
www.allitebooks.com

http://www.allitebooks.org

Getting Started with UDK

Build a complete tower defense game from scratch
using the Unreal Development Kit

John P. Doran

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Getting Started with UDK

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2013

Production Reference: 1040713

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-981-5

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
John P. Doran

Reviewer
Dan Weiss

Acquisition Editor
Erol Staveley

Commissioning Editor
Yogesh Dalvi

Technical Editors
Mausam Kothari

Vaibhav Pawar

Copy Editors
Insiya Morbiwala

Laxmi Subramanian

Project Coordinator
Suraj Bist

Proofreader
Elinor Perry-Smith

Indexer
Priya Subramani

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

John P. Doran is a technical game designer who has been creating games for over
10 years. He has worked on an assortment of games in teams from just himself to
over 70 in student, mod, indie, and professional projects.

He previously worked at LucasArts on Star Wars 1313 as a game design intern.
He later graduated from DigiPen Institute of Technology in Redmond, WA,
with a Bachelor of Science in Game Design.

John is currently a software engineer at DigiPen's Singapore campus and is tutoring
and assisting students with difficulties in computer science concepts, programming,
linear algebra, game design, and advanced usage of UDK, Flash, and Unity in a
development environment.

This is his third book after UDK iOS Game Development Beginner's Guide and
Mastering UDK Game Development, both of which are also available from
Packt Publishing.

He can be found online at http://johnpdoran.com and can be contacted at
john@johnpdoran.com.

I want to thank my brother Chris Doran and my fiancée Hannah Mai,
for being supportive and patient with me as I spent my free time and
weekends away from them as I had to spend time writing the book.

On that same note, I also want to thank Samir Abou Samra and Elie
Hosry for their support and encouragement while working on this
book, as well as the rest of the DigiPen Singapore staff.

I want to thank Erol Staveley who approached me for writing again
as well as everyone else at Packt who were so helpful, as always!

Last but not the least, I'd love to thank my family as well as my
parents, Joseph and Sandra Doran, who took me seriously when I
told them I wanted to make games for a living.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Dan Weiss is currently a programmer working at Psyonix Studios in San Diego,
CA. He is a 2010 graduate of DigiPen Institute of Technology, having worked on
titles such as Attack of the 50ft Robot! during his time there. He has been working in
the Unreal engine since 2004, independently producing the mod Unreal Demolition
for Unreal Tournament 2004 and Unreal Tournament 3. At Psyonix, he has been
involved with Unreal engine work on mobile devices, having released ARC
Squadron for iOS devices.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of
books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Augmenting the UDK 7

What we will achieve 8
Before we begin 8
Block out simple-level geometry 8

Prepare for lift-off 8
Engaging thrusters 9
Objective complete 24
Supplemental information 24

Defining Kismet 24
Using a third-person perspective 25

Engage thrusters 25
Objective complete 28
Classified information 28

Kismet primer 28
Benefits and drawbacks of using Kismet 29

Summary 32
Chapter 2: Tower Defense 33

Spawning enemies 33
Enemies damaging the base 44
Creating/Spawning a single tower 52
Multiple towers made easy - prefabs 63

Engage thrusters 63
Summary 66

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Detailing Environments 67
Applying materials 69
Placing staircases 73
Adding in-level boundaries 80
Spawning weapons 86
Objective complete 90
Summary 90

Chapter 4: Finishing Touches 91
Obtaining Flash 92

Setting up Flash 92
Creating our main menu 92
Creating our HUD 100
Creating the main menu into UDK 107
Cooking and packaging our game 120
Taking the project to the next level 122
Summary 122

Index 125

www.allitebooks.com

http://www.allitebooks.org

Preface
The UDK, which is a free version of the popular and award-winning Unreal 3 engine,
is an amazing and powerful tool to use for projects of any kind. You can use it to
create high-quality games and make your dream games a reality. UDK can be a little
intimidating based on the level of games it has contributed to the ever growing and
exciting world of gaming. Overcome all your apprehensions with this step-by-step
guide and build a complete project within the Unreal Development Kit with unique
gameplay, custom menus, and a triple A-rated finish.

This book will help you create a custom Tower Defense game within UDK and a
game you can show your friends, even if you have absolutely no prior knowledge
of UDK game development.

In next to no time, you will learn how to create any kind of environment within
the UDK. With your basic environment created, you will make use of simple visual
scripting to create a complete Tower Defense game with enemies attacking in waves.
We then finish off the game with custom menus and a Heads Up Display. The
final step is to release your game into the world and give others the excitement
of playing it.

What this book covers
Chapter 1, Augmenting the UDK, introduces us to the UDK and helps us create our
gameplay environment out of nothing but making use of CSG and briefly touching
on Kismet to create third-person gameplay.

Chapter 2, Tower Defense, teaches us how to implant the basic gameplay for our
project making use of Kismet to spawn enemies, and how to create spawnable
towers in the game world making use of prefabs.

www.allitebooks.com

http://www.allitebooks.org

Preface

[2]

Chapter 3, Detailing Environments, discusses the role of an environment artist doing
a texture pass on the environment. After that, we will place meshes to make our
level pop with added details. Finally, we will add a few more things to make the
experience as nice looking as possible.

Chapter 4, Finishing Touches, helps us create the basis of a Heads Up Display making
use of Scaleform importing a project from Flash and touch on how to communicate
between UDK and Flash. The HUD will adjust based on variables we've created in
Kismet. We will also create a quick main menu level, which we can use to publish
our final game! Then we will actually publish our game making use of the Unreal
Frontend and share it with the world!

What you need for this book
Before we start, let's make sure that we have the latest version of the UDK (February
2013 as of this writing), which can be downloaded at http://www.unrealengine.
com/udk/downloads/. When installing the program, make sure that the UT Sample
Game option is checked.

Apart from that, all of the assets used in this project should already be included
within the base UDK install.

This project and all projects assume that the user has used the UDK to some
extent in the past, and is familiar with the concepts of navigating around the
game environment.

For those wanting to know more about basic movement, please see Epic's UDN
page that lists Hotkeys that may be useful at http://udn.epicgames.com/Three/
EditorButtons.html.

That being said, I do my best to be as descriptive as possible in the steps needed to
create the game and explain why I'm doing each step.

Who this book is for
If you have ever had the urge to know more about how all those amazing games
you played for countless hours are created, then this book is definitely for you! This
step-by-step tutorial will teach you how to create a complete game within the UDK.

Even if you have no prior experience of the UDK, you can still start building the
games you want today!

http://www.unrealengine.com/udk/downloads/
http://www.unrealengine.com/udk/downloads/

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"In the Properties window, type behindview 1 as the value for [0] in Commands"

A block of code is set as follows:

//Import events so that we can have something happen every frame
import flash.events.*;
//Add an event to happen every frame
stage.addEventListener(Event.ENTER_FRAME, Update);
function Update(evt:Event):void
{
 // Every frame we want to set the variables to
 // what we set them in Kismet
 cash.text = "$" + String(playerCash);
 // The wave number that we are at
 hudWaveNumber.text = String(waveNumber);
 // The times an enemy can hit our tower before we loose
 hudLives.text = String(lives);
 // If we have info to tell the player (Game Over) we can give
 // it here
 hudInfoText.text = infoText;
 // Let the player know the progress that he is making
 waveProgress.text = killedEnemies + "/" + totalEnemies;
 // The bar will fill as the player kills enemies but we don't
 // want to divide by zero so we just use a small number for
 //the scale
 if(totalEnemies> 0)
 waveBar.scaleX = killedEnemies/totalEnemies;
 else
 waveBar.scaleX = 0.01;
}

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "If your
viewport is zoomed in like the previous screenshot, click on the restore viewports
button on the top right of each of the viewport".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[5]

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from http://www.packtpub.com/sites/
default/files/downloads/Getting_Started_with_UDK.pdf

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Augmenting the UDK
The Unreal Development Kit (UDK), the free version of Epic Games' Unreal Engine
3, is truly a sight to behold.

There are plenty of tutorials available on creating specific things in games, but in my
experience there have been very little in terms of explaining how games are created
in the actual game industry. In this book, I plan to expose those processes while
creating a game from scratch using the Unreal Development Kit, including things
that most tutorials leave out, such as creating menus, custom GUI, and publishing
your game.

The game that we will be creating will be a basic third-person shooter / Tower
Defense hybrid game using the default UDK assets. Tower Defense games have been
quite popular on game sites, and we will be creating gameplay similar to that found
in the popular titles Monday Night Combat and Dungeon Defenders, both of which
were created using Unreal.

In this chapter, we will be creating the first playable version of our game. It will be
split into five tasks. It will be a simple step-by-step process from beginning to end.
Here is the outline of our tasks:

• Block out simple-level geometry
• Enable third-player mode

We will first approach the project using nothing but the UDK Editor and Kismet.

Augmenting the UDK

[8]

What we will achieve
Once we finish this chapter we will have the base layout of our gameplay
environment done. We will also obtain a foundational knowledge in how to build
areas out with CSG Brushes and exposure to Kismet before going more in depth in
future chapters.

Before we begin
Before we start, let's make sure that we have the latest version of the UDK (February
2013 as of this writing), which can be downloaded at http://www.unrealengine.
com/udk/downloads/. When installing the program, make sure that the UT Sample
Game option is checked.

Aside from that, all of the assets used in this project should already be included
within the base UDK install.

For those wanting to know more about basic movement, please see Epic's UDN page
at http://udn.epicgames.com/Three/EditorButtons.html that lists hotkeys that
may be useful.

That being said, I'll do my best to be as descriptive as possible about how to make a
playable version of the game.

Block out simple-level geometry
A fitting start to our project would be to create a new level and create the area in
which we want to base our game.

Prepare for lift-off
Before we start working on the project, we must first create a new map. To do this,
we must first navigate to File | New Level..., and from the pop up that comes up,
select one of the top four options (I selected Midday Lighting, but it doesn't matter
which option you choose).

Chapter 1

[9]

Engaging thrusters
Now that we have a base level to work with, let's start building our game! Perform
the following steps:

1. If your viewport is zoomed in like the previous screenshot, click on the
restore viewports button on the top right of each of the viewports (the icon
that looks like two windows). Upon creating our level, we are greeted with a
nice scene with two meshes. Let's delete this; we don't want it messing with
our stuff. Make sure you click on the actual mesh and not the (red) builder
brush when deleting the two objects. To delete an object, simply click on it
and press the Delete key.

Augmenting the UDK

[10]

There are many different options that you can choose from to determine
how the UDK is displayed and how it works for you. I encourage you to
take time to figure out what you like and don't like. While having a front
viewport may be nice, I like having a larger screen space for the perspective
view so I have a better idea about what the area I'm creating looks like. This
is more my personal preference than anything, but it is what I will be using
from here on out. If you wish to follow me, navigate to View | Viewport
Configuration | 1 x 2 Split from the top menu. For those of you using
multiple monitors, you can also make use of the Floating Viewport option
by navigating to View | New Floating Viewport.

2. Once the two previous objects are destroyed, right-click on the Cube button
on the top left of the Brushes section and bring up its dialog box. Fill in the
values to create our level's floor. I used 4096 as the length (X) and width (Y)
of my level with 32 for the height (Z).You can change it to whatever number
you want, but I'd suggest you stick with a number that is a power of two
(32, 64, 128, 256, 512, ...) as computers work best with them.

Chapter 1

[11]

3. Click on the CSG Add button, which is on the top left of the CSG section in
the left toolbar, in order to add the brush to our level:

4. Next, change the Grid Locking amount to 32 by either using the drop-down
menu or pressing] until you see it there from the menu on the bottom-right
of the screen. Also, make sure that Drag Grid Snap is enabled by making
sure the box next to it is checked.

Augmenting the UDK

[12]

Grid snapping is very useful when working on projects with the UDK. Grid
snapping enables people to build brushes, making sure they are seamless
with no holes in the game environment; this can make building levels much
easier. You should always make sure the drag grid is enabled when working
with brushes and make sure that you keep the vertices of your brushes on
this grid at all times.

5. Press the B key to hide the builder brush as we will not be using it any more.
Select the brush that we first created, and from the side viewport, zoom into
its top-left edge and right-click on it to snap it to the grid.

If you ever want to use the builder brush again, simply
press the B key.

Chapter 1

[13]

6. After that, drag it down to right below the red line you can see in the side
viewport (the red line is the KillZ trigger—if a character goes below it they
die automatically). Then, hold Alt and drag it onto the vertical axis to create
a copy that is exactly on top of the previous one.

When selecting objects using the left mouse button, holding
Ctrl selects multiple items or deselects individual ones that
are already selected; but holding Ctrl and Alt at the same
time draws a marquee selection window that will be very
useful in dragging terrain around.

7. Now, change the Grid Snap to 256 by pressing] until it gets to the correct
value. Click on the Geometry Mode button that is located on the top right of
the Modes section of the left toolbar. Select the two dots in the side viewport
by doing a marquee selection. Once selected, drag them to the left till the
block is 256 units away from the center of the level (one of the grid lines).

A marquee selection is a quick way to select or deselect a
group of actors within a certain area. This type of selection
involves holding down a combination of keys, clicking one
of the mouse buttons, and dragging the mouse cursor to
create a box. All the actors within the box will be selected or
deselected depending on the combination of keys and the
mouse button that is clicked. The possible combinations and
their effects are as follows:
Ctrl + Alt +left-click: Replaces the current selection with the
actors contained in the box.
Ctrl + Alt + Shift +left-click: Adds the actors contained in the
box to the current selection.
Ctrl + Alt + Shift +right-click: Removes any selected actors in
the box from the current selection.

Augmenting the UDK

[14]

8. Do the same for the right-hand side. Then do the same thing for the top
and bottom. By doing this, we will have created a 512 x 512 x 32 block
in the center of the level. Build your geometry to see your changes by
navigating to Build | Build Geometry for Current Level.

Geometry mode
This mode is immensely useful in prototyping and in making it very
simple to build levels in a quick amount of time. It is always a good idea
to block something out and make sure that something is fun before you
spend a large amount of time creating art assets.

Chapter 1

[15]

9. Now change the Grid Snap to 64 by pressing the [key. Now in the side
viewport, left-click on only the top-left vertex (the blue box) to turn it red.
Move it to the right by 64 pixels (one box).

With the Geometry mode, you will not see any changes
that you make in the perspective viewport until you build
your project by navigating to Build | Build Geometry for
Current Level or with the Build All option.

Augmenting the UDK

[16]

10. Now do the same with the right-hand side. After that, go to the top viewport
and select the two inner vertexes on the left-hand side of the platform by a
marquee selection, once again holding Alt + Ctrl and dragging the red box
that appears over them, and move it to the left.

11. Now do the same on the right-hand side and then rebuild the geometry by
navigating to Build | Build Geometry for Current Level.

Chapter 1

[17]

12. Bring up the World Properties menu by navigating to View | World
Properties from the menu bar at the top of the UDK interface. Type Game
Type in the search bar at the top of the World Properties menu. That will
bring up the Game Type menu and the options relevant to us. From there,
change the drop-down menus of both Default Game Type and Game Type
for PIE to UTDeathmatch.
Now that we have the pedestal completed, let's create higher pedestals that
will be the areas that the enemies cannot enter.

Augmenting the UDK

[18]

13. Change the grid lock back to 32 and then make another copy of the base
brush, and use the geometry tools to make it 64 blocks high (two blocks at a
32-pixel snap) and drag it till it fits in the top-left corner of the level with the
end around 256 pixels away from the end of the pedestal.

Instead of selecting both the vertexes, it is possible to
just left-click on the line at the top; you can use the
transform tools in the same way.

Chapter 1

[19]

14. After creating the pedestal, hold Alt and move the object to the right-hand
side, creating a copy of it. Click on Ctrl and then click on both of them, and
then clone them to the bottom half in the same way. Then build everything
by navigating to Build | Build All.

Augmenting the UDK

[20]

15. Now we need some way for our game to know if any enemies have gotten to
our base. In order to do this, we need to add a trigger volume in the middle
of our map. Press B so that we can see our builder brush again and then click
on the Go to Builder Brush button that is on the right of the Go to section
of the left toolbar. Right-click on the cylinder brush (second row on the right
of the Brushes section of the left toolbar). In the window that pops up, set
Outer Radius to 192 and click on Build.

Chapter 1

[21]

16. Move this brush to the middle of the map on the center pedestal. Now create
a trigger volume by left-clicking on the Add Volume button (right-hand side
of the Volumes option in the left toolbar) and then selecting Trigger Volume.
Exit out of the Geometry mode if you are in it by left-clicking on X in the
window that pops up. Press B to once again hide the builder brush.

If a brush or actor is vertically higher than the count,
pressing the End key will snap it to the floor.

www.allitebooks.com

http://www.allitebooks.org

Augmenting the UDK

[22]

17. Finally, we're going to make pedestals to place the turrets on. Select one of
the brushes that you've created already and create a copy and scale it with
the geometry tools till it is 96 x 96 x 32. Place it on the left-hand side of one of
the rows. Go to the side view and make a copy of it, and scale it in the Z axis
until it is 96 pixels high. Right-click on the brush and navigate to Convert |
Convert To Volume | Blocking Volume, and you should see it turn pink.
Build the geometry to make sure that everything looks fine.

The blocking volume is used so players and/or enemies
cannot pass through the block.

Chapter 1

[23]

18. After this, make copies of the trigger volume we made for the base and place
one at the center of the pedestal; scale it up so it is about twice as big as it was
before. (This will be used to tell when enemies enter the tower's range, so you
can make an adjustment based on where you want them to be.)

Augmenting the UDK

[24]

19. Build your level by navigating to Build | Build All. Save your project
(File | Save) and start your game by either pressing F8 or navigating to
Play | In Editor on the main toolbar.

Objective complete
We have just created a very basic version of the gameplay arena that we are
looking for. We've touched upon the Geometry mode and used it to create
something really quickly.

Supplemental information
Now that we've used the interface to create objects in our world, let's learn how to
change the default gameplay. The simplest default gameplay for the people who are
just starting out is Kismet.

Defining Kismet
Kismet is a system of visual scripting in the UDK that makes it possible for
people to affect the game world and design gameplay events. For teams without a
programmer, Kismet can be a godsend. It makes it possible for someone without any
coding knowledge to do things that would otherwise require the use of UnrealScript,
the scripting language of the Unreal Engine.

Chapter 1

[25]

In order to create a sequence of events, you will connect a series of sequence objects
together. This, in turn, generates code when the game is run, which causes it to do
the things that you said it should do. We will be discussing the creation of more and
more complex sequences as the book progresses.

Using a third-person perspective
Now that we've learned what Kismet is and what it can do for us, let's see it used in
action and see how easy it is to get results!

Engage thrusters
The default perspective given to players in the UDK is first person. Let's say we want
it to be in third person instead. It will be quite easy to do so due to Epic's console
command that does just that. Perform the following steps:

1. Open up the Kismet interface by clicking on the K-shaped icon at the top
of the UDK interface on the main toolbar. You should see a new window
pop up. It may look a bit daunting, but it's not too bad once you know
what everything is.

Augmenting the UDK

[26]

Underneath the menu bar, you will see a large area with an image of a bunch
of 1's and 0's on it. This is our workspace where we will be placing all of the
sequence objects we will be creating.
The bottom two bars are the Properties and Sequences windows. The
Properties window will hold all of the data that we want to set within the
sequence objects that we will be creating; they can be accessed by being
left-clicked on.

2. Right-click anywhere inside the large area in the upper portion of the
interface. Choose to create a Player Spawned event by navigating to
New Event | Player | Player Spawned from the menu that pops up.

3. Left-click on the Player Spawned event to have the properties window
come up and change the value of Max Trigger Count to 0.

Having a value of 0 means that it can be triggered an infinite
number of times.

4. Right-click under the Instigator connection (the purple/pink arrow) and
select Create New Object Variable.

5. Right-click and create a Console Command action by navigating to
New Action | Misc | Console Command from the menus.

6. In the Properties window, type behindview 1 as the value for [0]
in Commands.

For more information on this and other console commands that
you can use please see http://udn.epicgames.com/Three/
ConsoleCommands.html.

Chapter 1

[27]

7. Connect the output from the Player Spawned event to the input of the
Console Command action by clicking on the black square on the right-hand
side of the Out output on the Player Spawned event and dragging your
mouse until it reaches the black square on the left-hand side of the In input.

8. Connect the connectors of both Instigator and Target to the Object variable
we created earlier.

9. Save your project (File | Save) and start your game by pressing F8 or
navigating toPlay | In Editor on the main toolbar.

Augmenting the UDK

[28]

Objective complete
Upon starting the game when the player is spawned (the Player Spawned event
is activated), we change our perspective to be in the third person (the Console
Command action is called). We've also learned some fundamentals of working
with Kismet and have an understanding of how sequence objects connect together
to create different effects.

Classified information
I originally wrote this section in my previous book, UDK iOS Development Beginner's
Guide, Packt Publishing, but I feel as if it bears repeating, especially for those who
have not read it before.

Kismet primer
While working with Kismet, some of the terms may be difficult to understand at first,
so I would like to quickly go over some aspects of Kismet in general. Every node we
work with is called a sequence object because it is an object within a sequence.

Parts of a sequence object
Have a look at the following screenshot:

The left-hand side of a sequence object is called the input while the right-hand side
is called the output. Following are the variables that are either values given to us or
that we set depending on the object.

Chapter 1

[29]

There are four different kinds of sequence objects:

• Events: This is what all other sequence objects get called from. Code in
Kismet, for the most part, gets called if a certain event occurs, such as the
Player Spawned event that was called when the player spawned in our
level. These objects are red and are shaped like diamonds.

• Actions: Actions do something when the event is triggered. This is the most
used item, so it is the object with the most variety. The Console Command
action, as well as the Delay variable used previously, is an example of an
action. Actions are presented as rectangles.

• Variables: Variables hold information within our level. If another sequence
object has squares underneath it, it is a spot that holds a variable. They
are colored differently depending on what the variable actually is. The
Instigator action in the Player Spawned event is a variable that is filled with
our player's information when it is called, and the blue number under that
Delay variable in the preceding screenshot is a float variable with a value of
2.0. Variables are represented as circles.

• Conditions: These actions are special in the fact that they can do different
things based on the values of different objects used for comparing numbers
or objects. They are used to control the flow of things within a sequence.
The Compare Objects condition is an example of a condition. Conditions
are traditionally blue and rectangular.

Benefits and drawbacks of using Kismet
As with any job, it is important to use the tool that is appropriate for it. The UDK
provides three applications, namely Kismet, Matinee, and UnrealScript, to make the
game world more interactive. At this point, you should be familiar with the previous
two options. All the three have specific advantages and disadvantages to them, but
Kismet is the one that I use most often.

Augmenting the UDK

[30]

As you expand your research in the UDK after reading this book, you may see forum
posts with people asking about how to do something in Kismet. Many people will
reply to someone telling them to learn UnrealScript instead. While they may seem
arrogant, there are some reasons why they are suggesting the use of this tool. I have
included a list of pros and cons to Kismet that may help you afterwards in deciding
if it is the correct tool for what you are working on.

Benefits of using Kismet
Kismet is a wonderful tool and is a great starting point when you are first starting
with the UDK. Some other benefits associated with Kismet are as follows:

• Has a lower barrier to entry: No programming knowledge is needed, so it is
easier to get started with Kismet and start creating games now.

• Great for prototyping gameplay mechanics: Saying mechanics is going to
be fun is one thing, but no one is going to believe you unless you can show it.
Kismet makes it extremely easy to get something up quickly. As a designer,
having something to show a programmer will make it much easier for them
to translate it to code.

• Great for on-off events: If your level needs to have something specific for an
event or for only specific time or level events, such as an explosion, Kismet is
a great tool to use for it.

• Easier to see the flow of events: If you are more of a visual thinker or like to
stare at something, to see the big picture, it is a lot easier to use Kismet. The
sequence objects and colors all mean something specific and make it easy to
discern what is going on within a specific scene.

• Easily extendable with UnrealScript: With a knowledge of how UnrealScript
works, it is possible to create custom sequence objects of your own to create
actions of your very own. If your game would have a dialog system, creating
a custom Show Dialog action would be possible in Kismet and make it easy
to create entire Dialog trees within Kismet.

Drawbacks of using Kismet
However, Kismet is not the be-all and end-all solution for everything that can
possibly be done with the UDK. Here are some of the drawbacks that using
Kismet may have:

Chapter 1

[31]

• Complexity issues: As you get more comfortable using Kismet, you will
probably try to do more and more complex things with it (I know I have).
If you are not careful, you may have problems reading what your code is
actually doing. Basically, the more complex a sequence gets, the harder it is
to read.

• Reiterations: Many times in a game, you will want to have the same thing
happen if you are interacting with a similar or identical object, such as a
door. If you want the same behavior with multiple objects (unless you use
external variables) or multiple levels, you have to paste it every single time
you want to that action happen. This can quickly stockpile into a really
large amount of sequence objects; this can be avoided if you'll write an
UnrealScript file with the same behavior and make that object use that
file to execute the actions inside.

• Level specific: In much the same way, Kismet is also specific to just the level
that it is created in. For instance, if we wanted to create 10 levels in our game,
we would have had to do the Console Command event in every single level.
With UnrealScript, this would be built into the code base for the game and be
automatic for all levels of the game.

• Kismet cannot do everything you would like to in a game: The truth is that
the game Unreal Engine 3 was created to make a First Person Shooter (FPS),
and the further you stray from that path, the harder it is going to be to create
your game. That has not to say that the UDK cannot be used to create other
games; it's just going to be much more difficult as the sequence objects in
Kismet are meant to create an FPS.

• More custom behavior requires UnrealScript: Continuing with the previous
point, most of the time a game does something, such as a game mechanic,
that the UDK does not seem to do (such as the Scarecrow boss battles Batman
in Batman: Arkham Asylum, Vigorsin Bioshock Infinite, or the robot mechs
in Hawken). These examples probably used UnrealScript or C++ code to
achieve the desired result.

• Kismet is slower than UnrealScript: While it will not matter with the project
that we are creating now, since Kismet is basically prewritten UnrealScript
executed in a certain order, Kismet is slower than what could be achieved
using just UnrealScript; and, something that your game will continuously
use would best be done with UnrealScript.

Augmenting the UDK

[32]

Summary
A fine start to our fine project. In a short amount of time, we touched on a lot of the
basic things that you will need in order to create an area quickly and effectively,
which we will expand upon in Chapter 3, Detailing Environments. We also touched on
the basics of using Kismet, which will be vital to us in the next chapter. Let's take one
final look at what we have accomplished:

Tower Defense
Now that we have an area we can play around with, let's start taking charge of our
game environment and get some basic gameplay in.

Over the course of this chapter, we will perform four tasks:

• Spawn enemies that run to the base
• Damage our base and create a Game Over scenario
• Create/Spawn a single tower
• Easily create multiple towers with prefab

With that said, let's get started!

Spawning enemies
Now that we have the basic world and a functioning player, it would be a good time
to start adding things that the player can actually fight against. In this section, we
will be spawning enemies and giving them a behavioral pattern.

Tower Defense

[34]

The first step to take in order to create enemies is to first create the points in
which the enemies can be created. To do this, we will create PathNodes to
act as spawn points:

1. First, go to the menu bar at the top and access the Actor Classes window
by going to the top menu and navigating to View | Browser Windows |
Actor Classes. From there, select the class PathNode by left-clicking on it
and closing the window.

2. From here, go to the perspective viewport and right-click between one of the
two raised pillars at the end. Now select Add PathNode here.

Chapter 2

[35]

Notice the light blue arrow pointing out from the node? This is the direction
in which the object spawned from the node will face.

3. Clone the node and move it to each of the four spots that you want to spawn
enemies from, rotating them so that they face the center of the map. Also,
place a path node on top of the middle pedestal. Once we set it up in Kismet,
this node will tell the enemies where we want them to go. Build your map
and make sure there are no pathing errors.

If there are any pathing issues, move the path nodes vertically
up by a tad; they don't like being too close to the ground.

Tower Defense

[36]

4. Select the four path nodes on the edge of each path by holding down Ctrl and
left-clicking on each of them. With these selected, go into the Kismet editor.

5. The first thing to do is to create an ObjectList object by right-clicking and
navigating to New Variable | Object | ObjectList. Right-click on the
ObjectList object that you have created and select Insert Selected Actors
into ObjectList. You will notice that the path nodes we selected earlier are
now inside the ObjectList object. This will be useful to us down the road,
as we select where we want the enemies to come out from.

An ObjectList object is a unique object that lets us access
its members at runtime and can be really useful any time
you need to iterate through a list of objects and/or pick
something randomly.

6. Create a new Actor Factory action by navigating to Action | Actor |
Actor Factory.

7. First, after making sure the factory is enabled, we need to create a
new variable in place of the factory. We do this by clicking on the
downward-facing blue arrow. From there, we need to select
UTActorFactoryAI. Now, change the Pawn Class to UTPawn and
change the Pawn Name to Enemy. Give the enemy a Team Index of
1 that will put it on a different team from our player's default of 0 so
it can be fired upon. Since all the enemies are on the same team, they
will not attack each other. Finally, make sure you uncheck the Check
Spawn Collision option. Right-click on the Spawned output and select
Create New Object Variable. You should see it hooked up to the variable
that has ??? inside it. This is great, because when an object is spawned, a
reference to it will be located here.

Chapter 2

[37]

Now that we have an enemy, we need to spawn multiple enemies, tell them where to
spawn, give them a place to go, and give them something to do:

1. To spawn multiple enemies, we're going to use something called Int
Counter. Create one by right-clicking to the left-hand side of the Actor
Factory action and navigating to New Condition | Counter | Int Counter.

Tower Defense

[38]

Counters can be used to simulate a for loop found in programming
languages, such as C. Its main function is to execute a section of Kismet,
based on what condition it is in with a counter that is increased on each
iteration. However, it is very importantly single-fire only, and has to be
retriggered by other actions to act as a loop condition. It is very similar
to the Kismet comparison Compare Int, but it has the added option to
increment a number before the comparison.

2. Right-click underneath the outputs A and B, and create two new Int
variables. Set the value of B to 5. (This will be the amount of enemies
we will spawn before finishing the counter). Click on the A < B output and
connect it to the Spawn Actor input on the Actor Factory action. It will not
create multiple enemies until we have completed the loop, but we'll come
to that later.

Chapter 2

[39]

3. To tell the spawned actor to move to our base, we will create a Move To
Actor action by navigating to New Action | AI | Move To Actor. Move
the action to the right-hand side of the Actor Factory action and connect the
Finished output from the Actor Factory action to the In input of the Move
To Actor action. Now, connect to the Target connector the Object variable
underneath the Spawned connector on the Actor Factory action with ???.
You can do this by dragging the purple square to the object and letting go.

4. Exit Kismet and select the path node in the middle of the pedestal. Go back
into Kismet and right-click under the Destination connector on the Move To
Actor action and select Create Object from PathNode. Connect the Look At
connector to it as well.

One of the neat things you can do with Kismet nodes is
show values that aren't shown by default (such as the
MovementSpeedModifier variable of the Move To Actor
action). Since we may want to make enemies that run faster,
I want to expose this variable for use in Kismet. To do this,
right-click on the node and navigate to Expose Variable |
MovementSpeedModifier.

Tower Defense

[40]

5. If you'd like to, change MovementSpeedModifier; you can do so by going
into Properties and changing it, or by exposing it and then right-clicking and
selecting Create New Float Variable and giving the newly created float a
Value of 0.025.

6. Now that we have the enemy created and moving to the middle of the
screen, we want to spawn multiple enemies. So connect the Out output on
the Move To Actor action back to the In input of Int Counter. However, we
do not want enemies to spawn one after the other; we want to give some time
in between callings.

You must put a delay of some sort in between calling
Int Counter or else the game may freeze up from calling
functions so soon (0.1 seconds is usually enough).

7. One way to do this is to create a Delay node with a duration and connect
the Start input of the Delay action to the Out output of the Move To Actor
action. Then connect the Finished output of the Delay action to the In input
of Int Counter, as I have shown in the following screenshot. Another way
is to right-click on the Out output and select Set Activate Delay. This will
enable you to set the number of seconds you have to wait before continuing
with executing your actions.

Chapter 2

[41]

Finally, we want to set up where the enemy should actually spawn from.
Now we come back to the ObjectList that we created in step 5 of the previous
instruction list.

8. We need to create an Access ObjectList action (New Action |
ObjectList | Access ObjectList) and place it to the left-hand side
of the Int Counter condition.

9. Create a Level Loaded event (New Event | Level Loaded) and move it
over to the left-hand side of the Access ObjectList action.

10. Now, connect the Level Loaded and Loaded and Visible output to the
Random input for the Access ObjectList action. Connect the Spawn Point
connector of the Actor Factory to the Output Object connector of the Access
ObjectList action.

Now if we run the game, five enemies would come out of a single line
and move to the center pedestal. This is all well and good, but we want to
have enemies come at us continuously or in "waves". We won't go into the
behavior of how waves should be created or modified in this book, but we
will go over how to switch the path the enemies are coming from, and then
start the counter again.

www.allitebooks.com

http://www.allitebooks.org

Tower Defense

[42]

11. Now, right-click above the Actor Factory action and create a new Int action
(New Action | Set Variable | Int). Make a new Int variable to have the
value 0 and connect the Target connector to the A output on the Int Counter
condition, resetting its value. Take the A == B output from the Int Counter
condition and hook it up to the In input of the Int action.

12. After this, create an Add Int action (New Action | Math | Add Int) with
the Out output of the previous Int action hooked up to its In input. Make
the A connector 0 (by creating a new Int variable), and under B create an
Int variable with a value of 1. Click on the first Int variable and change its
Var Name property to waveNumber in the action's Properties section.
Also, connect the waveNumber variable to IntResult connector of Add
Int action. Connect the Out output to the Random input on the Access
ObjectList action.

Chapter 2

[43]

Following is a look at the entire Kismet sequence put together:

Tower Defense

[44]

13. Build your project by navigating to Build | Build All. Save your game
by navigating to File | Save and run your game by clicking on Play from
In Editor.

At this point, we have a very simplistic wave system implemented, with enemies
running towards the center of our map, randomly switching where they start their
run from. We can attack them, and they can be defeated with a few shots.

Enemies damaging the base
Now if you were to run the game, you would see enemies that would run up to the
middle of the pedestal and then perform some sort of undefined behavior. That's
partially because we haven't told them to do anything yet.

We want to make the AI (Artificial Intelligence) such that upon reaching our base
he destroys himself, damaging our base. His death will decrement our base's health,
and upon reaching 0, we will conclude the game is over.

Now, we finally get to use those trigger volumes we created in the first section.

1. In Kismet, go back to the Player Spawned event we created previously,
and in Properties, give it a Var Name of Player.

Chapter 2

[45]

2. Exit out of Kismet and go into the editor. Select the Trigger Volume in the
middle section that we created earlier in the first instruction list in Chapter 1,
Augmenting the UDK. With it selected, go back into Kismet. From there, move
away from your previous code and right-click on the open area and create a
new Touch event (New Event Using TriggerVolume | Touch). Set the Max
Trigger Count property to 0 (which means it can happen an infinite number
of times) and uncheck the Players Only option. Then create an Object
variable connected to the Instigator output.

Tower Defense

[46]

3. We want to make sure that the object that collided with the middle of the
level is an enemy and not the player. We need to make a comparison to
make sure it isn't. (New Condition | Comparison | Compare Objects.)
Then, hook it up to the Touched output. Connect the Instigator output of the
TriggerVolume_0 Touch event to A. Now we could draw a line to the Player
variable I just made for B, but instead, we'll right-click and create a Named
variable by navigating to New Variable | Named Variable and put in the
name; this should give you a checkmark, meaning it knows what you are
talking about.

4. From the A != B output, attach a Destroy action to the right-hand side of the
Compare Objects action by right-clicking and navigating to New Action
| Actor | Destroy. Connect the Target connector of Destroy action to
Instigator of the TriggerVolume_0 Touch event.

Chapter 2

[47]

5. Create an Int variable with a Var Name property of baseHealth that will be
initialized with the value of 10.

6. After the Destroy action, create a Subtract Int action (New Action | Math |
Subtract Int) and create a named variable with baseHealth as the name, and
hook it up to A and Int Result. In B, create an Int variable with a value of 1.

Tower Defense

[48]

7. At this point if an enemy hits this trigger, our baseHealth variable will
be subtracted by 1. Now that players can actually lose health, let's add the
functionality that if our player's health is 0 that they get some form of a Game
Over screen.

8. Afterwards, we want to compare the Int. Create a Compare Int condition
(New Condition | Comparison | Compare Int) with baseHealth in A
and 0 in B.

Chapter 2

[49]

9. Create a new Play Announcement action (New Action | Voice/
Announcements | Play Announcement) and set the Announcement Text
property to Game Over. Connect the A <= B output of the Compare Int
condition to the In input of the Play Announcement action.

Tower Defense

[50]

10. For debugging purposes, we may want to see when this value changes
when it gets to 0. To do so, create a new Log action (New Action | Misc
| Log). Right-click on the action and expose the Int value. Set the Int to a
baseHealth named variable and set the Target to all players. (New Variable
| Player | Player.) Then, connect the A > B output to the In input of the
Log action.

You may have noticed that we used a variable of our own called Player
for the other parts of this function but not for this. If you would like to
extend this out to a multiplayer game, you would need to create a list of
players to compare against for this destroying function because the All
Players target doesn't work when comparing objects.

Chapter 2

[51]

11. Exit out of Kismet. Build your project by navigating to Build | Build
All. Save your game by navigating to File | Save and run your game
by navigating to Play | In Editor.

We now have a very simple Game Over system so that whenever an enemy reaches
our base, they will automatically damage it. Now our game has some stakes and we
won't have a bunch of enemies just piling on top of our base!

Tower Defense

[52]

Creating/Spawning a single tower
Now that we have all of our enemies in place, we have one more mechanic
to prototype. It wouldn't be much of a tower defense game without towers,
so let's put them into the game now!

The first thing that we will need to do is actually create the towers. Let's do this by
performing the following steps:

1. Go into the Content Browser window (View | Browser Menu | Content
Browser). Check Static Meshes in the Object Type section, type in Babel in
the search bar, and left-click on StaticMesh'NEC_Deco.SM.Mesh.S_NEC_
Supports_SM_BabelSpireA7'.

Chapter 2

[53]

2. Exit out of the Content Browser window and move the perspective camera to
the top of one of the pedestals we created earlier. Right-click on the pedestal
and select Add InterpActor: AEC_Deco.SM.Mesh.S_NEC_Supports_SM_
BabelSpireA7. Once created, move it to the top of the pedestal. Press F4 to
access the object's properties. Type in Hidden in the search bar at the top and
enable the Hidden option in the Display section; in this way, the tower gets
hidden from view.

Tower Defense

[54]

3. In order to activate our tower, we need to create a trigger. Go into the Actor
Classes window (View | Browser Menu | Actor Classes) and select the
Trigger option.

Once selected, drag-and-drop the word Trigger into your level and you'll
see it appear in your level. Exit out of the Actor Classes window and then
move the trigger on top of the pedestal. Then use the uniform scaling tool
to increase the trigger's area to be three times larger than the original size.

4. Next, duplicate the path node on the ground by holding down Alt and
dragging it away. Place this newly created path node on top of the newly
created tower.

Chapter 2

[55]

5. First, select the cylinder trigger volume that surrounds the tower. Go into
Kismet and create a Touched action using that trigger by right-clicking and
navigating to New Event Using TriggerVolume_0 | Touch. Inside of its
Properties section, uncheck Players Only and set the Max Trigger Count
property to 0, and create a new object variable in the Instigator spot.

Tower Defense

[56]

The numbers shown in variable names are based in the order
of their creation, so if you see some number instead of 0 in
TriggerVolume_0, it's fine to use it instead.

Chapter 2

[57]

6. Next, create two Compare Object comparisons, one on top of the other, by
navigating to New Condition | Comparison | Compare Objects. Connect
the Touched output from the TriggerVolume_0 Touch event to the In
input of the top Compare Objects condition and the Empty output of the
TriggerVolume_0 Touch event to the In input of the bottom Compare
Objects comparison. In the A section of both the Compare Objects
comparisons, create a link to Instigator of the TriggerVolume_0 Touch
event. On the top Compare Objects comparison for the B section, create
a Named variable by navigating to New Variable | Named Variable and
put in the name Player. For the B section of the second Compare Objects
comparison, create a new object variable. Inside of its properties in the Obj
Comment section, put Turret Target variable to help you understand what
this is doing.

So just to explain what is going on here, whenever something touches our
TriggerVolume, we first make sure that it isn't the player because we don't
want to kill the player. Secondly, if an Actor leaves the TriggerVolume, the
Empty state will be triggered running the Kismet that we have hooked up to
it. If the object leaving the volume is our Turret's current target, we will want
to find a new target for it to shoot at.

Tower Defense

[58]

7. Create two Set Object Variable actions by right-clicking on and navigating
to New Action | Set Variable | Object. Connect the Target connector of
both actions to the variable with the Turret Target comment in the previous
step. Connect the A != B output from the top Compare Objects comparison
to the In input of the top Object action. Connect the Value to the Instigator
of the TriggerVolume_0 Touch event. Connect A == B from the bottom
Compare Objects comparison to the In input of the top Object action.
Connect the Value connector to a new Object variable with no value.

8. Create a Destroyed event by right-clicking and navigating to New Event |
Actor | Destroyed. Connect the Out output of the event to the In input of
the bottom Object action that sets the TurretTarget variable to nothing. Next,
create an Attach to Event action by navigating to New Action | Event |
Attach to Event. Under Attach to Event, connect the Turret Target variable
to Attachee connector. Connect the Event connector to the Destroyed event
that we just created. Connect the Out output of the top Object action to the
In input of the Attach to Event action.

Chapter 2

[59]

Now that we know what the object should be targeting, let's get the
turret shooting.

9. Continuing with the Trigger_1 Used event we had earlier, we first need to
create a Toggle Hidden event (New Action | Toggle | Toggle Hidden).
With the Target being the InterpActor variable that is the tower, select it
in the editor mode, right-click on it, and create its Object variable.

Tower Defense

[60]

10. In the Out output of that place, a Compare Objects action comparing
our Turret Target variable with "Nothing" (Making sure we have a target
to hit). Connect the A==B output of this action to its In input with a delay
of 0.2 seconds.

11. In the case where you do have a target, create two Get Location and
Rotation actions (New Action | Actor | Get Location and Rotation). Let the
first one's Target be the Turret Target variable; the other one should have
the PathNode we placed above the tower (where we want the bullet to come
from). Create Vector variables for both of the locations. Connect the A != B
output of the Compare Objects comparison to the In input of the first Get
Location and Rotation action. Then, connect the Out output of the first Get
Location and Rotation action to the In input of the second.

Chapter 2

[61]

12. After getting these values, place a Spawn Projectile action (New Action
| Spawn Projectile). Set the Spawn Location to the Path Node's location
that is in the second Get Location and Rotation action, and set the Target
Location to our Turret Target's location in the first. Under Instigator, connect
the Turret Target variable. In the Properties section, set the Projectile Class
property to UTProj_SeekingRocket. Connect the Out output to the Spawn
Projectile action to the In input of the Compare Objects action to make sure
you have the correct target. Add in a delay of 0.2 seconds.

Tower Defense

[62]

For an overview of this entire Kismet application, see the following screenshot:

Again, remember that the level file containing all of the Kismet used
is available for you to download at Packt Publishing's site in case it is
difficult to view here.

13. Build your project by navigating to Build | Build All. Save your
game by navigation to File | Save and run your game by navigating
to Play | In Editor.

Chapter 2

[63]

At this point, we now have a single podium that when activated will create a tower
that will shoot projectiles at enemies that enter its radius, until they leave or the
enemy is killed!

Multiple towers made easy – prefabs
Now we have created one tower, and it is a finished tower. However, we want
to have many places where the player can activate towers. We can do this simply
enough by making use of prefabricated objects, better known as prefabs.

Engage thrusters
The first thing that we will need to do is actually create the towers. Let's do this by
performing the following steps:

1. In Kismet, do a marquee selection around all of the code we created in the
previous section. Once selected, right-click and select Create New Sequence.
In the dialog that pops up, put in the name TowerBehavior.

Tower Defense

[64]

You'll notice that all of the Kismet diagrams that we created have now been
put together in its own little place:

2. Exit out of Kismet and select all of the objects associated with the tower,
including the Trigger, Trigger Volume, the InterpActor, as well as the
Blocking Volume and SCG (Switch Counter Groups). Once all of these
objects are selected, right-click and select Create Prefab under Package
section. Put in TowerDefensePKG in the Package field, put TowerPrefab
in the Name field, and then click on OK.

3. You will have a pop-up message saying that it found our Kismet sequence
associated with this object. Click on Yes. Then click on Yes once again to
replace these Actors with an instance of the prefab. As soon as this happens,
go into the Content Browser window and save your TowerDefensePKG
package in the same folder as your level.

Chapter 2

[65]

4. Hold down the Alt key with the newly created prefab selected, and
create towers along each of the lines in the pattern shown in the
following screenshot:

Tower Defense

[66]

5. Build your project by navigating to Build | Build All. Save your
game by navigating to File | Save and run your game by navigating
to Play | In Editor.

At this point, we now have a single podium that, when activated, will create a
tower that will shoot projectiles at enemies that enter its radius until they leave
or the enemy is killed! At this point, we now have a series of podiums that can be
activated for our use by doing just a few short steps!

Summary
In not too much time, we have completed some very exciting things in UDK using
just the Unreal Editor and Kismet in creating a third-person tower defense title.
We have the basic layout of an environment, we have enemies spawning and
bombarding our base, we have a losing condition, and we have a series of points
where we can activate towers. Specifically, we have spawned enemies that run
to the base, damaged our base, created a Game Over scenario, created/spawned
a single tower, and made multiple towers easily with prefabs.

Detailing Environments
One of the things that many people do not know is that level designers may actually
have nothing to do with the art involved in the levels they produce. This all depends
on the studio that you work at of course, but traditionally level designers are
responsible for designing the gameplay that a particular level has. They develop a
basic layout as well as taking care of the scripting done in the level, much like we did
in the previous chapters. The actual person to create the art as well as place the art
into the world is traditionally the environment artist.

At this point, our game has its core mechanics prototyped. Once prototyped, a level
designer will often give his/her level to an environment artist in order to make the
level more artistically pleasing.

Detailing Environments

[68]

In this chapter, we will be taking on the role of an environment artist, doing a texture
pass on the environment. After that, we will place meshes to make our level pop
with added details. Finally, we will add a few more items to make the experience
as nice looking as possible.

This chapter will be split into four tasks depending on what we are doing. It will
be a simple step-by-step process from beginning to end. The outline of our tasks
is as follows:

• To apply materials to our world
• To place staircases
• To add in-level boundaries
• To spawn weapons

Chapter 3

[69]

Applying materials
As it stands, our current level looks rather... well, bland. I'd say it's missing
something in order to really make it realistic... the walls are all the same! Thankfully,
we can use textures to make the walls come to life in a very simple way, bringing us
one step closer to that AAA quality that we're going for!

Applying materials to our walls in Unreal Development Kit (UDK) is actually very
simple once we know how to do it, which is what we're going to look at now:

1. First, go to the menu bar at the top and access the Actor Classes window
by going to the top menu and navigating to View | Browser Windows |
Content Browser. Once in the Content Browser window, make sure that
Packages are sorted by folder by clicking on the left-hand side button.
Once this is done, click on the UDK Game folder in the Packages window.
Then type in floor master in the top search bar menu. Click on the
M_LT_Floors_BSP_Master material.

Detailing Environments

[70]

2. Close the Content Browser window and then left-click on the floor of our
level; if you look closely, you should see. With the floor selected, right-click
and select Apply Material : M_LT_Floors_BSP_Master.

3. Now that we have given the floor a material, let's give it a platform
as well. Select each of the faces by holding down Ctrl and left-clicking
on them individually. Once selected, right-click and select Apply
Material : M_LT_Floors_BSP_Master.

Another way to select all of the faces would be to right-
click on the floor and navigate to Select Surfaces |
Adjacent Floors.

Chapter 3

[71]

Now our floor is placed; but if you play the game, you may notice the texture
being repeated over and over again and the texture on the platform being
stretched strangely. One of the ways we can rectify this problem is by scaling
the texture to fit our needs.

4. With all of the floor and the pieces of the platform selected, navigate to View
| Surface Properties. From there, change the Simple field under Scaling
to 2.0 and click on the Apply button to its right that will double the size of
our textures. After that, go to Alignment and select Box; click on the Apply
button placed below it to align our textures as if the faces that we selected
were like a box. This works very well for objects consisting of box-like objects
(our brushes, for instance).

5. Close the Surface Properties window and open up the Content Browser
window. Now search for floors organic. Select M_LT_Floors_BSP_
Organic15b and close the Content Browser window.

Detailing Environments

[72]

6. Now select one of the floors on the edges with the default texture on them.
Then right-click and go to Select Surfaces | Matching Texture. After that,
right-click and select Apply Material : M_LT_Floors_BSP_Organic15b.

7. We build our project by navigating to Build | Build All, save our game
by going to the Save option within the File menu, and run our game by
navigating to Play | In Editor.

Chapter 3

[73]

And with that, we now have a nicely textured world, and it is quite a good start
towards getting our levels looking as refined as possible.

Placing staircases
Okay, our floors are very neat, but we are still missing a lot of details. For one, the
player can see the level going on forever and it's a very plain level. To solve this
problem, we can use static meshes. Non-moving static meshes, as their name implies,
are a tool that we can use to fill a level with details at a very low performance cost.

Detailing Environments

[74]

To start with, let's create some stairs. Perform the following steps:

1. First, go to the menu bar at the top and access the Actor Classes window
by going to the top menu and navigating to View | Browser Windows
| Content Browser. This time, in the Object Type panel check the Static
Meshes option. Make sure that you have set up the UDK Game folder in the
Packages window. Then type in stair in the top search bar menu. Click on
the S_ASC_Floor_SM_StairsSid01 static mesh.

Chapter 3

[75]

2. Move out of the Content Browser window. Move your perspective viewport
over to one of the four corners in the level. Right-click on the ground and
select Add Static Mesh : ASC_Floors:S_ASC_Floor_SM_StairsSid01.

Detailing Environments

[76]

3. Change your transformation widget till you get to the rotation slide that
looks like a large circle. There, left-click on the blue part of the widget and
drag it until the number changes to 90 and the widget rotates our object
for us.

4. Now press the Space bar twice to get back to the Transform widget. Move
the staircase until it is flesh with the edge of the wall. After that, hold down
Alt and drag the wall down to create a copy of the stairs. Do this again and
again till you cover the entire wall.

Chapter 3

[77]

5. Now duplicate the entire row of objects and move them to the wall on
the other side. To flip them, right-click and navigate to Transform |
Mirror X Axis.

Detailing Environments

[78]

6. Select these objects, and then create another copy on the other side of the wall
by holding down Alt and dragging the Transform widget in the direction
you want to travel in. Select all the objects, create a copy, then rotate them
90 degrees to fill up our entire level.

Chapter 3

[79]

7. We build our project by navigating to Build | Build All, save our
game by navigating to File | Save, and run our game by navigating
to Play | In Editor.

8. And now we have an easy way to travel up and down our two height levels
in the game, giving the player an additional choice to travel in the game.

Detailing Environments

[80]

Adding in-level boundaries
Okay, now we have a very simple example of how we can use meshes. With this
fundamental knowledge, we will use static meshes to create our level boundaries.

Let's get started by finding a suitable mesh. Perform the following steps:

1. Go to the Content Browser window (that is, navigate to View | Browser
Menu | Content Browser). Check the Static Meshes checkbox in the
Object Type section and type in trim vented and left-click on StaticMesh
'NEC_Trims.SM.Mesh.S_NEC_Trims_SM_Vented03a'.

Chapter 3

[81]

2. Close the Content Browser window and move the perspective camera
to the end of one of our lanes. Right-click on the pedestal and select Add
StaticMesh: NEC_Trims.SM.Mesh.S_NEC_Trims_SM_Vented03a.

Detailing Environments

[82]

3. Once created, you'll notice that the mesh is quite small. Rotate the object 135
degrees. Open up the mesh's properties by pressing the F4 key. Once open,
change the value to 11 in the X, Y, and Z fields under the Draw Scale 3D
field, using the search bar at the top to help you find it. Then translate the
object so that it covers the lane it is stationed at.

Chapter 3

[83]

4. Now translate the object down by 256 pixels in the Z field. Then in the same
way as we did in the previous section, create three copies at the end of each
of the lanes.

Detailing Environments

[84]

5. Now, we'll add in some ingenuity. Make an additional copy of one of the
meshes, this time changing the Draw Scale value to 8.5 in the X, Y, and Z
fields. Now rotate the mesh to face the opposite way. After that, make the
top of this mesh flesh with the top of the other edges.

Chapter 3

[85]

6. Now let's create three additional copies to complete our level!

Detailing Environments

[86]

7. We build our project by navigating to Build | Build All, save our game by
clicking on Save within the File menu, and run our game by navigating to
Play | In Editor.

8. And now we have a very polished level to look at, with minimal work in the
same color scheme, just like the rest of the assets in the game!

Spawning weapons
Now that we have a pretty level, I have one more feature to add before we
continue. As the game currently is, the ammo available to a player is severely
limited, increasing the difficulty exponentially. Granted, this may have been an
option if we were trying to create a game where we wanted supplies to be scarce,
but that's not the case.

Chapter 3

[87]

One of the tools that level designers have is the ability to reward players for
traversing certain ways and promoting certain behavior. Inside the Actor Classes
tab, there is a class called UTPickupFactory with both health and weapon pickups.
In this section, we will place weapon pickups in our level.

The first thing that we will need to do is actually create a class named
WeaponFactories that will create weapons for the player to pick up.
Let's do that now!

1. First, go to the menu bar at the top and access the Actor Classes window by
going to the top menu and navigating to View | Browser Windows | Actor
Classes. From there, type utweapon into the search bar and select the class
UTWeaponPickupFactory by left-clicking on it and closing the window.

Detailing Environments

[88]

2. From here, go to the perspective viewport and right-click anywhere
between one of the two raised pillars at the end. Then, select Add
UTWeaponPickupFactory here. You may not see anything. If that's the case,
drag the object on the Z (vertical) axis till it is above the ground and press the
End key to have it automatically fall to the ground. Open up Properties by
pressing F4 and change Weapon Pickup Class to UTWeap_LinkGun.

Chapter 3

[89]

3. Create three additional copies and place them at the other edges of the
upper level.

4. We build our project by navigating to Build | Build All, save our game by
clicking on Save within the File menu, and run our game by navigating to
Play | In Editor.

Detailing Environments

[90]

Objective complete
Now we have a level that contains pickups that will spawn! The player will have no
difficulty fighting enemies now.

Summary
What a difference a little work makes! We just used some basic textures and some
simple static mesh placements to quickly make a level that's quite polished! More
specifically, we applied materials to our world, placed staircases, added in-level
boundaries, and spawned weapons.

Next, we will take the final steps to complete our game and get it out into the world!

Finishing Touches
There are a lot of tutorial books out there that teach you how to perform a specific
task, or how to create the basis for a project, but in this chapter we'll be covering
some concepts that most books don't, that is, how to finish a game project and get
it out to the world.

In this chapter, we will be finishing up our game by adding menus and publishing
the game making use of Unreal Frontend.

To do that, we will be creating a Heads Up Display (HUD) that can provide
additional information to players about our specific game type as well as a main
menu for our game, making use of Scaleform and Actionscript 3.0 using Adobe
Flash CS6.

At the end of this chapter, we would have created the basis of a Heads Up Display
making use of Scaleform and would have touched on how to communicate between
UDK and Flash using Kismet. We will also create a quick main menu level, which we
can use to publish our final game! Then we will actually publish our game making
use of the Unreal Frontend and share it with the world!

Over the course of this chapter we will do the following:

• Setting up Flash
• Creating our main menu
• Creating our HUD
• Importing Flash files into UDK
• Cooking/packaging the game

www.allitebooks.com

http://www.allitebooks.org

Finishing Touches

[92]

Obtaining Flash
Scaleform does not require us to use Adobe Flash, but this is the environment that
we will be using to create our UI content. I will be using the latest Adobe Flash
CS6, but we should be able to do most of the things in this chapter using a previous
version. For those without Flash, Adobe offers a free trial of all of their software.
For more information on that, please visit www.adobe.com/go/tryflash/.

We will also need the art assets for our menu. These can be downloaded from the
Support page on the Packt website at www.packtpub.com/support.

Setting up Flash
Our first step will be setting up Flash in order to create our HUD. To do this, we
must first install the Scaleform launcher. I have written a nice tutorial on how to
install Scaleform launcher on my website, which you are welcome to look through at
http://johnpdoran.com/setting-up-flash-cs6-to-use-scaleform-with-udk/.

Creating our main menu
Now that Flash is set up, let's actually create a very simple screen, our main menu.

But before we get into that, let's talk a little bit about the environment, as I'm
guessing many of you may never have worked with Flash before. On my website, I
have a quick overview of the features that Flash has as well as how they are normally
used. To read that, visit http://johnpdoran.com/flash-101-an-introduction/.

Now that we have a basis of what Flash is like, let's get started! Perform the
following steps:

1. Inside the Adobe Flash main menu, create a new ActionScript 3.0 project by
navigating to Create New | Actionscript 3.0.

2. In the Properties inspector of the Stage properties of the Properties section
set the size to 1280 and 720 by clicking on the existing numbers and typing
in the new values and then pressing Enter. Above the Stage, find the Zoom
scaling, which currently says 100% and change it so that you can see
everything within the white box. Alternatively, you can use Ctrl + 1.

Chapter 4

[93]

3. Import our image files by navigating to File | Import | Import to Library....
From there, go to the Chapter's assets folder where you will find the
MainMenu_Art folder. In that folder, select all of the files and then click
on Open.

4. Access Library by left-clicking on the tab next to Properties in Properties
Inspector. At the bottom-left of the Library tab, click on the far left button
to create a New Symbol. Alternatively press Ctrl + F8.

5. In the Window that pops up, type in gameButton in the Name field of the
new symbol and change Type to Button from the drop-down menu. Once
that's completed, click on the OK button.

6. At this point, you should see Timeline at the bottom of our changed screen
and notice that we are now inside our newly created Button. Keep in mind
that the + symbol on the screen is our pivot point to the Stage when we
place the button in our map. Right-click on the box below the Over frame
of Timeline and select Create New Keyframe. Repeat the same step for the
Down frame.

Finishing Touches

[94]

7. Select the Up frame again. Then go back to Library and drag-and-drop
the button_normal.png image so that + is in the top-left of the button.
You should notice that the empty circle is now filled.

8. Next, place the button_hover.png image in the Over frame, and then place
button_down.png in the Down frame. You can click on the Properties tab to
change the position of objects where you can set the X and Y values to 0.

9. We are now done with our button's basic construction! Now, click on
the blue arrow pointing to the left to return to our Scene. Then save
your project as TowerDefenseMM.fla.

Chapter 4

[93]

10. Go to Library and drag-and-drop our game object button onto the Stage.
Then open up the Align menu by pressing Ctrl + K. Check the Align to Stage
option and then click on the second button, which will align the object to the
center of our stage.

11. Then click on the Properties tab with the Button selected. At the very top
you should see some text that says <Instance Name>. Change that value
to playButton.

12. Now let's add the text! Click on the T symbol to use the Text tool. Left-click
and drag to create an area of text and type in the name of your game (I used
Tower Defender). Make the font size large enough so that the text is easily
seen. Then under FILTERS, click on the bottom-left option to create a new
Glow filter. There I changed Color to black to make the text easily visible in
light as well as dark areas.

13. Now, click on Embed... next to the Style section of the CHARACTER part
of the Text properties. In the Font Embedding screen, under OPTIONS
check Uppercase, Lowercase, Numerals, and Punctuation. Then go to the
ActionScript tab, check the Export for ActionScript and Export in frame 1
options. When the warning comes up saying it'll generate the file for you,
just click on OK.

Finishing Touches

[96]

14. Now copy (Ctrl + C) and paste (Ctrl + V) the text that we just created and
drag it over to our button. Adjust the size of the textbox to fit the smaller area
and decrease the font to a smaller size (42). Change the text to Play Game
and then change its type from Static Text to Dynamic Text. Once this is
done, you should see an instance name pop up. Change it to playText.

15. Now right-click on the first frame of our Timeline (the black circle) and select
Actions. You should see a window popup. Insert the following code in the
window that pops up:
playText.mouseEnabled = false;

This will disable mouse clicks on the text, so that the button can work.

16. Now, we need to create a mouse pointer. Instead of providing a picture,
I thought it'd be a good idea to show you the drawing tools that Flash has.
From the bar on the right, click on the paint bucket icon and then select a
blue color.

Chapter 4

[93]

17. Press o to start using the Oval tool. Press Shift and Alt, then click and drag
out a circle somewhere inside your menu.

18. From here, go back to the Selection tool and left-click on the blue circle.
Then right-click and select Convert to Symbol. From there give it a name
mouse and a type named Movie Clip.

19. Once converted, give the newly created Movie Clip an instance name
of mouseMC.

20. Also, right-click on the mouseMC movie clip and navigate to
Arrange | Bring to Front to be sure that it is at the top of your movie.

21. Now, make sure you have no object selected and then click on the Properties
tab. In Properties, you will see a variable called Class. Fill this in with the
same name that we will be saving our file as, in this case TowerDefenseMM.
A warning will pop up saying that a class will be generated for us. Click
on OK.

Finishing Touches

[98]

22. Now click on the pencil icon next to the class we just named and a popup
will come up asking us in which program to open the file. Make sure
that Flash Professional is selected and then click on OK. You should
see something similar to the following screenshot:

23. For this sample of a project, there are only two small things that we need
to do. First, below the import flash.display.MovieClip; line add the
following line of code:
import scaleform.gfx.Extensions;

This will import Scaleform's functionality so that we can enable it. Next,
create a new line underneath the //constructor code line and write the
following code:
Extensions.enabled = true;

This will actually enable us to use the Scaleform properly. Every Scaleform
project that you'll be creating requires these two things.

24. Now go back to Actions for the first frame of your object on Timeline and
add the following code to your previously created line:
//Import the events that we wish to use
import flash.events.MouseEvent;
import flash.system.fscommand;

playButton.addEventListener(MouseEvent.MOUSE_DOWN,
 playGame);
function playGame(event:MouseEvent):void
{
 //Tell Unreal to play the game
 fscommand('playGame');
}

Chapter 4

[93]

stage.addEventListener(MouseEvent.MOUSE_MOVE,
 mousePosition);
function mousePosition(event:MouseEvent)
{
 // When we move the mouse, change our circle's position
 mouseMC.x = mouseX;
 mouseMC.y = mouseY;
}

stop();

25. Close the Actions tab. Then save your file and run it with the Scaleform
launcher by navigating to Window | Other Windows | Scaleform
Launcher and then selecting Test with: GFxMediaPlayerD3d9.

Now we have a very simple main menu screen that will respond to a mouse
click on a button, which will send FSCommand to Unreal, that we can make
use of later on down the road. Now, before we jump into UDK again, let's
make one more thing inside Flash, a fully functional HUD system!

Finishing Touches

[100]

Creating our HUD
Now that we have the main menu created, let's create our actual game's HUD!
We get started in much the same way as the previous section. Perform the
following steps:

1. Inside the Adobe Flash main menu, create a new ActionScript 3.0 project
by navigating to Create New | Actionscript 3.0.

2. In Properties Inspector of the Stage properties of the Properties section,
set the size to 1280 x 720 by clicking on the existing numbers and typing in
the new values then pressing Enter. Above the stage, find the Zoom scaling,
which currently says 100%, and change it so that you can see everything
within the white box. Alternatively, you can use Ctrl + 1.

3. Import our image files by navigating to File | Import | Import to Library....
From there, go to the Chapter's assets folder where you will find the
MainMenu_Art folder. In that folder, select all the files and then click
on Open.

4. Access Library by left-clicking on the tab next to Properties in Properties
Inspector. From Library, drag-and-drop the imported images onto the Stage
of the level. Click on the wave.png (the box with the word WAVE in it)
image and click on the Properties tab to bring up the options that we can use
in order to alter its position. Change the X and Y values to 14 to put it at the
top-left of the image.

Chapter 4

[93]

5. With the lives.png image, change the position to 14, 684. Then change the
cash.png image's position to 1114, 690. For enemyInfo.png, give a position
of 826, 4. Finally, place enemyBar.png at 834, 12 to cover up the grey bar
that enemyInfo has. When you are finished, you should have something
that looks very similar to the following screenshot:

6. Right-click on the enemyBar image and select Convert to Symbol. Make
sure that the converted type is a Movie Clip and write waveBar in the
name property.

Finishing Touches

[102]

7. Now open the Properties of the new Movie Clip. At the top you should see
text that says <Instance Name>. Replace that value with waveBar.

8. Click on the Text tool and left-click in the center of the waveBar that we
created and drag it to the right to give it some additional space between the
text we want to place. Once created, type in 10/10 just to give you some
visual idea of what we are creating.

9. In the same text object's Properties, you will notice a new kind of window
that pops up for text objects. Change the text from Static Text to Dynamic
Text form by selecting from the drop-down menu. You will then notice a
new Instance Name window popup. Inside the window, give this object
the name waveProgress.

10. In the same text object's Paragraph section, change the text to be centered
by selecting the second option from the Align section.

11. Then go to the very bottom of the same text object's Properties and go to
FILTERS. In that menu, click on the first button on the left to create a new
filter. From there select Drop Shadow. In the Drop Shadow filter, make the
Distance field 0 and leave the other values as default; this will make our
numbers easily visible.

Chapter 4

[93]

12. Now, click on Embed... next to the Style section of the CHARACTER part
of the Text properties. In the Font Embedding screen, under OPTIONS
check Uppercase, Lowercase, Numerals, and Punctuation. Then go to the
ActionScript tab, check the Export for ActionScript and Export in frame 1
options. When the warning comes up saying it'll generate the file for you,
just click on OK.

13. Now, copy and paste the text file and drag it over to the Wave section at
the top-left of the screen. Adjust the size of the textbox to fit in the smaller
area and increase the font to a larger size (25). Change the text to 1 and the
instance name to hudWaveNumber.

14. Make a copy of this text by pressing Alt and dragging them to the other parts.
Fill the LIVES section with 10 and give it an instance name of hudLives.
Create another copy of the text for the CASH section. Alter the size of this
section so that the text area can fit $1000 comfortably, then give it an instance
name of cash.

Finishing Touches

[104]

15. Lastly, create one final copy of the text and give a large amount of space
between the LIVES and CASH areas. In the textbox, type You Win! and
give it an instance name of hudInfoText. Here we can give the player
information, such as whether they won or lost the game.

16. Now that we have all the things that will display values, let's actually create
some variables that we can set this text to. Make sure you have no object
selected and then click on the Properties tab. In Properties, you will see a
variable called Class. Fill this with the same name that we will be saving
our file as, in this case TowerDefenseHUD. This is the Document Class,
which is the home class that our Scaleform will be using, and will
contain the variables that we will be changing later in Kismet.

17. Click on the pencil icon next to Class. There may be a warning; if so, just click
on OK and click on the pencil icon again. When it asks you what to open the
ActionScript class with, select the editor and then click on OK.

18. From there, you will see some default code that opens inside our editor.
Replace that code with the following code:
package
{
 //import libraries we need to use
 import flash.display.MovieClip;
 import flash.events.KeyboardEvent;
 import scaleform.gfx.Extensions;

Chapter 4

[93]

 public class TowerDefenseHUD extends MovieClip
 {
 //Variables we are going to be using in Kismet
 public static varplayerCash:int = 100;
 public static varkilledEnemies:int = 0;
 public static vartotalEnemies:int = 0;
 public static varwaveNumber:int = 0;
 public static varlives:int = 55;
 public static varinfoText:String = "";

 //Constructor - Called when the flash file is played
 public function TowerDefenseHUD()
 {
 //Enable functionality of Scaleform
 Extensions.enabled = true;
 }
 }
}

19. Once finished, save this file as well as the HUD file as TowerDefenseHUD in
the same folder.

20. Now that we have our files saved, let's add in the functionality to adjust
the values at runtime. Go to Timeline at the bottom of our Flash toolbar
and select the first frame of Layer 1 (where there is a black circle inside the
Timeline tab), then right-click and select Actions.

21. On selecting Actions, another code window will come up. Fill that window
with the following code:
//Import events so that we can have something happen every frame
import flash.events.*;
//Add an event to happen every frame
stage.addEventListener(Event.ENTER_FRAME, Update);
function Update(evt:Event):void
{
 // Every frame we want to set the variables to
 // what we set them in Kismet
 cash.text = "$" + String(playerCash);
 // The wave number that we are at

Finishing Touches

[106]

 hudWaveNumber.text = String(waveNumber);
 // The times an enemy can hit our tower before we loose
 hudLives.text = String(lives);
 // If we have info to tell the player (Game Over) we can give
 // it here
 hudInfoText.text = infoText;
 // Let the player know the progress that he is making
 waveProgress.text = killedEnemies + "/" + totalEnemies;
 // The bar will fill as the player kills enemies but we don't
 // want to divide by zero so we just use a small number for
 //the scale
 if(totalEnemies> 0)
 waveBar.scaleX = killedEnemies/totalEnemies;
 else
 waveBar.scaleX = 0.01;
}

22. Then save your file and run it with the Scaleform launcher by navigating to
Window | Other Windows | Scaleform Launcher and then selecting Test
with: GFxMediaPlayerD3d9.

At this point we have a working and functional HUD system after we do some
simple code implementation within Kismet. At this point, we are also done with
Flash and can start the implementation within our actual UDK game!

Chapter 4

[93]

Creating the main menu into UDK
Now that we have our content, let's bring it in! Perform the following steps:

1. UDK can only import Flash files that are within a specific folder. Inside your
file browser, go to the folder that contains .fla and .as files that we created
earlier. In that folder you should see a file with a .swf extension. Copy that
file and go to your UDK folder at UDKGame\Flash\ and create a new folder
called TDGame. Inside that folder, paste the .swf Flash movie files.

2. Start up UDK again. Open up the content browser and click on the Import
button. Find the movie files and click on OK. You'll notice that the Import
dialog already sets the package name to TDGame, so just click on OK and
save this package.

3. Now, the first thing we are going to do is to create the main menu level. First
create a new level by navigating to File | New Level. From the menu that
pops up, select Blank Map.

Finishing Touches

[108]

4. Now we still need to spawn a hero, so first right-click on the image of the
box on the left toolbar under Brushes. Once you get to the menu, check the
Hallow option and then click on Build. Now click on Add from the CSG
Menu to create an area where our player can spawn. Finally, move the
camera inside our newly-created box and then right-click on the ground
and navigate to Add Actor | Add PlayerStart.

5. With TowerDefenseMM movie selected, open up Kismet. Create a
level-loaded event by right-clicking and navigating to New Event |
Level Loaded. To the right of that, create an Open GFx Movie action by
right-clicking and navigating to New Action | GFx UI | Open GFx Movie.

6. Create a player variable for Player Owner by right-clicking and navigating
to New Variable | Player | Player, and in the Properties tab uncheck the
All Players option.

Chapter 4

[93]

7. Create a new object variable for Movie Player by right-clicking on the pink
arrow and navigating to Create New Object Variable. Left-click on the
action to see its properties and with TowerDefenseMM Swf Movie selected
in the content browser, click on the green arrow in the Movie property.

8. Connect Loaded and Visible from the Level Loaded event to In of the Open
GFx Movie action.
This will open the movie with the level and will show it on our player's screen.

9. Next, create an FSCommand event by right-clicking and navigating to New
Event | GFx UI | FSCommand. In the Movie option, select the same movie
that we did previously. In the FSCommand property, type playGame, what we
called in Flash as the argument for FSCommand.

Finishing Touches

[110]

10. To the right of the FsCommand event, create a Console Command action by
right-clicking and navigating to New Action | Misc | Console Command.
Inside the [0] property, fill the open levelname option, where level name is
the name of your game level, which in my case is Chapter04_TDGame, and
create a Player variable for the Target. Connect Out of FsCommand to In of
the Console Command action.

11. Build your project by navigating to Build | Build All. Save your
game by navigating to File | Save and run our game by navigating
to Play | In Editor.

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Chapter 4

[93]

And with that our main menu is now fully functional! As of now, our button will
not open a level due to the fact that the editor can't do it and that we haven't actually
created the game's final map. However, if we opened the level inside of proper UDK,
and the level name we stated exists, we'd head over to our next place.

Now that's great, but we still have one final thing to do, that is to bring the HUD into
our actual game. Perform the following steps:

1. Now, open up the game that we finished at the end of the previous chapter.
2. With the TowerDefenseHUDmovie selected in the content browser, open up

Kismet. Find the level-loaded event we created earlier with the Console
Command beside it for the third-person perspective. To the right of that,
create an Open GFx Movie action by right-clicking and navigating to New
Action | GFx UI | Open GFx Movie.

3. Create a player variable for Player Owner by right-clicking and navigating
to New Variable | Player | Player, and in Properties uncheck the All
Players option.

Finishing Touches

[112]

4. Create a new object variable for Movie Player by right-clicking on the
pink arrow and navigating to Create New Object Variable. Left-click on
the action to see its properties and with SwfMovie selected in the content
browser, click on the green arrow in the Movie property. Connect Out from
the Console Command action to In of the Open GFx Movie action.

This is much like our previous section's Kismet, which will open the movie
so that we can use it for different actions.

5. Next, each variable that we have created inside our Document Class will
need to have its own variable inside of our Kismet. I created a comment
(wrap) and pasted the variables inside its field. Then, for each variable, I
created a global variable as you can see in the following screenshot:

Chapter 4

[93]

6. Add a .1 second delay after the success of the Open GFx Movie action. So
we give the movie a chance to load before we overwrite its data. The next
step will be setting these variables. Besides the Open GFx Movie action,
create a GFx SetVariable action (New Action | GFx UI | GFx SetVariable)
and connect it from Success to In selecting the new GFx SetVariable action.
Set the variable to TowerDefenseHUD.playerCash. Connect Value to our
playerCash variable and connect the Movie Player variable to Movie
Player from Open GFx Movie.

Finishing Touches

[114]

7. Once completed, do the same thing for all of the other variables that you
have created. When you are finished, you should have something that looks
like the following screenshot:

8. Now that we have initialized the variables, we will need to change them
when they are needed to be changed. Go into Kismet and find the part in
our Kismet where we incremented our wave number. From there, create a
new Named Variable (New Variable | Named Variable) and give it the
name waveNumber. Replace the connections from the previously created
waveNumber and save.

9. Now create a GFx SetVariable action to connect to after we add one to the
wave number. Connect Movie Player to the variable we created earlier
in the Open GFx Movie action and Value to the waveNumber variable.
Set the variable as TowerDefenseHUD.waveNumber.

Chapter 4

[93]

Variables will not be updated to our Flash side if we do not call GFx
SetVariable because we set the text in the HUD based off of those values.

10. Next find all references to baseHealth and change its value to lives.
11. Similarly add GFx SetVariable to the end of it, updating its data on the

HUD. After creating the Subtract Int event for lives, create a new GFx
SetVariable event with the variable being TowerDefenseHUD.lives in
order to update the HUD with the change.

Finishing Touches

[116]

12. Whenever an enemy is created, we want the player to know about it. So after
Actor Factory is called, we are going to increment our totalEnemies value
by one using an Add Int action with itself as IntResult and then using GFx
SetVariable in order to update the values in the Scaleform file.

13. Next, whenever an enemy is killed or gets destroyed, we want to increment
our enemiesKilled number. To do this, we will create a new event for Pawn
Death (New Event | Pawn | Death).

14. Connect to the event the same Add Int | GFx SetVariable combo that we
used previously for the variable enemiesKilled and playerCash with the
variables being increased by 1 and 50 respectively.

Chapter 4

[93]

15. Now, after creating an enemy and incrementing the totalEnemies variable,
create a new Attach to Event action (New Action | Event | Attach to Event)
with the Target being the Spawned variable from Actor Factory and the
Event to be the Death event that we just created. This means whenever an
enemy that we spawn dies, we will gain money and increase the number of
enemies that we killed.

Finishing Touches

[118]

16. We also want the number to increase when they get destroyed. So, after we
decrement our lives variable and set it, connect Out of the GFx SetVariable
to the beginning of the Death event with the first GFx SetVariable.

At the end of the code, we check to see if the player lost all of his lives where
we had a Play Announcement action, but now let's delete that and replace it
with something from our newly created HUD. I would like to replace it with
a GFx SetVariable action changing our infoText to say Game Over.

17. After the GFx SetVariable action, create a delay of 0.5 seconds. Afterwards,
create a Console Command to connect to it. Make a Player variable to
connect to the Target variable and inside the properties of the Console
Command, type quit in the first box for command. Now whenever the
player loses all of his lives, he will see the Game Over text for a short
period and the game will end.

Chapter 4

[93]

18. Build your project by navigating to Build | Build All. Save your game
by navigating to File | Save As with the same level name as the open
levelname command you created earlier. Now run your game by
navigating to Play | In Editor.

Finishing Touches

[120]

And with that both our main menu and our HUD are now fully functional! Yes, there
are plenty of other things we can do to extend or alter the gameplay, but it's a good
idea to create a game that is uniquely your own. Note that, as of now, our button in
the main menu will not open a level, due to the fact that the Editor can't do it; but
we'll fix that shortly.

Cooking and packaging our game
At this point, you have all the beginnings of an amazing game. Once you are finished
with your version of the game, you want to make it easy for people to download
and play it; that's what packaging and cooking are for. Cooking makes the content
consumer ready by compressing textures and doing a ton of different things to make
the game ready to be installed on other systems, similar to a final compile. Cooking
will also combine all your content packages into just a few files, a process that will
also protect your content. It is impossible, or at least difficult, to extract things out
of a cooked and combined package.

With that being said, let's get started! Perform the following steps:

1. Let's go back to the ini files and fix up some of them. Close the editor.
You cannot change the ini files while the editor is running!

2. Open up DefaultEngine.ini. There you should see the text
Map=UDKFrontEnd.udk.
Change UDKFrontEnd.udk into our main menu level name instead. This will
make it load your level by default. Thereafter, find the following code:
LocalMap=UDKFrontEnd.udk

And then perform the same steps, do the same thing as before.

3. You are done. Now select the UDKEngine.ini file and delete it. Doing
this will force the engine to create a new UDKEngine.ini based on
DefaultEngine.ini. Since you just modified the default ini, it will create a
modified UDKEngine.ini with your changes in it. If you double-click on the
UDK.exe file, you can verify that it loads your level.

4. To kick off the process, open up the UnrealFrontEnd.exe program, which is
located in your Binaries folder of your UDK install.

Chapter 4

[93]

5. Once you double-click on the icon, you can notice the field Maps to cook.
Clear out this list and then add both of your levels here. At the Launch Map
tab, check the Override Default option and select to use our main menu level
as the starting point.

6. Next, we will want to enable Package Game so that we can create an installer
for our game. To do this, go to the Package Game drop-down menu and
select Step Enabled.

7. Finally, click on the Start button and wait for it to finish up. Once you get
to the Package Game section, it will ask you some questions on what your
game's name is and a shorter name it can go by.

8. The content in this folder is what will be distributed to the consumer. Now
look in the main directory and you will find your consumer-ready-packaged
game with the installer. Congrats! Your game is completed.

Finishing Touches

[122]

Taking the project to the next level
Our game is well on its way to being something special, but there are some things
we could still add to make it even better! How about you take some time and try to
complete the following:

• Add in a victory condition to the game, such as when we've reached wave 10,
stop spawning enemies. If the player kills all of the enemies, he wins!

• Right now if you press Esc and exit the game you are brought to the default
UDK menu. Overwrite this behavior through Kismet with a Key Pressed event.

• Have towers cost money in order to purchase them. This can easily be
done by using Compare Int with your cash and as much you want to
have towers cost.

• For those more interested in Scaleform or how to create more advanced
projects, feel free to check out my previous book, Mastering UDK
Game Development, also available from Packt Publishing, which has
two additional chapters devoted to it.

Summary
And here we are! It's taken a bit of a time, but we've made it! Our game is now
complete and we have a packaged version that we can distribute to people easily!
Let's go through what we accomplished this chapter in which we did the following:

• Set up Flash for working with Scaleform
• Created a simple main menu screen
• Designed and implemented an HUD for gameplay
• Imported the files we created into UDK
• Finally got our game packaged using the Unreal Frontend

Chapter 4

[93]

And from nothing to start with, let's take one last look at what we created:

I hope this book has inspired you to make games of your very own and gets you to a
place where you are comfortable with making games within UDK. Game on!

Index
Symbols
.as file 107
.fla file 107
.swf file 107

A
Access ObjectList action 41
ActionScript class 104
Actions object 29
Actor Classes 69
Actor Classes window 34, 54
Actor Factory 116
Actor Factory action 36-38, 42
Add Int action 42
Adobe

URL 92
AI (Artificial Intelligence) 44
Align to Stage option 95
All Players option 108, 111
Attach to Event action 58, 117

B
base

damaging, by enemies 44-51
baseHealth variable 48

C
Class variable 97
Collision option 36
Compare Int 38
Compare Int condition 49
Compare Objects action 46, 61

Conditions object 29
Console Command 25, 111, 118
Console Command action 29, 110, 112
Console Command event 31
Content Browser window 52, 53, 69
Create New Float Variable 40
Create New Object Variable 109, 112
CSG Add button 11

D
Delay node 40
Delay variable 29
Destination connector 39
Destroy action 46, 47
Destroyed event 58
Distance field 102
Drag Grid Snap 11
Drop Shadow filter 102

E
enemies

damaging, base 44-51
spawning 33-44

environment
detailing 67
in-level boundaries, adding 80-86
materials, applying 69-73
staircases, placing 73-79
weapons, spawning 86-89

Epic's UDN
URL 8

Events object 29
Export in frame 1 option 103

[126]

F
Finished output 39
First Person Shooter (FPS) 31
Flash

obtaining 92
setting up 92
URL 92

for loop 38
FSCommand 99
FSCommand event 109
FSCommand property 109

G
game

cooking 120, 121
packaging 120, 121

gameButton 93
Geometry mode 14
Geometry Mode button 13
Get Location and Rotation action 60
GFx SetVariable action 113, 118
GFx SetVariable event 115
Glow filter 95
Go to Builder Brush button 20
Grid snapping 12

H
Heads Up Display. See HUD
Hidden option 53
HUD

about 91
creating 100-106

hudInfoText 104
hudLives 103

I
Import button 107
information, classifying

Kismet, advantages 29
Kismet, disadvantages 30
Kismet primer 28, 29

ini file 120
in-level boundaries

adding 80-86

input 28
Instigator action 29
Instigator output 45, 46
Int action 42
Int Counter 37, 40

K
Kismet

about 24, 25
advantages 30
disadvantages 30

Kismet primer
about 28
sequence object, parts 28

L
Level Loaded event 41, 109
lift off

preparing 8
lives variable 118
Log action 50
Look At connector 39

M
marquee selection 13
materials

applying 69-73
Max Trigger Count property 45, 55
menu

creating 92-99
creating, into UDK 107-120

MovementSpeedModifier variable 39
Move To Actor action 39, 40
Movie option 109
Movie Player variable 113

N
Named Variable 114
Name field 64, 93

O
object

deleting 9
Object action 58

[127]

ObjectList object 36
OK button 93
Open GFx Movie action 112, 113
open levelname option 110
Out output 40, 42
output 28
Output Object connector 41
Oval tool 97
Over frame 94
Override Default option 121

P
Package field 64
Packages window 69
PathNode 34
Play Announcement action 49, 118
playButton 95
playerCash variable 113
Players Only option 45
Player Spawned event 44
Player variable 46, 118
playText 96
prefabs 63
project

moving, to next level 122
Projectile Class property 61

R
restore viewports button 9

S
Scaleform

installing, URL 92
Scaleform file 116
SCG (Switch Counter Groups) 64
Selection tool 97
sequence objects

Actions object 29
Conditions object 29
Events object 29
Variables object 29

Set Object Variable action 58
Spawned connector 39

Spawned output 36
Spawned variable 117
Spawn Projectile action 61
stair

creating 74-79
placing 73-79

Start button 121
Style section 103
Subtract Int action 47
Subtract Int event 115

T
Target variable 118
TDGame 107
Text tool 95, 102
thrusters

engaging 9-27, 63-66
Toggle Hidden event 59
totalEnemies variable 117
Touch event 45
tower

creating 52-63
spawning 52-63

TowerDefenseHUDmovie 111
TowerDefensePKG package 64
Trigger_1 Used event 59
Trigger option 54
TriggerVolume_0 Touch event 46, 57, 58
Turret Target variable 57-60

U
UDK

about 7, 69
main menu, creating 107-120
URL 8

UDKEngine.ini file 120
UDK.exe file 120
Unreal Development Kit. See UDK
UnrealFrontEnd.exe 120
UTPawn 36
UTPickupFactory 87
UT Sample Game option 8
utweapon 87

[128]

V
Variables object 29
Var Name property 42, 47
Volumes option 21

W
waveNumber variable 42, 114
WeaponFactories 87
weapons

spawning 86-89

Thank you for buying
Getting Started with UDK

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Unreal Development Kit Game
Programming with UnrealScript
Beginner's Guide
ISBN: 978-1-84969-192-5 Paperback: 466 pages

Create games beyond your imagination with the
Unreal Development Kit

1. Dive into game programming with
UnrealScript by creating a working
example game

2. Learn how the Unreal Development Kit is
organized and how to quickly set up your
own projects

3. Recognize and fix crashes and other errors that
come up during a game's development

Unreal Development Kit Game
Design Cookbook
ISBN: 978-1-84969-180-2 Paperback: 544 pages

Over 100 recipes to accelerate the process of learning
game design with UDK

1. An intermediate, fast-paced UDK guide for
game artists

2. The quickest way to face the challenges of game
design with UDK

3. All the necessary steps to get your artwork up
and running in game

Please check www.PacktPub.com for information on our titles

UDK iOS Game Development
Beginner's Guide
ISBN: 978-1-84969-190-1 Paperback: 280 pages

Create your own third-person shooter game using
the Unreal Development Kit to create your own game
on Apple's iOS devices, such as the iPhone, iPad, and
iPod Touch

1. Learn the fundamentals of the Unreal Editor to
create gameplay environments and interactive
elements

2. Create a third-person shooter intended for
the iOS and optimize any game with special
considerations for the target platform

3. Take your completed game to Apple's App
Store with a detailed walkthrough on how to
do it

Grome Terrain Modeling with
Ogre3D, UDK, and Unity3D
ISBN: 978-1-84969-939-6 Paperback: 162 pages

Create massive terrains and export them to the most
pupular game engines

1. A comprehensive guide for terrain creation

2. Step-by-step walkthrough of Grome 3.1
and toolset

3. Export terrains to Unity3D, UDK, and Ogre3D

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Augmenting the UDK
	What we will achieve
	Before we begin
	Block out simple-level geometry
	Prepare for lift off
	Engaging thrusters
	Objective complete
	Supplemental information
	Defining Kismet

	Using a third-person perspective
	Engage thrusters
	Objective complete
	Classified information
	Kismet primer
	Benefits and drawbacks of using Kismet

	Summary

	Chapter 2: Tower Defense
	Spawning enemies
	Enemies damaging the base
	Creating/Spawning a single tower
	Multiple towers made easy - prefabs
	Engage thrusters

	Summary

	Chapter 3: Detailing Environments
	Applying materials
	Placing staircases
	Adding in-level boundaries
	Spawning weapons
	Objective complete
	Summary

	Chapter 4: Finishing Touches
	Obtaining Flash
	Setting up Flash

	Creating our main menu
	Creating our HUD
	Creating the main menu into UDK
	Cooking and packaging our game
	Taking the project to the next level
	Summary

	Index

