
www.allitebooks.com

http://www.allitebooks.org

HTML5 and CSS3 Transition,
Transformation, and Animation

A handy guide to understanding Microdata, the new
JavaScript APIs, and the new form elements in HTML5
and CSS3 along with transition, transformation, and
animation using lucid code samples

Aravind Shenoy

Gianluca Guarini

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

HTML5 and CSS3 Transition, Transformation,
and Animation

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2013

Production Reference: 1141113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-84951-994-6

www.packtpub.com

Cover Image by Neha Rajappan (neha.rajappan1@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Aravind Shenoy

Gianluca Guarini

Reviewers
Younes Baghor – w3bwizart

Rodrigo Encinas

Pavlo Iuriichuk

Paul Shipley

Yuxian, Eugene Liang

Acquisition Editor
Jonathan Titmus

Gregory Wild

Commissioning Editor
Sruthi Kutty

Technical Editors
Kapil Hemnani

Nikhil Potdukhe

Tarunveer Shetty

Project Coordinator
Amigya Khurana

Proofreader
Ting Baker

Indexer
Tejal Soni

Graphics
Disha Haria

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Aravind Shenoy is an in-house author at Packt Publishing. An engineering
graduate from the Manipal Institute of Technology, his core interests are technical
writing, web designing, and software testing. He is a native of Mumbai, India, and
currently resides there. He has written books such as An overview on Apache Hadoop,
JavaScript: Web Designing Fundamentals, and CSS Essentials in a Nutshell and articles
on various technologies.

I would like to thank my mom, Vatsala, my uncle Suresh Kamath,
and sister Aruna for their continued patience and moral support.
Thanks to the entire team at Packt Publishing who were involved
in the entire process of publishing this book. Special thanks to the
reviewers who helped me in this walk of life and to Azharuddin,
Arun, Mayur, and Ankita (all my teammates at Packt Publishing)
for motivating me in my journey.

Gianluca Guarini is a 25-year-old web developer, with strong design skills,
working currently in Zurich. He was born in Avellino, a sunny city in the south of
Italy, and he grew up designing things and playing video games from an early age
on a Commodore 64. He graduated in Psychology of Communication in Milan and
has worked collaborating with small web agencies as a freelancer, always searching
for new projects to enhance his skills.

www.allitebooks.com

http://www.allitebooks.org

In 2011, he wrote an HTML5 guide for the biggest Italian web design e-learning
portal HTML.it and in the same year he started a long collaboration with Radio
Deejay pushing the HTML5 technology into the mainstream in Italy thanks to an
amazing working group. He won, with Radio Deejay team, the first prize for the
best Design/UX in Dev Unplugged (an HTML5 contest for the launch of Internet
Explorer 9) realizing The Visual Player, an amazing project that combines the use
of HTML5 Canvas, Video, Audio, and SVG features.

In 2012, he moved to Zurich to work as frontend developer for Gold Interactive,
then a brand-new web agency that likes to start any new project always by exploiting
the coolest HTML5 features needed to make them unique and great. He believes
in open source and is always sharing his tricky codes on Twitter from his account
@gianlucaguarini. You can contact him at gianluca.guarini@gmail.com and
https://github.com/GianlucaGuarini.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Younes Baghor – w3bwizart, born in Belgium, started his career as a
welder/constructor building new trucks and later as a container repairer. At night
and the weekends he worked in the food and beverage sector (restaurants and bars)
where he started as a dishwasher and worked his way up to a maitre d'hotel.
But it was time for a new challenge.

In 2007, he started his bachelor's degree and finished it in 2010. During this time he
discovered the beauty of the Web. Although his education was strongly focused on
server-side .NET, he spent most of his free time discovering the modern HTML5/
CSS3/JavaScript standards and the surrounding APIs, to learn a better way to
display the user interface in the browser to provide a better user experience.

His energy and drive come from curiosity and the desire for continuous learning.
When working on a project he is very goal orientated, using a lot of communication,
research, questions, and discussions to achieve the goal. He likes to look at the
whole picture from development to design, costs, user experience, and branding and
bringing a simple solution to improve the current way of working.

He specializes in HTML5, CSS3, JavaScript, Semantics, OOP, Mobile First, responsive
design, progressive enhancement, and social media strategies.

I would like to thank Packt Publishing for giving me the opportunity
to be a part of this book.

www.allitebooks.com

http://www.allitebooks.org

Rodrigo Encinas has worked for more than 12 years for companies of
different means, from advertising and television to world-class fashion brands,
or communication companies. Nowadays, he is a consultant for international
companies helping with the development of web applications and improving the
user experience with best practices and modern patterns such as HTML5, responsive
web design, and single-page applications.

I would like to thank Packt Publishing for the good job done and
I would like to thank the readers for your interest in this field and
encourage you to learn how to build the Web of the future.

Pavlo Iuriichuk is a frontend lead developer working for GlobalLogic. He
previously worked with HTML5 technologies stack in gaming and mobile web
application projects in Ciklum. He came to HTML5 land from Flex and ActionScript.
He graduated from Kyiv Polytechnic Institute, faculty of Applied Maths, about two
years ago, so now he is connecting Maths with real software development and
trying to make this life easier.

Paul Shipley had an extensive career spanning near 30 years in application
development, mainly in the telecommunications, insurance, government, and
manufacturing industries. He has worked on projects ranging from small desktop
applications in Visual Basic through to large complex corporate mainframe
applications using SAS and COBOL. He is currently freelancing creating websites
and applications for small and medium businesses using HTML5/CSS3, GWT, and
Responsive Web Design techniques.

He is also a blogger, published author, and conference presenter.

He is co-author of Photoshop Elements 2: Zero to Hero along with Tom Arah,
Adam Juniper, Barry Beckham, and Todd Pierson (Wrox Press, 2002,
ISBN/ISSN: 1904344232).

www.allitebooks.com

http://www.allitebooks.org

Yuxian, Eugene Liang is a researcher, author, web developer, and business
developer. He enjoys solving difficult problems creatively in the form of
implementing web applications using Python/Django/Tornado, JavaScript/
jQuery/Node.js. He also enjoys researching areas of social network analysis, social
computing, recommendation algorithms, link analysis, data visualization, data
mining, information retrieval, business intelligence, and intelligent user interface.
He previously authored JavaScript Testing Beginner's Guide. Find him at
http://www.liangeugene.com.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Introduction to HTML5 7

Standardizing HTML 7
Differences between HTML 4 and HTML5 8
Why we must start using HTML5 9
Myths about HTML5 10
Summary 11

Chapter 2: Using the New Markup to Build a Semantic Page 13
Easier and faster syntax 13

Header 14
Footer 15
Nav 16
Article 18
Aside 19

Microdata 20
Summary 22

Chapter 3: Flexible Box Model in CSS3 23
Understanding Flexbox 23
Flex Container properties 26
flex-direction	 26
justify-content	 28
align-items	 29
flex-wrap	 31

Properties of Flex Items 33
Order 33
Flex 35

Summary 36

Table of Contents

[ii]

Chapter 4: Web Forms in HTML5 37
New form attributes in HTML5 38

placeholder 38
autofocus 39
required 40
datalist	 42

Understanding new input types in HTML5 43
search 43
email and url 45
date 46
week 47
month 48
color 50

Summary 51
Chapter 5: Advanced Features of HTML5 53

Audio and video 54
Drag-and-Drop 58
Geolocation 60
Webstorage 63

sessionStorage 63
localStorage 65

Offline web applications 67
Canvas 70
beginPath	 72
closePath	 72
moveTo	 72
stroke	and	fill	 72
arc	 72
lineTo 73
Gradients 74
save and restore 75
Transformations 77

translate 77
rotate 78
scale 79

Animation 80
Summary 82

Chapter 6: CSS3 Animations 83
CSS3 transitions 84
The	transition-duration	property	 86
The	transition-timing-function	property	 89

Table of Contents

[iii]

The	transition-delay	property	 90
CSS3 transforms 91

rotate 91
scale	 92
translate	 92
skew 93
translate (3D) 95
rotate (3D) 96
preserve-3d	 96

CSS3 animation 97
@keyframes 98
animation-name	 98
animation-duration	 98
animation-delay	 98
animation-timing-function	 98
animation-iteration-count	 98
animation-direction	 99
animation-play-state	 99

Summary 104
Chapter 7: Tools and Utilities in HTML5 and CSS3 105

Modernizr 105
Liveweave 107
HTML KickStart 109
HTML5 Boilerplate 110
The CSS3 Cheat sheet 112
Summary 113

Index 115

Preface
HTML5 and CSS3 technologies are changing the face of the web, they are making
the way we build websites, add new features, and develop more immersive
experiences much faster and accessible to the masses. Transitions, transformations,
and animations have always required a specialized component, until now. Learn
to harness the power of HTML5 and CSS3 to make your interactive and visually
compelling designs a reality.

HTML5 and CSS3 Transition, Transformation, and Animation will introduce any
developer or designer to this new, exciting, and world-changing technology. Using
practical and easy-to-follow examples, create visually compelling and interactive
websites without the overhead and previously time consuming external components.

This is your jumpstart in learning to develop and realize your vision with the power
and flexibility of HTML5 and CSS3.

HTML5 and CSS 3 Transition, Transformation, and Animation is your kick start to
developing beautifully elegant, interactive, and entertaining web pages. You will
start with a gentle reminder of the evolution in HTML and CSS, and then jump
straight in following along with this example-driven, fast-paced exploration to help
you quickly develop these highly prized skills in HTML5 and CSS3. You will finish
with multiple artifacts to twist and change to suit your wildest imagination.

What this book covers
Chapter 1, Introduction to HTML5, explains the evolution of HTML5 along with the
myths and facts about HTML5.

Chapter 2, Using the New Markup to Build a Semantic Page, explains the semantic
markup of HTML5 and how to use the new properties to build a semantic page.
Microdata is also explained in detail.

Preface

[2]

Chapter 3, Flexible Box Model in CSS3, will explain the concept of the Flexible Box
Model in CSS3. The properties of the Flex Container and Flex Items are explained in
detail along with code examples for the same.

Chapter 4, Web Forms in HTML5, will explain the new web form elements of
HTML5. You will learn about the new input types and the new input attributes
used in HTML5.

Chapter 5, Advanced Features of HTML5, will explain a lot of modern concepts, such
as offline web apps, Geolocation, drag-and-drop, Webstorage, and creating an audio
and video player. HTML5 Canvas is explained in detail in this chapter.

Chapter 6, CSS3 Animations, will explain the transition, transformation, and animation
features of CSS3. Code examples are used to describe all the prominent features used
for the CSS3 animation purposes.

Chapter 7, Tools and Utilities in HTML5 and CSS3, will give examples of the various
tools and utilities used in HTML5 and CSS3, which will make coding simpler.

What you need for this book
You just need to use an editor, such as Notepad or Notepad++ to practice the code
examples in this book. You can also use advanced editors for these examples.
However, we recommend that you use a notepad to practice it. You can also
change the code to understand the difference in the output. Hence, to understand
the concept well, you can modify the code and practice it to understand the subtle
nuances of HTML5 and CSS3.

Who this book is for
Basic knowledge of HTML 4 and CSS is required to understand this book. If you are
a web developer or designer and would love to learn and use the new technologies
included within HTML5, this is the right book for you. Start at the beginning and
learn some of awesome features around transitions, transformations, and animations.
This book is for beginners with transitions, transformations, and animations that
want a quick and simple kick-start using clear and reusable examples.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[3]

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We will use the display property of CSS to explain the functionality. The display
property is set to flex or inline-flex."

A block of code is set as follows:

<html>
 <head>
 <style>
 #flex-container {
 display: -webkit-flex;
 display: flex;
 width: 500px;
 height: 500px;
 background-color: Navy;
 }

 #flex-item {
 background-color: Silver;
 width: 200px;
 height: 200px;
 margin: 20px;
 }
 </style>
 </head>
 <body>
 <div id="flex-container">
 <div id="flex-item">Alpha</div>
 <div id="flex-item">Beta</div>
 </div>
 </body>
</html>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

#flex-item {
 background-color: lime;
 transition-property: background, border-radius;
-webkit-transition-property: background, border-radius;
 transition-duration: 2s, 6s;
-webkit-transition-duration: 2s, 6s;
 transition-timing-function: linear;
-webkit-transition-timing-function: linear;

Preface

[4]

 width: 200px;
 height: 200px;
 margin: 20px;
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "If we
see the output, the Flex Item Dos was defined after Uno in the code. However,
we assigned an order value of -1 to Dos, therefore, Dos was displayed first."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Introduction to HTML5
HTML originated from a prototype created by Tim Berners-Lee in 1992. He felt that
there was a possibility of linking documents together by the use of hypertext and
the concept of HTML evolved. The drawback was that the commercial hypertext
packages available at that time such as ZOG and Intermedia were customized to suit
different types of computers and were too ambiguous in nature.

He developed HTML (HyperText Markup Language) and in conjunction, developed
a protocol for accessing text from other documents via hyperlinks. The protocol was
called HTTP, and this paved the way for the future. HTML itself was derived from a
markup language called SGML (Standard Generalized Markup Language).

Standardizing HTML
Standardization is an ongoing process. Modifications were made constantly and
versions were released accordingly. The various versions of HTML that have been
released are as follows:

• HTML 2.0 (November 1995)
• HTML 3.2 (January 1997)
• HTML 4.0 (December 1997)
• HTML 4.01 (December 1999)

A breakthrough in the field was the introduction of CSS along with HTML 4.0. Prior
to the introduction of CSS, web designers and developers used HTML for formatting
purposes. Formatting and styling a web page using HTML defeats the purpose of
HTML, as HTML elements and attributes must only define the structure of the web
page. The purpose of CSS was to break styling out from structural markup. With the
introduction of CSS, we could separate presentation from content.

Introduction to HTML5

[8]

As a result, formatting could be separated from the HTML document and stored in a
separate file, which could then be included in the document using a link tag. Hence,
all the presentational HTML elements and attributes were replaced by CSS to provide
versatility and better accessibility. Now, we can define a look or modify the look of a
web page by making changes in the style sheet without actually altering the code.

As far as HTML is concerned, the latest version, which is HTML5, is still in the
development stage. The Web Hypertext Application Technology Working Group
(WHATWG) and the World Wide Web Consortium (W3C) are working together on
HTML5. The proposed year for the release is around 2014.

Differences between HTML 4 and HTML5
HTML5 will soon be accepted as the benchmark. It differs from the previous versions
of HTML in various ways. HTML5 works with modern browsers and also offers
backward compatibility. HTML5 has a lot of new features that will change the
approach in designing websites. Some of the features present in the older versions of
HTML have been omitted from HTML5.

Let's take a look at the difference between HTML 4 and HTML5:

• The document type declaration in HTML5 is very simple. All we need to do
is type <!DOCTYPE html> so that the browser can recognize that we will be
working with HTML5.

• Character encoding in HTML5 is far simpler. Earlier it was written in the
following manner:
<meta http-equiv="Content-Type" content="text/html;
 charset=UTF- 8">

In HTML5, it is written in the following way:
<meta charset="UTF-8">

• Elements such as center, frame, frameset, and noframes have been omitted
from HTML5. Key elements such as basefont, big, font, and blink do not exist
in HTML5. All the things that have been omitted indicate that CSS will be
used for styling purposes.

• New elements have been introduced in HTML5. The new elements are
as follows:

 ° <header>
 ° <footer>
 ° <nav>

Chapter 1

[9]

 ° <section>
 ° <aside>
 ° <article>

We will look at these new elements in detail in the following chapters.

• Attributes such as border, cellpadding, and nowrap to mention a few
have been removed from HTML5 as their functionality can be handled
better by CSS.

• Since HTML5 is used extensively for web-based applications, modifications
have been made in the present APIs and new APIs have been introduced.
APIs have been developed for media elements such as audio and video.
Drag-and-drop APIs and elements such as canvas have been included in
HTML5. Facilities such as offline data storage, are a feature of HTML5 and
APIs have been developed for this purpose.

• Error handling is another feature of HTML5, which will make it easier to
write valid HTML code. HTML5 has strict parsing rules to handle errors
in the code.

Although it is still in the development stage, let's see why we should start using
HTML5 right away.

Why we must start using HTML5
HTML5 is still in the development stage. However, the following are the reasons
why we must start implementing it right away.

• The content becomes much more accessible with the use of tags such as aside,
article, header, footer, and section. Earlier, there was no way to understand
the div element in the code even if there was an ID assigned to it. That has
changed after incorporating tags such as header, footer, and so on. HTML
assists the developer in writing cleaner code. For example, copyright data can
be indicated using the footer tag. It makes things much more systematic.

• We can embed audio and video, thereby eliminating the need for additional
plugins. We can control the audio and video elements using HTML or
JavaScript whereas the styling will be taken care of by CSS.

• Web storage is an impressive feature of HTML5. The data is stored in the
user's browser. This feature is of great use when we surf through e-commerce
sites as user preferences can be stored on the browser.

Introduction to HTML5

[10]

• We can develop offline applications with HTML5. In this case, the user can
access the application offline and also sync the data back with the remote
server once he is back online.

• HTML5 is extensively used to develop mobile web applications. Tablets and
mobile web applications are in vogue. For example, HTML5, along with JQM
(jQuery for Mobiles), is used for developing complex mobile applications.
The look of a web-based application on a mobile phone or tablet is different
than that on a desktop computer. Most of the latest browsers (such as Google
Chrome, Safari, Opera, Mozilla Firefox, IE9) support HTML5. HTML5
offers cross-browser compatibility and hence, it is the markup language of
the future. HTML5 is not compatible with earlier versions of IE but there
is a workaround for that. We can add a JavaScript Shiv to the code, which
will make the browser aware of HTML5. JavaScript Shiv, created by Remy
Sharp, is found on Google codes and can be included in the HTML document
header in the following manner:

<!--[if IE]>
 <script src="http://html5shiv.googlecode.com/svn/trunk/
 html5.js"></script>
<![endif]-->

• An advantage of HTML5 is that it includes form-related attributes that
provide enhanced functionality. Earlier we had to use JavaScript for this
purpose. HTML5 has new elements and attributes that support the input
type and form elements. For example, we have date pickers and also input
types such as e-mail which account for entry of e-mail addresses.

Myths about HTML5
There are some misconceptions about HTML5. Let's look at some of the myths and
facts surrounding HTML5:

• We need to understand that HTML5 is not a replacement for Flash. We can
embed audio and video in HTML5 but to think that it will replace Flash is a
myth. Some things can be easily done in Flash than in HTML5. For example,
live video streaming is not possible with HTML5.

• Another misunderstanding is that HTML5 is still in the nascent stage and
cannot be used. One has to understand that standardization is an ongoing
process. However, HTML5 has a lot of impressive features that would
encourage any web designer to use it. Moreover, browsers are getting updated
regularly and the latest versions of some of the browsers already support it.

Chapter 1

[11]

• HTML5 works well with IE (Internet Explorer). That IE and HTML5 are not
compatible at all is a myth. It is true that versions prior to IE9 are not fully
compatible with HTML5, however, developers can always write a fallback
code in such situations. Browsers are coming out with their latest versions
quite frequently and IE9 already supports it.

• Most people assume that CSS comes along with HTML5. However, that is
not true. CSS is used for styling and presentation whereas HTML5 deals with
content. An HTML page without CSS will be good enough to use but might
not look that good in terms of presentation.

• One more misconception is that HTML5 does not have a development
environment. We can create an HTML file with just a simple text editor.
However, as a developer, we can definitely use an integrated development
environment (IDE) such as Eclipse, Visual Studio, or even Dreamweaver
CS5 to work with HTML5.

Suppose we add <!DOCTYPE html> to the code, do
you think that it would become an HTML5 code? My
answer would be a firm "No". HTML5 is not just some
kind of a document type. HTML5 has a lot of new
elements, attributes, input types, and so on. It is a whole
set of rules that enables the developer to define a web
page in an impressive manner.

Summary
We had a look at the differences between HTML 4 and HTML5 along with the facts
and myths of HTML5. In the coming chapters, we will be learning about HTML5
in detail. In the next chapter, we will learn how to use the new markup to build a
semantic page.

Using the New Markup
to Build a Semantic Page

The main benefit of HTML5 is to build a web page using cleaner code. HTML5
makes things more systematic. The code in HTML5 is written in such a way that
even a novice can understand it. In a futuristic scenario, even machines would be
able to understand HTML5 in such a way that they would be able to analyze data
on the web.

We are not talking about artificial intelligence here. The
concept of HTML5 is quite different in the sense that
machines will be able to understand the content of the code
in a much better way, paving the way for the future, as the
exchange of information becomes more systematic.

Easier and faster syntax
Sectioning is an important part of HTML5. The sectioning elements are used in
HTML5 to build a semantic web page in a quicker way. The elements used in
HTML5 for sectioning are as follows:

• <header>
• <footer>
• <nav>
• <article>
• <aside>

We will now look at each element in detail.

Using the New Markup to Build a Semantic Page

[14]

Header
A crucial reason for using semantics is to increase accessibility. Prior to HTML5,
there was no specific way to tag content based on its definitions. HTML5 changed
all that. The <div> tag was used extensively along with headings to create a header
for the web page. However, now we have the header tag. A header tag may contain
headings nested into it but that is not a necessity.

Searching stuff on the internet is possible due to the search engines such as Google
Search and Bing. SEO (search engine optimization) is a concept that is crucial and
imperative for a website. For example, search engines with the help of crawlers can
access a web page content based on the elements that contain them.

Hence, the header element is very important as it provides more accessibility than
other elements, like the footer. The search engine finds the content in the header tag
quite easily. Moreover, using the header element accounts for an appropriate way of
web designing. The header can be used to denote the heading of a blog, a web page,
or an article.

Let's look at an example of a header element using the following code snippet:

<!DOCTYPE html>
<html>
 <body>
 <header>
 <h2> Importance of the Header element </h2><hr>
 </header>
 <p> The header element tells the crawler about the content
 inside it </p>
 </body>
</html>

Downloading the example code

You can download the example code files for all Packt books
you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

Chapter 2

[15]

The output of the code upon execution would look like this:

Footer
The footer element is used to denote things like the author's name, contact
information, and copyright patent to mention a few. A footer allows the programmer
to give a general idea about the website. However, footers can be used more than
once in a document. An article can have its own independent footer in addition to
another footer element in the source code for a specific web page. It completes the
information in the document and makes it more meaningful.

Let's look at an example of a footer element using the following code snippet:

<!DOCTYPE html>
<html>
 <body>
 <header>
 <h2> Importance of the Footer element </h2><hr>
 </header>
 <p> Footer element gives additional info about the website or
 any blog </p>
 <footer>
 Packt Publishing

 <p> Copyright by Packt </p>
 Index
 </footer>
 </body>
</html>

www.allitebooks.com

http://www.allitebooks.org

Using the New Markup to Build a Semantic Page

[16]

The output of the code upon execution would look like this:

Nav
The nav element is an important part of HTML5 and is used extensively for
navigation purposes. It doesn't mean that all links on a page have to be in the nav
tag. For example, the footer element has links to varied content and the nav tag is not
mandatory for these links.

The nav element is used when there is a group of navigation links contained in a
specific section of the page. It is also used extensively where there are links to other
pages or a part of the same page. Prior to HTML5, we used something like the
following code snippet for navigation purposes:

<div id="nav">

…

However, with the nav tag, we can use more realistic code where we group
the links in a nav element. Let's look at an example of a nav element using
the following code snippet:

<!DOCTYPE html>
<html>
 <body>
 <header>
 <h2> Importance of the Navigation element </h2>
 </header>
 <p> Use of the Nav element </p>
 <hr>
 <p> We can go to forums or refer to the articles on this page
 <nav>

Chapter 2

[17]

 Packt Publishing

 Books on
 AJAX

 Latest Articles
 Packt Online
 Library
 News

 </nav>

 <footer>
 <p> Contact
 us <p>
 About us
 </footer>
 </body>
</html>

The output of the code upon execution would look like this:

Using the New Markup to Build a Semantic Page

[18]

If you observe the code, you will find that there are links between the <nav> and
</nav> tags as well as links in the footer tags. The content and links between the
nav tags are for major navigation purposes, whereas the links in the footer tag are
for some additional information.

Article
We often come across standalone content on a web page. There are blog entries,
forum posts, and user comments to mention a few. The article element is used for
this kind of data where the content is independent of its surroundings. It is a good
practice to include header, footer, and headings within the article tags. We can also
use the section element between the article tags.

Let's look at an example of an article element using the following code snippet:

<!DOCTYPE html>
<html>
 <body>
 <article>
 <h1> Fruit Facts </h1>
 <section>
 <h2> Citrus fruits </h2>
 Citrus fruits are good for your health.

 Oranges and sweet limes are examples of citrus fruits.

 They contain Vitamin C, which is good for colds and coughs.
 </section>
 <section>
 <h2> Dried fruit </h2>
 Dried fruit is very nutritious.

 It is advisable to eat almonds to maintain good health.

 Dried fruit helps boost the immune system.
 </section>
 </article>
 </body>
</html>

Chapter 2

[19]

The output of the code upon execution would look like this:

Fruit Facts

Citrus fruits

Citrus uits are good for your healthfr .
Oranges and weet lime are examples of itrus uits.s s c fr

contains Vitamin C which is good for colds and coughs.They ,

riedD fruit

ried fr is ry nutritious.D uit ve
It is advisable to eat almonds to maintain good heal ht .
D uit help boost the imm e systeried fr s un m.

In this code, we have included the section element within the article element.
The article element may be standalone content and the section tag is used between
the article tags as it is a generic content. Hence, the article element is used for
independent content like RSS feeds and news articles whereas the section element
is used to denote data of a generic nature.

Aside
Content in an aside element is slightly related to the content outside it. It can be used
within an article element in cases where the content is relevant to the content in the
article element. Though the content in the aside element is standalone by nature, it
can provide additional information about the content around it.

Let's look at an example of an aside element using the following code snippet:

<!DOCTYPE html>
<html>
 <body>
 <article>
 <h1> Fruit Facts </h1>
 <section>
 <h2> Citrus fruits </h2>
 Citrus fruits are good for your health.

 They contain Vitamin C, which is good for colds and coughs.

Using the New Markup to Build a Semantic Page

[20]

 </section>
 <section>
 <h2> Dried fruit </h2>
 Dried fruit is very nutritious.

 It is advisable to eat almonds to maintain good health.
 </section>

 <aside>
 <p> Fruits grown organically are in vogue as of now
 <p>
 </aside>
 </article>
 </body>
</html>

The output of the code upon execution would look like this:

Fruit Facts

Citrus fruits

fr t .Citrus uits are good for your heal h
contain Vitamin C which is good for colds and coughs.They ,

Dr fruitied

ied fr is ry nutritious.Dr uit ve
It is advisable to eat almonds to maintain good health.

Fruits grown organically are in vogue as of now.

We will now look at a new feature of HTML5 called Microdata.

Microdata
HTML 4.0 has a certain set of fixed elements, for example, we have the <p> and the
<h1> elements for a specific purpose. However, in HTML5, we have the option of
custom attributes. Suppose we have to define a person in HTML, we do not have an
element for that. We cannot have elements for each and every thing. In HTML5, this
can be resolved by using custom properties embedded in the document.

Chapter 2

[21]

We can now use our own vocabulary in HTML5 and Microdata is used for that
purpose. In Microdata, we use name-value pairs. We will now have a look at the
global attributes used in HTML5 to define custom properties:

• itemscope: This attribute is used to notify that Microdata is being used in the
web page. We create an item by using itemscope.

• itemtype: This attribute is a URL to define the item.
• itemid: This attribute is used to identify an item.
• itemprop: This attribute is used to define a property of an item. Microdata

consists of name-value pairs and the value of the properties is defined here.
• itemref: This attribute is used to define the context of a web page.

We will now look at a code snippet to see how these global attributes are used.

In the following code snippet, we will use all these global attributes so that we
can understand its functionality. We are going to use these attributes within
a section element.

<html>
 <head>
 <title> Info about Packt </title>
 </head>
 <body>
 <section itemscope itemtype="http://www.packtpub.com">
 <h1 itemprop="name"> Packt Publishing Ltd. </h1>
 <p itemprop="street-address"> Livery Place </p>
 <p itemprop="street-name"> 35 Livery St., Birmingham </p>
 <p itemprop="Pin-code"> B3 2PB </p>
 <p itemprop="country"> United Kingdom </p>
 <p itemprop="contact-info"> contact@packtpub.com </p>
 </section>
 </body>
</html>

Now, we will see how important Microdata is in today's world. There is a reason
why Microdata must be included in HTML code. Microdata is not a standalone
component. As a matter of fact, it enhances the semantic feature of HTML. If you
observe the code, you will see that we have included custom properties.

Using the New Markup to Build a Semantic Page

[22]

SEO plays an essential role when searching for terms on the internet. Search engines
like Google have bots and crawlers, which access specific information on the web
page and it is because of this particular reason that some websites are displayed on
the first page. In the earlier code, we defined name-value pairs (Microdata). Let's
see how this code has an impact by using the Google Structured Data Testing Tool.
When we enter the HTML code in the tool, we can see the extracted structured data
as shown in the following figure:

We can see how the Google Structured Data Testing Tool could read your HTML
and find that specific data. Hence, Microdata is imperative as the SEO can easily
indentify the contents of the web page and read it much more easily.

Summary
We had a look at various elements that are used to build a semantic web page.
We have seen how semantics account for cleaner code and how Microdata makes it
easy for the SEO to understand your HTML as well as enhance the semantics of our
document. In the next chapter, we will look at the new Flexbox model in CSS3.

Flexible Box Model in CSS3
The web applications and the web pages that we see today are complex in nature.
Prior to CSS3, web designers used floats and other CSS properties to design their
web pages. However, it is not easy to style complicated web pages using CSS2.
Hence, the concept of the Flexible Box Model was conceived to make it easier to
design web pages keeping in sync with the times.

The Flexible Box Model is also known as Flexbox. In this
chapter we will be referring to it as Flexbox.

Understanding Flexbox
Various versions of Flexbox have been released and the pattern has changed over
the years. The latest revision of Flexbox was released in September 2012. In this
chapter we will be working with the latest version of Flexbox. The latest version
of Flexbox is supported by Google Chrome (Version 22 and higher) and Opera
(Version 12.0 and higher) browsers. Browsers such as Firefox and Internet Explorer
have not implemented it yet. We will be using the latest Google Chrome browser to
demonstrate the functionality of Flexbox.

Flexbox consists of a Flex Container. It also consists of Flex Items, which are the
children of the Flex Container. We will use the display property of CSS to explain
the functionality. The display property is set to flex or inline-flex. If we use
display: flex;, the Flex Container functions at the block level whereas if we use
display: inline-flex;, then it is considered inline within the defined boundaries.

Flexible Box Model in CSS3

[24]

We will look at a simple way to use Flexbox by referring to the following code snippet:

.flex-container
{
 display: flex;

 display: –webkit-flex;

}

If we look at the code, we can see that flex is defined twice. We have added the
–webkit prefix to flex for a specific reason. The new Flexbox model is still not
supported by all browsers. The –webkit prefix is used as we are using the Chrome
browser. If the latest version of Firefox would support it, then a –moz prefix will be
added to flex. We used to add a prefix to flex in the earlier versions of the Flexbox
model. We will have to use the vendor specific prefix till it becomes a default standard.

Each Flex Container has its own Flex Line. There is a logical Main axis and Cross
axis in Flexbox wherein the Flex Line follows the Main axis. The default direction is
always left to right and top to bottom. The following figure depicts the concept so
that you will have a better understanding of it:

Chapter 3

[25]

In this chapter, we will use code snippets to understand the functionality of Flexbox.
Practically, we must always keep the HTML code and the CSS code separate.
However, in the examples mentioned in this chapter, we will incorporate the CSS
code into the HTML code using the <style> tag to keep it simple.

Let's look at a simple code to understand how Flexbox works.

<html>
 <head>
 <style>
 #flex-container {
 display: -webkit-flex;
 display: flex;
 width: 500px;
 height: 500px;
 background-color: Navy;
 }

 #flex-item {
 background-color: Silver;
 width: 200px;
 height: 200px;
 margin: 20px;
 }
 </style>
 </head>
 <body>
 <div id="flex-container">
 <div id="flex-item">Alpha</div>
 <div id="flex-item">Beta</div>
 </div>
 </body>
</html>

Flexible Box Model in CSS3

[26]

The output of the code would be as follows:

As we see, the default direction is from left to right. Since the direction is not
mentioned, the Flex Items are aligned along the Main axis.

Flex Container properties
We will now look at the various properties of Flex Container.

flex-direction
As we had seen earlier, the default direction is from left to right and the line is along
the Main axis. However, the writing mode can be changed using the following values:

• flex-direction: row-reverse;: This will swap the Main start and Main
end. The direction will be along the Main axis but the direction will be from
right to left.

• flex-direction: column;: This will swap the Main axis and the Cross
axis, following which the direction that the Flex Items are set will be vertical
in nature.

• flex- direction: column-reverse;: This will be the same as column but
the items will be laid from bottom to top.

Chapter 3

[27]

We will see an instance of this using the following code snippet:

<html>
 <head>
 <style>
 #flex-container {
 display: -webkit-flex;
 display: flex;
 -webkit-flex-direction: column-reverse;
 flex-direction: column-reverse;
 width: 390px;
 height: 300px;
 background-color: Navy;
 }

 #flex-item {
 background-color: Silver;
 width: 150px;
 height: 110px;
 margin: 15px;
 }
 </style>
 </head>
 <body>
 <div id="flex-container">
 <div id="flex-item">Alpha</div>
 <div id="flex-item">Beta</div>
 </div>
 </body>
</html>

The output of the code will be as follows:

Flexible Box Model in CSS3

[28]

We can see that the Main axis and the Cross axis have been swapped and the
reverse value has changed the mode from bottom to top.

justify-content
We can change the position of Flex Items along the Main axis using this property.

The different values for this property are as follows:

• justify-content: center;: This will position the Flex Items at the center
along the Main axis.

The other values that can be assigned are:

• justify-content: flex-start;

• justify-content: flex-end;

• justify-content: space-between;

• justify-content: space-around;

space-between and space-around deal with the whitespace whereas the
flex-start and flex-end will change the position from the start or the end
depending on the direction.

Let's look at the following code snippet where we have used the justify-content:
flex-end; value:

<html>
 <head>
 <style>
 #flex-container {
 display: -webkit-flex;
 display: flex;
 -webkit-justify-content: flex-end;
 justify-content: flex-end;

 width: 500px;
 height: 200px;
 background-color: Green;
 }

 #flex-item {
 background-color: Silver;
 width: 150px;
 height: 130px;

Chapter 3

[29]

 margin: 10px;
 }
 </style>
 </head>
 <body>
 <div id="flex-container">
 <div id="flex-item">Alpha</div>
 <div id="flex-item">Beta</div>
 </div>
 </body>
</html>

The output of the code will be as follows:

We can see that the position of the items has been inclined to the right as a result of
the flex-end value.

align-items
While justify-content aligned the items along the Main axis, align-items will
align the items along the Cross axis. This property has the following values:

• align-items: center;

• align-items: flex-start;

• align-items: flex-end;

• align-items: baseline;

• align-items: stretch;

The align-items property will align the items along the center, the start, or the
end of the Cross axis as defined whereas the baseline value will align it along the
baseline while the stretch value as the name suggests will stretch the items from
the start of the Cross axis to the end of it.

Flexible Box Model in CSS3

[30]

Let's look at an instance of align-items by referring to the following code snippet:

<html>
 <head>
 <style>
 #flex-container {
 display: -webkit-flex;
 display: flex;
 -webkit-align-items: center;
 align-items: center;
 width: 330px;
 height: 370px;
 background-color: Green;
 }

 #flex-item {
 background-color: Silver;
 width: 110px;
 height: 150px;
 margin: 25px;
 }
 </style>
 </head>
 <body>
 <div id="flex-container">
 <div id="flex-item">Alpha</div>
 <div id="flex-item">Beta</div>
 </div>
 </body>
</html>

The output of the code will be as follows:

As we can see, the items are positioned on the center of the Cross axis.

Chapter 3

[31]

flex-wrap
At times, there are too many Flex Items and they will not fit in on a single Flex Line.
Here the wrap feature comes into play. Using this property, additional Flex Lines are
created on the Cross axis to accommodate these Flex Items.

Let's look at the following code sample to see how it works:

<html>
 <head>
 <style>
 #flex-container {
 display: -webkit-flex;
 display: flex;
 -webkit-flex-wrap: wrap;
 flex-wrap: wrap;
 width: 300px;
 height: 240px;
 background-color: Green;
 }

 #flex-item {
 background-color: Silver;
 width: 100px;
 height: 70px;
 margin: 10px;
 }
 </style>
 </head>
 <body>
 <div id="flex-container">
 <div id="flex-item">Alpha</div>
 <div id="flex-item">Beta</div>
 <div id="flex-item">Gamma</div>
 </div>
 </body>
</html>

Flexible Box Model in CSS3

[32]

The output of the code will be as follows:

As we can see, the Gamma item is accommodated on a different Flex Line due to the
wrap feature.

The wrap-reverse property is a contrast of the wrap property. Let's look at the
following code to understand the difference:

<html>
 <head>
 <style>
 #flex-container {
 display: -webkit-flex;
 display: flex;
 -webkit-flex-wrap: wrap-reverse;
 flex-wrap: wrap-reverse;
 width: 300px;
 height: 240px;
 background-color: Green;
 }

 #flex-item {
 background-color: Silver;
 width: 100px;
 height: 70px;
 margin: 10px;
 }
 </style>
 </head>
 <body>
 <div id="flex-container">
 <div id="flex-item">Alpha</div>

Chapter 3

[33]

 <div id="flex-item">Beta</div>
 <div id="flex-item">Gamma</div>
 </div>
 </body>
</html>

The output of the code will be as follows:

As we can see from the output, it is the exact opposite of wrap.

So far, we have covered the different properties of the Flex Container. We will now
discuss the properties of Flex Items that are commonly used in design.

Properties of Flex Items
We will now look at order, which is an excellent feature of CSS3 Flexbox.

Order
This feature displays the items in a particular hierarchy determined by the order
value assigned to them. For example, if we assign a value of -1 to a Flex Item, it will
be displayed before any other Flex Item irrespective of the order in the document.

Let's look at the following code example to see how it works:

<html>
 <head>
 <style>
 .flex-container {
 display: -webkit-flex;
 display: flex;

Flexible Box Model in CSS3

[34]

 -webkit-flex-wrap: wrap;
 flex-wrap: wrap;
 -webkit-align-content: center;
 align-content: center;
 width: 300px;
 height: 240px;
 background-color: Blue;
 }

 .flex-item {
 background-color: Yellow;
 width: 100px;
 height: 100px;
 margin: 5px;
 }

 .point{
 -webkit-order: -1;
 order: -1;
 }
 </style>
 </head>
 <body>
 <div class="flex-container">
 <div class="flex-item"> Uno </div>

 <div class="flex-item point"> Dos </div>
 <div class="flex-item"> Tres </div>
 </div>
 </body>
</html>

The output of the code will be as follows:

Chapter 3

[35]

If we see the output, the Flex item Dos was defined after Uno in the code. However,
we assigned an order value of -1 to Dos, therefore Dos was displayed first.

We will now look at how flex is applied in Flexbox.

Flex
The flex property is an imperative part of the CSS3 Flexbox model.

Let's look at an example to understand the concept. Suppose we have three Flex
Items: Box One, Box Two, and Box Three. The space on the Main axis has to be
distributed among the three items. Suppose we want the items to fill up the space in
the ratio 1:3:5. How do we do it? Here is where the flex property comes into play.

Let's look at the following code example to see how it works:

<html>
 <head>
 <title>
 The " flex " property
 </title>
 <style>

 .flex-container {
 display: -webkit-flex;
 display: flex;
 width: 700px;
 height: 300px;
 background-color: DeepSkyBlue;
 }

 .flex-item {
 background-color: Yellow;
 margin: 15px;
 }

 .first_item {
 -webkit-flex: 1;
 flex: 1;
 }

 .second_item {
 -webkit-flex: 3;
 flex: 3;
 }

www.allitebooks.com

http://www.allitebooks.org

Flexible Box Model in CSS3

[36]

 .third_item {
 -webkit-flex: 5;
 flex: 5;
 }
 </style>
 </head>
 <body>
 <div class="flex-container">
 <div class="flex-item first_item"> Box One </div>
 <div class="flex-item second_item"> Box Two </div>
 <div class="flex-item third_item"> Box Three </div>
 </div>
 </body>
</html>

The output of the code will be as follows:

We can see that the space on the Main axis has been distributed in the ratio 1:3:5.

Summary
We have covered the imperative aspects of the CSS3 Flexbox model. However,
browsers like Firefox and Internet Explorer have not implemented it as yet. It is now
known that this is a standard model and will be implemented in the future releases.

In this Chapter we have explained the functionality and use of the Flexbox model.
We have seen the Flexbox Container properties as well as properties of Flex Items
like order and flex. CSS3 Flexbox has come a long way and thereby made designing
easier. In the next chapter, we will look at the Form elements used in HTML5.

Web Forms in HTML5
Prior to HTML5, developers and web designers had to write a lot of code for basic
things such as a datepicker. JavaScript was used extensively for basic things and it
was difficult to write such code given the complexity of the web pages we come
across nowadays.

HTML5 accounts for cleaner code and the introduction of new input types makes it
easier for developers to design their web pages. In this chapter, we will discuss the
new input types and attributes in HTML5.

If the input types and attributes are not compatible with earlier versions of
the browsers, they will be ignored and the <input type= text> default will
be considered.

Currently, some of the features of HTML5 are supported
by the latest versions of Opera and Google Chrome.
However, certain features of HTML5 are not supported
by these browsers. Firefox support is still in the pipeline.
After HTML5 is accepted as a norm, these features will be
standardized and will be supported by all browsers.

The URL http://www.wufoo.com/html5/ displays the
browser support for the forms and attributes in HTML5. This
page displays the new features and indicates which browsers
are supporting which features and to what degree. As a
whole, this represents the current state of HTML5 forms.

Web Forms in HTML5

[38]

New form attributes in HTML5
We will first look at the new attributes in HTML5. The most commonly used
attributes are described as follows:

placeholder
A placeholder attribute tells the user what data needs to be entered in the form of
text in a lighter shade. After the user enters characters in the text field, the text in the
lighter shade disappears.

Let's look at the following code to understand it better:

<!DOCTYPE html>
<html>
 <head>
 <title>
 The Placeholder Attribute
 </title>
 <h1> The Placeholder Attribute </h1>
 </head>
 <div>
 Enter the name of the animal in the search box below and click
 on Go

 <label for="animal">Animal Name : </label>
 <input id="animal" placeholder="Enter the animal name">
 <input type="submit" value="Go">
 </div>
</html>

In the following screenshot, the text box containing the lighter shade text
demonstrates the placeholder effect:

Chapter 4

[39]

We can see the text Enter the animal name in a lighter shade. After we click on the
textbox, the text disappears. Hence, it is just a way to let the user know what input
is expected.

autofocus
With this attribute, the browser sets the focus on the field where autofocus is
defined when the page is being loaded.

Let's look at the following code to understand it better:

<!DOCTYPE html>
<html>
 <head>
 <title> Autofocus attribute </title>
 <h1>The Autofocus Attribute</h1>
 </head>
 <p> Login page for Packt Publishing</p>
 <div>

 <label for="name">Login Name :</label>
 <input id ="name" type="text">
 <input type="submit" value="Go">

or

 <label for="loginid">Login Id :</label>
 <input id ="loginid" type="text" autofocus>
 <input type="submit" value="Go">
 </div>
</html>

Web Forms in HTML5

[40]

In the following screenshot, the Login Id field is set to autofocus, as a result of
which it has a cursor in it when the page loads:

Hence, the user doesn't have to click on a field when the page loads up as it is set
to autofocus.

required
The required attribute makes it mandatory for the user to enter a value in the field.
If the user doesn't enter any data in the field with the required attribute, then it will
prompt the user accordingly.

The output is different in Opera and Firefox, hence we will display screenshots for
both the cases.

Let's look at the following code to understand it better:

<!DOCTYPE html>
<html>
 <head>
 <title> Required attribute </title>
 <h1> The Required Attribute </h1>

 </head>

Chapter 4

[41]

 <hr>

 <form>
 <label for="loginid">Login name : </label>
 <input name="loginid" type="text" required>
 <input type="submit" value="Submit">
 </form>
</html>

Let's refer to the following screenshot displaying the code output where the user will
be prompted to enter data as the specific field should not be left blank:

We have seen how the output looks in a Firefox browser.

Web Forms in HTML5

[42]

We will now see the output when we execute the code using the Opera browser.
Please refer to the following screenshot, which depicts the output in Opera:

Hence, it is mandatory to enter data in the field that has the required attribute
assigned to it.

datalist
The datalist attribute is used to create a list of pre-defined items as a drop-down
menu. On using this tag, the pre-defined menu items get displayed when we click
on the textbox.

Let's look at the following code to understand it better:

<!DOCTYPE html>
<html>
 <head>
 <title>Datalist attribute</title>
 <h1> The Datalist Attribute </h1>
 </head>
 <p> Genres of Music </p>
 <div>
 <label for="packt"> Music : </label>
 <input id="packt" name="packt" type="text" list="music">
 <input type="submit" value ="Go">
 <datalist id="music">
 <option value="Pop">

Chapter 4

[43]

 <option value="Rock">
 <option value="Jazz">
 <option value="Blues">
 <option value="Classical">
 </datalist>
 </div>
</html>

Let's look at the output of the code where we can see the drop-down list:

For example, the drop-down menu displays all the genres of music when we click in
the textbox. However, we are not just limited to the menu items declared in the code.
We can enter any data that is not a part of the list declared in the code.

Understanding new input types in HTML5
We will look at the new input types in HTML5. The following input types mentioned
are explained along with their respective code.

search
After the success of Google as a search engine, we can see a search box facility almost
everywhere on the web. The search box is used on almost all the websites to find
information on that site or the web in general. In HTML5, we can create a search box
using the input type as search. The search box looks like a normal textbox but is
used for search purposes.

Web Forms in HTML5

[44]

Let's look at the following code to understand it better:

<!DOCTYPE html>
<html>
 <head>
 <title> Search Input type </title>
 <h1> Search Input type </h1>
 </head>
 <p> Enter the search string in the textbox below and click on Go
 </p>
 <div>
 <label for="searchid"> Packt Search : </label>
 <input id="searchid" type="search" placeholder="Enter Search
 Item here">
 <input type="submit" value="Go">
 </div>
</html>

The following screenshot displays the output of the code:

In the screenshot, we have entered Hey as the search string. If we click on the blue
cross at the right hand side of the search box, the string will disappear and we can
enter a new search string in its place.

The search box is a crucial aspect of any website as it assists the user in finding
content on the web or that web page depending on the way it is developed.

Chapter 4

[45]

email and url
The email and url input types are the latest additions made specifically for the
purpose of e-mail and web addresses. The e-mail address has to be written with the
domain name between an @ sign and a dot (.), for example, xyz@abc.com. It accepts
the current standard format in which e-mail addresses are written.

If we do not write the e-mail address in a proper format, then it prompts the user to
enter a valid e-mail address.

Most of the URLs are in the format http://www.xyzzzz.com. The URL has to be
entered in this standard format along with the http or https protocols. If we do not
follow the standardized format, then it prompts the user to enter a valid URL.

Let's look at the following code to understand it better:

<!DOCTYPE html>
<html>
 <head>
 <title>Input types: Email and URL </title>
 </head>
 <body>
 <form>
 <p> Enter your email address in the textbox below and click
 Go </p>
 <input type="email" placeholder="abcxyzpqr@email.com">
 <input type="submit" value="Go">

 <hr>
 <p> Enter the web address (URL) of the website in the
 textbox below and click Go </p>
 <input id="website" type="url">
 <input type="submit" value="Go">
 </form>
 </body>
</html>

Web Forms in HTML5

[46]

The following screenshot displays the output of the code:

In the example, the URL entered is not in a standard format. Hence, it prompts for
a standard URL. If we enter an invalid e-mail address, it would prompt for a valid
e-mail address.

Hence, the structure of e-mail addresses and URLs have been defined to make it easy
for the web designer to write cleaner code in a more systematic manner.

date
Prior to the date feature in HTML5, we had to use JavaScript to develop a datepicker.
However, with the advent of HTML5, it is much easier to create one. HTML5 has a
lot of date options like datetime, week, time, and month other than the date feature.
We will learn more about it in this chapter.

Let's look at the following code to understand it better:

<!DOCTYPE html>
<html>
 <head>
 <title> Date Input type </title>
 <h2> Input type : Date </h2>
 <p> Select an appropriate date from the datepicker below </p>
 </head>
 <body>
 <label for="packt"> Select Date </label>
 <input id="packt" type="date" value="2013-01-25">
 </body>
</html>

Chapter 4

[47]

The following screenshot displays the output of the code:

Hence, we do not have to invoke any JavaScript for creating a datepicker. We will
now look at features like week, month, and time which are similar to the date feature.

week
We can enter a week and click on the dropdown to see the dates in the week for
a specific year.

Let's look at the following code to understand it better:

<!DOCTYPE html>
<html>
 <head>
 <title> Week </title>
 <h2> Input type : Week </h2>
 </head>
 <body>
 <label for="packt"> Select Week </label>
 <input id="packt" type="week">
 </body>
</html>

Web Forms in HTML5

[48]

The following screenshot displays the output of the code:

month
We can view and select a month for a particular year.

Let's look at the following code to understand it better:

<!DOCTYPE html>
<html>
 <head>
 <title> Month </title>
 <h2> Input type: Month </h2>
 </head>
 <body>
 <label for="packt"> Select Month </label>
 <input id="packt" type="month">
 </body>
</html>

Chapter 4

[49]

The following screenshot displays the output of the code:

Similarly we can select the date and time using the datetime attribute.

We need to use the following code snippet for the same:

<label for="packt"> Date-Time </label>
<input id="packt" type="datetime">

The following screenshot displays the output of the code:

Web Forms in HTML5

[50]

color
Earlier, we had to write a complex JavaScript code for creating a color palette. We
can now create a color palette using HTML5.

Let's look at the following code to understand it better:

<!DOCTYPE html>
<html>
 <head>
 <title> Color input type in HTML5 </title>
 <h2> Input Type: Color </h2>
 </head>
 <div>
 <label for="color-ref"> Select a color of your choice :
 </label>
 <input id="color-ref" type="color">
 <input type="submit" value="Go">
 </div>
</html>

The following screenshot displays the output of the code:

Chapter 4

[51]

Various browsers support different features. For example,
the color attribute is supported by only the Opera browser
at the time of writing. However, the standardization of
HTML5 in the future will ensure that all other browsers
support these various features.

Summary
In this chapter, we have covered the new form input types and form attributes of
HTML5. In the next chapter, we will look at advanced features of HTML5 such as
audio, video, and canvas to mention a few, which will provide an insight into the
beauty of HTML5.

Advanced Features
of HTML5

HMTL5, along with the new JavaScript APIs, enables us to create web pages with a
lot of features that were only possible with proprietary plugins, such as Flash in the
past. With the introduction of HTML5, we can develop web pages with enhanced
features and we will be discussing that in this chapter.

We will look at the following features of HTML5, which work with JavaScript APIs:

• Audio and video
• Drag-and-drop
• Geolocation
• Webstorage
• Offline web applications
• Canvas

Initially, we will look at the audio and video features.

Advanced Features of HTML5

[54]

Audio and video
HTML5 supports audio and video elements. Prior to HTML5, we used plugins, such
as Flash player, extensively. The audio and video elements reduce the dependence
on plugins to a large extent by allowing the developer to embed media elements into
HTML documents.

Let's look at the following code to understand how it works:

<!DOCTYPE html>
<html>
 <title> HTML5 Audio player </title>
 <body>
 <audio autoplay = "autoplay" controls =
 "controls" id = "player">
 <source src = "aravind.ogg" />
 <source src = "aravind.mp3" />
 <p> Your browser doesn't support the audio tag </p>
 </audio>
 <div>
 <button onclick = "document.getElementById
 ('player').play()">Play</button>
 <button onclick = "document.getElementById('player')
 .pause()">Pause</button>
 <button onclick = "document.getElementById('player').
 volume+ = 0.1">Vol+ </button>
 <button onclick = "document.getElementById('player').
 volume- = 0.1">Vol- </button>
 </div>
 </body>
</html>

The output of the code will vary depending upon the
browser in use.

Chapter 5

[55]

The output of the code in Mozilla Firefox, Internet Explorer, Opera, and Google
Chrome respectively is shown in the following screenshot:

If you observe the preceding code, we have included the OGG as well as the MP3
format for the audio track. The reason to include both formats is that the MP3 format
is not open source and is patented. Hence, all the browsers do not support the MP3
format at the time of writing this chapter. However, some of the browsers do support
the open source OGG file format.

The controls attribute allows the user to control the audio player. For example, we
can play and pause the player, as and when required. The volume can be adjusted
as per the discretion of the user.

The autoplay attribute will play the song automatically without the need to click on
the Play icon.

Advanced Features of HTML5

[56]

The source src attribute is used for the location of the audio track.

As we see, it is easy to create an audio player with minimalistic code using HTML5.

In the audio code, we have used the following snippet:

<div>
 <button onclick =
 "document.getElementById('player').play()">Play</button>
 <button onclick =
 "document.getElementById('player').pause()">Pause</button>
 <button onclick = "document.getElementById('player').
 volume+ = 0.1">Vol+ </button>
 <button onclick = "document.getElementById('player').
 volume- = 0.1">Vol- </button>
</div>

We have used the preceding code in the div element to modify the player and add
manual controls that are not inbuilt with the audio player and thereby, we can see
the Play, Pause, Vol+, and Vol- buttons.

Remember while testing the code, the audio track must be in
the same folder as the HTML file, or else you will have to give
the complete URL or the complete location of the audio file.

Let's have a look at the procedure to develop a video player using HTML5.

The video player code is very similar to the audio player code. Let's look at the
following code to understand how it works:

<!DOCTYPE html>
<html>
 <head>
 <title> Video Player in HTML5 </title>
 <style>
 video {
 box-shadow:0 0 15px #333;
 border-radius:10px;
 }
 </style>
 </head>
 <body>
 <video width = "700" height = "400" id = "packt"
 controls = "controls" autoplay = "autoplay">
 <source src = "Packt_Sample.ogv"/>
 <source src = "Packt_Sample.mp4"/>

Chapter 5

[57]

 </video>
 <div>
 <button onclick =
 "document.getElementById('packt').play()">Play</button>
 <button onclick =
 "document.getElementById('packt').pause()">Pause</button>
 <button onclick = "document.getElementById('packt').
 volume+ = 0.1">Vol+ </button>
 <button onclick = "document.getElementById('packt').
 volume- = 0.1">Vol- </button>
 </div>
 </body>
</html>

We have some attributes that are different from the audio element. Apart from
controls and autoplay, we have the poster attribute. The poster attribute helps
us to link the video to a customized thumbnail image. In Firefox, the video player
will be displayed as shown in the following screenshot:

The look may vary depending on the browser in use. The video player looks
different in Chrome and Opera. Let's look at the other features of HTML5.

Advanced Features of HTML5

[58]

Drag-and-Drop
The ability to drag-and-drop elements; thereby, aiding in transfer of data, was
done by complex JavaScript code prior to HTML5. However, with the advent of
the drag-and-drop in HTML5, it has become much easier for the browsers to adopt
this new feature.

Let's look at the following code to see how it works:

<!DOCTYPE HTML>
<html>
 <head>
 <style type = "text/css">
 #packt1, #packt2
 {float:left; width:85px; height:35px;

 margin:11px;padding:11px;border:3px solid navy;}
 </style>
 <script>
 function dropItem(ev) {
 ev.preventDefault();
 }

 function drag(ev) {
 ev.dataTransfer.setData("Text",ev.target.id);
 }

 function drop(ev) {
 ev.preventDefault();
 var abc = ev.dataTransfer.getData("Text");
 ev.target.appendChild(document.getElementById(abc));
 }
 </script>
 </head>
 <body>
 <div id = "packt1" ondrop = "drop(event)"
 ondragover = "dropItem(event)">
 <img src = "packt.png" draggable = "true"
 ondragstart = "drag(event)" id = "drag1" width = "75"
 height = "39"></div>
 <div id = "packt2" ondrop = "drop(event)"
 ondragover = "dropItem(event)"></div>
 </body>
</html>

Chapter 5

[59]

The output of the code will be as shown in the following screenshot:

If we place the mouse on the PACKT logo and drag it to the adjoining box, the
transfer of data will take place; thereby, displaying the following screenshot:

The PACKT logo can be moved back and forth between the two boxes by using the
drag-and-drop feature.

Let's look at the code explanation to understand how it all works.

The draggable when set to the true feature enables the item to be dragged from its
current state.

The value and type of the data to be dragged is set by the dataTransfer.setData
method.

By default, the dragged item cannot be dropped elsewhere. Hence, we use the
event.preventDefault() feature, as it allows the item to be dropped into
another element.

The dataTransfer.getData method will enable us to return any data that was
defined in the dataTransfer.setData method. Then, we append the dragged item
to its destination.

Now, that you understand how the code works, let's look at the various attributes
that can be used in the Drag and Drop API.

To understand the attributes better, we will look at the events being fired while the
data is being dragged, and when the data is being dropped.

Advanced Features of HTML5

[60]

While the data item is being dragged, the following attributes come into picture:

• dragstart

• drag

• dragend

Let's look at these attributes and understand their functionality.

The dragstart event is fired when we place the mouse over a data item, and then
try to drag the item. We have used the ondragstart event handler to demonstrate
it. The drag event gets fired after that as the item is in the process of being dragged.
Finally, when the item is to be dropped, the dragend event gets fired.

Let's look at the following events being fired when the item is to be dropped:

• dragenter

• dragover

• dragleave

• drop

When the dragged item is in the boundaries of the drop target, the dragenter event
is fired. Immediately, the dragover event is fired as soon as the dragenter event is
fired. We need to understand that these events happen when the data item is within
the boundaries of the drop target. However, as soon as we drag the item outside the
boundaries of the target, the dragleave element is fired. If we decide to drop the data
item in the drop target, then the drop event is fired instead of the dragleave event.

Now that we have understood how the events are fired and the intricacies of the
procedure, we will now look at why the drag-and-drop API is so useful.

The drag-and-drop feature not only assists in moving an object, but also assists
in transfer of data within various applications and different frames. All the latest
versions of Firefox, Google Chrome, and Opera support this feature. Internet
Explorer 10 (IE10) supports this feature completely.

Let's now look at the Geolocation feature of HTML5.

Geolocation
Geolocation enables us to track down our physical presence at any place. The
information assists us in letting people know about our location. The user can decide
whether the information regarding the location may be shared or not as he will be
prompted accordingly. All the latest versions of the browsers support this feature
(including IE9).

Chapter 5

[61]

Let's look at the following code to understand Geolocation better:

<!DOCTYPE html>
<html>
 <body>
 <p id = "packt">Your physical location</p>
 <button onclick = "getLocation()">Latitude and
 Longitude</button>
 <script>
 var x = document.getElementById("packt");
 function getLocation() {
 if (navigator.geolocation)
 {
 navigator.geolocation.getCurrentPosition(
 showLocation,displayError);
 }
 else {x.innerHTML = "Your browser does not support the
 Geolocation feature";}
 }
 function showLocation(position) {
 x.innerHTML = "Latitude: " + position.coords.latitude +
 "
Longitude: " + position.coords.longitude;
 }
 function displayError(error) {
 switch(error.code) {
 case error.PERMISSION_DENIED:
 x.innerHTML = "Permission issues, Access Denied."
 break;
 case error.POSITION_UNAVAILABLE:
 x.innerHTML = "As of now, Location
 info is not available."
 break;
 case error.TIMEOUT:
 x.innerHTML = "There seems to be a timeout issue,
 Please try later."
 break;
 case error.UNKNOWN_ERROR:
 x.innerHTML = "Error cause not found."
 break;
 }
 }
 </script>
 </body>
</html>

Advanced Features of HTML5

[62]

If we observe the preceding code, we can see that the position.coords.latitude
and the position.coords.longitude help us in retrieving information about the
coordinates of our physical location with respect to the latitude and longitude of
that place.

The navigator.geolocation function will help us determine whether the browser
supports this feature.

We have also used the switch command to define the various errors that the user
might come across due to some reason or the other.

The output of the code will vary depending on the browser. Let's look at the way the
user is prompted in IE with regards to the permission required to share his physical
location, as shown in the following screenshot:

The message prompted to the user in Opera will be slightly different. In Opera, we
will see the following screenshot:

Chapter 5

[63]

Once the user grants the permission and clicks on the Latitude and Longitude
button, the following screenshot would be displayed:

There is also a watchPosition method, where we can track the location whenever
the user moves to a different location.

The geographical position of a user can be determined by this feature. Let's have
a glance at the Webstorage feature of HTML5.

Webstorage
Storing information whenever we visit a website is known due to the concept of
cookies. However, cookies are limited in size. The concept of cookies is that the
browser sends these cookies to the web server every time we visit the web page.

However, HTML5 storage concept is more enhanced. The websites access this page
with the aid of JavaScript whenever we visit the web page. The web page can only
access the information stored by it and doesn't have access to any other data other
than the stored information.

There are two types of storage methods used in HTML5 as follows:

• sessionStorage

• localStorage

sessionStorage
The sessionStorage property is used to store data for any specific session. Once
we close the browser, the session expires, and data will not be stored outside of that
session. The amount of data that can be stored can be large in size unlike cookies that
work under limitations. The data is stored in key/value pairs.

Advanced Features of HTML5

[64]

Let's look at the following code to understand how sessionStorage works:

<!DOCTYPE HTML>
<html>
 <head>
 <title> Session Storage: A part of HTML5 webstorage </title>
 </head>
 <body>

 <script type = "text/javascript">
 if(sessionStorage.visitWebsite) {
 sessionStorage.visitWebsite =
 Number(sessionStorage.visitWebsite) +1;
 }
 else {
 sessionStorage.visitWebsite = 1;
 }
 document.write("The user has visited this web page :" +
 sessionStorage.visitWebsite +" times");
 </script>
 <p> Click on F5 or Right click and click on Reload for
 information on the number of times this page has been
 visited.</p>
 </body>
</html>

In the preceding code, we can see the sessionStorage property is used, using which
we can depict the number of times the user has visited that web page in that session.
We also need to remember that once the browser is closed, the counter is reset.

Let's execute the preceding code and see the output in Opera, as shown in the
following screenshot:

Let's now reload the same page by right-clicking on the page or by pressing F5 to
reload it twice.

Chapter 5

[65]

We will see the following output:

We can see that the counter has been set to three as we reloaded the page 3 times.
Now, let's close the browser window, and execute the code again. On executing the
code in a new browser, we can see the following page:

We can see that the counter has been reset and the code output displays that the web
page has been visited once. Hence, the data is stored for a specific session and will be
lost once the session expires after closing the browser.

Let's look at the localStorage property.

localStorage
The localStorage property is not limited to a specific session. The localStorage
property takes into account the total number of times that the website has been
visited. Data is stored at the client side and can be accessed each time we access the
website. When we implement the storage feature using HTML5, the data is stored
in your local machine such as a laptop, a desktop, or a tablet (the client side). Let's
assume that we close the browser window. When we access the website again, the
data stored locally can be accessed without any time limit.

Let's look at the following code to see how localStorage works:

<!DOCTYPE HTML>
<html>
 <head>
 <title> Local Storage in HTML5 </title>
 </head>
 <body>
 <script type = "text/javascript">
 if(localStorage.visitWebsite) {
 localStorage.visitWebsite =
 Number(localStorage.visitWebsite) +1;
 }
 else {

Advanced Features of HTML5

[66]

 localStorage.visitWebsite = 1;
 }
 document.write("The web page has been visited :" +
 localStorage.visitWebsite + " times");
 </script>
 <p>Refresh the page to increase number of hits.</p>
 <p>Close the window and open it again
 and check the result.</p>
 </body>
</html>

Let's execute the preceding code in Opera. When we execute the code for the first
time, we get the following output:

When we reload the browser, we get the following output:

Now let's close the window and execute this code again in a new window to see the
output, as shown in the following screenshot:

We can see that the counter is 3 even though we had closed the browser window and
executed the code again in a new window. Hence, the stored data can be accessed at
anytime with the aid of JavaScript in localStorage.

Let's now look at the offline web applications feature of HTML5.

Chapter 5

[67]

Offline web applications
Offline web applications are a new feature of HTML5. When we visit a website that
has this feature, the browser downloads all the files that are required for the user
to access that specific website. Once the download is complete, the website can
be accessed offline. This is particularly useful when there is intermittent internet
connectivity. Once we are online, the web server can be updated in case changes
have been made.

Let's look at the process of creating an offline web application.

We will now create an HTML page first. Have a look at the following code. Copy it
to a notepad and save it as a HTML file so that we can use it later. I have saved this
file as aravind.html. We will modify the <html> tag later, which will be explained
in the course of the chapter.

<!DOCTYPE HTML>
<html>
 <head>
 <title> Offline web applications </title>
 <h1> Offline web applications </h1>
 <link rel = "stylesheet" type = "text/css"
 href = "aravind_style.css" />
 </head>
 <body>
 <p>
Offline web applications are a new feature of HTML5. When
we visit a website which has this feature, the browser
downloads all the files that are required for the user to
access that specific website. Once the download is
complete, the website can be accessed offline.
 </p>
 <div>
 This is particularly useful when there is intermittent
 internet connectivity. Once we are online, the web server
 can be updated in case changes have been made
 </div>
 </body>
</html>

Let's now add styling to it by using CSS. Type in the following code and save it as a
CSS file with a name of your choice. I have saved this file as aravind_style.css.

Advanced Features of HTML5

[68]

We will be using a XAMPP server to demonstrate the procedure. Since it is
a XAMPP server, the web server would be Apache. In the Apache folder, we
can see a .HTACCESS file, as shown in the following screenshot:

Open the .HTACCESS file and add the following code:

AddType text/cache-manifest .manifest

We will now create a MANIFEST file, which will assist us in caching the web page
for offline use.

Create a new file named MANIFEST. In this example, we will name it as aravind.
manifest. Write the following code in the MANIFEST file:

CACHE MANIFEST
A file called manifest

CACHE:
aravind.html
aravind_style.css
packt.png

NETWORK:
login.php

Chapter 5

[69]

I have used aravind.html and aravind_style.css as
the HTML and CSS files. You can enter any name of your
choice, such as index.html, style.css to mention a few.
I have saved the MANIFEST file as aravind.manifest.
You can create a MANIFEST file with the name of your
choice. Remember that the extension must be manifest.

Anything that comes under CACHE would be cached except for the code mentioned
under NETWORK.

We have added a NETWORK attribute to the code. We have mentioned login.php
under it. This denotes that the login.php file must not be cached. Anything under
NETWORK will not be cached. For example, a login page may have information, such
as the username and password. Hence, these kind of pages that should not be
available offline must be under the NETWORK declaration.

Now, we need to link the manifest property to the HTML code by modifying the
HTML code, as shown in the following code snippet:

<html manifest = "/aravind.manifest">

Since we are working on XAMPP, we will save the aravind.manifest, aravind.
html, and aravind_style.css file in the htdocs folder in XAMPP. Please refer to
the following screenshot to see the saved files:

Now, when we run the HTML file (aravind.html) in this case, we will see the
following output:

Advanced Features of HTML5

[70]

We can see a prompt in the preceding screenshot that tells us whether we want to
save the data for offline use.

This is pretty much it. At the time of writing this chapter, the latest versions of all the
browsers except Internet explorer support this feature.

Let's now look at the canvas feature of HTML5.

Canvas
The canvas element is one of the awesome features of HTML5. It enables us to draw
graphics within the defined boundaries. Though canvas is an HTML element, it
works in tandem with the JavaScript API. Let's look at how the canvas element is
defined in HTML5 as follows:

<canvas id = "demo" width = "500" height = "150"> </canvas>

The id attribute is optional, but very useful as it is extensively used in HTML5.
The width and height attributes of the canvas element have to be defined to
understand the boundaries of the canvas element. If the height and width attributes
are not defined, then the default value is considered that is the width attribute would
be 300 pixels and height would be 150 pixels by default. However, it is a good
practice to define the height and width attributes in a canvas element.

We need to obtain a reference to the canvas element by using the following
code snippet:

var canvas = document.getElementById('demo');

Once we obtain a reference, we need to obtain a reference to the 2d context in the
canvas element; hence, we use the following code snippet in which we call the
getContext('2d') on the defined canvas element:

var context = canvas.getContext('2d');

We will start coding right away to understand the functionality of canvas instead of
wandering through loads of theory. Let's look at the following code:

<!DOCTYPE HTML>
<html>
 <head>
 <script type = "application/javascript">
 function drawRectangle() {
 var canvas = document.getElementById('packt');
 var context = canvas.getContext("2d");
 context.fillStyle = "rgb(200,0,0)";

Chapter 5

[71]

 context.fillRect (90, 90, 190, 190);
 context.clearRect(130,130,110,110);
 context.strokeRect(150,150,70,70);
 }
 </script>
 </head>
 <body onload = "drawRectangle();">
 <canvas id = "packt" width = "300" height = "300"></canvas>
 </body>
</html>

The only primitive shape supported by the canvas element is the rectangle.

For other shapes, we use the path concept, which will be
explained later in this chapter.

The output of the code is displayed in the following screenshot:

The fillRect property is used to draw a rectangle filled with color. Here we have
used fillStyle = "rgb(200,0,0)", which will fill the rectangle with red color.

The clearRect property will clear the defined rectangular space respective to the
dimensions mentioned for clearing.

The strokeRect property draws an outline in a rectangular shape.

As we can see, all these properties have four parameters mentioned. The parameters
can be defined as (x, y, width, height). (x, y) are the coordinates along the x
axis and y axis respectively. The origin of these coordinates is at the top-left corner
of the web page at (0, 0).

I guess that was pretty simple. Now, let's look at the procedure to create different
shapes other than the rectangular primitive shape. We have to use the concept of
path to understand the functionality.

Advanced Features of HTML5

[72]

beginPath
We start the path using the beginPath() method. If we call this method, the list of
items that form a shape is reset, and as a result of that we can draw new shapes.

closePath
Using the closePath() method, we can close the shape. For example, if the pointer
is at a point distant from the starting point, this method will close the shape by
drawing a straight line to the start point. If the shape is closed already, then this
method will not do anything as the purpose has already been served.

moveTo
We know that the x axis and y axis coordinates originate at the top-left corner of
the canvas at (0,0) by default. If we want the coordinates to start from a different
point on the screen, we will move the virtual pointer to that specific path using the
moveTo() method. This method will take two coordinates (x, y), which will define
the new starting point on the screen.

stroke and fill
The stroke function is used to draw the outline of any shape, whereas the fill function
is used to fill color into a shape. If we are using the fill() method, we do not have
to use closePath(), as the shape will be completely filled using the fill function.

arc
The arc() method is used to draw an arc on the canvas, and there are five parameters
defined in the arc() method. Usually, an arc() method would be defined in the
following format:

arc(x, y, radius, startAngle, endAngle, anticlockwise)

Let's look at the following parameters and understand what they mean:

• The x and y parameters are the coordinates on the x axis and y axis
• The radius parameter defines the radius of the arc
• The startAngle and endAngle define the angle in which the arc starts and

ends respectively
• anticlockwise defines the direction of drawing the arc

Chapter 5

[73]

lineTo
The lineTo() method will draw a line from the starting point of the virtual
pointer to the parameters defined in the function. For example, suppose we have
moveTo(10,20) and lineTo(50,70) defined in the code, a line will be drawn from
(10,20) to (50,70).

Let's now look at the following code to understand the procedure to draw
concentric circles:

<html>
 <head>
 <script type = "application/javascript">
 function drawArc() {
 var canvas = document.getElementById('packt');
 var context = canvas.getContext('2d');
 context.beginPath();
 context.arc(75, 75, 50, 0, Math.PI*2, true);
 context.moveTo(110, 75);
 context.arc(75, 75, 35, 0, Math.PI*2, false);
 context.stroke();
 context.fill();
 }
 </script>
 </head>
 <body onload = "drawArc();">
 <canvas id = "packt" width = "300" height = "300"></canvas>
 </body>
</html>

The output of the code will be as shown in the following screenshot:

The Math function in the code is a part of the JavaScript library. We have not used
the closePath function here, as we have used the fill function at the end of the
JavaScript code.

Advanced Features of HTML5

[74]

If we look at the preceding code, we have first obtained a reference to the canvas
element, and then obtained a reference to the 2d context. We moved the virtual
pointer to (110,75), and then drew the second circle.

We called the drawArc function when the page loaded up. Hence, we can see the
circles. The fill attribute has filled the shape with the color black.

Now, we will discuss gradients, which are an imperative feature of the HTML5
canvas element.

Gradients
Gradients enable us to change from one color to another in a particular manner
where the colors juxtapose with each other. We will discuss the concept of linear
gradients in this chapter.

To start with, we have createLinearGradient(x1, y1, x2, y2). The gradient
starts from the point (x1, y1) and extends to (x2, y2). We can create a horizontal or
vertical gradient by changing the x axis and y axis parameters.

Now, we will add colors to the gradients. We will declare a linGrad variable and
assign it a gradient property in the following way:

var linGrad = context.createLinearGradient(20, 20, 50, 70);

In order to define a color to the gradient, we will use the addColorStop attribute in
the following way:

linGrad.addColorStop(0, navy);

We can see that there are two parameters in the addColorStop property. The first
parameter is to be defined from 0 to 1 to indicate the extent to which the gradient
color has to be applied. The second parameter is the color which is to be used. We
can add innumerable colorStops as per the requirement. While we add these various
colorStops, we need to change the first parameter accordingly between the range
of 0 and 1.

Let's look at the following code to understand the gradient concept better:

<html>
 <head>
 <script type = "application/javascript">

 function drawGrad () {
 var canvas = document.getElementById("packt");
 var context = canvas.getContext("2d");

Chapter 5

[75]

 var linGrad = context.createLinearGradient(0, 0, 100, 0);
 linGrad.addColorStop(0, "lime");
 linGrad.addColorStop(0.5, "navy");
 linGrad.addColorStop(1, "pink");

 context.fillStyle = linGrad;
 context.fillRect(10, 10, 160, 200);
 }
 </script>
 </head>
 <body onload = "drawGrad();">
 <canvas id = "packt" width = "200" height = "200"></canvas>
 </body>
</html>

The output of the code would be as shown in the following screenshot:

We can see how the color varies and fades as well as the effect of the parameters
on the canvas element. We have defined a fillStyle property and assigned it to
the linGrad variable in the code. The fillStyle property fills up the rectangle
according to the colors mentioned in the addColorStop attribute. We can also use
strokeStyle property instead of the fillStyle property, in case we want to add
colors to a rectangular outline.

Let's now look at the save() and restore() methods of the canvas element.

save and restore
The save() method saves the state of the canvas on a stack while the restore()
method will return the last saved state from the stack.

Advanced Features of HTML5

[76]

Let's look at the following code to understand the save() and restore()
methods better:

<!DOCTYPE HTML>
<html>
 <head>
 <script type = "text/javascript">
 function demoTranslation() {
 var canvas = document.getElementById('packt');

 var context = canvas.getContext('2d');

 context.fillStyle = "silver";
 context.fillRect(30, 30, 150, 100);

 context.translate(50, 25);

 context.fillStyle = "navy";
 context.fillRect(30, 30, 200, 100);
 }

 </script>
 </head>
 <body onload = "demoTranslation();">
 <canvas id = "packt"></canvas>
 </body>
</html>

The output of the code will be displayed, as shown in the following screenshot:

Let's look at how the code works. The first rectangle of silver color is created and the
settings are saved on the memory stack. Then, we define another rectangle of the
color, lime, which is inside the silver rectangle. Then, we revoke the saved rectangle
using the restore() method. We just change the dimensions of the restored
rectangle and it is seen inside the lime rectangle. Hence, we can return a saved shape
from the stack, which is saved by the save() method, using the restore() method.

Chapter 5

[77]

Transformations
Transformations in HTML5 can be deployed in the following ways:

• translate

• rotate

• scale

translate
Translation means the ability to relocate the drawing on the canvas.

By using the translate property, we can relocate the drawn shape to a different
location. We need to remember that we need to call the translate function,
following which it would be implemented.

Let's look at the following code to understand the translate property better:

<!DOCTYPE HTML>
<html>
 <head>
 <script type = "text/javascript">
 function demoTranslation() {
 var canvas = document.getElementById('packt');

 var context = canvas.getContext('2d');

 context.fillStyle = "silver";
 context.fillRect(30, 30, 150, 100);

 context.translate(50, 25);

 context.fillStyle = "navy";
 context.fillRect(30, 30, 200, 100);
 }

 </script>
 </head>
 <body onload = "demoTranslation();">
 <canvas id = "packt"></canvas>
 </body>
</html>

Advanced Features of HTML5

[78]

The output of this code would be as shown in the following screenshot:

If you read through the preceding code, you will find out the silver rectangle retains
its original location. We have used the translate function after we defined the
silver rectangle. The translate property worked with the blue rectangle. Hence, it
is understood that the translate function must be called before the shape and its
dimensions are defined.

rotate
We can rotate any shape within the boundaries of the canvas by using the rotate()
method. The rotate() method is defined, as shown in the following code:

<!DOCTYPE HTML>
<html>
 <head>
 <script type = "text/javascript">
 function demoRotation() {
 var canvas = document.getElementById('packt');
 var xyz = canvas.getContext('2d');

 xyz.strokeRect(10, 10, 120, 120);

 xyz.rotate((Math.PI / 180) * 25); //rotate 25 degrees.

 xyz.fillStyle = "#0000ff";
 xyz.fillRect(10, 10, 50, 50);
 }
 </script>
 </head>
 <body onload = "demoRotation();">
 <canvas id = "packt"></canvas>
 </body>
</html>

Chapter 5

[79]

The output of the code is displayed in the following screenshot:

We have used a variable, xyz, to obtain a reference to the 2d context of the canvas.
Then, we draw a rectangular outline using the strokeRect property. Then, we call
the rotate function. After we have called the rotate function, we define a rectangle
using the fillRect property, and use fillStyle to fill it with blue color. Similar to
the translate function, the rotate property works on the blue rectangle and not on
the first rectangle, as the blue rectangle code was written after we called the rotate
function. Hence, we need to call this method prior to defining any shape in order for
it to rotate.

scale
Scaling of any shape on the canvas is possible by using the scale property.

Let's look at the following code to see how scale works:

<!DOCTYPE HTML>
<html>
 <head>
 <script type = "text/javascript">
 function demoScale() {
 var canvas = document.getElementById('packt');

 var context = canvas.getContext('2d');

 context.fillStyle = "navy";
 context.fillRect(10, 10, 50, 90);

 context.scale(3, 3);

 context.fillStyle = "silver";
 context.fillRect(10, 10, 50, 90);
 }
 </script>

Advanced Features of HTML5

[80]

 </head>
 <body onload = "demoScale();">
 <canvas id = "packt" width = "400" height = "400"></canvas>
 </body>
</html>

The output of the code will be, as shown in the following screenshot:

In the preceding code, we have used a scale of (3:3). Similar to translate and
rotate, the scale property is applicable to only the second rectangle as the method
was called before the silver rectangle. The navy-colored rectangle will remain in its
original state as the method was not called before defining it.

Animation
If we observe the complex websites today, we can see that there is a lot of animation
that goes on behind them. It is now easier to use animation with the advent of the
canvas element in HTML5 in conjunction with JavaScript. In HTML5, we need to
draw and redraw and clear the canvas so fast that it seems like an animation. We
will be using the window.requestAnimationFrame property, which tells the browser
that animation will be performed. It is a callback function that tells the browser to
repaint the canvas for the next frame.

Let's look at the following code to understand animation better:

<html>
 <head>
 <style type = "text/css">
 #packt {
 border:lime 10px solid

 }

Chapter 5

[81]

 </style>

 <title>Canvas tutorial</title>
 <script type="text/javascript">
 var x = 0;
 var y = 15;
 var z = 5;

 function demoAnimation() {
 animationMethod = window.mozRequestAnimationFrame ||
 window.webkitRequestAnimationFrame ||
 window.msRequestAnimationFrame ||
 window.oRequestAnimationFrame
 ;

 animationMethod(demoAnimation);

 x = (x + z);

 if(x <= 0 || x >= 370) {
 z = -z;
 }

 draw();
 }

 function draw() {
 var canvas = document.getElementById("packt");
 var context = canvas.getContext("2d");

 context.clearRect(0, 0, 500, 170);
 context.strokeStyle = "black";
 context.strokeRect(x, y, 25, 25);
 }

 demoAnimation();
 </script>
 </head>
 <body onload = "draw();">
 <canvas id = "packt" width = "400" height = "400"></canvas>
 </body>
</html>

Advanced Features of HTML5

[82]

The output of the code is displayed in the following screenshot:

In the preceding screenshot, we see a rectangle moving back and forth within the
defined boundaries of the canvas frame.

We have used CSS styling to depict the boundaries of the canvas in green. Then,
we defined a demoAnimation function in JavaScript. Then, we invoked the callback
function, window.RequestAnimationFrame, and assigned it to the animationMethod
function. We have added a prefix of moz,ms,webkit before RequestAnimationFrame
so that it is compatible with the latest versions of browsers such as IE, Mozilla
Firefox, and Chrome. Then, we passed the demoAnimation function inside the
animationMethod. By doing this, we have made sure that the browser will call the
demoAnimation function when the next frame is ready to be drawn for animation
purposes. The canvas has to be cleared for the next frame to be drawn. Hence, we
use the draw function, which helps us do that. If we observe the preceding code, we
can see that the demoAnimation function is called at the end. This is to get window.
RequestAnimationFrame into action so that we can begin the animation process, and
hence, this makes it mandatory.

Summary
In this chapter, we had a look at various features such as drag-and-drop, canvas,
and Geolocation. We had a look at how audio and video can be embedded into
an HTML document. We also understood the concepts of Webstorage and offline
web applications.

In the next chapter, we will have a look at CSS3 Animations and understand
the nuances of it. We will especially look at the Transformation, Transition, and
Animation modules of CSS3 to understand the concepts better.

CSS3 Animations
As mentioned earlier, websites nowadays are complex and complicated. By complex
and complicated, we are referring to the development of these websites and not the
web pages themselves. We see animations and complex features. Prior to HTML5
and CSS3, JavaScript was used extensively for this purpose. HTML was incorrectly
used for styling, when it was expected to design the structural markup of the page.
However, with the advent of CSS, it is a good practice to use HTML for markup, and
CSS for styling. CSS3 brings along transforms, transition elements, and animation
features that make it easier to develop awesome features.

Moreover, the need for JavaScript has reduced considerably, as we can achieve
the same with CSS3 in tandem with HTML5. In this chapter, we are going to
discuss the following features:

• CSS3 transitions
• CSS3 transforms
• CSS3 animation

CSS3 Animations

[84]

CSS3 transitions
Transitions enable us to determine the speed of animation as well as introduce
delays, as and when required. They also enable the web designers to alter the state
and the behavior of the elements in use. Transitions assist developers to achieve a
smooth flow of animation and display the same accordingly, so that we can observe
the change of state.

We have used the FlexBox code in Chapter 3, Flexible
Box Model in CSS3, to illustrate transitions. The new
FlexBox version is compatible with the latest versions of
Google Chrome and Opera. Though CSS3 transitions,
transformations, and animations are compatible with
Firefox and IE, we will stick to Google Chrome to learn
through these examples, as it will help us keep up with
the new standards and in sync with the times.

The transition-property is used in conjunction with the properties that are
defined to alter the state. When we define the transition-property along with
the state altering properties, only those properties will be undergoing transition.
We also need to remember that the vendor prefixes have to be used, as it is still in
the development stage and not compatible with all the browser versions. For
example, we use –moz for Mozilla, and so on.

Let's look at the following code to understand the concept better:

<html>
 <head>
 <style>
 #flex-container {
 display: -webkit-flex;
 display: flex;
 width: 500px;
 height: 500px;
 background-color: Silver;
 }

 #flex-item {
 background-color: lime;
 transition-property: background;
 -webkit-transition-property: background;
 transition-duration: 3s;
 -webkit-transition-duration: 3s;
 transition-timing-function: linear;
 -webkit-transition-timing-function: linear;

Chapter 6

[85]

 width: 200px;
 height: 200px;
 margin: 20px;
 }
 #flex-item:hover {
 background: red;
 }

 </style>
 </head>
 <body>
 <div id = "flex-container">
 <div id = "flex-item">Alpha</div>
 <div id = "flex-item">Beta</div>
 </div>
 </body>
</html>

We have defined the background property to undergo transition
(transition-property: background ;), as seen in the following screenshot:

Once we hover over the Beta rectangular item, the color will change to red
eventually, as displayed in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

CSS3 Animations

[86]

While we hover over Beta, we can observe the transition from green to red. We have
introduced a transition duration of three seconds, and the change in color can be
seen gradually spanning over three seconds.

In the preceding code, we have applied transition to the background. However, there
are lots of properties to which we can apply the transition-property. We have
listed some of the properties as follows:

• background-color

• border-spacing

• font-size

• border-radius

• color

• margin

• max-width

• max-height

• right

• top

• vertical-align

• padding

Let's look at the other properties that can be applied along with the
transition-property as follows:

• transition-duration

• transition-timing-function

• transition-delay

The transition-duration property
The transition-duration tells us the time period for the transition to occur. The
duration can be defined in seconds or milliseconds. We can enter multiple values if
we are defining two or more properties.

Let's look at the following code to understand it better:

<html>
 <head>
 <style>
 #flex-container {
 display: -webkit-flex;

Chapter 6

[87]

 display: flex;
 width: 500px;
 height: 500px;
 background-color: Silver;
 }

 #flex-item {
 background-color: lime;
 transition-property: background, border-radius;
 -webkit-transition-property: background, border-radius;
 transition-duration: 2s, 6s;
 -webkit-transition-duration: 2s, 6s;
 transition-timing-function: linear;
 -webkit-transition-timing-function: linear;

 width: 200px;
 height: 200px;
 margin: 20px;
 }
 #flex-item:hover {
 background: red;
 border-radius: 70%
 }

 </style>
 </head>
 <body>
 <div id = "flex-container">
 <div id = "flex-item">Alpha</div>
 <div id = "flex-item">Beta</div>
 </div>
 </body>
</html>

We have defined the background, following which, we have defined border-radius
as the second property with the transition-property. We have also defined the
transition duration as 2s and 6s respectively.

CSS3 Animations

[88]

The output of the code would initially be as shown in the following screenshot:

If we hover the cursor over the Beta rectangle for two seconds, the color would change
from lime to red in two seconds. The border radius would still be in a transition mode.
After two seconds, the output would be as shown in the following screenshot:

After six seconds, the border-radius property transition would be complete, and
we can see the change in the shape, as shown in the following screenshot:

Chapter 6

[89]

The transition-timing-function property
The transition-timing-function property is used to define the speed of transition.
If we set it to linear, it will be gradual at a constant speed. If we change the value
from linear to ease-in, the transition is slow at first, and then it picks up speed
during the process. However, if we choose ease-out, the speed initially is fast, and it
slows down from then on.

Let's look at the following code to understand the concept better:

<html>
 <head>
 <style>
 #flex-container {
 display: -webkit-flex;
 display: flex;
 width: 500px;
 height: 500px;
 background-color: Silver;
 }

 #flex-item {
 background-color: lime;
 transition-property: background, border-radius;
 transition-duration: 3s, 3s;
 -webkit-transition-duration: 3s, 3s;

 -webkit-transition-property: background, border-radius;
 transition-timing-function: ease-in;
 -webkit-transition-timing-function: ease-in;

 width: 200px;
 height: 200px;
 margin: 20px;
 }
 #flex-item:hover {
 background: red;
 border-radius: 70%
 }

 </style>
 </head>
 <body>
 <div id = "flex-container">
 <div id = "flex-item">Alpha</div>
 <div id = "flex-item">Beta</div>
 </div>
 </body>
</html>

CSS3 Animations

[90]

When we execute the preceding code, we can observe that the speed of transition
is slow at first, but the speed increases as the transition takes place. In place of
ease-in, if we use ease-out, it starts quickly, but the speed decreases towards
the end.

The transition-delay property
The transition-delay property is used to postpone the transition. If we set
a transition-delay of two seconds, then the transition would start after
two seconds. We can delay more than one property, by specifying multiple
transition-delay values separated by a comma.

Let's execute the following code and you will see how it works:

<html>
 <head>
 <style>
 #flex-container {
 display: -webkit-flex;
 display: flex;
 width: 500px;
 height: 500px;
 background-color: Silver;
 }
 #flex-item {
 background-color: lime;
 transition-property: background, border-radius;
 transition-duration: 1s, 1s;
 -webkit-transition-duration: 1s, 1s;
 -webkit-transition-property: background, border-radius;
 transition-timing-function: linear;
 -webkit-transition-timing-function: linear;
 transition-delay: 3s, 3s;
 -webkit-transition-delay: 3s, 3s;
 width: 200px;
 height: 200px;
 margin: 20px;
 }
 #flex-item:hover {
 background: red;
 border-radius: 70%
 }
 </style>
 </head>

Chapter 6

[91]

 <body>
 <div id = "flex-container">
 <div id = "flex-item">Alpha</div>
 <div id = "flex-item">Beta</div>
 </div>
 </body>
</html>

On executing the preceding code, we can see that there is a delay of three seconds
before the transition begins. Hence, that explains the transition-delay property.
Now, we will look at our next section, CSS3 transforms. Instead of defining each
property individually, we can use transition:, which is a shortcut to define
various values.

It can be defined as follows:

transition: background 3s linear, border-radius 2s ease-in 1s;

The transition-property, transition-duration, transition-timing-function,
and lastly, transition-delay properties are defined at once in the order respectively.

Let's now look at the CSS3 transformation module.

CSS3 transforms
In CSS3, we can change the position of the elements without disrupting the normal
flow. Apart from that, we can define the two dimensional as well as the three
dimensional outlook of the elements. In CSS 2D transforms, we can rotate, skew,
translate, and scale the elements. We will first look at the 2D transforms in CSS3, in
which we will learn about the rotate, skew, translate, and scale properties of CSS3.

rotate
Using the rotate feature, we can rotate any element clockwise or counterclockwise.
If we use a positive value as the parameter value in degrees, then the element will be
rotated clockwise. A negative value will rotate the element counterclockwise. We can
rotate an element to an extent of 360 degrees.

We use the following syntax to use the 2D rotate feature:

transform: rotate(45deg);

If we pass 45 degrees as the parameter value, then the element will rotate
by 45 degrees.

CSS3 Animations

[92]

scale
Using the scale feature, we can increase the apparent size of the element. If the scale
is less than 1, then it will decrease the apparent size of the element. If the scale is
greater than 1, it increases the apparent size of the element.

We use the following syntax to use the 2D scale feature:

transform: scale(2);

If we pass 2 as the parameter value, then the apparent size will be twice the real size.

Let's look at what the following syntax would do:

transform: scaleX(value);

transform: scaleY(value);

transform: scale(value);

scaleX will change the apparent width of the element along the x axis.

scaleY will change the apparent height of the element along the y axis.

scale(value 1, value 2) will change the apparent width and height along
the x axis and y axis respectively.

translate
Using the translate feature, we can change the apparent position of the element
along the x axis and the y axis.

Whenever we draw an element, the default coordinates along the x axis and y
axis are (0,0) respectively. To change the x axis and y axis coordinates, we use the
translate feature.

We use the following syntax to use the 2D translate feature:

transform: translateX(value);

transform: translateY(value);

transform: translate(x-axis value, y-axis value);

translateX will change the initial position to the x axis parameter value.

translateY will change the initial position to the y axis parameter value.

translate(value1, value2) will change the position with regards to the
parameter values along the x axis and y axis respectively.

Values can be defined as percentages or in pixels.

Chapter 6

[93]

skew
Using the skew feature, we can change the angle of the element along the x axis
and y axis.

We use the following syntax to use the 2D skew feature:

transform: skewX(value)

transform: skewY(value)

skewX will distort the element along the x axis, and skewY will change the angle
along the y axis.

However, to skew the element along the x axis and y axis, we need to use the
following syntax:

transform: skew(xdeg, ydeg)

Suppose we have to use multiple properties. In that case, we have to use a single
transform: property and assign various properties to it on the same line. We cannot
define multiple transform values, as the latest value will override the previous values.

Let's look at the following code to understand the concept better:

<html>
 <head>
 <title> 2D CSS3 Transforms </title>
 <style>
 div {
 width:70px;
 height:70px;
 background-color: lime;
 border:1px solid black;
 }
 div#div1 {
 transform:skew(35deg) translateX(35px);
 -webkit-transform:skew(35deg) translateX(35px);
 }
 div#div2 {
 transform:scale(1,0.5) translateX(35px);
 -webkit-transform:scale(1,0.5) translateX(35px);
 }
 div#div3 {
 transform:rotate(45deg) translateX(35px);
 -webkit-transform:rotate(45deg) translateX(35px);
 }

CSS3 Animations

[94]

 div#div4 {
 transform:translate(30px, 40px);
 -webkit- transform:translate(30px, 40px);
 }
 </style>
 </head>
 <body>
 <div id = "div1">Alpha</div>

 <div id = "div2">Beta</div>

 <div id = "div3">Gamma</div>

 <div id = "div4">Sigma</div>
 </body>
</html>

The output of the code is displayed in the following screenshot:

Chapter 6

[95]

When we check the output, we can see that the same rectangle as defined in the CSS
is displayed in four different ways. In div#div1, we have used the skew property,
as a result of which we see the distortion. In div#div2, we have used the scale
property, due to which we can see the change in the size. In div#div3, we have used
the rotate property, due to which we can see the rectangle tilted at an angle. And
in div#div4, we have used the translate property, due to which the positioning of
the co-ordinates along the x axis and y axis has changed respectively. If you observe
the preceding code properly, we can see that in div#div1, div#div2, and div#div3,
we have used the translateX(35px) in conjunction with skew, rotate, and scale,
as we had to position the element at some distance from the x axis.

Hence, we have observed how 2D transforms are used in CSS3. Let's now look at the
3D transforms used in CSS3. Before we understand 3D transforms, we need to have a
glance at the perspective property. The perspective property is used as displayed
in the following syntax:

transform: perspective(value in pixels);

The value in pixels determines the proximity of the perspective. A higher value will
make the element apparently distant, whereas a low value will make the perspective
appear closer and will indicate a real life image of the element. Let's understand this
concept in a better way.

Imagine we are standing near a sculpture. The sculpture will look clearer if you are
standing near it. However, if we observe the same sculpture from a distance of 100
meters, we will have a different view of it. Hence, in the concept of 3D transforms,
when we use a higher perspective value, the object will appear to be distant whereas
when we use a lower perspective value, the object will appear to be its actual size.
Hence, keeping in mind the third dimensional aspect, we need to make sure that the
perspective value is defined appropriately.

In 2D transforms, we came across the x axis and y axis, where we can decide the
height and width. However, we have a third axis in 3D transforms, which will assist
us in deciding the depth along with the width and height. The third angle axis is
called the z axis. Let's look at the various 3D properties of CSS3 transforms. We will
then club the examples together to understand it in a better way.

translate (3D)
The translate property in 3D is different from the 2D translate property
because the z axis comes into picture. We use the following syntax to use the
3D translate feature:

transform: translateZ(value);

CSS3 Animations

[96]

The value entered for the translate property is decisive, as it will decide the
position of the element on the z axis. A positive value will bring the element closer
to the z axis, whereas a negative value will push the element away from the z axis.
Hence, the apparent size of the element in the third dimension can be manipulated
using the translate property.

rotate (3D)
The rotate property in 3D transforms adds the z axis to the prevalent x axis and y
axis. We will use the following syntax to use the 3D rotate property:
transform: rotateX(value);

transform: rotateY(value);

transform: rotateZ(value);

The rotateZ property will rotate the element along the z axis. The rotateX and
rotateY property will bend the element horizontally and vertically along the x
axis and y axis respectively. The value is decisive as a negative value will rotate the
element counter-clockwise, whereas a positive value will rotate the element clockwise.

There is a limitation to the 3D transforms. The scale property can be used, but
since we define a perspective in it, it is not used widely. The skew property also
exists but it is applicable only to the x axis and y axis. The skew property cannot be
implemented on the z axis. We will now look at the preserve-3d feature.

preserve-3d
Suppose we talk about a parent element under which there are several child elements.
Let's assume that the transforms are applied on the parent element. At the same time,
let's assume that a different transform is applied on the nested element. Do you think
it is going to work? It will not. Hence, we have a property so that child elements can
retain their individuality. The preserve-3d feature is to be implemented with the
transform-style feature on the parent element so that the nested elements can be
transformed uniquely. We will use the following syntax to
use the preserve-3d property:

.parent class {transform-style: preserve-3d;}

We have now discussed the various 3D transforms and their properties. Let's have
a look at the following code to understand it better:

<!DOCTYPE html>
<html>
 <head>

Chapter 6

[97]

 <style>
 div {
 width:100px;
 height:75px;
 background-color:lime;
 transform:perspective(350px) rotateZ(90deg)
 translateX(30px)
 translateY(-35px) translateZ(150px);
 -webkit-transform: perspective(350px) rotateZ(90deg)
 translateX(30px)
 translateY(-35px) translateZ(150px);
 }
 </style>
 </head>
 <body>
 <div>Hello Packt</div>
 </body>
</html>

If we observe the preceding code, we have used the rotateZ, translate, and
perspective properties.

As per the parameter values passed, the element is rotated around the z axis by 90
degrees. The positioning of the element on the x axis is shifted by 30 pixels, and we
are looking at it through a perspective set at 350 pixels. Hence, the output of the code
is displayed as shown in the following screenshot:

Now that we have understood the transition and transformation features, let's look
at animation in CSS3.

CSS3 animation
In transition, we have seen the change from one state to another. However, it doesn't
fit the bill when it comes to multiple states. Hence, the animation feature is used for
this purpose.

CSS3 Animations

[98]

Let's discuss the various properties of CSS3 animations, and then we will incorporate
all of that in a code to understand it better.

@keyframes
The points at which the transition should take place can be defined using the
@keyframes property. As of now, we need to add a vendor prefix to the @keyframes
property as it is still in its development state. In future, when it is accepted as a
standard, then we do not have to use a vendor prefix. We can use percentage or from
and to keywords to implement the change in state from one CSS style to another.

animation-name
We need to apply animation to an element. The animation-name property enables
us to do so, by applying it to the animation name defined in the keyframes rule.
However, it cannot be a standalone property and has to be used in conjunction with
other animation properties.

animation-duration
Using the animation-duration feature, we can define the duration of the animation.
If we specify the animation duration as 5 seconds, changes in the CSS defined states
will need to be completed within five seconds.

animation-delay
Similar to the delay property in transition, the animation-delay feature will delay
the animation by the time period specified.

animation-timing-function
Similar to the timing function, the animation-timing-function property decides
the speed of transition. It behaves the same way as the transition timing function that
we have seen earlier.

animation-iteration-count
We can decide the number of iteration carried out in the animation phase using the
animation-iteration-count property. Setting this property to infinite will mean
that the animation will never stop.

Chapter 6

[99]

animation-direction
We can decide the direction of the animation using the animation-direction
property. We can use values, such as reverse, and alternate to define the direction
of the element to be animated.

animation-play-state
Using the animation-play-state feature, we can determine whether the animation
would be running or paused accordingly.

Now that we had a look at these properties, we will now incorporate some of these
properties in a code and understand the functionality in a better way. Hence, to gain
a practical insight, let's look at the following code:

<!DOCTYPE html>
<html>
 <head>
 <style>
 div:hover {
 width:200px;
 height:100px;
 border:2px dotted;
 border-radius:5px;
 border-color: navy;
 background:red;
 position:relative;
 animation:packt 5s;
 -webkit-animation:packt 5s; /* Safari and Chrome */
 animation-iteration-count:3;
 animation-direction:alternate;
 animation-play-state:running;
 -webkit-animation-iteration-count:3;
 -webkit-animation-direction:alternate;
 -webkit-animation-play-state:running;
 }

 @keyframes packt {
 0% {background:lime; left:0px; top:0px;}
 25% {background:pink; left:300px; top:0px;}
 50% {background:yellow; left:300px; top:300px;}
 75% {background:silver; left:0px; top:300px;}
 100% {background:lime; left:0px; top:0px;}
 }

CSS3 Animations

[100]

 @-webkit-keyframes packt {
 0% {background:lime; left:0px; top:0px;}
 25% {background:pink; left:300px; top:0px;}
 50% {background:yellow; left:300px; top:300px;}
 75% {background:silver; left:0px; top:300px;}
 100% {background:lime; left:0px; top:0px;}
 }

 </style>
 </head>
 <body>

 <div> PACKT : Always finding a way </div>
 </body>
</html>

We have used –webkit as the prefix in the preceding example, as we are executing
the code in Google Chrome. Please use the –moz prefix for Firefox and –o- for
Opera. At the time of writing, Internet Explorer 10 supports this feature whereas the
previous versions of IE do not support it.

This code when executed will have three iterations as defined in the code. After
three iterations, the animation will stop automatically. The direction is alternate,
as a result of which the animation would be in a different direction after the first
iteration. The play state doesn't include any pauses and hence the element will be
moving constantly. We have used the hover command and the animation would
work once we hover over the div element. We have also defined the percentage in
keyframes. Hence, the transition will take place as per the colors mentioned with
respect to the position set in terms of percentage.

Let's now look at another code example to understand animations better:

<!DOCTYPE html>
<html>
 <head>
 <style>
 body {
 background:#000;
 color:#fff;
 }
 #trigger {
 width:100px;
 height:100px;
 position:absolute;
 top:50%;

Chapter 6

[101]

 margin:-50px 0 0 -50px;
 left:50%;
 background: black;
 border-radius:50px;

 /*set the animation*/
 /*[animation name] [animation duration] [animation timing
function] [animation delay] [animation iterations count] [animation
direction]*/
 animation: glowness 5s linear 0s 5 alternate;
 -moz-animation: glowness 5s linear 0s 5 alternate;
 /* Firefox */
 -webkit-animation: glowness 5s linear 0s 5 alternate;
 /* Safari and Chrome */
 -o-animation: glowness 5s linear 0s 5 alternate;
 /* Opera */
 -ms-animation: glowness 5s linear 0s 5 alternate;
 /* IE10 */
 }
 #trigger:hover {
 animation-play-state: paused;
 -moz-animation-play-state: paused;
 -webkit-animation-play-state: paused;
 -o-animation-play-state: paused;
 -ms-animation-play-state: paused;
 }
 /*animation keyframes*/
 @keyframes glowness {
 0% {box-shadow: 0 0 80px orange;}
 25% {box-shadow: 0 0 150px red;}
 50% {box-shadow: 0 0 70px pink;}
 75% {box-shadow: 0 0 50px violet;}
 100% {box-shadow: 0 0 100px yellow;}
 }

 @-moz-keyframes glowness /* Firefox */ {
 0% {box-shadow: 0 0 80px orange;}
 25% {box-shadow: 0 0 150px red;}
 50% {box-shadow: 0 0 70px pink;}
 75% {box-shadow: 0 0 50px violet;}
 100% {box-shadow: 0 0 100px yellow;}
 }

 @-webkit-keyframes glowness /* Safari and Chrome */ {
 0% {box-shadow: 0 0 80px orange;}

CSS3 Animations

[102]

 25% {box-shadow: 0 0 150px red;}
 50% {box-shadow: 0 0 70px pink;}
 75% {box-shadow: 0 0 50px violet;}
 100% {box-shadow: 0 0 100px yellow;}
 }

 @-o-keyframes glowness /* Opera */ {
 0% {box-shadow: 0 0 80px orange;}
 25% {box-shadow: 0 0 150px red;}
 50% {box-shadow: 0 0 70px pink;}
 75% {box-shadow: 0 0 50px violet;}
 100% {box-shadow: 0 0 100px yellow;}
 }

 @-ms-keyframes glowness /* IE10 */ {
 0% {box-shadow: 0 0 20px green;}
 25% {box-shadow: 0 0 150px red;}
 50% {box-shadow: 0 0 70px pink;}
 75% {box-shadow: 0 0 50px violet;}
 100% {box-shadow: 0 0 100px yellow;}
 }
 </style>
 <script>
 // animation started (buggy on firefox)
 $('#trigger').on('animationstart mozanimationstart
 webkitAnimationStart oAnimationStart
 msanimationstart',function() {
 $('p').html('animation started');
 })
 // animation paused
 $('#trigger').on('mouseover',function() {
 $('p').html('animation paused');
 })
 // animation re-started
 $('#trigger').on('mouseout',function() {
 $('p').html('animation re-started');
 })
 // animation ended
 $('#trigger').on('animationend mozanimationend
 webkitAnimationEnd oAnimationEnd
 msanimationend',function() {
 $('p').html('animation ended');
 })
 //iteration count
 var i = 0;

Chapter 6

[103]

 $('#trigger').on('animationiteration mozanimationiteration
 webkitAnimationIteration oAnimationIteration
 msanimationiteration',function() {
 i++;
 $('p').html('animation iteration='+i);
 })
 </script>
 </head>
 <body>
 <div id = "trigger"></div>
 </body>
</html>

The output of the code on execution would be as shown in the following screenshot:

We have used –webkit as the prefix in the preceding example, as we are executing
the code in Google Chrome. Please use the –moz prefix for Firefox and –o- for Opera.
Comments are added in the code so that we can understand it easily.

Apart from HTML5 and CSS3, we have used a bit of jQuery. Let's go through the
animation part of the code to understand it better. In the CSS3 styles, we have
mentioned the animation direction as alternate, as a result of which the animation
would be in a different direction after the first iteration.

We have used the hover property. In this code, whenever we hover over the
object, the animation is paused. We have also defined the glowness of the object in
keyframes. We have also mentioned how the color change and defined a box-shadow
attribute for the animation in keyframes.

We have defined the script tag, in which we have included the JavaScript and
jQuery code.

CSS3 Animations

[104]

We have used the trigger attribute. The trigger() method triggers a particular
event and the default behavior of an event with regards to the chosen elements. We
have used the mouseover and mouseout properties. The mouseover and mouseout
event fires when the user moves the mouse pointer over an element and out of
an element respectively. We have used those events in conjunction with the start,
end, and pausing of the animation. Therefore, we see how we can create complex
animations using CSS3.

We can work wonders with animation and it will get better once it is accepted as a
standard. Till then, we have to do with the vendor prefix.

Summary
In this chapter, we discussed CSS3 Transition, Transformation, and Animation in
detail. We also looked at the various properties and variations that come along with
them. In the next chapter, we will be looking at the tools and utilities that can make
web designing quicker and easier.

Tools and Utilities in
HTML5 and CSS3

There are a lot of tools and utilities available on the web that assist web designers
with building HTML5-based websites. Web designers can use these tools and
utilities to build robust and complicated websites. These tools have been tested
comprehensively and provide immense help to developers designing web pages.

We will cover the following tools and utilities, which are popular and commonly
used in the industry:

• Modernizr
• Liveweave
• HTML KickStart
• HTML5 Boilerplate
• The CSS3 Cheat sheet

Modernizr
HTML5 native elements and features are not supported completely by all browsers.
Browsers such as Google Chrome and Opera somewhat support many features, but
not all of them. Modernizr helps us in feature detection and gives us information
regarding features supported and not supported by these browsers.

A JavaScript object named Modernizr is created as a product of the tests conducted.
Classes are added to the HTML elements, denoting the features are supported by the
browser in use. Hence, we can write code in a systematic manner, as we know the
compatibility metrics.

Tools and Utilities in HTML5 and CSS3

[106]

We can download Modernizr from the following URL http://modernizr.com/
download/

The following screenshot depicts the customized manner in which we can
implement Modernizr:

A custom build can be generated with regards to the features that need to be tested
for compatibility with the specific browser.

Chapter 7

[107]

It also contains the html5 shiv element that allows HTML5 features to be
incorporated in Internet Explorer, eliminating the need to write a complicated
JavaScript code.

Documentation for Modernizr can be found at http://modernizr.com/docs/.

Modernizr is very useful as we foray into evolving web technologies.

Liveweave
Liveweave is an ideal platform to practice the HTML5 and CSS3 code.

The platform enables us to write the code and execute it as well. The output is
generated in milliseconds, and we can modify the code accordingly to suit our
purpose. The following screenshot depicts the homepage of Liveweave:

Tools and Utilities in HTML5 and CSS3

[108]

Let's change the code a bit now, by performing the following steps:

1. Click on Edit on the screen.
2. Make changes to the code. Let's replace the code within the body tag. We will

remove Hello User! and replace it with Welcome to Packt.
3. We will also change the font-size value to 100px, and then save the code.
4. Click on the Split H option, which will render the output of the code to the

right-hand side. Split V is another option where the output will be rendered
below the code. As of now, we will click on Split H.

Please refer to the following screenshot to view the output:

Referring to the screenshot, Hello User! has been replaced with Welcome to Packt
in the output. We can also notice the change in the font-size value of the text. Hence,
this platform is ideal to practice HTML5 and CSS3. The main advantage is that
developers do not have to execute the code every time, as the output is generated
as we make modifications on Liveweave.

Chapter 7

[109]

HTML KickStart
HTML KickStart helps us in developing websites faster, by providing ready-made
layouts and predefined functions. We will have a look at how HTML KickStart
works. At the time of writing, it is compatible with Google Chrome, and it is yet to be
implemented in Firefox.

Let's look at the following code snippet to see how HTML KickStart works:

<!DOCTYPE html>
<html>
 <head>
 <title> HTML KickStart is cool </title>
 <link rel = "stylesheet" type = "text/css" href =
 "C:\Users\Aravind Shenoy\Desktop\HTML5 Tools\
 kickstart\css\kickstart.css" />
 <script type = "text/javascript" src = "C:\Users\Aravind
 Shenoy\Desktop\HTML5 Tools\kickstart\js\
 kickstart.js"></script>
 </head>
 <!-- Menu Horizontal -->
 <ul class = "menu">
 <li class = "current">Login
 Version of the Application
 Downloads
 About us
 Contact us
 Customer Care info

</html>

I have stored the KickStart .css and .js files in the following
folders respectively:

C:\Users\Aravind Shenoy\Desktop\HTML5 Tools\
kickstart\css\kickstart.css

C:\Users\Aravind Shenoy\Desktop\HTML5 Tools\
kickstart\js\kickstart.js

The path may be changed with regards to the location where
you store the KickStart files.

Tools and Utilities in HTML5 and CSS3

[110]

The path of the source, where the KickStart file is stored, must be mentioned in the
link and script tags.

Suppose we do not use the preceding code snippet related to KickStart, then the
output would be displayed as shown in the following screenshot:

However, if we use the HTML KickStart code snippet in the code, the output will be
as displayed in the following screenshot:

As we can see in the preceding screenshot, the output is on a horizontal axis and
looks dapper due to preconfigured styles. Hence, we can use KickStart to build a
website faster and in an efficient manner.

The HTML KickStart files can be downloaded from http://www.99lime.com/.

HTML5 Boilerplate
HTML5 Boilerplate is a package which contains most of the essential items that a
web designer would need to build a web app or website in HTML5.

Chapter 7

[111]

It can be downloaded from http://html5boilerplate.com/. You can also
download a custom build, as per your requirement. After you download and extract
the ZIP file, you can see the content, as shown in the following screenshot:

The preceding screenshot displays all the files in Boilerplate.

CSS files include basic css that assist you in defining styles, and our project's CSS
files will be stored here.

The doc folder is used to store all the project documentation in addition to the
HTML5 Boilerplate documentation.

The js folder contains jQuery and JavaScript libraries, as well as the code that is
a part of the project.

The apple-touch-icon is customized for Apple iOS.

Tools and Utilities in HTML5 and CSS3

[112]

The .htaccess file aids in web server configuration related to Apache.

We even have a crossdomain facility, which allows us to handle data across
various domains.

In addition to this, Modernizr and html shiv are also an integral part of
HTML5 Boilerplate.

The entire documentation is available at

https://github.com/h5bp/html5-boilerplate/blob/v4.1.0/doc/TOC.md

The CSS3 Cheat sheet
The CSS3 Cheat sheet will surely assist the user, as it defines a list of all the styles
in CSS3. It can be used as a reference, as it will be handy while we are writing
the CSS3 code.

The Cheat sheet can be found at

http://media.smashingmagazine.com/wp-content/uploads/images/css3-
cheat-sheet/css3-cheat-sheet.pdf

The following screenshot is a preview of how the Cheat sheet looks:

Designers can view the CSS3 properties and the values that come along with it,
thereby applying it as per the requirement.

Chapter 7

[113]

Summary
We had a look at some of the tools and utilities in HTML5 and CSS3, which make
web designing easier. Personally speaking, I suggest that you copy the code into an
editor, such as Notepad or Notepad++, and alter it to see the varied output.

Coding is an art, which gets better with practice. Hence, we need to implement it
practically, in order to know the subtle nuances of HTML5 and CSS3. However, we
can achieve that after a considerable amount of practice. We have covered a lot of
HTML5 and CSS3 features in this book.

However, we are just on the shore; the sea of knowledge is far beyond.

You can check out the Packt website at www.packtpub.com, which has a lot of books
on HTML5 and CSS3, which are customized to suit your needs.

The following are some of the books we have at Packt Pub on HTML5 and CSS3 to
mention a few:

• HTML5 Boilerplate Web Development
• HTML5 Canvas Cookbook
• Responsive Web Design with HTML5 and CSS3

Please check out our website for further details.

You can alternatively visit the Packt online library at http://packtlib.packtpub.
com/, where you will gain access to various books and articles.

Index
Symbols
<div> tag 14
@keyframes property 98

A
advanced features, HMTL5

about 53
audio 54, 55
canvas element 70, 71
drag-and-drop 58-60
geolocation 60-63
offline web applications 67-69
video 54, 55
webstorage 63

align-items property 29, 30
animation 80, 82
animation-delay feature 98
animation-direction property 99
animation-duration feature 98
animation-iteration-count property 98
animation-name property 98
animation-play-state feature 99-103
animation-timing-function property 98
arc() method 72
article element 18, 19
aside element 19
audio 54
autofocus attribute 39, 40

B
beginPath() method 72
Bing 14

C
canvas element

about 70, 71
arc() method 72
beginPath() method 72
closePath() method 72
fill() method 72
gradients 74, 75
lineTo() method 73, 74
moveTo() method 72
restore() method 76
save() method 75
stroke function 72

clearRect property 71
closePath() method 72
color input type 50
CSS 7
CSS3 23
CSS3 animation

@keyframes property 98
about 97
animation-delay feature 98
animation-direction property 99
animation-duration feature 98
animation-iteration-count property 98
animation-name property 98
animation-play-state feature 99-103
animation-timing-function 98

CSS3 Cheat sheet
about 112
structure 112

CSS3 transforms
about 91
preserve-3d feature 96, 97
rotate (3D) feature 96

[116]

rotate feature 91
scale feature 92
skew feature 93, 95
translate (3D) feature 95
translate feature 92

CSS3 transitions
about 84-86
transition-delay property 90, 91
transition-duration property 86-88
transition-timing-function property 89, 90

D
datalist attribute 42, 43
date input type 46, 47
drag-and-drop feature 58-60
dragenter event 60
dragleave event 60
dragstart event 60
drawArc function 74

E
email input type 45

F
features, HTML5 9, 10
fill() method 72
fillRect property 71
Flash player 54
Flexbox

about 23, 24
working 25

Flex Container
about 24
properties 26

flex-direction property 26-28
Flexible Box Model 23
Flex Items

properties 33
Flex Line 24
flex property 35
flex-wrap property 31-33
footer element 15
form attributes, HMTL5

autofocus 39, 40
datalist 42, 43

placeholder 38
required 40, 42

G
geolocation 60-63
global attributes, HTML5

itemid 21
itemprop 21
itemref 21
itemscope 21
itemtype 21

Google Chrome 105
Google Search 14
Google Structured Data Testing Tool 22
gradients 74, 75

H
header element 14
HMTL5

advanced features 53
features 9, 10
form attributes 38-42
input types 43-50
misconceptions 10, 11
sectioning elements 13
used, for developing video player 56, 57
versus HTML 4 8, 9

HTML
about 7
standardizing 7, 8
versions 7

HTML 4
versus HTML5 8, 9

HTML5 Boilerplate
about 110, 111
URL, for documentation 112
URL, for downloading 111

html5 shiv element 107
HTML KickStart

about 109
URL, for downloading files 110
working 109, 110

HTTP 7
HyperText Markup Language. See HTML

[117]

I
input types, HTML5

color 50
date 46, 47
email 45
month 48, 49
search 43, 44
url 45
week 47

Intermedia 7
itemid attribute 21
itemprop attribute 21
itemref attribute 21
itemscope attribute 21
itemtype attribute 21

J
justify-content property 28, 29

L
linear gradients 74
lineTo() method 73, 74
Liveweave 107, 108
localStorage property 65, 66

M
Math function 73
Microdata 20-22
Modernizr

about 105
URL, for documentation 107
URL, for downloading 106

month input type 48, 49
moveTo() method 72

N
nav element 16, 17
navigator.geolocation function 62

O
offline web applications 67-69
Opera 105
order property 33, 34

P
placeholder attribute 38
preserve-3d feature 96, 97
properties, Flex Container

align-items 29, 30
flex-direction 26-28
flex-wrap 31-33
justify-content 28, 29

properties, Flex Items
flex 35
order 33, 34

R
required attribute 40, 42
restore() method 76
rotate (3D) feature 96
rotate feature 91
rotate() method 78, 79

S
save() method 75
scale feature 92
scale property 79, 80
search engine optimization. See SEO
search input type 43
sectioning 13
sectioning elements, HMTL5

article 18, 19
aside 19
footer 15
header 14
nav 16-18

SEO 14
sessionStorage property 63, 65
SGML 7
skew feature 93, 95
Standard Generalized Markup

Language. See SGML
standardization process, HTML 7, 8
stroke function 72
strokeRect property 71
switch command 62

[118]

T
transformations

about 77
rotate() method 78, 79
scale property 79, 80
translate property 77, 78

transition-delay property 90, 91
transition-duration property 86-88
transition-property 84
transition-timing-function property 89, 90
translate (3D) feature 95
translate feature 92
translate property 77, 78
trigger() method 104

U
url input type 45

V
video 54
video player

developing, HTML5 used 56, 57

W
watchPosition method 63
Web Hypertext Application Technology

Working Group. See WHATWG
Webstorage

about 63
localStorage property 65, 66
sessionStorage property 63, 65

week input type 47
WHATWG 8
World Wide Web Consortium (W3C) 8
wrap-reverse property 32

Z
ZOG 7

Thank you for buying
HTML5 and CSS3 Transition,Transformation, and Animation

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Responsive Web Design with
HTML5 and CSS3
ISBN: 978-1-84969-318-9 Paperback: 324 pages

Learn responsive design using HTML5 and CSS3 to
adapt websites to any browser or screen size

1. Everything needed to code websites in HTML5
and CSS3 that are responsive to every device or
screen size

2. Learn the main new features of HTML5 and
use CSS3's stunning new capabilities including
animations, transitions and transformations

3. Real world examples show how to
progressively enhance a responsive design
while providing fall backs for older browsers

Developing Windows Store Apps
with HTML5 and JavaScript
ISBN: 978-1-84968-710-2 Paperback: 184 pages

Learn the key concepts of developing Windows Store
apps using HTML5 and JavaScript

1. Learn about the powerful new features in
HTML5 and CSS3

2. Quick start a JavaScript app from scratch

3. Get your app into the store and learn how
to add authentication

Please check www.PacktPub.com for information on our titles

Mobile First Design with HTML5
and CSS3
ISBN: 978-1-84969-646-3 Paperback: 122 pages

Roll out rock-solid, responsive, mobile fi rst designs
quickly and reliably

1. Make websites that will look great and be
usable on almost any device that displays
web pages

2. Learn best practices for responsive design

3. Discover how to make designs that will be lean
and fast on small screens without sacrificing a
tablet or desktop experience

Dreamweaver CS6 Mobile and
Web Development with HTML5,
CSS3, and jQuery Mobile
ISBN: 978-1-84969-474-2 Paperback: 268 pages

Harness the cutting-edge features of Dreamweaver
for mobile and web development

1. A basic, compressed, updated introduction
to building advanced web sites with
Dreamweaver

2. A focused exploration of employing cutting
edge HTML5 techniques such as native media

3. An in-depth explanation of how to build
inviting, accessible mobile sites with
Dreamweaver CS6, responsive design, and
jQuery Mobile

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to HTML5
	Standardizing HTML
	Differences between HTML 4 and HTML5
	Why we must start using HTML5
	Myths about HTML5
	Summary

	Chapter 2: Using the New Markup
to Build a Semantic Page
	Easier and faster syntax
	Header
	Footer
	Nav
	Article
	Aside

	Microdata
	Summary

	Chapter 3: Flexible Box Model in CSS3
	Understanding Flexbox
	Flex Container properties
	flex-direction
	justify-content
	align-items
	flex-wrap

	Properties of Flex Items
	Order
	Flex

	Summary

	Chapter 4: Web Forms in HTML5
	New form attributes in HTML5
	placeholder
	autofocus
	required
	datalist

	Understanding new input types in HTML5
	search
	email and url
	date
	week
	month
	color

	Summary

	Chapter 5: Advanced Features
of HTML5
	Audio and video
	Drag-and-Drop
	Geolocation
	Webstorage
	sessionStorage
	localStorage

	Offline web applications
	Canvas
	beginPath
	closePath
	moveTo
	stroke and fill
	arc
	lineTo
	Gradients
	save and restore
	Transformations
	translate
	rotate
	scale

	Animation

	Summary

	Chapter 6: CSS3 Animations
	CSS3 transitions
	The transition-duration property
	The transition-timing-function property
	The transition-delay property

	CSS3 transforms
	rotate
	scale
	translate
	skew
	translate (3D)
	rotate (3D)
	preserve-3d

	CSS3 animation
	@keyframes
	animation-name
	animation-duration
	animation-delay
	animation-timing-function
	animation-iteration-count
	animation-direction
	animation-play-state

	Summary

	Chapter 7: Tools and Utilities in
HTML5 and CSS3
	Modernizr
	Liveweave
	HTML KickStart
	HTML5 Boilerplate
	The CSS3 Cheat sheet
	Summary

	Index

