
[1]

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Polymer

Explore the whole new world of web development and
create responsive web apps using Polymer

Arshak Khachatrian

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Polymer

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages caused
or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2016

Production reference: 1270616

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-937-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author

Arshak Khachatrian

Reviewer

Thibaut Gensollen

Commissioning Editor

Neil Alexander

Acquisition Editor

Reshma Raman

Content Development Editor

Pooja Mhapsekar

Technical Editor

Taabish Khan

Copy Editors

Pranjali Chury

Shruti Iyer

Project Coordinator

Suzanne Coutinho

Proofreader

Safis Editing

Indexer

Hemangini Bari

Production Coordinator

Arvindkumar Gupta

Cover Work

Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Arshak Khachatrian is a programmer who was born on May 16, 1997,
in Yerevan, Armenia.

Since an early age, he has always been interested in computers, and after turning 10
years old, he had his first computer presented to him on his birthday by his father. A
week later, Arshak was supporting all the computers in the entire town by installing
the Windows operating system and solving various OS issues.

After completing primary school, he decided to study mathematics and physics
in high school and enrolled at Polytechnic High School, where he deepened his
knowledge of mathematics and physics. Following this, Arshak was accepted in
the Tumo Center. At Tumo, he first encountered programming languages, using
them to design sites and program robots and fountains. A year after graduating,
Arshak decided to create his first big project, the solar system in the browser, and
one week after that, he started writing a hard code that he published on a social
network. Soon after, he was called to work with the X-Tech company as a JavaScript
developer. It was the beginning of his career. Then, Arshak accepted an offer from
the BetConstruct company and developed his knowledge in the programming
sphere. Thereafter, he decided to support Google and change the world by joining
the Google Developers Group Armenia in 2014 and then started to contribute to the
Polymer team by writing articles and creating open source components and tools for
customelements.io.

In November, 2015, Arshak had a Polymer Code Lab at GDG DevFest at TUMO. In
2016, he and his fellow designer Serge Navasardyan decided to found their startup
based on a 360 website builder called POP360.

Finally, in March 2016, Arshak joined the famous programmer Rouben Meschian and
started working with the Cambridge Semantics company in Boston.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

Hey there! Thank you for choosing my book. When I was just starting to learn
programming in school, I did not understand so well how big this world is. We have
big opportunities and little time. Every day is a competition in which you win or lose.
We get our "human" label according our victories, and when we lose, we try again
the next day. This book is a victory for me. It pushes me to win in the upcoming
days. I'm behind this book, and all the people who have supported me during the
whole writing process are by my side. A very big thank you goes to my mother, Gohar
Mikaelyan, who motivated me to write and finish this book; to my sister Nelly, who
helped me with the translation of the book; and to Anna and Melania, as well. I want
to thank to all my friends and, most importantly, my father, Karen Khachatryan, who
gave me the chance to enter the digital world when I was 10 years old by giving me
my first computer. I would like to express very warm thanks to the Packt Publishing
staff—in particular, Reshma Raman, Pooja Mhapsekar, Taabish Khan, and Amey
Varangaonkar—for helping and supporting me all this time.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Thibaut Gensollen is a 25-year-old French guy born in Bordeaux, passionate
about the computer sciences and, especially, web development. He got a master's
degree of science in electrical engineering and computer sciences from École
Normale Supérieure, Cachan, with a major in machine learning. During his studies,
Thibaut got some research experience at UC Berkeley and University of Michigan,
and he also worked at Orange, San Francisco, and Deloitte, Paris, where he started
learning Polymer.

Thibaut's passion for the Web started at the age of 12, when he designed and coded
websites for people. Since then, he never stopped designing and coding websites,
mobile applications, or databases. Thibaut was the co-founder of a designing
community, graphistes-world, which was one of the best French communities
at the time.

With time, he learned more and more about lots of fields, such as SEO, backends,
functional programing, machine learning, and more. Thibaut is now really
enthusiastic about all of these new upcoming technologies, such as Polymer.

He is currently thinking about doing a PhD in deep learning, and he is the C.T.O. of a
mobile application called CHOOSE, which has thousands of daily active users, using
libraries such as Polymer, Ionic, and AngularJS.

I would like to thank Packt Publishing for giving me this opportunity
to review the book and my parents for letting me spend so much time
on my computer when I was young.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt

• Copy and paste, print, and bookmark content

• On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface vii

Chapter 1: Web Components 1
Introduction to Web Components 2
Templates 4
Shadow DOM 6

Inside the browser 7
Creating a Shadow DOM 8
Root shadowRoot 10

Custom elements 11
New item 12
The expansion of built-in elements 15
Life cycles 16

HTML imports 17
Web components 20
Reusing an imported document 20

Styles and selectors 21
Exterior styling for Shadow DOM 22
Styling depending on the host 23
Style to content 24

Summary 26

Chapter 2: Material Design 27
What is Material Design? 27

Why do we need Material Design? 28
Material Design – to the moon and back! 28

Tactile surface 31
Depth 32

Publishing design 34
Elegant typography 34

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Font size 35
Contrast typography 36
Geometric iconographies 36
Colors 37
Beautiful photos 37

Meaningful animations 38
Asymmetry 38
Reaction 39
Micro animations 39
Clarity and sharpness 40

Adaptive design 40
From the general to the particular 41
Padding 41
Wireframes 42
Guides 42
Sizes 43
Blocks 44
Toolbars 44

Other tools 46
Summary 47

Chapter 3: Introduction to Polymer 49
What is Polymer? 50
Downloading the code 50

Bower 50
Downloading the ZIP file 51
Cloning from Git 52

Working with Polymer 52
Registering elements 53
Declaring element properties 56
Property change observers 58
Local Polymer DOM elements 59

Manipulating nodes inside Polymer elements 60
Data binding in Polymer 62

Binding annotations 63
Behaviors in Polymer 66

Events 68
Styling 70

Mixins in Polymer 72
Summary 73

Chapter 4: Polymer Elements 75
App elements 76

app-layout 76
app-route 76

Table of Contents

[iii]

Iron elements 77
iron-a11y-keys 77
iron-ajax 78
iron-collapse 78
iron-image 79
iron-dropdown 80
iron-flex-layout 80
iron-form 81
iron-icon 82
iron-swipeable-container 82

Paper elements 83
paper-badge 83
paper-button 84
paper-card 85
paper-checkbox 85
paper-drawer-panel 86
paper-dropdown-menu 86
paper-fab 86
paper-icon-button 87
paper-input 87
paper-listbox 88
paper-material 88
paper-menu 88
paper-progress 89
paper-radio-button 89
paper-ripple 89
paper-slider 90
paper-spinner 90
paper-tabs 90
paper-toast 91
paper-toggle-button 92

Google web components 92
google-analytics-query 92
google-client-loader 92
google-chart 93
google-hangout-button 93
google-map 94
google-signin 94
google-streetview-pano 95
google-youtube 95

Table of Contents

[iv]

Gold elements 96
gold-cc-cvc-input 96
gold-cc-input 96
gold-email-input 96
gold-phone-input 96

Neon elements 97
Platinum elements 98

platinum-bluetooth 98
platinum-push-messaging 99

Molecules 99
marked-element 99

Summary 100

Chapter 5: First Application with Polymer 101
Meet P O L Y 102
Setups 103
Starting with the app development 105

The login page 105
The elements.html file 106
<poly-login> 108
<poly-signup> 112

P O L Y – the app page (home.html) 116
<poly-profile> 118
<poly-gravatar> 119
<poly-app> 122
<poly-daily-music> 124
<poly-songs> 128
<poly-player> 132
<poly-user-music> 134
<poly-users> 135

Summary 137

Chapter 6: Polymer Designer Tool and
Polymer Starter Kit 139

Polymer Designer Tool 140
The right-hand side panel 140

Palette 140
Tree 141
Properties 142
Styles 142

The top panel 143
Code 143
Save, share, and preview 144

Table of Contents

[v]

Polymer Starter Kit 144
Installation 144
The directory structure 145
Build and run 145

Summary 147

Chapter 7: Working with Polymer.dart 149
What is Dart? 149
Installing Dart 150
Structuring an application 150
Using custom elements in Dart 151

How to use custom elements in code 151
Creating custom elements in Dart 153
Building an app 154
Tools 154

Tools for the Sublime Text editor 155
Tools for Atom 155

Summary 156

Chapter 8: Best Practices 157
The mystery with <paper-dialog> 157
Importing HTML using RequireJS 159
Floating action button (FAB) with menu items 160
The paper-video element 161
Elements in a collection 162
Use Yeoman Polymer Generator! It's awesome! 163

Installation 163
The polymer:element generator 163
The polymer:seed generator 163
The polymer:gh generator 164
Testing with web-component-tester 164

Summary 164

Index 165

[vii]

Preface
Web technologies are growing day by day, and people are trying to improve and
create things that will facilitate and accelerate their lives.

A few years ago, it was very problematic to create a website that was nice and quick
for all devices; we had to write a few hundred lines of CSS and HTML code in order to
develop a responsive website for all.

Now, there is a tool that lets you easily create websites that work quickly and, at the
same time, look very nice on all devices. This tool is called Polymer.

Polymer is a collection of components that you can use to create your own
components and construct a website, much like Lego. In this book, you will learn
how to use these components, how to create your own, and how to collect all this
into a simple app.

What this book covers
Chapter 1, Web Components, introduces you to HTML imports, custom elements,
Shadow DOM, and templates to easily create applications using new web
development technologies.

Chapter 2, Material Design, teaches you Material Design concepts such as how to
create material applications using Material Design animations, styles, and layouts.

Chapter 3, Introduction to Polymer, introduces you to Polymer and its features to make
the creation of web components simpler and faster.

Chapter 4, Polymer Elements, presents a set of useful elements, such as iron elements,
paper elements, Google web components, gold elements, neon elements, platinum
elements, and molecules.

Preface

[viii]

Chapter 5, First Application with Polymer, teaches you how to create a simple app
with Polymer.

Chapter 6, Polymer Designer Tool and Polymer Starter Kit, familiarizes you with some
tools to make your job faster.

Chapter 7, Working with Polymer.dart, provides you with a brief start on Polymer.dart.

Chapter 8, Best Practices, contains a lot of cool stuff about Polymer including how to
write clean and awesome code that is high performance and with minimal bugs.

What you need for this book
The main thing we need is an editor. I recommend that you use the Atom and
Sublime Text editors as they're easy to configure and get the packages in these
editors. You need Node.js on your computer to run the npm commands and
get the Bower, Grunt, and Polymer components.

Who this book is for
If you are a beginner-level web developer who wants to learn the concepts of web
development using the Polymer library, then this is the book for you. Knowledge of
JavaScript and HTML is expected.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We
can include other contexts through the use of the include directive."

A block of code is set as follows:

<style>
 :host > div {
 background-color: teal;
 }
</style>

Preface

[ix]

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

some-behavior.html
<script>
 SomeBehavior = {
 properties: {
 isSelected: {

Any command-line input or output is written as follows:

bower update

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "It is a
simple drawer panel, with four menu items: My Music, Poly Music, Users, and
About the app."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[x]

Downloading the example code
You can download the example code files for this book from your account at http://
www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.

2. Hover the mouse pointer on the SUPPORT tab at the top.

3. Click on Code Downloads & Errata.

4. Enter the name of the book in the Search box.

5. Select the book for which you're looking to download the code files.

6. Choose from the drop-down menu where you purchased this book from.

7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on
the book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged
in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows

• Zipeg / iZip / UnRarX for Mac

• 7-Zip / PeaZip for Linux

The code bundle for the app in Chapter 5, First Application with Polymer, is hosted on
GitHub at https://github.com/AKHXtern/poly. The code bundle for Chapter 1,
Web Components, is hosted on GitHub at https://github.com/AKHXtern/polymer-
book-examples. We also have other code bundles from our rich catalog of books and
videos available at https://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/AKHXtern/poly
https://github.com/AKHXtern/polymer-book-examples
https://github.com/AKHXtern/polymer-book-examples
https://github.com/PacktPublishing/

Preface

[xi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission
Form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Web Components
Currently, web technologies are growing rapidly. Though most current websites use
these technologies, we come across many with a bad, unresponsive UI design and
awful performance. The only reason we should think about a responsive website is
that users are now moving to the mobile web. 55% of web users use mobile phones
because they are faster and more comfortable. This is why we need to provide mobile
content in the simplest way possible. Everything is moving to minimalism, even
the Web.

The new web standards are changing rapidly too. In this chapter, we will cover one of
these new technologies, web components, and what they do. Using web components,
you can easily create your web application by splitting it into parts/components.

We will cover the following topics:

• Introduction to web components

• Templates

• Shadow DOM

• Custom elements

• HTML imports

• Styles and selectors

These are the specifications of web components. Each one of these creates magic.
Polymer is a library that uses the features of web components. Hence, we need to
study web components in detail before we start working with it.

Web Components

[2]

Introduction to Web Components
Let's talk about web components. What are they? Why should we use them on the
Web and what kind of problems can they solve?

Imagine for a moment, what if you could write less code and make more things
than now, what if you could just create a <website> component and give it some
attributes and create your entire website in a second. You think it is possible only in
the future? Nope, it's happening now! Web components are here and they will solve
all your problems.

There is no issue with browser support because now (at the time of writing this
chapter) all modern browsers support web component polyfills.

Look at the following screenshot of code blocks from Gmail:

If you can read and understand this code, the only thing I would say to you is that
you're a hero, because I can't!

Chapter 1

[3]

What if I showed you code similar to the following? (I like this one, by the way):

This code is written using the features of web components and is way easier to read/
understand/execute. Now, compare both the examples. Do you see any difference? I
guess you already know which one is better.

Web components allow us to create complex UI widgets and applications. We can fill
in the gaps with our own reusable components and then use them whenever we want.

There is a saying that:

"If you think that the Web was changed by HTML5, then wait and see
what changes web components make."

Web components are a new era of web development and, in this book, we will
discuss the benefits you can get using Polymer from Google. You can create your
own elements that contain templates, encapsulated styles, and logic (JS). They
also take advantage of a rich collection of ready-made elements (take a look at
http://customelements.io).

"The platform of the future" is a set of standards that allows us to describe new types
of DOM elements with their properties and methods that encapsulate their DOM
and styles.

This means that the styles you have in a document will always render as you intend
them to and your HTML code is safe from other users of external JavaScript code.

http://customelements.io

Web Components

[4]

Web components have four specifications and we will discuss them in this chapter.
They are as follows:

• Templates

• Shadow DOM

• Custom elements

• HTML imports

Templates
In this section, we will discuss what we can do with templates. However, let's answer
a few questions before this.

What are templates and why should we use them?

Templates are basically fragments of HTML, but let's call these fragments the
"zombie" fragments of HTML as they are neither alive nor dead. What is meant by
"neither alive nor dead"? Let me explain this with a real-life example.

Once, when I was working on the ucraft.me project (it's a website built with a lot of
cool stuff in it), we faced some rather new challenges with the templates. We had a lot
of form elements, but we didn't know where to save the form elements content. We
didn't want to load the DOM of each form element, but what could we do? As always,
we did some magic; we created a lot of div elements with the form elements and hid
it with CSS. But the CSS display: none property did not render the element, it
loaded the element. This was also a problem because there were a lot of form element
templates and it affected the performance of the website.

I recommended to my team that they work with templates. Templates can contain
HTML content, but they do not load the element nor render.

We call template elements "dead elements" because they do not load the content until
you get their content with JavaScript. Let's move ahead and let me show you some
examples of how you can create templates and do some stuff with their contents.

Imagine that you are working on a big project where you need to load some dynamic
content without AJAX. If I had a task such as this, I would create a PHP file and get
its content by calling the jQuery .load() function. However, now you can save your
content inside the <template> element and get the content without any jQuery or
AJAX, but instead with a single line of JavaScript code. Let's create a template.

Chapter 1

[5]

In index.html, we have <template> and some content we want to get in the future,
as shown in the following code block:

<template class="superman">
 <div>

 </div>
</template>

The time has now come for JavaScript! Execute the following code:

<script>
 // selecting the template element with querySelector()

 var tmpl = document.querySelector('.superman');
 //getting the <template> content
 var content = tmpl.content;
 // making some changes in the content
 content.querySelector('.animated_superman').width = 200;

 // appending the template to the body
 document.body.appendChild(content);
</script>

So, that's it! Cool, right? The content will load only after you append the content
to the document. So, do you realize that templates are a part of the future web? If
you are using Chrome Canary, just turn on the flags of experimental web platform
features and enable HTML imports and experimental JavaScript.

There are four ways to use templates, which are:

• Add templates with hidden elements in the document and just copy and paste
the data when you need it, as follows:

<div hidden data-template="superman">
 <div>
 <p>SuperMan Head</p>
 <img src="assets/img/superman.png"
 class="animated_superman" />
 </div>
</div>

However, the problem is that a browser will load all the content. It means
that the browser will load but not render images, video, audio, and so on.

Web Components

[6]

• Get the content of the template as a string (by requesting with AJAX or from
<script type="x-template">).

• However, we might have some problems in working with the string. This
can be dangerous for XSS attacks; we just need to pay some more attention
to this:

<script data-template="batman" type="x-template">
 <div>
 <p>Batman Head this time!</p>
 <img src="assets/img/superman.png"
 class="animated_superman" />
 </div>
</div>

• Compiled templates such as Hogan.js (http://twitter.github.io/hogan.
js/) work with strings. So they have the same flaw as the patterns of the
second type.

Templates do not have these disadvantages. We will work with DOM and not with the
strings. We will then decide when to run the code.

In conclusion:

• The <template> tag is not intended to replace the system of standardization.
There are no tricky iteration operators or data bindings.

• Its main feature is to be able to insert "live" content along with scripts.

• Lastly, it does not require any libraries.

Shadow DOM
The Shadow DOM specification is a separate standard. A part of it is used for
standard DOM elements, but it is also used to create web components. In this section,
you will learn what the Shadow DOM is and how to use it.

The Shadow DOM is an internal DOM element that is separated from an external
document. It can store your ID, styles, and so on. Most importantly, the Shadow
DOM is not visible outside of its scope without the use of special techniques. Hence,
there are no conflicts with the external world; it's like an iframe.

http://twitter.github.io/hogan.js/
http://twitter.github.io/hogan.js/

Chapter 1

[7]

Inside the browser
The Shadow DOM concept has been used for a long time inside browsers themselves.
When the browser shows complex controls, such as an <input type = "range">
slider or a <input type = "date"> calendar within itself, it constructs them out of
the most ordinary styled <div>, , and other elements.

They are invisible at first glance, but they can be easily seen if the checkbox in
Chrome DevTools is set to display Shadow DOM:

In the preceding code, #shadow-root is the Shadow DOM.

Getting items from the Shadow DOM can only be done using special JavaScript calls
or selectors. They are not children but a more powerful separation of content from
the parent.

In the preceding Shadow DOM, you can see a useful pseudo attribute. It is
nonstandard and is present for solely historical reasons. It can be styled via CSS with
the help of subelements—for example, let's change the form input dates to red via the
following code:

<style>
 input::-webkit-datetime-edit {
 background: red;
 }
</style>

<input type="date" />

Web Components

[8]

Once again, make a note of the pseudo custom attribute. Speaking chronologically,
in the beginning, browsers started to experiment with encapsulated DOM structure
inside their scopes, then Shadow DOM appeared which allowed developers to do
the same.

Now, let's work with the Shadow DOM from JavaScript or the standard Shadow DOM.

Creating a Shadow DOM
The Shadow DOM can create any element within the elem.createShadowRoot()
call, as shown by the following code:

<div id="container">You know why?</div>

<script>
 var root = container.createShadowRoot();
 root.innerHTML = "Because I'm Batman!";
</script>

If you run this example, you will see that the contents of the #container element
disappeared somewhere and it only shows "Because I'm Batman!". This is because
the element has a Shadow DOM and ignores the previous content of the element.

Because of the creation of the Shadow DOM, instead of the content, the browser has
shown only the Shadow DOM.

If you wish, you can put HTML content via JavaScript inside this Shadow DOM. To
do this, you need to specify where it is to be done. The Shadow DOM is done through
the "insertion point" and it is declared using the <content> tag; here's an example:

<div id="container">You know why?</div>

<script>
 var root = container.createShadowRoot();
 root.innerHTML = '<h1><content></content></h1><p>Winter is
 coming!</p>';
</script>

Now, you will see "You know why?" in the title followed by "Winter is coming!".

Chapter 1

[9]

Here's a Shadow DOM example in Chrome DevTool:

The following are some important details about the Shadow DOM:

• The <content> tag affects only the display and it does not move the nodes
physically. As you can see in the preceding picture, the node "You know
why?" remained inside the div#container. It can even be obtained using
container.firstElementChild.

• Inside the <content> tag, we have the content of the element itself. In this
example, the string "You know why?".

With the select attribute of the <content> element, you can specify a particular
selector content you want to transfer; for example, <content select="p"></
content> will transfer only paragraphs.

Inside the Shadow DOM, you can use the <content> tag multiple times with different
values of select, thus indicating where to place which part of the original content.
However, it is impossible to duplicate nodes. If the node is shown in a <content> tag,
then the next node will be missed.

For example, if there is a <content select="h3.title"> tag and then <content
select= "h3">, the first <content> will show the headers <h3> with the class title,
while the second will show all the others, except for the ones already shown.

In the preceding example from DevTools, the <content></content> tag is empty. If
we add some content in the <content> tag, it will show that if there are no other nodes.

Check out the following code:

<div id="container">
 <h3>Once upon a time, in Westeros</h3>
 Ruled a king by name Joffrey and he's dead!
</div>

<script>

www.allitebooks.com

http://www.allitebooks.org

Web Components

[10]

 var root = container.createShadowRoot();

 root.innerHTML = '<content select='h3'></content> \
 <content select=".writer"> Jon Snow </content> \
 <content></content>';
</script>

When you run the JS code, you will see the following:

• The first <content select='h3'> tag will display the title

• The second <content select = ".hero"> tag would show the hero name,
but if there isn't element with this selector, it will take the default value:
<content select=".hero">

• The third <content> tag displays the rest of the original contents of the
elements without the header <h3>, which it had launched earlier

Once again, note that <content> moves nodes on the DOM physically.

Root shadowRoot
After the creation of a root in the internal DOM, the tree will be available as
container.shadowRoot.

This is a special object that supports the basic methods of CSS requests and is
described in detail in ShadowRoot.

You need to go through container.shadowRoot if you need to work with content
in the Shadow DOM. You can create a new Shadow DOM tree of JavaScript; here's
an example:

<div id="container">Polycasts</div>

<script>
 // create a new Shadow DOM tree for element

 var root = container.createShadowRoot();

 root.innerHTML = '<h1><content></content></h1> Hey
 googlers! Let\'s code today.';
</script>

<script>

Chapter 1

[11]

 // read data from Shadow DOM for elem

 var root = container.shadowRoot;

 // Hey googlers! Let's code today.
 document.write('
container: ' + root.
 querySelector('strong').innerHTML);
 // empty as physical nodes - is content
 document.write('
content: ' + root.
 querySelector('content').innerHTML);
</script>

To finish up, Shadow DOM is a tool to create a separate DOM tree inside the cell,
which is not visible from outside without using special techniques:

• A lot of browser components with complex structures have Shadow DOM
already.

• You can create Shadow DOM inside every element by calling
elem.createShadowRoot(). In the future, it will be available as
elem.shadowRoot root and you will be able to access it inside the Shadow
DOM. It is not available for custom elements.

• Once the Shadow DOM appears in the element, the content of it is hidden.
You can see just the Shadow DOM.

• The <content> element moves the contents of the original item in the
Shadow DOM only visually. However, it remains in the same place in the
DOM structure.

Detailed specifications are given at http://w3c.github.io/
webcomponents/spec/shadow/.

Now, let's move to custom elements, which are also a part of web components. You
can do lots of cool stuff with custom elements, so go ahead to the next topic and keep
rocking the world!

Custom elements
In this section, we will discuss another great feature of web components.

A reader with a critical mind would say, "Why do we need more standard types of
elements? I can create any element right now! In any of the modern browsers, I can
create any HTML tag I want using custom tags (<customtag>) or create elements
from JavaScript using document.createElement('customtag')."

http://w3c.github.io/webcomponents/spec/shadow/
http://w3c.github.io/webcomponents/spec/shadow/

Web Components

[12]

However, the default element with a nonstandard name (for example, <customtag>)
is seen by the browser as something vague and incomprehensible. It corresponds to
the HTMLUnknownElement class and it does not have any special methods.

The standard of custom elements allows you to describe the elements of its new
properties and methods, declare your DOM and construction similarity, and
much more.

Running examples of this book

Since the specification is not final, it is recommended that you run the
examples used in this book in Google Chrome, better yet, in the latest
build of Chrome Canary, which tends to reflect the latest changes.

Let's look at the following examples.

New item
For the description of a new element, we will use document.registerElement
(name, {prototype: proto}), which can be explained as follows:

• name: This is the name of the new tag, such as super-tag. It must contain a
dash (-). The specification requires a dash to avoid future conflict with the
standard elements of HTML. You cannot create an item or timer with the
name myTag. The DOM will identify this element as an unknown element.

• prototype: This is the prototype object for the new element and it must be
inherited from the HTMLElement property, standard properties, and methods
of the element.

Let me show you some examples of how to create custom elements and play with
them using JavaScript.

At first, we need to create the custom <show-logo> element that has two attributes
(id and logo). Let's go ahead and take a look at the ways in which we can choose to
create a custom element, as follows.

HTML

<!—Creating Framework Logos tag -->
<!-- You can use names like (polymer, angular-js, backbone, ember,
underscore, bower) -->
<show-logo id="showLogo" logo="polymer"></show-logo>

Chapter 1

[13]

JavaScript

var logo = Object.create(HTMLElement.prototype);
logo.show = function(){
 // Creating info text
 var info = document.createElement('p');
 info.innerHTML = 'Hover me to feel the Logo!';

 var fwork = this.getAttribute('logo');

 var img = document.createElement('img');
 img.src = 'frameworks/logo/' + fwork + '.png';
 img.width = 300;
 img.height = 240;

 this.appendChild(img);
 this.appendChild(info);

 this.onmouseover = function(){
 this.audio.play();
 };
 this.onmouseout = function(){
 this.audio.pause();
 };
};
logo.audio = new Audio('logo/music/logo.ogg');

// Registering our Framework Logo element
document.registerElement('show-logo', {prototype: logo});
showLogo.show();

You can see the result in the following figure:

Web Components

[14]

Here, we have our <show-logo> component, which contains an image that we have
given as the logo attribute. The logo gets the image from the attribute value. You can
try this live in the Examples page in the Chapter 1 folder in the accompanying code
bundle of this book, available on the Packt website or on GitHub.

Let's have a look at what we did here. We created and registered our <show-logo>
component, which has the .show() method. The .show() method creates some
information and an image and appends it to our custom element. We also have audio
attached here that starts playing when we hover over the element.

In the end, we will call our component's .show() method and it will create our scene.

If your new element is not defined in HTML, you can register it through
registerElement(). The browser has a special mode to "upgrade" the
existing elements.

When the browser sees an element with an unknown name that has a dash (-) (these
elements are called unresolved), then:

• It puts this special CSS pseudo class as :unresolved and CSS might show
that it is still "not loaded"

• When we call registerElement(), the elements will be updated
automatically to the correct class

In the following example, the registration element takes 3 seconds after the
document is loaded, as shown here:

<style>
 / * Style for: unresolved element (prior to registration) * /
 say-hello:unresolved {
 color: white;
 background: #cc0000;
 }
 say-hello {
 transition: all 4s;
 }
</style>
<say-hello id="hello">Hey, guys!</say-hello>
<script>
 // Registration will take place in 3 seconds
 setTimeout(function() {
 document.registerElement("say-hello", {
 prototype: {
 __proto__: HTMLElement.prototype,
 sayHelloAgain: function() { alert('I said HEY!'); }
 }

Chapter 1

[15]

 });

 // the new type of elements is a method sayHelloAgain
 hello.sayHelloAgain();
 }, 3000);
</script>

Now, you can create <say-hello> elements in JavaScript and call createElement(),
as follows:

var time = document.createElement('say-hello');

The expansion of built-in elements
We discussed an example to create an element based on the HTMLElement base. But it
is possible to expand more specific HTML elements.

To extend built-in elements, there is a registerElement() option called extends in
which you can specify the tag you are inheriting from.

The following is an example of a button:

<script>
 var proto = Object.create(HTMLButtonElement.prototype);
 proto.count = function() {
 this.innerHTML++;
 };

 document.registerElement("timer-tag", {
 prototype: proto,
 extends: 'button'
 });
</script>

<button is="timer-tag" id="counter">0</button>

<script>
 setInterval(function() {
 counter.count();
 }, 1000);

 counter.onclick = function() {
 alert("Current value: " + this.innerHTML);
 };
</script>

Web Components

[16]

Some points to check are as follows:

• The prototype is not inheriting from HTMLElement but from
HTMLButtonElement.

To expand an element, it is necessary to inherit the prototype of its class.

• In HTML, you can see the is='…' attribute.

This is HTML's version of extends in the JavaScript prototype. It extends the
type of the element and applies to its prototype. Now, <timer-tag> will not
work, you need to implement the tag and use the is attribute.

• Work methods, styles, and button events.

When you click on the button from the previous example, it won't identify
whether it is a built-in element. By the way, it is built in and the method is
tick().

When you use the new element in JS, you use extends; you must specify and
include the source tag, as shown:

var time = document.createElement("button", "timer-tag");

Life cycles
In the prototype of the element, we can define special methods that will be fired
when they are created, attached, or detached from the DOM, as shown in the
following table:

createdCallback The element is created
attachedCallback The element is added to the document
detachedCallback The element is removed from the

document

attributeChangedCallback(name,
pValue, nValue)

The attribute is added, modified, or deleted

As you probably noticed, createdCallback is an inspired designer. It is called only
when an item is created, so it makes sense to describe any additional initialization.

Chapter 1

[17]

Let's use createdCallback to initialize the timer and attachedCallback to start the
timer automatically when you append it into your document:

<script>
 var proto = Object.create(HTMLElement.prototype);

 proto.count = function() {
 this.counter++;
 this.innerHTML = this.counter;
 };

 proto.createdCallback = function() {
 this.counter = 0;
 };

 proto.attachedCallback = function() {
 setInterval(this.count.bind(this), 1000);
 };

 document.registerElement("timer-tag", {
 prototype: proto
 });
</script>

<timer-tag id="timer">0</timer-tag>

So, we have discussed how to create DOM elements using standard custom elements,
and we will further explore new opportunities to work with web components. Next,
we will move on to further exploring opportunities to work with web components,
which are called HTML imports.

HTML imports
The new specification of HTML imports describes how to insert one document into
another using the HTML tag <link rel="import">.

Yeah, you're right! There's an <iframe> element in the HTML code, so why should
we use HTML imports instead of iframes?

Web Components

[18]

With <iframe>, everything is okay. However, the meaning of <iframe> is a separate
document:

• The <iframe> element is entirely another environment; it has its own
window object and variables

• If the <iframe> element is loaded from a different domain, then the
interaction with <iframe> is possible only through postMessage

It's useful when you want to show one page's content on another.

However, what if you want to build another document as a natural part of this? This
can be done with a single scripting space and with the same style, but at the same
time, it will be a new document.

For instance, it is necessary to load the external parts of the document (web
components) from the outside. This is an excellent component because you will not
to have to face origin problems with different domains. If we really want to connect
an HTML page in one domain with another, we should be able to do it without having
to "dance with a tambourine."

In other words, <link rel="import"> is an analogue of <script> for the
connection of full documents, templates, libraries, web components, and so on.
Everything will become clear when we look at the details.

Let's consider the following example of insertion:

<link rel="import" href="imported.html">

• Unlike the <iframe> tag, <link rel="import"> can be anywhere in the
document, even in <head>.

• When you insert via <iframe>, the document is displayed in a frame. In
the case of <link rel="import">, it is not displayed, and the imported
document does not appear at all.

HTML loaded via <link rel="import"> has a separate document, but the scripts it
contains are carried out in the general context of the page.

The file (imported.html) is loaded via <link rel = "import">, is processed, the
scripts are run, and the DOM implementation is built. However, it is not shown and
is recorded in the property link.import.

We will decide when and where to insert it.

Chapter 1

[19]

In the following example, the <link rel="import" href="import.html"> code
imports the import.html document and, after downloading it, calls the load()
function. This function selects interesting parts of the loaded document through
link.import.querySelector('custom-tag') and appends them into the current
index.html file, as shown in the following example code:

<script>
 function load() {
 var element = link.import.querySelector('custom-tag')
 document.body.appendChild(element);
 };
</script>
<link rel="import" id="link" onload="load()" href="import.html">

The import.html file has elements and script that "revives" import.html,
as shown here:

<!DOCTYPE HTML>
<html>
<body>
 <custom-tag id="counter">0</custom-tag>
 <script>
 var document = document.currentScript.ownerDocument;
 var counter = localDocument.getElementById('counter');

 var counterId = setInterval(function() {
 counter.innerHTML++;
 }, 1000);
 </script>
</body>
</html>

Here are some important details:

• After downloading all of the scripts in the imported import.html file, our
main HTML file will execute the imported script so that the timer and other
variables would be the global variables of the page.

• The variable document is a document main page. For access to imported
documents that are inside the current import.html document, you can get it
as document.currentScript.ownerDocument.

• The timer function in the imported document begins immediately. The new
document comes alive immediately after being loaded, though the transfer of
nodes in the main document cannot be seen.

Web Components

[20]

In this example, the main document is controlling the imported document, but the
imported document can control itself and use document.body.appendChild(timer)
to append itself inside the parent document. In this way, we don't need the onload
event.

Web components
Imports are created as a part of the web components platform.

It is assumed that the main documents can import all the HTML, JS, and CSS
elements and then use them.

Here's an example:

<link rel="import" href="paper-button.html">
<link rel="import" href="paper-radio-button.html">

<paper-button>...</paper-button>
<paper-radio-button>...</paper-radio-button>

Reusing an imported document
Reimporting the same URL uses an existing document.

If the file (for example, lib.html) is imported twice, CSS and scripts are merged and
executed exactly once.

This can be helpful in not loading the same file many times. We can use lib.html
to manipulate imports, subimports, and so on and can connect without any fear
many times.

Here's an example:

• The main index.html file connects documents

• The paper-button.html file connects lib.html

• The paper-radio-button.html file also uses lib.html

The lib.html file will then be connected only once. This allows you to not be afraid
of too much duplication of libraries; it is used to describe a variety of components.

Chapter 1

[21]

So, the <link rel="import"> tag allows you to connect to the page of any
document, in which:

• The scripts and styles of the page are shared.

• The imported DOM is available from the outside as link.import,
so you can catch the imported DOM, but you can also get the owner
document (the document that imports you) with document.currentScript.
ownerDocument. So you have access from the main document to the imported
document and vice versa.

• Imports can contain other imports.

• If a URL is reimported, it connects ready documents without reexecuting
the scripts in them and it avoids the duplication of using a library in a variety
of places.

Now, we are finished with features of web components . In the next subtopic, we will
discuss styles and selectors in web components. Stay with me and change the world!

Styles and selectors
Shadow DOM uses the standard styling specifications of CSS scoping. You can check
the specifications at https://drafts.csswg.org/css-scoping/.

Default styles in the Shadow DOM apply only to its contents.

Consider the following example:

<p>Once upon a time,</p>
<p id="text">we are learned about Web Components</p>

<template id="template">
 <style>
 p {
 color: blue;
 }
 </style>
 <h1><content></content></h1>
 <p>Hello, from Shadow Root!</p>
</template>

<script>
 var root = text.createShadowRoot();
 root.appendChild(template.content.cloneNode(true));
</script>

https://drafts.csswg.org/css-scoping/

Web Components

[22]

When you open the document, the blue color will apply to only the <p> element
inside the template. Let me note that as the color of the element, which is located
directly in the Shadow DOM, and the items that appear in the Shadow DOM use the
<content> tag, the style will not work; they have their own styles on the outer page.

Exterior styling for Shadow DOM
Although a boundary between primary DOM and Shadow DOM exists, using special
selectors, it is possible to pass it.

If you want to stylize the main page or select items within the Shadow DOM, you can
use the following selectors:

• :: shadow: This selects the Shadow DOM root.

The selected item does not create a CSS box itself, but it serves as a starting
point for further sampling inside the Shadow DOM tree.

For example, the #text::shadow> div selector will find all the first-level divs
inside the Shadow DOM with the #text ID.

• >>>: This is a special kind of CSS selector for all elements of Shadow DOM
that completely ignores the boundaries between DOM elements, including
nested subelements, which can also be your Shadow DOM.

For example, the #text >>> span finds all spans in Shadow DOM #text, but
in addition, if there is sub #text that has its own Shadow DOM, then it will
continue to search for it.

Here's an example where we have a single <input type="date"> tag in a
Shadow DOM, which also has a Shadow DOM:

<style>
 #text::shadow span {
 /* to span within Shadow DOM #elem */
 border-bottom: 1px solid red;
 }
 #text >>> * {
 /* All elements within the Shadow DOM #elem continue in input
[type = date] */
 color: blue;
 }
</style>
<p id="text"></p>
<script>
 var root = text.createShadowRoot();

Chapter 1

[23]

 root.innerHTML = "Current time: <input
type='date'>";
</script>

• In addition, the Shadow DOM has simple CSS inheritance if the property is
supported by its defaults.

In this example, CSS styles for the body inherited the internal elements,
including Shadow DOM, as can be seen here:

<style>
 body {
 color: blur;
 font-weight: bold;
 }
</style>
<p id="text"></p>
<script>
 text.createShadowRoot().innerHTML = "Hello,
 Yerevan!";
</script>

The inner span becomes blue and bold.

Styling depending on the host
The following selections allow the Shadow DOM on the inside to select an external
element (member-owner):

• :host selects a host in which the Shadow DOM lives.

:host is selected in the context of the Shadow DOM. That is, the access is not
an external element but rather to the root of the current Shadow DOM. After
:host, we can specify the selectors and styles to be applied if the owner meets
a particular condition:

<style>
 :host > div {
 background-color: teal;
 }
</style>

This selector works for the first level <p> inside the Shadow DOM.

Web Components

[24]

• The :host (the host selector) selects the host if it matches the selector.

This selector is used to host styling from "within", depending on the classes
and attributes. It is great to add a simple : host; here's an example:

:host > div {
 background-color: teal;
}
:host(.underline) p {
 text-decoration: underline;
}

In this example, the divs will have a background color teal, but if the
master component has an underline class, all the paragraphs will have
an underline decoration.

• The :host-context (master selector) selects a host if any of the parents
meets the selector; here's an example:

:host-context(h1) strong {
 /* selector work for strong, and if the owner is inside
 the h3 */
}

This is used for advanced theming. This means you can give a style to the
parent of the host element. In this example, it is <h1>.

Style to content
The <content> tag does not alter the HTML DOM. It describes how and where
to show the content inside the Shadow DOM. Therefore, if an item was originally
located in the host cell, the external document retains access to it.

It will take styles and selectors, as always.

To access the <content> tag from the styles, you can use the ::content pseudo-class
to select the content.

For example, from within the Shadow DOM, the selector content [select = "h1"]
::content span finds the element <content select = "h1"> and its contents will
find .

Chapter 1

[25]

In the following example, the selector ::content span stylizes all tags
within all <content> tags:

<style>
 span { border: 1px solid black; }
</style>

<p id="text">Valar Marghulis!</p>

<template id="template">
 <style>
 ::content strong { color: green; }
 </style>
 <h1><content></content></h1>
 Valar Dohaeris!
</template>

<script>
 text.createShadowRoot().appendChild(
 template.content.cloneNode(true));
</script>

The text inside <h1> is green and has a border at the same time, but it is stylized
as , which is shown in <content>, and the other one, which has Shadow
DOM, isn't.

Priority selectors are calculated by the usual rules of specificity. If the style of the page
is the same style as the Shadow DOM, it will have more priority and will overwrite
the CSS rules of the Shadow DOM, but you can always use !important to make the
Shadow DOM styles dominant.

So, default styles and selectors of the DOM tree act only on their parents.

The border can be defeated easily. Of course, this is done from parent to Shadow
DOM rather than vice versa, as follows:

• Outside of the Shadow DOM, you can select and style elements within the
Shadow DOM using selectors ::shadow and >>>

• Inside the Shadow DOM you can stylize not only the native content of the
Shadow DOM but also the nodes that are displayed in <content>

• You can also set the style depending on the host using the ::host and
::host-context selectors, but you can't stylize the arbitrary tags inside
the host

Web Components

[26]

Detailed steps to download the code bundle are mentioned in the
Preface of this book. Have a look.

The code bundle for the app in Chapter 5, First Application
with Polymer, is hosted on GitHub at https://github.com/
AKHXtern/poly. The code bundle for Chapter 1, Web Components,
is hosted on GitHub at https://github.com/AKHXtern/
polymer-book-examples. We also have other code bundles from
our rich catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out!

Summary
Here we are, finishing with the first chapter. As we haven't covered the concept of
web components just yet, we will discuss Polymer in Chapter 3, Introduction to
Polymer, the favorite framework of web components. It has a lot of components
and features that use web components and even make it super powerful.

In the next chapter, we will cover the concepts of Material Design by Google and
consider how to create an awesome app with these design concepts.

While we are here, let me mention two points about web components. First, you
can make components, make elements with Shadow DOM in your page, import
other HTML and make a lot of templates. When I started to write this book, modern
browsers had problems supporting web components, but it's okay now! You can use
them for sure. Second, please don't use any libraries to make web components. For
example, jQuery has problems with the Shadow DOM components. It's always better
to use JavaScript instead.

See you in the next chapter!

https://github.com/AKHXtern/poly
https://github.com/AKHXtern/poly
https://github.com/AKHXtern/polymer-book-examples
https://github.com/AKHXtern/polymer-book-examples
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

[27]

Material Design
In this chapter, you will learn about the concepts of Material Design. The main target
of this chapter is to know more about creating an application using Material Design
animations, styles, and layouts.

We will cover the following topics:

• Material Design: to the moon and back

• Tactile surface

• Publishing design

• Meaningful animation

• Adaptive design

Let's start by talking about what Material Design is and how it was born.

What is Material Design?
Material Design is a design language and style of Google released on June 25, 2014.
It was presented at Google I/O by Google's vice president of design, Matias Duarte.
Initially, it was called internally code-named Quantum Paper. The basic metaphor
for Material Design is flat paper in three-dimensional space.

Matias Duarte, in an interview with The Verge, talked about the basic principles
of the new design, called Material Design. This is a completely different approach
that provides a unified set of rules, from the types of software to finishing functions.
Though the design seems a little strange, you need to get used to it.

Material Design

[28]

The design team at Google felt the need to come up with a uniform appearance
and functionality of the software, which could be applied to all products: Android,
Chrome OS, and web services. Rather than starting with the development of the color
palette, they began with a question: "What is software?". Their goal was to create a
visual language that synthesizes the classic principles of good design.

At the end of this chapter, we will take a look at Material Design Lite, created by Addy
Osmani. Curiously, MDL—a standalone project—is not tied to Polymer. However,
at the same time, Google says that the library is a modern interpretation of Polymer
Paper Elements.

Why do we need Material Design?
Material Design serves two purposes: the unification of the many products of a
company and of APIs for Android. Google decided to be more understandable and
international; interface objects must have an analog metaphor in the real world.
Paper was the metaphor.

Thin and flat but located in three-dimensional space, this design style has shade,
speed, and acceleration. The principles of Quantum Paper are not the same as real
life; it obeys the laws of physics. However, it has magical properties. This helps
the user show the principles of software as a transition from one to another state.
Animations don't just enliven the interface but also show the user what is happening.

Material Design – to the moon and
back!
Do you remember the first products of Google? They looked really bad! Not even a
single product on their other platforms looked alike.

Everything began to change in 2011, when Google started to work hard on
the unification of the visual part of the ecosystem of its products and called
it Project Kennedy.

Chapter 2

[29]

So, let me show you how the first Gmail design from Google looked. It was very
difficult to use and painful to look at. Take a look at the following figure:

At first, they started to work on the web design of their products and then the mobile
products. At the same time, there was a separate work on the design of Android,
Holo, which replaced the interfaces of old Android.

www.allitebooks.com

http://www.allitebooks.org

Material Design

[30]

However, there was one problem; Holo was still different from Project Kennedy, as
shown by the following figure:

Every time Google changed the design, users had to adjust to the new interface
switching and get used to the appearance, position controls, and so on. That's why
the designers of Google decided to solve this problem once and for all.

Material Design has four principles, as shown by the following figure:

• Tactile surface: The Material Design interface consists of tangible layers of
so-called "digital paper". These layers are arranged at different heights and
cast shadows on each other, which helps users better understand the anatomy
of the interface and the principle of interaction with them.

• Publishing design: If we assume that the layers are pieces of "digital
paper", with regard to the "digital ink" (everything that is displayed on the
"digital paper"), Material Design uses the traditional approach of graphic
design, such as in magazines and posters.

Chapter 2

[31]

• Meaningful animation: In the real world, things do not arise out of
nowhere and disappear into nowhere; that only happens in the movies.
Therefore, in Material Design, we always think about how to use animation in
layers and "digital ink" to give users tips about the interface.

• Adaptive design: This is about how we apply the previous three concepts
on different devices with different resolutions and screen sizes.

Tactile surface
Let's start with tactile surfaces. These are the pieces of "digital paper", which, unlike
ordinary paper, have a superpower: the ability to stretch to connect and change their
shape. Otherwise they act in full accordance with the laws of physics.

What is the surface? Basically it is a "container" with a shadow and nothing more.
However, this is enough to distinguish one object from another and to show how they
are positioned in relation to each other. The Material Design philosophy strives for
simplicity and a "clean" design.

There is no need to go too far and use textures for the image gradients of light
and shade. There is also no need to give it the visual properties of a skin like my
grandmother's apartment door; a neat shadow can express a lot. But each surface has
its surface height—which is the location on the Z axis—and each of the surfaces casts
a shadow on the lower ones, as in the real world.

Material Design

[32]

Depth
In the traditional "flat design", we avoid such shadows as this can bring
manifestations of volume, but they perform an important function, that of noting
structure and the hierarchy of elements on the screen. For example, if the rise of the
element is greater, its shadow is longer. This increased depth of focus helps the user
do the critically important things gracefully.

Depth also gives hints by interaction. In the following figure, as the user scrolls, a
green panel is stretched at the top and adds some shadow on the "white paper". This
shows that the panel is higher than the "white paper" because, during scrolling, it
casts a shadow on it:

Chapter 2

[33]

It is important to note that depth is the "bottom". It is assumed that it is limited by
the thickness of the mobile device. It is important to note that the depth is the back
end of your smartphone. It means that if your smartphone's width is about X cm,
you should make all the cards to have a depth of X cms.

Here are some thoughts on the concept of depth in Material Design:

• The depth should be meaningful: Ask yourself, "Why is it so and not
otherwise?" If the answer is no, it makes sense to look for another solution.

• Take care of the logistics: Floating buttons, toolbars, and dialog boxes
are located at a certain height. Sometimes, they need to move along the Z
axis to avoid collision when something happens. With this choreography, it's
necessary to be very careful.

• Do not overuse the button: Floating buttons are a very distinctive
element. Many believe that it is necessary to add a floating button to the
interface to make it Material Design. However, it should only be used for key
actions within your application. If you need to close some window or confirm
an action, it is not necessary to use a floating button. To do this, there are
other elements.

• Not all elements should be on the card: If any object has many forms
and it contains a lot of different content, the card suits the object. If not,
maybe it is better to use plain text or text list.

• Use the disclosure of lists: This is an underrated pattern, but it is quite
necessary in Material Design.

Material Design

[34]

Publishing design
Every surface in Material Design is called "digital paper". Everything that is placed
on it—text, images, and icons—is marked as "digital ink". Material Design uses classic
print design principles in the design of interfaces.

Elegant typography
In print design, typography plays a crucial role. Pick up any magazine and you will
notice that the typography performs two important functions. Firstly, the selection
and composition of the font style is one of the important things for a brand. Secondly,
typography defines the structure of the content.

Chapter 2

[35]

Font size
The site https://material.google.com/style/typography.html has a standard
palette of fonts that you can safely use. This palette uses the Roboto font, but you can
replace your corporate font to support your brand. It is important to test everything
carefully, as, on different devices, font rendering works in different ways. Usually
OTF fonts work better than TTF.

https://material.google.com/style/typography.html

Material Design

[36]

Contrast typography
Another principle from the world of printing that gets along well in Material Design
typography is contrast; for example, a marked contrast between the size of the
header and text. It's beautiful and highlights the point well, as can be seen from
the following figure:

Geometric iconographies
If we talk about iconographies, simple icons have been used on Android for some
time, but, in Material Design, they are even easier and friendlier. At an informal
resource (http://materialdesignicons.com/), designers can find icons for
their own purposes and also the opportunity to contribute.

http://materialdesignicons.com/

Chapter 2

[37]

Colors
The design of the interface color is an important means of expression. In the earlier
Android versions, color was somewhat secondary, but now it plays a primary role.
The standard palette color of Material Design consists of main and accent colors.

The main color is used for large areas, such as the action and status bars, and it is
painted darker than the accent color. Brighter accentual color is used in controls,
buttons, strips, indicators, and so on. Accent color is designed to attract users'
attention to key elements such as floating buttons.

Beautiful photos
Finally, as in printed design, in Material Design, using photographs and images in all
their glory is encouraged. Pictures mainly placed without frames often "bleed". Even
the status bar is especially made transparent so as not to interfere. In addition, each
drop of "digital ink" has a feature and there is nothing just for decoration.

I would like to recommend the kind of images for you to use in your design:

• Create your own with pleasure: Google has a strong position here. It
allows you to choose bright photos with bright colors for the brand, but don't
hesitate to create your own brand. You can use your own colors and images.
Colors can be chosen from the corporate brand book or from the logo.

• Do not forget about paddings and spaces: The basic grid with 8 dp
margin from the top and 72 dp margin from the left is almost a rule. So
use this rule to make the content feel good and free.

• Expressive photos make the mood: Photos and illustrations as a means
of expression are our choice.

Material Design

[38]

Meaningful animations
In the real world, objects cannot just appear out of nowhere and disappear into
nowhere. It would cause confusion and put people on a dead end. Therefore, in
Material Design, meaningful animation is used to show what just happened.

For a user, the main attention is focused on actions. The interaction with the design
controls the user and not vice versa. All the action takes place in a single environment
with interactive objects without interrupting the sequence of transition from one
medium to another.

Asymmetry
Since the depth of the interface is limited by the thickness of the device, all the
transformation facilities need to be produced on paper. It brings asymmetric
transformations to the animation, which means that adjusting the object's width and
height should be apart from one another. Otherwise, there will be an illusion of zoom
in and zoom out for the viewer, with a very large distance.

Chapter 2

[39]

Reaction
Another very important principle of animation in Material Design is the reaction of
the user to actions. The epicenter of the changes in the interface should be touching
the screen of the device. An example is the wave that comes and goes from the
contact point of a finger. This effect is realized without difficulty in Android L, as
shown in the following figure:

Micro animations
In the applications, we can animate each element, whether it is the transitions
between the content or actions of small icons. Every detail of the application is
important and micro animations add to the application's detail and responsiveness to
every user action.

Material Design

[40]

Clarity and sharpness
The last key principle of the animation is that the movements must be rapid and
clear. In contrast to the banal acceleration at the beginning and deceleration at the
end, the curve in Material Design animation is more natural and interesting. Objects
react faster and reach the target state sharper. As a result, users need to wait less (this
"less" is annoying too). At the same time, where the object is already out of the scope
of the interest of users, it allows itself to behave more naturally. Here are some tips:

• Do not leave animations until the end: Do not leave the animation until
the very end; it can serve as a key factor in user experience and it is necessary
to think in advance.

• Know the measure: Too much animation is bad. Remember that the
animations must be meaningful.

Adaptive design
The last major aspect of Material Design is the concept of adaptive design. It allows
us to apply all three of the concepts mentioned before on different devices and
screens with different form factors.

Chapter 2

[41]

From the general to the particular
The most common technique is reducing the amount of information displayed
onscreen along with a reduction of the screen. If, on the big screen, we can afford
to show a list and detailed information on the selected item, then on smartphone
displays, a separate screen may be needed for the list and details. In the case of
tablets, the app bar can sometimes be increased to cope with a little excess space.

Padding
Placing the content with units makes it much easier to work with the free space on
big screens. We know the content of each unit; we need to understand how broad it
can be so as not to lose readability and how narrow it can be so that it doesn't look
too crowded. On a wide screen, units are stretched to their limit of readability and
then padding is added on the edges, which can be quite large. They can be filled with
floating colored buttons and drawers.

Material Design

[42]

Wireframes
You can find ideas for the organization of space and padding for different screens
at https://material.google.com/layout/structure.html#structure-
whiteframes. This is a great place to understand the overall meaning and
then go on with your own experiments.

Guides
The Material Design guide asks us to indent for "ink" on separate sheets of "paper."
On a smartphone, we have one sheet and one big left padding and, on the tablet,
we have two of them; in both cases, there is padding. It is important that the indent
of these two form factors be different. On the tablet, the indent is 80 dp and on
smartphone it is 72 dp. Padding from the edges of the screen is also different, as
shown by the following figure:

https://material.google.com/layout/structure.html#structure-whiteframes
https://material.google.com/layout/structure.html#structure-whiteframes

Chapter 2

[43]

Sizes
It is recommended that you take multiple proportions of all the elements. In
particular, selecting the size of the app bar is much more convenient if you do it in
multiples: 1x, 2x, 3x, and so on. On smartphones and tablets, this size is different, but
the app adapts with no problem.

Material Design

[44]

Blocks
Thinking about all the blocks can be helpful. If you specify a module with
blocks of height about 8 dp, it creates a great visual rhythm and it will be easier
to make decisions when there is a need to add some details in the blocks. Visit
https://material.google.com/resources/layout-templates.html#layout-
templates-desktop to find material on whiteframes.

Toolbars
The action bar is one of the most important parts of the interface. In it are placed
a header and the navigation and action buttons. The Android Lollipop action bar
is transformed from a constrained strip on top to a full widget—a beautiful and
functional control unit application. It made putting a lot of functional elements on
the toolbar possible, which we couldn't even dream about previously. They are:

• Input fields and forms

• The floating button of the main action

• The advanced navigation toolbar, which is hidden; however, in the following
screenshots, we can see quite a few functional widgets

• Toolbars that can be conveniently controlled as necessary

https://material.google.com/resources/layout-templates.html#layout-templates-desktop
https://material.google.com/resources/layout-templates.html#layout-templates-desktop

Chapter 2

[45]

Here are some tips that can help you in the future:

• You don't always need a navigation drawer: Very often, Google uses
sliding navigation in their applications, as you can note in different examples.
However, Google has a lot of problems that can be solved with the drawer's
help: the help button, login/logout, user information, and so on. If you have
similar problems, you can use a drawer, but if you are making a simple tool, it
is not necessary.

• Go ahead and try witty toolbars: The ability to dynamically resize the
toolbar, making it double and triple its size, is very cool and comfortable.
Most designers are afraid to try this and choose one size once and for all, but
you can be a bit bolder!

• Do not keep the lower corner of the ghetto for the floating button:
Floating buttons can be anywhere: at the bottom, at the top, to the right, or
to the left. Of course, it is more convenient to reach when it is in a corner,
but this is not the only option. The button can be moved from place to place
depending on your objective.

• Material Design for smartphones and tablets for vertical and
horizontal views: The resolution of Android devices is large and it is not
easy to deal with it. But the truth is that there are more than 1 billion Android
users and it's important to provide them with a good and beautiful product.
Material Design solves the resolution problems.

Material Design

[46]

This is Material Design! Do not be afraid of experimenting
and making mistakes. Do not get hung up on copying
existing solutions. Try harder!

Other tools
Before finishing this chapter and moving ahead with the next one, I would like to
introduce you to other great tools:

• Materialize CSS (http://materializecss.com/): This is an adaptive
grid, which is made in the style of Material Design and the framework also
consists of a few cool things.

• Material Design Lite (https://getmdl.io/): Google has reached a new
level in the promotion of Material Design. An open source project named
Material Design Lite has been created by Addy Osmani from Google and
released at version 1.0.0. Curiously, MDL, a standalone project, is not tied to
the framework's Polymer. At the same time, Google has said that the library is
a modern interpretation of Polymer Paper Elements.

http://materializecss.com/
https://getmdl.io/

Chapter 2

[47]

Summary
We have come to the end of this chapter, so let's review it. We discussed how Material
Design was born and discussed the aspects of Material Design. We took a look at how
to create beautiful applications with meaningful animation and adaptive design.

This was a very important chapter for us because, in this chapter, you learned how to
create beautiful applications using Material Design principles (this will help you a lot
in the future).

Let's now move ahead to the next chapter, in which we will talk about all the aspects
of Polymer, from its installation to its elements and how they work.

[49]

Introduction to Polymer
In the previous chapters, we covered web components and Material Design
fundamental concepts in depth. We talked about custom elements and discussed
how to create a custom tag or template, how to use Shadow DOM and manipulate it,
and how to import HTML documents into your document. You also learned about
Material Design concepts, which you will use in your future apps. Finally, we can now
move ahead and get introduced to Polymer and its features.

In this chapter, we will discuss the following topics:

• What is Polymer?

• Getting the code

• Working with Polymer

• Registering elements and the life cycle

• Declared properties

• Local DOM

• Data binding

• Behaviors

• Events

• Styling

Introduction to Polymer

[50]

What is Polymer?
Polymer is a library for the creation and use of web components. Not all browsers
support the features of web components (at this time), but with the help of the
Polymer library from Google, this problem can be fixed. Polymer provides a set of
polyfills, which let us use web components with all browsers in the world.

• You can create your custom HTML element, give it a name, and share it with
other developers

• Every single element has its own template

• It lets you use UI elements already created for your projects

You may ask if Polymer is a web component or maybe a collection of elements? My
answer is no! Polymer is created according to the standards of web components and
it provides some Material Design elements and lets you create your own.

Now, if you're ready for adventures with Polymer, press the red FAB (floating
action button) in the lower-right corner of the page. Oops! I forgot that this is a
book. Ok, let's move ahead and get Polymer code from the Internet.

Downloading the code
There are three ways to download the code.

Bower
This is the most recommended way to install Polymer. Bower is the package manager
used to manage scripting dependencies. You can install it from the official website at
http://bower.io/.

If you're not familiar with Bower, you can read the documentation from the
official website. If you have worked with it, you will probably know that we
need the bower.json file. Just run the following command:

bower init

After some questions (you can ignore them), it will create a bower.json file for your
project and then allow you to install your dependencies. For Polymer, we need to run
the following command:

bower install –-save Polymer/polymer

At the time of writing this book, the version of Polymer is 1.1.0, but it could change by
the time you read this book; so, just change the version that it belongs to.

http://bower.io/

Chapter 3

[51]

The --save keyword adds packages as a dependency in the bower.json
file. It is useful when you need to upgrade your packages.

By the way, Bower creates a bower_components/ folder and saves all
the dependencies you installed there.

Downloading the ZIP file
You can download the ZIP file from the official Polymer website at http://polymer-
project.org.

The bad bit about installing with .zip is that you can't update your dependencies
later. These are static files and nothing will be changed from there automatically.
However, with Bower, you can update your dependencies by running the following
command:

bower update

The new version of polyfills is available now; you can take a look at it by installing the
web components dependency from Bower. It will download the web-components-lite
version as well, but this doesn't contain Shadow DOM, which supports polyfill.

This is much faster and has better performance, but I recommend you use the
minified version of web components. This is because, with this version, all browsers
in the world are starting to support web components and it is more important for
our developers to work with multiplatform devices and software. However, on the
other hand, the web-components-lite version is more important for designers as
they want to transform the world into a simpler, faster place and, in my case, this is
very important when creating a product in which UX would be awesome, faster, and
beautiful. It is very important for UX that the user takes a very short time to perform
an action.

In the next chapter, I will talk about the Polymer Starter Kit, which is the "getting
started" template for your applications. It includes application layouts and lots of
tools for testing and deployment. We will create an example with this kit and take a
look at the progress in installing the kit.

The Polymer team has a repository on GitHub in which you can contribute code for
the Polymer project. I have been contributing since December, 2014, and, in my
case, it is great to know that I have a part in this project. Just hack something special
for the project or submit a pull request (and for contribution, we recommend using
Bower to install).

http://polymer-project.org
http://polymer-project.org

Introduction to Polymer

[52]

Cloning from Git
You can get the code from the Polymer repo. This is also not the recommended way
and the reason is the same; you can't update your dependencies from anywhere. So,
why choose the hard way instead of the easy and fast one?

Working with Polymer
Once you have Polymer code, we can move ahead to understanding how Polymer
works and how to create something with it. But first, we need to create the
index.html file in which we will create our Polymer app.

Just create an index.html file with a skeleton in the project folder (in the folder with
bower.json). Then, you just need to include polyfills, this way:

<script src="bower_components/webcomponentsjs/
 webcomponents.min.js" ></script>

Then, we need to create our first custom Polymer element.

The main objective of Polymer is to make the creation of web components simpler
and faster. With Polymer, you can create Polymer custom elements, which is the
easier way to create an element than with just WC. Let's take a look at what features
we will have by using Polymer custom elements:

• Registering elements

• Life cycle callbacks

• Property observation

• The local DOM template

• Data binding

• Styling

• Events

We will talk about each feature in the future.

/* --- The future starts from here --- */

Chapter 3

[53]

Registering elements
In this section, we will register a new element in the browser by calling the Polymer
function. Registering a new element is similar to custom element registration in web
components. The registering element associates a name with a proto object and you
can add anything there, such as properties and methods for your Polymer custom
element, but it must contain a dash (-) in it—for example, <polymer-dash>. I will
take a similar example from https://www.polymer-project.org/1.0/, but we
will talk about it more than the website. So, we will create another .html file named
proto-element.html here, which contains the following:

<link rel="import"
 href="bower_components/polymer/polymer.html">

<script>
 // register a new element called proto-element
 Polymer({
 is: "proto-element",
 // add a callback to the element's prototype
 ready: function() {
 this.textContent = "I'm a proto-element. Check out my
prototype!"
 }
 });
</script>

Here, we have to import polymer.html to register the Polymer element. In the first
property, is, we will give the element a name and describe what it should look like
when you call it. Then, you will see the ready method, which is the main function
for all Polymer elements, it will run when the element is ready. So, it is similar to
jQuery's $(document).ready, but for Polymer. Inside the ready method, we have
an exception, which defines the element content text. So, when we have the rendered
version, it will look like just simple text in a view.

Then, we just need to import our proto-element.html file into index.html using
HTML imports from web components. It will look similar to this:

 <link rel="import" href="proto-element.html">

https://www.polymer-project.org/1.0/

Introduction to Polymer

[54]

This is awesome because we just created our first Polymer custom element! Now, we
can use this element whenever and wherever we want to, similarly to this:

<!DOCTYPE html>
<html>
 <head>
 <script src="bower_components/webcomponentsjs/webcomponents-lite.
min.js"></script>
 <link rel="import" href="proto-element.html">
 </head>
 <body>
 <proto-element></proto-element>
 </body>
</html>

When you create a custom element, Polymer tells the browser to register a new
element and returns a constructor of it. Here's an example:

// here we are registering the element
CustomElement = Polymer({

 is: 'my-tag',

 // Here is lifecycle callback, we will talk later
 created: function() {
 this.textContent = 'My yummy-dummy custom element!';
 }
});

// Creating an element with function createElement
var el1 = document.createElement('my-tag');

// or with the Polymer constructor:
var el2 = new CustomElement();

In this example, we created a Polymer custom element whose name is my-tag in two
ways. The first way was creating an instance with the createElement function and
the second one was using a Polymer constructor to create an element. So, you can use
either one to register and create an element.

Then, the Polymer function chains the prototype of your custom element in Polymer's
base proto. If you want to change something from here, you can't; instead, you need
to use behaviors to share some code between elements. However, while we are here,
let's take a look at what callbacks Polymer's base life cycle has.

Chapter 3

[55]

It has standard life cycle callbacks for custom elements to make your life easy. There
are four life cycle callbacks and they have the same functions as the custom elements
of web components, but with a different (short) name; let's take a look at each one:

• created

• attached

• detached

• attributeChanged

There is also a ready callback of the Polymer custom element, which is invoked when
the element is created and loaded with all its content elements. This is similar for
life cycle callbacks, for example, the created callback is invoked when the Polymer
element is created and so on. Let's consider this in the following example:

CustomTag = Polymer({
 is: 'custom-element',
 created: function() {
 console.log(this.localName + ' was created');
 },

 attached: function() {
 console.log(this.localName + ' was attached');
 },

 detached: function() {
 console.log(this.localName + ' was detached');
 },

 attributeChanged: function(name, type) {
 console.log(this.localName + ' attribute ' + name +
 ' is now ' + this.getAttribute(name));
 }

});

Here is the order of callback initialization:

1. The created callback (the element is created).

2. The local DOM is ready.

3. The ready callback.

4. The factoryImpl callback.

5. The attached callback.

Introduction to Polymer

[56]

The callbacks are created specially for you. With these callbacks, you can handle the
initialization steps of the custom element. Let's move ahead to one more interesting
subtopic about declaring the properties of an element.

Declaring element properties
In Polymer, you can set the properties of your custom element. There is a
properties object created for your element properties. You may ask, what properties
will the custom element have? With properties, you can configure the element's
properties to specify some markup.

Here's an example from the Polymer website about how to set the properties of a
custom element:

Polymer({
 is: 'x-tag',

 properties: {
 user: String,
 isJuly: Boolean,
 count: {
 type: Number,
 readOnly: true,
 notify: true
 }
 },

 ready: function() {
 this.textContent = 'Hello World, I am a Custom Element!';
 }
});

Yeah! You can give properties to an element that will effect it in future. Let's take a
look at all default properties that Polymer functions have:

• type (Boolean, date, number, string, array, and object): This attribute is used
to deserialize from an attribute

• value (Boolean, number, string, and function): This attribute is the default
value for the property

• reflectToAttribute (Boolean): If you set this to true, it will reflect on the
host node property's value changes

• readOnly (Boolean): By setting this to true, the property can't be set by data
binding or by assignment

Chapter 3

[57]

• notify (Boolean): If the value of the attribute is true, two-way data binding
is available for this property

• computed (string): This method is invoked to calculate the value whenever
any of the argument values changes

• observer (string): This value is invoked when the property value changes

You can configure default property values here. The values can be a specific value
or a function that returns some data for you. Here's an example of how to configure
default values:

Polymer({

 is: 'user-custom',

 properties: {

 name: {
 type: String,
 value: 'auto'
 },

 hobbies: {
 type: Object,
 notify: true,
 value: function() {}
 }

 }

});

I created some default values for Polymer properties here. The name property has a
specific value auto, but the next one, hobbies, has a value that returns some data
(object or array). Now, let's move ahead to property observers to take a look at how
to observe data in the custom element.

Introduction to Polymer

[58]

Property change observers
With property observers, you can observe the data in the custom element. This means
that you can handle the changes of the data and create some functionality for it. For
example, let's assume you have a status variable in your Polymer proto and you
need to handle the status of a user—to know whether he/she is online or not. Let me
show you a little code to observe the change with the function, which has the old and
new values as arguments, as follows:

Polymer({

 is: 'x-tag',

 properties: {
 status: {
 type: Boolean,
 observer: '_statusChanged'
 },
 },

 _statusChanged: function(newValue, oldValue) {
 if(newValue > oldValue) console.log("User is now online!");
 this.toggleClass('isOnline', newValue);
 this.online = newValue;
 }

});

In this example, we have the status variable, which is true if the user is online and
false otherwise. We observed the data with the function called _statusChanged,
which has old and new values as arguments, and are using it in the function. But how
you can observe the multiple data in the property? Now, I will show you the way to
observe the changes of multiple properties using the observe array in the Polymer
proto, as follows:

Polymer({

 is: 'x-video',

 properties: {
 poster: Boolean,
 src: String,

Chapter 3

[59]

 volume: String
 },

 observers: [
 'updateVideo(poster, src, volume)'
],

 updateVideo: function(poster, src, volume) {
 if(volume > 0.5) alert('Be careful, the boom is boom!');
 }

});

Next, let's consider how we can add local Polymer DOM elements to our page.

Local Polymer DOM elements
Polymer uses local elements for its UI Material elements because this is easier than
the registering version. Yes, we are lazy people!

As in the previous example, we need to create an element .html file—for example,
dom-element.html. Let's take a look at what we have here:

<link rel="import" href="bower_components/polymer/polymer.html">

<dom-module id="dom-element">

 <template>
 <p>I'm a DOM element. This is my local DOM!</p>
 </template>

 <script>
 Polymer({
 is: "dom-element"
 });
 </script>

</dom-module>

You have a new thing here to learn. First of all is the use of the <dom-module>
element. The id attribute of this element is the same as we had in the previous
example—the is property—which is the name of the new custom element. Polymer
clones the content of the template and registers a new Polymer custom element
automatically.

Introduction to Polymer

[60]

In this example, we have declarative and imperative parts or portions. The
declarative portion is the <dom-module> element, which has id, the same value that
is Polymer's is property, and we have an imperative portion, which is Polymer({…}).
These two portions can be in the same file or in separate ones. We can say the same
about the <script> tag; it can be either outside or inside our <dom-module> element.

Manipulating nodes inside Polymer
elements
When we create a Polymer element, it automatically creates a map of nodes inside
its local DOM so that we can manipulate the content and nodes we want with ease.
All nodes with IDs are stored on the this.$ hash by their IDs. This means if you
have any #bombs element inside your local DOM, you can get the node by calling
this.$.bombs and then do some cool stuff with it. Nodes use data binding, so the
manipulation gets simpler than ever. Let me show you an example from the Polymer
website, as follows:

<dom-module id="x-custom">
 <template>
 Hello World from !
 </template>
 <script>
 Polymer({
 is: 'x-custom',
 ready: function() {
 this.$.name.textContent = this.name;
 }
 });
 </script>
</dom-module>

There is a new feature you can see in the ready method; it sets the text content in the
span with an ID, name. That's it! You can do whatever you want with any node you
have in your local DOM.

Hey, did you know that we have our own DOM API? Yes! Polymer provides a custom
API for a lot of things. Appending, removing children, adding some attributes, and
others are some examples. Let's consider this API.

Chapter 3

[61]

Here are some APIs to add and remove elements:

• Polymer.dom(parent).appendChild(node)

• Polymer.dom(parent).insertBefore(node, beforeNode)

• Polymer.dom(parent).removeChild(node)

• Polymer.dom.flush()

With these calls, you can append/remove some elements from the parent. Here are
some other API calls for you.

Polymer DOM selectors:

• Polymer.dom(parent).childNodes

• Polymer.dom(node).parentNode

• Polymer.dom(node).firstChild

• Polymer.dom(node).lastChild

• Polymer.dom(node).firstElementChild

• Polymer.dom(node).lastElementChild

• Polymer.dom(node).previousSibling

• Polymer.dom(node).nextSibling

• Polymer.dom(node).textContent

• Polymer.dom(node).innerHTML

• Polymer.dom(parent).querySelector(selector)

• Polymer.dom(parent).querySelectorAll(selector)

Polymer DOM manipulations:

• Polymer.dom(contentElement).getDistributedNodes()

• Polymer.dom(node).getDestinationInsertionPoints()

Node mutation APIs:

• Polymer.dom(node).setAttribute(attribute, value)

• Polymer.dom(node).removeAttribute(attribute)

• Polymer.dom(node).classList

Introduction to Polymer

[62]

Let me show you some examples of how to use Polymer.dom(). For example, if you
have these lines of the custom element:

<template>
 <div id="content">
 <div id="header"></div>
 </div>
</template>

You can do something similar to this:

var insert = document.createElement('div');
Polymer.dom(this.$.content).insertBefore(insert, this.$.header);

This will insert the div element before the header node.

API calls are very useful for us; while working with AngularJS and Polymer, I started
to forget about jQuery and others because modern libraries such as Polymer provide
almost anything you need for your application.

Data binding in Polymer
Of course Polymer uses data binding. One of the best pluses of Polymer is that
you can bind the data from your model to your view. It is the most awesome way
to propagate data changes in your element. The binding is similar to that with
AngularJS; you just need to write double-mustache in a place you want to bind
something. Let me show you a simple example of how to bind data in Polymer. I
created this local DOM element:

<link rel="import"
 href="bower_components/polymer/polymer.html">

<dom-module id="book-tag">

 <template>
 <!-- bind to the "bookName" property -->
 The name of this book is {{bookName}}!
 </template>

 <script>
 Polymer({
 is: "book-tag",
 ready: function() {
 // set the name of the book

Chapter 3

[63]

 this.bookName = "Getting started with Polymer";
 }
 });
 </script>

</dom-module>

In this example, we have a property, bookName, which binds to the view when the
ready function calls. Let's move ahead and take a look at binding annotations.

Binding annotations
There are two bracket styles in Polymer data binding, which are:

• Curly brackets ({{}}) create two-way data binding. Data flow is not
downward, which means you can modify a property from the host.

• Square brackets ([[]]) create one-way data binding. It means the data flow
is downward, the binding works in a host-to-child way and this binding can
never modify a property from the host.

To work with binding, you should specify the attribute for the property you want
to bind. In Polymer, data binding works inside the <template> tag because all the
content of the element goes inside it. Take a look at the following code:

<template>
 <h2>{{header}}</h2>
</template>

In this example, I've just bound a property with the name header using two-way
data binding; but wait! I should show you the other part (that is, the JavaScript
part) of the binding. When you use a property in brackets, JavaScript checks for
the availability of this property. If there's no result, it creates the property for itself
without any issues, as follows:

<template>
 <h2 is-clickable="{{checker}}">{{header}}</h2>
 <!—- In the JS <view>.isClickable = this.checker; -->
</template>

If you want to bind the CamelCase properties of an element,
you should use a dash-case name for the attribute.

Introduction to Polymer

[64]

Okay! Now that we know how to define the properties in Polymer, let's define the
header property in the properties of the Polymer function as follows:

<script>
 Polymer({
 is: "view",
 properties: {
 header: String,
 isClickable: Boolean
 }
 });
 </script>
 ...
 <h2 is-clickable="false">{{header}}</h2>

Yes, in this example, JavaScript creates a property for the Polymer element and
applies it in the view. This means that when you change the value of header or
isClickable in the model of your Polymer function, it will also be changed in the
view. This is the best part about data binding; by changing the model, it is updating
the view of your application, which is great for the future .

By the way, data binding is also available in the new ECMA 2015;
you can get more information about this on the Web.

Let me show you a great example of how the one-way and two-way data bindings
work in a real example. Let's create our first element for Gravatar. In this element,
we will need to write the Gravatar account's e-mail address and the Gravatar image
should appear at the bottom.

What do we need for this task? Here's what:

• An MD5 decoder for JavaScript because Gravatar uses the decoding hash of
the e-mail address

• The Gravatar account

• A Polymer paper element called paper-input

Here's the code:

<link rel="import" href="bower_components/polymer/polymer.html" />
<link rel="import" href="bower_components/paper-input/paper-input.
html" />

<dom-module id="img-gravatar">
 <template>

Chapter 3

[65]

 <paper-input value="{{email}}" placeholder="Email" id="email"></
paper-input>

 </template>
 <script>
 Polymer({
 is: 'img-gravatar',
 gCode: function(email){
 return "http://gravatar.com/avatar/" + md5(email);
 }
 });
 </script>
</dom-module>

<img-gravatar email="akhxtern@gmail.com"></img-gravatar>

Let me explain the code. We just created a Polymer element with the name
img-gravatar, which has only one parameter to bind and to get the element's
attributes. We also have a gCode function, which decodes the e-mail address
with an MD5 cryptographic hash function added at the top of the element.

Here is the link to md5.js: https://cdnjs.cloudflare.com/ajax/libs/crypto-
js/3.1.2/components/md5-min.js.

The gCode function returns the decoded e-mail address that we bound into the src
of the img tag in the template. I also added paper-input before the img tag. This
changes the email parameter here so that you can type your Gravatar e-mail address
and see what happens. This is how binding works. Let me show you another example
with some lists. Imagine you have a list of videos and want to show them. For this, we
have to create an array with a lot of objects and use the binding of Polymer.

Let's execute the following code:

<dom-module id="video-list">
 <template>
 <div> Video list: </div>
 <template is="dom-repeat" items="{{videos}}">
 <div># {{index}}</div>
 <div>Video title: {{item.name}}</div>
 <div><video src="{{item.src}}"></video><div>
 </template>
 </template>
 <script>
 Polymer({

https://cdnjs.cloudflare.com/ajax/libs/crypto-js/3.1.2/components/md5-min.js
https://cdnjs.cloudflare.com/ajax/libs/crypto-js/3.1.2/components/md5-min.js

Introduction to Polymer

[66]

 is: 'video-list',
 ready: function() {
 this.videos = [
 {name: 'Polycasts #1', src: 'assets/videos/vid1.mp4'},
 {name: 'Polycasts #2', src: 'assets/videos/vid2.mp4'}
];
 }
 });
 </script>
</dom-module>

In this example, we have an object called videos, which has two videos in its list.
In the view, we created a template for repeating a list. The items attribute gives the
name of the object we are going to bind from, it refers to videos here.

The result of this example is a view with a list of videos. JavaScript binds the model
property to the view and renders it. It is like appending an element to a div with the
JS for loop.

Now, let's talk about behaviors in Polymer.

Behaviors in Polymer
With behaviors, you can extend the prototypes of some elements and use them for
other elements. You can create mixins for your element, which look like a module.
You can define properties, attributes, observers, and listeners using behavior. To
add a behavior to the element, you should add a behaviors array in the Polymer
prototype, as follows:

Polymer({
 is: 'custom-element',
 behaviors: [SomeBehavior]
});

However, wait! We don't have any behavior with the name SomeBehavior. So,
let's create one. To define a behavior, just create a JavaScript object and give it the
properties of an element. You can create another file for behaviors—for our example,
some-behavior.html—as follows:

some-behavior.html
<script>
 SomeBehavior = {
 properties: {
 isSelected: {
 type: Boolean,

Chapter 3

[67]

 value: false,
 notify: true,
 observer: '_changedSelect'
 }
 },
 listeners: {
 click: '_toggleSelect'
 },
 created: function() {
 console.log('Selected: ', this);
 },
 _toggleSelect: function() {
 this.isSelected = !this.isSelected;
 },
 _changedSelect: function(value) {
 this.toggleClass('selected', value);
 }
 };
</script>

Your behavior will work for your element. By the way, you can add multiple behaviors
for your element, similarly to this:

Polymer({
 is: 'custom-element',
 behaviors: [SomeBehavior1, SomeBehavior2, SomeBehavior3, ...]
});

To avoid collisions in the future, you should think for behavior namespaces when
creating a behavior by adding the namespace to the window global object, as follows:

window.behaviors = window.behaviors || {};
behaviors.SomeBehavior = { /* your element behavior here */ }

So, you can use a behavior such as behaviors.SomeBehavior;.

You can also extend from other behaviors and use the new behavior for your element.
For example, it will look like this:

<link rel="import" href="some-behavior.html">
<script>
 NewSomeBehaviorImpl = {
 /* your new behavior here */
 }
 NewSomeBehavior = [SomeBehavior, NewSomeBehaviorImpl]
</script>

NewSomeBehavior is your new behavior, use it with pleasure!

Introduction to Polymer

[68]

Events
You can add default events or create yours in Polymer. Default events are the same,
nothing different to JS events. In this topic, we will take a look at how to set up an
event handler for our Polymer elements. You can add any event you want on any
element using the this.$ object and the syntax elementID.eventName. You should
use the listeners object to add event handlers to the elements, as follows:

<dom-module id="my-tag">
 <template>
 <button>Default Click Event</button>
 <div id="thank">Thanks a lot!</div>
 </template>
 <script>
 Polymer({
 is: 'my-tag',
 listeners: {
 'tap': 'thankYouMessage',
 'thank.tap': 'specialThankMessage'
 },
 thankYouMessage: function(e) {
 alert("Default click event!");
 },
 specialThankMessage: function(e) {
 alert("Thank you for clicking me, my dear!");
 }
 });
 </script>
</dom-module>

As you can see, I have a listeners object with the events I need to handle in
the application. The first event is tap, which means that all the elements in the
dom-module will handle the event when I tap on it. The second one is thank.tap,
which handles only the element with the thank identifier. That's it! You can handle
any event you want (mouseover, mouseout, keydown, keyup, and more) and for any
element you want.

By the way, we also have other ways to handle the events without using the
listeners object. You can specify the event handler function for the element itself,
similarly to this:

<dom-module id="my-tag">
 <template>
 <button on-mouseover="handleMouse">Click me now!</button>
 <p>Hover count: {{mouseTrack}}</p>

Chapter 3

[69]

 </template>
 <script>
 Polymer({
 is: 'my-tag',
 properties: {
 mouseTrack: {
 type: Number,
 value: 0
 }
 },
 handleMouse: function() {
 this.mouseTrack += 1;
 }
 });
 </script>
</dom-module>

Here, we used the default mouseover event in the attribute of the element. You just
need to add the event name after the on- keyword (for example, on-click, on-tap,
and so on).

Now, let's take a look at how to create our first custom event in Polymer. To fire a
custom event, you should use a fire method and, in the second parameter of this
method, you can pass any data you want; take a look at this example:

<dom-module id="my-tag">
 <template>
 <button on-click="happyEvent">Congratulate me now!</button>
 </template>
 <script>
 Polymer({
 is: 'my-tag',
 happyEvent: function(e, detail) {
 this.fire('congrats', {age: 18});
 }
 });
 </script>
</dom-module>
<my-tag></my-tag>

<script>
 document.querySelector('my-tag').addEventListener('congrats',
function (e) {
 alert('Happy' + e.detail.age + ' years, buddy!');
 });
</script>

Introduction to Polymer

[70]

In this example, I created my custom congrats event, which congratulates you
by showing you an alert and printing your age. As you can note, in the body of the
addEventListener method at the bottom, I used the e.detail property, which is the
data object I passed at the top of the custom event firing. It's kind of awesome, right?

Styling
Polymer elements are Shadow DOM. Shadow DOM has its own rules for styling its
content, which we will discover in this topic. Styling? Yeah! It is the same <style>
tag but inside the <template> tag. Let me show you some code from styling Shadow
DOM, as follows:

<template>
<style>
 :host {
 display: flex;
 width: 100vw;
 background: grey;
 }
 #header {
 color: red;
 }
 .container > ::content .p {
 color: green;
 }
 </style>

 <div id="header">Some header!</div>
 <div class="container"><content></content></div>
</template>

What's going on here? What are the :host and ::content pseudo classes? Are they
something new? Take a look:

• :host: This is the wrapper element that we will use (the Polymer element)

• ::content: This is the content of Shadow DOM (the <content> tag)

As we know, the <content> tag doesn't appear in the DOM tree and it is important to
have some element on the left-hand side before the ::content pseudo class, because
it doesn't know which Shadow DOM content to apply the styles to.

Chapter 3

[71]

In Polymer, you can create your custom CSS properties, which you can use multiple
times in code. It is the future of W3C CSS standards. This way, you define a CSS
variable (as in SCSS or LESS); take a look:

<dom-module id="my-tag">
 <template>
 <style>
 :host {
 padding: 10px;
 background: teal;
 }
 .title {
 color: var(--my-tag-nav-color);
 }
 </style>
 <div class="nav">{{nav}}
 </template>
 <script>
 Polymer({
 is: 'my-tag',
 properties: {
 nav: String
 },
 });
 </script>
</dom-module>

Now, the user can give the variable value outside of the shadow tree; here's an
example:

<my-tag></my-tag>
<style>
 my-tag {
 color: white;
}
</style>

CSS gets the parameter from the outside and applies it to its tree. You can also assign
a default value for the variable inside your template, as follows:

<style>
 :host {
 --my-tag-nav-color: black;
 }
</style>

Introduction to Polymer

[72]

Mixins in Polymer
If you are familiar with a CSS preprocessor, you must know about mixins. Mixins
allow a user to define the patterns of property value pairs, which you can use
anywhere in the document. Polymer also has a mixins feature in it. To apply a mixin,
you should use @apply in your document, as follows:

@apply(--mixin-name);

To define a mixin, you should write the name of it and the properties it should have,
as shown in the following code:

selector {
 --mixin-name: {
 /* properties */
 };
}

In the example, it will look similar to this:

<template>
 <style>
 /* Apply custom theme to toolbars */
 :host {
 --my-tag-theme: {
 background: teal;
 };
 --my-tag-title-theme: {
 color: red;
 };
 }
 </style>

 <my-tag title="Red title!"></my-tag>
 </template>

Chapter 3

[73]

Summary
Here we are! We've covered all the features of Polymer in this chapter. You know now
what Polymer is and have learned about its great features.

Polymer is growing so fast that I think, while you were reading this chapter, the guys
from Google were rocking with Polymer and making a lot of new stuff, but the idea of
it is the same. It's an awesome tool for all web developers in the world to create faster
and more responsive apps.

You know now how Polymer works; about its life cycles, events, and binding;
and how to create a custom polymer component with Polymer and use it in
other applications.

In the next chapter, I will show you the Polymer elements collection created by the
Polymer team at Google. Let's move on!

[75]

Polymer Elements
Polymer has a collection of useful elements created by the Polymer team from
Google. In Polymer version 0.5, there were two sets of elements: Core and Paper
elements, but now in version 1.0, there are a lot.

In this chapter, we will look at the following types of elements:

• App elements

• Iron elements

• Paper elements

• Google web components

• Gold elements

• Neon elements

• Platinum elements

• Molecules

To use our own markup elements, we usually perform the following steps:

1. Download the element package through Bower.

2. Import the appropriate .html file.

3. Use the imported elements anywhere in the document.

With this, let's go through the different Polymer elements and take a look at
their power.

Polymer Elements

[76]

App elements
These are the elements we need to start our Polymer application, so the Polymer
team has created this list of elements for us to make the application layouts faster
(https://elements.polymer-project.org/browse?package=app-elements).

app-layout
The <app-drawer-layout> is the main wrapper of the app. There is a drawer panel
to the left and a content area to the right.

Here's an example:

<app-drawer-layout>
 <app-drawer>
 drawer content
 </app-drawer>
 <div>
 main content
 </div>
</app-drawer-layout>

It has the following properties:

• drawer: This is the <app-drawer> element

• forceNarrow: If this is true, it ignores responsiveWidth and forces a
narrow layout

• responsiveWidth: This is the minimum value of width close to the drawer

app-route
The <app-route> is a component that enables declarative routing for the web app.

Here's an example:

<app-location route="{{route}}"></app-location>
<app-route
 route="{{route}}"
 pattern="/:page"
 data="{{data}}"
 tail="{{tail}}">
</app-route>

https://elements.polymer-project.org/browse?package=app-elements

Chapter 4

[77]

It has the following properties:

• data: These are the values that are extracted from the route as described
in pattern

• pattern: This is the pattern of slash-separated segments to match the
path against

• route: This is the URL component managed by the element

• tail: This is the part of the path not consumed in pattern

Iron elements
These are the basic built-in blocks to create an application with visual and nonvisual
elements. For example, iron-icons is a set of material icons and iron-ajax is
used to request AJAX calls and parse the response. I will present some of them
here (a collection that will be very useful for you), but you can see a list of the
elements on the Polymer website at https://elements.polymer-project.org/
browse?package=iron-elements.

iron-a11y-keys
The iron-a11y-keys element provides an interface to process keyboard commands
in your application. It uses an expressive syntax to filter key presses. For example,
if you want to call some function in some key event, you can use this element to
handle it.

Here's an example:

<iron-a11y-keys target="[[target]]" keys="space" on-keys-
pressed="onSpace"></iron-a11y-keys>

...
onSpace: function() {
 // Do something
}
...

You can also use this element to combine some hotkeys—for example, Ctrl + F—
similarly to this:

<iron-a11y-keys target="[[target]]" keys="ctrl+f" on-keys-
pressed="decrement"></iron-a11y-keys>

https://elements.polymer-project.org/browse?package=iron-elements
https://elements.polymer-project.org/browse?package=iron-elements

Polymer Elements

[78]

iron-ajax
You can easily make simple AJAX calls and get the response of them with just one
custom element.

Here's an example:

<iron-ajax>
 url="http://example.com/api.php"
 params='{"action":"signin", "email":"akhxtern@gmail.com",
"password": "123456"}'
 handle-as="json"
 on-response="loginResponse"
</iron-ajax>

This has the following properties:

• url: This is the URL to request

• params: These are the query parameters of the request

• handle-as: This is the expected datatype (JSON, text, XML, arrayBuffer,
blob, or document)

• on-response: This is the response handler function

Then, in JavaScript, you just need to handle its response. The on-response attribute
is responsible for this, while the loginResponse function is the response handler for
the call. The handle-as attribute is for the specification of the response data and
you can use XML, text, document, and so on. This part of JavaScript will look similar
to this:

...
loginResponse: function(data) {
 if(data.result) {
 // Do some login functionality
 } else {
 // Something wrong in the username or password
 }
}
...

iron-collapse
With this element, you can create collapsible blocks of content. A collection of this
element is called an accordion.

Chapter 4

[79]

Here's an example:

<button on-tap="collapseToggle">Show / Hide the bar</button>

<iron-collapse id="bar">
 Hello ceeceeque!
</iron-collapse>

...

collapseToggle: function() {
 this.$.bar.toggle();
}

As you can see in the code, we have a button that toggles the collapsible element
with the bar ID and, in the JavaScript code, we have the on-click function to
do the toggling.

iron-image
The iron-image is an element to show an image; you can change the sizing options,
its resolution, and more.

Here's an example:

<iron-image src="http://lorempixel.com/600/400" style="width:200px;
height:500px; background-color: blue;" preload sizing="cover"></iron-
image>

This has the following properties:

• alt: This is an alternative text for the image

• fade: When the image loads, this fades into its place (when preload is set to
true)

• width: This is the width of the image

• height: This is the height of the image

• src: This is the URL of the image

• position: These are the sizing options of the image (cover or contain)

This element has his own attributes for configuration; you can set some style for the
image and change its size, which works similar to the CSS object-fit property for
the image.

www.allitebooks.com

http://www.allitebooks.org

Polymer Elements

[80]

iron-dropdown
This element is responsible for creating a view similar to the select element in
HTML, but the difference is that you can hide some content in the dropdown area;
for example you can put buttons, images, or any other HTML tags you want in the
dropdown container. It is a very useful element when you want to show some hidden
content. There are a lot of attributes you can use for its configuration, but I will show
you some of them now.

Here's an example:

<iron-dropdown horizontal-align="right" vertical-align="top">
 <div class="dropdown-content">I'm here!</div>
</iron-dropdown>

It has the following properties:

• alwaysOnTop: The z index of this drop-down menu is always at the top

• horizontalAlign: This is the horizontal direction of the animation
(left or right)

• verticalAlign: This is the vertical direction of the animation
(top or bottom)

• noAnimations: This is used to open and close the drop-down menu
without animations

• withBackdrop: If this is true, it displays the backdrop behind the
drop-down menu

iron-flex-layout
iron-flex-layout element provides you the opportunity to use CSS flex layouts.
This means that you can use mixins and default classes to use flexbox. There are two
ways to do this, which are as follows:

• With layout classes: This is a simple set of built-in stylesheet classes so
that you can set the class you want to the elements in the markup

• Custom CSS mixins: This is a custom collection of mixins that can be used
in your CSS rules using the @apply function

For example, if you want to create some horizontal flex tabs and wrap the container,
you can use the horizontal and wrap classes, as follows:

<div class="layout horizontal wrap">

So the <div> container will do what you want.

Chapter 4

[81]

And we have the mixins version, right? So, this is simple; as in this example, just
apply the mixins in your CSS, this way:

<div class="container"></div>
<style is="custom-style">
 .container {
 @apply(--layout-horizontal);
 @apply(--layout-wrap);
 }
</style>

You can refer to the full documentation of the Polymer flexbox at
https://elements.polymer-project.org/guides/flex-layout.

iron-form
The iron-form element is similar to the HTML form tag. It can validate the input
data and submit it to an action URL with the GET or POST methods and use the
iron-ajax element to request. For input elements, you should take a look at paper
elements because the most visual elements of Polymer are in the paper collection.

Here's an example:

<form is="iron-form" id="search_form" method="post" action="/api/
users">
 <paper-input name="username" label="username"></paper-input>
 <input type="email" name="email">
 <paper-button onclick="searchUser()" raised>Search</paper-button>
</form>

function searchUser() {
 document.getElementById('search_form').submit();
}

There are some methods which you can call for certain reasons. To submit data, you
should use submit(); to validate the form data, you should use the validate()
method; and to serialize the data, use serialize().

Of course, you can use some built-in events for the form element, such as
iron-form-error, iron-form-invalid, iron-form-presubmit, iron-form-reset,
iron-form-response, and iron-form-submit.

https://elements.polymer-project.org/guides/flex-layout

Polymer Elements

[82]

iron-icon
This element is used to display a Material Design icon from the Polymer icon set.
There are a few groups of icons, such as default, AV (audio/video), communication,
device, editor, hardware, image, maps, notification, social, and places icons.

To add a specific group of icons, you just need to import the specific icon HTML code
inside bower-components/iron-icons/.

Here's an example:

<iron-icon icon="icons:bat_icon"></iron-icon>

As you can note in the example, <iron-icon> has an icon attribute, which is the
name of the icon from the Polymer icon set.

The default size of the icon is 24px, but <iron-icon> has its own CSS properties for
resolutions and colors. Take a look at the following code:

<style is="custom-style">
 .bat_icon {
 --iron-icon-height: 50px;
 --iron-icon-width: 50px;
 --iron-icon-fill-color: black;
 --iron-icon-stroke-color: yellow;
 }
</style>

You can also use a set of icons using <iron-icon>; you just need to import the icon
set and use <iron-icon>, this way:

<iron-icon icon="iconset_name:icon_name"></iron-icon>

iron-swipeable-container
The iron-swipeable-container is a container that users can swipe away (with its
children); for example, you can use this element if you want to alert or inform the
user about something. There are default transition styles, curved and horizontal, but
you can customize the duration and properties.

You can write native HTML elements inside this container or use Polymer paper
elements; the decision is yours.

Chapter 4

[83]

Here's an example:

<iron-swipeable-container>
 <paper-card heading="Me too!"></paper-card>
 <div>Please swipe me! :)</div>
 <div class="disable-swipe">You cannot swipe me!</div>
</iron-swipeable-container>

If you want to disable the swiping of some children, just add the disable-swipe
class to the element.

Paper elements
Yes! My favorite part of elements is the paper. They are the visual collection of
elements in Polymer created according to Material Design concepts, so you can add a
lot of cards, inputs, checkboxes, and buttons and have a lot of fun with ripple effects.
In this section, we will cover these elements in detail (https://elements.polymer-
project.org/browse?package=paper-elements).

paper-badge
The <paper-badge> element is used to represent a status or notification in the
upper-right corner of an element. I know you have noticed the notification status in
the Facebook website or app, the red circle with white text at its head; this element is
to create a view like that. You can use text or an icon in the badge. Here's an example
of how to add it on the markup:

<div>
 <paper-button id="msgs">Messages</paper-button>
 <paper-badge icon="communication:email" for="msgs" label="favorite
icon"></paper-badge>
</div>

<div>
 <paper-icon-button id="notification-box" icon="account-box"
alt="notification-box"></paper-icon-button>
 <paper-badge icon="social:mood" for="notification-box" label="mood
icon"></paper-badge>
</div>

https://elements.polymer-project.org/browse?package=paper-elements
https://elements.polymer-project.org/browse?package=paper-elements

Polymer Elements

[84]

In this example, we have two types of buttons: one with text and one with icons. Each
one has its own badge of status. This is simple and beautiful! You can even change
the color of badges or margins with CSS rules, as follows:

paper-badge {
 --paper-badge-margin-left: 10px;
 --paper-badge-margin-bottom: 0px;
 --paper-badge-background: var(--paper-light-green-100);
}

paper-button
This is the simplest button in the world. When the user clicks on this button, it rises
with a ripple effect and casts a shadow. You can configure the button with attributes,
and the main attribute is that it can be flat or raised. If the button has no attribute,
it is flat; add the raised attribute to change the type and add the noink attribute to
disable the ripple effect.

Here's the view:

Here's an example:

<paper-button>Tapak</paper-button>
<paper-button raised>Ceeceeque</paper-button>
<paper-button noink>Simple button</paper-button>

This has the following properties:

• active: If true, the button is currently active

• disabled: If true, the button is in disabled state

• elevation: This is the z depth of the element—that is, the shadow level

• noink: If this is true, there's no ripple effect on pressing the button

• raised: If this is true, then the button has a shadow

Chapter 4

[85]

If you add an <iron-icon> element inside <paper-button>, you might get a button
with an icon and with some text if you want. Consider the following example:

<paper-button>
 <iron-icon icon="star"></iron-icon>
 Like
</paper-button>

Now, we have a button with an icon and text.

paper-card
This element is a Material Design container with a shadow. We met this element in
the <icon-swipeable-container> element's example.

Here's an example:

<paper-card heading="Material Card">
 <div class="card-content">Mr. Echo</div>
 <div class="card-actions">
 <paper-button noink raised>Hello</paper-button>
 </div>
</paper-card>

This simple example is for a card with a header and content, but you can add a
header with an image just by adding the image attribute in the <paper-card>
tag and by providing the link to the image in the value!

paper-checkbox
This element is a checkbox; it's the same element as the checkbox in HTML, but it
has Material Design animations and styles. It can be checked or unchecked and,
no, it is not an ON/OFF switcher; we have another element for this.

Here's an example:

<paper-checkbox>label</paper-checkbox>

You can add the checked attribute to check and remove it to uncheck the checkbox.

Polymer Elements

[86]

paper-drawer-panel
This element is a navigation drawer for your application. The <paper-drawer-panel>
element contains two side-by-side panels: drawer and main. When the browser
window is of a small size, the drawer panel is hidden.

Here's an example:

<paper-drawer-panel>
 <div drawer> drawer part </div>
 <div main> content part </div>
</paper-drawer-panel>

You should add the drawer and main attributes to specify the panels. The drawer
part is usually useful for the menu panel.

paper-dropdown-menu
The <paper-dropdown-menu> element is the same as the <select> element in native
HTML, but here you should use one more element to make the view similar to the
native one.

Here's an example:

<paper-dropdown-menu label="Your favorite musician?">
 <paper-menu class="dropdown-content">
 <paper-item>Notorious B.I.G.</paper-item>
 <paper-item>Woodkid</paper-item>
 <paper-item>Gesaffelstein</paper-item>
 <paper-item>The Beatles</paper-item>
 </paper-menu>
</paper-dropdown-menu>

You should add the <paper-menu> element inside it and the result will be the
beautiful Material Design element.

paper-fab
This is the popular floating action button in Material Design. It contains an icon in
the center styled with a shadow and could be of two sizes: regular and small. To use
the FAB button, you should import iron-icon for the icon inside.

Chapter 4

[87]

Here's an example:

<link href="bower_components/iron-icons/iron-icons.html" rel="import">

<paper-fab icon="edit"></paper-fab>
<paper-fab mini icon="star"></paper-fab>

To use the smaller version, you should add the mini attribute inside the element tag.

paper-icon-button
The <paper-icon-button> element is a simple button with an icon at the center
of it. The ripple effect comes from the center of the button. This element uses the
default icon set, so, if you want to set an icon, just add the icon attribute and add the
icon name (of course you need to import iron-icon) and the same attributes, as in
<paper-button>.

Here's an example:

<paper-icon-button noink icon="add"></paper-icon-button>

The styling of this element is also with built-in custom parameters:

• --paper-icon-button-disabled-text: This is the color of the text of the
disabled button

• --paper-icon-button-ink-color: This is the ripple color

paper-input
This is the text input area of Material Design. With this element, you can create
beautiful form fields. You can add a maximum length of character in the value and
any validations you want.

Take a look at the following example:

<paper-input label="Text" char-counter maxlength="10" ></paper-input>

In this example, we used char-counter; if it's set to true, the character counter is
kept visible and we give the maximum length of characters.

Polymer Elements

[88]

paper-listbox
The <paper-listbox> element is a Material Design listbox controller. It is similar
to the right-click options bar in your operating system. If you select an item from
this list, the item becomes bolder, and the focused items are highlighted when
hovered over.

Here's an example:

<paper-listbox>
 <paper-item>POP.xyz</paper-item>
 <paper-item>JAZZ</paper-item>
</paper-listbox>

If you want to make it a multiselect listbox, you just need to add the multi attribute
inside it.

paper-material
This is the container to index the Materials layers with shadow levels. To change the
material level, just change the elevation attribute.

Here's an example:

<paper-material elevation="2">
 …I'm higher than you! …
</paper-material>

You can also use the animated attribute to add an animation on shadow changes.

paper-menu
This is the built-in menu control with Material Design styling.

Here's an example:

<paper-menu selected="0">
 <paper-item>Edit</paper-item>
 <paper-item>Delete</paper-item>
 <paper-item>Share</paper-item>
</paper-menu>

You can use the multi attribute, as in <paper-listbox>, to enable multiselection.

Chapter 4

[89]

paper-progress
The progress bar is also an important element in Material Design. You can show
the progress of some action or the buffer level during the streaming of a video.
Just change the value attribute to change the progress position.

Here's an example:

<paper-progress value="10"></paper-progress>

You can change the color of the progress bar or the timing parameters from the CSS
properties of the element, as follows:

paper-progress {
 --paper-progress-active-color: #e91e63;
 --paper-progress-transition-duration: 0.03s;
 --paper-progress-transition-timing-function: ease-in-out;
 --paper-progress-transition-transition-delay: 0s;
}

paper-radio-button
This element is similar to the native HTML radio button but with Material Design
styling. A user can click on it to check or uncheck it.

Here's an example:

<paper-radio-button>I love meat</paper-radio-button>
<paper-radio-button>I love music</paper-radio-button>

To use a group of radio buttons in Polymer, you can use the <paper-radio-group>
element, as follows:

<paper-radio-group selected="male">
 <paper-radio-button name="secret">Secret</paper-radio-button>
 <paper-radio-button name="male">Male</paper-radio-button>
 <paper-radio-button name="female">Female</paper-radio-button>
</paper-radio-group>

paper-ripple
The <paper-ripple> element is used to add a ripple effect animation to an element.
For example, if you use this element inside a div, it will respond to your clicks
with ripples. Notice that this element adds relative position to its parent, because
<paper-ripple> is positioned with an absolute method I can go outside of its parent.

Polymer Elements

[90]

Here's an example:

<div style="position:relative">
 <paper-ripple class="circle"></paper-ripple>
</div>

In this example I have used the <paper-ripple> element inside a div tag. It will
ripple when you click on it and note that the ripple will be a circle if you add the
circle class. You can also add the center attribute to make the rippling animation
start from the center.

paper-slider
This element is similar to the native HTML range input element. It gives the user an
opportunity to select a value from the range. You can add minimum and maximum
values of the range and, of course, you can provide the value of the slider.

Here's an example:

<paper-slider min="0" max="100" value="69"></paper-slider>

By adding the step attribute, you can split the slider into steps. Take a look at
its full documentation at https://elements.polymer-project.org/elements/
paper-slider.

paper-spinner
This element provides a beautiful Material Design loading icon.

Here's an example:

<paper-spinner active></paper-spinner>

You can change the colorful spinner to some specific color with CSS properties,
such as --paper-spinner-layer-1-color, --paper-spinner-layer-2-color,
--paper-spinner-layer-3-color, and --paper-spinner-layer-4-color. The
active attribute shows the spinner; just remove the attribute to hide it.

paper-tabs
This element provides a menu panel with tabs. It comes with awesome animations
that will make the UI of your website the best! When the user selects an item, the
border at the bottom of the current menu item animates to the item you have selected
and the tabs use the ripple effect animation.

https://elements.polymer-project.org/elements/paper-slider
https://elements.polymer-project.org/elements/paper-slider

Chapter 4

[91]

Here's an example:

<paper-tabs selected="0">
 <paper-tab>Home</paper-tab>
 <paper-tab>About us</paper-tab>
 <paper-tab>Portfolio</paper-tab>
</paper-tabs>

You can use this paper element with <iron-pages> and create a simple website in a
second. Take a look at the following example:

 <paper-tabs selected="{{selected}}">
 <paper-tab>Home</paper-tab>
 <paper-tab>About us</paper-tab>
 <paper-tab>Portfolio</paper-tab>
</paper-tabs>

<iron-pages selected="{{selected}}">
 <div>This page is for homepage</div>
 <div>This page is about us</div>
 <div>This page is for my portfolio</div>
</iron-pages>

That's it! Your simple one-page application is ready. How does it work? The
selected variable binds in the selected attribute and shows the correct tab/page.

paper-toast
These are notification toasts for your application. With this element, you can show
error messages or show notifications (as with Twitter or Facebook).

Here's an example:

<paper-toast id="hello" text="Get the new app from here!">
 Play Store
</paper-toast>
<button onclick="document.querySelector('#hello)
 .open()">Login</button>

In this example we have a button that opens the toast when you click on it!

Polymer Elements

[92]

paper-toggle-button
This is a button to switch ON/OFF, which a user can toggle by clicking or dragging.

Here's an example:

<paper-toggle-button></paper-toggle-button>

Google web components
This collection of elements is created to make it easier to use Google APIs. For
example, until now, you added a Google Map on your website by writing some
markup and calling Google Maps API methods with JavaScript to create the map.
However, now, using Polymer, you can add the map with one simple tag. That's not
all, you can add any Google component you want with simple code.

The following subsections list some useful Google web components that
will come in handy for you (https://elements.polymer-project.org/
browse?package=google-web-components).

google-analytics-query
This element is responsible for querying the Google Analytics Core Reporting API.

Here's an example:

<google-analytics-query
 ids="ga:1174"
 metrics="ga:sessions"
 dimensions="ga:country"
 sort="-ga:sessions"
 max-results="5">
</google-analytics-query>

Here, ids is your user ID for requesting your account information.

google-client-loader
With this element, you can load a specific Google API with JavaScript.

Here's an example:

<google-client-loader id="shortener"
 name="urlshortener"

https://elements.polymer-project.org/browse?package=google-web-components
https://elements.polymer-project.org/browse?package=google-web-components

Chapter 4

[93]

 version="v1"></google-client-loader>

<script>
 var shortener = document.getElementById('shortener');
 shortener.addEventListener('google-api-load', function(event) {
 var request = shortener.api.url.get({
 shortUrl: 'http://goo.gl/fbsS'
 });
 request.execute(function(resp) {
 console.log(resp);
 });
 });
</script>

google-chart
The <google-chart> element easily visualizes data with charts. Any known chart
is included in this element: line, circular, map, and more. Here's a list of chart
types that you can use in code: area, bar, bubble, candlestick, column, combo,
geo, histogram, line, pie, scatter, stepped area, and treemap.

Here's an example:

<google-chart
 type='pie'
 options='{"title": "Distribution of days in 2001Q1"}'
 cols='[{"label":"Month", "type":"string"}, {"label":"Days",
 "type":"number"}]'
 rows='[["May", 16],["Nov", 9],["Aug", 29]]'>
</google-chart>

google-hangout-button
This is a simple Hangout button for your application. Now, you can start calling
anytime and anywhere by adding this element.

Here's an example:

<google-hangout-button></google-hangout-button>

Polymer Elements

[94]

google-map
This is my favorite element in this collection. I remember having to add tons of
JavaScript code and markup for one simple Google Maps code, but now, this
can be done using just a tag. Yeah, it's magic!

Here's an example:

<style>
 google-map {
 height: 400px;
 }
</style>
<google-map latitude="40.1553425" longitude="44.5166002" zoom="18"></
google-map>

All you need to do, is add the center's latitude and longitude and the zoom of
the map. You can also add markers on the map! Again, you can do this with a
simple element.

Here's an example:

<google-map latitude="40.1553425" longitude="44.5166002" fit-to-
 markers>
 <google-map-marker latitude="37.779" longitude="-122.3892"
 draggable="true" title="Go Giants!"></google-map-marker>
 <google-map-marker latitude="37.777" longitude="-
 122.38911"></google-map-marker>
</google-map>

The draggable attribute in the <google-map-marker> element enables the drag and
drop of the marker. Now, let's add directions with Google Maps, as follows:

<google-map map="{{map}}"></google-map>
<google-map-directions map="{{map}}"
 start-address="Yerevan" end-address="Gyumri">
</google-map-directions>

google-signin
This element is used to authenticate a Google user account, which allows you to
interact with Google APIs such as Google+ or Drive.

Here's an example:

<google-signin client-id="..." scopes="https://www.googleapis.com/
auth/drive"></google-signin>

Chapter 4

[95]

Here, client-id is your unique application ID, which you can get from the Google
Developers Console (https://console.developers.google.com).

google-streetview-pano
This is an element to show a specific street view from Google Maps Street View
Panorama. All you need to do is paste the pano ID and configure some default settings.

Here's an example:

<google-streetview-pano
 pano-id="PANO ID"
 heading="230"
 pitch="-3"
 zoom="0.5"
 disable-default-ui>
</google-streetview-pano>

Go grab a panorama and look at the URL in the address bar. An example would be
google.com/maps/views/view/123012930218409142190/photo/PANO_ID_IS_HERE.

google-youtube
You can use this element to show YouTube videos on your page without any iframes;
just add this element.

Here's an example:

<google-youtube
 video-id="VIDEO_ID"
 height="640px"
 width="360px"
 rel="0"
 start="2"
 autoplay="0">
</google-youtube>

Include a VIDEO_ID of your YouTube video and feel the magic!

https://console.developers.google.com

Polymer Elements

[96]

Gold elements
This collection of elements is built for e-commerce use cases, such as checkout flows.
Obviously, it is a collection of elements connected with money (https://elements.
polymer-project.org/browse?package=gold-elements).

gold-cc-cvc-input
This is a Material Design styled input area to enter a credit card's verification code.

Here's an example:

<gold-cc-cvc-input card-type="amex"></gold-cc-cvc-input>

gold-cc-input
This is a Material Design styled input area to enter a credit card number. As the user
types, the number is formatted by adding a space after every four digits.

Here's an example:

<gold-cc-input label="Master Card"></gold-cc-input>

gold-email-input
This element is a simple text field, especially for e-mail addresses, styled in
Material Design.

Here's an example:

<gold-email-input label="SUBSCRIBE"></gold-email-input>

For validation, the element has a validate() method, which returns true if it is
valid and otherwise if it is not valid.

gold-phone-input
This element is a simple text field, especially for phone numbers, styled in Material
Design.

Here's an example:

<gold-phone-input
 country-code="374"
 phone-number-pattern=XX-XX-XX-XX">
</gold-phone-input>

https://elements.polymer-project.org/browse?package=gold-elements
https://elements.polymer-project.org/browse?package=gold-elements

Chapter 4

[97]

For validation, the element has a validate() method, which returns true if it is
valid and false otherwise.

Neon elements
This collection has only one element so far. It fills the dark space of Material Design
on the Web: meaningful transitions. With this element, you can easily make cool
and fast transitions for the web and mobile and implement pluggable animated
transitions using web animations (https://elements.polymer-project.org/
browse?package=neon-elements).

You should implement the Polymer.NeonAnimatableBehavior behavior or
Polymer.NeonAnimationRunnerBehavior for element animation. Let me show
you one example of neon animation and how it works via the following code:

Polymer({
 is: 'popup-box',
 behaviors: [
 Polymer.NeonAnimationRunnerBehavior
],
 properties: {
 checker: {
 type: Boolean
 },
 animationConfig: {
 value: function() {
 return {
 'in': {
 name: 'scale-up-animation',
 node: this
 },
 'out': {
 name: 'scale-down-animation',
 node: this
 }
 }
 }
 }
 },
 listeners: {
 'neon-animation-finish': '_onNeonAnimationFinish'
 },
 show: function() {

https://elements.polymer-project.org/browse?package=neon-elements
https://elements.polymer-project.org/browse?package=neon-elements

Polymer Elements

[98]

 this.checker = true;
 this.style.display = 'inline-block';
 this.playAnimation('in');
 },
 hide: function() {
 this.checker = false;
 this.playAnimation('out');
 },
 _onNeonAnimationFinish: function() {
 if (!this.checker) {
 this.style.display = 'none';
 }
 }
});

In this example, we have a neon animation of a box that scales up and then down. We
have the animationConfig property for our animations, which has two transitions:
in and out. One of these properties is scaling the box, the other one is hiding. To
play the animation, we have the playAnimation() method, which calls the specific
animation you are calling. There are a few animations with neon-animation and you
can take a look at them at https://elements.polymer-project.org/elements/
neon-animation.

Platinum elements
This is a set of Polymer elements to turn your web app into a mobile app. You can use
Bluetooth in Polymer, push messages, and handle notifications (https://elements.
polymer-project.org/browse?package=platinum-elements).

platinum-bluetooth
This element allows you to search for nearby Bluetooth devices using the Web
Bluetooth API. But first, you need to enable this feature in Chrome. Just go to
chrome://flags/#enable-web-bluetooth and enable the flag item.

Here's an example:

<platinum-bluetooth-device
 services-filter='["battery_service"]'>
</platinum-bluetooth-device>

…

document.querySelector('platinum-bluetooth-device').request()
.then(function(device) { console.log(device.name); })
.catch(function(error) { console.error(error); });

https://elements.polymer-project.org/elements/neon-animation
https://elements.polymer-project.org/elements/neon-animation
https://elements.polymer-project.org/browse?package=platinum-elements
https://elements.polymer-project.org/browse?package=platinum-elements
chrome://flags/#enable-web-bluetooth

Chapter 4

[99]

platinum-push-messaging
The <platinum-push-messaging> element sets up push messaging.

Here's an example:

<platinum-push-messaging
 title="Application downloaded"
 message="The application was successfully downloaded"
 icon-url="pacman.apk"
 click-url="download.html">
</platinum-push-messaging>

Molecules
Molecules are elements that wrap your app with other JavaScript libraries.
They are useful when you want to connect a bunch of plugins to your Polymer app
(https://elements.polymer-project.org/browse?package=molecules).

marked-element
The <marked-element> element gets the markdown value and renders it to a child
element with the markdown-html class. If you haven't created the markdown-html
element, markdown will still be rendered, but inside Shadow DOM.

Here's an example:

<marked-element markdown="YAYAYA! `Markdown` is here!">
 <div class="markdown-html"></div>
</marked-element>

You can also use markdown in another way. Just create a <script> tag inside
<marked-element> and give it type="text/markdown". It will render the text inside
the markdown-html div tag, as follows:

<marked-element>
 <div class="markdown-html"></div>
 <script type="text/markdown">
 Please welcome the markdown!
 </script>
</marked-element>

https://elements.polymer-project.org/browse?package=molecules

Polymer Elements

[100]

That's it! These are the Polymer elements. We just got all the important Polymer
elements we should use in the future. With these collections, you can create a lot of
complex websites in a hurry. The paper elements create the Material face of your app,
and the iron elements are the soul of your project.

You can follow the updates of Polymer elements on the official website of Polymer,
so stay with me in the next chapter, in which we will create our first Polymer
application.

Summary
In this chapter, we considered a lot of cool, reusable elements created by Google's
Polymer team. This means that we have all the stuff to turn on development mode
in this book.

In the next chapter, we will create a simple app using these components.

[101]

First Application
with Polymer

Hey again!

In the previous chapters, we learned about Material Design, Polymer, and web
components. Now it is time to create our first app using these concepts and
technologies.

We will create our first application using Material Design and Polymer knowledge,
and create our own custom reusable elements. Moreover, we will use the built-in
elements of Polymer and follow the concepts of Material Design to make a fast,
beautiful, and multidevice app.

A lot of code, logic, and Polymer will be used here. So, let's go ahead, the most
interesting part begins now.

Here are the topics that we will cover in this chapter:

• Setting up Gulp

• Developing the login page of the app

• Connecting the backend part with the app

• Home page

• Creating our custom elements for songs and player

• Showing all the artists

First Application with Polymer

[102]

Meet P O L Y
In this chapter, we will develop an app named P O L Y—a music platform—where you
can sign up, listen to some cool music, add it to your personal playlist, and see what
other users are listening to.

How the idea came

While writing, a nice little idea struck me. How about we create an experimental music
app for desktop and a mobile web with Polymer? I think it would be a great experience
for our readers to work on a real project, and develop the app from the core.

What is the project structure?

The skills required for this project are as follows:

• Polymer

• SASS

• JavaScript

From JavaScript runners, we will use Gulp, because it's more convenient to configure
and because I just love it.

Chapter 5

[103]

Here's the project structure that I have thought of:

• assets

• dist (this folder is for minified .css and .js)

• img

• js

• scss

• elements (our own elements for the app)

• songs (the app songs)

• bower_components (for Polymer components)

• index.html (the login page)

• home.html (the app)

• elements.html (for the import of elements)

• .htaccess (for some Apache configurations)

What about the backend?

The backend is already written. I've used PHP for it, and it communicates with JSON.
There's nothing else you need to know about the backend. I will share the code in
GitHub with the name P O L Y when we finish the project.

Why do we need SASS?

As for any project in the world, we need some custom styles for the app. There are
some issues with the inline custom stylesheet imports in Polymer, so I thought that it
would be better to use SASS, and collect all styles in one compact file.

As this is an experimental project, we will use songs in the .mp3 format.

Setups
First of all, we need to set up the Gulp, so follow the steps listed next:

1. Install npm:

$ npm init

2. Install Bower:

$ npm install bower –g

First Application with Polymer

[104]

3. Install Gulp:

$ npm install gulp

This last command will install Gulp locally to the project.

Now, we need to install the Gulp plugins to achieve the tasks locally.

4. Install all necessary Gulp plugins:

$ npm install gulp-ruby-sass gulp-cssnano gulp-jshint gulp-concat
gulp-uglify gulp-notify gulp-cache gulp-rename del --save-dev

5. Create gulpfile.js, and load the plugins:

var gulp = require('gulp'),
 sass = require('gulp-ruby-sass'),
 cssnano = require('gulp-cssnano'),
 jshint = require('gulp-jshint'),
 uglify = require('gulp-uglify'),
 concat = require('gulp-concat'),
 notify = require('gulp-notify'),
 rename = require('gulp-rename'),
 cache = require('gulp-cache'),
 del = require('del');

6. Create Gulp tasks for SASS and JS:

gulp.task('styles', function() {
 return sass('assets/scss/main.scss', { style: 'expanded' })
 .pipe(gulp.dest('assets/dist/css'))
 .pipe(rename({suffix: '.min'}))
 .pipe(cssnano())
 .pipe(gulp.dest('assets/dist/css'))
 .pipe(notify({ message:'SCSS files compiled!' }));
});

gulp.task('scripts', function() {
 return gulp.src('assets/js/**/*.js')
 .pipe(jshint())
 .pipe(jshint.reporter('default'))
 .pipe(concat('main.js')) // merging all js files into one
main.js file
 .pipe(gulp.dest('assets/dist/js'))
 .pipe(rename({ suffix: '.min' })) //creating minified version
 .pipe(uglify())
 .pipe(gulp.dest('assets/dist/js'))
 .pipe(notify({ message: 'JS files minified!' }));
});

Chapter 5

[105]

7. Now Gulp will compile the .scss files into .css, will concat, uglify, and
minify the .js files, and will move all of them into the assets/dist/ folder.
Then we just need to add the watch and clear tasks as follows:

gulp.task('clean', function() {
 return del(['assets/dist/css', 'assets/dist/js']);
});

gulp.task('watch', function() {
 gulp.watch('assets/scss/**/*.scss', ['styles']);
 gulp.watch('assets/js/**/*.js', ['scripts']);
});

gulp.task('default', ['clean'], function() {
 gulp.start('styles', 'scripts');
});

Starting with the app development
We will start first with the development of the login page (index.html), as it is the
first page that the user will see.

The login page
The login page has multiple elements that we should implement in index.html:

• Logo at the top

• Tagline in the middle of the page that says "Eight Days a Week"

• Login and Sign up buttons

As seen in the design shown earlier, there are some grid alignments and structure, so
I think we should use <iron-flex-layout> to build a grid, then add components.

Just run the following command in the command line:

$ bower install –-save PolymerElements/iron-flex-layout

First Application with Polymer

[106]

Once we have installed the element, let's start with the main HTML elements that we
should create at the beginning of every project:

<html>
<head>
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>P O L Y</title>
 <link rel="stylesheet" is="custom-style" href="assets/dist/css/main.
min.css">

 <!-- Importing the elements file -->
 <link rel="import" href="elements.html">
</head>
<body unresolved>
 …
</body>
</html>

I have added our minified .css, and imported elements.html, which is a file for all
other imported elements. Yeah, I love clear code!

The unresolved attribute in the <body> tag ensures that no Polymer custom elements
are displayed before Polymer is ready.

Let's import <iron-flex-layout>.

The elements.html file
The following line of code imports <iron-flex-layout>:

…
<link rel="import" href="bower_components/iron-flex-layout/classes/
iron-flex-layout.html">
…

Now, since we have imported the flex classes, let's create our first div: the main div
of the login page, which will be the container of all elements—one container, three
vertical flex children—as follows:

<div id="container" class="layout vertical">
 <div class="flex">
 …
 </div>
 <div class="flex">
 …
 </div>

Chapter 5

[107]

 <div class="flex">
 …
 </div>
</div>

The layout should be like this following image:

The main grid system is ready, but we need two more Polymer elements here:
<paper-button> for the buttons in the middle, and <iron-image> for the logo.
Those are created as follows:

<div class="flex">
 <iron-image src="assets/img/logo.svg"></iron-image>
</div>
<div class="flex-10 layout vertical center center-justified">
 <p class="big_text">Eight days a week</p>
 <div></div>
</div>
<div class="flex vertical end-justified">
 <p>Experimental project</p>
</div>

First Application with Polymer

[108]

The classes of <iron-flex-layout> are awesome; you can create a grid in seconds,
as in this example. The second child is much bigger than the others, and that's why
I've given him the flex-10 class—it is ten times bigger than a normal flex.

Seems like everything is done, but no! We have buttons here. For the buttons
functionality (AJAX requesting, opening a dialog, and so on), it's better if we create
our own custom elements: <poly-login> and <poly-signup>.

<poly-login>
The functionality of <poly-login> is to open a dialog, where we would have two
inputs, for the e-mail and the password fields.

I have created a poly-login folder in the assets/elements/ directory, and added
poly-login.html inside it. Now, let's write its content:

1. We should have a button to open the dialog, so let's install <paper-button>
and <paper-dialog>, using the following commands:

$ bower install –-save PolymerElements/paper-button

$ bower install –-save PolymerElements/paper-dialog

2. Now let's open poly-login.html, and create the component:

<dom-module id="poly-login">
 <template>
 <paper-button raised>Login</paper-button>

 <paper-dialog id="dialog" role="dialog" entry-
animation="scale-up-animation" exit-animation="fade-out-animation"
with-backdrop>
 <h2>Login</h2>
 <paper-dialog-scrollable>
 </paper-dialog-scrollable>
 <div class="buttons">
 <paper-button>Login</paper-button>
 </div>
 </paper-dialog>

 </template>
 <script>
 Polymer({
 is: 'poly-login',
 });
 </script>
</dom-module>

Chapter 5

[109]

In the preceding code, I have created the <dom-module> for our <poly-
login> element, and added the button and dialog inside it.

Notice that I have used <neon-animation>, so you should
install that too, and then import the animations you want.

3. Now let's add an event listener for paper-button, to open the dialog when
the user clicks on it:

..
<paper-button on-click="openDialog" raised>Login</paper-button>
..

And in the JavaScript, it is given as follows:

Polymer({
 is: 'poly-login',
 openDialog: function(){
 this.$.dialog.open();
 }
});

4. The dialog will open when the user clicks on the button. Now let's add the
inputs, and create the part for the AJAX calls.

To install <paper-input>, just run:

$ bower install –-save PolymerElements/paper-input

Add in the dialog's <paper-dialog-scrollable> as follows:

<paper-input
 name="email"
 value="{{user.email}}"
 error-message="Please write email address"
 type="email" required
 label="Email"
 id="inputWithButton">
 <iron-icon icon="account-box" prefix></iron-icon>
</paper-input>

<paper-input
 name="password"
 value="{{user.password}}"
 error-message="Please write your password"
 required
 type="password"

First Application with Polymer

[110]

 label="Password"
 id="inputWithButton">
 <iron-icon icon="lock" prefix></iron-icon>
</paper-input>

Add validation attributes for the inputs and the values of the user property
as follows:

properties: {
 user: {
 type: Object,
 value: {}
 }
},

5. We need the user property in the AJAX request parameters. Now is the time
to add a login button functionality inside the buttons div of the dialog:

 <div class="buttons">
 <paper-button on-click="login" >Login</paper-button>
 </div>

6. To make AJAX requests, we need to install the <iron-ajax> element and
import that element here, somewhere in the template of our element:

 <template>
 <iron-ajax
 id="ajax"
 method="POST"
 url=""
 handle-as="json"
 on-response="handleResponse"></iron-ajax>
 ...

7. If we write some URL in the url attribute and give it the auto attribute,
it will call a request when the element is loaded, but we don't need this.
We need to call the request when the user clicks on the login button. The
on-response attribute handles the response event, so we need to also
create a handleResponse function for it, but now let's get back to our
login event listener:

login: function(){
 var inputs = document.querySelectorAll('#dialog input'),
 inputs_length = inputs.length,
 is_valid = false;

 for(var i = 0; i < inputs_length; i++) {

Chapter 5

[111]

 is_valid = inputs[i].validate(); // validating
 inputs[i].focus();
 }

 if(is_valid) {
 this.$.ajax.url = "api/api.php?action=login";
 this.$.ajax.params = this.user; // our user parameter

 this.$.ajax.generateRequest(); // calling the request
 }
},

This function will go through every input element in the dialog box, check its
validity, and then perform a request to the server.

The server should answer with the user details if they exist:

{
 date: "2016-01-25 00:00:00"
 email: "akhxtern@gmail.com"
 id: "1"
 name: "Arshak Khachatrian"
 token: "6f0ecb9769b5a9380719b389dfd294f5"
 username: "mr_echo"
}

8. We need the token and user ID for all requests in the app so that we can save
this user data into sessionStorage. So the handleResponse function will
look like the following:

…
handleResponse: function(res) {
 var res = res.detail.response; // getting the response data

 if(res) {
 sessionStorage.setItem('id', res.id);
 sessionStorage.setItem('email', res.email);
 sessionStorage.setItem('token', res.token);

 window.location = 'makesomenoice'; // redirecting to the app
itself
 }
});

First Application with Polymer

[112]

And that's it! The login functionality of P O L Y is ready! Now it's time for <poly-
signup>. The functionality of the signup part is also the same, we just need to add
some new inputs and names, and that's it—it is ready to use.

Don't forget to import every element in elements.html.

<poly-signup>
The structure of the <poly-signup> element is the same as <poly-login>. The only
difference is the requesting link to the backend, and the content of the dialog (as we
need four input elements):

<dom-module id="poly-signup">
 <template>
 <iron-ajax id="ajax" method="POST" url="" handle-as="json" on-
response="handleResponse"></iron-ajax>

 <paper-button on-click="openDialog" raised>Sign Up</paper-button>

 <paper-dialog id="dialog" role="dialog" entry-animation="scale-up-
animation" exit-animation="fade-out-animation" with-backdrop>

 <h2>Sign Up</h2>
 <paper-dialog-scrollable>

 <paper-input name="name" value="{{user.name}}" error-
message="we need your name" required label="Name">
 <iron-icon icon="face" prefix></iron-icon>
 </paper-input>

 <paper-input name="username" value="{{user.username}}"
error-message="username should be from 6 to 20 characters" required
minlength="6" maxlength="20" label="Username">
 <iron-icon icon="icons:accessibility" prefix></iron-icon>
 </paper-input>

 <paper-input name="email" value="{{user.email}}" error-
message="invalid email address" type="email" required label="Email">
 <iron-icon icon="icons:drafts" prefix></iron-icon>

Chapter 5

[113]

 </paper-input>

 <paper-input name="password" value="{{user.password}}"
error-message="password should be from 6 to 20 characters" required
minlength="6" maxlength="20" type="password" label="Password">
 <iron-icon icon="icons:https" prefix></iron-icon>
 </paper-input>

 </paper-dialog-scrollable>

 <div class="buttons">
 <paper-button on-click="signup">Sign Up</paper-button>
 </div>
 </paper-dialog>

 </template>
 <script>
 Polymer({
 is: 'poly-signup',
 properties: {
 user: {
 type: Object,
 value: {}
 }
 },
 openDialog: function(){
 this.$.signup.open();
 },
 signup: function(){

 var inputs = this.querySelectorAll('input'),
 inputs_length = inputs.length,
 is_valid = false;

 for(var i = 0; i < inputs_length; i++) {
 is_valid = inputs[i].validate();
 inputs[i].focus();
 }

 if(is_valid) {
 this.$.ajax.url = "api/api.php?action=signup";

First Application with Polymer

[114]

 this.$.ajax.params = this.user;

 this.$.ajax.generateRequest();
 }
 },
 handleResponse: function(res) {
 var res = res.detail.response;
 if(res) {
 sessionStorage.setItem('id', res.id);
 sessionStorage.setItem('email', res.email);
 sessionStorage.setItem('token', res.token);

 location.href = 'makesomenoice';
 }
 }
 });
 </script>
</dom-module>

Done! Nothing special.

Don't forget to import all elements in the elements.html file, because if you do not
import some of these elements, the app will not work.

Now my elements.html looks like this:

<!-- The collection of elements -->
<link rel="import" href="bower_components/iron-flex-layout/classes/
iron-flex-layout.html">
<link rel="import" href="bower_components/iron-image/iron-image.html">
<link rel="import" href="bower_components/iron-icon/iron-icon.html">
<link rel="import" href="bower_components/paper-button/paper-button.
html">
<link rel="import" href="bower_components/paper-dialog/paper-dialog.
html">
<link rel="import" href="bower_components/paper-input/paper-input.
html">
<link rel="import" href="bower_components/iron-ajax/iron-ajax.html">

<!-- Neon Animations -->
<link rel="import" href="bower_components/neon-animation/animations/
scale-up-animation.html">
<link rel="import" href="bower_components/neon-animation/animations/
scale-down-animation.html">

Chapter 5

[115]

<link rel="import" href="bower_components/neon-animation/animations/
fade-in-animation.html">
<link rel="import" href="bower_components/neon-animation/animations/
fade-out-animation.html">

<!-- Material Icons -->
<link rel="import" href="bower_components/iron-icons/av-icons.html">
<link rel="import" href="bower_components/iron-icons/social-icons.
html">

<!-- P O L Y custom elements -->
<link rel="import" href="assets/elements/poly-login/poly-login.html">
<link rel="import" href="assets/elements/poly-signup/poly-signup.
html">

Now let's add our custom elements to the index.html file.

Just add these elements inside a div, under the tagline paragraph:

<div>
 <poly-login></poly-login>
 <poly-signup></poly-signup>
</div>

That's it! We have created our first custom elements. Cheers!

Now, let's go to /makesomenoice. By the way, you should write Apache rules in
.htaccess to let makesomenoice open home.html, like this:

RewriteEngine On

RewriteRule ^makesomenoice/?$ home.html [L]

First Application with Polymer

[116]

P O L Y – the app page (home.html)
We've finished the login page, the page where the users will enter first. Now the
second part of P O L Y is the music player, where you can see some artists and their
songs and add them to your playlist. You can also see other users in P O L Y, visit
their profiles, and listen to their music, as shown in the following image:

The player should have the following components:

• <poly-profile>: This is your profile page where you can see your profile or
log out from the app

• <poly-gravatar>: This is the gravatar of the user

• <poly-app>: This is the part under the header panel, that is, the music part

• <poly-user-music>: This is the element for displaying the My Music section,
that is, the user's music

• <poly-daily-music>: This is the element for showing all the artists and
their music

• <poly-songs>: This is the flexible element for showing any song list you
want to show

• <poly-player>: This is the audio player for P O L Y

Chapter 5

[117]

• <poly-users>: This is the page for showing all users on P O L Y

• <poly-about>: This is the page that tells people about the app

We need to develop each of these elements to finish the app. So, let's go!

The structure of home.html is like this:

The main app view should have a default Material Design drawer panel, with the
header panel in the top. So let's start from the top, with the header panel, that is,
<paper-header-panel>.

In the language of Polymer, this will look like the following:

<div class="poly_app">
 <paper-header-panel class="pink">
 <div class="paper-header">
 <div class="layout horizontal content">
 <div class="flex">
 <iron-image class="app_logo" sizing="cover" preload
src="assets/img/poly_white.svg"></iron-image>
 </div>
 <div class="flex layout horizontal center end-justified">
 <poly-profile></poly-profile>
 </div>
 </div>
 </div>
 <div class="content">
 <div class="tabs">

First Application with Polymer

[118]

 <poly-app></poly-app>
 </div>
 </div>
 </paper-header-panel>
</div>

The header of the app is a simple flexbox, but we should give <paper-header-panel>
a height:

 paper-header-panel {
 width: 100vw;
 height: 100vh;
 }

This will make the header panel fill the viewport of the user, and the app will be
full screen.

Then we have <poly-profile>—let's start with its development.

<poly-profile>
The <poly-profile> element shows the user's profile data. We should have the
gravatar and all details about the user inside this. Here's the code:

<dom-module is="poly-profile">
 <template>

 <iron-ajax id="ajax" url="" handle-as="json" on-
response="handleResponse"></iron-ajax>

 <poly-gravatar logout user$="{{user}}"></poly-gravatar>

 <paper-ripple></paper-ripple>

 </template>
 <script>
 Polymer({

 is: 'poly-profile',
 properties: {
 user: {
 type: Object,
 value: {}
 }
 },

Chapter 5

[119]

 ready: function(){
 /* Requesting the user data */

 this.$.ajax.url = " api/api.php?action=get_user_data&id=" +
sessionStorage.getItem('id');

 this.$.ajax.params = {
 userId: sessionStorage.getItem('id'),
 token: sessionStorage.getItem('token')
 };
 this.$.ajax.generateRequest();
 },
 handleResponse: function(request) {

 if(!request.detail.response) window.location = "/";
 this.user = request.detail.response;
 }
 });
 </script>
</dom-module>

As you can see, the preceding code is a simple <dom-module>, which requests this
user data, and then binds it into <poly-gravatar> (which we will create later).
When a user clicks on it, it opens the profile page of the user.

<poly-gravatar>
The <poly-gravatar> element is responsible for showing the user's gravatar.

To show the gravatar, we should make an image and give it a link, but we have one
problem. First, we need the user's e-mail ID. Second, we need to encode the user
e-mail with the MD5 algorithm, and then bind it to the image link.

To use MD5 encoding functions in JavaScript, we need to connect md5.min.js, but
there's no need for any additional script tags; we can just download the library into
the assets/js/ folder, and it will automatically be in JavaScript dist files.

Apart from the gravatar, we need a page to show the user data. That's why we
should do some magic with CSS and HTML. We can just create a div in the <poly-
gravatar> element, and toggle some class when the user clicks on the avatar. It will
transform the div to the top, and everyone will be happy.

First Application with Polymer

[120]

In the future <poly-users> element, we may also use <poly-gravatar> to
show users, so that's why it is important to think about the future and include
the following code:

<dom-module is="poly-gravatar">
 <template>

 <iron-image preload class="mini" fade on-click="togglePage"
src="https://s.gravatar.com/avatar/{{gid(user.email)}}?s=120"
sizing="cover" ></iron-image>

 <div class$="{{setClass(show)}}" id="profile_page">
 <paper-icon-button on-click="togglePage" icon="icons:arrow-
back">
 <paper-ripple></paper-ripple>
 </paper-icon-button>

 <div class="layout vertical">
 <div class="flex layout horizontal wrap">

 <paper-fab hidden$="{{check(logout)}}" id="logout_btn" on-
click="appLogout" icon="icons:exit-to-app"></paper-fab>

 <div class="flex layout horizontal self-center center-justified">
 <iron-image src="https://s.gravatar.com/avatar/
{{gid(user.email)}}?s=300" sizing="cover" ></iron-image>
 </div>

 <div class="flex layout vertical self-center center-
justified">
 <p class="user_name">{{user.name}} ({{user.username}})</p>
 <p class="user_email">{{user.email}}</p>
 </div>

 </div>
 <div class="flex-2 white">

 <poly-songs id="songs" class="with-artist" songs$="{{user.
songs}}"></poly-songs>

 </div>
 </div>
 </div>

 </template>

Chapter 5

[121]

 <script>

 Polymer({
 is: 'poly-gravatar',
 properties: {
 user: {
 type: Object,
 value: {}
 },
 show: {
 type: Boolean,
 value: false
 },
 songs: {
 type: Object,
 value: {}
 },
 logout: {
 type: Boolean,
 value: false
 }
 },

 check: function(status) {
 return !status;
 },
 togglePage: function(){
 this.show = !this.show;
 },
 setClass: function (f) {
 return f ? "open" : "";
 },
 appLogout: function(){
 sessionStorage.removeItem('id');
 sessionStorage.removeItem('email');
 sessionStorage.removeItem('token');

 location.href = "/";
 },
 gid: function(email){
 return window.md5(email);
 }

First Application with Polymer

[122]

 });

 </script>
</dom-module>

Let's see how the preceding code works.

So in <poly-gravatar> we have an element called <iron-image>, but its src
attribute binds the MD5 encryption of the user's e-mail address, and that's why we
have a gid function in the prototype. It returns the encrypted e-mail address.

Then we have a div named #profile_page. Polymer binds an "open" class if the show
parameter is true. When the div has an "open" class, the CSS translates the element
on the Y axis with a 300 ms transition.

And finally, we have a <paper-fab> button for logging out. It is visible when the
logout parameter is true.

I have created the <poly-songs> element here for the future.
In the All Users page, we will have the users' profile pages as
well as the listing of the current user's music. We will be back
here after the <poly-users> element.

<poly-app>
The contents of our application, all the menus, pages, and songs, are in the
<poly-app> element.

As you can see in the design shown at the start of this chapter, <poly-app> is a
drawer panel, with tabs on the left and pages on the right:

<dom-module id="poly-app">
 <template>
 <paper-drawer-panel>
 <div drawer>
 <paper-menu selected="{{selected}}">
 <paper-icon-item>
 <paper-ripple></paper-ripple>
 <iron-icon icon="av:play-circle-filled" item-icon></iron-icon>
My Music
 </paper-icon-item>
 <paper-icon-item>

Chapter 5

[123]

 <paper-ripple></paper-ripple>
 <iron-icon icon="av:library-music" item-icon></iron-icon>
Poly Music
 </paper-icon-item>
 <paper-icon-item>
 <paper-ripple></paper-ripple>
 <iron-icon icon="social:group" item-icon></iron-icon>
Users
 </paper-icon-item>
 <paper-icon-item>
 <paper-ripple></paper-ripple>
 <iron-icon icon="icons:polymer" item-icon></iron-icon>
About the app
 </paper-icon-item>
 </paper-menu>
 </div>
 <div main>
 <iron-pages selected="{{selected}}">
 <section>
 <poly-user-music></poly-user-music>
 </section>
 <section>
 <poly-daily-music></poly-daily-music>
 </section>
 <section>
 <poly-users></poly-users>
 </section>
 <section>
 <poly-about></poly-about>
 </section>
 </iron-pages>
 </div>
 </paper-drawer-panel>

 <poly-player id="poly-player"></poly-player>
 </template>

 <script>
 Polymer({
 is: 'poly-app',
 properties: {
 selected: {

First Application with Polymer

[124]

 type: Number,
 value: 1
 }
 }
 });
 </script>
</dom-module>

As you can make out from the preceding code, <poly-app> is a simple drawer panel,
with four menu items: My Music, Poly Music, Users, and About the app; each
one of them is an element.

The selected property is created to change the drawer panel pages; it binds into
<iron-pages> and into <paper-menu>.

I think it will be better if we develop <poly-daily-music> first, because we should
have some music to add into the playlist.

<poly-daily-music>
The <poly-daily-music> part of the app is responsible for displaying all the artists
and their music. We should send a request to the backend, and get all the artists with
their songs in the following format:

…
{
 cpic: "major-lazer-cover.jpg",
 genre: ["Electronic", "Reggae"],
 id: "2",
 info: "Major Lazer is an electronic music …",
 name: "Major Lazer",
 ppic: "major-lazer.jpg",
 songs: [
 {
 artist: "Major Lazer"
 artistId: "2"
 dir: "majorlazer-leanon.mp3"
 duration: 179
 id: "24"
 name: "Lean On"
 pic: "major-lazer.jpg"
 },
…
]
},
…

Chapter 5

[125]

The structure of the element is very similar to <poly-gravatar>. There is an image,
you click on it, and it animates a div from the bottom with the artist's details and
songs (the songs element is <poly-songs>). This is depicted in the following image:

Let me show you the code of the element, and then I will explain its structure and
functionality:

<dom-module id="poly-daily-music">
 <template>

 <iron-ajax id="ajax" url="" handle-as="json" on-
response="handleResponse"></iron-ajax>

 <paper-spinner active$="{{spinnerShow}}"></paper-spinner>

 <div class="layout horizontal wrap">
 <template is="dom-repeat" items="{{artists}}">
 <div class="flex">
 <paper-card on-click="openArtistPage" class="daily-cards">
 <paper-ripple center initialOpacity="0.2"></paper-ripple>
 <div class="card-content" id="{{index}}">
 <iron-image preload fade sizing="cover" src="{{item.
ppic}}"></iron-image>
 </div>

First Application with Polymer

[126]

 <div class="card-actions">
 {{item.name}}
 </div>
 </paper-card>
 </div>
 </template>
 </div>

 <div class$="{{setClass(show)}}" id="artist-page">

 <paper-icon-button class="artists-back" on-
click="hideArtistPage" icon="icons:arrow-back">
 <paper-ripple></paper-ripple>
 </paper-icon-button>

 <iron-image preload fade src="{{artist_page.cpic}}"
sizing="cover" class="cover-pic"></iron-image>
 <iron-image preload fade src="{{artist_page.ppic}}"
sizing="cover" class="profile-pic"></iron-image>

 <p class="artist-name">{{artist_page.name}}</p>
 <p class="artist-genre">
 <template is="dom-repeat" items="{{artist_page.genre}}">
 {{item}}
 </template>
 </p>
 <p class="artist-info">{{artist_page.info}}</p>

 <div class="songs-container">
 <poly-songs id="songs" songs$="{{artist_page.songs}}"></poly-
songs>
 </div>

 </div>
 </template>
 <script>
 Polymer({
 is: 'poly-daily-music',
 properties: {
 show: {
 type: Boolean,
 value: false
 },

Chapter 5

[127]

 showArtists: {
 type: Boolean,
 value: false
 },
 spinnerShow: {
 type: Boolean,
 value: true
 },
 artists: {
 type: Array,
 value: []
 }
 },
 ready: function(){
 this.$.ajax.url = "api/api.php?action=get_artists";
 this.$.ajax.params = {
 userId: sessionStorage.getItem('id'),
 token: sessionStorage.getItem('token')
 };
 this.$.ajax.generateRequest();
 },
 handleResponse: function(res) {
 this.artists = res.detail.response;

 this.spinnerShow = false;
 },
 openArtistPage: function(e) {
 var index = e.target.getAttribute('id');
 if(!index) return;

 this.artist_page = this.artists[index];
 this.show = true;
 },
 hideArtistPage: function(e) {
 this.show = false;
 },
 setClass: function (f) {
 return f ? "open" : "";
 }
 });
 </script>
</dom-module>

First Application with Polymer

[128]

In the preceding code, <iron-ajax> requests the backend for the list of all artists
in the format that I showed you earlier. In response to the AJAX call, we set the
artists property equal to the response object— it will bind the property, and will
render all the artists in the list.

We also have a spinner here, which is deactivated when the spinnerShow property is
false (it is false when AJAX has a response value). Every artist is in the <paper-card>
element, and every item has an index, which we need for the click event handler.

When the user clicks on an artist, we animate the div at the bottom, and bind the
artist's details (profile pic, cover pic, name, genres, and so on).

Now let's move on to <poly-songs>. The songs property binds a list of the current
artist's songs, and the <poly-songs> element shows them all. Let's take a look at
<poly-songs>, and figure out how it shows all the songs.

<poly-songs>
 <poly-songs> is a flexible element with a list of songs. Bind any array you want, and
it will show the list you want. I love this element.

The songs property of this element has an observer, and when something changes in
the object, it notifies us by calling the function we want. So the list gets updated when
the audio player is playing or paused; it changes the statuses in real time:

Here is the code:

 <template is="dom-repeat" items="{{songs}}">
 <div class="poly-music layout horizontal" id="{{item.id}}">
 <div class="flex-2">
 <paper-icon-button on-click="playTheMusic" id="{{index}}"
icon="av:play-arrow">
 <paper-ripple></paper-ripple>
 </paper-icon-button>
 </div>
 <div class="flex-4 layout center self-center">
 {{item.name}}
 </div>

Chapter 5

[129]

 <div class="flex-4 layout center self-center artist">
 {{item.artist}}
 </div>
 <div class="flex-2 layout end-justified self-center">
 {{readableDuration(item.duration)}}

 <paper-icon-button on-click="addToMusic" id="{{item.id}}"
icon="add">
 </paper-icon-button>
 <paper-tooltip position="top">Add to My Music</paper-
tooltip>

 </div>
 </div>
 </template>

The <template> shows all the songs collection that we should have in the songs
array. When you bind a songs array into the attribute, Polymer gets the elements
from it and binds into the template, so the template repeats the code for the length
of the songs. Then we should add an <iron-ajax> to do some requests inside the
element, and add some JavaScript here:

 <iron-ajax id="ajax" url="" handle-as="json" on-
response="hresponse" debounce-duration="300">

...

Polymer({
 is: 'poly-songs',
 properties: {
 songs: {
 type: Array,
 value: [],
 observer: 'songsUpdate'
 }
 },

We have to write a playTheMusic function here, which will play the music, and
change the properties of the player. You can come back here after the development of
the music player to check the properties that I have changed:

 attached: function(){
 this.songsUpdate();
 },
 playTheMusic: function(e) {

First Application with Polymer

[130]

 var index = parseInt(e.target.getAttribute('id'));

 window.poly_player.song = this.songs[index];
 window.poly_player.show = true;
 window.poly_player.playStatus = false;
 window.poly_player.playPause();
 window.poly_player.playlist = this.songs;
 window.poly_player.index = index;
 },
 highlightCurrent: function(){
 var alls = document.querySelectorAll('.poly-music');
 var index = window.app.player.song.id;

 for(i = 0; i < alls.length; i++) {
 alls[i].querySelectorAll('paper-icon-button')[1].
setAttribute('icon', 'add');

 if(window.app.user_music)
 for(j = 0; j < window.app.user_music.length; j++) {
 if(alls[i].getAttribute('id') == window.app.user_
music[j].id) {
 alls[i].querySelectorAll('paper-icon-button')[1].
setAttribute('icon', 'clear');
 }
 }

 if(alls[i].getAttribute('id') == index) {
 alls[i].setAttribute('current', true);

 if(window.app.player.playStatus)
 alls[i].querySelector('paper-icon-button').
setAttribute('icon', 'av:pause')
 else
 alls[i].querySelector('paper-icon-button').
setAttribute('icon', 'av:play-arrow')

 } else {
 alls[i].removeAttribute('current');
 alls[i].querySelector('paper-icon-button').
setAttribute('icon', 'av:play-arrow')
 }
 }
 },

Chapter 5

[131]

The function addToMusic is for adding music to your playlist. When you click on the
Plus button of any song, the code takes the #id of the song, and sends a request to the
backend, which adds the songId and the userId to the database:

 addToMusic: function(e) {
 var songId = parseInt(e.target.getAttribute('id'));

 if(e.target.getAttribute('icon') == "clear") {
 e.target.setAttribute('icon', 'clear');

 this.$.ajax.url = "api/api.php?action=remove_from_music";
 } else {

 e.target.setAttribute('icon', 'add');
 this.$.ajax.url = "api/api.php?action=add_to_music";
 }
 this.$.ajax.params = {
 "userId" : sessionStorage.getItem('id'),
 "songId" : songId,
 "token" : sessionStorage.getItem('token')
 };

 this.$.ajax.generateRequest();

 this.$.ajax.addEventListener('response', function(res){
 window.app.umusic.updateList();
 });
 },
 hresponse: function(){
 this.songsUpdate();
 },
 songsUpdate: function(){
 if(!window.poly_player) return;

 var f = this;
 setTimeout(f.highlightCurrent, 1);

 },

First Application with Polymer

[132]

The songsUpdate function is for updating the list when the user interacts with the
songs and the player. As you can see, I have added the setTimeout function in the
preceding code, because I first need to bind the songs inside the element, and then
update the status of each song:

 readableDuration: function(seconds) {
 sec = Math.floor(seconds);
 min = Math.floor(sec / 60);
 min = min >= 10 ? min : '0' + min;
 sec = Math.floor(sec % 60);
 sec = sec >= 10 ? sec : '0' + sec;
 return min + ':' + sec;
 }
 });
...

The readableDuration function is for converting seconds into the mm:ss format, so
if you see the preceding code snippet, each song has a property duration, which is
the duration of each song in seconds.

So let's collect all that we've got here.

The songs property is the list that we bind into the <poly-songs> element. There
are two buttons in the list: Play and Add. When the user clicks on the Play button, the
function playTheMusic gets the data for the current song and "sends it" to window.
poly_player, which is a <poly-player> (our custom audio player) element.

When the user clicks on the Add icon, it toggles to the "clear" icon and sends a
request to the server to remove or insert the song from the user's playlist.

The highlightCurrent function highlights the current song in the audio player, and
updates the status of the song in your playlist.

<poly-player>
The <poly-player> is the audio player of P O L Y, which becomes visible when the
show property is true, as seen in the following screenshot:

Chapter 5

[133]

The code will be as follows:

...
 Polymer({
 is: 'poly-player',
 properties: {
 song: {
 type: Object,
 value: {}
 },
 artist: {
 type: Object,
 value: {}
 },
 playlist: {
 type: Object,
 value: {}
 },
 currentTime: {
 type: String,
 value: "00:00"
 },
 show: {
 type: Boolean,
 value: false
 },
 playStatus: {
 type: Boolean,
 value: false,
 observer: 'playStatusChanged'
 },
 index: {
 type: Number,
 value: 0
 },
 progress: {
 type: Number,
 value: 0
 }
 }
...
playStatusChanged: function(newValue, oldValue) {

First Application with Polymer

[134]

 //if(!newValue) return;

 var alls = document.querySelectorAll('poly-songs');

 for(i = 0; i < alls.length; i++) {
 setTimeout(alls[i].highlightCurrent, 1);
 }
 }
...

The playStatus property is a Boolean, which is responsive to the player status. I
have added an observer on it, and in every update I call the <poly-songs> element's
hightlightCurrent function to update all lists in the app. The other functions and
structure of this element are simple HTML5 Audio API functions, so check out the
GitHub repository of the P O L Y app to learn more.

That's it! The music now plays! :P But there is a problem here—you can add music to
your playlist, but you can't see your playlist. Let's solve this!

<poly-user-music>
The <poly-user-music> page is the user's playlist. The user can add or remove any
song he or she wants.

It requests the user music, and then binds it into <poly-songs> to show the list of
the user's music:

<dom-module id="poly-user-music">
 <template>

 <paper-spinner active$="{{spinnerShow}}"></paper-spinner>

 <h2>My Music</h2>
 <iron-ajax id="ajax" url="" handle-as="json" on-
response="handleResponse"></iron-ajax>
 <poly-songs class="with-artist" songs$="{{songs}}"></poly-songs>

 </template>
 <script>
 Polymer({
 is: 'poly-user-music',
 properties: {
 spinnerShow: {
 type: Boolean,
 value: true

Chapter 5

[135]

 }
 },
 ready: function(){

 this.songs = [];
 window.app.umusic = this;

 this.updateList();
 },
 handleResponse: function(res){
 this.songs = res.detail.response;
 window.app.user_music = this.songs;
 this.spinnerShow = false;
 },
 updateList: function(){
 this.$.ajax.url = "/api.php?action=get_user_music";
 this.$.ajax.params = {
 userId: sessionStorage.getItem('id'),
 token: sessionStorage.getItem('token')
 };
 this.$.ajax.generateRequest();
 }
 });

 </script>
</dom-module>

Now you can see your music here! Add it or remove it, it's your business now.

The next step is to display all the active users of P O L Y. It will be interesting to know
what music you are listening to.

<poly-users>
The structure of the <poly-users> element is similar to <poly-daily-music>,
because it requests the list of users, and then renders it inside <paper-cards> with
<poly-gravatar>:

<dom-module id="poly-users">
 <template>

 <iron-ajax id="ajax" url="" handle-as="json" on-
response="handleResponse"></iron-ajax>
 <paper-spinner active$="{{spinnerShow}}"></paper-spinner>
 <div class="layout horizontal wrap">

First Application with Polymer

[136]

 <template is="dom-repeat" items="{{users}}">
 <div class="flex layout horizontal center-justified">
 <paper-card class="user-cards">
 <paper-ripple center initialOpacity="0.2"></paper-ripple>
 <div class="card-content" id="{{index}}">
 <poly-gravatar user$="{{item}}"></poly-gravatar>
 </div>
 <div class="card-actions">
 {{item.name}}
 </div>
 </paper-card>
 </div>
 </template>
 </div>
 </template>
 <script>
 Polymer({
 is: 'poly-users',
 properties: {
 spinnerShow: {
 type: Boolean,
 value: true
 }
 },
 ready: function(){
 this.users = [];

 this.$.ajax.url = "api/api.php?action=get_all_users";
 this.$.ajax.params = {
 userId: sessionStorage.getItem('id'),
 token: sessionStorage.getItem('token')
 };
 this.$.ajax.generateRequest();
 },
 handleResponse: function(res) {
 this.users = res.detail.response;

 this.spinnerShow = false;
 }
 });

 </script>
</dom-module>

Chapter 5

[137]

There is a list of gravatars. So when you click on the item, it opens the profile of the
current user.

DONE!

You can check the online version of the app at http://spacee.xyz/poly.

Summary
We've come a long way in this chapter—we created a simple music application
with Polymer. We also created a lot of custom elements, used the Material Design
concepts to make the app look beautiful, and used our creativity to make something
cool called P O L Y.

By the way, if you have created any reusable custom element, then you can
add your element on GitHub, or even better, on the Custom Elements website
(http://customelements.io). Feel free to create cool stuff for humanity!

Check if we got the same result or not? Tweet me your results.

You can also check the P O L Y repository on GitHub at
https://github.com/AKHXtern/poly.

Drop me a line, or something!

In the next chapter, we will take a deep look at how to make a simple app without
coding in Polymer Designer Tool and how to get started with Polymer Starter Kit.

http://spacee.xyz/poly
http://customelements.io
https://github.com/AKHXtern/poly

[139]

Polymer Designer Tool and
Polymer Starter Kit

In the previous chapters, you've learned a lot of concepts of Material Design,
about web components, and about Polymer elements, and have built an app
using all these skills.

The Polymer team is working hard to make people's lives easier and build complex
applications with Polymer. Polymer Designer Tool and Polymer Starter Kit are now
created by the team, which we will cover in this chapter, as follows:

• Polymer Designer Tool

 ° Right-hand side panel

 ° Top panel

 ° Using Polymer elements

 ° Toolbar properties and styles

 ° Changing the code

• Polymer Starter Kit

 ° Installation

 ° Usage

Polymer Designer Tool and Polymer Starter Kit

[140]

Polymer Designer Tool
Polymer Designer Tool is a kind of Polymer app builder, a UI designer for HTML and
custom elements.

A big plus of the Designer Tool is that designers or other non-developer people who
don't want/know how to code can make some cool Material Design apps with this
tool. If your designer is getting angry with you, just show them this tool and tell them
to make the app themselves. (I'm joking…we need developers).

To enter Polymer Designer Tool, go to polymer-designer.appspot.com.

As you can see on the webpage, there's a big blank area, a toolbar at the top, and one
on the right-hand side. We will talk about each area here:

• The blank area: This is the view where you build your Polymer app, and
you can drag elements and drop them here.

• The top panel: This panel is responsible for the application; here, you can
change the code, publish the app, and more.

• The right panel: This panel is the builder part. You can find a lot of
elements, properties, and other stuff connected with the design here.

In the right-hand side panel, you can see two divided parts. The top one is to style the
selected element and give it some properties you want (class name, ID, attributes,
and so on). The bottom one is responsible for the elements themselves. So, as you can
note, there are the Palette and Tree tabs.

The right-hand side panel
There are two tabs in the right-hand side panel of Polymer Designer Tool: Palette
and Tree. Each one of them has a specific functionality, so let's go ahead and take a
look at each tab's content.

Palette
The Palette tab contains all the elements you can use in Polymer. So, for example,
Components contains elements about Google Maps. You can add the map, then add
some direction on it, and finally add the Google Maps search bar. A simple app just in
seconds! That's pretty cool.

polymer-designer.appspot.com

Chapter 6

[141]

In the Core item, you can see all the core elements we've used before from the
Polymer core elements collection: menus, header and drawer panels, icons, and more.

The Demo tab is for the already-built-in demos from the Polymer team. You can add
them into your app and make them play by your rules.

The Paper tab contains all the elements from the paper elements of Polymer.
By adding the buttons, ripples, and other paper stuff, you can easily make your
imagination come true (of course, for big and complex apps, you need to code a bit).
However, as I mentioned, this tool is for creating simpler apps.

In the Topeka tab, you can get some elements that were used in the Topeka game
that was created with Polymer: SVG icons, illustrations, and some demos.

Tree
The Tree tab is the tree (or sitemap) of your app. You can take a look at which
components you have added in the app, and you can easily remove unwanted
components from the app.

Polymer Designer Tool and Polymer Starter Kit

[142]

It's a very useful thing when you have a bunch of components in the app.

Properties
The Properties section is responsible for the properties of the selected component.
For example, if you are adding Google Maps, you can give the center coordinate,
specify the zoom, and do some other stuff as well.

Each element has his own list of properties, so it would be good to consider them all.

Styles
Irrespective of whether you set the styling of components from the Styles tab or you
add manual CSS, it will add the local CSS inside your my-element element.

From the Styles tab, you can play with the colors of the element (in some of
the events as well, such as hover, focus, and so on) and give them some flexbox
properties, paddings, margins, and a lot of stuff related to CSS.

The Styles tab is one of the most useful parts of the tool. No styles, no life.

Chapter 6

[143]

The top panel
The top panel is also important for us as we can change the core code of the element,
save and publish the app, and preview, undo, and redo our changes (the last icon is to
hide the right-hand side panel), as in the following screenshot:

Code
As you can note in the upcoming screenshot, the code section contains the code
for your custom Polymer element. Do what you want with it. It gives you a lot of
opportunities to be clearer in some parts of the development process.

In my opinion, it is better and comfortable to add some AJAX calls from the code
than from the UI. I don't know why! It's probably because I don't want to see any UI;
however, really, isn't it cooler to write the AJAX call yourself?

Every time you change something in the viewer, the code updates itself, and you can
always come back to make code changes.

Polymer Designer Tool and Polymer Starter Kit

[144]

Save, share, and preview
The save, share, and preview buttons work only when you have the GitHub
application's OAuth token.

If you don't have the GitHub token, you should go to your GitHub Settings page and
generate a new token from the OAuth applications tab. There's no need to talk
about the Redo and Undo buttons because you probably are using them every day of
your life now (no matter whether you're a developer or designer).

Polymer Starter Kit
Don't know where to start the development of the application from? It's solved.
Polymer Starter Kit is here. It has all the points you need to create the app. It is the
starting point of your app.

It includes the following:

• The Core, Paper, Iron, and Neon elements

• The Material Design layout

• Unit testing

• End-to-end build tooling

• Routing with Page.js

Installation
To install the PSK, you should download the latest version from the GitHub
repository. The version I am working with is 1.3.0.

There are two packages of PSK: the light and the full. The difference between these
two packages is that the light version has a simple structure of the starter app, while
the complete one has a build process and developer tooling.

The link to download PSK is https://github.com/PolymerElements/polymer-
starter-kit/releases/latest. Then, follow these steps:

1. Download the ZIP file, unzip it to the directory you want, and open up the
terminal (or command line) for this directory.

2. Run npm install and bower install to install all the dependencies and
builds.

https://github.com/PolymerElements/polymer-starter-kit/releases/latest
https://github.com/PolymerElements/polymer-starter-kit/releases/latest

Chapter 6

[145]

The directory structure
The PSK directory has a style of structure, a simple standard of structure that will
help you to organize the work you should do, which is as follows:

| --- app/
| | --- elements/
| | --- images/
| | --- scripts/
| | --- styles/
| | --- test/
| --- docs/
| --- dist/

Let's take a look at each directory now:

• app/: This directory keeps all your development code

• elements/: This directory keeps your custom elements

• images/: This is the directory for static images

• scripts/: This directory is for JS files

• styles/: This directory is for shared styles and CSS rules

• test/: Write your Unit Tests in this directory

• docs/:This directory has some docs to add features to your app

• dist/: This is the directory that should be deployed to the server

Build and run
Now, when you have all your stuff with Polymer Starter Kit, you can build it and
then run it locally. To build the app, you should go to the app directory using your
terminal (or command line) and run the following:

gulp

Then, you should serve the app locally, as follows:

gulp serve

Polymer Designer Tool and Polymer Starter Kit

[146]

The app will run on the local server as gulp serve is running. To take a look at the
result, you should open up your browser and go to http://localhost:5000.

Let's make some changes in PSK; for example, let's add a menu item in the left-hand
side panel and route a page to it via the following steps:

1. In app/index.html, find the paper-menu element.

2. Add a new menu item at the bottom of the menu element by executing the
following code:

 <a data-route="movies" href="{{baseUrl}}movies">
 <iron-icon icon="movie_creation"></iron-icon>
 Movie

Now, when the menu item is added, we need to add the page for it. Let's go
find this place.

3. In app/index.html, find the iron-pages element.

Chapter 6

[147]

4. Add a new section inside the pages, as follows:

<section data-route="movies">
 <paper-material elevation="1">
 <p>Heeey! It's our first page in Polymer Starter
 Kit!</p>
 </paper-material>
</section>

5. The third step is to add the route for the movies page. In app/elements/
routing.html, you can find the routing system of the app by working with
Page.js, so we can add our page route here, as follows:

page('/movies', function () {
 app.route = 'movies';
});

And that's it! If you look at the app page of PSK now, you will see that there is a
new menu item called Movies, and when you click on it, it opens a page connected
to movies.

So, the principle of Polymer Starter Kit is to provide you with a starter point for the
app. It uses the template of the Polymer website (a drawer panel with menu items
and pages), so you can also create a similar website in seconds. However, you know
how to rock it with Polymer from the previous chapter.

Summary
In this chapter, you learned about Polymer Designer Tool and Polymer Starter Kit.
Each one helps us create faster and more beautiful apps, but we know that in complex
apps too, they can help as a small part of them.

Let's go ahead to the next chapter, in which we will cover how to work with Polymer
and Dart.

[149]

Working with Polymer.dart
Have you heard about Dart? Do you know what is it? Nope? That's OK! Dart is a
new programming language created by Google and you will learn about how to use
it with Polymer.

In this chapter, we will cover the following topics:

• What is Dart?

• Structuring an application

• Installing Dart for Polymer

• Custom elements—creation and usage

• Building an app

• Tools

What is Dart?
Dart is a new programming language created by Google in 2011 and positioned
as an alternative language for JavaScript. It's a class-based, single inheritance,
and object-oriented language with C syntax, which compiles into JavaScript
or native code.

One of the developers of this language, Mark S. Miller, once said, "JavaScript has
fundamental flaws" which are impossible to fix and that's why Dart was created.

The tasks assigned to the developers of Dart were the following:

• Create a structured and flexible language for the Web

• Make the language similar to existing ones to facilitate learning

Working with Polymer.dart

[150]

We now have two methods to execute a Dart app—using a virtual machine or an
intermediate translation in JavaScript.

So what can we do with Polymer.dart you may ask? Here's what we can do:

• Use Polymer custom elements

• Design your own custom components with styles and scripts

• Create live, two-way bindings between Dart objects and DOM nodes

• Use all standard web components—HTML imports, custom elements,
Shadow DOM, and templates

Installing Dart
To install Dart on your computer, follow these steps:

• On Windows:

1. Install Chocolatey on your Windows.

2. Run the choco install dart-sdk -version <version>
command.

• On Mac:

1. Install Homebrew.

2. Run the brew install dart command.

• On Linux (Debian):

1. Run the sudo apt-get install dart command.

Structuring an application
The standard Polymer.dart project structure might contain a web folder and a
pubspec.yaml file. It follows the Pub Package Layout Conventions:

• web: This folder is for all the app's HTML, Dart scripts, styles, and all the stuff
we need for the app itself.

• pubspec.yaml: This is like the NPM's package.json file. It contains all the
details and dependencies of the app.

Chapter 7

[151]

Download Polymer.dart from https://pub.dartlang.org/packages/polymer and
then edit your pubspec.yaml file to depend on the Polymer package:

dependencies:
 polymer: ^1.1.0
 web_components: ^0.12.0
transformers:
- polymer:
 entry_points:
web/index.html

The web/index.html file is the main file of the app.

Using custom elements in Dart
Nothing changes here. To use Polymer components, you should download the
component you want and then import it with Dart.

Unfortunately, we can't use Bower here, but we can add the dependencies to the
pubspec.yaml file instead. Just add the dependencies like this:

name: my_app
description: An application that uses polymer elements
dependencies:
 polymer: ">=0.15.1 <0.17.0"
 paper-button: ">=0.6.0 <0.7.0"
 paper-input: ">=0.6.0 <0.7.0"
transformers:
 polymer

Next, we need to run pub get to get all the dependencies we've mentioned in the
pubspec.yaml file.

How to use custom elements in code
Using custom elements in code works the same way as it does in JavaScript:

1. Import the HTML file that defines the custom element.

2. Instantiate the element.

3. Initialize Polymer.

https://pub.dartlang.org/packages/polymer

Working with Polymer.dart

[152]

Let's look at an example of how to use Polymer components with Dart:

<!-- In an HTML file -->
<head>
 <link rel="import" href="packages/paper_button/
 paper_button.html">
 ...
</head>
<body unresolved>
 <paper-button raised>Hello</paper-input>
 ...
 <script type="application/dart">
 export 'package:polymer/init.dart';
 </script>
</body>

So what do we need to do? We need to import the component, use it in the document,
and export the init.dart file inside the Polymer package. It's the main initialization
file for the app.

You can always replace the init.dart file with your own Dart file. Let's create our
own Dart file and initialize Polymer there.

Replace the <script> tag with <script type="application/dart" src="app.
dart"></script>, so the app.dart that we will create now will initialize the main()
function to run Polymer:

import 'package:polymer/polymer.dart';

main() {
 initPolymer().run(() {
 // all the main code related the app should be here
 });
}

The initPolymer() function has everything from Polymer and, when we call its
run() method, it initializes all of that, so all the code we need to write is inside the
callback function.

Chapter 7

[153]

Creating custom elements in Dart
The Polymer library provides a set of features for creating custom elements.
These features are designed to make it easier and faster to make custom elements
that work like standard DOM elements. With a standard DOM element, you can
expect the following:

• You can create it using a constructor or document.createElement

• You can configure it using attributes or properties

• It has some default style and can be styled from the outside

• It may provide methods to allow you to manipulate its internal state

The Dart style of custom components creation is similar to the way we know. All we
need is the template and the script to run it; we'll look at an example of it.

The template part is the same, except the imports. We should import other
components inside Dart.

The template custom-component.html will be as follows:

<dom-module id="custom-component">
 <style>
 /* CSS rules for your element */
 </style>
 <template>
 <!-- local DOM for your element -->
 <p>My name is {{name}}</p> <!-- data bindings in local DOM -->
 </template>
</dom-module>

Now comes Dart. We will create the Dart file, for example, custom-element.dart:

@HtmlImport('custom-component.html')
library my_package.custom_component;

import 'package:polymer/polymer.dart';
import 'package:web_components/web_components.dart' show HtmlImport;

@PolymerRegister(custom-component')
class ElementName extends PolymerElement {
 ElementName.created() : super.created();

 @property
 String name = 'Arshak!';
}

Working with Polymer.dart

[154]

And the component is ready! As you can see in the code, we are importing the HTML
template of our component, then importing the stuff we need for our element, and
then registering the element. The only thing you should learn a bit about is the syntax
of Dart; it's a bit strange after JavaScript, but it's just a matter of time.

You can also use the following:

• Registration and life cycle: These are callbacks to manage the life cycle.
Use behaviors to share code

• Declared properties: Properties can optionally support change observers,
two-way data bindings, and reflection to attributes

• Local DOM: This is the DOM created and managed by the element

• Events: These are event listeners to the local DOM children

• Data binding: These are property bindings and bindings to attributes

• Behaviors: These are reusable modules of code that can be mixed into
Polymer elements

Building an app
So, now that we are done with all the development on our app, we should build it. To
build the app, run pub build to compile your Polymer.dart app into JavaScript so
that it can run across the Web.

By the way, you can specify the page to which the user should navigate by adding the
path in entry_points in your pubspec.yaml file, as follows:

transformers:
- polymer:
 entry_points: web/index.html

The pub build command generates the build folder. Inside it, you can find all the
HTML, CSS, and JavaScript files you need for your app.

And that's it. Your app is ready and working great!

Polymer.dart is open source. You can view and contribute to the source of Polymer.dart
and its many component packages on GitHub. Make it look more awesome!

Tools
There are special tools for Dart, which will help you to develop with the Dart language.

Chapter 7

[155]

Tools for the Sublime Text editor
For the Sublime Text editor, there's a package for Dart. You can install it from
GitHub (https://github.com/guillermooo/dart-sublime-bundle) or from the
Sublime Text package installer (https://packagecontrol.io/installation).

It has the following features:

• It has syntax highlighting

• It has integrated package management via pub

• It contains editing features—snippets, comment/uncomment, and so on

• It generates new project from the templates using stagehand

• It has an integrated source code formatter

• It runs server apps in the console

• It runs apps in any browser

Tools for Atom
For the Atom editor, there's a package called dart-tools. You can download it from
Atom's website (https://atom.io/packages/dart-tools) or from the editor itself.

It has the following features:

• It has an updated grammar file

• It can compile Dart files to JS files upon saving

• It has an autocomplete feature, using the autocomplete-plus package

• It generates new projects using stagehand

• It shows errors quickly

Some important commands are as follows:

• pub get

• pub update

• SDK info

• format code

https://github.com/guillermooo/dart-sublime-bundle
https://packagecontrol.io/installation
https://atom.io/packages/dart-tools

Working with Polymer.dart

[156]

Summary
Let's recap what we covered in this chapter.

You learned how to download Dart, how to install it in your operating system, how to
configure Polymer.dart, how to structure the project folder, and how to use Dart to
create a Polymer app.

In the next chapter, we will explore the best practices of how to write clean and
awesome code with high performance and with minimal bugs.

[157]

Best Practices
Like every programming language in the world, Polymer has its best practices for
how to write clean and awesome code with high performance and with minimal bugs.

This chapter is all about best practices, so let's get going. We will take a look at a lot
of cool stuff related to Polymer on the Internet and will cover some gotchas. The
following are the topics we will cover:

• The mystery with <paper-dialog>

• How to import HTML files using RequireJS

• Floating action button with items

• The paper-video element

• Elements in a collection

• Yeoman Polymer Generator

The mystery with <paper-dialog>
In the course of my current work with Cambridge Semantics, Boston, we are
developing a dashboard for data visualization with Polymer.

We wanted to make a dialog with dynamic content. So, we created another
component as a template and created <paper-dialog> from paper components
inside it, as shown in the following code:

<dom-module id="dialog-template">
 <template>
 <paper-dialog id="dialog" entry-animation="scale-up-
 animation" exit-animation="fade-out-animation">
 <h2 class="title">{{title}}</h2>
 <paper-dialog-scrollable>

Best Practices

[158]

 <content></content>
 </paper-dialog-scrollable>
 <div class="buttons" id="buttons">
 <paper-button dialog-dismiss>Cancel</paper-button>
 <paper-button dialog-confirm autofocus>Accept
 </paper-button>
 </div>
 </paper-dialog>
 </template>
 ...
</dom-module>

Additionally, with jQuery, we did the following:

var $content = $('dialog-template');
$content.html(SOME_OTHER_HTML);

$(body).append($content);

However, something wasn't working right. When we called the JS part, it worked
well the first time; it added any content that we wanted to show inside the dialog. But
when we opened the dialog again (for the second time), it replaced <paper-dialog>
with the HTML that we passed.

The problem was that, when we passed the HTML content, it was appended inside
the <content> tag, but when we did it for the second time, there was no <content>
tag and it replaced all the template content. So, how do we fix this problem? Hell
yeah! Polymer has its own API for appending, removing, and other stuff.

We replaced the jQuery part with the following:

var content = document.createElement('dialog-template');

Polymer.dom(content).appendChild(SOME_OTHER_HTML);
Polymer.dom(document.body).appendChild(content);

And that worked! Polymer added the content that we passed inside the <content>
tag every time it was called! That was awesome!

Actually there is a lot of stuff in the Polymer API, so you can use all of that as well.

Chapter 8

[159]

For adding and removing children, you can use the following:

Polymer.dom(parent).appendChild(node)
Polymer.dom(parent).insertBefore(node, beforeNode)
Polymer.dom(parent).removeChild(node)

For parent and child APIs, you can use the following:

Polymer.dom(parent).childNodes
Polymer.dom(parent).children
Polymer.dom(node).parentNode
Polymer.dom(node).firstChild
Polymer.dom(node).lastChild
Polymer.dom(node).firstElementChild
Polymer.dom(node).lastElementChild
Polymer.dom(node).previousSibling
Polymer.dom(node).nextSibling
Polymer.dom(node).textContent
Polymer.dom(node).innerHTML

Importing HTML using RequireJS
If you are working with RequireJS, it is not always comfortable to use <link
rel="import" href="…">, there are some cases you should use HTML imports
using RequireJS.

There's a plugin on GitHub for HTML imports at https://github.com/gartz/
requirejs-link.

This is all you need to do:

define(['link!my-web-component.html'], function (component) {
 console.log(component); // do some stuff with it
});

It's very easy to use, so I recommend you use it!

https://github.com/gartz/requirejs-link
https://github.com/gartz/requirejs-link

Best Practices

[160]

Floating action button (FAB) with
menu items
I have searched the Internet, but I couldn't find any paper-fab components with
menu items. Material Design has a concept of floating action buttons with menu
items, but there's nothing in Polymer.

Check out the Material Design page at https://www.google.com/
design/spec/components/buttons-floating-action-button.
html.

So I've decided to create such an FAB and share it with the Polymer community. It
uses <paper-fab> for the main button and <paper-fab mini> for the items. You
can check it out on the customelements.io website at https://customelements.io/
AKHXtern/paper-fab-menu/.

https://www.google.com/design/spec/components/buttons-floating-action-button.html
https://www.google.com/design/spec/components/buttons-floating-action-button.html
https://www.google.com/design/spec/components/buttons-floating-action-button.html
https://customelements.io/AKHXtern/paper-fab-menu/
https://customelements.io/AKHXtern/paper-fab-menu/

Chapter 8

[161]

Alternatively, you can install it via Bower:

bower install –-save paperfabmenu

All you need to do is create the main (big) button and the items inside it, as follows:

<import rel="import" src="bower_components/paper-fab-menu/paper-
 fab-menu.html" />

<paper-fab-menu icon="add" position="vertical">
 <paper-fab-menu-item label="Polymer" icon="polymer" ></paper-
 fab-menu-item>
 <paper-fab-menu-item label="Favorites" icon="star" ></paper-
 fab-menu-item>
 <paper-fab-menu-item label="Refresh" icon="refresh" ></paper-
 fab-menu-item>
</paper-fab-menu>

You can also use the links inside <paper-fab-menu>.

The paper-video element
I have seen mobile versions of video players that were in Material Design styles, but I
couldn't find any Polymer video players for the web. That's why I've created one and
put it on GitHub:

Best Practices

[162]

You can find it on the customcomponents.io website at https://customelements.
io/AKHXtern/paper-video/.

Alternatively, you can install it with Bower:

bower install –-save paper-video

All you need to do is create a simple <paper-video> tag that has all the properties
and attributes of a <video> tag. I've added a control autohide property for fading the
controls after a period of time:

<import rel="import" src="bower_components/paper-video/paper-
 video.html" />

<paper-video controls autoplay autohide-controls="500"
 src="video/video.mp4">
</paper-video>

Elements in a collection
If you have noticed, in Chapter 5, First Application with Polymer, when we started
creating our P O L Y application, we created elements.html for all common imports
in the application.

For those who didn't notice it, you just need to create elements.html in the app
folder and import it in index.html:

<link rel="import" href="elements.html" />

So, what advantages does the "one-file-of-imports" have?

• There isn't a bunch of imports inside the index file

• There's no need to import each component for every custom component

• It is just easy to read

For example, if you are using all the paper elements, you can simply write it like this:

elements.html

<!-- Polymer Paper elements -->
<link rel="import" href="paper-input.html" />
<link rel="import" href="paper-button.html" />
…

<!-- Polymer Iron elements -->
<link rel="import" href="iron-icons.html" />
<link rel="import" href="iron-dropdown.html" />
…

https://customelements.io/AKHXtern/paper-video/
https://customelements.io/AKHXtern/paper-video/

Chapter 8

[163]

Use Yeoman Polymer Generator! It's
awesome!
Yeoman Polymer Generator (YPG) provides Polymer scaffolding using Yeoman
(a scaffolding tool for the Web), which lets you easily create and customize Polymer
(custom) elements via the command line and import them using HTML imports. This
saves the time you'd take to write boilerplate code, so you can start writing the logic
for your components straight away.

I have built a lot of apps with Yeoman and Sails.js. I must say they work awesomely
together. I have created full (frontend and backend) apps in a week.

With YPG, you can do the following:

• Create Polymer elements for your app

• Quickly deploy to GitHub pages

• Get web-component-tester support

Installation
Follow these steps to install Polymer Generator and scaffold using Yeoman:

1. Install the generator:

npm install -g generator-polymer

2. Make a new directory and cd into it:

mkdir -p custom-project && cd $_

3. Scaffold a new Polymer project called yo polymer.

The polymer:element generator
To generate a new element with YPG, just run yo polymer:element my-custom-
element. It will automatically generate the app/elements folder and optionally
append an import to app/elements/elements.html, which is imported from
index.html from your app folder.

The polymer:seed generator
This generates a reusable polymer element based on the seed-element workflow. This
should only be used if you're creating a standalone element repo that you intend to
share with others via Bower.

Best Practices

[164]

To preview your new element, you'll want to use the polyserve tool:

mkdir -p custom-foo && cd $_

yo polymer:seed custom-foo

polyserve

The polymer:gh generator
This generator generates a GitHub page branch for your seed-element.

This requires that you have SSH keys set up on GitHub:

cd custom-foo

yo polymer:gh

Testing with web-component-tester
YPG uses web-component-tester. To run local tests, just run the following in
the terminal:

gulp test:local

Summary
And here we are at the end of the last chapter of the book. This chapter was
dedicated to how you can ease your work with Polymer. We introduced you to several
components created by me and introduced several instruments such as Yeoman
Polymer Generator, which generates a Polymer app in a few seconds. You learned
how to import HTML files using RequireJS and that it is not a good idea to use
jQuery with Polymer, as you can just use the Polymer API.

You can also check out the website created for this book and add reviews at
http://spacee.xyz/polymer/.

With all this knowledge, I can assure you that you will not have any problem with
Polymer in the future. It's great for use in production of applications, it's awesome
to use in small applications. But, what if there are some problems with it? Well, life
is interesting with its problems. I'm always online, so you can contact me on social
networks for any type of questions and I will answer them.

This is the only the chapter where I cannot say "see you in the next chapter". I hope
you liked the book because I invested a lot of time to see it printed and I hope to write
more such useful books in the future.

So, see you in the next book.

http://spacee.xyz/polymer/

[165]

Index
A
adaptive design

about 40
blocks 44
from general, to particular 41
guides 42
padding 41
sizes 43
toolbars 44, 45
wireframes 42

App elements
about 76
app-layout 76
app-route 76

Atom editor
about 155
features 155

B
behaviors, in Polymer

about 66, 67
events 68-70
styling 70, 71

best practices
about 157
elements, in collection 162
floating action button (FAB), with

menu items 160
HTML importing, RequireJS used 159
mystery with <paper-dialog> 157, 158
paper-video element 161
Yeoman Polymer Generator (YPG),

using 163

C
code downloading, Polymer

Bower 50
Git, cloning from 52
ZIP file, downloading 51

custom elements
about 11, 12
built-in elements 15, 16
creating, in Dart 153, 154
HTML 12
JavaScript 13, 14
life cycles 16, 17
name 12
new element 12
prototype 12
using, in code 151, 152
using, in Dart 151

D
Dart

about 149
custom elements, using 151
installing 150
tools 154

data binding, Polymer
about 62, 63
annotations, binding 63-66

default properties, Polymer functions
computed 57
notify 57
observer 57
readOnly 56

[166]

reflectToAttribute 56
type 56
value 56

E
elements, Polymer

properties, declaring 56, 57
registering 53-55

F
FAB (floating action button) 50

G
Gold elements

about 96
gold-cc-cvc-input 96
gold-cc-input 96
gold-email-input 96
gold-phone-input 96

Google web components
about 92
google-analytics-query 92
google-chart 93
google-client-loader 92
google-hangout-button 93
google-map 94
google-signin 94
google-streetview-pano 95
google-youtube 95

H
Hogan.js

reference 6
home.html, P O L Y

<poly-app> element 122-124
<poly-daily-music> element 124-128
<poly-gravatar> element 119-122
<poly-player> element 132-134
<poly-profile> element 118, 119
<poly-songs> element 128-132
<poly-user-music> page 134, 135
<poly-users> element 135-137
components 116
structure 117, 118

HTML imports
<iframe> element 18, 19
about 17
imported document, reusing 20, 21
web components 20

I
iron elements

about 77
iron-a11y-keys 77
iron-ajax 78
iron-collapse 78
iron-dropdown 80
iron-flex-layout 80
iron-form 81
iron-icon 82
iron-image 79
iron-swipeable-container 82

L
local Polymer DOM elements

about 59
nodes, manipulating 60, 61

login page, P O L Y
<poly-login> 108-111
<poly-signup> 112-115
about 105, 106
elements.html file 106, 107

M
Material Design

about 27, 28
adaptive design 31, 40
meaningful animation 31, 38
need for 28-30
publishing design 30, 34
tactile surface 30, 31

Material Design Lite
about 46
URL 46

Materialize CSS
about 46
URL 46

meaningful animations
about 38

[167]

asymmetry 38
clarity and sharpness 40
micro animations 39
reaction 39

mixins, Polymer 72
molecules

about 99
marked-element 99

N
neon elements 97, 98

P
paper elements

about 83
paper-badge 83, 84
paper-button 84, 85
paper-card 85
paper-checkbox 85
paper-drawer-panel 86
paper-dropdown-menu 86
paper-fab 86, 87
paper-icon-button 87
paper-input 87
paper-listbox 88
paper-material 88
paper-menu 88
paper-progress 89
paper-radio-button 89
paper-ripple 89
paper-slider 90
paper-spinner 90
paper-tabs 90, 91
paper-toast 91
paper-toggle-button 92

platinum elements
about 98
platinum-bluetooth 98
platinum-push-messaging 99

P O L Y
about 102, 103
app development 105
home.html 116

login page 105, 106
reference 137
setups 103, 104

Polymer
about 50
behaviors 66
best practices 157
code, downloading 50
data binding 62
element properties, declaring 56, 57
elements, registering 53-56
mixins 72
property change observers 58
working with 52

Polymer.dart application
building 154
structuring 150

Polymer Designer Tool
about 140
blank area 140
reference 140
right-hand side panel 140
top panel 143

Polymer elements
about 75
App elements 76
iron elements 77
paper elements 83

Polymer Starter Kit
about 144
building 145-147
directory structure 145
installation 144
running 145-147

property change observers,
Polymer 58

publishing design
about 34
beautiful photos 37
colors 37
contrast typography 36
elegant typography 34
font size 35
geometric iconographies 36

[168]

Q
Quantum Paper 27

R
right-hand side panel, Polymer

Designer Tool
about 140
Palette tab 140
Properties section 142
Styles tab 142
Tree tab 141

S
selectors, Shadow DOM

>>> 22
:: shadow 22

Shadow DOM
about 6
content, styling 24, 25
creating 8-10
default styles 21
exterior styling 22, 23
inside browsers 7, 8
selectors 21
shadowRoot 10, 11
styling 21
styling, depending on host 23, 24

Sublime Text editor
features 155
reference 155

T
tactile surface

about 31
depth 32, 33

templates
about 4, 5
ways of using 5, 6

tools, for Dart
about 154
tools, for Atom editor 155
tools, for Sublime Text editor 155

top panel, Polymer Designer Tool
about 143
code 143
preview 144
save 144
share 144

U
ucraft.me project 4

W
web components

about 2-4
custom elements 11
HTML imports 17
Shadow DOM 6
templates 4

Y
Yeoman Polymer Generator (YPG)

about 163
functions 163
installation 163
polymer:element generator 163
polymer:gh generator 164
polymer:seed generator 163
web-component-tester, testing 164

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Web Components
	Introduction to Web Components
	Templates
	Shadow DOM
	Inside the browser
	Creating a Shadow DOM
	Root shadowRoot

	Custom elements
	New item
	The expansion of built-in elements
	Life cycles

	HTML imports
	Web components
	Reusing an imported document

	Styles and selectors
	Exterior styling for Shadow DOM
	Styling depending on the host
	Style to content

	Summary

	Chapter 2: Material Design
	What is Material Design?
	Why do we need Material Design?

	Material Design – to the moon and back!
	Tactile surface
	Depth

	Publishing design
	Elegant typography
	Font size
	Contrast typography
	Geometric iconographies
	Colors
	Beautiful photos

	Meaningful animations
	Asymmetry
	Reaction
	Micro animations
	Clarity and sharpness

	Adaptive design
	From the general to the particular
	Padding
	Wireframes
	Guides
	Sizes
	Blocks
	Toolbars

	Other tools
	Summary

	Chapter 3: Introduction to Polymer
	What is Polymer?
	Downloading the code
	Bower
	Downloading the ZIP file
	Cloning from Git

	Working with Polymer
	Registering elements
	Declaring element properties
	Property change observers
	Local Polymer DOM elements
	Manipulating nodes inside Polymer elements

	Data binding in Polymer
	Binding annotations

	Behaviors in Polymer
	Events
	Styling

	Mixins in Polymer
	Summary

	Chapter 4: Polymer Elements
	App elements
	app-layout
	app-route

	Iron elements
	iron-a11y-keys
	iron-ajax
	iron-collapse
	iron-image
	iron-dropdown
	iron-flex-layout
	iron-form
	iron-icon
	iron-swipeable-container

	Paper elements
	paper-badge
	paper-button
	paper-card
	paper-checkbox
	paper-drawer-panel
	paper-dropdown-menu
	paper-fab
	paper-icon-button
	paper-input
	paper-listbox
	paper-material
	paper-menu
	paper-progress
	paper-radio-button
	paper-ripple
	paper-slider
	paper-spinner
	paper-tabs
	paper-toast
	paper-toggle-button

	Google web components
	google-analytics-query
	google-client-loader
	google-chart
	google-hangout-button
	google-map
	google-signin
	google-streetview-pano
	google-youtube

	Gold elements
	gold-cc-cvc-input
	gold-cc-input
	gold-email-input
	gold-phone-input

	Neon elements
	Platinum elements
	platinum-bluetooth
	platinum-push-messaging

	Molecules
	marked-element

	Summary

	Chapter 5: First Application
with Polymer
	Meet P O L Y
	Setups
	Starting with the app development
	The login page
	The elements.html file
	<poly-login>
	<poly-signup>

	P O L Y – the app page (home.html)
	<poly-profile>
	<poly-gravatar>
	<poly-app>
	<poly-daily-music>
	<poly-songs>
	<poly-player>
	<poly-user-music>
	<poly-users>

	Summary

	Chapter 6: Polymer Designer Tool and Polymer Starter Kit
	Polymer Designer Tool
	The right-hand side panel
	Palette
	Tree
	Properties
	Styles

	The top panel
	Code
	Save, share, and preview

	Polymer Starter Kit
	Installation
	The directory structure
	Build and run

	Summary

	Chapter 7: Working with Polymer.dart
	What is Dart?
	Installing Dart
	Structuring an application
	Using custom elements in Dart
	How to use custom elements in code

	Creating custom elements in Dart
	Building an app
	Tools
	Tools for the Sublime Text editor
	Tools for Atom

	Summary

	Chapter 8: Best Practices
	The mystery with <paper-dialog>
	Importing HTML using RequireJS
	Floating action button (FAB) with menu items
	The paper-video element
	Elements in a collection
	Use Yeoman Polymer Generator! It's awesome!
	Installation
	The polymer:element generator
	The polymer:seed generator
	The polymer:gh generator
	Testing with web-component-tester

	Summary

	Index

