
Ken Kousen

 Gradle
 Recipes for
Android
MASTER THE NEW BUILD SYSTEM FOR ANDROID

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Ken Kousen

Gradle Recipes for Android
Master the New Build System for Android

www.allitebooks.com

http://www.allitebooks.org

978-1-491-94702-9

[LSI]

Gradle Recipes for Android
by Ken Kousen

Copyright © 2016 Gradleware, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Heather Scherer and Brian Foster
Production Editor: Colleen Lobner
Copyeditor: Colleen Toporek
Proofreader: Kim Cofer

Indexer: Angela Howard
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

June 2016: First Edition

Revision History for the First Edition
2016-06-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491947029 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Gradle Recipes for Android, the cover
image of a great potoo, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491947029
http://www.allitebooks.org

This book is dedicated to my wife Ginger: my best friend, my partner,
and the love of my life.

Twenty-five years is just the beginning.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Foreword. vii

Preface. ix

1. Gradle for Android Basics. 1
1.1 Gradle Build Files in Android 1
1.2 Configure SDK Versions and Other Defaults 6
1.3 Executing Gradle Builds from the Command Line 9
1.4 Executing Gradle Builds from Android Studio 15
1.5 Adding Java Library Dependencies 18
1.6 Adding Library Dependencies Using Android Studio 23
1.7 Configuring Repositories 26

2. From Project Import to Release. 29
2.1 Setting Project Properties 29
2.2 Porting Apps from Eclipse ADT to Android Studio 33
2.3 Porting Apps from Eclipse ADT Using Eclipse 37
2.4 Upgrading to a Newer Version of Gradle 40
2.5 Sharing Settings Among Projects 43
2.6 Signing a Release APK 45
2.7 Signing a Release APK Using Android Studio 49

3. Build Types and Flavors. 53
3.1 Working with Build Types 53
3.2 Product Flavors and Variants 56
3.3 Merging Resources 60
3.4 Flavor Dimensions 67
3.5 Merging Java Sources Across Flavors 71

v

www.allitebooks.com

http://www.allitebooks.org

4. Custom Tasks. 77
4.1 Writing Your Own Custom Tasks 77
4.2 Adding Custom Tasks to the Build Process 80
4.3 Excluding Tasks 83
4.4 Custom Source Sets 85
4.5 Using Android Libraries 88

5. Testing. 97
5.1 Unit Testing 97
5.2 Testing with the Android Testing Support Library 103
5.3 Functional Testing with Robotium 108
5.4 Activity Testing with Espresso 112

6. Performance and Documentation. 119
6.1 Performance Recommendations 119
6.2 DSL Documentation 125

A. Just Enough Groovy to Get By. 129

B. Gradle Basics. 139

Index. 147

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Foreword

This is the book we needed. We were about halfway through writing Head First
Android Development when Google switched IDEs. At the time, pretty much every‐
one was using Eclipse with the Android Development Toolkit installed. But now,
Google was pushing for developers to switch to the Idea-based Android Studio.

We’re used to this kind of thing—most technical authors are. Some manufacturer
startup switches from some new shiny thing to some even newer, even shinier thing.
It happens all the time. You rewrite all your example code, update all the images, drop
the features that are now irrelevant, and include what’s most useful from the new
technology. But what made the switch from Eclipse to Android Studio different was
that under the hood the new IDE had a much, much more powerful engine.

Android Studio used Gradle for building, packaging, and deploying code. Other than
knowing the name, neither of us had any experience of using Gradle directly. It was
kind of like Maven, but rather than using lengthy XML configuration files, it used a
sturdy and concise scripting language: Groovy.

We replaced all the screenshots, and updated the text in the seven or so chapters that
were already written and then moved on to write the rest of the book. But it soon
became clear that the process of creating applications with Gradle was subtly, but sig‐
nificantly different. Pretty much anything that you could do from the IDE was sud‐
denly possible from the command line, which meant we could automate our build
pipelines. It took just a few key presses to try out different library versions, or differ‐
ent build flavors. And because everything is just code, we could write the builds in the
same way that we wrote the rest of the app.

Learning Gradle is now an important task for every Android developer. It’s up there
with knowing Java, or understanding the Activity lifecycle. But learning Gradle
through trial-and-error can sometimes be a painful process. And that’s where this
book comes in. In these pages, you’ll find a wealth of useful recipes that will help you
avoid the commonest build problems. Whether you’re setting up a testing system,
automating your signed APK production, or just trying to speed up your build pipe‐

vii

www.allitebooks.com

http://www.allitebooks.org

line, this book is for you. Ken’s lively writing style and realistic examples will keep you
coming back again and again. With this book, Ken has shown that not only is he the
go-to guy for Groovy, he’s now also the go-to guy for Gradle.

—Dawn and David Griffiths
Authors, Head First

Android Development
April 20th, 2016

viii | Foreword

www.allitebooks.com

http://www.allitebooks.org

Preface

About the Book
This book contains recipes for working with the Gradle build system for Android
projects. Gradle is one of the most popular tools for building applications from the
Java world, and is expanding into other languages like C++. The Android team at
Google adopted Gradle as the preferred build system for Android in the spring of
2013, and its use has grown steadily since then.

Since Gradle comes from the Groovy ecosystem, many Android developers may not
be familiar with it. Groovy, however, is very easy for existing Java developers to learn.
The purpose of this book is to provide examples that help you use Gradle to accom‐
plish the most common build tasks for Android applications.

All code examples use Android SDK version 23, with emulators from either Marsh‐
mallow (Android 6) or Lollipop (Android 5.*). Android Studio versions 2.0 or 2.1
(beta) were used as the primary IDE, which included Gradle version 2.10 or above as
the build tool.

Prerequisites
The Gradle plugin for Android involves at least some knowledge of Java, Groovy,
Gradle, and Android. Since entire books are available for each of those topics, they
can’t all be covered in detail here.

The text in this book is aimed chiefly at developers who are comfortable with
Android development. Very little Android background is provided, though complete
code listings of all examples are available through the book’s GitHub repository.
Understanding Android means understanding Java, so that background is assumed
as well.

Very little knowledge of either Groovy or Gradle is assumed, however. Appendix A
contains a quick summary of Groovy syntax and techniques. Groovy concepts are

ix

also reviewed as they come up in various recipes. Appendix B has basic Gradle infor‐
mation, but the recipes themselves discuss Gradle in detail throughout the book.

Beyond those limitations, the book is designed to be as self-contained as possible,
with links to external references (especially documentation) provided wherever
appropriate.

The book also makes extensive use of Android Studio, as it is now the only officially
supported IDE for Android development. Android Studio provides views and tools
for Gradle, which are illustrated in many recipes. While the book is not designed to
be a tutorial on Android Studio, its relevant features are shown wherever possible,
and if that helps the reader learn more about the IDE, so much the better.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

x | Preface

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/kousen/GradleRecipesForAndroid.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Gradle Recipes for Android by Ken
Kousen (O’Reilly). Copyright 2016 Gradleware, Inc., 978-1-4919-4702-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐

Preface | xi

https://github.com/kousen/GradleRecipesForAndroid
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

1 That was a joke. Honestly. But if you’d like to update the website now, I’m sure nobody will mind.

mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/gradle-recipes-for-android.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
The author would like to thank several members of Gradle, Inc. for their gracious
help and assistance, including Hans Dockter, Luke Daley, Rooz Mohazabbi, and
Cédric Champeau, among others. They are part of the reason both Gradle the tech‐
nology and Gradle the company have such a bright future.

I also need to thank Xavier Ducrohet, head of the Android Studio team at Google as
well as head of the Android plugin project. His hard work made both the IDE and the
plugin a joy to use. I’m also glad he and his team haven’t found time to update the
online documentation sufficiently, leaving a great opening for this book.1

xii | Preface

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com
http://bit.ly/gradle-recipes-for-android
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

As a regular member of the No Fluff, Just Stuff conference series, I need to thank Jay
Zimmerman for the opportunity to present on both Gradle- and Android-related
topics many times over the years. I’m very happy to be part of No Fluff speaker com‐
munity, many of whom have become good friends. I’m especially thinking of Nate
Schutta, Raju Gandhi, Venkat Subramaniam, Neal Ford, Dan Hinojosa, Brian Sletten,
Michael Carducci, and Craig Walls, but I could add another dozen names to that list
without a problem. I’m also sure I’ll hear about the people I didn’t mention at my next
No Fluff conference after they get around to reading this.

I’m also grateful to Matthew McCullough and Tim Berglund, the authors of the previ‐
ous books of this series. Both men are friendly and helpful, and I’m honored to have
my book included with theirs.

The reviewers for this book helped improve it considerably. I have to call out specifi‐
cally the contributions of Andrew Reitz and James Harmon, who provided great
insights into the technical parts of the book as well as its readability.

I have to mention my editors at O’Reilly, Meghan Blanchette and Brian Foster.
Meghan was key in launching the book and helping edit the early stages, and Brian
took over from her and shepherded it throughout the rest of the process. I’m grateful
to the rest of the team at O’Reilly who helped throughout, even if I only vaguely
understood the massive details that go into bringing a book to its final published
form.

Even though it is ostensibly a competitor, the book Gradle for Android by Kevin Pel‐
grims (Packt Publishing) is excellent and taught me a lot. My book takes a different,
recipe-based approach and is, of course, newer and therefore more up-to-date, but if
you can do so I honestly recommend getting both.

Most of all I need to thank my wife Ginger and my son Xander for all the support
they’ve given me over the years. I’m sorry again for getting involved in a book project
so soon after finishing the previous one, and I promise I’ll wait a while before starting
the next one (probably).

Thank you, too, for reading the book. I hope you find it useful. Any errors or omis‐
sions are, of course, my own.

Preface | xiii

CHAPTER 1

Gradle for Android Basics

Android applications are built using the open source Gradle build system. Gradle is a
state-of-the-art API that easily supports customizations and is widely used in the Java
world. The Android plug-in for Gradle adds a wide range of features specific to
Android apps, including build types, flavors, signing configurations, library projects,
and more.

The recipes in this book cover the range of Gradle capabilities when applied to
Android projects. Since the Android Studio IDE uses Gradle under the hood, special
recipes are dedicated to it as well.

Hopefully the recipes in this book will help you configure and build whatever
Android applications you desire.

1.1 Gradle Build Files in Android
Problem
You want to understand the generated Gradle build files for a new Android applica‐
tion.

Solution
Create a new Android project using Android Studio and review the files settings.gra‐
dle, build.gradle, and app/build.gradle.

1

Discussion
Android Studio is the only officially supported IDE for Android projects. To create a
new Android project using Android Studio, use the “Start a new Android Studio
project” wizard (Figure 1-1).

Figure 1-1. Android Studio Quick Start

The wizard prompts you for a project name and domain. You can use the Quick Start
wizard to start a new Android Studio project named My Android App in the
oreilly.com domain, as shown in Figure 1-2.

From here, select only the “Phone and Tablet” option and add a blank activity with
the default name, MainActivity.

The name and type of activity does not affect the Gradle build files.

The resulting “Project” view in “Android” mode is shown in Figure 1-3, where the rel‐
evant Gradle files are highlighted.

2 | Chapter 1: Gradle for Android Basics

Figure 1-2. Create New Project wizard

Figure 1-3. Project structure (Android view)

The project layout in the default (Project) view is shown in Figure 1-4.

1.1 Gradle Build Files in Android | 3

Figure 1-4. Project structure (Project view)

Android projects are multiproject Gradle builds. The settings.gradle file shows which
subdirectories hold their own subprojects. The default file contents are shown in
Example 1-1.

Example 1-1. settings.gradle

include ':app'

The include statement indicates that the app subdirectory is the only additional sub‐
project. If you add an Android Library project, it too will be added to this file.

The top-level Gradle build file is in Example 1-2.

Example 1-2. Top-level build.gradle file

// Top-level build file where you can add configuration options
// common to all subprojects/modules.

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:2.0.0'

4 | Chapter 1: Gradle for Android Basics

 // NOTE: Do not place your application dependencies here; they belong
 // in the individual module build.gradle files
 }
}

allprojects {
 repositories {
 jcenter()
 }
}

task clean(type: Delete) {
 delete rootProject.buildDir
}

The Gradle distribution does not include Android functionality by default. Google
provides an Android plug-in for Gradle, which allows easy configuration of Android
projects. The buildscript block in the top-level build file tells Gradle where to
download that plug-in.

As you can see, by default the plug-in is downloaded from jcenter, which means the
Bintray JCenter Artifactory repository. Other repositories are supported (especially
mavenCentral(), the default Maven repository), but JCenter is now the default. All
content from JCenter is served over a CDN with a secure HTTPS connection. It also
tends to be faster.

The allprojects section indicates that the top-level project and any subprojects all
default to using the jcenter() repository to resolve any Java library dependencies.

Gradle allows you to define tasks of your own and insert them into the directed acy‐
clic graph (DAG), which Gradle uses to resolve task relationships. Here, a clean task
has been added to the top-level build. The type: Delete part indicates that the new
task is a customized instance of the built-in Delete task from Gradle. In this case, the
task removes the build directory from the root project, which defaults to a build
folder at the top level.

The Gradle build file for the app subproject is shown in Example 1-3.

Example 1-3. Gradle build file for the app subproject

apply plugin: 'com.android.application'

android {
 compileSdkVersion 23
 buildToolsVersion "23.0.3"

 defaultConfig {
 applicationId "com.kousenit.myandroidapp"
 minSdkVersion 19

1.1 Gradle Build Files in Android | 5

 targetSdkVersion 23
 versionCode 1
 versionName "1.0"
 }
 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
 'proguard-rules.pro'
 }
 }
}

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 testCompile 'junit:junit:4.12'
 compile 'com.android.support:appcompat-v7:23.3.0'
}

The apply functionality in Gradle adds the Android plug-in to the build system,
which enables the android section Domain Specific Language (DSL) configuration.
This section is discussed in detail in Recipe 1.2.

The dependencies block consists of three lines. The first, fileTree dependency,
means that all files ending in .jar in the libs folder are added to the compile classpath.

The second line tells Gradle to download version 4.12 of JUnit and add it to the “test
compile” phase, meaning that JUnit classes will be available in the src/androidTest/
java source tree, as well as the (optional) src/test/java tree, which can be added for
pure unit tests (i.e., those that do not involve the Android API).

The third line tells Gradle to add version 23.3.0 of the appcompat-v7 jar files from
the Android Support Libraries. Note that the -v7 means support for Android applica‐
tions back to version 7 of Android, not version 7 of the support library itself. The
support library is listed as a compile dependency, so all of its classes are available
throughout the project.

See Also
Links to all the relevant documentation sites are in Recipe 6.2. Dependencies are dis‐
cussed in Recipe 1.5 and repositories are discussed in Recipe 1.7.

1.2 Configure SDK Versions and Other Defaults
Problem
You want to specify the minimum and target Android SDK versions and other default
properties.

6 | Chapter 1: Gradle for Android Basics

Solution
In the module Gradle build file, set values in the android block.

Discussion
The top-level Android build file adds the Android plug-in for Gradle to your project,
via the buildscript block. Module build files “apply” the plug-in, which adds an
android block to the Gradle DSL.

Inside the android block, you can specify several project properties, as shown in
Example 1-4.

Example 1-4. Android block in build.gradle

apply plugin: 'com.android.application'

android {
 compileSdkVersion 23
 buildToolsVersion "23.0.3"

 defaultConfig {
 applicationId "com.kousenit.myandroidapp"
 minSdkVersion 19
 targetSdkVersion 23
 versionCode 1
 versionName "1.0"
 }
 compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_7
 targetCompatibility JavaVersion.VERSION_1_7
 }
}

Regular Java projects use a java plug-in, but Android projects use the
com.android.application plug-in instead.

Do not apply the Java plug-in. This will cause build errors. Use the
Android plug-in instead.

The android block is the entry point for the Android DSL. Here you must specify the
compilation target using compileSdkVersion and the build tools version via build
ToolsVersion. Both of these values should be assigned to the most recent available
version, as they are backward compatible and include all current bug fixes.

1.2 Configure SDK Versions and Other Defaults | 7

The defaultConfig block inside android shows several properties:

applicationId

The “package” name of the application, which must be unique in the Google Play
store. This value can never change during the life of your app; changing it will
result in your app being treated as a brand new application, and existing users
will not see changes as an update. Prior to the move to Gradle, this was the pack
age attribute of the root element of the Android Manifest. The two can now be
decoupled.

minSdkVersion

The minimum Android SDK version supported by this application. Devices ear‐
lier than this will not see this application when accessing the Google Play store.

targetSdkVersion

The version of Android intended for this application. Android Studio will issue a
warning if this is anything other than the latest version, but you’re free to use any
version you like.

versionCode

An integer representing this version of your app relative to others. Apps normally
use this during the upgrade process.

versionName

A string representing the release version of your app, shown to users. Normally
in the form of a <major>.<minor>.<version> string, like most projects.

Prior to the switch to Gradle, the minSdkVersion and buildToolsVersion properties
were specified in the Android Manifest as attributes of a <uses-sdk> tag. That
approach is now deprecated, as the values there are overridden by the values in the
Gradle build file.

The compileOptions section shows that this app expects to use JDK version 1.7.

In Android Studio, the Project Structure dialog shows the values in graphical form,
shown in Figure 1-5.

The defaultConfig values are on the Flavors tab in the Project Structure window
(Figure 1-6).

Documentation for the defaultConfig block, as with other elements of the DSL, can
be found in the DSL reference.

8 | Chapter 1: Gradle for Android Basics

http://bit.ly/gradle-dsl

Figure 1-5. Project Structure view in Android Studio

Figure 1-6. Properties inside the android block

See Also
Other child elements of android, like buildTypes or productFlavors, are discussed
in Recipes Recipe 3.1, Recipe 3.2, Recipe 3.4, and more. The documentation links are
given in Recipe 6.2.

1.3 Executing Gradle Builds from the Command Line
Problem
You want to run Gradle tasks from the command line.

Solution
From the command line, either use the provided Gradle wrapper or install Gradle
and run it directly.

1.3 Executing Gradle Builds from the Command Line | 9

1 At the time of this writing, the current version of Gradle is 2.12. You can change the distributionUrl to
include any legal Gradle version number.

Discussion
You do not need to install Gradle in order to build Android projects. Android Studio
comes with a Gradle distribution (in the form of a plug-in) and includes dedicated
features to support it.

The term “Gradle wrapper” refers to the gradlew script for Unix and gradlew.bat
script in the root directory of an Android application, where the ending “w” stands
for “wrapper.”

The purpose of the Gradle wrapper is to allow a client to run Gradle without having
to install it first. The wrapper uses the gradle-wrapper.jar and the gradle-
wrapper.properties files in the gradle/wrapper folder in the application root to start the
process. A sample of the properties file is shown in Example 1-5.

Example 1-5. Keys and values in gradle-wrapper.properties

#Mon Dec 28 10:00:20 PST 2015
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists
distributionUrl=https\://services.gradle.org/distributions/gradle-2.10-all.zip

The distributionUrl property indicates that the wrapper will download and install
version 2.10 of Gradle.1 After the first run, the Gradle distribution will be cached in
the zipStorePath folder under the zipStoreBase directory and then be available for
all subsequent executions of Gradle tasks.

The wrapper is used at the command line simply by executing the ./gradlew com‐
mand on Unix or the gradlew.bat command on Windows (Example 1-6).

Example 1-6. Output from running the build task

> ./gradlew build
Downloading
https://services.gradle.org/distributions/gradle-2.10-all.zip
...
.... (download of Gradle 2.10)
...
Unzipping /Users/kousen/.gradle/wrapper/dists/3i2gob.../gradle-2.10-all.zip
to /Users/kousen/.gradle/wrapper/dists/gradle-2.10-all/3i2gob...
Set executable permissions for:
/Users/kousen/.gradle/wrapper/dists/gradle-2.10-all/3i2gob.../gradle-2.10/bin/gradle

10 | Chapter 1: Gradle for Android Basics

Starting a new Gradle Daemon for this build (subsequent builds will be faster).
:app:preBuild UP-TO-DATE
:app:preDebugBuild UP-TO-DATE
... lots of tasks ...
:app:compileLint
:app:lint
Wrote HTML report to file:.../MyAndroidApp/app/build/outputs/lint-results.html
Wrote XML report to .../MyAndroidApp/app/build/outputs/lint-results.xml
:app:preDebugUnitTestBuild UP-TO-DATE
:app:prepareDebugUnitTestDependencies
... lots of tasks ...
:app:test
:app:check
:app:build

BUILD SUCCESSFUL

Total time: 51.352 secs // most of which was the download

In this book, examples show the ./gradlew command for Unix-
based operating systems. For Windows, simply replace that with
gradlew or gradlew.bat without the dot-slash.

The initial download can take a few minutes, depending on your Internet connection
speed. It only needs to be done once, however. After that, subsequent builds will use
the cached version.

You can run any supported Gradle task, including your own custom tasks, at the
command line. Compiled code will be found in the app/build folder. Generated apk
(Android package) files are found in the app/build/outputs/apk directory.

The tasks command from Gradle shows what tasks are available in the build, as
shown in Example 1-7.

Example 1-7. Output from tasks

:tasks

--
All tasks runnable from root project
--

Android tasks

androidDependencies - Displays the Android dependencies of the project.
signingReport - Displays the signing info for each variant.
sourceSets - Prints out all the source sets defined in this project.

1.3 Executing Gradle Builds from the Command Line | 11

Build tasks

assemble - Assembles all variants of all applications and secondary packages.
assembleAndroidTest - Assembles all the Test applications.
assembleDebug - Assembles all Debug builds.
assembleRelease - Assembles all Release builds.
build - Assembles and tests this project.
buildDependents - Assembles and tests this project and all projects that depend on it.
buildNeeded - Assembles and tests this project and all projects it depends on.
compileDebugAndroidTestSources
compileDebugSources
compileDebugUnitTestSources
compileReleaseSources
compileReleaseUnitTestSources
mockableAndroidJar - Creates a version of android.jar that's suitable for unit tests.

Build Setup tasks

init - Initializes a new Gradle build. [incubating]
wrapper - Generates Gradle wrapper files. [incubating]

Help tasks

components - Displays the components produced by root project 'MyAndroidApp'.
dependencies - Displays all dependencies declared in root project 'MyAndroidApp'.
dependencyInsight - Displays the insight into a specific dependency in root
 project 'MyAndroidApp'.
help - Displays a help message.
model - Displays the configuration model of root project 'MyAndroidApp'. [incubating]
projects - Displays the subprojects of root project 'MyAndroidApp'.
properties - Displays the properties of root project 'MyAndroidApp'.
tasks - Displays the tasks runnable from root project 'MyAndroidApp'
 (some of the displayed tasks may belong to subprojects).

Install tasks

installDebug - Installs the Debug build.
installDebugAndroidTest - Installs the android (on device) tests for the Debug build.
uninstallAll - Uninstall all applications.
uninstallDebug - Uninstalls the Debug build.
uninstallDebugAndroidTest - Uninstalls the android (on device) tests for the build.
uninstallRelease - Uninstalls the Release build.

Verification tasks

check - Runs all checks.
clean - Deletes the build directory.
connectedAndroidTest - Installs and runs instrumentation tests for all flavors
 on connected devices.
connectedCheck - Runs all device checks on currently connected devices.
connectedDebugAndroidTest - Installs and runs the tests for debug connected devices.
deviceAndroidTest - Installs and runs instrumentation tests using all Providers.

12 | Chapter 1: Gradle for Android Basics

deviceCheck - Runs all device checks using Device Providers and Test Servers.
lint - Runs lint on all variants.
lintDebug - Runs lint on the Debug build.
lintRelease - Runs lint on the Release build.
test - Run unit tests for all variants.
testDebugUnitTest - Run unit tests for the debug build.
testReleaseUnitTest - Run unit tests for the release build.

Other tasks

clean
jarDebugClasses
jarReleaseClasses
lintVitalRelease - Runs lint on just the fatal issues in the Release build.

To see all tasks and more detail, run gradlew tasks --all

To see more detail about a task, run gradlew help --task <task>

BUILD SUCCESSFUL

While this may seem like a lot of tasks, you actually use a small number in practice.
When you add multiple build types and flavors to your project, the number will go up
considerably.

Additional features and command-line flags
You can run multiple tasks by separating them by spaces, as in Example 1-8.

Example 1-8. Executing more than one task

> ./gradlew lint assembleDebug

Note that repeating the same task name only executes it once.

You can exclude a task by using the -x flag, as shown in Example 1-9.

Example 1-9. Excluding the lintDebug task

> ./gradlew assembleDebug -x lintDebug

The --all flag on the tasks command shows all the tasks in the project as well as the
dependencies for each task.

The output from gradle tasks --all can be very long.

1.3 Executing Gradle Builds from the Command Line | 13

You can abbreviate task names from the command line by providing just enough let‐
ters to uniquely determine it (Example 1-10).

Example 1-10. The dependency tree for each configuration

> ./gradlew anDep
:app:androidDependencies
debug
\--- com.android.support:appcompat-v7:23.3.0
 +--- com.android.support:support-vector-drawable:23.3.0
 | \--- com.android.support:support-v4:23.3.0
 | \--- LOCAL: internal_impl-23.3.0.jar
 +--- com.android.support:animated-vector-drawable:23.3.0
 | \--- com.android.support:support-vector-drawable:23.3.0
 | \--- com.android.support:support-v4:23.3.0
 | \--- LOCAL: internal_impl-23.3.0.jar
 \--- com.android.support:support-v4:23.3.0
 \--- LOCAL: internal_impl-23.3.0.jar

debugAndroidTest
No dependencies

debugUnitTest
No dependencies

release
\--- com.android.support:appcompat-v7:23.3.0
 +--- com.android.support:support-vector-drawable:23.3.0
 | \--- com.android.support:support-v4:23.3.0
 | \--- LOCAL: internal_impl-23.3.0.jar
 +--- com.android.support:animated-vector-drawable:23.3.0
 | \--- com.android.support:support-vector-drawable:23.3.0
 | \--- com.android.support:support-v4:23.3.0
 | \--- LOCAL: internal_impl-23.3.0.jar
 \--- com.android.support:support-v4:23.3.0
 \--- LOCAL: internal_impl-23.3.0.jar

releaseUnitTest
No dependencies

BUILD SUCCESSFUL

The camel-case notation (anDep for androidDependencies) works well, as long as the
resolution is unique (Example 1-11).

14 | Chapter 1: Gradle for Android Basics

www.allitebooks.com

http://www.allitebooks.org

Example 1-11. Not enough letters to be unique

> ./gradlew pro

FAILURE: Build failed with an exception.

* What went wrong:
Task 'pro' is ambiguous in root project 'MyAndroidApp'. Candidates are:
'projects', 'properties'.

The error message shows exactly what went wrong: pro is ambiguous, since it
matches both projects and properties. Just add another letter to make it unique.

Finally, if your build file is not called build.gradle, use the -b flag to specify the build
filename (Example 1-12).

Example 1-12. Using a nondefault build filename

> ./gradlew -b app.gradle

See Also
Appendix B gives a summary of Gradle installation and features beyond Android
projects. Recipe 1.5 discusses dependencies in the build file. Recipe 4.3 illustrates
excluding tasks from the build process.

1.4 Executing Gradle Builds from Android Studio
Problem
You want to run Gradle from inside Android Studio.

Solution
Use the Gradle view to execute tasks.

Discussion
When you create an Android project, Android Studio generates Gradle build files for
a multiproject build (discussed in Recipe 1.1). The IDE also provides a Gradle view
that organizes all of its tasks, as shown in Figure 1-7.

1.4 Executing Gradle Builds from Android Studio | 15

Figure 1-7. Gradle view inside Android Studio

Gradle tasks are organized into categories, like android, build, install, and other,
as Figure 1-7 illustrates.

To execute a particular task, double-click the entry in the Gradle window. The result
is shown in Figure 1-8.

Double-clicking any task executes that task on the command line, which is shown in
the Run window. Every time you run a particular task, a run configuration is created
and stored under the Run Configurations menu, so running it again simply requires
another double-click.

16 | Chapter 1: Gradle for Android Basics

Figure 1-8. Running Gradle inside Android Studio

The execution seen in the Run window shows once again that the IDE is essentially
just a frontend on Gradle. Any execution, from build to test to deployment, is actually
executing Gradle tasks at the command line.

Android Studio also provides a Gradle Console view, as shown in Figure 1-9.

Figure 1-9. Gradle Console view in Android Studio

See Also
To run Gradle tasks from the command line using the included wrapper, refer to
Recipe 1.3.

1.4 Executing Gradle Builds from Android Studio | 17

1.5 Adding Java Library Dependencies
Problem
You want to add additional Java libraries to your Android app.

Solution
Add the group, name, and version to the dependencies block in the build.gradle file
included in your application module.

Discussion
By default, Android applications come with two build.gradle files: one at the top-level,
and one for the application itself. The latter is normally stored in a subdirectory
called app.

Inside the build.gradle file in the app directory, there is a block called dependencies.
Example 1-13 shows a sample from a new Android application generated by Android
Studio.

Example 1-13. Default dependencies in a new Android project

dependencies {
 compile fileTree(include: ['*.jar'], dir: 'libs')
 testCompile 'junit:junit:4.12'
 compile 'com.android.support:appcompat-v7:23.3.0'
}

Basic syntax
Gradle supports several different ways of listing dependencies. The most common is
to use quotes with colon-separated group, name, and version values.

Gradle files use Groovy, which supports both single- and double-
quoted strings. Double quotes allow interpolation, or variable sub‐
stitution, but are otherwise identical. See Appendix A for details.

Each dependency is associated with a configuration. Android projects include
compile, runtime, testCompile, and testRuntime configurations. Plugins can add
additional configurations, and you can also define your own.

The full syntax for a dependency calls out the group, name, and version numbers
explicitly (Example 1-14).

18 | Chapter 1: Gradle for Android Basics

Example 1-14. Full syntax for dependencies

testCompile group: 'junit', name: 'junit', version: '4.12'

The result of Example 1-14 is entirely equivalent to that in Example 1-15.

Example 1-15. Shortcut syntax for dependencies

testCompile 'junit:junit:4.12'

This is the shortcut form used in the default build file.

It is legal, though not recommended, to specify a version number with a plus sign, as
shown in Example 1-16.

Example 1-16. Version number as a variable (not recommended)

testCompile 'junit:junit:4.+'

This tells Gradle that any version of JUnit greater than or equal to 4.0 is required to
compile the project’s tests. While this works, it makes the build less deterministic and
therefore less reproducible. Explicit version numbers also protect you from changes
in later versions of a particular API.

Favor explicit version numbers for dependencies. This protects you
from later changes in dependent libraries and makes your build
reproducible.

If you want to add a set of files to a configuration without adding them to a reposi‐
tory, you can use the files or fileTree syntax inside the dependencies block
(Example 1-17).

Example 1-17. File and directory dependencies

dependencies {
 compile files('libs/a.jar', 'libs/b.jar')
 compile fileTree(dir: 'libs', include: '*.jar')
}

The last line uses the same syntax as that employed in the default Gradle build file.

Next, Gradle needs to know where to search to resolve dependencies. This is done
through a repositories block.

1.5 Adding Java Library Dependencies | 19

Synchronizing the project
Android Studio monitors the Gradle build files and offers to synchronize new
changes automatically.

For example, consider adding the Retrofit 2 project to build.gradle in the app project.

As Figure 1-10 shows, after any change to the build.gradle file, Android Studio offers
to synchronize the project. This downloads any required libraries and adds them to
the project.

Figure 1-10. Android Studio offering to synchronize project dependencies

After clicking the SycNow link, the downloaded libraries appear in the External
Libraries section of the project window (Figure 1-11).

Figure 1-11. External Libraries

In this case, the retrofit dependency also added the okhttp and okio libraries as
transitive dependencies, as shown in Figure 1-12.

If you miss your opportunity to click the Sync Now link, Android Studio provides a
special icon in the toolbar for the same purpose, as well as a menu item.

20 | Chapter 1: Gradle for Android Basics

Figure 1-12. Sync Project with Gradle Files button and menu item

Transitive dependencies
There’s an old joke that defines Maven as a DSL for downloading the Internet. If that
is true for Maven, it’s also true for Gradle. Both download transitive dependencies,
which are libraries that themselves depend on other libraries.

In regular Java projects, the Gradle command dependencies can be used to see the
transitive dependencies. Android projects use the androidDependencies command
instead.

Consider the dependencies block from Example 1-13. Running the androidDependen
cies task gives the output shown in Example 1-18.

Example 1-18. Seeing Android dependencies

> ./gradlew androidDependencies

:app:androidDependencies
debug
\--- com.android.support:appcompat-v7:23.3.0
 +--- com.android.support:support-vector-drawable:23.3.0
 | \--- com.android.support:support-v4:23.3.0
 | \--- LOCAL: internal_impl-23.3.0.jar
 +--- com.android.support:animated-vector-drawable:23.3.0
 | \--- com.android.support:support-vector-drawable:23.3.0
 | \--- com.android.support:support-v4:23.3.0
 | \--- LOCAL: internal_impl-23.3.0.jar
 \--- com.android.support:support-v4:23.3.0
 \--- LOCAL: internal_impl-23.3.0.jar

debugAndroidTest
No dependencies

1.5 Adding Java Library Dependencies | 21

debugUnitTest
No dependencies

release
\--- com.android.support:appcompat-v7:23.3.0
 +--- com.android.support:support-vector-drawable:23.3.0
 | \--- com.android.support:support-v4:23.3.0
 | \--- LOCAL: internal_impl-23.3.0.jar
 +--- com.android.support:animated-vector-drawable:23.3.0
 | \--- com.android.support:support-vector-drawable:23.3.0
 | \--- com.android.support:support-v4:23.3.0
 | \--- LOCAL: internal_impl-23.3.0.jar
 \--- com.android.support:support-v4:23.3.0
 \--- LOCAL: internal_impl-23.3.0.jar

releaseUnitTest
No dependencies

The debug and release builds both use the appcompat-v7 library from the Android
Support libraries. That library depends on the support-v4 library, among others,
which uses an internal jar from the Android SDK.

Managing transitive dependencies manually sounds like a good idea until you
actually try to do it. The complexity grows quickly and doesn’t scale well. Gradle is
very good at resolving versioning issues among dependencies.

Still, Gradle does provide a syntax for including and excluding individual libraries.

Gradle follows transitive dependencies by default. If you want to turn that off for a
particular library, use the transitive flag (Example 1-19).

Example 1-19. Disabling transitive dependencies

dependencies {
 runtime group: 'com.squareup.retrofit2', name: 'retrofit', version: '2.0.1',
 transitive: false
}

Changing the value of the transitive flag to false prevents the download of transi‐
tive dependencies, so you’ll have to add whatever is required yourself.

If you only want a module jar, without any additional dependencies, you can specify
that as well (Example 1-20).

Example 1-20. Full syntax for module jar only

dependencies {
 compile 'org.codehaus.groovy:groovy-all:2.4.4@jar'
 compile group: 'org.codehaus.groovy', name: 'groovy-all',

22 | Chapter 1: Gradle for Android Basics

 version: '2.4.4', ext: 'jar'
}

Shortcut syntax

Full version

The shortcut notation uses the @ sign, while the full version sets an ext (for exten‐
sion) value.

You can also exclude a transitive dependency in the dependencies block
(Example 1-21).

Example 1-21. Excluding dependencies

dependencies {
 androidTestCompile('org.spockframework:spock-core:1.0-groovy-2.4') {
 exclude group: 'org.codehaus.groovy'
 exclude group: 'junit'
 }
}

In this case, the spock-core project excludes the Groovy dependency and the JUnit
library, both of which are includes by other means.

See Also
Recipe 1.6 shows how to add dependencies through the Android Studio IDE. Recipe
1.7 discusses repositories, which are used to resolve dependencies. Recipe 4.5 dis‐
cusses the situation where one module depends on another, as with Android libraries.

1.6 Adding Library Dependencies Using Android Studio
Problem
Rather than edit the build.config file directly, you want to add dependencies using the
Android Studio IDE.

Solution
Use the Project Structure section of Android Studio, with the Dependencies tab.

1.6 Adding Library Dependencies Using Android Studio | 23

Discussion
Experienced Gradle developers are comfortable editing the build.gradle file directly,
but the IDE does not give you a lot of code assistance in doing so. The Project Struc‐
ture display, however, gives a graphical view of the build file contents.

Access the Project Structure menu item under the File menu to see the overall display.
Then select the module containing your application (app by default) as shown in
Figure 1-13.

Figure 1-13. Project Structure UI (shown earlier in Figure 1-5)

Selecting app in the Modules section shows the default page, with the Properties tab
highlighted. This shows, among other things, the Compile SDK Version and Build
Tools Version.

Click the Dependencies tab to see any existing dependencies, along with the ability to
add new ones (Figure 1-14).

Figure 1-14. Dependencies tab in Project Structure

The “Scope” column allows you to specify the configuration where the dependency is
needed. Current choices are:

• Compile
• Provided
• APK

24 | Chapter 1: Gradle for Android Basics

• Test compile
• Debug compile
• Release compile

Clicking the plus button at the bottom of the window offers to add three different
types of dependencies, as shown in Figure 1-15.

Figure 1-15. Adding dependencies pop-up

File dependencies allow you browse the filesystem for individual jar files. Module
dependencies refer to other modules in the same project, which is discussed in the
recipe for library projects.

The “Library Dependencies” option brings up a dialog box that allows you to search
Maven Central for a particular dependency. By default it shows all the optional sup‐
port libraries and Google Play services (Figure 1-16).

Figure 1-16. Choosing library dependencies

Enter a string in the search box and click the search icon (the magnifying glass in ver‐
sions prior to 2.0 and the three dots in AS 2.0 and above) to find the full Maven coor‐
dinates of the dependency (Figure 1-17).

Clicking OK when you’re done triggers a Gradle project sync, which downloads the
dependency and adds it to your project.

1.6 Adding Library Dependencies Using Android Studio | 25

Figure 1-17. Finding the Gson library

See Also
Recipe 1.5 reviews how to add dependencies by editing the Gradle build files directly.
Recipe 1.7 is about configuring Gradle repositories that are used to resolve the depen‐
dencies.

1.7 Configuring Repositories
Problem
You need Gradle to accurately resolve any library dependencies.

Solution
Configure the repositories block in your Gradle build file.

Discussion

Declaring Repositories

The repositories block tells Gradle where to find the dependencies. By default,
Android uses either jcenter() or mavenCentral(), which represent the default Bin‐
tray JCenter repository and the public Maven Central Repository, respectively
(Example 1-22).

Example 1-22. The default JCenter repository

repositories {
 jcenter()
}

26 | Chapter 1: Gradle for Android Basics

This refers to the JCenter repository located at https://jcenter.bintray.com. Note that it
uses HTTPS for the connection.

There are two shortcuts available for Maven repositories. The mavenCentral() syntax
refers to the central Maven 2 repository at http://repo1.maven.org/maven2. The maven
Local() syntax refers to your local Maven cache (Example 1-23).

Example 1-23. Built-in Maven repositories in the repositories block

repositories {
 mavenLocal()
 mavenCentral()
}

Local Maven cache

Public Maven Central respository

Any Maven repository can be added to the default list using a maven argument with a
url block (Example 1-24).

Example 1-24. Adding a Maven repo from a URL

repositories {
 maven {
 url 'http://repo.spring.io/milestone'
 }
}

Password-protected repositories use a credentials block, as Example 1-25 (taken
from the Gradle user guide) shows.

Example 1-25. Accessing a Maven repo requiring credentials

repositories {
 maven {
 credentials {
 username 'username'
 password 'password'
 }
 url 'http://repo.mycompany.com/maven2'
 }
}

You can move the explicit username and password values to a file called gradle.prop‐
erties. Recipe 2.1 discusses this in detail.

Ivy and local repositories are added using a similar syntax.

1.7 Configuring Repositories | 27

https://jcenter.bintray.com
http://repo1.maven.org/maven2

Example 1-26. Using an Ivy repository

repositories {
 ivy {
 url 'http://my.ivy.repo'
 }
}

If you have files on the local filesystem, you can use a directory as a repository with
the flatDir syntax (Example 1-27).

Example 1-27. Using a local directory as a repository

repositories {
 flatDir {
 dirs 'lib'
 }
}

This is an alternative to adding the files explicitly to the dependencies block with
files or fileTree.

You often will add multiple repositories to your build. Gradle will search each in turn,
top down, until it resolves all of your dependencies.

See Also
Recipe 1.5 and Recipe 1.6 are about configuring the dependencies themselves.

28 | Chapter 1: Gradle for Android Basics

CHAPTER 2

From Project Import to Release

2.1 Setting Project Properties
Problem
You want to add extra properties to your project, or externalize hardcoded values.

Solution
Use the ext block for common values. To remove them from the build file, put prop‐
erties in the gradle.properties file, or set them on the command line using the -P flag.

Discussion
Gradle build files support property definitions using a simple ext syntax, where in
this case “ext” stands for “extra.” This makes it easy to define a variable value once and
use it throughout the file.

These properties can be hardcoded into the build file if you wish. Example 2-1 is a
sample from a Gradle build file from the Android Annotations project.

Example 2-1. Sample “extra” property

ext {
 def AAVersion = '4.0-SNAPSHOT' // change this to your desired version
}

dependencies {
 apt "org.androidannotations:androidannotations:$AAVersion"
 compile "org.androidannotations:androidannotations-api:$AAVersion"
}

29

http://androidannotations.org

Normal Groovy idioms apply here, meaning that the variable AAVersion is untyped
but takes on a String value at assignment, and that the variable is interpolated into
the two Groovy string dependencies.

The use of the def keyword here implies that this is a local variable in the current
build file. Defining the variable without def (or any other type) adds the variable as
an attribute of the project object, making it available in this project as well as any of
its subprojects.

An untyped variable in the ext block adds properties to the
Project instance associated with the build.

What if, however, you wished to remove the actual value from the build file? Con‐
sider a Maven repository with login credentials, as shown in Example 2-2.

Example 2-2. Maven repo with credentials

repositories {
 maven {
 url 'http://repo.mycompany.com/maven2'
 credentials {
 username 'user'
 password 'password'
 }
 }
}

Hardcoded values

You probably don’t want to keep the actual username and password values in the
build file. Instead, add them to the gradle.properties file in the project root, as shown
in Example 2-3.

Example 2-3. gradle.properties file

login='user'
pass='my_long_and_highly_complex_password'

Now the credentials block in Example 2-2 can be replaced with variables, as in
Example 2-4.

30 | Chapter 2: From Project Import to Release

Example 2-4. Revised Maven repo with explicit credentials removed

repositories {
 maven {
 url 'http://repo.mycompany.com/maven2'
 credentials {
 username login
 password pass
 }
 }
}

Variables supplied from gradle.properties or on the command line

You also have the option of setting the value of properties on the command line, by
using the -P argument to gradle (Example 2-5).

Example 2-5. Running gradle with the -P flag

> gradle -Plogin=me -Ppassword=this_is_my_password assembleDebug

To demonstrate what happens when you use multiple approaches, consider a build
file as in Example 2-6.

Example 2-6. Making properties dynamic

ext {
 if (!project.hasProperty('user')) {
 user = 'user_from_build_file'
 }
 if (!project.hasProperty('pass')) {
 pass = 'pass_from_build_file'
 }
}

task printProperties() {
 doLast {
 println "username=$user"
 println "password=$pass"
 }
}

Checking if project properties exist

Custom task to print property values

2.1 Setting Project Properties | 31

Executing the printProperties task without any external configuration gives the
values set in the ext block (Example 2-7).

Example 2-7. Output from running Gradle with ext values

> ./gradlew printProperties
:app:printProperties
username=user_from_build_file
password=pass_from_build_file

If the values are set in the gradle.properties file in the project root, the result is differ‐
ent (Examples 2-8 and 2-9).

Example 2-8. Using gradle.properties to set user and pass values

user=user_from_gradle_properties
pass=pass_from_gradle_properties

Example 2-9. Output from running Gradle with properties from gradle.properties

> ./gradlew printProperties
:app:printProperties
username=user_from_gradle_properties
password=pass_from_gradle_properties

The values can also be set from the command line, which takes top precedence
(Example 2-10).

Example 2-10. Running Gradle with properties set from command line

> ./gradlew -Puser=user_from_pflag -Ppass=pass_from_pflag printProperties
:app:printProperties
username=user_from_pflag
password=pass_from_pflag

The combination of “extras” block, properties file, and command-line flag will hope‐
fully give you enough options to accomplish whatever you need.

See Also
Custom tasks are discussed in Recipe 4.1. Setting up repositories is part of Recipe 1.7.

32 | Chapter 2: From Project Import to Release

2.2 Porting Apps from Eclipse ADT to Android Studio
Problem
You want to import an existing Eclipse ADT project to Android Studio.

Solution
Android Studio provides an “import” wizard that rewrites existing projects.

Discussion
Figure 2-1 shows the link on the Android Studio welcome page for importing a
project from either Eclipse ADT or Gradle.

Figure 2-1. Android Studio welcome page showing the import project option

The link brings up a view where you can navigate to an existing Eclipse ADT project.
Figure 2-2 shows such a project. It uses the old project structure, where res, src, and
AndroidManifest.xml are all direct children of the root.

After choosing a destination directory (the wizard does not overwrite the original
project), the wizard offers to convert jar files in the lib folder into dependencies in
the Gradle build file, among other options, as shown in Figure 2-3.

2.2 Porting Apps from Eclipse ADT to Android Studio | 33

Figure 2-2. Select Eclipse ADT project

Figure 2-3. Import project options

34 | Chapter 2: From Project Import to Release

www.allitebooks.com

http://www.allitebooks.org

The wizard then restructures the project and builds it. By default, an import-
summary.txt window shows the major changes. Example 2-11 shows a sample.

Example 2-11. Project Import Summary text file

ECLIPSE ANDROID PROJECT IMPORT SUMMARY
======================================

Ignored Files:

The following files were *not* copied into the new Gradle project; you
should evaluate whether these are still needed in your project and if
so manually move them:

* proguard-project.txt

Moved Files:

Android Gradle projects use a different directory structure than ADT
Eclipse projects. Here's how the projects were restructured:

* AndroidManifest.xml => app/src/main/AndroidManifest.xml
* assets/ => app/src/main/assets
* res/ => app/src/main/res/
* src/ => app/src/main/java/

Next Steps:

You can now build the project. The Gradle project needs network
connectivity to download dependencies.

Bugs:

If for some reason your project does not build, and you determine that
it is due to a bug or limitation of the Eclipse to Gradle importer,
please file a bug at http://b.android.com with category
Component-Tools.

(This import summary is for your information only, and can be deleted
after import once you are satisfied with the results.)

Other than the ProGuard file recommendation, the rest of the changes are mostly
moving files around.

The generated top-level gradle.build file is the same as when you create a new project,
as in Example 2-12.

2.2 Porting Apps from Eclipse ADT to Android Studio | 35

Example 2-12. Top-level generated build file

sub-projects/modules.
buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'com.android.tools.build:gradle:2.0.0'
 }
}

allprojects {
 repositories {
 jcenter()
 }
}

The app folder contains the original project, with a result similar to Example 2-13.

Example 2-13. App-level build file

apply plugin: 'com.android.application'

android {
 compileSdkVersion 17
 buildToolsVersion "23.0.3"

 defaultConfig {
 applicationId "com.example.tips"
 minSdkVersion 8
 targetSdkVersion 17
 }

 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
 'proguard-rules.txt'
 }
 }
}

(Note that this particular project didn’t have any additional jar files, so no added
dependencies block was required.)

Finally, a settings.gradle file was generated (Example 2-14), which shows that the app
project is the only included module.

36 | Chapter 2: From Project Import to Release

Example 2-14. Generated settings.gradle file

include ':app'

While the AndroidManifest.xml file has not been changed, opening it in Android Stu‐
dio does give you a couple of warnings (Example 2-15).

Example 2-15. Warnings in AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.tips"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="8"
 android:targetSdkVersion="17" />

 <application
 <!-- no problems --!>
 </application>
</manifest>

Multiple warnings

Android Studio warns you that the targetSdkVersion is set to an older version of the
Android SDK. It also points out that the values of minSdkVersion and targetSdkVer
sion are overridden by their counterparts in the Gradle build file (Example 1-3).

Since the Gradle build wins, the best approach is to simply delete the uses-sdk tag
from the manifest, and then change the values in the build.gradle file if desired.

See Also
Recipe 4.4 discusses the sourceSets property in Gradle. Recipe 2.3 shows how the
ADT plug-in in Eclipse can generate a Gradle build file mapping the older structure.

2.3 Porting Apps from Eclipse ADT Using Eclipse
Problem
You want to export an existing Eclipse ADT project using Gradle.

Solution
The Eclipse ADT plug-in can generate a Gradle build for you.

2.3 Porting Apps from Eclipse ADT Using Eclipse | 37

Discussion
The Android Developer Tools (ADT) plug-in for Eclipse was the primary IDE for
building Android projects before the Gradle build process was introduced in 2013.
The ADT project is now deprecated in favor of Android Studio, but legacy projects
do, of course, exist.

The ADT plug-in can generate a Gradle build file for you based on the existing
project structure and dependencies.

The preferred way to port a project from ADT to Android Studio is
to use the import wizard from Android Studio. The export process
shown here is no longer recommended.

Since this is no longer the preferred porting mechanism, it is being shown here
because you may encounter such projects in practice. It’s also a good example of a
Gradle sourceSet mapping, which shows how to map the old project structure to the
new Gradle-based layout.

The Eclipse ADT structure put all source code in a directory called src under the
project root. Resources were also in a res folder in the root. The Android manifest
itself was also in the root directory. All of these locations changed in the new project
structure.

The ADT plug-in can generate the Gradle build for you. Example 2-16 shows a sec‐
tion from one of those conversions.

Example 2-16. Mapping the old project structure to the new one

android {
 compileSdkVersion 18
 buildToolsVersion "17.0.0"

 defaultConfig {
 minSdkVersion 10
 targetSdkVersion 17
 }

 sourceSets {
 main {
 manifest.srcFile 'AndroidManifest.xml'
 java.srcDirs = ['src']
 resources.srcDirs = ['src']
 aild.ext.srcDirs = ['src']
 renderscript.srcDirs = ['src']
 res.srcDirs = ['res']

38 | Chapter 2: From Project Import to Release

 assets.srcDirs = ['assets']
 }
 }
}

You can see based on the SDK versions that this was done some time ago, but the
interesting part is the mapping done inside the sourceSets block. The new project
structure expects src/main/java for source code. The existing project has an src folder
in the root of the project. Therefore the sourceSets block maps src/main/java to src
using the srcDirs property. In fact, all the folders have been mapped from the old
project structure to the new one using this mechanism.

What you’ll often see in these types of mappings is also a change for the tests folder
and build types, as in Example 2-17.

Example 2-17. Changing the test and build type roots

sourceSets {
 main {
 manifest.srcFile 'AndroidManifest.xml'
 java.srcDirs = ['src']
 resources.srcDirs = ['src']
 aidl.srcDirs = ['src']
 renderscript.srcDirs = ['src']
 res.srcDirs = ['res']
 assets.srcDirs = ['assets']
 }

 // Move the tests to tests/java, tests/res, etc...
 instrumentTest.setRoot('tests')

 // Move the build types to build-types/<type>
 // For instance, build-types/debug/java, ...
 // This moves them out of them default location under src/<type>/...
 // which would conflict with src/ being used by the main source set.
 // Adding new build types or product flavors should be accompanied
 // by a similar customization.
 debug.setRoot('build-types/debug')
 release.setRoot('build-types/release')
}

The comments in the build file were actually added by the Eclipse ADT tool as part of
the conversion process.

See Also
Recipe 4.4 discusses the sourceSets property in more detail.

2.3 Porting Apps from Eclipse ADT Using Eclipse | 39

2.4 Upgrading to a Newer Version of Gradle
Problem
You need to change the version of Gradle used by your application.

Solution
Generate a new wrapper, or modify the properties file directly.

Discussion
Android Studio includes a Gradle distribution. When you create a new Android
application, the IDE automatically generates a gradlew script for Unix and a gra‐
dlew.bat file for Windows. These are the “wrapper” scripts that allow you to use Gra‐
dle without manually installing it first. Instead, the wrapper scripts download and
install a version of Gradle for you.

Software projects last a long time, however, and Gradle releases new versions on a
regular basis. You may wish to update the Gradle version used in your project, either
for performance reasons (each new version is faster) or because new features were
added to the project. To do so, you have two primary options:

1. Add a wrapper task to your build.gradle file and generate new wrapper scripts
2. Edit the distributionUrl value in gradle-wrapper.properties directly

The first option works best if your project already loads with the current version of
Gradle. By default, Gradle builds already include a so-called wrapper task, which you
can see by running the gradle tasks command, as in Example 2-18.

Example 2-18. The wrapper task in the list of tasks

> ./gradlew tasks

--
All tasks runnable from root project
--

// ...

Build Setup tasks

wrapper - Generates Gradle wrapper files. [incubating]

// ...

40 | Chapter 2: From Project Import to Release

BUILD SUCCESSFUL

Built-in wrapper task

The gradle wrapper command supports a --gradle-version argument. Therefore,
one way to regenerate the wrapper with the desired version is shown in
Example 2-19.

Example 2-19. Specifing the wrapper version on the command line

> ./gradlew wrapper --gradle-version 2.12
:wrapper

BUILD SUCCESSFUL
Total time: ... sec

The other option is to explicitly add the wrapper task to the (top-level) build file, and
specify a value for gradleVersion, as shown in Example 2-20.

Example 2-20. Explicit Gradle wrapper task in top-level build.gradle file

task wrapper(type: Wrapper) {
 gradleVersion = 2.12
}

With this change, running the ./gradlew wrapper task will generate the new wrap‐
per files.

Every once in a while, however, the existing wrapper is so old that Android Studio
refuses to sync with the existing the build files, making it impossible to run any tasks.
In that case, you can always go directly to the files that control the wrapper, which are
generated by the wrapper when it first runs.

In addition to the generated scripts gradlew and gradlew.bat, the wrapper relies on a
folder called gradle/wrapper and the two files included there, gradle-wrapper.jar and
gradle-wrapper.properties, as shown in Example 2-21.

Example 2-21. The Gradle wrapper files

gradlew
gradlew.bat
gradle/wrapper/
 gradle-wrapper.jar
 gradle-wrapper.properties

2.4 Upgrading to a Newer Version of Gradle | 41

The gradle-wrapper.properties file, shown in Example 2-22, contains the distribu
tionUrl property, which tells the wrapper where to download the needed Gradle ver‐
sion.

Example 2-22. Properties in the gradle-wrapper.properties file

#... date of most recent update ...
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists
distributionUrl=https\://services.gradle.org/distributions/gradle-2.12-bin.zip

Feed free to edit this file directly, changing the version number in the distribution
Url property to whatever you prefer. That should allow you to run the existing wrap‐
per scripts without a problem.

Upgrading Gradle with either the command-line flag or from the explicit wrapper
task adds only the binary distribution (note the bin value in the URL). Android Stu‐
dio will then offer to download the complete distribution, including sources, with a
prompt shown in Figure 2-4.

Figure 2-4. Android Studio offering to upgrade to the source distribution

When you click the link, the value in the distributionUrl property in gradle-
wrapper.properties changes to the all version, as shown in Example 2-23.

Example 2-23. Upgraded properties in the gradle-wrapper.properties file

#... date of most recent update ...
distributionBase=GRADLE_USER_HOME
distributionPath=wrapper/dists
zipStoreBase=GRADLE_USER_HOME
zipStorePath=wrapper/dists
distributionUrl=https\://services.gradle.org/distributions/gradle-2.12-all.zip

Distribution now uses the all version, which includes sources

If you miss the opportunity to click the upgrade link, you can always modify the file
directly, replacing bin with all in the URL.

42 | Chapter 2: From Project Import to Release

2.5 Sharing Settings Among Projects
Problem
You want to remove duplicated settings from multiple modules.

Solution
Use allprojects or subprojects blocks in your top-level Gradle build file.

Discussion
When you create a new Android project in Android Studio, the IDE creates a Gradle
multiproject build with two build files: one at the top level, and one in a module
called app. The top-level build.gradle file often has a block called allprojects, as in
Example 2-24.

Example 2-24. The allprojects block in the top-level Gradle build file

allprojects {
 repositories {
 jcenter()
 }
}

This block comes from the Gradle DSL and thus works for all Gradle-based projects,
not just Android projects. The allprojects property comes from the Project API in
Gradle, where it is a property of the org.gradle.api.Project class. The property
consists of a set containing the current project and all of its subprojects. There is also
a method of the same name, which allows you configure the current project and all of
its subprojects.

It is common in the Gradle API to have a property and a method
with the same name. The context determines which you are using.

The behavior is to apply the closure argument to each project returned by the allpro
jects collection, which for a default project means the top-level project and the app
module. In this case, it simply means that you don’t need to repeat the repositories
block in the app module, because it’s already set.

2.5 Sharing Settings Among Projects | 43

An alternative is to use a subprojects block. For example, if you have multiple
Android library projects, each will need to apply the library plug-in in their own
build files. If all of your subprojects are Android libraries, you can remove the dupli‐
cation by applying the plug-in at the top level, as in Example 2-25.

Example 2-25. Using a subprojects block in the top-level build file

subprojects {
 apply plugin: 'com.android.library'
}

As you might expect, the subprojects property returns the set of subprojects, and
the subprojects method applies the supplied closure to each of them.

Advanced considerations

If you check the documentation for the allprojects method in Project (see Recipe
6.2 for documentation links) using the Gradle DSL reference, you’ll find that the
method takes a reference of type org.gradle.api.Action as an argument.

More specifically, the signature for the allprojects method is given in
Example 2-26.

Example 2-26. The complete signature of the allprojects method in Project

void allprojects(Action<? super Project> action)

The documentation says that this method executes the given Action against this
project and each of its subprojects. Action<T> is an interface with a single method,
called execute, that takes a single generic argument, so the docs seem to imply that
you have to create a class that implements the Action interface, instantiate it, and
supply the result as an argument. In Java (prior to Java SE 8), this is often done as an
anonymous inner class (Example 2-27).

Example 2-27. Implementing allprojects in Java, using an anonymous inner class

project.allprojects(new Action<Project>() {
 void execute(Project p) {
 // do whatever you like with the project
 }
});

In Groovy, you can implement a single-method interface simply by supplying a clo‐
sure as an argument. The closure will then become the implementation of the
method. The Gradle implementation of the allprojects and subprojects methods
is to invoke the closure argument on each project in the collection.

44 | Chapter 2: From Project Import to Release

If you look at the block in Example 2-24, you can see the result: the code is providing
a closure to the allprojects method that says to configure the repositories block
to use jcenter() as its repository.

Note that Java SE 8 introduced lambdas that work in a similar fashion. Java 8 lambdas
can be assigned to so-called functional interfaces, which are interfaces containing only
a single, abstract method. Groovy has had closures from the beginning of the lan‐
guage.

Gradle 2.0 and above support Java SE 8. The Android SDK,
however, still does not, though some lambda capabilities are plan‐
ned for Android N as well as Android Studio version 2.1 that sup‐
port it.

See Also
More details can be found in the Gradle source code.

2.6 Signing a Release APK
Problem
You need to digitally sign an APK so it can be released to the Google Play store.

Solution
Use Java’s keytool command to create a certificate and configure its use in the signi
ngConfigs block of your Gradle build file.

Discussion
All Android package (APK) files need to be digitally signed before they are deployed.
By default, Android signs debug APKs for you, using a known key. To see this, you
can use the keytool command from Java.

By default, the debug keystore resides in a subdirectory called .android in your home
directory. The default name for the keystore is debug.keystore, and has a keystore
password of android. Example 2-28 shows how to list the default certificate.

2.6 Signing a Release APK | 45

http://github.com/gradle/gradle

Example 2-28. Listing the key in the debug keystore (Mac OS X)

> cd ~/.android
> keytool -list -keystore debug.keystore
Enter keystore password: ("android")

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

androiddebugkey, Feb 9, 2013, PrivateKeyEntry,
Certificate fingerprint (SHA1):
B7:39:B5:80:BE:A0:0D:6C:84:4F:A1:1F:4B:A1:00:14:12:25:DA:14

The keystore type is JKS, which stands for (naturally enough) Java KeyStore, used
for public and private keys. Java supports another type called JCEKS (Java Cryptogra‐
phy Extensions KeyStore), which can be used for shared keys, but isn’t used for
Android applications.

The keystore has a self-signed certificate with an alias of androiddebugkey, which is
used to sign debug APKs when they are deployed to connected devices or emulators.

To reset the debug keystore, simply delete the file debug.keystore. It
will be re-created next time you deploy an app.

You cannot deploy a release version of an app until you can sign it, which means gen‐
erating a release key. This also uses the keytool utility. A sample run is shown in
Example 2-29.

Example 2-29. Generating a release key

keytool -genkey -v -keystore myapp.keystore -alias my_alias
 -keyalg RSA -keysize 2048 -validity 10000 (all on one line)
Enter keystore password: (probably shouldn't use use "password")
Re-enter new password: (but if you did, type it again)
What is your first and last name?
 [Unknown]: Ken Kousen
What is the name of your organizational unit?
 [Unknown]:
What is the name of your organization?
 [Unknown]: Kousen IT, Inc.
What is the name of your City or Locality?
 [Unknown]: Marlborough
What is the name of your State or Province?

46 | Chapter 2: From Project Import to Release

 [Unknown]: CT
What is the two-letter country code for this unit?
 [Unknown]: US
Is CN=Ken Kousen, OU=Unknown, O="Kousen IT, Inc.", L=Marlborough,
 ST=CT, C=US correct?
 [no]: yes

Generating 2,048 bit RSA key pair and self-signed certificate (SHA256withRSA)
 with a validity of 10,000 days for: CN=Ken Kousen, OU=Unknown,
 O="Kousen IT, Inc.", L=Marlborough, ST=CT, C=US
Enter key password for <my_alias>
 (RETURN if same as keystore password):
[Storing myapp.keystore]

The RSA algorithm is used to generate the public/private keypair, of 2K size, signed
with the SHA256 algorithm, valid for 10,000 days (a bit over 27 years).

You could now use the jarsigner and zipalign tools to sign your APK, but it’s easier
to let Gradle do it.

As a child of the android closure, add a signingConfigs block, as shown in
Example 2-30.

Example 2-30. A signingConfigs block in the module build file

android {
 // ... other sections ...

 signingConfigs {
 release {
 keyAlias 'my_alias'
 keyPassword 'password'
 storeFile file('/Users/kousen/keystores/myapp.keystore')
 storePassword 'password'
 }
 }
}

You probably don’t want to put the passwords as hardcoded constants in the build
file. Fortunately, you can put them in the gradle.properties file or set them on the
command line. For details, see Recipe 2.1.

From the DSL documentation, the signingConfigs block delegates to an instance of
the SigningConfig class, which has the four commonly used properties listed:

keyAlias

The value used in the keytool when signing a particular key

keyPassword

A particular key’s password used during the signing process

2.6 Signing a Release APK | 47

storeFile

The disk file containing keys and certificates, generated by the keytool

storePassword

The password used for the keystore itself

There is also a storeType property (defaults to JKS, as shown in Example 2-29), but
that is rarely used.

To make use of the new configuration, add a signingConfig property to the release
build type (Example 2-31).

Example 2-31. Using a signing config in a release build

android {
 // ... other sections ...

 buildTypes {
 release {
 // ... other settings ...
 signingConfig signingConfigs.release
 }
 }
}

When you invoke the assembleRelease task from Gradle, the build will generate a
release APK in the app/build/outputs/apk folder (Example 2-32).

Example 2-32. Running the assembleRelease task

> ./gradlew assembleRelease
:app:preBuild UP-TO-DATE
:app:preReleaseBuild UP-TO-DATE
// ... lots of tasks ...
:app:zipalignRelease UP-TO-DATE
:app:assembleRelease UP-TO-DATE

BUILD SUCCESSFUL

kousen at krakatoa in ~/Documents/AndroIDstudio/MyAndroidApp
> ls -l app/build/outputs/apk
total 12088
-rw-r--r-- 1 kousen staff 1275604 Aug 24 15:05 app-debug.apk
-rw-r--r-- 1 kousen staff 1275481 Aug 26 21:04 app-release.apk

Note—and this is important—do not lose the keystore. If you do, you will not be
able to publish any updates to your app, since all versions must be signed with the
same key.

48 | Chapter 2: From Project Import to Release

All versions of an app must be signed with the same key. Otherwise
new versions will be treated as completely new apps.

Put your keystore in a safe place. Yes, you’re using self-signed certificates, but this is
not done for encryption purposes. It’s being used for integrity (guaranteeing that an
APK has not been modified) and nonrepudiation (guaranteeing that you are the only
one who could have signed it). If someone else gains access to your keystore, they
could sign other apps in your name.

See Also
Recipe 2.7 discusses the same process using Android Studio dialogs.

2.7 Signing a Release APK Using Android Studio
Problem
You want to use Android Studio to generate signing configurations and assign them
to build types.

Solution
The Build menu has options for generating signing configs, and the Project Structure
dialog has tabs for assigning them to build types and flavors.

Discussion
Android Studio allows you to generate a keystore using the Build → Generate Signed
APK menu option (Figure 2-5).

Figure 2-5. Generate Signed APK pop-up

2.7 Signing a Release APK Using Android Studio | 49

Clicking “Create new…” brings up a pop-up to specify the location of the keystore
and to generate a key pair (Figure 2-6).

Figure 2-6. New Key Store pop-up

If you choose an existing keystore, you can complete the passwords and alias to use
an existing key inside it or create a new one, as in Figure 2-7.

Figure 2-7. Using an existing keystore

Once a self-signed certificate has been generated, the Project Structure dialog can be
used to configure it for the current build. First, complete the values in the Signing tab,
as in Figure 2-8.

50 | Chapter 2: From Project Import to Release

Figure 2-8. The Signing tab

Then associate a signing config with a particular build type using the Build Types tab
(Figure 2-9).

Figure 2-9. Associating a signing config with a build type

A similar dialog can be used to sign particular flavors, which is dicussed in the recipe
on flavors.

See Also
Recipe 2.6 shows how to generate keys from the command line and how to edit the
relevant sections of the module build file directly.

2.7 Signing a Release APK Using Android Studio | 51

CHAPTER 3

Build Types and Flavors

3.1 Working with Build Types
Problem
You want to customize the debug and release build types, or create additional types of
your own.

Solution
The buildTypes block inside android is used to configure build types.

Discussion
A build type determines how an app is packaged. By default, the Android plug-in for
Gradle supports two different types of builds: debug and release. Both can be con‐
figured inside the buildTypes block inside of the module build file. The buildTypes
block from the module build file in a new project is shown in Example 3-1.

Example 3-1. Default buildTypes block from module build file

android {
 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
 'proguard-rules.pro'
 }
 }
}

53

The only build type shown in the example is the release build, but it is just as
easy to add a debug block as well if you want to configure the default settings. Either
block supports a range of properties. The complete set of properties and methods
can be found in the DSL reference for the com.android.build.gradle.inter
nal.dsl.BuildType class.

In the release block on the example, minifyEnabled refers to the automatic removal
of unused resources in the packaged app. If true, Gradle also removes resources from
dependent libraries if they are not needed. This only works if the shrinkResources
property is also set to true.

In Example 3-2, both are set to true.

Example 3-2. Removing resources and shrinking code

android {
 buildTypes {
 release {
 minifyEnabled true
 shrinkResources true
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
 'proguard-rules.pro'
 }
 }
}

Turn on code shrinking

Turn on resource shrinking

See the “Resource Shrinking” page for further details.

Another property available in build types is debuggable. Debug builds automatically
have debuggable set to true, while all other builds default to false.

In order to install multiple build types on a single device, Android must be able to
distinguish their application IDs. The applicationIDsuffix property allows Gradle
to generate multiple APKs, each with its own ID (Example 3-3).

Example 3-3. Adding a suffix to the application ID and version name

android {
 // ... other properties ...
 buildTypes {
 debug {
 applicationIDsuffix '.debug'
 versionNameSuffix '-debug'
 }

54 | Chapter 3: Build Types and Flavors

http://bit.ly/gradle-dsl
http://bit.ly/gradle-dsl
http://bit.ly/resource-shrinking

 // .. other build types ...
 }
}

Now both a release and a debug version of the app can be deployed to the same
device. If you access the Settings on the device and go to Apps, you can see that both
the debug and release versions are on the same app (Figure 3-1).

Figure 3-1. Both debug and release versions are deployed

To distinguish them, select each version and view the full version name in the “App
info” settings, as in Figure 3-2.

Figure 3-2. Version name in App info settings

3.1 Working with Build Types | 55

Changing the name of the apps involves merging resources, discussed in Recipe 3.3.
Different build types also allows you to create separate source trees for each. Merging
sources from separate build types (and flavors) is discussed in Recipe 3.5.

See Also
Flavors are discussed in Recipe 3.2. The combination of a flavor and a build type is a
variant. Each variant allows for separate resources, manifest entries, and Java source
code, the merger of which is part of Recipes Recipe 3.3 and Recipe 3.5.

3.2 Product Flavors and Variants
Problem
You want to build essentially the same application, but with different resources
and/or classes.

Solution
Product flavors allow you to create multiple different versions of the same app.

Discussion
Build types are part of the development process, normally used as an app evolves
from development to production. The default build types, debug and release, reflect
that.

Flavors allow you to build multiple versions of the same app. This could happen
when you need to customize the look and feel of an app for different clients, or if you
need both a free and a paid version of the same app.

To declare a product flavor, use the productFlavors block in the android closure.

Consider a “Hello, World” style of Android app that greets a user based on a simple
EditText name entry. You can give the app an attitude by introducing “friendly,”
“arrogant,” and “obsequious” flavors, as in Example 3-4.

Example 3-4. Assigning product flavors

android {
 productFlavors {
 arrogant {
 applicationId 'com.oreilly.helloworld.arrg'
 }

 friendly {
 applicationId 'com.oreilly.helloworld.frnd'

56 | Chapter 3: Build Types and Flavors

 }

 obsequious {
 applicationId 'com.oreilly.helloworld.obsq'
 }
 }
}

In this case, each has a slightly different applicationId, so that all three can be
installed on the same device.

Flavor names can’t match existing build type names or the prede‐
fined name androidTest.

Each product flavor can have its own values of the following properties, among oth‐
ers, which are based on the same properties from defaultConfig:

• applicationId

• minSdkVersion

• targetSdkVersion

• versionCode

• versionName

• signingConfig

Each flavor defines its own source set and resources, which are siblings of the main
source set. For the flavors defined in Example 3-4, that means in addition to app/src/
main/java, you can also add source files in:

• app/src/arrogant/java
• app/src/friendly/java
• app/src/obsequious/java

You can also add additional resource files in:

• app/src/arrogant/res
• app/src/arrogant/res/layout
• app/src/arrogant/res/values

3.2 Product Flavors and Variants | 57

as well as any other subdirectories of res. The same resource structure would also
apply for all flavors. A simple example is shown in Figure 3-3.

A similar folder structure is supported for build types as well. The combination of a
build type and a flavor is called a variant. For the two default build types (debug and
release) and the three flavors shown here (arrogant, friendly, and obsequious),
six different variant APKs can be generated.

Figure 3-3. Product flavors with source code and resources

To see all the available variant names, add the custom task in Example 3-5 to your
module build.

Example 3-5. A custom task to print available variants

task printVariantNames() {
 doLast {
 android.applicationVariants.all { variant ->
 println variant.name

58 | Chapter 3: Build Types and Flavors

 }
 }
}

Execution of the printVariantNames task shows them all, as in Example 3-6.

Writing your own Gradle tasks is discussed in Recipe 4.1.

Example 3-6. Printing all the variant names

> ./gradlew printVariantNames
:app:printVariantNames
obsequiousDebug
obsequiousRelease
arrogantDebug
arrogantRelease
friendlyDebug
friendlyRelease

BUILD SUCCESSFUL

To deploy a particular variant, Android Studio provides a Build Variants view.
Choose the proper variant from the dropdown list, as shown in Figure 3-4, and
deploy as usual.

Figure 3-4. Build Variants view in Android Studio

When product flavors are used, the assemble task builds all possible variants. The
assemble<Variant> task builds only that particular combination of build type and
flavor. You can also run assemble<BuildType> to build all flavors in that build type,
or assemble<Flavor> to build all build types for that flavor. The install tasks are
specific to each variant, as in installArrogantDebug or installFriendlyRelease.

3.2 Product Flavors and Variants | 59

See Also
Merging resources from different flavors and build types is discussed in Recipe 3.3.
Changing Java classes in each is discussed in Recipe 3.5. Writing your own custom
tasks in Gradle is shown in Recipe 4.1.

3.3 Merging Resources
Problem
You want to change the images, text, or other resources in a product flavor.

Solution
Add the proper resource directories to your flavor, add the relevant files, and change
the values they contain.

Discussion
Consider the “Hello World with Attitude” application discussed in Recipe 3.2, which
defined three flavors for the Hello, World app: arrogant, friendly, and obsequious. In
each case, the app prompts the user for a name and then greets the user by name. The
Java code for each is identical, but the look and feel for each flavor is different.

The product flavors are defined in the Gradle build file, as shown in Example 3-7.

Example 3-7. Product flavors in the build.gradle file

android {
 // ... other settings ...

 productFlavors {
 arrogant {
 applicationId 'com.oreilly.helloworld.arrg'
 }
 friendly {
 applicationId 'com.oreilly.helloworld.frnd'
 }
 obsequious {
 applicationId 'com.oreilly.helloworld.obsq'
 }
 }
}

Each flavor is given a separate applicationId so that they can all be deployed to the
same device for demonstration purposes.

60 | Chapter 3: Build Types and Flavors

Example 3-8 contains the MainActivity class, with its onCreate and sayHello meth‐
ods.

Example 3-8. The MainActivity class from the Hello, World app

public class MainActivity extends AppCompatActivity {
 private EditText editText;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 editText = (EditText) findViewById(R.id.name_edit_text);
 }

 public void sayHello(View view) {
 String name = editText.getText().toString();
 Intent intent = new Intent(this, WelcomeActivity.class);
 intent.putExtra("user", name);
 startActivity(intent);
 }
}

The activity has an attribute of type EditText, used for the user’s name. The say
Hello method retrieves the name, adds it to an Intent as an extra, and starts the
WelcomeActivity with the intent.

The layout for the main activity is simply a vertical LinearLayout with a TextView,
an EditText, and a Button (Example 3-9).

Example 3-9. The activity_main.xml layout

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context=".MainActivity">

 <TextView
 android:id="@+id/name_text_view"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/hello_world" />

 <EditText
 android:id="@+id/name_edit_text"
 android:hint="@string/name_hint"
 android:layout_width="match_parent"

3.3 Merging Resources | 61

 android:layout_height="wrap_content" />

 <Button
 android:onClick="sayHello"
 android:text="@string/hello_button_label"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

</LinearLayout>

The MainActivity is the launcher. Figure 3-5 shows the initial screen for the applica‐
tion, customized for the arrogant flavor.

Figure 3-5. Hello screen in the Arrogant flavor

How were the application name and initial greeting set? All three flavors have their
own resources directory, under app/<flavor>/res. In each case, a subfolder called val‐
ues was added, and a copy of the strings.xml file from app/src/main/res/values was
copied into it. The project structure for the arrogant flavor is shown in Figure 3-6.

The strings.xml file for the arrogant flavor is shown in Example 3-10.

Example 3-10. The strings.xml file in the Arrogant res/values folder

<resources>
 <string name="app_name">Arrogant</string>
 <string name="title_activity_welcome">His/Her Royal Highness</string>
 <string name="hello_world">Arrogant</string>
 <string name="greeting">We condescend to acknoweldge your
 presence, if just barely, %1$s.</string>
</resources>

62 | Chapter 3: Build Types and Flavors

Figure 3-6. Project view showing Arrogant flavor directories

Merging resources by combining the values in the res folder of the project flavor with
the same folder from a build type and the main directory tree. The priority is: build
type overrides Product Flavor, which overrides the main source set.

Non-Java resources override each other, where build type has high‐
est priority, then flavor, then the main directory.

The WelcomeActivity has an onCreate method that retrieves the user’s name and
greets the user (Example 3-11).

Example 3-11. The WelcomeActivity, which greets the user

public class WelcomeActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_welcome);

 String name = getIntent().getStringExtra("user");
 TextView greetingText = (TextView) findViewById(R.id.greeting_text);
 String format = getString(R.string.greeting);
 greetingText.setText(String.format(format, name));
 }
}

The layout for the WelcomeActivity consists of a TextView with text and an image at
the bottom (Example 3-12).

3.3 Merging Resources | 63

Example 3-12. The activity_welcome.xml layout

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context="com.oreilly.helloworld.WelcomeActivity">

 <TextView
 android:id="@+id/greeting_text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/hello_world"
 android:textSize="24sp"
 android:drawableBottom="@drawable/animal"
 />

</LinearLayout>

Each flavor has its own values.xml and animal.png files, which change the greeting
given. The values in Example 3-10 result in the welcome shown in Figure 3-7.

Each additional flavor is handled the same way. The friendly flavor uses the
strings.xml file shown in Example 3-13.

Example 3-13. The strings.xml file in the Friendly res/values folder

<resources>
 <string name="app_name">Friendly</string>
 <string name="title_activity_welcome">We are BFFs!</string>
 <string name="hello_world">Friendly</string>
 <string name="greeting">Hi there, %1$s!</string>
</resources>

The Friendly welcome page is shown in Figure 3-8.

Finally, the Obsequious strings are shown in Example 3-14.

Example 3-14. The strings.xml file in the Obsequious res/values folder

<resources>
 <string name="app_name">Obsequious</string>
 <string name="hello_world">Obsequious</string>
 <string name="title_activity_welcome">your humble servant</string>
 <string name="greeting">O great %1$s, please accept this pathetic
 greeting from my unworthy self. I grovel in your
 general direction.</string>
</resources>

64 | Chapter 3: Build Types and Flavors

Figure 3-7. Welcome in the Arrogant flavor

Figure 3-8. Welcome in the friendly flavor

The resulting Obsequious welcome page is shown in Figure 3-9.

3.3 Merging Resources | 65

Figure 3-9. Welcome in the Obsequious flavor

Merging non-Java resources is easy. Just add the proper folders and files, and the fla‐
vor values will override those from main. To deploy an individual flavor of the app,
choose it from the Build Variants view, as in Figure 3-10.

Figure 3-10. Build Variants view in Android Studio

See Also
Flavors and variants are discussed in Recipe 3.2. Merging source code is in Recipe 3.5.

66 | Chapter 3: Build Types and Flavors

3.4 Flavor Dimensions
Problem
One product flavor is not enough. You need another criterion to distinguish different
versions of your app.

Solution
Add flavorDimensions to your product flavors.

Discussion
The recipe in Recipe 3.2 showed a “Hello, World” app with three product flavors:
arrogant, friendly, and obsequious. That means the different flavors are being dis‐
tinguished based on attitude.

Suppose, however, that different clients would like their own branded versions of
each flavor of the app. The source code is essentially the same for each. Only a couple
of minor resources are different.

To keep from having too much duplication, introduce an additional flavor dimen‐
sion. The build file is shown in Example 3-15.

Example 3-15. Adding flavor dimensions

flavorDimensions 'attitude', 'client'

productFlavors {
 arrogant {
 dimension 'attitude'
 applicationId 'com.oreilly.helloworld.arrg'
 }
 friendly {
 dimension 'attitude'
 applicationId 'com.oreilly.helloworld.frnd'
 }
 obsequious {
 dimension 'attitude'
 applicationId 'com.oreilly.helloworld.obsq'
 }
 stark {
 dimension 'client'
 }
 wayne {
 dimension 'client'
 }

}

3.4 Flavor Dimensions | 67

There are now two dimensions of flavor: attitude and client. The arrogant,
friendly, and obsequious flavors are all in the attitude dimension, and the stark
and wayne flavors are types of client.

The combination generates many more variants. Running the printVariantNames
custom task from Recipe 4.1 now shows the results in Example 3-16.

Example 3-16. Printing all the variant names

./gradlew printVariantNames
:app:printVariantNames
obsequiousStarkDebug
obsequiousStarkRelease
obsequiousWayneDebug
obsequiousWayneRelease
arrogantStarkDebug
arrogantStarkRelease
arrogantWayneDebug
arrogantWayneRelease
friendlyStarkDebug
friendlyStarkRelease
friendlyWayneDebug
friendlyWayneRelease

BUILD SUCCESSFUL

The combination of two build types with three attitudes and two clients gives 2 * 3
* 2 = 12 different variants.

To make the client variant actually do something visible, add directory trees for each
of the client flavors, as in Figure 3-11.

The colors.xml file in the stark client res/values folder is in Example 3-17.

Example 3-17. The colors.xml file in the stark/res/values folder

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="text_color">#beba46</color>
 <color name="background_color">#771414</color>
</resources>

The corresponding colors.xml file in the wayne/res/values folder is shown in
Example 3-18.

Example 3-18. The colors.xml file in the wayne/res/values folder

<?xml version="1.0" encoding="utf-8"?>
<resources>

68 | Chapter 3: Build Types and Flavors

 <color name="text_color">#beba46</color>
 <color name="background_color">#771414</color>
</resources>

Figure 3-11. Directory trees for the client flavors

The strings.xml file in each client flavor changes just the hello_world string (Exam‐
ples 3-19 and 3-20).

Example 3-19. The strings.xml file in the stark/res/values folder

<resources>
 <string name="hello_world">Stark Industries</string>
</resources>

Example 3-20. The strings.xml file in the wayne/res/values folder

<resources>
 <string name="hello_world">Wayne Enterprises</string>
</resources>

Finally, the TextView in the activity_main.xml layout file has been modified to use the
new colors and strings (Example 3-21).

3.4 Flavor Dimensions | 69

Example 3-21. Updated TextView element with colors and text

<TextView
 android:id="@+id/name_text_view"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:textColor="@color/text_color"
 android:background="@color/background_color"
 android:textSize="32sp"
 android:text="@string/hello_world" />

The textColor attribute uses the color resource for each flavor, and the text attribute
uses the string value provided by each flavor.

As a result, Figure 3-12 shows the arrogant flavor from Stark Industries.

Figure 3-12. The Arrogant debug flavor from Stark Industries

By contrast, the friendly flavor from Wayne Enterprises is shown in Figure 3-13.

One additional note is necessary here. The flavorDimensions tag in the Gradle build
file listed attitude before client, which means values from the attitude dimension
will have higher priority than the client dimension. Therefore, the hello_world
string resource was removed from each of the attitude flavors. Switching the order of
client and attitude would have worked just as well, of course.

70 | Chapter 3: Build Types and Flavors

Figure 3-13. The Friendly debug flavor from Wayne Enterprises

See Also
Flavors and variants are shown in Recipe 3.2. Resource merging is in Recipe 3.3, and
merging Java source code is in Recipe 3.5. Build types are discussed in Recipe 3.1.

3.5 Merging Java Sources Across Flavors
Problem
You want to add Android activities or other Java classes to individual product flavors.

Solution
Create the proper source folders, add your Java classes, and merge them with the
main source set.

Discussion
While string and layout resources in flavors and build types override the correspond‐
ing values in the main source set, Java classes are different. If your code in the main
source set refers to a particular class, then each flavor and build type can have its own
implementation of that class as long as you don’t have one in main.

3.5 Merging Java Sources Across Flavors | 71

That sounds more complicated than it is. The “Hello, World” app discussed in Recipe
3.2 and Recipe 3.4 has two flavors that represent clients. Consider now a modified
version of that app that adds a button to the main activity to call for help. The addi‐
tional button has the label “Call for Help!”

The main (launch) activity for the friendly, wayne flavor is shown in Figure 3-14.

Figure 3-14. Main activity for the “wayne” client

The “stark” page is the same, just with a different header, as shown in Figure 3-15.

Figure 3-15. Main activity for the “stark” client

72 | Chapter 3: Build Types and Flavors

Clicking the “Call for Help!” button creates an Intent that starts the CallForHelpAc
tivity. This activity, and its associated layout, have been removed from the main
source tree, and a copy was added to both the stark and wayne source sets. The over‐
all project layout when working with the friendly, wayne, debug variant is shown in
Figure 3-16.

Figure 3-16. Source folders for main, stark, and wayne flavors

The figure shows that the Java sources in the wayne flavor are currently in the class‐
path and those in the stark tree are not. Both flavors contain the CallForHelpActiv
ity, but the implementations of each are completely different.

For the wayne flavor, the help screen contains just a single fragment containing a Text
View, as shown in Figure 3-17.

3.5 Merging Java Sources Across Flavors | 73

Figure 3-17. Help activity for wayne flavor

The help page for the stark flavor consists of a ListFragment with several entries,
shown in Figure 3-18.

Figure 3-18. Help activity for stark flavor

74 | Chapter 3: Build Types and Flavors

Any class referenced by an element in the main source set must exist in each flavor.
After that, the implementations are completely independent.

See Also
Recipe 3.2 shows how to implement flavors and variants. Recipe 3.3 is about merging
non-Java resources. Recipe 3.4 shows how to have multiple flavor dimensions.

3.5 Merging Java Sources Across Flavors | 75

CHAPTER 4

Custom Tasks

4.1 Writing Your Own Custom Tasks
Problem
You want to customize the Gradle build process with your own tasks.

Solution
Add task elements to the Gradle build files. Use the extra properties supplied with
the Android plug-in to make development easier.

Discussion
The Gradle DSL supports a task block for defining your own custom tasks. The API
includes a wide range of existing tasks (like Copy, Wrapper, and Exec) that you can use
simply by setting properties.

For example, the Copy task includes from and into properties, and the from block can
be configured to exclude specified filename patterns. To copy all the APKs into a new
folder, excluding those that are either unsigned or unaligned, add the task in
Example 4-1 to the module build.

Example 4-1. Copy APKs to another folder

task copyApks(type: Copy) {
 from("$buildDir/outputs/apk") {
 exclude '**/*unsigned.apk', '**/*unaligned.apk'
 }
 into '../apks'
}

77

The buildDir property refers to the default build directory (app/build), and the dol‐
lar sign is used to inject it into a Groovy string (with double quotes). The documenta‐
tion for the Copy task shows that the exclude block inside from supports an Ant-style
directory name, meaning that ** matches all descendent directories.

If you don’t want to simply configure an existing Gradle task, you need to understand
the distinction between the configuration and execution phases of Gradle. During the
configuration phase, Gradle builds a DAG based on their dependencies. It then exe‐
cutes the desired task, along with its dependencies. All tasks are configured before
any are executed.

Gradle prefers declarative tasks, like the Example 4-1 task, where you specify what
you want done but not how to do it. If you need to execute commands, however, add
a doLast block to your Gradle task.

The task shown in Example 4-2, from Recipe 3.2, is repeated here.

Example 4-2. A custom task to print available variants

task printVariantNames() {
 doLast {
 android.applicationVariants.all { variant ->
 println variant.name
 }
 }
}

Anything done in the task either before or after the doLast block would be run dur‐
ing configuration time. The code in the doLast block itself runs at execution time.

The Android plug-in adds an android property, which in turn has an applica
tionVariants property that returns all the buildType/flavor combinations. In this
case, they are all being printed to the console.

The applicationVariants property is only available for the
com.android.application plug-in. A libraryVariants property
is available in Android libraries. A testVariants property is avail‐
able in both.

To install all the debug flavors onto a single device (assuming they all have unique
applicationId values), use the task in Example 4-3.

78 | Chapter 4: Custom Tasks

Example 4-3. Install all the debug flavors on a single device

task installDebugFlavors() {
 android.applicationVariants.all { v ->
 if (v.name.endsWith('Debug')) {
 String name = v.name.capitalize()
 dependsOn "install$name"
 }
 }
}

In this case, the dependsOn method shows that this is part of the configuration
process rather than execution. Each variant name, like friendlyDebug, is capitalized
(FriendlyDebug) and then the corresponding installation task (install
FriendlyDebug) is added as a dependency to the installDebugFlavors task.

The result is during the configuration process, installArrogantDebug, install
FriendlyDebug, and installObsequiousDebug are all added as dependencies to
installDebugFlavors. Therefore, executing installDebugFlavors at the command
line requires all three flavor installs.

Example 4-4. Installing all the debug flavors

./gradlew instDebFl
:app:preBuild UP-TO-DATE
:app:preArrogantDebugBuild UP-TO-DATE
:app:checkArrogantDebugManifest
// ... lots of tasks ...
:app:assembleArrogantDebug UP-TO-DATE
:app:installArrogantDebug
Installing APK 'app-arrogant-debug.apk' on 'Nexus_5_API_23(AVD) - 6.0'
Installed on 1 device.
:app:checkFriendlyDebugManifest
// ... lots of tasks ...
:app:assembleFriendlyDebug UP-TO-DATE
:app:installFriendlyDebug
Installing APK 'app-friendly-debug.apk' on 'Nexus_5_API_23(AVD) - 6.0'
Installed on 1 device.
:app:checkObsequiousDebugManifest
// ... lots of tasks ...
:app:assembleObsequiousDebug UP-TO-DATE
:app:installObsequiousDebug
Installing APK 'app-obsequious-debug.apk' on 'Nexus_5_API_23(AVD) - 6.0'
Installed on 1 device.
:app:installDebugFlavors

BUILD SUCCESSFUL

4.1 Writing Your Own Custom Tasks | 79

Extending the ADP Timeout Period
As an aside, while the build process is relatively quick, the deployment process may
not be. The android tag supports an adbOptions tag to increase the amount of time
allowed before the process hits a timeout limit (Example 4-5).

Example 4-5. Changing the ADB timeout period

android {
 adbOptions {
 timeOutInMs = 30 * 1000
 }
}

This extends the timeout limit to 30 seconds. Adjust this value if you are getting
ShellCommandUnresponsiveException failures.

You can see that writing your own custom tasks requires at least some knowledge of
Groovy. An extensive discussion is therefore a bit beyond the scope of this book, but
there are several good Groovy resources available. Additional Groovy concepts are
defined in this book as they occur.

See Also
The Gradle plug-in User Guide (see Recipe 6.2) shows available properties in the
android object. The documentation for the Copy, Zip, or other Gradle tasks is found
on the Gradle website. Appendix A and Appendix B have background information on
the Groovy programming language and basic Gradle information, respectively.

4.2 Adding Custom Tasks to the Build Process
Problem
You want to call your custom tasks as part of an overall build process.

Solution
Use the dependOn property to insert your task into the directed acyclic graph.

Discussion
During the initialization phase, Gradle assembles the tasks into a sequence according
to their dependencies. The result is a DAG. For example, the Gradle documentation
forms a DAG for the Java plug-in, as shown in Figure 4-1.

80 | Chapter 4: Custom Tasks

Figure 4-1. Directed acyclic graph for the Java plug-in tasks

The “directed” term means each dependency arrow goes in one direction. “Acyclic”
means that there are no loops in the graph.

Adding your own custom task to the process means inserting your task into the graph
at the proper location.

In Recipe 4.1, the copyApks task was defined to copy all the generated APKs into a
separate directory. That task is reproduced in Example 4-6 for convenience.

Example 4-6. Copy APKs to another folder

task copyApks(type: Copy) {
 from("$buildDir/outputs/apk") {
 exclude '**/*unsigned.apk', '**/*unaligned.apk'
 }
 into '../apks'
}

That task isn’t very useful, however, if the APKs have not yet been generated. The
assemble task builds the APKs, so make it a dependency of the copyApks task, as in
Example 4-7.

4.2 Adding Custom Tasks to the Build Process | 81

Example 4-7. Updated copy task to generate them first

task copyApks(type: Copy, dependsOn: assembleDebug) {
 from("$buildDir/outputs/apk") {
 exclude '**/*unsigned.apk', '**/*unaligned.apk'
 }
 into '../apks'
}

Run assembleDebug first

The dependency on assembleDebug means all the debug APKs will be generated
before the copy task runs. You can use assemble instead if you want the release APKs
as well.

If you would like the copyApks task to run every time you do a build, make it a
dependency of the build task, as in Example 4-8.

Example 4-8. Making copyApks a part of the build

build.dependsOn copyApks

Now running the build task will also copy the APKs into the separate folder. You
have inserted the copyApks task into the DAG with the correct dependency informa‐
tion.

Removing the generated apks folder containing all the APKs can be done in a similar
fashion, but as shown in Recipe 1.1, the top-level Gradle build file already has a clean
task that we can modify, as shown in Example 4-9.

Example 4-9. clean task generated by Android Studio

task clean(type: Delete) {
 delete rootProject.buildDir
}

The delete task in Gradle accepts a list of files or folders, so rather than make a spe‐
cial task to remove the apks folder, it’s easy enough to modify this task, as shown in
Example 4-10.

Example 4-10. Modified clean task to remove the apks directory

task clean(type: Delete) {
 delete rootProject.buildDir, 'apks'
}

Any custom task can be inserted into the build process using this mechanism.

82 | Chapter 4: Custom Tasks

See Also
Recipe 4.1 discusses creating custom tasks in Android builds. The topic of custom
tasks is part of Appendix B.

4.3 Excluding Tasks
Problem
You want to exclude certain tasks from the build process.

Solution
Exclude an individual task using the -x flag. Exclude multiple tasks by modifying the
task graph.

Discussion
The Gradle build process involves a lot of tasks executed sequentially. Most of them
depend on tasks executed earlier in the process, but there are some that can be exclu‐
ded if time is critical.

As an example, the lint task is useful for determining how closely your project
adheres to Google’s recommended practices for Android apps, but you don’t neces‐
sarily have to run it every time.

Recall that the -x flag (short for --exclude-task) in Gradle excludes a given task.
Therefore, when running a build, use the flag to skip the lint task (or any others you
don’t want), as shown in Example 4-11.

Example 4-11. Excluding the lint task

> ./gradlew build -x lint

This excludes the lint task and any of its dependencies. Any task that need its result
will not run either, so be sure that any task you exclude is not required later in the
process.

The only problem is that if your project involves multiple variants, there is a lint
task for each. In principle you could exclude them all manually, but you might prefer
to exclude the whole set as part of the build.

When Gradle runs, it assembles a directed acyclic graph, known as a task graph. You
can get a reference to it inside your build file through the gradle object. Any manip‐
ulation of the graph needs to be done after it has been formed, so you want to use the
whenReady property before applying any changes.

4.3 Excluding Tasks | 83

The result is you can write code inside the build file like that shown in Example 4-12.

Example 4-12. Disabling all tasks that start with the word lint

gradle.taskGraph.whenReady { graph ->
 graph.allTasks.findAll { it.name ==~ /lint.*/ }*.enabled = false
}

The allTasks property of the task graph invokes the getAllTasks method, using
the normal Groovy idiom. That returns a java.util.List of tasks. Groovy adds a
findAll method to List that returns only the tasks that satisfy the supplied closure.
In this case, the closure says access the name property of each task and check whether
or not it exactly matches the regular expression. Applying the “spread-dot” operator
to the resulting list disables each task in the list.

The result is that all tasks that have a name that starts with the letters lint have their
enabled property set to false, so none of them will run.

Since you may not want to always exclude all the lint tasks, you can check whether
or not a project property has been set before doing this, as in Example 4-13.

Example 4-13. Only disable the lint tasks if the noLint property is set

gradle.taskGraph.whenReady { graph ->
 if (project.hasProperty('noLint')) {
 graph.allTasks.findAll { it.name ==~ /lint.*/ }*.enabled = false
 }
}

You can set a project property from the command line using the -P flag, as in
Example 4-14.

Example 4-14. Setting a project property

> ./gradlew build -PnoLint | grep lint
:app:lintVitalArrogantRelease SKIPPED
:app:lintVitalFriendlyRelease SKIPPED
:app:lintVitalObsequiousRelease SKIPPED
:app:lint SKIPPED

Clearly there’s a fair amount of Groovy knowledge involved in this approach, but
the idea of manipulating the task graph after it has been assembled is a very powerful
one.

84 | Chapter 4: Custom Tasks

www.allitebooks.com

http://www.allitebooks.org

See Also
Recipe 2.1 discusses how to set project properties. Excluding tasks as a means of
improving build performance is part of Recipe 6.1.

4.4 Custom Source Sets
Problem
You want to use nonstandard directories for source code in your project.

Solution
Use the sourceSets property in your Gradle build.

Discussion
The samples that come with the Android distribution are configured to use multiple
source folders, in order to separate common files from the main sample code.

Consider an arbitrary example from the API 23 (Android 6.0, Marshmallow) distri‐
bution, called Basic Gesture Detect, which is found in the input/BasicGestureDetect
folder of the samples section. The details of the application itself are not important—
it’s the Gradle build that shows the source set modifications.

Example 4-15 shows the Gradle build file from the Application subdirectory (note
that the samples commonly use Application instead of app for the main subproject).

Example 4-15. Gradle build file with source sets

// The sample build uses multiple directories to
// keep boilerplate and common code separate from
// the main sample code.
List<String> dirs = [
 'main', // main sample code; look here for the interesting stuff.
 'common', // components that are reused by multiple samples
 'template'] // boilerplate code that is generated by the sample template process

android {
 // ... code omitted ...

 sourceSets {
 main {
 dirs.each { dir ->
 java.srcDirs "src/${dir}/java"
 res.srcDirs "src/${dir}/res"
 }
 }

4.4 Custom Source Sets | 85

 androidTest.setRoot('tests')
 androidTest.java.srcDirs = ['tests/src']

 }

}

The build file defines a List<String> called dirs to represent the source directories.
Groovy supports a native syntax for lists, using square brackets with values separated
by commas. In this case, the values are main, common, and template.

Inside the android block, the sourceSets property is used to add the relevant source
directories to the classpath. Focusing on the section inside the main block, Groovy’s
each iterator supplies each entry in the list to the closure argument in Example 4-16.

Example 4-16. Groovy each with a closure

dirs.each { dir ->
 java.srcDirs "src/${dir}/java"
 res.srcDirs "src/${dir}/res"
}

The each method comes from Groovy. It iterates over every element of a collection,
passing it into the closure argument. The closure here labels each element as dir and
substitutes it into the Groovy strings.

The standard project layout defines a default source tree src/main/java and a resource
tree src/main/res. In this case, however, additional directories are added to those col‐
lections by using the srcDirs property. The result in this case is that the folders src/
main/java, src/common/java, and src/template/java are all added to the compile class‐
path, and the folders src/main/res, src/common/res, and src/template/res are all consid‐
ered resource directories.

The real irony, however, is that this particular sample doesn’t have any of the addi‐
tional folders in it. All the Java sources are under src/main/java and all the resources
are under src/main/res. In fact, none of the samples actually use the defined structure.
They all restrict their Java source code and resources to the standard directories. The
structure just defined is therefore either something planned for the future, or a hold‐
over from something older, or maybe just evidence that the Google Android develop‐
ers have a sense of humor.

There is one section of the sourceSets property that is used, however. Instead of
putting all the tests under the predefined src/androidTest/java folder, the Gradle build
file changes that location (Example 4-17).

86 | Chapter 4: Custom Tasks

Example 4-17. Changing the root directory for tests

androidTest.setRoot('tests')
androidTest.java.srcDirs = ['tests/src']

The test root is now the tests folder, and the tests themselves are placed in the tests/src
folder. Each sample project has two folders underneath the Application directory: src
and tests, and the tests folder contains a subdirectory called src. The basic project lay‐
out for the ActivityInstrumentation example contains an Application directory,
whose contents are structured like that in Example 4-18.

Example 4-18. Directory layout for sample project

.
├── build.gradle
├── src
│ └── main
│ ├── AndroidManifest.xml
│ ├── java
│ │ └── com
│ │ └── example
│ │ └── android
│ │ ├── activityinstrumentation
│ │ │ └── MainActivity.java
│ │ ... // more
│ └── res
│ ├── drawable-hdpi
│ │ ├── ic_launcher.png
│ │ └── tile.9.png
│ ... // more
│ ├── values-v11
│ │ └── template-styles.xml
│ └── values-v21
│ ├── base-colors.xml
│ └── base-template-styles.xml
└── tests
 ├── AndroidManifest.xml
 └── src
 └── com
 └── example
 └── android
 └── activityinstrumentation
 └── SampleTests.java

As you can see, the Java code goes under src/main/java, the resources go under src/
main/res, and the tests go under tests/src of all places.

4.4 Custom Source Sets | 87

Where does the sourceSets property get used? Legacy Android apps (e.g., those
written before the conversion to the Gradle build system) used a different project
structure. Android Studio can import those apps, but it will rewrite the structure
when doing so. See Recipe 2.2 and Recipe 2.3 for details.

See Also
The sourceSets property is often used with legacy apps.

4.5 Using Android Libraries
Problem
You want to add library modules to your app.

Solution
Use the library plug-in and add the library module as a dependency.

Discussion
You can add a lot of additional functionality to an app by using Java libraries, which
come in the form of jar files. Recipe 1.5 discusses this in detail, showing how to use
the dependencies block. For example, to use Google’s Gson library for parsing JSON
data, add the dependency to the module build file, as shown in Example 4-19.

Example 4-19. Adding Google’s Gson library

dependencies {
 compile 'com.google.code.gson:gson:2.6.2'
}

Android libraries go beyond Java libraries, in that they include either classes from the
Android API, any needed resources, or both. When the project is built, Gradle
assembles Android libraries into aar (Android Archive) files, which are like jar files
but include the Android dependencies.

From a Gradle perspective, Android libraries are subprojects from the root. That
means they are like Android applications, but in a subdirectory. The name of the
added module (Android Studio calls them modules) is therefore added to the set‐
tings.gradle file, as in Example 4-20.

Example 4-20. A settings.gradle file with an added module

include ':app', ':icndb'

88 | Chapter 4: Custom Tasks

In this case, the Android library module is called icndb, which stands for the Internet
Chuck Norris Database, which serves up Chuck Norris jokes in the form of JSON
responses. The API page on the website is shown in Figure 4-2.

Figure 4-2. The API page for the ICNDB site

As an example of an Android library, this site will be accessed as a RESTful web ser‐
vice, the returned JSON data will be parsed, and the resulting joke will be added to
the Welcome activity in a TextView.

To create a library module in Android Studio, use the “New Module” wizard and
select the “Android Library” type, as in Figure 4-3.

Other options on the New Module wizard include Java Library and
Import .JAR/.AAR Package, among others.

4.5 Using Android Libraries | 89

http://www.icndb.com
http://www.icndb.com

Figure 4-3. The Android Library option in the New Module wizard

After giving the library a name, you can then add whatever type of activity you want,
if any. Completing the wizard creates the library directory and adds it to the set‐
tings.gradle file in the root project.

Each library has its own Gradle build file, which supports the same settings as the
root project. You can specify minimum and target SDK versions, customize build
types, add flavors, and modify dependencies however you like. The important differ‐
ence is that the Gradle build uses a different plug-in, as shown in Example 4-21.

Example 4-21. The build.gradle file for the ICNDB library module

apply plugin: 'com.android.library'

android {
 compileSdkVersion 23
 buildToolsVersion "23.0.3"

 packagingOptions {
 exclude 'META-INF/notice.txt'
 exclude 'META-INF/license.txt'
 exclude 'LICENSE.txt'
 }

 defaultConfig {

90 | Chapter 4: Custom Tasks

 minSdkVersion 16
 targetSdkVersion 23
 versionCode 1
 versionName "1.0"
 }
 buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
 'proguard-rules.pro'
 }
 }
}

dependencies {
 compile 'com.google.code.gson:gson:2.6.2'
 compile 'com.squareup.retrofit2:retrofit:2.0.1'
 compile 'com.squareup.retrofit2:converter-gson:2.0.1'
}

Use the library plug-in

Exclude conflicting files from multiple dependencies

The build file adds the Retrofit 2 project as a dependency, and its Gson converter for
the JSON messages, as well as the Gson library discussed earlier.

Note also the use of the packagingOptions block. That allows you to exclude files of
the same name that appear in multiple dependencies.

If you use these libraries, the implementation of the ICNDB library becomes simple,
as shown in Example 4-22.

Example 4-22. The JokeFinder class, which does all the work

public class JokeFinder {
 private TextView jokeView;
 private Retrofit retrofit;
 private AsyncTask<String, Void, String> task;

 public interface ICNDB {
 @GET("/jokes/random")
 Call<IcndbJoke> getJoke(@Query("firstName") String firstName,
 @Query("lastName") String lastName,
 @Query("limitTo") String limitTo);
 }

 public JokeFinder() {
 retrofit = new Retrofit.Builder()
 .baseUrl("http://api.icndb.com")
 .addConverterFactory(GsonConverterFactory.create())

4.5 Using Android Libraries | 91

 .build();
 }

 public void getJoke(TextView textView, String first, String last) {
 this.textView = textView;
 new JokeTask().execute(first, last);
 }

 private class JokeTask extends AsyncTask<String, Void, String> {
 @Override
 protected String doInBackground(String... params) {
 ICNDB icndb = retrofit.create(ICNDB.class);
 Call<IcndbJoke> icndbJoke = icndb.getJoke(
 params[0], params[1], "[nerdy]");
 String joke = "";
 try {
 joke = icndbJoke.execute().body().getJoke();
 } catch (IOException e) {
 e.printStackTrace();
 }
 return joke;
 }

 @Override
 protected void onPostExecute(String result) {
 jokeView.setText(result);
 }
 }
}

Interface for Retrofit GET request access

Building the Retrofit instance with Gson converter

Asynchronous task to access web service off the UI thread

The JokeFinder class accesses the ICNDB web service using the supplied first and
last names for the hero, using an asynchronous task so that the operation is per‐
formed off the UI thread. The getJoke method includes an argument for a TextView,
which the JokeTask updates once parsing of the result is complete.

The IcndbJoke task is a simple POJO that maps the the JSON response. The form of
the response is shown in Figure 4-4.

The JSON response is quite small, so the corresponding IcndbJoke class is also sim‐
ple, as shown in Example 4-23.

92 | Chapter 4: Custom Tasks

Example 4-23. The IcndbJoke class POJO, which maps to the JSON format

public class IcndbJoke {
 private String type;
 private Joke value;

 public String getJoke() {
 return value.getJoke();
 }

 public String getType() { return type; }
 public void setType(String type) { this.type = type; }

 public Joke getValue() { return value; }
 public void setValue(Joke value) { this.value = value;}

 private static class Joke {
 private int ID;
 private String joke;
 private String[] categories;

 public int getId() { return ID; }
 public void setId(int ID) { this.id = ID; }

 public String getJoke() { return joke; }
 public void setJoke(String joke) { this.joke = joke; }

 public String[] getCategories() { return categories; }
 public void setCategories(String[] categories) {
 this.categories = categories;
 }
 }
}

Figure 4-4. JSON response from the ICNDB service

That’s it for the library. The app uses the library through its JokeFinder class. This is
made available using a project dependency in the module build file, as shown in
Example 4-24.

4.5 Using Android Libraries | 93

Example 4-24. Using the ICNDB module in the app

apply plug-in: 'com.android.application'

android {
 compileSdkVersion 23
 buildToolsVersion "23.0.3"

 // ... all the regular settings ...
}

dependencies {
 compile project(':icndb')
}

Use the icndb library at compile time

The compile dependency uses the project method, which takes the subdirectory
containing the module as an argument. The result is that Gradle knows to build the
ICNDB module before building the app, and to make its classes available at compile
time.

The WelcomeActivity calls the getJoke method in the JokeFinder, supplying a ref‐
erence to the TextView to be updated, along with a first and last name supplied from
a SharedPreferences object, as seen in Example 4-25, where all the other parts have
been omitted.

Example 4-25. Invoking the getJoke method from the WelcomeActivity

public class WelcomeActivity extends Activity {
 private TextView jokeText;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_welcome);

 jokeText = (TextView) findViewById(R.id.joke_text);

 final SharedPreferences prefs =
 PreferenceManager.getDefaultSharedPreferences(this);
 new JokeFinder().getJoke(jokeText,
 prefs.getString("first", "Xavier"),
 prefs.getString("last", "Ducrohet"));
 }
}

94 | Chapter 4: Custom Tasks

Xavier Ducrohet is the head of the Gradle plug-in for Android
project and head of the Android Studio development team at Goo‐
gle.

A sample run is shown in Figure 4-5.

Figure 4-5. Running the app

The build process itself generates both debug and release versions of the library in the
icndb/build/outputs/arr directory, shown in Example 4-26.

Example 4-26. Output Android library archive files

> ./gradlew build
> ls icndb/build/outputs/aar
icndb-debug.aar icndb-release.aar

The aar files can be published to repositories for later use by other apps.

To summarize:

• Android library projects are Java projects that need Android dependencies, like
classes from the Android API or resources or both

• Gradle uses subdirectories for multiproject builds, where each subproject is
added to the top-level settings.gradle file

• In Android Studio, use the “Android Library” option in the “New Module” wiz‐
ard to create an Android library project

4.5 Using Android Libraries | 95

• The library project uses the com.android.library plug-in
• The app build file uses the project(":library") dependency to access the

library classes from the app

Following this pattern, you can add functionality to Android libraries and reuse them
in other applications.

96 | Chapter 4: Custom Tasks

CHAPTER 5

Testing

5.1 Unit Testing
Problem
You want to test the non-Android parts of your app.

Solution
Use the experimental unit testing support added in version 1.1 of Android Studio and
the Gradle plug-in for Android.

Discussion
The Eclipse Android Development Tools (ADT) plug-in only supported integration
tests, and required developers to create a separate project just for the tests themselves.
One of the advantages of the switch to Android Studio and Gradle was support for
tests inside the Android project itself.

Prior to version 1.1 of Android Studio and the associated Gradle plug-in, however,
those tests were still restricted to integration tests, meaning you needed either an
emulator or a connected device in order to run the tests. Integration tests can be very
powerful and useful, and are the subject of Recipes Recipe 5.3 and Recipe 5.4.

This recipe discusses true unit tests, which run on a local JVM on a development
machine. Unlike the integration tests that use an androidTest source set, the unit
tests reside in the src/test/java directory of your app.

When you generate a new Android app in Android Studio, a sample unit test is pro‐
vided for you. It resides in the src/test/java tree, but is not currently in the classpath,
as Figure 5-1 shows.

97

Figure 5-1. Sample unit test generated by Android Studio, under app/src

The generated test is shown in Example 5-1.

Example 5-1. Generated sample unit test

import org.junit.Test;

import static org.junit.Assert.*;

/**
 * To work on unit tests, switch the Test Artifact in the Build Variants view.
 */
public class ExampleUnitTest {
 @Test
 public void addition_isCorrect() throws Exception {
 assertEquals(4, 2 + 2);
 }
}

This type of test should look familiar to anyone who has used JUnit in the past, which
should be virtually every Java developer. The @Test annotation from JUnit 4 indicates
that the addition_isCorrect method is a test method. The assertEquals method is
a static method in the Assert class (note the static import of all static methods in that
class), whose first argument is the correct answer and whose second argument is the
actual test.

In order to run the test, you need to do what the comment says, which is to select the
Test Artifact in the Build Variants view, as shown in Figure 5-2.

Figure 5-2. Selecting the “Unit Tests” artifact in Build Variants

98 | Chapter 5: Testing

Note that by selecting “Unit Tests,” the directory tree under src/test/java is now
understood by Android Studio to contain test sources (because the folder is shown in
green) and the com/oreilly/helloworld tree is now interpreted as a package.

One last step is required before executing the unit test. You need to make sure JUnit
is included as a testCompile dependency in your project. As shown in Recipe 1.5,
this is already the case for the default project. The dependencies section of the mod‐
ule build file is repeated in Example 5-2.

Example 5-2. JUnit dependency in the module build.gradle file

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 testCompile 'junit:junit:4.12'
 compile 'com.android.support:appcompat-v7:23.0.1'
}

JUnit dependency added during testCompile

You can now run the tests from Gradle using the test target, but be prepared for a lot
of effort (see Example 5-3).

Example 5-3. Executing the unit test

> ./gradlew test
Starting a new Gradle Daemon for this build (subsequent builds will be faster).
:app:preBuild UP-TO-DATE
:app:preArrogantStarkDebugBuild UP-TO-DATE
:app:checkArrogantStarkDebugManifest
:app:preArrogantStarkReleaseBuild UP-TO-DATE
:app:preArrogantWayneDebugBuild UP-TO-DATE
:app:preArrogantWayneReleaseBuild UP-TO-DATE
:app:preFriendlyStarkDebugBuild UP-TO-DATE
:app:preFriendlyStarkReleaseBuild UP-TO-DATE
:app:preFriendlyWayneDebugBuild UP-TO-DATE
:app:preFriendlyWayneReleaseBuild UP-TO-DATE
// ... all the stages for all the variants ...
:app:compileObsequiousWayneReleaseUnitTestJavaWithJavac
:app:compileObsequiousWayneReleaseUnitTestSources
:app:assembleObsequiousWayneReleaseUnitTest
:app:testObsequiousWayneReleaseUnitTest
:app:test

BUILD SUCCESSFUL

The single test ran for every variant, generating HTML outputs in the app/build/
reports/tests folder, shown in Example 5-4.

5.1 Unit Testing | 99

Example 5-4. Output folders for the tests

> ls -F app/build/reports/tests/
arrogantStarkDebug/ arrogantWayneRelease/
friendlyWayneDebug/ obsequiousStarkRelease/
arrogantStarkRelease/ friendlyStarkDebug/
friendlyWayneRelease/ obsequiousWayneDebug/
arrogantWayneDebug/ friendlyStarkRelease/
obsequiousStarkDebug/ obsequiousWayneRelease/

Opening the index.html file in any of those folders shows the test report in Figure 5-3.

Figure 5-3. Test report in HTML

You can drill down to the ExampleUnitTest class and see the specific results
(Figure 5-4).

To restrict the tests to a single variant and even a single test class, use the --tests
flag, as in Example 5-5.

Example 5-5. Running the tests in only one test class

> ./gradlew testFriendlyWayneDebug --tests='*.ExampleUnitTest'

The variant is still constructed, but only that one, and only the tests in the Exam
pleUnitTest class are run.

As an alternative, if you right-click in the test itself and run it inside Android Studio,
it runs for the current variant only and provides a nice view showing the results
(Figure 5-5).

100 | Chapter 5: Testing

Figure 5-4. Result of ExampleUnitTest tests

Figure 5-5. Test results in Android Studio

The only problem is, this didn’t actually test anything significant. That’s the point,
actually. When using the JUnit support, you can’t test anything that relies on the
Android SDK. Unit testing is only for the purely Java parts of your application.

Unit testing support is only for the non-Android parts of your
application.

In Recipe 4.5, the library accessed a web service, downloaded JSON data, parsed it,
and updated a TextView with an included value. If you like, you can test just the pars‐
ing part of that process, as in Example 5-6.

5.1 Unit Testing | 101

Example 5-6. Test the Gson parser

import com.google.gson.Gson;

import org.junit.Test;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;

public class IcndbJokeTest {
 private String jsonTxt = "{\"type\": \"success\", \"value\": {\"id\": 451,
 \"joke\": \"Xav Ducrohet writes code that optimizes itself.\",
 \"categories\": [\"nerdy\"]}}";

 @Test
 public void testGetJoke() throws Exception {
 Gson gson = new Gson();
 IcndbJoke icndbJoke = gson.fromJson(jsonTxt, IcndbJoke.class);
 String correct = "Xav Ducrohet writes code that optimizes itself.";

 assertNotNull(icndbJoke);
 assertEquals(correct, icndbJoke.getJoke());
 }
}

String should be all on one line

Check that parsing yielded a non-null result

Check that the retrieved joke is correct

The good news is that unit tests are fast, at least relative to integration tests, because
they don’t require deployment to an actual device or an emulator. If you have Java
classes that are not dependent on Android classes, unit tests are great way to make
sure they’re working properly. Test Driven Development (TDD) has not yet been
adopted in the mobile world the way it has in the regular Java world, but this is a
good way to get started.

What About Robolectric?
The Robolectric project is designed to let you run integration tests as though they
were unit tests, i.e., without using an emulator or connected device. As such, it acts as
a giant mock of the entire Android SDK.

Reports from the field have been mixed. Some people really like it; others don’t trust it
for anything related to dialogs, animations, views, or anything else in the UI. This is

102 | Chapter 5: Testing

http://robolectric.org

made more complicated by the fact you’re scripting a UI test without actually using
the UI.

Still, it’s not a bad alternative, and fits into the overall Gradle approach. See the web‐
site for details.

See Also
Recipe 5.3 illustrates Activity tests using the Robotium library. Recipe 5.4 does the
same using the Espresso framework from Google. JUnit information can be found at
http://junit.org.

5.2 Testing with the Android Testing Support Library
Problem
You want to test the Android components of your app.

Solution
Use the new testing classes to implement JUnit-style tests of your app.

Discussion
First, a meta-note on terminology: testing Android components, like activities or
services, requires deployment of the app to a connected device or emulator. The test‐
ing library is based on JUnit, but these are not unit tests in the strictest sense. They’re
either integration tests or functional tests, depending on how you use those terms.

Since the approach here is to drive a deployed app programmatically and check that
the UI changes correctly, the term “functional” will be preferred here. You will see the
term integration used frequently in the documentation, however.

Despite the word “unit” in AndroidJUnitRunner and other test
classes, Android tests are inherently functional. They require either
an emulator or a connected device in order to run.

The Android Testing Support Library is added as an optional dependency through
the SDK Manager, as shown in Figure 5-6.

Testing is part of the “Android Support Repository” download, as Figure 5-6 illus‐
trates. The testing classes reside in the android.support.test package.

5.2 Testing with the Android Testing Support Library | 103

http://junit.org

The documentation shows that to add all the relevant classes to your Gradle build file,
use the dependencies in Example 5-7.

Example 5-7. Gradle dependencies for the Android Testing Support Library

dependencies {
 androidTestCompile 'com.android.support.test:runner:0.3'
 // Set this dependency to use JUnit 4 rules
 androidTestCompile 'com.android.support.test:rules:0.3'
}

Figure 5-6. Adding the Android Testing Support Library using the SDK Manager

The AndroidJUnitRunner class has support for JUnit 4 annotations. To use it, you can
add the @RunWith annotation from JUnit to your test class, or you can add a setting to
the defaultConfig block of your Gradle build file.

Example 5-8. Using AndroidJUnitRunner by default

android {
 defaultConfig {
 // ... other settings ...
 testInstrumentationRunner
 "android.support.test.runner.AndroidJUnitRunner"
 }
}

It’s particularly easy to test a labels on a layout using the test support classes. An
example is shown in Example 5-9.

Example 5-9. Testing component labels

@MediumTest
@RunWith(AndroidJUnit4.class)
public class MyActivityLayoutTest
 extends ActivityInstrumentationTestCase2<MyActivity> {

 private MyActivity activity;
 private TextView textView;

104 | Chapter 5: Testing

 private EditText editText;
 private Button helloButton;

 public MyActivityLayoutTest() {
 super(MyActivity.class);
 }

 @Before
 public void setUp() throws Exception {
 super.setUp()
 injectInstrumentation(InstrumentationRegistry.getInstrumentation());
 activity = getActivity();

 textView = (TextView) activity.findViewById(R.id.text_view);
 editText = (EditText) activity.findViewById(R.id.edit_text);
 helloButton = (Button) activity.findViewById(R.id.hello_button);
 }

 @After
 public void tearDown() throws Exception {
 super.tearDown();
 }

 @Test
 public void testPreconditions() {
 assertNotNull("Activity is null", activity);
 assertNotNull("TextView is null", textView);
 assertNotNull("EditText is null", editText);
 assertNotNull("HelloButton is null", helloButton);
 }

 @Test
 public void textView_label() {
 final String expected = activity.getString(R.string.hello_world);
 final String actual = textView.getText().toString();
 assertEquals(expected, actual);
 }

 @Test
 public void editText_hint() {
 final String expected = activity.getString(R.string.name_hint);
 final String actual = editText.getHint().toString();
 assertEquals(expected, actual);
 }

 @Test
 public void helloButton_label() {
 final String expected = activity.getString(R.string.hello_button_label);
 final String actual = helloButton.getText().toString();
 assertEquals(expected, actual);
 }
}

5.2 Testing with the Android Testing Support Library | 105

Expected durations are @SmallTest, @MediumTest, and @LargeTest

Use the JUnit 4 runner for Android

Needed for the new JUnit 4 runner

The new AndroidJUnitRunner is part of the Android Support Test Library. It adds
JUnit 4 support, so that tests can be annotated rather that specified using the old
JUnit 3 naming convention. It has other extra capabilities. See the Android Testing
Support Library documentation for details.

In Example 5-9, the attributes represent widgets on the user interface. The @Before
method looks them up and assigns them to the attributes. The docs recommend
using a testPreconditions test like the one shown, just to demonstrate that the
widgets were found. That test is no different from any of the others, but a failure
there makes it easy to see what went wrong.

The other tests all look up strings from the string resources and compare them to the
labels on the actual widgets. Note that nothing is being modified here—the test is
essentially read-only.

Finally, the @MediumTest annotation is used to indicate the size of a test method. Tests
that only take a few milliseconds are marked as @SmallTest, those that take on the
order of 100 milliseconds are @MediumTest, and longer ones are marked @LargeTest.

From Gradle, running tests that require connected devices or emulators is done
through the connectedCheck task.

Run the connectedCheck task to execute tests on all emulators and
connected devices concurrently.

A sample execution is shown in Example 5-10. The sample test was run concurrently
on two separate emulators.

Example 5-10. Executing the tests from Gradle

> ./gradlew connectedCheck
:app:preBuild UP-TO-DATE
:app:preDebugBuild UP-TO-DATE
:app:checkDebugManifest
:app:prepareDebugDependencies
// ... lots of tasks ...
:app:packageDebugAndroidTest UP-TO-DATE

106 | Chapter 5: Testing

http://bit.ly/android-tsl
http://bit.ly/android-tsl

:app:assembleDebugAndroidTest UP-TO-DATE
:app:connectedDebugAndroidTest
:app:connectedAndroidTest
:app:connectedCheck

BUILD SUCCESSFUL

The output report resides in the http://robolectric.orgapp/build/reports/androidTests/
connected directory. A sample output report is shown in Figure 5-7.

Figure 5-7. Sample test output organized by test

The sample output shows the emulator names and the results of all the tests. Clicking
the “Devices” button switches the output to organize it by device, as shown in
Figure 5-8.

The classes in the Android Support Test Library can do much more than this, but the
tests start getting complicated quickly. When you want to drive the UI by adding
data, clicking buttons, and checking results, there are alternative libraries, like Robot‐
ium and Espresso, that make the process much easier. Recipes that use those libraries
are referenced in the “See Also” section.

5.2 Testing with the Android Testing Support Library | 107

http://robolectric.orgapp/build/reports/androidTests/connected
http://robolectric.orgapp/build/reports/androidTests/connected

Figure 5-8. Sample test output organized by device

See Also
Recipe 5.3 shows how to use the Robotium library to drive the UI. Google now pro‐
vides the Espresso library as part of the Android Test Kit project. Espresso tests are
demonstrated in Recipe 5.4.

5.3 Functional Testing with Robotium
Problem
You want to test activities using the Robotium library.

Solution
Add the Robotium dependency and script your tests.

Discussion
The Android Test Support Library has classes for accessing widgets on activities, but
there are easier ways to drive an Android UI. While this is not a book about testing,
it’s easy to add the Robotium library dependency to Gradle and run tests that way.

The Robotium project is described as “like Selenium, but for Android.” It’s a test auto‐
mation framework that makes it easy to write black-box UI tests for Android apps.

Just add the Robotium library as a dependency in the module Gradle build file, as in
Example 5-11.

108 | Chapter 5: Testing

http://www.robotium.org

Example 5-11. Add the Robotium dependency

dependencies {
 androidTestCompile 'com.jayway.android.robotium:robotium-solo:5.4.1'
}

Consider a simple activity called MyActivity, shown in Example 5-12, that prompts
the user for a name, adds it to an Intent, and starts a WelcomeActivity that greets
the user.

Example 5-12. The MyActivity class is a “Hello, World” app

public class MyActivity extends Activity {
 private TextView textView;
 private EditText editText;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_my);

 textView = (TextView) findViewById(R.id.text_view);
 editText = (EditText) findViewById(R.id.edit_text);
 Button helloButton = (Button) findViewById(R.id.hello_button);
 helloButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 sayHello(v);
 }
 });
 }

 public void sayHello(View view) {
 String name = editText.getText().toString();
 Intent intent = new Intent(this, WelcomeActivity.class);
 intent.putExtra("name", name);
 startActivity(intent);
 }
}

Robotium provides a class called com.robotium.solo.Solo, which wraps both the
activity being tested and the Instrumentation object. It allows you to add text, click
buttons, and more, without worrying about being on or off the UI thread. An exam‐
ple that tests the given activity is shown in Example 5-13.

5.3 Functional Testing with Robotium | 109

Example 5-13. A Robotium test for MyActivity

public class MyActivityRobotiumTest
 extends ActivityInstrumentationTestCase2<MyActivity> {

 private Solo solo;

 public MyActivityRobotiumTest() {
 super(MyActivity.class);
 }

 public void setUp() {
 solo = new Solo(getInstrumentation(), getActivity());
 }

 public void testMyActivity() {
 solo.assertCurrentActivity("MyActivity", MyActivity.class);
 }

 public void testSayHello() {
 solo.enterText(0, "Dolly");
 solo.clickOnButton(
 getActivity().getString(R.string.hello_button_label));
 solo.assertCurrentActivity("WelcomeActivity", WelcomeActivity.class);
 solo.searchText("Hello, Dolly!");
 }

 public void tearDown() {
 solo.finishOpenedActivities();
 }
}

Activity tests all extend this class

The Solo reference from Robotium

Instantiate the Solo reference

Robotium tests extend ActivityInstrumentationTestCase2, as with all activity tests.
The Solo instance is initialized with the activity and retrieved instrumentation
instances. The tests themselves use methods from the Solo class, like enterText,
clickOnButton, or searchText.

The only downside to using Robotium is that the tests use the old JUnit 3 structure,
with predefined setUp and tearDown methods as shown, and all tests have to follow
the pattern public void testXYZ(). Still, the ease of writing the tests is remarkable.

110 | Chapter 5: Testing

The test class is stored in the same androidTest hierarchy as other Android tests,
and executed on all emulators and connected devices simultaneously through the con
nectedCheck task (Example 5-14).

Example 5-14. Executing the tests from Gradle

> ./gradlew connectedCheck
:app:preBuild UP-TO-DATE
:app:preDebugBuild UP-TO-DATE
:app:checkDebugManifest
:app:prepareDebugDependencies
// ... lots of tasks ...
:app:packageDebugAndroidTest UP-TO-DATE
:app:assembleDebugAndroidTest UP-TO-DATE
:app:connectedDebugAndroidTest
:app:connectedAndroidTest
:app:connectedCheck

BUILD SUCCESSFUL

The result is shown in Figure 5-9 after running on two emulators.

Figure 5-9. Robotium test output

Clicking the “Devices” button shows the same results, organized by device
(Figure 5-10).

The full Robotium JavaDocs offer additional details and sample projects.

5.3 Functional Testing with Robotium | 111

http://bit.ly/robotium-javadocs

Figure 5-10. Robotium test output organized by device

See Also
Activity testing using the Android Support Library is covered in Recipe 5.2. Testing
with Espresso is covered in Recipe 5.4.

5.4 Activity Testing with Espresso
Problem
You want to test Android activities using the Espresso library from Google.

Solution
Add the Espresso dependencies to your Gradle build and write tests to use it.

Discussion
The Espresso testing library has been added to the “Android Test Kit” project, part of
Google’s testing tools for Android. Documentation for Espresso resides in a wiki.
Since Espresso is a Google project and specifically designed for Android, it’s reason‐
able to assume that it will be the preferred mechanism for Android testing in the
future.

While this is not a book on testing, setting up and running Espresso tests fits the nor‐
mal Gradle practices, so a brief illustration is included here.

Espresso is included in the Android Support Repository, which is added under
“Extras” in the SDK Manager. This process was illustrated in a figure in Recipe 5.2,
repeated here in Figure 5-11.

112 | Chapter 5: Testing

http://bit.ly/espresso-docs

Figure 5-11. Adding the Android Support Library using the SDK Manager

To use Espresso in your project, add two androidTestCompile dependencies, as
shown in Example 5-15.

Example 5-15. Adding the Espresso dependencies

dependencies {
 androidTestCompile 'com.android.support.test:runner:0.5'
 androidTestCompile 'com.android.support.test.espresso:espresso-core:2.2.2'
}

This actually leads to a conflict in versions of the support annotations library, because
Espresso relies on version 23.1.1, while SDK 23 includes version 23.3.0 of the same
library. You get an error similar to:

WARNING: Error:Conflict with dependency
'com.android.support:support-annotations'. Resolved versions for app (23.3.0) and
test app (23.1.1) differ. See http://g.co/androIDstudio/app-test-app-conflict
for details.

While that may be resolved by the time you build your application, let’s make lemon‐
ade out of those lemons by showing how to fix it. In the top-level Gradle build file,
simply force a resolution in the allProjects section, as shown in Example 5-16.

Example 5-16. Resolving a conflict in library versions

allprojects {
 repositories {
 jcenter()
 }

 configurations.all {
 resolutionStrategy.force
 'com.android.support:support-annotations:23.3.0'
 }
}

5.4 Activity Testing with Espresso | 113

Espresso also requests that you set the testInstrumentationRunner in the default
Config block to use the AndroidJUnitRunner, as in Recipe 5.2. The complete module
build file therefore looks like that shown in Example 5-17.

Example 5-17. The full module build.gradle file

apply plugin: 'com.android.application'

android {
 compileSdkVersion 23
 buildToolsVersion "23.0.3"

 defaultConfig {
 applicationId "com.nfjs.helloworldas"
 minSdkVersion 16
 targetSdkVersion 23
 versionCode 1
 versionName "1.0"
 testInstrumentationRunner
 'android.support.test.runner.AndroidJUnitRunner'
 }
}

dependencies {
 compile 'com.android.support:support-annotations:23.3.0'
 androidTestCompile 'com.android.support.test:runner:0.5'
 androidTestCompile 'com.android.support.test.espresso:espresso-core:2.2.2'
}

Espresso tests love to use static methods, both in Espresso classes and in Hamcrest
matchers. Consequently, the test shown in Example 5-18 includes the import state‐
ments for clarity.

Example 5-18. An Espresso test, with imports

package com.nfjs.helloworldas;

import android.support.test.rule.ActivityTestRule;
import android.support.test.runner.AndroidJUnit4;
import android.test.ActivityInstrumentationTestCase2;
import android.test.suitebuilder.annotation.MediumTest;

import org.junit.Rule;
import org.junit.Test;
import org.junit.runner.RunWith;

import static android.support.test.espresso.Espresso.onView;
import static android.support.test.espresso.action.ViewActions.click;
import static android.support.test.espresso.action.ViewActions.typeText;
import static android.support.test.espresso.assertion.ViewAssertions.matches;

114 | Chapter 5: Testing

import static android.support.test.espresso.matcher.ViewMatchers.withId;
import static android.support.test.espresso.matcher.ViewMatchers.withText;
import static org.hamcrest.CoreMatchers.containsString;

@RunWith(AndroidJUnit4.class)
@MediumTest
public class MyActivityEspressoTest
 extends ActivityInstrumentationTestCase2<MyActivity> {

 public MyActivityEspressoTest() {
 super(MyActivity.class);
 }

 @Rule
 public ActivityTestRule<MyActivity> mActivityRule =
 new ActivityTestRule<>(MyActivity.class);

 @Test
 public void testHelloWorld() {
 onView(withId(R.id.edit_text))
 .perform(typeText("Dolly"));
 onView(withId(R.id.hello_button))
 .perform(click());
 onView(withId(R.id.greeting_text))
 .check(matches(withText(containsString("Dolly"))));
 }
}

The simple DSL focuses on user actions rather than activities. From this test, it is not
obvious that clicking the button actually shifted from the MyActivity class to the
WelcomeActivity class, but that did in fact happen. The results are shown in
Figure 5-12.

Figure 5-12. Espresso test results

5.4 Activity Testing with Espresso | 115

Once again, clicking the “Devices” button shows the results organized by device
rather than test, as in Figure 5-13.

Figure 5-13. Espresso test results organized by device

Espresso is an interesting DSL approach to writing functional tests. It is likely to be a
recommended API for the future.

Collecting Test Results
If your app includes multiple flavors or modules, the HTML test reports will be
organized into separate subdirectories. This makes it tedious to examine each one
individually.

Fortunately, there is a plug-in available to collect all the reports into a single build
folder. In the top-level build file, after the buildscript block, include the android-
reporting plug-in. See Example 5-19 for details.

Example 5-19. Adding the android-reporting plug-in

allprojects {
 repositories {
 jcenter()
 }

 configurations.all {
 resolutionStrategy.force
 'com.android.support:support-annotations:23.3.0'
 }
}

apply plugin: 'android-reporting'

116 | Chapter 5: Testing

The Android reporting plug-in collects test reports into a single file

Now if you run the mergeAndroidReports task, everything will be collected into a
single file.

Example 5-20. Merging Android test reports

> ./gradlew deviceCheck mergeAndroidReports --continue

The --continue flag is a standard Gradle flag, telling the build to keep going even if
there are failed tests. The result when running with multiple variants should be simi‐
lar to that in Figure 5-14.

Figure 5-14. Merged test reports from app with multiple variants

See Also
Activity testing using the Android Support Library is covered in Recipe 5.2. Testing
with the Robotium library is covered in Recipe 5.3. The technique listed here for
merging test reports works with any tests, not just Espresso.

5.4 Activity Testing with Espresso | 117

CHAPTER 6

Performance and Documentation

6.1 Performance Recommendations
Problem
You need to improve the performance of your Gradle build.

Solution
Use a combination of the techniques recommended here.

Discussion
First things first: these are not recommendations that will affect the performance of
your app. There are many things you can do to help your app, many of which involve
the ProGuard tool that comes with Android. This section is not about that—it’s about
improving the performance of the build itself.

This recipe discusses settings that can be added to the gradle.properties file in the root
of the Android application. If you prefer to use global settings, add a file called
gradle.properties to the .gradle subfolder in your home directory.

The Gradle daemon
The Gradle daemon is a background process that stays alive between builds, caching
both data and code. Most recent versions of Gradle automatically start a Gradle dae‐
mon whenever you run from the command prompt.

By default, Android Studio starts a Gradle daemon in your project, with a timeout
period of three hours, which is long enough for most development tasks. If you run

119

Gradle from the command line, however, you may not automatically start the dae‐
mon.

To make sure the daemon starts, add the setting shown in Example 6-1.

Example 6-1. Gradle daemon setting in gradle.properties

org.gradle.daemon=true

The daemon can also be started and stopped using a command-line flag. Use
--daemon and --no-daemon to enable or disable the daemon on individual build invo‐
cations. Stopping it is sometimes useful if you’re worried that the internal cache is out
of date or if you’re doing debugging. If you wish to stop a running daemon process,
use the --stop argument to gradle.

The Gradle team strongly recommends you do not use the daemon
on continuous integration servers, which value stable and repeata‐
ble builds more than performance.

Parallel compilation
Gradle has an “incubating” option to compile independent projects in parallel. To use
it, add a line to gradle.properties, as in Example 6-2.

Example 6-2. Parallel compilation setting in gradle.properties

org.gradle.parallel=true

Note that this may not help much. Most modules inside Android projects are related,
which negates any benefit from parallel compilation.

Configuration on demand
Normally Gradle configures all tasks in all projects involved in a build before execut‐
ing any of them. For projects with a large number of subprojects and many tasks, this
can be inefficient. It is therefore possible to try to configure only the projects that are
relevant for the requested tasks.

To do this, use the “configure on demand” setting in gradle.properties, as shown in
Example 6-3.

Example 6-3. The configure on demand setting in gradle.properties

org.gradle.configureondemand=true

120 | Chapter 6: Performance and Documentation

Most Android applications have only a small number of subprojects, so this feature
may not be all that helpful.

Again, this is an incubating feature, so the specific details may change with new ver‐
sions of Gradle.

Exclude unneeded tasks

As discussed in Recipe 4.3, the -x flag can be used to exclude a specific task, such as
lint, that takes time but may not be needed during every build.

That recipe also shows how to disable particular tasks in the task graph after it has
been assembled. See that recipe for details.

Change the JVM settings
Ultimately a Gradle build is running in a Java process, so flags that affect the JVM
affect the performance of Gradle. Example 6-4 shows a handful of settings for the
Java virtual machine.

Example 6-4. Choosing JVM setting in gradle.properties

org.gradle.jvmargs=-Xmx2048m -XX:MaxPermSize=512m
 -XX:+HeapDumpOnOutOfMemoryError

The -Xmx flag specifies the maximum amount of memory to use in the Java process.
An -Xms flag specifies the initial amount of memory to allocate to the process. The
example also changes the size of the “permanent generation” space, and dumps the
heap to a file when a java.lang.OutOfMemoryError is thrown.

See the Java HotSpot VM options page for details.

Use only the dependencies you need
This specifically refers to Google Play services, which used to require a large library
and now comes in the form of separate modules.

For example, to use Google Maps you used to have to add the entire Google Play
services dependency at compile time, as in Example 6-5.

Example 6-5. Adding the entire Google Play services dependency

dependencies {
 compile 'com.google.android.gms:play-service:7.8.0'
}

6.1 Performance Recommendations | 121

This is a rather large library, with many dependencies. Figure 6-1 shows the list of
added libraries once the full Google Play service dependency is added.

Figure 6-1. The complete set of Google Play services

With Android’s 65K method name limitation, you would be adding a lot of method
handles you don’t need. Instead, add only the Maps dependency, as in Example 6-6.

Example 6-6. Adding the Google Maps dependency only

dependencies {
 compile 'com.google.android.gms:play-service-maps:7.8.0'
}

The contrast between the just the Maps service (as shown in Figure 6-2) is dramatic.

Figure 6-2. Adding the Google Maps dependency only

122 | Chapter 6: Performance and Documentation

Use dex options
The Android block allows you specify options that control the “dex” process that con‐
verts Java byte codes (i.e., .class files) to Dalvik executables (.dex files). The dexOp
tions block contains the options in Example 6-7.

Example 6-7. The dexOptions block inside android

dexOptions {
 incremental true
 javaMaxHeapSize '2g'
 jumboMode = true
 preDexLibraries = true
}

The incremental option specifies whether to enable the incremental mode for the dx
processor. As the documentation says, “this has many limitations and may not work.
Use carefully.”

Use javaMaxHeapSize as an alternative way of specifying Xmx values during the dx
run, in 1024m increments—so here it is set to 2 gigs.

Enabling “jumbo mode” allows a larger number of strings in the dex files. If that’s an
issue, you may want to spend more time on configuring ProGuard.

The preDexLibraries will run the dx process on libraries ahead of time, just as it
sounds. As the docs say, “this can improve incremental builds, but clean builds may
be slower.”

All of these settings can both help and hurt performance, so be sure to try them out
before adopting them.

Profiling your build

You can run Gradle with the --profile command-line option to generate useful
information about the build. The results will be written in HTML form to the build/
reports/profile directory, this time in the top-level project.

As a sample, consider running the assembleDebug task from the multiflavor build
described in Example 6-8.

Example 6-8. Running Gradle with the --profile option

> ./gradlew --profile assembleDebug
:app:preBuild UP-TO-DATE
:app:preArrogantStarkDebugBuild UP-TO-DATE
:app:checkArrogantStarkDebugManifest
:app:preArrogantStarkReleaseBuild UP-TO-DATE
:app:preArrogantWayneDebugBuild UP-TO-DATE

6.1 Performance Recommendations | 123

:app:preArrogantWayneReleaseBuild UP-TO-DATE
:app:preFriendlyStarkDebugBuild UP-TO-DATE
:app:preFriendlyStarkReleaseBuild UP-TO-DATE
:app:preFriendlyWayneDebugBuild UP-TO-DATE
:app:preFriendlyWayneReleaseBuild UP-TO-DATE
:app:preObsequiousStarkDebugBuild UP-TO-DATE
:app:preObsequiousStarkReleaseBuild UP-TO-DATE
:app:preObsequiousWayneDebugBuild UP-TO-DATE
:app:preObsequiousWayneReleaseBuild UP-TO-DATE
// ... tons of other tasks ...
:app:assembleObsequiousWayneDebug
:app:assembleDebug

BUILD SUCCESSFUL

The output report is in the build/reports/profile folder, with a filename of the form
“profile-YYYY-MM-dd-hh-mm-ss.html”, where the part after the word “profile”
refers to timestamp quantities year, month, day, hour, minute, and seconds.

A sample report is shown in Figure 6-3.

Figure 6-3. Sample profile report

124 | Chapter 6: Performance and Documentation

The various tabs break down the summary report into individual configuration steps,
configuration (which is minimal in this case), and execution. In a project this size
there isn’t a lot to see, but for larger projects this is a good way to find bottlenecks in
your process.

See Also
The Java HotSpot VM options page for Java 7 and earlier is at http://bit.ly/java-
hotspot. Recipe 4.3 shows how to exclude tasks from the assembled task graph.

6.2 DSL Documentation
Problem
You need to search the full documentation for the Android Gradle DSL.

Solution
Access the Gradle Tools website, and download a ZIP file from the Android Devel‐
oper website.

Discussion
The home page for Android development holds the full API guides, JavaDoc refer‐
ences, tools documentation, and more. The contents there for the Android Gradle
plug-in, however, are a bit thin.

Instead, the primary source for the Android plug-in to Gradle is hosted at the
Android Tools Project Site, which contains the most recent information, as well as
links to the Gradle Plugin User Guide (Figure 6-4).

The User Guide itself, shown in Figure 6-5, is useful, but often well out of date (which
is one of the reasons this book exists).

Another link from the Android Tools Plugin Site is the DSL Reference, which takes
you to a GitHub repository for the documentation (Figure 6-6). Fortunately, you
don’t need to clone the repository and build it to see the documentation. The front
page (i.e., the README.md file, rendered automatically by GitHub) has a link to the
most recent version.

The plug-in reference contains not just the DSL itself, with blocks like buildTypes,
productFlavors, and signingConfigs, but also the actual types implementing
them. For example, the BuildType page (part of the com.android.build.gra
dle.internal.dsl package) shows all properties and methods available in that class.

6.2 DSL Documentation | 125

http://bit.ly/java-hotspot
http://bit.ly/java-hotspot
http://developer.android.com
http://bit.ly/as-new-build
http://bit.ly/gradle-guide
http://bit.ly/github-gradle-dsl
http://bit.ly/gradle-dsl

Figure 6-4. The Android Tools Project website

Figure 6-5. The Gradle Plugin User Guide

126 | Chapter 6: Performance and Documentation

Figure 6-6. The current DSL reference

Finally, the Gradle website contains links to the JavaDocs, GroovyDocs, DSL refer‐
ence, and the User Guide for Gradle itself.

To summarize:

• Android Developer Site
• Android Tools Project
• Gradle Plugin User Guide
• DSL Reference (GitHub)
• DSL Reference (rendered)
• Gradle User Guide

6.2 DSL Documentation | 127

http://gradle.org
http://bit.ly/gradle-user
http://developer.android.com
http://bit.ly/android-tools-project
http://bit.ly/grd-pl-guide
http://github.com/google/android-gradle-dsl
http://bit.ly/gradle-pl-dsl
http://bit.ly/gr-user-guide

APPENDIX A

Just Enough Groovy to Get By

This appendix reviews the basics of the Groovy programming language. The Gradle
build files consist largely of a Domain Specific Language, written in Groovy, for
builds. In addition to the DSL, any legal Groovy code can be added to the build.

Groovy is a general-purpose programming language, based on Java, that compiles to
Java byte codes. While it has functional capabilities, it is an object-oriented language
that is arguably the next-generation language in the path from C++ to Java.

Basic Syntax
The “Hello, World!” program for Groovy is the one-liner shown in Example A-1.

Example A-1. Hello, World! in Groovy

println 'Hello, World!'

Items of note:

• Semicolons are optional. If you add them, they work, but they’re not required.
• Parentheses are optional until they’re not. If the compiler guesses correctly where

they should have gone, everything works. Otherwise, add them back in. The
println method takes a String argument. Here the parentheses are left out.

• There are two types of strings in Groovy: single-quoted strings, like Hello, are
instances of java.lang.String. Double-quoted strings are Groovy strings and
allow interpolation, shown in Example A-2.

There are no “primitives” in Groovy. All variables use the wrapper classes, like
java.lang.Integer, java.lang.Character, and java.lang.Double. The native data

129

type for integer literals, like 3, is Integer. The native data type for floating point liter‐
als, like 3.5, is java.math.BigDecimal.

Example A-2. Some basic data types in Groovy

assert 3.class == Integer
assert (3.5).class == BigDecimal
assert 'abc' instanceof String
assert "abc" instanceof String

String name = 'Dolly'
assert "Hello, ${name}!" == 'Hello, Dolly!'
assert "Hello, $name!" == 'Hello, Dolly!'
assert "Hello, $name!" instanceof GString

Single-quoted strings are Java strings

Double-quoted strings are also Java strings unless you interpolate

String interpolation, full form

String interpolation, short form when there is no ambiguity

Note that you can invoke methods on literals, because they are instances of the wrap‐
per classes.

Groovy lets you declare variables with either an actual type, like String, Date, or
Employee, or you can use def. See Example A-3.

Example A-3. Static versus dynamic data types

Integer n = 3
Date now = new Date()

def x = 3
assert x.class == Integer
x = 'abc'
assert x.class == String
x = new Date()
assert x.class == Date

Java imports the java.lang package automatically. In Groovy, the following packages
are all automatically imported:

• java.lang

• java.util

• java.io

130 | Appendix A: Just Enough Groovy to Get By

• java.net

• groovy.lang

• groovy.util

The classes java.math.BigInteger and java.math.BigDecimal are also available
without an import statement.

The assert Method and the Groovy Truth
The assert method in Groovy evaluates its argument according to the “Groovy
Truth.” That means:

• Nonzero numbers (positive and negative) are true
• Nonempty collections, including strings, are true
• Nonnull references are true
• Boolean true is true

The Groovy Truth is illustrated in Example A-4.

Example A-4. The Groovy Truth

assert 3; assert -1; assert !0
assert 'abc'; assert !''; assert !""

assert [3, 1, 4, 1, 5, 9]
assert ![]

Asserts that pass return nothing. Asserts that fail throw an exception, as in
Example A-5, with lots of debugging information included.

Example A-5. Failing assertions

int x = 5; int y = 7
assert 12 == x + y // passes

assert 12 == 3 * x + 4.5 * y / (2/x + y**3) // fails

The result of the failing assertion is shown in Example A-6.

Example A-6. Failing assert output

Exception thrown

Assertion failed:

Just Enough Groovy to Get By | 131

assert 12 == 3 * x + 4.5 * y / (2/x + y**3)
 | | | | | | | || | ||
 false| 5 | | 7 | |5 | |343
 15 | 31.5| 0.4| 7
 | | 343.4
 | 0.0917297612
 15.0917297612

 at ConsoleScript11.run(ConsoleScript11:4)

Operator Overloading
In Groovy, every operator corresponds to a method call. For example, the + sign
invokes the plus method on Number. This is used extensively in the Groovy libraries.
Some examples are shown in Example A-7.

Example A-7. Operator overloading

assert 3 + 4 == 3.plus(4)
assert 3 * 4 == 3.multiply(4)

assert 2**6 == 64
assert 2**6 == 2.power(6)

assert 'abc' * 3 == 'abcabcabc' // String.multiply(Number)
try {
 3 * 'abc'
} catch (MissingMethodException e) {
 // no Number.multiply(String) method
}

String s = 'this is a string'
assert s + ' and more' == 'this is a string and more'
assert s - 'is' == 'th is a string'
assert s - 'is' - 'is' == 'th a string'

Date now = new Date()
Date tomorrow = now + 1 // Date.plus(Integer)
assert tomorrow - 1 == now // Date.minus(Integer)

Groovy has an exponentiation operator, **, as shown.

In Java, the == operator checks that two references are assigned to the same object. In
Groovy, == invokes the equals method, so it checks for equivalence rather than
equality. If you want to check references, use the is method.

132 | Appendix A: Just Enough Groovy to Get By

Collections
Groovy has native syntax for collections. Use square brackets and separate values by
commas to create an ArrayList. You can use the as operator to convert one collec‐
tion type to another. Collections also have operator overloading, implementing meth‐
ods like plus, minus, and multiply (Example A-8).

Example A-8. Collection examples and methods

def nums = [3, 1, 4, 1, 5, 9, 2, 6, 5]
assert nums instanceof ArrayList

Set uniques = nums as Set
assert uniques == [3, 1, 4, 5, 9, 2, 6] as Set

def sorted = nums as SortedSet
assert sorted == [1, 2, 3, 4, 5, 6, 9] as SortedSet
assert sorted instanceof TreeSet

assert nums[0] == 3
assert nums[1] == 1
assert nums[-1] == 5 // end of list
assert nums[-2] == 6

assert nums[0..3] == [3, 1, 4, 1] // two dots is a Range
assert nums[-3..-1] == [2, 6, 5]
assert nums[-1..-3] == [5, 6, 2]

String hello = 'hello'
assert 'olleh' == hello[-1..0] // Strings are collections too

A Range in Groovy consists of two values separated by a pair of dots, as in from..to.
The range expands starting at the from position, invoking next on each element until
it reaches the to position, inclusive.

Maps use a colon notation to separate the keys from the values. The square bracket
operator on a map is the getAt or putAt method, depending on whether you are
accessing or adding a value. The dot operator is overloaded similarly. See
Example A-9 for details.

Example A-9. Map instances and methods

def map = [a:1, b:2, c:2]
assert map.getClass() == LinkedHashMap
assert map.a == 1
assert map['b'] == 2
assert map.get('c') == 2

Just Enough Groovy to Get By | 133

Overloaded dot is put here

Uses putAt method

Java still works, too

Closures
Groovy has a class called Closure that represents a block of code that can be used like
an object. Think of it as the body of an anonymous method, which is an oversimplifi‐
cation but not a bad start.

A closure is like a Java 8 lambda, in that it takes arguments and evaluates a block of
code. Groovy closures can modify variables defined outside them, however, and Java
8 does not have a class called Lambda.

Many methods in Groovy take closures as arguments. For example, the each method
on collections supplies each element to a closure, which is evaluated with it. An
example is in Example A-10.

Example A-10. Using Groovy’s each method with a closure argument

def nums = [3, 1, 4, 1, 5, 9]

def doubles = []
nums.each { n ->
 doubles << n * 2
}

assert doubles == [6, 2, 8, 2, 10, 18]

Empty list

each takes a closure of one argument, before the arrow, here called n

Left-shift operator appends to a collection

Modifying a variable defined outside a closure is considered a side-
effect, and not good practice. The collect method, discussed later,
is preferred.

This is a natural way to double the values in a list, but there is a better alternative,
called collect. The collect method transforms a collection into a new one by

134 | Appendix A: Just Enough Groovy to Get By

applying a closure to each element. It is similar to the map method from Java 8, or just
think of it as the map operation in a map-filter-reduce process (Example A-11).

Example A-11. Using Groovy’s collect method to transform a collection

def nums = [3, 1, 4, 1, 5, 9]
def doubles == nums.collect { it * 2 }
assert doubles == [6, 2, 8, 2, 10, 18]

When a closure has a single argument (which is the default), and you don’t give that
argument a name using the arrow operator, the dummy name defaults to the word it.
In this case, the collect method creates the doubles collection by applying it * 2 in
a closure to each element.

POGOs
Java classes with just attributes and getters and setters are often called Plain Old Java
Objects, or POJOs. Groovy has similar classes called POGOs. An example is in
Example A-12.

Example A-12. A simple POGO

import groovy.transform.Canonical
@Canonical
class Event {
 String name
 Date when
 int priority
}

This little class actually has a lot of power. For a POGO:

• The class is public by default
• Attributes are private by default
• Methods are public by default
• Getter and setter methods are generated for each attribute not marked public or
private

• Both a default constructor and a “map-based” constructor (uses arguments of the
form “attribute:value”) are provided

In addition, this POGO include the @Canonical annotation, which triggers an
Abstract Syntax Tree (AST) transformation. AST transformations modify the syntax
tree created by the compiler during the compilation process in specific ways.

Just Enough Groovy to Get By | 135

The @Canonical annotation is actually a shortcut for three other AST transforma‐
tions: @ToString, @EqualsAndHashCode, and @TupleConstructor. Each does what
they sound like, so in this case, the @Canonical annotation adds to this class:

• A toString override that displays the fully-qualified name of the class, followed
by the values of the attributes, in order from top down

• An equals override that does a null-safe check for equivalence on each attribute
• A hashCode override that generates an integer based on the values of the

attributes in a fashion similar to that laid out by Joshua Bloch in his Effective Java
(Addison-Wesley) book long ago

• An additional constructor that takes the attributes as arguments, in order

That’s a lot of productivity for seven lines of code. Example A-13 shows how to use it.

Example A-13. Using the Event POGO

Event e1 = new Event(name: 'Android Studio 1.0',
 when: Date.parse('MMM dd, yyyy', 'Dec 8, 2014'),
 priority: 1)

Event e2 = new Event(name: 'Android Studio 1.0',
 when: Date.parse('MMM dd, yyyy', 'Dec 8, 2014'),
 priority: 1)

assert e1.toString() ==
 'Event(Android Studio 1.0, Mon Dec 08 00:00:00 EST 2014, 1)'
assert e1 == e2

Set events = [e1, e2]
assert events.size() == 1

Gradle uses all these features, and more, but this summary should get you started.

Groovy in Gradle Build Files
Gradle build files support all Groovy syntax. Here are few specific examples, however,
that illustrate Groovy in Gradle.

In Example A-14, the word apply is a method on the Project instance. The paren‐
theses on the method are optional, and left out here. The argument is setting a prop‐
erty called plugin on the Project instance to the string value supplied.

Example A-14. Applying the Android plugin for Gradle

apply plugin: 'com.android.application'

136 | Appendix A: Just Enough Groovy to Get By

In Example A-15, the term android is part of the plug-in’s DSL, which takes a closure
as an argument. Properties inside the closure, like compileSdkVersion, are method
calls with optional parentheses. In some Gradle build files, properties are assigned
using =, which would invoke a corresponding setter method. The developers of the
Android plug-in frequently added a regular method, like compileSdkVersion(23), in
addition to the setter, setCompileSdkVersion(23).

Example A-15. Setting properties in the android block

android {
 compileSdkVersion 23
 buildToolsVersion "23.0.1"
}

Also, “nested” properties, like compileSdkVersion here, can be set using a dot nota‐
tion as an alternative:

android.compileSdkVersion = 23

Both are equivalent.

Recent versions of the plug-in add a clean task to the Gradle build file. This task has
name called clean, is an instance of the Delete class (as subclass of Task), and takes a
closure as an argument. In keeping with standard Groovy practice, the closure is
shown after the parentheses (Example A-16).

Example A-16. The default clean task

task clean(type: Delete) {
 delete rootProject.buildDir
}

If a Groovy method takes a Closure as its last argument, the clo‐
sure is normally added after the parentheses.

The implementation here invokes the delete method (again, with optional parenthe‐
ses) on the rootProject.buildDir. The value of the rootProject property is the
top-level project, and the default value of buildDir is “build,” so this task deletes the
“build” directory in the top-level project.

Note that calling clean in the top-level project will also invoke it on the app subpro‐
ject, which will delete the build directory there as well.

Just Enough Groovy to Get By | 137

In Example A-17, the compile term is part of the DSL, implying that its argument is
applied during the compile phase. The fileTree method is shown with parentheses,
though they could be left out. The dir argument takes a string representing a local
directory. The include argument takes a Groovy list (the square brackets) of file pat‐
terns.

Example A-17. A file tree dependency

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
}

See Also
The book Making Java Groovy, by Ken Kousen (Manning), discusses Groovy and
integrates it with Java, and also has a chapter on build processes with Gradle. The
definitive reference for Groovy is Groovy in Action, Second Edition, by Dierk Konig,
Paul King, et al. (Manning).

The Groovy home page is at http://groovy-lang.org, and contains extensive documen‐
tation.

O’Reilly also has three video courses on Groovy: Groovy Programming Fundamentals,
Practical Groovy Programming, and Mastering Groovy Programming. All three are
available on Safari as well.

138 | Appendix A: Just Enough Groovy to Get By

http://bit.ly/java-groovy
http://bit.ly/groovy-action-2e
http://groovy-lang.org
http://bit.ly/groovy-programming-fundamentals
http://bit.ly/practical-groovy-programming
http://bit.ly/mastering-groovy-programming
http://www.safaribooksonline.com

APPENDIX B

Gradle Basics

The recipes in this book are for the Gradle build files inside of Android. Gradle is a
powerful build tool, however, which is used extensively in other projects. This appen‐
dix reviews the basics of Gradle. All capabilities reviewed here can be used inside
Android build files as well.

Installing Gradle

You do not need to install Gradle to use it in Android projects.
Android Studio includes Gradle, and provides a Gradle wrapper as
well. Its use is demonstrated in Recipe 4.1, among other recipes.

Gradle comes as a single, ZIP download. You merely need to download the latest dis‐
tribution from the Gradle website to get started. Installation is as easy as:

1. Download and unzip the distribution
2. Set a GRADLE_HOME environment variable to point to the unzipped folder
3. Add the bin folder under GRADLE_HOME to your path

The gradle command can then be executed at the root of any project. By default the
build file is called build.gradle, but any name can be used. The -b or --build-file
flag is used to specify a different build file.

As an alternative, Gradle provides a wrapper, which can be used to automatically
download and install Gradle on its first use. The wrapper is demonstrated later in this
appendix.

139

http://gradle.org

Note that though Gradle build files are written in Groovy, you don’t need to install
Groovy to run Gradle. Gradle includes a distribution of Groovy inside it, which is
used to power the build.

To see the details of the Gradle installation, run Gradle with the -v flag, as shown in
Example B-1.

Example B-1. Displaying the Gradle version

> gradle -v

--
Gradle 2.12
--

Build time: 2016-03-14 08:32:03 UTC
Build number: none
Revision: b29fbb64ad6b068cb3f05f7e40dc670472129bc0

Groovy: 2.4.4
Ant: Apache Ant(TM) version 1.9.3 compiled on December 23 2013
JVM: 1.8.0 (Oracle Corporation 25.0-b70)
OS: Mac OS X 10.11.4 x86_64

The Gradle version here is 2.12, which includes Groovy 2.4.4 under the hood, and is
running on Java 1.8 on Mac OS X machine.

Build Lifecycle
Gradle builds run through three distinct phases:

Initialization
Read environment configuration files init.gradle and gradle.properties, and set up
all subprojects listed in_settings.gradle_

Configuration
Evaluate all build scripts and build the model, including the DAG

Execution
Execute the desired tasks

Java Projects
Gradle build files consist of tasks, which are assembled into a DAG. Custom tasks are
discussed in the next section. Gradle is a plugin-based architecture, however, and by
adding plugins to a build, you add tasks and capabilities to the build.

140 | Appendix B: Gradle Basics

The most common plugin used outside the Android world is the Java plugin. Since
this plugin comes with the Gradle distribution, adding it to your project is a simple as
using the apply command. An example is shown in Example B-2.

Example B-2. A minimal build.gradle file for a Java project

apply plugin: 'java'

In fact, this is a complete build file for a Java project. The plugin itself defines a series
of related tasks. To see what tasks are available, go to a command prompt in the root
of the project and execute the tasks command. Sample output is shown in
Example B-3.

Example B-3. Sample output from the tasks command

> gradle tasks
:tasks

--
All tasks runnable from root project
--

Build Setup tasks

init - Initializes a new Gradle build. [incubating]
wrapper - Generates Gradle wrapper files. [incubating]

Help tasks

components - Displays the components produced by root project 'gradle'. [incubating]
dependencies - Displays all dependencies declared in root project 'gradle'.
dependencyInsight - Displays the insight into a specific dependency in 'gradle'.
help - Displays a help message.
model - Displays the configuration model of root project 'gradle'. [incubating]
projects - Displays the sub-projects of root project 'gradle'.
properties - Displays the properties of root project 'gradle'.
tasks - Displays the tasks runnable from root project 'gradle'.

The list of tasks shows which are available, but does not show their relationships.
Additional command-line flags are available for that, but the easiest way to see what
tasks are run in which order is simply to execute the build task. Executing a build is
shown in Example B-4.

Example B-4. Executing a Gradle build

> gradle build
:compileJava UP-TO-DATE
:processResources UP-TO-DATE

Gradle Basics | 141

:classes UP-TO-DATE
:jar
:assemble
:compileTestJava UP-TO-DATE
:processTestResources UP-TO-DATE
:testClasses UP-TO-DATE
:test UP-TO-DATE
:check UP-TO-DATE
:build

BUILD SUCCESSFUL

Total time: 1.956 secs

Each phase, like :build, depends on others. The plugin defines the tasks and their
relationships. Gradle then executes them in the proper order.

The tasks form a directed acyclic graph. In this case, the graph showing the relation‐
ships is available in the Gradle User Guide. Figure B-1, taken from the online docu‐
mentation, shows the DAG for the Java plugin.

Figure B-1. Directed acyclic graph for the Java plugin tasks

142 | Appendix B: Gradle Basics

http://bit.ly/gradle-java

Each association uses an arrow (which is the directed part), and while there are multi‐
ple relationships, there are no loops in the graph (thus the acyclic label). Running the
build task means that first the check and assemble tasks must be run. The check task
then depends on test, which depends on testClasses and classes, and so on.

The Java plugin assumes that the source code is laid out in a directory structure first
standardized by Maven. Nontesting code is placed in an src/main/java folder, and
tests go in src/main/test by default. This is easy enough to customize through source
sets.

From the Gradle point of view, Android projects are not Java
projects. They use a different plugin and (slightly) different project
layout.

Repositories and Dependencies
The current build file defines testing tasks, but not a testing library. The build file
from Example B-5 is far more typical of basic Java projects.

Example B-5. A Gradle build with a repository and dependencies

apply plugin: 'java'

repositories {
 jcenter()
}

dependencies {
 testCompile 'junit:junit:4.12'
}

Gradle defines a Domain Specific Language (DSL) for builds. The repositories and
dependencies elements in the build file are part of the DSL.

Repositories are collections of libraries that can be retrieved on demand and stored in
a local cache, which defaults to a .gradle folder in the user’s home directory. The
repository used in this build file is called jcenter(), which is the Bintray JCenter
Artifactory repository. Another built-in repository is mavenCentral(), the public
Maven Central Repository. Multiple repositories are frequently included in a build
file. Each is searched in turn to resolve dependencies.

Dependencies are listed, naturally enough, in the dependencies block. A dependency
includes both the information about the library (group, name, and version), as well as
the “dependency configuration” where it is needed.

Gradle Basics | 143

The predefined dependency configurations for the Java plugin are:

• compile

• runtime

• testCompile

• testRuntime

• archives

• default

The first four are the most common, but all mean pretty much what they sound like.
For example, a compile dependency makes the library classes available throughout
the project, which a testCompile dependency adds the library classes only to the src/
test/java source tree. JDBC drivers are often listed as runtime dependencies, or even
testRuntime dependencies if the database is only used for testing.

Custom Tasks
The Gradle DSL is extensive, and often you won’t need anything beyond what the
plugins provide. Sooner or later, however, every build becomes a custom build, and
Gradle was designed with that in mind.

Recipe 4.1 discusses how to create your own tasks for Gradle builds.

Use the task keyword to define a task, as in Example B-6.

Example B-6. Custom task to say hello

def task {
 doLast {
 println 'hello'
 }
}

The doLast block indicates code that should be run at execution time. Any code out‐
side that block (but still inside the task) is run at configuration time.

Gradle also includes a doFirst block, but it is used far less often. Also, you can abbre‐
viate the doLast block using a left-shift operator.

The entire task in Example B-7 is run at execution time. It’s easy enough to overlook
the syntax, however, which is one of the reasons this approach is not preferred.

144 | Appendix B: Gradle Basics

Example B-7. Custom task using left-shift operator

def task << {
 println 'hello'
}

The Gradle API has many built-in tasks available, which can be customized. For
example, Example B-8 configures the Copy task, which is a class in the Gradle API.

Example B-8. Configuring the Copy task

def copyOutputs(type: Copy) {
 from "$buildDir/outputs/apk"
 into '../results'
}

Gradle files often mix single-quoted and double-quoted strings.
Double-quoted strings allow interpolation, and single-quoted
strings don’t. Otherwise they are effectively identical.

The Copy task itself includes both configuration and execution time sections. In this
case, setting the from and into properties assigns the desired values, and the task
handles the rest. This approach to configuring existing tasks rather than writing your
own is considered a good practice, because it favors telling Gradle what you would
like rather than specifying how to do it.

Multiproject Builds
Subdirectories of a given project can be Gradle projects themselves, with their own
build files and dependencies. In fact, they can even depend on each other.

The file settings.gradle specifies which subdirectories are Gradle projects. In a typical
Android app, settings.gradle includes the app directory, which is where the code for
the actual application resides.

Each app in a multiproject build can have its own build file. To share common blocks
among projects, use a subprojects or an allprojects block, both of which config‐
ure the overall instance of the Project class. Details of this process are discussed in
Recipe 1.1.

In fact, the rest of this book discusses how Gradle works with Android projects,
which is as good a place as any to end this appendix.

Gradle Basics | 145

See Also
The home page for Gradle contains extensive documentation. O’Reilly also has books
on Gradle: Building and Testing with Gradle by Tim Berglund and Matthew McCul‐
logh, and Gradle Beyond the Basics by Tim Berglund, are in the same series as this
book.

Two video courses are available from O’Reilly as well: Gradle Fundamentals, and Gra‐
dle for Android. Both are on Safari.

146 | Appendix B: Gradle Basics

http://gradle.org
http://bit.ly/building-testing-gradle
http://bit.ly/gradle-beyond-the-basics
http://bit.ly/gradle-fundamentals
http://bit.ly/gradle-for-android
http://bit.ly/gradle-for-android
https://www.safaribooksonline.com

Index

Symbols
@ (at sign), in dependency notation, 23
" " (double quotes), enclosing strings, 18, 129
<< (left-shift operator), for doLast block,

144-145
() (parentheses), in Groovy, 129
; (semicolon), in Groovy, 129
' ' (single quotes), enclosing strings, 18, 129
*. (spread-dot operator), 84
[] (square brackets), for collections, 133

A
aar files, 88

(see also Android libraries)
activities

functional testing for, 108-117
for specific flavors, 71-75

ADP timeout period, extending, 80
ADT plug-in for Eclipse, 37-39
allprojects block, 5, 43-45
allTasks property, 84
android block, 6, 7-8
Android Gradle DSL documentation, 125-127
Android libraries

adding to applications, 88-96
libraryVariants property for, 78
as subprojects, 44

Android package (APK), signing, 45-51
Android plug-in for Gradle, 5-7, 136
android property, 78
Android SDK

configuring, 6
Robolectric as mock of, 102
versions of, ix, 6-9

Android Studio
adding dependencies, 23-25
building projects, 15-17
building specific variants, 59
configuring applications, 8
creating Android libraries, 89-91
creating projects, 2-4
importing Eclipse ADT projects, 33-37
signing an APK, 49-51
synchronizing projects, 20
unit testing, for Java components, 97-103
versions of, ix

Android Support Repository, 103, 112
Android Testing Support Library, 103-107
Android versions, ix
android-reporting plug-in, 116-117
AndroidJUnitRunner class, 104, 106
AndroidManifest.xml file, 37
anonymous inner class, 44
APK (Android package), signing, 45-51
applicationId property, 8, 54-57
applicationIDsuffix property, 54-56
applications, 1

(see also projects)
Android library dependencies, adding,

88-96
building (see build files; builds)
configuring, 6-9
Java library dependencies, adding, 18-25
projects for, creating, 2-4
testing (see testing)

applicationVariants property, 78
apply command, 6, 136, 141
assemble task, 59

147

assert method, 131-131
at sign (@), in dependency notation, 23

B
build files, 1-6, 15, 136-138, 140
build task, 11-13
build types, 53-56, 59

(see also variants)
build.gradle file

at app level, 5-6
at top level, 4-5, 7-8
synchronizing after editing, 20

builds
adding custom tasks to, 80-82
applicationIds for, 8, 54-57
excluding tasks from, 83-84, 121
executing in Android Studio, 15
executing on command line, 9-15, 141
lifecycle of, 140
multiple, on one device (see build types; fla‐

vors; variants)
multiproject builds, 145
parallel compilation for, 120
performance of, improving, 119-125
profiling, 123-125

buildscript block, 5
buildToolsVersion property, 7, 8
BuildType class, 54
buildTypes block, 53-56

C
@Canonical annotation, 135
classes, for specific flavors, 71-75
clean task, 137
closures, in Groovy, 44, 134-135
code examples in this book, xi
collections, in Groovy, 133
com.android.application file (see Android plug-

in for Gradle)
compilation, parallel, 120
compileoptions block, 8
compileSdkVersion property, 7
configuration on demand, 120
configuration phase, 78, 140
configurations, for dependencies, 18, 144
configuring applications, 6-9
configuring repositories, 26-28
connectedCheck task, 106
Copy task, customizing, 77-78

D
DAG (directed acyclic graph), 5, 140, 142

adding custom tasks to, 80-82
built in configuration phase, 78

data types, in Groovy, 130
debug build type, 53
debug keystore, 45
debuggable property, 54
def keyword, 30
defaultConfig block, 8
dependencies, 143-144

Android, adding to applications, 88-96
Java, adding to applications, 18-25
limiting number of, 121-122
resolving, repositories for, 26-28
transitive, 21-23
version numbers in, 18

dependencies block, 6, 18-25, 88-96
dependsOn method, 79
dependsOn property, 80-82
dexOptions block, 123
directed acyclic graph (see DAG)
distributionUrl property, 10
documentation for Android Gradle DSL,

125-127
doFirst block, 144
doLast block, 78, 144-145
double quotes (" "), enclosing strings, 18, 129
DSL (Domain Specific Language), 6, 143

(see also specific blocks)
DSL documentation, 125-127

E
Eclipse ADT projects

exporting using ADT plug-in, 37-39
importing into Android Studio, 33-37

Espresso library, 112-117
execution phase, 78, 140
ext block, 29-32

F
files (see build files; resources; source sets)
flavors, 56-59

(see also variants)
building, 59
dimensions of, 67-70
Java sources specific to, 71-75

functional interfaces, 45

148 | Index

functional testing
activities, 112-117
Android components, 103-107

G
Gradle build system, 1

builds (see build files; builds)
installing, 139-140
upgrading, 40-42
versions of, ix

gradle command, 139-140
(see also ./gradlew command)
-P flag, 29, 31

Gradle daemon, 119-120
Gradle plug-in (see Android plug-in for Gra‐

dle)
Gradle wrapper, 10, 40-41
gradle-wrapper.jar file, 10, 41
gradle-wrapper.properties file, 10, 41-42
gradle.properties file, 30-32, 119
./gradlew command, 10-15

--all flag, 13
-b flag, 15
-P flag, 84
-x flag, 13, 83

gradlew.bat command, 10-15
Groovy language, 129-138

assert method, 131
basic syntax, 129
in build files, 136-138
closures, 134-135
collections, 133
data types, 130
operator overloading, 132
packages imported by, 130
POGOs, 135-136
variables, 129-130

Groovy Truth, 131-131

I
import-summary.txt file, 35
include statement, 4
initialization phase, 140
installing Gradle, 139-140
interpolation, 18

J
jar files, 22

(see also Java libraries)
Java components, unit testing for, 97-103
Java libraries, adding to applications, 18-25
Java plugin, 141
Java projects (see projects, Java)
Java SE 8, lambda support, 45
Java sources, for specific flavors, 71-75
java.lang package, 130
jcenter (JCenter Artifactory) repository, 5,

26-28
JUnit framework, 98-99, 101

JUnit 3 support, 110
JUnit 4 support, 104, 106

JVM settings, 121

K
keytool command, 45

L
lambdas, 45
left-shift operator (<<), for doLast block,

144-145
libraries

Android, adding to applications, 88-96
Java, adding to applications, 18-25

libraryVariants property, 78

M
mavenCentral() (Maven) repository, 5, 26-28
minifyEnabled property, 54
minSdkVersion property, 8, 8, 57
multiproject builds, 145

O
operator overloading, in Groovy, 132

P
packages

APK, signing, 45-51
Java, imported in Groovy, 130

parallel compilation, 120
parentheses (()), in Groovy, 129
performance of builds, 119-125
plugins (see ADT plugin for Eclipse; Android

plugin for Gradle; Java plugin)
POGOs (Plain Old Groovy Objects), 135-136
product flavors (see flavors)
productFlavors block, 56-57

Index | 149

profiling builds, 123
projects, Android, 1

(see also applications)
building (see build files; builds)
creating, 2-4
properties for, 29-32, 137
sharing settings between, 43-45
synchronizing, 20

projects, Eclipse ADT
exporting using ADT plug-in, 37-39
importing into Android Studio, 33-37

projects, Java, 140-143
properties, for projects, 29-32, 137

Q
quoted strings, for dependencies, 18

R
release build type, 53
release key, 46-49
repositories, 26-28, 143-144
repositories block, 26-28
resources

changing for specific flavors, 60-66
for flavors, 57
unused, removing, 54

Robolectric project, 102
Robotium library, 108-111

S
SDK Manager

Android Testing Support Library in, 103
Espresso library in, 112

semicolon (;), in Groovy, 129
settings.gradle file, 4, 36, 88, 145
shrinkResources property, 54
signing an APK, 45-51
signingConfig property, 57
signingConfigs block, 47-48
single quotes (' '), enclosing strings, 18, 129
source sets

custom, 85-88
for flavors, 57

sourceSets block, 38-39
sourceSets property, 85-88
spread-dot operator (*.), 84
square brackets ([]), for collections, 133
strings, in Groovy, 129

subprojects block, 44
system requirements, ix

T
targetSdkVersion property, 8, 57
task block, 77-79
task graph (see DAG)
tasks, 11-13, 140-143

(see also specific tasks)
adding to build process, 80-82
configuration on demand, 120
configuration phase of, 78
creating, 5, 77-80, 144-145
excluding from builds, 83-84, 121
execution phase of, 78
list of, 11-13

testing
functional testing, for activities, 108-111,

112-117
functional testing, for Android components,

103-107
unit testing, for Java components, 97-103

timeout limit, extending, 80
transitive dependencies, 21-23

U
unit testing, for Java components, 97-103
upgrading Gradle, 40-42

V
variable substitution (see interpolation)
variables, 129-130

(see also properties, for projects)
variants, 58-59

building, 59
with flavor dimensions, 68-70
installing onto a device, 78-80
listing, 78

versionCode property, 8, 57
versionName property, 8, 57
versionNameSuffix property, 55

W
whenReady property, 83
wrapper (see Gradle wrapper)
wrapper task, 40-41

150 | Index

Z
zipStoreBase property, 10

zipStorePath property, 10

Index | 151

About the Author
Ken Kousen is an independent consultant and trainer specializing in Android,
Spring, Hibernate, Groovy, Grails, and Gradle. He holds numerous technical certifi‐
cations, along with BS degrees in both Mathematics, and Mechanical and Aerospace
Engineering from M.I.T., an MA and a PhD in Aerospace Engineering from Prince‐
ton, and an MS in Computer Science from R.P.I.

Colophon
The animal on the cover of Gradle Recipes for Android is a great potoo (Nyctibius
grandis). This unusual creature occupies humid forest habitats throughout Central
and South America.

The great potoo is a large bird at 18 to 24 inches long, with an average wingspan of 29
inches. It is somewhat owl-like in appearance, possessing a large head, a wide, gaping
mouth, and immense yellow eyes. Its plumage is mottled light brown and gray, serv‐
ing as camouflage against tree bark. The great potoo perches on branches, where it
rests during the day and waits to capture prey at night; its diet includes large, flying
insects as well as the occasional bat.

Solitary and elusive, little is known about the breeding habits of Nyctibius grandis. It
lays just one egg per year, not in nests but in the notches of tree branches at least 30
feet above the ground.

The great potoo makes deep, guttural calls throughout the night. The haunting,
unique sound has lent itself to many folk legends about the bird; some believe its
plaintive cry is that of a shaman’s daughter mourning her lost love, while others imag‐
ine the bird’s song summons messages from the dead.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Lydekker’s Royal Natural History, Volume 4 and Dover Picto‐
rial Archive. The cover fonts are URW Typewriter and Guardian Sans. The text font is
Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font
is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Foreword
	Preface
	About the Book
	Prerequisites
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Gradle for Android Basics
	1.1 Gradle Build Files in Android
	Problem
	Solution
	Discussion
	See Also

	1.2 Configure SDK Versions and Other Defaults
	Problem
	Solution
	Discussion
	See Also

	1.3 Executing Gradle Builds from the Command Line
	Problem
	Solution
	Discussion
	See Also

	1.4 Executing Gradle Builds from Android Studio
	Problem
	Solution
	Discussion
	See Also

	1.5 Adding Java Library Dependencies
	Problem
	Solution
	Discussion
	See Also

	1.6 Adding Library Dependencies Using Android Studio
	Problem
	Solution
	Discussion
	See Also

	1.7 Configuring Repositories
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. From Project Import to Release
	2.1 Setting Project Properties
	Problem
	Solution
	Discussion
	See Also

	2.2 Porting Apps from Eclipse ADT to Android Studio
	Problem
	Solution
	Discussion
	See Also

	2.3 Porting Apps from Eclipse ADT Using Eclipse
	Problem
	Solution
	Discussion
	See Also

	2.4 Upgrading to a Newer Version of Gradle
	Problem
	Solution
	Discussion

	2.5 Sharing Settings Among Projects
	Problem
	Solution
	Discussion
	See Also

	2.6 Signing a Release APK
	Problem
	Solution
	Discussion
	See Also

	2.7 Signing a Release APK Using Android Studio
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Build Types and Flavors
	3.1 Working with Build Types
	Problem
	Solution
	Discussion
	See Also

	3.2 Product Flavors and Variants
	Problem
	Solution
	Discussion
	See Also

	3.3 Merging Resources
	Problem
	Solution
	Discussion
	See Also

	3.4 Flavor Dimensions
	Problem
	Solution
	Discussion
	See Also

	3.5 Merging Java Sources Across Flavors
	Problem
	Solution
	Discussion
	See Also

	Chapter 4. Custom Tasks
	4.1 Writing Your Own Custom Tasks
	Problem
	Solution
	Discussion
	See Also

	4.2 Adding Custom Tasks to the Build Process
	Problem
	Solution
	Discussion
	See Also

	4.3 Excluding Tasks
	Problem
	Solution
	Discussion
	See Also

	4.4 Custom Source Sets
	Problem
	Solution
	Discussion
	See Also

	4.5 Using Android Libraries
	Problem
	Solution
	Discussion

	Chapter 5. Testing
	5.1 Unit Testing
	Problem
	Solution
	Discussion
	See Also

	5.2 Testing with the Android Testing Support Library
	Problem
	Solution
	Discussion
	See Also

	5.3 Functional Testing with Robotium
	Problem
	Solution
	Discussion
	See Also

	5.4 Activity Testing with Espresso
	Problem
	Solution
	Discussion
	Collecting Test Results
	See Also

	Chapter 6. Performance and Documentation
	6.1 Performance Recommendations
	Problem
	Solution
	Discussion
	See Also

	6.2 DSL Documentation
	Problem
	Solution
	Discussion

	Appendix A. Just Enough Groovy to Get By
	Appendix B. Gradle Basics
	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

