered through the storage and manipulation of strings. For example, to concatenate
strings, the + operator is overloaded for this purpose:

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();
 String hello ("Hello");
 String space (" ");
 String world ("world!");
 String message = hello + space + world;

 log->writeToLog (message);

 return 0;
}

Here, separate strings are constructed from literals for "Hello", the space in between, and "world!",
then the final message string is constructed by concatenating all three. The stream operator << may also
be used for this purpose for a similar result:

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();
 String hello ("Hello");
 String space (" ");
 String world ("world!");
 String message;

 message << hello;
 message << space;
 message << world;

 log->writeToLog (message);

 return 0;
}

The stream operator concatenates the right-hand side of the expression onto the left-hand side of the
expression, in-place. In fact, using this simple case, the << operator is equivalent to the += operator when
applied to strings. To illustrate this, replace all the instances of << with += in the code.

The main difference is that the << operator may be more conveniently chained into longer expressions
without additional parentheses (due to the difference between the precedence in C++ of the << and +=
operators). Therefore, the concatenation can be done all on one line, as with the + operator, if needed:

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();
 String message;

 message << "Hello" << " " << "world!";

 log->writeToLog (message);

 return 0;
}

To achieve the same results with += would require cumbersome parentheses for each part of the
expression: (((message += "Hello") += " ") += "world!").

The way the internal reference counting of strings works in JUCE means that you rarely need to be
concerned about unintended side effects. For example, the following listing works as you might expect
from reading the code:

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();
 String string1 ("Hello");
 String string2 = string1;

 string1 << " world!";

 log->writeToLog ("string1: " + string1);
 log->writeToLog ("string2: " + string2);

 return 0;
}

This produces the following output:

string1: Hello world!
string2: Hello

Breaking this down into steps, we can see what happens:
String string1 ("Hello");: The string1 variable is initialized with a literal string.
String string2 = string1;: The string2 variable is initialized with string1; they now refer to
exactly the same data behind the scenes.
string1 << " world!";: The string1 variable has another literal string appended. At this point
string1 refers to a completely new block of memory containing the concatenated string.
log->writeToLog ("string1: " + string1);: This logs string1, showing the concatenated string
Hello world!.
log->writeToLog ("string2: " + string2);: This logs string2; this shows that string1 still refers
to the initial string Hello.

One really useful feature of the String class is its numerical conversion capabilities. Generally, you can
pass a numerical type to a String constructor, and the resulting String object will represent that
numerical value. For example:

String intString (1234); // string will be "1234"
String floatString (1.25f); // string will be "1.25"
String doubleString (2.5); // string will be "2.5"

Other useful features are conversions to uppercase and lowercase. Strings may also be compared using
the == operator.

Measuring and displaying time
The JUCE Time class provides a cross-platform way to specify, measure, and format date and time
information in a human-readable fashion. Internally, the Time class stores a value in milliseconds relative
to midnight on 1st January 1970. To create a Time object that represents the current time, use
Time::getCurrentTime() like the following:

Time now = Time::getCurrentTime();

To bypass the creation of the Time object, you can access the millisecond counter as a 64-bit value
directly:

int64 now = Time::currentTimeMillis();

The Time class also provides access to a 32-bit millisecond counter that measures time since system
startup:

uint32 now = Time::getMillisecondCounter();

The important point to note about Time::getMillisecondCounter() is that it is independent of the
system time, and would be unaffected by changes to the system time either by the user changing the
time, changes due to national daylight saving, and so on.

Displaying and formatting time information
Displaying time information is straightforward; the following example gets the current time from the
operating system, formats it as a string, and sends it to the console output:

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();

 Time time (Time::getCurrentTime());

 bool includeDate = true;
 bool includeTime = true;
 bool includeSeconds = true;
 bool use24HourClock = true;

 String timeStr (time.toString (includeDate, includeTime,
 includeSeconds, use24HourClock));

 log->writeToLog ("the time is: " + timeStr);

 return 0;
}

This illustrates the four option flags available to the Time::toString() function. The output on the
console will be something like:

the time is: 7 Jul 2013 15:05:55

For more comprehensive options, the Time::formatted() function allows the user to specify a format
using a special format string (using a system equivalent to the standard C strftime() function).
Alternatively, you can obtain the various parts of the date and time information (day, month, hour,
minute, time zone, and so on), and combine them into a string yourself. For example, the same
preceding format can be achieved as follows:

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();

 Time time (Time::getCurrentTime());

 String timeStr;

 bool threeLetterMonthName = true;

 timeStr << time.getDayOfMonth() << " ";
 timeStr << time.getMonthName (threeLetterMonthName) << " ";
 timeStr << time.getYear() << " ";
 timeStr << time.getHours() << ":";
 timeStr << time.getMinutes() << ":";
 timeStr << time.getSeconds();

 log->writeToLog ("the time is: " + timeStr);

 return 0;
}

Manipulating time data
Time objects may also be manipulated (with the help from the RelativeTime class) and compared with
other Time objects. The following example shows the creation of three time values, based on the current
time, using a one-hour offset:

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();

 Time time (Time::getCurrentTime());
 RelativeTime oneHour (RelativeTime::hours (1));

 Time oneHourAgo (time - oneHour);
 Time inOneHour (time + oneHour);
 Time inTwoHours (inOneHour + oneHour);

 log->writeToLog ("the time is:" +
 time.toString (true, true, true, true));
 log->writeToLog ("one hour ago was:" +
 oneHourAgo.toString (true, true, true, true));
 log->writeToLog ("in one hour it will be:" +
 inOneHour.toString (true, true, true, true));
 log->writeToLog ("in two hours it will be:" +
 inTwoHours.toString (true, true, true, true));

 return 0;
}

The output of this should be something like this:

the time is: 7 Jul 2013 15:42:27
one hour ago was: 7 Jul 2013 14:42:27
in one hour it will be: 7 Jul 2013 16:42:27
in two hours it will be: 7 Jul 2013 17:42:27

To compare two Time objects, the standard comparison operators may be used. For example, you could
wait for a specific time, like the following:

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();

 Time now (Time::getCurrentTime());
 Time trigger (now + RelativeTime (5.0));

 log->writeToLog ("the time is now: " +
 now.toString (true, true, true, true));

 while (Time::getCurrentTime() < trigger) {
 Thread::sleep (10);
 log->writeToLog ("waiting...");
 }

 log->writeToLog ("the time has reached: " +
 trigger.toString (true, true, true, true));

 return 0;

}

Two things to note here are that:
The value passed to the RelativeTime constructor is in seconds (all the other time values need to
use one of the static functions as shown earlier for hours, minutes, and so on).
The call to Thread::sleep() uses values in milliseconds and this sleeps the calling thread. The
Thread class will be examined further in Chapter 5, Helpful Utilities.

Measuring time
The time values returned from the Time::getCurrentTime() function should be accurate for most
purposes, but as pointed out earlier, the current time could be changed by the user modifying the system
time. An equivalent to the preceding example, using Time::getMillisecondCounter() that is not
susceptible to such changes, is shown as follows:

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();

 uint32 now = Time::getMillisecondCounter();
 uint32 trigger = now + 5000;

 log->writeToLog ("the time is now: " +
 String (now) + "ms");

 while (Time::getMillisecondCounter() < trigger) {
 Thread::sleep (10);
 log->writeToLog ("waiting...");
 }

 log->writeToLog ("the time has reached: " +
 String (trigger) + "ms");

 return 0;
}

Both the Time::getCurrentTime() and Time::getMillisecondCounter() functions have a similar
accuracy, which is within a few milliseconds on most platforms. However, the Time class also provides
access to a higher resolution counter that returns values as a double precision (64-bit) floating-point
value. This function is Time::getMillisecondCounterHiRes(), and is also relative to the system start-up
as is the value returned from the Time::getMillisecondCounter() function. One application of this is to
measure the time that certain pieces of code have taken to execute, as shown in the following example:

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();

 double start = Time::getMillisecondCounterHiRes();

 log->writeToLog ("the time is now: " +
 String (start) + "ms");

 float value = 0.f;
 const int N = 10000;

 for (int i = 0; i < N; ++i)
 value += 0.1f;

 double duration = Time::getMillisecondCounterHiRes() - start;

 log->writeToLog ("the time taken to perform " + String (N) +
 " additions was: " + String (duration) + "ms");

 return 0;
}

This records the current time by polling the higher resolution counter, performing a large number of
floating point additions, and polling the higher resolution counter again to determine the duration
between these two points in time. The output should be something like this:

the time is now: 267150354ms
the time taken to perform 10000 additions was: 0.0649539828ms

Of course, the results here are dependent on the optimization settings in the compiler and the runtime
system.

Specifying file paths
JUCE provides a relatively cross-platform way of specifying and manipulating file paths using the File
class. In particular, this provides a means of accessing various special directories on the user's system,
such as the Desktop directory, their user Documents directory, application preferences directories, and so
on. The File class also provides functions for accessing information about a file (for example, creation
date, modification date, file size) and basic mechanisms for reading and writing file contents (although
other techniques may be more appropriate for large or complex files). In the following example, a string
is written to a text file on disk (using the File::replaceWithText() function), then read back into a
second string (using the File::loadFileAsString() function), and displayed in the console:

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();

 String text ("The quick brown fox jumps over the lazy dog.");
 File file ("./chapter03_01_test.txt");
 file.replaceWithText (text);
 String fileText = file.loadFileAsString();

 log->writeToLog ("fileText: " + fileText);

 return 0;
}

The File object in this case is initialized with the path ./chapter03_01_test.txt. It should be noted that
this file may not exist at this point, and on first run it will not exist until the call to the
File::replaceWithText() function (and on subsequent runs this file will exist, but will be overwritten at
that point). The ./ character sequence at the front of this path is a common idiom specifying that the
remainder of the path should be relative to the current directory (or current working directory). In this
simple case, the current working directory is likely to be the directory where the executable file is
located. The following screenshot shows this location relative to the Introjucer project on the Mac
platform:

This is not a reliable method; however, it will work if the working directory is specifically where you
want to save a file.

Accessing various special directory locations
It is more precise to use one of the File class's special locations, as shown as follows:

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();

 String text ("The quick brown fox jumps over the lazy dog.");
 File exe (File::getSpecialLocation(
 File::currentExecutableFile));
 File exeDir (exe.getParentDirectory());
 File file (exeDir.getChildFile ("chapter03_01_test.txt"));
 file.replaceWithText (text);
 String fileText = file.loadFileAsString();

 log->writeToLog ("fileText: " + fileText);

 return 0;
}

The steps for accessing the file location in this directory are split across several lines for clarity in this
code. Here, you can see the code to obtain the location of the current executable file, then its parent
directory, and then create a file reference for our text file that is relative to this directory. Much of this
code may be compacted on a single logical line using a chain of function calls:

...
 File file (File::getSpecialLocation(
 File::currentExecutableFile)
 .getParentDirectory()
 .getChildFile ("chapter03_01_test.txt"));
...

Due to the length of some of the identifiers in this code and the page width in this book, this code still
occupies four physical lines of code. Nevertheless, this illustrates how you can employ this function
calls to suit your needs and preferences for code layout.

Obtaining various information about files
The File class can provide useful information about files. One important test is whether a file exists; this
can be determined using File::exists(). If a file does exist, then more information may be obtained,
such as its creation date, modification date, and size. These are illustrated in the following example:

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();

 File file (File::getSpecialLocation(File::currentExecutableFile)
 .getParentDirectory()
 .getChildFile("chapter03_01_test.txt"));

 bool fileExists = file.exists();

 if (!fileExists) {
 log->writeToLog ("file " +
 file.getFileName() +
 " does not exist");
 return -1;
 }

 Time creationTime = file.getCreationTime();
 Time modTime = file.getLastModificationTime();
 int64 size = file.getSize();

 log->writeToLog ("file " +
 file.getFileName() + " info:");
 log->writeToLog ("created: " +
 creationTime.toString(true, true, true, true));
 log->writeToLog ("modified:" +
 modTime.toString(true, true, true, true));
 log->writeToLog ("size:" +
 String(size) + " bytes");

 return 0;
}

Assuming you ran all of the preceding examples, the file should exist on your system and the
information will be reported in the console something like as follows:

file chapter03_01_test.txt info:
created: 8 Jul 2013 17:08:25
modified: 8 Jul 2013 17:08:25
size: 44 bytes

Other special locations
In addition to File::currentExecutableFile, other special locations known to JUCE are:

File::userHomeDirectory

File::userDocumentsDirectory

File::userDesktopDirectory

File::userApplicationDataDirectory

File::commonApplicationDataDirectory

File::tempDirectory

File::currentExecutableFile

File::currentApplicationFile

File::invokedExecutableFile

File::hostApplicationPath

File::globalApplicationsDirectory

File::userMusicDirectory

File::userMoviesDirectory

File::userPicturesDirectory

Each of these names is fairly self-explanatory. In some cases, these special locations are not applicable
on some platforms. For example, there is no such thing as the Desktop on the iOS platform.

Navigating directory structures
Ultimately, a File object resolves to an absolute path on the user's system. This can be obtained using
the File::getFullPathName() function if needed:

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();

 File file (File::getSpecialLocation(
 File::currentExecutableFile)
 .getParentDirectory()
 .getChildFile ("chapter03_01_test.txt"));
 log->writeToLog ("file path: " + file.getFullPathName());

 return 0;
}

In addition to this, the relative path passed to File::getChildFile() can contain one or more references
to parent directories using the double period notation (that is, the ".." character sequence). In this next
example, we create a simple directory structure as shown in the screenshot following this code listing:

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();

 File root (File::getSpecialLocation (File::userDesktopDirectory)
 .getChildFile ("Chapter03_01_tests"));
 File dir1 (root.getChildFile ("1"));
 File dir2 (root.getChildFile ("2"));
 File dir1a (dir1.getChildFile ("a"));
 File dir2b (dir2.getChildFile ("b"));

 Result result (Result::ok());

 result = dir1a.createDirectory();

 if (!result.wasOk()) {
 log->writeToLog ("Creating dir 1/a failed");
 return -1;
 }

 result = dir2b.createDirectory();

 if (!result.wasOk()) {
 log->writeToLog ("Creating dir 2/b failed");
 return -1;
 }

 File rel = dir1a.getChildFile ("../../2/b");

 log->writeToLog ("root: " + root.getFullPathName());
 log->writeToLog ("dir1: " + dir1.getRelativePathFrom (root));
 log->writeToLog ("dir2: " + dir2.getRelativePathFrom (root));
 log->writeToLog ("dir1a: " + dir1a.getRelativePathFrom (root));
 log->writeToLog ("dir2b: " + dir2b.getRelativePathFrom (root));
 log->writeToLog ("rel: " + rel.getRelativePathFrom (root));

 return 0;

}

This creates five directories in total, using only two calls to the File::createDirectory()function. Since
this is dependent on the user's permissions to create files in this directory, the function returns a Result
object. This contains a state to indicate if the function succeeded or not (which we check with the
Result::wasOk() function), and more information can be gained about any errors if needed. Each call to
the File::createDirectory() function ensures that it creates any intermediate directories if required.
Therefore, on the first call, it creates the root directory, directory 1, and directory 1/a. On the second
call, the root already exists, so it needs only to create directories 2 and 2/a.

The console output for this should be something like this:

root: /Users/martinrobinson/Desktop/Chapter03_01_tests
dir1: 1
dir2: 2
dir1a: 1/a
dir2b: 2/b
rel: 2/b

Of course, the first line will be different, depending on your system, but the remaining five lines should
be the same. These paths are displayed relative to the root of the directory structure we have created
using the File::getRelativePathFrom() function. Notice that the final line shows that the rel object
refers to the same directory as the dir2b object, but we created this rel object relative to the dir1a
object by using the function call dir1a.getChildFile("../../2/b"). That is, we navigate two levels up
the directory structure then access the directories below.

The File class also includes features to check for a file's existence, to move and copy files within the
filesystem (including moving the file to the Trash or Recycle Bin), and to create legal filenames on
particular platforms (for example, avoiding colon and slash characters).

Using dynamically allocated arrays
While most instances of JUCE objects can be stored in regular C++ arrays, JUCE offers a handful of
arrays that are more powerful, somewhat comparable to the C++ Standard Library classes, such as
std::vector. The JUCE Array class offers many features; these arrays can be:

Dynamically sized; items can be added, removed, and inserted at any index
Sorted using custom comparators
Searched for particular content

The Array class is a template class; its main template argument, ElementType, must meet certain criteria.
The Array class moves its contents around by copying memory during resizing and inserting elements,
this could cause problems with certain kinds of objects. The class passed as the ElementType template
argument must also have both a copy constructor and an assignment operator. The Array class, in
particular, works well with primitive types and some commonly used JUCE classes, for example, the
File and Time classes. In the following example, we create an array of integers, add five items to it, and
iterate over the array, sending the contents to the console:

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();

 Array<int> array;

 for (int i = 0; i < 5; ++i)
 array.add (i * 1000);

 for (int i = 0; i < array.size(); ++i) {
 int value = array[i];
 log->writeToLog ("array[" + String (i) + "]= " + String (value));
 }

 return 0;
}

This should produce the output:

array[0]= 0
array[1]= 1000
array[2]= 2000
array[3]= 3000
array[4]= 4000

Notice that the JUCE Array class supports the C++ indexing subscript operator []. This will always
return a valid value even if the array index is out of bounds (unlike a built-in array). There is a small
overhead involved in making this check; therefore, you can avoid the bounds checking by using the
Array::getUnchecked() function, but you must be certain that the index is within bounds, otherwise
your application may crash. The second for() loop can be rewritten as follows to use this alternative
function, because we have already checked that out indices will be in-range:

...
 for (int i = 0; i < array.size(); ++i) {
 int value = array.getUnchecked (i);

 log->writeToLog("array[" + String (i) + "] = " +
 String (value));
 }
...

Finding the files in a directory
The JUCE library uses the Array objects for many purposes. For example, the File class can fill an array
of File objects with a list of child files and directories it contains using the File::findChildFiles()
function. The following example should post a list of files and directories in your user Documents
directory to the console:

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();

 File file =
 File::getSpecialLocation (File::userDocumentsDirectory);

 Array<File> childFiles;

 bool searchRecursively = false;
 file.findChildFiles (childFiles,
 File::findFilesAndDirectories,
 searchRecursively);

 for (int i = 0; i < childFiles.size(); ++i)
 log->writeToLog (childFiles[i].getFullPathName());

 return 0;
}

Here, the File::findChildFiles() function is passed the array of File objects, to which it should add
the result of the search. It is also told to find both files and directories using the value
File::findFilesAndDirectories (other options are the File::findDirectories and File::findFiles
values). Finally, it is told not to search recursively.

Tokenizing strings
Although it is possible to use Array<String> to hold an array of JUCE String objects, there is a
dedicated StringArray class to offers additional functionality when applying array operations to string
data. For example, a string can be tokenized (that is, broken up into smaller strings based on whitespace
in the original string) using the String::addTokens() function, or divided into strings representing lines
of text (based on newline character sequences found within the original string) using the
String::addLines() function. The following example tokenizes a string, then iterates over the resulting
StringArray object, posting its contents to the console:

int main (int argc, char* argv[])
{
 Logger *log = Logger::getCurrentLogger();

 StringArray strings;
 bool preserveQuoted = true;
 strings.addTokens("one two three four five six",
 preserveQuoted);

 for (int i = 0; i < strings.size(); ++i) {
 log->writeToLog ("strings[" + String (i) + "]=" +
 strings[i]);
 }

 return 0;
}

Arrays of components
User interfaces comprising banks of similar controls, such as buttons and sliders, can be managed
effectively using arrays. However, the JUCE Component class and its subclasses do not meet the criteria
for storage as an object (that is, by value) in a JUCE Array object. These must be stored as arrays of
pointers to these objects instead. To illustrate this, we need a new Introjucer project with a basic
window as used throughout Chapter 2, Building User Interfaces. Create a new Introjucer project, such
as this, name it Chapter03_02, and open it into your IDE. To the end of the MainWindow constructor in
Main.cpp, add the following line:

setResizable (true, true);

In the MainComponent.h file change the code to:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component
{
public:
 MainContentComponent();
 ~MainContentComponent();

 void resized();

private:
 Array<TextButton*> buttons;
};

#endif

Notice that the Array object here is an array of pointers to TextButton objects (that is, TextButton*). In
the MainComponent.cpp file change the code to:

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
{
 for (int i = 0; i < 10; ++i)
 {
 String buttonName;
 buttonName << "Button " << String (i);
 TextButton* button = new TextButton (buttonName);
 buttons.add (button);
 addAndMakeVisible (button);
 }

 setSize (500, 400);
}

MainContentComponent::~MainContentComponent()
{
}

void MainContentComponent::resized()

{
 Rectangle<int> rect (10, 10, getWidth() - 20, getHeight() - 20);

 int buttonHeight = rect.getHeight() / buttons.size();

 for (int i = 0; i < buttons.size(); ++i) {
 buttons[i]->setBounds (rect.getX(),
 i * buttonHeight + rect.getY(),
 rect.getWidth(),
 buttonHeight);
 }
}

Here, we create 10 buttons and using a for() loop, adding these buttons to an array, and basing the
name of the button on the loop counter. The buttons are allocated using the new operator (rather than the
static allocation used in Chapter 2, Building User Interfaces), and it is these pointers that are stored in
the array. (Notice also, that there is no need for the & operator in the function call to
Component::addAndMakeVisible() because the value is already a pointer.) In the resized() function, we
use a Rectangle<int> object to create a rectangle that is inset from the MainContentComponent object's
bounds rectangle by 10 pixels all the way around. The buttons are positioned within this smaller
rectangle. The height for each button is calculated by dividing the height of our rectangle by the number
of buttons in the button array. The for() loop then positions each button, based on its index within the
array. Build and run the application; its window should present 10 buttons arranged in a single column.

There is one major flaw with the preceding code. The buttons allocated with the new operator are never
deleted. The code should run fine, although you will get an assertion failure when the application is
exited. The message into the console will be something like:

*** Leaked objects detected: 10 instance(s) of class TextButton
JUCE Assertion failure in juce_LeakedObjectDetector.h:95

To solve this, we could delete the buttons in the MainComponent destructor like so:

MainContentComponent::~MainContentComponent()
{
 for (int i = 0; i < buttons.size(); ++i)
 delete buttons[i];
}

However, it is very easy to forget to do this kind of operation when writing complex code.

Using the OwnedArray class
JUCE provides a useful alternative to the Array class that is dedicated to pointer types: the OwnedArray
class. The OwnedArray class always stores pointers, therefore should not include the * character in the
template parameter. Once a pointer is added to an OwnedArray object, it takes ownership of the pointer
and will take care of deleting it when necessary (for example, when the OwnedArray object itself is
destroyed). Change the declaration in the MainComponent.h file, as highlighted in the following:

...
private:
 OwnedArray<TextButton> buttons;
};

You should also remove the code from the destructor in the MainComponent.cpp file, because deleting
objects more than once is equally problematic:

...
MainContentComponent::~MainContentComponent()
{
}
...

Build and run the application, noticing that the application will now exit without problems.

This technique can be extended to using broadcasters and listeners. Create a new GUI-based Introjucer
project as before, and name it Chapter03_03. Change the MainComponent.h file to:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component,
 public Button::Listener
{
public:
MainContentComponent();

void resized();
void buttonClicked (Button* button);

private:
OwnedArray<Button> buttons;
Label label;
};

#endif

This time we use an OwnedArray<Button> object rather than an OwnedArray<TextButton> object. This
simply avoids the need to typecast our button pointers to different types when searching for the pointers
in the array, as we do in the following code. Also, notice here that we added a Label object to our
component, made our component a button listener, and that we do not need a destructor. Change the
MainComponent.cpp file to:

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
{
 for (int i = 0; i < 10; ++i) {
 String buttonName;
 buttonName << "Button " << String (i);
 TextButton* button = new TextButton (buttonName);
 button->addListener (this);
 buttons.add (button);
 addAndMakeVisible (button);
 }

 addAndMakeVisible (&label);
 label.setJustificationType (Justification::centred);
 label.setText ("no buttons clicked", dontSendNotification);

 setSize (500, 400);
}

void MainContentComponent::resized()
{
 Rectangle<int> rect (10, 10,
 getWidth() / 2 - 20, getHeight() - 20);

 int buttonHeight = rect.getHeight() / buttons.size();

 for (int i = 0; i < buttons.size(); ++i) {
 buttons[i]->setBounds (rect.getX(),
 i * buttonHeight + rect.getY(),
 rect.getWidth(),
 buttonHeight);
 }

 label.setBounds (rect.getRight(),
 rect.getY(),
 getWidth() - rect.getWidth() - 10,
 20);
}

void MainContentComponent::buttonClicked (Button* button)
{
 String labelText;
 nt buttonIndex = buttons.indexOf (button);
 labelText << "Button clicked: " << String (buttonIndex);
 label.setText (labelText, dontSendNotification);
}

Here, we add the label in the constructor, reduce the width of the bank of buttons to occupy only the
left half of the component, and position the label at the top in the right-half. In the button listener
callback, we can obtain the index of the button using the OwnedArray::indexOf() function to search for
the pointer (incidentally, the Array class also has an indexOf() function for searching the items). Build
and run the application and notice that our label reports which button was clicked. Of course, the
elegant thing about this code is that we need only change the value in the for() loop when the buttons
are created in our constructor to change the number of buttons that are created; everything else works
automatically.

Other banks of controls
This approach may be applied to other banks of controls. The following example creates a bank of
sliders and labels, keeping each corresponding component updated with the appropriate value. Create a
new GUI-based Introjucer project, and name it Chapter03_04. Change the MainComponent.h file to:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component,
 public Slider::Listener,
 public Label::Listener
{
public:
 MainContentComponent();

 void resized();
 void sliderValueChanged (Slider* slider);
 void labelTextChanged (Label* label);

private:
 OwnedArray<Slider> sliders;
 OwnedArray<Label> labels;
};

#endif

Here, we have arrays of sliders and labels and our component is both a label listener and a slider
listener. Now, update the MainComponent.cpp file to contain the include directive, the constructor, and
the resized() function:

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
{
 for (int i = 0; i < 10; ++i) {
 String indexString (i);
 String sliderName ("slider" + indexString);
 Slider* slider = new Slider (sliderName);
 slider->setTextBoxStyle (Slider::NoTextBox, false, 0, 0);
 slider->addListener (this);
 sliders.add (slider);
 addAndMakeVisible (slider);

 String labelName ("label" + indexString);
 Label* label = new Label (labelName,
 String (slider->getValue()));
 label->setEditable (true);
 label->addListener (this);
 labels.add (label);
 addAndMakeVisible (label);
 }

 setSize (500, 400);
}

void MainContentComponent::resized()

{
 Rectangle<int> slidersRect (10, 10,
 getWidth() / 2 - 20,
 getHeight() - 20);
 Rectangle<int> labelsRect (slidersRect.getRight(), 10,
 getWidth() / 2 - 20,
 getHeight() - 20);

 int cellHeight = slidersRect.getHeight() / sliders.size();

 for (int i = 0; i < sliders.size(); ++i) {
 sliders[i]->setBounds (slidersRect.getX(),
 i * cellHeight + slidersRect.getY(),
 slidersRect.getWidth(),
 cellHeight);
 labels[i]->setBounds (labelsRect.getX(),
 i * cellHeight + labelsRect.getY(),
 labelsRect.getWidth(),
 cellHeight);
 }
}

Here, we use a for() loop to create the components and add them to the corresponding arrays. In the
resized() function, we create two helper rectangles, one for the bank of sliders and one for the bank of
labels. These are positioned to occupy the left half and right half of the main component respectively.

In the listener callback functions, the index of the broadcasting component is looked up in its array, and
this index is used to set the value of the other corresponding component. Add these listener callback
functions to the MainComponent.cpp file:

void MainContentComponent::sliderValueChanged (Slider* slider)
{
 int index = sliders.indexOf (slider);
 labels[index]->setText (String (slider->getValue()),
 sendNotification);
}

void MainContentComponent::labelTextChanged (Label* label)
{
 int index = labels.indexOf (label);
 sliders[index]->setValue (label->getText().getDoubleValue());
}

Here, we use the String class to perform the numerical conversions. After moving some of the sliders,
the application window should look similar to the following screenshot:

Hopefully, these examples illustrate the power of combining JUCE array classes with other JUCE
classes to write elegant, readable, and powerful code.

Employing smart pointer classes
The OwnedArray class may be considered a manager of smart pointers, in the sense that it manages the
lifetime of the object to which it points. JUCE includes a range of other smart pointer types to help solve
a number of common issues when writing code using pointers. In particular, these help avoid
mismanagement of memory and other resources.

Perhaps the simplest smart pointer is implemented by the ScopedPointer class. This manages a single
pointer and deletes the object to which it points when no longer needed. This may happen in two ways:

When the ScopedPointer object itself is destroyed
When a new pointer is assigned to the ScopedPointer object

One use of the ScopedPointer class is as an alternative means of storing a Component objects (or one of
its subclasses). In fact, adding subcomponents in the Introjucer applications graphical editor adds the
components to the code as ScopedPointer objects in a similar way to the example that follows. Create a
new Introjucer project named Chapter03_05. The following example achieves an identical result to the
Chapter02_02 project, but uses ScopedPointer objects to manage the components rather than statically
allocating them. Change the MainComponent.h file to:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component,
 public Button::Listener,
 public Slider::Listener
{
public:
 MainContentComponent();
 void resized();

 void buttonClicked (Button* button);
 void sliderValueChanged (Slider* slider);

private:
 ScopedPointer<Button> button1;
 ScopedPointer<Slider> slider1;
 ScopedPointer<Label> label1;
};

#endif

Notice that we use a ScopedPointer<Button> object rather than a ScopedPointer<TextButton> object
for the same reasons we used an OwnedArray<Button> object in preference to an
OwnedArray<TextButton> object previously. Change the MainComponent.cpp file as follows:

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
{
 button1 = new TextButton ("Zero Slider");
 slider1 = new Slider (Slider::LinearHorizontal,

 Slider::NoTextBox);
 label1 = new Label();
 slider1->setRange (0.0, 100.0);
 slider1->addListener (this);
 button1->addListener (this);
 slider1->setValue (100.0, sendNotification);

 addAndMakeVisible (button1);
 addAndMakeVisible (slider1);
 addAndMakeVisible (label1);
 setSize (200, 100);
}

void MainContentComponent::resized()
{
 button1->setBoundsRelative (0.05, 0.05, 0.90, 0.25);
 slider1->setBoundsRelative (0.05, 0.35, 0.90, 0.25);
 label1->setBoundsRelative (0.05, 0.65, 0.90, 0.25);
}

void MainContentComponent::buttonClicked (Button* button)
{
 if (button1 == button)
 slider1->setValue (0.0, sendNotification);
}

void MainContentComponent::sliderValueChanged (Slider* slider)
{
 if (slider1 == slider)
 label1->setText (String (slider1->getValue()),
 sendNotification);
}

The main changes here are to use the -> operator (which the ScopedPointer class overloads to return
the pointer it contains) rather than the . operator. The components are all explicitly allocated use the
new operator, but other than that, the code is almost identical to the Chapter02_02 project.

Other useful memory management classes in JUCE are:
ReferenceCountedObjectPtr<ReferenceCountedObjectClass>: This allows you to write classes such
that instances can be passed around in a similar way to the String objects. The lifetime is managed
by the object maintaining its own counter that counts the number of references that exists to the
object in the code. This is particularly useful in multi-threaded applications and for producing graph
or tree structures. The ReferenceCountedObjectClass template argument needs to inherit from the
ReferenceCountedObject class.
MemoryBlock: This manages a block of resizable memory and is the recommended method of
managing raw memory (rather than using the standard malloc() and free() functions, for example).
HeapBlock<ElementType>: Similar to the MemoryBlock class (in fact a MemoryBlock object contains a
HeapBlock<char> object), but this is a smart pointer type and supports the -> operator. As it is a
template class, it also points to an object or objects of a particular type.

Summary
This chapter has outlined some of the core classes in JUCE that provide a foundation for building JUCE
applications and provide a framework for building applications that are idiomatic to the JUCE style.
These classes provide further foundations for the remainder of this book. Each of these classes contains
far more functionality than outlined here. Again, it is essential that you review the JUCE class
documentation for each of the classes introduced in this chapter. Many of these classes are used heavily
in the JUCE Demo application and the code for the Introjucer application. These should also serve as
useful for further reading. The next chapter introduces classes for handling files, especially media files,
such as image and sound files.

Chapter 4. Using Media Files
JUCE provides its own classes for reading and writing files and many helper classes for specific media
formats. This chapter introduces the main examples of these classes. In this chapter we will cover the
following topics:

Using simple input and output streams
Reading and writing image files
Playing audio files
Working with the Binary Builder tool to turn binary files into source code

By the end of this chapter, you will be able to manipulate a range of media files using JUCE.

Using simple input and output streams
In Chapter 3, Essential Data Structures, we introduced the JUCE File class, which is used for
specifying file paths in a cross-platform manner. In addition, the File class includes some convenience
functions for reading and writing files as blocks of data or strings of text. In many cases these functions
are sufficient, but in others, raw access to input and output streams may be more useful.

Reading and writing text files
First, create a console application project in the Introjucer application and name it Chapter04_01. In this
simple example, we will declare two functions, one for writing text to the file—writeFile() , and one
for reading the contents of the file—readFile() . Each of these functions is passed the same file path
reference created in the way we did in Chapter 3, Essential Data Structures. Replace the contents of
the Main.cpp file with the following, where we declare the file reading and writing functions, and define
a main() function:

#include "../JuceLibraryCode/JuceHeader.h"

void writeFile (File const& file);
void readFile (File const& file);

int main (int argc, char* argv[])
{
 File file (File::getSpecialLocation(File::currentExecutableFile)
 .getParentDirectory()
 .getChildFile ("chapter04_01_test.txt"));

 writeFile (file);
 readFile (file);

 return 0;
}

Then, add the definition for the writeFile() function:

void writeFile (File const& file)
{
 Logger *log = Logger::getCurrentLogger();
 FileOutputStream stream (file);

 if (!stream.openedOk()) {
 log->writeToLog ("failed to open stream");
 return;
 }

 stream.setPosition (0);
 stream.truncate();

 String text ("The quick brown fox jumps over the lazy dog.");

 bool asUTF16 = false;
 bool byteOrderMark = false;
 stream.writeText (text, asUTF16, byteOrderMark);
}

Here, we create a FileOutputStream object, passing it the File object that refers to the file path. The
FileOutputStream class inherits from the base class OutputStream that represents the general notions of
writing data to a stream. There can be other types of output stream, such as the MemoryOutputStream
class for writing data to areas of computer memory in a stream-like manner. The default behavior of the
FileOutputStream class on construction is to position the stream's write position at the end of the file if
the file already exists (or to create an empty file if it doesn't). The calls to the
FileOutputStream::setPosition() and FileOutputStream::truncate() functions effectively empty the
file each time before we write it. Of course, in a real application you may not want to do this each time.

The call to the FileOutputStream::writeText() function is almost equivalent to the
File::appendText() function, although the flags for controlling the output in Unicode UTF16 format are
implicit for the File::appendText() function, but need to be specified explicitly for the
FileOutputStream::writeText() function. Here, we write the data in UTF8 format by setting both flags
to false.

Tip

The UFT8 format is probably most convenient, because the text we are writing is plain ASCII text,
which is compatible with UTF8 encoding.

Finally, add the definition for the readFile() function:

void readFile (File const& file)
{
 Logger *log = Logger::getCurrentLogger();
 FileInputStream stream (file);

 if (!stream.openedOk()) {
 log->writeToLog ("failed to open stream");
 return;
 }

 log->writeToLog ("fileText: " +stream.readEntireStreamAsString());
}

Here, we attempt to read the entire stream into a String, and post it to the log. We use a
FileInputStream object, which inherits from the more general InputStream class. In both the
writeFile() and readFile() functions we check that the streams opened successfully before
proceeding. In addition to this, the stream objects gracefully close the streams when they go out of
scope.

Reading and writing binary files
The output and input streams can be used for binary data too, and offer much greater functionality over
the File class convenience functions. Here, you can write raw numerical data, and choose the byte
order for multibyte data types.

Create a new console application in the Introjucer application and name it Chapter04_02. The following
example writes int, float, and double data types to a file, and then reads this data back in, posting the
result to the log. Replace the contents of Main.cpp file with the following code:

#include "../JuceLibraryCode/JuceHeader.h"

void writeFile (File const& file);
void readFile (File const& file);

int main (int argc, char* argv[])
{
 File file (File::getSpecialLocation(File::currentExecutableFile)
 .getParentDirectory()
 .getChildFile ("chapter04_02_test.bin"));

 writeFile (file);
 readFile (file);

 return 0;
}

void writeFile (File const& file)
{
 Logger *log = Logger::getCurrentLogger();
 FileOutputStream stream (file);

 if (!stream.openedOk()) {
 log->writeToLog ("failed to open stream");
 return;
 }

 stream.setPosition (0);
 stream.truncate();
 stream.writeInt (1234);
 stream.writeFloat (3.142);
 stream.writeDouble (0.000000001);
}

void readFile (File const& file)
{
 Logger *log = Logger::getCurrentLogger();
 FileInputStream stream (file);

 if (!stream.openedOk()) {
 log->writeToLog ("failed to open stream");
 return;
 }

 log->writeToLog("readInt: " + String (stream.readInt()));
 log->writeToLog("readFloat: " + String (stream.readFloat()));
 log->writeToLog("readDouble: " + String (stream.readDouble()));
}

The OutputStream and InputStream classes and their respective subclasses, support writing and reading
the various built-in types using functions writeInt(), writeFloat(), readInt(), readFloat(), and so on.
These versions of the functions write these multi-byte types using little endian byte order. For file
formats requiring big endian storage, there are equivalent functions writeIntBigEndian(),
writeFloatBigEndian(), readIntBigEndian (), readFloatBigEndian() , and so on.

The JUCE stream classes are useful but quite low level. For many purposes, JUCE already includes
high-level classes for reading and writing specific file types. Of course, these are built on top of the
stream classes, but, unless you are dealing with a custom data format, it is likely to be more sensible to
use built-in functionality for handling things such as images, audio, and other formats such as
Extensible Markup Language (XML) and JavaScript Object Notation (JSON).

Reading and writing image files
JUCE includes built-in support for reading and writing GIF, PNG, and JPEG image files. JUCE also
includes its own Image class for holding bitmap images. The following example illustrates how to present
a native file browser to choose an image file, load the image file, and display it in an ImageComponent
object. Create a new GUI project in the Introjucer application with a basic window named
Chapter04_03. and make the window resizable in the Main.cpp file, as we did in earlier chapters. You
should then change the MainComponent.h file to contain:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component,
 public Button::Listener
{
public:
 MainContentComponent();
 void resized();
 void buttonClicked (Button* button);

private:
 TextButton readFileButton;
 ImageComponent imageComponent;
 Image image;
};
#endif

Change MainComponent.cpp to contain:

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
: readFileButton ("Read Image File...")
{
 addAndMakeVisible (&readFileButton);
 addAndMakeVisible (&imageComponent);

 readFileButton.addListener (this);

 setSize (500, 400);
}

void MainContentComponent::resized()
{
 int buttonHeight = 20;
 int margin = 10;
 readFileButton.setBounds(margin, margin,
 getWidth() – margin * 2, buttonHeight);
 imageComponent.setBounds(margin, margin + buttonHeight + margin,
 getWidth() – margin * 2,
 getHeight() – buttonHeight – margin * 3);
}

void MainContentComponent::buttonClicked (Button* button)
{

 if (&readFileButton == button)
 {
 FileChooser chooser ("Choose an image file to display...");

 if (chooser.browseForFileToOpen()) {
 image = ImageFileFormat::loadFrom (chooser.getResult());

 if (image.isValid())
 imageComponent.setImage (image);
 }
 }
}

Here, we create a FileChooser object in response to the user clicking on the Read Image File… button.
This presents a native dialog window that allows the user to choose a file. We use the
ImageFileFormat::loadFrom() function to attempt to load the file as an image. Because we didn't limit
the file types displayed or enabled in the file chooser, the user may not have chosen a valid image file.
We check the validity of the image, and if it is valid we pass the loaded image to the ImageComponent
object for display. The ImageComponent class has various options to control the way the image is
positioned and scaled, depending on how the original image size and component rectangle compare.
These can be controlled using the ImageComponent::setImagePlacement() function. The following
screenshot shows the application that reads an image file:

The Image class is similar to the String class, in that it uses a reference-counted object internally such
that several Image objects may share the same internal data.

Manipulating image data
In the next example we will add a slider to control the brightness of the displayed image and a button to
write this processed image as a PNG file. Change the contents of the MainComponent.h file, where the
changes are highlighted in the following code listing:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component,
 public Button::Listener,
 public Slider::Listener
{
 public:
 MainContentComponent();
 void resized();
 void buttonClicked (Button* button);
 void sliderValueChanged (Slider* slider);
 private:
 TextButton readFileButton;
 ImageComponent imageComponent;
 Slider brightnessSlider;
 TextButton writeFileButton;
 Image origImage, procImage;
};
#endif

Now replace the MainComponent.cpp file with the include directive and the constructor:

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
: readFileButton ("Read Image File..."),
 writeFileButton ("Write Image File...")
{
 brightnessSlider.setRange (0.0, 10.0);
 addAndMakeVisible (&readFileButton);
 addAndMakeVisible (&imageComponent);
 addAndMakeVisible (&brightnessSlider);
 addAndMakeVisible (&writeFileButton);

 readFileButton.addListener (this);
 writeFileButton.addListener (this);
 brightnessSlider.addListener (this);

 setSize (500, 400);
}

Add the resized() function that positions the components:

void MainContentComponent::resized()
{
 int controlHeight = 20;
 int margin = 10;
 int width = getWidth() - margin * 2;

 readFileButton.setBounds

 (margin, margin, width, controlHeight);
 imageComponent.setBounds
 (margin, readFileButton.getBottom() + margin, width,
 getHeight() - (controlHeight + margin) * 3 - margin * 2);
 brightnessSlider.setBounds
 (margin, imageComponent.getBottom() + margin,
 width, controlHeight);
 writeFileButton.setBounds
 (margin, brightnessSlider.getBottom() + margin,
 width, controlHeight);
}

Add the buttonClicked() function that responds to the button interactions:

void MainContentComponent::buttonClicked (Button* button)
{
 if (&readFileButton == button) {
 FileChooser chooser ("Choose an image file to display...");

 if (chooser.browseForFileToOpen()) {
 origImage = ImageFileFormat::loadFrom (chooser.getResult());

 if (origImage.isValid()) {
 procImage = origImage.createCopy();
 imageComponent.setImage (procImage);
 }
 }
 } else if (&writeFileButton == button) {
 if (procImage.isValid()) {
 FileChooser chooser ("Write processed image to file...");

 if (chooser.browseForFileToSave (true)) {
 FileOutputStream stream (chooser.getResult());
 PNGImageFormat pngImageFormat;
 pngImageFormat.writeImageToStream (procImage, stream);
 }
 }
 }
}

Finally, add the sliderValueChanged() function that responds to the slider interaction:

void MainContentComponent::sliderValueChanged (Slider* slider)
{
 if (&brightnessSlider == slider) {
 if (origImage.isValid() &&
 procImage.isValid()) {
 const float amount = (float)brightnessSlider.getValue();

 if (amount == 0.f) {
 procImage = origImage.createCopy();
 } else {
 for (int v = 0; v < origImage.getHeight(); ++v) {
 for (int h = 0; h < origImage.getWidth(); ++h) {
 Colour col = origImage.getPixelAt (h, v);

 if (amount > 0.f)
 procImage.setPixelAt (h, v, col.brighter (amount));
 else if (amount < 0.f)
 procImage.setPixelAt (h, v, col.darker (-amount));
 }

 }
 }

 imageComponent.repaint();
 }
 }
}

Here, we keep a copy of the original image and a processed version. Each time the slider changes, the
image is updated with the new brightness by iterating over each of the pixels. When the Write Image
File… button is clicked, we create a FileChooser object and present this to the user with the
FileChooser::browseForFileToSave() function, rather than the FileChooser::browseForFileToOpen()
function as we did for reading the file. Then the PNGImageFormat class is used to write the processed
image to the selected file as a file stream. The image processing here could be significantly optimized,
but that is beyond the scope of this book.

Playing audio files
JUCE provides a sophisticated set of classes for dealing with audio. This includes: sound file reading and
writing utilities, interfacing with the native audio hardware, audio data conversion functions, and a
cross-platform framework for creating audio plugins for a range of well-known host applications.
Covering all of these aspects is beyond the scope of this book, but the examples in this section will
outline the principles of playing sound files and communicating with the audio hardware. In addition to
showing the audio features of JUCE, in this section we will also create the GUI and autogenerate some
other aspects of the code using the Introjucer application.

Creating a GUI to control audio file play
Create a new GUI application Introjucer project named Chapter04_04, selecting the option to create a
basic window. In the Introjucer application, select the Config panel, and select Modules in the
hierarchy.

For this project we need the juce_audio_utils module (which contains a special Component class for
configuring the audio device hardware); therefore, turn ON this module. Even though we created a basic
window and a basic component, we are going to create the GUI using the Introjucer application in a
similar way to that at the end of Chapter 2, Building User Interfaces.

Navigate to the Files panel and right-click (on the Mac, press control and click) on the Source folder in
the hierarchy, and select Add New GUI Component… from the contextual menu.

When asked, name the header MediaPlayer.h and click on Save. In the Files hierarchy, select the
MediaPlayer.cpp file. First select the Class panel and change the Class name from NewComponent to
MediaPlayer. We will need four buttons for this basic project: a button to open an audio file, a Play
button, a Stop button, and an audio device settings button. Select the Subcomponents panel, and add
four TextButton components to the editor by right-clicking to access the contextual menu. Space the
buttons equally near the top of the editor, and configure each button as outlined in the table as follows:

Purpose member name name text background (normal)

Open file openButton open Open… Default

Play/pause file playButton play Play Green

Stop playback stopButton stop Stop Red

Configure audio settingsButton settings Audio Settings… Default

Arrange the buttons as shown in the following screenshot:

For each button, access the mode pop-up menu for the width setting, and choose Subtracted from
width of parent. This will keep the right-hand side of the buttons the same distance from the right-hand
side of the window if the window is resized. There are more customizations to be done in the Introjucer

project, but for now, make sure that you have saved the MediaPlayer.h file, the MediaPlayer.cpp file,
and the Introjucer project before you open your native IDE project.

Tip

Make sure that you have saved all of these files in the Introjucer application; otherwise the files may not
get correctly updated in the file system when the project is opened in the IDE.

In the IDE we need to replace the MainContentComponent class code to place a MediaPlayer object
within it. Change the MainComponent.h file as follows:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"
#include "MediaPlayer.h"

class MainContentComponent : public Component
{
public:
 MainContentComponent();
 void resized();

private:
 MediaPlayer player;
};
#endif

Then, change the MainComponent.cpp file to:

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
{
 addAndMakeVisible (&player);
 setSize (player.getWidth(),player.getHeight());
}

void MainContentComponent::resized()
{
 player.setBounds (0, 0, getWidth(), getHeight());
}

Finally, make the window resizable in the Main.cpp file (as we did in the Adding child components
section of Chapter 2, Building User Interfaces), and build and run the project to check that the window
appears as expected.

Adding audio file playback support
Quit the application and return to the Introjucer project. Select the MediaPlayer.cpp file in the Files
panel hierarchy and select its Class panel. The Parent classes setting already contains public
Component. We are going to be listening for state changes from two of our member objects that are
ChangeBroadcaster objects. To do this, we need our MediaPlayer class to inherit from the
ChangeListener class. Change the Parent classes setting such that it reads:

public Component, public ChangeListener

Save the MediaPlayer.h file, the MediaPlayer.cpp file, and the Introjucer project again, and open it
into your IDE. Notice in the MediaPlayer.h file that the parent classes have been updated to reflect this
change. For convenience, we are going to add some enumerated constants to reflect the current
playback state of our MediaPlayer object, and a function to centralize the change of this state (which
will, in turn, update the state of various objects, such as the text displayed on the buttons). The
ChangeListener class also has one pure virtual function, which we need to add. Add the following code
to the [UserMethods] section of MediaPlayer.h:

//[UserMethods]-- You can add your own custom methods...
enum TransportState {
 Stopped,
 Starting,
 Playing,
 Pausing,
 Paused,
 Stopping
};
void changeState (TransportState newState);
void changeListenerCallback (ChangeBroadcaster* source);
//[/UserMethods]

We also need some additional member variables to support our audio playback. Add these to the
[UserVariables] section:

//[UserVariables] -- You can add your own custom variables...
AudioDeviceManager deviceManager;
AudioFormatManager formatManager;
ScopedPointer<AudioFormatReaderSource> readerSource;
AudioTransportSource transportSource;
AudioSourcePlayer sourcePlayer;
TransportState state;
 //[/UserVariables]

The AudioDeviceManager object will manage our interface between the application and the audio
hardware. The AudioFormatManager object will assist in creating an object that will read and decode the
audio data from an audio file. This object will be stored in the
ScopedPointer<AudioFormatReaderSource> object. The AudioTransportSource object will control the
playback of the audio file and perform any sampling rate conversion that may be required (if the
sampling rate of the audio file differs from the audio hardware sampling rate). The AudioSourcePlayer
object will stream audio from the AudioTransportSource object to the AudioDeviceManager object. The
state variable will store one of our enumerated constants to reflect the current playback state of our
MediaPlayer object.

Now add some code to the MediaPlayer.cpp file. In the [Constructor] section of the constructor, add
following two lines:

playButton->setEnabled (false);
stopButton->setEnabled (false);

This sets the Play and Stop buttons to be disabled (and grayed out) initially. Later, we enable the Play
button once a valid file is loaded, and change the state of each button and the text displayed on the
buttons, depending on whether the file is currently playing or not. In this [Constructor] section you
should also initialize the AudioFormatManager as follows:

formatManager.registerBasicFormats();

This allows the AudioFormatManager object to detect different audio file formats and create appropriate
file reader objects. We also need to connect the AudioSourcePlayer, AudioTransportSource and
AudioDeviceManager objects together, and initialize the AudioDeviceManager object. To do this, add the
following lines to the [Constructor] section:

sourcePlayer.setSource (&transportSource);
deviceManager.addAudioCallback (&sourcePlayer);
deviceManager.initialise (0, 2, nullptr, true);

The first line connects the AudioTransportSource object to the AudioSourcePlayer object. The second
line connects the AudioSourcePlayer object to the AudioDeviceManager object. The final line initializes
the AudioDeviceManager object with:

The number of required audio input channels (0 in this case).
The number of required audio output channels (2 in this case, for stereo output).
An optional "saved state" for the AudioDeviceManager object (nullptr initializes from scratch).
Whether to open the default device if the saved state fails to open. As we are not using a saved
state, this argument is irrelevant, but it is useful to set this to true in any case.

The final three lines to add to the [Constructor] section to configure our MediaPlayer object as a
listener to the AudioDeviceManager and AudioTransportSource objects, and sets the current state to
Stopped:

deviceManager.addChangeListener (this);
transportSource.addChangeListener (this);
state = Stopped;

In the buttonClicked() function we need to add some code to the various sections. In the
[UserButtonCode_openButton] section, add:

//[UserButtonCode_openButton] -- add your button handler...
FileChooser chooser ("Select a Wave file to play...",
 File::nonexistent,
 "*.wav");

if (chooser.browseForFileToOpen()) {
 File file (chooser.getResult());
 readerSource = new AudioFormatReaderSource(formatManager.createReaderFor (file), true);
 transportSource.setSource (readerSource);
 playButton->setEnabled (true);
}

//[/UserButtonCode_openButton]

When the openButton button is clicked, this will create a FileChooser object that allows the user to
select a file using the native interface for the platform. The types of files that are allowed to be selected
are limited using the wildcard *.wav to allow only files with the .wav file extension to be selected.

If the user actually selects a file (rather than cancels the operation), the code can call the
FileChooser::getResult() function to retrieve a reference to the file that was selected. This file is then
passed to the AudioFormatManager object to create a file reader object, which in turn is passed to create
an AudioFormatReaderSource object that will manage and own this file reader object. Finally, the
AudioFormatReaderSource object is connected to the AudioTransportSource object and the Play button
is enabled.

The handlers for the playButton and stopButton objects will make a call to our changeState() function
depending on the current transport state. We will define the changeState() function in a moment where
its purpose should become clear.

In the [UserButtonCode_playButton] section, add the following code:

//[UserButtonCode_playButton] -- add your button handler...
if ((Stopped == state) || (Paused == state))
 changeState (Starting);
else if (Playing == state)
 changeState (Pausing);
//[/UserButtonCode_playButton]

This changes the state to Starting if the current state is either Stopped or Paused, and changes the state
to Pausing if the current state is Playing. This is in order to have a button with combined play and pause
functionality.

In the [UserButtonCode_stopButton] section, add the following code:

//[UserButtonCode_stopButton] -- add your button handler...
if (Paused == state)
 changeState (Stopped);
else
 changeState (Stopping);
//[/UserButtonCode_stopButton]

This sets the state to Stopped if the current state is Paused, and sets it to Stopping in other cases. Again,
we will add the changeState() function in a moment, where these state changes update various objects.

In the [UserButtonCode_settingsButton] section add the following code:

//[UserButtonCode_settingsButton] -- add your button handler...
bool showMidiInputOptions = false;
bool showMidiOutputSelector = false;
bool showChannelsAsStereoPairs = true;
bool hideAdvancedOptions = false;

AudioDeviceSelectorComponent settings (deviceManager,
 0, 0, 1, 2,
 showMidiInputOptions,
 showMidiOutputSelector,

 showChannelsAsStereoPairs,
 hideAdvancedOptions);
settings.setSize (500, 400);

DialogWindow::showModalDialog(String ("Audio Settings"),
 &settings,
 TopLevelWindow::getTopLevelWindow (0),
 Colours::white,
 true); //[/UserButtonCode_settingsButton]

This presents a useful interface to configure the audio device settings.

We need to add the changeListenerCallback() function to respond to changes in the
AudioDeviceManager and AudioTransportSource objects. Add the following to the [MiscUserCode]
section of the MediaPlayer.cpp file:

//[MiscUserCode] You can add your own definitions...
void MediaPlayer::changeListenerCallback (ChangeBroadcaster* src)
{
 if (&deviceManager == src) {
 AudioDeviceManager::AudioDeviceSetup setup;
 deviceManager.getAudioDeviceSetup (setup);

 if (setup.outputChannels.isZero())
 sourcePlayer.setSource (nullptr);
 else
 sourcePlayer.setSource (&transportSource);
 } else if (&transportSource == src) {
 if (transportSource.isPlaying()) {
 changeState (Playing);
 } else {
 if ((Stopping == state) || (Playing == state))
 changeState (Stopped);
 else if (Pausing == state)
 changeState (Paused);
 }
 }
}
//[/MiscUserCode]

If our MediaPlayer object receives a message that the AudioDeviceManager object changed in some way,
we need to check that this change wasn't to disable all of the audio output channels, by obtaining the
setup information from the device manager. If the number of output channels is zero, we disconnect our
AudioSourcePlayer object from the AudioTransportSource object (otherwise our application may crash)
by setting the source to nullptr. If the number of output channels becomes nonzero again, we
reconnect these objects.

If our AudioTransportSource object has changed, this is likely to be a change in its playback state. It is
important to note the difference between requesting the transport to start or stop, and this change
actually taking place. This is why we created the enumerated constants for all the other states (including
transitional states). Again we issue calls to the changeState() function depending on the current value
of our state variable and the state of the AudioTransportSource object.

Finally, add the important changeState() function to the [MiscUserCode] section of the
MediaPlayer.cpp file that handles all of these state changes:

void MediaPlayer::changeState (TransportState newState)
{
 if (state != newState) {
 state = newState;
 switch (state) {
 case Stopped:
 playButton->setButtonText ("Play");
 stopButton->setButtonText ("Stop");
 stopButton->setEnabled (false);
 transportSource.setPosition (0.0);
 break;
 case Starting:
 transportSource.start();
 break;
 case Playing:
 playButton->setButtonText ("Pause");
 stopButton->setButtonText ("Stop");
 stopButton->setEnabled (true);
 break;
 case Pausing:
 transportSource.stop();
 break;
 case Paused:
 playButton->setButtonText ("Resume");
 stopButton->setButtonText ("Return to Zero");
 break;
 case Stopping:
 transportSource.stop();
 break;
 }
 }
}

After checking that the newState value is different from the current value of the state variable, we
update the state variable with the new value. Then, we perform the appropriate actions for this
particular point in the cycle of state changes. These are summarized as follows:

In the Stopped state, the buttons are configured with the Play and Stop labels, the Stop button is
disabled, and the transport is positioned to the start of the audio file.
In the Starting state, the AudioTransportSource object is told to start. Once the
AudioTransportSource object has actually started playing, the system will be in the Playing state.
Here we update the playButton button to display the text Pause, ensure the stopButton button
displays the text Stop, and we enable the Stop button.
If the Pause button is clicked, the state becomes Pausing, and the transport is told to stop. Once the
transport has actually stopped, the state changes to Paused, the playButton button is updated to
display the text Resume and the stopButton button is updated to display Return to Zero.
If the Stop button is clicked, the state is changed to Stopping, and the transport is told to stop. Once
the transport has actually stopped, the state changes to Stopped (as described in the first point).
If the Return to Zero button is clicked, the state is changed directly to Stopped (again, as
previously described).
When the audio file reaches the end of the file, the state is also changed to Stopped.

Build and run the application. You should be able to select a .wav audio file after clicking the Open...
button, play, pause, resume, and stop the audio file using the respective buttons, and configure the audio
device using the Audio Settings… button. The audio settings window allows you to select the input and

output device, the sample rate, and the hardware buffer size. It also provides a Test button that plays a
tone through the selected output device.

Working with the Binary Builder tool
One problem with writing cross-platform applications is the packaging of binary files for use within the
application. JUCE includes the Binary Builder tool that transforms binary files into source code, which
is then compiled into the application's code. This ensures that the files will behave identically on all
platforms, rather than relying on peculiarities of the runtime machine. Although the Binary Builder is
available as a separate project (in juce/extras/binarybuilder), its functionality is available within the
Introjucer application's GUI component editor.

Embedding an image file using the Introjucer application
Create a new Introjucer project named Chapter04_05 with a basic window. Add a new GUI component
as before; this time name it EmbeddedImage (remembering to also change the name in its Class panel). In
its Subcomponents panel, right-click in the canvas and choose New Generic Component and resize it
to fill the canvas with a small border around the edge. Change the member name and name to image,
and change the class to ImageComponent. In the Resources panel, choose Add new resource… and
select an image file to add. This will create a resource that is the binary file converted to code. It will be
given a variable name within this component based on the original filename, and will be stored as a
static variable. For example, a file named sample.png will be named sample_png. In addition to this a
static variable storing this resource's size as an integer will be created and will have Size appended to
this name, for example, sample_pngSize. Save the project and open it into your IDE. Update the
MainComponent file's contents as before. Change the MainComponent.h file as follows:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"
#include "EmbeddedImage.h"

class MainContentComponent : public Component
{
public:
 MainContentComponent();
 void resized();

private:
 EmbeddedImage embeddedImage;
};
#endif

Then change the MainComponent.cpp file to:

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
{
 addAndMakeVisible (&embeddedImage);
 setSize (embeddedImage.getWidth(),embeddedImage.getHeight());
}

void MainContentComponent::resized()
{
 embeddedImage.setBounds (0, 0, getWidth(), getHeight());
}

Finally in the EmbeddedImage.cpp file notice the large arrays of numbers at the end of the file, this is the
image file converted to code. In the [Constructor] section, add the following two lines (although you
may need to use different names from sample_png, sample_pngSize, depending on the file resource you
added previously):

//[Constructor] You can add your own custom stuff here...
MemoryInputStream stream (sample_png, sample_pngSize, false);
image->setImage (ImageFileFormat::loadFrom (stream));
//[/Constructor]

This creates a memory stream from our resource, providing the data pointer and the data size (the final
false argument tells the memory stream not to copy the data). Then we load the image as before using
the ImageFileFormat class. Build and run the application, and the image should be displayed into the
application's window.

Summary
This chapter has covered a range of techniques for dealing with files in JUCE, focusing in particular on
image and audio files. You are encouraged to explore the online JUCE documentation, which provides
even more detail on many of the possibilities introduced here. We have also introduced the Binary
Builder tool that provides a means of transforming media files into source code that is suitable for cross-
platform use. You are encouraged to read the online JUCE documentation for each of the classes
introduced in this chapter. This chapter has given only an introduction to get you started; there are many
other options and alternative approaches, which may suit different circumstances. The JUCE
documentation will take you through each of these and point you to related classes and functions. The
next chapter covers some useful utilities available within JUCE for creating cross-platform applications.

Chapter 5. Helpful Utilities
In addition to the essential classes introduced in the previous chapters, JUCE includes a range of classes
for solving common problems in application development. In this chapter we will cover the following
topics:

Using the Value, var, and ValueTree classes
Implementing undo management
Adding XML support
Understanding how JUCE handles multiple threads
Storing the application properties
Adding the menu bar controls

By the end of this chapter, you will have an awareness of some of the additional helpful utilities offered
by JUCE.

Using the dynamically typed objects
The JUCE Value, var, and ValueTree classes are valuable tools for application data storage and
handling. The var class (short for variant) is designed to store a range of primitive data types including
integers, floating-point numbers, and strings (JUCE String objects). It may also be recursive in the sense
that a var instance can hold an array of var instances (a JUCE Array<var> object). In this way, the var
class is similar to the dynamic types supported by many scripting languages such as JavaScript. A var
object may also hold a reference to any kind of ReferenceCounterObject object or chunks of binary
data. All of the following are valid initializations:

var anInt = 1;
var aDouble = 1.2345;
var aString = "Hello world!";

Using the Value class
The Value class is designed to hold a shared instance of a var object (by storing the var in a reference-
counted wrapper). A Value object may have listeners attached using a Value::Listener function and
the same techniques covered in the Chapter 2, Building User Interfaces regarding the listener and
broadcaster system employed by the GUI classes. In fact, Value objects are used by the various
Component subclasses to store any value, such as the text in a Label object, the position of the thumb in a
Slider object, and so on. As an example, the following code snippets illustrate ways of setting a Label
object's value and a Slider object's value using its Value object:

// Slider
Slider slider;
slider.getValueObject().setValue (10.0);
// instead of:
// slider.setValue (10);

// Label
Label label;
label.getTextValue().setValue ("Hello");
// instead of:
// label.setText ("Hello", sendNotification);

The Value objects are also a way of sharing values, because they can be made to refer to the same
underlying data. This can be useful where the same value is displayed in a GUI in different ways,
especially in complex and detailed GUI displays. Create a new Introjucer project named Chapter05_01
with a basic window, and replace the MainComponent.h file with the following:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component
{
public:
 MainContentComponent();
 void resized();

private:
 Value value;
 Slider slider;
 Label label;
};

#endif // __MAINCOMPONENT_H__

Here we store the Value, Slider, and Label objects in our class. Replace the MainComponent.cpp file
with the following:

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
: value (1.0),
 slider (Slider::LinearHorizontal, Slider::NoTextBox)
{
 label.setEditable (true);

 slider.getValueObject().referTo (value);
 label.getTextValue().referTo (value);

 addAndMakeVisible (&slider);
 addAndMakeVisible (&label);

 setSize (500, 400);
}

void MainContentComponent::resized()
{
 slider.setBounds (10, 10, getWidth() - 20, 20);
 label.setBounds (10, 40, getWidth() - 20, 20);
}

Here, we initialize our Value object to the value of one, then use the Value::referTo() function to
configure both the Slider and the Label objects' values to refer to this same underlying Value object.
Build and run the application noticing that both the slider and label keep updated with the same value
regardless of which one is changed. This is all achieved without us needing to configure our own
listeners since JUCE handles all of this internally.

Structuring hierarchical data
Clearly, in most applications the data model is much more complex and commonly hierarchical. The
ValueTree class is designed to reflect this using a relatively lightweight, yet powerful implementation. A
ValueTree object holds a tree structure of named var objects as properties, meaning that nodes in the
tree can be almost any data type. The following example illustrates how to store data in a ValueTree
object, and some of the features that make the ValueTree class so invaluable to JUCE application
development.

Create a new Introjucer project named Chapter05_02 with a basic window. Add a GUI component
named EntryForm in a similar way to previous chapters. First, navigate to the Graphics panel for the
EntryForm.cpp file, and change the background color to gray. Now we will add a form-like page into
which we can enter a person's name, age, and address. Add six Label objects to the Subcomponents
panel to act as labels for the data with the following contents: First name, Last name, Age, Line 1,
Line 2, and Line 3.

Now add six Label objects with no contents (that is, empty text) adjacent to each of the labels added in
the previous step. Set these to have a white, rather than transparent background, and set their editing
property to edit on single-click. Give these the following member name, and name values as follows:
firstNameField, lastNameField, ageField, line1Field, line2Field, and line3Field.

Finally, add a Group Box via the contextual menu accessed by right-clicking (on the Mac, press control
and click) in the Subcomponents editor. Position this to surround the labels related to Line 1, Line 2,
Line 3, and their entry fields. This should now look similar to the following screenshot:

Now save the project and open it in your IDE. Place an EntryForm object into the
MainContentComponent object as before, by changing the MainComponent.h file to contain the following:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"
#include "EntryForm.h"

class MainContentComponent : public Component
{

public:
 MainContentComponent();
 void resized();

private:
 EntryForm form;
};
#endif

Change the MainComponent.cpp file to contain the following:

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
{
 addAndMakeVisible (&form);
 setSize (form.getWidth(), form.getHeight());
}

void MainContentComponent::resized()
{
 form.setBounds (0, 0, getWidth(), getHeight());
}

We now need to add some custom code to the EntryForm class to get it to store its data in a ValueTree
object. First, add some variables to the class in the EntryForm.h file in the [UserVariables] section as
follows:

//[UserVariables] -- You can add your own custom variables..
ValueTree personData;

static const Identifier personId;
static const Identifier firstNameId;
static const Identifier lastNameId;
static const Identifier ageId;
static const Identifier addressId;
static const Identifier line1Id;
static const Identifier line2Id;
static const Identifier line3Id;
//[/UserVariables]

Here we have one ValueTree object that will store the data and several static Identifier objects (which
we will initialize in the EntryForm class in a moment) that serve as names for the ValueTree object
structure and its properties. An Identifier object is effectively a special type of String object that
holds only a limited set of characters, such that it will be valid in other contexts (for example, variable
names, XML).

Tip

It is more efficient to create these Identifier objects when the application starts rather than create
them each time they are needed.

In the EntryForm.cpp file add the following code to initialize the Identifier objects to the
[MiscUserCode] section:

//[MiscUserCode] You can add your own definitions ...
const Identifier EntryForm::personId = "person";

const Identifier EntryForm::firstNameId = "firstName";
const Identifier EntryForm::lastNameId = "lastName";
const Identifier EntryForm::ageId = "age";
const Identifier EntryForm::addressId = "address";
const Identifier EntryForm::line1Id = "line1";
const Identifier EntryForm::line2Id = "line2";
const Identifier EntryForm::line3Id = "line3";
//[/MiscUserCode]

In the constructor we need to initialize the ValueTree object, so add the following code to the
[Constructor] section:

//[Constructor] You can add your own custom stuff here..
personData = ValueTree (personId);
personData.setProperty (firstNameId, String::empty, nullptr);
personData.setProperty (lastNameId, String::empty, nullptr);
personData.setProperty (ageId, String::empty, nullptr);

ValueTree addressData = ValueTree (addressId);
addressData.setProperty (line1Id, String::empty, nullptr);
addressData.setProperty (line2Id, String::empty, nullptr);
addressData.setProperty (line3Id, String::empty, nullptr);
personData.addChild (addressData, -1, nullptr);
//[/Constructor]

Here we create the main ValueTree object with the named type person, and add three properties for the
first name, last name, and age. (The graphic layout of our EntryForm component indicates the
hierarchical relationship between the values in this top-level personData object.) The nullptr argument
in each case indicates that we do not want undo management; we will look at this later in the chapter.
We then create another ValueTree object with the named type address. Then, we add the three lines of
the address as properties and add it as a child node to the main ValueTree object. It is in this way that
we create tree structures with several ValueTree objects. The second argument of the call to the
ValueTree::addChild() function indicates the index at which we want to add the child node. The -1
parameter passed in this case indicates we just want to add it to the end of the list of nodes (but we have
only one in any case; therefore, this value is of little importance).

Finally, we need to update the ValueTree object when the labels change. Add the following code the
appropriate sections:

//[UserLabelCode_firstNameField] -- add your label text handling..
personData.setProperty (firstNameId,
 labelThatHasChanged->getText(), nullptr);
//[/UserLabelCode_firstNameField]
...
//[UserLabelCode_lastNameField] -- add your label text handling..
personData.setProperty (lastNameId,
 labelThatHasChanged->getText(), nullptr);
//[/UserLabelCode_lastNameField]
...
//[UserLabelCode_ageField] -- add your label text handling..
personData.setProperty (ageId,
 labelThatHasChanged->getText(), nullptr);
//[/UserLabelCode_ageField]
...
//[UserLabelCode_line1Field] -- add your label text handling..
ValueTree addressData (personData.getChildWithName (addressId));
addressData.setProperty (line1Id,

 labelThatHasChanged->getText(), nullptr);
//[/UserLabelCode_line1Field]
...
//[UserLabelCode_line2Field] -- add your label text handling..
ValueTree addressData (personData.getChildWithName (addressId));
addressData.setProperty (line2Id,
 labelThatHasChanged->getText(), nullptr);
//[/UserLabelCode_line2Field]
...
//[UserLabelCode_line3Field] -- add your label text handling..
ValueTree addressData (personData.getChildWithName (addressId));
addressData.setProperty (line3Id,
 labelThatHasChanged->getText(), nullptr);
//[/UserLabelCode_line3Field]

Build and run the application and confirm that you can edit the contents of the entry form fields. You
may also notice that JUCE automatically implements focus ordering, such that you can use the Tab key
to move between fields. However, this isn't very useful yet since we don't do anything with the data. In
the next section we will add undo management, which will start to show the power of the ValueTree
class.

Employing undo management
JUCE includes an UndoManager class to help manage undo and redo actions. This can be used
independently, but works almost automatically if the application's data is stored in a ValueTree object.
To illustrate this we need to make a few changes to the project developed so far. First make some
changes in the Introjucer project. Add a TextButton subcomponent labeled Undo and change its name
and member name to undoButton. In the Class panel add the ValueTree::Listener class to the Parent
classes property such that it reads:

public Component, public ValueTree::Listener

Save all the files and the project, and open it into your IDE. Add the following code for the
ValueTree::Listener class to the [UserMethods] section of the MainComponent.h file. Notice that we
add empty function braces except for the valueTreePropertyChanged() function here since we do not
need to add code for the other functions:

//[UserMethods] -- You can add your own custom methods ...
void valueTreePropertyChanged (ValueTree& tree,
 const Identifier& property);
void valueTreeChildAdded (ValueTree& parentTree,
 ValueTree& child) { }
void valueTreeChildRemoved (ValueTree& parentTree,
 ValueTree& child) { }
void valueTreeChildOrderChanged (ValueTree& tree) { }
void valueTreeParentChanged (ValueTree& tree) { }
void valueTreeRedirected (ValueTree& tree) { }
//[/UserMethods]

Add an UndoManager object to the [UserVariables] section as follows:

//[UserVariables] -- You can add your own custom variables...
UndoManager undoManager;
...

In the EntryForm.cpp file add the following code for the ValueTree::Listener functions to the
[MiscUserCode] section (notice that we need only one of these functions as we added empty functions
to the preceding header file):

void EntryForm::valueTreePropertyChanged
 (ValueTree& tree, const Identifier& property)
{
 if (property == firstNameId) {
 firstNameField->setText (tree.getProperty (property),
 dontSendNotification);
 } else if (property == lastNameId) {
 lastNameField->setText (tree.getProperty (property),
 dontSendNotification);
 } else if (property == ageId) {
 ageField->setText (tree.getProperty (property),
 dontSendNotification);
 } else if (property == line1Id) {
 line1Field->setText (tree.getProperty (property),
 dontSendNotification);
 } else if (property == line2Id) {
 line2Field->setText (tree.getProperty (property),

 dontSendNotification);
 } else if (property == line3Id) {
 line3Field->setText (tree.getProperty (property),
 dontSendNotification);
 }
}

Add our EntryForm object as a listener to the main value tree by adding the following code to the end of
the [Constructor] section:

...
personData.addListener (this);
//[/Constructor]

Each time we call the ValueTree::setProperty() function we need to pass a pointer to our UndoManager
object. Find each line of code that uses ValueTree::setProperty(), and change the nullptr argument
to &undoManager, for example:

//[UserLabelCode_firstNameField] -- add your label text handling..
personData.setProperty (firstNameId,
 labelThatHasChanged->getText(),
 &undoManager);
//[/UserLabelCode_firstNameField]

Do not use a simple find-and-replace since there are other uses of nullptr in the code that do not relate
to the ValueTree object and UndoManager object code. In our application, when we make a change that
we want to be undoable, we need to tell the UndoManager object what comprises a transaction. In some
cases it might be appropriate to consider each minor change as a transaction. In other cases it might be
more useful to the user to group small changes into a single transaction (for example, changes that occur
within a certain time limit, or multiple changes to the same object). We will make each of the changes in
the EntryForm::labelTextChanged() function a transaction, so add the following code to the
[UserlabelTextChanged_Pre] section:

//[UserlabelTextChanged_Pre]
undoManager.beginNewTransaction();
//[/UserlabelTextChanged_Pre]

Finally, execute the undo action in the [UserButtonCode_undoButton] section by adding the following
code:

//[UserButtonCode_undoButton] -- add your button handler..
undoManager.undo();
//[/UserButtonCode_undoButton]

This line tells the UndoManager object to undo the last transaction. Adding redo support is just as
straightforward. Build and run the application, and notice that you can now undo changes to the data
entry form using the Undo button. The ValueTree class also supports serialization and deserialization via
binary or XML formats; this will be outlined in the next section.

Adding XML support
JUCE includes a range of support for XML parsing and storage. You may have noticed that the
Introjucer application uses the XML format to store metadata at the end of some of the autogenerated
files (for example, in our EntryForm.cpp file). In particular, a ValueTree object can be serialized into
XML, and this same XML can be deserialized back into a ValueTree object (although you can't convert
any arbitrary XML to a ValueTree object without doing some of your own parsing). To add opening and
saving capabilities to our project, first we need to add an Open… and a Save… button in the Introjucer
project. Give these the name and member name openButton and saveButton respectively. Then, in the
code we need to perform the conversions to and from XML. In the [UserButtonCode_saveButton]
section add the following code to present the user with a file chooser and save the ValueTree object's
data to an XML file:

//[UserButtonCode_saveButton] -- add your button handler...
FileChooser chooser ("Save person data",
 File::nonexistent,
 "*.xml");

if (chooser.browseForFileToSave (true)) {
 File file (chooser.getResult());

 if (file.existsAsFile())
 file.moveToTrash();

 FileOutputStream stream (file);

 ScopedPointer<XmlElement> xml = personData.createXml();
 xml->writeToStream (stream, String::empty);
}
//[/UserButtonCode_saveButton]

In the [UserButtonCode_openButton] section add the following code to read an XML file back in to the
ValueTree object:

//[UserButtonCode_openButton] -- add your button handler...
FileChooser chooser ("Open person data",
 File::nonexistent,
 "*.xml");

if (chooser.browseForFileToOpen()) {
 Logger* log = Logger::getCurrentLogger();
 File file (chooser.getResult());

 XmlDocument xmlDoc (file);
 ScopedPointer<XmlElement> xml = xmlDoc.getDocumentElement();

 if (xml == nullptr) {
 log->writeToLog ("XML error");
 return;
 }

 ValueTree newPerson (ValueTree::fromXml (*xml));

 if (newPerson.getType() != personId) {
 log->writeToLog ("Invalid person XML");
 return;

 }

 undoManager.beginNewTransaction();
 personData.copyPropertiesFrom (newPerson, &undoManager);

 ValueTree newAddress (newPerson.getChildWithName (addressId));
 ValueTree addressData (personData.getChildWithName (addressId));
 addressData.copyPropertiesFrom (newAddress, &undoManager);
}
//[/UserButtonCode_openButton]

Here we load the chosen file as an XML document, and access its document element. We perform two
checks on the XML and report an error to the log if necessary:

We check if the XML element was accessed successfully (that is, did not return nullptr). If this
fails the file may not be a valid XML file.
We load the XML into a ValueTree object then check the type of this ValueTree object to ensure it
is the person data that we expect.

Once the loaded ValueTree object is checked successfully, we copy the properties to the stored
ValueTree object as a single UndoManager object transaction.

Build and run the application, and check that saving, opening, and all the undo behaviors work as
expected. The following screenshot shows how the application window should appear:

The XML file produced by this code for the data shown in this screenshot will look something like this:

<?xml version="1.0" encoding="UTF-8"?>

<person firstName="Joe" lastName="Bloggs" age="25">
 <address line1="1 The Lines" line2="Loop" line3="Codeland"/>
</person>

Of course, in a real-world application we would have Open, Save, and Undo commands as menu bar
items too (or instead), but we have used buttons here for simplicity. (Adding menu bar controls is
covered at the end of this chapter.)

The XmlDocument and XmlElement classes shown here provide broad functionality for parsing and
creating XML documents independent of ValueTree objects.

Understanding how JUCE handles multiple
threads
JUCE includes a cross-platform interface to operating system threads using its Thread class. There are
also classes that help with synchronizing inter-thread communication, notably the CriticalSection
class, the WaitableEvent class, and the Atomic template classes (for example, Atomic<int>). Writing
multithreaded applications is inherently challenging and it is beyond the scope of this book to serve as
an introduction. However, JUCE does make the processes of writing multithreaded applications a little
easier. One way in which this is achieved is through providing a consistent interface on all platforms.
JUCE will also raise assertions if you do certain things that are likely to lead to some of the common
problems (for example, deadlocks and race conditions). The following serves as a basic demonstration;
we will create a simple thread that increments a counter and displays this counter in the GUI. Create a
new Introjucer project called Chapter05_03 with a basic window. Open the project in your IDE, and
change the MainComponent.h file to contain the following:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component,
 public Button::Listener,
 public Thread
{
public:
 MainContentComponent();
 ~MainContentComponent();

 void resized();
 void buttonClicked (Button* button);
 void run();

private:
 TextButton startThreadButton;
 TextButton stopThreadButton;
 Label counterLabel;
 int counter;
};
#endif // __MAINCOMPONENT_H__

Notice that our class inherits from the Thread class that requires us to implement the Thread::run()
pure virtual function (which serves as our thread's entry point). Now replace the code in the
MainComponent.cpp file with the following:

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
: Thread ("Counter Thread"),
 startThreadButton ("Start Thread"),
 stopThreadButton ("Stop Thread"),
 counter (0)
{
 addAndMakeVisible (&startThreadButton);

 addAndMakeVisible (&stopThreadButton);
 addAndMakeVisible (&counterLabel);

 startThreadButton.addListener (this);
 stopThreadButton.addListener (this);

 setSize (500, 400);
}

MainContentComponent::~MainContentComponent()
{
 stopThread (3000);
}

void MainContentComponent::resized()
{
 startThreadButton.setBounds (10, 10, getWidth() - 20, 20);
 stopThreadButton.setBounds (10, 40, getWidth() - 20, 20);
 counterLabel.setBounds (10, 70, getWidth() - 20, 20);
}

void MainContentComponent::buttonClicked (Button* button)
{
 if (&startThreadButton == button)
 startThread();
 else if (&stopThreadButton == button)
 stopThread (3000);
}

The main thing to notice here is that we must provide a name for our thread by passing a String object
to the Thread class constructor. In the buttonClicked() function we start and stop our thread using the
Start Thread and Stop Thread buttons, respectively. The value of 3000 passed to the
Thread::stopThread() function is a timeout in milliseconds, after which the thread will be forcibly
killed (which is unlikely to happen unless these is an error). We also need to implement the
Thread::run() function, which is where the thread undertakes its work. This is where many of the
problems occur. In particular you can't directly update GUI objects from anything other than the JUCE
message thread. This message thread is the main thread on which your application's initialise() and
shutdown() functions are called (so most of the construction and destruction of your application), where
your GUI listener callbacks are called, mouse events are reported, and so on. Effectively, it is the
"main" thread (and probably is the executable's main thread in many circumstances). This is why it has
been safe to update GUI objects in response to user interactions with other GUI objects. Add the
following code to the end of the MainComponent.cpp file. This should fail as soon as you click on the
Start Thread button:

void MainContentComponent::run()
{
 while (!threadShouldExit()) {
 counterLabel.setText (String (counter++),
 dontSendNotification);
 }
}

In a debug build, your code should stop on an assertion. Looking at the JUCE code where the assertion
was raised, there will be a comment that will tell you that this action can't be done unless you use a
MessageManagerLock object. (In a release build, it may simply crash or cause the application to behave

strangely.) To use a MessageManagerLock object correctly, change the run() function as follows:

void MainContentComponent::run()
{
 while (!threadShouldExit()) {
 const MessageManagerLock lock (Thread::getCurrentThread());

 if (lock.lockWasGained()) {
 counterLabel.setText (String (counter++),
 dontSendNotification);
 }
 }
}

Here we create a MessageManagerLock object, passing it a pointer to the current thread (that is, this
thread). If the MessageManagerLock::lockWasGained() function returns true, it is safe to manipulate
GUI objects. The thread releases the lock as the MessageManagerLock object goes out of scope (as we
come round the while() loop again). This code also shows the typical structure of a Thread::run()
function; that is, a while() loop that checks the result of calling the Thread::threadShouldExit()
function and continues to loop unless the thread has been told to exit.

Storing application properties
In this final example we will implement a simple application that stores its state in a properties file (that
is, settings or preferences) in a standard location on the runtime platform. First create a new Introjucer
project named Chapter05_04 with a basic window. Change the MainComponent.h file to contain the
following code:

#ifndef __MAINCOMPONENT_H__
#define __MAINCOMPONENT_H__

#include "../JuceLibraryCode/JuceHeader.h"

class MainContentComponent : public Component
{
public:
 MainContentComponent();
 ~MainContentComponent();

 void resized();

private:
 Label label;
 Slider slider;
 ApplicationProperties appProperties;
};

#endif // __MAINCOMPONENT_H__

Here we have a label and a slider; these will represent our simple application properties. Clearly, in a
fully developed application, the properties would be presented in a separate window or panel, but the
principle is the same.

Tip

The ApplicationProperties class is a helper class that manages the application properties, saving them
to the appropriate location on the user's system.

Change the contents of the MainComponent.cpp file to:

#include "MainComponent.h"

MainContentComponent::MainContentComponent()
{
 label.setEditable(true);
 addAndMakeVisible(&label);
 addAndMakeVisible(&slider);

 setSize (500, 400);

 PropertiesFile::Options options;
 options.applicationName = ProjectInfo::projectName;
 options.folderName = ProjectInfo::projectName;
 options.filenameSuffix = "settings";
 options.osxLibrarySubFolder = "Application Support";
 appProperties.setStorageParameters (options);

 PropertiesFile* props = appProperties.getUserSettings();

 label.setText (props->getValue ("label", "<empty>"),
 dontSendNotification);
 slider.setValue (props->getDoubleValue ("slider", 0.0));
}

MainContentComponent::~MainContentComponent()
{
 PropertiesFile* props = appProperties.getUserSettings();
 props->setValue ("label", label.getText());
 props->setValue ("slider", slider.getValue());
}

void MainContentComponent::resized()
{
 label.setBounds (10, 10, getWidth() - 20, 20);
 slider.setBounds (10, 40, getWidth() - 20, 20);
}

Here we configure the ApplicationProperties object by passing it our desired application name and
folder name (using the name that the Introjucer application will have generated in the
ProjectInfo::projectName constant). We provide a filename suffix (for example, settings, xml). To
support Mac OS X, it is recommended that you set the
PropertiesFile::Options::osxLibrarySubFolder option since Apple changed their recommendation
for the storage of application preferences. This was previously in Library/Preferences, but Apple now
recommends that developers use Library/Application Support. This is provided for backwards
compatibility; all new applications should set this to Application Support. This setting is harmless for
other platforms. It is important to configure these options prior to using the ApplicationProperties
object by passing the options via the ApplicationProperties::setStorageParameters() function. In
fact, the ApplicatonProperties class maintains two sets of properties, one for all users and one for the
current user. In this example we create only properties for the current user.

When the application starts, it tries to access the value of the properties and set the label and slider
appropriately. First, we access the user settings PropertiesFile object using the
ApplicationProperties::getUserSettings() function. We store a pointer to the PropertiesFile object
that this returns in a regular pointer, as it is owned by ApplicationProperties object, and we need it
only temporarily. (Storing it in a ScopedPointer object in this case could cause a crash, since the
ScopedPointer object would try eventually to delete an object that it should not really own, since it
already has an owner.) Then we use the PropertiesFile::getValue() function to get the text value, and
the PropertiesFile::getDoubleValue() function to get the double value (there are also the
PropertiesFile::getIntValue() and PropertiesFile::getBoolValue() functions if needed). Of
course, the first time the application starts, these properties will be empty. Each of these property
accessors allows you to provide a default value, should the named property not exist. Here we provide
<empty> as the default for the label contents and 0.0 as the default for the slider. When the application
closes (in this case we know this is happening when the MainContentComponent destructor is called) we
set the value of the properties to the current state of the label and the slider. This means that when we
close the application and reopen it, the slider and the label should appear to retain their state between
launches. Build and run the application and test this. The file generated by the ApplicationProperties
object should look something as follows:

<?xml version="1.0" encoding="UTF-8"?>

<PROPERTIES>
 <VALUE name="label" val="hello"/>
 <VALUE name="slider" val="1.62303665"/>
</PROPERTIES>

On Mac OS X this should be in:

~/Library/Application Support/Chapter05_04

On Windows this should be in:

C:\\Documents and Settings\USERNAME\Application Data\Chapter05_04

where USERNAME is the name of the currently logged-in user.

Adding menu bar controls
JUCE offers a means of creating menu bar user interface controls, as you will have seen, using the
Introjucer application, and in the JUCE Demo application in Chapter 1, Installing JUCE and the
Introjucer Application. These menu bars may be within a window on all platforms using JUCE's own
MenuBarComponent class, or as a native menu bar at the top of the screen on Mac OS X. To demonstrate
this we will add some special commands to the Chapter05_04 project to reset the label and slider in
various ways.

The first requirement for constructing menu bars in JUCE is to create a menu bar model by creating a
subclass of the MenuBarModel class. First add the MenuBarModel class as a base class for the
MainContentComponent class in the MainComponent.h file as highlighted in the following:

...
class MainContentComponent : public Component,
 public MenuBarModel
{
...

The MenuBarModel class has three pure virtual functions that will be used to populate the menu bar. To
add these, add the following three lines to the public section of the MainComponent.h file:

StringArray getMenuBarNames();
PopupMenu getMenuForIndex (int index, const String& name);
void menuItemSelected (int menuID, int index);

The getMenuBarNames() function should return an array of menu names that will appear along the menu
bar. The getMenuForIndex() function is used to create the actual menu when the user clicks on one of
the menu bar names. This should return a PopupMenu object for a given menu (which can be determined
using the menu index or its name). Each menu item should be given a unique ID value that is used to
identify the menu item when it is selected. This is described in a moment. The menuItemSelected()
function will be called when a user selects a particular menu item from one of the menus. Here you are
provided with the ID value of the menu item that was selected (and the index of the menu that this
menu item was in, if you really need this information). For convenience we should add these IDs as
enumerated constants. Add the following code to the end of the public section of the MainComponent.h
file:

...
 enum MenuIDs {
 LabelClear = 1000,
 SliderMin,
 SliderMax
 };
...

Notice that the first item is given a value of 1000; this is because an ID value of 0 (which is otherwise
the default) is not valid as an ID. We need to store the MenuBarComponent object too. Add the code as
highlighted below:

...
private:

 Label label;
 Slider slider;
 MenuBarComponent menuBar;
 ApplicationProperties appProperties;
};

In the MainComponent.cpp file, update the constructor for the MainContentComponent class as highlighted
in the following:

...
MainContentComponent::MainContentComponent()
: menuBar (this)
{
 addAndMakeVisible (&menuBar);
 label.setEditable (true);
...

Here we pass the this pointer to the MenuBarComponent object in the initializer list. This is to tell the
MenuBarComponent object which MenuBarModel to use. Update the resized() function in the
MainComponent.cpp file to position the components as follows:

void MainContentComponent::resized()
{
 menuBar.setBounds (0, 0, getWidth(), 20);
 label.setBounds (10, 30, getWidth() - 20, 20);
 slider.setBounds (10, 60, getWidth() - 20, 20);
}

This positions the menu bar at the top of the window, filling the whole width of the window. Now we
will add the menu bar functionality by implementing the virtual functions from the MenuBarModel class.
Add the following code to the MainComponent.cpp file:

StringArray MainContentComponent::getMenuBarNames()
{
 const char* menuNames[] = { "Label", "Slider", 0 };
 return StringArray (menuNames);
}

This creates the top-level menu names by returning a StringArray object containing the names. Here we
will have two menus, one to control the label, and the other to control the slider. Next, add the following
code to the MainComponent.cpp file:

PopupMenu MainContentComponent::getMenuForIndex
 (int index, const String& name)
{
 PopupMenu menu;

 if (name == "Label")
 {
 menu.addItem (LabelClear, "Clear");
 } else if (name == "Slider") {
 menu.addItem (SliderMin, "Set to minimum");
 menu.addItem (SliderMax, "Set to maximum");
 }

 return menu;
}

This checks which menu should be populated by inspecting the menu name. The Label menu will be
filled with a single item that will be used to clear the label contents. The Slider menu will be filled with
two items: one to set the slider to its minimum value, and one to set the slider to its maximum value.
Notice that this is one place where we use the enumerated constants created earlier. Finally, add the
following code to the MainComponent.cpp file:

void MainContentComponent::menuItemSelected (int menuID,
 int index)
{
 switch (menuID) {
 case LabelClear:
 label.setText (String::empty, dontSendNotification);
 break;
 case SliderMin:
 slider.setValue (slider.getMinimum());
 break;
 case SliderMax:
 slider.setValue (slider.getMaximum());
 break;
 }
}

Here we check which menu ID was selected by the user and act accordingly. Build and run the
application to check this functionality. An additional example project Chapter05_04b is provided in the
code bundle that illustrates how to modify this example to use the native menu bar on the Mac OS X
platform. A more sophisticated technique for implementing menu bars is to use the JUCE
ApplicationCommandManager class, which is used by the JUCE Demo application and the Introjucer
application code to present its menus, issue commands from buttons, and so on. Refer to the JUCE
documentation for this class for a complete guide.

Summary
This chapter has introduced a range of additional useful utilities for application development in JUCE.
This included using the ValueTree class and related classes for structuring and storing application data
and properties, and adding undo management. This chapter also looked at multithreading support in
JUCE, and introduced one final user interface component for adding menu bar controls to JUCE
applications. These really are the tip of the iceberg. It is rare to find a JUCE class that is difficult to
integrate into your own code. You are encouraged to explore the JUCE documentation to find further
classes that will support your development. The JUCE code and classes introduced in this book should
have given you an insight into the idioms of JUCE code. This should make discovering and using new
JUCE classes relatively straightforward.

Index
A

addAndMakeVisible() function / Adding child components
addListener() function / Broadcasters and listeners
Affero General Public License

about / Installing JUCE for Mac OS X and Windows
application properties

storing / Storing application properties
setStorageParameters() function / Storing application properties
getUserSettings() function / Storing application properties
getValue() function / Storing application properties
getDoubleValue() function / Storing application properties
getIntValue() function / Storing application properties
getBoolValue() function / Storing application properties

Array class
about / Using dynamically allocated arrays
files, finding in directory / Finding the files in a directory
strings, tokenizing / Tokenizing strings
components array, creating / Arrays of components
OwnedArray class, using / Using the OwnedArray class
banks of controls / Other banks of controls

AudioDeviceManager object / Adding audio file playback support
audio file playing

controlling, GUI used / Creating a GUI to control audio file play
audio file playing support

adding / Adding audio file playback support
audio files

playing / Playing audio files
AudioTransportSource object / Adding audio file playback support

B
Binary Builder tool

about / Working with the Binary Builder tool
image file, embedding using Introjucer application / Embedding an image file using the
Introjucer application

binary files
writing / Reading and writing binary files
reading / Reading and writing binary files

broadcasters
about / Broadcasters and listeners

buttonClicked() function / Broadcasters and listeners, Using other component types, Manipulating
image data, Understanding how JUCE handles multiple threads

C
changeState() function / Adding audio file playback support
child components

adding / Adding child components
child node / Structuring hierarchical data
colors

specifying / Specifying colors
setting, look and feel used / Setting colors using the LookAndFeel class

complex component arrangements
configuring / Configuring complex component arrangements

component color IDs
about / Component color IDs

component types
using / Using other component types, Other component types
MainComponent.h / Using other component types
MainComponent.cpp / Using other component types

D
data entry

filtering / Filtering data entry
data structures

numerical types / Understanding the numerical types
text strings / Specifying and manipulating text strings

directory structures
employing / Employing smart pointer classes

Doxygen application
URL / Documentation and other examples

drawing operations
using / Using drawing operations

dynamically typed objects
about / Using the dynamically typed objects
Value class, using / Using the Value class
hierarchical data, structuring / Structuring hierarchical data

E
examples, JUCE

Tracktion music / Documentation and other examples
Max / Documentation and other examples
Codex Digital / Documentation and other examples
Korg / Documentation and other examples
M-Audio / Documentation and other examples
TC Group / Documentation and other examples

F
File**findChildFiles() function / Finding the files in a directory
FileChooser**browseForFileToOpen() function / Manipulating image data
FileChooser**browseForFileToSave() function / Manipulating image data
FileChooser class

about / Other component types
FileNameComponent class

about / Other component types
file paths

specifying / Specifying file paths
special directory locations, accessing / Accessing various special directory locations
file information, obtaining / Obtaining various information about files
special locations / Other special locations
directory structures, navigating / Navigating directory structures

FileTreeComponent class
about / Other component types

focus ordering / Structuring hierarchical data

G
getHeight() function / Adding child components
getMenuBarNames() function / Adding menu bar controls
getMenuForIndex() function / Adding menu bar controls
getToggleState() function / Using other component types
getWidth() function / Adding child components
GNU General Public License

about / Installing JUCE for Mac OS X and Windows
GUI

creating, for controlling audio file playing / Creating a GUI to control audio file play

H
hierarchical data, dynamically type objects

structuring / Structuring hierarchical data

I
ImageComponent**setImagePlacement() function / Reading and writing image files
image data

manipulating / Manipulating image data
ImageFileFormat**loadFrom() function / Reading and writing image files
image files

reading / Reading and writing image files
writing / Reading and writing image files

initialise() function
about / Setting colors using the LookAndFeel class

Integrated Development Environment (IDE) / Installing JUCE for Mac OS X and Windows
Internet Systems Consortium (ISC) license

about / Installing JUCE for Mac OS X and Windows
Introjucer application

about / Building and running the Introjucer application
building / Building and running the Introjucer application
tasks / Building and running the Introjucer application
building, on Windows / Building the Introjucer application on Windows
building, on Mac OS X / Building the Introjucer application on Mac OS X
examining / Examining the JUCE Demo Introjucer project
master-detail interface / Examining the JUCE Demo Introjucer project
JUCE project, creating with / Creating a JUCE project with the Introjucer application
Main.cpp file / Creating a JUCE project with the Introjucer application
MainComponent.cpp file / Creating a JUCE project with the Introjucer application
MainComponent.h file / Creating a JUCE project with the Introjucer application

J
JUCE

about / Installing JUCE for Mac OS X and Windows
installing, for Mac OS X / Installing JUCE for Mac OS X and Windows
installing, for Windows / Installing JUCE for Mac OS X and Windows
source code, downloading / Installing JUCE for Mac OS X and Windows
documentation / Documentation and other examples
URL, for documentation / Documentation and other examples
examples / Documentation and other examples
Time class / Measuring and displaying time
file paths, specifying / Specifying file paths
Array class / Using dynamically allocated arrays
memory management classes / Employing smart pointer classes
dynamically typed objects, using / Using the dynamically typed objects
undo management, employing / Employing undo management
XML support, adding / Adding XML support
multiple threads, handling / Understanding how JUCE handles multiple threads
application properties, storing / Storing application properties
menu bar controls, adding / Adding menu bar controls

JUCE Component class
about / Creating buttons, sliders, and other components

JUCE coordinate system
about / Creating buttons, sliders, and other components
single parent component / Creating buttons, sliders, and other components
child components / Creating buttons, sliders, and other components

JUCE Demo application
building / Building and running the JUCE Demo application
structure / Building and running the JUCE Demo application
running, on Windows / Running the JUCE Demo application on Windows
running, on Mac OS X / Running the JUCE Demo application on Mac OS X
overview / The JUCE Demo application overview
components / The JUCE Demo application overview
look-and-feel, customizing / Customizing the look and feel

JUCE licensing
reference link / Installing JUCE for Mac OS X and Windows

JUCE project
creating, with Introjucer application / Creating a JUCE project with the Introjucer application

juce_core module
about / Installing JUCE for Mac OS X and Windows

L
listeners

about / Broadcasters and listeners
look-and-feel, JUCE Demo application

customizing / Customizing the look and feel

M
Mac OS X

JUCE, installing / Installing JUCE for Mac OS X and Windows
JUCE Demo application, running on / Running the JUCE Demo application on Mac OS X
Introjucer application, running on / Building the Introjucer application on Mac OS X

main() function / Posting log messages to the console
media files

simple input stream, using / Using simple input and output streams
simple output stream, using / Using simple input and output streams
text files, reading / Reading and writing text files
text files, writing / Reading and writing text files
binary files, reading / Reading and writing binary files
binary files, writing / Reading and writing binary files
image files, reading / Reading and writing image files
image files, writing / Reading and writing image files
image data, manipulating / Manipulating image data
audio files, playing / Playing audio files

menu bar controls
adding / Adding menu bar controls

menu bar model / Adding menu bar controls
menuItemSelected() function / Adding menu bar controls
Microsoft Visual Studio

about / Installing JUCE for Mac OS X and Windows
downloading / Installing JUCE for Mac OS X and Windows

Microsoft Visual Studio IDE / Installing JUCE for Mac OS X and Windows
mouse activity

intercepting / Intercepting mouse activity
mouseDown() function

about / Intercepting mouse activity
mouseDrag() function

about / Intercepting mouse activity
mouseEnter() function

about / Intercepting mouse activity
mouseExit() function

about / Intercepting mouse activity
mouseMove() function

about / Intercepting mouse activity
mouseUp() function

about / Intercepting mouse activity
multiple threads

handling / Understanding how JUCE handles multiple threads

N
numerical types

about / Understanding the numerical types

O
observer pattern

about / Broadcasters and listeners
OwnedArray class

using / Using the OwnedArray class

P
paint() function

about / Using drawing operations
PopupMenu class

about / Other component types
pure virtual function

about / Broadcasters and listeners

R
readFile() function / Reading and writing text files
readFloat() function / Reading and writing binary files
readFloatBigEndian() function / Reading and writing binary files
readInt() function / Reading and writing binary files
readIntBigEndian() function / Reading and writing binary files
reference counted objects / Specifying and manipulating text strings
resized() function / Adding child components

S
setBounds() function / Adding child components
setBoundsRelative() function / Adding child components
setResizable() function / Adding child components
setSize() function / Creating buttons, sliders, and other components, Adding child components
slider

text box, removing / Broadcasters and listeners
sliderValueChanged() function / Broadcasters and listeners, Manipulating image data

T
TabbedComponent class

about / Other component types
TableListBox class

about / Other component types
text box

removing, from slider / Broadcasters and listeners
TextEditor class

about / Other component types
text files

reading / Reading and writing text files
writing / Reading and writing text files

text strings
specifying / Specifying and manipulating text strings
manipulating / Specifying and manipulating text strings, String manipulation
log messages, posting to console / Posting log messages to the console

Thread**run() function / Understanding how JUCE handles multiple threads
Thread**stopThread() function / Understanding how JUCE handles multiple threads
Time**formatted() function / Displaying and formatting time information
Time**getCurrentTime() function / Measuring and displaying time, Measuring time
Time**getMillisecondCounter() function / Measuring and displaying time, Measuring time
Time**toString() function / Displaying and formatting time information
Time class

about / Measuring and displaying time
time information, displaying / Displaying and formatting time information
time information, formatting / Displaying and formatting time information
time data, manipulating / Manipulating time data
time, measuring / Measuring time

time information
displaying / Displaying and formatting time information
formatting / Displaying and formatting time information

toggle-type button
about / Using other component types

ToggleButton object
about / Using other component types

ToolbarButton class
about / Other component types

TreeView class
about / Other component types

U
undo management

employing / Employing undo management
user interaction

responding to / Responding to user interaction and changes
user interfaces, JUCE

buttons, creating / Creating buttons, sliders, and other components
building / Creating buttons, sliders, and other components
sliders, creating / Creating buttons, sliders, and other components
components, creating / Creating buttons, sliders, and other components
child components, adding / Adding child components
user interaction, responding to / Responding to user interaction and changes
complex component arrangements, configuring / Configuring complex component arrangements

V
Value class

using / Using the Value class

W
Windows

JUCE, installing / Installing JUCE for Mac OS X and Windows
JUCE Demo application, running on / Running the JUCE Demo application on Windows
Introjucer application, running on / Building the Introjucer application on Windows

writeFile() function / Reading and writing text files
writeFloat() function / Reading and writing binary files
writeFloatBigEndian() function / Reading and writing binary files
writeInt() function / Reading and writing binary files
writeIntBigEndian() function / Reading and writing binary files
writeToLog() function / Posting log messages to the console

X
Xcode IDE / Installing JUCE for Mac OS X and Windows
XML support

adding / Adding XML support

Table of Contents
Getting Started With JUCE 7
Credits 8
About the Author 10
About the Reviewers 11
www.PacktPub.com 13
Support files, eBooks, discount offers, and more 14
Why Subscribe? 15
Free Access for Packt account holders 16
Preface 17
What this book covers 18
What you need for this book 19
Who this book is for 20
Conventions 21
Reader feedback 22
Customer support 23
Downloading the example code 24
Errata 25
Piracy 26
Questions 27
1. Installing JUCE and the Introjucer Application 28
Installing JUCE for Mac OS X and Windows 29
Building and running the JUCE Demo application 31
Running the JUCE Demo application on Windows 32
Running the JUCE Demo application on Mac OS X 33
The JUCE Demo application overview 34
Customizing the look and feel 35
Building and running the Introjucer application 36
Building the Introjucer application on Windows 37
Building the Introjucer application on Mac OS X 38
Examining the JUCE Demo Introjucer project 39
Creating a JUCE project with the Introjucer application 42
Documentation and other examples 46
Summary 47
2. Building User Interfaces 48
Creating buttons, sliders, and other components 49
Adding child components 51
Responding to user interaction and changes 54
Broadcasters and listeners 55

Filtering data entry 59
Using other component types 60
Specifying colors 62
Component color IDs 64
Setting colors using the LookAndFeel class 65
Using drawing operations 67
Intercepting mouse activity 71
Configuring complex component arrangements 74
Other component types 77
Summary 78
3. Essential Data Structures 79
Understanding the numerical types 80
Specifying and manipulating text strings 81
Posting log messages to the console 82
String manipulation 83
Measuring and displaying time 85
Displaying and formatting time information 86
Manipulating time data 87
Measuring time 89
Specifying file paths 91
Accessing various special directory locations 92
Obtaining various information about files 93
Other special locations 94
Navigating directory structures 95
Using dynamically allocated arrays 97
Finding the files in a directory 99
Tokenizing strings 100
Arrays of components 101
Using the OwnedArray class 103
Other banks of controls 105
Employing smart pointer classes 108
Summary 110
4. Using Media Files 111
Using simple input and output streams 112
Reading and writing text files 113
Reading and writing binary files 115
Reading and writing image files 117
Manipulating image data 119
Playing audio files 122
Creating a GUI to control audio file play 123

Adding audio file playback support 125Working with the Binary Builder tool 131
Embedding an image file using the Introjucer application 132
Summary 134
5. Helpful Utilities 135
Using the dynamically typed objects 136
Using the Value class 137
Structuring hierarchical data 139
Employing undo management 143
Adding XML support 145
Understanding how JUCE handles multiple threads 148
Storing application properties 151
Adding menu bar controls 154
Summary 157
Index 158

	Getting Started With JUCE
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why Subscribe?
	Free Access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Installing JUCE and the Introjucer Application
	Installing JUCE for Mac OS X and Windows
	Building and running the JUCE Demo application
	Running the JUCE Demo application on Windows
	Running the JUCE Demo application on Mac OS X
	The JUCE Demo application overview
	Customizing the look and feel
	Building and running the Introjucer application
	Building the Introjucer application on Windows
	Building the Introjucer application on Mac OS X
	Examining the JUCE Demo Introjucer project
	Creating a JUCE project with the Introjucer application
	Documentation and other examples
	Summary
	2. Building User Interfaces
	Creating buttons, sliders, and other components
	Adding child components
	Responding to user interaction and changes
	Broadcasters and listeners
	Filtering data entry
	Using other component types
	Specifying colors
	Component color IDs
	Setting colors using the LookAndFeel class
	Using drawing operations
	Intercepting mouse activity
	Configuring complex component arrangements
	Other component types
	Summary
	3. Essential Data Structures
	Understanding the numerical types
	Specifying and manipulating text strings
	Posting log messages to the console
	String manipulation
	Measuring and displaying time
	Displaying and formatting time information
	Manipulating time data
	Measuring time
	Specifying file paths
	Accessing various special directory locations
	Obtaining various information about files
	Other special locations
	Navigating directory structures
	Using dynamically allocated arrays
	Finding the files in a directory
	Tokenizing strings
	Arrays of components
	Using the OwnedArray class
	Other banks of controls
	Employing smart pointer classes
	Summary
	4. Using Media Files
	Using simple input and output streams
	Reading and writing text files
	Reading and writing binary files
	Reading and writing image files
	Manipulating image data
	Playing audio files
	Creating a GUI to control audio file play
	Adding audio file playback support
	Working with the Binary Builder tool
	Embedding an image file using the Introjucer application
	Summary
	5. Helpful Utilities
	Using the dynamically typed objects
	Using the Value class
	Structuring hierarchical data
	Employing undo management
	Adding XML support
	Understanding how JUCE handles multiple threads
	Storing application properties
	Adding menu bar controls
	Summary
	Index

